WorldWideScience

Sample records for fresnel lens observatory

  1. Formation flying for a Fresnel lens observatory mission

    CERN Document Server

    Krizmanic, J; Gehrels, N; Krizmanic, John; Skinner, Gerry; Gehrels, Neil

    2006-01-01

    The employment of a large area Phase Fresnel Lens (PFL) in a gamma-ray telescope offers the potential to image astrophysical phenomena with micro-arcsecond angular resolution. In order to assess the feasibility of this concept, two detailed studies have been conducted of formation flying missions in which a Fresnel lens capable of focussing gamma-rays and the associated detector are carried on two spacecraft separated by up to 10$^6$ km. These studies were performed at the NASA Goddard Space Flight Center Integrated Mission Design Center (IMDC) which developed spacecraft, orbital dynamics, and mission profiles. The results of the studies indicated that the missions are challenging but could be accomplished with technologies available currently or in the near term. The findings of the original studies have been updated taking account of recent advances in ion thruster propulsion technology.

  2. Fresnel Lens with Embedded Vortices

    Directory of Open Access Journals (Sweden)

    Sunil Vyas

    2012-01-01

    Full Text Available Vortices of different charges are embedded in a wavefront that has quadratic phase variation, and the intensity distribution near the focal plane is studied. This method may be useful in realizing complicated beam profiles. We have experimentally demonstrated the generation of vortex arrays having integer as well as fractional topological charges that produce different intensity profiles at the focal plane. The phase variation realized on a spatial light modulator (SLM acts as a Fresnel lens with embedded vortices.

  3. Solar powered desalination system using Fresnel lens

    Science.gov (United States)

    Sales, M. T. B. F.

    2016-11-01

    The Philippines is surrounded by coastal areas and these areas can be a potential source for potable water. This study aims to design and construct a solar powered desalination system using Fresnel lens. The experimental study was conducted using polluted salt water for the sample and desalination was carried out using the designed system. The desalination system was composed of the solar concentrator, solar still and the condenser system. The Fresnel lens was made of acrylic plastic and was an effective solar concentrator. Solar stills made of dark colored glass bottles were effective in absorbing the solar energy. The condenser system made of polybutylene and polystyrene were effective in condensing the vapor at ambient temperature. The shortest time of vaporization of the salt water was at 293 sec and the optimum angle of position of the lens was 36.42°. The amount of condensate collected was directly proportional to the amount of salt water in the solar still. The highest mean efficiency of the designed set-up was 34.82%. The water produced by the solar powered desalination system using Fresnel lens passed the standards set by WHO (World Health Organization) for drinking water.

  4. Terahertz wave tomographic imaging with a Fresnel lens

    Institute of Scientific and Technical Information of China (English)

    S. Wang; X.-C. Zhang

    2003-01-01

    We demonstrate three-dimensional tomographic imaging using a Fresnel lens with broadband terahertz pulses. Objects at various locations along the beam propagation path are uniquely imaged on the same imaging plane using a Fresnel lens with different frequencies of the imaging beam. This procedure allows the reconstruction of an object's tomographic contrast image by assembling the frequency-dependent images.

  5. Signal-enhancement reflective pulse oximeter with Fresnel lens

    Science.gov (United States)

    Chung, Shuang-Chao; Sun, Ching-Cherng

    2016-09-01

    In this paper, a new reflective pulse oximeter is proposed and demonstrated with implanting a Fresnel lens, which enhances the reflected signal. An optical simulation model incorporated with human skin characteristics is presented to evaluate the capability of the Fresnel lens. In addition, the distance between the light emitting diode and the photodiode is optimized. Compared with the other reflective oximeters, the reflected signal light detected by the photodiode is enhanced to more than 140%.

  6. Achromatic Fresnel Lens with Improved Efficiency for PV Systems

    Directory of Open Access Journals (Sweden)

    Mario González Montes

    2014-01-01

    Full Text Available This work is aimed to design and evaluate different achromatic Fresnel lens solutions capable of operating as concentrators aimed at photovoltaic cells systems. Throughout this study, the theoretical parametric design of the achromatic lens will be shown together with a series of simulations to verify the performance of each lens topology. The results will be compared with a standard Fresnel lens to ascertain the validity and effectiveness of the obtained design. Finally, a novel kind of hybrid lens is proposed, which combines the advantages of each type of lens (standard and Fresnel according to the optimal operating region of each design. Efficiency and concentration ratios of each particular lens are shown, regarding lens dimension, light’s incidence angle, or wavelength. Through this innovative achromatic design concentration ratios above 1000 suns, which hardly reach standard Fresnel lenses. Furthermore chromatic dispersion is minimized and the efficiency rate is over 85% of efficiency for a wide spectral range (from 350 nm to 1100 nm.

  7. Evolutionary algorithm for optimization of nonimaging Fresnel lens geometry.

    Science.gov (United States)

    Yamada, N; Nishikawa, T

    2010-06-21

    In this study, an evolutionary algorithm (EA), which consists of genetic and immune algorithms, is introduced to design the optical geometry of a nonimaging Fresnel lens; this lens generates the uniform flux concentration required for a photovoltaic cell. Herein, a design procedure that incorporates a ray-tracing technique in the EA is described, and the validity of the design is demonstrated. The results show that the EA automatically generated a unique geometry of the Fresnel lens; the use of this geometry resulted in better uniform flux concentration with high optical efficiency.

  8. High frequency acoustic microscopy with Fresnel zoom lens

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The acoustic field distributions and the convergent beams generated by the planar-structure Fresnel zone transducers on solid surface are investigated. Because only 0 and 180 degree phase transducers are used, an imaging system with the Fresnel zoom lens could work at very high frequency, which overcomes the frequency limit of the traditional phased array acoustic imaging system. Simulation results are given to illustrate the acoustic field distributions along the focal axis and the whole plane as well. Based on the principle of scanning of the focus with the change of frequency for the excited signal, an experimental imaging system is also built. Acoustic Fresnel zone transducers are fabricated at center frequency of 400 MHz. Measurements and detections of the known hole flaws at different depths of the fused quartz sample are presented to show that the imaging system with Fresnel zoom lens could move its focus by only changing the frequency of the excited signal.

  9. Lightweight Inexpensive Ozone Lidar Telescope Using a Plastic Fresnel Lens

    Science.gov (United States)

    DeYoung, Russell J.; Notari, Anthony; Carrion, William; Pliutau, Denis

    2014-01-01

    An inexpensive lightweight ozone lidar telescope was designed, constructed and operated during an ozone lidar field campaign. This report summarizes the design parameters and performance of the plastic Fresnel lens telescope and shows the ozone lidar performance compared to Zemax calculations.

  10. High frequency acoustic microscopy with Fresnel zoom lens

    Institute of Scientific and Technical Information of China (English)

    QIAO DongHai; LI ShunZhou; WANG ChengHao

    2007-01-01

    The acoustic field distributions and the convergent beams generated by the planar-structure Fresnel zone transducers on solid surface are investigated.Because only 0 and 180 degree phase transducers are used,an imaging system with the Fresnel zoom lens could work at very high frequency,which overcomes the frequency limit of the traditional phased array acoustic imaging system.Simulation results are given to illustrate the acoustic field distributions along the focal axis and the whole plane as well.Based on the principle of scanning of the focus with the change of frequency for the excited signal,an experimental imaging system is also built.Acoustic Fresnel zone transducers are fabricated at center frequency of 400 MHz.Measurements and detections of the known hole flaws at different depths of the fused quartz sample are presented to show that the imaging system with Fresnel zoom lens could move its focus by only changing the frequency of the excited signal.

  11. FOCUSING BY A HIGH-POWER, LOW-FRESNEL-NUMBER LENS - THE FLY FACET LENS

    NARCIS (Netherlands)

    STAVENGA, DG; VANHATEREN, JH

    1991-01-01

    Diffraction by fly facet lenses has been investigated by photographing the diffraction patterns at various distances from a facet lens whose power was estimated to be 2.03 x 10(4) D. We studied three different aperture diameters with Fresnel numbers of the order of unity. A large focal shift was pro

  12. Focusing by a high-power, low-Fresnel-number lens : the fly facet lens

    NARCIS (Netherlands)

    Stavenga, D.G.; Hateren, J.H. van

    1991-01-01

    Diffraction by fly facet lenses has been investigated by photographing the diffraction patterns at various distances from a facet lens whose power was estimated to be 2.03 x 10(4) D. We studied three different aperture diameters with Fresnel numbers of the order of unity. A large focal shift was pro

  13. Analysis, Design and Fabrication of centimeter-wave Dielectric Fresnel Zone Plate Lens and reflector

    CERN Document Server

    Mahmoudi, A; Mahmoudi, Ali; Azalzadeh, Reza

    2005-01-01

    Fresnel lens has a long history in optics. This concept at non-optical wavelengths is also applicable. In this paper we report design and fabrication of a half and quarter wave dielectric Fresnel lens made of Plexiglas, and a Fresnel reflector at 11.1 GHz frequency. We made two lenses and one reflector at same frequency and compare their gain and radiation pattern to simulated results. Some methods for better focusing action will be introduced.

  14. Manufacturing injection-moleded Fresnel lens parquets for point-focus concentrating photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Peters, E.M.; Masso, J.D. [AOtec, Southbridge, MA (United States)

    1995-10-01

    This project involved the manufacturing of curved-faceted, injection-molded, four-element Fresnel lens parquets for concentrating photovoltaic arrays. Previous efforts showed that high-efficiency (greater than 82%) Fresnel concentrators could be injection molded. This report encompasses the mold design, molding, and physical testing of a four-lens parquet for a solar photovoltaic concentrator system.

  15. Electrically switchable holographic liquid crystal/polymer Fresnel lens using a Michelson interferometer.

    Science.gov (United States)

    Jashnsaz, Hossein; Mohajerani, Ezeddin; Nemati, Hossein; Razavi, Seyed Hossein; Alidokht, Isa Ahmad

    2011-06-10

    A holographic technique for fabricating an electrically switchable liquid crystal/polymer composite Fresnel lens is reported. A Michelson interferometer is used to produce the required Fresnel pattern, by placing a convex lens into one path of the interferometer. Simplicity of the method and the possibility of fabricating different focal length lenses in a single arrangement are advantages of the method. The performance of the fabricated lens was demonstrated and its electro-optical properties were investigated for its primary focal length.

  16. Twenty Meter Space Telescope Based on Diffractive Fresnel Lens

    Energy Technology Data Exchange (ETDEWEB)

    Early, J; Hyde, R; Baron, R

    2003-06-26

    Diffractive lenses offer two potential advantages for very large aperture space telescopes; very loose surface-figure tolerances and physical implementation as thin, flat optical elements. In order to actually realize these advantages one must be able to build large diffractive lenses with adequate optical precision and also to compactly stow the lens for launch and then fully deploy it in space. We will discuss the recent fabrication and assembly demonstration of a 5m glass diffractive Fresnel lens at LLNL. Optical performance data from smaller full telescopes with diffractive lens and corrective optics show diffraction limited performance with broad bandwidths. A systems design for a 20m space telescope will be presented. The primary optic can be rolled to fit inside of the standard fairings of the Delta IV vehicle. This configuration has a simple deployment and requires no orbital assembly. A twenty meter visible telescope could have a significant impact in conventional astronomy with eight times the resolution of Hubble and over sixty times the light gathering capacity. If the light scattering is made acceptable, this telescope could also be used in the search for terrestrial planets.

  17. A study for the special Fresnel lens for high efficiency solar concentrators

    Science.gov (United States)

    Lin, Jian-Shian; Huang, Wei-Chih; Hsu, Hsiu-Chen; Chang, Ming-Wen; Liu, Chung-Ping

    2005-08-01

    Design a Fresnel lens for a concentrator to collect more sunlight onto the solar cell due to the efficiency and cost. Since 1970, the non-imaging concentrator was used for solar energy; most of them were reflecting mirrors. The non-imaging optical system provides large aperture and forgiving imaging requirements. The Fresnel lens used in non-imaging optical system was usually called non-imaging Fresnel lens. In this research, the Fresnel lenses were refracting optical elements but diffracting ones. According to the method of Ralf Leutz and Akio Suzuki [2], using minimum deviation and minimum dispersion to design a non-imaging Fresnel lens, which obeys the edge ray principle. Use optical software TracePro to simulate the non-imaging Fresnel lens, and each pitch size was 0.3mm and 200mm focus distant. Discusses the losses of non-imaging Fresnel lens and find out the relation of efficiency and F-Number. The optical concentration ratio could reach 15X (2-D) and 230X (3-D).

  18. Ultralightweight Fresnel Lens Solar Concentrators for Space Power

    Science.gov (United States)

    ONeill, M. J.; McDanal, A. J.

    2000-01-01

    The first phase of this project was completed in March 2000, and included the successful technology demonstration of a new ultralightweight photovoltaic concentrator array at the fully functional panel level. The new array is called the Stretched Lens Aurora (SLA) array, and uses deployable, flexible, thin-film silicone rubber Fresnel lenses to focus sunlight onto high efficiency multijunction solar cells, which are mounted to a composite radiator surface for waste heat dissipation. A prototype panel was delivered to NASA Marshall in March 2000, and comprised four side-by-side lenses focussing sunlight onto four side-by-side photovoltaic receivers. This prototype panel was tested by NASA Glenn prior to delivery to NASA Marshall. The best of the four lens/receiver modules achieved 27.4% efficiency at room temperature in the NASA Glenn solar simulator tests. This performance equates to 375 W/sq.m. areal power and 378 W/kg specific power at the fully functional panel level. We believe this to be the first space solar array of any kind to simulataneously meet the two long-standing NASA goals of 300 W/sq.m. and 300 W/kg at the functional panel level. Key results for the first phase of the program have been documented by ENTECH in a Draft Final Technical Report, which is presently being reviewed by NASA, and which should be published in the near future.

  19. Novel Scanning Lens Instrument for Evaluating Fresnel Lens Performance: Equipment Development and Initial Results (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, R.; Miller, D. C.; Kurtz, S. R.; Anton, I.; Sala, G.

    2013-07-01

    A system dedicated to the optical transmittance characterization of Fresnel lenses has been developed at NREL, in collaboration with the UPM. The system quantifies the optical efficiency of the lens by generating a performance map. The shape of the focused spot may also be analyzed to understand change in the lens performance. The primary instrument components (lasers and CCD detector) have been characterized to confirm their capability for performing optical transmittance measurements. Measurements performed on SoG and PMMA lenses subject to a variety of indoor conditions (e.g., UV and damp heat) identified differences in the optical efficiency of the evaluated lenses, demonstrating the ability of the Scanning Lens Instrument (SLI) to distinguish between the aged lenses.

  20. Design and Optimization of Fresnel Lens for High Concentration Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Lei Jing

    2014-01-01

    Full Text Available A practical optimization design is proposed, in which the solar direct light spectrum and multijunction cell response range are taken into account in combination, particularly for the Fresnel concentrators with a high concentration and a small aspect ratio. In addition, the change of refractive index due to temperature variation in outdoor operation conditions is also considered in the design stage. The calculation results show that this novel Fresnel lens achieves an enhancement of energy efficiency of about 10% compared with conventional Fresnel lens for a given solar spectrum, solar cell response, and corrected sunshine hours of different ambient temperature intervals.

  1. Design of Fresnel Lens-Type Multi-Trapping Acoustic Tweezers

    Directory of Open Access Journals (Sweden)

    You-Lin Tu

    2016-11-01

    Full Text Available In this paper, acoustic tweezers which use beam forming performed by a Fresnel zone plate are proposed. The performance has been demonstrated by finite element analysis, including the acoustic intensity, acoustic pressure, acoustic potential energy, gradient force, and particle distribution. The acoustic tweezers use an ultrasound beam produced by a lead zirconate titanate (PZT transducer operating at 2.4 MHz and 100 Vpeak-to-peak in a water medium. The design of the Fresnel lens (zone plate is based on air reflection, acoustic impedance matching, and the Fresnel half-wave band (FHWB theory. This acoustic Fresnel lens can produce gradient force and acoustic potential wells that allow the capture and manipulation of single particles or clusters of particles. Simulation results strongly indicate a good trapping ability, for particles under 150 µm in diameter, in the minimum energy location. This can be useful for cell or microorganism manipulation.

  2. Design of Novel Compound Fresnel Lens for High-Performance Photovoltaic Concentrator

    Directory of Open Access Journals (Sweden)

    Lei Jing

    2012-01-01

    Full Text Available We present a new design of compound Fresnel-R concentrator which is composed of two lenses: a primary lens (Fresnel lens that works by total internal reflection at outer sawteeth but refraction at inner sawteeth, and a ringed secondary lens that works by refraction. In contrast to previous Fresnel lens concentrators, this design increases the acceptance angle, improves the irradiance uniformity on the solar cell, and reduces the aspect ratio significantly. Meanwhile several sawteeth of the primary Fresnel lens can correspond to a same ring of secondary lens, which will efficiently lower the complexity of designing and manufacturing. Moreover, in order to reduce the influence of manufacturing tolerances and to increase the optical efficiency further, the central part of the bottom of the secondary lens which directly adhered to the solar cell is designed as a cone-shaped prism to collect the sunlight that does not reach the solar cell. Finally, we provide simulations and analyses of the design method an optical efficiency more than 80% and an aspect ratio smaller than 0.5 can be achieved.

  3. Design and experimental study on Fresnel lens of the combination of equal-width and equal-height of grooves

    Science.gov (United States)

    Guo, Limin; Liu, Youqiang; Huang, Rui; Wang, Zhiyong

    2017-06-01

    High concentrating PV systems rely on large Fresnel lens that must be precisely oriented in the direction of the Sun to maintain high concentration ratio. We propose a new Fresnel lens design method combining equal-width and equal-height of grooves in this paper based on the principle of focused spot maximum energy. In the ring band near the center of Fresnel lens, the design with equal-width grooves is applied, and when the given condition is reached, the design with equal-height grooves is introduced near the edges of the Fresnel lens, which ensures all the lens grooves are planar. In this paper, we establish a Fresnel lens design example model by Solidworks, and simulate it with the software ZEMAX. An experimental test platform is built to test, and the simulation correctness is proved by experiments. Experimental result shows the concentrating efficiency of this example is 69.3%, slightly lower than the simulation result 75.1%.

  4. A novel application of a Fresnel lens for a solar stove and solar heating

    Energy Technology Data Exchange (ETDEWEB)

    Valmiki, M.M.; Li, Peiwen; Heyer, Javier; Morgan, Matthew; Albinali, Abdulla; Alhamidi, Kamal; Wagoner, Jeremy [Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721 (United States)

    2011-05-15

    This paper presents a novel design and the prototyped solar cooking stove which uses a large Fresnel lens for the concentration of sunlight. The technology demonstrates high safety and efficiency of solar cooking and heating using Fresnel lenses which are low cost and available from off-the-shelf. The stove has a fixed heat-receiving area located at the focal point of the lens. The sunlight tracking system rotates the Fresnel lens about its focal point in both zenith and azimuth angles. The tracking is accomplished through a revolving motion of two rotation arms that hold the lens and a horizontal rotation of a platform that the lens system stands on. The rotation of the arms tracks the sunlight in zenith plane, while the rotation of the platform tracks in the azimuth plane. Since the solar tracking allows the Fresnel lens to concentrate sunlight to a fixed small heat-receiving area, relatively low heat loss and high energy efficiency is made possible. The heat is used to maintain a stovetop surface at temperatures around as high as 300 C, which is practical for cooking applications in a very safe, user-friendly, and convenient manner. The system also demonstrates the possibility of transferring heat using a working fluid for indoor heating and cooking. Wider applications using the system for solar thermal collection and utilization are also undergoing development. (author)

  5. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications

    CERN Document Server

    Koshelev, Alexander; Piña-Hernandez, Carlos; Allen, Frances; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-01-01

    In this Letter we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.69), which enables efficient light focusing even inside other media such as water or adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping and fiber probes.

  6. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications.

    Science.gov (United States)

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter, we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.68), which enables efficient light focusing even inside other media, such as water or an adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping, and fiber probes.

  7. Component and prototype panel testing of the mini-dome Fresnel lens photovoltaic concentrator array

    Science.gov (United States)

    Piszczor, Michael F.; Swartz, Clifford K.; O'Neill, Mark J.

    1990-01-01

    The mini-dome Fresnel lens concentrator array, a high-efficiency, lightweight space photovoltaic array concept, is described. The three critical elements of the array concept are the Fresnel lens concentrator, the prismatic cell power cover, and the photovoltaic cell. Prototype concentrator lenses have been fabricated and tested, with optical efficiencies reaching 90 percent. Work is progressing on the design and fabrication of the panel structure. The impact of recent advances in 30 percent-efficient multijunction photovoltaic cells on array performance is also discussed. Near-term performance goals of 300 w/sq m and 100 w/kg are now feasible.

  8. Experimental studies on PCM filled Flat Plate Solar Water Heater without and with Fresnel lens glazing

    Directory of Open Access Journals (Sweden)

    R. Sivakumar

    2016-07-01

    Full Text Available Flat Plate Solar Water Heater (FPSWH is commonly used to harvest solar energy. Solar concentration techniques help to achieve higher temperatures of energy. The aim of this article is to compare the performance of a Fresnel lens glazed Flat Plate Solar Water Heater with Phase Change Material (PCM with that provided with an ordinary glazing. The effect of solar concentration using Fresnel lens on energy storage in PCM and heat gained by water are studied and compared with that having an ordinary glazing. Experiments showed 47% improvements in the heat gained by water.

  9. Certification and verification for Northrup Model NSC-01-0732 Fresnel lens concentrating solar collector

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    The certification and verification of the Northrup Model NSC-01-0732 Fresnel lens tracking solar collector are presented. A certification statement is included with signatures and a separate report on the structural analysis of the collector system. System verification against the Interim Performance Criteria are indicated by matrices with verification discussion, analysis, and enclosed test results.

  10. Electrically Tunable Binary-Phase Fresnel Lens Based on Polymer Dispersed Liquid Crystal

    Directory of Open Access Journals (Sweden)

    Hui LI

    2017-05-01

    Full Text Available This is a proposal for a Fresnel lens with an electrically tunable binary-phase made of polymer dispersed liquid crystal (PDLC, which has relatively fast response time and low applied voltage. Simple fabrication is the major advantage of the proposed method. In this study, NOA65 and E7 were utilized with weight ratios of 60 wt.%: 40 wt.%. There was also the utilization of a relatively low intensity UV-light, 0.53 mW/cm2. The duration time of exposure was about 30 hours. The performance improvement of the Fresnel lens resulted from the infiltration of large LC droplet into the PDLC film. The phenomenon of black cross strip patterns could be explained with the use of the electro-hydrodynamics theory. The diffraction efficiency of the proposed lens was from 31.1 % to 41 % with the changes of externally applied voltage. This work presents an effective approach to get relatively complete phase separation in PDLC. The proposed method also provides great potential in developing high performance Fresnel lens.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.16317

  11. New concentrator multifocal Fresnel lens for improved uniformity: design and characterization

    Science.gov (United States)

    Vázquez-Moliní, Daniel; Fernández-Balbuena, Antonio Álvarez; Bernabeu, Eusebio; Muñoz de Luna Clemente, Javier; Domingo-Marique, Alfonso; García-Botella, Ángel

    2009-08-01

    The emergence of high efficiency photovoltaic cells is leading the industry into using solar concentrators in order to reduce costs by decreasing the number of cells used. In this paper Optics department of Universidad Complutense de Madrid has designed a multifocal Fresnel lens of PMMA and has studied the main parameters that have influence on its final function. This has been done by taking into account its manufacturing tolerances. The lens is square shaped with sides measuring 270 mm and it is composed of three different zones based on three different criteria: The central zone has been designed by using paraxial formulation, the intermediate one has been designed based on Fresnel classical formula while the marginal zone's purpose is to deflect the light by total internal reflection on prism faces. All three zones have different focal areas and different optical axis so the energy distribution will be more uniform whilst avoiding cell damage caused by hot spots. The design stage is feedback through simulations using a ray tracer software. In order to characterize the lens operation a measure of optical concentration was first taken on different lens areas using an integrating sphere. Finally, the lens performance in terms of concentration and in terms of uniformity at the focal spot was studied by processing the images taken with a CCD camera on a screen placed at the focal plane of the lens.

  12. Single-exposure multiphoton fabrication of polygonized structures by an SLM-modulated Fresnel zone lens

    Science.gov (United States)

    Zhang, Chenchu; Hu, Yanlei; Li, Jiawen; Lao, Zhaoxin; Xu, Bing; Ni, Jincheng; Cai, Ze; Wu, Dong; Chu, Jiaru

    2016-03-01

    Recently, annular beams have been developed to rapidly fabricate microscope tubular structures via two-photon polymerization, but the distribution of the light field is limited to a ring pattern. Here a Fresnel lens is designed and applied to modulate the light field into a uniform quadrangle or hexagon shape with controllable diameters. By applying a spatial light modulator to load the phase information of the Fresnel lens, quadrangle and hexagon structures are achieved through single exposure of a femtosecond laser. A 3×6 array of structures is made within 9 s. Comparing with the conventional holographic processing, this method shows higher uniformity, high efficiency, better flexibility, and easy operation. The approach exhibited a promising prospect in rapidly fabricating structures such as tissue engineering scaffolds and variously shaped tubular arrays.

  13. Design and development of a laminated glass-plastic Fresnel lens for point focus photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Matalon, L. A.

    1982-08-01

    The design and development of a laminated glass-plastic Fresnel lens for point focus photovoltaic systems use is described. The objective of this development was to examine the feasibility of producing lenses with a cost effectiveness superior to that of lenses made by casting of acrylic. The procedure used in executing this development, the method used in cost effectiveness evaluation, results obtained and recommendations for further work are presented.

  14. Aspheric surface lens for LED collimating illumination with low Fresnel loss

    Science.gov (United States)

    Chen, Xindu; Lin, Jiaping; Liu, Zhanji; Wu, Peixuan; Wang, Han

    2016-12-01

    An aspheric surface lens is presented to realize collimating illumination with low Fresnel loss based on Fresnel equations and Snell's law. The smooth 2D contour of refractive optical surface is constructed from a set of cubic Bézier segments, whose control points are computed by deCasteljau algorithm. Simulation results show that the optical efficiency of 90.82% is achieved under a divergence angle of ±2.87° for an extended light-emitting diode (LED) source with chip size of 1 mm × 1 mm and the Fresnel loss is only 8.76%, whose optical efficiency has improved 14.3% than traditional collimating lens. By employing this proposed surface construction method, the largest divergence angle of collimating lens for point source is only 0.26° with 15 feature points on each refractive surface, while more than 2° for the traditional method. Therefore, the beams are well controlled with fewer feature data points. Tolerance analyses are also conducted in detail.

  15. Aspheric surface lens for LED collimating illumination with low Fresnel loss

    Science.gov (United States)

    Chen, Xindu; Lin, Jiaping; Liu, Zhanji; Wu, Peixuan; Wang, Han

    2017-02-01

    An aspheric surface lens is presented to realize collimating illumination with low Fresnel loss based on Fresnel equations and Snell's law. The smooth 2D contour of refractive optical surface is constructed from a set of cubic Bézier segments, whose control points are computed by deCasteljau algorithm. Simulation results show that the optical efficiency of 90.82% is achieved under a divergence angle of ±2.87° for an extended light-emitting diode (LED) source with chip size of 1 mm × 1 mm and the Fresnel loss is only 8.76%, whose optical efficiency has improved 14.3% than traditional collimating lens. By employing this proposed surface construction method, the largest divergence angle of collimating lens for point source is only 0.26° with 15 feature points on each refractive surface, while more than 2° for the traditional method. Therefore, the beams are well controlled with fewer feature data points. Tolerance analyses are also conducted in detail.

  16. Development of a Fresnel lens for cold neutrons based on neutron refractive optics

    CERN Document Server

    Oku, T; Moriyasu, S; Yamagata, Y; Ohmori, H; Takizawa, Y; Shimizu, H M; Hirota, T; Kiyanagi, Y; Ino, T; Furusaka, M; Suzuki, J

    2001-01-01

    We have developed compound refractive lenses (CRLs) for cold neutrons, which are made of vitreous silica and have an effective potential of (90.1-2.7x10 sup - sup 4 i) neV. In the case of compound refractive optics, neutron absorption by the material deteriorates lens performance. Thus, to prevent an increase in neutron absorption with increasing beam size, we have developed Fresnel lenses using the electrolytic in-process dressing grinding technique. The lens characteristics were carefully investigated with experimental and numerical simulation studies. The lenses functioned as a neutron focusing lens, and the focal length of 14 m was obtained with a 44-element series of the Fresnel lenses for 10 A neutrons. Moreover, good neutron transmission of 0.65 for 15 A neutrons was obtained due to the shape effect. According to comprehensive analysis of the obtained results, it is possible to realize a CRL for practical use by choosing a suitable lens shape and material.

  17. Solar Sail - Fresnel Zone Plate Lens for a Large Space Based Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Early, J T

    2002-02-13

    A Fresnel zone plate lens made with solar sail material could be used as the primary optic for a very large aperture telescope on deep space probes propelled by solar sails. The large aperture telescope capability could enable significant science on fly-by missions to the asteroids, Pluto, Kuiper belt or the tort cloud and could also enable meaningful interstellar fly-by missions for laser propelled sails. This type of lens may also have some potential for laser communications and as a solar concentrator. The techniques for fabrication of meter size and larger Fresnel phase plate optics are under development at LLNL, and we are extending this technology to amplitude zone plates made from sail materials. Corrector optics to greatly extend the bandwidth of these Fresnel optics will be demonstrated in the future. This novel telescope concept will require new understanding of the fabrication, deployment and control of gossamer space structures. It will also require new materials technology for fabricating these optics and understanding their long term stability in a space environment.

  18. Roll-to-roll embossing of optical linear Fresnel lens polymer film for solar concentration.

    Science.gov (United States)

    Zhang, XinQuan; Liu, Kui; Shan, Xuechuan; Liu, Yuchan

    2014-12-15

    Roll-to-roll manufacturing has been proven to be a high-throughput and low-cost technology for continuous fabrication of functional optical polymer films. In this paper, we have firstly studied a complete manufacturing cycle of linear Fresnel lens polymer film for solar concentration in the aspects of ultra-precision diamond machining of metal roller mold, roll-to-roll embossing, and measurement on film profile and functionality. A metal roller mold patterned with linear Fresnel lenses is obtained using single point diamond turning technique. The roller mold is installed onto a self-developed roll-to-roll UV embossing system to realize continuous manufacturing of linear Fresnel lens film. Profile measurement of the machined roller mold and the embossed polymer film, which is conducted using a stylus profilometer, shows good agreement between measured facet angles with designed ones. Functionality test is conducted on a solar simulation system with a reference solar cell, and results show that strong light concentration is realized.

  19. Design of an efficient Fresnel-type lens utilizing double total internal reflection for solar energy collection.

    Science.gov (United States)

    Wallhead, Ian; Jiménez, Teresa Molina; Ortiz, Jose Vicente García; Toledo, Ignacio Gonzalez; Toledo, Cristóbal Gonzalez

    2012-11-05

    A novel of Fresnel-type lens for use as a solar collector has been designed which utilizes double total internal reflection (D-TIR) to optimize collection efficiency for high numerical aperture lenses (in the region of 0.3 to 0.6 NA). Results show that, depending on the numerical aperture and the size of the receiver, a collection efficiency theoretical improvement on the order of 20% can be expected with this new design compared with that of a conventional Fresnel lens.

  20. [System design of open-path natural gas leakage detection based on Fresnel lens].

    Science.gov (United States)

    Xia, Hui; Liu, Wen-Qing; Zhang, Yu-Jun; Kan, Rui-Feng; Cui, Yi-Ben; Wang, Min; He, Ying; Cui, Xiao-Juan; Ruan, Jun; Geng, Hui

    2009-03-01

    Based on the technology of tunable diode laser absorption spectroscopy (TDLAS) in conjunction with second harmonic wave detection, a long open-path TDLAS system using a 1.65 microm InGaAsP distributed feedback laser was developed, which is used for detecting pipeline leakage. In this system, a high cost performance Fresnel lens is used as the receiving optical system, which receives the laser-beam reflected by a solid corner cube reflector, and focuses the receiving laser-beam to the InGaAs detector. At the same time, the influences of the concentration to the fluctuation of light intensity were taken into account in the process of measurement, and were eliminated by the method of normalized light intensity. As a result, the measurement error caused by the fluctuation of light intensity was made less than 1%. The experiment of natural gas leakage detection was simulated, and the detection sensitivity is 0.1 x 10(-6) (ratio by volume) with a total path of 320 m. According to the receiving light efficiency of the optical system and the detectable minimum light intensity of the detector, the detectable maximal optical path of the system was counted to be 2 000 m. The results of experiment show that it is a feasible design to use the Fresnel lens as the receiving optical system and can satisfy the demand of the leakage detection of natural gas.

  1. Conceptual design study of a 5 kilowatt solar dynamic Brayton power system using a dome Fresnel lens solar concentrator

    Science.gov (United States)

    Oneill, Mark J.; Mcdanal, A. J.; Spears, Don H.

    1989-01-01

    The primary project objective was to generate a conceptual design for a nominal 5 kW solar dynamic space power system, which uses a unique, patented, transmittance-optimized, dome-shaped, point-focus Fresnel lens as the optical concentrator. Compared to reflective concentrators, the dome lens allows 200 times larger slope errors for the same image displacement. Additionally, the dome lens allows the energy receiver, the power conversion unit (PCU), and the heat rejection radiator to be independently optimized in configuration and orientation, since none of these elements causes any aperture blockage. Based on optical and thermal trade studies, a 6.6 m diameter lens with a focal length of 7.2 m was selected. This lens should provide 87 percent net optical efficienty at 800X geometric concentration ratio. The large lens is comprised of 24 gores, which compactly stow together during launch, and automatically deploy on orbit. The total mass of the microglass lens panels, the graphite/epoxy support structure, and miscellaneous hardware is about 1.2 kg per square meter of aperture. The key problem for the dome lens approach relates to the selection of a space-durable lens material. For the first time, all-glass Fresnel lens samples were successfully made by a sol-gel casting process.

  2. Simulation model of a new solar laser system of Fresnel lens according to real observed solar radiation data in

    Directory of Open Access Journals (Sweden)

    Yasser A. Abdel-Hadi

    2015-12-01

    Full Text Available A new simulation model of a new solar pumped laser system was tested to be run in Helwan in Egypt (latitude φ = 29°52′N, longitude λ = 31°21′E and elevation = 141 m as an example of an industrial polluted area. The system is based on concentrating the solar radiation using a Fresnel lens on a laser head fixed on a mount tracking the sun during the day and powered by a DC battery. Two cases of this model are tested; the first one is the model consisting of a Fresnel lens and a two-dimensional Compound Parabolic Concentrator (CPC, while the other is the model consisting of a Fresnel lens and a three-dimensional Compound Parabolic Concentrator (CPC. The model is fed by real actual solar radiation data taken in Helwan Solar Radiation Station at NRIAG in the various seasons in order to know the laser power got from such a system in those conditions. For the system of Fresnel lens and 2D-CPC, an average laser output power of 1.27 W in Winter, 2 W in Spring, 5 W in Summer and 4.68 W in Autumn respectively can be obtained. Accordingly, the annual average output power for this system is 3.24 W. For the system of Fresnel lens and 3D-CPC, an average laser output power of 3.28 W in Winter, 3.55 W in Spring, 7.56 W in Summer and 7.13 W in Autumn respectively can be obtained. Accordingly, the annual average output power for this system is 5.38 W.

  3. 24-GHz LTCC Fractal Antenna Array SoP With Integrated Fresnel Lens

    KAUST Repository

    Ghaffar, Farhan A.

    2012-09-30

    A novel 24-GHz mixed low-temperature co-fired ceramic (LTCC) tape based system-on-package (SoP) is presented, which incorporates a fractal antenna array with an integrated grooved Fresnel lens. The four-element fractal array employs a relatively low dielectric constant substrate (CT707, εr = 6.4), whereas the lens has been realized on a high-dielectric-constant superstrate (CT765, εr = 68.7 ). The two (substrate and superstrate) are integrated through four corner posts to realize the required air gap (focal distance). The fractal array alone provides a measured gain of 8.9 dBi. Simulations predict that integration of this array with the lens increases the gain by 6 dB. Measurements reveal that the design is susceptible to LTCC fabrication tolerances. In addition to high gain, the SoP provides a bandwidth of 8%. The high performance and compact size (24 × 24 × 4.8 mm3 ) of the design makes it highly suitable for emerging wireless applications such as automotive radar front end.

  4. Acoustophoretic separation of airborne millimeter-size particles by a Fresnel lens

    Science.gov (United States)

    Cicek, Ahmet; Korozlu, Nurettin; Adem Kaya, Olgun; Ulug, Bulent

    2017-01-01

    We numerically demonstrate acoustophoretic separation of spherical solid particles in air by means of an acoustic Fresnel lens. Beside gravitational and drag forces, freely-falling millimeter-size particles experience large acoustic radiation forces around the focus of the lens, where interplay of forces lead to differentiation of particle trajectories with respect to either size or material properties. Due to the strong acoustic field at the focus, radiation force can divert particles with source intensities significantly smaller than those required for acoustic levitation in a standing field. When the lens is designed to have a focal length of 100 mm at 25 kHz, finite-element method simulations reveal a sharp focus with a full-width at half-maximum of 0.5 wavelenghts and a field enhancement of 18 dB. Through numerical calculation of forces and simulation of particle trajectories, we demonstrate size-based separation of acrylic particles at a source sound pressure level of 153 dB such that particles with diameters larger than 0.5 mm are admitted into the central hole, whereas smaller particles are rejected. Besides, efficient separation of particles with similar acoustic properties such as polyethylene, polystyrene and acrylic particles of the same size is also demonstrated. PMID:28252033

  5. Simulation model of a new solar pumped laser system of Fresnel lens in Helwan of Egypt

    Directory of Open Access Journals (Sweden)

    Yasser A. Abdel-Hadi

    2012-12-01

    Full Text Available A simulation model of a new solar pumped laser system is tested to be run in Helwan in Egypt as an example of an industrial polluted area. The system is based on concentrating the solar radiation using a Fresnel lens on a laser head fixed on a mount tracking the sun during the day and powered by a DC battery. The model is fed by real solar radiation data in the various seasons in order to know the laser power got from such a system in those conditions. The results showed that the output laser power obtained from this system can be up to 6.2 W in spring, 6.8 W in summer, 2.2 W in autumn and 0.4 W in winter.

  6. Design and development of a high-concentration and high-efficiency photovoltaic concentrator using a curved Fresnel lens

    Energy Technology Data Exchange (ETDEWEB)

    Scharlack, R.S.; Moffat, A.

    1983-08-01

    Thermo Electron has designed a high concentration photovoltaic module that uses a domed, point-focus Fresnel lens. Their design, design optimization process, and results from lens and receiver tests are described in this report. A complete module has not been fabricated and probably will not be fabricated in the future; however, Thermo Electron's optical design, analysis, and testing of both secondary optical units and domed Fresnel lenses have made a significant contribution to our project. Tooling errors prevented the lens from reaching its potential efficiency by the end of the contract, and resolution of these tooling problems is currently being attempted with a follow-on contract, No. 68-9463.

  7. Electrically switchable cylindrical Fresnel lens based on holographic polymer-dispersed liquid crystals using a Michelson interferometer

    CERN Document Server

    Jashnsaz, Hossein; Nataj, Nahid Hosain

    2016-01-01

    Fabricating an electrically switchable cylindrical Fresnel lens based on holographic polymer-dispersed liquid crystals (H-PDLC) using a Michelson interferometer is reported. Simplicity of the method and possibility of fabricating different focal length lenses in a single set up are among the advantages of the method. It is demonstrated that the Fresnel structured zone plate acts as a cylindrical lens and focuses light in one dimension. Its electro-optical switching properties are also studied and it is found that at an applied electric field of E=6 Vrms/{\\mu}m across the sample, focusing property of the sample eliminates with a response of about 1 ms in a reversible manner.

  8. High brightness three-dimensional light field display based on the aspheric substrate Fresnel-lens-array with eccentric pupils

    Science.gov (United States)

    Gao, Xin; Sang, Xinzhu; Yu, Xunbo; Cao, Xuemei; Chen, Zhidong; Yan, Binbin; Yuan, Jinhui; Wang, Kuiru; Yu, Chongxiu; Dou, Wenhua; Xiao, Liquan

    2016-02-01

    The brightness and viewing field of the reproductive three-dimensional (3D) image are crucial factors to realize a comfortable 3D perception for the light field display based on the liquid crystal device (LCD). To improve the illuminance of 3D image with sub-image-units with small aperture angles and enlarge the viewing field, the illuminance of the Fresnel-lens combining with the sub-images on LCD is analyzed and designed. Theoretical and experimental results show that the Fresnel-lens-array with eccentric pupil(FAEP) can address above problems. A 3D light field display based on LCD with FAEP and directional diffuser screen are used to reconstruct the target 3D field. 25 parallax sub-images are projected to the directional diffuser screen to verify the improvement of illuminance and viewing field. To reduce eccentric aberration introduced by eccentric pupil, a novel structure of Fresnel-lens-array is presented to reduce the aberration. The illuminance and viewing field are well promoted at the same time. 3D image with the high quality can be achieved.

  9. Biaxial-Type Concentrated Solar Tracking System with a Fresnel Lens for Solar-Thermal Applications

    Directory of Open Access Journals (Sweden)

    Tsung Chieh Cheng

    2016-04-01

    Full Text Available In this paper, an electromechanical, biaxial-type concentrated solar tracking system was designed for solar-thermal applications. In our tracking system, the sunlight was concentrated by the microstructure of Fresnel lens to the heating head of the Stirling engine and two solar cells were installed to provide the power for tracking system operation. In order to obtain the maximum sun power, the tracking system traces the sun with the altitude-azimuth biaxial tracing method and accurately maintains the sun’s radiation perpendicular to the plane of the heating head. The results indicated that the position of heating head is an important factor for power collection. If the sunlight can be concentrated to completely cover the heating head with small heat loss, we can obtain the maximum temperature of the heating head of the Stirling engine. Therefore, the temperature of heating head can be higher than 1000 °C in our experiment on a sunny day. Moreover, the results also revealed that the temperature decrease of the heating head is less than the power decrease of solar irradiation because of the latent heat of copper and the small heat loss from the heating head.

  10. The Optical Design of a System using a Fresnel Lens that Gathers Light for a Solar Concentrator and that Feeds into Solar Alignment Optics

    Science.gov (United States)

    Wilkerson, Gary W.; Huegele, Vinson

    1998-01-01

    The Marshall Space Flight Center (MSFC) has been developing a space deployable, lightweight membrane concentrator to focus solar energy into a solar furnace while remaining aligned to the sun. For an inner surface, this furnace has a cylindrical heat exchanger cavity coaligned to the optical axis; the furnace warms gas to propel the spacecraft. The membrane concentrator is a 1727 mm (68.00 in.) diameter, F/1.7 Fresnel lens. This large membrane is made from polyimide and is 0.076 mm (0.0030 in.) thick; it has the Fresnel grooves cast into it. The solar concentrator system has a super fast paraboloid reflector near the lens focus and immediately adjacent to the cylindrical exchanger cavity. The paraboloid collects the wide bandwidth and some of the solar energy scattered by the Fresnel lens. Finally, the paraboloid feeds the light into the cylinder. The Fresnel lens also possesses a narrow annular zone that focuses a reference beam toward four detectors that keep the optical system aligned to the sun; thus, occurs a refracting lens that focuses two places! The result can be summarized as a composite Fresnel lens for solar concentration and alignment.

  11. Experimental measurements of a prototype high-concentration Fresnel lens and sun-tracking method for photovoltaic panel's efficiency enhancement

    Science.gov (United States)

    Rajaee, Meraj; Ghorashi, Seyed Mohamad Bagher

    2015-08-01

    Concentrator photovoltaic modules are a promising technology for highly efficient solar energy conversion. This system presents several advantages due to additional degrees of freedom that has been provided by the spectral separation such as cost and mass reduction, increase in the incident solar flux on PV cells and performances. This paper has proposed a unique photovoltaic solar cell system that consists of semi-Fresnel lens convergent structure and a novel two axis sun tracking module to enhance the efficiency of solar cell by using less cell area and energy losses. The grooves of this lens are calculated according to the refraction and convergent angles of the light easy for perpendicular incidence angle. The update time interval during tracking causes misalignment of the lens' optical axis versus the sunrays. Then an inventive sun-tracking method is introduced to adjust the module so that the incident rays are always perpendicular to the module's surface. As a result, all rays will be refracted with the predetermined angles. This way the focus area is reduced and smaller cells can be used. We also mentioned different module connections in order to provide compensation method during losses, for networks and power systems. Experimental results show that using semi-Fresnel lens, along with the sun-tracking method increases the efficiency of PV panel.

  12. A phase-image watermarking scheme in gyrator domain using devil's vortex Fresnel lens as a phase mask

    Science.gov (United States)

    Yadav, A. K.; Vashisth, Sunanda; Singh, Hukum; Singh, Kehar

    2015-06-01

    We propose a watermarking scheme for phase images, based on the use of devil's vortex Fresnel lens (DVFL) as a phase mask. The DVFL provides much-desired parameter-rich phase masks which contribute to the enhanced security of the scheme in addition to overcoming the problem of axis alignment in the optical setup. The scheme uses gyrator transform (GT) in the input and the frequency domains to encrypt the input phase image before combining it with a host image. The scheme is validated for its efficacy, and analyzed for its sensitivity to various encryption parameters. Finally, it is examined for its robustness against occlusion and noise attacks.

  13. Experimental measurements of a prototype high concentration Fresnel lens CPV module for the harvesting of diffuse solar radiation.

    Science.gov (United States)

    Yamada, Noboru; Okamoto, Kazuya

    2014-01-13

    A prototype concentrator photovoltaic (CPV) module with high solar concentration, an added low-cost solar cell, and an adjoining multi-junction solar cell is fabricated and experimentally demonstrated. In the present CPV module, the low cost solar cell captures diffuse solar radiation penetrating the concentrator lens and the multi-junction cell captures concentrated direct solar radiation. On-sun test results show that the electricity generated by a Fresnel lens-based CPV module with an additional crystalline silicon solar cell is greater than that for a conventional CPV module by a factor of 1.44 when the mean ratio of diffuse normal irradiation to global normal irradiation at the module aperture is 0.4. Several fundamental optical characteristics are presented for the present module.

  14. Large Space Telescopes Using Fresnel Lens for Power Beaming, Astronomy and Sail Missions

    Energy Technology Data Exchange (ETDEWEB)

    Early, J T

    2002-10-15

    The concept of using Fresnel optics as part of power beaming, astronomy or sail systems has been suggested by several authors. The primary issues for large Fresnel optics are the difficulties in fabricating these structures and deploying them in space and for astronomy missions the extremely narrow frequency range of these optics. In proposals where the telescope is used to transmit narrow frequency laser power, the narrow bandwidth has not been an issue. In applications where the optic is to be used as part of a telescope, only around 10{sup -5} to limited frequency response of a Fresnel optic is addressed by the use of a corrective optic that will broaden the frequency response of the telescope by three or four orders of magnitude. This broadening will dramatically increase the optical power capabilities of the system and will allow some spectroscopy studies over a limited range. Both the fabrication of Fresnel optics as large as five meters and the use of corrector optics for telescopes have been demonstrated at LLNL. For solar and laser sail missions the use of Fresnel amplitude zone plates made of very thin sail material is also discussed.

  15. Low threshold and high efficiency solar-pumped laser with Fresnel lens and a grooved Nd:YAG rod

    Science.gov (United States)

    Guan, Zhe; Zhao, Changming; Yang, Suhui; Wang, Yu; Ke, Jieyao; Gao, Fengbin; Zhang, Haiyang

    2016-11-01

    Sunlight is considered as a new efficient source for direct optical-pumped solid state lasers. High-efficiency solar pumped lasers with low threshold power would be more promising than semiconductor lasers with large solar panel in space laser communication. Here we report a significant advance in solar-pumped laser threshold by pumping Nd:YAG rod with a grooved sidewall. Two-solar pumped laser setups are devised. In both cases, a Fresnel lens is used as the primary sunlight concentrator. Gold-plated conical cavity with a liquid light-guide lens is used as the secondary concentrator to further increase the solar energy concentration. In the first setup, solar pumping a 6mm diameter Nd:YAG rod, maximum laser power of 31.0W/m2 cw at 1064nm is produced, which is higher than the reported record, and the slope efficiency is 4.98% with the threshold power on the surface of Fresnel lens is 200 W. In the second setup, a 5 mm diameter laser rod output power is 29.8W/m2 with a slope efficiency of 4.3%. The threshold power of 102W is obtained, which is 49% lower than the former. Meanwhile, the theoretical calculating of the threshold power and slope efficiency of the solar-pumped laser has been established based on the rate-equation of a four-level system. The results of the finite element analysis by simulation software are verified in experiment. The optimization of the conical cavity by TraceProsoftware and the optimization of the laser resonator by LASCADare useful for the design of a miniaturization solar- pumped laser.

  16. The mini-dome Fresnel lens photovoltaic concentrator array - Current status of component and prototype panel testing

    Science.gov (United States)

    Piszczor, M. F.; Swartz, C. K.; O'Neill, M. J.; Mcdanal, A. J.; Fraas, L. M.

    1990-01-01

    NASA Lewis and ENTECH have been developing a high-efficiency, lightweight space photovoltaic concentrator array. The emphasis of the program has shifted to fabrication and testing of the minidome Fresnel lens and other array components. Protototype lenses have been tested for optical efficiency, with results around 90 percent, and tracking error performance. The results of these tests have been very consistent with the predicted analytical performance. Work has also progressed in the fabrication of the array support structure. Recent advances in 30 percent efficient stacked cell technology will have a significant effect on the array performance. It is concluded that near-term array performance goals of 300 W/sq m and 100 W/kg are feasible.

  17. Optical study of a spectrum splitting solar concentrator based on a combination of a diffraction grating and a Fresnel lens

    Energy Technology Data Exchange (ETDEWEB)

    Michel, Céline, E-mail: cmichel@ulg.ac.be; Habraken, Serge [Centre Spatial de Liège, Avenue du Pré-Aily, 4031 Angleur (Belgium); Hololab, University of Liège, Allée du 6 Août, 17 (B5a), 4000 Liège (Belgium); Loicq, Jérôme; Thibert, Tanguy [Centre Spatial de Liège, Avenue du Pré-Aily, 4031 Angleur (Belgium)

    2015-09-28

    This paper presents recent improvements of our new solar concentrator design for space application. The concentrator is based on a combination of a diffraction grating (blazed or lamellar) coupled with a Fresnel lens. Thanks to this diffractive/refractive combination, this optical element splits spatially and spectrally the light and focus approximately respectively visible light and IR light onto electrically independent specific cells. It avoid the use of MJs cells and then also their limitations like current matching and lattice matching conditions, leading theoretically to a more tolerant system. The concept is reminded, with recent optimizations, ideal and more realistic results, and the description of an experimental realization highlighting the feasibility of the concept and the closeness of theoretical and experimental results.

  18. Fresnel lens to concentrate solar energy for the photocatalytic decoloration and mineralization of orange II in aqueous solution.

    Science.gov (United States)

    Monteagudo, J M; Durán, A

    2006-11-01

    The decoloration and mineralization of the azo dye orange II under conditions of artificial ultraviolet light and solar energy concentrated by a Fresnel lens in the presence of hydrogen peroxide and TiO(2)-P25 was studied. A comparative study to demonstrate the viability of this solar installation was done to establish if the concentration reached in the focus of the Fresnel lens was enough to improve the photocatalytic degradation reaction. The degradation efficiency was higher when the photolysis was carried out under concentrated solar energy irradiation as compared to UV light source in the presence of an electron acceptor such us H(2)O(2) and the catalyst TiO(2). The effect of hydrogen peroxide, pH and catalyst concentration was also determined. The increase of H(2)O(2) concentration until a critical value (14.7 mM) increased both the solar and artificial UV oxidation reaction rate by generating hydroxyl radicals and inhibiting the (e(-)/h(+)) pair recombination, but the excess of hydrogen peroxide decreases the oxidation rate acting as a radical or hole scavenger and reacting with TiO(2) to form peroxo-compounds, contributing to the inhibition of the reaction. The use of the response surface methodology allowed to fit the optimal values of the parameters pH and catalyst concentration leading to the total solar degradation of orange II. The optimal pH range was 4.5-5.5 close to the zero point charge of TiO(2) depending on surface charge of catalyst and dye ionization state. Dosage of catalyst higher than 1.1 gl(-1) decreases the degradation efficiency due to a decrease of light penetration.

  19. Single-lens Fourier-transform-based optical color image encryption using dual two-dimensional chaotic maps and the Fresnel transform.

    Science.gov (United States)

    Su, Yonggang; Tang, Chen; Li, Biyuan; Chen, Xia; Xu, Wenjun; Cai, Yuanxue

    2017-01-20

    We propose an optical color image encryption system based on the single-lens Fourier transform, the Fresnel transform, and the chaotic random phase masks (CRPMs). The proposed encryption system contains only one optical lens, which makes it more efficient and concise to implement. The introduction of the Fresnel transform makes the first phase mask of the proposed system also act as the main secret key when the input image is a non-negative amplitude-only map. The two CRPMs generated by dual two-dimensional chaotic maps can provide more security to the proposed system. In the proposed system, the key management is more convenient and the transmission volume is reduced greatly. In addition, the secret keys can be updated conveniently in each encryption process to invalidate the chosen plaintext attack and the known plaintext attack. Numerical simulation results have demonstrated the feasibility and security of the proposed encryption system.

  20. Fresnel phase retrieval method using an annular lens array on an SLM

    Science.gov (United States)

    Loriot, V.; Mendoza-Yero, O.; Pérez-Vizcaíno, J.; Mínguez-Vega, G.; de Nalda, R.; Bañares, L.; Lancis, J.

    2014-10-01

    Wavefront aberrations play a major role when focusing an ultrashort laser pulse to a high-quality focal spot. Here, we report a novel method to measure and correct wavefront aberrations of a 30-fs pulsed laser beam. The method only requires a programmable liquid-crystal spatial light modulator and a camera. Wavefront retrieval is based on pupil segmentation with an annular lens array, which allows us to determine the local phase that minimizes focusing errors due to wavefront aberrations. Our method provides accurate results even when implemented with low dynamic range cameras and polychromatic beams. Finally, the retrieved phase is added to a diffractive lens codified onto the spatial light modulator to experimentally demonstrate near-diffraction-limited femtosecond beam focusing without refractive components.

  1. Devil's vortex Fresnel lens phase masks on an asymmetric cryptosystem based on phase-truncation in gyrator wavelet transform domain

    Science.gov (United States)

    Singh, Hukum

    2016-06-01

    An asymmetric scheme has been proposed for optical double images encryption in the gyrator wavelet transform (GWT) domain. Grayscale and binary images are encrypted separately using double random phase encoding (DRPE) in the GWT domain. Phase masks based on devil's vortex Fresnel Lens (DVFLs) and random phase masks (RPMs) are jointly used in spatial as well as in the Fourier plane. The images to be encrypted are first gyrator transformed and then single-level discrete wavelet transformed (DWT) to decompose LL , HL , LH and HH matrices of approximation, horizontal, vertical and diagonal coefficients. The resulting coefficients from the DWT are multiplied by other RPMs and the results are applied to inverse discrete wavelet transform (IDWT) for obtaining the encrypted images. The images are recovered from their corresponding encrypted images by using the correct parameters of the GWT, DVFL and its digital implementation has been performed using MATLAB 7.6.0 (R2008a). The mother wavelet family, DVFL and gyrator transform orders associated with the GWT are extra keys that cause difficulty to an attacker. Thus, the scheme is more secure as compared to conventional techniques. The efficacy of the proposed scheme is verified by computing mean-squared-error (MSE) between recovered and the original images. The sensitivity of the proposed scheme is verified with encryption parameters and noise attacks.

  2. Solar TiO2-assisted photocatalytic degradation of IGCC power station effluents using a Fresnel lens.

    Science.gov (United States)

    Monteagudo, J M; Durán, A; Guerra, J; García-Peña, F; Coca, P

    2008-03-01

    The heterogeneous TiO2 assisted photocatalytic degradation of wastewater from a thermoelectric power station under concentrated solar light irradiation using a Fresnel lens has been studied. The efficiency of photocatalytic degradation was determined from the analysis of cyanide and formate removal. Firstly, the influence of the initial concentration of H2O2 and TiO2 on the degradation kinetics of cyanides and formates was studied based on a factorial experimental design. Experimental kinetic constants were fitted using neural networks. Results showed that the photocatalytic process was effective for cyanides destruction (mainly following a molecular mechanism), whereas most of formates (degraded mainly via a radical path) remained unaffected. Finally, to improve formates degradation, the effect of lowering pH on their degradation rate was evaluated after complete cyanide destruction. The photooxidation efficiency of formates reaches a maximum at pH around 5-6. Above pH 6, formate anion is subjected to electrostatic repulsion with the negative surface of TiO2. At pH<4.5, formate adsorption and photon absorption are reduced due to some catalyst agglomeration.

  3. Solar concentrator modules with silicone-onglass Fresnel lens panels and multijunction cells.

    Science.gov (United States)

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.

  4. Solar concentrator modules with silicone-on-glass Fresnel lens panels and multijunction cells.

    Science.gov (United States)

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.

  5. Experimental Investigation on the Feasibility of Using a Fresnel Lens as a Solar-Energy Collection System for Enhancing On-Orbit Power Generation Performance

    Directory of Open Access Journals (Sweden)

    Tae-Yong Park

    2017-01-01

    Full Text Available Cube satellites have a limitation for generating power because of their cubic structure and extremely small size. In addition, the incidence angle between the sun and the solar panels continuously varies owing to the revolution and rotation of the satellite according to the attitude control strategy. This angle is an important parameter for determining the power generation performance of the cube satellite. In this study, we performed an experimental feasibility study that uses a Fresnel lens as a solar-energy collection system for cube satellite applications, so that the power generation efficiency can be enhanced under the worst incidence angle condition between the sun and solar panels by concentrating and redirecting solar energy onto the solar panels with a commercial Fresnel lens. To verify the effectiveness of the proposed system, we conducted a power-measurement test using a solar simulator and Fresnel lenses at various angles to the light source. In addition, we predicted the on-orbit power-generation enhancement achieved by employing the solar-energy collection system with various attitude control strategies.

  6. A high-performance photovoltaic concentrator array - The mini-dome Fresnel lens concentrator with 30 percent efficient GaAs/GaSb tandem cells

    Science.gov (United States)

    Piszczor, M. F.; Brinker, D. J.; Flood, D. J.; Avery, J. E.; Fraas, L. M.; Fairbanks, E. S.; Yerkes, J. W.; O'Neill, M. J.

    1991-01-01

    A high-efficiency, lightweight space photovoltaic concentrator array is described. Previous work on the minidome Fresnel lens concentrator concept is being integrated with Boeing's 30 percent efficient tandem GaAs/GaSb concentrator cells into a high-performance photovoltaic array. Calculations indicate that, in the near term, such an array can achieve 300 W/sq m at a specific power of 100 W/kg. Emphasis of the program has now shifted to integrating the concentrator lens, tandem cell, and supporting panel structure into a space-qualifiable array. A description is presented of the current status of component and prototype panel testing and the development of a flight panel for the Photovoltaic Array Space Power Plus Diagnostics (PASP PLUS) flight experiment.

  7. Low-cost manufacturing of the point focus concentrating module and its key component, the Fresnel lens. Final subcontract report, 31 January 1991--6 May 1991

    Energy Technology Data Exchange (ETDEWEB)

    Saifee, T.; Konnerth, A. III [Solar Kinetics, Inc., Dallas, TX (United States)

    1991-11-01

    Solar Kinetics, Inc. (SKI) has been developing point-focus concentrating PV modules since 1986. SKI is currently in position to manufacture between 200 to 600 kilowatts annually of the current design by a combination of manual and semi-automated methods. This report reviews the current status of module manufacture and specifies the required approach to achieve a high-volume manufacturing capability and low cost. The approach taken will include process development concurrent with module design for automated manufacturing. The current effort reviews the major manufacturing costs and identifies components and processes whose improvements would produce the greatest effect on manufacturability and cost reduction. The Fresnel lens is one such key component. Investigating specific alternative manufacturing methods and sources has substantially reduced the lens costs and has exceeded the DOE cost-reduction goals. 15 refs.

  8. Reduction of material mass of optical component in cryogenic camera by using high-order Fresnel lens on a thin germanium substrate.

    Science.gov (United States)

    Grulois, Tatiana; Druart, Guillaume; Sauer, Hervé; Chambon, Mathieu; Guérineau, Nicolas; Magli, Serge; Lasfargues, Gillles; Chavel, Pierre

    2015-07-10

    We designed a compact infrared cryogenic camera using only one lens mounted inside the detector area. In the field of cooled infrared imaging systems, the maximal detector area is determined by the dewar. It is generally a sealed and cooled environment dedicated to the infrared quantum detector. By integrating an optical function inside it, we improve the compactness of the camera as well as its performances. The originality of our approach is to use a thin integrated optics which is a high quality Fresnel lens on a thin germanium substrate. The aim is to reduce the additional mass of the optical part integrated inside the dewar to obtain almost the same cool down time as a conventional dewar with no imaging function. A prototype has been made and its characterization has been carried out.

  9. Optimized Design and Simulation of Composite Fresnel Lens%复合型菲涅耳透镜的优化设计及仿真

    Institute of Scientific and Technical Information of China (English)

    殷丹艳; 王淮生; 骆青君

    2016-01-01

    Objective The efficiency of concentrating photovoltaic power is an important parameter in concentrating solar system.To improve the uniformity of the condensing spot and the photoelectric con-version efficiency,the traditional Fresnel lens was improved by increasing the light transmittance and the uniformity of the surface light intensity of the battery of the composite Fresnel lens.Methods The com-posite lens consists of internal ordinary Fresnel lens annular lens and the external double total internal re-flection annular lens.The internal ordinary Fresnel lens has been divided into odd units,in each of which the width was equal to the width of the battery.The wedge angles in the same unit were equal to each oth-er,thus having sun light refraction with the equal width.The light emitted formed a light band with uni-form intensity,suitable for photovoltaic power generation.Therefore,the sunlight into the lens was su-perposed on the surface of the battery with equal illumination.This method replaced secondary mirrors. In addition,the simulation was realized by making the complex three-dimensional modeling in the Pro En-gineer software and importing the model into TracePro.Results Setting the focal length of the Fresnel lens to 100 mm,the inner radius 36 mm,the corresponding aperture angle 20°,the outer diameter 110 mm, and the corresponding aperture angle 30°,and defining sunlight parameters led to the uniform illumination map The results showed the 91.4% optical efficiency and the 85.9% homogenization.Compared with the common Fresnel lens light distribution map of the same size,the uniformity of focal spot on photovoltaic panels on was significantly increased and the irradiance between the center and the edge had little differ-ence.Conclusion The optimized composite lens has higher uniformity and optical transmission efficiency.%目的:在聚光太阳能系统中,聚光光伏的效率是重要衡量参数之一。为了提高聚光光斑的均匀性以及光

  10. Numerical and experimental analysis of a point focus solar collector using high concentration imaging PMMA Fresnel lens

    Energy Technology Data Exchange (ETDEWEB)

    Xie, W.T. [Research Center of Solar Power and Refrigeration, Shanghai Jiao Tong University, Shanghai 200240 (China); Dai, Y.J., E-mail: yjdai@sjtu.edu.c [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, R.Z. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2011-06-15

    Research highlights: {yields} We studied a point focus Fresnel solar collector using different cavity receivers. {yields} The collector heat removal factors are derived to find the optimal cavity shape. {yields} Numerical and experimental analysis shows that the conical cavity is optimum. -- Abstract: A high concentration imaging Fresnel solar collector provided with different cavity receivers was developed and its behavior was investigated. Round copper pipes winded into different spring shapes were used as receiver by placing in the cylindrical cavity to absorb concentrated solar energy and transfer it to a heat transfer fluid (HTF). The collector efficiency factor and collector heat removal factor were derived for the cavity receivers to find out heat transfer mechanism and to propose an effective way for evaluating the performance of Fresnel solar collector and determining the optimal cavity structure. The problem of Fresnel solar collector with synthetic heat transfer oil flow was simulated and analyzed to investigate heat loss from different cavity receivers. Solar irradiation as well as convection and heat transfer in the circulating fluid and between the internal surfaces of the cavity and the environment are considered in the model. The temperature distribution over its area as well as the collector thermal efficiency at nominal flow rate was used in order to validate the simulation results. It was found that the simulated temperature distribution during operation and the average collector efficiency are in good agreement with the experimental data. Finally, the optimal shape of solar cavity receiver, as well as its thermal performance, are deeply analyzed and discussed.

  11. Observatories

    CERN Document Server

    Krisciunas, K

    1999-01-01

    I give a brief history of astronomical observatories as an institution. This includes: 1) observatories in Islam; 2) China and India; 3) early European observatories; 4) the rise of national observatories; 5) private (amateur) observatories; 6) mountaintop observatories and the modern era. Additional references, to material not cited in the version that will be published in the encyclopedia, are also given.

  12. Solar Pumped Nd:YAG Laser with Fresnel Lens%使用菲涅耳透镜的太阳光抽运Nd:YAG激光器

    Institute of Scientific and Technical Information of China (English)

    罗萍萍; 刘诚; 徐鹏; 赵长明; 杨苏辉; 钱燕雷

    2011-01-01

    太阳能是规模最大的可再生能源,为充分利用这一资源,太阳光直接抽运激光器是一种明智的选择.提出并搭建了采用两级会聚系统的太阳光抽运激光器系统.使用菲涅耳透镜作为大口径成像型第一级会聚系统,漫反射锥形聚光腔作为非成像型第二级会聚系统提高入射太阳光到工作物质的耦合效率.采用Nd:YAG晶体作为工作物质,获得了2.85 W的激光输出,从太阳光到激光的转换效率为0.43%.从菲涅耳透镜会聚效率、聚光腔内激光棒轴线上的功率分布等会聚系统方面和激光输出特性方面分析了该太阳光抽运激光器的性能;探讨了转换效率低的原因,并提出了相应的改进措施.%Solar energy is the most abundant renewable energy among all kinds of energy sources, solar pumped laser can be the best choice in terms of the fully utilization of solar energy. The solar pumped laser with two stage sunlight concentration system is designed and constructed. A Fresnel lens with large diameter is adopted as a primary optical concentration device? And a cone type diffuse pumping chamber functions as a secondary concentrator is used to enhance the couple efficiency between the incident solar power and laser media. Output laser power is up to 2. 85 W, with the use of Nd! YAG crystal as laser media, and 0. 43% optical conversion efficiency is achieved. The performance of solar pumped laser is discussed by the concentration efficiency of Fresnel lens and the power distribution along the axis of laser rod in the cavity, as well as the laser characteristic. The reasons for low efficiency are discussed, and improvement approaches are presented.

  13. Optical design of two-axes parabolic trough collector and two-section Fresnel lens for line-to-spot solar concentration.

    Science.gov (United States)

    Ramírez, Carlos; León, Noel; García, Héctor; Aguayo, Humberto

    2015-06-01

    Solar tracking concentrators are optical systems that collect the solar energy flux either in a line or spot using reflective or refractive surfaces. The main problem with these surfaces is their manufacturing complexity, especially at large scales. In this paper, a line-to-spot solar tracking concentrator is proposed. Its configuration allows for a low-cost solar concentrator system. It consists of a parabolic trough collector (PTC) and a two-section PMMA Fresnel lens (FL), both mounted on a two-axis solar tracker. The function of the PTC is to reflect the incoming solar radiation toward a line. Then, the FL, which is placed near the focus, transforms this line into a spot by refraction. It was found that the system can achieve a concentration ratio of 100x and concentrate an average solar irradiance of 518.857W/m2 with an average transmittance of 0.855, taking into account the effect of the chromatic aberration.

  14. Collection and concentration of solar energy using Fresnel type lenses

    Science.gov (United States)

    Wilson, R. F.

    1975-01-01

    The efficiency of collecting solar energy using a Fresnel type lens was measured for two different collectors. A flow collector utilizes the temperature difference and heat capacity in water measurements to determine the amount of absorbed energy retained from sun rays passing through the Fresnel lens. A static collector is a hollow copper box filled with vegetable heating oil for absorption of focused solar radiation.

  15. Millimeter wave imaging at up to 40 frames per second using an optoelectronic photo-injected Fresnel zone plate lens antenna

    Science.gov (United States)

    Robertson, Duncan A.; Gallacher, Thomas F.; Søndenâ, Rune; Macfarlane, David G.

    2016-05-01

    Optoelectronic methods are promising for rapid and highly reconfigurable beam steering across the microwave to the terahertz range. In particular, the photo-injected Fresnel zone plate antenna (piFZPA) offers high speed, wide angle, precise beam steering with good beam quality, to enable video rate millimeter wave imagery with no moving parts. We present a piFZPA demonstrator based on a commercial digital light projector (DLP) and high power laser which achieves steering rates up to 17,500 beams per second at 94 and 188 GHz. We also demonstrate radar imaging at 94 GHz at frame rates of 40 Hz (2D PPI) and 7 Hz (3D volumetric).

  16. Electrically switchable Fresnel lenses in polymer-stabilized ferroelectric liquid crystals

    Science.gov (United States)

    Yeh, Hui-Chen; Ke, Ming-Wei; Liu, Yu-Mei

    2017-01-01

    In this study, we demonstrate the fabrication of an electrically switchable Fresnel lens based on surface-stabilized ferroelectric liquid crystals (SSFLCs) with polymer networks. The Fresnel lens was fabricated by injecting a monomer-doped ferroelectric liquid crystal into an extremely thin cell and exposing the cell to ultraviolet light through a Fresnel-zone-plate mask. The fabricated Fresnel lens consisted of the SSFLC and polymer-stabilized SSFLC structures. The focusing effect can be switched on by applying an appropriate voltage, and the characteristics of FLCs enable a rapid response on the order of milliseconds.

  17. 室内可见光通信系统中菲涅尔透镜接收天线的设计研究∗%Design and study of Fresnel lens for an antenna in indo or visible light communication system

    Institute of Scientific and Technical Information of China (English)

    李湘; 蓝天; 王云; 王龙辉

    2015-01-01

    针对基于白光LED室内可见光无线光通信技术的应用需求,设计了等齿距平面菲涅尔透镜.相比常规透镜光接收天线,菲涅尔透镜具有聚焦能力强、焦距短、透镜厚度薄、重量轻、成本低等优点.利用Trace pro软件对设计进行了模拟仿真,分析了透镜不同设计参数对接收天线光学增益、光学效率及光斑尺寸的影响,讨论了透镜在平行光斜入射时的会聚情况.结果表明,平面点聚焦菲涅尔透镜的光学效率可达92.1%,适用于小视场、高增益接收光学系统前端.%Indoor visible light communication is a novel wireless communication based on white LED technology. For its application needs, equal-pitch flat Fresnel lens is designed. Compared with traditional lens, Fresnel lens has several advantages including strong focus ability, short focal length, thin thickness, light weight, low cost, etc. The optical concentration ratio, the optical efficiency and the spot size of these Fresnel lenses are analyzed respectively with different parameters by means of Trace pro. Furthermore, the concentration performance is discussed at different incident angles. The results indicate that this kind of Fresnel lens could be used as an antenna of high-gain and small field, and the optical efficiency could be obtained to be 92.1%.

  18. Deployable Fresnel Rings

    Science.gov (United States)

    Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.; Lin, Gregory Y.

    2014-01-01

    Deployable Fresnel rings (DFRs) significantly enhance the realizable gain of an antenna. This innovation is intended to be used in combination with another antenna element, as the DFR itself acts as a focusing or microwave lens element for a primary antenna. This method is completely passive, and is also completely wireless in that it requires neither a cable, nor a connector from the antenna port of the primary antenna to the DFR. The technology improves upon the previous NASA technology called a Tri-Sector Deployable Array Antenna in at least three critical aspects. In contrast to the previous technology, this innovation requires no connector, cable, or other physical interface to the primary communication radio or sensor device. The achievable improvement in terms of antenna gain is significantly higher than has been achieved with the previous technology. Also, where previous embodiments of the Tri-Sector antenna have been constructed with combinations of conventional (e.g., printed circuit board) and conductive fabric materials, this innovation is realized using only conductive and non-conductive fabric (i.e., "e-textile") materials, with the possible exception of a spring-like deployment ring. Conceptually, a DFR operates by canceling the out-of-phase radiation at a plane by insertion of a conducting ring or rings of a specific size and distance from the source antenna, defined by Fresnel zones. Design of DFRs follow similar procedures to those outlined for conventional Fresnel zone rings. Gain enhancement using a single ring is verified experimentally and through computational simulation. The experimental test setup involves a microstrip patch antenna that is directly behind a single-ring DFR and is radiating towards a second microstrip patch antenna. The first patch antenna and DFR are shown. At 2.42 GHz, the DFR improves the transmit antenna gain by 8.6 dB, as shown in Figure 2, relative to the wireless link without the DFR. A figure illustrates the

  19. Solar concentration by curved-base Fresnel lenses

    Science.gov (United States)

    Cosby, R. M.

    1977-01-01

    The solar concentration performance of idealized curved base line focusing Fresnel lenses is analyzed. A simple optical model was introduced to study the effects of base curvature and lens f-number. Thin lens ray tracing and the laws of reflection and refraction are used to develop expression for lens transmittance and image plane intensity profiles. The intensity distribution over the solar spectrum, lens dispersion effects, and absorption by the lens material are included in the analysis. Model capabilities include assessment of lens performance in the presence of small transverse tracking errors and the sensitivity of solar image characteristics to focusing.

  20. Aberrations in Fresnel Lenses and Mirrors

    Science.gov (United States)

    Gregory, Don

    1999-01-01

    The NASA/MSFC Shooting Star program revealed a number of technical problems that must be solved before solar thermal propulsion can become a reality. The fundamental problem of interest here is the collection of solar energy. This is the first step in the propulsion process and indeed the most important. Everything else depends on the efficiency and focusing ability of the collection lens or mirror. An initial model of Fresnel lens behavior using a wave optics approach has been completed and the results were encouraging enough to warrant an experimental investigation. This experimental investigation confirmed some of the effects predicted and produced invaluable photographic evidence of coherence based diffraction and aberration.

  1. Micron-Accurate Laser Fresnel-Diffraction Ranging System

    Science.gov (United States)

    Lehner, David; Campbell, Jonathan; Smith, Kelly; Sanders, Alvin; Allison, Stephen; Smaley, Larry

    2008-01-01

    Two versions of an optoelectronic system undergoing development are depicted. The system is expected to be capable of measuring a distance between 2 and 10 m with an error of no more than 1 micrometer. The system would be designed to exploit Fresnel diffraction of a laser beam. In particular, it would be designed to take advantage of the fact that a Fresnel diffraction pattern is ultrasensitive to distance. The two versions would differ in the following respects: In version 1, the focus of the telescope would be in the Fresnel region, and the telescope would have a small depth of focus. As a consequence, the Fresnel pattern would be imaged directly onto the photodetector array; in version 2, a multielement lens module would displace the Fresnel region from the vicinity of the pinhole to the vicinity of the optical receiver. As the distance to be measured varied, the location of the receiver relative to the displaced Fresnel-diffraction region would vary, thereby causing the Fresnel diffraction pattern on the focal plane to vary. The multielement lens module would also correct for aberrations. The processing of the digitized Fresnel diffraction pattern in the computer might be accelerated by using only parts of the pattern or even only one small part - the central pixel. As the distance from the pinhole increased, the central pixel would rapidly cycle between maximum and minimum light intensity. This in itself would not be sufficient to uniquely determine the distance. However, by varying the size of the pinhole or the wavelength of the laser, one could obtain a second cycle of variation of intensity that, in conjunction with the first cycle, could enable a unique determination of distance. Alternatively, for a single wavelength and a single pinhole size, it should suffice to consider the data from only two different key pixels in the Fresnel pattern.

  2. An Ultrasonic Lens Design Based on Prefractal Structures

    OpenAIRE

    Sergio Castiñeira-Ibáñez; Daniel Tarrazó-Serrano; Constanza Rubio; Pilar Candelas; Antonio Uris

    2016-01-01

    The improvement in focusing capabilities of a set of annular scatterers arranged in a fractal geometry is theoretically quantified in this work by means of the finite element method (FEM). Two different arrangements of rigid rings in water are used in the analysis. Thus, both a Fresnel ultrasonic lens and an arrangement of rigid rings based on Cantor prefractals are analyzed. Results show that the focusing capacity of the modified fractal lens is better than the Fresnel lens. This new lens is...

  3. A Fresnel lenses based concentrated PV system in a greenhouse

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Tuijl, van B.A.J.; Janssen, H.J.J.; Gieling, T.H.

    2011-01-01

    The scope of this investigation is the development and testing of a new type of greenhouse with an integrated linear Fresnel lens, receiver module and an innovative system for tracking to exploit all direct radiation in a solar energy system. The basic idea of this horticultural application is to de

  4. CPV System with Static Linear Fresnel Lenses in a Greenhouse

    NARCIS (Netherlands)

    Sonneveld, Piet; Zahn, H.; Swinkels, Gert-Jan

    2010-01-01

    A new CPV system with a static linear Fresnel lens, silicon PV module suitable for concentrated radiation and an innovative tracking system is integrated in a greenhouse covering. The basic idea of this horticultural application is to develop a greenhouse for pot plants (typical shadow plants) which

  5. Optical loss due to diffraction by concentrator Fresnel lenses

    Energy Technology Data Exchange (ETDEWEB)

    Hornung, Thorsten, E-mail: thorsten.hornung@ise.fraunhofer.de; Nitz, Peter, E-mail: thorsten.hornung@ise.fraunhofer.de [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany)

    2014-09-26

    Fresnel lenses are widely used in concentrating photovoltaic (CPV) systems as a primary optical element. They focus sunlight on small solar cells or on the entrance apertures of secondary optical elements. A Fresnel lens consists of several prism rings and diffraction by these prism rings is unavoidable. Some of the light that would reach a designated target area according to geometric optics will miss it due to diffraction. This diffraction loss may be of relevant magnitude for CPV applications. The results of published analytical calculations are evaluated, discussed, and compared to computer simulations and measurements.

  6. Antireflective coatings on Fresnel lenses by spin-coating of solid silica nanoparticles.

    Science.gov (United States)

    Zhou, Gang; He, Junhui

    2013-08-01

    Antireflective (AR) coatings were fabricated from solid silica nanoparticles (SNPs) of ca. 16 nm in size on Fresnel lenses via one-step spin coating without any high temperature treatment. Transmission electron microscopy was used to observe the morphology and structure of the SNPs. Transmission spectra were recorded on a UV-vis-NIR spectrophotometer. The results indicated that Fresnel lenses covered with the SNPs coatings were much more transparent than the uncoated Fresnel lens. The maximum transmittance of the coated Fresnel lenses reached as high as 99.8%, whereas that of the uncoated Fresnel lens is only 94.3%. Surface wettability was studied by a contact angle/interface system, and the results indicated that the coatings on Fresnel lenses were more hydrophilic than the uncoated Fresnel lens. The surface morphologies and structures of the coatings were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The mechanical robustness of the coatings was examined by pencil scratch tests and attenuated total reflection infrared spectroscopy (ATR-IR).

  7. The fresnel interferometric imager

    Science.gov (United States)

    Koechlin, Laurent; Serre, Denis; Deba, Paul; Pelló, Roser; Peillon, Christelle; Duchon, Paul; Gomez de Castro, Ana Ines; Karovska, Margarita; Désert, Jean-Michel; Ehrenreich, David; Hebrard, Guillaume; Lecavelier Des Etangs, Alain; Ferlet, Roger; Sing, David; Vidal-Madjar, Alfred

    2009-03-01

    The Fresnel Interferometric Imager has been proposed to the European Space Agency (ESA) Cosmic Vision plan as a class L mission. This mission addresses several themes of the CV Plan: Exoplanet study, Matter in extreme conditions, and The Universe taking shape. This paper is an abridged version of the original ESA proposal. We have removed most of the technical and financial issues, to concentrate on the instrumental design and astrophysical missions. The instrument proposed is an ultra-lightweight telescope, featuring a novel optical concept based on diffraction focussing. It yields high dynamic range images, while releasing constraints on positioning and manufacturing of the main optical elements. This concept should open the way to very large apertures in space. In this two spacecraft formation-flying instrument, one spacecraft holds the focussing element: the Fresnel interferometric array; the other spacecraft holds the field optics, focal instrumentation, and detectors. The Fresnel array proposed here is a 3.6 ×3.6 m square opaque foil punched with 105 to 106 void “subapertures”. Focusing is achieved with no other optical element: the shape and positioning of the subapertures (holes in the foil) is responsible for beam combining by diffraction, and 5% to 10% of the total incident light ends up into a sharp focus. The consequence of this high number of subapertures is high dynamic range images. In addition, as it uses only a combination of vacuum and opaque material, this focussing method is potentially efficient over a very broad wavelength domain. The focal length of such diffractive focussing devices is wavelength dependent. However, this can be corrected. We have tested optically the efficiency of the chromatism correction on artificial sources (500 < λ < 750 nm): the images are diffraction limited, and the dynamic range measured on an artificial double source reaches 6.2 10 - 6. We have also validated numerical simulation algorithms for larger Fresnel

  8. PMMA lens with high efficiency and reliability

    Science.gov (United States)

    Matsuzaki, Ichiro; Abe, Koji; Fujita, Katsuhiro

    2013-09-01

    Polymethyl Methacrylate (PMMA) Fresnel lenses are increasingly being used in concentrated photovoltaic (CPV) systems installed outdoors and, accordingly, emphasis is being placed on the durability of such lenses with regard to light transmittance when subject to ultraviolet (UV) light and dust exposure. Accelerated testing methods for evaluating durability under UV exposure were established, allowing development of a lens material with improved UV resistance. Simultaneously, through a proprietary molding method, a Fresnel lens that boasts favorable light concentration efficiency with little deformation even after prolonged outdoor use was developed. Moreover, the lens incorporates a new hard-coat finish that possesses sand durability and UV resistance comparable to that of tempered glass.

  9. Optimization design of hybrid Fresnel-based concentrator for generating uniformity irradiance with the broad solar spectrum

    Science.gov (United States)

    Zhuang, Zhenfeng; Yu, Feihong

    2014-08-01

    This paper presents a novel hybrid Fresnel-based concentrator with improved uniformity irradiance distribution on the solar cell without using secondary optical element (SOE) in the concentrator photovoltaic (CPV) system to overcome the Fresnel loss and to increase the solar cell conversion efficiency. The designed hybrid Fresnel-based concentrator is composed of two parts, the inner part and the outer part. The inner part is the conventional Fresnel lens, while the outer part is double total internal reflection (DTIR) lens. According to the simple geometrical relation, the profile of the proposed hybrid Fresnel-based concentrator is calculated as an initial design profile. To obtain good irradiance uniformity on the solar cell, optimal prism displacements are optimized by using a simplex algorithm for collimated incident sunlight based on different prism focus on different position principles. In addition, a Monte-Carlo ray-tracing simulation approach is utilized to verify the optical performance for the hybrid Fresnel-based concentrator. Results indicate that the hybrid Fresnel-based concentrator designed using this method can achieve spatial non-uniformity less than 16.2%, f-number less than 0.59 (focal length to entry aperture diameter ratio), geometrical concentrator ratio 1759.8×, and acceptance angle ±0.23°. Compared to the conventional Fresnel-based lens and the traditional hybrid Fresnel-based lens, the optimized concentrator yields a significant improvement in irradiance uniformity on the solar cell with a wide solar spectrum range. It also has good tolerance to the incident sunlight.

  10. An Ultrasonic Lens Design Based on Prefractal Structures

    Directory of Open Access Journals (Sweden)

    Sergio Castiñeira-Ibáñez

    2016-04-01

    Full Text Available The improvement in focusing capabilities of a set of annular scatterers arranged in a fractal geometry is theoretically quantified in this work by means of the finite element method (FEM. Two different arrangements of rigid rings in water are used in the analysis. Thus, both a Fresnel ultrasonic lens and an arrangement of rigid rings based on Cantor prefractals are analyzed. Results show that the focusing capacity of the modified fractal lens is better than the Fresnel lens. This new lens is believed to have potential applications for ultrasonic imaging and medical ultrasound fields.

  11. A CPV system with static linear Fresnel lenses in a greenhouse

    NARCIS (Netherlands)

    Sonneveld, P.J.; Zahn, H.; Swinkels, G.L.A.M.

    2010-01-01

    A new CPV system with a static linear Fresnel lens, silicon PV module suitable for concentrated radiation and an innovative tracking system is integrated in a greenhouse covering. The basic idea of this horticultural application is to develop a greenhouse for pot plants (typical shadow plants) which

  12. Harmonic imaging with fresnel beamforming in the presence of phase aberration.

    Science.gov (United States)

    Nguyen, Man Minh; Shin, Junseob; Yen, Jesse

    2014-10-01

    Fresnel beamforming is a beamforming method with a delay profile similar in shape to a physical Fresnel lens. The advantage of Fresnel beamforming is the reduced channel count, which consists of four to eight transmit and two analog-to-digital receive channels. Fresnel beamforming was found to perform comparably to conventional delay-and-sum beamforming. However, the performance of Fresnel beamforming is highly dependent on focal errors. These focal errors result in high side-lobe levels and further reduce the performance of Fresnel beamforming in the presence of phase aberration. With the advantages of lower side-lobe levels and suppression of aberration effects, harmonic imaging offers an effective solution to the limitations of Fresnel beamforming. We describe the implementation of tissue harmonic imaging and pulse inversion harmonic imaging in Fresnel beamforming, followed by dual apodization with cross-correlation, to improve image quality. Compared with conventional delay-and-sum beamforming, experimental results indicated contrast-to-noise ratio improvements of 10%, 49% and 264% for Fresnel beamforming using tissue harmonic imaging in the cases of no aberrator, 5-mm pork aberrator and 12-mm pork aberrator, respectively. These improvements were 22%, 57% and 352% for Fresnel beamforming using pulse inversion harmonic imaging. Moreover, dual apodization with cross-correlation was found to further improve the contrast-to-noise ratios in all cases. Harmonic imaging was also found to narrow the lateral beamwidth and shorten the axial pulse length by at least 25% and 21%, respectively, for Fresnel beamforming at different aberration levels. These results suggest the effectiveness of harmonic imaging in improving image quality for Fresnel beamforming, especially in the presence of phase aberration. Even though this combination of Fresnel beamforming and harmonic imaging does not outperform delay-and-sum beamforming combined with harmonic imaging, it provides the

  13. [Lens platform].

    Science.gov (United States)

    Łukaszewska-Smyk, Agnieszka; Kałuzny, Józef

    2010-01-01

    The lens platform defines lens structure and lens material. Evolution of lens comprises change in their shape, angulation of haptens and transition of three-piece lens into one-piece lens. The lens fall into two categories: rigid (PMMA) and soft (siliconic, acrylic, colameric). The main lens maaterials are polymers (hydrophilic and hydrophobic). The lens platform has an effect on biocompatibility, bioadhesion, stability of lens in capsule, degree of PCO evolution and sensitiveness to laser damages.

  14. Nonimaging fresnel lenses. Design and performance of solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Leutz, R. [Tokyo Univ. of Agriculture and Technology, Koganei-shi (Japan). BASE; Suzuki, A. [UNESCO, Paris (France). Natural Science Sector

    2001-07-01

    This book offers a detailed and comprehensive account of the engineering of the world's first nonimaging Fresnel lens solar concentrator. The book closes a gap in solar concentrator design, and describes nonimaging refractive optics and its numerical mathematics. The contents follow a systems approach that is absent in standard handbooks of optics or solar energy. The reader is introduced to the principles, theories, and advantages of nonimaging optics from the standpoint of concentrating sunlight (the solar concentrator idea). The book shows the reader how to find his or her own optical solution using the rules and methodologies covering the design and the assessment of the nonimaging lens. This novel solar concentrator is developed within the natural constraints presented by the sun and in relation to competitive solutions offered by other concentrators. (orig.)

  15. Design of a variable-line-spacing grating pattern for spectrometers based on a grating Fresnel device.

    Science.gov (United States)

    Li, Xinghui; Zhang, Jinchao; Zhou, Qian; Ni, Kai; Pang, Jinchao; Tian, Rui

    2016-04-01

    In this Letter, we propose a variable-line-spacing (VLS) grating pattern for a hybrid diffractive device termed a grating Fresnel (G-Fresnel) lens, which is used in spectrometers to improve spectral resolution over a wide spectral range. The VLS grating pattern disperses light of specific wavelengths with a different angle and position such that the aberration caused by the Fresnel surface can be compensated for. In this manner, high resolution can be achieved over a relatively wide spectral range. The VLS grating pattern is designed based on the least wave-change principle and simulated by ZEMAX. Results reveal that the VLS G-Fresnel device allows a subnanometer resolution over a spectral range of 200 nm.

  16. Fresnel zone antenna for dual-band detection at millimeter and infrared wavelengths.

    Science.gov (United States)

    Alda, Javier; González, Francisco Javier

    2009-03-15

    In this work the concept of a Fresnel zone antenna for dual-band detection in the IR and millimeter wave region is presented. The design is based on a Fresnel zone plate lens in the IR that is transformed to serve as a millimeter-wave antenna. Two different designs are presented, a circular-zone design that gives a high diffractive efficiency in the IR and a square-zone design that gives a higher response in the millimeter band but a lower focusing efficiency in the IR. Both designs have an operation bandwidth with the same low frequency limit of 400 GHz (750 microm), which can be tailored by changing the number of Fresnel zones, and a high frequency limit of 4.5 THz (65 microm) for the circular-zone design and 5 THz (59 microm) for the square-zone design.

  17. 3D printed helical antenna with lens

    KAUST Repository

    Farooqui, Muhammad Fahad

    2016-12-19

    The gain of an antenna can be enhanced through the integration of a lens, however this technique has traditionally been restricted to planar antennas due to fabrication limitations of standard manufacturing processes. Here, with a unique combination of 3D and 2D inkjet printing of dielectric and metallic inks respectively, we demonstrate a Fresnel lens that has been monolithically integrated to a non-planar antenna (helix) for the first time. Antenna measurements show that the integration of a Fresnel lens enhances the gain of a 2-turn helix by around 4.6 dB giving a peak gain of about 12.9 dBi at 8.8 GHz.

  18. Characterization of a photovoltaic-thermal module for Fresnel linear concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Chemisana, D., E-mail: daniel.chemisana@macs.udl.cat [University of Lleida, c/Pere Cabrera s/n, 25001 Lleida (Spain); Ibanez, M.; Rosell, J.I. [University of Lleida, c/Pere Cabrera s/n, 25001 Lleida (Spain)

    2011-09-15

    Highlights: {yields} A combined domed Fresnel lens - CPC PVT system is designed and characterized. {yields} Electrical and thermal experiments have been performed. {yields} CFD analysis has been used to determine thermal characteristic dimensionless numbers. - Abstract: An advanced solar unit is designed to match the needs of building integration and concentrating photovoltaic/thermal generation. The unit proposed accurately combines three elements: a domed linear Fresnel lens as primary concentrator, a compound parabolic reflector as secondary concentrator and a photovoltaic-thermal module. In this work the photovoltaic-thermal generator is built, analysed and characterized. Models for the electrical and thermal behaviour of the module are developed and validated experimentally. Applying a thermal resistances approach the results from both models are combined. Finally, efficiency electrical and thermal curves are derived from theoretical analysis showing good agreement with experimental measurements.

  19. Advanced lab on Fresnel equations

    Science.gov (United States)

    Petrova-Mayor, Anna; Gimbal, Scott

    2015-11-01

    This experimental and theoretical exercise is designed to promote students' understanding of polarization and thin-film coatings for the practical case of a scanning protected-metal coated mirror. We present results obtained with a laboratory scanner and a polarimeter and propose an affordable and student-friendly experimental arrangement for the undergraduate laboratory. This experiment will allow students to apply basic knowledge of the polarization of light and thin-film coatings, develop hands-on skills with the use of phase retarders, apply the Fresnel equations for metallic coating with complex index of refraction, and compute the polarization state of the reflected light.

  20. Optical Simulation and Experimental Verification of a Fresnel Solar Concentrator with a New Hybrid Second Optical Element

    Directory of Open Access Journals (Sweden)

    Guiqiang Li

    2016-01-01

    Full Text Available Fresnel solar concentrator is one of the most common solar concentrators in solar applications. For high Fresnel concentrating PV or PV/T systems, the second optical element (SOE is the key component for the high optical efficiency at a wider deflection angle, which is important for overcoming unavoidable errors from the tacking system, the Fresnel lens processing and installment technology, and so forth. In this paper, a new hybrid SOE was designed to match the Fresnel solar concentrator with the concentration ratio of 1090x. The ray-tracing technology was employed to indicate the optical properties. The simulation outcome showed that the Fresnel solar concentrator with the new hybrid SOE has a wider deflection angle scope with the high optical efficiency. Furthermore, the flux distribution with different deviation angles was also analyzed. In addition, the experiment of the Fresnel solar concentrator with the hybrid SOE under outdoor condition was carried out. The verifications from the electrical and thermal outputs were all made to analyze the optical efficiency comprehensively. The optical efficiency resulting from the experiment is found to be consistent with that from the simulation.

  1. A single-pixel wireless contact lens display

    Science.gov (United States)

    Lingley, A. R.; Ali, M.; Liao, Y.; Mirjalili, R.; Klonner, M.; Sopanen, M.; Suihkonen, S.; Shen, T.; Otis, B. P.; Lipsanen, H.; Parviz, B. A.

    2011-12-01

    We present the design, construction and in vivo rabbit testing of a wirelessly powered contact lens display. The display consists of an antenna, a 500 × 500 µm2 silicon power harvesting and radio integrated circuit, metal interconnects, insulation layers and a 750 × 750 µm2 transparent sapphire chip containing a custom-designed micro-light emitting diode with peak emission at 475 nm, all integrated onto a contact lens. The display can be powered wirelessly from ~1 m in free space and ~2 cm in vivo on a rabbit. The display was tested on live, anesthetized rabbits with no observed adverse effect. In order to extend display capabilities, design and fabrication of micro-Fresnel lenses on a contact lens are presented to move toward a multipixel display that can be worn in the form of a contact lens. Contact lenses with integrated micro-Fresnel lenses were also tested on live rabbits and showed no adverse effect.

  2. 太阳能等照度带聚焦菲涅耳透镜研究%RESEARCH ON STRIP-FOCUS FRESNEL SOLAR CONCENTRATOR WITH REGULAR ILLUMINATION

    Institute of Scientific and Technical Information of China (English)

    王刚; 陈则韶; 胡芃; 程晓舫; 莫松平; 江守利

    2012-01-01

    To improve the photovoltaic (PV) conversion efficiency of solar cells under the concentrated solar radia-tion condition, the conventional flat style line-focus Fresnel lens should be modified to improve the illumination uni-formity on the focal plane. In this study, a design method of a new strip-focus Fresnel lens was developed, which has regular concentrated illumination and can be used for solar concentrated PV system. The strip-focus Fresnel lens is divided into odd units. The angle

    Fresnel lens is determined by the width of solar cells, the focal length and the refractive index of the lens material. By comparing the temperature distributions on the solar cells under the concentrated solar radiation conditions of strip-focus Fresnel lens and line-focus Fresnel lens, the feasibility of the design of the strip-focus Fresnel lens is validated.%为了提高聚光发电时太阳电池的光电转换效率,从提高太阳电池表面会聚光强分布的均匀性入手,对传统平板型线聚焦透镜进行改进,提出一种用于聚光光伏发电的等照度带聚焦菲涅耳透镜设计方法.带聚焦菲涅耳透镜分为奇数个单元,每个单元宽度与太阳电池宽度相等,单元内所有尖劈角φ相等并将太阳辐射等宽度折射至太阳电池表面,从而实现各单元透过的太阳能等照度叠加.最大聚光比由光伏电池宽度、透镜与太阳电池间距以及透镜材料折射率决定.对带聚焦和线聚焦两种透镜聚光条件下电池表面温度分布情况进行比较分析,验证了等照度带聚焦透镜设计的可行性.

  3. Design of the Secondary Optical Elements for Concentrated Photovoltaic Units with Fresnel Lenses

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Chen

    2015-10-01

    Full Text Available The goal of this presented study was to determine the optimum parameters of secondary optical elements (SOEs for concentrated photovoltaic (CPV units with flat Fresnel lenses. Three types of SOEs are under consideration in the design process, including kaleidoscope with equal optical path design (KOD, kaleidoscope with flat top surface (KFTS, and open-truncated tetrahedral pyramid with specular walls (SP. The function of using a SOE with a Fresnel lens in a CPV unit is to achieve high optical efficiency, low sensitivity to the sun tracking error, and improved uniformity of irradiance distribution on the solar cell. Ray tracing technique was developed to simulate the optical characteristics of the CPV unit with various design parameters of each type of SOE. Finally, an optimum KOD-type SOE was determined by parametric design process. The resulting optical performance of the CPV unit with the optimum SOE was evaluated in both single-wavelength and broadband simulation of solar spectrum.

  4. [Optimisation of the visualisation technique for optical paths through intraocular lenses for characterisation of multifocal imaging properties of Fresnel-zone plates].

    Science.gov (United States)

    Reiß, S; Forbrig, J; Guthoff, R F; Terwee, T; Stolz, H; Siewert, S; El-Tamer, A; Hinze, U; Chichkov, B N; Stachs, O

    2014-12-01

    The utilisation of the diffractive properties of Fresnel zone plates offers the possibility of intraocular lens designs with multiple foci. Such intraocular lenses can be manufactured by two-photon polymerisation (2PP). This paper explains the underlying concept and shows the principles for visualisation of the focus properties of such implants.

  5. Thin Fresnel zone plate lenses for focusing underwater sound

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, David C., E-mail: david.calvo@nrl.navy.mil; Thangawng, Abel L.; Nicholas, Michael; Layman, Christopher N. [Acoustics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2015-07-06

    A Fresnel zone plate (FZP) lens of the Soret type creates a focus by constructive interference of waves diffracted through open annular zones in an opaque screen. For underwater sound below MHz frequencies, a large FZP that blocks sound using high-impedance, dense materials would have practical disadvantages. We experimentally and numerically investigate an alternative approach of creating a FZP with thin (0.4λ) acoustically opaque zones made of soft silicone rubber foam attached to a thin (0.1λ) transparent rubber substrate. An ultra-thin (0.0068λ) FZP that achieves higher gain is also proposed and simulated which uses low-volume fraction, bubble-like resonant air ring cavities to construct opaque zones. Laboratory measurements at 200 kHz indicate that the rubber foam can be accurately modeled as a lossy fluid with an acoustic impedance approximately 1/10 that of water. Measured focal gains up to 20 dB agree with theoretical predictions for normal and oblique incidence. The measured focal radius of 0.68λ (peak-to-null) agrees with the Rayleigh diffraction limit prediction of 0.61 λ/NA (NA = 0.88) for a low-aberration lens.

  6. Multilayer Bragg Fresnel zone plate for coherent HHG radiation

    Energy Technology Data Exchange (ETDEWEB)

    Spaeth, Christian; Schmidt, Juergen [Fakultaet fuer Physik, Ludwig Maximilians Universitaet Muenchen, Garching (Germany); Hofstetter, Michael [Max Planck Institut fuer Quantenoptik, Garching (Germany); Krausz, Ferenc; Kleineberg, Ulf [Fakultaet fuer Physik, Ludwig Maximilians Universitaet Muenchen, Garching (Germany); Max Planck Institut fuer Quantenoptik, Garching (Germany)

    2010-07-01

    Coherent diffractive imaging in the (soft) X-ray regime is an emerging new lens-less X-ray microscopy technique with the future potential of molecular or even atomic resolution, because it is ultimately limited by the wavelength of the illuminating radiation and not by the imaging quality of the X-ray lens. However, this technique depends on the availability of coherent x-ray sources as well as optics for spectral filtering and focusing. We describe the development fabrication and testing of a reflective multilayer Bragg Fresnel phase zone plate for focusing coherent XUV radiation at 13 nm wavelength from a High Harmonic Generation source. This X-ray optical device serves for spectral filtering as well as sub-micron focusing of the HH spectrum in a single element for largely reduced losses. Large zone plate structures (conventional, spiral) matching the HH beam size are recorded by e-beam lithography in ultrathin HSQ e-beam resist and over-coated with a reflective Mo/Si multilayer by ion beam deposition. By accurately matching the groove depth of the diffractive structure to odd multiples of the quarter Bragg wavelength, the total diffraction efficiency can be improved by a factor of 4 theoretically compared to amplitude structures.

  7. Focusing properties of Gaussian Schell-model beams by an astigmatic aperture lens

    Institute of Scientific and Technical Information of China (English)

    Pan Liu-Zhan; Ding Chao-Liang

    2007-01-01

    This paper studies the focusing properties of Gaussian Schell-model (GSM) beams by an astigmatic aperture lens.It is shown that the axial irradiance distribution, the maximum axial irradiance and its position of focused GSM beams by an astigmatic aperture lens depend upon the astigmatism of the lens, the coherence of partially coherent light, the truncation parameter of the aperture and Fresnel number. The numerical calculation results are given to illustrate how these parameters affect the focusing property.

  8. The Fresnel-Weyl complementary transformation

    Institute of Scientific and Technical Information of China (English)

    Xie Chuan-Mei; Fan Hong-Yi

    2012-01-01

    Based on the newly developed coherent-entangled state representation,we propose the so-called Fresnel-Weyl complementary transformation operator.The new operator plays the roles of both Fresnel transformation (for (a1 - a2)/√2)and the Weyl transformation (for (a1 + a2)/√2).Physically,(a1 - a2)/√2 and (a1 + a2)/√2 could be a symmetric beamsplitter's two output fields for the incoming fields a1 and a2.We show that the two transformations are concisely expressed in the coherent-entangled state representation as a projective operator in the integration form.

  9. Taosi Observatory

    Science.gov (United States)

    Sun, Xiaochun

    Taosi observatory is the remains of a structure discovered at the later Neolithic Taosi site located in Xiangfen County, Shanxi Province, in north-central China. The structure is a walled enclosure on a raised platform. Only rammed-earth foundations of the structure remained. Archaeoastronomical studies suggest that this structure functioned as an astronomical observatory. Historical circumstantial evidence suggests that it was probably related to the legendary kingdom of Yao from the twenty-first century BC.

  10. Space Photovoltaic Concentrator Using Robust Fresnel Lenses, 4-Junction Cells, Graphene Radiators, and Articulating Receivers

    Science.gov (United States)

    O'Neill, Mark; McDanal, A. J.; Brandhorst, Henry; Spence, Brian; Iqbal, Shawn; Sharps, Paul; McPheeters, Clay; Steinfeldt, Jeff; Piszczor, Michael; Myers, Matt

    2016-01-01

    At the 42nd PVSC, our team presented recent advances in our space photovoltaic concentrator technology. These advances include more robust Fresnel lenses for optical concentration, more thermally conductive graphene radiators for waste heat rejection, improved color-mixing lens technology to minimize chromatic aberration losses with 4-junction solar cells, and an articulating photovoltaic receiver enabling single-axis sun-tracking, while maintaining a sharp focal line despite large beta angles of incidence. In the past year, under a NASA Phase II SBIR program, our team has made much additional progress in the development of this new space photovoltaic concentrator technology, as described in this paper.

  11. Recent developments in Fresnel zone plate antennas at microwave/millimeter wave

    Science.gov (United States)

    Wiltse, James C.

    1998-10-01

    The Fresnel zone plate antenna is an example of an optical analogy that has been transferred to microwave/millimeter wavelength use. The latter case has seen extensive research and application, and in the past dozen years more than seventy relevant papers have been published on a worldwide basis. These studies have dealt with either lens or reflector designs, and have quantified many parameters, such as gain, antenna patterns, efficiency, bandwidth, and structural options. The most recent designs have dealt with high efficiency or dual band configurations. This report will summarize the many advances of the past few years, and will provide some parametric design tradeoffs.

  12. Irradiance tailoring with two-sided Fresnel-type freeform optics

    Science.gov (United States)

    Bruneton, Adrien; Bäuerle, Axel; Traub, Martin; Wester, Rolf; Loosen, Peter

    2012-10-01

    Based on the Monge-Kantorovich theory of optimal mass transport, the computation of a ray mapping between source and target irradiances is used to design two-sided freeform lenses fulfilling the constraints of an automotive application: compactness and sharp bright-dark cutoff. A generic segmentation technic resulting in Fresnel-type optics is presented and the whole procedure is illustrated with the design of a fog light lens. Finally Monte Carlo simulation of the virtual model and measurements of a polycarbonate prototype are presented.

  13. Prof. Pan Jianwei Honored with Fresnel Prize

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Prof. Pan Jianwei (J. W. Pan),a physicist of the CAS-affiliated University of Science and Technology of China (USTC), has received the 2005 Fresnel Prize of the European Physical Society. The awarding ceremony was held on June 14 at the European Conference on Lasers and Electro-Optics in Munich.

  14. A Novel Offset Fresnel Zone Plate Antenna

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel offset Fresnel Zone Plate reflector Antenna (FZPA) is proposed, the phase correcting zone of this FZPA is elliptic. Based on Physical Optics Method, the focusing characteristics of the reflector are analyzed. The comparison of this new FZPA with the circular FZPA and Mawzones FZPA is made.

  15. Fresnel zones for ground-based antennas

    DEFF Research Database (Denmark)

    Andersen, J. Bach

    1964-01-01

    The ordinary Fresnel zone concept is modified to include the influence of finite ground conductivity. This is important for ground-based antennas because the influence on the radiation pattern of irregularities near the antenna is determined by the amplitude and phase of the groundwave. A new...

  16. The FAST Project - A Next Generation UHECR Observatory

    Directory of Open Access Journals (Sweden)

    Fujii Toshihiro

    2017-01-01

    Full Text Available We present a concept for large-area, low-cost detection of ultrahigh-energy cosmic rays (UHECRs with a Fluorescence detector Array of Single-pixel Telescopes (FASTb, addressing the requirements for the next generation of UHECR experiments. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. We report on the first results of a FAST prototype installed at the Telescope Array (TA site, consisting of a single 200 mm photomultiplier tube (PMT at the focal plane of a 1 m2 Fresnel lens system taken from the prototype of the JEM-EUSO experiment. We also report on the status of the full-scale FAST prototype soon to be installed at the TA site, comprising a segmented spherical mirror of 1.6 m diameter and a 2 × 2 PMT camera.

  17. The FAST Project - A Next Generation UHECR Observatory

    Science.gov (United States)

    Fujii, Toshihiro; Malacari, Max; Bellido, Jose A.; Horvath, Pavel; Hrabovsky, Miroslav; Jiang, Jiaqi; Mandat, Dusan; Matalon, Ariel; Matthews, John N.; Motloch, Pavel; Palatka, Miroslav; Pech, Miroslav; Privitera, Paolo; Schovanek, Petr; Thomas, Stan B.; Travnicek, Petr

    2017-03-01

    We present a concept for large-area, low-cost detection of ultrahigh-energy cosmic rays (UHECRs) with a Fluorescence detector Array of Single-pixel Telescopes (FAST)b, addressing the requirements for the next generation of UHECR experiments. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. We report on the first results of a FAST prototype installed at the Telescope Array (TA) site, consisting of a single 200 mm photomultiplier tube (PMT) at the focal plane of a 1 m2 Fresnel lens system taken from the prototype of the JEM-EUSO experiment. We also report on the status of the full-scale FAST prototype soon to be installed at the TA site, comprising a segmented spherical mirror of 1.6 m diameter and a 2 × 2 PMT camera.

  18. Solar concentration properties of flat fresnel lenses with large F-numbers

    Science.gov (United States)

    Cosby, R. M.

    1978-01-01

    The solar concentration performances of flat, line-focusing sun-tracking Fresnel lenses with selected f-numbers between 0.9 and 2.0 were analyzed. Lens transmittance was found to have a weak dependence on f-number, with a 2% increase occuring as the f-number is increased from 0.9 to 2.0. The geometric concentration ratio for perfectly tracking lenses peaked for an f-number near 1.35. Intensity profiles were more uniform over the image extent for large f-number lenses when compared to the f/0.9 lens results. Substantial decreases in geometri concentration ratios were observed for transverse tracking errors equal to or below 1 degree for all f-number lenses. With respect to tracking errors, the solar performance is optimum for f-numbers between 1.25 and 1.5.

  19. Concept design and simulation of a concentration lens with uniform square irradiance

    Science.gov (United States)

    Li, Dianhong; Xuan, Yimin

    2017-10-01

    A planar concentration lens comprised of square and rectangular lenses for solar concentration application is presented. The design of the concentration lens was based on the concept of Fresnel lens and the layout of the square light spot was proposed to match the receiving area. The uniformity of the light spot was determined by the structure of the concentration lens, which has different structures for different design wavelengths. The uniformity of the light spot and concentration ratio of the concentration lens were simulated. The numerical results indicate that the concentration ratio and uniformity of the light spot decrease with the increment of the wavelength. In order to improve the performance of the concentration lens, a novel hybrid wavelength structures was designed. The analysis results reveal that both the spot uniformity and concentration ratio of such a novel concentration lens were insensitive to the wavelengths variation. In addition, the angular tolerance of the concentration lens was discussed for different incident angles.

  20. Cryptosystem for Securing Image Encryption Using Structured Phase Masks in Fresnel Wavelet Transform Domain

    Science.gov (United States)

    Singh, Hukum

    2016-12-01

    A cryptosystem for securing image encryption is considered by using double random phase encoding in Fresnel wavelet transform (FWT) domain. Random phase masks (RPMs) and structured phase masks (SPMs) based on devil's vortex toroidal lens (DVTL) are used in spatial as well as in Fourier planes. The images to be encrypted are first Fresnel transformed and then single-level discrete wavelet transform (DWT) is apply to decompose LL,HL, LH and HH matrices. The resulting matrices from the DWT are multiplied by additional RPMs and the resultants are subjected to inverse DWT for the encrypted images. The scheme is more secure because of many parameters used in the construction of SPM. The original images are recovered by using the correct parameters of FWT and SPM. Phase mask SPM based on DVTL increases security that enlarges the key space for encryption and decryption. The proposed encryption scheme is a lens-less optical system and its digital implementation has been performed using MATLAB 7.6.0 (R2008a). The computed value of mean-squared-error between the retrieved and the input images shows the efficacy of scheme. The sensitivity to encryption parameters, robustness against occlusion, entropy and multiplicative Gaussian noise attacks have been analysed.

  1. ZEROES OF GENERALIZED FRESNEL COMPLEMENTARY INTEGRAL FUNCTIONS

    Directory of Open Access Journals (Sweden)

    Jaime Lobo Segura

    2016-08-01

    Full Text Available Theoretical upper and lower bounds are established for zeroes of a parametric family of functions which are defined by integrals of the same type as the Fresnel complementary integral. Asymptotic properties for these bounds are obtained as well as monotony properties of the localization intervals. Given the value of the parameter an analytical-numerical procedure is deduced to enclose all zeros of a given function with an a priori error.

  2. Wavelet transform for Fresnel-transformed mother wavelets

    Institute of Scientific and Technical Information of China (English)

    Liu Shu-Guang; Chen Jun-Hua; Fan Hong-Yi

    2011-01-01

    In this paper,we propose the so-called continuous Fresnel-wavelet combinatorial transform which means that the mother wavelet undergoes the Fresnel transformation.This motivation can let the mother-wavelet-state itself vary from |ψ〉 to Fr,s(+)|ψ),except for variation within the family of dilations and translations.The Parseval's equality,admissibility condition and inverse transform of this continuous Fresnel-wavelet combinatorial transform are analysed.By taking certain parameters and using the admissibility condition of this continuous Fresnel-wavelet combinatorial transform,we obtain some mother wavelets.A comparison between the newly found mother wavelets is presented.

  3. Far-field characteristics of the square grooved-dielectric lens antenna for the terahertz band.

    Science.gov (United States)

    Pan, Wu; Zeng, Wei

    2016-09-10

    In order to improve the gain and directionality of a terahertz antenna, a square grooved-dielectric lens antenna based on a Fresnel zone plate is proposed. First, a diagonal horn, which is adopted as the primary feed antenna, is designed. Then, the far-field characteristics of the lens antenna are studied by using Fresnel-Kirchhoff diffraction theory and the paraxial approximation. The effects of the full-wave period, the focus diameter ratio, the subregion, and the dielectric substrate thickness on radiation characteristics are studied. The experimental results show that the proposed lens antenna has axisymmetric radiation patterns. The gain is over 26.1 dB, and the 3 dB main lobe beam width is lower than 5.6° across the operation band. The proposed lens antenna is qualified for applications in terahertz wireless communication systems.

  4. Plane-polar Fresnel and far-field computations using the Fresnel-Wilcox and Jacobi-Bessel expansions. [for large aperture antennas

    Science.gov (United States)

    Rahmat-Samii, Y.; Galindo-Israel, V.

    1981-01-01

    It is pointed out that the computation of the Fresnel fields for large aperture antennas is significant for many applications. The present investigation is concerned with an approach for the effective utilization of the coefficients of the Jacobi-Bessel series for the far-field to obtain an analytically continuous representation of the antenna field which is valid from the Fresnel region into the far field. Attention is given to exact formulations and closed form solutions, Fresnel and Fresnel small angle approximations, aspects of field expansion, the accuracy of the Fresnel and Fresnel small angle approximations, and the Jacobi-Bessel expansion applied to the Fresnel small angle approximation.

  5. Linear Fresnel Spectrometer Chip with Gradient Line Grating

    Science.gov (United States)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)

    2015-01-01

    A spectrometer that includes a grating that disperses light via Fresnel diffraction according to wavelength onto a sensing area that coincides with an optical axis plane of the grating. The sensing area detects the dispersed light and measures the light intensity associated with each wavelength of the light. Because the spectrometer utilizes Fresnel diffraction, it can be miniaturized and packaged as an integrated circuit.

  6. Mathematical Simulation for Integrated Linear Fresnel Spectrometer Chip

    Science.gov (United States)

    Park, Yeonjoon; Yoon, Hargoon; Lee, Uhn; King, Glen C.; Choi, Sang H.

    2012-01-01

    A miniaturized solid-state optical spectrometer chip was designed with a linear gradient-gap Fresnel grating which was mounted perpendicularly to a sensor array surface and simulated for its performance and functionality. Unlike common spectrometers which are based on Fraunhoffer diffraction with a regular periodic line grating, the new linear gradient grating Fresnel spectrometer chip can be miniaturized to a much smaller form-factor into the Fresnel regime exceeding the limit of conventional spectrometers. This mathematical calculation shows that building a tiny motionless multi-pixel microspectrometer chip which is smaller than 1 cubic millimter of optical path volume is possible. The new Fresnel spectrometer chip is proportional to the energy scale (hc/lambda), while the conventional spectrometers are proportional to the wavelength scale (lambda). We report the theoretical optical working principle and new data collection algorithm of the new Fresnel spectrometer to build a compact integrated optical chip.

  7. Experimental Profiling of a Non-truncated Focused Gaussian Beam and Fine-tuning of the Quadratic Phase in the Fresnel Gaussian Shape Invariant

    Energy Technology Data Exchange (ETDEWEB)

    S., Juan Manuel Franco [Center of Investigation (CIO) (Mexico); Cywiak, Moises [Center of Investigation (CIO) (Mexico); Cywiak, David [National Metrology Center (Mexico); Mourad, Idir [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-06-24

    A homodyne profiler is used for recording the intensity distribution of focused non-truncated Gaussian beams. The spatial distributions are obtained at planes in the vicinity of the back-focal plane of a focusing lens placed at different distances from a He–Ne laser beam with a Gaussian intensity profile. Comparisons of the experimental data with those obtained from the analytical equations for an ideal focusing lens allow us to propose formulae to fine-tune the quadratic term in the Fresnel Gaussian shape invariant at each interface of the propagated field. Furthermore, we give analytical expressions to calculate adequately the propagation of the field through an optical system.

  8. Numerical analysis for finite Fresnel transform

    Science.gov (United States)

    Aoyagi, Tomohiro; Ohtsubo, Kouichi; Aoyagi, Nobuo

    2016-10-01

    The Fresnel transform is a bounded, linear, additive, and unitary operator in Hilbert space and is applied to many applications. In this study, a sampling theorem for a Fresnel transform pair in polar coordinate systems is derived. According to the sampling theorem, any function in the complex plane can be expressed by taking the products of the values of a function and sampling function systems. Sampling function systems are constituted by Bessel functions and their zeros. By computer simulations, we consider the application of the sampling theorem to the problem of approximating a function to demonstrate its validity. Our approximating function is a circularly symmetric function which is defined in the complex plane. Counting the number of sampling points requires the calculation of the zeros of Bessel functions, which are calculated by an approximation formula and numerical tables. Therefore, our sampling points are nonuniform. The number of sampling points, the normalized mean square error between the original function and its approximation function and phases are calculated and the relationship between them is revealed.

  9. Discrete Fresnel Transform and Its Circular Convolution

    CERN Document Server

    Ouyang, Xing; Gunning, Fatima; Zhang, Hongyu; Guan, Yong Liang

    2015-01-01

    Discrete trigonometric transformations, such as the discrete Fourier and cosine/sine transforms, are important in a variety of applications due to their useful properties. For example, one well-known property is the convolution theorem for Fourier transform. In this letter, we derive a discrete Fresnel transform (DFnT) from the infinitely periodic optical gratings, as a linear trigonometric transform. Compared to the previous formulations of DFnT, the DFnT in this letter has no degeneracy, which hinders its mathematic applications, due to destructive interferences. The circular convolution property of the DFnT is studied for the first time. It is proved that the DFnT of a circular convolution of two sequences equals either one circularly convolving with the DFnT of the other. As circular convolution is a fundamental process in discrete systems, the DFnT not only gives the coefficients of the Talbot image, but can also be useful for optical and digital signal processing and numerical evaluation of the Fresnel ...

  10. Lens Model

    DEFF Research Database (Denmark)

    Nash, Ulrik William

    2014-01-01

    Firms consist of people who make decisions to achieve goals. How do these people develop the expectations which underpin the choices they make? The lens model provides one answer to this question. It was developed by cognitive psychologist Egon Brunswik (1952) to illustrate his theory of probabil......Firms consist of people who make decisions to achieve goals. How do these people develop the expectations which underpin the choices they make? The lens model provides one answer to this question. It was developed by cognitive psychologist Egon Brunswik (1952) to illustrate his theory...... of probabilistic functionalism, and concerns the environment and the mind, and adaptation by the latter to the former. This entry is about the lens model, and probabilistic functionalism more broadly. Focus will mostly be on firms and their employees, but, to fully appreciate the scope, we have to keep in mind...

  11. Lens Model

    DEFF Research Database (Denmark)

    Nash, Ulrik William

    2014-01-01

    Firms consist of people who make decisions to achieve goals. How do these people develop the expectations which underpin the choices they make? The lens model provides one answer to this question. It was developed by cognitive psychologist Egon Brunswik (1952) to illustrate his theory of probabil......Firms consist of people who make decisions to achieve goals. How do these people develop the expectations which underpin the choices they make? The lens model provides one answer to this question. It was developed by cognitive psychologist Egon Brunswik (1952) to illustrate his theory...

  12. Design of tracking and detecting lens system by diffractive optical method

    Science.gov (United States)

    Yang, Jiang; Qi, Bo; Ren, Ge; Zhou, Jianwei

    2016-10-01

    Many target-tracking applications require an optical system to acquire the target for tracking and identification. This paper describes a new detecting optical system that can provide automatic flying object detecting, tracking and measuring in visible band. The main feature of the detecting lens system is the combination of diffractive optics with traditional lens design by a technique was invented by Schupmann. Diffractive lens has great potential for developing the larger aperture and lightweight lens. First, the optical system scheme was described. Then the Schupmann achromatic principle with diffractive lens and corrective optics is introduced. According to the technical features and requirements of the optical imaging system for detecting and tracking, we designed a lens system with flat surface Fresnel lens and cancels the optical system chromatic aberration by another flat surface Fresnel lens with effective focal length of 1980mm, an F-Number of F/9.9 and a field of view of 2ωω = 14.2', spatial resolution of 46 lp/mm and a working wavelength range of 0.6 0.85um. At last, the system is compact and easy to fabricate and assembly, the diffuse spot size and MTF function and other analysis provide good performance.

  13. An analysis of beamed wireless power transfer in the Fresnel zone using a dynamic, metasurface aperture

    Science.gov (United States)

    Smith, David R.; Gowda, Vinay R.; Yurduseven, Okan; Larouche, Stéphane; Lipworth, Guy; Urzhumov, Yaroslav; Reynolds, Matthew S.

    2017-01-01

    Wireless power transfer (WPT) has been an active topic of research, with a number of WPT schemes implemented in the near-field (coupling) and far-field (radiation) regimes. Here, we consider a beamed WPT scheme based on a dynamically reconfigurable source aperture transferring power to receiving devices within the Fresnel region. In this context, the dynamic aperture resembles a reconfigurable lens capable of focusing power to a well-defined spot, whose dimension can be related to a point spread function. The necessary amplitude and phase distribution of the field imposed over the aperture can be determined in a holographic sense, by interfering a hypothetical point source located at the receiver location with a plane wave at the aperture location. While conventional technologies, such as phased arrays, can achieve the required control over phase and amplitude, they typically do so at a high cost; alternatively, metasurface apertures can achieve dynamic focusing with potentially lower cost. We present an initial tradeoff analysis of the Fresnel region WPT concept assuming a metasurface aperture, relating the key parameters such as spot size, aperture size, wavelength, and focal distance, as well as reviewing system considerations such as the availability of sources and power transfer efficiency. We find that approximate design formulas derived from the Gaussian optics approximation provide useful estimates of system performance, including transfer efficiency and coverage volume. The accuracy of these formulas is confirmed through numerical studies.

  14. Linear concentrating Fresnel collector for process heat applications; Linear konzentrierender Fresnel-Kollektor fuer Prozesswaermeanwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Haeberle, A.; Berger, M.; Luginsland, F.; Zahler, C. [PSE GmbH, Solar Info Center, Freiburg (Germany); Rommel, M.; Baitsch, M.; Henning, H.M. [Fraunhofer ISE, Freiburg (Germany)

    2006-07-01

    A prototype of a small Fresnel process heat collector was built in Freiburg in late 2005 for thermal performance measurements. The collector is designed for applications bigger than 50 kW{sub th} and a driving temperature of around 200 C. The first application will be a solar cooling system with a NH{sub 3}/H{sub 2}O absorption chiller, which will be installed in June 2006. (orig.)

  15. Novel optical scanning cryptography using Fresnel telescope imaging.

    Science.gov (United States)

    Yan, Aimin; Sun, Jianfeng; Hu, Zhijuan; Zhang, Jingtao; Liu, Liren

    2015-07-13

    We propose a new method called modified optical scanning cryptography using Fresnel telescope imaging technique for encryption and decryption of remote objects. An image or object can be optically encrypted on the fly by Fresnel telescope scanning system together with an encryption key. For image decryption, the encrypted signals are received and processed with an optical coherent heterodyne detection system. The proposed method has strong performance through use of secure Fresnel telescope scanning with orthogonal polarized beams and efficient all-optical information processing. The validity of the proposed method is demonstrated by numerical simulations and experimental results.

  16. An Analysis of Beamed Wireless Power Transfer in the Fresnel Zone Using a Dynamic, Metasurface Aperture

    CERN Document Server

    Smith, David R; Yurduseven, Okan; Larouche, Stephane; Lipworth, Guy; Urzhumov, Yaroslav; Reynolds, Matthew S

    2016-01-01

    Wireless power transfer (WPT) has been an active topic of research, with a number of WPT schemes implemented in the near-field (coupling) and far-field (radiation) regimes. Here, we consider a beamed WPT scheme based on a dynamically reconfigurable source aperture transferring power to receiving devices within the Fresnel (near-zone) region. In this context, the dynamic aperture resembles a reconfigurable lens capable of focusing power to a well-defined spot, whose dimension can be related to a point spread function (PSF). Near-zone focusing can be achieved by generating different amplitude or phase profiles over the aperture, which can be realized using traditional architectures, such as phased arrays. Alternatively, metasurface guided-wave apertures can achieve dynamic focusing, with potentially lower cost implementations. We present an initial tradeoff analysis of the near-zone WPT concept, relating key parameters such as spot size, aperture size, wavelength, focal distance, and availability of sources. We...

  17. Image encryption using polarized light encoding and amplitude and phase truncation in the Fresnel domain.

    Science.gov (United States)

    Rajput, Sudheesh K; Nishchal, Naveen K

    2013-06-20

    In this paper, an image encryption scheme based on polarized light encoding and a phase-truncation approach in the Fresnel transform domain is proposed. The phase-truncated data obtained by an asymmetric cryptosystem is encrypted and decrypted by using the concept of the Stokes-Mueller formalism. Image encryption based on polarization of light using Stokes-Mueller formalism has the main advantage over Jones vector formalism that it manipulates only intensity information, which is measurable. Thus any intensity information can be encrypted and decrypted using this scheme. The proposed method offers several advantages: (1) a lens-free setup, (2) flexibility in the encryption key design, (3) use of asymmetric keys, and (4) immunity against special attack. We present numerical simulation results for gray-scale and color images in support of the proposed security scheme. The performance measurement parameters relative error and correlation coefficient have been calculated to check the effectiveness of the scheme.

  18. Huygens-Fresnel Principle in Superspace

    CERN Document Server

    de Gomes, H A

    2006-01-01

    We first roughly present a summary of the optico-mechanical analogy, which has always been so profitable in physics. Then we put forward a geometrodynamical formulation of gravity suitable to our intentions, both formally and conceptually. We present difficulties in some approaches to canonically quantize gravity which can be ammended by the idea put forward in this paper, which we introduce in the last section. It consists basically in trying to find an intermediary between the quantization step going from the classical superhamiltonian constraint to the Wheeler-DeWitt equation. This is accomplished by inputing interference beyond the WKB approximation, through a sort of Huygens-Fresnel Principle (HFP) in superspace. It turns out that we can derive wave-like character for both domains from this principle by allowing backward angles of diffraction, and what is more, approximate to a high degree of accuracy Feynman's path integral method in any domain.

  19. Bragg-Fresnel optics: New field of applications

    Energy Technology Data Exchange (ETDEWEB)

    Snigirev, A. [ESRF, Grenoble (France)

    1997-02-01

    Bragg-Fresnel Optics shows excellent compatibility with the third generation synchrotron radiation sources such as ESRF and is capable of obtaining monochromatic submicron focal spots with 10{sup 8}-10{sup 9} photons/sec in an energy bandwidth of 10{sup -4}-10{sup -6} and in a photon energy range between 2-100 keV. New types of Bragg-Fresnel lenses like modified, ion implanted, bent and acoustically modulated were tested. Microprobe techniques like microdiffraction and microfluorescence based on Bragg-Fresnel optics were realised at the ESRF beamlines. Excellent parameters of the X-ray beam at the ESRF in terms of low emittance and quite small angular source size allow for Bragg-Fresnel optics to occupy new fields of applications such as high resolution diffraction, holography, interferometry and phase contrast imaging.

  20. Fresnel Concentrators for Space Solar Power and Solar Thermal Propulsion

    Science.gov (United States)

    Bradford, Rodney; Parks, Robert W.; Craig, Harry B. (Technical Monitor)

    2001-01-01

    Large deployable Fresnel concentrators are applicable to solar thermal propulsion and multiple space solar power generation concepts. These concentrators can be used with thermophotovoltaic, solar thermionic, and solar dynamic conversion systems. Thin polyimide Fresnel lenses and reflectors can provide tailored flux distribution and concentration ratios matched to receiver requirements. Thin, preformed polyimide film structure components assembled into support structures for Fresnel concentrators provide the capability to produce large inflation-deployed concentrator assemblies. The polyimide film is resistant to the space environment and allows large lightweight assemblies to be fabricated that can be compactly stowed for launch. This work addressed design and fabrication of lightweight polyimide film Fresnel concentrators, alternate materials evaluation, and data management functions for space solar power concepts, architectures, and supporting technology development.

  1. On the Asymptotics of Bessel Functions in the Fresnel Regime

    Science.gov (United States)

    2014-07-10

    We introduce a version of the asymptotic expansions for Bessel functions Jν(z), Yν(z) that is valid whenever |z| > ν (which is deep in the Fresnel...equations, to be reported at a later date. On the asymptotics of Bessel functions in the Fresnel regime Z. Heitman‡ , J. Bremer?⊕, V. Rokhlin‡ , B...48109 ‡ Dept. of Mathematics, Yale University, New Haven CT 06511 Approved for public release: distribution is unlimited. Keywords: Bessel Functions

  2. Optical image encryption in Fresnel domain using spiral phase transform

    Science.gov (United States)

    Kumar, Ravi; Bhaduri, Basanta

    2017-09-01

    In this study, we propose a new nonlinear optical image encryption technique using spiral phase transform (SPT). First, the primary image is phase encoded and multiplied with a random amplitude mask (RAM), and using power function, the product is then powered to m. This powered output is Fresnel propagated with distance z 1 and then modulated with a random phase mask (RPM). The modulated image is further Fresnel propagated with distance z 2. Similarly, a security image is also modulated with another RAM and then Fresnel propagated with distance z 3. Next, the two modulated images after Fresnel propagations, are interfered and further Fresnel propagated with distance z 4 to get a complex image. Finally, this complex image is SPT with particular spiral phase function (SPF), to get the final encrypted image for transmission. In the proposed technique, the security keys are Fresnel propagation distances, the security image, RPM, RAMs, power order, m, and order of SPF, q. Numerical simulation results confirm the validity and effectiveness of the proposed technique. The proposed technique is robust against noise and brutal force attacks.

  3. Terahertz epsilon-near-zero graded-index lens.

    Science.gov (United States)

    Torres, Víctor; Pacheco-Peña, Víctor; Rodríguez-Ulibarri, Pablo; Navarro-Cía, Miguel; Beruete, Miguel; Sorolla, Mario; Engheta, Nader

    2013-04-08

    An epsilon-near-zero graded-index converging lens with planar faces is proposed and analyzed. Each perfectly-electric conducting (PEC) waveguide comprising the lens operates slightly above its cut-off frequency and has the same length but different cross-sectional dimensions. This allows controlling individually the propagation constant and the normalized characteristic impedance of each waveguide for the desired phase front at the lens output while Fresnel reflection losses are minimized. A complete theoretical analysis based on the waveguide theory and Fermat's principle is provided. This is complemented with numerical simulation results of two-dimensional and three-dimensional lenses, made of PEC and aluminum, respectively, and working in the terahertz regime, which show good agreement with the analytical work.

  4. Fast computation of Fresnel holograms employing difference

    Science.gov (United States)

    Yoshikawa, Hiroshi; Iwase, Susumu; Oneda, Tadashi

    2000-03-01

    For practical holographic video system, it is important to generated holographic fringe as fast as possible. We have proposed an approximation method that can calculate the Fresnel hologram fast. To compute the hologram, an object is assumed as a collection of self-illuminated points and the fringes from each object point are superposed. To determine the fringe, a distance between object point and sampling point on the hologram is used to obtain phase of the light. Since sampled hologram usually has small pixel intervals, the difference of the distance values between adjacent pixels is also small and its n-th order difference becomes a constant. Therefore, the distance value at certain pixel can be obtained from the neighbor pixel with simple additions. We have investigated approximation errors and computational speed of the method. The numerical results show that the proposed method is quite effective. The distance error can be reduced less that one wavelength with practical parameters and the computational speed becomes 16 times faster than conventional method. With the proposed method, a hologram, which has horizontal parallax only, 1.3 mega- pixels and 1,000 object points, can be calculated less than on second with a personal computer.

  5. Optical modeling of Fresnel zoneplate microscopes.

    Science.gov (United States)

    Naulleau, Patrick P; Mochi, Iacopo; Goldberg, Kenneth A

    2011-07-10

    Defect free masks remain one of the most significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. Progress on this front requires high-performance wavelength-specific metrology of EUV masks, including high-resolution and aerial-image microscopy performed near the 13.5 nm wavelength. Arguably the most cost-effective and rapid path to proliferating this capability is through the development of Fresnel zoneplate-based microscopes. Given the relative obscurity of such systems, however, modeling tools are not necessarily optimized to deal with them and their imaging properties are poorly understood. Here we present a modeling methodology to analyze zoneplate microscopes based on commercially available optical modeling software and use the technique to investigate the imaging performance of an off-axis EUV microscope design. The modeling predicts that superior performance can be achieved by tilting the zoneplate, making it perpendicular to the chief ray at the center of the field, while designing the zoneplate to explicitly work in that tilted plane. Although the examples presented here are in the realm of EUV mask inspection, the methods described and analysis results are broadly applicable to zoneplate microscopes in general, including full-field soft-x-ray microscopes routinely used in the synchrotron community.

  6. European Southern Observatory

    CERN Multimedia

    1970-01-01

    Professor A. Blaauw, Director general of the European Southern Observatory, with George Hampton on his right, signs the Agreement covering collaboration with CERN in the construction of the large telescope to be installed at the ESO Observatory in Chile.

  7. Solar Dynamics Observatory

    Data.gov (United States)

    National Aeronautics and Space Administration — A searchable database of all Solar Dynamics Observatory data including EUV, magnetograms, visible light and X-ray. SDO: The Solar Dynamics Observatory is the first...

  8. Experimental and theoretical study of Bragg-Fresnel focalizing optical systems engraved on multi layers interferential mirrors adapted to X and X-UV fields; Etude experimentale et theorique d`optiques focalisantes de type Bragg-Fresnel gravees sur des miroirs interferentiels multicouches adaptes aux domaines X et X-UV

    Energy Technology Data Exchange (ETDEWEB)

    Idir, M.

    1995-02-01

    This work concerns the study of a particular type of X-ray focusing optics known as Bragg-Fresnel lenses, formed through ion-etching of multilayered structures. Using the Super-ACO (LURE/Orsay) synchrotron storage ring, we tested several Bragg-Fresnel lenses having either linear or elliptical geometries (producing a line or a point focus, respectively). Diffraction profiles were first obtained for the linear lenses ion-etched on W/Si multilayers of nano-metric period. The experimental results were compared with our theoretical predictions. We next proposed and tested a solution to the problem superposing the different diffraction orders in the focal plane, that of fabricating Bragg-Fresnel lenses with an off-axis configuration, first for the linear and then the elliptical geometry. An experimental application, for an off-axis elliptical lens produced a focused X-ray spot of 5 x 10 microns{sup 2} for the Super-ACO synchrotron source. The same lens also produced a 1/3-size X-ray image of a grid-like object at 1750 eV using the first and third diffraction orders. (author).

  9. Babinet's principle in the Fresnel regime studied using ultrasound

    CERN Document Server

    Hitachi, Akira

    2009-01-01

    Babinet's principle in the Fresnel regime has been confirmed directly by observing ultrasound diffracted by a circular disk and an aperture of the same size. The amplitude and the phase of diffracted ultrasonic waves have been measured and a graphical treatment of the results is performed. It is also found that the wave without the diffracting objects is indeed 90 deg in phase behind the wave from the center of the zone system. This paradox has previously been regarded as a defect of Fresnel's theory. The 90 deg phase difference appears also in Fresnel-Kirchhoff diffraction, Rayleigh-Sommerfeld diffraction and even in the edge-diffracted approach by Young. The apparatus used is intended as a table-top instrument for the student laboratory in general science and engineering classes.

  10. Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid.

    Directory of Open Access Journals (Sweden)

    Steven Bache

    Full Text Available Telecentric optical computed tomography (optical-CT is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS-Duke Fresnel Optical-CT Scanner is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K and the use of a 'solid tank' (which reduces noise, and the volume of refractively matched fluid from 1 ltr to 10 cc. The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS. Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2 h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm. DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system.

  11. Experimental and theoretical study of bragg-Fresnel optics etched on multilayer structures. Application: lenses for X-Ray imaging; Etude experimentale et theorique d`optiques de bragg-Fresnel gravees sur miroirs interferentiels multicouches. Application: lentilles pour l`imagerie X

    Energy Technology Data Exchange (ETDEWEB)

    Soullie, G.

    1996-10-01

    This work concerns the study of a new type of X-ray focusing optics known as Bragg-Fresnel lenses developed for imaging in the X and X-UV range. These optics, etched on multilayer structure, combine the focusing properties of zone plate with the Bragg reflection of multilayer used like support. Using synchrotron sources and a plasma source produced by a laser, we tested the efficiency and the spatial resolution of these lenses. With a monochromatic beam, we first obtained the image of a object by using the first order diffraction of an elliptical off-axis Bragg-Fresnel lens. By using only one part of a lens, the superposition of different diffraction orders in focal plane can be avoided, thus improving the image contrast. In order to evaluate the chromatic aberrations of these lenses, we have summed on the same image, three exposures at different energies in the band pass of the multilayer. To reduce these kind of aberrations, we used a system composed of two off-axis lenses. To simplify the alignment, we tested an elliptical off-axis lens associated with a lamellar grating. Thus we are able to validate the theoretical approximation of an off-axis Bragg-Fresnel lens to a variable spaced grating. Finally, to show the perturbation brought by the zeroth order, we successively imaged a laser plasma source with a centred and an off-axis elliptical lenses. As with the synchrotron source, a set of images of a test object enabled us to improve the spatial resolution. (author).

  12. Fresnel-Transform's Quantum Correspondence and Quantum Optical ABCD Law

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; HU Li-Yun

    2007-01-01

    @@ Corresponding to the Fresnel transform there exists a unitary operator in quantum optics theory, which could be known the Fresnel operator (FO). We show that the multiplication rule of the FO naturally leads to the quantum optical ABCD law. The canonical operator methods as mapping of ray-transfer ABCD matrix is explicitly shown by the normally ordered expansion of the FO through the coherent state representation and the technique of integration within an ordered product of operators. We show that time evolution of the damping oscillator embodies the quantum optical ABCD law.

  13. A Fresnel zone plate collimator: potential and aberrations

    Science.gov (United States)

    Menz, Benedikt; Bräuninger, Heinrich; Burwitz, Vadim; Hartner, Gisela; Predehl, Peter

    2015-09-01

    A collimator, that parallelizes an X-ray beam, provides a significant improvement of the metrology to characterize X-ray optics for space instruments at MPE's PANTER X-ray test facility. A Fresnel zone plate was selected as a collimating optic, as it meets a good angular resolution 10 cm2. Such an optic is ideally suited to illuminate Silicon Pore Optic (SPO) modules as proposed for ATHENA. This paper provides the theoretic description of such a Fresnel zone plate especially considering resolution and efficiency. Based on the theoretic results the collimator setup performance is analyzed and requirements for fabrication and alignment are calculated.

  14. Contact lens in keratoconus

    Directory of Open Access Journals (Sweden)

    Varsha M Rathi

    2013-01-01

    Full Text Available Contact lenses are required for the visual improvement in patients with keratoconus. Various contact lens options, such as rigid gas permeable (RGP lenses, soft and soft toric lenses, piggy back contact lenses (PBCL, hybrid lenses and scleral lenses are availble. This article discusses about selection of a lens depending on the type of keratoconus and the fitting philosophies of various contact lenses including the starting trial lens. A Medline search was carried out for articles in the English language with the keywords keratoconus and various contact lenses such as Rose k lens, RGP lens, hybrid lens, scleral lens and PBCL.

  15. Focusing and directional beaming effects of airborne sound through a planar lens with zigzag slits

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Kun; Qiu, Chunyin, E-mail: cyqiu@whu.edu.cn; Lu, Jiuyang; Ke, Manzhu [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Liu, Zhengyou [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Institute for Advanced Studies, Wuhan University, Wuhan 430072 (China)

    2015-01-14

    Based on the Huygens-Fresnel principle, we design a planar lens to efficiently realize the interconversion between the point-like sound source and Gaussian beam in ambient air. The lens is constructed by a planar plate perforated elaborately with a nonuniform array of zigzag slits, where the slit exits act as subwavelength-sized secondary sources carrying desired sound responses. The experiments operated at audible regime agree well with the theoretical predictions. This compact device could be useful in daily life applications, such as for medical and detection purposes.

  16. Design and fabrication of one-dimensional focusing X-ray compound lens with Al material

    Institute of Scientific and Technical Information of China (English)

    Zichun Le; Ming Zhang; Jingqiu Liang; Wen Dong; Kai Liu; Bisheng Quan

    2006-01-01

    @@ A method based on Fourier spectrum analysis for predicting the performances of the X-ray compound lenses is briefly introduced,the theoretical result obtained is the same as that of Fresnel-Kirchhoff approach.A kind of technique named moulding is developed for fabricating the one-dimensional (1D) compound X-ray lens with Al material and the fabrication process is presented.In addition,a two-time coating method is used to improve the numerical apertures of the compound lenses.Furthermore,the focusing performance of the Al compound X-ray lens under the high energy X-rays is measured.

  17. Focusing and directional beaming effects of airborne sound through a planar lens with zigzag slits

    CERN Document Server

    Tang, Kun; Lu, Jiuyang; Ke, Manzhu; Liu, Zhengyou

    2014-01-01

    Based on the Huygens-Fresnel principle we design a planar lens to efficiently realize the interconversion of the point-like source and Gaussian beam in the air ambience. The lens is constructed by a planar plate drilled elaborately with a nonuniform array of zigzag slits, where the slit exits act as subwavelength-sized secondary sources carrying desired sound responses. The experiments operated at audible regime agree well with the theoretical predictions. This compact device could be useful in daily life applications, such as for medical and detection purposes.

  18. Replica casting technique for micro Fresnel lenses characterization

    DEFF Research Database (Denmark)

    Gasparin, Stefania; Tosello, Guido; Hansen, Hans Nørgaard

    2012-01-01

    The available measuring techniques are not always suitable for the characterization of optical surfaces such as Fresnel lenses or polished specimens. A way to overcome these challenges is to reproduce the optical components surface using a polymer casting method and to measure the replicated surf...

  19. A New Reflector Antenna Based on the Fresnel Principle

    Institute of Scientific and Technical Information of China (English)

    DUHui-ping

    2001-01-01

    A new type of reflector antenne is proposed, which applies the 1-D Fresnel zone phase correction to the classical parabolic cylindrical reflector, providing an alternative to the dval parabolic cylindrical ones discussed by Sanad and Shafai[1].The focusing characteristics of the new reflector are analyzed by physical optics method, and numerical results are illustrated to evaluate its applicability.

  20. A New Reflector Antenna Based on the Fresnel Principle

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new type of reflector antenne is proposed, which applies the 1-D Fresnel zone phase correction to the classical parabolic cylindrical reflector, providing an alternative to the dual parabolic cylindrical ones discussed by Sanad and Shafai[1]. The focusing characteristics of the new reflector are analyzed by physical optics method, and numerical results are illustrated to evaluate its applicability.

  1. Up scaling and test results of an advanced Fresnel greenhouse

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Tuijl, van B.A.J.; Janssen, H.J.J.; Zwart, de H.F.

    2012-01-01

    A greenhouse with Fresnel lenses in the south facing roof and a receiver for concentrated Photovoltaics with water cooling (CPVT system) will result in electrical and thermal energy output from the solar energy excess entering a greenhouse. The PV system converts about half of the direct radiation i

  2. Fresnel representation of the Wigner function: an operational approach.

    Science.gov (United States)

    Lougovski, P; Solano, E; Zhang, Z M; Walther, H; Mack, H; Schleich, W P

    2003-07-04

    We present an operational definition of the Wigner function. Our method relies on the Fresnel transform of measured Rabi oscillations and applies to motional states of trapped atoms as well as to field states in cavities. We illustrate this technique using data from recent experiments in ion traps [Phys. Rev. Lett. 76, 1796 (1996)

  3. PMMA-based ophthalmic contact lens for vision correction of strabismus

    Science.gov (United States)

    Asgharzadeh Shishavan, Amir; Nordin, Leland; Tjossem, Paul; Abramoff, Michael D.; Toor, Fatima

    2016-09-01

    In this work we present the design of a novel ophthalmic prismatic contact lens to correct for strabismus. Strabismus, colloquially called "crossed-eyes" or "wall eyes," is a condition in which the eyes are not properly aligned with each other. To our knowledge there are no contact lenses that allow for strabismus correction. To address this, we have designed a poly methyl methacrylate (PMMA) based prismatic correction contact lens. Therefore, we modeled a Fresnel lens with the appropriate optical properties and a human eye in COMSOL Multiphysics Ray Optics module. Our first design was created by mapping Fresnel lenses onto the curved surface of the eye, the focus of light on retina was suboptimal. Next we determined two more potential solutions and improved the light focus on the retina but there were still some issues. A small fraction of light ( 5%) diverged and could not be focused. Due to dispersive characteristic of PMMA, chromatic aberration was present. We will use our ray optics solution and convert into a metasurface nanophotonic lens that has the identical behavior and mitigates the issues related with prismatic lens.

  4. 3D Inkjet Printed Helical Antenna with Integrated Lens

    KAUST Repository

    Farooqui, Muhammad F.

    2016-08-30

    The gain of an antenna can be enhanced through the integration of a lens, although this technique has traditionally been restricted to planar antennas due to fabrication limitations of standard manufacturing processes. Here, through a unique combination of 3D and 2D inkjet printing of dielectric and metallic inks respectively, we demonstrate a lens that has been monolithically integrated to a non-planar antenna (helix) for the first time. Antenna measurements show that the integration of a Fresnel lens enhances the gain of a 2-turn helix by around 4.6 dB, which provides a peak gain of about 12.9 dBi at 8.8 GHz. The 3-dB axial ratio (AR) bandwidth of the antenna with the lens is 5.5%. This work also reports the complete characterization of this new process in terms of minimum features sizes and achievable conductivities. Due to monolithic integration of the lens through a fully printed process, this antenna configuration offers high gain performance by using a low cost and rapid fabrication technique. © 2016 IEEE.

  5. Development and fabrication of photovoltaic concentrator modules for a point-focus Fresnel lens array

    Energy Technology Data Exchange (ETDEWEB)

    Broadbent, S.; Sanders, J.A.

    1985-06-01

    Design of the second generation photovoltaic concentrator module originally developed by Martin Marietta under Contract 46-3018 was improved. Module efficiency was improved from 14.4% to 15.5% and numerous detailed design enhancements were incorporated to facilitate fabrication and improve cost effectiveness. Sixty modules were manufactured to populate the second generation structure already installed at the Sandia National Laboratories test site in Albuquerque, NM, plus 10 spares and test units. To further improve the life capability and facilitate installation of the design, additional design development was authorized for (1) cell interconnect research to provide greater stress relief at the cell-interconncet and substrate-interconnect interfaces; and (2) incorporation of a reflective secondary to relieve tracking accuracy and initial alignment accuracy requirements.

  6. Certification and verification for Northrup model NSC-01-0732 fresnel lens concentrating solar collector

    Science.gov (United States)

    1979-01-01

    Structural analysis and certification of the collector system is presented. System verification against the interim performance criteria is presented and indicated by matrices. The verification discussion, analysis, and test results are also given.

  7. Gain and far-field patterns for phase-correcting Fresnel zone plate antennas at millimeter-wave and terahertz frequencies

    Science.gov (United States)

    Wiltse, James C.

    2007-04-01

    The Fresnel zone plate lens antenna, which provides advantages compared to a normal paraboloidal or spherical lens, has been extensively investigated in the millimeter-wave and terahertz regions. The advantages include reduced weight, volume, and attenuation and simplicity of design. The principal disadvantage is that the zone plate sometimes provides reduced gain compared to a true lens. Particularly at high millimeter-wave or terahertz frequencies the low loss of the zone plate more than compensates for the reduced directivity. This paper investigates the gains and far-field patterns for a number of cases and gives both the analysis and numerical results for the examples. These cases have dealt with large-angle designs, where the focal length (F) and diameter (D) are comparable (F/D = 0.3 to 2.5), unlike the typical optical examples. The antenna patterns are found to have beamwidths and first sidelobes that are similar to what one would obtain with a standard lens, given the same aperture illumination. Appropriate feed designs are also described. For best aperture efficiency the illumination taper is about 10 dB, and this gives first sidelobe levels of about -24dB for a circular aperture. Far-out average sidelobes are not as low as for a true lens, and this is where the gain is affected.

  8. Beijing Ancient Observatory

    Science.gov (United States)

    Shi, Yunli

    The Beijing Ancient Observatory is now the only complete example of an observatory from the seventeenth century in the world. It is a monument to the prosperity of astronomy in traditional China. Its instruments are emblems of the encounter and amalgamation of Chinese and European Science in the seventeenth and eighteenth centuries.

  9. Zelenchukskaya Radio Astronomical Observatory

    Science.gov (United States)

    Smolentsev, Sergey; Dyakov, Andrei

    2013-01-01

    This report summarizes information about Zelenchukskaya Radio Astronomical Observatory activities in 2012. Last year a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to the required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  10. Svetloe Radio Astronomical Observatory

    Science.gov (United States)

    Smolentsev, Sergey; Rahimov, Ismail

    2013-01-01

    This report summarizes information about the Svetloe Radio Astronomical Observatory activities in 2012. Last year, a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to their required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  11. Comparative simulations of Fresnel holography methods for atomic waveguides

    CERN Document Server

    Henderson, Victoria A; Riis, Erling; Arnold, Aidan S

    2016-01-01

    We have simulated the optical properties of micro-fabricated Fresnel zone plates (FZPs) as an alternative to spatial light modulators (SLMs) for producing non-trivial light potentials to trap atoms within a lensless Fresnel arrangement. We show that binary (1-bit) FZPs with wavelength (1 \\mu m) spatial resolution consistently outperform kinoforms of spatial and phase resolution comparable to commercial SLMs in root mean square error comparisons, with FZP kinoforms demonstrating increasing improvement for complex target intensity distributions. Moreover, as sub-wavelength resolution microfabrication is possible, FZPs provide an exciting possibility for the creation of static cold-atom trapping potentials useful to atomtronics, interferometry, and the study of fundamental physics.

  12. A new theorem relating quantum tomogram to the Fresnel operator

    Institute of Scientific and Technical Information of China (English)

    Xie Chuan-Mei; Fan Hong-Yi

    2011-01-01

    According to Fan-Hu's formalism (Fan Hong-Yi and Hu Li-Yun 2009 Opt. Commun. 282 3734) that the tomogram of quantum states can be considered as the module-square of the state wave function in the intermediate coordinatemomentum representation which is just the eigenvector of the Fresnel quadrature phase, we derive a new theorem for calculating quantum tomogram of density operator, i.e., the tomogram of a density operator p is equal to the marginal integration of the classical Weyl correspondence function of F+ρF, where F is the Fresnel operator. Applications of this theorem to evaluating the tomogram of optical chaotic field and squeezed chaotic optical field are presented.

  13. Compressive optical image watermarking using joint Fresnel transform correlator architecture

    Science.gov (United States)

    Li, Jun; Zhong, Ting; Dai, Xiaofang; Yang, Chanxia; Li, Rong; Tang, Zhilie

    2017-02-01

    A new optical image watermarking technique based on compressive sensing using joint Fresnel transform correlator architecture has been presented. A secret scene or image is first embedded into a host image to perform optical image watermarking by use of joint Fresnel transform correlator architecture. Then, the watermarked image is compressed to much smaller signal data using single-pixel compressive holographic imaging in optical domain. At the received terminal, the watermarked image is reconstructed well via compressive sensing theory and a specified holographic reconstruction algorithm. The preliminary numerical simulations show that it is effective and suitable for optical image security transmission in the coming absolutely optical network for the reason of the completely optical implementation and largely decreased holograms data volume.

  14. Advanced split-illumination electron holography without Fresnel fringes

    Energy Technology Data Exchange (ETDEWEB)

    Tanigaki, Toshiaki, E-mail: tanigaki-toshiaki@riken.jp [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Aizawa, Shinji; Park, Hyun Soon [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Harada, Ken [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Shindo, Daisuke [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan)

    2014-02-01

    Advanced split-illumination electron holography was developed by employing two biprisms in the illuminating system to split an electron wave into two coherent waves and two biprisms in the imaging system to overlap them. A focused image of an upper condenser-biprism filament was formed on the sample plane, and all other filaments were placed in its shadow. This developed system makes it possible to obtain precise reconstructed object waves without modulations due to Fresnel fringes, in addition to holograms of distant objects from reference waves. - Highlights: • Advanced split-illumination electron holography without Fresnel fringes is developed. • Two biprisms are installed in illuminating system of microscope. • High-precision holographic observations of an area locating far from the sample edge become possible.

  15. Hiding an image in cascaded Fresnel digital holograms

    Institute of Scientific and Technical Information of China (English)

    Shaogeng Deng; Liren Liu; Haitao Lang; Weiqing Pan; Dong Zhao

    2006-01-01

    @@ A system of two separated computer-generated holograms termed cascaded Fresnel digital holography (CFDH) is proposed and its application to hiding information is demonstrated by a computer simulation experiment. The technique is that the reconstructed image is the result of the wave Fresnel diffractionof two sub-holograms located at different distances from the imaging plane along the illuminating beam. The two sub-holograms are generated by an iterative algorithm based on the projection onto convex sets. In the application to the hiding of optical information, the information to be hidden is encoded into thesub-hologram which is multiplied by the host image in the input plane, the other sub-hologram in the filterplane is used for the deciphering key, the hidden image can be reconstructed in the imaging plane of the CFDH setup.

  16. Angular criterion for distinguishing between Fraunhofer and Fresnel diffraction

    CERN Document Server

    Medina, F F; García-Sucerquia, J; Matteucci, G

    2003-01-01

    The distinction between Fresnel and Fraunhofer diffraction is a crucial condition for the accurate analysis of diffracting structures. In this paper we propose a criterion based on the angle subtended by the first zero of the diffraction pattern from the center of the diffracting aperture. The determination of the zero of the diffraction pattern is the crucial point for assuring the precision of the criterion. It mainly depends on the dynamical range of the detector. Therefore, the applicability of adequate thresholds for different detector types is discussed. The criterion is also generalized by expressing it in terms of the number of Fresnel zones delimited by the aperture. Simulations are reported for illustrating the feasibility of the criterion.

  17. Rapid cooled lens cell

    Science.gov (United States)

    Stubbs, David M.; Hsu, Ike C.

    1991-12-01

    This paper describes the optomechanical design, thermal analysis, fabrication, and test evaluation processes followed in developing a rapid cooled, infrared lens cell. Thermal analysis was the key engineering discipline exercised in the design phase. The effect of thermal stress on the lens, induced by rapid cooling of the lens cell, was investigated. Features of this lens cell that minimized the thermal stress will be discussed in a dedicated section. The results of thermal analysis on the selected lens cell design and the selection of the flow channel design in the heat exchanger will be discussed. Throughout the paper engineering drawings, illustrations, analytical results, and photographs of actual hardware are presented.

  18. Wave propagation in chiral media: composite Fresnel equations

    Science.gov (United States)

    Chern, Ruey-Lin

    2013-07-01

    In this paper, the author studies the features of wave propagation in chiral media. A general form of wave equations in biisotropic media is employed to derive concise formulas for the reflection and transmission coefficients. These coefficients are represented as a composite form of Fresnel equations for ordinary dielectrics, which reveal the circularly polarized nature of chiral media. The important features of negative refraction and a backward wave associated with left-handed waves are analyzed.

  19. Passive solar tracking system for steerable Fresnel elements

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, R.D.

    1976-10-12

    An angular tracking servo system is described for passive tracking of the sun. Solar radiation is used to control the attitude of a mirror element in an array of Fresnel reflectors. The array collects and focuses solar energy onto a high efficiency conversion device. The energy required to move the mirror element is supplied by a gear system which is attached through a pivot arm to a vertically moving float immersed in a chamber containing water.

  20. Effect of Fresnel Reflectivity in a Spherical Turbid Medium

    CERN Document Server

    Elghazaly, A

    2003-01-01

    Radiative transfer problem for anisotropic scattering in a spherical homogeneous, turbid medium with angular dependent (specular) reflecting boundary is solved using the pomraning-Eddington approximation method. The angular dependent reflectivity of the boundary is considered as Fresnel's reflection probability function. The partial heat flux is calculated with anisotropic scattering through a homogeneous solid sphere. our results are compared with the available data and give an excellent agreement.

  1. Low-frequency Fresnel mirrors for fluorescence detectors

    Science.gov (United States)

    Diaz-Anzures, J.; Cordero-Davila, A.; Gonzalez-Garcia, J.; Martinez-Bravo, O.; Robledo-Sanchez, C.; Khrenov, B. A.; Garipov, G. K.

    2004-07-01

    In this work we present several designs of a Fresnel mirror with small number of rings (low frequency) to be used in fluorescence detectors aimed for study of ultra high energy cosmic rays. Being segmented the Fresnel mirror has an advantage of simple development from a compact package to a "plane" large area mirror-concentrator. This advantage is important for detectors in space and detectors at remote mountain sites. In this work, we investigated four possible ways of generating a focusing surface. In the first (main) design, the mirror consists of sections belonging to several parabolic surfaces. In this case the best focusing of a source on optical axis is achieved--the Fresnel mirror operates as parabolic mirror. This design is the best for a space "telescope", observing a source from large distances. Close to this design are mirror options with sections of a common parabolic surface and with sections of several spherical surfaces. The simplest for construction is the mirror with sections of a common spherical surface. In this design, focusing of a source on optical axis is much poorer than in previous options, but the mirror may be used in the experiments needed a wide field of view (FOV) with rough angular resolution. An advantage of this design is simplicity of the mirror construction which is shown in the mirror prototype construction and its testing. Results of the focal spot measurements are presented. This simple design of the Fresnel mirror is planned for use in the Pico de Orizaba mountain hybrid array where the wide field of view is important.

  2. Fresnel rhombs as achromatic phase shifters for infrared nulling interferometry

    OpenAIRE

    Mawet, D.; Hanot, Charles; Lenaers, C.; Riaud, Pierre; Defrere, Denis; Vandormael; Loicq, Jerôme; Fleury, K.; Plesseria, Jean-Yves; Surdej, Jean; Habraken, Serge

    2007-01-01

    We propose a new family of achromatic phase shifters for infrared nulling interferometry. These key optical components can be seen as optimized Fresnel rhombs, using the total internal reflection phenomenon, modulated or not. The total internal reflection indeed comes with a phase shift between the polarization components of the incident light. We propose a solution to implement this vectorial phase shift between interferometer arms to provide the destructive interference process needed to di...

  3. Experimental Investigation of the Fresnel Drag Effect in RF Coaxial Cables

    Directory of Open Access Journals (Sweden)

    Brotherton D.

    2011-01-01

    Full Text Available An experiment that confirms the Fresnel drag formalism in RF coaxial cables is reported. The Fresnel "drag" in bulk dielectrics and in optical fibers has previously been well established. An explanation for this formalism is given, and it is shown that there is no actual drag phenomenon, rather that the Fresnel drag effect is merely the consequence of a simplified description of EM scattering within a dielectric in motion wrt the dynamical 3-space. The Fresnel drag effect plays a critical role in the design of various light-speed anisotropy detectors.

  4. Experimental Investigation of the Fresnel Drag Effect in RF Coaxial Cables

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2011-01-01

    Full Text Available An experiment that confirms the Fresnel drag formalism in RF coaxial cables is re- ported. The Fresnel ‘drag’ in bulk dielectrics and in optical fibers has previously been well established. An explanation for this formalism is given, and it is shown that there is no actual drag phenomenon, rather that the Fresnel drag effect is merely the conse- quence of a simplified description of EM scattering within a dielectric in motion wrt the dynamical 3-space. The Fresnel drag effect plays a critical role in the design of various light-speed anisotropy detectors.

  5. Boulder Magnetic Observatory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are vector and scalar component values of the Earth's magnetic field for 2004 recorded at the Boulder Magnetic Observatory in Colorado. Vector values are...

  6. Global Health Observatory (GHO)

    Science.gov (United States)

    ... Data repository Reports Country statistics Map gallery Standards Global Health Observatory (GHO) data Monitoring health for the ... Health financing Health workforce 3.d National and global health risks International Health Regulations (2005) Monitoring Framework ...

  7. Royal Observatory, Greenwich

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    The Royal Observatory at Greenwich, London, founded in 1675, is the location of the Airy Transit Telescope that defines the prime meridian of the world and is the home of the Harrison Chronometers. The Observatory was founded by Charles II with the ultimate purpose of providing an accurate star catalog and model of the Moon's motion, that enabled mariners to find their longitude. During the twen...

  8. The Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Hojvat, C.

    1997-03-01

    The Pierre Auger Observatory is an international collaboration for the detailed study of the highest energy cosmic rays. It will operate at two similar sites, one in the northern hemisphere and one in the southern hemisphere. The Observatory is designed to collect a statistically significant data set of events with energies greater than 10{sup 19} eV and with equal exposures for the northern and southern skies.

  9. Contact lens in keratoconus

    OpenAIRE

    Varsha M Rathi; Preeji S Mandathara; Srikanth Dumpati

    2013-01-01

    Contact lenses are required for the visual improvement in patients with keratoconus. Various contact lens options, such as rigid gas permeable (RGP) lenses, soft and soft toric lenses, piggy back contact lenses (PBCL), hybrid lenses and scleral lenses are availble. This article discusses about selection of a lens depending on the type of keratoconus and the fitting philosophies of various contact lenses including the starting trial lens. A Medline search was carried out for articles in the En...

  10. Gaussian laser beam transformation into an optical vortex beam by helical lens

    CERN Document Server

    Janicijevic, Ljiljana

    2015-01-01

    In this article we investigate the Fresnel diffraction characteristics of the hybrid optical element which is a combination of a spiral phase plate (SPP) with topological charge p and a thin lens with focal length f, named the helical lens (HL). As incident a Gaussian laser beam is treated, having its waist a distance from the HL plane and its axis passing through the centre of the HL. It is shown that the SPP introduces a phase singularity of p-th order to the incident beam, while the lens transforms the beam characteristic parameters. The output light beam is analyzed in detail: its characteristic parameters and focusing properties, amplitude and intensity distributions and the vortex rings profiles and radii, at any z distance behind the HL plane, as well as in the near and far field.

  11. Iatrogenic Lens Injuries

    Directory of Open Access Journals (Sweden)

    Ümit Kamış

    2012-12-01

    Full Text Available During intraocular surgery, undesired damages of various etiology may occur in adjacent tissues. One of these tissues is the crystalline lens, which may be traumatized both in anterior segment and posterior segment surgeries, and when damaged, it usually causes marked decrease in visual acuity. The leading causes of iatrogenic lens injuries are intravitreal injection, laser iridotomy, phakic intraocular lens implantation, anterior chamber paracentesis, and vitreoretinal surgery. When crystalline lens damage occurs, its negative effect on visual function may be eliminated by performing cataract surgery intraoperatively or in elective conditions. (Turk J Ophthalmol 2012; 42: Supplement 27-30

  12. Creating Griffith Observatory

    Science.gov (United States)

    Cook, Anthony

    2013-01-01

    Griffith Observatory has been the iconic symbol of the sky for southern California since it began its public mission on May 15, 1935. While the Observatory is widely known as being the gift of Col. Griffith J. Griffith (1850-1919), the story of how Griffith’s gift became reality involves many of the people better known for other contributions that made Los Angeles area an important center of astrophysics in the 20th century. Griffith began drawing up his plans for an observatory and science museum for the people of Los Angeles after looking at Saturn through the newly completed 60-inch reflector on Mt. Wilson. He realized the social impact that viewing the heavens could have if made freely available, and discussing the idea of a public observatory with Mt. Wilson Observatory’s founder, George Ellery Hale, and Director, Walter Adams. This resulted, in 1916, in a will specifying many of the features of Griffith Observatory, and establishing a committee managed trust fund to build it. Astronomy popularizer Mars Baumgardt convinced the committee at the Zeiss Planetarium projector would be appropriate for Griffith’s project after the planetarium was introduced in Germany in 1923. In 1930, the trust committee judged funds to be sufficient to start work on creating Griffith Observatory, and letters from the Committee requesting help in realizing the project were sent to Hale, Adams, Robert Millikan, and other area experts then engaged in creating the 200-inch telescope eventually destined for Palomar Mountain. A Scientific Advisory Committee, headed by Millikan, recommended that Caltech Physicist Edward Kurth be put in charge of building and exhibit design. Kurth, in turn, sought help from artist Russell Porter. The architecture firm of John C. Austin and Fredrick Ashley was selected to design the project, and they adopted the designs of Porter and Kurth. Philip Fox of the Adler Planetarium was enlisted to manage the completion of the Observatory and become its

  13. Calculation of Fresnel diffraction from 1D phase step by discrete Fourier transform

    Science.gov (United States)

    Aalipour, Rasoul

    2017-01-01

    When a part of an optical wave-front experiences a sharp change in its phase, Fresnel diffraction becomes appreciable. Sharp change in phase occurs as a wave-front strikes with a phase step. The intensity distributions of diffraction patterns of the phase step is formulated by applying Fresnel-Kirchhoff integral. For while the incident light on the step is coherent, the Fresnel-Kirchhoff integral can be solved by using familiar Fresnel integrals. But, when the incident light is partially coherent, one can not express the diffraction integral as the Fresnel integrals and the problem is summarized in solving some unusual integrals. In this report, we propose Fourier transform method for solving the Fresnel-Kirchhoff integral. In this regard we use discrete Fourier transform method and calculate Fresnel diffraction from the 1D phase step by FFT-based algorithms. This method does not have any restriction on the coherence and profile shape of the incident light. We show that the method have appropriate solutions for coherent and partially coherent lights. For the case of the coherent light illumination of the step, the obtained results are in good agreement with the calculated results by using the Fresnel integrals in reported literatures.

  14. Water-Filled Telescopes and the Pre-History of Fresnel's Ether Dragging

    DEFF Research Database (Denmark)

    Pedersen, Kurt Møller

    2000-01-01

    , and Augustin Fresnel in the beginning of the 19th century. None of these scientists actually performed this experiments. All except Boscovich came to realize that water-filled telescopes would lead to the same stellar aberration as an ordinary telescope. For Fresnel, moreover, it led to a precise value...

  15. Fresnel diffraction from a step in reflection and transmission

    Directory of Open Access Journals (Sweden)

    M. T. Tavassoly

    2001-06-01

    Full Text Available   In this paper Fresnel diffraction of light from 1-dimensional and circular steps in reflection and transmission modes is theoretically and experimentally studied. The study shows that the diffraction pattern from each side of a step resembles the diffraction pattern from a semi infinite obstacle, but the visibility of fringes is a sensitive periodic function of the step height and the incident angle. This sensitive dependence can be exploited as a useful means for measuring the film thickeness, the refraction index and small displacements of objects in a manner easier and more precise that one can manage by the conventional interferometric methods.

  16. Analysis of clarinet reed oscillations with digital Fresnel holography

    Science.gov (United States)

    Picart, P.; Leval, J.; Piquet, F.; Boileau, J.-P.; Dalmont, J.-P.

    2009-07-01

    This paper describes optical instrumentation devoted to vibration analysis. Two strategies based on digital Fresnel holography are presented. The first, called time-averaging consists in the numerical reconstruction of the hologram after recording with an exposure time much greater than the vibration period. Thus, the holograms are amplitude modulated by a Bessel function. The last strategy, using a pulsed regime, allows the reconstruction of the full movement of the vibration, even if it exhibits very high amplitude. Experimental results presented in this paper concern the study of the vibrations of a clarinet reed under free and forced oscillation regimes.

  17. Pulsar virtual observatory

    CERN Document Server

    Keith, M; Lyne, A; Brooke, J

    2007-01-01

    The Pulsar Virtual Observatory will provide a means for scientists in all fields to access and analyze the large data sets stored in pulsar surveys without specific knowledge about the data or the processing mechanisms. This is achieved by moving the data and processing tools to a grid resource where the details of the processing are seen by the users as abstract tasks. By developing intelligent scheduling middle-ware the issues of interconnecting tasks and allocating resources are removed from the user domain. This opens up large sets of radio time-series data to a wider audience, enabling greater cross field astronomy, in line with the virtual observatory concept. Implementation of the Pulsar Virtual Observatory is underway, utilising the UK National Grid Service as the principal grid resource.

  18. Mexican Virtual Solar Observatory

    Science.gov (United States)

    Santillan, A.; Hernandez-Cervantes, L.; Gonzalez-Ponce, A.; Hill, F.; Blanco-Cano, X.

    2007-12-01

    The Virtual Solar Observatory (VSO) concept contains software tools for searching, manipulating, and analyzing data from archives of solar data at many different observatories around the world (Hill 2000). The VSO not only provides fast and reliable access to the existing solar data, but also represents a powerful and unique machinery to perform numerical simulations for the evolution of a variety of different phenomena associated with solar activity. Two Mexican Universities, Universidad Nacional Autónoma de México and the Universidad de Sonora, are working together to create the Mexican Virtual Solar Observatory (MVSO) that will be part of a wider National effort. In this work we present a general description of the MVSO project, as well as the advances obtained in the development of Graphical User Interfaces (GUI) to Remotely Perform Numerical Simulation of the Evolution of Coronal Mass Ejection in the Interplanetary Medium.

  19. The Collaborative Heliophysics Observatory

    Science.gov (United States)

    Hurlburt, N.; Freeland, S.; Cheung, M.; Bose, P.

    2007-12-01

    The Collaborative Heliophysics Observatory (CHO) would provide a robust framework and enabling tools to fully utilize the VOs for scientific discovery and collaboration. Scientists across the realm of heliophysics would be able to create, use and share applications -- either as services using familiar tools or through intuitive workflows -- that orchestrate access to data across all virtual observatories. These applications can be shared freely knowing that proper recognition of data and processing components are acknowledged; that erroneous use of data is flagged; and that results from the analysis runs will in themselves be shared Ð all in a transparent and automatic fashion. In addition, the CHO would incorporate cross-VO models and tools to weave the various virtual observatories into a unified system. These provide starting points for interactions across the solar/heliospheric and heliospheric/magnetospheric boundaries.

  20. Results and Comparison from the SAM Linear Fresnel Technology Performance Model: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, M. J.

    2012-04-01

    This paper presents the new Linear Fresnel technology performance model in NREL's System Advisor Model. The model predicts the financial and technical performance of direct-steam-generation Linear Fresnel power plants, and can be used to analyze a range of system configurations. This paper presents a brief discussion of the model formulation and motivation, and provides extensive discussion of the model performance and financial results. The Linear Fresnel technology is also compared to other concentrating solar power technologies in both qualitative and quantitative measures. The Linear Fresnel model - developed in conjunction with the Electric Power Research Institute - provides users with the ability to model a variety of solar field layouts, fossil backup configurations, thermal receiver designs, and steam generation conditions. This flexibility aims to encompass current market solutions for the DSG Linear Fresnel technology, which is seeing increasing exposure in fossil plant augmentation and stand-alone power generation applications.

  1. The Sudbury Neutrino Observatory

    Science.gov (United States)

    Boger, J.; Hahn, R. L.; Rowley, J. K.; Carter, A. L.; Hollebone, B.; Kessler, D.; Blevis, I.; Dalnoki-Veress, F.; DeKok, A.; Farine, J.; Grant, D. R.; Hargrove, C. K.; Laberge, G.; Levine, I.; McFarlane, K.; Mes, H.; Noble, A. T.; Novikov, V. M.; O'Neill, M.; Shatkay, M.; Shewchuk, C.; Sinclair, D.; Clifford, E. T. H.; Deal, R.; Earle, E. D.; Gaudette, E.; Milton, G.; Sur, B.; Bigu, J.; Cowan, J. H. M.; Cluff, D. L.; Hallman, E. D.; Haq, R. U.; Hewett, J.; Hykawy, J. G.; Jonkmans, G.; Michaud, R.; Roberge, A.; Roberts, J.; Saettler, E.; Schwendener, M. H.; Seifert, H.; Sweezey, D.; Tafirout, R.; Virtue, C. J.; Beck, D. N.; Chan, Y. D.; Chen, X.; Dragowsky, M. R.; Dycus, F. W.; Gonzalez, J.; Isaac, M. C. P.; Kajiyama, Y.; Koehler, G. W.; Lesko, K. T.; Moebus, M. C.; Norman, E. B.; Okada, C. E.; Poon, A. W. P.; Purgalis, P.; Schuelke, A.; Smith, A. R.; Stokstad, R. G.; Turner, S.; Zlimen, I.; Anaya, J. M.; Bowles, T. J.; Brice, S. J.; Esch, E.-I.; Fowler, M. M.; Goldschmidt, A.; Hime, A.; McGirt, A. F.; Miller, G. G.; Teasdale, W. A.; Wilhelmy, J. B.; Wouters, J. M.; Anglin, J. D.; Bercovitch, M.; Davidson, W. F.; Storey, R. S.; Biller, S.; Black, R. A.; Boardman, R. J.; Bowler, M. G.; Cameron, J.; Cleveland, B.; Ferraris, A. P.; Doucas, G.; Heron, H.; Howard, C.; Jelley, N. A.; Knox, A. B.; Lay, M.; Locke, W.; Lyon, J.; Majerus, S.; Moorhead, M.; Omori, M.; Tanner, N. W.; Taplin, R. K.; Thorman, M.; Wark, D. L.; West, N.; Barton, J. C.; Trent, P. T.; Kouzes, R.; Lowry, M. M.; Bell, A. L.; Bonvin, E.; Boulay, M.; Dayon, M.; Duncan, F.; Erhardt, L. S.; Evans, H. C.; Ewan, G. T.; Ford, R.; Hallin, A.; Hamer, A.; Hart, P. M.; Harvey, P. J.; Haslip, D.; Hearns, C. A. W.; Heaton, R.; Hepburn, J. D.; Jillings, C. J.; Korpach, E. P.; Lee, H. W.; Leslie, J. R.; Liu, M.-Q.; Mak, H. B.; McDonald, A. B.; MacArthur, J. D.; McLatchie, W.; Moffat, B. A.; Noel, S.; Radcliffe, T. J.; Robertson, B. C.; Skensved, P.; Stevenson, R. L.; Zhu, X.; Gil, S.; Heise, J.; Helmer, R. L.; Komar, R. J.; Nally, C. W.; Ng, H. S.; Waltham, C. E.; Allen, R. C.; Bühler, G.; Chen, H. H.; Aardsma, G.; Andersen, T.; Cameron, K.; Chon, M. C.; Hanson, R. H.; Jagam, P.; Karn, J.; Law, J.; Ollerhead, R. W.; Simpson, J. J.; Tagg, N.; Wang, J.-X.; Alexander, C.; Beier, E. W.; Cook, J. C.; Cowen, D. F.; Frank, E. D.; Frati, W.; Keener, P. T.; Klein, J. R.; Mayers, G.; McDonald, D. S.; Neubauer, M. S.; Newcomer, F. M.; Pearce, R. J.; de Water, R. G. V.; Berg, R. V.; Wittich, P.; Ahmad, Q. R.; Beck, J. M.; Browne, M. C.; Burritt, T. H.; Doe, P. J.; Duba, C. A.; Elliott, S. R.; Franklin, J. E.; Germani, J. V.; Green, P.; Hamian, A. A.; Heeger, K. M.; Howe, M.; Drees, R. M.; Myers, A.; Robertson, R. G. H.; Smith, M. W. E.; Steiger, T. D.; Wechel, T. V.; Wilkerson, J. F.

    2000-07-01

    The Sudbury Neutrino Observatory is a second-generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D2O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible.

  2. The Sudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Boger, J.; Hahn, R.L.; Rowley, J.K.; Carter, A.L.; Hollebone, B.; Kessler, D.; Blevis, I.; Dalnoki-Veress, F.; DeKok, A.; Farine, J.; Grant, D.R.; Hargrove, C.K.; Laberge, G.; Levine, I.; McFarlane, K.; Mes, H.; Noble, A.T.; Novikov, V.M.; O' Neill, M.; Shatkay, M.; Shewchuk, C.; Sinclair, D.; Clifford, E.T.H.; Deal, R.; Earle, E.D.; Gaudette, E.; Milton, G.; Sur, B.; Bigu, J.; Cowan, J.H.M.; Cluff, D.L.; Hallman, E.D.; Haq, R.U.; Hewett, J.; Hykawy, J.G.; Jonkmans, G.; Michaud, R.; Roberge, A.; Roberts, J.; Saettler, E.; Schwendener, M.H.; Seifert, H.; Sweezey, D.; Tafirout, R.; Virtue, C.J.; Beck, D.N.; Chan, Y.D.; Chen, X.; Dragowsky, M.R.; Dycus, F.W.; Gonzalez, J.; Isaac, M.C.P.; Kajiyama, Y.; Koehler, G.W.; Lesko, K.T.; Moebus, M.C.; Norman, E.B.; Okada, C.E.; Poon, A.W.P.; Purgalis, P.; Schuelke, A.; Smith, A.R.; Stokstad, R.G.; Turner, S.; Zlimen, I.; Anaya, J.M.; Bowles, T.J.; Brice, S.J.; Esch, Ernst-Ingo; Fowler, M.M.; Goldschmidt, Azriel; Hime, A.; McGirt, A.F.; Miller, G.G.; Teasdale, W.A.; Wilhelmy, J.B.; Wouters, J.M.; Anglin, J.D.; Bercovitch, M.; Davidson, W.F.; Storey, R.S.; Biller, S.; Black, R.A.; Boardman, R.J.; Bowler, M.G.; Cameron, J.; Cleveland, B.; Ferraris, A.P.; Doucas, G.; Heron, H.; Howard, C.; Jelley, N.A. E-mail: N.Jelley1@physics.ox.ac.uk; Knox, A.B.; Lay, M.; Locke, W.; Lyon, J.; Majerus, S.; Moorhead, M.; Omori, M.; Tanner, N.W.; Taplin, R.K.; Thorman, M.; Wark, D.L.; West, N.; Barton, J.C.; Trent, P.T.; Kouzes, R.; Lowry, M.M.; Bell, A.L.; Bonvin, E.; Boulay, M.; Dayon, M.; Duncan, F.; Erhardt, L.S.; Evans, H.C.; Ewan, G.T.; Ford, R.; Hallin, A.; Hamer, A.; Hart, P.M.; Harvey, P.J.; Haslip, D.; Hearns, C.A.W.; Heaton, R.; Hepburn, J.D.; Jillings, C.J.; Korpach, E.P.; Lee, H.W.; Leslie, J.R.; Liu, M.-Q.; Mak, H.B.; McDonald, A.B.; MacArthur, J.D.; McLatchie, W.; Moffat, B.A.; Noel, S.; Radcliffe, T.J.; Robertson, B.C.; Skensved, P.; Stevenson, R.L.; Zhu, X.; Gil, S.; Heise, J.; Helmer, R.L.; Komar, R.J.; Nally, C.W. [and others

    2000-07-11

    The Sudbury Neutrino Observatory is a second-generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D{sub 2}O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible.

  3. Arecibo Observatory for All

    Science.gov (United States)

    Isidro, Gloria M.; Pantoja, C. A.; Bartus, P.; La Rosa, C.

    2006-12-01

    We describe new materials available at Arecibo Observatory for visitors with visual impairments. These materials include a guide in Braille that describes the telescope, some basic terms used in radio astronomy and frequently asked questions. We have also designed a tactile model of the telescope. We are interested that blind visitors can participate of the excitement of the visit to the worlds largest radio telescope. We would like to thank the "Fundacion Comunitaria de Puerto Rico" for the scholarship that allowed GMI to work on this project. We would like to express our gratitude to the Arecibo Observatory/NAIC for their support.

  4. The Sudbury Neutrino Observatory

    CERN Document Server

    Boger, J; Rowley, J K; Carter, A L; Hollebone, B; Kessler, D; Blevis, I; Dalnoki-Veress, F; De Kok, A; Farine, J; Grant, D R; Hargrove, C K; Laberge, G; Levine, I; McFarlane, K W; Mes, H; Noble, A T; Novikov, V M; O'Neill, M; Shatkay, M; Shewchuk, C; Sinclair, D; Clifford, E T H; Deal, R; Earle, E D; Gaudette, E; Milton, G; Sur, B; Bigu, J; Cowan, J H M; Cluff, D L; Hallman, E D; Haq, R U; Hewett, J L; Hykawy, J G; Jonkmans, G; Michaud, R; Roberge, A; Roberts, J; Saettler, E; Schwendener, M H; Seifert, H; Sweezey, D; Tafirout, R; Virtue, C J; Beck, D N; Chan, Y D; Chen, X; Dragowsky, M R; Dycus, F W; González, J; Isaac, M C P; Kajiyama, Y; Köhler, G W; Lesko, K T; Moebus, M C; Norman, E B; Okada, C E; Poon, A W P; Purgalis, P; Schülke, A; Smith, A R; Stokstad, R G; Turner, S; Zlimen, I; Anaya, J M; Bowles, T J; Brice, S J; Esch, E I; Fowler, M M; Goldschmidt, A; Hime, A; McGirt, A F; Miller, G G; Teasdale, W A; Wilhelmy, J B; Wouters, J M; Anglin, J D; Bercovitch, M; Davidson, W F; Storey, R S; Biller, S; Black, R A; Boardman, R J; Bowler, M G; Cameron, J; Cleveland, B; Ferraris, A P; Doucas, G; Heron, H; Howard, C; Jelley, N A; Knox, A B; Lay, M; Locke, W; Lyon, J; Majerus, S; Moorhead, M E; Omori, Mamoru; Tanner, N W; Taplin, R K; Thorman, M; Wark, D L; West, N; Barton, J C; Trent, P T; Kouzes, R; Lowry, M M; Bell, A L; Bonvin, E; Boulay, M; Dayon, M; Duncan, F; Erhardt, L S; Evans, H C; Ewan, G T; Ford, R; Hallin, A; Hamer, A; Hart, P M; Harvey, P J; Haslip, D; Hearns, C A W; Heaton, R; Hepburn, J D; Jillings, C J; Korpach, E P; Lee, H W; Leslie, J R; Liu, M Q; Mak, H B; McDonald, A B; MacArthur, J D; McLatchie, W; Moffat, B A; Noel, S; Radcliffe, T J; Robertson, B C; Skensved, P; Stevenson, R L; Zhu, X; Gil, S; Heise, J; Helmer, R L; Komar, R J; Nally, C W; Ng, H S; Waltham, C E; Allen, R C; Buhler, G; Chen, H H; Aardsma, G; Andersen, T; Cameron, K; Chon, M C; Hanson, R H; Jagam, P; Karn, J; Law, J; Ollerhead, R W; Simpson, J J; Tagg, N; Wang, J X; Alexander, C; Beier, E W; Cook, J C; Cowen, D F; Frank, E D; Frati, W; Keener, P T; Klein, J R; Mayers, G; McDonald, D S; Neubauer, M S; Newcomer, F M; Pearce, R J; Van de Water, R G; Van Berg, R; Wittich, P; Ahmad, Q R; Beck, J M; Browne, M C; Burritt, T H; Doe, P J; Duba, C A; Elliott, S R; Franklin, J E; Germani, J V; Green, P; Hamian, A A; Heeger, K M; Howe, M; Meijer-Drees, R; Myers, A; Robertson, R G H; Smith, M W E; Steiger, T D; Van Wechel, T; Wilkerson, J F

    2000-01-01

    The Sudbury Neutrino Observatory is a second generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D2O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible.

  5. Superlensing Microscope Objective Lens

    CERN Document Server

    Yan, Bing; Parker, Alan; Lai, Yukun; Thomas, John; Yue, Liyang; Monks, James

    2016-01-01

    Conventional microscope objective lenses are diffraction limited, which means that they cannot resolve features smaller than half the illumination wavelength. Under white light illumination, such resolution limit is about 250-300 nm for an ordinary microscope. In this paper, we demonstrate a new superlensing objective lens which has a resolution of about 100 nm, offering at least two times resolution improvement over conventional objectives in resolution. This is achieved by integrating a conventional microscope objective lens with a superlensing microsphere lens using a 3D printed lens adaptor. The new objective lens was used for label-free super-resolution imaging of 100 nm-sized engineering and biological samples, including a Blu-ray disc sample, semiconductor chip and adenoviruses. Our work creates a solid base for developing a commercially-viable superlens prototype, which has potential to transform the field of optical microscopy and imaging.

  6. Horizontal Fresnel collectors for solar thermal power stations; Horizontale Fresnel-Kollektoren fuer den Einsatz in Solarthermischen Kraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Mertins, M.; Lerchenmueller, H.; Wittwer, C. [Fraunhofer-Inst. fuer Solare Energiesysteme ISE, Freiburg (Germany); Haeberle, A. [PSE GmbH, Freiburg (Germany)

    2003-07-01

    The self-sustaining coverage of the huge and steadily increasing world energy-demand is one of the main tasks in the near future. A large contribution could be offered by solar thermal power plants in sun-belt countries. This renewable energy technology can reach electricity costs below 15 Euro ct/kWh depending on scale and location. A new line focussing collector based on the Fresnel-principle was developed by the Belgian company Solarmundo, which is very promising to lead to lower LEC. (orig.)

  7. Optical refractometry based on Fresnel diffraction from a phase wedge.

    Science.gov (United States)

    Tavassoly, M Taghi; Saber, Ahad

    2010-11-01

    A method that utilizes the Fresnel diffraction of light from the phase step formed by a transparent wedge is introduced for measuring the refractive indices of transparent solids, liquids, and solutions. It is shown that, as a transparent wedge of small apex angle is illuminated perpendicular to its surface by a monochromatic parallel beam of light, the Fresnel fringes, caused by abrupt change in refractive index at the wedge lateral boundary, are formed on a screen held perpendicular to the beam propagation direction. The visibility of the fringes varies periodically between zero and 1 in the direction normal to the wedge apex. For a known or measured apex angle, the wedge refractive index is obtained by measuring the period length by a CCD. To measure the refractive index of a transparent liquid or solution, the wedge is installed in a transparent rectangle cell containing the sample. Then, the cell is illuminated perpendicularly and the visibility period is measured. By using modest optics, one can measure the refractive index at a relative uncertainty level of 10(-5). There is no limitation on the refractive index range. The method can be applied easily with no mechanical manipulation. The measuring apparatus can be very compact with low mechanical and optical noises.

  8. Geometry optimization of Fresnel-collectors with economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mertins, M.; Heinzel, V. [Karlsruhe Univ. (Germany); Lerchenmueller, H. [Fraunhofer Inst. for Solar Energy Systems ISE, Freiburg (Germany); Haeberle, A. [PSE GmbH, Solar Info Center, Freiburg (Germany)

    2004-07-01

    The Fresnel solar collector is a promising concept to reduce the electricity cost price in solar thermal power plants. The optical performance of a Fresnel collector depends on material properties, on its geometric layout and on the level of optical accuracy that can be obtained. A variety of geometric parameters, e.g. the height of the absorber, the number, size and distance of primary mirrors in.uence the shading and blocking of rays and the amount of rays missing the absorber. To evaluate the in.uence of the parameter variation regarding the electricity cost price and to yield an optimization, the optical performance is assessed with an annual simulation based on hourly weather-data. To permit a consideration of changes in collector cost according to different geometric layouts, cost factors where allocated to geometric parameters. The paper presents the method and the simulation results of the optimization under different boundary conditions and shows how the developed simulation tool can lead to an optimum collector design with respect to cost price of electricity. The sensitivity of the results will be discussed. (orig.)

  9. Observatory of Shiraz University

    Science.gov (United States)

    Bordbar, G. H.; Bahrani, F.

    2016-12-01

    Here we write about the observatory of Shiraz University, which has the largest active telescope in Iran but now, because of problems like light pollution of the nearby city and exhaustion of its largest telescope we need a plan for modernization and automatization in a new place.

  10. Arecibo Observatory for All

    Science.gov (United States)

    Bartus, P.; Isidro, G. M.; La Rosa, C.; Pantoja, C. A.

    2007-01-01

    We describe new materials available at the Arecibo Observatory for visitors with visual impairments. These materials include a guide in Braille that describes the telescope, explains some basic terms used in radio astronomy, and lists frequently asked questions. We have also designed a tactile model of the telescope. Our interest is in enabling…

  11. Dynamic compensation of chromatic aberration in a programmable diffractive lens.

    Science.gov (United States)

    Millán, María S; Otón, Joaquín; Pérez-Cabré, Elisabet

    2006-10-02

    A proposal to dynamically compensate chromatic aberration of a programmable phase Fresnel lens displayed on a liquid crystal device and working under broadband illumination is presented. It is based on time multiplexing a set of lenses, designed with a common focal length for different wavelengths, and a tunable spectral filter that makes each sublens work almost monochromatically. Both the tunable filter and the sublens displayed by the spatial light modulator are synchronized. The whole set of sublenses are displayed within the integration time of the sensor. As a result the central order focalization has a unique location at the focal plane and it is common for all selected wavelengths. Transversal chromatic aberration of the polychromatic point spread function is reduced by properly adjusting the pupil size of each sublens. Longitudinal chromatic aberration is compensated by making depth of focus curves coincident for the selected wavelengths. Experimental results are in very good agreement with theory.

  12. Unitary lens semiconductor device

    Science.gov (United States)

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  13. Intraocular lens fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, M.A.; Foreman, L.R.

    1997-07-08

    This invention describes a method for fabricating an intraocular lens made from clear Teflon{trademark}, Mylar{trademark}, or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube. 13 figs.

  14. Intraocular lens fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Mike A. (Albuquerque, NM); Foreman, Larry R. (Los Alamos, NM)

    1997-01-01

    This invention describes a method for fabricating an intraocular lens made rom clear Teflon.TM., Mylar.TM., or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube.

  15. US Naval Observatory Hourly Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly observations journal from the National Observatory in Washington DC. The observatory is the first station in the United States to produce hourly observations...

  16. Optimizing the optical field distribution of solid immersion lens system by a continuous phase filter

    Institute of Scientific and Technical Information of China (English)

    Xuehua Ye; Yaoju Zhang; Junfeng Chen

    2007-01-01

    In solid immersion lens (SIL) microscopy systems with high numerical aperture (NA), there always exists the aberration produced by Fresnel effects at the interface between SIL and the sample. This aberration may cause the degradation of the image of sample. We design a continuous phase filter and optimize the optical field distribution of SIL system. The numerical results show that when the continuous phase filter is used, the field distribution of SIL system can be optimized, and the focal depth and intensity of transmitted light can be increased. At the same time, the intensity of side-lobe and the resolution are kept almost unchanged.

  17. Cultural heritage of astronomical observatories

    Science.gov (United States)

    Wolfschmidt, Gudrun

    2011-06-01

    We present the results of the ICOMOS international symposium ``Cultural Heritage of Astronomical Observatories (around 1900) - From Classical Astronomy to Modern Astrophysics'' (Oct. 2008). The objective of the symposium was to discuss the relevance of modern observatories to the cultural heritage of humankind and to select partner observatories which, due to the date of their construction or to their architectural or scientific importance are comparable to Hamburg Observatory, as international cooperation partners for a serial trans-national application.

  18. ESO's Two Observatories Merge

    Science.gov (United States)

    2005-02-01

    On February 1, 2005, the European Southern Observatory (ESO) has merged its two observatories, La Silla and Paranal, into one. This move will help Europe's prime organisation for astronomy to better manage its many and diverse projects by deploying available resources more efficiently where and when they are needed. The merged observatory will be known as the La Silla Paranal Observatory. Catherine Cesarsky, ESO's Director General, comments the new development: "The merging, which was planned during the past year with the deep involvement of all the staff, has created unified maintenance and engineering (including software, mechanics, electronics and optics) departments across the two sites, further increasing the already very high efficiency of our telescopes. It is my great pleasure to commend the excellent work of Jorge Melnick, former director of the La Silla Observatory, and of Roberto Gilmozzi, the director of Paranal." ESO's headquarters are located in Garching, in the vicinity of Munich (Bavaria, Germany), and this intergovernmental organisation has established itself as a world-leader in astronomy. Created in 1962, ESO is now supported by eleven member states (Belgium, Denmark, Finland, France, Germany, Italy, The Netherlands, Portugal, Sweden, Switzerland, and the United Kingdom). It operates major telescopes on two remote sites, all located in Chile: La Silla, about 600 km north of Santiago and at an altitude of 2400m; Paranal, a 2600m high mountain in the Atacama Desert 120 km south of the coastal city of Antofagasta. Most recently, ESO has started the construction of an observatory at Chajnantor, a 5000m high site, also in the Atacama Desert. La Silla, north of the town of La Serena, has been the bastion of the organization's facilities since 1964. It is the site of two of the most productive 4-m class telescopes in the world, the New Technology Telescope (NTT) - the first major telescope equipped with active optics - and the 3.6-m, which hosts HARPS

  19. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Lens-Related Eye Infections Mar 01, 2017 New Technology Helps the Legally Blind Be More Independent Oct ... easy answer, and neither one considers long-term impacts. Phakic Intraocular Lenses for Nearsightedness FEB 27, 2017 ...

  20. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... lenses without a prescription in the United States. All contact lenses are medical devices that require a ... no such thing as a "one size fits all" contact lens. Lenses that are not properly fitted ...

  1. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... wear any kind of contact lens. In Butler's case, the lenses caused an infection and left her with a corneal abrasion. ... Studies Look at Effects of Marijuana on Vision FEB ...

  2. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... sell contacts without a prescription are breaking the law, and may be fined $11,000 per violation. " ... wear any kind of contact lens. In Butler's case, the lenses caused an infection and left her ...

  3. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... not require the same level of care or consideration as a standard contact lens because they can ... Us About the Academy Jobs at the Academy Financial Relationships with Industry Medical Disclaimer Privacy Policy Terms ...

  4. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... be purchased over-the-counter or on the Internet," says Thomas Steinemann, MD, professor of ophthalmology at ... ask for a prescription. There is no such thing as a "one size fits all" contact lens. ...

  5. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Vision and Daily Eye Drops After One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume Contacts May Contain Chemicals ...

  6. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... not require the same level of care or consideration as a standard contact lens because they can ... 2016 More Eye Health News Studies Look at Effects of Marijuana on Vision FEB 28, 2017 By ...

  7. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... not require the same level of care or consideration as a standard contact lens because they can ... sell contacts without a prescription are breaking the law, and may be fined $11,000 per violation. " ...

  8. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Contact Lens-Related Eye Infections Mar 01, 2017 New Technology Helps the Legally Blind Be More Independent ... Worse? May 16, 2016 More Eye Health News New Dry Eye Treatment is a Tear-Jerker JUL ...

  9. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... glow-in-the-dark lizard lenses, costume contacts can certainly add a spooky, eye-popping touch. But ... consideration as a standard contact lens because they can be purchased over-the-counter or on the ...

  10. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ...

  11. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Healthy Contact Lens Use May 31, 2016 Is El Niño Making Your Allergies Worse? May 16, 2016 ... Number: * Email: * Enter code: * Message: Thank you Your feedback has been sent.

  12. Expanding the HAWC Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Johanna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-17

    The High Altitude Water Cherenkov Gamma-Ray Observatory is expanding its current array of 300 water tanks to include 350 outrigger tanks to increase sensitivity to gamma rays above 10 TeV. This involves creating and testing hardware with which to build the new tanks, including photomultiplier tubes, high voltage supply units, and flash analog to digital converters. My responsibilities this summer included preparing, testing and calibrating that equipment.

  13. Active Reflectors: Possible Solutions Based on Reflectarrays and Fresnel Reflectors

    Directory of Open Access Journals (Sweden)

    Lorena Cabria

    2009-01-01

    Full Text Available An overview about some of the recent Spanish developments on active reflectors is presented. In the first part, a novel beamsteering active reflectarray is deeply studied. It is based on implementing in each elementary radiator an IQ modulator structure, in which amplitude and phase control of the scattered field is achieved. Finally, a special effort is made in offering solutions to overcome the active antenna integration problems. In the second part, the active concept is firstly extended to Fresnel reflectors. Thanks to the development of a proper simulator, this special structure can be easily analysed. This simulator allows the study of performance of this kind of reflectors and, applying evolutionary algorithms, to find optimal configurations of reflector in accordance with the given specifications for the conformal radiation pattern.

  14. Compressive self-interference Fresnel digital holography with faithful reconstruction

    Science.gov (United States)

    Wan, Yuhong; Man, Tianlong; Han, Ying; Zhou, Hongqiang; Wang, Dayong

    2017-05-01

    We developed compressive self-interference digital holographic approach that allows retrieving three-dimensional information of the spatially incoherent objects from single-shot captured hologram. The Fresnel incoherent correlation holography is combined with parallel phase-shifting technique to instantaneously obtain spatial-multiplexed phase-shifting holograms. The recording scheme is regarded as compressive forward sensing model, thus the compressive-sensing-based reconstruction algorithm is implemented to reconstruct the original object from the under sampled demultiplexed sub-holograms. The concept was verified by simulations and experiments with simulating use of the polarizer array. The proposed technique has great potential to be applied in 3D tracking of spatially incoherent samples.

  15. Microfabrication of Fresnel zone plates by laser induced solid ablation

    Science.gov (United States)

    Rodrigues, Vanessa R. M.; Thomas, John; Santhosh, Chidangil; Ramachandran, Hema; Mathur, Deepak

    2016-07-01

    A novel and simple single-step method of inscribing optical elements on metal-coated transparent substrates is demonstrated. Laser induced solid ablation (LISA) demands very low laser energies (nJ), as can be amply provided by a femtosecond laser oscillator. Here, LISA is used to write Fresnel zone plates on indium and tungsten coated glass. With up to 100 zones, remarkable agreement is obtained between measured and expected values of the focal length. LISA has enabled attainment of focal spot sizes that are 38% smaller than what would be obtained using conventional lenses of the same numerical aperture. The simplicity with which a high degree of automation can readily be achieved using LISA makes this cost-effective method amenable to a wide variety of applications related to microfabrication of optical elements.

  16. Fresnel rhombs as achromatic phase shifters for infrared nulling interferometry

    Science.gov (United States)

    Mawet, D.; Hanot, C.; Lenaers, C.; Riaud, P.; Defrère, D.; Vandormael, D.; Loicq, J.; Fleury, K.; Plesseria, J. Y.; Surdej, J.; Habraken, S.

    2007-09-01

    We propose a new family of achromatic phase shifters for infrared nulling interferometry. These key optical components can be seen as optimized Fresnel rhombs, using the total internal reflection phenomenon, modulated or not. The total internal reflection indeed comes with a phase shift between the polarization components of the incident light. We propose a solution to implement this vectorial phase shift between interferometer arms to provide the destructive interference process needed to disentangle highly contrasted objects from one another. We also show that, modulating the index transition at the total internal reflection interface allows compensating for the intrinsic material dispersion in order to make the subsequent phase shift achromatic over especially broad bands. The modulation can be induced by a thin film of a well-chosen material or a subwavelength grating whose structural parameters are thoroughly optimized. We present results from theoretical simulations! together with preliminary fabrication outcomes and measurements for a prototype in Zinc Selenide.

  17. Complex Fresnel hologram display using a single SLM.

    Science.gov (United States)

    Liu, Jung-Ping; Hsieh, Wang-Yu; Poon, Ting-Chung; Tsang, Peter

    2011-12-01

    We propose a novel optical method to display a complex Fresnel hologram using a single spatial light modulator (SLM). The method consists of a standard coherent image processing system with a sinusoidal grating at the Fourier plane. Two or three position-shifted amplitude holograms displayed at the input plane of the processing system can be coupled via the grating and will be precisely overlapped at the system's output plane. As a result, we can synthesize a complex hologram that is free of the twin image and the zero-order light using a single SLM. Because the twin image is not removed via filtering, the full bandwidth of the SLM can be utilized for displaying on-axis holograms. In addition, the degree of freedom of the synthesized complex hologram display can be extended by involving more than three amplitude holograms.

  18. Introducing CFD in the optical simulation of linear Fresnel collectors

    Science.gov (United States)

    Moghimi, M. A.; Rungasamy, A.; Craig, K. J.; Meyer, J. P.

    2016-05-01

    This paper seeks to determine whether the Finite Volume method within a commercially available Computational Fluid Dynamics (CFD) solver (ANSYS Fluent) can model radiation with comparable accuracy to a Monte Carlo ray-tracing software package (SolTrace). A detailed investigation was performed into modeling techniques that can be used to significantly reduce the optical errors traditionally associated with CFD modeling of radiation false scattering and ray effect using a simple optical test case. The strategies formulated in the first part of this paper were used to model a variety of Linear Fresnel Collector Concentrating Solar Power Plants. This paper shows that commercial CFD packages yield accurate results for line focusing concentrating solar applications and simple geometries, validating its use in an integrated environment where both optical and thermal performance of these plants can be simulated and optimized.

  19. Megalithic observatory Kokino

    Science.gov (United States)

    Cenev, Gj.

    2006-05-01

    In 2001, on the footpath of a mountain peak, near the village of Kokino, archeologist Jovica Stankovski discovered an archeological site from The Bronze Age. The site occupies a large area and is scaled in two levels. Several stone seats (thrones) are dominant in this site and they are pointing towards the east horizon. The high concentration of the movable archeological material found on the upper platform probably indicates its use in a function containing still unknown cult activities. Due to precise measurements and a detailed archaeoastronomical analysis of the site performed in the past three years by Gjore Cenev, physicist from the Planetarium in Skopje, it was shown that the site has characteristics of a sacred site, but also of a Megalithic Observatory. The markers found in this observatory point on the summer and winter solstices and spring and autumn equinoxes. It can be seen that on both sides of the solstice markers, that there are markers for establishing Moon's positions. The markers are crafted in such a way that for example on days when special rites were performed (harvest rites for example) the Sun filled a narrow space of the marker and special ray lighted the man sitting on only one of the thrones, which of course had a special meaning. According to the positions of the markers that are used for Sun marking, especially on the solstice days, it was calculated that this observatory dates from 1800 B.C.

  20. GISMO, an ELT in space: a giant (30-m) far-infrared and submillimeter space observatory

    Science.gov (United States)

    Hawarden, Timothy G.; Johnstone, Callum; Johnstone, Graeme

    2004-07-01

    We describe GISMO, a concept for a 30-m class achromatic diffractive Fesnel space telescope operating in the far-IR and submillimeter from ~20 μm to ~700 μm. The concept is based on the precepts of Hyde (1999). It involves two units, the Lens and Instrument spacecraft, 3 km apart in a halo orbit around the Earth-Sun L2 point. The primary lens, L1, is a 30.1-m, 32-zone f/100 Fresnel lens, fabricated from ultra-high molecular-weight polyethylene (UHMW-PE). It is 1.0 to 3.4 mm thick (the features are 2.4 mm high for a "design wavelength" of 1.2 mm) and made in 5 strips linked by fabric hinges. It is stowed for launch by folding and rolling. It is deployed warm, unrolled by pneumatic or mechanical means, unfolded by carbon-fiber struts with Shape Memory Alloy hinges and stiffened until cold by a peripheral inflatable ring. Re-oriented edgeways-on to the Sun behind a 5-layer sunshade, L1 will then cool by radiation to space, approaching ~10K after 200 - 300 days. The low equilibrium temperature occurs because the lens is very thin and has a huge view factor to space but a small one to the sunshade. The Instrument spacecraft resembles a smaller, colder (~4K) version of the James Webb Space Telescope and shares features of a concept for the SAFIR mission. A near-field Ritchey-Chretien telescope with a 3-segment off-axis 6m x 3m primary acts as field lens, re-imaging L1 on a 30-cm f/1 Fresnel Corrector lens of equal and opposite dispersion, producing an achromatic beam which is directed to a focal plane equipped with imaging and spectroscopic instruments. The "design wavelength" of the telescope is 1.2 mm and it is employed at its second and higher harmonics. The shortest wavelength, ~20μm, is set by the transmission properties of the lens material (illustrated here) and determines the design tolerances of the optical system. The overall mass is estimated at ~5 tonnes and the stowed length around 14 m. Technical challenges and areas of uncertainty for the design concept

  1. Graphical Approach to Fresnel's Equations for Reflection and Refraction of Light.

    Science.gov (United States)

    Doyle, William T.

    1980-01-01

    Develops a coordinate-free approach to Fresnel's equations for the reflection and refraction of light at a plane interface. Describes a graphical construction for finding the vector amplitudes of the reflected and transmitted waves. (Author/CS)

  2. Vibrations and fractional vibrations of rods, plates and Fresnel pseudo-processes

    CERN Document Server

    Orsingher, Enzo

    2011-01-01

    Different initial and boundary value problems for the equation of vibrations of rods (also called Fresnel equation) are solved by exploiting the connection with Brownian motion and the heat equation. The analysis of the fractional version (of order $\

  3. Astronomical publications of Melbourne Observatory

    Science.gov (United States)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  4. The Observatory Health Report

    Directory of Open Access Journals (Sweden)

    Laura Murianni

    2008-06-01

    Full Text Available

    Background: The number of indicators aiming to provide a clear picture of healthcare needs and the quality and efficiency of healthcare systems and services has proliferated in recent years. The activity of the National Observatory on Health Status in the Italian Regions is multidisciplinary, involving around 280 public health care experts, clinicians, demographers, epidemiologists, mathematicians, statisticians and economists who with their different competencies, and scientific interests aim to improve the collective health of individuals and their conditions through the use of “core indicators”. The main outcome of the National Observatory on Health Status in the Italian Regions is the “Osservasalute Report – a report on health status and the quality of healthcare assistance in the Italian Regions”.

    Methods: The Report adopts a comparative analysis, methodology and internationally validated indicators.

    Results: The results of Observatory Report show it is necessary:

    • to improve the monitoring of primary health care services (where the chronic disease could be cared through implementation of clinical path;

     • to improve in certain areas of hospital care such as caesarean deliveries, as well as the average length of stay in the pre-intervention phase, etc.;

    • to try to be more focused on the patients/citizens in our health care services; • to practice more geographical interventions to reduce the North-South divide as well as reduce gender inequity.

    Conclusions: The health status of Italian people is good with positive results and outcomes, but in the meantime some further efforts should be done especially in the South that still has to improve the quality and the organization of health care services. There are huge differences in accuracy and therefore usefulness of the reported data, both between diseases and between

  5. Portable coastal observatories

    Science.gov (United States)

    Frye, Daniel; Butman, Bradford; Johnson, Mark; von der Heydt, Keith; Lerner, Steven

    2000-01-01

    Ocean observational science is in the midst of a paradigm shift from an expeditionary science centered on short research cruises and deployments of internally recording instruments to a sustained observational science where the ocean is monitored on a regular basis, much the way the atmosphere is monitored. While satellite remote sensing is one key way of meeting the challenge of real-time monitoring of large ocean regions, new technologies are required for in situ observations to measure conditions below the ocean surface and to measure ocean characteristics not observable from space. One method of making sustained observations in the coastal ocean is to install a fiber optic cable from shore to the area of interest. This approach has the advantage of providing power to offshore instruments and essentially unlimited bandwidth for data. The LEO-15 observatory offshore of New Jersey (yon Alt et al., 1997) and the planned Katama observatory offshore of Martha's Vineyard (Edson et al., 2000) use this approach. These sites, along with other cabled sites, will play an important role in coastal ocean science in the next decade. Cabled observatories, however, have two drawbacks that limit the number of sites that are likely to be installed. First, the cable and the cable installation are expensive and the shore station needed at the cable terminus is often in an environmentally sensitive area where competing interests must be resolved. Second, cabled sites are inherently limited geographically to sites within reach of the cable, so it is difficult to cover large areas of the coastal ocean.

  6. Lateral wave-field stacking of seismic Fresnel zones for the generalized-offset case

    Science.gov (United States)

    Tian, Nan; Fan, Ting-En; Wang, Zong-Jun; Cai, Wen-Tao

    2015-06-01

    To unify different seismic geometries, the concept of generalized offset is defined and the expressions for Fresnel zones of different order on a plane are presented. Based on wave theory, the equation of the lateral wave-field stacking for generalized-offset Fresnel zones is derived. For zero and nonzero offsets, the lateral stacking amplitude of diffraction bins of different sizes is analyzed by referring to the shape of the Fresnel zones of different order. The results suggest the following. First, the contribution of diffraction bins to wave-field stacking is related to the offset, surface relief, interface dip, the depth of the shot point to the reflection interface, the observational geometry, and the size of the interference stacking region. Second, the first-order Fresnel zone is the main constructive interference, and its contribution to the reflection amplitude is slightly smaller than half the contribution of all Fresnel zones. Finally, when the size of the diffraction bin is smaller than the first-order Fresnel zone, the larger the size of the diffraction bin, the larger is the amplitude of the receiver, even in the nonzero offset-case.

  7. The HAWC observatory

    Energy Technology Data Exchange (ETDEWEB)

    DeYoung, Tyce, E-mail: deyoung@phys.psu.edu [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States)

    2012-11-11

    The High Altitude Water Cherenkov (HAWC) observatory is a new very high energy water Cherenkov gamma ray telescope, now under construction at 4100 m altitude at Sierra Negra, Mexico. Due to its increased altitude, larger surface area and improved design, HAWC will be about 15 times more sensitive than its predecessor, Milagro. With its wide field of view and high duty factor, HAWC will be an excellent instrument for the studies of diffuse gamma ray emission, the high energy spectra of Galactic gamma ray sources, and transient emission from extragalactic objects such as GRBs and AGN, as well as surveying a large fraction of the VHE sky.

  8. The HAWC observatory

    Science.gov (United States)

    DeYoung, Tyce; HAWC Collaboration

    2012-11-01

    The High Altitude Water Cherenkov (HAWC) observatory is a new very high energy water Cherenkov gamma ray telescope, now under construction at 4100 m altitude at Sierra Negra, Mexico. Due to its increased altitude, larger surface area and improved design, HAWC will be about 15 times more sensitive than its predecessor, Milagro. With its wide field of view and high duty factor, HAWC will be an excellent instrument for the studies of diffuse gamma ray emission, the high energy spectra of Galactic gamma ray sources, and transient emission from extragalactic objects such as GRBs and AGN, as well as surveying a large fraction of the VHE sky.

  9. Next Generation Virtual Observatories

    Science.gov (United States)

    Fox, P.; McGuinness, D. L.

    2008-12-01

    Virtual Observatories (VO) are now being established in a variety of geoscience disciplines beyond their origins in Astronomy and Solar Physics. Implementations range from hydrology and environmental sciences to solid earth sciences. Among the goals of VOs are to provide search/ query, access and use of distributed, heterogeneous data resources. With many of these goals being met and usage increasing, new demands and requirements are arising. In particular there are two of immediate and pressing interest. The first is use of VOs by non-specialists, especially for information products that go beyond the usual data, or data products that are sought for scientific research. The second area is citation and attribution of artifacts that are being generated by VOs. In some sense VOs are re-publishing (re-packaging, or generating new synthetic) data and information products. At present only a few VOs address this need and it is clear that a comprehensive solution that includes publishers is required. Our work in VOs and related semantic data framework and integration areas has lead to a view of the next generation of virtual observatories which the two above-mentioned needs as well as others that are emerging. Both of the needs highlight a semantic gap, i.e. that the meaning and use for a user or users beyond the original design intention is very often difficult or impossible to bridge. For example, VOs created for experts with complex, arcane or jargon vocabularies are not accessible to the non-specialist and further, information products the non-specialist may use are not created or considered for creation. In the second case, use of a (possibly virtual) data or information product (e.g. an image or map) as an intellectual artifact that can be accessed as part of the scientific publication and review procedure also introduces terminology gaps, as well as services that VOs may need to provide. Our supposition is that formalized methods in semantics and semantic web

  10. DSN Transient Observatory

    Science.gov (United States)

    Kuiper, T. B. H.; Monroe, R. M.; White, L. A.; Garcia Miro, C.; Levin, S. M.; Majid, W. A.; Soriano, M.

    2016-11-01

    The Deep Space Network (DSN) Transient Observatory (DTO) is a signal processing facility that can monitor up to four DSN downlink bands for astronomically interesting signals. The monitoring is done commensally with reception of deep space mission telemetry. The initial signal processing is done with two CASPERa ROACH1 boards, each handling one or two baseband signals. Each ROACH1 has a 10 GBe interface with a GPU-equipped Debian Linux workstation for additional processing. The initial science programs include monitoring Mars for electrostatic discharges, radio spectral lines, searches for fast radio bursts and pulsars and SETI. The facility will be available to the scientific community through a peer review process.

  11. Byurakan Astrophysical Observatory

    Science.gov (United States)

    Mickaelian, A. M.

    2016-09-01

    This booklet is devoted to NAS RA V. Ambartsumian Byurakan Astrophysical Observatory and is aimed at people interested in astronomy and BAO, pupils and students, BAO visitors and others. The booklet is made as a visiting card and presents concise and full information about BAO. A brief history of BAO, the biography of the great scientist Viktor Ambartsumian, brief biographies of 13 other deserved scientists formerly working at BAO (B.E. Markarian, G.A. Gurzadyan, L.V. Mirzoyan, M.A. Arakelian, et al.), information on BAO telescopes (2.6m, 1m Schmidt, etc.) and other scientific instruments, scientific library and photographic plate archive, Byurakan surveys (including the famous Markarian Survey included in the UNESCO Memory of the World International Register), all scientific meetings held in Byurakan, international scientific collaboration, data on full research staff of the Observatory, as well as former BAO researchers, who have moved to foreign institutions are given in the booklet. At the end, the list of the most important books published by Armenian astronomers and about them is given.

  12. Stratospheric Observatory for Infrared Astronomy

    CERN Document Server

    Hamidouche, M; Marcum, P; Krabbe, A

    2010-01-01

    We present one of the new generations of observatories, the Stratospheric Observatory For Infrared Astronomy (SOFIA). This is an airborne observatory consisting of a 2.7-m telescope mounted on a modified Boeing B747-SP airplane. Flying at an up to 45,000 ft (14 km) altitude, SOFIA will observe above more than 99 percent of the Earth's atmospheric water vapor allowing observations in the normally obscured far-infrared. We outline the observatory capabilities and goals. The first-generation science instruments flying on board SOFIA and their main astronomical goals are also presented.

  13. An optimized Fresnel array for a test space mission in UV

    Science.gov (United States)

    Roux, W.; Koechlin, L.

    2016-07-01

    The Fresnel Diffractive Imager is based on a new optical concept for space telescopes, developed at Institut de Recherche en Astrophysique et Planétologie (IRAP) in Toulouse, France. We propose it for space missions dedicated to science cases in the Ultra-Violet with aperture ranges from 6 to 30 meters. Instead of a classical mirror to focus light, this concept uses very light-weight diffractive optics : the Fresnel array. Our project has already proved its performances in terms of resolution and high dynamic range in the laboratory, in the visible and near IR. It has been tested successfully on real astrophysical sources from the ground. At present, the project has reached the stage where a probatory mission is needed to validate its operation in space. In collaboration with institutes in Spain and Russia, we will propose a mission to the Russian space agency Roscosmos, to board a small prototype Fresnel imager on the International Space Station (ISS) for a UV astronomy program. We have improved the Fresnel array design to get a better Point Spread Function (PSF), 2 different ways. Numerical simulations have first allowed us to confirm these optical improvements, before manufacturing the diffractive optics and using them for new lab tests. In our previous setups, the opaque Fresnel zones in the primary Fresnel array (playing the role of the telescope objective) were maintained with an orthogonal bars mesh, following the pseudo-period of the Fresnel zones. We show that the PSF improves when these bars are regularly spaced. Furthermore, the optical system is apodized to get a better peaked PSF, and increase its high contrast performances. In our case, to apodize a binary mask the solution is to modulate the Fresnel zones in relative thickness ratio (opaque versus void), thus driving the local light transmission ratio. In earlier implementations, our Fresnel arrays were apodized with a circularly symmetric law, but an orthogonal apodization law is more efficient

  14. Running a distributed virtual observatory: US Virtual Astronomical Observatory operations

    CERN Document Server

    McGlynn, Thomas A; Berriman, G Bruce; Thakar, Aniruddha R

    2012-01-01

    Operation of the US Virtual Astronomical Observatory shares some issues with modern physical observatories, e.g., intimidating data volumes and rapid technological change, and must also address unique concerns like the lack of direct control of the underlying and scattered data resources, and the distributed nature of the observatory itself. In this paper we discuss how the VAO has addressed these challenges to provide the astronomical community with a coherent set of science-enabling tools and services. The distributed nature of our virtual observatory-with data and personnel spanning geographic, institutional and regime boundaries-is simultaneously a major operational headache and the primary science motivation for the VAO. Most astronomy today uses data from many resources. Facilitation of matching heterogeneous datasets is a fundamental reason for the virtual observatory. Key aspects of our approach include continuous monitoring and validation of VAO and VO services and the datasets provided by the commun...

  15. Numerical Study of Concentration Characteristics of Linear Fresnel Reflector System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Jin [Kookmin Univ., Seoul (Korea, Republic of); Kim, Jong Kyu; Lee, Sang Nam [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-12-15

    In this study, we numerically investigated the concentration characteristics of a linear Fresnel reflector system that can drive a solar thermal absorption refrigeration system to be installed in Saudi Arabia. Using an optical modeling program based on the Monte Carlo ray-tracing method, we simulated the concentrated solar flux, concentration efficiency, and concentrated solar energy on four representative days of the year - the vernal equinox, summer solstice, autumnal equinox, and winter solstice. Except the winter solstice, the concentrations were approximately steady from 9 AM to 15 PM, and the concentration efficiencies exceed 70%. Moreover, the maximum solar flux around the solar receiver center changes only within the range of 13.0 - 14.6 kW/m{sup 2}. When we investigated the effects of the receiver installation height, reflector width, and reflector gap, the optimal receiver installation height was found to be 5 m. A smaller reflector width had a greater concentration efficiency. However, the design of the reflector width should be based on the capacity of the refrigeration system because it dominantly affects the concentrated solar energy. The present study was an essential prerequisite for thermal analyses of the solar receiver. Thus, an optical-thermal integration study in the future will assist with the performance prediction and design of the entire system.

  16. High precision refractometry based on Fresnel diffraction from phase plates.

    Science.gov (United States)

    Tavassoly, M Taghi; Naraghi, Roxana Rezvani; Nahal, Arashmid; Hassani, Khosrow

    2012-05-01

    When a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic parallel beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. The visibility of the diffraction fringes varies periodically with changes in incident angle. The visibility period depends on the plate thickness and the refractive indices of the plate and the surrounding medium. Plotting the phase change versus incident angle or counting the visibility repetition in an incident-angle interval provides, for a given plate thickness, the refractive index of the plate very accurately. It is shown here that the refractive index of a plate can be determined without knowing the plate thickness. Therefore, the technique can be utilized for measuring plate thickness with high precision. In addition, by installing a plate with known refractive index in a rectangular cell filled with a liquid and following the described procedures, the refractive index of the liquid is obtained. The technique is applied to measure the refractive indices of a glass slide, distilled water, and ethanol. The potential and merits of the technique are also discussed.

  17. Design and analysis of a folded Fresnel Zone Plate antenna

    Science.gov (United States)

    Ji, Yu; Fujita, Masaharu

    1994-08-01

    Based on the Kirchhoff-Huygens diffraction theory, a simple analytical method of a planar folded Fresnel zone-plate (FZP), that is the case when a planar reflector is placed behind the zone plates, has been developed. According to the numerical calculation results, the design procedure of the FZP antenna has been presented, and its focusing characteristics and gain-optimized conditions have been discussed. The variations of the focal field distribution with the antenna parameters such as zone numbers, focal length and antenna diameter and the radiation power patterns of the FZP have been simulated numerically. To take a good balance of both receiving and transmitting antennas, at 60GHz operating frequency, the focal length should be designed as a half of the antenna diameter and the zone number should be from 10 to 15. The results in this work show that the folded FZP has good focal characteristics and off-axis performance, and its antenna gain can be optimized by the suitable antenna parameter design. The possibility of applying the folded FZP as a low cost and high gain antenna without strict manufacturing requirement for millimeter-wave communications has been shown.

  18. Fresnel spatial filtering of quasihomogeneous sources for wave optics simulations

    Science.gov (United States)

    Hyde, Milo W.; Bose-Pillai, Santasri R.

    2017-08-01

    High-spatial-frequency optical fields or sources are often encountered when simulating directed energy, active imaging, or remote sensing systems and scenarios. These spatially broadband fields are a challenge in wave optics simulations because the sampling required to represent and then propagate these fields without aliasing is often impractical. To address this, two spatial filtering techniques are presented. The first, called Fresnel spatial filtering, finds a spatially band-limited source that, after propagation, produces the exact observation plane field as the broadband source over a user-specified region of interest. The second, called statistical or quasihomogeneous spatial filtering, finds a spatially band-limited source that, after propagation and over a specified region of interest, yields an observation plane field that is statistically representative of that produced by the original broadband source. The pros and cons of both approaches are discussed in detail. A wave optics simulation of light transiting a ground glass diffuser and then propagating to an observation plane in the near-zone is performed to validate the two filtering approaches.

  19. Fresnel incoherent correlation holography and its imaging properties

    Science.gov (United States)

    Wang, Zhipeng; Ma, Haotong; Ren, Ge; Xie, Zongliang; Yu, Huan

    2016-09-01

    The incoherent digital holography makes it possible to record holograms under incoherent illumination, which lowers requirement for the coherence of light sources and results in expanding its application to white-light and fluorescence illuminating circumstances. The Fresnel Incoherent Correlation Holography (FINCH) technology achieves diverging the incident beam and shifting phase by mounting phase masks on the phase modulator. Then it obtains holograms with phase difference and reconstructs the image. In this paper, we explain the principles of the FINCH technology, and introduce the n-step phase-shifting method which is utilized to eliminate the twin image and bias term in holograms. During the research, we studied what impact the term n may have on imaging performance, compared imaging performances when different phase masks are mounted on SLM, and established simulation system on imaging with which imaging performances are deeply inspected. At last, it is shown in the research that the FINCH technology could record holograms of objects, from which clear images could be reconstructed digitally.

  20. Fresnel-Fizeau drag: Invisibility conditions for all inertial observers

    Science.gov (United States)

    Halimeh, Jad C.; Thompson, Robert T.

    2016-03-01

    It was recently shown [J. C. Halimeh et al., Phys. Rev. A 93, 013850 (2016), 10.1103/PhysRevA.93.013850] that as a result of the Doppler effect, inherently dispersive single-frequency ideal free-space invisibility cloaks in relative motion to an observer can only cloak light whose frequency in the cloak frame coincides with the operational frequency of the cloak, although an infinite number of such rays exist for any cloak motion. In this article, we show analytically and through ray-tracing simulations that even though this relationship can be relaxed by simplifying the ideal invisibility cloak into a broadband amplitude cloak, Fresnel-Fizeau drag uncloaks the phase of light in the inertial frame of the cloak thereby compromising its amplitude cloaking in all other inertial frames. In other words, only an invisibility device that perfectly cloaks both the amplitude and the phase of light in its own inertial frame will also (perfectly) cloak this light in any other inertial frame. The same conclusion lends itself to invisible objects that are not cloaks, such as the invisible sphere.

  1. Fresnel-Fizeau drag: Invisibility conditions for all inertial observers

    CERN Document Server

    Halimeh, Jad C

    2016-01-01

    It was recently shown [Halimeh \\emph{et al.} arXiv:1510.06114 (to appear in Phys. Rev. A)] that as a result of the Doppler effect, inherently dispersive single-frequency ideal free-space invisibility cloaks in relative motion to an observer can only cloak light whose frequency in the cloak frame coincides with the operational frequency of the cloak, although an infinite number of such rays exist for any cloak motion. In this article, we show analytically and through ray-tracing simulations that even though this relationship can be relaxed by simplifying the ideal invisibility cloak into a broadband amplitude cloak, Fresnel-Fizeau drag uncloaks the phase of light in the inertial frame of the cloak thereby compromising its amplitude cloaking in all other inertial frames. In other words, only an invisibility device that perfectly cloaks both the amplitude and the phase of light in its own inertial frame will also (perfectly) cloak this light in any other inertial frame. The same conclusion lends itself to invisi...

  2. Fresnel equations and transmission line analogues for diffraction gratings

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, S.

    1995-08-01

    A simple and intuitive formalism is presented to describe diffraction in multi-layered periodic structures. We use the well known results from scalar analysis (wave propagation in homogeneous layered media) and show that they can be generalized rather readily to vector problems such as diffraction analysis. Specifically, we derive: (1) generalized Fresnel equations appropriate for reflection and transmission from an infinitely thick grating, (2) a generalized Airy formula for thin-film to describe reflection and transmission of light through a lamellar grating and (3) a matrix propagation method akin to that used for multi-layer thin film analysis. The results developed here complement the recent work on R-matrix and S-matrix propagation algorithms that have been used in connection with modal and differential grating theories. These algorithms have proven to be numerically stable for calculating diffraction efficiencies from deep groove gratings. The formalism developed here expands upon the earlier literature by providing important details that are hitherto unavailable.

  3. Moessbauer-Fresnel zone plate as nuclear monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Mooney, T.M.; Alp, E.E.; Yun, W.B.

    1992-06-01

    Zone plates currently used in x-ray optics derive their focusing power from (a spatial variation of) the electronic refractive index -- that is, from the collective effect of electronic x-ray-scattering amplitudes. Nuclei also scatter x rays, and resonant nuclear-scattering amplitudes, particularly those associated with Moessbauer fluorescence, can dominate the refractive index for x-rays whose energies are very near the nuclear-resonance energy. A zone plate whose Fresnel zones are filled alternately with {sup 57}Fe and {sup 56}Fe ({sup 57}Fe has a nuclear resonance of natural width {Gamma} = 4.8 nano-eV at 14.413 keV; {sup 56}Fe has no such resonance) has a resonant focusing efficiency; it focuses only those x-rays whose energies are within several {Gamma} of resonance. When followed by an absorbing screen with a small pinhole, such a zone plate can function as a synchrotron-radiation monochromator with an energy resolution of a few parts in 10{sup 12}. The energy-dependent focusing efficiency and the resulting time-dependent response of a resonant zone plate are discussed.

  4. Thin Lens Ray Tracing.

    Science.gov (United States)

    Gatland, Ian R.

    2002-01-01

    Proposes a ray tracing approach to thin lens analysis based on a vector form of Snell's law for paraxial rays as an alternative to the usual approach in introductory physics courses. The ray tracing approach accommodates skew rays and thus provides a complete analysis. (Author/KHR)

  5. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Lens Use May 31, 2016 Is El Niño Making Your Allergies Worse? May 16, 2016 More Eye ... EyeSmart Embed EyeSmart videos on your website Promotional materials for eye health observances EyeSmart resources are also ...

  6. LCOGT Network Observatory Operations

    CERN Document Server

    Pickles, Andrew; Boroson, Todd; Burleson, Ben; Conway, Patrick; de Vera, Jon; Elphick, Mark; Haworth, Brian; Rosing, Wayne; Saunders, Eric; Thomas, Doug; White, Gary; Willis, Mark; Walker, Zach

    2014-01-01

    We describe the operational capabilities of the Las Cumbres Observatory Global Telescope Network. We summarize our hardware and software for maintaining and monitoring network health. We focus on methodologies to utilize the automated system to monitor availability of sites, instruments and telescopes, to monitor performance, permit automatic recovery, and provide automatic error reporting. The same jTCS control system is used on telescopes of apertures 0.4m, 0.8m, 1m and 2m, and for multiple instruments on each. We describe our network operational model, including workloads, and illustrate our current tools, and operational performance indicators, including telemetry and metrics reporting from on-site reductions. The system was conceived and designed to establish effective, reliable autonomous operations, with automatic monitoring and recovery - minimizing human intervention while maintaining quality. We illustrate how far we have been able to achieve that.

  7. The Virtual Observatory Registry

    CERN Document Server

    Demleitner, Markus; Sidaner, Pierre Le; Plante, Raymond L

    2014-01-01

    In the Virtual Observatory (VO), the Registry provides the mechanism with which users and applications discover and select resources -- typically, data and services -- that are relevant for a particular scientific problem. Even though the VO adopted technologies in particular from the bibliographic community where available, building the Registry system involved a major standardisation effort, involving about a dozen interdependent standard texts. This paper discusses the server-side aspects of the standards and their application, as regards the functional components (registries), the resource records in both format and content, the exchange of resource records between registries (harvesting), as well as the creation and management of the identifiers used in the system based on the notion of authorities. Registry record authors, registry operators or even advanced users thus receive a big picture serving as a guideline through the body of relevant standard texts. To complete this picture, we also mention comm...

  8. The virtual observatory registry

    Science.gov (United States)

    Demleitner, M.; Greene, G.; Le Sidaner, P.; Plante, R. L.

    2014-11-01

    In the Virtual Observatory (VO), the Registry provides the mechanism with which users and applications discover and select resources-typically, data and services-that are relevant for a particular scientific problem. Even though the VO adopted technologies in particular from the bibliographic community where available, building the Registry system involved a major standardisation effort, involving about a dozen interdependent standard texts. This paper discusses the server-side aspects of the standards and their application, as regards the functional components (registries), the resource records in both format and content, the exchange of resource records between registries (harvesting), as well as the creation and management of the identifiers used in the system based on the notion of authorities. Registry record authors, registry operators or even advanced users thus receive a big picture serving as a guideline through the body of relevant standard texts. To complete this picture, we also mention common usage patterns and open issues as appropriate.

  9. The Sudbury Neutrino Observatory

    Science.gov (United States)

    Bellerive, A.; Klein, J. R.; McDonald, A. B.; Noble, A. J.; Poon, A. W. P.

    2016-07-01

    This review paper provides a summary of the published results of the Sudbury Neutrino Observatory (SNO) experiment that was carried out by an international scientific collaboration with data collected during the period from 1999 to 2006. By using heavy water as a detection medium, the SNO experiment demonstrated clearly that solar electron neutrinos from 8B decay in the solar core change into other active neutrino flavors in transit to Earth. The reaction on deuterium that has equal sensitivity to all active neutrino flavors also provides a very accurate measure of the initial solar flux for comparison with solar models. This review summarizes the results from three phases of solar neutrino detection as well as other physics results obtained from analyses of the SNO data.

  10. The Sudbury Neutrino Observatory

    CERN Document Server

    Bellerive, A; McDonald, A B; Noble, A J; Poon, A W P

    2016-01-01

    This review paper provides a summary of the published results of the Sudbury Neutrino Observatory (SNO) experiment that was carried out by an international scientific collaboration with data collected during the period from 1999 to 2006. By using heavy water as a detection medium, the SNO experiment demonstrated clearly that solar electron neutrinos from $^8$B decay in the solar core change into other active neutrino flavors in transit to Earth. The reaction on deuterium that has equal sensitivity to all active neutrino flavors also provides a very accurate measure of the initial solar flux for comparison with solar models. This review summarizes the results from three phases of solar neutrino detection as well as other physics results obtained from analyses of the SNO data.

  11. An Algorithm for Evaluating Fresnel-Zone Textural Roughness for Seismic Facies Interpretation

    Science.gov (United States)

    Di, H.; Gao, D.

    2014-12-01

    In reflection seismic interpretation, a 1-D convolutional model is commonly used to interpret amplitude variations based on the geometric ray theory assuming seismic wave to reflect at a reflection point; however, the propagation of seismic waves actually occurs in a finite zone around the geometric ray path and gets reflected from a zone known as Fresnel zone. The collected signal at the surface turns out to be the superposition of reflections from within the Fresnel zone, which is a function of texture. Generally, for a rough texture such as sandstone, the dominant reflection is from the zone margin, while for a smooth texture such as marine shale, the dominant reflection is from the zone center. Based on this concept, Fresnel-zone texture directly affects amplitude variations with offset (AVO), azimuth (AVAZ), and frequency (AVF). Here we develop a computer algorithm for evaluating Fresnel-zone textural roughness. The algorithm starts with dividing the Fresnel zone into a set of micro-zones. It then builds an initial texture model to be convolved with an extracted wavelet. By comparing the synthetic signal from a Fresnel zone to the real seismic signal within an analysis window at a target location, the model is adjusted and updated until both synthetic and real signals match best. The roughness is evaluated as the correlation coefficient between the generated texture model within the Fresnel zone and the ideal model for a rough texture medium. Our new algorithm is applied to a deep-water 3D seismic volume over offshore Angola, west Africa. The results show that a rough texture is associated with channel sands, whereas a smooth texture with marine shale.

  12. Rolloff Roof Observatory Construction (Abstract)

    Science.gov (United States)

    Ulowetz, J. H.

    2015-12-01

    (Abstract only) Lessons learned about building an observatory by someone with limited construction experience, and the advantages of having one for imaging and variable star studies. Sample results shown of composite light curves for cataclysmic variables UX UMa and V1101 Aql with data from my observatory combined with data from others around the world.

  13. Space Research in Baldone Observatory

    Directory of Open Access Journals (Sweden)

    Eglitis, I.

    2017-01-01

    Full Text Available The Baldone observatory deals with the U-, B-, V-, R-, I-photometry and low resolution spectroscopy of carbon stars, the monitoring of small bodies of Solar system, and with the digitizing and processing of 24 300 plates from the Schmidt wide field telescope archive. The astronomers from the observatory are working to popularize astronomy.

  14. Ancient "Observatories" - A Relevant Concept?

    Science.gov (United States)

    Belmonte, Juan Antonio

    It is quite common, when reading popular books on astronomy, to see a place referred to as "the oldest observatory in the world". In addition, numerous books on archaeoastronomy, of various levels of quality, frequently refer to the existence of "prehistoric" or "ancient" observatories when describing or citing monuments that were certainly not built with the primary purpose of observing the skies. Internet sources are also guilty of this practice. In this chapter, the different meanings of the word observatory will be analyzed, looking at how their significances can be easily confused or even interchanged. The proclaimed "ancient observatories" are a typical result of this situation. Finally, the relevance of the concept of the ancient observatory will be evaluated.

  15. Realization of Fourier and Fresnel computer-generated holograpm based on MATLAB

    Science.gov (United States)

    Lin, GuoQiang; Ren, XueChang

    2016-10-01

    Computer-generated hologram(CGH) can encode the picture. The image, which equals the original object of traditional optics, can be divided into two parts. A portion of it encoding into Fourier computer generated hologram(CGH), while the remaining are coded into Fresnel computer generated hologram. So in the processing of information transmission, the possibility of being stolen details can be greatly reduced. When the image is coded into the Fourier CGH and Fresnel CGH and reached the receiving end, the original image should be obtained by the reconstruction of the two computer generated holograms. This article presents three important things. Firstly, it provides the recording and reconstruction - both of them consist of the holographic technique - of the source program of Fresnel CGH and Fourier CGH in MATLAB. MATLAB(Matrix Laboratory) is the abbreviation of Laboratory Matrix and commercial mathematical software produced by the United States company. Secondly, it isolates the original image and the conjugate image in regeneration of Fourier CGH by using all zero matrix. Even though the original image and the conjugate image can be separated, the two of them also prevent us to acquire the original message. For reserving the most important image, we should apply the window function to filter one of them. Finally, in the coding of Fourier CGH and Fresnel CGH, this passage describes several functions to decrease the noise of the original image which is encoded into program. The function can be available in Fourier CGH and Fresnel CGH.

  16. Fresnel Number Concept and Revision of some Characteristics in the Linear Theory of Focused Acoustic Beams

    CERN Document Server

    Makov, Yu N

    2008-01-01

    The advisability of the use of the Fresnel number as the measure (characteristic) of the ratio of diffraction and focusing properties for ultrasonic transducers and its radiated beams is proposed and demonstrated. Althought this characteristic is more habitual in optics, in acoustics the equivalent (mathematically although not fully in its physical meaning) parameter of linear gain is used as a rule. However, the preference and the more accuracy of the Fresnel number use is demonstrated here on the basis that the usual determination of the linear gain parameter ceases to correspond to the real value of the gain for low Fresnel number acoustic beams. It connects with the linear effect of axial maximum pressure shift from the geometrical focus towards the transducer. This effect is known for a long time, but here the analytical formulas describing this shift with a high accuracy for arbitrary Fresnel numbers are presented. As a consequence, also the analytical dependence of the real gain on the Fresnel number i...

  17. Fundamental studies on ocean wave focusing. 2nd Report. ; Experiments in a wave tank. Kaiyoha shuha lens no kisoteki kenkyu. 2. ; Suisojikken

    Energy Technology Data Exchange (ETDEWEB)

    Murashige, S. (The University of Tokyo, Tokyo (Japan)); Kinoshita, T. (The University of Tokyo, Tokyo (Japan). Institute of Industrial Science); Suzuki, T. (Hazama Gumi Ltd., Tokyo (Japan))

    1991-06-01

    By using the slender ship the previous report, it was demonstrated possible to design, by utilizing an array of submerged circular cylinders, an ocean wave focusing lens, higher in performance than the conventional submerged focusing flat plate. Then by preparing a submerged focusing flat plate and submerged focusing circular cylinder array Fresnel lens, 20m in length, the present report showed the test result against both regular waves and irregular waves in a rectangular parallelpiped water tank, 50m in length, 30m in breadth and 2.4m in depth. The test was design conditioned to be 20m in overall length of lens, 16m in focal distance, 1.2Hz in wave frequency and 0.12m in submerged depth. As a result, the submerged focusing circular cylinder array Fresnel lens was higher in both wave and power amplification ratio against both the regular waves and irregular waves. With heightening, the incident wave was known to lower in amplification ratio. Through testing in a two-dimensional water tank, the breaking limit of waves, passing above the submerged flat plate or circular cylinder array, was known to be given by H{sub i}/h{sub p} or H{sub i}/h{sub c}{approx equal}0.38, where H{sub i}, h{sub p} and h{sub c} are incident wave height, submerged depth of plate and submerged depth of cylinder array, respectively. 12 refs., 20 figs.

  18. The Sudbury Neutrino Observatory

    Science.gov (United States)

    Ewan, G. T.

    1992-04-01

    The Sudbury Neutrino Observatory (SNO) detector is a 1000 ton heavy water (D2O) Cherenkov detector designed to study neutrinos from the sun and other astrophysical sources. The use of heavy water allows both electron neutrinos and all other types of neutrinos to be observed by three complementary reactions. The detector will be sensitive to the electron neutrino flux and energy spectrum shape and to the total neutrino flux irrespective of neutrino type. These measurements will provide information on both vacuum neutrino oscillations and matter-enhanced oscillations, the MSW effect. In the event of a supernova it will be very sensitive to muon and tau neutrinos as well as the electron neutrinos emitted in the initial burst, enabling sensitive mass measurements as well as providing details of the physics of stellar collapse. On behalf of the Sudbury Neutrino Observatory (SNO) Collaboration : H.C . Evans, G.T . Ewan, H.W. Lee, J .R . Leslie, J .D. MacArthur, H .-B . Mak, A.B . McDonald, W. McLatchie, B.C . Robertson, B. Sur, P. Skensved (Queen's University) ; C.K . Hargrove, H. Mes, W.F. Davidson, D. Sinclair, 1 . Blevis, M. Shatkay (Centre for Research in Particle Physics) ; E.D. Earle, G.M. Milton, E. Bonvin, (Chalk River Laboratories); J .J . Simpson, P. Jagam, J . Law, J .-X . Wang (University of Guelph); E.D . Hallman, R.U. Haq (Laurentian University); A.L. Carter, D. Kessler, B.R . Hollebone (Carleton University); R. Schubank . C.E . Waltha m (University of British Columbia); R.T. Kouzes, M.M. Lowry, R.M. Key (Princeton University); E.W. Beier, W. Frati, M. Newcomer, R. Van Berg (University of Penn-sylvania), T.J . Bowles, P.J . Doe, S.R . Elliott, M.M. Fowler, R.G.H. Robertson, D.J . Vieira, J .B . Wilhelmy, J .F. Wilker-son, J .M. Wouters (Los Alamos National Laboratory) ; E. Norman, K. Lesko, A. Smith, R. Fulton, R. Stokstad (Lawrence Berkeley Laboratory), N.W. Tanner, N. JCIILY, P. Trent, J . Barton, D.L . Wark (University of Oxford).

  19. Qualification of a Null Lens Using Image-Based Phase Retrieval

    Science.gov (United States)

    Bolcar, Matthew R.; Aronstein, David L.; Hill, Peter C.; Smith, J. Scott; Zielinski, Thomas P.

    2012-01-01

    In measuring the figure error of an aspheric optic using a null lens, the wavefront contribution from the null lens must be independently and accurately characterized in order to isolate the optical performance of the aspheric optic alone. Various techniques can be used to characterize such a null lens, including interferometry, profilometry and image-based methods. Only image-based methods, such as phase retrieval, can measure the null-lens wavefront in situ - in single-pass, and at the same conjugates and in the same alignment state in which the null lens will ultimately be used - with no additional optical components. Due to the intended purpose of a Dull lens (e.g., to null a large aspheric wavefront with a near-equal-but-opposite spherical wavefront), characterizing a null-lens wavefront presents several challenges to image-based phase retrieval: Large wavefront slopes and high-dynamic-range data decrease the capture range of phase-retrieval algorithms, increase the requirements on the fidelity of the forward model of the optical system, and make it difficult to extract diagnostic information (e.g., the system F/#) from the image data. In this paper, we present a study of these effects on phase-retrieval algorithms in the context of a null lens used in component development for the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. Approaches for mitigation are also discussed.

  20. Health Observatories in Iran

    Directory of Open Access Journals (Sweden)

    K Shad­pour

    2013-01-01

    Full Text Available Background: The Islamic Republic of Iran, in her 20 year vision by the year 2025, is a developed country with the first economic, scientific and technological status in the region, with revolutionary and Islamic identity, inspiring Islamic world, as well as effective and constructive interaction in international relations. Enjoying health, welfare, food security, social security, equal opportunities, fair income distribution, strong family structure; to be away from poverty, corruption, and discrimination; and benefiting desirable living environment are also considered out of characteristics of Iranian society in that year. Strategic leadership towards perceived vision in each setting requires restrictive, complete and timely information. According to constitution of National Institute for Health Researches, law of the Fifth Development Plan of the country and characteristics of health policy making, necessity of designing a Health Observatory System (HOS was felt. Some Principles for designing such system were formulated by taking following steps: reviewing experience in other countries, having local history of the HOS in mind, superior documents, analysis of current production and management of health information, taking the possibilities to run a HOS into account. Based on these principles, the protocol of HOS was outlined in 3 different stages of opinion poll of informed experts responsible for production on management of information, by using questionnaires and Focus Group Discussions. The protocol includes executive regulations, the list of health indicators, vocabulary and a calendar for periodic studies of the community health situation.

  1. The CTA Observatory

    CERN Document Server

    Wagner, R M; Sillanpää, A; Wagner, S; ),

    2009-01-01

    In recent years, ground-based very-high-energy (VHE; E>100 GeV) gamma-ray astronomy has experienced a major breakthrough with the impressive astrophysical results obtained mainly by the current generation experiments like H.E.S.S., MAGIC, MILAGRO and VERITAS. The ground-based Imaging Air Cherenkov Technique for detecting VHE gamma-rays has matured, and a fast assembly of inexpensive and robust telescopes is possible. The goal for the next generation of instruments is to increase their sensitivity by a factor >10 compared to current facilities, to extend the accessible gamma-ray energies from a few tens of GeV to a hundred TeV, and to improve on other parameters like the energy and angular resolution (improve the point-spread function by a factor 4-5 w.r.t. current instruments). The Cherenkov Telescope Array (CTA) project is an initiative to build the next generation ground-based gamma-ray instrument, will serve as an observatory to a wide astrophysics community. I discuss the key physics goals and resulting d...

  2. Health observatories in iran.

    Science.gov (United States)

    Rashidian, A; Damari, B; Larijani, B; Vosoogh Moghadda, A; Alikhani, S; Shadpour, K; Khosravi, A

    2013-01-01

    The Islamic Republic of Iran, in her 20 year vision by the year 2025, is a developed country with the first economic, scientific and technological status in the region, with revolutionary and Islamic identity, inspiring Islamic world, as well as effective and constructive interaction in international relations. Enjoying health, welfare, food security, social security, equal opportunities, fair income distribution, strong family structure; to be away from poverty, corruption, and discrimination; and benefiting desirable living environment are also considered out of characteristics of Iranian society in that year. Strategic leadership towards perceived vision in each setting requires restrictive, complete and timely information. According to constitution of National Institute for Health Researches, law of the Fifth Development Plan of the country and characteristics of health policy making, necessity of designing a Health Observatory System (HOS) was felt. Some Principles for designing such system were formulated by taking following steps: reviewing experience in other countries, having local history of the HOS in mind, superior documents, analysis of current production and management of health information, taking the possibilities to run a HOS into account. Based on these principles, the protocol of HOS was outlined in 3 different stages of opinion poll of informed experts responsible for production on management of information, by using questionnaires and Focus Group Discussions. The protocol includes executive regulations, the list of health indicators, vocabulary and a calendar for periodic studies of the community health situation.

  3. Expanding the HAWC Observatory

    Science.gov (United States)

    Mori, Johanna; HAWC Collaboration; College of Idaho; HAWC Collaboration

    2017-01-01

    To increase the effective area and sensitivity of the High Altitude Water Cherenkov Observatory to gamma-ray photons with energies higher than 10 TeV, we are building 350 smaller outrigger tanks around the main array of 300 existing tanks. HAWC detects cascades of charged particles (``extensive air showers'') created by TeV gamma rays hitting the atmosphere. Increasing the size of the array will improve the sensitivity of the array by a factor of 2 to 4 above 10 TeV, allowing for more accurate gamma-ray origin reconstruction and energy estimation. Building the outrigger array requires carefully calibrated equipment, including PMTs and high voltage signal cables of the correct length. Origin reconstruction relies on precise signal timing, so the signal cables' lengths were standardized so that the signal transit time varied by less than 5 ns. Energy estimation depends on accurate photon counts from each tank, so the PMTs were calibrated with a laser and filter wheels to give the PMTs a known amount of light.

  4. Hanohano: Hawaiian antineutrino observatory

    Energy Technology Data Exchange (ETDEWEB)

    Maricic, Jelena, E-mail: jelena@physics.drexel.ed [Drexel University, 3141 Chestnut St. 12-816, Philadelphia, PA, 19104 (United States)

    2010-01-01

    Design studies are underway for the deep ocean antineutrino observatory Hanohano. The 10 kton monolitic underwater detector will be able to make precision measurement of neutrino mixing parameters (including {theta}{sub 13} and neutrino mass hierarchy) if stationed around 60 km offshore, from the nuclear reactor. Hanohano will be a mobile detector and placing it in a mid-Pacific location will provide the first ever flux measurement of geoneutrinos (antineutrinos emitted in the radioactive decay series of uranium and thorium), coming from the Earth's mantle and perform a sensitivity search for a hypothetical natural fission reactor in the Earth's core. Additional deployment at a different mid-ocean location will lead to tests of lateral heterogeneity of uranium and thorium in the Earth's mantle. These measurements would provide an important insight into deep-Earth geophysics, mantle composition and understanding of the Earth's heat flow and sources of energy inside the Earth.

  5. Light propagation in local and linear media: Fresnel-Kummer wave surfaces with 16 singular points

    CERN Document Server

    Favaro, Alberto

    2016-01-01

    It is known that the Fresnel wave surfaces of transparent biaxial media have 4 singular points, located on two special directions. We show that, in more general media, the number of singularities can exceed 4. In fact, a highly symmetric linear material is proposed whose Fresnel surface exhibits 16 singular points. Because, for every linear material, the dispersion equation is quartic, we conclude that 16 is the maximum number of singularities. The identity of Fresnel and Kummer surfaces, which holds true for media with a certain symmetry (zero skewon piece), provides an elegant interpretation of the results. We describe a metamaterial realization for our linear medium with 16 singular points. It is found that an appropriate combination of metal bars, split-ring resonators, and magnetized particles can generate the correct permittivity, permeability, and magnetoelectric moduli. Lastly, we discuss the arrangement of the singularities in terms of Kummer's (16,6)-configuration of points and planes. An investigat...

  6. Fresnel versus Kummer surfaces: geometrical optics in dispersionless linear (meta)materials and vacuum

    CERN Document Server

    Favaro, Alberto

    2014-01-01

    Geometrical optics describes, with good accuracy, the propagation of high-frequency plane waves through an electromagnetic medium. Under such approximation, the behaviour of the electromagnetic fields is characterised by just three quantities: the temporal frequency $\\omega$, the spatial wave (co)vector $k$, and the polarisation (co)vector $a$. Numerous key properties of a given optical medium are determined by the Fresnel surface, which is the visual counterpart of the equation relating $\\omega$ and $k$. For instance, the propagation of electromagnetic waves in a uniaxial crystal, such as calcite, is represented by two light-cones. Kummer, whilst analysing quadratic line complexes as models for light rays in an optical apparatus, discovered in the framework of projective geometry a quartic surface that is linked to the Fresnel one. Given an arbitrary dispersionless linear (meta)material or vacuum, we aim to establish whether the resulting Fresnel surface is equivalent to, or is more general than, a Kummer su...

  7. The Fresnel-Fizeau effect and the atmospheric time delay in geodetic VLBI

    CERN Document Server

    M., Kopeikin S

    2015-01-01

    The Fresnel-Fizeau effect is a special relativistic effect that makes the speed of light dependent on the velocity of a transparent, moving medium. We present a theoretical formalism for discussing propagation of electromagnetic signals through the moving Earth atmosphere with taking into account the Fresnel-Fizeau effect. It provides the rigorous relativistic derivation of the atmospheric time delay equation in the consensus model of geodetic VLBI observations which was never published before. The paper confirms the atmospheric time delay of the consensus VLBI model used in IERS Standards, and provides a firm theoretical basis for calculation of even more subtle relativistic corrections.

  8. Wide band Fresnel super-resolution applied to capillary break up of viscoelastic fluids

    CERN Document Server

    Fiscina, Jorge E; Sattler, Rainer; Wagner, Christian

    2013-01-01

    We report a technique based on Fresnel diffraction with white illumination that permits the resolution of capillary surface patterns of less than 100 nanometers. We investigate Rayleigh Plateaux like instability on a viscoelastic capillary bridge and show that we can overcome the resolution limit of optical microscopy. The viscoelastic filaments are approximately 20 microns thick at the end of the thinning process when the instability sets in. The wavy distortions grow exponentially in time and the pattern is resolved by an image treatment that is based on an approximation of the measured rising flank of the first Fresnel peak.

  9. Caldera solarcompacta conconcentrador fresnel:diseño y construccción

    OpenAIRE

    Echazú, Ricardo Daniel; Saravia, Leonardo Ariel; Placco, Cora

    2015-01-01

    Se presenta el diseño y construcción de un sistema para generación de vapor que utiliza energía solar concentrada mediante espejos de aluminio en disposición de reflector de Fresnel plano. El equipo, de diseño compacto, tiene la particularidad de que el concentrador primario de Fresnel, el secundario de tipo CPC y el absorbedor, se montaron sobre una única estructura que se orienta al sol montada sobre dos ejes. Se diseñó la óptica mediante simulación con Cabri y se construyó un prototipo...

  10. Design and fabrication of Si-HDPE hybrid Fresnel lenses for infrared imaging systems.

    Science.gov (United States)

    Manaf, Ahmad Rosli Abdul; Sugiyama, Tsunetoshi; Yan, Jiwang

    2017-01-23

    In this work, novel hybrid Fresnel lenses for infrared (IR) optical applications were designed and fabricated. The Fresnel structures were replicated from an ultraprecision diamond-turned aluminum mold to an extremely thin layer (tens of microns) of high-density polyethylene polymer, which was directly bonded onto a flat single-crystal silicon wafer by press molding without using adhesives. Night mode imaging results showed that the fabricated lenses were able to visualize objects in dark fields with acceptable image quality. The capability of the lenses for thermography imaging was also demonstrated. This research provides a cost-effective method for fabricating ultrathin IR optical components.

  11. Suppression of DC term in Fresnel digital holography by sequence subtraction of holograms

    CERN Document Server

    Kang, Jong-Chol; Im, Song-Jin

    2016-01-01

    An experimental method for suppression of DC term in the reconstructed images from Fresnel digital holograms is presented. In this method, two holograms for the same object are captured sequentially and subtracted. Since these two holograms are captured at different moments, they are slightly different from each other for fluctuations of noises. The DC term is suppressed in the image reconstructed from the subtraction hologram, while the two virtual and real images are successfully reconstructed. This method can be potentially used for the improvement of image quality reconstructed from Fresnel digital holograms.

  12. The Farid & Moussa Raphael Observatory

    Science.gov (United States)

    Hajjar, R.

    2017-06-01

    The Farid & Moussa Raphael Observatory (FMRO) at Notre Dame University Louaize (NDU) is a teaching, research, and outreach facility located at the main campus of the university. It located very close to the Lebanese coast, in an urbanized area. It features a 60-cm Planewave CDK telescope, and instruments that allow for photometric and spetroscopic studies. The observatory currently has one thinned, back-illuminated CCD camera, used as the main imager along with Johnson-Cousin and Sloan photometric filters. It also features two spectrographs, one of which is a fiber fed echelle spectrograph. These are used with a dedicated CCD. The observatory has served for student projects, and summer schools for advanced undergraduate and graduate students. It is also made available for use by the regional and international community. The control system is currently being configured for remote observations. A number of long-term research projects are also being launched at the observatory.

  13. Deep Space Climate Observatory (DSCOVR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Deep Space Climate ObserVatoRy (DSCOVR) satellite is a NOAA operated asset located at the first Lagrange point (L1). This places it approximately 1% of the...

  14. Geomagnetic Observatory Database February 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA National Centers for Environmental Information (formerly National Geophysical Data Center) maintains an active database of worldwide geomagnetic observatory...

  15. Islamic Astronomical Instruments and Observatories

    Science.gov (United States)

    Heidarzadeh, Tofigh

    This chapter is a brief survey of astronomical instruments being used and developed in Islamic territories from the eighth to the fifteenth centuries as well as a concise account of major observatories and observational programs in this period.

  16. Estimating cosmological parameters from future gravitational lens surveys

    CERN Document Server

    Dobke, Benjamin M; Fassnacht, Christopher D; Auger, Matthew W

    2009-01-01

    Upcoming ground and space based observatories such as the DES, the LSST, the JDEM concepts and the SKA, promise to dramatically increase the size of strong gravitational lens samples. A significant fraction of the systems are expected to be time delay lenses. Many of the existing lensing degeneracies become less of an issue with large samples since the distributions of a number of parameters are predictable, and can be incorporated into an analysis, thus helping to lessen the degeneracy. Assuming a mean galaxy density profile that does not evolve with redshift, a Lambda-CDM cosmology, and Gaussian distributions for bulk parameters describing the lens and source populations, we generate synthetic lens catalogues and examine the relationship between constraints on the Omega_m - Omega_Lambda plane and H_0 with increasing lens sample size. We find that, with sample sizes of ~400 time delay lenses, useful constraints can be obtained for Omega_m and Omega_Lambda with approximately similar levels of precision as fro...

  17. LASER INDUCED THERMAL LENS EFFECT

    Institute of Scientific and Technical Information of China (English)

    沈俊; 黄孟才; 江景云; 施教芳

    1991-01-01

    The thermal lens effect has emerged in recent years as a novel ,highly sensitive tool for the study of the very weak molecular absorption of light energy,This paper discusses the theory and technique of the thermal lens measurement.Some opplications of the thermal lens measurement are described.A mode-mismatched dual-beam thermal lens experimental arragement with a modulated probe beam ,designed by the authors.for trace analysis is presented,and its detection limit was found to be 4.1×10-7 for Cu(Ⅱ) in ethanol and 80 mW excitation power.

  18. Determination of electric field at and near the focus of a cylindrical lens for applications in fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Subhajit B. Purnapatra

    2013-05-01

    Full Text Available We present an explicit computable integral solution of the electric field generated at the focal region of a cylindrical lens. This representation is based on vectorial diffraction theory and further enables the computation of the system point spread function of a cylindrical lens. It is assumed that there is no back-scattering and the contribution from the evanescent field is negligible. Stationary phase approximation along with the Fresnel transmission coefficients are employed for evaluating the polarization dependent electric field components. Studies were carried out to determine the polarization effects and to calculate the system resolution. The effect of s −, p − and randomly polarized light is studied on the fixed sample (electric dipole is fixed in space. Proposed approach allows better understanding of electric field effects at the focus of a cylindrical aplanatic system. This opens up future developments in the field of fluorescence microscopy and optical imaging.

  19. Physics of electrostatic lens

    Science.gov (United States)

    1981-09-01

    The purpose of this program was to study the physics of the ion-energy boosting electrostatic lens for collective ion acceleration in the Luce diode. Extensive work was done in preparation for experiments on the PI Pulserad 1150. Analytic work was done on the orbit of protons in a mass spectrometer and a copper stack for nuclear activation analysis of proton energy spectrum has been designed. Unfortunately, a parallel program which would provide the Luce diode for the collective ion acceleration experiment never materialized. As a result no experiments were actually performed on the Pulserad 1150.

  20. Two 18th Century Observatories of Ireland

    Science.gov (United States)

    Hambleton, Robert

    A visit to the two major observatories of Ireland, Armagh Observatory in Northern Ireland, and Dunsink Observatory in Dublin. Mentioned are Herschel, Thomas Grubb, Thomas Jones transit instrument, Howard Grubb, Kew Observatory, John Arnold & Sons clocks, Birr Castle, and the Earl of Rosse.

  1. The Carl Sagan solar and stellar observatories as remote observatories

    Science.gov (United States)

    Saucedo-Morales, J.; Loera-Gonzalez, P.

    In this work we summarize recent efforts made by the University of Sonora, with the goal of expanding the capability for remote operation of the Carl Sagan Solar and Stellar Observatories, as well as the first steps that have been taken in order to achieve autonomous robotic operation in the near future. The solar observatory was established in 2007 on the university campus by our late colleague A. Sánchez-Ibarra. It consists of four solar telescopes mounted on a single equatorial mount. On the other hand, the stellar observatory, which saw the first light on 16 February 2010, is located 21 km away from Hermosillo, Sonora at the site of the School of Agriculture of the University of Sonora. Both observatories can now be remotely controlled, and to some extent are able to operate autonomously. In this paper we discuss how this has been accomplished in terms of the use of software as well as the instruments under control. We also briefly discuss the main scientific and educational objectives, the future plans to improve the control software and to construct an autonomous observatory on a mountain site, as well as the opportunities for collaborations.

  2. [Intraocular lens implantation in developmental lens disorders in children].

    Science.gov (United States)

    Kanigowska, Krystyna; Grałek, Mirosława; Kepa, Beata; Chipczyńska, Barbara

    2009-01-01

    The pediatric cataract surgery in eyes with developmental disorders, stay with still considerable challenge. At children, the lasting vision development extorts necessity quick settlement of refraction defect formed after operation. The intraocular lens old boy with cataract in microspherophakia and 12 years old boy with cataract in lens with coloboma. One-piece flexible and rigid PMMA intraocular lens was placed with success at posterior chamber without scleral fixations and without using capsular tension ring in this cases. After 3 years of observation there were no decentration or dislocation of intraocular lens in both children. Authors concluded that in some cases posterior chamber intraocular lens implantation despite defective zonular or capsular support, can make up the effective method of surgical treatment without risk of early dislocation.

  3. Fresnel Coefficients of Forward and Backward Waves Refracting at the Interface of Isotropic Media

    Science.gov (United States)

    Fisanov, V. V.

    2017-01-01

    The Fresnel coefficients are derived for cross- and co-polarization states of plane electromagnetic wave incident at the interface between two isotropic media. The media can support forward or backward normal waves. Based on introduction of wave type identifiers, without application of the notion of the negative refractive index, phenomena of positive and negative refractions are considered in the general case.

  4. Huygens-Feynman-Fresnel principle as the basis of applied optics.

    Science.gov (United States)

    Gitin, Andrey V

    2013-11-01

    The main relationships of wave optics are derived from a combination of the Huygens-Fresnel principle and the Feynman integral over all paths. The stationary-phase approximation of the wave relations gives the correspondent relations from the point of view of geometrical optics.

  5. On the Conventionality of Simultaneity and the Huygens-Fresnel-Miller Model of Wave Propagation

    CERN Document Server

    Bock, Robert D

    2016-01-01

    We identify a fundamental space-time invariance principle by combining the thesis of the conventionality of simultaneity with the Hugyens-Fresnel-Miller model of wave propagation. By following the standard gauge prescription, we show that the classical electromagnetic potentials influence the one-way speed of light.

  6. Laser confocal microscope noise evaluation on injection compression moulded (ICM) transparent polymer Fresnel lenses

    DEFF Research Database (Denmark)

    Loaldi, D.; Calaon, Matteo; Quagliotti, Danilo

    The evaluation of an adequate and robust measuring strategy, for roughness assessment of polymer Fresnel lenses is put under assessment. An ‘on-sample’ measurement noise, is evaluated using a laser confocal microscope (OLYMPUS © Lext). Secondly, the lowest-noise roughness measuring procedure...

  7. New adaptive method to optimize the secondary reflector of linear Fresnel collectors

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Guangdong

    2017-03-01

    Performance of linear Fresnel collectors may largely depend on the secondary-reflector profile design when small-aperture absorbers are used. Optimization of the secondary-reflector profile is an extremely challenging task because there is no established theory to ensure superior performance of derived profiles. In this work, an innovative optimization method is proposed to optimize the secondary-reflector profile of a generic linear Fresnel configuration. The method correctly and accurately captures impacts of both geometric and optical aspects of a linear Fresnel collector to secondary-reflector design. The proposed method is an adaptive approach that does not assume a secondary shape of any particular form, but rather, starts at a single edge point and adaptively constructs the next surface point to maximize the reflected power to be reflected to absorber(s). As a test case, the proposed optimization method is applied to an industrial linear Fresnel configuration, and the results show that the derived optimal secondary reflector is able to redirect more than 90% of the power to the absorber in a wide range of incidence angles. The proposed method can be naturally extended to other types of solar collectors as well, and it will be a valuable tool for solar-collector designs with a secondary reflector.

  8. A concentrator system for BI-CPVT with static linear Fresnel lenses

    NARCIS (Netherlands)

    Swinkels, G.L.A.M.; Sonneveld, P.J.; Tuijl, van B.A.J.; Janssen, H.J.J.; Zwart, de H.F.

    2011-01-01

    A greenhouse with Fresnel lenses in the south facing roof and a receiver for concentrated Photovoltaic with water cooling (CPVT system) will result in electrical and thermal energy output from the solar energy excess entering a greenhouse. The PV system converts about half of the direct radiation

  9. Performance of a concentrated photovoltaic energy system with static linear Fresnel lenses

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Tuijl, van B.A.J.; Janssen, H.J.J.; Campen, J.B.; Bot, G.P.A.

    2011-01-01

    A new type of greenhouse with linear Fresnel lenses in the cover performing as a concentrated photovoltaic (CPV) system is presented. The CPV system retains all direct solar radiation, while diffuse solar radiation passes through and enters into the greenhouse cultivation system. The removal of all

  10. Fresnel Lenses fabricated by femtosecond laser micromachining on Polymer 1D Photonic Crystal

    Directory of Open Access Journals (Sweden)

    Guduru Surya S.K.

    2013-11-01

    Full Text Available We report the fabrication of micro Fresnel lenses by femtosecond laser surface ablation on polymer 1D photonic crystals. This device is designed to focus the transmitted wavelength of the photonic crystal and filter the wavelengths corresponding to the photonic band gap region. Integration of such devices in a wavelength selective light harvesting and filtering microchip can be achieved.

  11. A concentrator system for BI-CPVT with static linear Fresnel lenses

    NARCIS (Netherlands)

    Swinkels, G.L.A.M.; Sonneveld, P.J.; Tuijl, van B.A.J.; Janssen, H.J.J.; Zwart, de H.F.

    2011-01-01

    A greenhouse with Fresnel lenses in the south facing roof and a receiver for concentrated Photovoltaic with water cooling (CPVT system) will result in electrical and thermal energy output from the solar energy excess entering a greenhouse. The PV system converts about half of the direct radiation in

  12. Manipulation and analysis of atomic and molecular beams using transmission gratings and Fresnel zone plates

    Energy Technology Data Exchange (ETDEWEB)

    Grisenti, R.E.

    2000-06-01

    In this thesis experimental results on the diffraction of rare gas atoms (He, Ne, Ar, Kr) and molecular (D{sub 2}) beams by a 100 nm period transmission grating and on the focusing of a helium atom beam through a Fresnel zone plate have been reported. (orig.)

  13. Panoramic lens applications revisited

    Science.gov (United States)

    Thibault, Simon

    2008-04-01

    During the last few years, innovative optical design strategies to generate and control image mapping have been successful in producing high-resolution digital imagers and projectors. This new generation of panoramic lenses includes catadioptric panoramic lenses, panoramic annular lenses, visible/IR fisheye lenses, anamorphic wide-angle attachments, and visible/IR panomorph lenses. Given that a wide-angle lens images a large field of view on a limited number of pixels, a systematic pixel-to-angle mapping will help the efficient use of each pixel in the field of view. In this paper, we present several modern applications of these modern types of hemispheric lenses. Recently, surveillance and security applications have been proposed and published in Security and Defence symposium. However, modern hemispheric lens can be used in many other fields. A panoramic imaging sensor contributes most to the perception of the world. Panoramic lenses are now ready to be deployed in many optical solutions. Covered applications include, but are not limited to medical imaging (endoscope, rigiscope, fiberscope...), remote sensing (pipe inspection, crime scene investigation, archeology...), multimedia (hemispheric projector, panoramic image...). Modern panoramic technologies allow simple and efficient digital image processing and the use of standard image analysis features (motion estimation, segmentation, object tracking, pattern recognition) in the complete 360° hemispheric area.

  14. GEOSCOPE Observatory Recent Developments

    Science.gov (United States)

    Leroy, N.; Pardo, C.; Bonaime, S.; Stutzmann, E.; Maggi, A.

    2010-12-01

    The GEOSCOPE observatory consists of a global seismic network and a data center. The 31 GEOSCOPE stations are installed in 19 countries, across all continents and on islands throughout the oceans. They are equipped with three component very broadband seismometers (STS1 or STS2) and 24 or 26 bit digitizers, as required by the Federation of Seismic Digital Network (FDSN). In most stations, a pressure gauge and a thermometer are also installed. Currently, 23 stations send data in real or near real time to GEOSCOPE Data Center and tsunami warning centers. In 2009, two stations (SSB and PPTF) have been equipped with warpless base plates. Analysis of one year of data shows that the new installation decreases long period noise (20s to 1000s) by 10 db on horizontal components. SSB is now rated in the top ten long period stations for horizontal components according to the LDEO criteria. In 2010, Stations COYC, PEL and RER have been upgraded with Q330HR, Metrozet electronics and warpless base plates. They have been calibrated with the calibration table CT-EW1 and the software jSeisCal and Calex-EW. Aluminum jars are now installed instead of glass bells. A vacuum of 100 mbars is applied in the jars which improves thermal insulation of the seismometers and reduces moisture and long-term corrosion in the sensor. A new station RODM has just been installed in Rodrigues Island in Mauritius with standard Geoscope STS2 setup: STS2 seismometer on a granite base plate and covered by cooking pot and thermal insulation, it is connected to Q330HR digitizer, active lightning protection, Seiscomp PC and real-time internet connection. Continuous data of all stations are collected in real time or with a delay by the GEOSCOPE Data Center in Paris where they are validated, archived and made available to the international scientific community. Data are freely available to users by different interfaces according data types (see : http://geoscope.ipgp.fr) - Continuous data in real time coming

  15. Observatory Bibliographies as Research Tools

    Science.gov (United States)

    Rots, Arnold H.; Winkelman, S. L.

    2013-01-01

    Traditionally, observatory bibliographies were maintained to provide insight in how successful a observatory is as measured by its prominence in the (refereed) literature. When we set up the bibliographic database for the Chandra X-ray Observatory (http://cxc.harvard.edu/cgi-gen/cda/bibliography) as part of the Chandra Data Archive ((http://cxc.harvard.edu/cda/), very early in the mission, our objective was to make it primarily a useful tool for our user community. To achieve this we are: (1) casting a very wide net in collecting Chandra-related publications; (2) including for each literature reference in the database a wealth of metadata that is useful for the users; and (3) providing specific links between the articles and the datasets in the archive that they use. As a result our users are able to browse the literature and the data archive simultaneously. As an added bonus, the rich metadata content and data links have also allowed us to assemble more meaningful statistics about the scientific efficacy of the observatory. In all this we collaborate closely with the Astrophysics Data System (ADS). Among the plans for future enhancement are the inclusion of press releases and the Chandra image gallery, linking with ADS semantic searching tools, full-text metadata mining, and linking with other observatories' bibliographies. This work is supported by NASA contract NAS8-03060 (CXC) and depends critically on the services provided by the ADS.

  16. Performance comparison of four kinds of flat nonimaging Fresnel lenses made of polycarbonates and polymethyl methacrylate for concentrated photovoltaics.

    Science.gov (United States)

    Languy, Fabian; Habraken, Serge

    2011-07-15

    Solar concentrators made of a single refractive primary optics are limited to a concentration ratio of about 1000× [Opt. Express 19, A280 (2011)], due only to longitudinal chromatic aberration, while mirrors are limited to ∼46,000× by the angular size of the Sun. To reduce the chromatic aberration while keeping cost-effective systems for concentrated photovoltaics, a study of four different kinds of flat Fresnel doublets made of polycarbonates and polymethyl methacrylate is presented. It reveals that Fresnel doublets may have fewer optical losses than non-Fresnel doublets, with a lower lateral chromatic split allowing for even higher concentration ratio.

  17. Influence of dispersion on diffraction efficiency of liquid crystal Fresnel lenses%色散对液晶菲涅耳透镜衍射效率的影响研究

    Institute of Scientific and Technical Information of China (English)

    孙会娟; 高兴茹; 姚淑娜; 周庆莉; 曹召良

    2012-01-01

    首先研究了液晶菲涅耳透镜和传统菲涅耳透镜的区别,并给出液晶菲涅耳透镜衍射效率的计算公式。接着,研究了液晶材料的色散和入射波长偏离量化波长对衍射效率的影响。经过计算分析并通过相应的实验发现,当量化波长为470nm时,在400nm和700nm处衍射效率分别下降了9.0%和27.5%,说明波长偏离对液晶菲涅耳透镜的衍射效率影响较大;当量化波长为510nm时,波长偏离在400nm和700nm处产生的衍射效率下降大致相当,约为20.0%;当在400nm和700nm处液晶的折射率变化量△n基本相等时,液晶色散造成的衍射效率降低都约为8.0%。结果表明,和波长偏离相比,液晶色散对衍射效率的影响相对较小,且液晶菲涅耳透镜的量化波长应在470~510nm区间选取。实验测量了色散对液晶菲聂耳透镜衍射效率的影响,测量结果和理论计算结果非常接近,说明分析结论有效。%Firstly, the difference between a liquid crystal (LC) Fresnel lens and a conventional Fresnel lens is researched and computational formulas are given to calculate the diffraction efficiency of LC Fresnel lens. Then, the effects of material dispersion and incident wavelength deviation from the quantified wavelength on the diffraction efficiency are analyzed. Because of material dispersion and the wavelength deviation from the quantified wavelength of 470 nm,at the wavelengths of 400 nm and 700 nm,the dif- fraction efficiency decreases by 9 % and 27.5%, respectively. If the quantified wavelength is 510 nm, the diffraction efficiency decrease caused by the wavelength deviation is about 20 0% for both 400 nm and 700 nrn. When the variation of An is approximately the same at the wavelengths of 400 nm and 700 nm, the decrease of diffraction efficiency caused by the dispersion is about 8 %. Therefore, compared with wave- length deviation, material dispersion has little influence on

  18. Australian network of magnetic observatories

    Science.gov (United States)

    Barton, C. E.

    Six magnetic observatories are presently operated by the Australian Bureau of Mineral Resources, Geology and Geophysics (BMR), with assistance from various other organizations. Variometer recordings are made of three or more elements of the field at minute intervals, and absolute measurements are made weekly. There are four observatories on the continent (Canberra, Gnangara, Charters Towers, and Learmonth), one on Macquarie Island, and one at Mawson Station in eastern Antarctica (Figure 1). In addition, semiweekly absolute observations of the field (D, H, and F) are made at the other two permanent Australian Antarctic bases (Casey and Davis). A three-axis fluxgate magnetometer (EDA Electronics, Toronto , Canada) is operated independently by the Upper Atmosphere Physics group at Davis. Monthly mean values, K indices, and information about magnetic disturbances are published monthly in the BMR Geophysical Observatory Report.

  19. Theory in a Virtual Observatory

    CERN Document Server

    Teuben, P; Hut, P; Levy, S; Makino, J; McMillan, S; Zwart, S P; Slavin, S D; Teuben, Peter; Young, Dave De; Hut, Piet; Levy, Stuart; Makino, Jun; Millan, Steve Mc; Zwart, Simon Portegies; Slavin, Shawn

    2001-01-01

    During the last couple of years, observers have started to make plans for a Virtual Observatory, as a federation of existing data bases, connected through levels of software that enable rapid searches, correlations, and various forms of data mining. We propose to extend the notion of a Virtual Observatory by adding archives of simulations, together with interactive query and visualization capabilities, as well as ways to simulate observations of simulations in order to compare them with observations. For this purpose, we have already organized two small workshops, earlier in 2001, in Tucson and Aspen. We have also provided concrete examples of theory data, designed to be federated with a Virtual Observatory. These data stem from a project to construct an archive for our large-scale simulations using the GRAPE-6 (a 32-Teraflops special purpose computer for stellar dynamics). We are constructing interfaces by which remote observers can observe these simulations. In addition, these data will enable detailed comp...

  20. Mexican Virtual Solar Observatory project

    Science.gov (United States)

    Santillán, Alfredo J.; Hernández, Liliana; Salas, Guillermo; Sánchez, Antonio; González, Alejandro; Franco, José

    2007-08-01

    The Virtual Solar Observatory (VSO) concept outlines a software environment for searching, obtaining and analyzing data from archives of solar data that are distributed at many different observatories around the world (Hill 2006, in this volume). The VSO, however, not only provides fast and reliable access to the existing data of Solar Active Regions, but also represents a powerful and unique tool to perform numerical simulations of the evolution and present state of solar phenomena. Two centers at UNAM, the Institute of Astronomy (IA) and the Supercomputer Center (DGSCA), along with the Sonora University, are working together to create the Mexican Virtual Solar Observatory (MVSO) that will be part of a wider national effort.

  1. Environmental Observatories and Hydrologic Modeling

    Science.gov (United States)

    Hooper, R. P.; Duncan, J. M.

    2006-12-01

    During the past several years, the environmental sciences community has been attempting to design large- scale obsevatories that will transform the science. A watershed-based observatory has emerged as an effective landscape unit for a broad range of environmental sciences and engineering. For an effective observatory, modeling is a central requirement because models are precise statements of the hypothesized conceptual organization of watersheds and of the processes believed to be controlling hydrology of the watershed. Furthermore, models can serve to determine the value of existing data and the incremental value of any additional data to be collected. Given limited resources, such valuation is mandatory for an objective design of an observatory. Modeling is one part of a "digital watershed" that must be constructed for any observatory, a concept that has been developed by the CUAHSI Hydrologic Information Systems project. A digital watershed has three functions. First, it permits assembly of time series (such as stream discharge or precipitation measurements), static spatial coverages (such as topography), and dynamic fields (such as precipitation radar and other remotely sensed data). Second, based upon this common data description, a digital observatory permits multiple conceptualizations of the observatory to be created and to be stored. These conceptualizations could range from lumped box-and-arrow watershed models, to semi-distributed topographically based models, to three-dimensional finite element models. Finally, each conceptualization can lead to multiple models--that is, a set of equations that quantitatively describe hydrologic (or biogeochemical or geomorphologic) processes through libraries of tools that can be linked as workflow sequences. The advances in cyberinfrastructure that allow the storage of multiple conceptualizations and multiple model formulations of these conceptualizations promise to accelerate advances in environmental science both

  2. Astronomical Research Using Virtual Observatories

    Directory of Open Access Journals (Sweden)

    M Tanaka

    2010-01-01

    Full Text Available The Virtual Observatory (VO for Astronomy is a framework that empowers astronomical research by providing standard methods to find, access, and utilize astronomical data archives distributed around the world. VO projects in the world have been strenuously developing VO software tools and/or portal systems. Interoperability among VO projects has been achieved with the VO standard protocols defined by the International Virtual Observatory Alliance (IVOA. As a result, VO technologies are now used in obtaining astronomical research results from a huge amount of data. We describe typical examples of astronomical research enabled by the astronomical VO, and describe how the VO technologies are used in the research.

  3. The Deep Lens Survey

    CERN Document Server

    Wittman, D; Dell'Antonio, I P; Becker, A C; Margoniner, V E; Cohen, J; Norman, D; Loomba, D; Squires, G; Wilson, G; Stubbs, C; Hennawi, J F; Spergel, D N; Boeshaar, P C; Clocchiatti, A; Hamuy, M; Bernstein, G; González, A; Guhathakurta, R; Hu, W; Seljak, U; Zaritsky, D

    2002-01-01

    The Deep Lens Survey (DLS) is a deep BVRz' imaging survey of seven 2x2 degree fields, with all data to be made public. The primary scientific driver is weak gravitational lensing, but the survey is also designed to enable a wide array of other astrophysical investigations. A unique feature of this survey is the search for transient phenomena. We subtract multiple exposures of a field, detect differences, classify, and release transients on the Web within about an hour of observation. Here we summarize the scientific goals of the DLS, field and filter selection, observing techniques and current status, data reduction, data products and release, and transient detections. Finally, we discuss some lessons which might apply to future large surveys such as LSST.

  4. Single-crystal diamond refractive lens for focusing X-rays in two dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, S.; Baryshev, Sergey; Butler, J. E.; Antipova, O.; Liu, Zunping; Stoupin, S.

    2016-01-01

    The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources for secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses.

  5. Single-crystal diamond refractive lens for focusing X-rays in two dimensions.

    Science.gov (United States)

    Antipov, S; Baryshev, S V; Butler, J E; Antipova, O; Liu, Z; Stoupin, S

    2016-01-01

    The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources for secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses.

  6. Single Crystal Diamond Refractive Lens for Focusing X-rays in Two Dimensions

    CERN Document Server

    Antipov, S; Butler, J E; Antipova, O; Liu, Z; Stoupin, S

    2015-01-01

    We report the fabrication and performance evaluation of single crystal diamond refractive X-ray lenses with a paraboloid of rotation form factor for focusing X-rays in two dimensions simultaneously. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses can be stacked together to form a traditional compound refractive lens (CRL). Due to the superior physical properties of the material, diamond CRLs are enabling and indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources on secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses.

  7. The design and application of large area intensive lens array focal spots measurement system

    Science.gov (United States)

    Chen, Bingzhen; Yao, Shun; Yang, Guanghui; Dai, Mingchong; Wang, Zhiyong

    2014-12-01

    Concentrating Photovoltaic (CPV) modules are getting thinner and using smaller cells now days. Correspondingly, large area intensive lens arrays with smaller unit dimension and shorter focal length are wanted. However, the size and power center of lens array focal spots usually differ from the design value and are hard to measure, especially under large area situation. It is because the machining error and deformation of material of the lens array are hard to simulate in the optical design process. Thus the alignment error between solar cells and focal spots in the module assembly process will be hard to control. Under this kind of situation, the efficiency of CPV module with thinner body and smaller cells is much lower than expected. In this paper, a design of large area lens array focal spots automatic measurement system is presented, as well as its prototype application results. In this system, a four-channel parallel light path and its corresponding image capture and process modules are designed. These modules can simulate focal spots under sunlight and have the spots image captured and processed using charge coupled devices and certain gray level algorithm. Thus the important information of focal spots such as spot size and location will be exported. Motion control module based on grating scale signal and interval measurement method are also employed in this system in order to get test results with high speed and high precision on large area lens array no less than 1m×0.8m. The repeatability of the system prototype measurement is +/-10μm with a velocity of 90 spot/min. Compared to the original module assembled using coordinates from optical design, modules assembled using data exported from the prototype is 18% higher in output power, reaching a conversion efficiency of over 31%. This system and its design can be used in the focal spot measurement of planoconvex lens array and Fresnel lens array, as well as other kinds of large area lens array application

  8. Multidisciplinary development of Belerofont Observatory.

    Science.gov (United States)

    Babović, V.

    1997-08-01

    Belerofont Astronomical Observatory in Kragujevac, inaugurated on the occasion of the appearance of Halley's comet on February 26, 1986, develops astronomical activities among pupils, university youth and people interested in cosmic phenomena. In preparing a course of astronomy and astrophysics in the physics study curriculum, the society tends toward a multidisciplinary way of work.

  9. The National Ecological Observatory Network

    Science.gov (United States)

    Michener, W. K.

    2006-05-01

    The National Ecological Observatory Network (NEON) is a research platform designed to advance understanding of how ecosystems and organisms respond to variations in climate and changes in land use. NEON is the first long-term ecological observatory conceived as a continental-scale network; equipped with standardized sensors, cyberinfrastructure, and data-collection protocols across the network; and designed to simultaneously address a common set of research questions and support investigator-driven ecological research in all regions of the United States. The Observatory focuses on variations in climate and land use because they are primary drivers of the Nation's environmental challenges, as identified by the National Research Council--i.e., biodiversity, biogeochemical cycles, climate change, hydroecology, infectious disease, invasive species, and land use. At the broadest scale, NEON links the complexity of climate variation to the behavior of ecological systems, a core aspect of ecological complexity. At the same time, because of the complexity of the interactions among humans and ecosystems, the network design includes NEON sites in wild, managed and urban systems within climate domains. Observatory data will also be part of a national education program designed to advance ecological science literacy through new programs and activities that develop and promote scientific ways of thinking.

  10. Transferring Lens Prescriptions Between Lens-Design Programs

    Science.gov (United States)

    Stacy, John E.; Wooley, Laura; Carlin, Brian

    1989-01-01

    Optical Lens Prescription Data Formatter computer program enables user to transfer complicated lens prescriptions quickly and easily from one major optical-design program to another and back again. One can take advantage of inherent strength of either program. Programs are ACCOS V from Scientific Calculations, Inc., of Fishers, NY, and CODE V from Optical Research Associates of Pasadena, CA. VAX version written in FORTRAN.

  11. Seafloor Observatory Science: a Review

    Directory of Open Access Journals (Sweden)

    L. Beranzoli

    2006-06-01

    Full Text Available The ocean exerts a pervasive influence on Earth’s environment. It is therefore important that we learn how this system operates (NRC, 1998b; 1999. For example, the ocean is an important regulator of climate change (e.g., IPCC, 1995. Understanding the link between natural and anthropogenic climate change and ocean circulation is essential for predicting the magnitude and impact of future changes in Earth’s climate. Understanding the ocean, and the complex physical, biological, chemical, and geological systems operating within it, should be an important goal for the opening decades of the 21st century. Another fundamental reason for increasing our understanding of ocean systems is that the global economy is highly dependent on the ocean (e.g., for tourism, fisheries, hydrocarbons, and mineral resources (Summerhayes, 1996. The establishment of a global network of seafloor observatories will help to provide the means to accomplish this goal. These observatories will have power and communication capabilities and will provide support for spatially distributed sensing systems and mobile platforms. Sensors and instruments will potentially collect data from above the air-sea interface to below the seafloor. Seafloor observatories will also be a powerful complement to satellite measurement systems by providing the ability to collect vertically distributed measurements within the water column for use with the spatial measurements acquired by satellites while also providing the capability to calibrate remotely sensed satellite measurements (NRC, 2000. Ocean observatory science has already had major successes. For example the TAO array has enabled the detection, understanding and prediction of El Niño events (e.g., Fujimoto et al., 2003. This paper is a world-wide review of the new emerging “Seafloor Observatory Science”, and describes both the scientific motivations for seafloor observatories and the technical solutions applied to their architecture. A

  12. Metodología para el Dimensionamiento y Optimización de un Concentrador Lineal Fresnel Methodology for Sizing and Optimization of a Linear Fresnel Reflector

    OpenAIRE

    Fernando Lara; Nicolás Velázquez; Daniel Sauceda; Alexis Acuña

    2013-01-01

    Se presenta una metodología de dimensionamiento para concentradores lineales Fresnel de espejos curvos y cavidad invertida tipo concentrador parabólico compuesto. El objetivo es determinar los parámetros geométricos del concentrador que permitan obtener la máxima eficiencia de captación de energía solar. La metodología propuesta utiliza un procedimiento analítico y la técnica de trazado de rayos, por medio de la cual se llevó a cabo un estudio paramétrico evaluando las horas de operación corr...

  13. Norwegian Ocean Observatory Network (NOON)

    Science.gov (United States)

    Ferré, Bénédicte; Mienert, Jürgen; Winther, Svein; Hageberg, Anne; Rune Godoe, Olav; Partners, Noon

    2010-05-01

    The Norwegian Ocean Observatory Network (NOON) is led by the University of Tromsø and collaborates with the Universities of Oslo and Bergen, UniResearch, Institute of Marine Research, Christian Michelsen Research and SINTEF. It is supported by the Research Council of Norway and oil and gas (O&G) industries like Statoil to develop science, technology and new educational programs. Main topics relate to ocean climate and environment as well as marine resources offshore Norway from the northern North Atlantic to the Arctic Ocean. NOON's vision is to bring Norway to the international forefront in using cable based ocean observatory technology for marine science and management, by establishing an infrastructure that enables real-time and long term monitoring of processes and interactions between hydrosphere, geosphere and biosphere. This activity is in concert with the EU funded European Strategy Forum on Research Infrastructures (ESFRI) roadmap and European Multidisciplinary Seafloor Observation (EMSO) project to attract international leading research developments. NOON envisions developing towards a European Research Infrastructure Consortium (ERIC). Beside, the research community in Norway already possesses a considerable marine infrastructure that can expand towards an international focus for real-time multidisciplinary observations in times of rapid climate change. PIC The presently established cable-based fjord observatory, followed by the establishment of a cable-based ocean observatory network towards the Arctic from an O&G installation, will provide invaluable knowledge and experience necessary to make a successful larger cable-based observatory network at the Norwegian and Arctic margin (figure 1). Access to large quantities of real-time observation from the deep sea, including high definition video, could be used to provide the public and future recruits to science a fascinating insight into an almost unexplored part of the Earth beyond the Arctic Circle

  14. Cosmic Lens Reveals Distant Galactic Violence

    Science.gov (United States)

    2008-10-01

    , that the galaxy has merged with another. "This whole picture, of massive galaxies and supermassive black holes assembling themselves through major galaxy mergers so early in the Universe, is a new paradigm in galaxy formation. This gravitationally lensed system allows us to see this process in unprecedented detail," said Chris Carilli, of the National Radio Astronomy Observatory. In 2003, astronomers studied PSS J2322+1944, finding the Einstein Ring by observing radio waves emitted by molecules of Carbon Monoxide (CO). When astronomers see large amounts of CO gas in a galaxy, they conclude that there also is a large amount of molecular Hydrogen present, and thus a large reservoir of fuel for star formation. In the latest study, scientists painstakingly produced a physical model of the lensing intermediate galaxy. By knowing the mass, structure and orientation of this galaxy, they could then deduce the details of how it bends the light and radio waves from the more-distant galaxy. This allowed them to reconstruct a picture of the distant object. By doing this with multiple VLA images made at different radio frequencies, they were able to measure the motions of the gas in the distant galaxy. "The lensing galaxy was, in effect, part of our telescope. By projecting backward through the lens, we determined the structure and dynamics of the galaxy behind it," said Fabian Walter of the Max-Planck Institute for Astronomy in Germany. PSS J2322+1944 was first discovered by George Djorgovski of Caltech, using the digitized Palomar Observatory Sky Survey. Later radio and optical studies showed that it had a huge reservoir of dust and molecular gas, and indicated gravitational lensing. Gravitational lenses were predicted, based on Albert Einstein's General Theory of Relativity, in 1919. Einstein himself showed in 1936 that a perfectly-aligned gravitational lens would produce a circular image, but felt that the chances of actually observing such an object were nearly zero. The first

  15. Connexin hemichannels in the lens

    Directory of Open Access Journals (Sweden)

    Eric C Beyer

    2014-02-01

    Full Text Available The normal function and survival of cells in the avascular lens is facilitated by intercellular communication through an extensive network of gap junctions formed predominantly by three connexins (Cx43, Cx46, and Cx50. In expression systems, these connexins can all induce hemi-channel currents, but other lens proteins (e.g., pannexin1 can also induce similar currents. Hemichannel currents have been detected in isolated lens fiber cells. These hemichannels may make significant contributions to normal lens physiology and pathophysiology. Studies of some connexin mutants linked to congenital cataracts have implicated hemichannels with aberrant voltage-dependent gating or modulation by divalent cations in disease pathogenesis. Hemichannels may also contribute to age- and disease-related cataracts.

  16. The Old Vilnius University Observatory (in German)

    Science.gov (United States)

    Matulaitytė, S.

    The history of the Vilnius University Astronomical Observatory in 1753--1882 is described (in German). The observatory is one of the oldest astronomical institutions in Europe. In 2003 its 250th anniversary was celebrated.

  17. Gravitational lens surveys with LOFAR

    CERN Document Server

    Wucknitz, O

    2008-01-01

    Deep surveys planned as a Key Science Project of LOFAR provide completely new opportunities for gravitational lens searches. For the first time do large-scale surveys reach the resolution required for a direct selection of lens candidates using morphological criteria. We briefly describe the strategies that we will use to exploit this potential. The long baselines of an international E-LOFAR are essential for this project.

  18. Ascorbate in the ocular lens

    OpenAIRE

    Mody, Vino C. Jr

    2006-01-01

    Purpose: First, we intended to establish a method for sample preparation for measurement of ascorbate in whole rat and guinea pig lenses utilizing ultrafiltration and high performance liquid chromatography with ultraviolet radiation detection. Then, we aimed to investigate whether, in the albino rat, lens ascorbate concentration depends on solid dietary intake. Finally, we investigated if, in the pigmented guinea pig, lens ascorbate concentration may be elevated with drinkin...

  19. Phakic Intraocular lens- a review

    OpenAIRE

    Cruz, Francisco Miguel

    2015-01-01

    Introduction: Intraocular refractive procedures with the implantation of a Phakic Intraocular lens have become a safe efficient and predictable alternative for treating high ametropias when the use of corneal photoablative procedures is not possible. The implantation of Phakic intraocular lens preservs the accomodative function,is a reversable refractive procedure, with minimal induction of higher order aberrations compaed with corneal photoablative procedures. Methods: An analytical review o...

  20. The calculation of electromagnetic fields in the Fresnel and Fraunhofer regions using numerical integration methods

    Science.gov (United States)

    Schmidt, R. F.

    1971-01-01

    Some results obtained with a digital computer program written at Goddard Space Flight Center to obtain electromagnetic fields scattered by perfectly reflecting surfaces are presented. For purposes of illustration a paraboloidal reflector was illuminated at radio frequencies in the simulation for both receiving and transmitting modes of operation. Fields were computed in the Fresnel and Fraunhofer regions. A dual-reflector system (Cassegrain) was also simulated for the transmitting case, and fields were computed in the Fraunhofer region. Appended results include derivations which show that the vector Kirchhoff-Kottler formulation has an equivalent form requiring only incident magnetic fields as a driving function. Satisfaction of the radiation conditions at infinity by the equivalent form is demonstrated by a conversion from Cartesian to spherical vector operators. A subsequent development presents the formulation by which Fresnel or Fraunhofer patterns are obtainable for dual-reflector systems. A discussion of the time-average Poynting vector is also appended.

  1. New theorem relating two-mode entangled tomography to two-mode Fresnel operator

    Institute of Scientific and Technical Information of China (English)

    Xie Chuan-Mei; Fan Hong-Yi

    2012-01-01

    Based on the Fan-Hu's formalism,i.e.,the tomogram of two-mode quantum states can be considered as the module square of the states' wave function in the intermediate representation,which is just the eigenvector of the Fresnel quadrature phase,we derive a new theorem for calculating the quantum tomogram of two-mode density operators,i.e.,the tomogram of a two-mode density operator is equal to the marginal integration of the classical Weyl correspondence function of F+2pF2,where F2 is the two-mode Fresnel operator. An application of the theorem in evaluating the tomogram of an optical chaotic field is also presented.

  2. Sub-100 nm hard X-ray microbeam generation with Fresnel zone plate optics

    CERN Document Server

    Takano, H; Takeuchi, A

    2003-01-01

    A hard X-ray focusing test of a Fresnel zone plate has been performed with a synchrotron radiation source at the undulator beamline 20XU of SPring-8. Fresnel zone plate with a radius of 150 mu m, and an outermost zone width of 100 nm was used for the X-ray focusing device. The 248-m-long beamline provides fully coherent illumination for the focusing device. The focused beam evaluated by the knife-edge-scan method and scanning microscope test using test charts. Nearly diffraction- limited focusing with a size of 120 nm was achieved for the first-order diffraction at 10 keV X-ray. Evaluation for the third order diffraction was also performed at 8 keV X-ray, and a focal size of 50 m has been obtained. (author)

  3. A new formula on the Fresnel reflectance and its application in microwave remote sensing

    Institute of Scientific and Technical Information of China (English)

    XU; Qing; LIU; Yuguang

    2004-01-01

    A new formula on the Fresnel reflectance is derived based on our understanding of the complex index of refraction and continuity condition of the E-M waves across the interface between two media. The imaginary component of the complex index of refraction is related to the attenuation of the E-M waves propagating in a medium. It does not denote the phase of the E-M waves. The traditional derivation confuses the physical meaning of the imaginary component of the complex index of refraction. The derived formula on the Fresnel reflectance can be used to obtain the emissivity of sea surface, which is useful to retrieve sea surface temperature and sea surface salinity in the microwave remote sensing.

  4. Generation of phase-only Fresnel hologram based on down-sampling.

    Science.gov (United States)

    Tsang, P W M; Chow, Y-T; Poon, T-C

    2014-10-20

    We present a novel non-iterative method for generating phase-only Fresnel holograms. The intensity image of the source object scene is first down-sampled with uniform grid-cross lattices. A Fresnel hologram is then generated from the intensity and the depth information of the sampled object points. Subsequently, only the phase component of the hologram is preserved, resulting in a pure phase hologram that we call the sampled-phase-only hologram (SPOH). Experimental evaluation reveals that the numerical, as well as the optical reconstructed images of the proposed phase-only hologram derived with our method are of high visual quality. Moreover, the reconstructed optical image is brighter, and less affected by phase noise contamination on the hologram as compared with those generated with existing error-diffusion approaches.

  5. A course in lens design

    CERN Document Server

    Velzel, Chris

    2014-01-01

    A Course in Lens Design is an instruction in the design of image-forming optical systems. It teaches how a satisfactory design can be obtained in a straightforward way. Theory is limited to a minimum, and used to support the practical design work. The book introduces geometrical optics, optical instruments and aberrations. It gives a description of the process of lens design and of the strategies used in this process. Half of its content is devoted to the design of sixteen types of lenses, described in detail from beginning to end. This book is different from most other books on lens design because it stresses the importance of the initial phases of the design process: (paraxial) lay-out and (thin-lens) pre-design. The argument for this change of accent is that in these phases much information can be obtained about the properties of the lens to be designed. This information can be used in later phases of the design. This makes A Course in Lens Design a useful self-study book, and a suitable basis for an intro...

  6. Observatory bibliographies: a vital resource in operating an observatory

    Science.gov (United States)

    Winkelman, Sherry; Rots, Arnold

    2016-07-01

    The Chandra Data Archive (CDA) maintains an extensive observatory bibliography. By linking the published articles with the individual datasets analyzed in the paper, we have the opportunity to join the bibliographic metadata (including keywords, subjects, objects, data references from other observatories, etc.) with the meta- data associated with the observational datasets. This rich body of information is ripe for far more sophisticated data mining than the two repositories (publications and data) would afford individually. Throughout the course of the mission the CDA has investigated numerous questions regarding the impact of specific types of Chandra programs such as the relative science impact of GTO, GO, and DDT programs or observing, archive, and theory programs. Most recently the Chandra bibliography was used to assess the impact of programs based on the size of the program to examine whether the dividing line between standard and large projects should be changed and whether another round of X-ray Visionary Programs should be offered. Traditionally we have grouped observations by proposal when assessing the impact of programs. For this investigation we aggregated observations by pointing and instrument configuration such that objects observed multiple times in the mission were considered single observing programs. This change in perspective has given us new ideas for assessing the science impact of Chandra and for presenting data to our users. In this paper we present the methodologies used in the recent study, some of its results, and most importantly some unexpected insights into assessing the science impact of an observatory.

  7. The MicroObservatory Net

    Science.gov (United States)

    Brecher, K.; Sadler, P.

    1994-12-01

    A group of scientists, engineers and educators based at the Harvard-Smithsonian Center for Astrophysics (CfA) has developed a prototype of a small, inexpensive and fully integrated automated astronomical telescope and image processing system. The project team is now building five second generation instruments. The MicroObservatory has been designed to be used for classroom instruction by teachers as well as for original scientific research projects by students. Probably in no other area of frontier science is it possible for a broad spectrum of students (not just the gifted) to have access to state-of-the-art technologies that would allow for original research. The MicroObservatory combines the imaging power of a cooled CCD, with a self contained and weatherized reflecting optical telescope and mount. A microcomputer points the telescope and processes the captured images. The MicroObservatory has also been designed to be used as a valuable new capture and display device for real time astronomical imaging in planetariums and science museums. When the new instruments are completed in the next few months, they will be tried with high school students and teachers, as well as with museum groups. We are now planning to make the MicroObservatories available to students, teachers and other individual users over the Internet. We plan to allow the telescope to be controlled in real time or in batch mode, from a Macintosh or PC compatible computer. In the real-time mode, we hope to give individual access to all of the telescope control functions without the need for an "on-site" operator. Users would sign up for a specific period of time. In the batch mode, users would submit jobs for the telescope. After the MicroObservatory completed a specific job, the images would be e-mailed back to the user. At present, we are interested in gaining answers to the following questions: (1) What are the best approaches to scheduling real-time observations? (2) What criteria should be used

  8. A comparative analysis of configurations of linear Fresnel collectors for concentrating solar power

    OpenAIRE

    Montes, Maria Jesus; Rubbia, C; Abbas Camara, Rubén; Martínez-Val Peñalosa, Jose Maria

    2014-01-01

    Linear Fresnel collector arrays present some relevant advantages in the domain of concentrating solar power because of their simplicity, robustness and low capital cost. However, they also present important drawbacks and limitations, notably their average concentration ratio, which seems to limit significantly the performance of these systems. First, the paper addresses the problem of characterizing the mirror field configuration assuming hourly data of a typical year, in reference to a c...

  9. Huygens-Fresnel principle for N-photon states of light

    OpenAIRE

    2010-01-01

    We show that the propagation of a N-photon field in space and time can be described by a generalized Huygens-Fresnel integral. Using two examples, we then demonstrate how familiar Fourier optics techniques applied to a N-photon wave function can be used to engineer the propagation of entanglement and to design the way the detection of one photon shapes the state of the others.

  10. Enhanced method for the generation of binary Fresnel holograms based on grid-cross downsampling

    Institute of Scientific and Technical Information of China (English)

    W. K. Cheung; Peter Tsang; T. C. Poon; Changhe Zhou

    2011-01-01

    Past research has demonstrated that digital Fresnel holograms can be binarized in a non-iterative manner by downsampling the source image with a grid lattice prior to the hologram generation process. The reconstructed image of a hologram that is binarized with this approach is superior in quality compared with that obtained with direct thresholding, half-toning, and error diffusion. Despite the success, the downsampling mechanism results in a prominent texture of regularly spaced voids in the shaded regions. To alleviate this problem, an enhanced non-iterative method for the generation of binary Fresnel holograms is presented. Our method is based on a multi-direction line-sampling formed by a combined grid and cross lattice, which is capable of preserving a more solid texture in the shaded regions and enhancing the visual quality of the reconstructed image. Computer simulations and optical reconstructions are shown to demonstrate the effectiveness of our proposed technique.%Past research has demonstrated that digital Fresnel holograms can be binarized in a non-iterative manner by downsampling the source image with a grid lattice prior to the hologram generation process.The reconstructed image of a hologram that is binarized with this approach is superior in quality compared with that obtained with direct thresholding,half-toning,and error diffusion.Despite the success,the downsampling mechanism results in a prominent texture of regularly spaced voids in the shaded regions.To alleviate this problem,an enhanced non-iterative method for the generation of binary Fresnel holograms is presented.Our method is based on a multi-direction line-sampling formed by a combined grid and cross lattice,which is capable of preserving a more solid texture in the shaded regions and enhancing the visual quality of the reconstructed image.Computer simulations and optical reconstructions are shown to demonstrate the effectiveness of our proposed technique.

  11. The Pierre Auger Cosmic Ray Observatory

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albert, J. N.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Argiro, S.; Arisaka, K.; Arneodo, F.; Arqueros, F.; Asch, T.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A.; Barenthien, N.; Barkhausen, M.; Baeuml, J.; Baus, C.; Beatty, J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bergmann, T.; Bertaina, M. E.; Biermann, P. L.; Bilhaut, R.; Billoir, P.; Blaes, S. G.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Bolz, H.; Boncioli, D.; Bonifaz, C.; Bonino, R.; Boratav, M.; Borodai, N.; Bracci, F.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Camin, D.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Castera, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chiosso, M.; Chudoba, J.; Cilmo, M.; Clark, P. D. J.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Colombo, E.; Colonges, S.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cooper, M. J.; Coppens, J.; Cordier, A.; Courty, B.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Diaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, C.; Dolron, P.; Dorofeev, A.; Hasankiadeh, Q. Dorosti; Dova, M. T.; D'Urso, D.; Ebr, J.; Engel, R.; Epele, L. N.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Ferrero, A.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fox, B. D.; Fraenkel, E. D.; Fratu, O.; Freire, M. M.; Froehlich, U.; Fuchs, B.; Fulgione, W.; Fujii, T.; Garcia, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Geenen, H.; Gemmeke, H.; Genolini, B.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Gibbs, K.; Giller, M.; Giudice, N.; Glaser, C.; Glass, H.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gonzalez, N.; Gookin, B.; Gora, D.; Gordon, J.; Gorgi, A.; Gorham, P.; Gotink, W.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Grygar, J.; Guardone, N.; Guarino, F.; Guedes, G. P.; Guglielmi, L.; Habraken, R.; Hampel, M. R.; Hansen, P.; Harari, D.; Harmsma, S.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hoerandel, J. R.; Horneffer, A.; Horvat, M.; Horvath, P.; Hrabovsky, M.; Huber, D.; Hucker, H.; Huege, T.; Iarlori, M.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kaeaepae, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kelley, J.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Kopmann, A.; Krause, R.; Krohm, N.; Kroemer, O.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Casado, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marsella, G.; Martello, D.; Martina, L.; Martinez, H.; Martinez, N.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Mello, V. B. B.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Montanet, F.; Morello, C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Mueller, S.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Nicotra, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nozka, L.; Ochilo, L.; Ohnuki, T.; Oikonomou, F.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Pacheco, N.; PakkSelmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Patel, M.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrinca, P.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Porter, T.; Pouryamout, J.; Pouthas, J.; Prado, R. R.; Privitera, P.; Prouza, M.; Pryke, C. L.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Randriatoamanana, R.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenua, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Robbins, S.; Roberts, M.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schreuder, F.; Schroeder, F. G.; Schulz, A.; Schulz, J.; Schuessler, F.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Sequeiros, G.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Smith, A. G. K.; Snow, G. R.; Sommers, P.; Sorokin, J.; Speelman, R.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Sutherland, M. S.; Sutter, M.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tcherniakhovski, D.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Trung, T. N.; Tunnicliffe, V.; Tusi, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varnav, D. M.; Varner, G.; Vasquez, R.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verkooijen, H.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Vitali, G.; Vlcek, B.; Vorenholt, H.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wainberg, O.; Walker, P.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Widom, A.; Wiebusch, C.; Wiencke, L.; Wijnen, T.; Wilczynska, B.; Wilczynski, H.; Wild, N.; Winchen, T.; Wittkowski, D.; Woerner, G.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zhou, J.; Zhu, Y.; Silva, M. Zimbres; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.

    2015-01-01

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 10(17) eV and to study the interactions of these, the most energetic par

  12. Computer-based classification of bacteria species by analysis of their colonies Fresnel diffraction patterns

    Science.gov (United States)

    Suchwalko, Agnieszka; Buzalewicz, Igor; Podbielska, Halina

    2012-01-01

    In the presented paper the optical system with converging spherical wave illumination for classification of bacteria species, is proposed. It allows for compression of the observation space, observation of Fresnel patterns, diffraction pattern scaling and low level of optical aberrations, which are not possessed by other optical configurations. Obtained experimental results have shown that colonies of specific bacteria species generate unique diffraction signatures. Analysis of Fresnel diffraction patterns of bacteria colonies can be fast and reliable method for classification and recognition of bacteria species. To determine the unique features of bacteria colonies diffraction patterns the image processing analysis was proposed. Classification can be performed by analyzing the spatial structure of diffraction patterns, which can be characterized by set of concentric rings. The characteristics of such rings depends on the bacteria species. In the paper, the influence of basic features and ring partitioning number on the bacteria classification, is analyzed. It is demonstrated that Fresnel patterns can be used for classification of following species: Salmonella enteritidis, Staplyococcus aureus, Proteus mirabilis and Citrobacter freundii. Image processing is performed by free ImageJ software, for which a special macro with human interaction, was written. LDA classification, CV method, ANOVA and PCA visualizations preceded by image data extraction were conducted using the free software R.

  13. New Geophysical Observatory in Uruguay

    Science.gov (United States)

    Sanchez Bettucci, L.; Nuñez, P.; Caraballo, R. R.; Ogando, R.

    2013-05-01

    In 2011 began the installation of the first geophysical observatory in Uruguay, with the aim of developing the Geosciences. The Astronomical and Geophysical Observatory Aiguá (OAGA) is located within the Cerro Catedral Tourist Farm (-34 ° 20 '0 .89 "S/-54 ° 42 '44.72" W, h: 270m). This has the distinction of being located in the center of the South Atlantic Magnetic Anomaly. Geologically is emplaced in a Neoproterozoic basement, in a region with scarce anthropogenic interference. The OAGA has, since 2012, with a GSM-90FD dIdD v7.0 and GSM-90F Overhauser, both of GEM Systems. In addition has a super-SID receiver provided by the Stanford University SOLAR Center, as a complement for educational purposes. Likewise the installation of a seismograph REF TEK-151-120A and VLF antenna is being done since the beginning of 2013.

  14. The 2010 IODC lens design problem: the green lens

    Science.gov (United States)

    Juergens, Richard C.

    2010-08-01

    The lens design problem for the 2010 IODC is to design a 100 mm focal length lens in which every optical surface has the same radius of curvature, positive or negative, or is plano. The lens is used monochromatically at 532 nm and is made of only Schott N-BK7 glass. The goal of the problem is to maximize the product of the semi-field of view and the entrance pupil diameter while holding the distortion to within +/-5% and the RMS wavefront error to <= 0.07 wave within the field of view. There were 37 entries from eight different countries. Four different commercial lens design programs were used, along with two custom, in-house programs. The number of lens elements in the entries ranged from 3 to 64. The overall length of the lenses varied from 105 mm to 3.6 km. The winning entry had an entrance pupil diameter of 81.3 mm and a semi-field of view of 43.5° for a merit function product of 3537.

  15. Improvements in geomagnetic observatory data quality

    DEFF Research Database (Denmark)

    Reda, Jan; Fouassier, Danielle; Isac, Anca

    2011-01-01

    between observatories and the establishment of observatory networks has harmonized standards and practices across the world; improving the quality of the data product available to the user. Nonetheless, operating a highquality geomagnetic observatory is non-trivial. This article gives a record...... of the current state of observatory instrumentation and methods, citing some of the general problems in the complex operation of geomagnetic observatories. It further gives an overview of recent improvements of observatory data quality based on presentation during 11th IAGA Assembly at Sopron and INTERMAGNET......Geomagnetic observatory practice and instrumentation has evolved significantly over the past 150 years. Evolution continues to be driven by advances in technology and by the need of the data user community for higher-resolution, lower noise data in near-real time. Additionally, collaboration...

  16. Tinting of intraocular lens implants

    Energy Technology Data Exchange (ETDEWEB)

    Zigman, S.

    1982-06-01

    Intraocular lens (IOL) implants of polymethyl methacrylate (PMMA) lack an important yellow pigment useful as a filter in the visual process and in the protection of the retina from short-wavelength radiant energy. The ability to produce a yellow pigment in the PMMA used in IOL implants by exposure to near-ultraviolet (UV) light was tested. It was found that the highly cross-linked material in Copeland lens blanks was tinted slightly because of this exposure. The absorptive properties of lens blanks treated with near-UV light in this way approached that of the absorptive properties of human lenses. This finding shows that it is possible to alter IOL implants simply so as to induce a pale-yellow pigment in them to improve the visual process and to protect the retinas of IOL users.

  17. International rigid contact lens prescribing.

    Science.gov (United States)

    Efron, Nathan; Morgan, Philip B; Helland, Magne; Itoi, Motozumi; Jones, Deborah; Nichols, Jason J; van der Worp, Eef; Woods, Craig A

    2010-06-01

    Rigid lenses have been fitted less since the introduction of soft lenses nearly 40 years ago. Data that we have gathered from annual contact lens fitting surveys conducted in Australia, Canada, Japan, the Netherlands, Norway, the UK and the USA between 2000 and 2008 facilitate an accurate characterization of the pattern of the decline of rigid lens fitting during the first decade of this century. There is a trend for rigid lenses to be utilized primarily for refitting those patients who are already successful rigid lens wearers-most typically older females being refit with higher Dk materials. Rigid lenses are generally fitted on a full-time basis (four or more days of wear per week) without a planned replacement schedule. Orthokeratology is especially popular in the Netherlands, but is seldom prescribed in the other countries surveyed.

  18. The SNAP Strong Lens Survey

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, P.

    2005-01-03

    Basic considerations of lens detection and identification indicate that a wide field survey of the types planned for weak lensing and Type Ia SNe with SNAP are close to optimal for the optical detection of strong lenses. Such a ''piggy-back'' survey might be expected even pessimistically to provide a catalogue of a few thousand new strong lenses, with the numbers dominated by systems of faint blue galaxies lensed by foreground ellipticals. After sketching out our strategy for detecting and measuring these galaxy lenses using the SNAP images, we discuss some of the scientific applications of such a large sample of gravitational lenses: in particular we comment on the partition of information between lens structure, the source population properties and cosmology. Understanding this partitioning is key to assessing strong lens cosmography's value as a cosmological probe.

  19. Planar immersion lens with metasurfaces

    CERN Document Server

    Ho, John S; Tanabe, Yuji; Yeh, Alexander J; Fan, Shanhui; Poon, Ada S Y

    2015-01-01

    The solid immersion lens is a powerful optical tool that allows light entering material from air or vacuum to focus to a spot much smaller than the free-space wavelength. Conventionally, however, they rely on semispherical topographies and are non-planar and bulky, which limits their integration in many applications. Recently, there has been considerable interest in using planar structures, referred to as metasurfaces, to construct flat optical components for manipulating light in unusual ways. Here, we propose and demonstrate the concept of a planar immersion lens based on metasurfaces. The resulting planar device, when placed near an interface between air and dielectric material, can focus electromagnetic radiation incident from air to a spot in material smaller than the free-space wavelength. As an experimental demonstration, we fabricate an ultrathin and flexible microwave lens and further show that it achieves wireless energy transfer in material mimicking biological tissue.

  20. Algebraic Lens Distortion Model Estimation

    Directory of Open Access Journals (Sweden)

    Luis Alvarez

    2010-07-01

    Full Text Available A very important property of the usual pinhole model for camera projection is that 3D lines in the scene are projected to 2D lines. Unfortunately, wide-angle lenses (specially low-cost lenses may introduce a strong barrel distortion, which makes the usual pinhole model fail. Lens distortion models try to correct such distortion. We propose an algebraic approach to the estimation of the lens distortion parameters based on the rectification of lines in the image. Using the proposed method, the lens distortion parameters are obtained by minimizing a 4 total-degree polynomial in several variables. We perform numerical experiments using calibration patterns and real scenes to show the performance of the proposed method.

  1. Availability of Fresnel volume migration to one-component seismic reflection data using tau-P transforms

    Science.gov (United States)

    Kawabayashi, T.; Takekawa, J.; Goto, T.; Mikada, H.; Onishi, K.

    2010-12-01

    An elastic wave propagates in the spatial volume depending on its wavelength, which is called the Fresnel volume. In the seismic migration, diffracted waves are propagated back to every secondary seismic source, i.e., diffractors or scatterers that represent detailed underground structures. Fresnel volume migration is based on an idea of restricting the aperture in which a migration operator is applied in space and time. The conventional Fresnel volume migration uses the paraxial ray method for a single component data. Schleicher et al. (1997) addressed an important role of the Fresnel zones in the framework of the theory of pre-stack true-amplitude migration and demigration. Luth et al. (2005) extended the method to the three-components (3C) Kirchhoff prestack depth migration in which the migration operator is applied in the Fresnel volume using the measured polarization direction at a 3C receiver to determine the points of possible reflections. In seismic reflection surveys, recorded P- and S- waves could be decomposed into two wavefields. Mikada et al. (2009) worked about the decomposition of seismic wavefield into compressional (P or scalar) and shear (S or vector) wavefields. This method gives us the incident angles of the two waves to receivers. Therefore, it becomes possible to estimate the incident angles and to use the angles in the Fresnel volume migration. In this study, we consider both Fresnel volume migration and Kirchhoff migration for acquired data in our laboratory’s water tank. The tank size is 3m x 2m x 1.5m. The target structure is a pinball describing reflection point whose size is almost negligible compared to the wavelength of acoustic signals. In the acquired shot gather, there is characteristic difference in S/N ratio. When receivers are located in the left side of the pinball target, received data has comparatively small S/N ratio, while received data has high S/N ratio for receivers on the other side. A method using pre-stack depth

  2. The Arecibo Observatory Space Academy

    Science.gov (United States)

    Rodriguez-Ford, Linda A.; Zambrano-Marin, Luisa; Petty, Bryan M.; Sternke, Elizabeth; Ortiz, Andrew M.; Rivera-Valentin, Edgard G.

    2015-11-01

    The Arecibo Observatory Space Academy (AOSA) is a ten (10) week pre-college research program for students in grades 9-12. Our mission is to prepare students for academic and professional careers by allowing them to receive an independent and collaborative research experience on topics related to space and aide in their individual academic and social development. Our objectives are to (1) Supplement the student’s STEM education via inquiry-based learning and indirect teaching methods, (2) Immerse students in an ESL environment, further developing their verbal and written presentation skills, and (3) To foster in every student an interest in science by exploiting their natural curiosity and knowledge in order to further develop their critical thinking and investigation skills. AOSA provides students with the opportunity to share lectures with Arecibo Observatory staff, who have expertise in various STEM fields. Each Fall and Spring semester, selected high school students, or Cadets, from all over Puerto Rico participate in this Saturday academy where they receive experience designing, proposing, and carrying out research projects related to space exploration, focusing on four fields: Physics/Astronomy, Biology, Engineering, and Sociology. Cadets get the opportunity to explore their topic of choice while practicing many of the foundations of scientific research with the goal of designing a space settlement, which they present at the NSS-NASA Ames Space Settlement Design Contest. At the end of each semester students present their research to their peers, program mentors, and Arecibo Observatory staff. Funding for this program is provided by NASA SSERVI-LPI: Center for Lunar Science and Exploration with partial support from the Angel Ramos Visitor Center through UMET and management by USRA.

  3. The Liverpool Bay Coastal Observatory

    Science.gov (United States)

    Howarth, John; Palmer, Matthew

    2011-11-01

    A pilot Coastal Observatory has been established in Liverpool Bay which integrates (near) real-time measurements with coupled models and whose results are displayed on the web. The aim is to understand the functioning of coastal seas, their response to natural forcing and the consequences of human activity. The eastern Irish Sea is an apt test site, since it encompasses a comprehensive range of processes found in tidally dominated coastal seas, including near-shore physical and biogeochemical processes influenced by estuarine inflows, where both vertical and horizontal gradients are important. Applications include hypernutrification, since the region receives significantly elevated levels of nutrient inputs, shoreline management (coastal flooding and beach erosion/accretion), and understanding present conditions to predict the impact of climate change (for instance if the number and severity of storms, or of high or low river flows, change). The integrated measurement suite which started in August 2002 covers a range of space and time scales. It includes in situ time series, four to six weekly regional water column surveys, an instrumented ferry, a shore-based HF radar system measuring surface currents and waves, coastal tide gauges and visible and infra-red satellite data. The time series enable definition of the seasonal cycle, its inter-annual variability and provide a baseline from which the relative importance of events can be quantified. A suite of nested 3D hydrodynamic, wave and ecosystem models is run daily, focusing on the observatory area by covering the ocean/shelf of northwest Europe (at 12-km resolution) and the Irish Sea (at 1.8 km), and Liverpool Bay at the highest resolution of 200 m. The measurements test the models against events as they happen in a truly 3D context. All measurements and model outputs are displayed freely on the Coastal Observatory website (http://cobs.pol.ac.uk) for an audience of researchers, education, coastal managers and the

  4. Light pollution around Tonantzintla Observatory

    Science.gov (United States)

    Vázquez-Mata, José A.; Hernández-Toledo, Héctor M.; Martínez-Vázquez, Luis A.; Pani-Cielo, Atanacio

    2011-06-01

    Being close to the cities of Puebla to east and Cholula to the north, both having potential for large growth, the National Astronomical Observatory in Tonantzintla (OAN-Tonantzintla) faces the danger of deteriorating its sky conditions even more. In order to maintain competitiveness for education and scientific programs, it is important to preserve the sky brightness conditions. through: 1) our awareness of the night sky characteristics in continuous monitoring campaigns, doing more measurements over the next years to monitor changes and 2) encouraging local authorities about the need to regulate public lighting at the same time, showing them the benefits of such initiatives when well planed and correctly implemented.

  5. Gamma ray observatory productivity showcase

    Science.gov (United States)

    Davis, R. L.; Molgaard, D. A.

    1985-01-01

    The Gamma Ray Observatory (GRO) Program has been proclaimed to be the showcase productivity program for NASA and TRW. Among the multiple disciplines of a large-scale program, there is opportunity and need for improved efficiency, effectiveness, and reduction in the cost of doing business. The efforts and tools that will or have been implemented to achieve this end are described. Since the GRO Program is mainly an engineering program with the build of one satellite, the primary emphasis is placed on improving the efficiency and quality of management and engineering.

  6. India-based Neutrino Observatory

    Indian Academy of Sciences (India)

    Naba K Mondal; for the INO Collaboration

    2012-11-01

    The current status of the India-based Neutrino Observatory (INO) is summarized. The main physics goals are described followed by the motivation for building a magnetized iron calorimetric (ICAL) detector. The charge identification capability of ICAL would make it complementary to large water Cerenkov and other detectors worldwide. The status of the design of the 50 kt magnet, the construction of a prototype ICAL detector, the experience with resistive plate chambers which will be the active elements in ICAL and the status of the associated electronics and data acquisition system are discussed.

  7. ``Route of astronomical observatories'' project: Classical observatories from the Renaissance to the rise of astrophysics

    Science.gov (United States)

    Wolfschmidt, Gudrun

    2016-10-01

    Observatories offer a good possibility for serial transnational applications. For example one can choose groups like baroque or neoclassical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments or made by famous firms. I will discuss what has been achieved and show examples, like the route of astronomical observatories, the transition from classical astronomy to modern astrophysics. I will also discuss why the implementation of the World Heritage & Astronomy initiative is difficult and why there are problems to nominate observatories for election in the national tentative lists.

  8. Panoramic lens designed with transformation optics

    Science.gov (United States)

    Wang, Huaping; Deng, Yangyang; Zheng, Bin; Li, Rujiang; Jiang, Yuyu; Dehdashti, Shahram; Xu, Zhiwei; Chen, Hongsheng

    2017-01-01

    The panoramic lens is a special kind of lens, which is applied to observe full view. In this letter, we theoretically present a panoramic lens (PL) using transformation optics method. The lens is designed with inhomogeneous and anisotropic constitutive parameters, which has the ability to gather light from all directions and confine light within the visual angle of observer. Simulation results validate our theoretical design.

  9. SimpLens: Interactive gravitational lensing simulator

    Science.gov (United States)

    Saha, Prasenjit; Williams, Liliya L. R.

    2016-06-01

    SimpLens illustrates some of the theoretical ideas important in gravitational lensing in an interactive way. After setting parameters for elliptical mass distribution and external mass, SimpLens displays the mass profile and source position, the lens potential and image locations, and indicate the image magnifications and contours of virtual light-travel time. A lens profile can be made shallower or steeper with little change in the image positions and with only total magnification affected.

  10. Wavefront shaping with an electrowetting liquid lens using surface harmonics (Conference Presentation)

    Science.gov (United States)

    Strauch, Matthias; Konijnenberg, Sander; Shao, Yifeng; Urbach, H. Paul

    2017-02-01

    Liquid lenses are used to correct for low order wavefront aberrations. Electrowetting liquid lenses can nowadays control defocus and astigmatism effectively, so they start being used for ophthalmology applications. To increase the performance and applicability, we introduce a new driving mechanism to create, detect and correct higher order aberrations using standing waves on the liquid interface. The speed of a liquid lens is in general limited, because the liquid surface cannot follow fast voltage changes, while providing a spherical surface. Surface waves are created instead and with them undesired aberrations. We try to control those surface waves to turn them into an effective wavefront shaping tool. We introduce a model, which treats the liquid lens as a circular vibrating membrane with adjusted boundary conditions. Similar to tunable acoustic gradient (TAG) lenses, the nature of the surface modes are predicted to be Bessel functions. Since Bessel functions are a full set of orthogonal basis functions any surface can be created as a linear combination of different Bessel functions. The model was investigated experimentally in two setups. First the point spread functions were studied and compared to a simulation of the intensity distribution created by Fresnel propagated Bessel surfaces. Second the wavefronts were measured directly using a spatial light modulator. The surface resonance frequencies confirm the predictions made by the model as well as the wavefront measurements. By superposition of known surface modes, it is possible to create new surface shapes, which can be used to simulate and measure the human eye.

  11. Protection of the Guillermo Haro Astrophysical Observatory

    Science.gov (United States)

    Carrasco, E.; Carraminana, A. P.

    The Guillermo Haro Astrophysical Observatory, with a 2m telescope, is one of only two professional observatories in Mexico. The observatory, run by the InstitutoNacional de Astrofisica, Optica y Electronica (INAOE), is located in the north of Mexico, in Cananea, Sonora. Since 1995 the observatory has faced the potential threat of pollution by an open cast mine to be opened at 3kms from the observatory. In the absence of national or regional laws enforcing protection to astronomical sites in Mexico, considerable effort has been needed to guarantee the conditions of the site. We present the studies carried out to ensure the protection of the Guillermo Haro Observatory from pollution due to dust, light and vibrations.

  12. EMSO: European multidisciplinary seafloor observatory

    Energy Technology Data Exchange (ETDEWEB)

    Favali, Paolo [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via di Vigna Murata 605, 00143 Roma (Italy); Universita degli Studi di Roma ' La Sapienza' , P.le Aldo Moro 5, 00185 Roma (Italy)], E-mail: emsopp@ingv.it; Beranzoli, Laura [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via di Vigna Murata 605, 00143 Roma (Italy)

    2009-04-11

    EMSO has been identified by the ESFRI Report 2006 as one of the Research Infrastructures that European members and associated states are asked to develop in the next decades. It will be based on a European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the aim of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes, providing long time series data for the different phenomenon scales which constitute the new frontier for study of Earth interior, deep-sea biology and chemistry, and ocean processes. The development of an underwater network is based on past EU projects and is supported by several EU initiatives, such as the on-going ESONET-NoE, aimed at strengthening the ocean observatories' scientific and technological community. The EMSO development relies on the synergy between the scientific community and industry to improve European competitiveness with respect to countries such as USA, Canada and Japan. Within the FP7 Programme launched in 2006, a call for Preparatory Phase (PP) was issued in order to support the foundation of the legal and organisational entity in charge of building up and managing the infrastructure, and coordinating the financial effort among the countries. The EMSO-PP project, coordinated by the Italian INGV with participation by 11 institutions from as many European countries, started in April 2008 and will last four years.

  13. The International Virtual Observatory Alliance

    Science.gov (United States)

    Kembhavi, Ajit

    Over the last few years Astronomical Virtual Observatory (VO) projects have been initiated in several countries. The aim of these projects is to make astronomical data gathered in all ways and in all places available to every person who may need it along with appropriate software for data access analysis visualization and interpretation. The VO projects largely work in their own ways and with their own priorities shaped by scientific interests and available resources. For the VO concept to be successful these efforts have to be meshed together seamlessly through interoperability standards new data formats which take into account emerging technology and software developed in forms which are largely independent of platforms and operating systems. It is also necessary to develop computing grids which will cross national and project boundaries and can be accessed by any researcher who wishes to use the data mountains. This process of integration and assimilation is to be fostered through international alliances spanning various VO efforts. I will describe in my talk formal alliances like the International Virtual Observatory as well as specific bilateral and multilateral collaborations between individuals institutions or projects and the VO related products that have been launched through these collaborations.

  14. In vivo human crystalline lens topography.

    Science.gov (United States)

    Ortiz, Sergio; Pérez-Merino, Pablo; Gambra, Enrique; de Castro, Alberto; Marcos, Susana

    2012-10-01

    Custom high-resolution high-speed anterior segment spectral domain optical coherence tomography (OCT) was used to characterize three-dimensionally (3-D) the human crystalline lens in vivo. The system was provided with custom algorithms for denoising and segmentation of the images, as well as for fan (scanning) and optical (refraction) distortion correction, to provide fully quantitative images of the anterior and posterior crystalline lens surfaces. The method was tested on an artificial eye with known surfaces geometry and on a human lens in vitro, and demonstrated on three human lenses in vivo. Not correcting for distortion overestimated the anterior lens radius by 25% and the posterior lens radius by more than 65%. In vivo lens surfaces were fitted by biconicoids and Zernike polynomials after distortion correction. The anterior lens radii of curvature ranged from 10.27 to 14.14 mm, and the posterior lens radii of curvature ranged from 6.12 to 7.54 mm. Surface asphericities ranged from -0.04 to -1.96. The lens surfaces were well fitted by quadrics (with variation smaller than 2%, for 5-mm pupils), with low amounts of high order terms. Surface lens astigmatism was significant, with the anterior lens typically showing horizontal astigmatism ([Formula: see text] ranging from -11 to -1 µm) and the posterior lens showing vertical astigmatism ([Formula: see text] ranging from 6 to 10 µm).

  15. 21 CFR 886.3600 - Intraocular lens.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraocular lens. 886.3600 Section 886.3600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3600 Intraocular lens. (a) Identification. An intraocular lens is a device made of materials...

  16. Worldwide R&D of Virtual Observatory

    CERN Document Server

    Cui, Chenzhou

    2007-01-01

    Virtual Observatory (VO) is a data intensive online astronomical research and education environment, taking advantages of advanced information technologies to achieve seamless and uniform access to astronomical information. The concept of VO was introduced in late of 1990s to meet challenges brought up with data avalanche in astronomy. This paper reviews current status of International Virtual Observatory Alliance, technical highlights from world wide VO projects, and a brief introduction of Chinese Virtual Observatory.

  17. Professoren og Ålen

    DEFF Research Database (Denmark)

    Poulsen, Bo

    2016-01-01

    Biolog og havforsker Johannes Schmidt regnes for at være Danmarks mest betydningsfulde havforsker gennem tiderne. Hans mange forskningsbaserede jordomsejlinger bragte ham til eksotiske egne og til opdagelsen af adskillige nye dyrearter. Dog blev særligt ålen og dens gydepladser et hovedfokus...

  18. Professoren og Ålen

    DEFF Research Database (Denmark)

    Poulsen, Bo

    2016-01-01

    Biolog og havforsker Johannes Schmidt regnes for at være Danmarks mest betydningsfulde havforsker gennem tiderne. Hans mange forskningsbaserede jordomsejlinger bragte ham til eksotiske egne og til opdagelsen af adskillige nye dyrearter. Dog blev særligt ålen og dens gydepladser et hovedfokus for ...

  19. The Ultrawideband Leaky Lens Antenna

    NARCIS (Netherlands)

    Bruni, S.; Neto, A.; Marliani, F.

    2007-01-01

    A novel directive and nondispersive antenna is presented: the ultrawideband (UWB) leaky lens. It is based on the broad band Cherenkov radiation occurring at a slot printed between different infinite homogeneous dielectrics. The first part of the paper presents the antenna concept and the UWB design.

  20. Estimation of the hybrid lens parameters through rigid gas permeable lens fitting

    OpenAIRE

    Hasani, Mohammadali; Hashemi, Hassan; Jafarzadehpur, Ebrahim; Yekta, Abbas Ali; Dadbin, Nooshin; khabazkhoob, Mehdi

    2016-01-01

    Purpose To estimate the fitting parameters of the hybrid contact lens in patients with corneal ectasia using the rigid gas permeable (RGP) lens. Methods Thirty-four eyes with corneal ectasia were evaluated in this study. The patients were examined once with the RGP lens and once with the hybrid contact lens. The relationship between the base curvature of the RGP and the vault of the hybrid lens and the correlation between their powers were analyzed. Results We found a linear relationship betw...

  1. A new Magnetic Observatory in Pantanal - Brazil

    Science.gov (United States)

    Siqueira, F.; Pinheiro, K.; Linthe, H.

    2013-05-01

    The aim of a Magnetic Observatory is to register the variations of the Earth's magnetic field in a long temporal scale. Using this data it is possible to study field variations of both external and internal origins. The external variations concern interactions between the magnetosphere and the solar wind, in general are measured in a short time scale. The internal field generated by convection of a high electrical conductivity fluid in the external core by a mechanism known as the geodynamo. Usually the internal field time variations are longer than in the external field and are called secular variations. Measurements carried out over the last century suggest that field intensity is decreasing rapidly. The decreasing of the field's intensity is not the same around the globe, especially at the SAMA (South Atlantic Magnetic Anomaly) regions, where this reduction is occurring faster. The global distribution of magnetic observatories is uneven, with few observatories in South America. In Brazil, there are three magnetic observatories, but only Vassouras Observatory (VSS- RJ) is part of the INTERMAGNET network. The National Observatory has plans to install seven new observatories in Brazil. Pantanal was the chosen location for installing the first observatory because of its privileged location, close to the SAMA region, and its data can contribute to more information about its origin. We followed the procedures suggested by the IAGA to build this observatory. The first step is to perform a magnetic survey in order to avoid strong magnetic gradients in the location where the absolute and variometers houses will be installed. The next step, the construction of the observatory, includes the selection of special non-magnetic material for the variometer and absolute houses. All materials used were previously tested using a proton magnetometer GSM-19. After construction of the whole infrastructure, the equipment was installed. This Project is a cooperation between Brazilian

  2. Byurakan Astrophysical Observatory as Cultural Centre

    Science.gov (United States)

    Mickaelian, A. M.; Farmanyan, S. V.

    2017-07-01

    NAS RA V. Ambartsumian Byurakan Astrophysical Observatory is presented as a cultural centre for Armenia and the Armenian nation in general. Besides being scientific and educational centre, the Observatory is famous for its unique architectural ensemble, rich botanical garden and world of birds, as well as it is one of the most frequently visited sightseeing of Armenia. In recent years, the Observatory has also taken the initiative of the coordination of the Cultural Astronomy in Armenia and in this field, unites the astronomers, historians, archaeologists, ethnographers, culturologists, literary critics, linguists, art historians and other experts. Keywords: Byurakan Astrophysical Observatory, architecture, botanic garden, tourism, Cultural Astronomy.

  3. Prediction of subsurface fracture in mining zone of Papua using passive seismic tomography based on Fresnel zone

    Energy Technology Data Exchange (ETDEWEB)

    Setiadi, Herlan; Nurhandoko, Bagus Endar B.; Wely, Woen [WISFIR Lab., Physics of Complex System, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132 (Indonesia); Riyanto, Erwin [PT Freeport Indonesia, Tembagapura, Indonesia herlansetiadi@yahoo.com (Indonesia)

    2015-04-16

    Fracture prediction in a block cave of underground mine is very important to monitor the structure of the fracture that can be harmful to the mining activities. Many methods can be used to obtain such information, such as TDR (Time Domain Relectometry) and open hole. Both of them have limitations in range measurement. Passive seismic tomography is one of the subsurface imaging method. It has advantage in terms of measurements, cost, and rich of rock physical information. This passive seismic tomography studies using Fresnel zone to model the wavepath by using frequency parameter. Fresnel zone was developed by Nurhandoko in 2000. The result of this study is tomography of P and S wave velocity which can predict position of fracture. The study also attempted to use sum of the wavefronts to obtain position and time of seismic event occurence. Fresnel zone tomography and the summation wavefront can predict location of geological structure of mine area as well.

  4. Multifocal contact lens myopia control.

    Science.gov (United States)

    Walline, Jeffrey J; Greiner, Katie L; McVey, M Elizabeth; Jones-Jordan, Lisa A

    2013-11-01

    Previous studies on soft multifocal contact lens myopia control published in the peer-reviewed literature reported findings of noncommercial contact lenses worn for 1 year or less. This study sought to determine the progression of myopia and axial elongation of children fitted with commercially available distance center soft multifocal contact lenses for 2 years. Eight- to eleven-year-old children with -1.00 D to -6.00 D spherical component and less than 1.00 D astigmatism were fitted with soft multifocal contact lenses with a +2.00 D add (Proclear Multifocal "D"; CooperVision, Fairport, NY). They were age- and gender-matched to participants from a previous study who were fitted with single-vision contact lenses (1 Day Acuvue; Vistakon, Jacksonville, FL). A-scan ultrasound and cycloplegic autorefraction were performed at baseline, after 1 year, and after 2 years. Multilevel modeling was used to compare the rate of change of myopia and axial length between single-vision and soft multifocal contact lens wearers. Forty participants were fitted with soft multifocal contact lenses, and 13 did not contribute complete data (5 contributed 1 year of data). The adjusted mean ± standard error spherical equivalent progression of myopia at 2 years was -1.03 ± 0.06 D for the single-vision contact lens wearers and -0.51 ± 0.06 for the soft multifocal contact lens wearers (p < 0.0001). The adjusted mean axial elongation was 0.41 ± 0.03 and 0.29 ± 0.03 for the single-vision and soft multifocal contact lens wearers, respectively (p < 0.0016). Soft multifocal contact lens wear resulted in a 50% reduction in the progression of myopia and a 29% reduction in axial elongation during the 2-year treatment period compared to a historical control group. Results from this and other investigations indicate a need for a long-term randomized clinical trial to investigate the potential for soft multifocal contact lens myopia control.

  5. Self-detection of x-ray Fresnel transmissivity using photoelectron-induced gas ionization

    OpenAIRE

    Stoupin, Stanislav

    2015-01-01

    Electric response of an x-ray mirror enclosed in a gas flow ionization chamber was studied under the conditions of total external reflection for hard x-rays. It is shown that the electric response of the system as a function of the incidence angle is defined by x-ray Fresnel transmissivity and photon-electron attenuation properties of the mirror material. A simple interpretation of quantum yield of the system is presented. The approach could serve as a basis for non-invasive in-situ diagnosti...

  6. Are Fresnel filtering and the angular Goos-H\\"anchen shift the same?

    CERN Document Server

    Götte, Jörg B; Hentschel, Martina

    2013-01-01

    The law of reflection and Snell's law are among the tenets of geometrical optics. Corrections to these laws in wave optics are respectively known as the angular Goos-H\\"anchen shift and Fresnel filtering. In this paper we give a positive answer to the question of whether the two effects are common in nature and we study both effects in the more general context of optical beam shifts. We find that both effects are caused by the same principle, but have been defined differently. We identify and discuss the similarities and differences that arise from the different definitions.

  7. [Fresnel prisms--their value in the rehabilitation of homonymous hemianopsias].

    Science.gov (United States)

    Hedges, T R; Stunkard, J; Twer, A

    1988-05-01

    The use of press-on Fresnel prisms is described as a simple inexpensive technique to rehabilitate patients with homonymous hemianopsia. The optical principle of prismatic displacement from the blind to the seeing fields is detailed herein. Forty-one patients were evaluated over a 10 year period. Twenty per cent benefited from the prism. Many of those who found limited or little value from their use expressed appreciation that something had been tried in order to improve visual function. Those patients with good acuity and an otherwise normal neurological status are the best candidates. Proper motivation and instruction are essential.

  8. X-ray imaging microscopy at 25 keV with Fresnel zone plate optics

    CERN Document Server

    Awaji, M; Takeuchi, A; Takano, H; Kamijo, N; Tamura, S; Yasumoto, M

    2001-01-01

    X-ray imaging microscopy with a sputtered-sliced Fresnel zone plate (SS-FZP) has been developed at an X-ray energy of 25 keV. Objects were imaged in transmission with the SS-FZP as an objective with a magnification of 10.2 times, and detected with a X-ray image sensor. The performance of the imaging microscope has been tested with a gold mesh and a resolution test pattern at an undulator beamline 47XU of SPring-8. The resolution test patterns up to 0.5 mu m line-and-space structures have been resolved.

  9. Linear algorithms for phase retrieval in the Fresnel region: validity conditions

    CERN Document Server

    Gureyev, T E

    2015-01-01

    We describe the relationship between different forms of linearized expressions for the spatial distribution of intensity of X-ray projection images obtained in the Fresnel region. We prove that under the natural validity conditions some of the previously published expressions can be simplified without a loss of accuracy. We also introduce modified validity conditions which are likely to be fulfilled in many relevant practical cases, and which lead to a further significant simplification of the expression for the image-plane intensity, permitting simple non-iterative linear algorithms for the phase retrieval.

  10. Beam propagation modeling of modified volume Fresnel zone plates fabricated by femtosecond laser direct writing.

    Science.gov (United States)

    Srisungsitthisunti, Pornsak; Ersoy, Okan K; Xu, Xianfan

    2009-01-01

    Light diffraction by volume Fresnel zone plates (VFZPs) is simulated by the Hankel transform beam propagation method (Hankel BPM). The method utilizes circularly symmetric geometry and small step propagation to calculate the diffracted wave fields by VFZP layers. It is shown that fast and accurate diffraction results can be obtained with the Hankel BPM. The results show an excellent agreement with the scalar diffraction theory and the experimental results. The numerical method allows more comprehensive studies of the VFZP parameters to achieve higher diffraction efficiency.

  11. Fresnel analysis of Kretschmann geometry with a uniaxial crystal layer on a three-layered film

    Directory of Open Access Journals (Sweden)

    Yu-Ju Hung

    2016-04-01

    Full Text Available The use of total internal reflection within the prism coupling scheme is a simple approach to the generation of surface plasmon polariton waves on a metal/dielectric interface. Unfortunately, an anisotropic layer on a metallic film complicates the derivation of resonance angle. In this study, we present clear Fresnel analysis of a liquid crystal film on a metal surface. Few current simulation packages enable the analysis of multiple layers with a single anisotropic layer. The proposed formulation process is applicable to multi-layered structures.

  12. Scanning transmission X-ray microscopy with Fresnel Zone Plate beyond the expected resolution

    CERN Document Server

    Keskinbora, Kahraman; Weigand, Markus; Nadzeyka, Achim; Peto, Llyod; Schneider, Gerd; Vila-Comamala, Joan; Schütz, Gisela

    2012-01-01

    In X-ray microscopy the highest spatial resolutions to date are achieved by employing diffraction based elements called Fresnel Zone Plates (FZPs) as focusing optics. They allow potential resolutions which are determined by the width of their outermost zone period {\\Lambda} according to the Rayleigh criterion . Here, we present a FZP with an outermost period {\\Lambda} of 200 nm which possess a particular design and has been fabricated by ion beam lithography (IBL). Unexpectedly, the measured resolution is strongly dependent on the photon energy and at 450 eV the FZP is able to resolve features of 31 nm. This is approximately twice as high as the expected Rayleigh resolution.

  13. Lens stem cells may reside outside the lens capsule: an hypothesis

    Directory of Open Access Journals (Sweden)

    Meyer Rita A

    2007-06-01

    Full Text Available Abstract In this paper, we consider the ocular lens in the context of contemporary developments in biological ideas. We attempt to reconcile lens biology with stem cell concepts and a dearth of lens tumors. Historically, the lens has been viewed as a closed system, in which cells at the periphery of the lens epithelium differentiate into fiber cells. Theoretical considerations led us to question whether the intracapsular lens is indeed self-contained. Since stem cells generate tumors and the lens does not naturally develop tumors, we reasoned that lens stem cells may not be present within the capsule. We hypothesize that lens stem cells reside outside the lens capsule, in the nearby ciliary body. Our ideas challenge the existing lens biology paradigm. We begin our discussion with lens background information, in order to describe our lens stem cell hypothesis in the context of published data. Then we present the ciliary body as a possible source for lens stem cells, and conclude by comparing the ocular lens with the corneal epithelium.

  14. Virtual Energetic Particle Observatory (VEPO)

    Science.gov (United States)

    Cooper, John F.; Lal, Nand; McGuire, Robert E.; Szabo, Adam; Narock, Thomas W.; Armstrong, Thomas P.; Manweiler, Jerry W.; Patterson, J. Douglas; Hill, Matthew E.; Vandergriff, Jon D.; McKibben, Robert B.; Lopate, Clifford; Tranquille, Cecil

    2008-01-01

    The Virtual Energetic Particle Observatory (VEPO) focuses on improved discovery, access, and usability of heliospheric energetic particle and ancillary data products from selected spacecraft and sub-orbital instruments of the heliophysics data environment. The energy range of interest extends over the full range of particle acceleration from keV energies of suprathermal seed particles to GeV energies of galactic cosmic ray particles. Present spatial coverage is for operational and legacy spacecraft operating from the inner to the outer heliosphere, e.g. from measurements by the two Helios spacecraft to 0.3 AU to the inner heliosheath region now being traversed by the two Voyager spacecraft. This coverage will eventually be extended inward to ten solar radii by the planned NASA solar probe mission and at the same time beyond the heliopause into the outer heliosheath by continued Voyager operations. The geospace fleet of spacecraft providing near-Earth interplanetary measurements, selected magnetospheric spacecraft providing direct measurements of penetrating interplanetary energetic particles, and interplanetary cruise measurements from planetary spacecraft missions further extend VEPO resources to the domain of geospace and planetary interactions. Ground-based (e.g., neutron monitor) and high-altitude suborbital measurements can expand coverage to the highest energies of galactic cosmic rays affected by heliospheric interaction and of solar energetic particles. Science applications include investigation of solar flare and coronal mass ejection events. acceleration and transport of interplanetary particles within the inner heliosphere, cosmic ray interactions with planetary surfaces and atmospheres, sources of suprathermal and anomalous cosmic ray ions in the outer heliosphere, and solar cycle modulation of galactic cosmic rays. Robotic and human exploration, and eventual habitation, of planetary and space environments beyond the Earth require knowledge of radiation

  15. Modern lens antennas for communications engineering

    CERN Document Server

    Thornton, John

    2012-01-01

    The aim of this book is to present the modern design principles and analysis of lens antennas. It gives graduates and RF/Microwave professionals the design insights in order to make full use of lens antennas.  Why do we want to write a book in lens antennas? Because this topic has not been thoroughly publicized, its importance is underestimated. As antennas play a key role in communication systems, recent development in wireless communications would indeed benefit from the characteristics of lens antennas: low profile, and low cost etc.  The major advantages of lens antennas are na

  16. OPTICON and the Virtual Observatory

    CERN Document Server

    Gilmore, G

    2000-01-01

    The challenges of multi-wavelength astrophysics require new outlooks from those appropriate to traditional astronomy. The next generation of research scientists must be trained to exploit the potentiality now being provided for the first time. Just as importantly, the full range of available information must be indexed and made available, to avoid wasteful repeat observations, or incomplete analyses. Perhaps the greatest challenge in the immediate future is to ensure the wealth of multi-wavelength data already available, and being accumulated, is available for efficient scientific exploitation. The difference between observations in a depositary and a fully-operational data archive is the difference between waste and cutting-edge science. The EU Optical Infrared Coordination Network for Astronomy (OPTICON) provides a forum to coordinate and develop the many national and international efforts and desires leading towards an operational virtial observatory.

  17. Autonomous Infrastructure for Observatory Operations

    Science.gov (United States)

    Seaman, R.

    This is an era of rapid change from ancient human-mediated modes of astronomical practice to a vision of ever larger time domain surveys, ever bigger "big data", to increasing numbers of robotic telescopes and astronomical automation on every mountaintop. Over the past decades, facets of a new autonomous astronomical toolkit have been prototyped and deployed in support of numerous space missions. Remote and queue observing modes have gained significant market share on the ground. Archives and data-mining are becoming ubiquitous; astroinformatic techniques and virtual observatory standards and protocols are areas of active development. Astronomers and engineers, planetary and solar scientists, and researchers from communities as diverse as particle physics and exobiology are collaborating on a vast range of "multi-messenger" science. What then is missing?

  18. IAXO - The International Axion Observatory

    CERN Document Server

    Vogel, J K; Cantatore, G.; Carmona, J.M.; Caspi, S.; Cetin, S.A.; Christensen, F.E.; Dael, A.; Dafni, T.; Davenport, M.; Derbin, A.V.; Desch, K.; Diago, A.; Dudarev, A.; Eleftheriadis, C.; Fanourakis, G.; Ferrer-Ribas, E.; Galan, J.; Garcia, J.A.; Garza, J.G.; Geralis, T.; Gimeno, B.; Giomataris, I.; Gninenko, S.; Gomez, H.; Hailey, C.J.; Hiramatsu, T.; Hoffmann, D.H.H.; Iguaz, F.J.; Irastorza, I.G.; Isern, J.; Jaeckel, J.; Jakovcic, K.; Kaminski, J.; Kawasaki, M.; Krcmar, M.; Krieger, C.; Lakic, B.; Lindner, A.; Liolios, A.; Luzon, G.; Ortega, I.; Papaevangelou, T.; Pivovaroff, M.J.; Raffelt, G.; Redondo, J.; Ringwald, A.; Russenschuck, S.; Ruz, J.; Saikawa, K.; Savvidis, I.; Sekiguchi, T.; Shilon, I.; Silva, H.; ten Kate, H.H.J.; Tomas, A.; Troitsky, S.; van Bibber, K.; Vedrine, P.; Villar, J.A.; Walckiers, L.; Wester, W.; Yildiz, S.C.; Zioutas, K.

    2013-01-01

    The International Axion Observatory (IAXO) is a next generation axion helioscope aiming at a sensitivity to the axion-photon coupling of a few 10^{-12} GeV^{-1}, i.e. 1-1.5 orders of magnitude beyond sensitivities achieved by the currently most sensitive axion helioscope, the CERN Axion Solar Telescope (CAST). Crucial factors in improving the sensitivity for IAXO are the increase of the magnetic field volume together with the extensive use of x-ray focusing optics and low background detectors, innovations already successfully tested at CAST. Electron-coupled axions invoked to explain the white dwarf cooling, relic axions, and a large variety of more generic axion-like particles (ALPs) along with other novel excitations at the low-energy frontier of elementary particle physics could provide additional physics motivation for IAXO.

  19. National Astronomical Observatory of Japan

    CERN Document Server

    Haubold, Hans J; UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science, hosted by the National Astronomical Observatory of Japan

    2010-01-01

    This book represents Volume II of the Proceedings of the UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science, hosted by the National Astronomical Observatory of Japan, Tokyo, 18 - 22 June, 2007. It covers two programme topics explored in this and past workshops of this nature: (i) non-extensive statistical mechanics as applicable to astrophysics, addressing q-distribution, fractional reaction and diffusion, and the reaction coefficient, as well as the Mittag-Leffler function and (ii) the TRIPOD concept, developed for astronomical telescope facilities. The companion publication, Volume I of the proceedings of this workshop, is a special issue in the journal Earth, Moon, and Planets, Volume 104, Numbers 1-4, April 2009.

  20. Goddard Geophysical and Astronomical Observatory

    Science.gov (United States)

    Figueroa, Ricardo

    2013-01-01

    This report summarizes the technical parameters and the technical staff of the VLBI system at the fundamental station GGAO. It also gives an overview about the VLBI activities during the report year. The Goddard Geophysical and Astronomical Observatory (GGAO) consists of a 5-meter radio telescope for VLBI, a new 12-meter radio telescope for VLBI2010 development, a 1-meter reference antenna for microwave holography development, an SLR site that includes MOBLAS-7, the NGSLR development system, and a 48" telescope for developmental two-color Satellite Laser Ranging, a GPS timing and development lab, a DORIS system, meteorological sensors, and a hydrogen maser. In addition, we are a fiducial IGS site with several IGS/IGSX receivers. GGAO is located on the east coast of the United States in Maryland. It is approximately 15 miles NNE of Washington, D.C. in Greenbelt, Maryland.

  1. The Jiangmen Underground Neutrino Observatory

    CERN Document Server

    Grassi, Marco

    2016-01-01

    The Jiangmen Underground Neutrino Observatory (JUNO) is a large and high precision liquid scintillator detector under construction in the south of China. With its 20 kt target mass, it aims to achieve an unprecedented 3% energy resolution at 1 MeV. Its main goal is to study the disappearance of reactor antineutrino to determine the neutrino mass ordering, and to precisely measure the mixing parameters $\\theta_{12}$, $\\Delta m^2_{12}$, and $\\Delta m ^2_{ee}$. It also aims to detect neutrinos emitted from radioactive processes taking place within the inner layers of the Earth (geonutrinos), as well as neutrinos produced during rare supernova bursts. Neutrinos emitted in solar nuclear reactions could also be observed, if stringent radiopurity requirements on the scintillator are met. This manuscript provides some highlights of JUNO's Physics Programme, and describes the detector design, as well as the ongoing detector R&D.

  2. Conjunctival impression cytology in contact lens wearers.

    Directory of Open Access Journals (Sweden)

    Simon Priya

    2002-01-01

    Full Text Available PURPOSE: To evaluate the cytological changes in conjunctiva following regular contact lens wear and to determine the correlation, if any, between severity of cytological alteration and symptoms related to contact lens wear. METHODS: One hundred eyes (50 normal asymptomatic subjects who served as a control group were studied by conjunctival impression cytology (CIC. These subjects were fitted with rigid gas permeable (RGP or soft contact lenses and were followed up at the end of 3 and 6 months. At each follow-up visit the CIC was repeated. A filter paper with the impression specimen was stained with periodic acid schiff (PAS and haematoxylin stain to study goblet cell loss. Papanicolaou stain was done to study squamous metaplasia. The cytological changes were graded using the system described by Natadisastra et al. RESULTS: Severity of cytological changes increased with the duration of contact lens wear (P = 0.00001. At the end of 6 months, 60% of symptomatic eyes wearing soft contact lens and RGP lens showed abnormal CIC changes. None of the asymptomatic RGP contact lens wearing eyes showed abnormal CIC changes whereas 33.4% of the asymptomatic soft contact lens wearing eyes showed abnormal CIC changes (P = 0.033. Epithelial changes occurred within 3-6 months of contact lens fitting. CONCLUSION: Severity of cytological changes increased with duration of lens wear (P = 0.00001. Prevalence and severity of cytological alteration is more in symptomatic contact lens wearers. Soft contact lens wearers although asymptomatic showed severe CIC changes.

  3. TUM Critical Zone Observatory, Germany

    Science.gov (United States)

    Völkel, Jörg; Eden, Marie

    2014-05-01

    Founded 2011 the TUM Critical Zone Observatory run by the Technische Universität München and partners abroad is the first CZO within Germany. TUM CZO is both, a scientific as well as an education project. It is a watershed based observatory, but moving behind this focus. In fact, two mountainous areas are integrated: (1) The Ammer Catchment area as an alpine and pre alpine research area in the northern limestone Alps and forelands south of Munich; (2) the Otter Creek Catchment in the Bavarian Forest with a crystalline setting (Granite, Gneiss) as a mid mountainous area near Regensburg; and partly the mountainous Bavarian Forest National Park. The Ammer Catchment is a high energy system as well as a sensitive climate system with past glacial elements. The lithology shows mostly carbonates from Tertiary and Mesozoic times (e.g. Flysch). Source-to-sink processes are characteristic for the Ammer Catchment down to the last glacial Ammer Lake as the regional erosion and deposition base. The consideration of distal depositional environments, the integration of upstream and downstream landscape effects are characteristic for the Ammer Catchment as well. Long term datasets exist in many regards. The Otter Creek catchment area is developed in a granitic environment, rich in saprolites. As a mid mountainous catchment the energy system is facing lower stage. Hence, it is ideal comparing both of them. Both TUM CZO Catchments: The selected catchments capture the depositional environment. Both catchment areas include historical impacts and rapid land use change. Crosscutting themes across both sites are inbuilt. Questions of ability to capture such gradients along climosequence, chronosequence, anthroposequence are essential.

  4. HELIO: A Heliospheric Virtual Observatory

    Science.gov (United States)

    Aboudarham, J.; Bentley, R. D.; Csillaghy, A.

    2012-09-01

    HELIO, the Heliophysics Integrated Observatory, is a Research Infrastructure funded under EC's FP7 Capacities Specific Programme. It began in June 2009 for three years. It will provide the heliophysics research community with an integrated e-infrastructure that has no equivalent anywhere else. The project objectives are as follows: - to create a collaborative environment where scientists can discover, understand and model the connection between solar phenomena, interplanetary disturbances and their effects on the planets (esp. the Earth) - to establish a consensus on standards for describing all heliophysical data and champion them within international standards bodies, e.g. the IVOA - to develop new ways to interact with a virtual observatory that are more closely aligned with the way researchers wish to use the data. HELIO is based on a Service-Oriented architecture. For this purpose, HELIO developed a Front End, which facilitates the search for data, using series of search metadata services covering different domains (many Events and Features available; use of context information to refine selection); Services to identify and retrieve observations based on search results (knows which data are stored where and how to access them); Enabling services such as tools to find and track events/phenomena in 4D environment (i.e. including the propagation of phenomena). Services can be used individually or combined through workflow capability. Heliophysics Event Catalogue and Heliophysics Features Catalogue provide a specific access to information concerning phenomena that occur in the Solar system. A semantic-driven approach is used to integrate data from different domains, based on ontology derived from existing data models. Thirteen partners from Europe and US are involved in this project. And although it is not completed, a prototype is already available, which can be accessed through HELIO web site (http://www.helio-vo.eu/).

  5. New dual asymmetric CEC linear Fresnel concentrator for evacuated tubular receivers

    Science.gov (United States)

    Canavarro, Diogo; Chaves, Julio; Collares-Pereira, Manuel

    2017-06-01

    Linear Fresnel Reflector concentrators (LFR) are a potential solution for low-cost electricity production. Nevertheless in order to become more competitive with other CSP (Concentrated Solar Power) technologies, in particular with the Parabolic Trough concentrator, their overall solar to electricity efficiencies must increase. A possible path to achieve this goal is to increase the concentration factor, hence increasing the working temperatures for higher thermodynamic efficiency (more energy collection) and decrease the total number of rows of the solar field (less parasitic losses and corresponding cost reduction). This paper presents a dual asymmetric CEC-type (Compound Elliptical Concentrator) LFR (Linear Fresnel Concentrator) for evacuated tubular receivers. The concentrator is designed for a high concentration factor, presenting an asymmetric configuration enabling a very compact solution. The CEC-type secondary mirror is introduced to accommodate very high concentration values with a wide enough acceptance-angle (augmenting optical tolerances) for simple mechanical tracking solutions, achieving a higher CAP (Concentration Acceptance Product) in comparison with conventional LFR solutions. The paper presents an optical and thermal analysis of the concentrator using two different locations, Faro (Portugal) and Hurghada (Egypt).

  6. Emergence of Fresnel diffraction zones in gravitational lensing by a cosmic string

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Núñez, Isabel [Departament de Física Quàntica i Astrofísica, Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona (Spain); Institut de Ciències del Cosmos (ICCUB), Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona (Spain); Bulashenko, Oleg, E-mail: oleg.bulashenko@ub.edu [Departament de Física Quàntica i Astrofísica, Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona (Spain)

    2017-06-09

    The possibility to detect cosmic strings – topological defects of early Universe, by means of wave effects in gravitational lensing is discussed. To find the optimal observation conditions, we define the hyperbolic-shaped Fresnel observation zones associated with the diffraction maxima and analyse the frequency patterns of wave amplification corresponding to different alignments. In particular, we show that diffraction of gravitational waves by the string may lead to significant amplification at cosmological distances. The wave properties we found are quite different from what one would expect, for instance, from light scattered off a thin wire or slit, since a cosmic string, as a topological defect, gives no shadow at all. - Highlights: • Interference and diffraction of gravitational waves by a cosmic string are studied. • Uniform asymptotic theory of diffraction is applied for a finite distance source. • Hyperbolic-shaped Fresnel observation zones associated with maxima of diffraction. • Frequency patterns modulated by diffraction for different string alignments are given. • The method is applicable to condensed-matter defects and other types of waves.

  7. Fresnel Volume Migration of the ISO89-3D data set

    Science.gov (United States)

    Hloušek, F.; Buske, S.

    2016-11-01

    This paper demonstrates the capabilities of Fresnel Volume Migration (FVM) for 3-D single-component seismic data in a crystalline environment. We show its application to the ISO89-3D data set, which was acquired in 1989 at the German continental deep drilling site (KTB) near Windischeschenbach (Southeast Germany). A key point in FVM is the derivation of the emergent angle for the recorded wavefield. This angle is used as the initial condition of the ray-tracing-algorithm within FVM. In order to limit the migration operator to the physically relevant part of a reflector, it is restricted to the Fresnel-volume around the backpropagated ray. We discuss different possibilities for an adequate choice of the used aperture for a local slant-stack algorithm using the semblance as a measure of the coherency for different emergent angles. Furthermore, we reduce the number of used receivers for this procedure using the Voronoi diagram, thereby leading to a more equal distribution of the receivers within the selected aperture. We demonstrate the performance of these methods for a simple 3-D synthetic example and show the results for the ISO89-3D data set. For the latter, our approach yields images of significantly better quality compared to previous investigations and allows for a detailed characterization of the subsurface. Even in migrated single shot gathers, structures are clearly visible due to the focusing achieved by FVM.

  8. 3D printing optical watermark algorithms based on the combination of DWT and Fresnel transformation

    Science.gov (United States)

    Hu, Qi; Duan, Jin; Zhai, Di; Wang, LiNing

    2016-10-01

    With the continuous development of industrialization, 3D printing technology steps into individuals' lives gradually, however, the consequential security issue has become the urgent problem which is imminent. This paper proposes the 3D printing optical watermark algorithms based on the combination of DWT and Fresnel transformation and utilizes authorized key to restrict 3D model printing's permissions. Firstly, algorithms put 3D model into affine transform, and take the distance from the center of gravity to the vertex of 3D object in order to generate a one-dimensional discrete signal; then make this signal into wavelet transform and put the transformed coefficient into Fresnel transformation. Use math model to embed watermark information into it and finally generate 3D digital model with watermarking. This paper adopts VC++.NET and DIRECTX 9.0 SDK for combined developing and testing, and the results show that in fixed affine space, achieve the robustness in translation, revolving and proportion transforms of 3D model and better watermark-invisibility. The security and authorization of 3D model have been protected effectively.

  9. Thermal performance of a linear Fresnel reflector solar concentrator PV/T energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, Mohamed R. [State Engineering University of Armenia (Armenia)], E-Mail: Dmoh_elbehary@yahoo.com

    2011-07-01

    This is a report on an investigation of photovoltaic/thermal (PV/T) collectors. Solar energy conversion efficiency was increased by taking advantage of PV/T collectors and low solar concentration technologies, combined into a PV/T system operated at elevated temperature. The main novelty is the coupling of a linear Fresnel mirror reflecting concentrator with a channel PV/T collector. Concentrator PV/T collectors can function at temperatures over 100 degrees celsius, and thus thermal energy can be made to drive processes such as refrigeration, desalination and steam production. Solar system analytical thermal performance gives efficiency values over 60%. Combined electric and thermal (CET) efficiency is high. A combined electric and heat power for the linear fresnel reflector approach that employs high performance CPV technology to produce both electricity and thermal energy at low to medium temperatures is presented. A well-functioning PV/T system can be designed and constructed with low concentration and a total efficiency of nearly 80% can be attained.

  10. Optical image encryption based on a joint Fresnel transform correlator with double optical wedges.

    Science.gov (United States)

    Shen, Xueju; Dou, Shuaifeng; Lei, Ming; Chen, Yudan

    2016-10-20

    An optical cryptosystem based on the joint Fresnel transform correlator (JFTC) with double optical wedges is designed. The designed cryptosystem retains the two major advantages of JTC-based optical cryptosystems. First, the encrypted image is real-valued and therefore is easier to record and transmit. Second, the encryption process is simplified, since it doesn't require accurate alignment of optical elements or the generation of the complex conjugate of the key. Also, the designed optical cryptosystem can produce a decrypted image with higher quality than a JTC-based optical cryptosystem, because the original encrypted image is divided by the Fresnel transform power distribution of the key mask to generate the new encrypted image, which significantly reduces the noise during the decryption process. Simulation results showed that the correlation coefficient of the decrypted image and the original image can reach as large as 0.9819 after denoising and adequately selecting half-central interval a and encrypted image width w. Another improvement relative to JTC-based optical cryptosystems is that the attack resistibility gets enhanced due to the nonlinearity of the encryption process as well as the additional key parameter a, which enlarges the key space.

  11. WIMPs search at OTO Cosmo Observatory

    Science.gov (United States)

    Fushimi, K.; Ichihara, K.; Koori, N.; Nakayama, S.; Shichijo, Y.; Ogawa, I.; Yoshida, S.; Ajimura, S.; Hazama, R.; Ishikawa, Y.; Itamura, M.; Kishimoto, T.; Kunitomi, G.; Matsuoka, K.; Miyawaki, H.; Shiomi, S.; Suzuki, N.; Tanaka, Y.; Umehara, S.; Ejiri, H.; Kudomi, N.; Kume, K.; Takahisa, K.; Ohsumi, H.; Yanagida, Y.

    2003-03-01

    WIMPs dark matter and double beta decays has been studied at OTO Cosmo Observatory. The observatory has great advantages of small cosmic ray flux, small neutron flux and small radon density. The recent status of WIMPs search by huge NaI (ELEGANT V), large CaF2Eu) (ELEGANT VI) and high sesitive NaI detector are reported.

  12. HAWC observatory catches first gamma rays

    Science.gov (United States)

    Frías Villegas, Gabriela

    2013-06-01

    The world's largest and most modern gamma-ray observatory has carried out its first successful observations. Located inside the Pico de Orizaba national park in the Mexican state of Puebla, the High-Altitude Water Cherenkov Observatory (HAWC) is a collaboration between 26 Mexican and US institutions.

  13. Highlights from the Pierre Auger Observatory

    NARCIS (Netherlands)

    Letessier-Selvon, Antoine; for the Pierre Auger Collaboration, [No Value; :, [No Value; Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antivcic, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Belletoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blumer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Burton, R. E.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Diaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Frohlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Homola, P.; Hoerandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp d, J.; Krause, R.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Aguera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Muller, G.; Munchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novzka, L.; Oehlschlager, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Ruhle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sanchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schroeder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijarvi, T.; Supanitsky, A. D.; Susa, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Tacscuau, O.; Tcaciuc, R.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Martin, L.

    2013-01-01

    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km$^2$ str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a n

  14. Global Health Observatory (GHO): Life Expectancy

    Science.gov (United States)

    ... WHO Language عربي 中文 English Français Русский Español Global Health Observatory (GHO) data Menu Global Health Observatory ... years on average in 2015 MORE MORTALITY AND GLOBAL HEALTH ESTIMATES DATA PRODUCTS Maps Country profiles About ...

  15. Highlights from the Pierre Auger Observatory

    NARCIS (Netherlands)

    Letessier-Selvon, Antoine; for the Pierre Auger Collaboration, [No Value; :, [No Value; Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antivcic, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Belletoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blumer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Burton, R. E.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Diaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Frohlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Homola, P.; Hoerandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp d, J.; Krause, R.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Aguera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Muller, G.; Munchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novzka, L.; Oehlschlager, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Ruhle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sanchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schroeder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijarvi, T.; Supanitsky, A. D.; Susa, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Tacscuau, O.; Tcaciuc, R.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Martin, L.

    2013-01-01

    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km$^2$ str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a n

  16. The Pierre Auger Cosmic Ray Observatory

    CERN Document Server

    ,

    2015-01-01

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above $10^{17}$ eV and to study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water-Cherenkov particle detector stations spread over 3000 km$^2$ overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km$^2$, 61 detector infill array. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km$^2$ sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Auger Observatory.

  17. The Pierre Auger Cosmic Ray Observatory

    Science.gov (United States)

    Pierre Auger Collaboration

    2015-10-01

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 1017 eV and to study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water Cherenkov particle detector stations spread over 3000 km2 overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km2, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km2 sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Observatory.

  18. Study on Titanium Nitride Film Modified for Intraocular Lens

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective:To study the characteristics of the intraocular lens using ion beam sputtering depositing titanium nitride thin film on the intraocular lens(IOLs).Methods:To deposite titanium nitride thin film on the top of intraocular lens by ion beam sputtering depositing.We analyzed the surface morphology of intraocular lens through SEM and AFM.We detected intraocular lens resolution through the measurement of intraocular lens.Biocompatibility of intraocular lens is preliminary evaluated in this test.Results:T...

  19. Lens Coupled Quantum Cascade Laser

    Science.gov (United States)

    Hu, Qing (Inventor); Lee, Alan Wei Min (Inventor)

    2013-01-01

    Terahertz quantum cascade (QC) devices are disclosed that can operate, e.g., in a range of about 1 THz to about 10 THz. In some embodiments, QC lasers are disclosed in which an optical element (e.g., a lens) is coupled to an output facet of the laser's active region to enhance coupling of the lasing radiation from the active region to an external environment. In other embodiments, terahertz amplifier and tunable terahertz QC lasers are disclosed.

  20. Contact lens wear is intrinsically inflammatory.

    Science.gov (United States)

    Efron, Nathan

    2017-01-01

    Eye-care practitioners typically associate ocular inflammation during contact lens wear with serious complications such as microbial keratitis; however, more subtle mechanisms may be at play. This paper tests the notion that contact lens wear is intrinsically inflammatory by exploring whether uncomplicated contact lens wear meets the classical, clinical definition of inflammation - rubor (redness), calor (heat), tumor (swelling), dolor (pain) and functio laesa (loss of function) - as well as the contemporary, sub-clinical definition of inflammation (cellular and biochemical reactions). It is demonstrated that all of these clinical and sub-clinical criteria are met with hydrogel lens wear and most are met with silicone hydrogel lens wear, indicating that uncomplicated contact lens wear is intrinsically inflammatory. Consideration of both traditional and contemporary thinking about the role of inflammation in the human body leads to the perhaps surprising conclusion that the chronic, low grade, sub-clinical inflammatory status of the anterior eye during contact lens wear, which may be termed 'para-inflammation', is a positive, protective phenomenon, whereby up-regulation of the immune system, in a non-damaging way, maintains the eye in a state of 'heightened alert', ready to ward off any extrinsic noxious challenge. Characterisation of this inflammatory status may lead to the development of lens engineering or pharmacological strategies to modulate contact lens-induced inflammation, so as to render lens wear more safe and comfortable. © 2016 Optometry Australia.

  1. The GEOSCOPE broadband seismic observatory

    Science.gov (United States)

    Douet, Vincent; Vallée, Martin; Zigone, Dimitri; Bonaimé, Sébastien; Stutzmann, Eléonore; Maggi, Alessia; Pardo, Constanza; Bernard, Armelle; Leroy, Nicolas; Pesqueira, Frédéric; Lévêque, Jean-Jacques; Thoré, Jean-Yves; Bes de Berc, Maxime; Sayadi, Jihane

    2016-04-01

    The GEOSCOPE observatory has provided continuous broadband data to the scientific community for the past 34 years. The 31 operational GEOSCOPE stations are installed in 17 countries, across all continents and on islands throughout the oceans. They are equipped with three component very broadband seismometers (STS1, T240 or STS2) and 24 or 26 bit digitizers (Q330HR). Seismometers are installed with warpless base plates, which decrease long period noise on horizontal components by up to 15dB. All stations send data in real time to the IPGP data center, which transmits them automatically to other data centers (FDSN/IRIS-DMC and RESIF) and tsunami warning centers. In 2016, three stations are expected to be installed or re-installed: in Western China (WUS station), in Saint Pierre and Miquelon Island (off the East coast of Canada) and in Walis and Futuna (SouthWest Pacific Ocean). The waveform data are technically validated by IPGP (25 stations) or EOST (6 stations) in order to check their continuity and integrity. Scientific data validation is also performed by analyzing seismic noise level of the continuous data and by comparing real and synthetic earthquake waveforms (body waves). After these validations, data are archived by the IPGP data center in Paris. They are made available to the international scientific community through different interfaces (see details on http://geoscope.ipgp.fr). Data are duplicated at the FDSN/IRIS-DMC data center and a similar duplication at the French national data center RESIF will be operational in 2016. The GEOSCOPE broadband seismic observatory also provides near-real time information on global moderate-to-large seismicity (above magnitude 5.5-6) through the automated application of the SCARDEC method (Vallée et al., 2011). By using global data from the FDSN - in particular from GEOSCOPE and IRIS/USGS stations -, earthquake source parameters (depth, moment magnitude, focal mechanism, source time function) are determined about 45

  2. EMSO: European Multidisciplinary Seafloor Observatory

    Science.gov (United States)

    Favali, Paolo

    2010-05-01

    EMSO, a Research Infrastructure listed within ESFRI (European Strategy Forum on Research Infrastructures) Roadmap (Report 2006, http://cordis.europa.eu/esfri/roadmap.htm), is the European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the scientific objective of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes through long time series appropriate to the scale of the phenomena, constituting the new frontier of studying Earth interior, deep-sea biology and chemistry and ocean processes. The development of an underwater network is based on previous EU-funded projects since early '90 and is being supported by several EU initiatives, as the on-going ESONET-NoE, coordinated by IFREMER (2007-2011, http://www.esonet-emso.org/esonet-noe/), and aims at gathering together the Research Community of the Ocean Observatories. In 2006 the FP7 Capacities Programme launched a call for Preparatory Phase (PP) projects, that will provide the support to create the legal and organisational entities in charge of managing the infrastructures, and coordinating the financial effort among the countries. Under this call the EMSO-PP project was approved in 2007 with the coordination of INGV and the participation of other 11 Institutions of 11 countries. The project has started in April 2008 and will last 4 years. The EMSO is a key-infrastructure both for Ocean Sciences and for Solid Earth Sciences. In this respect it will enhance and complement profitably the capabilities of other European research infrastructures such as EPOS, ERICON-Aurora Borealis, and SIOS. The perspective of the synergy among EMSO and other ESFRI Research Infrastructures will be outlined. EMSO Partners: IFREMER-Institut Français de Recherche pour l'exploitation de la mer (France, ref. Roland Person); KDM-Konsortium Deutsche Meeresforschung e.V. (Germany, ref. Christoph

  3. Optical reconstruction of digital off-axis Fresnel holograms using phase-only LCOS SLM "HoloEye PLUTO VIS"

    Science.gov (United States)

    Cheremkhin, P. A.; Evtikhiev, N. N.; Krasnov, V. V.; Porshneva, L. A.; Starikov, R. S.; Starikov, S. N.

    2014-09-01

    Optical reconstruction of digital holograms using SLM is used for imaging of 3D scenes, interferometry, microscopy, and etc. In this article reconstruction of digital off-axis Fresnel holograms using phase-only LCOS SLM "HoloEye PLUTO VIS" is described. Experimental and numerically simulated results of reconstruction are presented.

  4. Energy performance of a concentrated photovoltaic energy system with static linear Fresnel lenses integrated in a greenhouse

    NARCIS (Netherlands)

    Sonneveld, Piet; Swinkels, Gert-Jan; Tuijl, B.A.J. van; Janssen, H.J.J.; Campen, J.; Bot, G.P.A

    2011-01-01

    A new type of greenhouse with linear Fresnel lenses in the cover performing as a concentrated photovoltaic (CPV) system is presented. The CPV system retains all direct solar radiation, while diffuse solar radiation passes through and enters into the greenhouse cultivation system. The removal of all

  5. Electromagnetic wave propagation in metamaterials: a visual guide to Fresnel-Kummer surfaces and their singular points

    CERN Document Server

    Favaro, Alberto

    2016-01-01

    The propagation of light through bianisotropic materials is studied in the geometrical optics approximation. For that purpose, we use the quartic general dispersion equation specified by the Tamm-Rubilar tensor, which is cubic in the electromagnetic response tensor of the medium. A collection of different and remarkable Fresnel (wave) surfaces is gathered, and unified via the projective geometry of Kummer surfaces.

  6. Internal structure of an intact Convallaria majalis pollen grain observed with X-ray Fresnel coherent diffractive imaging

    NARCIS (Netherlands)

    Mancuso, Adrian P; Groves, Matthew R; Polozhentsev, Oleg E; Williams, Garth J; McNulty, Ian; Antony, Claude; Santarella-Mellwig, Rachel; Soldatov, Aleksander V; Lamzin, Victor; Peele, Andrew G; Nugent, Keith A; Vartanyants, Ivan A

    2012-01-01

    We have applied Fresnel Coherent Diffractive Imaging (FCDI) to image an intact pollen grain from Convallaria majalis. This approach allows us to resolve internal structures without the requirement to chemically treat or slice the sample into thin sections. Coherent X-ray diffraction data from this p

  7. A Bibliometric Analysis of Observatory Publications 2008-2012

    Science.gov (United States)

    Crabtree, D. R.

    2015-04-01

    Refereed publications are the primary output of modern observatories. I examine the productivity and impact of a significant number of observatories, as well as some other interesting aspects of observatory papers.

  8. Solar Imagery - Photosphere - Sunspot Drawings - McMath-Hulbert Observatory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The McMath-Hulbert Observatory is a decommissioned solar observatory in Lake Angelus, Michigan, USA. It was established in 1929 as a private observatory by father...

  9. The Malaysian Robotic Solar Observatory (P29)

    Science.gov (United States)

    Othman, M.; Asillam, M. F.; Ismail, M. K. H.

    2006-11-01

    Robotic observatory with small telescopes can make significant contributions to astronomy observation. They provide an encouraging environment for astronomers to focus on data analysis and research while at the same time reducing time and cost for observation. The observatory will house the primary 50cm robotic telescope in the main dome which will be used for photometry, spectroscopy and astrometry observation activities. The secondary telescope is a robotic multi-apochromatic refractor (maximum diameter: 15 cm) which will be housed in the smaller dome. This telescope set will be used for solar observation mainly in three different wavelengths simultaneously: the Continuum, H-Alpha and Calcium K-line. The observatory is also equipped with an automated weather station, cloud & rain sensor and all-sky camera to monitor the climatic condition, sense the clouds (before raining) as well as to view real time sky view above the observatory. In conjunction with the Langkawi All-Sky Camera, the observatory website will also display images from the Malaysia - Antarctica All-Sky Camera used to monitor the sky at Scott Base Antarctica. Both all-sky images can be displayed simultaneously to show the difference between the equatorial and Antarctica skies. This paper will describe the Malaysian Robotic Observatory including the systems available and method of access by other astronomers. We will also suggest possible collaboration with other observatories in this region.

  10. Lyman Alpha Spicule Observatory (LASO)

    Science.gov (United States)

    Chamberlin, P. C.; Allred, J. C.; Airapetian, V.; Gong, Q.; Mcintosh, S. W.; De Pontieu, B.; Fontenla, J. M.

    2011-12-01

    The Lyman Alpha Spicule Observatory (LASO) sounding rocket will observe small-scale eruptive events called "Rapid Blue-shifted Events" (RBEs) [Rouppe van der Voort et al., 2009], the on-disk equivalent of Type-II spicules, and extend observations that explore their role in the solar coronal heating problem [De Pontieu et al., 2011]. LASO utilizes a new and novel optical design to simultaneously observe two spatial dimensions at 4.2" spatial resolution (2.1" pixels) over a 2'x2' field of view with high spectral resolution of 66mÅ (33mÅ pixels) across a broad 20Å spectral window. This spectral window contains three strong chromospheric and transition region emissions and is centered on the strong Hydrogen Lyman-α emission at 1216Å. This instrument makes it possible to obtain new data crucial to the physical understanding of these phenomena and their role in the overall energy and momentum balance from the upper chromosphere to lower corona. LASO was submitted March 2011 in response to the ROSES SHP-LCAS call.

  11. The Jiangmen Underground Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Sawatzki, Julia [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse 1, 85748 Garching (Germany)

    2016-07-01

    The Jiangmen Underground Neutrino Observatory (JUNO) is a next-generation medium-baseline reactor neutrino experiment located in southern China, close to Kaiping. The construction of the 700 m deep underground facility already started and the experiment is scheduled to start data-taking in 2020, and is expected to operate for at least 20 years. The 20 kt liquid scintillator detector will detect low-energy neutrinos with an unprecedented energy resolution of 3% (at 1 MeV). The primary experimental goal is the determination of the neutrino mass hierarchy at 3σ significance from the measurement of the reactor neutrino energy spectrum. Two nuclear power plants: Yangjiang and Taishan are located at a distance of ∝ 53 km from the detector. Moreover, JUNO will measure the solar neutrino mixing parameters and the atmospheric neutrino squared-mass splitting with a precision < 1%. In addition, supernova neutrinos, geo-neutrinos, sterile neutrinos as well as solar and atmospheric neutrinos can be studied. This talk reviews the status of the project and highlight important scientific objectives.

  12. Strainmeters at Moxa observatory, Germany

    Science.gov (United States)

    Jahr, Thomas; Kroner, Corinna; Lippmann, Andrea

    2006-01-01

    Since 1997, two quartz tube strainmeters at the Geodynamic Observatory Moxa, located 30 km south of Jena, are used to observe long-period horizontal deformation signals. Both strainmeters are 26 m long with orientations NS and EW and are installed in a gallery. To this system a third component was added in 1999, which connects the ends of the quartz tubes diagonally. This component is realised as a laser strainmeter, running through a 38 m long horizontal borehole. The first data analyses show high signal-to-noise ratios for the tidal frequencies and also the free oscillations caused by the Sumatra earthquake in December 2004 are clearly detectable. It can be shown that the quartz strainmeter extending in EW direction generally contains significant more noise induced by barometric pressure than the NS-component. The laser strainmeter record shows strong influences of changing barometric pressure, due to the fact that the beam does not run in a vacuum. This influence is reduced in the higher frequencies by sealing the ends of the horizontal borehole with high quality glass. In addition, the observations are clearly temperature dependent and the influence of rainfall could be verified by two irrigation experiments.

  13. A linear concentrating Fresnel collector driving a NH{sub 3}-H{sub 2}O absorption chiller

    Energy Technology Data Exchange (ETDEWEB)

    Haeberle, A.; Luginsland, F.; Zahler, C.; Berger, M. [PSE GmbH, Freiburg (Germany); Rommel, M.; Henning, H.M. [Fraunhofer ISE, Freiburg (Germany); Guerra, M.; Paoli, F. De [Robur S.p.A., Verdellino/Zingonia (Italy); Motta, M.; Aprile, M. [Politecnico di Milano (Italy)

    2007-07-01

    With linear Fresnel collectors it is possible to provide process heat up to 200 C using a pressurized water circuit for heat transfer and therefore they are perfectly suited to power efficient absorption chillers. The tests and measurements at the solar cooling system in Bergamo show that this prototype of the PSE Fresnel collector can provide temperatures of 180 C with an efficiency of approx. 40% with respect to DNI. The system is working stable since one year. Enhancement potential has been identified at the receiver and the thermal capacities of the system. This year in October PSE will install a Fresnel collector with a primary mirror area of 352m{sup 3} and a length of 64 m on the roof of the faculty of engineering at the University of Seville, Spain. This collector with a thermal peak power of approx. 176 kW will drive a double effect H{sub 2}O/LiBr absorption chiller with a maximum cooling power of 174 kW which will be used for air-conditioning of this building. At this site the wet-cooling tower for heat rejection, which is usually necessary for H{sub 2}O/LiBr absorption chillers, will be substituted by a water heat exchanger fed by water out of the nearby river Guadalquivir. The double effect absorption chiller offers a high COP which makes this system a further attractive application of solar process heat for solar thermal cooling. PSE plans to offer its FRESNEL process heat collector in 2008 commercially for solar process heat applications. The development of the PSE Fresnel process heat collector war partially funded by Deutsche Bundesstiftung Umwelt. (orig.)

  14. Evolution of a pre and post lens tear film with a contact lens

    Science.gov (United States)

    Gerhart, Matthew; Anderson, Daniel

    2012-11-01

    The work is the development, implementation, and analysis of a two-dimensional tear film model including a porous contact lens. The geometry of the problem is: a pre-lens layer that is a thin tear film between the outside air and contact lens, a contact lens that is a rigid but movable porous substrate, and a post-lens layer that is a thin film layer between the contact lens and the cornea. We are looking at short and long term behavior of the evolution of the thin film in the pre-lens layer coupled with the porous layer and the thin squeeze film in the post-lens layer. We model the different behaviors that arise as the Darcy number, evaporation effects, and boundary flux conditions change.

  15. Byurakan Astrophysical Observatory as Cultural Centre

    Science.gov (United States)

    Mickaelian, A. M.; Farmanyan, S. V.

    2016-12-01

    NAS RA V. Ambartsumian Byurakan Astrophysical Observatory is presented as a cultural centre for Armenia and the Armenian nation in general. Besides being scientific and educational centre, the Observatory is famous for its unique architectural ensemble, rich botanical garden and world of birds, as well as it is one of the most frequently visited sightseeing of Armenia. In recent years, the Observatory has also taken the initiative of the coordination of the Cultural Astronomy in Armenia and in this field, unites the astronomers, historians, archaeologists, ethnographers, culturologists, literary critics, linguists, art historians and other experts.

  16. Lateral shear interferometry with holo shear lens

    Science.gov (United States)

    Joenathan, C.; Mohanty, R. K.; Sirohi, R. S.

    1984-12-01

    A simple method for obtaining lateral shear using holo shear lenses (HSL) has been discussed. This simple device which produces lateral shears in the orthogonal directions has been used for lens testing. The holo shear lens is placed at or near the focus of the lens to be tested. It has also been shown that HSL can be used in speckle shear interferometry as it performs both the functions of shearing and imaging.

  17. An inverse and analytic lens design method

    OpenAIRE

    Lu, Yang; Lakshminarayanan, Vasudevan

    2016-01-01

    Traditional lens design is a numerical and forward process based on ray tracing and aberration theory. This method has limitations because the initial configuration of the lens has to be specified and the aberrations of the lenses have to considered. This paper is an initial attempt to investigate an analytic and inverse lens design method, called Lagrange, to overcome these barriers. Lagrange method tries to build differential equations in terms of the system parameters and the system input ...

  18. Algorithm design of liquid lens inspection system

    Science.gov (United States)

    Hsieh, Lu-Lin; Wang, Chun-Chieh

    2008-08-01

    In mobile lens domain, the glass lens is often to be applied in high-resolution requirement situation; but the glass zoom lens needs to be collocated with movable machinery and voice-coil motor, which usually arises some space limits in minimum design. In high level molding component technology development, the appearance of liquid lens has become the focus of mobile phone and digital camera companies. The liquid lens sets with solid optical lens and driving circuit has replaced the original components. As a result, the volume requirement is decreased to merely 50% of the original design. Besides, with the high focus adjusting speed, low energy requirement, high durability, and low-cost manufacturing process, the liquid lens shows advantages in the competitive market. In the past, authors only need to inspect the scrape defect made by external force for the glass lens. As to the liquid lens, authors need to inspect the state of four different structural layers due to the different design and structure. In this paper, authors apply machine vision and digital image processing technology to administer inspections in the particular layer according to the needs of users. According to our experiment results, the algorithm proposed can automatically delete non-focus background, extract the region of interest, find out and analyze the defects efficiently in the particular layer. In the future, authors will combine the algorithm of the system with automatic-focus technology to implement the inside inspection based on the product inspective demands.

  19. A Magnification Lens for Interactive Volume Visualization

    Energy Technology Data Exchange (ETDEWEB)

    LaMar, E; Hamann, B; Joy, K I

    2001-07-19

    Volume visualization of large data sets suffers from the same problem that many other visualization modalities suffer from: either one can visualize the entire data set and lose small details or visualize a small region and lose the context. In this paper, they present a magnification lens technique for volume visualization. While the notion of a magnification-lens is not new, and other techniques attempt to simulate the physical properties of a magnifying lens, their contribution is in developing a magnification lens that is fast, can be implemented using a fairly small software overhead, and has a natural, intuitive appearance. The issue with magnification lens is the border, or transition, region. The lens center and exterior have a constant zoom factor, and are simple to render. It is the border region that blends between the external and interior magnification, and has a non-constant magnification. They use the perspective-correct textures capability, available in most current graphics systems, to produce a lens with a tessellated border region that approximates linear compression with respect to the radius of the magnification lens. They discuss how a cubic border can mitigate the discontinuities resulting from the use of a linear function, without significant performance loss. They discuss various issues concerning development of a three-dimensional magnification lens.

  20. Trends of contact lens prescribing in Jordan.

    Science.gov (United States)

    Haddad, Mera F; Bakkar, May; Gammoh, Yazan; Morgan, Philip

    2016-10-01

    To evaluate contact lens prescribing trends among optometrists in Jordan. Optometrists from 173 practices in Jordan were surveyed about prescribing contact lenses in their practice. Practitioners were required to record information for the last 10 patients that visited their practice. Demographic data such as age and gender was obtained for each patient. In addition, data relating to lens type, lens design, replacement methods and the care regime advised to each patient were recorded. Practitioners were required to provide information relating to their education and years of experience. The influence of education and experience with respect to lens prescribing trends was explored using linear regression models for the proportions of lens types fitted for patients. A total of 1730 contact lens fits were analyzed. The mean (±SD) age of lens wearers was 26.6 (±7.9) years, of whom 65% were female. Conventional hydrogel lenses were the most prescribed lenses, accounting for 60.3% of the fits, followed by silicone hydrogel lenses (31.3%), and rigid lenses (8.4%). In terms of lens design, spherical lenses appeared to be most commonly prescribed on monthly basis. Daily disposable lenses were second most prescribed lens modality, accounting for 20.4% of the study sample. Multi-purpose solution (MPS) was the preferred care regimen, with a prevalence of 88.1% reported in the study sample, compared to hydrogen peroxide (1-step and 2-step), which represented only 2.8% of the patients in this study. A relationship was established between the two educational groups for rigid lens prescribing (F=17.4, ptrends among optometrists in Jordan. Contact lens prescribing in terms of lens type, lens design, modality of wear and care regimen agree with global market trends with small variations. This report will help practitioners and the industry to detect any deficiencies in the contact lens market in Jordan, which will ease implementing current and future plans in developing contact

  1. Coculture with intraocular lens material-activated macrophages induces an inflammatory phenotype in lens epithelial cells.

    Science.gov (United States)

    Pintwala, Robert; Postnikoff, Cameron; Molladavoodi, Sara; Gorbet, Maud

    2015-03-01

    Cataracts are the leading cause of blindness worldwide, requiring surgical implantation of an intraocular lens. Despite evidence of leukocyte ingress into the postoperative lens, few studies have investigated the leukocyte response to intraocular lens materials. A novel coculture model was developed to examine macrophage activation by hydrophilic acrylic (poly(2-hydroxyethyl methacrylate)) and hydrophobic acrylic (polymethylmethacrylate) commercial intraocular lens. The human monocytic cell line THP-1 was differentiated into macrophages and cocultured with human lens epithelial cell line (HLE-B3) with or without an intraocular lens for one, two, four, or six days. Using flow cytometry and confocal microscopy, expression of the macrophage activation marker CD54 (intercellular adhesion molecule-1) and production of reactive oxygen species via the fluorogenic probe 2',7'-dichlorodihydrofluorescein diacetate were examined in macrophages. α-Smooth muscle actin, a transdifferentiation marker, was characterized in lens epithelial cells. The poly(2-hydroxyethyl methacrylate) intraocular lens prevented adhesion but induced significant macrophage activation (p intraocular lens), while the polymethylmethacrylate intraocular lens enabled adhesion and multinucleated fusion, but induced no significant activation. Coculture with either intraocular lens increased reactive oxygen species production in macrophages after one day (p intraocular lens, with hydrophilic surfaces inducing higher activation than hydrophobic surfaces. These findings provide a new method of inquiry into uveal biocompatibility, specifically through the quantification of cell-surface markers of leukocyte activation.

  2. Measurement of magnetic domain wall width using energy-filtered Fresnel images.

    Science.gov (United States)

    Lloyd, S J; Loudon, J C; Midgley, P A

    2002-08-01

    Magnetic domain walls in Nd2Fe14B have been examined using a series of energy-filtered Fresnel images in the field emission gun transmission electron microscope (FEGTEM). We describe the changes in the intensity distribution of the convergent wall image as a function of defocus, foil thickness and domain wall width. The effect of tilted domain walls and beam convergence on the fringe pattern is also discussed. A comparison of the experimental intensity profile with that from simulations allows the domain wall width to be determined. Measurement of very narrow walls is made possible only by using a relatively thick foil, which necessitates energy-filtering to allow quantitative comparison with simulations. The magnetic domain wall width in Nd2Fe14B was found to be 3 +/- 2 nm.

  3. Fresnel Volume Migration applied to geothermal exploration in mid-southern Tuscany

    Science.gov (United States)

    Jusri, Tomi; Bertani, Ruggero; Dini, Ivano; Buske, Stefan

    2017-04-01

    We implemented a Fresnel Volume Migration imaging technique to successfully image the target horizon within a geothermal field in mid-southern Tuscany, Italy. The challenge in imaging this lithology boundary were the presence of strong wavefield scattering and low signal-to-noise ratio in the input seismic data. The migration velocity was carefully modeled using the first-arrivals trav-eltime tomography technique, taking into account the velocity function from a vertical seismic profiling measurement in the area. Prior to the imaging, the data preconditioning was carried out deliberately in the time domain. The key in the data preconditioning stage was the implementation of static corrections using first-arrival traveltime tomography. Our seismic imaging result shows a clear image of the key reflections which correspond to the boundary of the target geothermal source rock. This finding provides the basis for a successful exploration of the geothermal reservoir in this field.

  4. Self-detection of x-ray Fresnel transmittivity using photoelectron-induced gas ionization

    CERN Document Server

    Stoupin, Stanislav

    2015-01-01

    Electric response of an x-ray mirror enclosed in a gas flow ionization chamber was studied under the conditions of total external reflection for hard x-rays. It is shown that the electric response of the system as a function of the incidence angle is defined by x-ray Fresnel transmittivity and photon-electron attenuation properties of the mirror material. A simple interpretation of quantum yield of the system is presented. The approach provides non-invasive in-situ diagnostics of hard x-ray optics, easy access to complementary x-ray transmittivity data in x-ray reflectivity experiments and can also pave the way to novel schemes for angle and energy resolving x-ray detectors.

  5. A Simple Model for Measuring Refractive Index of a Liquid Based upon Fresnel Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-Wei; WU Zhi-Fang; WEN Ting-Dun

    2007-01-01

    Due to many experimental data required and a lot of calculations involved, it is very complex and cumbersome to model prism-based liquid-refractive-index-measuring methods. We develop a new method of mathematical modelling for measuring refractive index of a liquid based upon the Fresnel formula and prism internal reflection at an incident angle less than the critical angle. With this method, only two different concentrations measurements for a kind of solution can lead to the determination of computational model. Measurements are performed to examine the validity of the theoretical model. Experimental results indicate the feasibility of the theoretical model with an error of 1%. The method is also capable of measuring even smaller changes in the optical refractive index of the material on a metal surface by the surface plasma resonance sensing techniques.

  6. Determination of the topological charge of a twisted beam with a Fresnel bi-prism

    Science.gov (United States)

    Emile, Olivier; Emile, Janine; Brousseau, Christian

    2014-12-01

    The self-interference pattern of a Laguerre Gaussian beam using a Fresnel bi-prism is shown to be very different from what could be expected from a usual laser beam. It resembles the interference pattern that could be obtained using a double slit experiment. The interferences are shifted and the topological charge and its sign can be readily determined considering the shift order of the pattern only. However, since there is no diffraction nor absorption losses unlike in a double slit interference, such a set up could be used even for low power twisted beams or beams with high topological charge. Even fractional topological charges could be determined with an absolute precision of 0.05.

  7. Elimination of the Background Noise of the Decoded Image in Fresnel Zone Plate Scanning Holography

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A method of digitally high pass filtering in frequency domain is proposed to eliminate the background noise of the decoded image in Fresnel zone plate scanning holography. The high pass filter is designed as a circular stop, which should be suitable to suppressing the background noise significantly and remain much low frequency information of the object. The principle of high pass filtering is that the Fourier transform of the decoded image is multiplied with the high pass filter. Thus the frequency spectrum of the decoded image without the background noise is achieved. By inverse Fourier transform of the spectrum of the decoded image after multiplying operation, the decoded image without the background noise is obtained. Both of the computer simulations and the experimental results show that the contrast and the signal-to-noise ratio of the decoded image are significantly improved with digital filtering.

  8. Optical color-image encryption and synthesis using coherent diffractive imaging in the Fresnel domain.

    Science.gov (United States)

    Chen, Wen; Chen, Xudong; Sheppard, Colin J R

    2012-02-13

    We propose a new method using coherent diffractive imaging for optical color-image encryption and synthesis in the Fresnel domain. An optical multiple-random-phase-mask encryption system is applied, and a strategy based on lateral translations of a phase-only mask is employed during image encryption. For the decryption, an iterative phase retrieval algorithm is applied to extract high-quality decrypted color images from diffraction intensity maps (i.e., ciphertexts). In addition, optical color-image synthesis is also investigated based on coherent diffractive imaging. Numerical results are presented to demonstrate feasibility and effectiveness of the proposed method. Compared with conventional interference methods, coherent diffractive imaging approach may open up a new research perspective or can provide an effective alternative for optical color-image encryption and synthesis.

  9. Optical color image encryption based on an asymmetric cryptosystem in the Fresnel domain

    Science.gov (United States)

    Chen, Wen; Chen, Xudong

    2011-08-01

    In recent years, optical color image encryption has attracted much attention in the information security field. Some approaches, such as digital holography, have been proposed to encrypt color images, but the previously proposed methods are developed based on optical symmetric cryptographic strategies. In this paper, we apply an optical asymmetric cryptosystem for the color image encryption instead of conventional symmetric cryptosystems. A phase-truncated strategy is applied in the Fresnel domain, and multiple-wavelength and indexed image methods are further employed. The security of optical asymmetric cryptosystem is also analyzed during the decryption. Numerical results are presented to demonstrate the feasibility and effectiveness of the proposed optical asymmetric cryptosystem for color image encryption.

  10. Designing Fresnel microlenses for focusing astigmatic multi-Gaussian beams by using fractional order Fourier transforms

    Energy Technology Data Exchange (ETDEWEB)

    Patino, A [Universidad Technologica de Bolivar, Cartagena de Indias (Colombia); Durand, P-E; Fogret, E; Pellat-Finet, P, E-mail: alberto.patino-vanegas@univ-ubs.fr [Laboratoire de mathematiques et applications des mathematiques, Universite de Bretagne Sud, B P 92116, 56321 Lorient cedex (France)

    2011-01-01

    According to a scalar theory of diffraction, light propagation can be expressed by two-dimensional fractional order Fourier transforms. Since the fractional Fourier transform of a chirp function is a Dirac distribution, focusing a light beam is optically achieved by using a diffractive screen whose transmission function is a two-dimensional chirp function. This property is applied to designing Fresnel microlenses, and the orders of the involved Fourier fractional transforms depend on diffraction distances as well as on emitter and receiver radii of curvature. If the emitter is astigmatic (with two principal radii of curvature), the diffraction phenomenon involves two one-dimensional fractional Fourier transforms whose orders are different. This degree of freedom allows us to design microlenses that can focus astigmatic Gaussian beams, as produced by a line-shaped laser diode source.

  11. Self-detection of x-ray Fresnel transmissivity using photoelectron-induced gas ionization

    Energy Technology Data Exchange (ETDEWEB)

    Stoupin, Stanislav, E-mail: sstoupin@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439 (United States)

    2016-01-25

    Electric response of an x-ray mirror enclosed in a gas flow ionization chamber was studied under the conditions of total external reflection for hard x-rays. It is shown that the electric response of the system as a function of the incidence angle is defined by x-ray Fresnel transmissivity and photon-electron attenuation properties of the mirror material. A simple interpretation of quantum yield of the system is presented. The approach could serve as a basis for non-invasive in situ diagnostics of hard x-ray optics, easy access to complementary x-ray transmissivity data in x-ray reflectivity experiments, and might also pave the way to advanced schemes for angle and energy resolving x-ray detectors.

  12. Self-detection of x-ray Fresnel transmissivity using photoelectron-induced gas ionization

    Science.gov (United States)

    Stoupin, Stanislav

    2016-01-01

    Electric response of an x-ray mirror enclosed in a gas flow ionization chamber was studied under the conditions of total external reflection for hard x-rays. It is shown that the electric response of the system as a function of the incidence angle is defined by x-ray Fresnel transmissivity and photon-electron attenuation properties of the mirror material. A simple interpretation of quantum yield of the system is presented. The approach could serve as a basis for non-invasive in situ diagnostics of hard x-ray optics, easy access to complementary x-ray transmissivity data in x-ray reflectivity experiments, and might also pave the way to advanced schemes for angle and energy resolving x-ray detectors.

  13. Key rotation multiplexing for multiple-image optical encryption in the Fresnel domain

    Science.gov (United States)

    Yong-Liang, Xiao; Su, Xianyu; Li, Sikun; Liu, Xiaoqing; Zeng, Shuguang

    2011-06-01

    We introduce a key rotation multiplexing method into the double random phase encoding system for multiple-image optical encryption in the Fresnel domain. Each plaintext is encoded into a stationary-white-noise ciphertext by the same only phase mask located at the input plane, and another only phase mask with a certain rotation angle located at the transform plane. All ciphertexts encoded from different plaintexts are added together to produce a final ciphertext, which serves as a single data source for different plaintexts decryption. Thus, the mask located at transform plane can be utilized to decrypt different plaintexts with a certain rotation angle. Also, we perform computer simulations to investigate how the quantization level of decrypted key and CCD, respectively, affect the decrypted quality and the number of images that can be multiplexed.

  14. Testing of Large Diameter Fresnel Optics for Space Based Observations of Extensive Air Showers

    Science.gov (United States)

    Adams, James H.; Christl, Mark J.; Young, Roy M.

    2011-01-01

    The JEM-EUSO mission will detect extensive air showers produced by extreme energy cosmic rays. It operates from the ISS looking down on Earth's night time atmosphere to detect the nitrogen fluorescence and Cherenkov produce by the charged particles in the EAS. The JEM-EUSO science objectives require a large field of view, sensitivity to energies below 50 EeV, and must fit within available ISS resources. The JEM-EUSO optic module uses three large diameter, thin plastic lenses with Fresnel surfaces to meet the instrument requirements. A bread-board model of the optic has been manufactured and has undergone preliminary tests. We report the results of optical performance tests and evaluate the present capability to manufacture these optical elements.

  15. Evaluation of different operating strategies to integrate storage in a linear Fresnel ORC power plant

    Science.gov (United States)

    Zoschke, Theda; Seubert, Bernhard; Fluri, Thomas

    2017-06-01

    An existing linear Fresnel power plant with ORC process located in Ben Guerir, Morocco, is retrofitted with a thermal energy storage system and additional collector loops. Two different plant configurations are investigated in this paper. In the first configuration two separate solar fields are built and only the minor one can charge the storage. In the second configuration, there is only one large solar field which offers more flexibility. Two different control strategies are assessed by comparing simulation results. It shows that the simulations of the systems with two solar fields results in higher energy yields throughout the year, but the power production of the system with one solar field is much more flexible and demand oriented. Also it offers great potential for improvement when it comes to weather forecasting.

  16. Fresnel domain nonlinear optical image encryption scheme based on Gerchberg-Saxton phase-retrieval algorithm.

    Science.gov (United States)

    Rajput, Sudheesh K; Nishchal, Naveen K

    2014-01-20

    We propose a novel nonlinear image-encryption scheme based on a Gerchberg-Saxton (G-S) phase-retrieval algorithm in the Fresnel transform domain. The decryption process can be performed using conventional double random phase encoding (DRPE) architecture. The encryption is realized by applying G-S phase-retrieval algorithm twice, which generates two asymmetric keys from intermediate phases. The asymmetric keys are generated in such a way that decryption is possible optically with a conventional DRPE method. Due to the asymmetric nature of the keys, the proposed encryption process is nonlinear and offers enhanced security. The cryptanalysis has been carried out, which proves the robustness of proposed scheme against known-plaintext, chosen-plaintext, and special attacks. A simple optical setup for decryption has also been suggested. Results of computer simulation support the idea of the proposed cryptosystem.

  17. Spatial bandwidth analysis of fast backward Fresnel diffraction for precise computer-generated hologram design.

    Science.gov (United States)

    Liang, Jinyang; Becker, Michael F

    2014-09-20

    Designing near-field computer-generated holograms (CGHs) for a spatial light modulator (SLM) requires backward diffraction calculations. However, direct implementation of the discrete computational model of the Fresnel diffraction integral often produces inaccurate reconstruction. Finite sizes of the SLM and the target image, as well as aliasing, are major sources of error. Here we present a new design prescription for precise near-field CGHs based on comprehensive analysis of the spatial bandwidth. We demonstrate that, by controlling two free variables related to the target image, the designed hologram is free from aliasing and can have minimum error. To achieve this, we analyze the geometry of the target image, hologram, and Fourier transform plane of the target image to derive conditions for minimizing reconstruction error due to truncation of spatial frequencies lying outside of the hologram. The design prescription is verified by examples showing reconstruction error versus controlled parameters. Finally, it is applied to precise three-dimensional image reconstruction.

  18. High fill-factor multilevel Fresnel zone plate arrays by femtosecond laser direct writing

    Science.gov (United States)

    Niu, Li-Gang; Wang, Dian; Jiang, Tong; Wu, Si-Zhu; Li, Ai-Wu; Song, Jun-Feng

    2011-02-01

    Fresnel zone plate arrays (FZPAs), as a kind of an important integrated micro-optical device, have attracted great attention. However, the fill factor of present FZPAs by femtosecond technology is a little low, which leads to serious light loss and low signal-to-noise. Here we reported high fill-factor square and hexagonal FZPAs by femtosecond laser two-photon polymerization of the resin SU-8. Their optical focusing and imaging properties showed the high uniformity and high fidelity of these FZPAs. Moreover, 100% fill-factor FZPAs were demonstrated by optimal theoretical design and experimental parameters. With this high quality FZPAs, clear imaging "F" was obtained. At last, high-level phase type FZPAs were prepared to further enhance the diffractive efficiency to as much as 75%.

  19. The Arecibo Observatory Space Academy

    Science.gov (United States)

    Rodriguez-Ford, Linda A.; Fernanda Zambrano Marin, Luisa; Aponte Hernandez, Betzaida; Soto, Sujeily; Rivera-Valentin, Edgard G.

    2016-10-01

    The Arecibo Observatory Space Academy (AOSA) is an intense fifteen-week pre-college research program for qualified high school students residing in Puerto Rico, which includes ten days for hands-on, on site research activities. Our mission is to prepare students for their professional careers by allowing them to receive an independent and collaborative research experience on topics related to the multidisciplinary field of space science. Our objectives are to (1) supplement the student's STEM education via inquiry-based learning and indirect teaching methods, (2) immerse students in an ESL environment, further developing their verbal and written presentation skills, and (3) foster in every student an interest in the STEM fields by harnessing their natural curiosity and knowledge in order to further develop their critical thinking and investigation skills. Students interested in participating in the program go through an application, interview and trial period before being offered admission. They are welcomed as candidates the first weeks, and later become cadets while experiencing designing, proposing, and conducting research projects focusing in fields like Physics, Astronomy, Geology, Chemistry, and Engineering. Each individual is evaluated with program compatibility based on peer interaction, preparation, participation, and contribution to class, group dynamics, attitude, challenges, and inquiry. This helps to ensure that specialized attention can be given to students who demonstrate a dedication and desire to learn. Deciding how to proceed in the face of setbacks and unexpected problems is central to the learning experience. At the end of the semester, students present their research to the program mentors, peers, and scientific staff. This year, AOSA students also focused on science communication and were trained by NASA's FameLab. Students additionally presented their research at this year's International Space Development Conference (ISDC), which was held in

  20. Were megalithic tombs solar observatories?

    Science.gov (United States)

    Hänel, Andreas

    The orientations of the entrances of several hundred neolithic tombs in Northwest Germany, the Netherlands, Bretagne (Brittany) and the eastern Pyrenees (Roussillon and Catalunya) have been measured with a compass. Comparing these measurements with other authors, we could determine systematic errors and combine the measurements. The results are presented as polar coordinate histograms. The passage graves of Northwest Germany and the Netherlands are oriented east-west. For some of the tombs, entrances are preserved always on the southern side. We assume therefore, that all tombs had entrances on the southern side and we conclude that they are mainly oriented to the south, the direction where celestial objects, and especially the sun, reach their highest position in the sky. Similar results were found by Hamel (1985) for tombs in Mecklenburg-Vorpommern. The tombs in Brittany show a different orientation to the southeast, the azimuth of the rising sun on winter solstice. Tombs in the eastern Pyrenees have a similar orientation, as has also been found by other authors for several regions in southern France and the Iberian peninsula (Iund 2002, Chevalier 1999, Hoskin 2002). But in the eastern Pyrenees and from there north to the Provence and on the Balearic Islands exists a group of tombs that are oriented towards the southwest, where the winter sun sets (Chevalier 1999). But most of the entrances of the tombs are oriented towards the sun. The tombs certainly were no precise astronomical observatories, but their orientations might have had a ritual reason and the course of the sun in the sky was well known at that time.

  1. The Solar Dynamics Observatory (SDO)

    Science.gov (United States)

    Pesnell, W. Dean; Thompson, B. J.; Chamberlin, P. C.

    2012-01-01

    The Solar Dynamics Observatory (SDO) was launched on 11 February 2010 at 15:23 UT from Kennedy Space Center aboard an Atlas V 401 (AV-021) launch vehicle. A series of apogee-motor firings lifted SDO from an initial geosynchronous transfer orbit into a circular geosynchronous orbit inclined by 28° about the longitude of the SDO-dedicated ground station in New Mexico. SDO began returning science data on 1 May 2010. SDO is the first space-weather mission in NASA’s Living With a Star (LWS) Program. SDO’s main goal is to understand, driving toward a predictive capability, those solar variations that influence life on Earth and humanity’s technological systems. The SDO science investigations will determine how the Sun’s magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere and geospace as the solar wind, energetic particles, and variations in the solar irradiance. Insights gained from SDO investigations will also lead to an increased understanding of the role that solar variability plays in changes in Earth’s atmospheric chemistry and climate. The SDO mission includes three scientific investigations (the Atmospheric Imaging Assembly (AIA), Extreme Ultraviolet Variability Experiment (EVE), and Helioseismic and Magnetic Imager (HMI)), a spacecraft bus, and a dedicated ground station to handle the telemetry. The Goddard Space Flight Center built and will operate the spacecraft during its planned five-year mission life; this includes: commanding the spacecraft, receiving the science data, and forwarding that data to the science teams. The science investigations teams at Stanford University, Lockheed Martin Solar Astrophysics Laboratory (LMSAL), and University of Colorado Laboratory for Atmospheric and Space Physics (LASP) will process, analyze, distribute, and archive the science data. We will describe the building of SDO and the science that it will provide to NASA.

  2. Chromospheric telescope of Baikal Astrophysical Observatory. New light

    Science.gov (United States)

    Skomorovsky, Valeriy; Kushtal, Galina; Lopteva, Lyubov; Proshin, Vladimir; Trifonov, Viktor; Chuprakov, Sergey; Khimich, Valeriy

    2016-06-01

    A chromospheric telescope is an important instrument for synoptic observations and solar research. After several decades of observations with the chromospheric telescope at Baikal Astrophysical Observatory, a need arose to improve the characteristics of this telescope and filter. A new reimaging lens to produce full-disk solar images 18 mm in diameter at the CCD camera Hamamatsu C-124 with a detector 36×24 mm (4000×2672 pixels) was designed and manufactured to replace the out-of-operation 50×50 mm Princeton Instruments camera. A contrast interference blocking filter and a new Iceland spar and quartz crystal plates instead of damaged ones were made and installed in the Hα birefringent filter (BF), manufactured by Bernhard Halle Nachfl. The optical immersion in the filter was changed. All telescope optics was cleaned and adjusted. We describe for the first time the design features and their related BF passband tuning. The wavefront interferograms of optical elements and telescope as a whole show that the wavefront distortion of the optical path is within 0.25 λ. The BF and pre-filter spectral parameters provide high-contrast monochromatic images. Besides, we give examples of solar chromospheric images in the Hα line core and wing.

  3. The Fourth US Naval Observatory CCD Astrograph Catalog (UCAC4)

    CERN Document Server

    Zacharias, Norbert; Girard, Terry; Henden, Arne; Bartlett, Jennifer; Monet, Dave; Zacharias, Marion

    2012-01-01

    The fourth United States Naval Observatory (USNO) CCD Astrograph Catalog, UCAC4 was released in August 2012 (double-sided DVD and CDS data center Vizier catalog I/322). It is the final release in this series and contains over 113 million objects; over 105 million of them with proper motions. UCAC4 is an updated version of UCAC3 with about the same number of stars also covering all-sky. Bugs were fixed, Schmidt plate survey data were avoided, and precise 5-band photometry were added. Astrograph observations have been supplemented for bright stars by FK6, Hipparcos and Tycho-2 data to compile a UCAC4 star catalog complete to about magnitude R = 16. Epoch 1998 to 2004 positions are obtained from observations with the 20 cm aperture USNO Astrograph's red lens, equipped with a 4k by 4k CCD. Mean positions and proper motions are derived by combining these observations with over 140 ground- and space-based catalogs, including Hipparcos/Tycho and the AC2000.2, as well as unpublished measures of over 5000 plates from ...

  4. Astronomy projects in ruins as observatory obliterated

    CERN Multimedia

    Bradley, M

    2003-01-01

    Canberra bushfires have gutted the Mount Stromlo Observatory causing the flames destroyed five telescopes, the workshop, eight staff homes and the main dome, causing more than $20 million in damage (1 page).

  5. Cesarsky tipped to head Euro observatory

    CERN Multimedia

    1998-01-01

    French astrophysicist Catherine Cesarsky is the most likely candidate to be the next director of the European Southern Observatory in Garching. She is director of fundamental science at France's atomic energy research organization.

  6. Margaret Huggins and Tulse Hill Observatory

    Science.gov (United States)

    Becker, Barbara J.

    2016-04-01

    Photography, instrument design, methodology, interpretation - all skills brought to William Huggins' observatory by his persistent and careful wife Margaret. Together they developed spectroscopy into a powerful research tool. Barbara Becker tells the story.

  7. Fresnel-collectors in hybrid solar thermal power plants with high solar shares

    Energy Technology Data Exchange (ETDEWEB)

    Lerchenmueller, H.; Mertins, M.; Morin, G. [Fraunhofer Inst. for Solar Energy Systems, Freiburg (Germany); Haeberle, A. [PSE GmbH, Solar Info Center, Freiburg (Germany); Bockamp, S.; Ewert, M.; Fruth, M.; Griestop, T. [E.ON Energie AG, Muenchen (Germany); Dersch, J. [Deutsches Zentrum fuer Luft- und Raumfahrt, Koeln (Germany)

    2004-07-01

    The use of Fresnel-Collectors in power plant configurations with low or zero CO2-emission has been analysed in this paper. Both, the solar-biomass hybrid plant and the solar-gas hybrid plant are very promising concepts with respect to technical, economical and ecological aspects. The hybrid operation would be very useful to handle the fluctuating solar resource and facilitate operation. Depending on feed in tariffs the hybridisation of a solar thermal power plant with biomass or with small shares of natural gas can be economically very interesting. The ecological advantage of a solar-biomass power plant is evident, since it would be a zero CO2- emission plant. Beyond that biomass is a limited source, especially in regions with high solar irradiance. The herein examined gas hybrid variants are by far more favourable than Integrated Solar Combined Cycle Systems (ISCCS), which have been previously examined. Since much higher solar shares can be reached this is a forward-looking technology. Furthermore the solar field does not act as a disturbing factor as opposed to the ISCCS concept, where the efficiency of the sophisticated CC system is reduced due to suboptimal dimensioning of components. In other words: It is better to build the suggested hybrid plant with low gas share and CC plants instead of ISCCS plants. The resulting solar levelised electricity costs of both options are approximately the same. The calculated levelised electricity costs for the examined configurations of between 11 and 13 ct/kWh are very promising results. The calculations were made based on cost assumptions for the collector of 130 Euro/m{sup 2} which seems realistic not for the first project but for the third plant. As a next step in the commercialisation of the Fresnel-technology demonstration and test collectors must be built, such as by the Australian company Solar Heat and Power, to validate the technical and economic assumptions. (orig.)

  8. Paediatric intraocular lens implants: accuracy of lens power calculations.

    Science.gov (United States)

    O'Gallagher, M K; Lagan, M A; Mulholland, C P; Parker, M; McGinnity, G; McLoone, E M

    2016-09-01

    PurposeThis study aims to evaluate the accuracy of lens prediction formulae on a paediatric population.MethodsA retrospective case-note review was undertaken of patients under 8 years old who underwent cataract surgery with primary lens implantation in a regional referral centre for paediatric ophthalmology, excluding those whose procedure was secondary to trauma. Biometric and refractive data were analysed for 43 eyes, including prediction errors (PE). Statistical measures used included mean absolute error (MAE), median absolute error (MedAE), Student's t-test and Lin's correlation coefficient.ResultsThe mean PE using the SRK-II formula was +0.96 D (range -2.47D to +2.41 D, SD 1.33 D, MAE 1.38 D, MedAE 1.55, n=15). The mean PE was smaller using SRK/T (-0.18 D, range -3.25 D to +3.95 D, SD 1.70 D, MAE 1.30 D, MedAE 1.24, n=27). We performed an analysis of the biometry data using four different formula (Hoffer Q, Holladay 1, SRK-II and SRK/T). Hoffer Q showed a smaller MedAE than other formulae but also a myopic bias.ConclusionOur clinical data suggest SRK/T was more accurate in predicting post-operative refraction in this cohort of paediatric patients undergoing cataract surgery. Hoffer Q may have improved accuracy further.

  9. Concepts of the mosaic array of numerous ultra-small lens (MANUL) design

    Science.gov (United States)

    Pál, A.; Mészáros, L.

    2016-08-01

    In order to provide a continuous, multi-color time-domain surveying of the brightest regime of the naked-eye optical sky, we designed the Mosaic Array of Numerous Ultrasmall Lens (MANUL). This device is a palm-sized "astronomical observatory," featuring optics, filters and all necessary electronics (including a TCP/IP-based downlink), all are mounted on 2-inch printed circuit boards. Based on these units, a modular and mosaic arrangement of CMOS imaging sensors with an effective resolution of 1'/pixel can be built. Here we introduce the main design concepts, the early prototyping and the results of the preliminary photometric quality analysis of this initiative.

  10. Flat lens for seismic waves

    CERN Document Server

    Brule, Stephane; Guenneau, Sebastien

    2016-01-01

    A prerequisite for achieving seismic invisibility is to demonstrate the ability of civil engineers to control seismic waves with artificially structured soils. We carry out large-scale field tests with a structured soil made of a grid consisting of cylindrical and vertical holes in the ground and a low frequency artificial source (< 10 Hz). This allows the identification of a distribution of energy inside the grid, which can be interpreted as the consequence of an effective negative refraction index. Such a flat lens reminiscent of what Veselago and Pendry envisioned for light opens avenues in seismic metamaterials to counteract the most devastating components of seismic signals.

  11. Atom lens without chromatic aberrations

    CERN Document Server

    Efremov, Maxim A; Schleich, Wolfgang P

    2012-01-01

    We propose a lens for atoms with reduced chromatic aberrations and calculate its focal length and spot size. In our scheme a two-level atom interacts with a near-resonant standing light wave formed by two running waves of slightly different wave vectors, and a far-detuned running wave propagating perpendicular to the standing wave. We show that within the Raman-Nath approximation and for an adiabatically slow atom-light interaction, the phase acquired by the atom is independent of the incident atomic velocity.

  12. Intraocular lens with accommodation capacity

    OpenAIRE

    Dorronsoro, Carlos; Alejandre, Nicolás; Bekesi, Nandor; Marcos, Susana

    2014-01-01

    Intraocular lens with accommodation capacity comprising a first optical member (1) having a dynamic optical power, to which a second optical member (2) with a fixed optical power is affixed, in such a manner that at least a central part of each of one of one of the curved surfaces (2a, 2b) of the second optical member (2) and of at least one of the surfaces (1a, 1b) of the first optical member (1) are in contact with each other, the second optical member (2) and the first optical member (1) p...

  13. A Green Robotic Observatory for Astronomy Education

    Science.gov (United States)

    Reddy, Vishnu; Archer, K.

    2008-09-01

    With the development of robotic telescopes and stable remote observing software, it is currently possible for a small institution to have an affordable astronomical facility for astronomy education. However, a faculty member has to deal with the light pollution (observatory location on campus), its nightly operations and regular maintenance apart from his day time teaching and research responsibilities. While building an observatory at a remote location is a solution, the cost of constructing and operating such a facility, not to mention the environmental impact, are beyond the reach of most institutions. In an effort to resolve these issues we have developed a robotic remote observatory that can be operated via the internet from anywhere in the world, has a zero operating carbon footprint and minimum impact on the local environment. The prototype observatory is a clam-shell design that houses an 8-inch telescope with a SBIG ST-10 CCD detector. The brain of the observatory is a low draw 12-volt harsh duty computer that runs the dome, telescope, CCD camera, focuser, and weather monitoring. All equipment runs of a 12-volt AGM-style battery that has low lead content and hence more environmental-friendly to dispose. The total power of 12-14 amp/hrs is generated from a set of solar panels that are large enough to maintain a full battery charge for several cloudy days. This completely eliminates the need for a local power grid for operations. Internet access is accomplished via a high-speed cell phone broadband connection or satellite link eliminating the need for a phone network. An independent observatory monitoring system interfaces with the observatory computer during operation. The observatory converts to a trailer for transportation to the site and is converted to a semi-permanent building without wheels and towing equipment. This ensures minimal disturbance to local environment.

  14. Tonantzintla's Observatory Astronomy Teaching Laboratory project

    Science.gov (United States)

    Garfias, F.; Bernal, A.; Martínez, L. A.; Sánchez, L.; Hernández, H.; Langarica, R.; Iriarte, A.; Peña, J. H.; Tinoco, S.; Ángeles, F.

    2008-07-01

    In the last two years the National Observatory at Tonantzintla Puebla, México (OAN Tonantzintla), has been undergoing several facilities upgrades in order to bring to the observatory suitable conditions to operate as a modern Observational Astronomy Teaching Laboratory. In this paper, we present the management, requirement definition and project advances. We made a quantitative diagnosis about of the functionality of the Tonantzintla Observatory (mainly based in the 1m f/15 telescope) to take aim to educational objectives. Through this project we are taking the steps to correct, to actualize and to optimize the observatory astronomical instrumentation according to modern techniques of observation. We present the design and the first actions in order to get a better and efficient use of the main astronomical instrumentation, as well as, the telescope itself, for the undergraduate, postgraduate levels Observacional Astronomy students and outreach publics programs for elementary school. The project includes the development of software and hardware components based in as a common framework for the project management. The Observatory is located at 150 km away from the headquarters at the Instituto de Astronomía, Universidad Nacional Autónoma de México (IAUNAM), and one of the goals is use this infrastructure for a Remote Observatory System.

  15. Telescopes in Education: the Little Thompson Observatory

    Science.gov (United States)

    Schweitzer, A. E.; Melsheimer, T. T.

    2003-12-01

    The Little Thompson Observatory is the first community-built observatory that is part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building was done completely by volunteer labor, and first light occurred in May 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. A committee of teachers and administrators from the Thompson School District selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." Our program is also accredited by Colorado State University.

  16. "Route of astronomical observatories'' project: classical observatories from the Renaissance to the rise of astrophysics

    Science.gov (United States)

    Wolfschmidt, Gudrun

    2015-08-01

    Observatories offer a good possibility for serial transnational applications. A well-known example for a thematic programme is the Struve arc, already recognized as World Heritage.I will discuss what has been achieved and show examples, like the route of astronomical observatories or the transition from classical astronomy to modern astrophysics (La Plata, Hamburg, Nice, etc.), visible in the architecture, the choice of instruments, and the arrangement of the observatory buildings in an astronomy park. This corresponds to the main categories according to which the ``outstanding universal value'' (UNESCO criteria ii, iv and vi) of the observatories have been evaluated: historic, scientific, and aesthetic. This proposal is based on the criteria of a comparability of the observatories in terms of the urbanistic complex and the architecture, the scientific orientation, equipment of instruments, authenticity and integrity of the preserved state, as well as in terms of historic scientific relations and scientific contributions.Apart from these serial transnational applications one can also choose other groups like baroque or neo-classical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments and made by the same famous firm. I will also discuss why the implementation of the Astronomy and World Heritage Initiative is difficult and why there are problems to nominate observatories for election in the national Tentative Lists

  17. Contact lens intolerance: refitting with dual axis lens for corneal refractive therapy

    Science.gov (United States)

    López-López, María; Pelegrín-Sánchez, José Miguel; Sobrado-Calvo, Paloma; García-Ayuso, Diego

    2011-01-01

    Corneal refractive therapy is a non-surgical procedure whose main purpose is to improve uncorrected visual acuity during the day, without spectacles or contact lenses. We report an adult woman who shows contact lens intolerance and does not want to wear eyeglasses. We used dual axis contact lens to improve lens centration. We demonstrate a maintained unaided visual acuity during one year of treatment. In conclusion, we can consider refitting with dual axis lens for corneal refractive therapy as a non-surgical option for patients who show contact lens intolerance.

  18. Fabricating customized hydrogel contact lens

    Science.gov (United States)

    Childs, Andre; Li, Hao; Lewittes, Daniella M.; Dong, Biqin; Liu, Wenzhong; Shu, Xiao; Sun, Cheng; Zhang, Hao F.

    2016-10-01

    Contact lenses are increasingly used in laboratories for in vivo animal retinal imaging and pre-clinical studies. The lens shapes often need modification to optimally fit corneas of individual test subjects. However, the choices from commercially available contact lenses are rather limited. Here, we report a flexible method to fabricate customized hydrogel contact lenses. We showed that the fabricated hydrogel is highly transparent, with refractive indices ranging from 1.42 to 1.45 in the spectra range from 400 nm to 800 nm. The Young’s modulus (1.47 MPa) and hydrophobicity (with a sessile drop contact angle of 40.5°) have also been characterized experimentally. Retinal imaging using optical coherence tomography in rats wearing our customized contact lenses has the quality comparable to the control case without the contact lens. Our method could significantly reduce the cost and the lead time for fabricating soft contact lenses with customized shapes, and benefit the laboratorial-used contact lenses in pre-clinical studies.

  19. Plasma Lens for Muon and Neutrino Beams

    Energy Technology Data Exchange (ETDEWEB)

    Kahn,S.A.; Korenev, S.; Bishai, M.; Diwan, M.; Gallardo, J.C.; Hershcovitch, A.; Johnson, B.M.

    2008-06-23

    The plasma lens is examined as an alternate to focusing horns and solenoids for use in a neutrino or muon beam facility. The plasma lens concept is based on a combined high-energy lens/target configuration. The current is fed at electrodes located upstream and downstream from the target where pion capturing is needed. The current flows primarily in the plasma, which has a lower resistivity than the target. A second plasma lens section, with an additional current feed, follows the target to provide shaping of the plasma for optimum focusing. The plasma lens is immersed in an additional solenoid magnetic field to facilitate the plasma stability. The geometry of the plasma is shaped to provide optimal pion capture. Simulations of this plasma lens system have shown a 25% higher neutrino production than the horn system. Plasma lenses have the additional advantage of negligible pion absorption and scattering by the lens material and reduced neutrino contamination during anti-neutrino running. Results of particle simulations using plasma lens will be presented.

  20. Liquid lens using acoustic radiation force.

    Science.gov (United States)

    Koyama, Daisuke; Isago, Ryoichi; Nakamura, Kentaro

    2011-03-01

    A liquid lens is proposed that uses acoustic radiation force with no mechanical moving parts. It consists of a cylindrical acrylic cell filled with two immiscible liquids (degassed water and silicone oil) and a concave ultrasound transducer. The focal point of the transducer is located on the oil-water interface, which functions as a lens. The acoustic radiation force is generated when there is a difference in the acoustic energy densities of different media. An acoustic standing wave was generated in the axial direction of the lens and the variation of the shape of the oil-water interface was observed by optical coherence tomography (OCT). The lens profile can be rapidly changed by varying the acoustic radiation force from the transducer. The kinematic viscosity of silicone oil was optimized to minimize the response times of the lens. Response times of 40 and 80 ms when switching ultrasonic radiation on and off were obtained with a kinematic viscosity of 200 cSt. The path of a laser beam transmitted through the lens was calculated by ray-tracing simulations based on the experimental results obtained by OCT. The transmitted laser beam could be focused by applying an input voltage. The liquid lens could be operated as a variable-focus lens by varying the input voltage.

  1. Metasurface lens: Shrinking the camera size

    Science.gov (United States)

    Sun, Cheng

    2017-01-01

    A miniaturized camera has been developed by integrating a planar metasurface lens doublet with a CMOS image sensor. The metasurface lens doublet corrects the monochromatic aberration and thus delivers nearly diffraction-limited image quality over a wide field of view.

  2. Managing as designing with a positive lens

    NARCIS (Netherlands)

    Avital, M.; Boland, R.J.; Avital, M.; Boland, R.J.; Cooperrider, D.L.

    2007-01-01

    The role and potential contribution of a positive lens to the design of systems and organizations is the focus of this essay. The positive lens refers to an emerging perspective in the social sciences that emphasizes a positive stance toward our capacity to construct better organizations and technol

  3. Optimization of Zoom Lens with Discrete State of Liquid Lens Elements by Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Cheng-Mu Tsai

    2015-01-01

    Full Text Available This paper is to employ liquid lens elements to design a lens with zoom function by using the genetic algorithm (GA optimization. The liquid lens elements used in the proposal can apply voltage adjustment to generate the electrical field that induces the liquid with electric conductivity to vary the surface curvature between two different kinds of liquids. According to the voltage level, the liquid lens element makes the discrete variation of the curvature and thickness realize the zoom function without moving the lens groups so that the overall length can be reduced. However, it is difficult to design the zoom lens under the discrete variation of the curvature and thickness in the liquid lens elements and the mechanical space that is constantly limited. The GA offers a flexible way for lens optimization. We regarded the spot size as the fitness function to look for the optimum curvatures, thickness, and the corresponding statuses of liquid lens elements for the zoom lens. As a result, the zoom lens with constant space can be realized by running the selection, crossover, and mutation operation in the GA optimization.

  4. High spatial resolution X-UV Fresnel zone plates imaging; Imagerie a haute resolution spatiale dans le domaine X-UV a l'aide de lentilles a zone de Fresnel

    Energy Technology Data Exchange (ETDEWEB)

    Pichet-Thomasset, M

    1999-07-01

    The goal of this work is to study the capabilities of imaging of Fresnel zone plates in the 1.5. and 2 keV X-ray range for the imaging of laser-produced plasmas. The diagnostic is composed of a Fresnel zone plate with good imaging capabilities and a multilayer mirror to select the spectral emission bandwidth of the plasma we want to study. This diagnostic was evaluated at the Centre d'Etudes de Limeil-Valenton experiments to study spatial resolution with this kind of X-ray source. The images we obtained showed that there is no geometric aberrations over an object field of several millimetre. Fresnen zone plates are often used for monochromatic biological objects imaging in the water window around 400 eV but they offer large prospects for laser produced plasma imaging. (author)

  5. Bacterial assay of contact lens wearers.

    Science.gov (United States)

    Hart, D E; Hosmer, M; Georgescu, M; Farris, R L

    1996-03-01

    The goal of the project was to determine the quantity of bacteria on the contact lens and adjacent areas of the eye. This paper is a quantitative study of the contact lens and ocular aerobic microbiota in a mixed group of daily and extended wear disposable contact lens users. The contact lens, the lower fornix, tears collecting at the lower fornix, and edge of the lower lid at the Meibomian gland margin were assayed for the quantity of bacterial colony forming units (CFU). Eighteen patients wearing 49 disposable high water content hydrogel contact lenses were assayed and the mean lens age was 8.8 +/- 4.6 days. Three patients wore their lenses on a daily wear basis and 15 on an extended wear schedule. Tear samples were obtained with sterile microbial loops and the lens was macerated into small particles with a tissue grinder. The samples were poured onto the surface of chocolate agar plates and incubated at 35 degrees C for 48 h in 5% Co2. The lid margin revealed the greatest bacterial presence (mean = 9.7 CFU; median = 2 CFU; mode = 0 CFU). The lens showed the next greatest presence of CFU (mean = 4.5 CFU; median = 1 CFU; mode = 0). The fornix and tears revealed the least bacterial presence (fornix: mean = 2.6 CFU; median = 0 CFU; mode = 0 CFU). The bacteria were coagulase-negative staphylococci. The bacterial assay of disposable lens wearing contact lens subjects indicates that the lid margins are the greatest source of bacteria with the tears being the lowest. These studies support the concept that in the eye, the lens typically does not possess a large number of bacteria under normal conditions.

  6. 195-Year History of Mykolayiv Observatory: Events and People

    Directory of Open Access Journals (Sweden)

    Shulga, O.V.

    2017-01-01

    Full Text Available The basic stages of the history of the Mykolaiv Astronomical Observatory are shown. The main results of the Observatory activities are presented by the catalogs of star positions, major and minor planets in the Solar system, space objects in the Earth orbit. The information on the qualitative and quantitative structure of the Observatory, cooperation with the observatories of Ukraine and foreign countries as well as major projects carried out in the Observatory is provided.

  7. Design and machining of an Archimedes spiral Fresnel lens%Archimedes螺线式Fresnel透镜的设计及加工方法

    Institute of Scientific and Technical Information of China (English)

    赵彤; 张辉; 李维谦; 姜虹; 叶佩青

    2007-01-01

    为解决传统同心环式Fresnel透镜及其模具金刚石刀具加工存在对加工系统要求过高及效率较低的问题,给出了Archimedes螺线式Fresnel透镜的设计方法.从几何聚光比和能流透射率方面对比了2种透镜的性能,发现两者性能基本一致.分析了大型Fresnel透镜及其模具金刚石车削机床的运动.计算了Archimedes螺线式Fresnel透镜车削加工的刀具轨迹.对比机床各轴精度对透镜光学性能的影响,发现刀具摆角、透镜法线方向进给轴的精度影响最大,采用附加沿刀具轴线方向微进给装置的机床结构能有效提高加工精度.

  8. Comparison-based optical study on a point-line-coupling-focus system with linear Fresnel heliostats.

    Science.gov (United States)

    Dai, Yanjun; Li, Xian; Zhou, Lingyu; Ma, Xuan; Wang, Ruzhu

    2016-05-16

    Concentrating the concept of a beam-down solar tower with linear Fresnel heliostat (PLCF) is one of the feasible choices and has great potential in reducing spot size and improving optical efficiency. Optical characteristics of a PLCF system with the hyperboloid reflector are introduced and investigated theoretically. Taking into account solar position and optical surface errors, a Monte Carlo ray-tracing (MCRT) analysis model for a PLCF system is developed and applied in a comparison-based study on the optical performance between the PLCF system and the conventional beam-down solar tower system with flat and spherical heliostats. The optimal square facet of linear Fresnel heliostat is also proposed for matching with the 3D-CPC receiver.

  9. In-Situ Cure Monitoring of Wind Turbine Blades by Using Fiber Bragg Grating Sensors and Fresnel Reflection Measurement

    Directory of Open Access Journals (Sweden)

    Umesh Sampath

    2015-07-01

    Full Text Available A fiber-optic cure monitoring system is proposed to measure curing status of composite structure such as a large scale wind turbine blade. The monitoring is based on the measurement of Fresnel reflectivity at the optical fiber/epoxy resin interface. The refractive index of epoxy resin varies throughout curing stages, changing the Fresnel reflectivity. The curing status is decided by monitoring the reflected intensity variation. The usage of fiber Bragg grating (FBG sensor helps to separate the temperature-induced cross effects. A Gaussian curve fitting algorithm was applied to FBG spectra which were distorted in curing procedure. The substantial measurement errors could be minimized by locating the centroids of the Gaussian curve-fitted spectra. From the experiments performed in various isothermal conditions, the proposed system successfully identified the onset of gelation and the completion of curing of epoxy resins.

  10. In-Situ Cure Monitoring of Wind Turbine Blades by Using Fiber Bragg Grating Sensors and Fresnel Reflection Measurement.

    Science.gov (United States)

    Sampath, Umesh; Kim, Hyunjin; Kim, Dae-gil; Kim, Young-Chon; Song, Minho

    2015-07-27

    A fiber-optic cure monitoring system is proposed to measure curing status of composite structure such as a large scale wind turbine blade. The monitoring is based on the measurement of Fresnel reflectivity at the optical fiber/epoxy resin interface. The refractive index of epoxy resin varies throughout curing stages, changing the Fresnel reflectivity. The curing status is decided by monitoring the reflected intensity variation. The usage of fiber Bragg grating (FBG) sensor helps to separate the temperature-induced cross effects. A Gaussian curve fitting algorithm was applied to FBG spectra which were distorted in curing procedure. The substantial measurement errors could be minimized by locating the centroids of the Gaussian curve-fitted spectra. From the experiments performed in various isothermal conditions, the proposed system successfully identified the onset of gelation and the completion of curing of epoxy resins.

  11. Time-resolved thermal lens spectroscopy with a single-pulsed laser excitation beam: an analytical model for dual-beam mode-mismatched experiments.

    Science.gov (United States)

    Sabaeian, Mohammad; Rezaei, Hamidreza; Ghalambor-Dezfouli, Abdolmohammad

    2017-02-01

    Pulsed laser beam excitations are more commonly used in thermal lens spectroscopy (TLS) than continuous-wave (CW) ones, because CW excitations limit the measurement to linear absorption processes [J. Opt. A5, 256 (2003)]. In this work, we present a new and full analytical model for a single-pulsed laser excitation dual-beam mode-mismatched TLS for low absorption solid-state and liquid samples. Our model has been based on a new solution of time-dependent heat equation for a finite-radius cylindrical sample exposed to a single-pulsed excitation laser beam. For low absorbent samples, unlike previous models, all aberration terms associated in the thermal lens were taken into account in Fresnel integration. Besides, the model provides a full analytical mathematical expression for the temperature rise, normalized signal intensity, and Z-scan photothermal lens signal. The model was confirmed with experimental data of distilled deionized water with excellent agreement. Therefore, the model allows us to extract thermo-optical properties of samples in an analytical and more accurate way.

  12. An international network of magnetic observatories

    Science.gov (United States)

    Love, Jeffrey J.; Chulliat, A.

    2013-01-01

    Since its formation in the late 1980s, the International Real-Time Magnetic Observatory Network (INTERMAGNET), a voluntary consortium of geophysical institutes from around the world, has promoted the operation of magnetic observatories according to modern standards [eg. Rasson, 2007]. INTERMAGNET institutes have cooperatively developed infrastructure for data exchange and management ads well as methods for data processing and checking. INTERMAGNET institute have also helped to expand global geomagnetic monitoring capacity, most notably by assisting magnetic observatory institutes in economically developing countries by working directly with local geophysicists. Today the INTERMAGNET consortium encompasses 57 institutes from 40 countries supporting 120 observatories (see Figures 1a and 1b). INTERMAGNET data record a wide variety of time series signals related to a host of different physical processes in the Earth's interiors and in the Earth's surrounding space environment [e.g., Love, 2008]. Observatory data have always had a diverse user community, and to meet evolving demand, INTERMAGNET has recently coordinated the introduction of several new data services.

  13. Fostering Student Awareness in Observatory STEM Careers

    Science.gov (United States)

    Keonaonaokalauae Acohido, Alexis Ann; Michaud, Peter D.; Gemini Public Information and Outreach Staff

    2016-01-01

    It takes more than scientists to run an observatory. Like most observatories, only about 20% of Gemini Observatory's staff is PhD. Scientists, but 100% of those scientists would not be able to do their jobs without the help of engineers, administrators, and other support staff that make things run smoothly. Gemini's Career Brochure was first published in 2014 to show that there are many different career paths available (especially in local host communities) at an astronomical observatory. Along with the printed career brochure, there are supplementary videos available on Gemini's website and Youtube pages that provide a more detailed and personal glimpse into the day-in-the-life of a wide assortment of Gemini employees. A weakness in most observatory's outreach programming point to the notion that students (and teachers) feel there is a disconnect between academics and where students would like to end up in their career future. This project is one of the ways Gemini addresses these concerns. During my 6-month internship at Gemini, I have updated the Career Brochure website conducted more in-depth interviews with Gemini staff to include as inserts with the brochure, and expanded the array of featured careers. The goal of my work is to provide readers with detailed and individualized employee career paths to show; 1) that there are many ways to establish a career in the STEM fields, and 2), that the STEM fields are vastly diverse.

  14. Maintenance management at La Silla Paranal Observatory

    Science.gov (United States)

    Montano, Nelson

    2008-07-01

    From the beginning of the VLT project, the European Southern Observatory (ESO) considered the application of a competent maintenance strategy a fundamental aspect for future operations of the Paranal Observatory. For that purpose, a special maintenance philosophy was developed during the project stage and applied during the initial years of operations. The merging of the La Silla and Paranal Observatories in 2005 added a new managerial challenge to the regular operational requirements (high availability and reliability) which motivated ESO Management to develop a stronger strategy for the operations of the new merged Observatory. Part of the new strategy considered the creation of a dedicated department for the management of all maintenance activities, separating this support from the traditional scheme where the Engineering Department had the responsibility for the entire technical support to operations. In order to keep a competent level of maintenance operations for the new unified Observatory, the La Silla Paranal (LSP) Maintenance Department has been using a well known maintenance management model used in various industrial applications as a guide. Today the operations of the Maintenance Department are concentrated on developing and implementing practices regarding concepts such as Maintenance Tactics, Planning, Data Management, Performance Indicators and Material Management. In addition to that, advances related to Reliability Analysis been taken in order to reach a superior level of excellence. The results achieved by the LSP Maintenance Department are reflected in a reduced rate of functional failures, allowing uninterrupted operations of the Observation sites.

  15. Surface wear of TiN coated nickel tool during the injection moulding of polymer micro Fresnel lenses

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Gasparin, Stefania

    2012-01-01

    Limited tool life of nickel mould inserts represents an issue for the mass-production of polymer optics with complex micro three-dimensional geometries by injection moulding. TiN coating was applied to a nickel insert for the injection moulding of polycarbonate micro Fresnel lenses. Surface wear ...... cycles the measured height reduction of 23μm high ribs was on the order of 400–1000nm....

  16. Design and fabrication of an elliptical micro-lens array with grating for laser safety

    Science.gov (United States)

    Li, L. H.; Wu, B. Q.; Chan, C. Y.; Lee, W. B.; Dong, L. H.

    2015-10-01

    With the enormous expansion of laser usage in medicine, industry and research, all facilities must formulate and adhere to specific safety methods that appropriately address user protection. The protective ellipticalal microstructure with grating is a novel technology which can provide the principal means of ensuring against ocular injury, and must be worn at all times during laser operation. On the basis of Fresnel's law and the diffractive law, Solidworks and Lighttools software are applied to design the elliptical micro-lens array and correspondent grating. The height of the microstructure is 100um and its period is 3mm. The period of grating is 5um. It is shown that the amount of emergent light of a specific wavelength (1064nm) can reflect more than 40° from the incident light through simulation, while the incident light is perpendicular to the microstructure. The fabrication adopts the ultra-precision single point diamond method and injection molding method. However, it is found in the test that the surface roughness has a serious effect on the angle between the emergent and incident light. As a result, the element can reflect the vertical incidence beam into a tilted emergent beam with a certain angular degree , as well as protecting users from laser damage injures.

  17. Development of a soft x-ray plasma camera with a Fresnel zone plate to image laser produced plasmas

    Science.gov (United States)

    Kado, M.; Mori, M.; Nishiuchi, M.; Ishino, M.; Kawachi, T.

    2009-09-01

    A soft x-ray plasma camera operated at 3.35nm in the water window x-ray region is developed and demonstrated imaging gas jet plasmas of several spices produced with a 10TW Ti: sapphire laser. The plasma camera consists of a 300nm thick Ag/Ti/Si3N4 x-ray band pass filter with bandwidth of 1.43nm to cut visible light and also to reduce colour aberration of the Fresnel zone plate, a Fresnel zone plate with diameter of 1mm and outermost zone width of 300nm, and a soft x-ray CCD camera. The magnification of the plasma camera is 10. The soft x-ray plasma camera powered by a Fresnel zone plate is a very powerful tool to observe laser produced plasmas since it is 1000 times brighter and has 5 times higher spatial resolution comparing ordinary x-ray pinhole camera. The soft x-ray images of helium, nitrogen, argon, krypton, and xenon gas jet plasmas are obtained changing gas pressure from 0.01MPa to 1MPa.

  18. The Lowell Observatory Predoctoral Scholar Program

    Science.gov (United States)

    van Belle, Gerard; Prato, Lisa A.

    2016-01-01

    Lowell Observatory is pleased to solicit applications for our Predoctoral Scholar Fellowship Program. Now beginning its eighth year, this program is designed to provide unique research opportunities to graduate students in good standing, currently enrolled at Ph.D. granting institutions. Lowell staff research spans a wide range of topics, from astronomical instrumentation, to icy bodies in our solar system, exoplanet science, stellar populations, star formation, and dwarf galaxies. The Observatory's new 4.3 meter Discovery Channel Telescope has successfully begun science operations and we anticipate the commissioning of new instruments in 2015, making this a particularly exciting time in our history. Student research is expected to lead to a thesis dissertation appropriate for graduation at the doctoral level at the student's home institution. The Observatory provides competitive compensation and full benefits to student scholars. For more information, see http://www2.lowell.edu/rsch/predoc.php and links therein. Applications for Fall 2016 are due by May 1, 2016.

  19. The York College observatory outreach program

    Science.gov (United States)

    Paglione, T.; Spergel, M.

    The primary mission of the York College Observatory Outreach Program is to im- prove minority participation in space science and space science education. We aim to achieve this goal by developing an urban observatory in central Queens: the York Col- lege Observatory (YCO). We concentrate our efforts in three main areas: academics, outreach and research. Academically, we utilize astronomy?s popular appeal to at- tract and retain students and to enhance existing science courses. We have also created a minor in Astronomy at York College, and are active members of the New York City Space Science Research Alliance, which has developed a City University major in Space Science. Our outreach efforts aim to increase the awareness of the general public through workshops for high school teachers, curriculum development for high schools and public open nights at the YCO. Our research program utilizes the radio and optical capabilities of the YCO and collaborations with other institutions.

  20. Environmental effects on lunar astronomical observatories

    Science.gov (United States)

    Johnson, Stewart W.; Taylor, G. Jeffrey; Wetzel, John P.

    1992-01-01

    The Moon offers a stable platform with excellent seeing conditions for astronomical observations. Some troublesome aspects of the lunar environment will need to be overcome to realize the full potential of the Moon as an observatory site. Mitigation of negative effects of vacuum, thermal radiation, dust, and micrometeorite impact is feasible with careful engineering and operational planning. Shields against impact, dust, and solar radiation need to be developed. Means of restoring degraded surfaces are probably essential for optical and thermal control surfaces deployed in long-lifetime lunar facilities. Precursor missions should be planned to validate and enhance the understanding of the lunar environment (e.g., dust behavior without and with human presence) and to determine environmental effects on surfaces and components. Precursor missions should generate data useful in establishing keepout zones around observatory facilities where rocket launches and landings, mining, and vehicular traffic could be detrimental to observatory operation.