WorldWideScience

Sample records for freshwater heterotrophic nanoflagellate

  1. Seasonal and spatial variations in heterotrophic nanoflagellate and bacteria abundances in sediments of a freshwater littoral zone

    NARCIS (Netherlands)

    Starink, Mathieu; Bär-Gilissen, M.J.; Cappenberg, T.E.

    1996-01-01

    We studied seasonal variation in heterotrophic nanoflagellates (HNAN) and bacterial, densities at different depths in the sediment of two freshwater littoral stations. Station 1 was in a reed bed of Phragmites australis; station 2 was outside the reed zone in open water. Benthic HNAN abundances

  2. New Insights on the Ecology of Free-living, Heterotrophic Nanoflagellates Based on the Use of Molecular Biological Approaches

    National Research Council Canada - National Science Library

    Lim, Lin

    1997-01-01

    .... Restriction fragment length polymorphism (RFLP) analysis of small subunit rDNA differentiated cultures of heterotrophic nanoflagellates according to established taxonomic classification at the generic and species level...

  3. An experimental study of nanoflagellate bacterivory Um estudo experimental da bacterivoria por nanoflagelados

    Directory of Open Access Journals (Sweden)

    Ana Júlia Fernandes

    1999-12-01

    Full Text Available Heterotrophic nanoflagellate Pseudobodo tremulans (4.8 to 7.0 µm and heterotrophic bacteria, isolated from coastal waters in Ubatuba, SP, Brazil, were used in experiments to analyze quantitatively the relationships between bacteria and nanoflagellates. The meaning of these results for the role of heterotrophic nanoflagellates in the Ubatuba coastal ecosystem is discussed.O nanoflagelado heterotrófico de dimensões entre 4,8 e 7,0 µm (Pseudobodo tremulans e uma bactéria heterotrófica, isolados das águas costeiras de Ubatuba, SP, Brasil, foram utilizados em experimentos com o objetivo de analisar quantitativamente as relações entre bactérias e nanoflagelados. O significado dos resultados obtidos em relação ao papel dos nanoflagelados heterotróficos no ecossistema costeiro de Ubatuba é discutido.

  4. Abiotic and biotic factors influencing nanoflagellate abundance and distribution in three different seasons in PRE, South China Sea

    Science.gov (United States)

    Zhang, Xia; Shi, Zhen; Huang, Xiaoping; Li, Xiangfu

    2017-07-01

    Spatial distribution characteristics of two nanoflagellate groups, together with physico-chemical and biological factors, were studied in three seasons in the Pearl River Estuary (PRE), South China Sea. Nanoflagellates were more abundant in warm periods than that in winter. The average abundance in the three observations (spring, summer and winter) was as follow: 1.28 ± 1.17, 0.88 ± 1.02 and 0.28 ± 0.23 × 103 cells ml-1 of heterotrophic nanoflagellate (HNF), and 1.26 ± 0.85, 0.89 ± 0.77 and 0.65 ± 0.52 × 103 cells ml-1 of pigmented nanoflagellate (PNF). In our three studied seasons, NF density was generally higher in the inner estuary and decreasing to the lowest in the outer estuary. Our results suggested that PNF classes were more sensitive than HNF groups to freshwater discharge. The proportion of PNF gradually increased from spring (49.7%) to winter (67.7%), with the river flow was accordingly decreasing. Moreover, spatial distribution pattern in three seasons showed the response of PNF populations to freshwater input was similar to phytoplankton assemblages in the PRE. Total bacterial and live bacterial abundance (measured by LIVE/DEAD kit) were associated with both two NF components, which implied that NF was a potential predator controlling the bulk abundance of bacteria and proportion of active cells. These results revealed the seasonal and spatial variations of NF abundance in diverse conditions in the PRE and how their response to different ecological processes.

  5. Trophic interactions among the heterotrophic components of plankton in man-made peat pools

    Directory of Open Access Journals (Sweden)

    Michał Niedźwiecki

    2017-03-01

    Full Text Available Man-made peat pools are permanent freshwater habitats developed due to non-commercial man-made peat extraction. Yet, they have not been widely surveyed in terms of ecosystem functioning, mainly regarding the complexity of heterotrophic components of the plankton. In this study we analysed distribution and trophic interrelations among heterotrophic plankton in man-made peat pools located in different types of peatbogs. We found that peat pools showed extreme differences in environmental conditions that occurred to be important drivers of distribution of microplankton and metazooplankton. Abundance of bacteria and protozoa showed significant differences, whereas metazooplankton was less differentiated in density among peat pools. In all peat pools stress-tolerant species of protozoa and metazoa were dominant. In each peat pool five trophic functional groups were distinguished. The abundance of lower functional trophic groups (bacteria, heterotrophic nanoflagellates (HNF and ciliates feeding on bacteria and HNF was weakly influenced by environmental drivers and was highly stable in all peat pool types. Higher functional trophic groups (naupli, omnivorous and carnivorous ciliates, cladocerans, adult copepods and copepodites were strongly influenced by environmental variables and exhibited lower stability. Our study contributes to comprehensive knowledge of the functioning of peat bogs, as our results have shown that peat pools are characterized by high stability of the lowest trophic levels, which can be crucial for energy transfer and carbon flux through food webs.

  6. Negative consequences of glacial turbidity for the survival of freshwater planktonic heterotrophic flagellates.

    Science.gov (United States)

    Sommaruga, Ruben; Kandolf, Georg

    2014-02-17

    Heterotrophic (phagotrophic) flagellates are key components of planktonic food webs in freshwater and marine ecosystems because they are the main consumers of bacteria. Although they are ubiquitous in aquatic ecosystems, they were numerically undetectable in turbid glacier-fed lakes. Here we show that glacial particles had negative effects on the survival and growth of heterotrophic flagellates. The effect of glacial particles was concentration-dependent and was caused by their interference with bacterial uptake rather than by physical damage. These results are the first to reveal why establishment of heterotrophic flagellates populations is hindered in very turbid glacial lakes. Because glaciers are vanishing around the world, recently formed turbid meltwater lakes represent an excellent opportunity to understand the environmental conditions that probably shaped the establishment of lake communities at the end of the last glaciation.

  7. The influence of the organophosphorus insecticides acephate and parathion upon the heterotrophic bacteria of two freshwater ecosystems

    International Nuclear Information System (INIS)

    Albright, L.J.; Geen, G.H.; Gasith, A.; Mozel, Y.; Perry, A.S.

    1983-01-01

    The effect of acephate and parathion on the heterotrophic bacteria of freshwater ecosystems was studied in a dystrophic west coast Canadian lake and in an eutrophic Israeli fish pond. The limnocorrals were treated with 1-25 ppm of acephate and 30-40 ppb of parathion respectively. Bacterial populations, glucose heterotrophic activities and bacterial and algal productivities were studied using 3 H and 14 C radioisotopes. It is concluded that the two ecosystems are not extensively affected by the pesticide concentrations used

  8. Bacterivory by a Summer Assemblage of Nanoplankton in the Ross Sea, Antarctica: Mixotrophic Versus Heterotrophic Protists

    Science.gov (United States)

    Sanders, R. W.; Gast, R. J.

    2016-02-01

    Many protists traditionally described as phototrophic have recently been shown to have retained the primitive trait of phagotrophy, and thus function as mixotrophs. Mixotrophic nanoflagellates were identified in every sample examined from a summer cruise in the Ross Sea, Antarctica, where they often were more abundant than heterotrophic nanoflagellates that have previously been considered the major bacterivores in marine waters. Mixotrophs, identified by uptake of fluorescent tracers, comprised similar proportions (9-75%) of the total bacterivorous flagellates in summer as were previously determined for an earlier spring cruise in the Ross Sea. Protist diversity also was linked to functional bacterivores using a culture-independent method in which BrdU-labeled DNA of bacterial prey was incorporated into the DNA of eukaryotic grazers. Immunoprecipitation of the BrdU-labeld DNA was followed by high-throughput sequencing to identify a diverse group of bacterivores, including numerous uncultured eukaryotes. However, its utility for identification of mixotrophs was limited by the availability of sequences from known mixotrophs.

  9. Effects of nitrogen and phosphorus on the abundance and cell size of planktonic nanoflagellate communities Efeito da concentração de nitrogênio e fósforo na abundância e tamanho celular da comunidade de nanoflagelados planctônicos

    Directory of Open Access Journals (Sweden)

    Danielle Goeldner Pereira

    2012-12-01

    Full Text Available AIM: We experimentally investigated the effects of nutrients (Nitrogen and Phosphorus enrichment on the density, biomass, and cell size of pigmented and heterotrophic plankton nanoflagellates communities. METHODS: The experiment was done in mesocosms in a tropical reservoir during a 19-day period. Four different treatments were carried out: Control (non-nutrient addition - C, phosphorus additions (P, nitrogen addition (N and phosphorus + nitrogen addition (N + P. Each treatment was performed in triplicate, sorted randomly, thus giving a total of 12 experimental carboys, which were placed transversely in the middle of the reservoir. RESULTS: In general, pigmented and heterotrophic nanoflagellates fractions responded to nutrient addition, increasing densities and biomass values at the fertilized treatments. Opposed to expected, enriched treatments resulted in a slight decrease in mean cell size of the pigmented fraction. Moreover, in nutrient-rich treatments, pigmented nanoflagellates had higher relative abundance than in the control. CONCLUSIONS: Our results indicate that: i the density and biomass of nanoflagellates responded to the nutrient enrichment, mainly when N and P were added together; ii the pigmented and heterotrophic fractions showed distinct time responses to fertilization; iii the growth of nanoflagellate community seems to be co-limited by N and P; iv the nutrient enrichment led to a greater pigmented than heterotrophic fraction contribution; and v among the analyzed variables, nanoflagellate densities seem to be more sensitive to changes in nutrient availability than biomass or mean cell size.OBJETIVO: Investigamos experimentalmente o efeito da adição de nutrientes (Nitrogênio e Fósforo sobre a densidade e o tamanho celular da comunidade de nanoflagelados planctônicos pigmentados e heterotróficos. MÉTODOS: O experimento foi desenvolvido em mesocosmos num reservatório tropical durante 19 dias. Quatro diferentes tratamentos

  10. Enrichment of omnivorous cercozoan nanoflagellates from coastal Baltic Sea waters.

    Directory of Open Access Journals (Sweden)

    Kasia Piwosz

    Full Text Available Free-living nano-sized flagellates are important bacterivores in aquatic habitats. However, some slightly larger forms can also be omnivorous, i.e., forage upon both bacterial and eukaryotic resources. This hitherto largely ignored feeding mode may have pronounced implications for the interpretation of experiments about protistan bacterivory. We followed the response of an uncultured group of omnivorous cercozoan nanoflagellates from the Novel Clade 2 (Cerc_BAL02 to experimental food web manipulation in samples from the Gulf of Gdańsk (Southern Baltic Sea. Seawater was either prefiltered through 5 µm filters to exclude larger predators of nanoflagellates (F-treatment, or prefiltered and subsequently 1∶10 diluted with sterile seawater (F+D-treatment to stimulate the growth of both, flagellates and bacteria. Initially, Cerc_BAL02 were rapidly enriched under both conditions. They foraged on both, eukaryotic prey and bacteria, and were highly competitive at low concentrations of food. However, these omnivores were later only successful in the F+D treatment, where they eventually represented almost one fifth of all aplastidic nanoflagellates. By contrast, their numbers stagnated in the F-treatment, possibly due to top-down control by a concomitant bloom of other, unidentified flagellates. In analogy with observations about the enrichment of opportunistically growing bacteria in comparable experimental setups we suggest that the low numbers of omnivorous Cerc_Bal02 flagellates in waters of the Gulf of Gdańsk might also be related to their vulnerability to grazing pressure.

  11. The influence of nanoflagellates on the spatial variety of picoplankton and the carbon flow of the microbial food web in the oligotrophic subtropical pelagic continental shelf ecosystem

    Science.gov (United States)

    Chiang, Kuo-Ping; Tsai, An-Yi; Tsai, Pei-Jung; Gong, Gwo-Ching; Huang, Bang-Qin; Tsai, Sheng-Fang

    2014-06-01

    To investigate the mechanism of the spatial dynamics of picoplankton community (bacteria and Synechococcus spp.) and to estimate the carbon flux of the microbial food web in the oligotrophic Taiwan Warm Current Water of the subtropical marine pelagic ecosystem, we conducted size-fractionation experiments during five cruises by the R/V Ocean Research II during the summers of 2010 and 2011 in the southern East China Sea. We carried out culture experiments using surface water, which according to a temperature-salinity (T-S) diagram, is characterized as oligotrophic Taiwan Current Warm Water. We found a negative correlation between bacteria growth rate and temperature, and another negative correlation between nitrate and temperature indicating that the active growth of heterotrophic bacteria might be induced by nutrients lifted from a deep layer by cold upwelling water. This finding suggests that the area we studied was a bottom-up control pelagic ecosystem. Upwelling brings nutrient-rich water to the euphotic zone and promotes bacterial growth, resulting in increased picoplankton biomass, which increases the consumption rate of nanoflagellates. The net growth rate (growth rate-grazing rate) becomes negative when the densities of bacteria and Synechococcus spp. are lower than the threshold values. The interaction between growth and grazing will limit the abundance of bacteria (105-106 cells ml-1) and Synechococcus spp. (104-105 cells ml-1) within a narrow range. Meanwhile, 61% of bacteria production and 54% of Synechococcus spp. production are transported to a higher trophic level (nanoflagellate), though the cascade effect might cause an underestimation of both percentages of transported carbon. Based on the successive size-fractionation experiments, we estimated that the predation values were underestimated and that the diet of nanoflagellates is composed of 64% bacteria and 36% Synechococcus spp.

  12. Analyzing the trophic link between the mesopelagic microbial loop and zooplankton from observed depth profiles of bacteria and protozoa

    Directory of Open Access Journals (Sweden)

    T. Tanaka

    2005-01-01

    Full Text Available It is widely recognized that organic carbon exported to the ocean aphotic layer is significantly consumed by heterotrophic organisms such as bacteria and zooplankton in the mesopelagic layer. However, very little is known for the trophic link between bacteria and zooplankton or the function of the microbial loop in this layer. In the northwestern Mediterranean, recent studies have shown that viruses, bacteria, heterotrophic nanoflagellates, and ciliates distribute down to 2000 m with group-specific depth-dependent decreases, and that bacterial production decreases with depth down to 1000 m. Here we show that such data can be analyzed using a simple steady-state food chain model to quantify the carbon flow from bacteria to zooplankton over the mesopelagic layer. The model indicates that bacterial mortality by viruses is similar to or 1.5 times greater than that by heterotrophic nanoflagellates, and that heterotrophic nanoflagellates transfer little of bacterial production to higher trophic levels.

  13. Microbial plankton communities in the coastal southeastern Black Sea: biomass, composition and trophic interactions

    Directory of Open Access Journals (Sweden)

    Ulgen Aytan

    2018-04-01

    Full Text Available Summary: We investigated biomass and composition of the pico-, nano- and microplankton communities in a coastal station of the southeastern Black Sea during 2011. We also examined trophic interactions within these communities from size-fractionated dilution experiments in February, June and December. Autotrophic and heterotrophic biomasses showed similar seasonal trends, with a peak in June, but heterotrophs dominated throughout the year. Autotrophic biomass was mainly comprised by nanoflagellates and diatoms in the first half of the year, and by dinoflagellates and Synechococcus spp. in the second half. Heterotrophic biomass was mostly dominated by heterotrophic bacteria, followed by nanoflagellates and microzooplankton. Dilution experiments suggest that nano- and microzooplankton were significant consumers of autotrophs and heterotrophic bacteria. More than 100% of bacterial production was consumed by grazers in all experiments, while 46%, 21% and 30% of daily primary production were consumed in February, June and December, respectively. In February, autotrophs were the main carbon source, but in December, it was heterotrophic bacteria. An intermediate situation was observed in June, with similar carbon flows from autotrophs and heterotrophic bacteria. Size-fraction dilution experiments suggested that heterotrophic nanoflagellates are an important link between the high heterotrophic bacterial biomass and microzooplankton. In summary, these results indicate that nano- and microzooplankton were responsible for comprising a significant fraction of total microbial plankton biomass, standing stocks, growth and grazing processes. This suggests that in 2011, the microbial food web was an important compartment of the planktonic food web in the coastal southeastern Black Sea. Keywords: Phytoplankton, Microzooplankton, Carbon biomass, Microbial food web, Grazing, Black Sea

  14. The Response of Heterotrophic Prokaryote and Viral Communities to Labile Organic Carbon Inputs Is Controlled by the Predator Food Chain Structure.

    Science.gov (United States)

    Sandaa, Ruth-Anne; Pree, Bernadette; Larsen, Aud; Våge, Selina; Töpper, Birte; Töpper, Joachim P; Thyrhaug, Runar; Thingstad, Tron Frede

    2017-08-23

    Factors controlling the community composition of marine heterotrophic prokaryotes include organic-C, mineral nutrients, predation, and viral lysis. Two mesocosm experiments, performed at an Arctic location and bottom-up manipulated with organic-C, had very different results in community composition for both prokaryotes and viruses. Previously, we showed how a simple mathematical model could reproduce food web level dynamics observed in these mesocosms, demonstrating strong top-down control through the predator chain from copepods via ciliates and heterotrophic nanoflagellates. Here, we use a steady-state analysis to connect ciliate biomass to bacterial carbon demand. This gives a coupling of top-down and bottom-up factors whereby low initial densities of ciliates are associated with mineral nutrient-limited heterotrophic prokaryotes that do not respond to external supply of labile organic-C. In contrast, high initial densities of ciliates give carbon-limited growth and high responsiveness to organic-C. The differences observed in ciliate abundance, and in prokaryote abundance and community composition in the two experiments were in accordance with these predictions. Responsiveness in the viral community followed a pattern similar to that of prokaryotes. Our study provides a unique link between the structure of the predator chain in the microbial food web and viral abundance and diversity.

  15. Phytoplankton, Bacteria and Heterotrophic Nanoflagellate studies using ship and OCM-2 data along a coastal transect in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Matondkar, S.G.P.; Basu, S.; Parab, S.G.; Pednekar, S.; Niyati Hede, N.; Dwivedi, R.M.; Raman, M.; Babu, K.N.; Shukla, A; Shirdhankar, M.M.

    by the riverine discharge of fresh-water. The impacts of fresh-water on the components of the food chain were studied. A total of 40 stations distributed over 3 transects were sampled off the coast of Goa, off Ratnagiri and off Dabhol. Physical conditions like...

  16. Coupling of the spatial dynamic of picoplankton and nanoflagellate grazing pressure and carbon flow of the microbial food web in the subtropical pelagic continental shelf ecosystem

    Science.gov (United States)

    Chiang, K.-P.; Tsai, A.-Y.; Tsai, P.-J.; Gong, G.-C.; Tsai, S.-F.

    2013-01-01

    In order to investigate the mechanism of spatial dynamics of picoplankton community (bacteria and Synechococcus spp.) and estimate the carbon flux of the microbial food web in the oligotrophic Taiwan Warm Current Water of subtropical marine pelagic ecosystem, we conducted size-fractionation experiments in five cruises by the R/V Ocean Research II during the summers of 2010 and 2011 in the southern East China Sea. We carried out culture experiments using surface water which, according to a temperature-salinity (T-S) diagram, is characterized as oligotrophic Taiwan Current Warm Water. We found a negative correlation bettween bacteria growth rate and temperature, indicating that the active growth of heterotrophic bacteria might be induced by nutrients lifted from deep layer by cold upwelling water. This finding suggests that the area we studied was a bottom-up control pelagic ecosystem. We suggest that the microbial food web of an oligotrophic ecosystem may be changed from top-down control to resource supply (bottom-up control) when a physical force brings nutrient into the oligotrophic ecosystem. Upwelling brings nutrient-rich water to euphotic zone and promotes bacteria growth, increasing the picoplankton biomass which increased the consumption rate of nanoflagellate. The net growth rate (growth rate-grazing rate) becomes negative when the densities of bacteria and Synechococcus spp. are lower than the threshold values. The interaction between growth and grazing will limit the abundances of bacteria (105-106 cells mL-1 and Synechococcus spp. (104-105 cells mL-1) within a narrow range, forming a predator-prey eddy. Meanwhile, 62% of bacteria production and 55% of Synechococcus spp. production are transported to higher trophic level (nanoflagellate), though the cascade effect might cause an underestimation of both percentages of transported carbon. Based on the increasing number of sizes we found in the size-fractionation experiments, we estimated that the predation

  17. Temperature regulation of marine heterotrophic prokaryotes increases latitudinally as a breach between bottom-up and top-down controls

    KAUST Repository

    Moran, Xose Anxelu G.

    2017-04-19

    Planktonic heterotrophic prokaryotes make up the largest living biomass and process most organic matter in the ocean. Determining when and where the biomass and activity of heterotrophic prokaryotes are controlled by resource availability (bottom-up), predation and viral lysis (top-down) or temperature will help in future carbon cycling predictions. We conducted an extensive survey across subtropical and tropical waters of the Atlantic, Indian and Pacific Oceans during the Malaspina 2010 Global Circumnavigation Expedition and assessed indices for these three types of controls at 109 stations (mostly from the surface to 4000 m depth). Temperature control was approached by the apparent activation energy in eV (ranging from 0.46 to 3.41), bottom-up control by the slope of the log-log relationship between biomass and production rate (ranging from -0.12 to 1.09) and top-down control by an index that considers the relative abundances of heterotrophic nanoflagellates and viruses (ranging from 0.82 to 4.83). We conclude that temperature becomes dominant (i.e. activation energy >1.5 eV) within a narrow window of intermediate values of bottom-up (0.3-0.6) and top-down 0.8-1.2) controls. A pervasive latitudinal pattern of decreasing temperature regulation towards the Equator, regardless of the oceanic basin, suggests that the impact of global warming on marine microbes and their biogeochemical function will be more intense at higher latitudes. Our analysis predicts that 1°C ocean warming will result in increased biomass of heterotrophic prokaryoplankton only in waters with <26°C of mean annual surface temperature. This article is protected by copyright. All rights reserved.

  18. Effects of influent strength on microorganisms in surface flow mesocosm wetlands.

    Science.gov (United States)

    Tao, Wendong; Hall, Ken J; Ramey, William

    2007-11-01

    To choose an appropriate dilution ratio to treat woodwaste leachate without inhibition on heterotrophic bacteria, microbial ATP concentration and the rates of heterotrophic leucine incorporation and acetate uptake were compared across surface flow mesocosm wetlands fed with different strengths of influent. Abundances of protozoa and respiring bacteria were investigated in two mesocosm wetlands to elucidate the effects of influent strength on heterotrophic bacteria. The strongest influent or the raw leachate did not show a significant inhibitory effect on leucine incorporation and acetate uptake. Instead, leucine incorporation rates by bacteria in water, epiphytic biofilm and sediment were higher in mesocosm wetlands fed with a stronger influent. There were significantly more respiring planktonic bacteria (451 x 10(5) mL(-1)) and fewer nanoflagellates (3.8 x 10(3) mL(-1)) in the mesocosm fed with a strong influent, while fewer respiring planktonic bacteria (38.7 x 10(5)mL(-1)) and more nanoflagellates (15.4 x 10(3) mL(-1)) in the mesocosm fed with a weak influent. The majority of the total microbial ATP was attributed to sedimentary bacteria, of which >96% were inactive. Heterotrophic activity and its distribution among water, epiphytic biofilm and sediment in the mesocosm wetlands were affected by availability of bacterial substrates and grazing pressure of nanoflagellates.

  19. Biological and chemical data determined in mesocosm experiments by Dauphin Island Sea Lab in June and August of 2011 (NODC Accession 0118680)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Abundances of viruses, prokaryotes, diatoms, dinoflagellates, ciliates and heterotrophic nanoflagellates were determined over time in mesocosm experiments measuring...

  20. The plankton community on Sukkertop and Fylla Banks off West Greenland during a spring bloom and post-bloom period: Hydrography, phytoplankton and protozooplankton

    DEFF Research Database (Denmark)

    Poulsen, Louise K.; Reuss, N.

    2002-01-01

    The plankton community structure was investigated on Sukkertop and Fylla Banks off West Greenland during the spring bloom in May 2000 and the post-bloom period in June 1999. In May a small change in density, clearly illustrated by the profile of potential energy, was sufficient to support a spring...... the phytoplankton community. Heterotrophic biomass was low (5 +/- 1 mg C m(-3)) and an important part was comprised by heterotrophic nanoflagellates (24 +/- 1%). Protozooplankters (heterotrophic dinoflagellates and ciliates) were important grazers of the phytoplankton community in the post-bloom period (estimated...

  1. Strong, weak, and missing links in a microbial community of the N.W. Mediterranean Sea.

    Science.gov (United States)

    Bettarel, Y; Dolan, J R; Hornak, K; Lemée, R; Masin, M; Pedrotti, M-L; Rochelle-Newall, E; Simek, K; Sime-Ngando, T

    2002-12-01

    Planktonic microbial communities often appear stable over periods of days and thus tight links are assumed to exist between different functional groups (i.e. producers and consumers). We examined these links by characterizing short-term temporal correspondences in the concentrations and activities of microbial groups sampled from 1 m depth, at a coastal site of the N.W. Mediterranean Sea, in September 2001 every 3 h for 3 days. We estimated the abundance and activity rates of the autotrophic prokaryote Synechococcus, heterotrophic bacteria, viruses, heterotrophic nanoflagellates, as well as dissolved organic carbon concentrations. We found that Synechococcus, heterotrophic bacteria, and viruses displayed distinct patterns. Synechococcus abundance was greatest at midnight and lowest at 21:00 and showed the common pattern of an early evening maximum in dividing cells. In contrast, viral concentrations were minimal at midnight and maximal at 18:00. Viral infection of heterotrophic bacteria was rare (0.5-2.5%) and appeared to peak at 03:00. Heterotrophic bacteria, as % eubacteria-positive cells, peaked at midday, appearing loosely related to relative changes in dissolved organic carbon concentration. Bacterial production as assessed by leucine incorporation showed no consistent temporal pattern but could be related to shifts in the grazing rates of heterotrophic nanoflagellates and viral infection rates. Estimates of virus-induced mortality of heterotrophic bacteria, based on infection frequencies, were only about 10% of cell production. Overall, the dynamics of viruses appeared more closely related to Synechococcus than to heterotrophic bacteria. Thus, we found weak links between dissolved organic carbon concentration, or grazing, and bacterial activity, a possibly strong link between Synechococcus and viruses, and a missing link between light and viruses.

  2. Bacterial production, protozoan grazing, and mineralization in stratified Lake Vechten

    NARCIS (Netherlands)

    Bloem, J.

    1989-01-01

    The role of heterotrophic nanoflagellates (HNAN, size 2-20 μm) in grazing on bacteria and mineralization of organic matter in stratified Lake Vechten was studied.

    Quantitative effects of manipulation and fixation on HNAN were checked. Considerable losses were caused by

  3. Maximum in the Middle: Nonlinear Response of Microbial Plankton to Ultraviolet Radiation and Phosphorus

    OpenAIRE

    Medina-S?nchez, Juan Manuel; Delgado-Molina, Jos? Antonio; Bratbak, Gunnar; Bullejos, Francisco Jos?; Villar-Argaiz, Manuel; Carrillo, Presentaci?n

    2013-01-01

    The responses of heterotrophic microbial food webs (HMFW) to the joint action of abiotic stressors related to global change have been studied in an oligotrophic high-mountain lake. A 2??5 factorial design field experiment performed with large mesocosms for >2 months was used to quantify the dynamics of the entire HMFW (bacteria, heterotrophic nanoflagellates, ciliates, and viruses) after an experimental P-enrichment gradient which approximated or surpassed current atmospheric P pulses in the ...

  4. Influence of river discharge on abundance and dissemination of heterotrophic, indicator and pathogenic bacteria along the East Coast of India.

    Science.gov (United States)

    Prasad, V R; Srinivas, T N R; Sarma, V V S S

    2015-06-15

    In order to examine the influence of discharge from different rivers from peninsular India and urban sewage on intensity and dissemination of heterotrophic, indicator and pathogenic bacteria, a study was carried out during peak discharge period along coastal Bay of Bengal. The coastal Bay received freshwater inputs from the river Ganges while Godavari and Krishna contributed to the south. Contrasting difference in salinity, temperature, nutrients and organic matter was observed between north and south east coast of India. The highest heterotrophic, indicator and pathogenic bacterial abundance was observed in the central coastal Bay that received urban sewage from the major city. Intensity and dissemination of heterotrophic, indicator and pathogenic bacteria displayed linear relation with magnitude of discharge. The coliform load was observed up to 100km from the coast suggesting that marine waters were polluted during the monsoon season and its impact on the ecosystem needs further studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Bacterial community structure in High-Arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation

    Directory of Open Access Journals (Sweden)

    Annette K. Møller

    2013-04-01

    Full Text Available The bacterial community structures in High-Arctic snow over sea ice and an ice-covered freshwater lake were examined by pyrosequencing of 16S rRNA genes and 16S rRNA gene sequencing of cultivated isolates. Both the pyrosequence and cultivation data indicated that the phylogenetic composition of the microbial assemblages was different within the snow layers and between snow and freshwater. The highest diversity was seen in snow. In the middle and top snow layers, Proteobacteria, Bacteroidetes and Cyanobacteria dominated, although Actinobacteria and Firmicutes were relatively abundant also. High numbers of chloroplasts were also observed. In the deepest snow layer, large percentages of Firmicutes and Fusobacteria were seen. In freshwater, Bacteroidetes, Actinobacteria and Verrucomicrobia were the most abundant phyla while relatively few Proteobacteria and Cyanobacteria were present. Possibly, light intensity controlled the distribution of the Cyanobacteria and algae in the snow while carbon and nitrogen fixed by these autotrophs in turn fed the heterotrophic bacteria. In the lake, a probable lower light input relative to snow resulted in low numbers of Cyanobacteria and chloroplasts and, hence, limited input of organic carbon and nitrogen to the heterotrophic bacteria. Thus, differences in the physicochemical conditions may play an important role in the processes leading to distinctive bacterial community structures in High-Arctic snow and freshwater.

  6. The functional response of a freshwater benthic community to cadmium pollution

    International Nuclear Information System (INIS)

    Faupel, Michael; Ristau, Kai; Traunspurger, Walter

    2012-01-01

    Theory predicts that in freshwater communities under chemical stress secondary production will decrease while the rate of biomass turnover (P/B) will increase. However, this concept has never been tested on organisms of smaller size (bacteria, protozoans, small metazoans), although they form the basis of the heterotrophic food web. The present work describes the results of a 7-month microcosm study, in which the effects of low and high toxic stress on an entire sediment community were examined, with cadmium (Cd) as the model pollutant (50 and 400 mg Cd kg −1 dry sediment). While metazoans and protozoans generally followed the expected trend, in bacteria both production and P/B decreased under Cd stress. These observations provide new insights into the functioning of freshwater ecosystems and demonstrate the functional consequences of toxicants on biological systems. - Highlights: ► Secondary production of freshwater organisms was estimated under cadmium stress. ► Cadmium generally decreased the production of all taxa. ► The corresponding P/B ratio increased for some taxa. ► Secondary production provides insight into the functioning of polluted ecosystems. - Cadmium alters the biomass turnover rate of a freshwater community.

  7. [Progress of heterotrophic studies on symbiotic corals].

    Science.gov (United States)

    Yang, Yang-Chu-Qiao; Hong, Wen Ting; Wang, Shu Hong

    2017-12-01

    Heterotrophy of zooxanthellae symbiotic corals refers to the nutrition directly coming from food absorption, not the nutrition obtained from photosynthesis. Most ex situ propagation of symbiotic corals focused on the effects of irradiation, flow rate and water quality on corals, few of them involved in the demand and supply of coral heterotrophic nutrition. This paper reviewed the significance of heterotrophic nutrient supply to symbiotic corals from the sources of coral heterotrophic nutrition, the factors affecting the supply of coral heterotrophic nutrient, and the methods of how to study the coral heterotrophy. In general, the research of coral heterotrophy is just at the beginning stage, and future studies should focus on the inherent mechanism of coral feeding selection and developing more effective research methods.

  8. Prey-specific growth responses of freshwater flagellate communities induced by morphologically distinct bacteria from the genus Limnohabitans

    Czech Academy of Sciences Publication Activity Database

    Grujčič, Vesna; Kasalický, Vojtěch; Šimek, Karel

    2015-01-01

    Roč. 81, č. 15 (2015), s. 4993-5002 ISSN 0099-2240 R&D Projects: GA ČR(CZ) GA13-00243S; GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : freshwater reservoir * heterotrophic flagellate bacterivory * Limnohabitans * bacterial food quality * growth responses of flagellates Subject RIV: EH - Ecology, Behaviour Impact factor: 3.823, year: 2015

  9. Factors governing the pH in a heterotrophic, turbid, tidal estuary

    Science.gov (United States)

    Hofmann, A. F.; Meysman, F. J. R.; Soetaert, K.; Middelburg, J. J.

    2009-01-01

    A method to quantify the influence of kinetically modelled biogeochemical processes on the pH of an ecosystem with time variable acid-base dissociation constants is presented and applied to the heterotrophic, turbid Scheldt estuary (SW Netherlands, N Belgium). Nitrification is identified as the main process governing the pH profile of this estuary, while CO2 degassing and advective-dispersive transport "buffer" the effect of nitrification. CO2 degassing accounts for the largest proton turnover per year in the whole estuary. There is a clear inverse correlation between oxygen turnover and proton turnover. The main driver of long-term changes in the mean estuarine pH from 2001 to 2004 is a changing freshwater flow which influences the pH "directly" via [∑CO2] and [TA] and to a significant amount also "indirectly" via [∑NH4+] and the nitrification rates in the estuary.

  10. Distinct expression of alkaline phosphatase activity in epilimnetic bacteria: Implication for persistent DOC consumption in a P-limited reservoir

    Science.gov (United States)

    Tseng, Y.; Kao, S.; Shiah, F.

    2013-12-01

    In a P-deficient system, P availability usually controls the microbial activity and thus the ecosystem function. Thingstad et al. (1997) first addressed a 'Malfunctioning Microbial-loop' theory, which stated that low bacterial production (BP) caused by insufficient nutrient supply would result in DOC accumulation in an oligotrophic ecosystem. In this study we re-examined the theory by conducting seasonal patterns and correlations among soluble reactive phosphate (SRP) and DOC, microbial abundances (picocyanobacteria, bacteria, and heterotrophic nanoflagellate; HNF) and activities (primary production, bacterial production, and alkaline phosphatase activity; APA) coupled with enzyme-labeled fluorescence (ELF) assays on bacterioplankton in a subtropical reservoir sharing the common features, nitrate-replete and P-deficient, with most natural freshwater system during Oct 2007-Oct 2008. Persistently high APA was recorded during most of time, implying that the system was P-deficient. Size fractionated APA and ELF assay revealed that bacteria were the major APA contributor. However, significantly low epilimnion DOC was recorded during the stratified summer season accompanying with high BP and APA as well as high PP, implying that heterotrophic bacteria can well sustain in P-deficient system by utilizing DOP to rapidly lower down DOC under relatively high PP. Such findings oppose the 'Malfunctioning Microbial-loop' theory. On the other hand, strong epilimnetic DOC accumulation occurred in Oct 2007 under low light and low PP condition accompanying with high abundance of HNF, implying that HNF grazing may contribute to a certain degree of DOC accumulation. Correlation matrix supported our suggestions. This study testified the DOC dynamics in P-deficient ecosystem are tightly coupled with the source (PP and grazing) and sink (BP). We also suggested that in SRP-limited freshwater systems bacteria are capable of breaking down autochthonous DOC to reduce the chance of DOC

  11. Antagonistic interactions between filamentous heterotrophs and the cyanobacterium Nostoc muscorum

    Directory of Open Access Journals (Sweden)

    Wolf Sarah

    2011-09-01

    Full Text Available Abstract Background Little is known about interactions between filamentous heterotrophs and filamentous cyanobacteria. Here, interactions between the filamentous heterotrophic bacteria Fibrella aestuarina (strain BUZ 2 and Fibrisoma limi (BUZ 3 with an axenic strain of the autotrophic filamentous cyanobacterium Nostoc muscorum (SAG 25.82 were studied in mixed cultures under nutrient rich (carbon source present in medium and poor (carbon source absent in medium conditions. Findings F. aestuarina BUZ 2 significantly reduced the cyanobacterial population whereas F. limi BUZ 3 did not. Physical contact between heterotrophs and autotroph was observed and the cyanobacterial cells showed some level of damage and lysis. Therefore, either contact lysis or entrapment with production of extracellular compounds in close vicinity of host cells could be considered as potential modes of action. The supernatants from pure heterotrophic cultures did not have an effect on Nostoc cultures. However, supernatant from mixed cultures of BUZ 2 and Nostoc had a negative effect on cyanobacterial growth, indicating that the lytic compounds were only produced in the presence of Nostoc. The growth and survival of tested heterotrophs was enhanced by the presence of Nostoc or its metabolites, suggesting that the heterotrophs could utilize the autotrophs and its products as a nutrient source. However, the autotroph could withstand and out-compete the heterotrophs under nutrient poor conditions. Conclusions Our results suggest that the nutrients in cultivation media, which boost or reduce the number of heterotrophs, were the important factor influencing the outcome of the interplay between filamentous heterotrophs and autotrophs. For better understanding of these interactions, additional research is needed. In particular, it is necessary to elucidate the mode of action for lysis by heterotrophs, and the possible defense mechanisms of the autotrophs.

  12. Mixotrophic organisms become more heterotrophic with rising temperature

    NARCIS (Netherlands)

    Wilken, S.; Huisman, J.; Naus-Wiezer, S.; van Donk, E.

    2013-01-01

    The metabolic theory of ecology predicts that temperature affects heterotrophic processes more strongly than autotrophic processes. We hypothesized that this differential temperature response may shift mixotrophic organisms towards more heterotrophic nutrition with rising temperature. The hypothesis

  13. Reconstruction of Diverse Verrucomicrobial Genomes from Metagenome Datasets of Freshwater Reservoirs

    Directory of Open Access Journals (Sweden)

    Pedro J. Cabello-Yeves

    2017-11-01

    Full Text Available The phylum Verrucomicrobia contains freshwater representatives which remain poorly studied at the genomic, taxonomic, and ecological levels. In this work we present eighteen new reconstructed verrucomicrobial genomes from two freshwater reservoirs located close to each other (Tous and Amadorio, Spain. These metagenome-assembled genomes (MAGs display a remarkable taxonomic diversity inside the phylum and comprise wide ranges of estimated genome sizes (from 1.8 to 6 Mb. Among all Verrucomicrobia studied we found some of the smallest genomes of the Spartobacteria and Opitutae classes described so far. Some of the Opitutae family MAGs were small, cosmopolitan, with a general heterotrophic metabolism with preference for carbohydrates, and capable of xylan, chitin, or cellulose degradation. Besides, we assembled large copiotroph genomes, which contain a higher number of transporters, polysaccharide degrading pathways and in general more strategies for the uptake of nutrients and carbohydrate-based metabolic pathways in comparison with the representatives with the smaller genomes. The diverse genomes revealed interesting features like green-light absorbing rhodopsins and a complete set of genes involved in nitrogen fixation. The large diversity in genome sizes and physiological properties emphasize the diversity of this clade in freshwaters enlarging even further the already broad eco-physiological range of these microbes.

  14. Nutritional quality of fish faeces is enhanced by highly unsaturated fatty acid-producing heterotrophic protozoa

    Science.gov (United States)

    Fujibayashi, Megumu; Tanaka, Nobuyuki; Hashido, Shun; Takasawa, Aya; Nishimura, Osamu

    2018-05-01

    Highly unsaturated fatty acids such as 20:5n3 (EPA) are both hormone precursors and cell membrane components, making them important nutrients for aquatic animals. Many animals must obtain EPA from their diets because they cannot synthesize enough EPA to meet their requirements, and algae are the main source of EPA in aquatic ecosystems. In a previous study, we detected EPA in the faeces of Danio rerio, a freshwater fish, even though the fish consumed a green algae diet that did not contain EPA. The objective of this study was to determine why EPA was detected in fish faeces. A significant positive relationship was detected between the number of heterotrophic protozoa and the concentration of EPA in the faeces, which suggests that this EPA was of protozoan origin. In addition, another experiment showed that protozoa adhered to faeces far more than the green algal diet remnants, which indicates that protozoa preferred to swarm on faeces. Furthermore, we cultured protozoa in an EPA-free medium and fed them a bacterial diet also lacking EPA, and found that Cyclidium sp. synthesized EPA de novo. The results demonstrate that protozoa produce essential fatty acids and enhance the nutritional quality of animal faeces in detritus-based food webs in freshwater ecosystems.

  15. Biotransformation of pharmaceuticals under nitrification, nitratation and heterotrophic conditions

    International Nuclear Information System (INIS)

    Fernandez-Fontaina, E.; Gomes, I.B.; Aga, D.S.; Omil, F.; Lema, J.M.; Carballa, M.

    2016-01-01

    The effect of nitrification, nitratation and heterotrophic conditions on the biotransformation of several pharmaceuticals in a highly enriched nitrifying activated sludge was evaluated in this study by selective activation of ammonia oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and heterotrophic bacteria. Nitrifiers displayed a noticeable capacity to process ibuprofen due to hydroxylation by ammonia monooxygenase (AMO) to produce 2-hydroxy-ibuprofen. Naproxen was also biotransformed under nitrifying conditions. On the other hand, heterotrophic bacteria present in the nitrifying activated sludge (NAS) biotransformed sulfamethoxazole. In contrast, both nitrifying and heterotrophic activities were ineffective against diclofenac, diazepam, carbamazepine and trimethoprim. Similar biotransformation rates of erythromycin, roxithromycin and fluoxetine were observed under all conditions tested. Overall, results from this study give more evidence on the role of the different microbial communities present in activated sludge reactors on the biological removal of pharmaceuticals. - Highlights: • The removal of pharmaceuticals in nitrifying activated sludge (NAS) was studied. • Nitrifying activity increases biotransformation rate of ibuprofen and naproxen. • Hydroxylation of ibuprofen by ammonia monooxygenase of ammonia oxidizing bacteria • Heterotrophic activity enhances biotransformation of sulfamethoxazole in NAS. • Recalcitrance of trimethoprim, diclofenac, carbamazepine and diazepam in NAS

  16. Biotransformation of pharmaceuticals under nitrification, nitratation and heterotrophic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Fontaina, E., E-mail: eduardo.fernandez.fontaina@usc.es [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Gomes, I.B. [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Aga, D.S. [Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260 (United States); Omil, F.; Lema, J.M.; Carballa, M. [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2016-01-15

    The effect of nitrification, nitratation and heterotrophic conditions on the biotransformation of several pharmaceuticals in a highly enriched nitrifying activated sludge was evaluated in this study by selective activation of ammonia oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and heterotrophic bacteria. Nitrifiers displayed a noticeable capacity to process ibuprofen due to hydroxylation by ammonia monooxygenase (AMO) to produce 2-hydroxy-ibuprofen. Naproxen was also biotransformed under nitrifying conditions. On the other hand, heterotrophic bacteria present in the nitrifying activated sludge (NAS) biotransformed sulfamethoxazole. In contrast, both nitrifying and heterotrophic activities were ineffective against diclofenac, diazepam, carbamazepine and trimethoprim. Similar biotransformation rates of erythromycin, roxithromycin and fluoxetine were observed under all conditions tested. Overall, results from this study give more evidence on the role of the different microbial communities present in activated sludge reactors on the biological removal of pharmaceuticals. - Highlights: • The removal of pharmaceuticals in nitrifying activated sludge (NAS) was studied. • Nitrifying activity increases biotransformation rate of ibuprofen and naproxen. • Hydroxylation of ibuprofen by ammonia monooxygenase of ammonia oxidizing bacteria • Heterotrophic activity enhances biotransformation of sulfamethoxazole in NAS. • Recalcitrance of trimethoprim, diclofenac, carbamazepine and diazepam in NAS.

  17. Heterotrophic cultivation of microalgae for pigment production: A review.

    Science.gov (United States)

    Hu, Jianjun; Nagarajan, Dillirani; Zhang, Quanguo; Chang, Jo-Shu; Lee, Duu-Jong

    Pigments (mainly carotenoids) are important nutraceuticals known for their potent anti-oxidant activities and have been used extensively as high end health supplements. Microalgae are the most promising sources of natural carotenoids and are devoid of the toxic effects associated with synthetic derivatives. Compared to photoautotrophic cultivation, heterotrophic cultivation of microalgae in well-controlled bioreactors for pigments production has attracted much attention for commercial applications due to overcoming the difficulties associated with the supply of CO 2 and light, as well as avoiding the contamination problems and land requirements in open autotrophic culture systems. In this review, the heterotrophic metabolic potential of microalgae and their uses in pigment production are comprehensively described. Strategies to enhance pigment production under heterotrophic conditions are critically discussed and the challenges faced in heterotrophic pigment production with possible alternative solutions are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Effects of the pyrethroid insecticide, cypermethrin, on a freshwater community studied under field conditions. I. Direct and indirect effects on abundance measures of organisms at different trophic levels

    Energy Technology Data Exchange (ETDEWEB)

    Friberg-Jensen, Ursula; Wendt-Rasch, Lina; Woin, Per; Christoffersen, Kirsten

    2003-05-29

    The effects of the pyrethroid insecticide cypermethrin on a natural freshwater community were studied in small in situ enclosures over an 11-day period. The experiment was conducted in a eutrophic lake using a regression design that included three untreated controls and a gradient of six unreplicated cypermethrin concentrations, ranging from 0.01 to 6.1 {mu}g/l. This paper is the first in a series of two, and describes the fate of cypermethrin and its effects on the abundance of crustaceans, rotifers, protozoans (cilliates and heterotrophic nanoflagellates (HNF)) and bacteria and the biomass of periphytic and planktonic algae. The concentration of cypermethrin decreased quickly during the experiment, with a half-life of 48 h for the total and 25 h for the dissolved fractions of cypermethrin, respectively. Cypermethrin proved to be acutely toxic to crustaceans in enclosures receiving nominal cypermethrin concentrations of {>=}0.13 {mu}g/l. No Effect Concentration (NEC) and median Effect Concentration (EC{sub 50}) for the total crustacean community and cladoceran and copepod subgroups ranged between 0.02-0.07 and 0.04-0.17 {mu}g/l, respectively, with copepods being less sensitive than cladocerans. The abundance of rotifers, protozoans and bacteria and the chlorophyll-a concentration of planktonic and periphytic algae was significantly related to the concentration of cypermethrin. All groups proliferated within 2-7 days after the cypermethrin application in those enclosures where the abundance of crustaceans was seriously affected by cypermethrin (i.e. {>=}0.13 {mu}g/l). We hypothesise that the proliferation of rotifers, protozoans, bacteria and algae was due to a reduced grazer control from crustaceans and thereby mediated indirectly by cypermethrin. The results of this experiment provide knowledge on how an entire microplankton community may respond to pyrethroids in nature, and the indirect effects observed on the community clearly demonstrates the necessity of

  19. Effects of the pyrethroid insecticide, cypermethrin, on a freshwater community studied under field conditions. I. Direct and indirect effects on abundance measures of organisms at different trophic levels

    International Nuclear Information System (INIS)

    Friberg-Jensen, Ursula; Wendt-Rasch, Lina; Woin, Per; Christoffersen, Kirsten

    2003-01-01

    The effects of the pyrethroid insecticide cypermethrin on a natural freshwater community were studied in small in situ enclosures over an 11-day period. The experiment was conducted in a eutrophic lake using a regression design that included three untreated controls and a gradient of six unreplicated cypermethrin concentrations, ranging from 0.01 to 6.1 μg/l. This paper is the first in a series of two, and describes the fate of cypermethrin and its effects on the abundance of crustaceans, rotifers, protozoans (cilliates and heterotrophic nanoflagellates (HNF)) and bacteria and the biomass of periphytic and planktonic algae. The concentration of cypermethrin decreased quickly during the experiment, with a half-life of 48 h for the total and 25 h for the dissolved fractions of cypermethrin, respectively. Cypermethrin proved to be acutely toxic to crustaceans in enclosures receiving nominal cypermethrin concentrations of ≥0.13 μg/l. No Effect Concentration (NEC) and median Effect Concentration (EC 50 ) for the total crustacean community and cladoceran and copepod subgroups ranged between 0.02-0.07 and 0.04-0.17 μg/l, respectively, with copepods being less sensitive than cladocerans. The abundance of rotifers, protozoans and bacteria and the chlorophyll-a concentration of planktonic and periphytic algae was significantly related to the concentration of cypermethrin. All groups proliferated within 2-7 days after the cypermethrin application in those enclosures where the abundance of crustaceans was seriously affected by cypermethrin (i.e. ≥0.13 μg/l). We hypothesise that the proliferation of rotifers, protozoans, bacteria and algae was due to a reduced grazer control from crustaceans and thereby mediated indirectly by cypermethrin. The results of this experiment provide knowledge on how an entire microplankton community may respond to pyrethroids in nature, and the indirect effects observed on the community clearly demonstrates the necessity of multispecies

  20. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms.

    Science.gov (United States)

    Mark A. Bradford; Brian W. Watts; Christian A. Davies

    2010-01-01

    Respiration of heterotrophic microorganisms decomposing soil organic carbon releases carbon dioxide from soils to the atmosphere. In the short term, soil microbial respiration is strongly dependent on temperature. In the long term, the response of heterotrophic soil respiration to temperature is uncertain. However, following established evolutionary tradeoffs, mass-...

  1. Partitioning autotrophic and heterotrophic respiration at Howland Forest

    Science.gov (United States)

    Carbone, Mariah; Hollinger, Dave; Davidson, Eric; Savage, Kathleen; Hughes, Holly

    2015-04-01

    Terrestrial ecosystem respiration is the combined flux of CO2 to the atmosphere from above- and below-ground, plant (autotrophic) and microbial (heterotrophic) sources. Flux measurements alone (e.g., from eddy covariance towers or soil chambers) cannot distinguish the contributions from these sources, which may change seasonally and respond differently to temperature and moisture. The development of improved process-based models that can predict how plants and microbes respond to changing environmental conditions (on seasonal, interannual, or decadal timescales) requires data from field observations and experiments to distinguish among these respiration sources. We tested the viability of partitioning of soil and ecosystem respiration into autotrophic and heterotrophic components with different approaches at the Howland Forest in central Maine, USA. These include an experimental manipulation using the classic root trenching approach and targeted ∆14CO2 measurements. For the isotopic measurements, we used a two-end member mass balance approach to determine the fraction of soil respiration from autotrophic and heterotrophic sources. When summed over the course of the growing season, the trenched chamber flux (heterotrophic) accounted for 53 ± 2% of the total control chamber flux. Over the four different 14C sampling periods, the heterotrophic component ranged from 35-55% and the autotrophic component ranges 45-65% of the total flux. Next steps will include assessing the value of the flux partitioning for constraining a simple ecosystem model using a model-data fusion approach to reduce uncertainties in estimates of NPP and simulation of future soil C stocks and fluxes.

  2. Two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production.

    Science.gov (United States)

    Zheng, Yubin; Chi, Zhanyou; Lucker, Ben; Chen, Shulin

    2012-01-01

    A two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production was studied, wherein high density heterotrophic cultures of Chlorellasorokiniana serve as seed for subsequent phototrophic growth. The data showed growth rate, cell density and productivity of heterotrophic C.sorokiniana were 3.0, 3.3 and 7.4 times higher than phototrophic counterpart, respectively. Hetero- and phototrophic algal seeds had similar biomass/lipid production and fatty acid profile when inoculated into phototrophic culture system. To expand the application, food waste and wastewater were tested as feedstock for heterotrophic growth, and supported cell growth successfully. These results demonstrated the advantages of using heterotrophic algae cells as seeds for open algae culture system. Additionally, high inoculation rate of heterotrophic algal seed can be utilized as an effective method for contamination control. This two-stage heterotrophic phototrophic process is promising to provide a more efficient way for large scale production of algal biomass and biofuels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Box Model of Freshwater, Salinity and Nutrient in the Delta Mahakam, East Kalimantan

    Directory of Open Access Journals (Sweden)

    Marojahan Simanjuntak

    2011-04-01

    Full Text Available Box Model of Freshwater, Salinity and Nutrient in the Delta Mahakam, East Kalimantan. Research has been conducted in the southern part of the Mahakam Delta, East Kalimantan. Method of measuring temperature, salinity, light transmission and turbidity by using CTD model 603 SBE and current measurement and bathymetry by using ADCP model RDI. Measurement parameters on the nutrient chemistry are based of water samples taken using Nansen bottles from two depths. The purpose of this study to determine the mechanism of freshwater, salinity and nutrient transport from the land of the Mahakam River which interact with seawater by using box models. The results illustrate that the vertical distribution of salinity in the Mahakam Delta has obtained a high stratification, where the freshwater salinity 12.30 psu at the surface of a river flowing toward the sea, and seawater of high salinity 30.07 psu flowing in the direction river under the surface that are separated by a layer of mixture. Freshwater budget of the sea (VSurf obtained for 0,0306 x 109 m3 day-1, and the sea water salinity budget is going into the bottom layer system (VDeep.SOcn-d obtained for 20,727 x 109 psu day-1. While time dilution (Syst obtained for 0.245 day-1 or 5.87 hours. Nutrient budget in the surface layer obtained by the system is autotrophic while in layers near the bottom tend to be heterotrophic

  4. Qualitative importance of the microbial loop and plankton community structure in a eutropic lake during a bloom of Cyanobacteria

    DEFF Research Database (Denmark)

    Christoffersen, K.

    1990-01-01

    Plankton community structure and m~or pools and fluxes of carbon were observed before and after culmination of a bloom of cyanobacteria in eutrophic Frederiksborg Slotsso, Denmark. Biomass changes of heterotrophic nanoflagellates, ciliates, microzooplankton (50 to 140 urn), and macrozooplankton...... smaller than 20 um replaced Aphanizornenon after the culmination of cyanobacteria. Bacterial net production peaked shortly after the culmination of the bloom (510 ug C liter- 1 d-') and decreased thereafter to a level of approximately 124 gg C liter-' d -~. Phytoplankton extracellular release of organic...

  5. Heterotrophic free-living and particle-bound bacterial cell size in the ...

    Indian Academy of Sciences (India)

    PRAKASH

    the heterotrophic bacterial cell size in the various water bodies studied in this investigation. The possible ... seasonal changes in abundance and cell size of heterotrophic ... data, 1995) physiological stress indicated by the presence of small ...

  6. Ferric Iron Reduction by Bacteria Associated with the Roots of Freshwater and Marine Macrophytes†

    Science.gov (United States)

    King, G. M.; Garey, Meredith A.

    1999-01-01

    In vitro assays of washed, excised roots revealed maximum potential ferric iron reduction rates of >100 μmol g (dry weight)−1 day−1 for three freshwater macrophytes and rates between 15 and 83 μmol (dry weight)−1 day−1 for two marine species. The rates varied with root morphology but not consistently (fine root activity exceeded smooth root activity in some but not all cases). Sodium molybdate added at final concentrations of 0.2 to 20 mM did not inhibit iron reduction by roots of marine macrophytes (Spartina alterniflora and Zostera marina). Roots of a freshwater macrophyte, Sparganium eurycarpum, that were incubated with an analog of humic acid precursors, anthroquinone disulfate (AQDS), reduced freshly precipitated iron oxyhydroxide contained in dialysis bags that excluded solutes with molecular weights of >1,000; no reduction occurred in the absence of AQDS. Bacterial enrichment cultures and isolates from freshwater and marine roots used a variety of carbon and energy sources (e.g., acetate, ethanol, succinate, toluene, and yeast extract) and ferric oxyhydroxide, ferric citrate, uranate, and AQDS as terminal electron acceptors. The temperature optima for a freshwater isolate and a marine isolate were equivalent (approximately 32°C). However, iron reduction by the freshwater isolate decreased with increasing salinity, while reduction by the marine isolate displayed a relatively broad optimum salinity between 20 and 35 ppt. Our results suggest that by participating in an active iron cycle and perhaps by reducing humic acids, iron reducers in the rhizoplane of aquatic macrophytes limit organic availability to other heterotrophs (including methanogens) in the rhizosphere and bulk sediments. PMID:10508065

  7. Comparative single-cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage.

    Science.gov (United States)

    Ghylin, Trevor W; Garcia, Sarahi L; Moya, Francisco; Oyserman, Ben O; Schwientek, Patrick; Forest, Katrina T; Mutschler, James; Dwulit-Smith, Jeffrey; Chan, Leong-Keat; Martinez-Garcia, Manuel; Sczyrba, Alexander; Stepanauskas, Ramunas; Grossart, Hans-Peter; Woyke, Tanja; Warnecke, Falk; Malmstrom, Rex; Bertilsson, Stefan; McMahon, Katherine D

    2014-12-01

    Members of the acI lineage of Actinobacteria are the most abundant microorganisms in most freshwater lakes; however, our understanding of the keys to their success and their role in carbon and nutrient cycling in freshwater systems has been hampered by the lack of pure cultures and genomes. We obtained draft genome assemblies from 11 single cells representing three acI tribes (acI-A1, acI-A7, acI-B1) from four temperate lakes in the United States and Europe. Comparative analysis of acI SAGs and other available freshwater bacterial genomes showed that acI has more gene content directed toward carbohydrate acquisition as compared to Polynucleobacter and LD12 Alphaproteobacteria, which seem to specialize more on carboxylic acids. The acI genomes contain actinorhodopsin as well as some genes involved in anaplerotic carbon fixation indicating the capacity to supplement their known heterotrophic lifestyle. Genome-level differences between the acI-A and acI-B clades suggest specialization at the clade level for carbon substrate acquisition. Overall, the acI genomes appear to be highly streamlined versions of Actinobacteria that include some genes allowing it to take advantage of sunlight and N-rich organic compounds such as polyamines, di- and oligopeptides, branched-chain amino acids and cyanophycin. This work significantly expands the known metabolic potential of the cosmopolitan freshwater acI lineage and its ecological and genetic traits.

  8. Competition and niche separation of pelagic bacteria in freshwater habitats.

    Science.gov (United States)

    Pernthaler, Jakob

    2017-06-01

    Freshwater bacterioplankton assemblages are composed of sympatric populations that can be delineated, for example, by ribosomal RNA gene relatedness and that differ in key ecophysiological properties. They may be free-living or attached, specialized for particular concentrations or subsets of substrates, or invest a variable amount of their resources in defence traits against protistan predators and viruses. Some may be motile and tactic whereas others are not, with far-reaching implications for their respective life styles and niche partitioning. The co-occurrence of competitors with overlapping growth requirements has profound consequences for the stability of community functions; it can to some extent be explained by habitat factors such as the microscale complexity and spatiotemporal variability of the lacustrine environments. On the other hand, the composition and diversity of freshwater microbial assemblages also reflects non-equilibrium states, dispersal and the stochasticity of community assembly processes. This review synoptically discusses the competition and niche separation of heterotrophic bacterial populations (defined at various levels of phylogenetic resolution) in the pelagic zone of inland surface waters from a variety of angles, focusing on habitat heterogeneity and the resulting biogeographic distribution patterns, the ecophysiological adaptations to the substrate field and the interactions of prokaryotes with predators and viruses. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. The role of ciliates within the microbial food web in the eutrophicated part of Kaštela Bay (Middle Adriatic Sea

    Directory of Open Access Journals (Sweden)

    Natalia Bojanic

    2006-09-01

    Full Text Available Interactions among phytoplankton, bacterioplankton, heterotrophic nanoflagellates (HNF, ciliated protozoa and copepod nauplii were studied in the eutrophicated part of Kas?tela Bay from May 1998 to November 1999. Special emphasis was placed on relationships between size categories of nonloricate ciliates (NLC and other microbial food web components. Biomasses of phytoplankton and bacteria were primarily influenced by abiotic parameters. Temperature indirectly controlled variation in HNF biomass through the changes in biomass of bacteria and the smaller phytoplankton fraction. Besides HNF, bacterial biomass was affected by the NLC

  10. Protozoans bacterivory in a subtropical environment during a dry/cold and a rainy/warm season

    Directory of Open Access Journals (Sweden)

    Karina F. Hisatugo

    2014-01-01

    Full Text Available In aquatic ecosystems, bacteria are controlled by several organisms in the food chain, such as protozoa, that use them as food source. This study aimed to quantify the ingestion and clearance rates of bacteria by ciliates and heterotrophic nanoflagellates (HNF in a subtropical freshwater reservoir (Monjolinho reservoir -São Carlos -Brazil during one year period, in order to verify their importance as consumers and controllers of bacteria in two seasons, a dry/cold and a rainy/warm one. For this purpose, in situ bacterivory experiments were carried out bimonthly using fluorescently labeled bacteria with 5-(4,6 diclorotriazin-2yl aminofluorescein (DTAF. Although ciliates have shown the highest individual ingestion and clearance rates, bacterivory was dominated by HNF, who showed higher population ingestion rates (mean of 9,140 bacteria h-1mL-1 when compared to ciliates (mean of 492 bacteria h-1mL-1. The greater predation impact on bacterial communities was caused mainly by the small HNF (< 5 µm population, especially in the rainy season, probably due to the abundances of these organisms, the precipitation, trophic index state and water temperature that were higher in this period. Thus, the protozoan densities together with environmental variables were extremely relevant in determining the seasonal pattern of bacterivory in Monjolinho reservoir.

  11. BACTERIOLOGICAL PROPERTIES OF MARINE WATER IN ADRIATIC FISH FARMS: ENUMERATION OF HETEROTROPHIC BACTERIA

    Directory of Open Access Journals (Sweden)

    Emin Teskeredžić

    2012-12-01

    Full Text Available Aquaculture is currently one of the fastest growing food production sectors in the world. Increase in nutrients and organic wastes lead to general deterioration of water quality. The problem of water quality is associated with both physical and chemical factors, as well as microbiological water quality. Heterotrophic bacteria play an important role in the process of decomposition of organic matter in water environment and indicate eutrophication process. Here we present our experience and knowledge on bacterial properties of marine water in the Adriatic fish farms with European sea bass (Dicentrarchus labrax L., 1758, with an emphasis on enumeration of heterotrophic bacteria in marine water. We applied two temperatures of incubation, as well as two methods for enumeration of heterotrophic bacteria: substrate SimPlate® test and spread plate method on conventional artificial media (Marine agar and Tryptic Soy agar with added NaCl. The results of analysis of bacteriological properties of marine water in the Adriatic fish farms showed that enumeration of heterotrophic bacteria in marine water depends on the applied incubation temperature and media for enumeration. At the same time, the incubation temperature of 22C favours more intense growth of marine heterotrophic bacteria, whereas a SimPlate test gives higher values of heterotrophic bacteria. Volatile values of heterotrophic bacteria during this research indicate a possible deterioration of microbiological water quality in the Adriatic fish farms and a need for regular monitoring of marine water quality.

  12. Freshwater Megafauna: Flagships for Freshwater Biodiversity under Threat.

    Science.gov (United States)

    Carrizo, Savrina F; Jähnig, Sonja C; Bremerich, Vanessa; Freyhof, Jörg; Harrison, Ian; He, Fengzhi; Langhans, Simone D; Tockner, Klement; Zarfl, Christiane; Darwall, William

    2017-10-01

    Freshwater biodiversity is highly threatened and is decreasing more rapidly than its terrestrial or marine counterparts; however, freshwaters receive less attention and conservation investment than other ecosystems do. The diverse group of freshwater megafauna, including iconic species such as sturgeons, river dolphins, and turtles, could, if promoted, provide a valuable tool to raise awareness and funding for conservation. We found that freshwater megafauna inhabit every continent except Antarctica, with South America, Central Africa, and South and Southeast Asia being particularly species rich. Freshwater megafauna co-occur with up to 93% of mapped overall freshwater biodiversity. Fifty-eight percent of the 132 megafauna species included in the study are threatened, with 84% of their collective range falling outside of protected areas. Of all threatened freshwater species, 83% are found within the megafauna range, revealing the megafauna's capacity as flagship and umbrella species for fostering freshwater conservation.

  13. Heterotrophic cultivation of microalgae for production of biodiesel.

    Science.gov (United States)

    Mohamed, Mohd Shamzi; Wei, Lai Zee; Ariff, Arbakariya B

    2011-08-01

    High cell density cultivation of microalgae via heterotrophic growth mechanism could effectively address the issues of low productivity and operational constraints presently affecting the solar driven biodiesel production. This paper reviews the progress made so far in the development of commercial-scale heterotrophic microalgae cultivation processes. The review also discusses on patentable concepts and innovations disclosed in the past four years with regards to new approaches to microalgal cultivation technique, improvisation on the process flow designs to economically produced biodiesel and genetic manipulation to confer desirable traits leading to much valued high lipid-bearing microalgae strains.

  14. Isolation of heterotrophic diazotrophic bacteria from estuarine surface waters.

    Science.gov (United States)

    Farnelid, Hanna; Harder, Jens; Bentzon-Tilia, Mikkel; Riemann, Lasse

    2014-10-01

    The wide distribution of diverse nitrogenase (nifH) genes affiliated with those of heterotrophic bacteria in marine and estuarine waters indicates ubiquity and an ecologically relevant role for heterotrophic N2 -fixers (diazotrophs) in aquatic nitrogen (N) cycling. However, the lack of cultivated representatives currently precludes an evaluation of their N2 -fixing capacity. In this study, microoxic or anoxic N-free media were inoculated with estuarine Baltic Sea surface water to select for N2 -fixers. After visible growth and isolation of single colonies on oxic plates or in anoxic agar tubes, nifH gene amplicons were obtained from 64 strains and nitrogenase activity, applying the acetylene reduction assay, was confirmed for 40 strains. Two strains, one Gammaproteobacterium affiliated with Pseudomonas and one Alphaproteobacterium affiliated with Rhodopseudomonas were shown to represent established members of the indigenous diazotrophic community in the Baltic Sea, with abundances of up to 7.9 × 10(4) and 4.7 × 10(4)  nifH copies l(-1) respectively. This study reports media for successful isolation of heterotrophic diazotrophs. The applied methodology and the obtained strains will facilitate future identification of factors controlling heterotrophic diazotrophic activity in aquatic environments, which is a prerequisite for understanding and evaluating their ecology and contribution to N cycling at local and regional scales. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Heterotrophic bacterial populations in tropical sandy beaches

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, S.; LokaBharathi, P.A.

    Distribution pattern of heterotrophic bacterial flora of three sandy beaches of the west coast of India was studied. The population in these beaches was microbiologically different. Population peaks of halotolerant and limnotolerant forms were...

  16. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium.

    Science.gov (United States)

    Mohammad Mirzaie, M A; Kalbasi, M; Mousavi, S M; Ghobadian, B

    2016-01-01

    Growth of Chlorella vulgaris and its lipid production were investigated under autotrophic, heterotrophic, and mixotrophic conditions. Cheap agricultural waste molasses and corn steep liquor from industries were used as carbon and nitrogen sources, respectively. Chlorella vulgaris grew remarkably under this agricultural waste medium, which resulted in a reduction in the final cost of the biodiesel production. Maximum dry weight of 2.62 g L(-1) was obtained in mixotrophic growth with the highest lipid concentration of 0.86 g L(-1). These biomass and lipid concentrations were, respectively, 140% and 170% higher than autotrophic growth and 300% and 1200% higher than heterotrophic growth. In mixotrophic growth, independent or simultaneous occurrence of autotrophic and heterotrophic metabolisms was investigated. The growth of the microalgae was observed to take place first heterotrophically to a minimum substrate concentration with a little fraction in growth under autotrophic metabolism, and then the cells grew more autotrophically. It was found that mixotrophic growth was not a simple combination of heterotrophic and autotrophic growth.

  17. Factors limiting heterotrophic bacterial production in the southern Pacific Ocean

    Directory of Open Access Journals (Sweden)

    F. Van Wambeke

    2008-05-01

    Full Text Available The role of potential factors limiting bacterial growth was investigated along vertical and longitudinal gradients across the South Eastern Pacific Gyre. The effects of glucose, nitrate, ammonium and phosphate additions on heterotrophic bacterial production (using leucine technique were studied in parallel in unfiltered seawater samples incubated under natural daily irradiance. The enrichments realized on the subsurface showed three types of responses. From 141° W (Marquesas plateau to approx 125° W, bacteria were not bottom-up controlled, as confirmed by the huge potential of growth in non-enriched seawater (median of enhancement factor×39 in 24 h. Within the Gyre (125° W–95° W, nitrogen alone stimulated leucine incorporation rates (median×4.2, but rapidly labile carbon (glucose became a second limiting factor (median×37 when the two elements were added. Finally from the border of the gyre to the Chilean upwelling (95° W–73° W, labile carbon was the only factor stimulating heterotrophic bacterial production. Interaction between phytoplankton and heterotrophic bacterial communities and the direct versus indirect effect of iron and macronutrients on bacterial production were also investigated in four selected sites: two sites on the vicinity of the Marquesas plateau, the centre of the gyre and the Eastern border of the gyre. Both phytoplankton and heterotrophic bacteria were limited by availability of nitrogen within the gyre, but not by iron. Iron limited phytoplankton at Marquesas plateau and at the eastern border of the gyre. However 48 h enrichment experiments were not sufficient to show any clear limitation of heterotrophic bacteria within Marquesas plateau and showed a limitation of these organisms by labile carbon in the eastern border of the Gyre.

  18. Enrichments of methanotrophic-heterotrophic cultures with high poly-β-hydroxybutyrate (PHB) accumulation capacities.

    Science.gov (United States)

    Zhang, Tingting; Wang, Xiaowei; Zhou, Jiti; Zhang, Yu

    2018-03-01

    Methanotrophic-heterotrophic communities were selectively enriched from sewage sludge to obtain a mixed culture with high levels of poly-β-hydroxybutyrate (PHB) accumulation capacity from methane. Methane was used as the carbon source, N 2 as sole nitrogen source, and oxygen and Cu content were varied. Copper proved essential for PHB synthesis. All cultures enriched with Cu could accumulate high content of PHB (43.2%-45.9%), while only small amounts of PHB were accumulated by cultures enriched without Cu (11.9%-17.5%). Batch assays revealed that communities grown with Cu and a higher O 2 content synthesized more PHB, which had a wider optimal CH 4 :O 2 range and produced a high PHB content (48.7%) even though in the presence of N 2 . In all methanotrophic-heterotrophic communities, both methanotrophic and heterotrophic populations showed the ability to accumulate PHB. Although methane was added as the sole carbon source, heterotrophs dominated with abundances between 77.2% and 85.6%. All methanotrophs detected belonged to type II genera, which formed stable communities with heterotrophs of different PHB production capacities. Copyright © 2017. Published by Elsevier B.V.

  19. Modeling how soluble microbial products (SMP) support heterotrophic bacteria in autotroph-based biofilms

    DEFF Research Database (Denmark)

    Merkey, Brian; Rittmann, Bruce E.; Chopp, David L.

    2009-01-01

    . In this paper, we develop and use a mathematical model to describe a model biofilm system that includes autotrophic and heterotrophic bacteria and the key products produced by the bacteria. The model combines the methods of earlier multi-species models with a multi-component biofilm model in order to explore...... the interaction between species via exchange of soluble microbial products (SMP). We show that multiple parameter sets are able to describe the findings of experimental studies, and that heterotrophs growing on autotrophically produced SMP may pursue either r- or K-strategies to sustain themselves when SMP...... is their only substrate. We also show that heterotrophs can colonize some distance from the autotrophs and still be sustained by autotrophically produced SMP. This work defines the feasible range of parameters for utilization of SMP by heterotrophs and the nature of the interactions between autotrophs...

  20. Dynamics of pollution-indicator and heterotrophic bacteria in sewage treatment lagoons.

    OpenAIRE

    Legendre, P; Baleux, B; Troussellier, M

    1984-01-01

    The spatio-temporal dynamics of pollution-indicator bacteria and aerobic heterotrophic bacteria were studied in the sewage treatment lagoons of an urban wastewater center after 26 months of biweekly sampling at eight stations in these lagoons. Robust statistical methods of time-series analysis were used to study successional steps (through chronological clustering) and rhythmic behavior through time (through contingency periodogram). The aerobic heterotrophic bacterial community showed two ty...

  1. Evaluation on the microbial interactions of anaerobic ammonium oxidizers and heterotrophs in Anammox biofilm

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Mael; Smets, Barth F.

    2012-01-01

    and the affecting factors were evaluated with both experimental and modeling approaches. Fluorescent in situ hybridization (FISH) analysis illustrated that Anammox bacteria and heterotrophs accounted for 77% and 23% of the total bacteria, respectively, even without addition of an external carbon source....... Experimental results showed the heterotrophs could grow both on SMP and decay released substrate from the metabolism of the Anammox bacteria. However, heterotrophic growth in Anammox biofilm (23%) was significantly lower than that of nitrifying biofilm (30–50%). The model predictions matched well...... with the experimental observations of the bacterial distribution, as well as the nitrogenous transformations in batch and continuous experiments. The modeling results showed that low nitrogen surface loading resulted in a lower availability of SMP leading to low heterotrophic growth in Anammox biofilm, but high...

  2. Heterotrophic bacteria associated with the green alga

    NARCIS (Netherlands)

    Ismail, A.; Ktari, L.; Ahmed, M.; Bolhuis, H.; Bouhaouala-Zahar, B.; Stal, L.J.; Boudabbous, A.; El Bour, M.

    2018-01-01

    Heterotrophic bacteria associated with the green alga Ulva rigida, collected from the coast of Tunisia, were isolated andsubsequently identified by their 16S rRNA gene sequences and by phylogenetic analysis. The 71 isolates belong to four phyla:Proteobacteria (Alpha-and Gamma- subclasses),

  3. Effects of coral-derived organic matter on the growth of bacterioplankton and heterotrophic nanoflagellates

    Science.gov (United States)

    Nakajima, Ryota; Tanaka, Yasuaki; Guillemette, Ryan; Kurihara, Haruko

    2017-12-01

    Exudates derived from hermatypic corals were incubated with dark conditions for 96 h to quantify the growth of both bacteria and HNF in response to coral-derived dissolved organic matter (DOM). The addition of coral-derived DOM caused significantly higher growth rates and production of bacteria and HNF compared to those in control seawater without coral exudates. During the incubation, HNF exhibited their peak in abundance 24-48 h after the peak abundance of bacteria. The growth efficiencies of both bacteria and HNF were significantly higher with coral-derived DOM, suggesting higher transfer efficiency from bacteria that is fueled by coral organic matter to HNF. Therefore, trophic transfer of coral-derived DOM from bacteria to HNF can contribute to efficient carbon flow through the microbial food web.

  4. Survey on Heterotrophic Bacterial Contamination in Bottled Mineral Water by Culture Method

    Directory of Open Access Journals (Sweden)

    Essmaeel Ghorbanalinezhad

    2014-12-01

    Full Text Available Background and Aim: This project focuses on the level of heterotrophic baceria in bottled mineral water which could be a health concern for the elderly, infants, pregnant women and immuno-compromised patients. Materials and Methods: Different brands of bottled water samples were selected randomly and evaluated for their bacteriological quality, using different specific culture media and biochemical tests. Water samples were analyzed within 24 hours of their purchase/collection. Samples were filtered with 0.45 micron and filters were plated in different media. Then media were incubated at 37˚C for 24-48 hours. Results: Morphological study and biochemical tests revealed a number of bacteria in different   brands of  bottled water. Heterotrophic bacteria(Gram positive cocci, Spore forming gram positive bacilli, non spore forming gram positive bacilli, gram negative bacilli, and gram negative coccobacilli; Pseudomonas and Stenotrophomonas counted in 70% of bottled water samples. There were no cases of fecal contamination or the presence of E.coli. Conclusions: Bottled water is not sterile and contains trace amounts of bacteria naturally present or introduced during processing. Testing drinking water for all possible pathogens is complex, time-consuming, and expensive. If only total coliform bacteria are detected in drinking water, the source is probably environmental. Since the significance of non-pathogenic heterotrophic bacteria in relation to health and diseases is not understood, there is an urgent need to establish a maximum limit for the heterotrophic count in the bottled mineral water. Growth conditions play a critical role in the recovery of heterotrophic bacteria in bottled drinking water.

  5. Influence of heterotrophic microbial growth on biological oxidation of pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, E.A.; Silverstein, J. [University of Nevada, Reno, NV (United States). Dept. of Civil Engineering

    2002-12-15

    Experiments were carried out to examine the possibility that enhanced growth of heterotrophic (non-iron-oxidising) bacteria would inhibit pyrite oxidation by Acidithiobacillus ferroxidans by out-competing the more slowly growing autotrophs for oxygen, nutrients or even attachment sites on the mineral surface. Glucose was added to microcosms containing pyrite, acidic mineral solution and cultures of A-ferrooxidans and Acidiphilium acidophilus under various experimental conditions. Results suggest that encouraging the growth of heterotrophic microorganisms under acid mine drainage conditions may be a feasible strategy for decreasing both the rate and the extent of sulfide mineral oxidation. 43 refs., 8 figs., 3 tabs.

  6. Nutrient and media recycling in heterotrophic microalgae cultures.

    Science.gov (United States)

    Lowrey, Joshua; Armenta, Roberto E; Brooks, Marianne S

    2016-02-01

    In order for microalgae-based processes to reach commercial production for biofuels and high-value products such as omega-3 fatty acids, it is necessary that economic feasibility be demonstrated at the industrial scale. Therefore, process optimization is critical to ensure that the maximum yield can be achieved from the most efficient use of resources. This is particularly true for processes involving heterotrophic microalgae, which have not been studied as extensively as phototrophic microalgae. An area that has received significant conceptual praise, but little experimental validation, is that of nutrient recycling, where the waste materials from prior cultures and post-lipid extraction are reused for secondary fermentations. While the concept is very simple and could result in significant economic and environmental benefits, there are some underlying challenges that must be overcome before adoption of nutrient recycling is viable at commercial scale. Even more, adapting nutrient recycling for optimized heterotrophic cultures presents some added challenges that must be identified and addressed that have been largely unexplored to date. These challenges center on carbon and nitrogen recycling and the implications of using waste materials in conjunction with virgin nutrients for secondary cultures. The aim of this review is to provide a foundation for further understanding of nutrient recycling for microalgae cultivation. As such, we outline the current state of technology and practical challenges associated with nutrient recycling for heterotrophic microalgae on an industrial scale and give recommendations for future work.

  7. Heterotrophic fixation of CO2 in soil

    Czech Academy of Sciences Publication Activity Database

    Šantrůčková, Hana; Bird, M. I.; Elhottová, Dana; Novák, Jaroslav; Picek, T.; Šimek, Miloslav; Tykva, Richard

    2005-01-01

    Roč. 49, č. 2 (2005), s. 218-225 ISSN 0095-3628 R&D Projects: GA ČR(CZ) GA206/02/1036; GA AV ČR(CZ) IAA6066901 Institutional research plan: CEZ:AV0Z60660521 Keywords : heterotrophic fixation * CO2 * soil Subject RIV: EH - Ecology, Behaviour Impact factor: 2.674, year: 2005

  8. Utilization of organic residues using heterotrophic microalgae and insects.

    Science.gov (United States)

    Pleissner, Daniel; Rumpold, Birgit A

    2018-02-01

    Various organic residues occur globally in the form of straw, wood, green biomass, food waste, feces, manure etc. Other utilization strategies apart from anaerobic digestion, composting and incineration are needed to make use of the whole potential of organic residues as sources of various value added compounds. This review compares the cultivation of heterotrophic microalgae and insects using organic residues as nutrient sources and illuminates their potential with regard to biomass production, productivity and yield, and utilization strategies of produced biomasses. Furthermore, cultivation processes as well as advantages and disadvantages of utilization processes are identified and discussed. It was shown that both heterotrophic algae and insects are able to reduce a sufficient amount of organic residues by converting it into biomass. The biomass composition of both organisms is similar which allows similar utilization strategies in food and feed, chemicals and materials productions. Even though insect is the more complex organism, biomass production can be carried out using simple equipment without sterilization and hydrolysis of organic residues. Contrarily, heterotrophic microalgae require a pretreatment of organic residues in form of sterilization and in most cases hydrolysis. Interestingly, the volumetric productivity of insect biomass exceeds the productivity of algal biomass. Despite legal restrictions, it is expected that microalgae and insects will find application as alternative food and feed sources in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Dynamic metabolic modeling of heterotrophic and mixotrophic microalgal growth on fermentative wastes.

    Directory of Open Access Journals (Sweden)

    Caroline Baroukh

    2017-06-01

    Full Text Available Microalgae are promising microorganisms for the production of numerous molecules of interest, such as pigments, proteins or triglycerides that can be turned into biofuels. Heterotrophic or mixotrophic growth on fermentative wastes represents an interesting approach to achieving higher biomass concentrations, while reducing cost and improving the environmental footprint. Fermentative wastes generally consist of a blend of diverse molecules and it is thus crucial to understand microalgal metabolism in such conditions, where switching between substrates might occur. Metabolic modeling has proven to be an efficient tool for understanding metabolism and guiding the optimization of biomass or target molecule production. Here, we focused on the metabolism of Chlorella sorokiniana growing heterotrophically and mixotrophically on acetate and butyrate. The metabolism was represented by 172 metabolic reactions. The DRUM modeling framework with a mildly relaxed quasi-steady-state assumption was used to account for the switching between substrates and the presence of light. Nine experiments were used to calibrate the model and nine experiments for the validation. The model efficiently predicted the experimental data, including the transient behavior during heterotrophic, autotrophic, mixotrophic and diauxic growth. It shows that an accurate model of metabolism can now be constructed, even in dynamic conditions, with the presence of several carbon substrates. It also opens new perspectives for the heterotrophic and mixotrophic use of microalgae, especially for biofuel production from wastes.

  10. Heterotrophic components of soil respiration in pastures and forests in southwestern Amazonia, Acre, Brazil

    Directory of Open Access Journals (Sweden)

    Eric Atlas Davidson

    2008-12-01

    Full Text Available In this paper we present data on soil microbial biomass and heterotrophic respiration in pastures, mature and secondary forests, in order to elucidate their contribution to total CO2 flux from soil to atmosphere. The research was conducted in Southwestern Amazonia, Acre State, Brazil. Microbial biomass was estimated using a variation of the traditional fumigation-extraction method and heterotrophic respiration was measured using respirometry flasks attached to an infrared gas analyzer. Soil microbial biomass and heterotrophic respiration did not differ statistically among pastures, mature and secondary forests. These laboratory results indicate that higher CO2 fluxes from pasture soils measured in situ are probably due to higher root respiration by pasture grasses.

  11. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment

    KAUST Repository

    Arandia-Gorostidi, Nestor

    2016-12-06

    Quantifying the contribution of marine microorganisms to carbon and nitrogen cycles and their response to predicted ocean warming is one of the main challenges of microbial oceanography. Here we present a single-cell NanoSIMS isotope analysis to quantify C and N uptake by free-living and attached phytoplankton and heterotrophic bacteria, and their response to short-term experimental warming of 4 °C. Elevated temperature increased total C fixation by over 50%, a small but significant fraction of which was transferred to heterotrophs within 12 h. Cell-to-cell attachment doubled the secondary C uptake by heterotrophic bacteria and increased secondary N incorporation by autotrophs by 68%. Warming also increased the abundance of phytoplankton with attached heterotrophs by 80%, and promoted C transfer from phytoplankton to bacteria by 17% and N transfer from bacteria to phytoplankton by 50%. Our results indicate that phytoplankton-bacteria attachment provides an ecological advantage for nutrient incorporation, suggesting a mutualistic relationship that appears to be enhanced by temperature increases.

  12. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment

    KAUST Repository

    Arandia-Gorostidi, Nestor; Weber, Peter K; Alonso-Sá ez, Laura; Moran, Xose Anxelu G.; Mayali, Xavier

    2016-01-01

    Quantifying the contribution of marine microorganisms to carbon and nitrogen cycles and their response to predicted ocean warming is one of the main challenges of microbial oceanography. Here we present a single-cell NanoSIMS isotope analysis to quantify C and N uptake by free-living and attached phytoplankton and heterotrophic bacteria, and their response to short-term experimental warming of 4 °C. Elevated temperature increased total C fixation by over 50%, a small but significant fraction of which was transferred to heterotrophs within 12 h. Cell-to-cell attachment doubled the secondary C uptake by heterotrophic bacteria and increased secondary N incorporation by autotrophs by 68%. Warming also increased the abundance of phytoplankton with attached heterotrophs by 80%, and promoted C transfer from phytoplankton to bacteria by 17% and N transfer from bacteria to phytoplankton by 50%. Our results indicate that phytoplankton-bacteria attachment provides an ecological advantage for nutrient incorporation, suggesting a mutualistic relationship that appears to be enhanced by temperature increases.

  13. Competition between autotrophic and heterotrophic microbial plankton for inorganic nutrients induced by variability in estuarine biophysicochemical conditions

    Science.gov (United States)

    Williams, A.; Quigg, A.

    2016-02-01

    Competition for inorganic nutrients between autotrophic and heterotrophic fractions of microbial plankton (0.2-20μm) was investigated at two stations in a sub-tropical estuary, Galveston Bay, Texas. Competition potential between these groups is enhanced because individuals are similar in size, reducing variability among their nutrient uptake efficiencies. Further, in estuaries, allochthonous supplements to autochthonous carbon may satisfy heterotrophic requirements, allowing alternative factors to limit abundance. The relative abundance of autotrophs and heterotrophs stained with SYBR Green I and enumerated on a Beckman Coulter Gallios flow cytometer were evaluated monthly during a year-long study. Shifts in the relative in situ abundance were significantly related to temperature, dissolved inorganic nitrogen (DIN), phosphorous (Pi), and total organic carbon (TOC) concentrations revealing opposing gradients of limitation by different abiotic factors. In corresponding in vitro nutrient enrichment bioassays the relative contribution of autotrophic or heterotrophic microbial plankton to significant enrichment responses varied. Only during macro- (>20μm) phytoplankton blooms do autotrophic microbial plankton respond to nutrient enrichment. Contrastingly, the heterotrophic microbial plankton responded to nutrient enrichment primarily when temperature limitation was alleviated. Therefore, the potential for autotrophic and heterotrophic microbial plankton competition for limiting nutrients is highest when autotrophic microbial plankton are also competing with larger phytoplankton during bloom events. Based on this evidence, we hypothesize that the autotrophic microbial fraction has a competitive advantage over the heterotrophs for inorganic nutrients in Galveston Bay. The observed microbial competition during estuarine phytoplankton blooms may have important consequences on biogeochemical processes including carbon and nutrient cycling.

  14. Removal of crude petroleum hydrocarbons by heterotrophic bacteria ...

    African Journals Online (AJOL)

    Nitrogenous fertilizer (NPK) plant effluents from NAFCON were used in amending plots of land experimentally polluted with crude oil. Counts of heterotrophic bacteria (THBC) and fungi (TF), and of petroleum utilizing bacteria (PUB) and fungi (PUF) were monitored during an 8 weeks period. Counts obtained showed that ...

  15. Tropical Freshwater Biology

    African Journals Online (AJOL)

    Tropical Freshwater Biology promotes the publication of scientific contributions in the field of freshwater biology in the tropical and subtropical regions of the world. One issue is published annually but this number may be increased. Original research papers and short communications on any aspect of tropical freshwater ...

  16. Novel insight into the role of heterotrophic dinoflagellates in the fate of crude oil in the sea

    Science.gov (United States)

    Almeda, Rodrigo; Connelly, Tara L.; Buskey, Edward J.

    2014-12-01

    Although planktonic protozoans are likely to interact with dispersed crude oil after a spill, protozoan-mediated processes affecting crude oil pollution in the sea are still not well known. Here, we present the first evidence of ingestion and defecation of physically or chemically dispersed crude oil droplets (1-86 μm in diameter) by heterotrophic dinoflagellates, major components of marine planktonic food webs. At a crude oil concentration commonly found after an oil spill (1 μL L-1), the heterotrophic dinoflagellates Noctiluca scintillans and Gyrodinium spirale grew and ingested ~0.37 μg-oil μg-Cdino-1 d-1, which could represent ~17% to 100% of dispersed oil in surface waters when heterotrophic dinoflagellates are abundant or bloom. Egestion of faecal pellets containing crude oil by heterotrophic dinoflagellates could contribute to the sinking and flux of toxic petroleum hydrocarbons in coastal waters. Our study indicates that crude oil ingestion by heterotrophic dinoflagellates is a noteworthy route by which petroleum enters marine food webs and a previously overlooked biological process influencing the fate of crude oil in the sea after spills.

  17. Pyruvic Oxime Nitrification and Copper and Nickel Resistance by a Cupriavidus pauculus, an Active Heterotrophic Nitrifier-Denitrifier

    OpenAIRE

    Ramirez, Miguel; Obrzydowski, Jennifer; Ayers, Mary; Virparia, Sonia; Wang, Meijing; Stefan, Kurtis; Linchangco, Richard; Castignetti, Domenic

    2014-01-01

    Heterotrophic nitrifiers synthesize nitrogenous gasses when nitrifying ammonium ion. A Cupriavidus pauculus, previously thought an Alcaligenes sp. and noted as an active heterotrophic nitrifier-denitrifier, was examined for its ability to produce nitrogen gas (N2) and nitrous oxide (N2O) while heterotrophically nitrifying the organic substrate pyruvic oxime [CH3–C(NOH)–COOH]. Neither N2 nor N2O were produced. Nucleotide and phylogenetic analyses indicated that the organism is a member of a g...

  18. The Biology of Heterotrophic N2-fixing Bacteria in Marine and Estuarine Waters

    DEFF Research Database (Denmark)

    Bentzon-Tilia, Mikkel

    Biological nitrogen (N)2 fixation is of paramount importance for marine N cycling and for life in the oceans in general. It represents the sole mechanism by which microorganisms can channel inert atmospheric N2 gas into biomass and hence it may fuel a significant fraction of primary production...... heterotrophic isolates, this thesis aims at addressing these unknowns. It was found that heterotrophic diazotrophs were present and active in environments previously not associated with N2 fixation e.g. suboxic basins of the Baltic Sea and estuarine surface waters. In these environments they contributed...... with significant amounts fixed N2, suggesting that a reevaluation of the significance of N fixation in suboxic waters and estuarine coastal waters is warranted. It was also documented that heterotrophic diazotrophs could be enriched in culture based on their ability to utilize N2 as the sole N source...

  19. Transcriptional changes underlying elemental stoichiometry shifts in a marine heterotrophic bacterium

    Directory of Open Access Journals (Sweden)

    Leong-Keat eChan

    2012-05-01

    Full Text Available Marine bacteria drive the biogeochemical processing of oceanic dissolved organic carbon (DOC, a 750-Tg C reservoir that is a critical component of the global C cycle. Catabolism of DOC is thought to be regulated by the biomass composition of heterotrophic bacteria, as cells maintain a C:N:P ratio of ~50:10:1 during DOC processing. Yet a complicating factor in stoichiometry-based analyses is that bacteria can change the C:N:P ratio of their biomass in response to resource composition. We investigated the physiological mechanisms of resource-driven shifts in biomass stoichiometry in continuous cultures of the marine heterotrophic bacterium Ruegeria pomeroyi (a member of the Roseobacter clade under four element limitation regimes (C, N, P, and S. Microarray analysis indicated that the bacterium scavenged for alternate sources of the scarce element when cells were C-, N-, or P-limited; reworked the ratios of biomolecules when C- and P- limited; and exerted tighter control over import/export and cytoplasmic pools when N-limited. Under S-limitation, a scenario not existing naturally for surface ocean microbes, stress responses dominated transcriptional changes. Resource-driven changes in C:N ratios of up to 2.5-fold and in C:P ratios of up to 6-fold were measured in R. pomeroyi biomass. These changes were best explained if the C and P content of the cells was flexible in the face of shifting resources but N content was not, achieved through the net balance of different transcriptional strategies. The cellular-level metabolic trade-offs that govern biomass stoichiometery in R. pomeroyi may have implications for global carbon cycling. Strong homeostatic responses to N limitation by heterotrophic marine bacteria would intensify competition with autotrophs. Modification of cellular inventories in C- and P-limited heterotrophs would vary the elemental ratio of particulate organic matter sequestered in the deep ocean.

  20. Temperature regulation of marine heterotrophic prokaryotes increases latitudinally as a breach between bottom-up and top-down controls

    KAUST Repository

    Moran, Xose Anxelu G.; Gasol, Josep M.; Pernice, Massimo C.; Mangot, Jean-Franç ois; Massana, Ramon; Lara, Elena; Vaqué , Dolors; Duarte, Carlos M.

    2017-01-01

    Planktonic heterotrophic prokaryotes make up the largest living biomass and process most organic matter in the ocean. Determining when and where the biomass and activity of heterotrophic prokaryotes are controlled by resource availability (bottom

  1. Pyruvic oxime nitrification and copper and nickel resistance by a Cupriavidus pauculus, an active heterotrophic nitrifier-denitrifier.

    Science.gov (United States)

    Ramirez, Miguel; Obrzydowski, Jennifer; Ayers, Mary; Virparia, Sonia; Wang, Meijing; Stefan, Kurtis; Linchangco, Richard; Castignetti, Domenic

    2014-01-01

    Heterotrophic nitrifiers synthesize nitrogenous gasses when nitrifying ammonium ion. A Cupriavidus pauculus, previously thought an Alcaligenes sp. and noted as an active heterotrophic nitrifier-denitrifier, was examined for its ability to produce nitrogen gas (N2) and nitrous oxide (N2O) while heterotrophically nitrifying the organic substrate pyruvic oxime [CH3-C(NOH)-COOH]. Neither N2 nor N2O were produced. Nucleotide and phylogenetic analyses indicated that the organism is a member of a genus (Cupriavidus) known for its resistance to metals and its metabolism of xenobiotics. The microbe (a Cupriavidus pauculus designated as C. pauculus strain UM1) was examined for its ability to perform heterotrophic nitrification in the presence of Cu(2+) and Ni(2+) and to metabolize the xenobiotic phenol. The bacterium heterotrophically nitrified well when either 1 mM Cu(2+) or 0.5 mM Ni(2+) was present in either enriched or minimal medium. The organism also used phenol as a sole carbon source in either the presence or absence of 1 mM Cu(2+) or 0.5 mM Ni(2+). The ability of this isolate to perform a number of different metabolisms, its noteworthy resistance to copper and nickel, and its potential use as a bioremediation agent are discussed.

  2. The Arsenite Oxidation Potential of Native Microbial Communities from Arsenic-Rich Freshwaters.

    Science.gov (United States)

    Fazi, Stefano; Crognale, Simona; Casentini, Barbara; Amalfitano, Stefano; Lotti, Francesca; Rossetti, Simona

    2016-07-01

    Microorganisms play an important role in speciation and mobility of arsenic in the environment, by mediating redox transformations of both inorganic and organic species. Since arsenite [As(III)] is more toxic than arsenate [As(V)] to the biota, the microbial driven processes of As(V) reduction and As(III) oxidation may play a prominent role in mediating the environmental impact of arsenic contamination. However, little is known about the ecology and dynamics of As(III)-oxidizing populations within native microbial communities exposed to natural high levels of As. In this study, two techniques for single cell quantification (i.e., flow cytometry, CARD-FISH) were used to analyze the structure of aquatic microbial communities across a gradient of arsenic (As) contamination in different freshwater environments (i.e., groundwaters, surface and thermal waters). Moreover, we followed the structural evolution of these communities and their capacity to oxidize arsenite, when experimentally exposed to high As(III) concentrations in experimental microcosms. Betaproteobacteria and Deltaproteobacteria were the main groups retrieved in groundwaters and surface waters, while Beta and Gammaproteobacteria dominated the bacteria community in thermal waters. At the end of microcosm incubations, the communities were able to oxidize up to 95 % of arsenite, with an increase of Alphaproteobacteria in most of the experimental conditions. Finally, heterotrophic As(III)-oxidizing strains (one Alphaproteobacteria and two Gammaproteobacteria) were isolated from As rich waters. Our findings underlined that native microbial communities from different arsenic-contaminated freshwaters can efficiently perform arsenite oxidation, thus contributing to reduce the overall As toxicity to the aquatic biota.

  3. Primary and heterotrophic productivity relate to multikingdom diversity in a hypersaline mat

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Hans C.; Brislawn, Colin J.; Dana, Karl; Flores-Wentz, Tobias; Cory, Alexandra B.; Fansler, Sarah J.; Fredrickson, James K.; Moran, James J.

    2017-10-01

    Benthic microbial ecosystems are widespread yet knowledge gaps still remain on the relationships between the diversity of species across kingdoms and productivity. Here, we ask two fundamental questions: 1) How does species diversity relate to the rates of primary and heterotrophic productivity? 2) How do diel variations in light-energy inputs influence productivity and microbiome diversity? To answer these questions, microbial mats from a magnesium sulfate hypersaline Lake were used to establish microcosms. Both the number and relatedness between bacterial and eukaryotic taxa in the microbiome were assayed via amplicon based sequencing of 16S and 18S rRNA genes over two diel cycles. These results correlated with biomass productivity obtained from substrate-specific 13C stable isotope incorporation that enabled comparisons between primary and heterotrophic productivity. Both bacterial and eukaryotic species richness and evenness were related only to the rates of 13C labeled glucose and acetate biomass incorporation. Interestingly, measures of these heterotrophic relationships changed from positive and negative correlations depending on carbon derived from glucose and acetate, respectively. Bacterial and eukaryotic diversity of this ecosystem is also controlled, in part, energy constraints imposed by changing irradiance over a diel cycle.

  4. Factors affecting the bacterial community composition and heterotrophic production of Columbia River estuarine turbidity maxima.

    Science.gov (United States)

    Herfort, Lydie; Crump, Byron C; Fortunato, Caroline S; McCue, Lee Ann; Campbell, Victoria; Simon, Holly M; Baptista, António M; Zuber, Peter

    2017-12-01

    Estuarine turbidity maxima (ETM) function as hotspots of microbial activity and diversity in estuaries, yet, little is known about the temporal and spatial variability in ETM bacterial community composition. To determine which environmental factors affect ETM bacterial populations in the Columbia River estuary, we analyzed ETM bacterial community composition (Sanger sequencing and amplicon pyrosequencing of 16S rRNA gene) and bulk heterotrophic production ( 3 H-leucine incorporation rates). We collected water 20 times to cover five ETM events and obtained 42 samples characterized by different salinities, turbidities, seasons, coastal regimes (upwelling vs. downwelling), locations, and particle size. Spring and summer populations were distinct. All May samples had similar bacterial community composition despite having different salinities (1-24 PSU), but summer non-ETM bacteria separated into marine, freshwater, and brackish assemblages. Summer ETM bacterial communities varied depending on coastal upwelling or downwelling conditions and on the sampling site location with respect to tidal intrusion during the previous neap tide. In contrast to ETM, whole (>0.2 μm) and free-living (0.2-3 μm) assemblages of non-ETM waters were similar to each other, indicating that particle-attached (>3 μm) non-ETM bacteria do not develop a distinct community. Brackish water type (ETM or non-ETM) is thus a major factor affecting particle-attached bacterial communities. Heterotrophic production was higher in particle-attached than free-living fractions in all brackish waters collected throughout the water column during the rise to decline of turbidity through an ETM event (i.e., ETM-impacted waters). However, free-living communities showed higher productivity prior to or after an ETM event (i.e., non-ETM-impacted waters). This study has thus found that Columbia River ETM bacterial communities vary based on seasons, salinity, sampling location, and particle size, with the

  5. Draft Genome Sequence of Limnobacter sp. Strain CACIAM 66H1, a Heterotrophic Bacterium Associated with Cyanobacteria

    OpenAIRE

    da Silva, F?bio Daniel Flor?ncio; Lima, Alex Ranieri Jer?nimo; Moraes, Pablo Henrique Gon?alves; Siqueira, Andrei Santos; Dall?Agnol, Leonardo Teixeira; Bara?na, Anna Rafaella Ferreira; Martins, Luisa Car?cio; Oliveira, Karol Guimar?es; de Lima, Clayton Pereira Silva; Nunes, M?rcio Roberto Teixeira; Vianez-J?nior, Jo?o L?dio Silva Gon?alves; Gon?alves, Evonnildo Costa

    2016-01-01

    Ecological interactions between cyanobacteria and heterotrophic prokaryotes are poorly known. To improve the genomic studies of heterotrophic bacterium-cyanobacterium associations, the draft genome sequence (3.2 Mbp) of Limnobacter sp. strain CACIAM 66H1, found in a nonaxenic culture of Synechococcus sp. (cyanobacteria), is presented here.

  6. Calorimetry and thermodynamic aspects of heterotrophic, mixotrophic, and phototrophic growth

    NARCIS (Netherlands)

    Stockar, von U.; Marison, I.; Janssen, M.G.J.; Patino, R.

    2011-01-01

    A simple stoichiometric model is proposed linking the biomass yield to the enthalpy and Gibbs energy changes in chemo-heterotrophic, mixotrophic, and photo-autotrophic microbial growth. A comparison with calorimetric experiments on the algae Chlorella vulgaris and Chlorella sorokiniana confirmed the

  7. Seasonal distribution of nanoflagellates and bacterioplankton and relationship with environmental factors in a brazilian semi-arid reservoir=Distribuição sazonal de nanoflagelados e do bacterioplâncton e relações com fatores ambientais em um reservatório do semiárido brasileiro

    Directory of Open Access Journals (Sweden)

    Magnólia Fernandes Florêncio de Araújo

    2012-10-01

    Full Text Available The semi-arid region of Rio Grande do Norte State, in northeast Brazil exhibits specific physical-climatic aspects: the climate is very hot, with mean annual rainfall of 550 mm, characterized by periodic drought and uneven distribution of rains. Due to these features, is important to study and preserve its water bodies. The purpose of this paper was to characterize and investigate bacterioplankton and heterotrophic nanoflagellates, and their seasonal variations in a reservoir located in the semi-arid region of Rio Grande do Norte State, in 2008. To this aim, four samplings were carried out in the rainy season and three in the dry season to determine the biotic and abiotic variables. Bacterial densities in the reservoirs ranged from 8.98 x 106 to 1.62 x 107 bac mL-1, while total biomass varied between 207 and 262 μgCL-1. The nanoflagellates showed a variation between 1,777 and 8,229 org mL-1 in density, and between 3.0 and 9.6 μgCL-1 in biomass. Statistical analyses presented non-standard results for both biological and physical-chemical variables throughout the study year, revealing the complexity of the reservoir with respect to the mechanisms controlling the microbial populations analyzed.O semiárido norterriograndense apresenta aspectos físico-climáticos bastante específicos: o clima é muito quente, com média pluviométrica de 550 mm ano-1, caracterizado pelo regimento de escassez e desigual distribuição de chuvas. Por isso se torna imprescindível conhecer e preservar os seus corpos d'água. Este trabalho teve como objetivo a caracterização e o conhecimento sobre as comunidades bacterioplanctônica e de nanoflagelados heterotróficos e suas variações sazonais em um reservatório localizado na região semiárida do Estado do Rio Grande do Norte, durante o ano de 2008. Para isto, foram realizadas quatro coletas de amostras para verificar as variáveis bióticas e abióticas no período chuvoso e três no período seco. As

  8. An Amoebal Grazer of Cyanobacteria Requires Cobalamin Produced by Heterotrophic Bacteria.

    Science.gov (United States)

    Ma, Amy T; Beld, Joris; Brahamsha, Bianca

    2017-05-15

    Amoebae are unicellular eukaryotes that consume microbial prey through phagocytosis, playing a role in shaping microbial food webs. Many amoebal species can be cultivated axenically in rich media or monoxenically with a single bacterial prey species. Here, we characterize heterolobosean amoeba LPG3, a recent natural isolate, which is unable to grow on unicellular cyanobacteria, its primary food source, in the absence of a heterotrophic bacterium, a Pseudomonas species coisolate. To investigate the molecular basis of this requirement for heterotrophic bacteria, we performed a screen using the defined nonredundant transposon library of Vibrio cholerae , which implicated genes in corrinoid uptake and biosynthesis. Furthermore, cobalamin synthase deletion mutations in V. cholerae and the Pseudomonas species coisolate do not support the growth of amoeba LPG3 on cyanobacteria. While cyanobacteria are robust producers of a corrinoid variant called pseudocobalamin, this variant does not support the growth of amoeba LPG3. Instead, we show that it requires cobalamin that is produced by the Pseudomonas species coisolate. The diversity of eukaryotes utilizing corrinoids is poorly understood, and this amoebal corrinoid auxotroph serves as a model for examining predator-prey interactions and micronutrient transfer in bacterivores underpinning microbial food webs. IMPORTANCE Cyanobacteria are important primary producers in aquatic environments, where they are grazed upon by a variety of phagotrophic protists and, hence, have an impact on nutrient flux at the base of microbial food webs. Here, we characterize amoebal isolate LPG3, which consumes cyanobacteria as its primary food source but also requires heterotrophic bacteria as a source of corrinoid vitamins. Amoeba LPG3 specifically requires the corrinoid variant produced by heterotrophic bacteria and cannot grow on cyanobacteria alone, as they produce a different corrinoid variant. This same corrinoid specificity is also

  9. Pyruvic Oxime Nitrification and Copper and Nickel Resistance by a Cupriavidus pauculus, an Active Heterotrophic Nitrifier-Denitrifier

    Directory of Open Access Journals (Sweden)

    Miguel Ramirez

    2014-01-01

    Full Text Available Heterotrophic nitrifiers synthesize nitrogenous gasses when nitrifying ammonium ion. A Cupriavidus pauculus, previously thought an Alcaligenes sp. and noted as an active heterotrophic nitrifier-denitrifier, was examined for its ability to produce nitrogen gas (N2 and nitrous oxide (N2O while heterotrophically nitrifying the organic substrate pyruvic oxime [CH3–C(NOH–COOH]. Neither N2 nor N2O were produced. Nucleotide and phylogenetic analyses indicated that the organism is a member of a genus (Cupriavidus known for its resistance to metals and its metabolism of xenobiotics. The microbe (a Cupriavidus pauculus designated as C. pauculus strain UM1 was examined for its ability to perform heterotrophic nitrification in the presence of Cu2+ and Ni2+ and to metabolize the xenobiotic phenol. The bacterium heterotrophically nitrified well when either 1 mM Cu2+ or 0.5 mM Ni2+ was present in either enriched or minimal medium. The organism also used phenol as a sole carbon source in either the presence or absence of 1 mM Cu2+ or 0.5 mM Ni2+. The ability of this isolate to perform a number of different metabolisms, its noteworthy resistance to copper and nickel, and its potential use as a bioremediation agent are discussed.

  10. Circadian cycles in growth and feeding rates of heterotrophic protist plankton

    DEFF Research Database (Denmark)

    Jakobsen, Hans Henrik; Strom, S.L.

    2004-01-01

    Growth and feeding rates of four species of planktonic marine heterotrophic protists showed pronounced diel cycles. In most cases, rates were higher during the day and lower at night. However, for the ciliate Strobilidium sp., growth was highest at night. In another ciliate species, Balanion...... comatum, no day-night difference in growth and feeding rates was found. Maintenance of day-night rate differences during 24-h exposures to continuous darkness demonstrated that most of these protists had circadian cycles. The heterotrophic dinoflagellate Oxyrrhis marina exhibited a clear irradiance...... to culturing in a day: night light cycle in O. marina and found that resetting the circadian cycle in this dinoflagellate temporarily arrested growth and feeding. We suggest that protists use a time-integrated light threshold rather than an instantaneous irradiance to maintain the circadian cell cycle...

  11. Freshwater Fish Communities

    Science.gov (United States)

    Freshwater fish are ecologically important in stream ecosystems, and they provide people with significant food, recreation, and conservation value as biological indicator of freshwater streams. Historically, the streams and rivers of southern New England supported moderately dive...

  12. Exploring Freshwater Science

    Indian Academy of Sciences (India)

    and long term studies on mapping freshwater biodiversity1. 1. R J Ranjit Daniels ... The hierarchical nature of stream organization offers opportunity to ecologists to ask .... threats, freshwater systems are losing their aesthetic value (Fig- ure 4).

  13. Autotrophic and heterotrophic activity in Arctic first-year sea ice

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Kristensen, Morten; Rysgaard, Søren

    2010-01-01

    in plastic bags with subsequent melting and measurements of changes in total O2 concentrations. The standard incubations showed that the annual succession followed a distinctive pattern, with a low, almost balancing heterotrophic and autotrophic activity during February and March. This period was followed...

  14. Freshwater and fish

    International Nuclear Information System (INIS)

    Saxen, R.

    1997-01-01

    Severe radioactive contamination of the freshwater environment could have serious consequences for both drinking water and fish. Most of the Nordic countries have an abundance of freshwater lakes and rivers. Finland alone has about 56,000 lakes, each with a surface area of 1 hectare or more. Nearly 10% of Finland's surface is covered with lakes and rivers. In Sweden, about 9% of the surface area is freshwater, in Norway about 5%, and in Denmark only about 2%. Freshwater plays a minor role in Iceland, but even there numerous rivers discharge from the volcanic soils to the Ocean. Cs-137 and 90 Sr are likely to be the most important radionuclides with respect to long term radioactive contamination of freshwater. If radioactive deposition occurs in the absence of snow and ice radionuclides will contaminate the surface water directly and may rapidly enter the aquatic food chain. Fish which eat contaminated plankton become contaminated almost immediately. Deposition during summer increases the transfer for radionuclides to fish since fish metabolism is faster during the warm season. During the cold period, fish metabolism is slow and thus uptake and excretion of radiocaesium are also slow. (EG)

  15. Host-Specificity and Dynamics in Bacterial Communities Associated with Bloom-Forming Freshwater Phytoplankton

    Science.gov (United States)

    Bagatini, Inessa Lacativa; Eiler, Alexander; Bertilsson, Stefan; Klaveness, Dag; Tessarolli, Letícia Piton; Vieira, Armando Augusto Henriques

    2014-01-01

    Many freshwater phytoplankton species have the potential to form transient nuisance blooms that affect water quality and other aquatic biota. Heterotrophic bacteria can influence such blooms via nutrient regeneration but also via antagonism and other biotic interactions. We studied the composition of bacterial communities associated with three bloom-forming freshwater phytoplankton species, the diatom Aulacoseira granulata and the cyanobacteria Microcystis aeruginosa and Cylindrospermopsis raciborskii. Experimental cultures incubated with and without lake bacteria were sampled in three different growth phases and bacterial community composition was assessed by 454-Pyrosequencing of 16S rRNA gene amplicons. Betaproteobacteria were dominant in all cultures inoculated with lake bacteria, but decreased during the experiment. In contrast, Alphaproteobacteria, which made up the second most abundant class of bacteria, increased overall during the course of the experiment. Other bacterial classes responded in contrasting ways to the experimental incubations causing significantly different bacterial communities to develop in response to host phytoplankton species, growth phase and between attached and free-living fractions. Differences in bacterial community composition between cyanobacteria and diatom cultures were greater than between the two cyanobacteria. Despite the significance, major differences between phytoplankton cultures were in the proportion of the OTUs rather than in the absence or presence of specific taxa. Different phytoplankton species favoring different bacterial communities may have important consequences for the fate of organic matter in systems where these bloom forming species occur. The dynamics and development of transient blooms may also be affected as bacterial communities seem to influence phytoplankton species growth in contrasting ways. PMID:24465807

  16. Draft Genome Sequence of Limnobacter sp. Strain CACIAM 66H1, a Heterotrophic Bacterium Associated with Cyanobacteria.

    Science.gov (United States)

    da Silva, Fábio Daniel Florêncio; Lima, Alex Ranieri Jerônimo; Moraes, Pablo Henrique Gonçalves; Siqueira, Andrei Santos; Dall'Agnol, Leonardo Teixeira; Baraúna, Anna Rafaella Ferreira; Martins, Luisa Carício; Oliveira, Karol Guimarães; de Lima, Clayton Pereira Silva; Nunes, Márcio Roberto Teixeira; Vianez-Júnior, João Lídio Silva Gonçalves; Gonçalves, Evonnildo Costa

    2016-05-19

    Ecological interactions between cyanobacteria and heterotrophic prokaryotes are poorly known. To improve the genomic studies of heterotrophic bacterium-cyanobacterium associations, the draft genome sequence (3.2 Mbp) of Limnobacter sp. strain CACIAM 66H1, found in a nonaxenic culture of Synechococcus sp. (cyanobacteria), is presented here. Copyright © 2016 da Silva et al.

  17. The abundance and diversity of heterotrophic bacteria as a function of harvesting frequency of duckweed (Lemna minor L.) in recirculating aquaculture systems.

    Science.gov (United States)

    Ardiansyah, A; Fotedar, R

    2016-07-01

    Duckweed (Lemna minor L.) is a potential biofilter for nutrient removal and acts as a substrate for heterotrophic bacteria in recirculating aquaculture systems (RAS). Here, we determined the effects of harvesting frequency of duckweed on heterotrophic bacteria in RAS. Twelve independent RAS consisting of fish-rearing tank, biofilter tank and waste-collection tank were used to study the interactions between duckweed harvest frequencies up to 6 days and the composition, abundance and diversity of heterotrophic bacteria. After 36 days, heterotrophic bacteria in the biofilter tank were primarily Gram-negative cocci or ovoid, coccobacilli, Gram-negative bacilli and Gram-positive bacilli. Most bacterial genera were Bacillus and Pseudomonas while the least common was Acinetobacter. Duckweed harvested after every 2 days produced the highest specific growth rates (SGR) and total harvested biomass of duckweed, but harboured less abundant bacteria, whereas 6-day harvests had a higher growth index (GI) of duckweed than 2-day harvests, but caused a poor relationship between SGR and biomass harvest with the abundance and diversity of heterotrophic bacteria. Stronger correlations (R(2)  > 0·65) between duckweed SGR and biomass harvest with the heterotrophic bacteria diversity were observed at 4-day harvest frequency and the control. This study provides significant information on the interaction between the harvest frequency of duckweed and the composition, abundance and diversity of heterotrophic bacteria in recirculating aquaculture systems (RAS). Different harvest frequencies significantly influence the abundance and diversity of heterotrophic bacteria, which in turn may influence the nitrogen uptake efficiency of the system. The research is useful in improving the efficiency of removing nitrogenous metabolites in RAS directly by the duckweed and associated heterotrophic bacteria. © 2016 The Society for Applied Microbiology.

  18. Heterotrophic ammonium removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Providencia rettgeri YL

    Institute of Scientific and Technical Information of China (English)

    TAYLOR Shauna M; HE Yiliang; ZHAO Bin; HUANG Jue

    2009-01-01

    Bacterium Providencia rettgeri YL was found to exhibit an unusual ability to heterotrophically nitrify and aerobically denitrify various concentrations of ammonium (NH4+-N). In order to further analyze its removal ability, several experiments were conducted to identify the growth and ammonium removal response in different carbon to nitrogen (C/N) mass ratios, shaking speeds, temperatures, ammonium concentrations and to qualitatively verify the production of nitrogen gas using gas chromatography techniques. Results showed that under optimum conditions (C/N 10, 30℃, 120 r/min), YL can significantly remove low and high concentrations of ammonium within 12 to 48 h of growth. The nitrification products hydroxylamine (NH2OH), nitrite (NO2-) and nitrate (NO3-) as well as the denitrification product, nitrogen gas (N2), were detected under completely aerobic conditions.

  19. The moisture response of soil heterotrophic respiration: interaction with soil properties

    DEFF Research Database (Denmark)

    Moyano, F E; Vasilyeva, N; Bouckaert, L

    2012-01-01

    the heterotrophic respiration response to moisture have limited empirical support and introduce an uncertainty of at least 4% in global soil carbon stock predictions by 2100. The necessity of improving the representation of this relationship in models has been highlighted in recent studies. Here we present a data......Soil moisture is of primary importance for predicting the evolution of soil carbon stocks and fluxes, both because it strongly controls organic matter decomposition and because it is predicted to change at global scales in the following decades. However, the soil functions used to model......-driven analysis of soil moisture-respiration relations based on 90 soils. With the use of linear models we show how the relationship between soil heterotrophic respiration and different measures of soil moisture is consistently affected by soil properties. The empirical models derived include main effects...

  20. RARE OCCURRENCE OF HETEROTROPHIC BACTERIA WITH PATHOGENIC POTENTIAL IN POTABLE WATER

    Science.gov (United States)

    Since the discovery of Legionella pneumophila, an opportunistic pathogen that is indigenous to water, microbiologists have speculated that there may be other opportunistic pathogens among the numerous heterotrophic bacteria found in potable water. The USEPA developed a series of...

  1. Freshwater Fungal Infections

    Directory of Open Access Journals (Sweden)

    Dennis J. Baumgardner

    2017-01-01

    Full Text Available Fungal infections as a result of freshwater exposure or trauma are fortunately rare. Etiologic agents are varied, but commonly include filamentous fungi and Candida. This narrative review describes various sources of potential freshwater fungal exposure and the diseases that may result, including fungal keratitis, acute otitis externa and tinea pedis, as well as rare deep soft tissue or bone infections and pulmonary or central nervous system infections following traumatic freshwater exposure during natural disasters or near-drowning episodes. Fungal etiology should be suspected in appropriate scenarios when bacterial cultures or molecular tests are normal or when the infection worsens or fails to resolve with appropriate antibacterial therapy.

  2. Putative N2-fixing heterotrophic bacteria associated with dinoflagellate-Cyanobacteria consortia in the low-nitrogen Indian Ocean

    DEFF Research Database (Denmark)

    Farnelid, H.; Tarangkoon, Woraporn; Hansen, Gert

    2010-01-01

    that the symbionts fix gaseous nitrogen (N2). Individual heterotrophic dinoflagellates containing cyanobacterial symbionts were isolated from the open Indian Ocean and off Western Australia, and characterized using light microscopy, transmission electron microscopy (TEM), and nitrogenase (nifH) gene amplification......, cloning, and sequencing. Cyanobacteria, heterotrophic bacteria and eukaryotic algae were recognized as symbionts of the heterotrophic dinoflagellates. nifH gene sequences were obtained from 23 of 37 (62%) specimens of dinoflagellates (Ornithocercus spp. and Amphisolenia spp.). Interestingly, only 2...... specimens contained cyanobacterial nifH sequences, while 21 specimens contained nifH genes related to heterotrophic bacteria. Of the 137 nifH sequences obtained 68% were most similar to Alpha-, Beta-, and Gammaproteobacteria, 8% clustered with anaerobic bacteria, and 5% were related to second alternative...

  3. Dissolved carbon dynamics in the freshwater-saltwater mixing zone of a coastal river entering the Northern Gulf of Mexico

    Science.gov (United States)

    He, S.; Xu, Y. J.

    2017-12-01

    Estuaries play an important role in the dynamics of dissolved carbon from freshwater to marine systems. This study aims to determine how dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) concentrations change along an 88-km long estuarine river with salinity ranging from 0.02 to 29.50. The study is expected to elucidate which processes most likely control carbon dynamics in a freshwater-saltwater mixing system, and to evaluate the net metabolism of this estuary using mixing curves and stable isotope analyses. From November 2014 to February 2016, water samples were collected and in-situ measurements on ambient water conditions were performed during eighteen field trips at six sites from upstream to downstream of the Calcasieu River, which enters the Northern Gulf of Mexico in the southern United States. δ13CDIC and δ13CDOC were measured from May 2015 to February 2017 during five of the field trips. The DIC concentration and δ13CDIC increased rapidly with increasing salinity in the mixing zone. The DIC concentrations appeared to be largely influenced by conservative mixing. The δ13CDIC values were close to those suggested by the conservative mixing model for May 2015, June 2015 and November 2015, but lower than those for July 2015 and February 2016, suggesting that an estuarine river can fluctuate from a balanced to a heterotrophic system (i.e., production/respiration aquatic photosynthesis from carbon produced by terrestrial photosynthesis in a river-ocean continuum. These findings suggest that riverine dissolved carbon undergoes a rapid change in freshwater-saltwater mixing, and that these dynamics should be taken into account in carbon processing and budgeting in the world's estuarine systems.

  4. Heterotrophic bacterial production and metabolic balance during the VAHINE mesocosm experiment in the New Caledonia lagoon

    Science.gov (United States)

    Van Wambeke, France; Pfreundt, Ulrike; Barani, Aude; Berthelot, Hugo; Moutin, Thierry; Rodier, Martine; Hess, Wolfgang R.; Bonnet, Sophie

    2016-06-01

    Studies investigating the fate of diazotrophs through the microbial food web are lacking, although N2 fixation can fuel up to 50 % of new production in some oligotrophic oceans. In particular, the role played by heterotrophic prokaryotes in this transfer is largely unknown. In the frame of the VAHINE (VAriability of vertical and tropHIc transfer of diazotroph derived N in the south wEst Pacific) experiment, three replicate large-volume (˜ 50 m3) mesocosms were deployed for 23 days in the new Caledonia lagoon and were intentionally fertilized on day 4 with dissolved inorganic phosphorus (DIP) to stimulate N2 fixation. We specifically examined relationships between heterotrophic bacterial production (BP) and N2 fixation or primary production, determined bacterial growth efficiency and established carbon budgets. BP was statistically higher during the second phase of the experiment (P2: days 15-23), when chlorophyll biomass started to increase compared to the first phase (P1: days 5-14). Phosphatase alkaline activity increased drastically during the second phase of the experiment, showing adaptations of microbial populations after utilization of the added DIP. Notably, among autotrophs, Synechococcus abundances increased during P2, possibly related to its capacity to assimilate leucine and to produce alkaline phosphatase. Bacterial growth efficiency based on the carbon budget (27-43 %), was notably higher than generally cited for oligotrophic environments and discussed in links with the presence of abundant species of bacteria expressing proteorhodopsin. The main fates of gross primary production (particulate + dissolved) were respiration (67 %) and export through sedimentation (17 %). BP was highly correlated with particulate primary production and chlorophyll biomass during both phases of the experiment but was slightly correlated, and only during P2 phase, with N2 fixation rates. Heterotrophic bacterial production was strongly stimulated after mineral N enrichment

  5. Inference of Interactions in Cyanobacterial-Heterotrophic Co-Cultures via Transcriptome Sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Beliaev, Alex S.; Romine, Margaret F.; Serres, Margaret; Bernstein, Hans C.; Linggi, Bryan E.; Markillie, Lye Meng; Isern, Nancy G.; Chrisler, William B.; Kucek, Leo A.; Hill, Eric A.; Pinchuk, Grigoriy; Bryant, Donald A.; Wiley, H. S.; Fredrickson, Jim K.; Konopka, Allan

    2014-04-29

    We employed deep sequencing technology to identify transcriptional adaptation of the euryhaline unicellular cyanobacterium Synechococcus sp. PCC 7002 and the marine facultative aerobe Shewanella putrefaciens W3-18-1 to growth in a co-culture and infer the effect of carbon flux distributions on photoautotroph-heterotroph interactions. The overall transcriptome response of both organisms to co-cultivation was shaped by their respective physiologies and growth constraints. Carbon limitation resulted in the expansion of metabolic capacities which was manifested through the transcriptional upregulation of transport and catabolic pathways. While growth coupling occurred via lactate oxidation or secretion of photosynthetically fixed carbon, there was evidence of specific metabolic interactions between the two organisms. On one hand, the production and excretion of specific amino acids (methionine and alanine) by the cyanobacterium correlated with the putative downregulation of the corresponding biosynthetic machinery of Shewanella W3-18-1. On the other hand, the broad and consistent decrease of mRNA levels for many Fe-regulated Synechococcus 7002 genes during co-cultivation suggested increased Fe availability as well as more facile and energy-efficient mechanisms for Fe acquisition by the cyanobacterium. Furthermore, evidence pointed at potentially novel interactions between oxygenic photoautotrophs and heterotrophs related to the oxidative stress response as transcriptional patterns suggested that Synechococcus 7002 rather than Shewanella W3-18-1 provided scavenging functions for reactive oxygen species under co-culture conditions. This study provides an initial insight into the complexity of photoautotrophic-heterotrophic interactions and brings new perspectives of their role in the robustness and stability of the association.

  6. Factors governing the pH in a heterotrophic, turbid, tidal estuary

    NARCIS (Netherlands)

    Hofmann, A.F.; Meysman, F.J.R.; Soetaert, K.; Middelburg, J.J.

    2009-01-01

    A method to quantify the influence of kinetically modelled biogeochemical processes on the pH of an ecosystem with time variable acid-base dissociation constants is presented and applied to the heterotrophic, turbid Scheldt estuary (SW Netherlands, N Belgium). Nitrification is identified as the main

  7. The Heterotrophic Bacterial Response During the Meso-scale Southern Ocean Iron Experiment (SOFeX)

    Science.gov (United States)

    Oliver, J. L.; Barber, R. T.; Ducklow, H. W.

    2002-12-01

    Previous meso-scale iron enrichments have demonstrated the stimulatory effect of iron on primary productivity and the accelerated flow of carbon into the surface ocean foodweb. In stratified waters, heterotrophic activity can work against carbon export by remineralizing POC and/or DOC back to CO2, effectively slowing the biological pump. To assess the response of heterotrophic activity to iron enrichment, we measured heterotrophic bacterial production and abundance during the Southern Ocean Iron Experiment (SOFeX). Heterotrophic bacterial processes primarily affect the latter of the two carbon export mechanisms, removal of DOC to the deep ocean. Heterotrophic bacterial production (BP), measured via tritiated thymidine (3H-TdR) and leucine (3H-Leu) incorporation, increased ~40% over the 18-d observation period in iron fertilized waters south of the Polar Front (South Patch). Also, South Patch BP was 61% higher than in the surrounding unfertilized waters. Abundance, measured by flow cytometry (FCM) and acridine orange direct counts (AODC), also increased in the South Patch from 3 to 5 x 108 cells liter-1, a 70% increase. Bacterial biomass increased from ~3.6 to 6.3 μg C liter-1, a clear indication that production rates exceeded removal rates (bactivory, viral lysis) over the course of 18 days. Biomass within the fertilized patch was 11% higher than in surrounding unfertilized waters reflecting a similar trend. This pattern is in contrast to SOIREE where no accumulation of biomass was observed. High DNA-containing (HDNA) cells detected by FCM also increased over time in iron fertilized waters from 20% to 46% relative to the total population suggesting an active subpopulation of cells that were growing faster than the removal rates. In iron fertilized waters north of the Polar Front (North Patch), BP and abundance were ~90% and 80% higher, respectively, than in unfertilized waters. Our results suggest an active bacterial population that responded to iron fertilization

  8. Roots affect the response of heterotrophic soil respiration to temperature in tussock grass microcosms.

    Science.gov (United States)

    Graham, Scott L; Millard, Peter; Hunt, John E; Rogers, Graeme N D; Whitehead, David

    2012-07-01

    While the temperature response of soil respiration (R(S)) has been well studied, the partitioning of heterotrophic respiration (R(H)) by soil microbes from autotrophic respiration (R(A)) by roots, known to have distinct temperature sensitivities, has been problematic. Further complexity stems from the presence of roots affecting R(H), the rhizosphere priming effect. In this study the short-term temperature responses of R(A) and R(H) in relation to rhizosphere priming are investigated. Temperature responses of R(A), R(H) and rhizosphere priming were assessed in microcosms of Poa cita using a natural abundance δ(13)C discrimination approach. The temperature response of R(S) was found to be regulated primarily by R(A), which accounted for 70 % of total soil respiration. Heterotrophic respiration was less sensitive to temperature in the presence of plant roots, resulting in negative priming effects with increasing temperature. The results emphasize the importance of roots in regulating the temperature response of R(S), and a framework is presented for further investigation into temperature effects on heterotrophic respiration and rhizosphere priming, which could be applied to other soil and vegetation types to improve models of soil carbon turnover.

  9. Spatial Variability of Cyanobacteria and Heterotrophic Bacteria in Lake Taihu (China).

    Science.gov (United States)

    Qian, Haifeng; Lu, Tao; Song, Hao; Lavoie, Michel; Xu, Jiahui; Fan, Xiaoji; Pan, Xiangliang

    2017-09-01

    Cyanobacterial blooms frequently occur in Lake Taihu (China), but the intertwined relationships between biotic and abiotic factors modulating the frequency and duration of the blooms remain enigmatic. To better understand the relationships between the key abiotic and biotic factors and cyanobacterial blooms, we measured the abundance and diversity of prokaryotic organisms by high-throughput sequencing, the abundance of key genes involved in microcystin production and nitrogen fixation or loss as well as several physicochemical parameters at several stations in Lake Taihu during a cyanobacterial bloom of Microcystis sp.. Measurements of the copy number of denitrification-related genes and 16S rRNA analyses show that denitrification potential and denitrifying bacteria abundance increased in concert with non-diazotrophic cyanobacteria (Microcystis sp.), suggesting limited competition between cyanobacteria and heterotrophic denitrifiers for nutrients, although potential bacteria-mediated N loss may hamper Microcystis growth. The present study provides insight into the importance of different abiotic and biotic factors in controlling cyanobacteria and heterotrophic bacteria spatial variability in Lake Taihu.

  10. Novel insight into the role of heterotrophic dinoflagellates in the fate of crude oil in the sea

    DEFF Research Database (Denmark)

    Almeda, Rodrigo; Connelly, Tara L.; Buskey, Edward J.

    2014-01-01

    Although planktonic protozoans are likely to interact with dispersed crude oil after a spill, protozoan-mediated processes affecting crude oil pollution in the sea are still not well known. Here, we present the first evidence of ingestion and defecation of physically or chemically dispersed crude...... to 0.37 mu g-oil mg-C-dino (-1) d(-1), which could represent similar to 17% to 100% of dispersed oil in surface waters when heterotrophic dinoflagellates are abundant or bloom. Egestion of faecal pellets containing crude oil by heterotrophic dinoflagellates could contribute to the sinking and flux...... of toxic petroleum hydrocarbons in coastal waters. Our study indicates that crude oil ingestion by heterotrophic dinoflagellates is a noteworthy route by which petroleum enters marine food webs and a previously overlooked biological process influencing the fate of crude oil in the sea after spills....

  11. Isolation and life cycle characterization of lytic viruses infecting heterotrophic bacteria and cyanobacteria

    DEFF Research Database (Denmark)

    Middelboe, Mathias; Chan, Amy; Bertelsen, Sif Koldborg

    2010-01-01

    Basic knowledge on viruses infecting heterotrophic bacteria and cyanobacteria is key to future progress in understanding the role of viruses in aquatic systems and the influence of virus–host interactions on microbial mortality, biogeochemical cycles, and genetic exchange. Such studies require......, and discusses the applications and limitations of different isolation procedures. Most work on phage isolation has been carried out with aerobic heterotrophic bacteria and cyanobacteria, culturable both on agar plates and in enriched liquid cultures. The procedures presented here are limited to lytic viruses...... infecting such hosts. In addition to the isolation procedures, methods for life cycle characterization (one-step growth experiments) of bacteriophages and cyanophages are described. Finally, limitations and drawbacks of the proposed methods are assessed and discussed...

  12. Studies on mangrove swamps of Goa 1. Heterotrophic bacterial flora from mangrove swamps

    Digital Repository Service at National Institute of Oceanography (India)

    Matondkar, S.G.P; Mathani, S; Mavinkurve, S

    Heterotrophic bacterial flora from the mangrove swamps of Goa consisted of physiologically active organisms exhibiting cellulolytic, pectinolytic, amylolytic, proteolytic and H2S forming activities, throughout the year. Coryneform and Bacillus were...

  13. Uptake, Accumulation and Toxicity of Silver Nanoparticle in Autotrophic Plants, and Heterotrophic Microbes: A Concentric Review

    Science.gov (United States)

    Tripathi, Durgesh K.; Tripathi, Ashutosh; Shweta; Singh, Swati; Singh, Yashwant; Vishwakarma, Kanchan; Yadav, Gaurav; Sharma, Shivesh; Singh, Vivek K.; Mishra, Rohit K.; Upadhyay, R. G.; Dubey, Nawal K.; Lee, Yonghoon; Chauhan, Devendra K.

    2017-01-01

    Nanotechnology is a cutting-edge field of science with the potential to revolutionize today’s technological advances including industrial applications. It is being utilized for the welfare of mankind; but at the same time, the unprecedented use and uncontrolled release of nanomaterials into the environment poses enormous threat to living organisms. Silver nanoparticles (AgNPs) are used in several industries and its continuous release may hamper many physiological and biochemical processes in the living organisms including autotrophs and heterotrophs. The present review gives a concentric know-how of the effects of AgNPs on the lower and higher autotrophic plants as well as on heterotrophic microbes so as to have better understanding of the differences in effects among these two groups. It also focuses on the mechanism of uptake, translocation, accumulation in the plants and microbes, and resulting toxicity as well as tolerance mechanisms by which these microorganisms are able to survive and reduce the effects of AgNPs. This review differentiates the impact of silver nanoparticles at various levels between autotrophs and heterotrophs and signifies the prevailing tolerance mechanisms. With this background, a comprehensive idea can be made with respect to the influence of AgNPs on lower and higher autotrophic plants together with heterotrophic microbes and new insights can be generated for the researchers to understand the toxicity and tolerance mechanisms of AgNPs in plants and microbes. PMID:28184215

  14. Occurrence of heterotrophic and coliform bacteria in liquid hand soaps from bulk refillable dispensers in public facilities.

    Science.gov (United States)

    Chattman, Marisa; Gerba, Sheri L; Maxwell, Charles P

    2011-03-01

    The goal of the study discussed in this article was to determine the occurrence of heterotrophic and coliform bacteria in liquid soap from bulk refillable dispensers, obtained from restrooms in a variety of public facilities. A total of 541 samples was collected from five U.S. cities. Liquid soap from dispensers in public areas was found to contain heterotrophic and coliform bacterial numbers averaging more than 106 CFU/mL in 24.8% of the dispensers.

  15. Can heterotrophic uptake of dissolved organic carbon and zooplankton mitigate carbon budget deficits in annually bleached corals?

    Science.gov (United States)

    Levas, Stephen; Grottoli, Andréa G.; Schoepf, Verena; Aschaffenburg, Matthew; Baumann, Justin; Bauer, James E.; Warner, Mark E.

    2016-06-01

    Annual coral bleaching events due to increasing sea surface temperatures are predicted to occur globally by the mid-century and as early as 2025 in the Caribbean, and severely impact coral reefs. We hypothesize that heterotrophic carbon (C) in the form of zooplankton and dissolved organic carbon (DOC) is a significant source of C to bleached corals. Thus, the ability to utilize multiple pools of fixed carbon and/or increase the amount of fixed carbon acquired from one or more pools of fixed carbon (defined here as heterotrophic plasticity) could underlie coral acclimatization and persistence under future ocean-warming scenarios. Here, three species of Caribbean coral— Porites divaricata, P. astreoides, and Orbicella faveolata—were experimentally bleached for 2.5 weeks in two successive years and allowed to recover in the field. Zooplankton feeding was assessed after single and repeat bleaching, while DOC fluxes and the contribution of DOC to the total C budget were determined after single bleaching, 11 months on the reef, and repeat bleaching. Zooplankton was a large C source for P. astreoides, but only following single bleaching. DOC was a source of C for single-bleached corals and accounted for 11-36 % of daily metabolic demand (CHARDOC), but represented a net loss of C in repeat-bleached corals. In repeat-bleached corals, DOC loss exacerbated the negative C budgets in all three species. Thus, the capacity for heterotrophic plasticity in corals is compromised under annual bleaching, and heterotrophic uptake of DOC and zooplankton does not mitigate C budget deficits in annually bleached corals. Overall, these findings suggest that some Caribbean corals may be more susceptible to repeat bleaching than to single bleaching due to a lack of heterotrophic plasticity, and coral persistence under increasing bleaching frequency may ultimately depend on other factors such as energy reserves and symbiont shuffling.

  16. Molasses as C source for heterotrophic bacteria production on solid fish waste

    NARCIS (Netherlands)

    Schneider, O.; Sereti, V.; Eding, E.H.; Verreth, J.A.J.

    2006-01-01

    The drumfilter effluent from a recirculation aquaculture system (RAS) can be used as substrate for heterotrophic bacteria production. These bacteria can be reused as aquatic feed. In RAS drumfilter effluents are organic carbon deficient for bacteria production. This is due to nitrogen accumulation

  17. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles

    Directory of Open Access Journals (Sweden)

    David Barrie Johnson

    2012-09-01

    Full Text Available Two acidophilic algae, identified as strains of Chlorella protothecoides var. acidicola and Euglena mutabilis, were isolated in pure culture from abandoned copper mines in Spain and Wales and grown in pH- and temperature-controlled bioreactors. The Chlorella isolate grew optimally at pH 2.5 and 30 ˚C, with a corresponding culture doubling time of 9 hours. The isolates displayed similar tolerance (10-50 mM to four transition metals tested. Growth of the algae in liquid media was paralleled with increasing concentrations of dissolved organic carbon (DOC. Glycolic acid was identified as a significant component (12- 14% of total DOC. Protracted incubation resulted in concentrations of glycolic acid declining in both cases, and glycolic acid added to a culture of Chlorella incubated in the dark was taken up by the alga (~100% within three days. Two monosaccharides were identified in cell-free liquors of each algal isolate: fructose and glucose (Chlorella, and mannitol and glucose (Euglena. These were rapidly metabolised by acidophilic heterotrophic bacteria (Acidiphilium and Acidobacterium spp. though only fructose was utilised by the more fastidious heterotroph Acidocella aromatica. The significance of algae in promoting the growth of iron- (and sulfate- reducing heterotrophic acidophiles that are important in remediating mine-impacted waters is discussed.

  18. Effects of intense agricultural practices on heterotrophic processes in streams

    Energy Technology Data Exchange (ETDEWEB)

    Piscart, Christophe [Universite Claude Bernard Lyon 1 - Laboratoire d' Ecologie des Hydrosystemes Fluviaux - UMR CNRS 5023 - Campus Doua, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex (France); Universite de Rennes 1 - UMR CNRS ECOBIO 6553 - Campus Beaulieu, 263 Av. du General Leclerc, 35042 Rennes Cedex (France)], E-mail: christophe.piscart@univ-lyon1.fr; Genoel, Romuald [Universite de Rennes 1 - UMR CNRS ECOBIO 6553 - Campus Beaulieu, 263 Av. du General Leclerc, 35042 Rennes Cedex (France); Doledec, Sylvain [Universite Claude Bernard Lyon 1 - Laboratoire d' Ecologie des Hydrosystemes Fluviaux - UMR CNRS 5023 - Campus Doua, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex (France); Chauvet, Eric [Universite Paul Sabatier de Toulouse - Laboratoire EcoLab - UMR CNRS 5245, 29 rue Jeanne Marvig, 31055 Toulouse Cedex 4 (France); Marmonier, Pierre [Universite Claude Bernard Lyon 1 - Laboratoire d' Ecologie des Hydrosystemes Fluviaux - UMR CNRS 5023 - Campus Doua, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex (France); Universite de Rennes 1 - UMR CNRS ECOBIO 6553 - Campus Beaulieu, 263 Av. du General Leclerc, 35042 Rennes Cedex (France)

    2009-03-15

    In developed countries, changes in agriculture practices have greatly accelerated the degradation of the landscape and the functioning of adjacent aquatic ecosystems. Such alteration can in turn impair the services provided by aquatic ecosystems, namely the decomposition of organic matter, a key process in most small streams. To study this alteration, we recorded three measures of heterotrophic activity corresponding to microbial hydrolasic activity (FDA hydrolysis) and leaf litter breakdown rates with (k{sub c}) and without invertebrates (k{sub f}) along a gradient of contrasted agricultural pressures. Hydrolasic activity and k{sub f} reflect local/microhabitat conditions (i.e. nutrient concentrations and organic matter content of the sediment) but not land use while k{sub c} reflects land-use conditions. k{sub c}, which is positively correlated with the biomass of Gammaridae, significantly decreased with increasing agricultural pressure, contrary to the taxonomic richness and biomass of Trichoptera and Plecoptera. Gammaridae may thus be considered a key species for organic matter recycling in agriculture-impacted streams. - This study highlights the consequences of intensive agricultural practices on heterotrophic processes in streams along a strong gradient of perturbation.

  19. Depth Dependent Relationships between Temperature and Ocean Heterotrophic Prokaryotic Production

    KAUST Repository

    Lønborg, Christian

    2016-06-07

    Marine prokaryotes play a key role in cycling of organic matter and nutrients in the ocean. Using a unique dataset (>14,500 samples), we applied a space-for-time substitution analysis to assess the temperature dependence of prokaryotic heterotrophic production (PHP) in epi- (0-200 m), meso- (201-1000 m) and bathypelagic waters (1001-4000 m) of the global ocean. Here, we show that the temperature dependence of PHP is fundamentally different between these major oceanic depth layers, with an estimated ecosystem-level activation energy (E) of 36 ± 7 kJ mol for the epipelagic, 72 ± 15 kJ mol for the mesopelagic and 274 ± 65 kJ mol for the bathypelagic realm. We suggest that the increasing temperature dependence with depth is related to the parallel vertical gradient in the proportion of recalcitrant organic compounds. These Ea predict an increased PHP of about 5, 12, and 55% in the epi-, meso-, and bathypelagic ocean, respectively, in response to a water temperature increase by 1°C. Hence, there is indication that a major thus far underestimated feedback mechanism exists between future bathypelagic ocean warming and heterotrophic prokaryotic activity.

  20. Depth Dependent Relationships between Temperature and Ocean Heterotrophic Prokaryotic Production

    KAUST Repository

    Lø nborg, Christian; Cuevas, L. Antonio; Reinthaler, Thomas; Herndl, Gerhard J.; Gasol, Josep M.; Moran, Xose Anxelu G.; Bates, Nicholas R.; á lvarez-Salgado, Xosé A.

    2016-01-01

    Marine prokaryotes play a key role in cycling of organic matter and nutrients in the ocean. Using a unique dataset (>14,500 samples), we applied a space-for-time substitution analysis to assess the temperature dependence of prokaryotic heterotrophic production (PHP) in epi- (0-200 m), meso- (201-1000 m) and bathypelagic waters (1001-4000 m) of the global ocean. Here, we show that the temperature dependence of PHP is fundamentally different between these major oceanic depth layers, with an estimated ecosystem-level activation energy (E) of 36 ± 7 kJ mol for the epipelagic, 72 ± 15 kJ mol for the mesopelagic and 274 ± 65 kJ mol for the bathypelagic realm. We suggest that the increasing temperature dependence with depth is related to the parallel vertical gradient in the proportion of recalcitrant organic compounds. These Ea predict an increased PHP of about 5, 12, and 55% in the epi-, meso-, and bathypelagic ocean, respectively, in response to a water temperature increase by 1°C. Hence, there is indication that a major thus far underestimated feedback mechanism exists between future bathypelagic ocean warming and heterotrophic prokaryotic activity.

  1. Bacterial abundance, communities and heterotrophic activities in the coastal waters off Tamil Nadu

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Raghukumar, C.; Sheelu, G.; Chandramohan, D.

    Culturable aerobic heterotrophic bacterial (CAHB) numbers, total direct counts (TDC), bacterial generic composition and uptake of labelled glucose by natural microbial assemblages were studied from a few selected coastal sites off Tamil Nadu. A high...

  2. Membrane biofouling in a wastewater nitrification reactor: microbial succession from autotrophic colonization to heterotrophic domination

    KAUST Repository

    Lu, Huijie

    2015-10-22

    Membrane biofouling is a complex process that involves bacterial adhesion, extracellular polymeric substances (EPS) excretion and utilization, and species interactions. To obtain a better understanding of the microbial ecology of biofouling process, this study conducted rigorous, time-course analyses on the structure, EPS and microbial composition of the fouling layer developed on ultrafiltration membranes in a nitrification bioreactor. During a 14-day fouling event, three phases were determined according to the flux decline and microbial succession patterns. In Phase I (0-2 days), small sludge flocs in the bulk liquid were selectively attached on membrane surfaces, leading to the formation of similar EPS and microbial community composition as the early biofilms. Dominant populations in small flocs, e.g., Nitrosomonas, Nitrobacter, and Acinetobacter spp., were also the major initial colonizers on membranes. In Phase II (2-4 d), fouling layer structure, EPS composition, and bacterial community went through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well with the increase in microbial community diversity. In Phase III (5-14 d), heterotrophs comprised over 90% of the community, whereas biofilm structure and EPS composition remained relatively stable. In all phases, AOB and NOB were constantly found within the top 40% of the fouling layer, with the maximum concentrations around 15% from the top. The overall microbial succession pattern from autotrophic colonization to heterotrophic domination implied that MBR biofouling could be alleviated by forming larger bacterial flocs in bioreactor suspension (reducing autotrophic colonization), and by designing more specific cleaning procedures targeting dominant heterotrophs during typical filtration cycles.

  3. Inhabitants of the Fresh-Water Community.

    Science.gov (United States)

    Jorgensen, Joseph; Schroeder, Marlene

    This learner's guide is designed to assist middle school students in studying freshwater organisms. Following a brief introduction to freshwater ecology, simple line drawings facilitate the identification of plants and animals common to Florida's freshwater ecosystems. Emphasis of the short text which accompanies each illustration is upon the…

  4. Simultaneous heterotrophic nitrification and aerobic denitrification by the marine origin bacterium Pseudomonas sp. ADN-42.

    Science.gov (United States)

    Jin, Ruofei; Liu, Tianqi; Liu, Guangfei; Zhou, Jiti; Huang, Jianyu; Wang, Aijie

    2015-02-01

    Recent research has highlighted the existence of some bacteria that are capable of performing heterotrophic nitrification and have a phenomenal ability to denitrify their nitrification products under aerobic conditions. A high-salinity-tolerant strain ADN-42 was isolated from Hymeniacidon perleve and found to display high heterotrophic ammonium removal capability. This strain was identified as Pseudomonas sp. via 16S rRNA gene sequence analysis. Gene cloning and sequencing analysis indicated that the bacterial genome contains N2O reductase function (nosZ) gene. NH3-N removal rate of ADN-42 was very high. And the highest removal rate was 6.52 mg/L · h in the presence of 40 g/L NaCl. Under the condition of pure oxygen (DO >8 mg/L), NH3-N removal efficiency was 56.9 %. Moreover, 38.4 % of oxygen remained in the upper gas space during 72 h without greenhouse gas N2O production. Keeping continuous and low level of dissolved oxygen (DO <3 mg/L) was helpful for better denitrification performance. All these results indicated that the strain has heterotrophic nitrification and aerobic denitrification abilities, which guarantee future application in wastewater treatment.

  5. Separating Autotrophic and Heterotrophic Respiration in Streams and the Importance for Carbon Cycling: a Preliminary Study

    Science.gov (United States)

    Bozeman, M.; Raymond, P.

    2005-05-01

    Autotrophic and heterotrophic organisms confer different effects on nutrient cycling, especially on carbon (C). In stream ecosystems, net ecosystem production determines the amount and form of C exported; however any transformation due to different respiratory (R) mechanisms are not separated. These mechanisms highly influence the form and lability of the C transported. To understand the current state of knowledge and estimate the importance of autotrophic versus heterotrophic R, we obtained a range of respiratory rates from the literature and modeled effects of different balances of rates on bulk dissolved inorganic and organic C chemistry. Preliminary results show that a wide range of estimates of autotrophic R exist and that these can effect bulk properties of exported C. While specific effects are highly dependent upon physical structure of the study watershed, we offer that separating R mechanisms provides further insight into ecosystem C cycling. We also propose a method to measure autotrophic and heterotrophic R at the ecosystem scale and obtain watershed-level estimates of the importance of these processes on C cycling.

  6. Micro-electrolysis/retinervus luffae-based simultaneous autotrophic and heterotrophic denitrification for low C/N wastewater treatment.

    Science.gov (United States)

    Li, Jinlong; Li, Desheng; Cui, Yuwei; Xing, Wei; Deng, Shihai

    2017-07-01

    Nitrogen bioremediation in organic insufficient wastewater generally requires an extra carbon source. In this study, nitrate-contaminated wastewater was treated effectively through simultaneous autotrophic and heterotrophic denitrification based on micro-electrolysis carriers (MECs) and retinervus luffae fructus (RLF), respectively. The average nitrate and total nitrogen removal rates reached 96.3 and 94.0% in the MECs/RLF-based autotrophic and heterotrophic denitrification (MRAHD) system without ammonia and nitrite accumulation. The performance of MRAHD was better than that of MEC-based autotrophic denitrification for the wastewater treatment with low carbon nitrogen (COD/N) ratio. Real-time quantitative polymerase chain reaction (qPCR) revealed that the relative abundance of nirS-type denitrifiers attached to MECs (4.9%) and RLF (5.0%) was similar. Illumina sequencing suggested that the dominant genera were Thiobacillus (7.0%) and Denitratisoma (5.7%), which attached to MECs and RLF, respectively. Sulfuritalea was discovered as the dominant genus in the middle of the reactor. The synergistic interaction between autotrophic and heterotrophic denitrifiers played a vital role in the mixotrophic substrate environment.

  7. Treatment of cattle-slaughterhouse wastewater and the reuse of sludge for biodiesel production by microalgal heterotrophic bioreactors

    Directory of Open Access Journals (Sweden)

    Mariana Manzoni Maroneze

    2014-12-01

    Full Text Available Microalgal heterotrophic bioreactors are a potential technological development that can convert organic matter, nitrogen and phosphorus of wastewaters into a biomass suitable for energy production. The aim of this work was to evaluate the performance of microalgal heterotrophic bioreactors in the secondary treatment of cattle-slaughterhouse wastewater and the reuse of microalgal sludge for biodiesel production. The experiments were performed in a bubble column bioreactor using the microalgae Phormidium sp. Heterotrophic microalgal bioreactors removed 90 % of the chemical oxygen demand, 57 % of total nitrogen and 52 % of total phosphorus. Substantial microalgal sludge is produced in the process (substrate yield coefficient of 0.43 mg sludge mg chemical oxygen demand−¹, resulting in a biomass with high potential for producing biodiesel (ester content of more than 99 %, cetane number of 55, iodine value of 73.5 g iodine 100 g−¹, unsaturation degree of ~75 % and a cold filter plugging point of 5 ºC.

  8. Bacterial biomass and heterotrophic potential in the waters of the Chesapeake Bay plume and contiguous continental shelf

    Science.gov (United States)

    Kator, H. I.; Zubkoff, P. L.

    1981-01-01

    Seasonal baseline data on bacterial biomass and heterotrophic uptake in the Chesapeake Bay plume and contiguous Atlantic Ocean shelf waters are discussed. Viable count bacterial numbers in surface water samples collected during June 1980 ranged from a maximum of 190,000 MPN (most probable number)/ml at the Bay mouth to a minimum of 7900 MPN/ml offshore. Similarly, direct count densities ranged from 1,800,000 BU (bacterial units)/ml to 24,000 BU/ml. Heterotrophic potential (V max) was largest at the Bay mouth and lowest offshore. Biomass and V max values usually decreased with depth although subsurface maxima were occasionally observed at inshore stations. Correlation of biomass and heterotrophic potential data with selected hydrographic variables was determind with a nonparametric statistic. Results indicate viable counts are positively and significantly correlated with total chlorophyll, temperature, direct count and V max during June 1980; significant negative correlations are obtained with salinity and depth. Calculations of bacterial standing crop are discussed.

  9. The Effect of Aluminium on Antibacterial Properties and the Content of Some Fatty Acids in Microalgae, Chlorella vulgaris Beijernick, under Heterotrophic and Autotrophic Conditions

    Directory of Open Access Journals (Sweden)

    Hossein Abbaspour

    2017-01-01

    Full Text Available Microalgae are a group of organisms, which have a significant potential for industrial applications. These algae contain large amounts of lipids compounds that are beneficial to health, have antibacterial properties, and their extracted oil can be used for biofuel. In this study, microalgae Chlorella vulgaris Beijernick was grown in the culture medium BG-11 containing aluminium (AlCl3 under autotrophic and heterotrophic conditions. In each case, survival and growth, dry weight, internal aluminium content of the sample, antibacterial properties, the content of fatty acids accumulated in the algae and secreted into the culture medium in the logarithmic growth phase were studied. Aluminium significantly increased (P < .05 growth and dry weight in autotrophic treatment compared to the heterotrophic one. Most antibacterial properties were observed in methanol extracts of heterotrophic treatments containing 0.05% glucose. Aluminium also decreased fatty acids accumulation in the algae and increased fatty acids excretion into the culture medium in heterotrophic treatment compared to the autotrophic treatment. Survival of the sample was maintained in heterotrophic conditions and showed growth without lag phase, which is indicative of rapid acclimation of organisms in heterotrophic conditions. It seems that the mentioned characteristics make the single-celled green algae Chlorella vulgaris more efficient in different ways.

  10. Unicellular cyanobacteria synechocystis accommodate heterotrophic bacteria with varied enzymatic and metal resistance properties

    Digital Repository Service at National Institute of Oceanography (India)

    Anas, A.; Sageer, S.; Jasmin, C.; Vijayan, V.; Pavanan, P.; Athiyanathil, S.; Nair, S.

    unicellular cyanobacterium Synechocystis sp. that came from a heavy metal contaminated region of Cochin estuary, southwest coast of India. Based on 16S rRNA gene sequence similarities, the heterotrophic bacteria were grouped into three phyla: namely...

  11. Hotspots of anaerobic ammonia oxidation in land - freshwater interfaces

    DEFF Research Database (Denmark)

    Zhu, Guibing; Wang, Shanyun; Wang, Weidong

    2013-01-01

    sampled fromlake riparian zones in North China. Laboratory incubations in the presence of ammonium or nitrate—at concentrations equivalent to no more than 10% of those detected in situ—yielded some of the highest potential anammox activities reported for natural environments to date. Potential rates......For decades, the conversion of organic nitrogen to dinitrogen gas by heterotrophic bacteria, termed heterotrophic denitrification, was assumed to be the main pathway of nitrogen loss in natural ecosystems. Recently, however, autotrophic bacteria have been shown to oxidize ammonium in the absence...

  12. Membrane biofouling in a wastewater nitrification reactor: Microbial succession from autotrophic colonization to heterotrophic domination.

    Science.gov (United States)

    Lu, Huijie; Xue, Zheng; Saikaly, Pascal; Nunes, Suzana P; Bluver, Ted R; Liu, Wen-Tso

    2016-01-01

    Membrane biofouling is a complex process that involves bacterial adhesion, extracellular polymeric substances (EPS) excretion and utilization, and species interactions. To obtain a better understanding of the microbial ecology of biofouling process, this study conducted rigorous, time-course analyses on the structure, EPS and microbial composition of the fouling layer developed on ultrafiltration membranes in a nitrification bioreactor. During a 14-day fouling event, three phases were determined according to the flux decline and microbial succession patterns. In Phase I (0-2 days), small sludge flocs in the bulk liquid were selectively attached on membrane surfaces, leading to the formation of similar EPS and microbial community composition as the early biofilms. Dominant populations in small flocs, e.g., Nitrosomonas, Nitrobacter, and Acinetobacter spp., were also the major initial colonizers on membranes. In Phase II (2-4 d), fouling layer structure, EPS composition, and bacterial community went through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well with the increase in microbial community diversity. In Phase III (5-14 d), heterotrophs comprised over 90% of the community, whereas biofilm structure and EPS composition remained relatively stable. In all phases, AOB and NOB were constantly found within the top 40% of the fouling layer, with the maximum concentrations around 15% from the top. The overall microbial succession pattern from autotrophic colonization to heterotrophic domination implied that MBR biofouling could be alleviated by forming larger bacterial flocs in bioreactor suspension (reducing autotrophic colonization), and by designing more specific cleaning procedures targeting dominant heterotrophs during typical filtration cycles. Copyright © 2015 Elsevier Ltd. All

  13. Abundance and biomass responses of microbial food web components to hydrology and environmental gradients within a floodplain of the River Danube.

    Science.gov (United States)

    Palijan, Goran

    2012-07-01

    This study investigated the relationships of time-dependent hydrological variability and selected microbial food web components. Samples were collected monthly from the Kopački Rit floodplain in Croatia, over a period of 19 months, for analysis of bacterioplankton abundance, cell size and biomass; abundance of heterotrophic nanoflagellates and nanophytoplankton; and concentration of chlorophyll a. Similar hydrological variability at different times of the year enabled partition of seasonal effects from hydrological changes on microbial community properties. The results suggested that, unlike some other studies investigating sites with different connectivity, bacterioplankton abundance, and phytoplankton abundance and biomass increased during lentic conditions. At increasing water level, nanophytoplankton showed lower sensitivity to disturbance in comparison with total phytoplankton biomass: this could prolong autotrophic conditions within the floodplain. Bacterioplankton biomass, unlike phytoplankton, was not impacted by hydrology. The bacterial biomass less affected by hydrological changes can be an important additional food component for the floodplain food web. The results also suggested a mechanism controlling bacterial cell size independent of hydrology, as bacterial cell size was significantly decreased as nanoflagellate abundance increased. Hydrology, regardless of seasonal sucession, has the potential to structure microbial food webs, supporting microbial development during lentic conditions. Conversely, other components appear unaffected by hydrology or may be more strongly controlled by biotic interactions. This research, therefore, adds to understanding on microbial food web interactions in the context of flood and flow pulses in river-floodplain ecosystems.

  14. Microwhip scorpions (Palpigradi) feed on heterotrophic cyanobacteria in Slovak caves - a curiosity among Arachnida

    Czech Academy of Sciences Publication Activity Database

    Smrž, J.; Kováč, L.; Mikeš, J.; Lukešová, Alena

    2013-01-01

    Roč. 8, č. 10 (2013), e75989 E-ISSN 1932-6203 Institutional support: RVO:60077344 Keywords : microwhip scorpions * heterotrophic cyanobacteria * Slovak caves Subject RIV: EG - Zoology Impact factor: 3.534, year: 2013

  15. Scale-based freshwater conservation planning: towards protecting freshwater biodiversity in KwaZulu-Natal, South Africa

    CSIR Research Space (South Africa)

    Rivers-Moore, NA

    2011-01-01

    Full Text Available River systems have strong linear linkages and require innovative solutions to capture these linkages from aquatic conservation planners. The authors applied an approach to freshwater conservation planning to freshwater ecosystems of Kwa...

  16. Heterotrophic denitrification vs. autotrophic anammox – quantifying collateral effects on the oceanic carbon cycle

    Directory of Open Access Journals (Sweden)

    W. Koeve

    2010-08-01

    Full Text Available The conversion of fixed nitrogen to N2 in suboxic waters is estimated to contribute roughly a third to total oceanic losses of fixed nitrogen and is hence understood to be of major importance to global oceanic production and, therefore, to the role of the ocean as a sink of atmospheric CO2. At present heterotrophic denitrification and autotrophic anammox are considered the dominant sinks of fixed nitrogen. Recently, it has been suggested that the trophic nature of pelagic N2-production may have additional, "collateral" effects on the carbon cycle, where heterotrophic denitrification provides a shallow source of CO2 and autotrophic anammox a shallow sink. Here, we analyse the stoichiometries of nitrogen and associated carbon conversions in marine oxygen minimum zones (OMZ focusing on heterotrophic denitrification, autotrophic anammox, and dissimilatory nitrate reduction to nitrite and ammonium in order to test this hypothesis quantitatively. For open ocean OMZs the combined effects of these processes turn out to be clearly heterotrophic, even with high shares of the autotrophic anammox reaction in total N2-production and including various combinations of dissimilatory processes which provide the substrates to anammox. In such systems, the degree of heterotrophy (ΔCO2:ΔN2, varying between 1.7 and 6.5, is a function of the efficiency of nitrogen conversion. On the contrary, in systems like the Black Sea, where suboxic N-conversions are supported by diffusive fluxes of NH4+ originating from neighbouring waters with sulphate reduction, much lower values of ΔCO2:ΔN2 can be found. However, accounting for concomitant diffusive fluxes of CO2, the ratio approaches higher values similar to those computed for open ocean OMZs. Based on this analysis, we question the significance of collateral effects concerning the trophic

  17. A "footprint" of plant carbon fixation cycle functions during the development of a heterotrophic fungus.

    Science.gov (United States)

    Lyu, Xueliang; Shen, Cuicui; Xie, Jiatao; Fu, Yanping; Jiang, Daohong; Hu, Zijin; Tang, Lihua; Tang, Liguang; Ding, Feng; Li, Kunfei; Wu, Song; Hu, Yanping; Luo, Lilian; Li, Yuanhao; Wang, Qihua; Li, Guoqing; Cheng, Jiasen

    2015-08-11

    Carbon fixation pathway of plants (CFPP) in photosynthesis converts solar energy to biomass, bio-products and biofuel. Intriguingly, a large number of heterotrophic fungi also possess enzymes functionally associated with CFPP, raising the questions about their roles in fungal development and in evolution. Here, we report on the presence of 17 CFPP associated enzymes (ten in Calvin-Benson-Basham reductive pentose phosphate pathway and seven in C4-dicarboxylic acid cycle) in the genome of Sclerotinia sclerotiorum, a heterotrophic phytopathogenic fungus, and only two unique enzymes: ribulose-1, 5-bisphosphate carboxylase-oxygenase (Rubisco) and phosphoribulokinase (PRK) were absent. This data suggested an incomplete CFPP-like pathway (CLP) in fungi. Functional profile analysis demonstrated that the activity of the incomplete CLP was dramatically regulated during different developmental stages of S. sclerotiorum. Subsequent experiments confirmed that many of them were essential to the virulence and/or sclerotial formation. Most of the CLP associated genes are conserved in fungi. Phylogenetic analysis showed that many of them have undergone gene duplication, gene acquisition or loss and functional diversification in evolutionary history. These findings showed an evolutionary links in the carbon fixation processes of autotrophs and heterotrophs and implicated the functions of related genes were in course of continuous change in different organisms in evolution.

  18. Feeding, growth and metabolism of the marine heterotrophic dinoflagellate Gyrodinium dominans

    DEFF Research Database (Denmark)

    Schmoker, Claire; Thor, Peter; Hernández-león, Santiago

    2011-01-01

    may inflict high metabolic costs. Gross growth efficiencies (GGEs), determined for G. dominans in both food availability conditions, were within the range of values reported for other heterotrophic protozoans, and while GGE decreased when concentrations of food were high in organisms fed a single...... pulse of food, the opposite was observed in organisms acclimatized to a constant level of food....

  19. Heterotrophic cultivation of Chlorella pyrenoidosa using sucrose as the sole carbon source by co-culture with Rhodotorula glutinis.

    Science.gov (United States)

    Wang, Shikai; Wu, Yong; Wang, Xu

    2016-11-01

    Heterotrophic cultivation of microalgae is a feasible alternative strategy to avoid the light limitation of photoautotrophic culture, but the heterotrophic utilization of disaccharides is difficult for microalgae. Aimed at this problem, a co-culture system was developed by mix culture of C. pyrenoidosa and R. glutinis using sucrose as the sole carbon source. In this system, C. pyrenoidosa could utilize glucose and fructose which were hydrolyzed from sucrose by R. glutinis. The highest specific growth rate and final cell number proportion of algae was 1.02day(-1) and 45%, respectively, when cultured at the initial algal cell number proportion of 95.24% and the final algal cell density was 111.48×10(6)cells/mL. In addition, the lipid content was also promoted due to the synergistic effects in mix culture. This study provides a novel approach using sucrose-riched wastes for the heterotrophic culture of microalgae and may effectively decrease the cost of carbon source. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Dynamics of pollution-indicator and heterotrophic bacteria in sewage treatment lagoons.

    Science.gov (United States)

    Legendre, P; Baleux, B; Troussellier, M

    1984-09-01

    The spatio-temporal dynamics of pollution-indicator bacteria and aerobic heterotrophic bacteria were studied in the sewage treatment lagoons of an urban wastewater center after 26 months of biweekly sampling at eight stations in these lagoons. Robust statistical methods of time-series analysis were used to study successional steps (through chronological clustering) and rhythmic behavior through time (through contingency periodogram). The aerobic heterotrophic bacterial community showed two types of temporal evolution: in the first four stations, it seems mainly controlled by the nutrient support capacity of the sewage input, whereas in the remaining part of the lagoon, it seems likely that the pollution-indicator bacteria are gradually replaced by other bacterial types that are better adapted to this environment. On the other hand, the pollution-indicator bacteria showed an annual cycle which increased in amplitude at distances further from the wastewater source. The main events in this cycle were produced simultaneously at all stations, indicating control of these bacterial populations by climatic factors, which act through physical and chemical factors, and also through other biological components of this ecosystem (phytoplankton and zooplankton). Finally, we use results from this study to suggest a modified design for a future study program.

  1. Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations

    Czech Academy of Sciences Publication Activity Database

    Bumbak, F.; Cook, S.; Zachleder, Vilém; Hauser, S.; Kovar, K.

    2011-01-01

    Roč. 91, č. 1 (2011), 31-46 ISSN 0175-7598 Institutional research plan: CEZ:AV0Z50200510 Keywords : Heterotrophic growth * Microalgae * High-celldensity culture Subject RIV: EE - Microbiology, Virology Impact factor: 3.425, year: 2011

  2. Desalination - an alternative freshwater resource

    International Nuclear Information System (INIS)

    Shakaib, M.

    2005-01-01

    Global water constitutes 94 percent salt water that is from the oceans and 6% is in the form of freshwater. Out of this 6% freshwater approximately 27% is trapped in glaciers and 72% is underground. The sea water is important for transportation, fisheries. Oceans regulate climate through air sea interaction. However direct consumption of sea water is too salty to sustain human life. Water with a dissolved solids (salt) content generally below about 1000 milligrams per liter (mg/L) is considered acceptable for human consumption. The application of desalting technologies over the past 50 years have been in many of the arid zone where freshwater is available. Pakistan lies in the Sun Belt. It is considered a wide margin coastal belt (990 km), having an Exclusive Economic Zone of 240,000 km/sup 2/, that strokes trillion cubic meters of sea water that can be made available as freshwater source to meet the shortfall in the supply of domestic water through desalination along the coastal belt of Pakistan. The freshwater obtained from the other desalination processes is slightly expensive, but the cost of desalination can be considerably reduced provided that the available inexpensive or free waste energy is utilized mainly. (author)

  3. Heterotrophic compensation: a possible mechanism for resilience of coral reefs to global warming or a sign of prolonged stress?

    Directory of Open Access Journals (Sweden)

    Adam D Hughes

    Full Text Available Thermally induced bleaching has caused a global decline in corals and the frequency of such bleaching events will increase. Thermal bleaching severely disrupts the trophic behaviour of the coral holobiont, reducing the photosynthetically derived energy available to the coral host. In the short term this reduction in energy transfer from endosymbiotic algae results in an energy deficit for the coral host. If the bleaching event is short-lived then the coral may survive this energy deficit by depleting its lipid reserves, or by increasing heterotrophic energy acquisition. We show for the first time that the coral animal is capable of increasing the amount of heterotrophic carbon incorporated into its tissues for almost a year following bleaching. This prolonged heterotrophic compensation could be a sign of resilience or prolonged stress. If the heterotrophic compensation is in fact an acclimatization response, then this physiological response could act as a buffer from future bleaching by providing sufficient heterotrophic energy to compensate for photoautotrophic energy losses during bleaching, and potentially minimizing the effect of subsequent elevated temperature stresses. However, if the elevated incorporation of zooplankton is a sign that the effects of bleaching continue to be stressful on the holobiont, even after 11 months of recovery, then this physiological response would indicate that complete coral recovery requires more than 11 months to achieve. If coral bleaching becomes an annual global phenomenon by mid-century, then present temporal refugia will not be sufficient to allow coral colonies to recover between bleaching events and coral reefs will become increasingly less resilient to future climate change. If, however, increasing their sequestration of zooplankton-derived nutrition into their tissues over prolonged periods of time is a compensating mechanism, the impacts of annual bleaching may be reduced. Thus, some coral species

  4. Membrane biofouling in a wastewater nitrification reactor: microbial succession from autotrophic colonization to heterotrophic domination

    KAUST Repository

    Lu, Huijie; Xue, Zheng; Saikaly, Pascal; Nunes, Suzana Pereira; Bluver, Ted R.; Liu, Wen-Tso

    2015-01-01

    through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well

  5. Cultivation-Independent and Cultivation-Dependent Analysis of Microbes in the Shallow-Sea Hydrothermal System Off Kueishantao Island, Taiwan: Unmasking Heterotrophic Bacterial Diversity and Functional Capacity.

    Science.gov (United States)

    Tang, Kai; Zhang, Yao; Lin, Dan; Han, Yu; Chen, Chen-Tung A; Wang, Deli; Lin, Yu-Shih; Sun, Jia; Zheng, Qiang; Jiao, Nianzhi

    2018-01-01

    Shallow-sea hydrothermal systems experience continuous fluctuations of physicochemical conditions due to seawater influx which generates variable habitats, affecting the phylogenetic composition and metabolic potential of microbial communities. Until recently, studies of submarine hydrothermal communities have focused primarily on chemolithoautotrophic organisms, however, there have been limited studies on heterotrophic bacteria. Here, fluorescence in situ hybridization, high throughput 16S rRNA gene amplicon sequencing, and functional metagenomes were used to assess microbial communities from the shallow-sea hydrothermal system off Kueishantao Island, Taiwan. The results showed that the shallow-sea hydrothermal system harbored not only autotrophic bacteria but abundant heterotrophic bacteria. The potential for marker genes sulfur oxidation and carbon fixation were detected in the metagenome datasets, suggesting a role for sulfur and carbon cycling in the shallow-sea hydrothermal system. Furthermore, the presence of diverse genes that encode transporters, glycoside hydrolases, and peptidase indicates the genetic potential for heterotrophic utilization of organic substrates. A total of 408 cultivable heterotrophic bacteria were isolated, in which the taxonomic families typically associated with oligotrophy, copiotrophy, and phototrophy were frequently found. The cultivation-independent and -dependent analyses performed herein show that Alphaproteobacteria and Gammaproteobacteria represent the dominant heterotrophs in the investigated shallow-sea hydrothermal system. Genomic and physiological characterization of a novel strain P5 obtained in this study, belonging to the genus Rhodovulum within Alphaproteobacteria, provides an example of heterotrophic bacteria with major functional capacity presented in the metagenome datasets. Collectively, in addition to autotrophic bacteria, the shallow-sea hydrothermal system also harbors many heterotrophic bacteria with versatile

  6. Biochemical System Analysis of Lutein Production by Heterotrophic Chlorella pyrenoidosa in a Fermentor

    Directory of Open Access Journals (Sweden)

    Zheng-Yun Wu

    2009-01-01

    Full Text Available Chlorella is a promising alternative source of lutein, as it can be cultivated heterotrophically with high efficiency. In this study, the carotenoids in Chlorella pyrenoidosa heterotrophically cultivated in a 19-litre fermentor have been analyzed and determined by using HPLC and HPLC-MS. A biochemical system theory (BST model was developed for understanding the regulatory features of carotenoid metabolism during the batch cultivation. Factors that influence lutein production by C. pyrenoidosa were discussed based on the model. It shows that low flux for lycopene formation is the major bottleneck for lutein production, while by-product syntheses and inhibitions affect the cellular lutein content much less. However, with further increase of the cellular lutein content, the inhibition on lycopene formation by lutein may become a limiting factor. Although speculative, these results may provide useful information for further elucidation of the regulatory mechanisms of carotenoid biosynthesis in Chlorella and modifying its metabolic network to enhance lutein production.

  7. Maximum in the middle: nonlinear response of microbial plankton to ultraviolet radiation and phosphorus.

    Science.gov (United States)

    Medina-Sánchez, Juan Manuel; Delgado-Molina, José Antonio; Bratbak, Gunnar; Bullejos, Francisco José; Villar-Argaiz, Manuel; Carrillo, Presentación

    2013-01-01

    The responses of heterotrophic microbial food webs (HMFW) to the joint action of abiotic stressors related to global change have been studied in an oligotrophic high-mountain lake. A 2×5 factorial design field experiment performed with large mesocosms for >2 months was used to quantify the dynamics of the entire HMFW (bacteria, heterotrophic nanoflagellates, ciliates, and viruses) after an experimental P-enrichment gradient which approximated or surpassed current atmospheric P pulses in the presence vs. absence of ultraviolet radiation. HMFW underwent a mid-term (ultraviolet radiation. However, after depletion of dissolved inorganic P, the HMFW collapsed and was outcompeted by a low-diversity autotrophic compartment, which constrained the development of HMFW and caused a significant loss of functional biodiversity. The dynamics and relationships among variables, and the response patterns found, suggest the importance of biotic interactions (predation/parasitism and competition) in restricting HMFW development, in contrast to the role of abiotic factors as main drivers of autotrophic compartment. The response of HMFW may contribute to ecosystem resilience by favoring the maintenance of the peculiar paths of energy and nutrient-mobilization in these pristine ecosystems, which are vulnerable to threats by the joint action of abiotic stressors related to global change.

  8. Comparison of heterotrophic and autotrophic denitrification processes for nitrate removal from phosphorus-limited surface water.

    Science.gov (United States)

    Wang, Zheng; He, Shengbing; Huang, Jungchen; Zhou, Weili; Chen, Wanning

    2018-03-29

    Phosphorus (P) limitation has been demonstrated for micro-polluted surface water denitrification treatment in previous study. In this paper, a lab-scale comparative study of autotrophic denitrification (ADN) and heterotrophic denitrification (HDN) in phosphorus-limited surface water was investigated, aiming to find out the optimal nitrogen/phosphorus (N/P) ratio and the mechanism of the effect of P limitation on ADN and HDN. Furthermore, the optimal denitrification process was applied to the West Lake denitrification project, aiming to improve the water quality of the West Lake from worse than grade V to grade IV (GB3838-2006). The lab-scale study showed that the lack of P indeed inhibited HDN more greatly than ADN. The optimal N/P ratio for ADN and HDN was 25 and a 0.15 mg PO 4 3- -P L -1 of microbial available phosphorus (MAP) was observed. P additions could greatly enhance the resistance of ADN and HDN to hydraulic loading shock. Besides, The P addition could effectively stimulate the HDN performance via enriching the heterotrophic denitrifiers and the denitrifying phosphate-accumulating organisms (DNPAOs). Additionally, HDN was more effective and cost-effective than ADN for treating P-limited surface water. The study of the full-scale HDBF (heterotrophic denitrification biofilter) indicated that the denitrification performance was periodically impacted by P limitation, particularly at low water temperatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Nitrogen uptake by heterotrophic bacteria and phytoplankton in the nitrate-rich Thames estuary

    NARCIS (Netherlands)

    Middelburg, J.J.; Nieuwenhuize, J.

    2000-01-01

    The uptake of ammonium, nitrate, amino acids and urea was examined in the nitrate-rich Thames estuary and adjacent area in the North Sea during February 1999. The majority of uptake was by heterotrophic bacteria, as demonstrated by addition of a prokaryotic inhibitor that lowered uptake rates by 82,

  10. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems.

    Science.gov (United States)

    Hicks Pries, Caitlin E; van Logtestijn, Richard S P; Schuur, Edward A G; Natali, Susan M; Cornelissen, Johannes H C; Aerts, Rien; Dorrepaal, Ellen

    2015-12-01

    Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage-a negative climate change feedback. Few studies partitioning ecosystem respiration examine decadal warming effects or compare responses among ecosystems. Here, we first examined how 11 years of warming during different seasons affected autotrophic and heterotrophic respiration in a bryophyte-dominated peatland in Abisko, Sweden. We used natural abundance radiocarbon to partition ecosystem respiration into autotrophic respiration, associated with production, and heterotrophic decomposition. Summertime warming decreased the age of carbon respired by the ecosystem due to increased proportional contributions from autotrophic and young soil respiration and decreased proportional contributions from old soil. Summertime warming's large effect was due to not only warmer air temperatures during the growing season, but also to warmer deep soils year-round. Second, we compared ecosystem respiration responses between two contrasting ecosystems, the Abisko peatland and a tussock-dominated tundra in Healy, Alaska. Each ecosystem had two different timescales of warming (permafrost ecosystems. © 2015 John Wiley & Sons Ltd.

  11. The freshwater reservoir effect in radiocarbon dating

    DEFF Research Database (Denmark)

    Philippsen, Bente

    case studies will show the degree of variability of the freshwater reservoir effect over short and long timescales. Radiocarbon dating of recent water samples, aquatic plants and animals, shows that age differences of up to 2000 years can occur within one river. In the Limfjord, freshwater influence......The freshwater reservoir effect can result in too high radiocarbon ages of samples from lakes and rivers, including the bones of people whose subsistence was based on freshwater fish, and pottery in which fish was cooked. In my talk, I will explain the causes and consequences of this effect. Two...... caused reservoir ages to vary between 250 and 700 years during the period 5400 BC - AD 700. Finally, I will discuss the implications of the freshwater reservoir effect for radiocarbon dating of Mesolithic pottery from inland sites of the Ertebølle culture in Northern Germany....

  12. Draft Genome Sequence of an Active Heterotrophic Nitrifier-Denitrifier, Cupriavidus pauculus UM1

    OpenAIRE

    Putonti, Catherine; Polley, Nathaniel; Castignetti, Domenic

    2018-01-01

    ABSTRACT Here, we present the draft genome sequence of Cupriavidus pauculus UM1, a metal-resistant heterotrophic nitrifier-denitrifier capable of synthesizing nitrite from pyruvic oxime. The size of the genome is 7,402,815 bp with a GC content of 64.8%. This draft assembly consists of 38 scaffolds.

  13. Synechococcus growth in the ocean may depend on the lysis of heterotrophic bacteria

    Czech Academy of Sciences Publication Activity Database

    Weinbauer, M.G.; Bonilla-Findji, O.; Chan, A.M.; Dolan, J. R.; Short, S.M.; Šimek, Karel; Wilhelm, S. W.; Suttle, C.A.

    2011-01-01

    Roč. 33, č. 10 (2011), s. 1465-1476 ISSN 0142-7873 R&D Projects: GA ČR(CZ) GA206/08/0015 Institutional research plan: CEZ:AV0Z60170517 Keywords : viruses * growth control of cyanobacteria * heterotrophic bacterioplankton Subject RIV: EE - Microbiology, Virology Impact factor: 2.079, year: 2011

  14. Meeting ecological and societal needs for freshwater

    Science.gov (United States)

    Baron, Jill S.; Poff, N.L.; Angermeier, P.L.; Dahm, Clifford N.; Gleick, P.H.; Hairston, N.G.; Jackson, R.B.; Johnston, C.A.; Richter, B.D.; Steinman, A.D.

    2002-01-01

    Human society has used freshwater from rivers, lakes, groundwater, and wetlands for many different urban, agricultural, and industrial activities, but in doing so has overlooked its value in supporting ecosystems. Freshwater is vital to human life and societal well-being, and thus its utilization for consumption, irrigation, and transport has long taken precedence over other commodities and services provided by freshwater ecosystems. However, there is growing recognition that functionally intact and biologically complex aquatic ecosystems provide many economically valuable services and long-term benefits to society. The short-term benefits include ecosystem goods and services, such as food supply, flood control, purification of human and industrial wastes, and habitat for plant and animal life—and these are costly, if not impossible, to replace. Long-term benefits include the sustained provision of those goods and services, as well as the adaptive capacity of aquatic ecosystems to respond to future environmental alterations, such as climate change. Thus, maintenance of the processes and properties that support freshwater ecosystem integrity should be included in debates over sustainable water resource allocation.The purpose of this report is to explain how the integrity of freshwater ecosystems depends upon adequate quantity, quality, timing, and temporal variability of water flow. Defining these requirements in a comprehensive but general manner provides a better foundation for their inclusion in current and future debates about allocation of water resources. In this way the needs of freshwater ecosystems can be legitimately recognized and addressed. We also recommend ways in which freshwater ecosystems can be protected, maintained, and restored.Freshwater ecosystem structure and function are tightly linked to the watershed or catchment of which they are a part. Because riverine networks, lakes, wetlands, and their connecting groundwaters, are literally the

  15. The freshwater reservoir effect in radiocarbon dating

    DEFF Research Database (Denmark)

    Philippsen, Bente

    2013-01-01

    of magnitude and degree of variability of the freshwater reservoir effect over short and long timescales. Radiocarbon dating of recent water samples, aquatic plants, and animals, shows that age differences of up to 2000 14C years can occur within one river. The freshwater reservoir effect has also implications......The freshwater reservoir effect can result in anomalously old radiocarbon ages of samples from lakes and rivers. This includes the bones of people whose subsistence was based on freshwater fish, and pottery in which fish was cooked. Water rich in dissolved ancient calcium carbonates, commonly known...... as hard water, is the most common reason for the freshwater reservoir effect. It is therefore also called hardwater effect. Although it has been known for more than 60 years, it is still less well-recognized by archaeologists than the marine reservoir effect. The aim of this study is to examine the order...

  16. Regulation of annual variation in heterotrophic bacterial production in the Schelde estuary (SW Netherlands)

    NARCIS (Netherlands)

    Goosen, N.K.; Van Rijswijk, P.; Kromkamp, J.C.; Peene, J.

    1997-01-01

    Heterotrophic bacterioplankton production (H-3-thymidine incorporation rate) and abundance in the surface water of the Schelde estuary (The Netherlands) were studied during an annual cycle in 1991 along the salinity gradient (0.8 to 33 psu). Bacterial production and numbers increased from the lower

  17. New Insights on the Ecology of Free-living, Heterotrophic Nanoflagellates Based on the Use of Molecular Biological Approaches

    National Research Council Canada - National Science Library

    Lim, Lin

    1997-01-01

    Nanoplanktonic protists comprise a diverse assemblage of flagellate species. Current methods for identifying small protists do not readily permit identification and enumeration of nanoplanktonic flagellates in cultures or field samples...

  18. Status and Impacts of Arctic Freshwater Export

    Science.gov (United States)

    Haine, T. W. N.

    2017-12-01

    Large freshwater anomalies clearly exist in the Arctic Ocean. For example, liquid freshwater has accumulated in the Beaufort Gyre in the decade of the 2000s compared to 1980-2000, with an extra ≈5000 km3—about 25%—being stored. The sources of freshwater to the Arctic from precipitation and runoff have increased between these periods (most of the evidence comes from models). Despite flux increases from 2001 to 2011, it is uncertain if the marine freshwater source through Bering Strait for the 2000s has changed, as observations in the 1980s and 1990s are incomplete. The marine freshwater fluxes draining the Arctic through Fram and Davis straits are also insignificantly different. In this way, the balance of sources and sinks of freshwater to the Arctic, Canadian Arctic Archipelago (CAA), and Baffin Bay shifted to about 1200±730 km3yr-1 freshening the region, on average, during the 2000s. The observed accumulation of liquid freshwater is consistent with this increased supply and the loss of freshwater from sea ice (Figure, right). Evidence exists that such discharges can impact the Atlantic meridional overturning circulation, and hence Atlantic sector climate. Nevertheless, it appears that the observed AMOC variability since 2004, when high quality measurements began, is not attributable to anthropogenic influence. This work is based on, and updated from, Haine et al. (2015), Carmack et al. (2016), and Haine (2016). Haine, T. W. N. Ocean science: Vagaries of Atlantic overturning. Nature Geoscience, 9, 479-480, 10.1038/ngeo2748, 2016. T. W. N. Haine et al., Arctic Freshwater Export: Status, Mechanisms, and Prospects, Global Planetary Change, 125, 13-35, 10.1016/j.glopacha.2014.11.013, 2015. E. Carmack et al., Fresh water and its role in the Arctic Marine System: sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. J. G. Res. Biogeosciences, 10.1002/2015JG003140, 2016.

  19. Compared microbiology of granular sludge under autotrophic, mixotrophic and heterotrophic denitrification conditions.

    Science.gov (United States)

    Fernández, N; Sierra-Alvarez, R; Amils, R; Field, J A; Sanz, J L

    2009-01-01

    Water contamination by nitrate is a wideworld extended phenomena. Biological autotrophic denitrification has a real potential to face this problem and presents less drawbacks than the most extended heterotrophic denitrification. Three bench-scale UASB reactors were operated under autotrophic (R1, H2S as electron donor), mixotrophic (R2, H2S plus p-cresol as electron donors) and heterotrophic (R3, p-cresol as electron donor) conditions using nitrate as terminal electron acceptor. 16S rDNA genetic libraries were built up to compare their microbial biodiversity. Six different bacteria phyla and three archaeal classes were observed. Proteobacteria was the main phyla in all reactors standing out the presence of denitrifiers. Microorganisms similar to Thiobacillus denitrificans and Acidovorax sp. performed the autotrophic denitification. These OTUs were displaced by chemoheterotrophic denitrifiers, especially by Limnobacter-like and Ottowia-like OTUs. Other phyla were Bacteroidetes, Chloroflexi, Firmicutes and Actinobacteria that--as well as Archaea members--were implicated in the degradation of organic matter, as substrate added as coming from endogenous sludge decay under autotrophic conditions. Archaea diversity remained low in all the reactors being Methanosaeta concilii the most abundant one.

  20. Whitemouth croaker, Micropogonias furnieri, trapped in a freshwater coastal lagoon: a natural comparison of freshwater and marine influences on otolith chemistry

    Directory of Open Access Journals (Sweden)

    Cristiano Q. de Albuquerque

    Full Text Available Strontium and barium incorporation into otoliths was compared between whitemouth croaker, Micropogonias furnieri, collected from an entrapped freshwater population (Mirim Lagoon and a normal marine/estuarine population in southern Brazil. Chemical analysis was performed using LA-ICPMS with the objective of validating the effects of marine and freshwater environments on Sr and Ba incorporation as a basis for further investigation of marine and freshwater connectivity of M. furnieri. The freshwater population was dominated by older fish with mean ±SD age of 34±1 y, whereas the coastal samples were dominated by younger fish of 14±7 y. Comparison of strontium and barium incorporation among otolith life-history profiles indicated significantly higher barium and lower strontium for the freshwater population compared to the marine population. Furthermore, comparison of otolith material deposited in the freshwater, estuarine and marine life-history phases demonstrated clear differences among these environments. Mean concentrations of strontium and barium in otoliths of M. furnieri were respectively 710 and 112 µg g-1 for freshwater, 2069 and 16.7 µg g-1 for estuarine, and 2990 and 2.7 µg g-1 for marine life-history phases. Barium concentrations in otoliths from the freshwater population of M. furnieri appeared high relative to other freshwater species. Strontium levels across life-history profiles of marine fish increased with age from 2000 to 2900 µg g-1, possibly indicating more time spent in marine than estuarine waters with age. In contrast, for the freshwater population, strontium levels decreased during the first year of life approximately to 700 µg g-1, and remained low and stable thereafter, consistent with the early life-history occurring in an estuarine environment prior to entrapment in Mirim Lagoon. The results confirm the strong and opposite effects of marine and freshwater environments on incorporation of barium and strontium into

  1. Unexpected Importance of Potential Parasites in the Composition of the Freshwater Small-Eukaryote Community▿

    Science.gov (United States)

    Lepère, Cécile; Domaizon, Isabelle; Debroas, Didier

    2008-01-01

    The diversity of small eukaryotes (0.2 to 5 μm) in a mesotrophic lake (Lake Bourget) was investigated using 18S rRNA gene library construction and fluorescent in situ hybridization coupled with tyramide signal amplification (TSA-FISH). Samples collected from the epilimnion on two dates were used to extend a data set previously obtained using similar approaches for lakes with a range of trophic types. A high level of diversity was recorded for this system with intermediate trophic status, and the main sequences from Lake Bourget were affiliated with ciliates (maximum, 19% of the operational taxonomic units [OTUs]), cryptophytes (33%), stramenopiles (13.2%), and cercozoa (9%). Although the comparison of TSA-FISH results and clone libraries suggested that the level of Chlorophyceae may have been underestimated using PCR with 18S rRNA primers, heterotrophic organisms dominated the small-eukaryote assemblage. We found that a large fraction of the sequences belonged to potential parasites of freshwater phytoplankton, including sequences affiliated with fungi and Perkinsozoa. On average, these sequences represented 30% of the OTUs (40% of the clones) obtained for each of two dates for Lake Bourget. Our results provide information on lacustrine small-eukaryote diversity and structure, adding to the phylogenetic data available for lakes with various trophic types. PMID:18359836

  2. The Zoogeography of North American freshwater fishes

    National Research Council Canada - National Science Library

    Hocutt, Charles H; Wiley, E. O

    1986-01-01

    ..., and Pleistoscene glaciation. The Zoogeography of North American Freshwater Fishes is a comprehensive treatment of the freshwater biogeography of North America, with implications for other disciplines...

  3. Effects of substrate concentrations on the growth of heterotrophic bacteria and algae in secondary facultative ponds.

    Science.gov (United States)

    Kayombo, S; Mbwette, T S A; Katima, J H Y; Jorgensen, S E

    2003-07-01

    This paper presents the effect of substrate concentration on the growth of a mixed culture of algae and heterotrophic bacteria in secondary facultative ponds (SFPs) utilizing settled domestic sewage as a sole source of organic carbon. The growth of the mixed culture was studied at the concentrations ranging between 200 and 800 mg COD/l in a series of batch chemostat reactors. From the laboratory data, the specific growth rate (micro) was determined using the modified Gompertz model. The maximum specific growth rate ( micro(max)) and half saturation coefficients (K(s)) were calculated using the Monod kinetic equation. The maximum observed growth rate ( micro(max)) for heterotrophic bacteria was 3.8 day(-1) with K(s) of 200 mg COD/l. The micro(max) for algal biomass based on suspended volatile solids was 2.7 day(-1) with K(s) of 110 mg COD/l. The micro(max) of algae based on the chlorophyll-a was 3.5 day(-1) at K(s) of 50mg COD/l. The observed specific substrate removal by heterotrophic bacteria varied between the concentrations of substrate used and the average value was 0.82 (mg COD/mg biomass). The specific substrate utilization rate in the bioreactors was direct proportional to the specific growth rate. Hence, the determined Monod kinetic parameters are useful for the definition of the operation of SFPs.

  4. Factor driving heterotrophic dinoflagellate in relation to environment conditions in Kerkennah Islands (eastern coast of Tunisa

    Directory of Open Access Journals (Sweden)

    Mounir Ben Brahim

    2015-09-01

    Full Text Available Objective: To study the seasonal variability of heterotrophic dinoflagellate in the station of Cercina (southern coast of Tunisia. Methods: Sampling was done in 2007 in Cercina station located in the western coast of Kerkennah (34°41'27'' N; 11°07'45'' E (Southern Tunisia. Three replicates of water samples were taken during 10 days of each month. Environmental variables and nutrients were measured in situ. Results: A significant seasonal difference was observed for temperature and water salinity. The highest values were observed in spring and summer. No significant seasonal difference was, however, detected for nitrite, nitrate, ammonia, silica and phosphate. Sixty-five species of dinoflagellate were identified in the station of Cercina. Abundance of dinoflagellates fluctuated between seasons with values showing a significant seasonal and monthly difference. The highest mean abundance was recorded in spring in April, while the lowest abundance was detected in December in winter. Protoperidinium granii was the main species contributing to the dissimilarity between spring and winter with 13.98% followed by Peridinium sp. with 12.5% of dissimilarity and by Polykrikos sp. with 10.58%. Conclusions: Heterotrophic dinoflagellates proliferate in spring and summer. This increase was justified by the nutrient availability. Protoperidinium granii and Polykrikos kofoidii were the main heterotrophic dinoflagellate making difference between seasons and their densities were positively correlated with both temperature and salinity.

  5. Draft Genome Sequence of an Active Heterotrophic Nitrifier-Denitrifier, Cupriavidus pauculus UM1.

    Science.gov (United States)

    Putonti, Catherine; Polley, Nathaniel; Castignetti, Domenic

    2018-02-08

    Here, we present the draft genome sequence of Cupriavidus pauculus UM1, a metal-resistant heterotrophic nitrifier-denitrifier capable of synthesizing nitrite from pyruvic oxime. The size of the genome is 7,402,815 bp with a GC content of 64.8%. This draft assembly consists of 38 scaffolds. Copyright © 2018 Putonti et al.

  6. A method for measuring losses of soil carbon by heterotrophic respiration from peat soils under oil palms

    Science.gov (United States)

    Farmer, Jenny; Manning, Frances; Smith, Jo; Arn Teh, Yit

    2017-04-01

    The effects of drainage and deforestation of South East Asian peat swamp forests for the development of oil palm plantations has received considerable attention in both mainstream media and academia, and is the source of significant discussion and debate. However, data on the long-term carbon losses from these peat soils as a result of this land use change is still limited and the methods with which to collect this data are still developing. Here we present the ongoing evolution and implementation of a method for separating autotrophic and heterotrophic respiration by sampling carbon dioxide emissions at increasing distance from palm trees. We present the limitations of the method, modelling approaches and results from our studies. In 2011 we trialled this method in Sumatra, Indonesia and collected rate measurements over a six day period in three ages of oil palm. In the four year oil palm site there were thirteen collars that had no roots present and from these the peat based carbon losses were recorded to be 0.44 g CO2 m2 hr-1 [0.34; 0.57] (equivalent to 39 t CO2 ha-1 yr-1 [30; 50]) with a mean water table depth of 0.40 m, or 63% of the measured total respiration across the plot. In the two older palm sites of six and seven years, only one collar out of 100 had no roots present, and thus a linear random effects model was developed to calculate heterotrophic emissions for different distances from the palm tree. This model suggested that heterotrophic respiration was between 37 - 59% of total respiration in the six year old plantation and 39 - 56% in the seven year old plantation. We applied this method in 2014 to a seven year old plantation, in Sarawak, Malaysia, modifying the method to include the heterotrophic contribution from beneath frond piles and weed covered areas. These results indicated peat based carbon losses to be 0.42 g CO2 m2 hr-1 [0.27;0.59] (equivalent to 37 t CO2 ha-1 yr-1 [24; 52]) at an average water table depth of 0.35 m, 47% of the measured

  7. Native Freshwater Fish and Mussel Species Richness

    Data.gov (United States)

    U.S. Environmental Protection Agency — These data represent predicted current distributions of all native freshwater fish and freshwater mussels in the Middle-Atlantic region. The data are available for...

  8. Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yingxin [School of Water Resources and Environment, China University of Geosciences, Beijing 100083 (China); Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 3058572 (Japan); Feng, Chuanping, E-mail: fengchuangping@gmail.com [School of Water Resources and Environment, China University of Geosciences, Beijing 100083 (China); Wang, Qinghong; Yang, Yingnan; Zhang, Zhenya; Sugiura, Norio [Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 3058572 (Japan)

    2011-09-15

    Highlights: {yields} Intensified biofilm-electrode reactor using cooperative denitrification is developed. {yields} IBER combines heterotrophic and autotrophic denitrification. {yields} CO{sub 2} formed by heterotrophic denitrification is used by autotrophic bacteria. {yields} Optimum running conditions are C/N = 0.75, HRT = 8 h, and I = 40 mA. {yields} A novel degradation mechanism for cooperating denitrification process is proposed. - Abstract: An intensified biofilm-electrode reactor (IBER) combining heterotrophic and autotrophic denitrification was developed for treatment of nitrate contaminated groundwater. The reactor was evaluated with synthetic groundwater (NO{sub 3}{sup -}N50 mg L{sup -1}) under different hydraulic retention times (HRTs), carbon to nitrogen ratios (C/N) and electric currents (I). The experimental results demonstrate that high nitrate and nitrite removal efficiency (100%) were achieved at C/N = 1, HRT = 8 h, and I = 10 mA. C/N ratios were reduced from 1 to 0.5 and the applied electric current was changed from 10 to 100 mA, showing that the optimum running condition was C/N = 0.75 and I = 40 mA, under which over 97% of NO{sub 3}{sup -}N was removed and organic carbon (methanol) was completely consumed in treated water. Simultaneously, the denitrification mechanism in this system was analyzed through pH variation in effluent. The CO{sub 2} produced from the anode acted as a good pH buffer, automatically controlling pH in the reaction zone. The intensified biofilm-electrode reactor developed in the study was effective for the treatment of groundwater polluted by nitrate.

  9. Distinguishing autotrophic and heterotrophic respiration based on diel oxygen change curves: revisiting Dr. Faustus

    NARCIS (Netherlands)

    Kosten, S.; Demars, B.O.L.; Moss, B.

    2014-01-01

    * In his paper ‘Climate change, nutrient pollution and the bargain of Dr. Faustus’, Moss (Freshwater Biology, 55, 2010, 175) described the interacting and mutually reinforcing effects of climate change and nutrient pollution on aquatic ecosystems. * Among other things, Moss (Freshwater Biology, 55,

  10. Effects of Pollution on Freshwater Fish.

    Science.gov (United States)

    Brungs, W. A.; And Others

    1978-01-01

    Presents a literature review of the effects of pollution on freshwater fish, covering publications of 1976-77. This review includes: (1) water quality; (2) pesticide pollutants; (3) chemical pollutants; (4) miscellaneous pollutants; and (5) physical factors of pollution on freshwater fish. A list of 338 references is also presented. (HM)

  11. Direct and indirect effects of copper-contaminated sediments on the functions of model freshwater ecosystems.

    Science.gov (United States)

    Gardham, Stephanie; Chariton, Anthony A; Hose, Grant C

    2015-01-01

    Copper is acutely toxic to, and directly affects, primary producers and decomposers, which are key players in essential processes such as the nutrient cycle in freshwater ecosystems. Even though the indirect effects of metals (for example effects due to changes in species interactions) may be more common than direct effects, little is known about the indirect effects of copper on primary producers and decomposers. The effects of copper on phytoplankton, macrophytes, periphyton and organic matter decomposition in an outdoor lentic mesocosm facility were assessed, and links between the responses examined. Copper directly decreased macrophyte growth, subsurface organic matter decomposition, and the potential for high phytoplankton Chlorophyll a concentrations. However, periphyton cover and organic matter decomposition on the surface of the sediment were stimulated by the presence of copper. These latter responses were attributed to indirect effects, due to a reduction in grazing pressure from snails, particularly Physa acuta, in the higher copper-contaminated mesocosms. This permitted the growth of periphyton and other heterotrophs, ultimately increasing decomposition at the sediment surface. The present study demonstrates the pronounced influence indirect effects may have on ecological function, findings that may not be observed in traditional laboratory studies (which utilize single species or simplistic communities).

  12. Methods for preparing synthetic freshwaters.

    Science.gov (United States)

    Smith, E J; Davison, W; Hamilton-Taylor, J

    2002-03-01

    Synthetic solutions that emulate the major ion compositions of natural waters are useful in experiments aimed at understanding biogeochemical processes. Standard recipes exist for preparing synthetic analogues of seawater, with its relatively constant composition, but, due to the diversity of freshwaters, a range of compositions and recipes is required. Generic protocols are developed for preparing synthetic freshwaters of any desired composition. The major problems encountered in preparing hard and soft waters include dissolving sparingly soluble calcium carbonate, ensuring that the ionic components of each concentrated stock solution cannot form an insoluble salt and dealing with the supersaturation of calcium carbonate in many hard waters. For acidic waters the poor solubility of aluminium salts requires attention. These problems are overcome by preparing concentrated stock solutions according to carefully designed reaction paths that were tested using a combination of experiment and equilibrium modeling. These stock solutions must then be added in a prescribed order to prepare a final solution that is brought into equilibrium with the atmosphere. The example calculations for preparing hard, soft and acidic freshwater surrogates with major ion compositions the same as published analyses, are presented in a generalized fashion that should allow preparation of any synthetic freshwater according to its known analysis.

  13. Review: Freshwater conservation planning in South Africa ...

    African Journals Online (AJOL)

    Review: Freshwater conservation planning in South Africa: Milestones to ... Water SA. Journal Home · ABOUT THIS JOURNAL · Advanced Search ... Since the 1970s, at approximately 10-year intervals, 4 national-scale freshwater conservation ...

  14. [Identification and Nitrogen Removal Characteristics of a Heterotrophic Nitrification-Aerobic Denitrification Strain Isolated from Marine Environment].

    Science.gov (United States)

    Sun, Qing-hua; Yu, De-shuang; Zhang, Pei-yu; Lin, Xue-zheng; Li, Jin

    2016-02-15

    A heterotrophic nitrification-aerobic denitrification strain named y5 was isolated from marine environment by traditional microbial isolation method using seawater as medium. It was identified as Klebsiella sp. based on the morphological, physiological and 16S rRNA sequence analysis. The experiment results showed that the optimal carbon resource was sodium citrate; the optimal pH was 7.0; and the optimal C/N was 17. The strain could use NH4Cl, NaNO2 and KNO3 as sole nitrogen source, and the removal efficiencies were77.07%, 64.14% and 100% after 36 hours, respectively. The removal efficiency reached 100% after 36 hours in the coexistence of NH4Cl, NaNO2 and KNO3. The results showed that the strain y5 had independent and efficient heterotrophic nitrification and aerobic denitrification activities in high salt wastewater.

  15. Massive occurrence of heterotrophic filaments in acidified lakes: seasonal dynamics and composition

    Czech Academy of Sciences Publication Activity Database

    Vrba, Jaroslav; Nedoma, Jiří; Kohout, L.; Kopáček, Jiří; Nedbalová, L.; Ráčková, P.; Šimek, Karel

    2003-01-01

    Roč. 46, č. 3 (2003), s. 281-294 ISSN 0168-6496 R&D Projects: GA ČR GA206/97/0072; GA ČR GA206/00/0063; GA ČR GA206/03/1583; GA AV ČR IAA6017202; GA AV ČR IPP1011802 Institutional research plan: CEZ:AV0Z6017912 Keywords : bacterioplankton * phylogenetic identification * heterotrophic filaments Subject RIV: EE - Microbiology, Virology Impact factor: 2.947, year: 2003

  16. Biodiversity of culturable heterotrophic bacteria in the Southern Adriatic Sea Italian coastal waters

    Directory of Open Access Journals (Sweden)

    Loredana Stabili

    2004-04-01

    Full Text Available The qualitative and quantitative composition of culturable heterotrophic bacteria in water samples from the Southern Adriatic Sea of Italy was examined. Water samples were collected monthly, for a year, at 16 stations along the coast line between Brindisi and Santa Maria di Leuca. The results obtained described the heterotrophic bacterial community over an annual cycle. Mean values of bacterial densities were 5.3 x 104 CFUml-1 in Brindisi, 5.8 x 104 CFUml-1 in S. Cataldo, 4.3 x 104 CFUml-1 in Otranto and 6.7 x 104 CFUml-1 in S. M. di Leuca. The differences in bacterial densities between the sites considered were estimated. The hydrodynamic circulation, the trophism and the geographical position of the examined sites contribute to justify the different bacterial density trends. The bacterial community consisted mainly of the genera Aeromonas, Pseudomonas, Photobacterium and Flavobacterium. The Enterobacteriaceae represented a considerable fraction of the bacterial community in the Southern Adriatic Sea. Bacilli were predominant among the Gram positive bacteria. The enzymatic versatility of the observed genera suggest their importance in organic matter turnover of this oligotrophic ecosystem.

  17. Photosynthetic and Heterotrophic Ferredoxin Isoproteins Are Colocalized in Fruit Plastids of Tomato1

    Science.gov (United States)

    Aoki, Koh; Yamamoto, Miyuki; Wada, Keishiro

    1998-01-01

    Fruit tissues of tomato (Lycopersicon esculentum Mill.) contain both photosynthetic and heterotrophic ferredoxin (FdA and FdE, respectively) isoproteins, irrespective of their photosynthetic competence, but we did not previously determine whether these proteins were colocalized in the same plastids. In isolated fruit chloroplasts and chromoplasts, both FdA and FdE were detected by immunoblotting. Colocalization of FdA and FdE in the same plastids was demonstrated using double-staining immunofluorescence microscopy. We also found that FdA and FdE were colocalized in fruit chloroplasts and chloroamyloplasts irrespective of sink status of the plastid. Immunoelectron microscopy demonstrated that FdA and FdE were randomly distributed within the plastid stroma. To investigate the significance of the heterotrophic Fd in fruit plastids, Glucose 6-phosphate dehydrogenase (G6PDH) activity was measured in isolated fruit and leaf plastids. Fruit chloroplasts and chromoplasts showed much higher G6PDH activity than did leaf chloroplasts, suggesting that high G6PDH activity is linked with FdE to maintain nonphotosynthetic production of reducing power. This result suggested that, despite their morphological resemblance, fruit chloroplasts are functionally different from their leaf counterparts. PMID:9765529

  18. Diffusive fractionation complicates isotopic partitioning of autotrophic and heterotrophic sources of soil respiration.

    Science.gov (United States)

    Moyes, Andrew B; Gaines, Sarah J; Siegwolf, Rolf T W; Bowling, David R

    2010-11-01

    Carbon isotope ratios (δ¹³C) of heterotrophic and rhizospheric sources of soil respiration under deciduous trees were evaluated over two growing seasons. Fluxes and δ¹³C of soil respiratory CO₂ on trenched and untrenched plots were calculated from closed chambers, profiles of soil CO₂ mole fraction and δ¹³C and continuous open chambers. δ¹³C of respired CO₂ and bulk carbon were measured from excised leaves and roots and sieved soil cores. Large diel variations (>5‰) in δ¹³C of soil respiration were observed when diel flux variability was large relative to average daily fluxes, independent of trenching. Soil gas transport modelling supported the conclusion that diel surface flux δ¹³C variation was driven by non-steady state gas transport effects. Active roots were associated with high summertime soil respiration rates and around 1‰ enrichment in the daily average δ¹³C of the soil surface CO₂ flux. Seasonal δ¹³C variability of about 4‰ (most enriched in summer) was observed on all plots and attributed to the heterotrophic CO₂ source. © 2010 Blackwell Publishing Ltd.

  19. Genomics and ecophysiology of heterotrophic nitrogen fixing bacteria isolated from estuarine surface water

    DEFF Research Database (Denmark)

    Bentzon-Tilia, Mikkel; Severin, Ina; Hansen, Lars H.

    2015-01-01

    The ability to reduce atmospheric nitrogen (N2) to ammonia, known as N2 fixation, is a widely distributed trait among prokaryotes that accounts for an essential input of new N to a multitude of environments. Nitrogenase reductase gene (nifH) composition suggests that putative N2-fixing heterotrop......The ability to reduce atmospheric nitrogen (N2) to ammonia, known as N2 fixation, is a widely distributed trait among prokaryotes that accounts for an essential input of new N to a multitude of environments. Nitrogenase reductase gene (nifH) composition suggests that putative N2-fixing...... heterotrophic organisms are widespread in marine bacterioplankton, but their autecology and ecological significance are unknown. Here, we report genomic and ecophysiology data in relation to N2 fixation by three environmentally relevant heterotrophic bacteria isolated from Baltic Sea surface water: Pseudomonas...... liter-1, presumably accommodated through aggregate formation. Glucose stimulated N2 fixation in general, and reactive N repressed N2 fixation, except that ammonium (NH4 ) stimulated N2 fixation in R. palustris BAL398, indicating the use of nitrogenase as an electron sink. The lack of correlations...

  20. Enhanced lipid accumulation and biodiesel production by oleaginous Chlorella protothecoides under a structured heterotrophic-iron (II) induction strategy.

    Science.gov (United States)

    Li, Yuqin; Mu, Jinxiu; Chen, Di; Xu, Hua; Han, Fangxin

    2015-05-01

    A structured heterotrophic-iron (II) induction (HII) strategy was proposed to enhance lipid accumulation in oleaginous Chlorella protothecoides. C. protothecoides subjected to heterotrophic-iron (II) induction achieved a favorable lipid accumulation up to 62 % and a maximum lipid productivity of 820.17 mg/day, representing 2.78-fold and 3.64-fold increase respectively over heterotrophic cultivation alone. HII-induced cells produced significantly elevated levels of 16:0, 18:1(Δ9), and 18:2(Δ9,12) fatty acids (over 90 %). The lipid contents and plant lipid-like fatty acid compositions exhibit the potential of HII-induced C. protothecoides as biodiesel feedstock. Furthermore, 31 altered proteins in HII-induced algal cells were successfully identified. These differentially expressed proteins were assigned into nine molecular function categories, including carbohydrate metabolism, lipid biosynthesis, Calvin cycle, cellular respiration, photosynthesis, energy and transport, protein biosynthesis, regulate and defense, and unclassified. Analysis using the Kyoto encyclopedia of genes and genomes and gene ontology annotation showed that malic enzyme, acyltransferase, and ACP were key metabolic checkpoints found to modulate lipid accumulation in C. protothecoides. The results provided possible applications of HII cultivation strategy in other microalgal species and new possibilities in developing genetic and metabolic engineering microalgae for desirable lipid productivity.

  1. Characterization of culturable heterotrophic bacteria in hydrocarbon-contaminated soil from an alpine former military site.

    Science.gov (United States)

    Zhang, Dechao; Margesin, Rosa

    2014-06-01

    We characterized the culturable, heterotrophic bacterial community in soil collected from a former alpine military site contaminated with petroleum hydrocarbons. The physiologically active eubacterial community, as revealed by fluorescence-in situ-hybridization, accounted for 14.9 % of the total (DAPI-stained) bacterial community. 4.0 and 1.2 % of the DAPI-stained cells could be attributed to culturable, heterotrophic bacteria able to grow at 20 and 10 °C, respectively. The majority of culturable bacterial isolates (23/28 strains) belonged to the Proteobacteria with a predominance of Alphaproteobacteria. The remaining isolates were affiliated with the Firmicutes, Actinobacteria and Bacteroidetes. Five strains could be identified as representatives of novel species. Characterization of the 28 strains demonstrated their adaptation to the temperature and nutrient conditions prevailing in the studied soil. One-third of the strains was able to grow at subzero temperatures (-5 °C). Studies on the effect of temperature on growth and lipase production with two selected strains demonstrated their low-temperature adaptation.

  2. Growth rate characteristics of acidophilic heterotrophic organisms from mine waste rock piles

    Science.gov (United States)

    Yacob, T. W.; Silverstein, J.; Jenkins, J.; Andre, B. J.; Rajaram, H.

    2010-12-01

    Autotrophic iron oxidizing bacteria play a key role in pyrite oxidation and generation of acid mine drainage AMD. Scarcity of organic substrates in many disturbed sites insures that IOB have sufficient oxygen and other nutrients for growth. It is proposed that addition of organic carbon substrate to waste rock piles will result in enrichment of heterotrophic microorganisms limiting the role of IOB in AMD generation. Previous researchers have used the acidophilic heterotroph Acidiphilium cryptum as a model to study the effects of organic substrate addition on the pyrite oxidation/AMD cycle. In order to develop a quantitative model of effects such as competition for oxygen, it is necessary to use growth and substrate consumption rate expressions, and one approach is to choose a model strain such as A. cryptum for kinetic studies. However we have found that the growth rate characteristics of A. cryptum may not provide an accurate model of the remediation effects of organic addition to subsurface mined sites. Fluorescent in-situ hybridization (FISH) assays of extracts of mine waste rock enriched with glucose and yeast extract did not produce countable numbers of cells in the Acidiphilium genus, with a detection limit of3 x 104 cells/gram rock, despite evidence of the presence of well established heterotrophic organisms. However, an MPN enrichment produced heterotrophic population estimates of 1x107 and 1x109 cells/gram rock. Growth rate studies of A. cryptum showed that cultures took 120 hours to degrade 50% of an initial glucose concentration of 2,000 mg/L. However a mixed culture enriched from mine waste rock consumed 100% of the same amount of glucose in 24 hours. Substrate consumption data for the mixed culture were fit to a Monod growth model: {dS}/{dt} = μ_{max}S {( {X_0}/{Y} + S_0 -S )}/{(K_s +S)} Kinetic parameters were estimated utilizing a non linear regression method coupled with an ODE solver. The maximum specific growth rate of the mixed population with

  3. Freshwater crayfish invasions in South Africa: past, present and ...

    African Journals Online (AJOL)

    Freshwater crayfish invasions have been studied around the world, but less so in Africa, a continent devoid of native freshwater crayfish. The present study reviews historical and current information on alien freshwater crayfish species introduced into South Africa and aims to indicate which areas are at risk from invasion.

  4. Maximum in the middle: nonlinear response of microbial plankton to ultraviolet radiation and phosphorus.

    Directory of Open Access Journals (Sweden)

    Juan Manuel Medina-Sánchez

    Full Text Available The responses of heterotrophic microbial food webs (HMFW to the joint action of abiotic stressors related to global change have been studied in an oligotrophic high-mountain lake. A 2×5 factorial design field experiment performed with large mesocosms for >2 months was used to quantify the dynamics of the entire HMFW (bacteria, heterotrophic nanoflagellates, ciliates, and viruses after an experimental P-enrichment gradient which approximated or surpassed current atmospheric P pulses in the presence vs. absence of ultraviolet radiation. HMFW underwent a mid-term (<20 days acute development following a noticeable unimodal response to P enrichment, which peaked at intermediate P-enrichment levels and, unexpectedly, was more accentuated under ultraviolet radiation. However, after depletion of dissolved inorganic P, the HMFW collapsed and was outcompeted by a low-diversity autotrophic compartment, which constrained the development of HMFW and caused a significant loss of functional biodiversity. The dynamics and relationships among variables, and the response patterns found, suggest the importance of biotic interactions (predation/parasitism and competition in restricting HMFW development, in contrast to the role of abiotic factors as main drivers of autotrophic compartment. The response of HMFW may contribute to ecosystem resilience by favoring the maintenance of the peculiar paths of energy and nutrient-mobilization in these pristine ecosystems, which are vulnerable to threats by the joint action of abiotic stressors related to global change.

  5. Deterioration study of a material for encapsulation of radioactive wastes, the Portland cement, by heterotrophic microorganisms isolated from natural media

    International Nuclear Information System (INIS)

    Perfettini, J.

    1989-01-01

    Soils and geologic formations selected for storage of radioactive waste storage contain microflora (nitrifying and sulfoxidizing bacteria, heterotrophic microorganisms) that can corrode cement through acidic metabolism products. Nutriments required for their development are also found in these biotopes. Corrosine effects of organic acids produced by heterotrophic microorganisms are: mass decrease, leaching (especially Ca), dissolution of portlandite crystals Ca (OH) 2 , increase of porosity and decrease of flexural strength. Excretion of corrosive organic acids by bacteria is promoted by high temperature and basic pH. Acidification by fungi requires also a high temperature but an acidic pH [fr

  6. Carbon flows in eutrophic Lake Rotsee: a

    NARCIS (Netherlands)

    Lammers, J.M.; Schubert, C. J.; Reichart, G.-J.

    2016-01-01

    The microbial segment of food webs playsa crucial role in lacustrine food-web functioning andcarbon transfer, thereby influencing carbon storageand CO2 emission and uptake in freshwater environments.Variability in microbial carbon processing(autotrophic and heterotrophic production and

  7. Modeling pure culture heterotrophic production of polyhydroxybutyrate (PHB).

    Science.gov (United States)

    Mozumder, Md Salatul Islam; Goormachtigh, Laurens; Garcia-Gonzalez, Linsey; De Wever, Heleen; Volcke, Eveline I P

    2014-03-01

    In this contribution a mechanistic model describing the production of polyhydroxybutyrate (PHB) through pure-culture fermentation was developed, calibrated and validated for two different substrates, namely glucose and waste glycerol. In both cases, non-growth-associated PHB production was triggered by applying nitrogen limitation. The occurrence of some growth-associated PHB production besides non-growth-associated PHB production was demonstrated, although it is inhibited in the presence of nitrogen. Other phenomena observed experimentally and described by the model included biomass growth on PHB and non-linear product inhibition of PHB production. The accumulated impurities from the waste substrate negatively affected the obtained maximum PHB content. Overall, the developed mathematical model provided an accurate prediction of the dynamic behavior of heterotrophic biomass growth and PHB production in a two-phase pure culture system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Farming of Freshwater Rainbow Trout in Denmark

    DEFF Research Database (Denmark)

    Jokumsen, Alfred; Svendsen, Lars Moeslund

    Textbook on Farming of Freshwater Rainbow Trout in Denmark. Danish edition with the title: Opdræt af regnbueørred i Danmark......Textbook on Farming of Freshwater Rainbow Trout in Denmark. Danish edition with the title: Opdræt af regnbueørred i Danmark...

  9. Exploring Freshwater Science

    Indian Academy of Sciences (India)

    Freshwater ecosystems and associated habitats harbor incrediblebiodiversity. They offer various ecosystem services andsustain human livelihoods. However, due to increasing developmentalpressure and rising water demand, these systemsare under huge threat. As a result, many aquatic species arefeared to become ...

  10. Seasonal comparison of aquatic macroinvertebrate assemblages in a flooded coastal freshwater marsh

    Science.gov (United States)

    Kang, Sung-Ryong; King, Sammy L.

    2013-01-01

    Marsh flooding and drying may be important factors affecting aquatic macroinvertebrate density and distribution in coastal freshwater marshes. Limited availability of water as a result of drying in emergent marsh may decrease density, taxonomic diversity, and taxa richness. The principal objectives of this study are to characterize the seasonal aquatic macroinvertebrate assemblage in a freshwater emergent marsh and compare aquatic macroinvertebrate species composition, density, and taxonomic diversity to that of freshwater marsh ponds. We hypothesize that 1) freshwater emergent marsh has lower seasonal density and taxonomic diversity compared to that of freshwater marsh ponds; and 2) freshwater emergent marsh has lower taxa richness than freshwater marsh ponds. Seasonal aquatic macroinvertebrate density in freshwater emergent marsh ranged from 0 organisms/m2 (summer 2009) to 91.1 ± 20.53 organisms/m2 (mean ± SE; spring 2009). Density in spring was higher than in all other seasons. Taxonomic diversity did not differ and there were no unique species in the freshwater emergent marsh. Our data only partially support our first hypothesis as aquatic macroinvertebrate density and taxonomic diversity between freshwater emergent marsh and ponds did not differ in spring, fall, and winter but ponds supported higher macroinvertebrate densities than freshwater emergent marsh during summer. However, our data did not support our second hypothesis as taxa richness between freshwater emergent marsh and ponds did not statistically differ.

  11. Self-sustaining, solar-driven bioelectricity generation in micro-sized microbial fuel cell using co-culture of heterotrophic and photosynthetic bacteria

    Science.gov (United States)

    Liu, Lin; Choi, Seokheun

    2017-04-01

    Among many energy harvesting techniques with great potential, microbial fuel cell (MFC) technology is arguably the most underdeveloped. Even so, excitement is building, as microorganisms can harvest electrical power from any biodegradable organic source (e.g. wastewater) that is readily available in resource-limited settings. Nevertheless, the requirement for endless introduction of organic matter imposes a limiting factor to this technology, demanding an active feeding system and additional power. Here, we demonstrated self-sustaining bioelectricity generation from a microliter-scale microbial fuel cell (MFC) by using the syntrophic interaction between heterotrophic exoelectrogenic bacteria and phototrophs. The MFC continuously generated light-responsive electricity from the heterotrophic bacterial metabolic respiration with the organic substrates produced by photosynthetic bacteria. Without additional organic fuel, the mixed culture in a 90-μL-chamber MFC generated self-sustained current for more than 13 days, while the heterotrophic culture produced current that decreased dramatically within a few hours. The current from the mixed culture was about 70 times greater than that of the device with only photosynthetic bacteria. The miniaturization provided a short start-up time, a well-controlled environment, and small internal resistance. Those advantages will become the general design platform for micropower generation.

  12. Heterotrophs are key contributors to nitrous oxide production in activated sludge under low C-to-N ratios during nitrification-Batch experiments and modeling.

    Science.gov (United States)

    Domingo-Félez, Carlos; Pellicer-Nàcher, Carles; Petersen, Morten S; Jensen, Marlene M; Plósz, Benedek G; Smets, Barth F

    2017-01-01

    Nitrous oxide (N 2 O), a by-product of biological nitrogen removal during wastewater treatment, is produced by ammonia-oxidizing bacteria (AOB) and heterotrophic denitrifying bacteria (HB). Mathematical models are used to predict N 2 O emissions, often including AOB as the main N 2 O producer. Several model structures have been proposed without consensus calibration procedures. Here, we present a new experimental design that was used to calibrate AOB-driven N 2 O dynamics of a mixed culture. Even though AOB activity was favoured with respect to HB, oxygen uptake rates indicated HB activity. Hence, rigorous experimental design for calibration of autotrophic N 2 O production from mixed cultures is essential. The proposed N 2 O production pathways were examined using five alternative process models confronted with experimental data inferred. Individually, the autotrophic and heterotrophic denitrification pathway could describe the observed data. In the best-fit model, which combined two denitrification pathways, the heterotrophic was stronger than the autotrophic contribution to N 2 O production. Importantly, the individual contribution of autotrophic and heterotrophic to the total N 2 O pool could not be unambiguously elucidated solely based on bulk N 2 O measurements. Data on NO would increase the practical identifiability of N 2 O production pathways. Biotechnol. Bioeng. 2017;114: 132-140. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Carbon flows in eutrophic Lake Rotsee : a ¹³C-labelling experiment

    NARCIS (Netherlands)

    Lammers, J.M.; Schubert, C.J.; Middelburg, J.J.; Reichart, Gert-Jan

    2016-01-01

    The microbial segment of food webs plays a crucial role in lacustrine food-web functioning and carbon transfer, thereby influencing carbon storage and CO2 emission and uptake in freshwater environments. Variability in microbial carbon processing (autotrophic and heterotrophic production and

  14. Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation.

    Science.gov (United States)

    Gong, Fuyu; Liu, Guoxia; Zhai, Xiaoyun; Zhou, Jie; Cai, Zhen; Li, Yin

    2015-01-01

    Production of fuels from the abundant and wasteful CO2 is a promising approach to reduce carbon emission and consumption of fossil fuels. Autotrophic microbes naturally assimilate CO2 using energy from light, hydrogen, and/or sulfur. However, their slow growth rates call for investigation of the possibility of heterotrophic CO2 fixation. Although preliminary research has suggested that CO2 fixation in heterotrophic microbes is feasible after incorporation of a CO2-fixing bypass into the central carbon metabolic pathway, it remains unclear how much and how efficient that CO2 can be fixed by a heterotrophic microbe. A simple metabolic flux index was developed to indicate the relative strength of the CO2-fixation flux. When two sequential enzymes of the cyanobacterial Calvin cycle were incorporated into an E. coli strain, the flux of the CO2-fixing bypass pathway accounts for 13 % of that of the central carbon metabolic pathway. The value was increased to 17 % when the carbonic anhydrase involved in the cyanobacterial carbon concentrating mechanism was introduced, indicating that low intracellular CO2 concentration is one limiting factor for CO2 fixation in E. coli. The engineered CO2-fixing E. coli with carbonic anhydrase was able to fix CO2 at a rate of 19.6 mg CO2 L(-1) h(-1) or the specific rate of 22.5 mg CO2 g DCW(-1) h(-1). This CO2-fixation rate is comparable with the reported rates of 14 autotrophic cyanobacteria and algae (10.5-147.0 mg CO2 L(-1) h(-1) or the specific rates of 3.5-23.7 mg CO2 g DCW(-1) h(-1)). The ability of CO2 fixation was created and improved in E. coli by incorporating partial cyanobacterial Calvin cycle and carbon concentrating mechanism, respectively. Quantitative analysis revealed that the CO2-fixation rate of this strain is comparable with that of the autotrophic cyanobacteria and algae, demonstrating great potential of heterotrophic CO2 fixation.

  15. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems

    NARCIS (Netherlands)

    Hicks Pries, C.E.; van Logtestijn, R.S.P; Schuur, E.A.G.; Natali, S.M.; Cornelissen, J.H.C.; Aerts, R.; Dorrepaal, E.

    2015-01-01

    Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage-a negative climate change

  16. Field and model investigations of freshwater lenses in coastal aquifers

    NARCIS (Netherlands)

    Pauw, P.S.

    2015-01-01

    A major problem of sustaining freshwater supply from freshwater lens is the invasion of saline groundwater into a fresh groundwater body. In many coastal areas saltwater intrusion has led to well closure and reduced freshwater supply. Furthermore, in the future saltwater intrusion is expected to

  17. Predicting freshwater habitat integrity using land-use surrogates

    CSIR Research Space (South Africa)

    Amis, MA

    2007-04-01

    Full Text Available Freshwater biodiversity is globally threatened due to human disturbances, but freshwater ecosystems have been accorded less protection than their terrestrial and marine counterparts. Few criteria exist for assessing the habitat integrity of rivers...

  18. Effects of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil

    DEFF Research Database (Denmark)

    Rasmussen, Lasse Dam; Sørensen, S. J.

    2001-01-01

    This study investigates the effect of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil. The changes in diversity were monitored in soil microcosms, enriched with 25 mug Hg(II) g(-1) soil, over a period of 3 months...... by purification of total soil DNA and amplification of bacterial 16S rDNA fragments by polymerase chain reaction. Concentrations of bioavailable and total mercury were measured throughout the experiment. The effect on the culturable heterotrophic and genetic diversity was very similar, showing an immediate...... decrease after mercury addition but then slowly increasing throughout the entire experimental period. Pre-exposure levels were not reached within the time span of this investigation. The DGGE band pattern indicated that a shift in the community structure was responsible for recovered diversity. When...

  19. Antibiotic resistance in triclosan heterotrophic plate count bacteria from sewage water / Ilsé Coetzee

    OpenAIRE

    Coetzee, Ilsé

    2015-01-01

    The concentration of triclosan in antiseptics, disinfectants and preservatives in products exceeds the minimal lethal levels. Extensive use of triclosan and antibiotics results in bacterial resistance to their active ingredients. The precise relationship between use and resistance, however, has been challenging to define. The aim of the study was to identify and determine antibiotic resistance profiles of triclosan tolerant heterotrophic plate count bacteria isolates from sewag...

  20. Still acting green: continued expression of photosynthetic genes in the heterotrophic Dinoflagellate Pfiesteria piscicida (Peridiniales, Alveolata.

    Directory of Open Access Journals (Sweden)

    Gwang Hoon Kim

    Full Text Available The loss of photosynthetic function should lead to the cessation of expression and finally loss of photosynthetic genes in the new heterotroph. Dinoflagellates are known to have lost their photosynthetic ability several times. Dinoflagellates have also acquired photosynthesis from other organisms, either on a long-term basis or as "kleptoplastids" multiple times. The fate of photosynthetic gene expression in heterotrophs can be informative into evolution of gene expression patterns after functional loss, and the dinoflagellates ability to acquire new photosynthetic function through additional endosymbiosis. To explore this we analyzed a large-scale EST database consisting of 151,091 unique sequences (29,170 contigs, 120,921 singletons obtained from 454 pyrosequencing of the heterotrophic dinoflagellate Pfiesteria piscicida. About 597 contigs from P. piscicida showed significant homology (E-value

  1. Still acting green: continued expression of photosynthetic genes in the heterotrophic Dinoflagellate Pfiesteria piscicida (Peridiniales, Alveolata).

    Science.gov (United States)

    Kim, Gwang Hoon; Jeong, Hae Jin; Yoo, Yeong Du; Kim, Sunju; Han, Ji Hee; Han, Jong Won; Zuccarello, Giuseppe C

    2013-01-01

    The loss of photosynthetic function should lead to the cessation of expression and finally loss of photosynthetic genes in the new heterotroph. Dinoflagellates are known to have lost their photosynthetic ability several times. Dinoflagellates have also acquired photosynthesis from other organisms, either on a long-term basis or as "kleptoplastids" multiple times. The fate of photosynthetic gene expression in heterotrophs can be informative into evolution of gene expression patterns after functional loss, and the dinoflagellates ability to acquire new photosynthetic function through additional endosymbiosis. To explore this we analyzed a large-scale EST database consisting of 151,091 unique sequences (29,170 contigs, 120,921 singletons) obtained from 454 pyrosequencing of the heterotrophic dinoflagellate Pfiesteria piscicida. About 597 contigs from P. piscicida showed significant homology (E-value

  2. Laminaria digitata as potential carbon source in heterotrophic microalgae cultivation for the production of fish feed supplement

    DEFF Research Database (Denmark)

    D'Este, Martina; Alvarado-Morales, Merlin; Angelidaki, Irini

    2017-01-01

    A novel concept using the macroalgae Laminaria digitata as substrate to grow heterotrophically microalgae species to be used as fish feed supplement is investigated in the present study. Enzymatic hydrolysis of the macroalgae was performed to release the sugars present in the biomass. The hydroly......A novel concept using the macroalgae Laminaria digitata as substrate to grow heterotrophically microalgae species to be used as fish feed supplement is investigated in the present study. Enzymatic hydrolysis of the macroalgae was performed to release the sugars present in the biomass...... was selected for further cultivation in batch reactors and its protein content and amino acid composition were measured. At the end of the process the biomass production reached 10.68 ± 1.33 g L− 1with a total protein accumulation of 41.77 ± 1.82% (dry weight basis) and a protein yield of 0.17 ± 0.06. Moreover...

  3. Restricted-range fishes and the conservation of Brazilian freshwaters.

    Science.gov (United States)

    Nogueira, Cristiano; Buckup, Paulo A; Menezes, Naercio A; Oyakawa, Osvaldo T; Kasecker, Thais P; Ramos Neto, Mario B; da Silva, José Maria C

    2010-06-30

    Freshwaters are the most threatened ecosystems on earth. Although recent assessments provide data on global priority regions for freshwater conservation, local scale priorities remain unknown. Refining the scale of global biodiversity assessments (both at terrestrial and freshwater realms) and translating these into conservation priorities on the ground remains a major challenge to biodiversity science, and depends directly on species occurrence data of high taxonomic and geographic resolution. Brazil harbors the richest freshwater ichthyofauna in the world, but knowledge on endemic areas and conservation in Brazilian rivers is still scarce. Using data on environmental threats and revised species distribution data we detect and delineate 540 small watershed areas harboring 819 restricted-range fishes in Brazil. Many of these areas are already highly threatened, as 159 (29%) watersheds have lost more than 70% of their original vegetation cover, and only 141 (26%) show significant overlap with formally protected areas or indigenous lands. We detected 220 (40%) critical watersheds overlapping hydroelectric dams or showing both poor formal protection and widespread habitat loss; these sites harbor 344 endemic fish species that may face extinction if no conservation action is in place in the near future. We provide the first analysis of site-scale conservation priorities in the richest freshwater ecosystems of the globe. Our results corroborate the hypothesis that freshwater biodiversity has been neglected in former conservation assessments. The study provides a simple and straightforward method for detecting freshwater priority areas based on endemism and threat, and represents a starting point for integrating freshwater and terrestrial conservation in representative and biogeographically consistent site-scale conservation strategies, that may be scaled-up following naturally linked drainage systems. Proper management (e. g. forestry code enforcement, landscape

  4. length-weight relationhip of freshwater wild fish species

    African Journals Online (AJOL)

    Dr Naeem

    2012-06-21

    Jun 21, 2012 ... Length-weight (LWR) and length-length relationships (LLR) were determined for a freshwater catfish ... Key words: Mystus bleekeri, length-weight relationship, length-length relationship, predictive equations. INTRODUCTION. Mystus bleekeri (freshwater catfish Day, 1877), locally ..... fish farmers, Aquacult.

  5. Simulating soil N2O emissions and heterotrophic CO2 respiration in arabe systems using FASSET and MoBiLE-DNDC

    DEFF Research Database (Denmark)

    Chirinda, Ngonidzashe; Kracher, Daniele; Lægdsmand, Mette

    2011-01-01

    Modelling of soil emissions of nitrous oxide (N2O) and carbon dioxide (CO2) is complicated by complex interactions between processes and factors influencing their production, consumption and transport. In this study N2O emissions and heterotrophic CO2 respiration were simulated from soils under w...... mineral nitrogen, which seemed to originate from deficiencies in simulating degradation of soil organic matter, incorporated residues of catch crops and organic fertilizers. To improve the performance of the models, organic matter decomposition parameters need to be revised.......Modelling of soil emissions of nitrous oxide (N2O) and carbon dioxide (CO2) is complicated by complex interactions between processes and factors influencing their production, consumption and transport. In this study N2O emissions and heterotrophic CO2 respiration were simulated from soils under...... winter wheat grown in three different organic and one inorganic fertilizer-based cropping system using two different models, i.e., MoBiLE-DNDC and FASSET. The two models were generally capable of simulating most seasonal trends of measured soil heterotrophic CO2 respiration and N2O emissions. Annual soil...

  6. Autotrophic and heterotrophic activity in Arctic first-year sea-ice: Seasonal study from Marlene Bight, SW Greenland

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Kristensen, Morten; Rysgaard, Søren

    2010-01-01

    in situ in plastic bags with subsequent melting and measurements of changes in total O-2 concentrations. The standard incubations showed that the annual succession followed a distinctive pattern, with a low, almost balancing heterotrophic and autotrophic activity during February and March. This period...

  7. The freshwater biodegradation potential of nine Alaskan oils

    International Nuclear Information System (INIS)

    Blenkinsopp, S.; Segy, G.

    1997-01-01

    Nine Alaskan representative crude oils and oil products with freshwater spill potential were collected, aged, and incubated in the presence of the standard freshwater inoculum for 28 days at 10 degrees C. Detailed analytical chemistry was performed on all samples to quantify compositional changes. All of the samples tested exhibited measurable hydrocarbon loss as a result of incubation with the freshwater inoculum. Total saturate and total n-alkane biodegradation were greatly enhanced when nutrients were present. The oil products Jet B Fuel and Diesel No. 2 appear to be more biodegradable than the Alaska North Slope and Cook Inlet crude oils tested, while the Bunker C/Diesel mixture appears to be less biodegradable than these crude oils. These results suggest that the screening procedures described here can provide useful information when applying bioremediation technology to the cleanup of selected oiled freshwater environments. 10 refs., 5 tabs., 13 figs

  8. The Effectiveness of Heterotrophic Bacteria Isolated from Dumai Marine Waters of Riau, Used as Antibacterial against Pathogens in Fish Culture

    Science.gov (United States)

    Feliatra, F.; Nursyirwani; Tanjung, A.; Adithiya, DS; Susanna, M.; Lukystyowati, I.

    2018-02-01

    Heterotrophic bacteria have an important role as decomposer of organic compounds (mineralization) derived from industrial waste, decomposition of unconsumed feed, faecal, excretion of fish, and have the ability to inhibit the growth of pathogenic bacteria. We investigated the role of heterotrophic bacteria used as antibacterial against pathogens in fish culture.This research was conducted from January until March 2017. The phylogenitic of the isolated bacterial was determined by 16S rDNA sequences analysis. Antagonism test showed that the bacteria had the ability to inhibit the growth of pathogenic bacteria (Vibrio alginolyticus, Aeromonas hydrophila and Pseudomonas sp.) Three isolates (Dm5, Dm6 and Dm4) indicated high inhibition zones which were classified into strong category with the average from 10.5 to 11.8 mm toward V. alginolitycus. Other isolates were classified into medium and weak category. Based on DNA analysis of heterotrophic bacteria isolated from marine waters of industrial area and low salinity of estuarine waters twelve strains of bacteria were identified, and all had highest level of homology to Bacillus sp.,one isolates has similarity to Enterobacter cloacae, other isolates to Clostridium cetobutylicum. Most of isolated bacteria obtained from the waters of industrial area due to it received much of nutrients that very influenced the growth of bacteria.

  9. Threatened and Endangered Freshwater Fish and Mussel Species Richness

    Data.gov (United States)

    U.S. Environmental Protection Agency — These data represent predicted current distributions of all US listed Threatened and Endangered freshwater fish and freshwater mussels in the Middle-Atlantic region....

  10. Dynamics of auto- and heterotrophic picoplankton and associated viruses in Lake Geneva.

    Digital Repository Service at National Institute of Oceanography (India)

    Parvathi, A.; Zhong, X.; Ram, A.S.P.; Jacquet, S.

    Hydrol. Earth Syst. Sci., 18, 1073–1087, 2014 www.hydrol-earth-syst-sci.net/18/1073/2014/ doi:10.5194/hess-18-1073-2014 © Author(s) 2014. CC Attribution 3.0 License. Hydrology and Earth System Sciences O pen A ccess Dynamics of auto- and heterotrophic... Commission for the Protection of Lake Geneva (see reports at http://www.cipel.org/sp/), in order to study the water quality, functioning and evolution of this ecosys- tem, which is connected to an important catchment area. The detailed analysis of the viral...

  11. Growth strategy of heterotrophic bacterial population along successional sequence on spoil of brown coal colliery substrate

    Czech Academy of Sciences Publication Activity Database

    Krištůfek, Václav; Elhottová, Dana; Chroňáková, Alica; Dostálková, I.; Picek, T.; Kalčík, Jiří

    2005-01-01

    Roč. 50, č. 5 (2005), s. 427-435 ISSN 0015-5632 R&D Projects: GA ČR(CZ) GA526/03/1259 Institutional research plan: CEZ:AV0Z60660521 Keywords : growth strategy * heterotrophic bacterial population * brown coal colliery spoil Subject RIV: EH - Ecology, Behaviour Impact factor: 0.918, year: 2005

  12. Study on polychlorobiphenyl serum levels in French consumers of freshwater fish

    International Nuclear Information System (INIS)

    Desvignes, Virginie; Volatier, Jean-Luc; Bels, Frédéric de; Zeghnoun, Abdelkrim; Favrot, Marie-Christine; Marchand, Philippe; Le Bizec, Bruno; Rivière, Gilles; Leblanc, Jean-Charles; Merlo, Mathilde

    2015-01-01

    Introduction: Polychlorobiphenyls (PCBs) are persistent pollutants that are widespread in the environment and in foodstuffs, particularly in freshwater fish, which frequently exceed the maximum levels set by European regulations. Objectives: First, we describe the consumption of freshwater fish and serum PCB levels in French anglers, a population expected to have the highest level of dietary PCB exposure. Second, we investigated whether there is a statistical relationship between serum PCB levels and the angler consumption of freshwater fish with high PCB bioaccumulation potential (PCB-BP + freshwater fish) in order to make recommendations with regard to safe consumption of freshwater fish. Methods: We conducted a survey of anglers from six sites with contrasting PCB contamination levels. The survey included a food consumption frequency questionnaire and blood samples were taken to assess serum PCB levels. We used a regression model to determine the main factors contributing to serum PCB levels. Results: Consumption of PCB-BP + freshwater fish was relatively infrequent. Serum PCB levels of the study population and of women of childbearing age were in the same range as those observed in the French population and in neighbouring European countries, but higher than in the North American population. The two factors with the highest positive association with serum PCB levels were age (R 2 = 61%) and the consumption of PCB-BP + freshwater fish (R 2 = 2%). Using the regression model, we calculated, for several scenarios depending on the age and gender of the population, the maximum annual frequencies for PCB-BP + freshwater fish consumption that do not exceed the critical body burden threshold. Conclusion: Following the results of this study, the French agency for food, environmental and occupational health and safety (ANSES) issued an opinion and recommended some specific maximum freshwater fish consumption frequencies to protect the French general population

  13. Study on polychlorobiphenyl serum levels in French consumers of freshwater fish

    Energy Technology Data Exchange (ETDEWEB)

    Desvignes, Virginie, E-mail: virginie.desvignes@anses.fr [Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 27–31, avenue du Général Leclerc, Maisons-Alfort, F-94701 (France); Volatier, Jean-Luc [Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 27–31, avenue du Général Leclerc, Maisons-Alfort, F-94701 (France); Bels, Frédéric de [Division for Public Health and Care, French National Cancer Institute (INCa), 52, avenue André Morizet, Boulogne Billancourt Cedex, F-92513 (France); Zeghnoun, Abdelkrim [Department of Environmental Health, French Institute for Public Health Surveillance (InVS), 12, rue du Val d' Osne, Saint-Maurice, F-94415 (France); Favrot, Marie-Christine [Ministry of Health, 14, avenue Duquesne, Paris, F-75350 (France); Marchand, Philippe; Le Bizec, Bruno [LUNAM Université, Oniris, Laboratoire d' Etude des Résidus et Contaminants dans les Aliments (LABERCA), USC INRA 1329, Nantes, F-44307 (France); Rivière, Gilles; Leblanc, Jean-Charles; Merlo, Mathilde [Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 27–31, avenue du Général Leclerc, Maisons-Alfort, F-94701 (France)

    2015-02-01

    Introduction: Polychlorobiphenyls (PCBs) are persistent pollutants that are widespread in the environment and in foodstuffs, particularly in freshwater fish, which frequently exceed the maximum levels set by European regulations. Objectives: First, we describe the consumption of freshwater fish and serum PCB levels in French anglers, a population expected to have the highest level of dietary PCB exposure. Second, we investigated whether there is a statistical relationship between serum PCB levels and the angler consumption of freshwater fish with high PCB bioaccumulation potential (PCB-BP{sup +} freshwater fish) in order to make recommendations with regard to safe consumption of freshwater fish. Methods: We conducted a survey of anglers from six sites with contrasting PCB contamination levels. The survey included a food consumption frequency questionnaire and blood samples were taken to assess serum PCB levels. We used a regression model to determine the main factors contributing to serum PCB levels. Results: Consumption of PCB-BP{sup +} freshwater fish was relatively infrequent. Serum PCB levels of the study population and of women of childbearing age were in the same range as those observed in the French population and in neighbouring European countries, but higher than in the North American population. The two factors with the highest positive association with serum PCB levels were age (R{sup 2} = 61%) and the consumption of PCB-BP{sup +} freshwater fish (R{sup 2} = 2%). Using the regression model, we calculated, for several scenarios depending on the age and gender of the population, the maximum annual frequencies for PCB-BP{sup +} freshwater fish consumption that do not exceed the critical body burden threshold. Conclusion: Following the results of this study, the French agency for food, environmental and occupational health and safety (ANSES) issued an opinion and recommended some specific maximum freshwater fish consumption frequencies to protect the French

  14. Changing Arctic Ocean freshwater pathways.

    Science.gov (United States)

    Morison, James; Kwok, Ron; Peralta-Ferriz, Cecilia; Alkire, Matt; Rigor, Ignatius; Andersen, Roger; Steele, Mike

    2012-01-04

    Freshening in the Canada basin of the Arctic Ocean began in the 1990s and continued to at least the end of 2008. By then, the Arctic Ocean might have gained four times as much fresh water as comprised the Great Salinity Anomaly of the 1970s, raising the spectre of slowing global ocean circulation. Freshening has been attributed to increased sea ice melting and contributions from runoff, but a leading explanation has been a strengthening of the Beaufort High--a characteristic peak in sea level atmospheric pressure--which tends to accelerate an anticyclonic (clockwise) wind pattern causing convergence of fresh surface water. Limited observations have made this explanation difficult to verify, and observations of increasing freshwater content under a weakened Beaufort High suggest that other factors must be affecting freshwater content. Here we use observations to show that during a time of record reductions in ice extent from 2005 to 2008, the dominant freshwater content changes were an increase in the Canada basin balanced by a decrease in the Eurasian basin. Observations are drawn from satellite data (sea surface height and ocean-bottom pressure) and in situ data. The freshwater changes were due to a cyclonic (anticlockwise) shift in the ocean pathway of Eurasian runoff forced by strengthening of the west-to-east Northern Hemisphere atmospheric circulation characterized by an increased Arctic Oscillation index. Our results confirm that runoff is an important influence on the Arctic Ocean and establish that the spatial and temporal manifestations of the runoff pathways are modulated by the Arctic Oscillation, rather than the strength of the wind-driven Beaufort Gyre circulation.

  15. Seasonal variation in population density and heterotrophic activity of attached and free-living bacteria in coastal waters

    International Nuclear Information System (INIS)

    Iriberri, J.; Unanue, M.; Barcina, I.; Egea, L.

    1987-01-01

    The abundance and heterotrophic activity of attached and free-living bacteria was examined seasonally in coastal water. Heterotrophic activity was determined by the uptake of [ 14 C]glucose. The density of attached bacteria was always minor, not showing a seasonal variation, whereas the free-living bacteria were more numerous and showed a marked seasonal variation, their density being higher under warmer conditions. The contribution of the attached bacteria to the total assimilation of [ 14 C]glucose was lower than that of the free-living bacteria, neither of them showing a seasonal variation. On a cellular basis, attached bacteria were more active, since they assimilated more [ 14 C]glucose and showed, under warmer conditions, a higher cellular volume. The authors consider that the factors responsible for these observations were the amount and quality of the particulate material, the different availability of organic matter for the two types of bacteria, and in a fundamental way, the variation in water temperature

  16. Carbon partitioning in the food web of a high mountain lake: from bacteria to zooplankton

    Directory of Open Access Journals (Sweden)

    Alessandra PUGNETTI

    1999-08-01

    Full Text Available The organisms of the microbial loop in Lake Paione Superiore (LPS, a high mountain lake in the Italian Alpine region, were studied together with phytoplankton and zooplankton for three successive years. The biomass of bacteria, HNF (heterotrophic nanoflagellates, ciliates and phytoplankton, as mean carbon concentration in the three years, was 30 and 37 μg C l-1 near the surface (SUR and the bottom (BOT respectively. Under the ice-cover the mean biomass carbon decreased especially at the BOT, whereas at SUR the decrease was less evident due to the maintenance of higher phytoplankton biomass (mixotrophic flagellates. In LPS ~50% of the carbon was confined in bacteria, 20% in protozoa and 30% in phytoplankton. The ratio Autotrophs/Heterotrophs was lower than 1 (mean: 0,97 at SUR and 0,58 at BOT thus indicating a system with a predominance of the heterotrophs. This might be the result of light inhibition of algal growth coupled to a production of dissolved carbon, utilized by bacteria. During late summer the peak of Daphnia longispina, the main component of the zooplankton of LPS, increased the carbon content in the lake to a total of 158 and 300 μg C l-1 in 1997 and 1998 respectively. At the late summer peaks, zooplankton represented from 78 to 89% of the total carbon of the pelagic communities. Furthermore, the presence of Daphnia could be responsible for a decrease in the biomass carbon of a variety of organisms (algae, protozoa and bacteria. It may be possible that this is an instance of zooplankton grazing on algae, protozoa and also bacteria, as Daphnia has very broad niches and may eat pico-, nanoplankton and small ciliates. In the oligotrophic LPS, a diet which also includes protozoa could give Daphnia a further chance of survival, as ciliates are an important source of fatty acids and sterols.

  17. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: control of sulfate production.

    Science.gov (United States)

    Sahinkaya, Erkan; Dursun, Nesrin; Kilic, Adem; Demirel, Sevgi; Uyanik, Sinan; Cinar, Ozer

    2011-12-15

    A long-term performance of a packed-bed bioreactor containing sulfur and limestone was evaluated for the denitrification of drinking water. Autotrophic denitrification rate was limited by the slow dissolution rate of sulfur and limestone. Dissolution of limestone for alkalinity supplementation increased hardness due to release of Ca(2+). Sulfate production is the main disadvantage of the sulfur autotrophic denitrification process. The effluent sulfate concentration was reduced to values below drinking water guidelines by stimulating the simultaneous heterotrophic and autotrophic denitrification with methanol supplementation. Complete removal of 75 mg/L NO(3)-N with effluent sulfate concentration of around 225 mg/L was achieved when methanol was supplemented at methanol/NO(3)-N ratio of 1.67 (mg/mg), which was much lower than the theoretical value of 2.47 for heterotrophic denitrification. Batch studies showed that sulfur-based autotrophic NO(2)-N reduction rate was around three times lower than the reduction rate of NO(3)-N, which led to NO(2)-N accumulation at high loadings. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Lysogenic infection in sub-tropical freshwater cyanobacteria cultures and natural blooms

    NARCIS (Netherlands)

    Steenhauer, L.M.; Pollard, P.C.; Brussaard, C.P.D.; Säwström, C.

    2014-01-01

    Lysogeny has been reported for a few freshwater cyanobacteria cultures, but it is unknown how prevalent it is in freshwater cyanobacteria in situ. Here we tested for lysogeny in (a) cultures of eight Australian species of subtropical freshwater cyanobacteria; (b) seven strains of one species:

  19. Restricted-range fishes and the conservation of Brazilian freshwaters.

    Directory of Open Access Journals (Sweden)

    Cristiano Nogueira

    Full Text Available BACKGROUND: Freshwaters are the most threatened ecosystems on earth. Although recent assessments provide data on global priority regions for freshwater conservation, local scale priorities remain unknown. Refining the scale of global biodiversity assessments (both at terrestrial and freshwater realms and translating these into conservation priorities on the ground remains a major challenge to biodiversity science, and depends directly on species occurrence data of high taxonomic and geographic resolution. Brazil harbors the richest freshwater ichthyofauna in the world, but knowledge on endemic areas and conservation in Brazilian rivers is still scarce. METHODOLOGY/PRINCIPAL FINDINGS: Using data on environmental threats and revised species distribution data we detect and delineate 540 small watershed areas harboring 819 restricted-range fishes in Brazil. Many of these areas are already highly threatened, as 159 (29% watersheds have lost more than 70% of their original vegetation cover, and only 141 (26% show significant overlap with formally protected areas or indigenous lands. We detected 220 (40% critical watersheds overlapping hydroelectric dams or showing both poor formal protection and widespread habitat loss; these sites harbor 344 endemic fish species that may face extinction if no conservation action is in place in the near future. CONCLUSIONS/SIGNIFICANCE: We provide the first analysis of site-scale conservation priorities in the richest freshwater ecosystems of the globe. Our results corroborate the hypothesis that freshwater biodiversity has been neglected in former conservation assessments. The study provides a simple and straightforward method for detecting freshwater priority areas based on endemism and threat, and represents a starting point for integrating freshwater and terrestrial conservation in representative and biogeographically consistent site-scale conservation strategies, that may be scaled-up following naturally linked

  20. Vulnerability of European freshwater catchments to climate change.

    Science.gov (United States)

    Markovic, Danijela; Carrizo, Savrina F; Kärcher, Oskar; Walz, Ariane; David, Jonathan N W

    2017-09-01

    Climate change is expected to exacerbate the current threats to freshwater ecosystems, yet multifaceted studies on the potential impacts of climate change on freshwater biodiversity at scales that inform management planning are lacking. The aim of this study was to fill this void through the development of a novel framework for assessing climate change vulnerability tailored to freshwater ecosystems. The three dimensions of climate change vulnerability are as follows: (i) exposure to climate change, (ii) sensitivity to altered environmental conditions and (iii) resilience potential. Our vulnerability framework includes 1685 freshwater species of plants, fishes, molluscs, odonates, amphibians, crayfish and turtles alongside key features within and between catchments, such as topography and connectivity. Several methodologies were used to combine these dimensions across a variety of future climate change models and scenarios. The resulting indices were overlaid to assess the vulnerability of European freshwater ecosystems at the catchment scale (18 783 catchments). The Balkan Lakes Ohrid and Prespa and Mediterranean islands emerge as most vulnerable to climate change. For the 2030s, we showed a consensus among the applied methods whereby up to 573 lake and river catchments are highly vulnerable to climate change. The anthropogenic disruption of hydrological habitat connectivity by dams is the major factor reducing climate change resilience. A gap analysis demonstrated that the current European protected area network covers climate change. Priority should be placed on enhancing stakeholder cooperation at the major basin scale towards preventing further degradation of freshwater ecosystems and maintaining connectivity among catchments. The catchments identified as most vulnerable to climate change provide preliminary targets for development of climate change conservation management and mitigation strategies. © 2017 John Wiley & Sons Ltd.

  1. A population of giant tailed virus-like particles associated with heterotrophic flagellates in a lake-type reservoir

    Czech Academy of Sciences Publication Activity Database

    Weinbauer, M.G.; Dolan, J. R.; Šimek, Karel

    2015-01-01

    Roč. 76, č. 2 (2015), s. 111-116 ISSN 0948-3055 R&D Projects: GA ČR(CZ) GA13-00243S Institutional support: RVO:60077344 Keywords : viral infection * virus induced mortality * burst size * heterotrophic flagellates Subject RIV: EE - Microbiology, Virology Impact factor: 2.109, year: 2015

  2. Electromagnetic methods for mapping freshwater lenses on Micronesian atoll islands

    Science.gov (United States)

    Anthony, S.S.

    1992-01-01

    The overall shape of freshwater lenses can be determined by applying electromagnetic methods and inverse layered-earth modeling to the mapping of atoll island freshwater lenses. Conductivity profiles were run across the width of the inhabited islands at Mwoakilloa, Pingelap, and Sapwuahfik atolls of the Pohnpei State, Federated States of Micronesia using a dual-loop, frequency-domain, electromagnetic profiling system. Six values of apparent conductivity were recorded at each sounding station and were used to interpret layer conductivities and/or thicknesses. A three-layer model that includes the unsaturated, freshwater, and saltwater zones was used to simulate apparent-conductivity data measured in the field. Interpreted results were compared with chloride-concentration data from monitoring wells and indicate that the interface between freshwater and saltwater layers, defined from electromagnetic data, is located in the upper part of the transition zone, where the chloride-concentration profile shows a rapid increase with depth. The electromagnetic method can be used to interpret the thickness of the freshwater between monitoring wells, but can not be used to interpret the thickness of freshwater from monitoring wells to the margin of an island. ?? 1992.

  3. Predicting freshwater habitat integrity using land-use surrogates

    African Journals Online (AJOL)

    2007-04-02

    Apr 2, 2007 ... Quantification of potential surrogates of freshwater habitat integrity. We chose a series of land-use variables that might be suitable predictors for assessing freshwater habitat integrity from the land cover map (CSIR 2005) and added separate GIS surfaces for human population density and the distribution of ...

  4. A Synopsis of Global Mapping of Freshwater Habitats and Biodiversity: Implications for Conservation

    Energy Technology Data Exchange (ETDEWEB)

    McManamay, Ryan A. [ORNL; Griffiths, Natalie A. [ORNL; DeRolph, Christopher R. [ORNL; Pracheil, Brenda M. [ORNL

    2018-01-01

    Accurately mapping freshwater habitats and biodiversity at high-resolutions across the globe is essential for assessing the vulnerability and threats to freshwater organisms and prioritizing conservation efforts. Since the 2000s, extensive efforts have been devoted to mapping global freshwater habitats (rivers, lakes, and wetlands), the spatial representation of which has changed dramatically over time with new geospatial data products and improved remote sensing technologies. Some of these mapping efforts, however, are still coarse representations of actual conditions. Likewise, the resolution and scope of global freshwater biodiversity compilation efforts have also increased, but are yet to mirror the spatial resolution and fidelity of mapped freshwater environments. In our synopsis, we find that efforts to map freshwater habitats have been conducted independently of those for freshwater biodiversity; subsequently, there is little congruence in the spatial representation and resolution of the two efforts. We suggest that global species distribution models are needed to fill this information gap; however, limiting data on habitat characteristics at scales that complement freshwater habitats has prohibited global high-resolution biogeography efforts. Emerging research trends, such as mapping habitat alteration in freshwater ecosystems and trait biogeography, show great promise in mechanistically linking global anthropogenic stressors to freshwater biodiversity decline and extinction risk.

  5. Spatio-temporal reproducibility of the microbial food web structure associated with the change in temperature: Long-term observations in the Adriatic Sea

    Science.gov (United States)

    Šolić, Mladen; Grbec, Branka; Matić, Frano; Šantić, Danijela; Šestanović, Stefanija; Ninčević Gladan, Živana; Bojanić, Natalia; Ordulj, Marin; Jozić, Slaven; Vrdoljak, Ana

    2018-02-01

    Global and atmospheric climate change is altering the thermal conditions in the Adriatic Sea and, consequently, the marine ecosystem. Along the eastern Adriatic coast sea surface temperature (SST) increased by an average of 1.03 °C during the period from 1979 to 2015, while in the recent period, starting from 2008, a strong upward almost linear trend of 0.013 °C/month was noted. Being mainly oligotrophic, the middle Adriatic Sea is characterized by the important role played by the microbial food web in the production and transfer of biomass and energy towards higher trophic levels. It is very important to understand the effect of warming on microbial communities, since small temperature increases in surface seawater can greatly modify the microbial role in the global carbon cycle. In this study, the Self-Organizing Map (SOM) procedure was used to analyse the time series of a number of microbial parameters at two stations with different trophic status in the central Adriatic Sea. The results show that responses of the microbial food web (MFW) structure to temperature changes are reproducible in time. Furthermore, qualitatively similar changes in the structure of the MFW occurred regardless of the trophic status. The rise in temperature was associated with: (1) the increasing importance of microbial heterotrophic activities (increase bacterial growth and bacterial predator abundance, particularly heterotrophic nanoflagellates) and (2) the increasing importance of autotrophic picoplankton (APP) in the MFW.

  6. Mechanical challenges to freshwater residency in sharks and rays.

    Science.gov (United States)

    Gleiss, Adrian C; Potvin, Jean; Keleher, James J; Whitty, Jeff M; Morgan, David L; Goldbogen, Jeremy A

    2015-04-01

    Major transitions between marine and freshwater habitats are relatively infrequent, primarily as a result of major physiological and ecological challenges. Few species of cartilaginous fish have evolved to occupy freshwater habitats. Current thought suggests that the metabolic physiology of sharks has remained a barrier to the diversification of this taxon in freshwater ecosystems. Here, we demonstrate that the physical properties of water provide an additional constraint for this species-rich group to occupy freshwater systems. Using hydromechanical modeling, we show that occurrence in fresh water results in a two- to three-fold increase in negative buoyancy for sharks and rays. This carries the energetic cost of lift production and results in increased buoyancy-dependent mechanical power requirements for swimming and increased optimal swim speeds. The primary source of buoyancy, the lipid-rich liver, offers only limited compensation for increased negative buoyancy as a result of decreasing water density; maintaining the same submerged weight would involve increasing the liver volume by very large amounts: 3- to 4-fold in scenarios where liver density is also reduced to currently observed minimal levels and 8-fold without any changes in liver density. The first data on body density from two species of elasmobranch occurring in freshwater (the bull shark Carcharhinus leucas, Müller and Henle 1839, and the largetooth sawfish Pristis pristis, Linnaeus 1758) support this hypothesis, showing similar liver sizes as marine forms but lower liver densities, but the greatest negative buoyancies of any elasmobranch studied to date. Our data suggest that the mechanical challenges associated with buoyancy control may have hampered the invasion of freshwater habitats in elasmobranchs, highlighting an additional key factor that may govern the predisposition of marine organisms to successfully establish in freshwater habitats. © 2015. Published by The Company of Biologists Ltd.

  7. Microplastics ingestion by a common tropical freshwater fishing resource.

    Science.gov (United States)

    Silva-Cavalcanti, Jacqueline Santos; Silva, José Diego B; França, Elton José de; Araújo, Maria Christina Barbosa de; Gusmão, Felipe

    2017-02-01

    Microplastics pollution is widespread in marine ecosystems and a major threat to biodiversity. Nevertheless, our knowledge of the impacts of microplastics in freshwater environments and biota is still very limited. The interaction of microplastics with freshwater organisms and the risks associated with the human consumption of organisms that ingested microplastics remain major knowledge gaps. In this study, we assessed the ingestion of microplastics by Hoplosternum littorale, a common freshwater fish heavily consumed by humans in semi-arid regions of South America. We assessed the abundance and diversity of both plastic debris and other food items found in the gut of fishes caught by local fishermen. We observed that 83% of the fish had plastic debris inside the gut, the highest frequency reported for a fish species so far. Most of the plastic debris (88.6%) recovered from the guts of fish were microplastics (microplastics at the urbanized sections of the river, and that the ingestion of microplastics was negatively correlated with the diversity of other food items in the gut of individual fish. Nevertheless, microplastics ingestion appears to have a limited impact on H. littorale, and the consequences of human consumption of this fish were not assessed. Our results suggest freshwater biota are vulnerable to microplastics pollution and that urbanization is a major factor contributing to the pollution of freshwater environments with microplastics. We suggest the gut content of fish could be used as a tool for the qualitative assessment of microplastics pollution in freshwater ecosystems. Further research is needed to determine the processes responsible for the high incidence of microplastics ingestion by H. littorale, and to evaluate the risk posed to humans by the consumption of freshwater fish that ingested microplastics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Global impacts of energy demand on the freshwater resources of nations.

    Science.gov (United States)

    Holland, Robert Alan; Scott, Kate A; Flörke, Martina; Brown, Gareth; Ewers, Robert M; Farmer, Elizabeth; Kapos, Valerie; Muggeridge, Ann; Scharlemann, Jörn P W; Taylor, Gail; Barrett, John; Eigenbrod, Felix

    2015-12-01

    The growing geographic disconnect between consumption of goods, the extraction and processing of resources, and the environmental impacts associated with production activities makes it crucial to factor global trade into sustainability assessments. Using an empirically validated environmentally extended global trade model, we examine the relationship between two key resources underpinning economies and human well--being-energy and freshwater. A comparison of three energy sectors (petroleum, gas, and electricity) reveals that freshwater consumption associated with gas and electricity production is largely confined within the territorial boundaries where demand originates. This finding contrasts with petroleum, which exhibits a varying ratio of territorial to international freshwater consumption, depending on the origin of demand. For example, although the United States and China have similar demand associated with the petroleum sector, international freshwater consumption is three times higher for the former than the latter. Based on mapping patterns of freshwater consumption associated with energy sectors at subnational scales, our analysis also reveals concordance between pressure on freshwater resources associated with energy production and freshwater scarcity in a number of river basins globally. These energy-driven pressures on freshwater resources in areas distant from the origin of energy demand complicate the design of policy to ensure security of fresh water and energy supply. Although much of the debate around energy is focused on greenhouse gas emissions, our findings highlight the need to consider the full range of consequences of energy production when designing policy.

  9. Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: II. Heterotrophic conditions.

    Science.gov (United States)

    Choix, Francisco J; de-Bashan, Luz E; Bashan, Yoav

    2012-10-10

    The effect of the bacterium Azospirillum brasilense jointly immobilized with Chlorella vulgaris or C. sorokiniana in alginate beads on total carbohydrates and starch was studied under dark and heterotrophic conditions for 144 h in synthetic growth medium supplemented with either d-glucose or Na-acetate as carbon sources. In all treatments, enhanced total carbohydrates and starch content per culture and per cell was obtained after 24h; only jointly immobilized C. vulgaris growing on d-glucose significantly increased total carbohydrates and starch content after 96 h. Enhanced accumulation of carbohydrate and starch under jointly immobilized conditions was variable with time of sampling and substrate used. Similar results occurred when the microalgae was immobilized alone. In both microalgae growing on either carbon sources, the bacterium promoted accumulation of carbohydrates and starch; when the microalgae were immobilized alone, they used the carbon sources for cell multiplication. In jointly immobilized conditions with Chlorella spp., affinity to carbon source and volumetric productivity and yield were higher than when Chlorella spp. were immobilized alone; however, the growth rate was higher in microalgae immobilized alone. This study demonstrates that under heterotrophic conditions, A. brasilense promotes the accumulation of carbohydrates in two strains Chlorella spp. under certain time-substrate combinations, producing mainly starch. As such, this bacterium is a biological factor that can change the composition of compounds in microalgae in dark, heterotrophic conditions. Copyright © 2012. Published by Elsevier Inc.

  10. The effects of wastewater effluent and river discharge on benthic heterotrophic production, organic biomass and respiration in marine coastal sediments

    International Nuclear Information System (INIS)

    Burd, B.; Macdonald, T.; Bertold, S.

    2013-01-01

    Highlights: • High river particulate flux results in low sediment P/B due to large burrowers. • Sewage deposition results in high P/B from biomass depletion and bacterial increase. • Heterotrophic production was 56% of oxidized OC flux with 35% growth efficiency. • Production was correlated with organic/inorganic flux – biomass was not. • δ 15 N patterns illustrate feeding strategies of key taxa near the outfall. -- Abstract: We examine effects of high river particulate flux and municipal wastewater effluent on heterotrophic organic carbon cycling in coastal subtidal sediments. Heterotrophic production was a predictable (r 2 = 0.95) proportion (56%) of oxidized OC flux and strongly correlated with organic/inorganic flux. Consistent growth efficiencies (36%) occurred at all stations. Organic biomass was correlated with total, OC and buried OC fluxes, but not oxidized OC flux. Near the river, production was modest and biomass high, resulting in low P/B. Outfall deposition resulted in depleted biomass and high bacterial production, resulting in the highest P/B. These patterns explain why this region is production “saturated”. The δ 15 N in outfall effluent, sediments and dominant taxa provided insight into where, and which types of organisms feed directly on fresh outfall particulates, on older, refractory material buried in sediments, or utilize chemosynthetic symbiotic bacteria. Results are discussed in the context of declining bottom oxygen conditions along the coast

  11. Freshwater flux to Sermilik Fjord, SE Greenland

    Directory of Open Access Journals (Sweden)

    S. H. Mernild

    2010-10-01

    Full Text Available Terrestrial inputs of freshwater flux to Sermilik Fjord, SE Greenland, were estimated, indicating ice discharge to be the dominant source of freshwater. A freshwater flux of 40.4 ± 4.9×109 m3 y−1 was found (1999–2008, with an 85% contribution originated from ice discharge (65% alone from Helheim Glacier, 11% from terrestrial surface runoff (from melt water and rain, 3% from precipitation at the fjord surface area, and 1% from subglacial geothermal and frictional melting due to basal ice motion. The results demonstrate the dominance of ice discharge as a primary mechanism for delivering freshwater to Sermilik Fjord. Time series of ice discharge for Helheim Glacier, Midgård Glacier, and Fenris Glacier were calculated from satellite-derived average surface velocity, glacier width, and estimated ice thickness, and fluctuations in terrestrial surface freshwater runoff were simulated based on observed meteorological data. These simulations were compared and bias corrected against independent glacier catchment runoff observations. Modeled runoff to Sermilik Fjord was variable, ranging from 2.9 ± 0.4×109 m3 y−1 in 1999 to 5.9 ± 0.9×109 m3 y−1 in 2005. The sub-catchment runoff of the Helheim Glacier region accounted for 25% of the total runoff to Sermilik Fjord. The runoff distribution from the different sub-catchments suggested a strong influence from the spatial variation in glacier coverage, indicating high runoff volumes, where glacier cover was present at low elevations.

  12. Wnt signaling and polarity in freshwater sponges.

    Science.gov (United States)

    Windsor Reid, Pamela J; Matveev, Eugueni; McClymont, Alexandra; Posfai, Dora; Hill, April L; Leys, Sally P

    2018-02-02

    The Wnt signaling pathway is uniquely metazoan and used in many processes during development, including the formation of polarity and body axes. In sponges, one of the earliest diverging animal groups, Wnt pathway genes have diverse expression patterns in different groups including along the anterior-posterior axis of two sponge larvae, and in the osculum and ostia of others. We studied the function of Wnt signaling and body polarity formation through expression, knockdown, and larval manipulation in several freshwater sponge species. Sponge Wnts fall into sponge-specific and sponge-class specific subfamilies of Wnt proteins. Notably Wnt genes were not found in transcriptomes of the glass sponge Aphrocallistes vastus. Wnt and its signaling genes were expressed in archaeocytes of the mesohyl throughout developing freshwater sponges. Osculum formation was enhanced by GSK3 knockdown, and Wnt antagonists inhibited both osculum development and regeneration. Using dye tracking we found that the posterior poles of freshwater sponge larvae give rise to tissue that will form the osculum following metamorphosis. Together the data indicate that while components of canonical Wnt signaling may be used in development and maintenance of osculum tissue, it is likely that Wnt signaling itself occurs between individual cells rather than whole tissues or structures in freshwater sponges.

  13. Can we distinguish autotrophic respiration from heterotrophic respiration in a field site using high temporal resolution CO2 flux measurements?

    Science.gov (United States)

    Biro, Beatrice; Berger, Sina; Praetzel, Leandra; Blodau, Christian

    2016-04-01

    The processes behind C-cycling in peatlands are important to understand for assessing the vulnerability of peatlands as carbon sinks under changing climate conditions. Especially boreal peatlands are likely to underlie strong alterations in the future. It is expected that C-pools that are directly influenced by vegetation and water table fluctuations can be easily destabilized. The CO2 efflux through respiration underlies autotrophic and heterotrophic processes that show different feedbacks on changing environmental conditions. In order to understand the respiration fluxes better for more accurate modelling and prognoses, the determination of the relative importance of different respiration sources is necessary. Earlier studies used e.g. exfoliation experiments, incubation experiments or modelling approaches to estimate the different respiration sources for the total ecosystem respiration (Reco). To further the understanding in this topic, I want to distinguish autotrophic and heterotrophic respiration using high temporal resolution measurements. The study site was selected along a hydrological gradient in a peatland in southern Ontario (Canada) and measurements were conducted from May to September 2015 once per month. Environmental controls (water table, soil temperature and soil moisture) that effect the respiration sources were recorded. In my study I used a Li-COR 6400XT and a Los Gatos greenhouse gas analyzer (GGA). Reco was determined by chamber flux measurements with the GGA, while simultaneously CO2 respiration measurements on different vegetation compartments like roots, leaves and mosses were conducted using the Li-COR 6400XT. The difference between Reco and autotrophic respiration equals heterotrophic respiration. After the measurements, the vegetation plots were harvested and separated for all compartments (leaves, roots, mosses, soil organic matter), dried and weighed. The weighted respiration rates from all vegetation compartments sum up to

  14. Why are freshwater fish so threatened?

    Science.gov (United States)

    Closs, Gerard P.; Angermeier, Paul; Darwall, William R.T.; Balcombe, Stephen R.

    2015-01-01

    The huge diversity of freshwater fishes is concentrated into an area of habitat that covers only about 1% of the Earth's surface, and much of this limited area has already been extensively impacted and intensively managed to meet human needs (Dudgeon et al., 2006). As outlined in Chapter 1, the number and proportions of threatened species tend to rise wherever fish diversity coincides with dense human populations, intensive resource use and development pressure. Of particular concern is the substantial proportion of the global diversity of freshwater fishes concentrated within the Mekong and Amazon Basins and west-central Africa (Berra, 2001; Abell et al., 2008; Dudgeon, 2011; Chapter 1) with extensive exploitation of water resources planned to accelerate in future years (Dudgeon, 2011; Chapter 1). If current trends continue, and the social, political and economic models that have been used to develop industrialised regions of the world over the past two centuries prevail, then the future of a significant proportion of global diversity of freshwater fish species is clearly uncertain.

  15. The Ecology, Life History, and Phylogeny of the Marine Thecate Heterotrophic Dinoflagellates Protoperidinium and Diplopsalidaceae (Dinophyceae)

    Science.gov (United States)

    2006-09-01

    specimens, appeared to be identical to Actinophrys sol and other distinct protist species (as discussed in Coats 2002). Being unaware of the...hypothesizes that photosynthetic eukaryotes evolved through a series of symbiotic relationships between heterotrophic protists and autotrophic prokaryotes...species or genus level. Athecate dinoflagellates were not well preserved by formalin-fixation, and thus were not counted. Metazoans and protists

  16. Origin and evolutionary history of freshwater Rhodophyta: further insights based on phylogenomic evidence.

    Science.gov (United States)

    Nan, Fangru; Feng, Jia; Lv, Junping; Liu, Qi; Fang, Kunpeng; Gong, Chaoyan; Xie, Shulian

    2017-06-07

    Freshwater representatives of Rhodophyta were sampled and the complete chloroplast and mitochondrial genomes were determined. Characteristics of the chloroplast and mitochondrial genomes were analyzed and phylogenetic relationship of marine and freshwater Rhodophyta were reconstructed based on the organelle genomes. The freshwater member Compsopogon caeruleus was determined for the largest chloroplast genome among multicellular Rhodophyta up to now. Expansion and subsequent reduction of both the genome size and GC content were observed in the Rhodophyta except for the freshwater Compsopogon caeruleus. It was inferred that the freshwater members of Rhodophyta occurred through diverse origins based on evidence of genome size, GC-content, phylogenomic analysis and divergence time estimation. The freshwater species Compsopogon caeruleus and Hildenbrandia rivularis originated and evolved independently at the inland water, whereas the Bangia atropurpurea, Batrachospermum arcuatum and Thorea hispida are derived from the marine relatives. The typical freshwater representatives Thoreales and Batrachospermales are probably derived from the marine relative Palmaria palmata at approximately 415-484 MYA. The origin and evolutionary history of freshwater Rhodophyta needs to be testified with more organelle genome sequences and wider global sampling.

  17. Freshwater savings from marine protein consumption

    International Nuclear Information System (INIS)

    Gephart, Jessica A; Pace, Michael L; D’Odorico, Paolo

    2014-01-01

    Marine fisheries provide an essential source of protein for many people around the world. Unlike alternative terrestrial sources of protein, marine fish production requires little to no freshwater inputs. Consuming marine fish protein instead of terrestrial protein therefore represents freshwater savings (equivalent to an avoided water cost) and contributes to a low water footprint diet. These water savings are realized by the producers of alternative protein sources, rather than the consumers of marine protein. This study quantifies freshwater savings from marine fish consumption around the world by estimating the water footprint of replacing marine fish with terrestrial protein based on current consumption patterns. An estimated 7 600 km 3  yr −1 of water is used for human food production. Replacing marine protein with terrestrial protein would require an additional 350 km 3  yr −1 of water, meaning that marine protein provides current water savings of 4.6%. The importance of these freshwater savings is highly uneven around the globe, with savings ranging from as little as 0 to as much as 50%. The largest savings as a per cent of current water footprints occur in Asia, Oceania, and several coastal African nations. The greatest national water savings from marine fish protein occur in Southeast Asia and the United States. As the human population increases, future water savings from marine fish consumption will be increasingly important to food and water security and depend on sustainable harvest of capture fisheries and low water footprint growth of marine aquaculture. (paper)

  18. Survival of heterotrophic bacteria in water environment under substrate deficiency

    International Nuclear Information System (INIS)

    Toth, D.

    1989-01-01

    The relationship between metabolic changes and survival of bacteria in the water environment under substrate deficiency was studied. The main factors supporting cell survival were cryptic growth, utilization of endogenous reserve substances and reorganization of metabolic activities. Based on the utilization of cell-free extract or lysates from dead bacteria, an Enterobacter aerogenes cell suspension yielded 50% more colonies. Metabolic processes of starved heterotrophic bacteria changed markedly and became stabilized at a lower level depending on species involved. The rate of utilization of endogenous reserve substances as indicated by endogenous respiration was related to the rate of cell mortality. Of the test bacteria, Pseudomonas fluorescens showed the lowest rates of endogenous respiration and mortality while in Enterobacter aerogenes these two rates were the highest. (author). 3 figs., 2 tabs.., 16 refs

  19. Stress management skills in the subsurface: H2 stress on thermophilic heterotrophs and methanogens

    Science.gov (United States)

    Topcuoglu, B. D.; Holden, J. F.

    2017-12-01

    Marine hyperthermophilic heterotrophs and methanogens belonging to the Thermococcales and Methanococcales are often found in subsurface environments such as coal and shale beds, marine sediments, and oil reservoirs where they encounter H2 stress conditions. It is important to study the H2 stress survival strategies of these organisms and their cooperation with one another for survival to better understand their biogeochemical impact in hot subsurface environments. In this study, we have shown that H2 inhibition changed the growth kinetics and the transcriptome of Thermococcus paralvinellae. We observed a significant decrease in batch phase growth rates and cell concentrations with high H2 background. Produced metabolite production measurements, RNA-seq analyses of differentially expressed genes and in silico experiments we performed with the T. paralvinellae metabolic model showed that T. paralvinellae produces formate by a formate hydrogenlyase to survive H2 inhibition. We have also shown that H2 limitation caused a significant decrease in batch phase growth rates and methane production rates of the methanogen, Methanocaldococcus jannaschii. H2 stress of both organisms can be ameliorated by syntrophic growth. H2 syntrophy was demonstrated in microcosm incubations for a natural assemblage of Thermococcus and hyperthermophilic methanogens present in hydrothermal fluid samples. This project aims to describe how a hyperthermophilic heterotroph and a hyperthermophilic methanogen eliminate H2 stress and explore cooperation among thermophiles in the hot subsurface.

  20. Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae.

    Directory of Open Access Journals (Sweden)

    Ana Patrícia Graça

    Full Text Available Heterotrophic bacteria associated with two specimens of the marine sponge Erylus discophorus were screened for their capacity to produce bioactive compounds against a panel of human pathogens (Staphylococcus aureus wild type and methicillin-resistant S. aureus (MRSA, Bacillus subtilis, Pseudomonas aeruginosa, Acinetobacter baumanii, Candida albicans and Aspergillus fumigatus, fish pathogen (Aliivibrio fischeri and environmentally relevant bacteria (Vibrio harveyi. The sponges were collected in Berlengas Islands, Portugal. Of the 212 isolated heterotrophic bacteria belonging to Alpha- and Gammaproteobacteria, Actinobacteria and Firmicutes, 31% produced antimicrobial metabolites. Bioactivity was found against both Gram positive and Gram negative and clinically and environmentally relevant target microorganisms. Bioactivity was found mainly against B. subtilis and some bioactivity against S. aureus MRSA, V. harveyi and A. fisheri. No antifungal activity was detected. The three most bioactive genera were Pseudovibrio (47.0%, Vibrio (22.7% and Bacillus (7.6%. Other less bioactive genera were Labrenzia, Acinetobacter, Microbulbifer, Pseudomonas, Gordonia, Microbacterium, Micrococcus and Mycobacterium, Paenibacillus and Staphylococcus. The search of polyketide I synthases (PKS-I and nonribosomal peptide synthetases (NRPSs genes in 59 of the bioactive bacteria suggested the presence of PKS-I in 12 strains, NRPS in 3 strains and both genes in 3 strains. Our results show the potential of the bacterial community associated with Erylus discophorus sponges as producers of bioactive compounds.

  1. Sulfate reduction and methanogenesis at a freshwater

    DEFF Research Database (Denmark)

    Iversen, Vibeke Margrethe Nyvang; Andersen, Martin Søgaard; Jakobsen, Rasmus

    The freshwater-seawater interface was studied in a ~9-m thick anaerobic aquifer located in marine sand and gravel with thin peat lenses. Very limited amounts of iron-oxides are present. Consequently, the dominating redox processes are sulfate reduction and methanogenesis, and the groundwater...... is enriched in dissolved sulfide, methane and bicarbonate. Under normal conditions the seawater-freshwater interface is found at a depth of 4 m at the coastline and reaches the bottom of the aquifer 40 m inland. However, occasional flooding of the area occurs, introducing sulfate to the aquifer. Groundwater...... chemistry was studied in a 120 m transect perpendicular to the coast. Cores were taken for radiotracer rate measurements of sulfate reduction and methanogenesis. In the saline part of the aquifer 35 m inland, sulfate reduction was the dominant process with rates of 0.1-10 mM/year. In the freshwater part 100...

  2. Growth of legionella and other heterotrophic bacteria in a circulating cooling water system exposed to ultraviolet irradiation

    International Nuclear Information System (INIS)

    Kusnetsov, J.M.; Miettinen, I.T.; Martikainen, P.J.; Keskitalo, P.J.; Ahonen, H.E.; Tulkki, A.I.

    1994-01-01

    The effect of ultraviolet irradiation on the growth and occurrence of legionella and other heterotrophic bacteria in a circulating cooling water system was studied. Water of the reservoir was circulated once in 28 h through a side-stream open channel u.v. radiator consisting of two lamps. Viable counts of legionellas and heterotrophic bacteria in water immediately after the u.v. treatment were 0-12 and 0.7-1.2% of those in the reservoir, respectively. U.v. irradiation increased the concentration of easily assimilable organic carbon. In the u.v. irradiated water samples incubated in the laboratory the viable counts of heterotropic bacteria reached the counts in reservoir water within 5 d. The increase in viable counts was mainly due to reactivation of bacterial cells damaged by u.v. light, not because of bacterial multiplication. Despite u.v. irradiation the bacterial numbers in the reservoir water, including legionellas, did not decrease during the experimental period of 33 d. The main growth of bacteria in the reservoir occurred in biofilm and sediment, which were never exposed to u.v. irradiation. (Author)

  3. The potential of freshwater macroalgae as a biofuels feedstock and the influence of nutrient availability on freshwater macroalgal biomass production

    Science.gov (United States)

    Yun, Jin-Ho

    Extensive efforts have been made to evaluate the potential of microalgae as a biofuel feedstock during the past 4-5 decades. However, filamentous freshwater macroalgae have numerous characteristics that favor their potential use as an alternative algal feedstock for biofuels production. Freshwater macroalgae exhibit high rates of areal productivity, and their tendency to form dense floating mats on the water surface imply significant reductions in harvesting and dewater costs compared to microalgae. In Chapter 1, I reviewed the published literature on the elemental composition and energy content of five genera of freshwater macroalgae. This review suggested that freshwater macroalgae compare favorably with traditional bio-based energy sources, including terrestrial residues, wood, and coal. In addition, I performed a semi-continuous culture experiment using the common Chlorophyte genus Oedogonium to investigate whether nutrient availability can influence its higher heating value (HHV), productivity, and proximate analysis. The experimental study suggested that the most nutrient-limited growth conditions resulted in a significant increase in the HHV of the Oedogonium biomass (14.4 MJ/kg to 16.1 MJ/kg). Although there was no significant difference in productivity between the treatments, the average dry weight productivity of Oedogonium (3.37 g/m2/day) was found to be much higher than is achievable with common terrestrial plant crops. Although filamentous freshwater macroalgae, therefore, have significant potential as a renewable source of bioenergy, the ultimate success of freshwater macroalgae as a biofuel feedstock will depend upon the ability to produce biomass at the commercial-scale in a cost-effective and sustainable manner. Aquatic ecology can play an important role to achieve the scale-up of algal crop production by informing the supply rates of nutrients to the cultivation systems, and by helping to create adaptive production systems that are resilient to

  4. Development of a novel artificial medium based on utilization of algal photosynthetic metabolites by symbiotic heterotrophs.

    Science.gov (United States)

    Watanabe, K; Imase, M; Aoyagi, H; Ohmura, N; Saiki, H; Tanaka, H

    2008-09-01

    (i) Quantitative and qualitative analyses of photosynthetic metabolites of Chlorella sorokiniana and elucidation of the mechanism of their utilization by algal symbionts. (ii) Development of artificial medium that imitates photoautotroph-heterotroph interaction and investigation of its suitability for isolation of novel microbes from the environment. Various components, including free dissolved carbohydrates, nitrogenous compounds and vitamin, were detected and together contributed 11.1% (as carbon content) of the total photosynthetic metabolites in the medium. Utilization of these photosynthetic metabolites in algal culture broth by algal symbionts was studied. Many symbionts showed specific utilization patterns. A novel artificial extracellular released organic carbon medium, which imitated the nutritional conditions surrounding algae, was developed based on the pattern of utilization of the algal metabolites by the symbiotic heterotrophs. About 42.9% of the isolates were closely related to photoautotrophic-dependent and oligotrophic bacteria. With the novel artificial medium, it was possible to selectively isolate some bacterial strains. Synthetic bacterial growth medium is an important and basic tool for bacterial isolation from environmental samples. The current study shows that preferential separation of typical bacterial subset can be achieved by using artificial medium that mimics photosynthetic metabolites.

  5. Recent changes in the freshwater composition east of Greenland

    NARCIS (Netherlands)

    de Steur, L.; Pickart, R.S.; Torres, D.J.; Valdimarsson, H.

    2015-01-01

    Results from three hydrographic surveys across the East Greenland Current between 2011 and 2013 are presented with focus on the freshwater sources. End-member analysis using salinity, d18O, and nutrient data shows that while meteoric water dominated the freshwater content, a significant amount of

  6. Extinction rates in North American freshwater fishes, 1900-2010

    Science.gov (United States)

    Burkhead, Noel M.

    2012-01-01

    Widespread evidence shows that the modern rates of extinction in many plants and animals exceed background rates in the fossil record. In the present article, I investigate this issue with regard to North American freshwater fishes. From 1898 to 2006, 57 taxa became extinct, and three distinct populations were extirpated from the continent. Since 1989, the numbers of extinct North American fishes have increased by 25%. From the end of the nineteenth century to the present, modern extinctions varied by decade but significantly increased after 1950 (post-1950s mean = 7.5 extinct taxa per decade). In the twentieth century, freshwater fishes had the highest extinction rate worldwide among vertebrates. The modern extinction rate for North American freshwater fishes is conservatively estimated to be 877 times greater than the background extinction rate for freshwater fishes (one extinction every 3 million years). Reasonable estimates project that future increases in extinctions will range from 53 to 86 species by 2050.

  7. Analysis of consumer behavior in decision making of purchasing ornamental freshwater fish (case of study at ornamental freshwater fish market at Peta Street, Bandung)

    Science.gov (United States)

    Gumilar, I.; Rizal, A.; Sriati; Setiawan Putra, R.

    2018-04-01

    This research aim was to analyzed process of decision making of purchasing ornamental freshwater fish at Peta Street, Bandung City and Analyzed what factors are driving consumers to buy freshwater fish Peta Street. The method used in this research is case study with rating scale and rank spearman analysis. The sampling technique is the accidental random sampling method consist of 30 respondents. The consumer’s decision making process consist of five stages, namely the recognition of needs, information searching, alternative evaluation, process of purchasing, and the evaluation of results. The results showed that at the stage of recognition of needs the motivation of purchasing freshwater fish because respondents are very fond of ornamental freshwater fish, at the stage of information search, the information sources are from the print media and friends or neighborhood. At the stage of alternative evaluation, the reason consumers buy ornamental freshwater fish because the quality of good products. The stage of purchasing decision process consumers bought 1-5 fish with frequency of purchase 1 time per month. The evaluation of results of post-purchasing consumers feel very satisfied with the fish products and the price is very affordable. To observe the factors that influence purchasing motivation of consumers, spearman rank test is the method. The results showed that the quality and price of the product are the factors that most influence the purchase decision of ornamental freshwater fish with the range of student-t value 3,968 and 2,107.

  8. Freshwater Treatment and Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Freshwater Treatment and Test Facility, located at SANGB, has direct year-round access to water from Lake St. Clair and has a State of Michigan approved National...

  9. Pesticides in Brazilian freshwaters: a critical review.

    Science.gov (United States)

    Albuquerque, A F; Ribeiro, J S; Kummrow, F; Nogueira, A J A; Montagner, C C; Umbuzeiro, G A

    2016-07-13

    The widespread use of pesticides in agriculture can lead to water contamination and cause adverse effects on non-target organisms. Brazil has been the world's top pesticide market consumer since 2008, with 381 approved pesticides for crop use. This study provides a comprehensive literature review on the occurrence of pesticide residues in Brazilian freshwaters. We searched for information in official agency records and peer-reviewed scientific literature. Risk quotients were calculated to assess the potential risk posed to aquatic life by the individual pesticides based on their levels of water contamination. Studies about the occurrence of pesticides in freshwaters in Brazil are scarce and concentrated in few sampling sites in 5 of the 27 states. Herbicides (21) accounted for the majority of the substances investigated, followed by fungicides (11), insecticides (10) and plant growth regulators (1). Insecticides are the class of major concern. Brazil would benefit from the implementation of a nationwide pesticide freshwater monitoring program to support preventive, remediation and enforcement actions.

  10. Responses of heterotrophic bacteria abundance and activity to Asian dust enrichment in the low nutrients and low chlorophyll (LNLC) region of the Northwestern Pacific Ocean

    Science.gov (United States)

    Shi, Dongwan; Li, Kuiran; Tian, Yanzhao; Zhang, Xiaohao; Bai, Jie

    2017-05-01

    Bacteria, as an essential part of microbial food web, play a significant role in the marine ecosystem. Dust deposits into the surface ocean carrying with vital nutrient such as Inorganic nitrogen and phosphorus etc., which has an important influence on the life activities of heterotrophic bacteria. The microcosm experiments with Asian dust deposition was carried out on board in the station K3 (26.18°N, 136.73°E) in April 2015, aiming to estimate the impact of dust deposition on the oligotrophic Northwestern pacific Sea, the main goal of the present paper was to assess how dust deposition events affect the abundance and activity of heterotrophic bacteria in low nutrient and low chlorophyll (LNLC) sea area. Station K3 located in the central northwestern Pacific Ocean, which has the characteristic of low nutrient and low chlorophyll. The study shows that there was an N-P co-limitation in station K3, and the deposition of Asian dust can increase the abundance, and promote the activity of heterotrophic bacteria in the station K3.

  11. Heterotrophic soil respiration in forestry-drained peatlands

    International Nuclear Information System (INIS)

    Minkkinen, K.; Shurpali, N. J.; Alm, J.; Penttilae, T.

    2007-01-01

    Heterotrophic soil respiration (CO 2 efflux from the decomposition of peat and root litter) in three forestry-drained peatlands with different site types and with a large climatic gradient from the hemi-boreal (central Estonia) to south (southern Finland) and north boreal (northern Finland) conditions was studied. Instantaneous fluxes varied between 0 and 1.3 g CO 2 -C m -2 h -1 , and annual fluxes between 248 and 515 g CO 2 -C m -2 a -1 . Variation in the annual fluxes among site types was studied only in the south-boreal site where we found a clear increase from nutrient-poor to nutrient-rich site types. More than half of the within-site variation was temporal and explained by soil surface (-5 cm) temperature (T5). The response of soil respiration to T5 varied between the sites; the most northerly site had the highest response to T5 and the most southerly the lowest. This trend further resulted in increased annual fluxes towards north. This unexpected result is hypothesised to be related to differences in site factors like substrate quality, nutrient status and hydrology but also to temperature acclimation, i.e., adaptation of decomposer populations to different climates. (orig.)

  12. Cable Bacteria in Freshwater Sediments

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable...... bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures...... marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary...

  13. New Zealand Freshwater Management: Changing Policy for a Changing World

    Science.gov (United States)

    Rouse, H. L.; Norton, N.

    2014-12-01

    Fresh water is essential to New Zealand's economic, environmental, cultural and social well-being. In line with global trends, New Zealand's freshwater resources are under pressure from increased abstraction and changes in land-use which contribute contaminants to our freshwater systems. Recent central government policy reform introduces greater national direction and guidance, to bring about a step-change in freshwater management. An existing national policy for freshwater management introduced in 2011 requires regional authorities to produce freshwater management plans containing clear freshwater objectives (measurable statements about the desired environmental state for water bodies) and associated limits to resource use (such as environmental flows and quantity allocation limits, and loads of contaminants to be discharged). These plans must integrate water quantity and quality management, consider climate change, and incorporate tangata whenua (New Zealand māori) roles and interests. In recent (2014) national policy amendments, the regional authorities are also required to implement national 'bottom-line' standards for certain attributes of the system to be managed; undertake accounting for all water takes and all sources of contaminants; and to develop and implement their plans in a collaborative way with communities. This rapid change in national policy has necessitated a new way of working for authorities tasked with implementation; many obstacles lie in their path. The scientific methods required to help set water quantity limits are well established, but water quality methods are less so. Collaborative processes have well documented benefits but also raise many challenges, particularly for the communication of complex and often uncertain scientific information. This paper provides background on the national policy changes and offers some early lessons learned by the regional authorities implementing collaborative freshwater management in New Zealand.

  14. Stormwater runoff drives viral community composition changes in inland freshwaters

    Science.gov (United States)

    Williamson, Kurt E.; Harris, Jamie V.; Green, Jasmin C.; Rahman, Faraz; Chambers, Randolph M.

    2014-01-01

    Storm events impact freshwater microbial communities by transporting terrestrial viruses and other microbes to freshwater systems, and by potentially resuspending microbes from bottom sediments. The magnitude of these impacts on freshwater ecosystems is unknown and largely unexplored. Field studies carried out at two discrete sites in coastal Virginia (USA) were used to characterize the viral load carried by runoff and to test the hypothesis that terrestrial viruses introduced through stormwater runoff change the composition of freshwater microbial communities. Field data gathered from an agricultural watershed indicated that primary runoff can contain viral densities approximating those of receiving waters. Furthermore, viruses attached to suspended colloids made up a large fraction of the total load, particularly in early stages of the storm. At a second field site (stormwater retention pond), RAPD-PCR profiling showed that the viral community of the pond changed dramatically over the course of two intense storms while relatively little change was observed over similar time scales in the absence of disturbance. Comparisons of planktonic and particle-associated viral communities revealed two completely distinct communities, suggesting that particle-associated viruses represent a potentially large and overlooked portion of aquatic viral abundance and diversity. Our findings show that stormwater runoff can quickly change the composition of freshwater microbial communities. Based on these findings, increased storms in the coastal mid-Atlantic region predicted by most climate change models will likely have important impacts on the structure and function of local freshwater microbial communities. PMID:24672520

  15. Ammonium transformation in a nitrogen-rich tidal freshwater marsh

    DEFF Research Database (Denmark)

    Gribsholt, B.; Andersson, M.; Boschker, H.T.S.

    2006-01-01

    The fate and transport of watershed-derived ammonium in a tidal freshwater marsh fringing the nutrient rich Scheldt River, Belgium, was quantified in a whole ecosystem 15N labeling experiment. In late summer (September) we added 15N-NH4+ to the flood water entering a 3477 m2 tidal freshwater marsh...

  16. Information to help reduce environmental impacts from freshwater oil spills

    International Nuclear Information System (INIS)

    Fritz, D.E.; Steen, A.E.

    1995-01-01

    The American Petroleum Institute (API) has been working since 1990 to provide information to help the response community minimize the impact of spills to pared jointly with the US inland freshwater. Projects have included a manual, pre National Oceanic and Atmospheric Administration (NOAA), to give guidance on the cleanup techniques that will minimize environmental impacts on spills in freshwater habitats. Nearing completion are a literature review and annotated bibliography of the environmental and human health effects of oil spilled in freshwater habitats. The use of chemical treating agents for freshwater spill applications is being studied with input from other industry and government groups. A project has begun, with funding from API, the Louisiana Applied Oil Spill Research and Development Program, NOAA, the Marine Spill Response Corporation (MSRC), and the US Department of Energy, to evaluate in situ burning of oil spilled in marshes

  17. Comparison of the effect of salinity on the D/H ratio of fatty acids of heterotrophic and photoautotrophic microorganisms

    NARCIS (Netherlands)

    Heinzelmann, S.M.; Chivall, David; M'Boule, D.; Sinke-Schoen, Daniëlle; Villanueva, Laura; Sinninghe Damste, J.S.; Schouten, Stefan; Van der Meer, Marcel T J

    2015-01-01

    The core metabolism of microorganisms has a major influence on the hydrogen isotopic composition of their fatty acids. Heterotrophic microorganisms produce fatty acids with a deuterium to hydrogen (D/H) ratio either slightly depleted or enriched in D compared to the growth water, while photo- and

  18. Genome-Wide DNA Methylation Profiling Reveals Epigenetic Adaptation of Stickleback to Marine and Freshwater Conditions.

    Science.gov (United States)

    Artemov, Artem V; Mugue, Nikolai S; Rastorguev, Sergey M; Zhenilo, Svetlana; Mazur, Alexander M; Tsygankova, Svetlana V; Boulygina, Eugenia S; Kaplun, Daria; Nedoluzhko, Artem V; Medvedeva, Yulia A; Prokhortchouk, Egor B

    2017-09-01

    The three-spined stickleback (Gasterosteus aculeatus) represents a convenient model to study microevolution-adaptation to a freshwater environment. Although genetic adaptations to freshwater environments are well-studied, epigenetic adaptations have attracted little attention. In this work, we investigated the role of DNA methylation in the adaptation of the marine stickleback population to freshwater conditions. DNA methylation profiling was performed in marine and freshwater populations of sticklebacks, as well as in marine sticklebacks placed into a freshwater environment and freshwater sticklebacks placed into seawater. We showed that the DNA methylation profile after placing a marine stickleback into fresh water partially converged to that of a freshwater stickleback. For six genes including ATP4A ion pump and NELL1, believed to be involved in skeletal ossification, we demonstrated similar changes in DNA methylation in both evolutionary and short-term adaptation. This suggested that an immediate epigenetic response to freshwater conditions can be maintained in freshwater population. Interestingly, we observed enhanced epigenetic plasticity in freshwater sticklebacks that may serve as a compensatory regulatory mechanism for the lack of genetic variation in the freshwater population. For the first time, we demonstrated that genes encoding ion channels KCND3, CACNA1FB, and ATP4A were differentially methylated between the marine and the freshwater populations. Other genes encoding ion channels were previously reported to be under selection in freshwater populations. Nevertheless, the genes that harbor genetic and epigenetic changes were not the same, suggesting that epigenetic adaptation is a complementary mechanism to selection of genetic variants favorable for freshwater environment. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Mixotrophic phytoflagellate bacterivory field measurements strongly biased by standard approaches

    DEFF Research Database (Denmark)

    Anderson, Ruth; Jürgens, Klaus; Hansen, Per Juel

    2017-01-01

    Bacterivory among small (≤ 20 μm) phytoflagellates (SP) is increasingly recognized as a globally relevant phenomenon, impacting a wide range of aspects from primary production levels to marine fisheries. However, to correctly parametrize mixotrophic SP in biogeochemical and food web models, a bet...... mixotrophic SP. Overall, this case study indicates that applying the two commonly used premises outlined above can introduce significant biases and considerably alter our perception of mixotrophy in a given system......., a better understanding of the magnitude and regulation of in situ SP feeding is urgently needed. Current methods to determine SP bacterivory in the field may introduce biases by treating these organisms as equivalent to heterotrophic nanoflagellates (HNF). In the present case study we experimentally tested...... two generally employed assumptions of such studies: (A) bacterivory rates of the whole SP community and of distinct SP groups remain constant over `short´ time scales (hours to a day) and (B) SP community ingestion rates approximate the average ingestion rate of all feeding individuals. Food vacuole...

  20. Macroalgal blooms favor heterotrophic diazotrophic bacteria in nitrogen-rich and phosphorus-limited coastal surface waters in the Yellow Sea

    Science.gov (United States)

    Zhang, Xiaoli; Song, Yanjing; Liu, Dongyan; Keesing, John K.; Gong, Jun

    2015-09-01

    Macroalgal blooms may lead to dramatic changes in physicochemical variables and biogeochemical cycling in affected waters. However, little is known about the effects of macroalgal blooms on marine bacteria, especially those functioning in nutrient cycles. We measured environmental factors and investigated bacterial diazotrophs in two niches, surface waters that were covered (CC) and non-covered (CF) with massive macroalgal canopies of Ulva prolifera, in the Yellow Sea in the summer of 2011 using real-time PCR and clone library analysis of nifH genes. We found that heterotrophic diazotrophs (Gammaproteobacteria) dominated the communities and were mostly represented by Vibrio-related phylotypes in both CC and CF. Desulfovibrio-related phylotypes were only detected in CC. There were significant differences in community composition in these two environments (p diazotrophic abundance and community composition and that vibrios and Desulfovibrio-related heterotrophic diazotrophs adapt well to the (N-rich but P-limited) environment during blooming. Potential ecological and microbiological mechanisms behind this scenario are discussed.

  1. Gene Expression in the Three-Spined Stickleback (Gasterosteus aculeatus) of Marine and Freshwater Ecotypes.

    Science.gov (United States)

    Rastorguev, S M; Nedoluzhko, A V; Gruzdeva, N M; Boulygina, E S; Tsygankova, S V; Oshchepkov, D Y; Mazur, A M; Prokhortchouk, E B; Skryabin, K G

    2018-01-01

    Three-spine stickleback (Gasterosteus aculeatus) is a well-known model organism that is routinely used to explore microevolution processes and speciation, and the number of studies related to this fish has been growing recently. The main reason for the increased interest is the processes of freshwater adaptation taking place in natural populations of this species. Freshwater three-spined stickleback populations form when marine water three-spined sticklebacks fish start spending their entire lifecycle in freshwater lakes and streams. To boot, these freshwater populations acquire novel biological traits during their adaptation to a freshwater environment. The processes taking place in these populations are of great interest to evolutionary biologists. Here, we present differential gene expression profiling in G. aculeatus gills, which was performed in marine and freshwater populations of sticklebacks. In total, 2,982 differentially expressed genes between marine and freshwater populations were discovered. We assumed that differentially expressed genes were distributed not randomly along stickleback chromosomes and that they are regularly observed in the "divergence islands" that are responsible for stickleback freshwater adaptation.

  2. The effectiveness of surrogate taxa to conserve freshwater biodiversity

    Science.gov (United States)

    Stewart, David R.; Underwood, Zachary E.; Rahel, Frank J.; Walters, Annika W.

    2018-01-01

    Establishing protected areas has long been an effective conservation strategy, and is often based on more readily surveyed species. The potential of any freshwater taxa to be a surrogate of other aquatic groups has not been fully explored. We compiled occurrence data on 72 species of freshwater fish, amphibians, mussels, and aquatic reptiles for the Great Plains, Wyoming. We used hierarchical Bayesian multi-species mixture models and MaxEnt models to describe species distributions, and program Zonation to identify conservation priority areas for each aquatic group. The landscape-scale factors that best characterized aquatic species distributions differed among groups. There was low agreement and congruence among taxa-specific conservation priorities (<20%), meaning that no surrogate priority areas would include or protect the best habitats of other aquatic taxa. We found that common, wide-ranging aquatic species were included in taxa-specific priority areas, but rare freshwater species were not included. Thus, the development of conservation priorities based on a single freshwater aquatic group would not protect all species in the other aquatic groups.

  3. Freshwater exposure pathways in the Nordic countries

    International Nuclear Information System (INIS)

    Tveten, U.

    1984-06-01

    The report relates to a subproject under a Nordic project called ''Large reactor accidents - consequences and mitigating actions''. The report summarizes information available, primarily in the Nordic countries, on freshwater exposure pathways. Experimental and theoretical data concerning the deposition and run-off of the nuclides *sp90*Sr and*Sp137*Cs is presented. Internal exposure via drinking water and freshwater fish is dealt with, as well as external exposure due to swimming, boating, contact with fishing utensils and use of beach areas. In addition is exposure via irrigated agricultural products considered. (RF)

  4. Deep subsurface life from North Pond: enrichment, isolation, characterization and genomes of heterotrophic bacteria

    Directory of Open Access Journals (Sweden)

    Joseph A. Russell

    2016-05-01

    Full Text Available Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic water-column west of the Mid-Atlantic Ridge at 22°N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP site U1382B at 4 and 68 meters below seafloor (mbsf. These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sediment column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, and initial characterizations of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2% relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. The cultures from this study represent members of environmentally significant phyla, and allow for further studies into geochemical factors impacting life in the deep subsurface.

  5. Deep Subsurface Life from North Pond: Enrichment, Isolation, Characterization and Genomes of Heterotrophic Bacteria.

    Science.gov (United States)

    Russell, Joseph A; León-Zayas, Rosa; Wrighton, Kelly; Biddle, Jennifer F

    2016-01-01

    Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic water-column west of the Mid-Atlantic Ridge at 22°N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sediment column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. The cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface.

  6. Biota connect aquatic habitats throughout freshwater ecosystem mosaics

    Science.gov (United States)

    Schofield, Kate A.; Alexander, Laurie C.; Ridley, Caroline E.; Vanderhoof, Melanie; Fritz, Ken M.; Autrey, Bradley; DeMeester, Julie; Kepner, William G.; Lane, Charles R.; Leibowitz, Scott; Pollard, Amina I.

    2018-01-01

    Freshwater ecosystems are linked at various spatial and temporal scales by movements of biota adapted to life in water. We review the literature on movements of aquatic organisms that connect different types of freshwater habitats, focusing on linkages from streams and wetlands to downstream waters. Here, streams, wetlands, rivers, lakes, ponds, and other freshwater habitats are viewed as dynamic freshwater ecosystem mosaics (FEMs) that collectively provide the resources needed to sustain aquatic life. Based on existing evidence, it is clear that biotic linkages throughout FEMs have important consequences for biological integrity and biodiversity. All aquatic organisms move within and among FEM components, but differ in the mode, frequency, distance, and timing of their movements. These movements allow biota to recolonize habitats, avoid inbreeding, escape stressors, locate mates, and acquire resources. Cumulatively, these individual movements connect populations within and among FEMs and contribute to local and regional diversity, resilience to disturbance, and persistence of aquatic species in the face of environmental change. Thus, the biological connections established by movement of biota among streams, wetlands, and downstream waters are critical to the ecological integrity of these systems. Future research will help advance our understanding of the movements that link FEMs and their cumulative effects on downstream waters.

  7. C isotope fractionation during heterotrophic activity driven carbonate precipitation

    Science.gov (United States)

    Balci, Nurgul; Demirel, Cansu

    2016-04-01

    Stable carbon isotopic fractionation during carbonate precipitation induced by environmentally enriched heterotrophic halophilic microorganims was experimentally investigated under various salinity (% 4.5, %8, %15) conditions at 30 °C. Halophilic heterotrophic microorganims were enriched from a hypersaline Lake Acigöl located in SW Turkey (Balci et al.,2015) and later used for the precipitation experiments (solid and liquid medium). The carbonate precipitates had relatively high δ13C values (-4.3 to -16.9 ‰) compared to the δ13C values of the organic compounds that ranged from -27.5 to -25.4 ‰. At salinity of 4.5 % δ13C values of carbonate ranged from -4.9 ‰ to -10.9 ‰ with a 13C-enrichment factor of +20 to +16 ‰ higher than the δ13C values of the associated DOC (-27.5) . At salinity 8 % δ13C values of carbonate ranged from -16.3 ‰ to -11.7 ‰ with a 13C-enrichment factor of+11.3 to+15.9 ‰ higher than the δ13C values of the associated DOC. The respected values for 15 % salinity ranged from -12.3 ‰ to -9.7 ‰ with a 13C-enrichment factor of +15.2 to+16.8 ‰ higher than the δ13C values of the associated DOC. The carbonate precipitates produced in the solid medium are more enriched in 13C relative to liquid culture experiments. These results suggest that the carbon in the solid was derived from both the bacterial oxidation of organic compounds in the medium and from the atmospheric CO2. A solid medium used in the experiments may have suppressed convective and advective mass transport favouring diffusion-controlled system. This determination suggests that the rate and equilibration of CO2 exchange with the atmosphere is the major control on C isotope composition of carbonate minerals precipitated in the experiments. Key words: Lake Acıgöl, halophilic bacteria, carbonate biomineralization, C isotopes References Nurgul Balci, Meryem Menekşe, Nevin Gül Karagüler, M. Şeref Sönmez,Patrick Meister 2015.Reproducing authigenic carbonate

  8. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge

    KAUST Repository

    Tian, Renmao

    2014-08-29

    Sulfur-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) play essential roles in marine sponges. However, the detailed characteristics and physiology of the bacteria are largely unknown. Here, we present and analyse the first genome of sponge-associated SOB using a recently developed metagenomic binning strategy. The loss of transposase and virulence-associated genes and the maintenance of the ancient polyphosphate glucokinase gene suggested a stabilized SOB genome that might have coevolved with the ancient host during establishment of their association. Exclusive distribution in sponge, bacterial detoxification for the host (sulfide oxidation) and the enrichment for symbiotic characteristics (genes-encoding ankyrin) in the SOB genome supported the bacterial role as an intercellular symbiont. Despite possessing complete autotrophic sulfur oxidation pathways, the bacterium developed a much more versatile capacity for carbohydrate uptake and metabolism, in comparison with its closest relatives (Thioalkalivibrio) and to other representative autotrophs from the same order (Chromatiales). The ability to perform both autotrophic and heterotrophic metabolism likely results from the unstable supply of reduced sulfur in the sponge and is considered critical for the sponge-SOB consortium. Our study provides insights into SOB of sponge-specific clade with thioautotrophic and versatile heterotrophic metabolism relevant to its roles in the micro-environment of the sponge body. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Bistability of mangrove forests and competition with freshwater plants

    Science.gov (United States)

    Jiang, Jiang; Fuller, Douglas O; Teh, Su Yean; Zhai, Lu; Koh, Hock Lye; DeAngelis, Donald L.; Sternberg, L.D.S.L.

    2015-01-01

    Halophytic communities such as mangrove forests and buttonwood hammocks tend to border freshwater plant communities as sharp ecotones. Most studies attribute this purely to underlying physical templates, such as groundwater salinity gradients caused by tidal flux and topography. However, a few recent studies hypothesize that self-reinforcing feedback between vegetation and vadose zone salinity are also involved and create a bistable situation in which either halophytic dominated habitat or freshwater plant communities may dominate as alternative stable states. Here, we revisit the bistability hypothesis and demonstrate the mechanisms that result in bistability. We demonstrate with remote sensing imagery the sharp boundaries between freshwater hardwood hammock communities in southern Florida and halophytic communities such as buttonwood hammocks and mangroves. We further document from the literature how transpiration of mangroves and freshwater plants respond differently to vadose zone salinity, thus altering the salinity through feedback. Using mathematical models, we show how the self-reinforcing feedback, together with physical template, controls the ecotones between halophytic and freshwater communities. Regions of bistability along environmental gradients of salinity have the potential for large-scale vegetation shifts following pulse disturbances such as hurricane tidal surges in Florida, or tsunamis in other regions. The size of the region of bistability can be large for low-lying coastal habitat due to the saline water table, which extends inland due to salinity intrusion. We suggest coupling ecological and hydrologic processes as a framework for future studies.

  10. Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water

    International Nuclear Information System (INIS)

    Liu Huijuan; Jiang Wei; Wan Dongjin; Qu Jiuhui

    2009-01-01

    A combined two-step process of heterotrophic denitrification in a fluidized reactor and sulfur autotrophic denitrification processes (CHSAD) was developed for the removal of nitrate in drinking water. In this process, the advantage of high efficiency of heterotrophic denitrification with non-excessive methanol and the advantage of non-pollution of sulfur autotriphic denitrification were integrated in this CHSAD process. And, this CHSAD process had the capacity of pH balance and could control the concentration of SO 4 2- in effluent by adjusting the operation condition. When the influent nitrate was 30 mg NO 3 - -N/L, the reactor could be operated efficiently at the hydraulic retention time (HRT) ranging from 20 to 40 min with C:N ratio (mg CH 3 OH:mg NO 3 - -N) of 2.0 (methanol as carbon source). The nitrate removal was nearly 100% and there was no accumulated nitrite or residual methanol in the effluent. The effluent pH was about 7.5 and the sulfate concentration was lower than 130 mg/L. The maximum volume-loading rate of the reactor was 2.16 kg NO 3 - -N/(m 3 d). The biomass and scanning electron microscopy graphs of biofilm were also analyzed.

  11. Potential impacts of alien freshwater crayfish in South Africa | de ...

    African Journals Online (AJOL)

    The habitat preferences and life history characteristics of four alien species of freshwater crayfish (Cherax tenuimanus, C. destructor, C. quadricarinatus and Procambarus clarkii) are reviewed. The potential impact of these species on South African freshwater ecosystems is assessed and the desirability of allowing their ...

  12. Snail abundance in freshwater canals in the eastern province of ...

    African Journals Online (AJOL)

    Ksu-network

    2012-07-19

    Jul 19, 2012 ... Recent Advances in Freshwater Biology. New Delhi. Anmol. Publication. Vol. 2. pp. 187-202. Al-Akel and Suliman. 12261. Supian Z, Ikhwanuddin AM (2002). Population dynamics of freshwater mollusks (Gastropod: Melanoides Tuberculatus) in crocker range park, Sabah. ASEAN Rev. Biodiv. Environ.

  13. A Search for Freshwater in the Saline Aquifers of Coastal Bangladesh

    Science.gov (United States)

    Peters, C.; Hornberger, G. M.

    2017-12-01

    Can we locate pockets of freshwater amidst brackish groundwater in remote villages in Bangladesh? This study explores what we can infer about local groundwater-surface water (GW-SW) interactions in the polders of coastal Bangladesh. In this underdeveloped region, the shallow groundwater is primarily brackish with unpredictable apportioning of freshwater pockets. We use transects of piezometers, cores, electromagnetic induction, and water chemistry surveys to explore two sources of potential fresh groundwater: (1) tidal channel-aquifer exchange and (2) meteoric recharge. Freshwater is difficult to find due to disparate subsurface lithology, asymmetrical tidal dynamics, extreme seasonal fluctuations in rainfall, and limited field data. Observations suggest substantial lateral variability in shallow subsurface conductivity profiles as well as tidal pressure signals in piezometers. Nevertheless, active exchange of freshwater may be limited due to low permeability of banks and surface sediments limits. Small scale heterogeneity in delta formation likely caused much of the groundwater salinity variation. Without adequate ground truthing of groundwater quality, the ability to deduce the exact location of freshwater pockets may be restricted.

  14. Interactions between the mixotrophic dinoflagellate Takayama helix and common heterotrophic protists.

    Science.gov (United States)

    Ok, Jin Hee; Jeong, Hae Jin; Lim, An Suk; Lee, Kyung Ha

    2017-09-01

    The phototrophic dinoflagellate Takayama helix that is known to be harmful to abalone larvae has recently been revealed to be mixotrophic. Although mixotrophy elevates the growth rate of T. helix by 79%-185%, its absolute growth rate is still as low as 0.3d -1 . Thus, if the mortality rate of T. helix due to predation is high, this dinoflagellate may not easily prevail. To investigate potential effective protistan grazers on T. helix, feeding by diverse heterotrophic dinoflagellates such as engulfment-feeding Oxyrrhis marina, Gyrodinium dominans, Gyrodinium moestrupii, Polykrikos kofoidii, and Noctiluca scintillans, peduncle-feeding Aduncodinium glandula, Gyrodiniellum shiwhaense, Luciella masanensis, and Pfiesteria piscicida, pallium-feeding Oblea rotunda and Protoperidinium pellucidum, and the naked ciliates Pelagostrobilidium sp. (ca. 40μm in cell length) and Strombidinopsis sp. (ca. 150μm in cell length) on T. helix was explored. Among the tested heterotrophic protists, O. marina, G. dominans, G. moestrupii, A. glandula, L. masanensis, P. kofoidii, P. piscicida, and Strombidinopsis sp. were able to feed on T. helix. The growth rates of all these predators except Strombidinopsis sp. with T. helix prey were lower than those without the prey. The growth rate of Strombidinopsis sp. on T. helix was almost zero although the growth rate of Strombidinopsis sp. with T. helix prey was higher than those without the prey. Moreover, T. helix fed on O. marina and P. pellucidum and lysed the cells of P. kofoidii and G. shiwhaense. With increasing the concentrations of T. helix, the growth rates of O. marina and P. kofoidii decreased, but those of G. dominans and L. masanensis largely did not change. Therefore, reciprocal predation, lysis, no feeding, and the low ingestion rates of the common protists preying on T. helix may result in a low mortality rate due to predation, thereby compensating for this species' low growth rate. Copyright © 2017 Elsevier B.V. All rights

  15. Multiple invasions into freshwater by pufferfishes (teleostei: tetraodontidae: a mitogenomic perspective.

    Directory of Open Access Journals (Sweden)

    Yusuke Yamanoue

    Full Text Available Pufferfishes of the Family Tetraodontidae are the most speciose group in the Order Tetraodontiformes and mainly inhabit coastal waters along continents. Although no members of other tetraodontiform families have fully discarded their marine lives, approximately 30 tetraodontid species spend their entire lives in freshwaters in disjunct tropical regions of South America, Central Africa, and Southeast Asia. To investigate the interrelationships of tetraodontid pufferfishes and thereby elucidate the evolutionary origins of their freshwater habitats, we performed phylogenetic analysis based on whole mitochondrial genome sequences from 50 tetraodontid species and closely related species (including 31 newly determined sequences. The resulting phylogenies reveal that the family is composed of four major lineages and that freshwater species from the different continents are independently nested in two of the four lineages. A monophyletic origin of the use of freshwater habitats was statistically rejected, and ancestral habitat reconstruction on the resulting tree demonstrates that tetraodontids independently entered freshwater habitats in different continents at least three times. Relaxed molecular-clock Bayesian divergence time estimation suggests that the timing of these invasions differs between continents, occurring at 0-10 million years ago (MA in South America, 17-38 MA in Central Africa, and 48-78 MA in Southeast Asia. These timings are congruent with geological events that could facilitate adaptation to freshwater habitats in each continent.

  16. Solazyme Integrated Biorefinery (SzIBR): Diesel Fuels from Heterotrophic Algae

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, David [Solazyme, Inc., South San Francisco, CA (United States)

    2014-12-23

    Under Department of Energy Award Number DE-EE0002877 (the “DOE Award”), Solazyme, Inc. (“Solazyme”) has built a demonstration scale “Solazyme Integrated Biorefinery (SzlBR).” The SzIBR was built to provide integrated scale-up of Solazyme’s novel heterotrophic algal oil biomanufacturing process, validate the projected commercial-scale economics of producing multiple algal oils, and to enable Solazyme to collect the data necessary to complete the design of its first commercial-scale facility. Solazyme’s technology enables it to convert a range of low-cost plant-based sugars into high-value oils. Solazyme’s renewable products replace or enhance oils derived from the world’s three existing sources—petroleum, plants, and animal fats. Solazyme tailors the composition of its oils to address specific customer requirements, offering superior performance characteristics and value. This report summarizes history and the results of the project.

  17. Turtles: Freshwater

    Science.gov (United States)

    Gibbons, J. Whitfield; Lovich, Jeffrey E.; Bowden, R.M.

    2017-01-01

    With their iconic shells, turtles are morphologically distinct in being the only extant or extinct vertebrate animals to have their shoulders and hips inside their rib cages. By the time an asteroid hit the earth 65.5 million years ago, causing the extinction of dinosaurs, turtles were already an ancient lineage that was 70% through their evolutionary history to date. The remarkable evolutionary success of turtles over 220 million years is due to a combination of both conservative and effective life history traits and an essentially unchanging morphology that withstood the test of time. However, the life history traits of many species make them particularly susceptible to overharvest and habitat destruction in the modern world, and a majority of the world’s species face serious conservation challenges with several extinctions documented in modern times. The global plight of turtles is underscored by the fact that the percentage of imperiled species exceeds that of even the critically endangered primates.Freshwater turtles, with over 260 recognized species, have become a focus on a worldwide scale for many conservation issues. This article is a synthesis of a diverse body of information on the general biology of freshwater turtles, with particular emphasis on the extensive research on ecology, life history, and behavior that has been accomplished in the last half century. Much of the research has been applicable to the aforementioned conservation challenges. The studies presented include a combination of laboratory and field experiments and observational studies on this intriguing group of animals.

  18. Invasive alien freshwater fishes in the Wilderness Lakes System, a ...

    African Journals Online (AJOL)

    Invasive alien freshwater fishes in the Wilderness Lakes System, a wetland of international importance in the Western Cape Province, South Africa. ... A total of 87 893 fish comprising 16 species were caught. In addition to confirming the ... Key words: freshwater fish, invasive alien fishes, estuary, RAMSAR site, diversity.

  19. Changes of freshwater-lens thickness in basaltic island aquifers overlain by thick coastal sediments

    Science.gov (United States)

    Rotzoll, Kolja; Oki, Delwyn S.; El-Kadi, Aly I.

    2010-01-01

    Freshwater-lens thickness and long-term changes in freshwater volume in coastal aquifers are commonly assessed through repeated measurement of salinity profiles from monitor wells that penetrate into underlying salt water. In Hawaii, the thickest measured freshwater lens is currently 262 m in dike-free, volcanic-rock aquifers that are overlain by thick coastal sediments. The midpoint depth (depth where salinity is 50% salt water) between freshwater and salt water can serve as an indicator for freshwater thickness. Most measured midpoints have risen over the past 40 years, indicating a shrinking lens. The mean rate of rise of the midpoint from 1999–2009 varied locally, with faster rates in highly developed areas (1.0 m/year) and slower rates in less developed areas (0.5 m/year). The thinning of the freshwater lenses is the result of long-term groundwater withdrawal and reduced recharge. Freshwater/salt-water interface locations predicted from measured water levels and the Ghyben-Herzberg principle may be deeper than measured midpoints during some periods and shallower during other periods, although depths may differ up to 100 m in some cases. Moreover, changes in the midpoint are slower than changes in water level. Thus, water levels may not be a reliable indicator of the amount of freshwater in a coastal aquifer.

  20. Microbial food web components, bulk metabolism, and single-cell physiology of piconeuston in surface microlayers of high-altitude lakes

    Directory of Open Access Journals (Sweden)

    Hugo eSarmento

    2015-05-01

    Full Text Available Sharp boundaries in the physical environment are usually associated with abrupt shifts in organism’s abundance, activity and diversity. Aquatic surface microlayers (SML form a steep gradient between two contrasted environments, the atmosphere and surface waters, where they regulate the gas exchange between both environments. They usually harbor an abundant and active microbial life: the neuston. Few ecosystems are subjected to such a high UVR regime as high altitude lakes during summer. Here, we measured bulk estimates of heterotrophic activity, community structure and single-cell physiological properties by flow cytometry in 19 high-altitude remote Pyrenean lakes and compared the biological processes in the SML with those in the underlying surface waters. Phototrophic picoplankton (PPP populations, were generally present in high abundances and in those lakes containing PPP populations with phycoerythrin (PE, total PPP abundance was higher at the SML. Heterotrophic nanoflagellates (HNF were also more abundant in the SML. Bacteria in the SµL had lower leucine incorporation rates, lower percentages of live cells, and higher numbers of highly-respiring cells, likely resulting in a lower growth efficiency. No simple and direct linear relationships could be found between microbial abundances or activities and environmental variables, but factor analysis revealed that, despite their physical proximity, microbial life in SML and underlying waters was governed by different and independent processes. Overall, we demonstrate that piconeuston in high altitude lakes has specific features different from those of the picoplankton, and that they are highly affected by potential stressful environmental factors, such as high UVR radiation.

  1. Pigment signatures of phytoplankton communities in the Beaufort Sea

    Science.gov (United States)

    Coupel, P.; Matsuoka, A.; Ruiz-Pino, D.; Gosselin, M.; Marie, D.; Tremblay, J.-É.; Babin, M.

    2015-02-01

    Phytoplankton are expected to respond to recent environmental changes of the Arctic Ocean. In terms of bottom-up control, modifying the phytoplankton distribution will ultimately affect the entire food web and carbon export. However, detecting and quantifying changes in phytoplankton communities in the Arctic Ocean remains difficult because of the lack of data and the inconsistent identification methods used. Based on pigment and microscopy data sampled in the Beaufort Sea during summer 2009, we optimized the chemotaxonomic tool CHEMTAX (CHEMical TAXonomy) for the assessment of phytoplankton community composition in an Arctic setting. The geographical distribution of the main phytoplankton groups was determined with clustering methods. Four phytoplankton assemblages were determined and related to bathymetry, nutrients and light availability. Surface waters across the whole survey region were dominated by prasinophytes and chlorophytes, whereas the subsurface chlorophyll maximum was dominated by the centric diatoms Chaetoceros socialis on the shelf and by two populations of nanoflagellates in the deep basin. Microscopic counts showed a high contribution of the heterotrophic dinoflagellates Gymnodinium and Gyrodinium spp. to total carbon biomass, suggesting high grazing activity at this time of the year. However, CHEMTAX was unable to detect these dinoflagellates because they lack peridinin. In heterotrophic dinoflagellates, the inclusion of the pigments of their prey potentially leads to incorrect group assignments and some misinterpretation of CHEMTAX. Thanks to the high reproducibility of pigment analysis, our results can serve as a baseline to assess change and spatial or temporal variability in several phytoplankton populations that are not affected by these misinterpretations.

  2. Microbial Food-Web Drivers in Tropical Reservoirs.

    Science.gov (United States)

    Domingues, Carolina Davila; da Silva, Lucia Helena Sampaio; Rangel, Luciana Machado; de Magalhães, Leonardo; de Melo Rocha, Adriana; Lobão, Lúcia Meirelles; Paiva, Rafael; Roland, Fábio; Sarmento, Hugo

    2017-04-01

    Element cycling in aquatic systems is driven chiefly by planktonic processes, and the structure of the planktonic food web determines the efficiency of carbon transfer through trophic levels. However, few studies have comprehensively evaluated all planktonic food-web components in tropical regions. The aim of this study was to unravel the top-down controls (metazooplankton community structure), bottom-up controls (resource availability), and hydrologic (water residence time) and physical (temperature) variables that affect different components of the microbial food web (MFW) carbon stock in tropical reservoirs, through structural equation models (SEM). We conducted a field study in four deep Brazilian reservoirs (Balbina, Tucuruí, Três Marias, and Funil) with different trophic states (oligo-, meso-, and eutrophic). We found evidence of a high contribution of the MFW (up to 50% of total planktonic carbon), especially in the less-eutrophic reservoirs (Balbina and Tucuruí). Bottom-up and top-down effects assessed through SEM indicated negative interactions between soluble reactive phosphorus and phototrophic picoplankton (PPP), dissolved inorganic nitrogen, and heterotrophic nanoflagellates (HNF). Copepods positively affected ciliates, and cladocerans positively affected heterotrophic bacteria (HB) and PPP. Higher copepod/cladoceran ratios and an indirect positive effect of copepods on HB might strengthen HB-HNF coupling. We also found low values for the degree of uncoupling (D) and a low HNF/HB ratio compared with literature data (mostly from temperate regions). This study demonstrates the importance of evaluating the whole size spectrum (including microbial compartments) of the different planktonic compartments, in order to capture the complex carbon dynamics of tropical aquatic ecosystems.

  3. Multiple drivers of decline in the global status of freshwater crayfish (Decapoda:Astacidea)

    Science.gov (United States)

    Nadia I. Richman; Monika Böhm; Susan B. Adams; Fernando Alvarez; Elizabeth A. Bergey; John J. S. Bunn; Quinton Burnham; Jay Cordeiro; Jason Coughran; Keith A. Crandall; Kathryn L. Dawkins; Robert J. DiStefano; Niall E. Doran; Lennart Edsman; Arnold G. Eversole; Leopold Füreder; James M. Furse; Francesca Gherardi; Premek Hamr; David M. Holdich; Pierre Horwitz; Kerrylyn Johnston; Clive M. Jones; Julia P. G. Jones; Robert L. Jones; Thomas G. Jones; Tadashi Kawai; Susan Lawler; Marilu López-Mejía; Rebecca M. Miller; Carlos Pedraza-Lara; Julian D. Reynolds; Alastair M. M. Richardson; Mark B. Schultz; Guenter A. Schuster; Peter J. Sibley; Catherine Souty-Grosset; Christopher A. Taylor; Roger F. Thoma; Jerry Walls; Todd S. Walsh; Ben Cohen

    2015-01-01

    Rates of biodiversity loss are higher in freshwater ecosystems than in most terrestrial or marine ecosystems, making freshwater conservation a priority. However, prioritization methods are impeded by insufficient knowledge on the distribution and conservation status of freshwater taxa, particularly invertebrates. We evaluated the extinction risk of the world’s 590...

  4. Identifying national freshwater ecosystem priority areas

    CSIR Research Space (South Africa)

    Nel, JL

    2012-10-01

    Full Text Available This presentation highlights the use of systematic conservation planning to identify priority areas for managing the health of freshwater ecosystems and their associated biodiversity and ecosystem services....

  5. Extensive behavioural divergence following colonisation of the freshwater environment in threespine sticklebacks.

    Directory of Open Access Journals (Sweden)

    Carole Di-Poi

    Full Text Available Colonisation of novel environments means facing new ecological challenges often resulting in the evolution of striking divergence in phenotypes. However, little is known about behavioural divergence following colonisation, despite the predicted importance of the role of behavioural phenotype-environment associations in adaptive divergence. We studied the threespine stickleback (Gasterosteus aculeatus, a model system for postglacial colonisation of freshwater habitats largely differing in ecological conditions from the ones faced by the descendants of the marine ancestor. We found that common-environment reared freshwater juveniles were less social, more active and more aggressive than their marine counterparts. This behavioural divergence could represent the result of natural selection that acted on individuals following freshwater colonisation, with predation as a key selection agent. Alternatively, the behavioural profile of freshwater juveniles could represent the characteristics of individuals that preferentially invaded freshwater after the glacial retreat, drawn from the standing variation present in the marine population.

  6. Occurrence of digenean larvae in freshwater snails in the Ruvu ...

    African Journals Online (AJOL)

    Occurrence of digenean larvae in freshwater snails in the Ruvu basin, Tanzania. G Nkwengulila, ESP Kigadye. Abstract. A survey was carried out on digenean larvae infecting freshwater snails in five habitats in Dar es Salaam, Ruvu and Morogoro. 9424 snails belonging to 12 species from five families were examined for ...

  7. Short Communications: First record of freshwater fish on the Cape ...

    African Journals Online (AJOL)

    During a non-exhaustive survey of freshwater bodies on five islands of the archipelago, the first presence of a freshwater fish was recorded. Using barcoding sequences, the species was identified as the guppy (Poecilia reticulata), a highly invasive species alien to the Cape Verdean Islands. Key words: Cape Verde, guppy, ...

  8. 2H and 18O Freshwater Isoscapes of Scotland

    Science.gov (United States)

    Meier-Augenstein, Wolfram; Hoogewerff, Jurian; Kemp, Helen; Frew, Danny

    2013-04-01

    Scotland's freshwater lochs and reservoirs provide a vital resource for sustaining biodiversity, agriculture, food production as well as for human consumption. Regular monitoring of freshwaters by the Scottish Environment Protection Agency (SEPA) fulfils legislative requirements with regards to water quality but new scientific methods involving stable isotope analysis present an opportunity combining these mandatory monitoring schemes with fundamental research to inform and deliver on current and nascent government policies [1] through gaining a greater understanding of Scottish waters and their importance in the context of climate change, environmental sustainability and food security. For example, 2H and 18O isoscapes of Scottish freshwater could be used to underpin research and its applications in: • Climate change - Using longitudinal changes in the characteristic isotope composition of freshwater lochs and reservoirs as proxy, isoscapes will provide a means to assess if and how changes in temperature and weather patterns might impact on precipitation patterns and amount. • Scottish branding - Location specific stable isotope signatures of Scottish freshwater have the potential to be used as a tool for provenancing and thus protecting premium Scottish produce such as Scottish beef, Scottish soft fruit and Scottish Whisky. During 2011 and 2012, with the support of SEPA more than 110 samples from freshwater lochs and reservoirs were collected from 127 different locations across Scotland including the Highlands and Islands. Here we present the results of this sampling and analysis exercise isotope analyses in form of 2H and 18O isoscapes with an unprecedented grid resolution of 26.5 × 26.5 km (or 16.4 × 16.4 miles). [1] Adaptation Framework - Adapting Our Ways: Managing Scotland's Climate Risk (2009): Scotland's Biodiversity: It's in Your Hands - A strategy for the conservation and enhancement of biodiversity in Scotland (2005); Recipe For Success - Scotland

  9. Non-parallel divergence across freshwater and marine three-spined stickleback Gasterosteus aculeatus populations.

    Science.gov (United States)

    Pujolar, J M; Ferchaud, A L; Bekkevold, D; Hansen, M M

    2017-07-01

    This work investigated whether multiple freshwater populations of three-spined stickleback Gasterosteus aculeatus in different freshwater catchments in the Jutland Peninsula, Denmark, derived from the same marine populations show repeated adaptive responses. A total of 327 G. aculeatus collected at 13 sampling locations were screened for genetic variation using a combination of 70 genes putatively under selection and 26 neutral genes along with a marker linked to the ectodysplasin gene (eda), which is strongly correlated with plate armour morphs in the species. A highly significant genetic differentiation was found that was higher among different freshwater samples than between marine-freshwater samples. Tests for selection between marine and freshwater populations showed a very low degree of parallelism and no single nucleotide polymorphism was detected as outlier in all freshwater-marine pairwise comparisons, including the eda. This suggests that G. aculeatus is not necessarily the prime example of parallel local adaptation suggested in much of the literature and that important exceptions exist (i.e. the Jutland Peninsula). While marine populations in the results described here showed a high phenotype-genotype correlation at eda, a low association was found for most of the freshwater populations. The most extreme case was found in the freshwater Lake Hald where all low-plated phenotypes were either homozygotes for the allele supposed to be associated with completely plated morphs or heterozygotes, but none were homozygotes for the putative low-plated allele. Re-examination of data from seven G. aculeatus studies agrees in showing a high but partial association between phenotype-genotype at eda in G. aculeatus freshwater populations and that mismatches occur everywhere in the European regions studied (higher in some areas, i.e. Denmark). This is independent of the eda marker used. © 2017 The Fisheries Society of the British Isles.

  10. Global net primary production and heterotrophic respiration for 1987

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, R.E. Jr.; Piper, S.C.; Nemani, R. [Univ. of Montana, Missoula, MT (United States)]|[Scripps Institute of Oceanography, La Jolla, CA (United States)] [and others

    1995-06-01

    An ecosystem process model, BIOME-BGC, was parameterized and used to simulate the actual net primary production and heterotrophic respiration using daily climatic data, land cover type, leaf area index gridded to 1{degree} latitude by 1{degree} longitude grid cells for the year 1987. Global net primary production was 52 Pg C. These estimates were validated directly by two different methods. First, the grid cells were aggregated and used as inputs to a 3D atmospheric transport model, to compare CO{sub 2} station data with predictions. We simulated the intra-annual variation of atmospheric CO{sub 2} well for the northern hemisphere, but not for the southern hemisphere. Second, we calculated the net {sup 13}C uptake of vegetation, which is a function of water use efficiency. The {sup 13}C/{sup 12}C ratios agreed with measured data, indicating a strong limitation of global primary processes by the hydrologic cycle, especially precipitation. These are different from other global carbon models as we can simulate the year-to-year variation of climate, including El Nino, on the global carbon cycle.

  11. Sources, variability and fate of freshwater in the Bellingshausen Sea, Antarctica

    Science.gov (United States)

    Regan, Heather C.; Holland, Paul R.; Meredith, Michael P.; Pike, Jennifer

    2018-03-01

    During the second half of the twentieth century, the Antarctic Peninsula was subjected to a rapid increase in air temperatures. This was accompanied by a reduction in sea ice extent, increased precipitation and a dramatic retreat of glaciers associated with an increase in heat flux from deep ocean water masses. Isotopic tracers have been used previously to investigate the relative importance of the different freshwater sources to the adjacent Bellingshausen Sea (BS), but the data coverage is strongly biased toward summer. Here we use a regional model to investigate the ocean's response to the observed changes in its different freshwater inputs (sea ice melt/freeze, precipitation, evaporation, iceberg/glacier melt, and ice shelf melt). The model successfully recreates BS water masses and performs well against available freshwater data. By tracing the sources and pathways of the individual components of the freshwater budget, we find that sea ice dominates seasonal changes in the total freshwater content and flux, but all sources make a comparable contribution to the annual-mean. Interannual variability is dominated by sea ice and precipitation. Decadal trends in the salinity and stratification of the ocean are investigated, and a 20-year surface freshening from 1992 to 2011 is found to be predominantly driven by decreasing autumn sea ice growth. These findings will help to elucidate the role of freshwater in driving circulation and water column structure changes in this climatically-sensitive region.

  12. Effects of pollution on freshwater fish

    International Nuclear Information System (INIS)

    McKim, J.M.; Anderson, R.L.; Benoit, D.A.; Spehar, R.L.; Stokes, G.N.

    1976-01-01

    Studies of the effects of pollution on freshwater fish are reviewed. Subjects include: inorganic industrial pollutants, man-made disturbances and radioactive pollutants. Topics include uptake distribution, retention, mortality, and lethal doses

  13. The Implications of Ranaviruses to European farmed and wild freshwater fish

    DEFF Research Database (Denmark)

    Jensen, Ann Britt Bang

    The present thesis explores the implications of ranaviruses to European farmed and wild freshwater fish. The work presented was carried out as a part of the EU project “Risk assessment of new and emerging systemic iridoviral diseases for European fish and aquatic ecosystems” which was initiated...... in 2005 as a reaction to the speculation that ranaviruses might pose a serious threat to both farmed and wild-living freshwater fish and amphibians within the European community. In the present thesis, the purpose is to determine the implications of ranaviruses to European freshwater farmed and wild......-living fish. The following specific objectives are addressed: Objective 1: To determine the susceptibility of selected European freshwater fish to a panel of ranaviruses Objective 2: To determine whether ornamental fish are susceptible to or can be carriers of ranaviruses Objective 3: To develop a model...

  14. Successful enrichment of the ubiquitous freshwater acI Actinobacteria.

    Science.gov (United States)

    Garcia, Sarahi L; McMahon, Katherine D; Grossart, Hans-Peter; Warnecke, Falk

    2014-02-01

    Actinobacteria of the acI lineage are often the numerically dominant bacterial phylum in surface freshwaters, where they can account for > 50% of total bacteria. Despite their abundance, there are no described isolates. In an effort to obtain enrichment of these ubiquitous freshwater Actinobacteria, diluted freshwater samples from Lake Grosse Fuchskuhle, Germany, were incubated in 96-well culture plates. With this method, a successful enrichment containing high abundances of a member of the lineage acI was established. Phylogenetic classification showed that the acI Actinobacteria of the enrichment belonged to the acI-B2 tribe, which seems to prefer acidic lakes. This enrichment grows to low cell densities and thus the oligotrophic nature of acI-B2 was confirmed. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Tolerance of soil flagellates to increased NaCl levels

    DEFF Research Database (Denmark)

    Ekelund, Flemming

    2002-01-01

    The ability of heterotrophic flagellates to survive and adapt to increasing salinities was investigated in this study. Whole soil samples were subjected to salinities corresponding to marine conditions and clonal cultures were used to perform growth and adaptation experiments at a wide range...... of different salinities (0-50 ppm). More morphotypes tolerant to elevated NaCl levels were found in road verge soil that was heavily exposed to de-icing salt than in less exposed soils, though there were fewer tolerant than intolerant morphotypes in all soils examined. Heterotrophic flagellates isolated...... on a freshwater medium from a non-exposed soil were unable to thrive at salinities above 15 ppt, and showed reduced growth rates even at low salt salinities (1-5 ppt). The findings suggest that heterotrophic soil flagellates are less tolerant to NaCl than their aquatic relatives, possibly due to their long...

  16. Fish and mussels: importance of fish for freshwater mussel conservation

    Directory of Open Access Journals (Sweden)

    Ronaldo Sousa

    2015-12-01

    Full Text Available Co-extinctions have received trivial consideration in discussions about the global conservation crisis, even though recent studies have emphasised their importance. This situation is even more pronounced in freshwater ecosystems where this phenomenon is largely unrecognized. In this presentation we explore the role of fish for freshwater mussels’ conservation. Freshwater mussels’ need fish as a host to complete their life cycle and given this premise is expected that changes in the fish community due to species extinctions or additions may have great effects. We reviewed the published information and we found: 1 that most of the studies were published in the last few years; 2 that most of the studies were performed in North America (69%, which is probably due to the high number of endemic threatened species in this continent; 3 that most of the mussel species that are specialists in fish hosting are listed as vulnerable or endangered (55%; 4 most studies were performed in laboratory (83% and 5 that the majority of studies were focused on life cycle or on identifying suitable fish hosts of freshwater mussel species with few studies focusing on threats. Since the interaction between fish and freshwater mussels can be easily disrupted and serious threats to this interaction have arisen (e.g. loss and fragmentation of habitat, changes in river flow, climate change, introduction of invasive species, pollution a more holistic approach is needed to find the best management strategies to conserve these animals. In addition, more field studies are required and more information on African, South American and Asian species is essential. Neglect the possible fundamental role of fish in the decline or extinction of freshwater mussels may impair the success of any measure devoted to their conservation; therefore, this issue cannot be ignored.

  17. Reducing Uncertainty in the Daycent Model of Heterotrophic Respiration with a More Mechanistic Representation of Microbial Processes.

    Science.gov (United States)

    Berardi, D.; Gomez-Casanovas, N.; Hudiburg, T. W.

    2017-12-01

    Improving the certainty of ecosystem models is essential to ensuring their legitimacy, value, and ability to inform management and policy decisions. With more than a century of research exploring the variables controlling soil respiration, a high level of uncertainty remains in the ability of ecosystem models to accurately estimate respiration with changing climatic conditions. Refining model estimates of soil carbon fluxes is a high priority for climate change scientists to determine whether soils will be carbon sources or sinks in the future. We found that DayCent underestimates heterotrophic respiration by several magnitudes for our temperate mixed conifer forest site. While traditional ecosystem models simulate decomposition through first order kinetics, recent research has found that including microbial mechanisms explains 20 percent more spatial heterogeneity. We manipulated the DayCent heterotrophic respiration model to include a more mechanistic representation of microbial dynamic and compared the new model with continuous and survey observations from our experimental forest site in the Northern Rockies ecoregion. We also calibrated the model's sensitivity to soil moisture and temperature to our experimental data. We expect to improve the accuracy of the model by 20-30 percent. By using a more representative and calibrated model of soil carbon dynamics, we can better predict feedbacks between climate and soil carbon pools.

  18. Development of a laboratory model of a phototroph-heterotroph mixed-species biofilm at the stone/air interface

    Directory of Open Access Journals (Sweden)

    Federica eVilla

    2015-11-01

    Full Text Available Recent scientific investigations have shed light on the ecological importance and physiological complexity of subaerial biofilms (SABs inhabiting lithic surfaces. In the field of sustainable cultural heritage (CH preservation, mechanistic approaches aimed at investigation of the spatiotemporal patterns of interactions between the biofilm, the stone, and the atmosphere are of outstanding importance. However, these interactions have proven difficult to explore with field experiments due to the inaccessibility of samples, the complexity of the ecosystem under investigation and the temporal resolution of the experiments.To overcome these limitations, we aimed at developing a unifying methodology to reproduce a fast-growing, phototroph-heterotroph mixed species biofilm at the stone/air interface. Our experiments underscore the ability of the dual-species SAB model to capture functional traits characteristic of biofilms inhabiting lithic substrate such as: i microcolonies of aggregated bacteria; ii network like structure following surface topography; iii cooperation between phototrophs and heterotrophs and cross feeding processes; iv ability to change the chemical parameters that characterize the microhabitats; v survival under desiccation and vi biocide tolerance. With its advantages in control, replication, range of different experimental scenarios and matches with the real ecosystem, the developed model system is a powerful tool to advance our mechanistic understanding of the stone-biofilm-atmosphere interplay in different environments.

  19. Characterization of novel Bacillus strain N31 from mariculture water capable of halophilic heterotrophic nitrification-aerobic denitrification.

    Science.gov (United States)

    Huang, Fei; Pan, Luqing; Lv, Na; Tang, Xianming

    2017-11-01

    The development of an intensive aquaculture industry has been accompanied by increasing environmental impacts, especially nitrogen pollution. In this study, a novel halophilic bacterium capable of heterotrophic nitrification and aerobic denitrification was isolated from mariculture water and identified as Bacillus litoralis N31. The efficiency of ammonium, nitrite and nitrate removal by N31 were 86.3%, 89.3% and 89.4%, respectively, after a 48-h cultivation in sole N-source medium with initial nitrogen approximately 20 mg/L. However, ammonium was removed preferentially, and no obvious nitrite accumulated during the simultaneous nitrification and denitrification process in mixed N-source media. The existence of hao, napA and nirS genes further proved the heterotrophic nitrification-aerobic denitrification capability of N31. The optimal conditions for ammonium removal were 30°C, initial pH 7.5-8.5, C/N ratio 5-20 and salinity 30-40‰, and the nitrification rate of N31 increased with increasing initial [Formula: see text] from 10 to 250 mg/L. Biosecurity assessment with shrimp indicated that strain N31 could be applied in the marine aquaculture industry safely for culture water remediation and effluent treatment. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. [Phylogenetic analysis and nitrogen removal characteristics of a heterotrophic nitrifying-aerobic denitrifying bacteria strain from marine environment].

    Science.gov (United States)

    Sun, Xuemei; Li, Qiufen; Zhang, Yan; Liu, Huaide; Zhao, Jun; Qu, Keming

    2012-06-04

    We determined the phylogenetic position of a heterotrophic nitrifying-aerobic denitrifying bacterium X3, and detected its nitrogen removal characteristics for providing evidence to explain the principle of heterotrophic nitrification-aerobic denitrification and to improve the process in purification of marine-culture wastewater. The evolutionary position of the strain was determined based on its morphological, physiological, biochemical characteristics and 16SrRNA gene sequence. The nitrification-denitrification ability of this strain was detected by detecting its nitrogen removal efficiency and growth on different inorganic nitrogen source. Strain X3 was identified as Halomonas sp. It grew optimally at salinity 3%, pH 8.5, C:N 10:1 at 28 degrees C, and it could still survive at 15% salinity. The removal of NH4+ -N, NO2(-) -N and NO3(-) -N was 98.29%, 99.07%, 96.48% respectively within 24 h. When three inorganic nitrogen existed simultaneously, it always utilized ammonia firstly, and the total inorganic nitrogen removal was higher than with only one nitrogen, suggesting that strain X3 has the ability of simultaneous nitrification and denitrification and completing the whole nitrogen removing process. Strain X3 belonged to the genus of Halomonas. It had strong simultaneous nitrification and denitrification capability and could live in high-salinity environment.

  1. Assessing and managing freshwater ecosystems vulnerable to global change

    Science.gov (United States)

    Angeler, David G.; Allen, Craig R.; Birge, Hannah E.; Drakare, Stina; McKie, Brendan G.; Johnson, Richard K.

    2014-01-01

    Freshwater ecosystems are important for global biodiversity and provide essential ecosystem services. There is consensus in the scientific literature that freshwater ecosystems are vulnerable to the impacts of environmental change, which may trigger irreversible regime shifts upon which biodiversity and ecosystem services may be lost. There are profound uncertainties regarding the management and assessment of the vulnerability of freshwater ecosystems to environmental change. Quantitative approaches are needed to reduce this uncertainty. We describe available statistical and modeling approaches along with case studies that demonstrate how resilience theory can be applied to aid decision-making in natural resources management. We highlight especially how long-term monitoring efforts combined with ecological theory can provide a novel nexus between ecological impact assessment and management, and the quantification of systemic vulnerability and thus the resilience of ecosystems to environmental change.

  2. Impact of increasing antarctic glacial freshwater release on regional sea-ice cover in the Southern Ocean

    Science.gov (United States)

    Merino, Nacho; Jourdain, Nicolas C.; Le Sommer, Julien; Goosse, Hugues; Mathiot, Pierre; Durand, Gael

    2018-01-01

    The sensitivity of Antarctic sea-ice to increasing glacial freshwater release into the Southern Ocean is studied in a series of 31-year ocean/sea-ice/iceberg model simulations. Glaciological estimates of ice-shelf melting and iceberg calving are used to better constrain the spatial distribution and magnitude of freshwater forcing around Antarctica. Two scenarios of glacial freshwater forcing have been designed to account for a decadal perturbation in glacial freshwater release to the Southern Ocean. For the first time, this perturbation explicitly takes into consideration the spatial distribution of changes in the volume of Antarctic ice shelves, which is found to be a key component of changes in freshwater release. In addition, glacial freshwater-induced changes in sea ice are compared to typical changes induced by the decadal evolution of atmospheric states. Our results show that, in general, the increase in glacial freshwater release increases Antarctic sea ice extent. But the response is opposite in some regions like the coastal Amundsen Sea, implying that distinct physical mechanisms are involved in the response. We also show that changes in freshwater forcing may induce large changes in sea-ice thickness, explaining about one half of the total change due to the combination of atmospheric and freshwater changes. The regional contrasts in our results suggest a need for improving the representation of freshwater sources and their evolution in climate models.

  3. Biota: Providing often-overlooked connections among freshwater systems

    Science.gov (United States)

    Mushet, David M.; Christensen, Jay R.; Bennett, Michah; Alexander, Laurie C.

    2017-01-01

    When we think about connections in and among aquatic systems, we typically envision clear headwater streams flowing into downstream rivers, river floodwaters spilling out onto adjacent floodplains, or groundwater connecting wetlands to lakes and streams. However, there is another layer of connectivity moving materials among freshwater systems, one with connections that are not always tied to downgradient flows of surface waters and groundwater. These movements are those of organisms, key components of virtually every freshwater system on the planet. In their movements across the landscape, biota connect aquatic systems in often-overlooked ways.

  4. 78 FR 52192 - Final Aquatic Life Ambient Water Quality Criteria For Ammonia-Freshwater 2013

    Science.gov (United States)

    2013-08-22

    ... ambient water quality criteria for the protection of aquatic life from effects of ammonia in freshwater... ammonia to freshwater aquatic life. On December 30, 2009, EPA published draft national recommended water... freshwater are intended to protect aquatic life and do not address human health toxicity data. The water...

  5. Key roles for freshwater Actinobacteria revealed by deep metagenomic sequencing.

    Science.gov (United States)

    Ghai, Rohit; Mizuno, Carolina Megumi; Picazo, Antonio; Camacho, Antonio; Rodriguez-Valera, Francisco

    2014-12-01

    Freshwater ecosystems are critical but fragile environments directly affecting society and its welfare. However, our understanding of genuinely freshwater microbial communities, constrained by our capacity to manipulate its prokaryotic participants in axenic cultures, remains very rudimentary. Even the most abundant components, freshwater Actinobacteria, remain largely unknown. Here, applying deep metagenomic sequencing to the microbial community of a freshwater reservoir, we were able to circumvent this traditional bottleneck and reconstruct de novo seven distinct streamlined actinobacterial genomes. These genomes represent three new groups of photoheterotrophic, planktonic Actinobacteria. We describe for the first time genomes of two novel clades, acMicro (Micrococcineae, related to Luna2,) and acAMD (Actinomycetales, related to acTH1). Besides, an aggregate of contigs belonged to a new branch of the Acidimicrobiales. All are estimated to have small genomes (approximately 1.2 Mb), and their GC content varied from 40 to 61%. One of the Micrococcineae genomes encodes a proteorhodopsin, a rhodopsin type reported for the first time in Actinobacteria. The remarkable potential capacity of some of these genomes to transform recalcitrant plant detrital material, particularly lignin-derived compounds, suggests close linkages between the terrestrial and aquatic realms. Moreover, abundances of Actinobacteria correlate inversely to those of Cyanobacteria that are responsible for prolonged and frequently irretrievable damage to freshwater ecosystems. This suggests that they might serve as sentinels of impending ecological catastrophes. © 2014 John Wiley & Sons Ltd.

  6. Oil spills into freshwater environments-literature review of fate and effects

    International Nuclear Information System (INIS)

    Taylor, E.; Owens, E.; Craig, A.; Steen, A.; Fritz, D.

    1993-01-01

    A literature search (1984--1992) was performed to summarize the environmental and human health effects of inlands spills. Over 100 major spills that affected freshwater environments were reported through the Emergency Response Notification System (ERNS) in 1991--1992 alone. Spills from pipelines outnumber all other sources combined. The oil types involved are about equally distributed between non-persistent oils and crude. Small rivers, streams, and creeks are the habitats into which most freshwater spills occur. Cleanup of stranded oil, rather than protection or recovery of floating oil, is the norm in most situations because stranding on river and lake banks often occurs before response is possible. The prediction of spill movement commonly is simpler for freshwater spills because freshwater bodies are relatively small and commonly have strong uni-directional flow; however, fast flow in rivers and streams and turnover in cooling lakes serve to distribute oil throughout the water column. Impacts to the environment, through food web structures or groundwater, may persist for months following a spill but seldom persist for years, unlike marine coastal impacts. Chronic impacts of oil spills into freshwater are rarely documented and these impacts are difficult to separate from effects of other hydrocarbons in the environment

  7. Biotechnical leaching of lean ores using heterotrophic microorganisms

    International Nuclear Information System (INIS)

    Schwartz, W.; Naeveke, R.

    1980-01-01

    After reporting briefly on leaching with Thiobacillus, it is discussed whether in those cases where thiobacilli fail to work the limits of microbial leaching are reached or still other groups of microorganisms will be suitable. In this relation the great number of carbon-heterotrophic fungi and bacteria have to be considered which are partly oligotrophic and occur e.g. in weathering biotopes of rocks and minerals and which may even include heavy metals in the dissolving processes of weathering. The active agents are, as far as is known up to now, organic acids which are produced by microorganisms and given off to the medium where they may combine with metals to form water-soluble complex compounds. In order to detect and isolate suitable strains of fungi and bacteria it will be necessary to work out a screening program which proceeds from general to special selections. Experiments to identify the active agents and the conditions of their production will have to follow. It remains still an open question whether such studies will result in technical processes. Mass production processes which are possible with the carbon-autotrophic and acidophilic thiobacilli are less probable than special processes to get hold of rare and economically valuable metals whose extraction would be difficult by other means. (orig.) [de

  8. The Sterilization Effect of Cooperative Treatment of High Voltage Electrostatic Field and Variable Frequency Pulsed Electromagnetic Field on Heterotrophic Bacteria in Circulating Cooling Water

    Science.gov (United States)

    Gao, Xuetong; Liu, Zhian; Zhao, Judong

    2018-01-01

    Compared to other treatment of industrial circulating cooling water in the field of industrial water treatment, high-voltage electrostatic field and variable frequency pulsed electromagnetic field co-sterilization technology, an advanced technology, is widely used because of its special characteristics--low energy consumption, nonpoisonous and environmentally friendly. In order to get a better cooling water sterilization effect under the premise of not polluting the environment, some experiments about sterilization of heterotrophic bacteria in industrial circulating cooling water by cooperative treatment of high voltage electrostatic field and variable frequency pulsed electromagnetic field were carried out. The comparison experiment on the sterilization effect of high-voltage electrostatic field and variable frequency pulsed electromagnetic field co-sterilization on heterotrophic bacteria in industrial circulating cooling water was carried out by change electric field strength and pulse frequency. The results show that the bactericidal rate is selective to the frequency and output voltage, and the heterotrophic bacterium can only kill under the condition of sweep frequency range and output voltage. When the voltage of the high voltage power supply is 4000V, the pulse frequency is 1000Hz and the water temperature is 30°C, the sterilization rate is 48.7%, the sterilization rate is over 90%. Results of this study have important guiding significance for future application of magnetic field sterilization.

  9. Homogenization patterns of the world's freshwater fish faunas.

    Science.gov (United States)

    Villéger, Sébastien; Blanchet, Simon; Beauchard, Olivier; Oberdorff, Thierry; Brosse, Sébastien

    2011-11-01

    The world is currently undergoing an unprecedented decline in biodiversity, which is mainly attributable to human activities. For instance, nonnative species introduction, combined with the extirpation of native species, affects biodiversity patterns, notably by increasing the similarity among species assemblages. This biodiversity change, called taxonomic homogenization, has rarely been assessed at the world scale. Here, we fill this gap by assessing the current homogenization status of one of the most diverse vertebrate groups (i.e., freshwater fishes) at global and regional scales. We demonstrate that current homogenization of the freshwater fish faunas is still low at the world scale (0.5%) but reaches substantial levels (up to 10%) in some highly invaded river basins from the Nearctic and Palearctic realms. In these realms experiencing high changes, nonnative species introductions rather than native species extirpations drive taxonomic homogenization. Our results suggest that the "Homogocene era" is not yet the case for freshwater fish fauna at the worldwide scale. However, the distressingly high level of homogenization noted for some biogeographical realms stresses the need for further understanding of the ecological consequences of homogenization processes.

  10. Predator-induced reduction of freshwater carbon dioxide emissions

    Science.gov (United States)

    Atwood, Trisha B.; Hammill, Edd; Greig, Hamish S.; Kratina, Pavel; Shurin, Jonathan B.; Srivastava, Diane S.; Richardson, John S.

    2013-03-01

    Predators can influence the exchange of carbon dioxide between ecosystems and the atmosphere by altering ecosystem processes such as decomposition and primary production, according to food web theory. Empirical knowledge of such an effect in freshwater systems is limited, but it has been suggested that predators in odd-numbered food chains suppress freshwater carbon dioxide emissions, and predators in even-numbered food chains enhance emissions. Here, we report experiments in three-tier food chains in experimental ponds, streams and bromeliads in Canada and Costa Rica in the presence or absence of fish (Gasterosteus aculeatus) and invertebrate (Hesperoperla pacifica and Mecistogaster modesta) predators. We monitored carbon dioxide fluxes along with prey and primary producer biomass. We found substantially reduced carbon dioxide emissions in the presence of predators in all systems, despite differences in predator type, hydrology, climatic region, ecological zone and level of in situ primary production. We also observed lower amounts of prey biomass and higher amounts of algal and detrital biomass in the presence of predators. We conclude that predators have the potential to markedly influence carbon dioxide dynamics in freshwater systems.

  11. Factors controlling bacteria and protists in selected Mazurian eutrophic lakes (North-Eastern Poland) during spring

    Science.gov (United States)

    2013-01-01

    Background The bottom-up (food resources) and top-down (grazing pressure) controls, with other environmental parameters (water temperature, pH) are the main factors regulating the abundance and structure of microbial communities in aquatic ecosystems. It is still not definitively decided which of the two control mechanisms is more important. The significance of bottom-up versus top-down controls may alter with lake productivity and season. In oligo- and/or mesotrophic environments, the bottom-up control is mostly important in regulating bacterial abundances, while in eutrophic systems, the top-down control may be more significant. Results The abundance of bacteria, heterotrophic (HNF) and autotrophic (ANF) nanoflagellates and ciliates, as well as bacterial production (BP) and metabolically active cells of bacteria (CTC, NuCC, EST) were studied in eutrophic lakes (Mazurian Lake District, Poland) during spring. The studied lakes were characterized by high nanoflagellate (mean 17.36 ± 8.57 × 103 cells ml-1) and ciliate abundances (mean 59.9 ± 22.4 ind. ml-1) that were higher in the euphotic zone than in the bottom waters, with relatively low bacterial densities (4.76 ± 2.08 × 106 cells ml-1) that were lower in the euphotic zone compared to the profundal zone. Oligotrichida (Rimostrombidium spp.), Prostomatida (Urotricha spp.) and Scuticociliatida (Histiobalantium bodamicum) dominated in the euphotic zone, whereas oligotrichs Tintinnidium sp. and prostomatids Urotricha spp. were most numerous in the bottom waters. Among the staining methods used to examine bacterial cellular metabolic activity, the lowest percentage of active cells was recorded with the CTC (1.5–15.4%) and EST (2.7–14.2%) assay in contrast to the NuCC (28.8–97.3%) method. Conclusions In the euphotic zone, the bottom-up factors (TP and DOC concentrations) played a more important role than top-down control (grazing by protists) in regulating bacterial numbers and activity

  12. Freshwater availability and coastal wetland foundation species: ecological transitions along a rainfall gradient

    Science.gov (United States)

    Osland, Michael J.; Enwright, Nicholas M.; Stagg, Camille L.

    2014-01-01

    Climate gradient-focused ecological research can provide a foundation for better understanding critical ecological transition points and nonlinear climate-ecological relationships, which is information that can be used to better understand, predict, and manage ecological responses to climate change. In this study, we examined the influence of freshwater availability upon the coverage of foundation plant species in coastal wetlands along a northwestern Gulf of Mexico rainfall gradient. Our research addresses the following three questions: (1) what are the region-scale relationships between measures of freshwater availability (e.g., rainfall, aridity, freshwater inflow, salinity) and the relative abundance of foundation plant species in tidal wetlands; (2) How vulnerable are foundation plant species in tidal wetlands to future changes in freshwater availability; and (3) What is the potential future relative abundance of tidal wetland foundation plant species under alternative climate change scenarios? We developed simple freshwater availability-based models to predict the relative abundance (i.e., coverage) of tidal wetland foundation plant species using climate data (1970-2000), estuarine freshwater inflow-focused data, and coastal wetland habitat data. Our results identify regional ecological thresholds and nonlinear relationships between measures of freshwater availability and the relative abundance of foundation plant species in tidal wetlands. In drier coastal zones, relatively small changes in rainfall could produce comparatively large landscape-scale changes in foundation plant species abundance which would affect some ecosystem good and services. Whereas a drier future would result in a decrease in the coverage of foundation plant species, a wetter future would result in an increase in foundation plant species coverage. In many ways, the freshwater-dependent coastal wetland ecological transitions we observed are analogous to those present in dryland

  13. High current densities enable exoelectrogens to outcompete aerobic heterotrophs for substrate

    KAUST Repository

    Ren, Lijiao

    2014-08-05

    © 2014 Wiley Periodicals, Inc. Chemical oxygen demand (COD) removal rates could be described by first-order kinetics with respect to COD concentration at different current densities, even under open circuit conditions with no current generation. The COD concentration was reduced more quickly with current generation due to the greater consumption of substrate by exoelectrogens, and less substrate was lost to aerobic heterotrophs. Higher current densities enabled exoelectrogens to outcompete aerobic heterotrophs for substrate, allowing for increased coulombic efficiencies with current densities. © 2014 Wiley Periodicals, Inc. In mixed-culture microbial fuel cells (MFCs), exoelectrogens and other microorganisms compete for substrate. It has previously been assumed that substrate losses to other terminal electron acceptors over a fed-batch cycle, such as dissolved oxygen, are constant. However, a constant rate of substrate loss would only explain small increases in coulombic efficiencies (CEs, the fraction of substrate recovered as electrical current) with shorter cycle times, but not the large increases in CE that are usually observed with higher current densities and reduced cycle times. To better understand changes in CEs, COD concentrations were measured over time in fed-batch, single-chamber, air-cathode MFCs at different current densities (external resistances). COD degradation rates were all found to be first-order with respect to COD concentration, even under open circuit conditions with no current generation (first-order rate constant of 0.14±0.01h-1). The rate of COD removal increased when there was current generation, with the highest rate constant (0.33±0.02h-1) obtained at the lowest external resistance (100Ω). Therefore, as the substrate concentration was reduced more quickly due to current generation, the rate of loss of substrate to non-exoelectrogens decreased due to this first-order substrate-concentration dependence. As a result, coulombic

  14. High current densities enable exoelectrogens to outcompete aerobic heterotrophs for substrate

    KAUST Repository

    Ren, Lijiao; Zhang, Xiaoyuan; He, Weihua; Logan, Bruce E.

    2014-01-01

    © 2014 Wiley Periodicals, Inc. Chemical oxygen demand (COD) removal rates could be described by first-order kinetics with respect to COD concentration at different current densities, even under open circuit conditions with no current generation. The COD concentration was reduced more quickly with current generation due to the greater consumption of substrate by exoelectrogens, and less substrate was lost to aerobic heterotrophs. Higher current densities enabled exoelectrogens to outcompete aerobic heterotrophs for substrate, allowing for increased coulombic efficiencies with current densities. © 2014 Wiley Periodicals, Inc. In mixed-culture microbial fuel cells (MFCs), exoelectrogens and other microorganisms compete for substrate. It has previously been assumed that substrate losses to other terminal electron acceptors over a fed-batch cycle, such as dissolved oxygen, are constant. However, a constant rate of substrate loss would only explain small increases in coulombic efficiencies (CEs, the fraction of substrate recovered as electrical current) with shorter cycle times, but not the large increases in CE that are usually observed with higher current densities and reduced cycle times. To better understand changes in CEs, COD concentrations were measured over time in fed-batch, single-chamber, air-cathode MFCs at different current densities (external resistances). COD degradation rates were all found to be first-order with respect to COD concentration, even under open circuit conditions with no current generation (first-order rate constant of 0.14±0.01h-1). The rate of COD removal increased when there was current generation, with the highest rate constant (0.33±0.02h-1) obtained at the lowest external resistance (100Ω). Therefore, as the substrate concentration was reduced more quickly due to current generation, the rate of loss of substrate to non-exoelectrogens decreased due to this first-order substrate-concentration dependence. As a result, coulombic

  15. Selecting reliable and robust freshwater macroalgae for biomass applications.

    Directory of Open Access Journals (Sweden)

    Rebecca J Lawton

    Full Text Available Intensive cultivation of freshwater macroalgae is likely to increase with the development of an algal biofuels industry and algal bioremediation. However, target freshwater macroalgae species suitable for large-scale intensive cultivation have not yet been identified. Therefore, as a first step to identifying target species, we compared the productivity, growth and biochemical composition of three species representative of key freshwater macroalgae genera across a range of cultivation conditions. We then selected a primary target species and assessed its competitive ability against other species over a range of stocking densities. Oedogonium had the highest productivity (8.0 g ash free dry weight m⁻² day⁻¹, lowest ash content (3-8%, lowest water content (fresh weigh: dry weight ratio of 3.4, highest carbon content (45% and highest bioenergy potential (higher heating value 20 MJ/kg compared to Cladophora and Spirogyra. The higher productivity of Oedogonium relative to Cladophora and Spirogyra was consistent when algae were cultured with and without the addition of CO₂ across three aeration treatments. Therefore, Oedogonium was selected as our primary target species. The competitive ability of Oedogonium was assessed by growing it in bi-cultures and polycultures with Cladophora and Spirogyra over a range of stocking densities. Cultures were initially stocked with equal proportions of each species, but after three weeks of growth the proportion of Oedogonium had increased to at least 96% (±7 S.E. in Oedogonium-Spirogyra bi-cultures, 86% (±16 S.E. in Oedogonium-Cladophora bi-cultures and 82% (±18 S.E. in polycultures. The high productivity, bioenergy potential and competitive dominance of Oedogonium make this species an ideal freshwater macroalgal target for large-scale production and a valuable biomass source for bioenergy applications. These results demonstrate that freshwater macroalgae are thus far an under-utilised feedstock with

  16. Radionuclide transfer to freshwater biota species: review of Russian language studies

    International Nuclear Information System (INIS)

    Fesenko, S.; Fesenko, J.; Sanzharova, N.; Karpenko, E.; Titov, I.

    2011-01-01

    Around 130 publications reporting studies on radionuclide transfer to freshwater biota species conducted in the former USSR were reviewed to provide the concentration ratio values. None of these studies were available up to now in the English language reviews or publications. The values derived have been compared with the CR values used for freshwater systems in the International reviews. For some radionuclides reviewed in this paper, the data are in good agreement with the mean CR values presented earlier, however for some of them, in particular, for 241 Am (bivalve molluscs, gastropods and pelagic fish), 60 Co (gastropods, benthic fish and insect larvae), 90 Sr and 137 Cs (benthic fish and zooplankton), the mean values given here are substantially different from those presented earlier. The data reported in this paper for thirty five radionuclides and eleven groups of freshwater species markedly improve the extent of available data for evaluation of radiation impact on freshwater species. - Research highlights: → The paper provides information on concentration ratios to freshwater biota species for 35 radionuclides. Many of the data are for 90 Sr and 137 Cs. → For the majority of radionuclides reviewed in this paper, the CR values are in good agreement with those given in the recent International reviews. → For 241 Am (bivalve molluscs, gastropods and pelagic fish), 60 Co (gastropods, benthic fish and insect larvae), 90 Sr and 137 Cs (benthic fish and zooplankton), the mean values based on review of the Russian language publications are substantially different from those presented in the International reviews. → Information presented in the paper significantly increases the availability of data on radionuclide accumulation in freshwater species.

  17. Tributyltin-resistant bacteria from estuarine and freshwater sediments.

    Science.gov (United States)

    Wuertz, S; Miller, C E; Pfister, R M; Cooney, J J

    1991-01-01

    Resistance to tributyltin (TBT) was examined in populations from TBT-polluted sediments and nonpolluted sediments from an estuary and from fresh water as well as in pure cultures isolated from those sediments. The 50% effective concentrations (EC50s) for populations were higher at a TBT-polluted freshwater site than at a site without TBT, suggesting that TBT selected for a TBT-resistant population. In contrast, EC50s were significantly lower for populations from a TBT-contaminated estuarine site than for those from a site without TBT, suggesting that other factors in addition to TBT determine whether populations become resistant. EC50s for populations from TBT-contaminated freshwater sediments were nearly 30 times higher than those for populations from TBT-contaminated estuarine sediments. We defined a TBT-resistant bacterium as one which grows on trypticase soy agar containing 8.4 microM TBT, a concentration which prevented the growth of 90% of the culturable bacteria from these sediments. The toxicity of TBT in laboratory media was influenced markedly by the composition of the medium and whether it was liquid or solid. Ten TBT-resistant isolates from estuarine sediments and 19 from freshwater sediments were identified to the genus level. Two isolates, each a Bacillus sp., may be the first gram-positive bacteria isolated from fresh water in the presence of a high concentration of TBT. There was a high incidence of resistance to heavy metals: metal resistance indices were 0.76 for estuarine isolates and 0.68 for freshwater isolates.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1746939

  18. The effects of wastewater effluent and river discharge on benthic heterotrophic production, organic biomass and respiration in marine coastal sediments.

    Science.gov (United States)

    Burd, B; Macdonald, T; Bertold, S

    2013-09-15

    We examine effects of high river particulate flux and municipal wastewater effluent on heterotrophic organic carbon cycling in coastal subtidal sediments. Heterotrophic production was a predictable (r(2)=0.95) proportion (56%) of oxidized OC flux and strongly correlated with organic/inorganic flux. Consistent growth efficiencies (36%) occurred at all stations. Organic biomass was correlated with total, OC and buried OC fluxes, but not oxidized OC flux. Near the river, production was modest and biomass high, resulting in low P/B. Outfall deposition resulted in depleted biomass and high bacterial production, resulting in the highest P/B. These patterns explain why this region is production "saturated". The δ(15)N in outfall effluent, sediments and dominant taxa provided insight into where, and which types of organisms feed directly on fresh outfall particulates, on older, refractory material buried in sediments, or utilize chemosynthetic symbiotic bacteria. Results are discussed in the context of declining bottom oxygen conditions along the coast. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  19. Analysis of the Arctic system for freshwater cycle intensification: Observations and expectations

    Science.gov (United States)

    Rawlins, M.A.; Steele, M.; Holland, M.M.; Adam, J.C.; Cherry, J.E.; Francis, J.A.; Groisman, P.Y.; Hinzman, L.D.; Huntington, T.G.; Kane, D.L.; Kimball, J.S.; Kwok, R.; Lammers, R.B.; Lee, C.M.; Lettenmaier, D.P.; McDonald, K.C.; Podest, E.; Pundsack, J.W.; Rudels, B.; Serreze, Mark C.; Shiklomanov, A.; Skagseth, O.; Troy, T.J.; Vorosmarty, C.J.; Wensnahan, M.; Wood, E.F.; Woodgate, R.; Yang, D.; Zhang, K.; Zhang, T.

    2010-01-01

    Hydrologic cycle intensification is an expected manifestation of a warming climate. Although positive trends in several global average quantities have been reported, no previous studies have documented broad intensification across elements of the Arctic freshwater cycle (FWC). In this study, the authors examine the character and quantitative significance of changes in annual precipitation, evapotranspiration, and river discharge across the terrestrial pan-Arctic over the past several decades from observations and a suite of coupled general circulation models (GCMs). Trends in freshwater flux and storage derived from observations across the Arctic Ocean and surrounding seas are also described. With few exceptions, precipitation, evapotranspiration, and river discharge fluxes from observations and the GCMs exhibit positive trends. Significant positive trends above the 90% confidence level, however, are not present for all of the observations. Greater confidence in the GCM trends arises through lower interannual variability relative to trend magnitude. Put another way, intrinsic variability in the observations tends to limit confidence in trend robustness. Ocean fluxes are less certain, primarily because of the lack of long-term observations. Where available, salinity and volume flux data suggest some decrease in saltwater inflow to the Barents Sea (i.e., a decrease in freshwater outflow) in recent decades. A decline in freshwater storage across the central Arctic Ocean and suggestions that large-scale circulation plays a dominant role in freshwater trends raise questions as to whether Arctic Ocean freshwater flows are intensifying. Although oceanic fluxes of freshwater are highly variable and consistent trends are difficult to verify, the other components of the Arctic FWC do show consistent positive trends over recent decades. The broad-scale increases provide evidence that the Arctic FWC is experiencing intensification. Efforts that aim to develop an adequate

  20. Inactivation of Paragonimus westermani metacercariae in soy sauce-marinated and frozen freshwater crabs.

    Science.gov (United States)

    Kim, Tae Im; Oh, Se-Ra; Dai, Fuhong; Yang, Hyun-Jong; Ha, Sang-Do; Hong, Sung-Jong

    2017-03-01

    Soy sauce-marinated freshwater crabs (Eriocheir japonicus) are a source of human paragonimiasis. The viability of Paragonimus westermani metacercariae (PwMc) in marinated crabs was investigated in an experimental setting. The PwMc collected from freshwater crayfish were inoculated into freshwater crabs, which were then frozen or marinated in soy sauce. All PwMc in the freshwater crabs were inactivated after freezing for 48 h at -20 °C and after freezing for 12 h at -40 °C. After marinating for 32 days, the survival rate of PwMc in 5% NaCl soy sauce was 50%, in 7.5% NaCl soy sauce it was 33.3%, and in 10.0% NaCl soy sauce it was 31.3%. When marinated for 64 days, all PwMc were inactivated in all experimental groups. These results revealed that freezing and soy sauce marination were detrimental to the survival of PwMc in freshwater crabs. Specifically, freezing crabs for more than 48 h or soaking them in soy sauce containing at least 5.0% NaCl for 64 days can inactivate PwMc. These results can inform the production of the traditional Korean soy sauce-marinated freshwater crabs known as gejang.

  1. Microbial interactions with the cyanobacterium Microcystis aeruginosa and their dependence on temperature

    DEFF Research Database (Denmark)

    Dziallas, Claudia; Grossart, Hans-Peter

    2012-01-01

    and their associated community often masked this temperature effect. Both macro- and microenvironment of active cyanobacterial strains were characterized by high pH and oxygen values creating a unique habitat that potentially affects microbial diversity and function. For example, archaea including ‘anaerobic......Associated heterotrophic bacteria alter the microenvironment of cyanobacteria and potentially influence cyanobacterial development. Therefore, we studied interactions of the unicellular freshwater cyanobacterium Microcystis aeruginosa with heterotrophic bacteria. The associated bacterial community...... was greatly driven by temperature as seen by DNA Wngerprinting. However, the associated microbes also closely interacted with the cyanobacteria indicating changing ecological consequence of the associated bacterial community with temperature. Whereas concentration of dissolved organic carbon in cyanobacterial...

  2. Graphite Based Electrode for ECG Monitoring: Evaluation under Freshwater and Saltwater Conditions

    Directory of Open Access Journals (Sweden)

    Tharoeun Thap

    2016-04-01

    Full Text Available We proposed new electrodes that are applicable for electrocardiogram (ECG monitoring under freshwater- and saltwater-immersion conditions. Our proposed electrodes are made of graphite pencil lead (GPL, a general-purpose writing pencil. We have fabricated two types of electrode: a pencil lead solid type (PLS electrode and a pencil lead powder type (PLP electrode. In order to assess the qualities of the PLS and PLP electrodes, we compared their performance with that of a commercial Ag/AgCl electrode, under a total of seven different conditions: dry, freshwater immersion with/without movement, post-freshwater wet condition, saltwater immersion with/without movement, and post-saltwater wet condition. In both dry and post-freshwater wet conditions, all ECG-recorded PQRST waves were clearly discernible, with all types of electrodes, Ag/AgCl, PLS, and PLP. On the other hand, under the freshwater- and saltwater-immersion conditions with/without movement, as well as post-saltwater wet conditions, we found that the proposed PLS and PLP electrodes provided better ECG waveform quality, with significant statistical differences compared with the quality provided by Ag/AgCl electrodes.

  3. The development of a GIS atlas of southern African freshwater fish ...

    African Journals Online (AJOL)

    The development of a GIS atlas of southern African freshwater fish. LEP Scott, PH Skelton, AJ Booth, L Verheust. Abstract. A geographic information systems (GIS) based atlas of southern African freshwater fish has been developed for the SADC countries. The JLB Smith Institute of Ichthyology, in collaboration with ALCOM, ...

  4. Freshwater Ecosystem Service Flow Model To Evaluate Regional Water Security: A Case Study In Beijing-Tianjin-Hebei Region, China

    Science.gov (United States)

    Li, D.; Li, S.

    2016-12-01

    Freshwater service, as the most important support ecosystem service, is essential to human survival and development. Many studies have evidenced the spatial differences in the supply and demand of ecosystem services and raised the concept of ecosystem service flow. However, rather few studies quantitatively characterize the freshwater service flow. This paper aims to quantify the effect of freshwater ecosystem service flow on downstream areas in Beijing-Tianjin-Hebei (BTH) region, China over 2000, 2005 and 2010. We computed the freshwater ecosystem service provision with InVEST model. We calculated freshwater ecosystem service consumption with water quota method. We simulated the freshwater ecosystem service flow using our simplified flow model and assessed the regional water security with the improved freshwater security index. The freshwater provision service mainly depends on climatic factors that cannot be influenced by management, while the freshwater consumption service is constrained by human activities. Furthermore, the decrease of water quota for agricultural, domestic and industrial water counteracts the impact of increasing freshwater demand. The analysis of freshwater ecosystem service flow reveals that the majority area of the BTH (69.2%) is affected by upstream freshwater. If freshwater ecosystem service flow is considered, the water safety areas of the whole BTH account for 66.9%, 66.1%, 71.3%, which increase 6.4%, 6.8% and 5.7% in 2000, 2005 and 2010, respectively. These results highlight the need to understand the teleconnections between distant freshwater ecosystem service provision and local freshwater ecosystem service use. This approach therefore helps managers choose specific management and investment strategies for critical upstream freshwater provisions across different regions.

  5. Patterns of Freshwater Species Richness, Endemism, and Vulnerability in California.

    Directory of Open Access Journals (Sweden)

    Jeanette K Howard

    Full Text Available The ranges and abundances of species that depend on freshwater habitats are declining worldwide. Efforts to counteract those trends are often hampered by a lack of information about species distribution and conservation status and are often strongly biased toward a few well-studied groups. We identified the 3,906 vascular plants, macroinvertebrates, and vertebrates native to California, USA, that depend on fresh water for at least one stage of their life history. We evaluated the conservation status for these taxa using existing government and non-governmental organization assessments (e.g., endangered species act, NatureServe, created a spatial database of locality observations or distribution information from ~400 data sources, and mapped patterns of richness, endemism, and vulnerability. Although nearly half of all taxa with conservation status (n = 1,939 are vulnerable to extinction, only 114 (6% of those vulnerable taxa have a legal mandate for protection in the form of formal inclusion on a state or federal endangered species list. Endemic taxa are at greater risk than non-endemics, with 90% of the 927 endemic taxa vulnerable to extinction. Records with spatial data were available for a total of 2,276 species (61%. The patterns of species richness differ depending on the taxonomic group analyzed, but are similar across taxonomic level. No particular taxonomic group represents an umbrella for all species, but hotspots of high richness for listed species cover 40% of the hotspots for all other species and 58% of the hotspots for vulnerable freshwater species. By mapping freshwater species hotspots we show locations that represent the top priority for conservation action in the state. This study identifies opportunities to fill gaps in the evaluation of conservation status for freshwater taxa in California, to address the lack of occurrence information for nearly 40% of freshwater taxa and nearly 40% of watersheds in the state, and to

  6. The complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism among heterotrophic Crenarchaeota

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, iain J.; Dharmarajan, Lakshmi; Rodriguez, Jason; Hooper, Sean; Porat, Iris; Ulrich, Luke E.; Elkins, James G.; Mavromatis, Kostas; Sun, Hui; Land, Miriam; Lapidus, Alla; Lucas, Susan; Barry, Kerrie; Huber, Harald; Zhulin, Igor B.; Whitman, William B.; Mukhopadhyay, Biswarup; Woese, Carl; Bristow, James; Kyrpides, Nikos

    2008-09-05

    Staphylothermus marinus is an anaerobic, sulfur-reducing peptide fermenter of the archaeal phylum Crenarchaeota. It is the third heterotrophic, obligate sulfur reducing crenarchaeote to be sequenced and provides an opportunity for comparative analysis of the three genomes. The 1.57 Mbp genome of the hyperthermophilic crenarchaeote Staphylothermus marinus has been completely sequenced. The main energy generating pathways likely involve 2-oxoacid:ferredoxin oxidoreductases and ADP-forming acetyl-CoA synthases. S. marinus possesses several enzymes not present in other crenarchaeotes including a sodium ion-translocating decarboxylase likely to be involved in amino acid degradation. S. marinus lacks sulfur-reducing enzymes present in the other two sulfur-reducing crenarchaeotes that have been sequenced - Thermofilum pendens and Hyperthermus butylicus. Instead it has three operons similar to the mbh and mbx operons of Pyrococcus furiosus, which may play a role in sulfur reduction and/or hydrogen production. The two marine organisms, S. marinus and H. butylicus, possess more sodium-dependent transporters than T. pendens and use symporters for potassium uptake while T. pendens uses an ATP-dependent potassium transporter. T. pendens has adapted to a nutrient-rich environment while H. butylicus is adapted to a nutrient-poor environment, and S. marinus lies between these two extremes. The three heterotrophic sulfur-reducing crenarchaeotes have adapted to their habitats, terrestrial vs. marine, via their transporter content, and they have also adapted to environments with differing levels of nutrients. Despite the fact that they all use sulfur as an electron acceptor, they are likely to have different pathways for sulfur reduction.

  7. Education Agendas and Resistance with the Teaching and Learning of Freshwater and Extreme Freshwater Events

    Science.gov (United States)

    Sammel, Alison; McMartin, Dena; Arbuthnott, Katherine

    2018-01-01

    Despite the essentiality of freshwater to all life on the planet, the populous has inadequate understandings of water. Formal education plays a key role in shaping how individuals and communities make sense of water, its accessibility, management, consumption, and hazards. This article seeks to bring attention to the infuence of cultural framings…

  8. Gyrodiniellum shiwhaense n. gen., n. sp., A New Planktonic Heterotrophic Dinoflagellate from the Coastal Waters of Western Korea 

    DEFF Research Database (Denmark)

    Kang, Nam Seon; Jeong, Hae Jin; Moestrup, O.

    2011-01-01

    The heterotrophic dinoflagellate Gyrodiniellum shiwhaense n. gen., n. sp. is described from live cells and from cells prepared for light, scanning electron, and transmission electron microscopy. Also, sequences of the small subunit (SSU) and large subunit (LSU) of rDNA have been analyzed. The epi......The heterotrophic dinoflagellate Gyrodiniellum shiwhaense n. gen., n. sp. is described from live cells and from cells prepared for light, scanning electron, and transmission electron microscopy. Also, sequences of the small subunit (SSU) and large subunit (LSU) of rDNA have been analyzed.......3-0.5 x cell length. Cells that were feeding on the dinoflagellate Amphidinium carterae Hulburt were 9.1-21.6 mu m long and 6.6-15.7 mu m wide. Cells of G. shiwhaense contain nematocysts, trichocysts, a peduncle, and pusule systems, but they lack chloroplasts. The SSU rDNA sequence is > 3% different from......., cells of which possess a taeniocyst-nematocyst complex, G. shiwhaense has nematocysts but lacks taeniocysts. It differs from Paragymnodinium shiwhaense Kang, Jeong, Moestrup & Shin by possessing nematocysts with stylets and filaments. Gyrodiniellum shiwhaense n. gen., n. sp. furthermore lacks ocelloids...

  9. Biogenic silica in tidal freshwater marsh sediments and vegetation (Schelde estuary, Belgium)

    NARCIS (Netherlands)

    Struyf, E.; van Damme, S.; Gribsholt, B.; Middelburg, J.J.; Meire, P.

    2005-01-01

    To date, estuarine ecosystem research has mostly neglected silica cycling in freshwater intertidal marshes. However, tidal marshes can store large amounts of biogenic silica (BSi) in vegetation and sediment. BSi content of the typical freshwater marsh plants Phragmites australis, Impatiens

  10. Effects of salinity on freshwater fishes in coastal plain drainages in the southeastern U.S.

    Science.gov (United States)

    Peterson, Mark S.; Meador, Michael R.

    1994-01-01

    This review focuses on the influence of salinity on freshwater fishes in coastal rivers and estuaries of the southeastern U.S. Influences of salinity on freshwater fish species can be explained partly through responses evidenced by behavior, physiology, growth, reproduction, and food habits during all aspects of life history. Factors influencing the rate of salinity change affect the community structure and dynamics of freshwater fishes in brackish environments. Our understanding of the relation between salinity and the life history of freshwater fishes is limited because little ecological research has been conducted in low-salinity habitats that we consider an “interface” between freshwater streams and the estuary proper. Much of the available data are descriptive in nature and describe best general patterns, but more specific studies are required to better determine the influence of salinity on freshwater fishes. Improved understanding of the influence of human-induced changes on the productivity and viability of these important systems will require a new research focus.

  11. Salinity tolerances and use of saline environments by freshwater turtles: implications of sea level rise.

    Science.gov (United States)

    Agha, Mickey; Ennen, Joshua R; Bower, Deborah S; Nowakowski, A Justin; Sweat, Sarah C; Todd, Brian D

    2018-03-25

    The projected rise in global mean sea levels places many freshwater turtle species at risk of saltwater intrusion into freshwater habitats. Freshwater turtles are disproportionately more threatened than other taxa; thus, understanding the role of salinity in determining their contemporary distribution and evolution should be a research priority. Freshwater turtles are a slowly evolving lineage; however, they can adapt physiologically or behaviourally to various levels of salinity and, therefore, temporarily occur in marine or brackish environments. Here, we provide the first comprehensive global review on freshwater turtle use and tolerance of brackish water ecosystems. We link together current knowledge of geographic occurrence, salinity tolerance, phylogenetic relationships, and physiological and behavioural mechanisms to generate a baseline understanding of the response of freshwater turtles to changing saline environments. We also review the potential origins of salinity tolerance in freshwater turtles. Finally, we integrate 2100 sea level rise (SLR) projections, species distribution maps, literature gathered on brackish water use, and a phylogeny to predict the exposure of freshwater turtles to projected SLR globally. From our synthesis of published literature and available data, we build a framework for spatial and phylogenetic conservation prioritization of coastal freshwater turtles. Based on our literature review, 70 species (∼30% of coastal freshwater turtle species) from 10 of the 11 freshwater turtle families have been reported in brackish water ecosystems. Most anecdotal records, observations, and descriptions do not imply long-term salinity tolerance among freshwater turtles. Rather, experiments show that some species exhibit potential for adaptation and plasticity in physiological, behavioural, and life-history traits that enable them to endure varying periods (e.g. days or months) and levels of saltwater exposure. Species that specialize on

  12. The effect of Congo River freshwater discharge on Eastern Equatorial Atlantic climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Materia, Stefano [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); Gualdi, Silvio; Navarra, Antonio [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Terray, Laurent [Sciences de l' Univers au CERFACS, URA1875 CERFACS/CNRS, Toulouse (France)

    2012-11-15

    The surface ocean explains a considerable part of the inter-annual Tropical Atlantic variability. The present work makes use of observational datasets to investigate the effect of freshwater flow on sea surface salinity (SSS) and temperature (SST) in the Gulf of Guinea. In particular, the Congo River discharges a huge amount of freshwater into the ocean, affecting SSS in the Eastern Equatorial Atlantic (EEA) and stratifying the surface layers. The hypothesis is that an excess of river runoff emphasize stratification, influencing the ocean temperature. In fact, our findings show that SSTs in the Gulf of Guinea are warmer in summers following an anomalously high Congo spring discharge. Vice versa, when the river discharges low freshwater, a cold anomaly appears in the Gulf. The response of SST is not linear: temperature anomalies are considerable and long-lasting in the event of large freshwater flow, while in dry years they are less remarkable, although still significant. An excess of freshwater seems able to form a barrier layer, which inhibits vertical mixing and the entrainment of the cold thermocline water into the surface. Other processes may contribute to SST variability, among which the net input of atmospheric freshwater falling over EEA. Likewise the case of continental runoff from Congo River, warm anomalies occur after anomalously rainy seasons and low temperatures follow dry seasons, confirming the effect of freshwater on SST. However, the two sources of freshwater anomaly are not in phase, so that it is possible to split between atypical SST following continental freshwater anomalies and rainfall anomalies. Also, variations in air-sea fluxes can produce heating and cooling of the Gulf of Guinea. Nevertheless, atypical SSTs cannot be ascribed to fluxes, since the temperature variation induced by them is not sufficient to explain the SST anomalies appearing in the Gulf after anomalous peak discharges. The interaction processes between river runoff, sea

  13. Radionuclide transfer to freshwater biota species: review of Russian language studies

    Energy Technology Data Exchange (ETDEWEB)

    Fesenko, S., E-mail: s.fesenko@iaea.or [International Atomic Energy Agency, NAAL, 1400 Vienna (Austria); Fesenko, J.; Sanzharova, N.; Karpenko, E.; Titov, I. [Russian Institute of Agricultural Radiology and Radioecology, 249020 Obninsk (Russian Federation)

    2011-01-15

    Around 130 publications reporting studies on radionuclide transfer to freshwater biota species conducted in the former USSR were reviewed to provide the concentration ratio values. None of these studies were available up to now in the English language reviews or publications. The values derived have been compared with the CR values used for freshwater systems in the International reviews. For some radionuclides reviewed in this paper, the data are in good agreement with the mean CR values presented earlier, however for some of them, in particular, for {sup 241}Am (bivalve molluscs, gastropods and pelagic fish), {sup 60}Co (gastropods, benthic fish and insect larvae), {sup 90}Sr and {sup 137}Cs (benthic fish and zooplankton), the mean values given here are substantially different from those presented earlier. The data reported in this paper for thirty five radionuclides and eleven groups of freshwater species markedly improve the extent of available data for evaluation of radiation impact on freshwater species. - Research highlights: {yields} The paper provides information on concentration ratios to freshwater biota species for 35 radionuclides. Many of the data are for {sup 90}Sr and {sup 137}Cs. {yields} For the majority of radionuclides reviewed in this paper, the CR values are in good agreement with those given in the recent International reviews. {yields} For {sup 241}Am (bivalve molluscs, gastropods and pelagic fish), {sup 60}Co (gastropods, benthic fish and insect larvae), {sup 90}Sr and {sup 137}Cs (benthic fish and zooplankton), the mean values based on review of the Russian language publications are substantially different from those presented in the International reviews. {yields} Information presented in the paper significantly increases the availability of data on radionuclide accumulation in freshwater species.

  14. Standard methods for sampling freshwater fishes: opportunities for international collaboration

    OpenAIRE

    Bonar, Scott A.; Mercado-Silva, Norman; Hubert, Wayne A.; Beard, T. Douglas; Dave, Göran; Kubečka, Jan; Graeb, Brian D.S.; Lester, Nigel P.; Porath, Mark; Winfield, Ian J.

    2017-01-01

    With publication of Standard Methods for Sampling North American Freshwater Fishes in 2009, the American Fisheries Society (AFS) recommended standard procedures for North America. To explore interest in standardizing at intercontinental scales, a symposium attended by international specialists in freshwater fish sampling was convened at the 145th Annual AFS Meeting in Portland, Oregon, in August 2015. Participants represented all continents except Australia and Antarctica and were employed by...

  15. Genetic calibration of species diversity among North America's freshwater fishes

    OpenAIRE

    April, Julien; Mayden, Richard L.; Hanner, Robert H.; Bernatchez, Louis

    2011-01-01

    Freshwater ecosystems are being heavily exploited and degraded by human activities all over the world, including in North America, where fishes and fisheries are strongly affected. Despite centuries of taxonomic inquiry, problems inherent to species identification continue to hamper the conservation of North American freshwater fishes. Indeed, nearly 10% of species diversity is thought to remain undescribed. To provide an independent calibration of taxonomic uncertainty and to establish a mor...

  16. Autotrophic and heterotrophic nitrification-anoxic denitrification dominated the anoxic/oxic sewage treatment process during optimization for higher loading rate and energy savings.

    Science.gov (United States)

    Zhang, Xueyu; Zheng, Shaokui; Zhang, Hangyu; Duan, Shoupeng

    2018-04-30

    This study clarified the dominant nitrogen (N)-transformation pathway and the key ammonia-oxidizing microbial species at three loading levels during optimization of the anoxic/oxic (A/O) process for sewage treatment. Comprehensive N-transformation activity analysis showed that ammonia oxidization was performed predominantly by aerobic chemolithotrophic and heterotrophic ammonia oxidization, whereas N 2 production was performed primarily by anoxic denitrification in the anoxic unit. The abundances of ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria, and anaerobic AOB in activated sludge reflected their activities on the basis of high-throughput sequencing data. AOB amoA gene clone libraries revealed that the predominant AOB species in sludge samples shifted from Nitrosomonas europaea (61% at the normal loading level) to Nitrosomonas oligotropha (58% and 81% at the two higher loading levels). Following isolation and sequencing, the predominant culturable heterotrophic AOB in sludge shifted from Agrobacterium tumefaciens (42% at the normal loading level) to Acinetobacter johnsonii (52% at the highest loading level). Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Freshwater biodiversity and aquatic insect diversification.

    Science.gov (United States)

    Dijkstra, Klaas-Douwe B; Monaghan, Michael T; Pauls, Steffen U

    2014-01-01

    Inland waters cover less than 1% of Earth's surface but harbor more than 6% of all insect species: Nearly 100,000 species from 12 orders spend one or more life stages in freshwater. Little is known about how this remarkable diversity arose, although allopatric speciation and ecological adaptation are thought to be primary mechanisms. Freshwater habitats are highly susceptible to environmental change and exhibit marked ecological gradients. Standing waters appear to harbor more dispersive species than running waters, but there is little understanding of how this fundamental ecological difference has affected diversification. In contrast to the lack of evolutionary studies, the ecology and habitat preferences of aquatic insects have been intensively studied, in part because of their widespread use as bioindicators. The combination of phylogenetics with the extensive ecological data provides a promising avenue for future research, making aquatic insects highly suitable models for the study of ecological diversification.

  18. Freshwater fishes of Tsitsikamma National Park

    Directory of Open Access Journals (Sweden)

    I.A. Russell

    2002-12-01

    Full Text Available This study aimed to determine the distribution and relative abundance of freshwater fishes in the Tsitsikamma National Park. Fish assemblages in six river systems were sampled in 2001, with a total of 323 fish from eight species recorded. Indigenous fish collected included four freshwater species (Pseudobarbus afer, Pseudobarbus tenuis, Sandelia capensis, Anguilla mossambica, three estuarine species (Monodactylus falciformis, Caffrogobius gilchristi, Myxus capensis, and one alien (Micropterus salmoides. One additional indigenous species (Galaxias zebratus and two aliens (Salmo trutta, Oncorhynchus mykiss could potentially occur within the park. The topography and locality of the park presents a unique opportunity to meaningfully conserve the endangered P. tenuis as well as other fish characteristic of the eastern reaches of the Cape Floristic Region. Management action is required to minimise opportunities for further establishment and spread of alien fish species and to conserve indigenous fish assemblages within the park.

  19. Dissolved organic carbon in the freshwater tidal reaches of the Schelde estuary

    DEFF Research Database (Denmark)

    Muylaert, K.; Dasseville, R.; De Brabandere, Loreto

    2005-01-01

    To unravel the factors that regulate DOC dynamics in the freshwater tidal reaches of the Schelde estuary, DOC concentration and biodegradability were monitored in the upper Schelde estuary and its major tributaries. Although the Schelde estuary possesses a densely populated and industrialized...... catchment, our data suggest that the bulk of DOC in the freshwater tidal reaches is not derived from waste water. This was concluded from the low biodegradability of DOC (on average 9%), DOC concentrations that are close to the mean for European rivers (4.61 mg/l) and the absence of an inverse relationship....../l), these blooms did not appear to produce large quantities of DOC in the freshwater tidal reaches as DOC concentrations were low when phytoplankton biomass was high. The fact that DOC concentrations were high in winter and decreased in summer suggests a predominantly terrestrial source of DOC in the freshwater...

  20. Assessment of human-natural system characteristics influencing global freshwater supply vulnerability

    Science.gov (United States)

    Padowski, Julie C.; Gorelick, Steven M.; Thompson, Barton H.; Rozelle, Scott; Fendorf, Scott

    2015-10-01

    Global freshwater vulnerability is a product of environmental and human dimensions, however, it is rarely assessed as such. Our approach identifies freshwater vulnerability using four broad categories: endowment, demand, infrastructure, and institutions, to capture impacts on natural and managed water systems within the coupled human-hydrologic environment. These categories are represented by 19 different endogenous and exogenous characteristics affecting water supply vulnerability. By evaluating 119 lower per capita income countries (Yemen and Djibouti nearly as vulnerable. Surprising similarities in vulnerability were also found among geographically disparate nations such as Vietnam, Sri Lanka, and Guatemala. Determining shared patterns of freshwater vulnerability provides insights into why water supply vulnerabilities are manifested in human-water systems at the national scale.

  1. Marine and freshwater toxins.

    Science.gov (United States)

    Hungerford, James M

    2006-01-01

    In a very busy and exciting year, 2005 included First Action approval of a much needed official method for paralytic shellfish toxins and multiple international toxin symposia highlighted by groundbreaking research. These are the first-year milestones and activities of the Marine and Freshwater Toxins Task Force and Analytical Community. Inaugurated in 2004 and described in detail in last year's General Referee Report (1) this international toxins group has grown to 150 members from many regions and countries. Perhaps most important they are now making important and global contributions to food safety and to providing alternatives to animal-based assays. Official Method 2005.06 was first approved in late 2004 by the Task Force and subsequently Official First Action in 2005 (2) by the Methods Committee on Natural Toxins and Food Allergens and the Official Methods Board. This nonproprietary method (3) is a precolumn oxidation, liquid chromatographic method that makes good use of fluorescence detection to provide high sensitivity detection of the saxitoxins. It has also proven to be rugged enough for regulatory use and the highest level of validation. As pointed out in the report of method principle investigator and Study Director James Lawrence, approval of 2005.06 now provides the first official alternative to the mouse bioassay after many decades of shellfish monitoring. This past year in April 2005 the group also held their first international conference, "Marine and Freshwater Toxins Analysis: Ist Joint Symposium and AOAC Task Force Meeting," in Baiona, Spain. The 4-day conference consisted of research and stakeholder presentations and symposium-integrated subgroup sessions on ciguatoxins, saxitoxin assays and liquid chromatography (LC) methods for saxitoxins and domoic acids, okadaiates and azaspiracids, and yessotoxins. Many of these subgroups were recently formed in 2005 and are working towards their goals of producing officially validated analytical methods

  2. Influence of Asellus aquaticus on Escherichia coli, Klebsiella pneumoniae, Campylobacter jejuni and naturally occurring heterotrophic bacteria in drinking water.

    Science.gov (United States)

    Christensen, Sarah C B; Nissen, Erling; Arvin, Erik; Albrechtsen, Hans-Jørgen

    2012-10-15

    Water lice, Asellus aquaticus (isopoda), frequently occur in drinking water distribution systems where they are a nuisance to consumers and water utilities. Whether they are solely an aesthetic problem or also affect the microbial water quality is a matter of interest. We studied the influence of A. aquaticus on microbial water quality in non-chlorinated drinking water in controlled laboratory experiments. Pure cultures of the indicator organisms Escherichia coli and Klebsiella pneumoniae and the pathogen Campylobacter jejuni as well as naturally occurring heterotrophic drinking water bacteria (measured as heterotrophic plate counts, HPC) were investigated in microcosms at 7 °C, containing non-sterilised drinking water, drinking water sediment and A. aquaticus collected from a non-chlorinated ground water based drinking water supply system. Concentrations of E. coli, K. pneumoniae and C. jejuni decreased over time, following a first order decay with half lives of 5.3, 18.4 and 1.3 days, respectively. A. aquaticus did not affect survival of indicators and pathogens substantially whereas HPC were influenced by presence of dead A. aquaticus. Growth rates increased with an average of 48% for bacteria grown on R-2A agar and an average of 83% for bacteria grown on yeast extract agar when dead A. aquaticus were present compared to no and living A. aquaticus present. A. aquaticus associated E. coli, K. pneumoniae and C. jejuni were measured (up to 25 per living and 500 per dead A. aquaticus) and so were A. aquaticus associated heterotrophic bacteria (>1.8*10(4) CFU per living and >6*10(4) CFU per dead A. aquaticus). A. aquaticus did not serve as an optimised habitat that increased survival of indicators and pathogens, since A. aquaticus associated E. coli, K. pneumoniae and C. jejuni were only measured as long as the bacteria were also present in the water and sediment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. [BIODIVERSITY OF ACANTHOCEPHALANS (ACANTHOCEPHALA) IN FRESHWATER FISHES OF ASIATIC SUB-ARCTIC REGION].

    Science.gov (United States)

    Atrashkevich, G I; Mikhailova, E I; Orlovskaya, O M; Pospekhov, V V

    2016-01-01

    The analysis of taxonomical and ecological diversity of acanthocephalans in fishes of Asiatic sub-Arctic region freshwaters, summarizing changes in modern views on species composition, life cycles, and ecology of background groups of these parasites is given. A priority role of studies provided by O. N. Bauer and his scientific school in organization and development of these aspects of acanthocephalology is demonstrated. Special attention is paid to the assessment of acanthocephalan biodiversity of the genus Neoechinorhynchus, the background group of freshwater fish parasites of the Asiatic sub-Arctic region, and an original key for their species is given. The distribution of acanthocephalans of the genus Acanthocephalus in northeastern Asia is analyzed and prospective study of this parasite group, evolutionary associated with freshwater isopods of the genus Asellus as intermediate hosts, is outlined. The absence of documented evidences on intermediate hosts of other background parasites of freshwater fishes in the region, acanthocephalans of the genus Metechinorhynchus, is revealed. It is assumed that subsequent taxonomic revisions based both on morphological and molecular genetic studies are necessary for the reliable revealing of species composition in each genus of the background acanthocephalans from freshwater fishes of Northern Asia. Theoretical significance of the study of acanthocephalan life cycles and revealing their natural intermediate hosts for the reliable estimation of structural and functional organization of their host-parasite systems in different parts of the range is substantiated and the possibility of the distribution of taxonomic conclusions in new territories is analyzed. A brief annotated taxonomical list of freshwater acanthocephalans of the Asiatic sub-Arctic region is given.

  4. Overwintering of sea trout (Salmo trutta) in freshwater

    DEFF Research Database (Denmark)

    Thomsen, Dennis; Koed, Anders; Nielsen, Christian

    2007-01-01

    Brown trout (Salmo trutta) show large phenotypic plasticity. Juveniles may reside in their native freshwater habitat until maturation or migrate into the ocean as 1- to 3-year-old smolts. Sea-going fish (sea trout) reside at sea for 2-3 years until migrating back to their native stream for reprod......Brown trout (Salmo trutta) show large phenotypic plasticity. Juveniles may reside in their native freshwater habitat until maturation or migrate into the ocean as 1- to 3-year-old smolts. Sea-going fish (sea trout) reside at sea for 2-3 years until migrating back to their native stream...... for reproduction. However, immature fish may leave the ocean during their first or second winter at sea and overwinter in freshwater. The question is why does this occur? We tested the hypothesis that hypo-osmoregulatory capacity is compromised by low temperature in two coastal sea trout populations, one...... representing high salinity and the other, low salinity. Immature sea-run trout were caught in lower parts of two rivers during winter and acclimated to laboratory conditions. Subgroups were challenged with high salinity or low water temperature or both, and their osmoregulatory performance was investigated...

  5. Magnetic resonance imaging of live freshwater mussels (Unionidae)

    Science.gov (United States)

    Michael, Holliman F.; Davis, Denise; Bogan, Arthur E.; Kwak, Thomas J.; Cope, W. Gregory; Levine, Jay F.

    2008-01-01

    We examined the soft tissues of live freshwater mussels, Eastern elliptio Elliptio complanata, via magnetic resonance imaging (MRI), acquiring data with a widely available human whole-body MRI system. Anatomical features depicted in the profile images included the foot, stomach, intestine, anterior and posterior adductor muscles, and pericardial cavity. Noteworthy observations on soft tissue morphology included a concentration of lipids at the most posterior aspect of the foot, the presence of hemolymph-filled fissures in the posterior adductor muscle, the presence of a relatively large hemolymph-filled sinus adjacent to the posterior adductor muscle (at the ventral-anterior aspect), and segmentation of the intestine (a diagnostic description not reported previously in Unionidae). Relatively little is known about the basic biology and ecological physiology of freshwater mussels. Traditional approaches for studying anatomy and tissue processes, and for measuring sub-lethal physiological stress, are destructive or invasive. Our study, the first to evaluate freshwater mussel soft tissues by MRI, clarifies the body plan of unionid mussels and demonstrates the efficacy of this technology for in vivoevaluation of the structure, function, and integrity of mussel soft tissues.

  6. Diversity of Heterotrophic Protists from Extremely Hypersaline Habitats.

    Science.gov (United States)

    Park, Jong Soo; Simpson, Alastair G B

    2015-09-01

    Heterotrophic protists (protozoa) are a diverse but understudied component of the biota of extremely hypersaline environments, with few data on molecular diversity within halophile 'species', and almost nothing known of their biogeographic distribution. We have garnered SSU rRNA gene sequences for several clades of halophilic protozoa from enrichments from waters of >12.5% salinity from Australia, North America, and Europe (6 geographic sites, 25 distinct samples). The small stramenopile Halocafeteria was found at all sites, but phylogenies did not show clear geographic clustering. The ciliate Trimyema was recorded from 6 non-European samples. Phylogenies confirmed a monophyletic halophilic Trimyema group that included possible south-eastern Australian, Western Australian and North American clusters. Several halophilic Heterolobosea were detected, demonstrating that Pleurostomum contains at least three relatively distinct clades, and increasing known continental ranges for Tulamoeba peronaphora and Euplaesiobystra hypersalinica. The unclassified flagellate Palustrimonas, found in one Australian sample, proves to be a novel deep-branching alveolate. These results are consistent with a global distribution of halophilic protozoa groups (∼ morphospecies), but the Trimyema case suggests that is worth testing whether larger forms exhibit biogeographic phylogenetic substructure. The molecular detection/characterization of halophilic protozoa is still far from complete at the clade level, let alone the 'species level'. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. An ultrasonic method for separation of epiphytic microbes from freshwater submerged macrophytes.

    Science.gov (United States)

    Cai, Xianlei; Gao, Guang; Yang, Jing; Tang, Xiangming; Dai, Jiangyu; Chen, Dan; Song, Yuzhi

    2014-07-01

    Epiphytic microbes are common inhabitants of freshwater submerged macrophytes, which play an important role in aquatic ecosystems. An important precondition for studying the epiphytic microbes is having an effective method of separating the attached microbes from the host macrophytes. We developed an ultrasound-based method for separating epiphytic microbes from freshwater submerged macrophytes, optimized the conditions of ultrasonic separation with an orthogonal experimental design, and compared the optimized ultrasonic method with manual separation. This method can be particularly useful for freshwater submerged macrophytes having a complex morphology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. 2008 NWFSC Tidal Freshwater Genetics Results

    Energy Technology Data Exchange (ETDEWEB)

    David Teel

    2009-05-01

    Genetic Analysis of Juvenile Chinook Salmon for inclusion in 'Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008. Annual Report to Bonneville Power Administration, Contract DE-AC05-76RL01830.'

  9. Fast evolution from precast bricks: genomics of young freshwater populations of threespine stickleback Gasterosteus aculeatus.

    Directory of Open Access Journals (Sweden)

    Nadezhda V Terekhanova

    2014-10-01

    Full Text Available Adaptation is driven by natural selection; however, many adaptations are caused by weak selection acting over large timescales, complicating its study. Therefore, it is rarely possible to study selection comprehensively in natural environments. The threespine stickleback (Gasterosteus aculeatus is a well-studied model organism with a short generation time, small genome size, and many genetic and genomic tools available. Within this originally marine species, populations have recurrently adapted to freshwater all over its range. This evolution involved extensive parallelism: pre-existing alleles that adapt sticklebacks to freshwater habitats, but are also present at low frequencies in marine populations, have been recruited repeatedly. While a number of genomic regions responsible for this adaptation have been identified, the details of selection remain poorly understood. Using whole-genome resequencing, we compare pooled genomic samples from marine and freshwater populations of the White Sea basin, and identify 19 short genomic regions that are highly divergent between them, including three known inversions. 17 of these regions overlap protein-coding genes, including a number of genes with predicted functions that are relevant for adaptation to the freshwater environment. We then analyze four additional independently derived young freshwater populations of known ages, two natural and two artificially established, and use the observed shifts of allelic frequencies to estimate the strength of positive selection. Adaptation turns out to be quite rapid, indicating strong selection acting simultaneously at multiple regions of the genome, with selection coefficients of up to 0.27. High divergence between marine and freshwater genotypes, lack of reduction in polymorphism in regions responsible for adaptation, and high frequencies of freshwater alleles observed even in young freshwater populations are all consistent with rapid assembly of G. aculeatus

  10. Fast evolution from precast bricks: genomics of young freshwater populations of threespine stickleback Gasterosteus aculeatus.

    Science.gov (United States)

    Terekhanova, Nadezhda V; Logacheva, Maria D; Penin, Aleksey A; Neretina, Tatiana V; Barmintseva, Anna E; Bazykin, Georgii A; Kondrashov, Alexey S; Mugue, Nikolai S

    2014-10-01

    Adaptation is driven by natural selection; however, many adaptations are caused by weak selection acting over large timescales, complicating its study. Therefore, it is rarely possible to study selection comprehensively in natural environments. The threespine stickleback (Gasterosteus aculeatus) is a well-studied model organism with a short generation time, small genome size, and many genetic and genomic tools available. Within this originally marine species, populations have recurrently adapted to freshwater all over its range. This evolution involved extensive parallelism: pre-existing alleles that adapt sticklebacks to freshwater habitats, but are also present at low frequencies in marine populations, have been recruited repeatedly. While a number of genomic regions responsible for this adaptation have been identified, the details of selection remain poorly understood. Using whole-genome resequencing, we compare pooled genomic samples from marine and freshwater populations of the White Sea basin, and identify 19 short genomic regions that are highly divergent between them, including three known inversions. 17 of these regions overlap protein-coding genes, including a number of genes with predicted functions that are relevant for adaptation to the freshwater environment. We then analyze four additional independently derived young freshwater populations of known ages, two natural and two artificially established, and use the observed shifts of allelic frequencies to estimate the strength of positive selection. Adaptation turns out to be quite rapid, indicating strong selection acting simultaneously at multiple regions of the genome, with selection coefficients of up to 0.27. High divergence between marine and freshwater genotypes, lack of reduction in polymorphism in regions responsible for adaptation, and high frequencies of freshwater alleles observed even in young freshwater populations are all consistent with rapid assembly of G. aculeatus freshwater genotypes

  11. Value-chain analysis of freshwater apple snail (Pila globosa used for on-farm feeds in the freshwater prawn farming sector in Bangladesh

    Directory of Open Access Journals (Sweden)

    S.A.A. Nahid

    2013-12-01

    Full Text Available Growth of the freshwater prawn (Macrobrachium rosenbergii sector in Bangladesh since 1970s has been supported by natural availability of freshwater apple snail (Pila globosa, used for on-farm prawn feeds. The present study identified the current configuration of the value-chain benefits and constraints of freshwater apple snail in south-western Bangladesh in August 2011, based upon Rapid Market Appraisal (RMA approach. The site of snail collection was Chanda Beel in Gopalganj district, while trading, processing and final consumption was represented by Rayer Mahal Bazar in Khulna district. There were seven different nodes recognized throughout the value chain. Snail marketing was identified as a seasonal business and took place during June to November each year. Between 1995 and 2011 the price of whole snail, meat and shell has increased by 800%, 325% and 315%, respectively. The abundance of snail had been reduced and its demand has increased due to the expansion of the prawn farming industry. Prawn farmers preferred snail meat due to its’ low cost (US$ 0.21 kg-1 as a source of protein compared to commercial prawn feed (US$ 0.41 kg-1. Snail harvesting and processing were considered as additional livelihood options for the poor, where 60% of the labour involved in snail harvesting were women, and 95% the de-shelling workforce. Induced breeding in captivity and sustainable management in nature as well as development of commercial production of apple snails might reduce the pressure on ecosystems and positively contributed to the continued expansion of freshwater prawn farming in Bangladesh.

  12. Effect of sustainability information on consumers' liking of freshwater prawn (Macrobrachium rosenbergii).

    Science.gov (United States)

    Simoes, Julia Siqueira; Mársico, Eliane Teixeira; da Cruz, Adriano Gomes; de Freitas, Mônica Queiroz; Doro, Laís Higino; Conte-Junior, Carlos Adam

    2015-12-01

    This research aimed to investigate whether consumer acceptance is affected by information on sustainable practices on the product label. Hedonic evaluations of freshwater prawns were performed by 80 consumers under three aspects: the blind condition - consumers taste samples without information; expected - without tasting samples, consumers evaluated the message 'Freshwater prawns were grown using sustainable practices, reducing environmental impacts caused by traditional breeding'; informed - in which prawns were tasted and the card evaluated. For the entire consumer group, it was observed that the message about sustainability on packaging increased freshwater prawn acceptability (8.25, expected condition (E) versus 6.75, blind condition (B)). High scores were observed under all three test conditions, ranging from 6 (like slightly) to 9 (like extremely), on a 9-point scale. It can be concluded that the use of sustainable information can influence consumers' perception and increase their preference toward freshwater prawns, and even increase the sensory attributes of the product. © 2014 Society of Chemical Industry.

  13. Performance of heterotrophic partial denitrification under feast-famine condition of electron donor: a case study using acetate as external carbon source.

    Science.gov (United States)

    Gong, Lingxiao; Huo, Mingxin; Yang, Qing; Li, Jun; Ma, Bin; Zhu, Rulong; Wang, Shuying; Peng, Yongzhen

    2013-04-01

    Recently, the combination of anammox and post heterotrophic partial denitrification (nitrate to nitrite) was increasingly popular to treat anammox effluent with excessive nitrate, whereas achieving nitrite accumulation stably was a major bottleneck for post-denitrification. This work focused on the performance of heterotrophic partial denitrification under acetate feast-famine condition. The results showed that readily biodegradable COD to nitrate (RBCOD/NO3(-)) ratio of 2.5 facilitated an ideal nitrite accumulation ratio (NAR) of 71.7% under complete nitrate reduction. When RBCOD/NO3(-) ratio was below 3.5, in terms of efficiency and nitrite accumulation, higher NAR obtained during exogenous denitrification identified that the external acetate depletion was the optimal ending point of denitrification, which could be indicated by pH accurately. The indication of pH realized NAR of 60% ideally under batch-flow mode with RBCOD/NO3(-) ratio of 2.7, which might promote the scale-up of partial denitrification. Furthemore, alkaline environment (pH 9.0-9.6) repressed N2O emission even during endogenous denitrification. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Effects of pollution on freshwater fish

    International Nuclear Information System (INIS)

    McKim, J.M.; Christensen, G.M.; Tucker, J.H.; Benoit, D.A.; Lewis, M.J.

    1974-01-01

    Various aspects of pollution effects on fishes are reviewed under the following headings: methodology; water quality; pesticide pollutants; industrial pollutants; domestic pollutants; radioactive pollutants; and other pollutants. A table is presented to show acute and chronic toxicity of inorganic and organic pollutants to freshwater fish. (U.S.)

  15. Draft genome sequence of Microbacterium oleivorans strain Wellendorf implicates heterotrophic versatility and bioremediation potential

    Directory of Open Access Journals (Sweden)

    Anton P. Avramov

    2016-12-01

    Full Text Available Microbacterium oleivorans is a predominant member of hydrocarbon-contaminated environments. We here report on the genomic analysis of M. oleivorans strain Wellendorf that was isolated from an indoor door handle. The partial genome of M. oleivorans strain Wellendorf consists of 2,916,870 bp of DNA with 2831 protein-coding genes and 49 RNA genes. The organism appears to be a versatile mesophilic heterotroph potentially capable of hydrolysis a suite of carbohydrates and amino acids. Genomic analysis revealed metabolic versatility with genes involved in the metabolism and transport of glucose, fructose, rhamnose, galactose, xylose, arabinose, alanine, aspartate, asparagine, glutamate, serine, glycine, threonine and cysteine. This is the first detailed analysis of a Microbacterium oleivorans genome.

  16. Ammonia-oxidizing Bacteria and Archaea in the Rhizosphere of Freshwater Macrophytes

    DEFF Research Database (Denmark)

    Herrmann, Martina; Schramm, Andreas

    2007-01-01

    AMMONIA-OXIDIZING ARCHAEA AND BACTERIA IN THE RHIZOSPHERE OF FRESHWATER MACROPHYTES Martina Herrmann and Andreas Schramm Department of Biological Sciences, Microbiology, University of Aarhus, Denmark Aquatic macrophytes such as Littorella uniflora and Lobelia dortmanna release oxygen from...... their roots and thereby stimulate nitrification and coupled nitrification-denitrification in their rhizosphere. However, oxygen release and inorganic nitrogen concentrations differ markedly between macrophyte species. We therefore propose (i) that the rhizosphere of freshwater macrophytes harbours a species......-specific microbial community distinct from that of unvegetated sediment and (ii) that aquatic macrophytes have an impact on abundance and activity of nitrifying and denitrifying bacteria in freshwater sediment. The goal of this study was to test these hypotheses for the key functional group for coupled nitrification...

  17. Inorganic mercury (Hg2+ uptake by different plankton fractions of Andean Patagonian lakes (Argentina

    Directory of Open Access Journals (Sweden)

    Diéguez M.C.

    2014-07-01

    Full Text Available The species composition and the size structure of natural planktonic food webs may provide essential information to understand the fate of mercury and, in particular, the bioaccumulation pattern of Hg2+ in the water column of lake ecosystems. Heterotrophic and autotrophic picoplankton and phytoplankton are the most important entry points for Hg in aquatic ecosystems since they concentrate Hg2+ and MeHg from ambient water, making them available to planktonic consumers at higher trophic levels of lake food webs. In this investigation we studied the uptake of 197Hg2+ in natural plankton assemblages from four Andean lakes (Nahuel Huapi National Park, Patagonia, Argentina, comprised in the size fractions 0.2-2.7 μm (picoplankton, 0.2-20 μm (pico and nanoplankton and 20-50 μm (microplankton through experiments using Hg2+ labeled with 197Hg2+. The experimental results showed that the uptake of Hg2+ was highest in the smallest plankton fractions (0.2-2.7 μm and 0.2-20 μm compared to the larger fraction comprising microplankton (20-50 um. This pattern was consistent in all lakes, reinforcing the idea that among pelagic organisms, heterotrophic and autotrophic bacteria with the contribution of nanoflagellates and dinoflagellates constitute the main entry point of Hg2+ to the pelagic food web. Moreover, a significant direct relationship was found between the Hg2+ uptake and surface index of the planktonic fractions (SIf. Thus, the smaller planktonic fractions which bore the higher SI were the major contributors to the Hg2+ passing from the abiotic to the biotic pelagic compartments of these Andean lakes.

  18. Spatial and Temporal Dynamics of Mixotrophic Protists Within a Protected Glacial Lake

    Science.gov (United States)

    DeVaul, S. B.; Sanders, R. W.

    2016-02-01

    Bacterivorous protists are vital components of the aquatic food web as prey for zooplankton and top-down regulators of bacteria. Many bacterivores utilize mixotrophic nutrition that combines photosynthesis with ingestion of particulate matter. Mixotrophic protists are capable of substantial rates of bacterivory - often greater than co-occurring heterotrophic flagellates. It has been argued that mixotrophs may gain a competitive advantage in natural systems due to their ability to utilize photosynthesis during periods of reduced particulate food or phagotrophy during periods of decreased irradiance. A central goal of ecological study has been to understand and ultimately predict the composition of communities in response to varying environmental conditions. The objectives of this study were to determine seasonal abundances and bacterial ingestion rates of heterotrophic, phototrophic and mixotrophic nanoflagellates (hereafter referred to as HNAN, PNAN and MNAN) and identify abiotic drivers that influence spatial and temporal dynamics of these functional groups. Water samples were collected approximately monthly over a 1.5 year period from Lake Lacawac, a 13,000 year old lake with a protected watershed. Trends in MNAN abundance were related to seasonal patterns of thermal stratification and varied with depth. Maximum abundance occurred in the summer epilimnion. Although HNAN abundance tended to be greater than that of MNAN, the latter generally had a greater grazer impact on bacterial biomass within the epilimnion. During the study period, MNAN removed a maximum of 75% of the bacterial biomass daily in the metalimnion. Mixotroph abundance and grazing impact tended to decrease in deeper waters, and was nearly absent in the anaerobic hypolimnion in late summer and early autumn.

  19. Gulf-Wide Information System, Environmental Sensitivity Index Freshwater Fish Database, Geographic NAD83, LDWF (2001) [esi_freshwater_fish_LDWF_2001

    Data.gov (United States)

    Louisiana Geographic Information Center — This data set contains sensitive biological resource data for freshwater (inland) fish species in coastal Louisiana. Vector polygons represent water-bodies and other...

  20. Characterization of a Freshwater Crab Sudanonautes aubryi ...

    African Journals Online (AJOL)

    SARAH

    2014-01-31

    Jan 31, 2014 ... 2Faculty of Sciences and Techniques, University Marien Ngouabi - PoB 69 Congo Brazzaville ... to collect and realize a biometric characterization of this common freshwater ... information, which will be used by conservation.

  1. The First Detailed 2H and 18O Isoscapes of Freshwater in Scotland

    Science.gov (United States)

    Meier-Augenstein, W.; Hoogewerff, J.; Kemp, H. F.; Frew, D.

    2012-04-01

    Scotland's freshwater lochs and reservoirs provide a vital resource for sustaining biodiversity, agriculture, food production as well as for human consumption. Regular monitoring of freshwater quality by the Scottish Environmental Protection Agency (SEPA) fulfils the legislative requirements but new scientific methods involving stable isotope analysis present an opportunity for delivering on current and nascent government policies [1] and gaining a greater understanding of Scottish waters and their importance in the context of climate change, environmental sustainability and the aforementioned functions. In brief, 2H and 18O isoscapes of Scottish freshwater could be used to support fundamental and applied research in: • Climate change - These first ever isoscapes will provide a baseline against which future environmental impact can be assessed due to changes in the characteristic isotope composition of freshwater lochs and reservoirs. • Scottish branding - Location specific stable isotope signatures of Scottish freshwater have the potential to be used as a tool for provenancing and thus protecting premium Scottish produce such as Scottish beef, Scottish berries and Scottish Whisky. During 2011, freshwater samples were collected with the support of SEPA from more than 80 freshwater lochs and reservoirs across Scotland. Here we present the result of the 2H and 18O stable isotope analyses of these water samples together with the first isoscapes generated based on these data. [1] Adaptation Framework - Adapting Our Ways: Managing Scotland's Climate Risk (2009): Scotland's Biodiversity: It's in Your Hands - A strategy for the conservation and enhancement of biodiversity in Scotland (2005); Recipe For Success - Scotland's National Food and Drink Policy (2009); Scottish Planning Policy Environmental Report (2009); Scottish Planning Policy (SPP) 15 Planning for Rural Development (2005); National Planning Policy Guideline (NPPG) 14: Natural Heritage (1999).

  2. Pore-scale investigation on the response of heterotrophic respiration to moisture conditions in heterogeneous soils

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhifeng; Liu, Chongxuan; Todd-Brown, Katherine E.; Liu, Yuanyuan; Bond-Lamberty, Ben; Bailey, Vanessa L.

    2016-11-15

    The relationship between microbial respiration rate and soil moisture content is an important property for understanding and predicting soil organic carbon degradation, CO2 production and emission, and their subsequent effects on climate change. This paper reports a pore-scale modeling study to investigate the response of heterotrophic respiration to moisture conditions in soils and to evaluate various factors that affect this response. X-ray computed tomography was used to derive soil pore structures, which were then used for pore-scale model investigation. The pore-scale results were then averaged to calculate the effective respiration rates as a function of water content in soils. The calculated effective respiration rate first increases and then decreases with increasing soil water content, showing a maximum respiration rate at water saturation degree of 0.75 that is consistent with field and laboratory observations. The relationship between the respiration rate and moisture content is affected by various factors, including pore-scale organic carbon bioavailability, the rate of oxygen delivery, soil pore structure and physical heterogeneity, soil clay content, and microbial drought resistivity. Simulations also illustrates that a larger fraction of CO2 produced from microbial respiration can be accumulated inside soil cores under higher saturation conditions, implying that CO2 flux measured on the top of soil cores may underestimate or overestimate true soil respiration rates under dynamic moisture conditions. Overall, this study provides mechanistic insights into the soil respiration response to the change in moisture conditions, and reveals a complex relationship between heterotrophic microbial respiration rate and moisture content in soils that is affected by various hydrological, geochemical, and biophysical factors.

  3. Relationships between meiofaunal biodiversity and prokaryotic heterotrophic production in different tropical habitats and oceanic regions.

    Science.gov (United States)

    Pusceddu, Antonio; Gambi, Cristina; Corinaldesi, Cinzia; Scopa, Mariaspina; Danovaro, Roberto

    2014-01-01

    Tropical marine ecosystems are among the most diverse of the world oceans, so that assessing the linkages between biodiversity and ecosystem functions (BEF) is a crucial step to predict consequences of biodiversity loss. Most BEF studies in marine ecosystems have been carried out on macrobenthic diversity, whereas the influence of the meiofauna on ecosystem functioning has received much less attention. We compared meiofaunal and nematode biodiversity and prokaryotic heterotrophic production across seagrass, mangrove and reef sediments in the Caribbean, Celebes and Red Seas. For all variables we report the presence of differences among habitats within the same region, and among regions within the same habitat. In all regions, the richness of meiofaunal taxa in reef and seagrass sediments is higher than in mangrove sediments. The sediments of the Celebes Sea show the highest meiofaunal biodiversity. The composition of meiofaunal assemblages varies significantly among habitats in the same region. The nematode beta diversity among habitats within the same region is higher than the beta diversity among regions. Although one site per habitat was considered in each region, these results suggest that the composition of meiofaunal assemblages varies primarily among biogeographic regions, whereas the composition of nematode assemblages varies more considerably among habitats. Meiofauna and nematode biodiversity and prokaryotic heterotrophic production, even after the removal of covariate effects linked with longitude and the quantity and nutritional quality of organic matter, are positively and linearly linked both across regions and within each habitat type. Our results confirm that meiofauna and nematode biodiversity may influence benthic prokaryotic activity, which, in turn, implies that diversity loss could have negative impacts on ecosystem functioning in these systems.

  4. Relationships between meiofaunal biodiversity and prokaryotic heterotrophic production in different tropical habitats and oceanic regions.

    Directory of Open Access Journals (Sweden)

    Antonio Pusceddu

    Full Text Available Tropical marine ecosystems are among the most diverse of the world oceans, so that assessing the linkages between biodiversity and ecosystem functions (BEF is a crucial step to predict consequences of biodiversity loss. Most BEF studies in marine ecosystems have been carried out on macrobenthic diversity, whereas the influence of the meiofauna on ecosystem functioning has received much less attention. We compared meiofaunal and nematode biodiversity and prokaryotic heterotrophic production across seagrass, mangrove and reef sediments in the Caribbean, Celebes and Red Seas. For all variables we report the presence of differences among habitats within the same region, and among regions within the same habitat. In all regions, the richness of meiofaunal taxa in reef and seagrass sediments is higher than in mangrove sediments. The sediments of the Celebes Sea show the highest meiofaunal biodiversity. The composition of meiofaunal assemblages varies significantly among habitats in the same region. The nematode beta diversity among habitats within the same region is higher than the beta diversity among regions. Although one site per habitat was considered in each region, these results suggest that the composition of meiofaunal assemblages varies primarily among biogeographic regions, whereas the composition of nematode assemblages varies more considerably among habitats. Meiofauna and nematode biodiversity and prokaryotic heterotrophic production, even after the removal of covariate effects linked with longitude and the quantity and nutritional quality of organic matter, are positively and linearly linked both across regions and within each habitat type. Our results confirm that meiofauna and nematode biodiversity may influence benthic prokaryotic activity, which, in turn, implies that diversity loss could have negative impacts on ecosystem functioning in these systems.

  5. Comparing the Ecological Stoichiometry in Green and Brown Food Webs – A Review and Meta-analysis of Freshwater Food Webs

    Directory of Open Access Journals (Sweden)

    Michelle A. Evans-White

    2017-06-01

    Full Text Available The framework of ecological stoichiometry was developed primarily within the context of “green” autotroph-based food webs. While stoichiometric principles also apply in “brown” detritus-based systems, these systems have been historically understudied and differ from green ones in several important aspects including carbon (C quality and the nutrient [nitrogen (N and phosphorus (P] contents of food resources for consumers. In this paper, we review work over the last decade that has advanced the application of ecological stoichiometry from green to brown food webs, focusing on freshwater ecosystems. We first review three focal areas where green and brown food webs differ: (1 bottom–up controls by light and nutrient availability, (2 stoichiometric constraints on consumer growth and nutritional regulation, and (3 patterns in consumer-driven nutrient dynamics. Our review highlights the need for further study of how light and nutrient availability affect autotroph–heterotroph interactions on detritus and the subsequent effects on consumer feeding and growth. To complement this conceptual review, we formally quantified differences in stoichiometric principles between green and brown food webs using a meta-analysis across feeding studies of freshwater benthic invertebrates. From 257 datasets collated across 46 publications and several unpublished studies, we compared effect sizes (Pearson’s r of resource N:C and P:C on growth, consumption, excretion, and egestion between herbivorous and detritivorous consumers. The meta-analysis revealed that both herbivore and detritivore growth are limited by resource N:C and P:C contents, but effect sizes only among detritivores were significantly above zero. Consumption effect sizes were negative among herbivores but positive for detritivores in the case of both N:C and P:C, indicating distinct compensatory feeding responses across resource stoichiometry gradients. Herbivore P excretion rates responded

  6. The Future of Freshwater Macrophytes in a Changing World: Dissolved Organic Carbon Quantity and Quality and Its Interactions With Macrophytes

    Directory of Open Access Journals (Sweden)

    Rosanne E. Reitsema

    2018-05-01

    Full Text Available Freshwater ecosystems are confronted with the effects of climate change. One of the major changes is an increased concentration of aquatic carbon. Macrophytes are important in the aquatic carbon cycle and play as primary producers a crucial role in carbon storage in aquatic systems. However, macrophytes are affected by increasing carbon concentrations. The focus of this review lies on dissolved organic carbon (DOC, one of the most abundant forms of carbon in aquatic ecosystems which has many effects on macrophytes. DOC concentrations are rising; the exact cause of this increase is not known, although it is hypothesized that climate change is one of the drivers. The quality of DOC is also changing; for example, in urban areas DOC composition is different from the composition in natural watersheds, resulting in DOC that is more resistant to photo-degradation. Plants can benefit from DOC as it attenuates UV-B radiation, it binds potentially harmful heavy metals and provides CO2 as it breaks down. Yet plant growth can also be impaired under high DOC concentrations, especially by humic substances (HS. HS turn the water brown and attenuate light, which limits macrophyte photosynthesis at greater depths. This leads to lower macrophyte abundance and lower species diversity. HS form a wide class of chemicals with many different functional groups and they therefore have the ability to interfere with many biochemical processes that occur in freshwater organisms. Few studies have looked into the direct effects of HS on macrophytes, but there is evidence that HS can interfere with photosynthesis by entering macrophyte cells and causing damage. DOC can also affect reactivity of heavy metals, water and sediment chemistry. This indirectly affects macrophytes too, so they are exposed to multiple stressors that may have contradictive effects. Finally, macrophytes can affect DOC quality and quantity as they produce DOC themselves and provide a substrate to

  7. Adaptive management in the context of barriers in European freshwater ecosystems.

    Science.gov (United States)

    Birnie-Gauvin, Kim; Tummers, Jeroen S; Lucas, Martyn C; Aarestrup, Kim

    2017-12-15

    Many natural habitats have been modified to accommodate for the presence of humans and their needs. Infrastructures - such as hydroelectric dams, weirs, culverts and bridges - are now a common occurrence in streams and rivers across the world. As a result, freshwater ecosystems have been altered extensively, affecting both biological and geomorphological components of the habitats. Many fish species rely on these freshwater ecosystems to complete their lifecycles, and the presence of barriers has been shown to reduce their ability to migrate and sustain healthy populations. In the long run, barriers may have severe repercussions on population densities and dynamics of aquatic animal species. There is currently an urgent need to address these issues with adequate conservation approaches. Adaptive management provides a relevant approach to managing barriers in freshwater ecosystems as it addresses the uncertainties of dealing with natural systems, and accommodates for future unexpected events, though this approach may not be suitable in all instances. A literature search on this subject yielded virtually no output. Hence, we propose a step-by-step guide for implementing adaptive management, which could be used to manage freshwater barriers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Conservation status of the freshwater mussels of the United States and Canada

    Science.gov (United States)

    James D. Williams; Melvin L. Warren; Kevin S. Cummings; John L. Harris; Richard J. Neves

    1992-01-01

    The American Fisheries Society (AFS) herein provides a list of all native freshwater mussels (families Margaritiferidae and Unionidae) in the United States and Canada. This report also provides state and provincial distributions; a comprehensive review of the conservation status of all taxa; and references on biology, conservation, and distribution of freshwater...

  9. Phylogeography of an island endemic: the Puerto Rican freshwater crab, Epilobocera sinuatifrons

    Science.gov (United States)

    Benjamin D. Cook; Catherine M. Pringle; Jane M. Hughes

    2008-01-01

    The endemic Puerto Rican crab, Epilobocera sinuatifrons (Pseudothelphusidae), has a freshwater-dependant life-history strategy, although the species has some capabilities for terrestrial movement as adults. In contrast to all other freshwater decapods on the island (e.g., caridean shrimp), E. sinuatifrons does not undertake amphidromous migration, and is restricted to...

  10. Dose-Time Effect of Crude Oil and Hydro-test Effluent on Freshwater ...

    African Journals Online (AJOL)

    This work was undertaken to investigate the dose-time effect of crude oil and hydro-test effluent on freshwater and brackish water habitats. The species used for the acute toxicity were freshwater fish, Tilapia guineenis (fry) and a brackish water shrimp, Palaemonetes africanus. Test results indicated that the brackish water ...

  11. CAGE BREEDING OF WARM WATER FRESHWATER FISH SPECIES

    Directory of Open Access Journals (Sweden)

    Roman Safner

    2008-10-01

    Full Text Available In the 1970s, Croatia became actively involved in the contemporary trend of breeding fish in floating cages. In addition to various species of marine fishes, breeding was attempted with trout, carp, catfish, cisco and salmon. Of the above freshwater fish species, specific standards were established only for the cage breeding of rainbow trout. Cage breeding of the remaining species remained at the level of occasional attempts, with more of an experimental than a commercial character. The regular attempts to master this technique for cage breeding of warm water freshwater fish species were aimed at achieving the known benefits of such breeding, such as simplicity of implementing technological measures, easier establishment of the breeding system, simpler manipulation, the possibility of denser colonies per unit volume with a high level of production, easier adaptations to market conditions and fewer initial structural investments. Despite the many advantages, the main reasons for the lack of greater implementation of the cage breeding technology for warm water species of freshwater fish include problems in obtaining the appropriate category and quantity of healthy fry, the specificity and applicability of physical and chemical properties of the recipients and human error. In evaluating the advantages and disadvantages, the final decision on the justification of cage breeding for individual warm water freshwater species must be based on both biological and economic factors. Based on the knowledge of cage breeding acquired to date, the rule for virtually all intensive breeding systems is that it is only recommended for those species with high market demand and a high market price. The technology that demands nutrition with highly concentrated feed and other production expenditures is costly, and is therefore not profitable with less expensive fish species. Furthermore, production must be market oriented, i.e. the appropriate market research measures

  12. Effects of Pollution on Freshwater Invertebrates.

    Science.gov (United States)

    Buikema, A. L., Jr.; Herricks, E. E.

    1978-01-01

    Presents a literature review of the effects of pollution on freshwater invertebrates, covering publications of 1976-77. Some of the areas covered are: (1) toxicant effects on invertebrates; (2) microcosm and community effects, and (3) biological control of aquatic life. A list of 123 references is also presented. (HM)

  13. Persistent organochlorine pesticide residues in freshwater systems ...

    African Journals Online (AJOL)

    DRINIE

    determined in water and sediment samples of freshwater systems in the Eastern Cape Province of South Africa that ... The organochlorine pesticides (OCPs) in water and sediments ...... Test Methods For Evaluating Solid Waste (3rd edn.) ...

  14. Practical aids for freshwater spill response

    International Nuclear Information System (INIS)

    Steen, A.E.; Walker, A.H.

    1993-01-01

    The current research program at API is focused on the environmental and human health effects from oil spills in freshwater habitats. Components of the program include lessons learned from spill response, development of decision-making protocols for the use of chemicals during initial response operations, preparation of a manual for spill response and contingency planning, and a review of the literature on environmental and human health effects from inland spills. API has reviewed past inland spill responses to identify lessons learned. A survey questionnaire has been developed to collect information from freshwater spill responders on their successes and difficulties in response operations. The questionnaire is tailored to focus on the impact to the operations from the absence of technical/scientific data on environmental effects or operation effectiveness/efficiency as well as to identify situations in which the use of particular response or cleanup options is likely to be effective. The questionnaires will be available at the Conference. Published case studies also will be examined for lessons-learned information. The results will be used to identify and prioritize API research needs in freshwater spill response. General concerns about the effectiveness of the toxicity associated with chemicals in spill response has prevented their use in fresh water. API has begun a detailed survey and interview process with state and federal regulatory personnel to identify their concerns and decision criteria to evaluate the use of chemicals in initial spill response. Ten classes of chemicals were identified for consideration: dispersants, shoreline cleaners, shoreline protection agents, herding agents, solidifiers, demulsifiers, emulsion inhibitors, foaming agents, oxidizing agents, and burning agents

  15. Exotic freshwater planarians currently known from Japan

    NARCIS (Netherlands)

    Sluys, R.; Kawakatsu, M.; Yamamoto, K.

    2010-01-01

    Biogeographical and taxonomic information on the four non-indigenous freshwater planarians of Japan is reviewed, viz. Dugesia austroasiatica Kawakatsu, 1985, Girardia tigrina (Girard, 1850), G. dorotocephala (Woodworth, 1897), and Rhodax evelinae? Marcus, 1947. The occurrence of Girardia

  16. Dinoflagellates associated with freshwater sponges from the ancient lake baikal.

    Science.gov (United States)

    Annenkova, Natalia V; Lavrov, Dennis V; Belikov, Sergey I

    2011-04-01

    Dinoflagellates are a diverse group of protists that are common in both marine and freshwater environments. While the biology of marine dinoflagellates has been the focus of several recent studies, their freshwater relatives remain little-investigated. In the present study we explore the diversity of dinoflagellates in Lake Baikal by identifying and analyzing dinoflagellate sequences for 18S rDNA and ITS-2 from total DNA extracted from three species of endemic Baikalian sponges (Baikalospongia intermedia,Baikalospongia rectaand Lubomirskia incrustans). Phylogenetic analyses of these sequences revealed extensive dinoflagellate diversity in Lake Baikal. We found two groups of sequences clustering within the order Suessiales, known for its symbiotic relationships with various invertebrates. Thus they may be regarded as potential symbionts of Baikalian sponges. In addition,Gyrodinium helveticum, representatives from the genus Gymnodinium, dinoflagellates close to the family Pfiesteriaceae, and a few dinoflagellates without definite affiliation were detected. No pronounced difference in the distribution of dinoflagellates among the studied sponges was found, except for the absence of the Piscinoodinium-like dinoflagellates inL. incrustans. To the best of our knowledge, this is the first study of the diversity of dinoflagellates in freshwater sponges, the first systematic investigation of dinoflagellate molecular diversity in Lake Baikal and the first finding of members of the order Suessiales as symbionts of freshwater invertebrates. Copyright © 2010 Elsevier GmbH. All rights reserved.

  17. Tracking animals in freshwater with electronic tags: past, present and future

    Science.gov (United States)

    Cooke, Steven J.; Midwood, Jonathan D.; Thiem, Jason D.; Klimley, Peter; Lucas, Martyn C.; Thorstad, Eva B.; Eiler, John; Holbrook, Chris; Ebner, Brendan C.

    2013-01-01

    Considerable technical developments over the past half century have enabled widespread application of electronic tags to the study of animals in the wild, including in freshwater environments. We review the constraints associated with freshwater telemetry and biologging and the technical developments relevant to their use. Technical constraints for tracking animals are often influenced by the characteristics of the animals being studied and the environment they inhabit. Collectively, they influence which and how technologies can be used and their relative effectiveness. Although radio telemetry has historically been the most commonly used technology in freshwater, passive integrated transponder (PIT) technology, acoustic telemetry and biologgers are becoming more popular. Most telemetry studies have focused on fish, although an increasing number have focused on other taxa, such as turtles, crustaceans and molluscs. Key technical developments for freshwater systems include: miniaturization of tags for tracking small-size life stages and species, fixed stations and coded tags for tracking large samples of animals over long distances and large temporal scales, inexpensive PIT systems that enable mass tagging to yield population- and community-level relevant sample sizes, incorporation of sensors into electronic tags, validation of tag attachment procedures with a focus on maintaining animal welfare, incorporation of different techniques (for example, genetics, stable isotopes) and peripheral technologies (for example, geographic information systems, hydroacoustics), development of novel analytical techniques, and extensive international collaboration. Innovations are still needed in tag miniaturization, data analysis and visualization, and in tracking animals over larger spatial scales (for example, pelagic areas of lakes) and in challenging environments (for example, large dynamic floodplain systems, under ice). There seems to be a particular need for adapting

  18. Vegetable oil sources in diets for freshwater angelfish (Pterophyllum scalare, Cichlidae: growth and thermal tolerance

    Directory of Open Access Journals (Sweden)

    A.K. Ikeda

    2011-06-01

    Full Text Available The influence of fatty acid composition of the diets on the productive performance and on cold and heat tolerance of juvenile freshwater angelfish (Pterophyllum scalare, in three different phases, was studied. Phase I studied the productive performance of freshwater angelfish in a completely randomized experimental design with four treatments, canola, linseed, olive and soybean oils and four replicates during 50 days using 192 fish in 16 aquaria. Phase II studied the cold tolerance of juvenile freshwater angelfish using 72 juvenile freshwater angelfish, coming from phase I and maintained in 12 aquaria climatized chamber. The temperature was reduced 1ºC per day, until the observation of 100% fish mortality. Phase III, it was studied the heat tolerance of juvenile freshwater angelfish employing an identical procedure to phase II, but with a daily increase of 1ºC. Significant differences (P>0.05 were not observed for any parameters evaluated. Thus, it was concluded that the type of vegetable oil (canola, linseed, olive and soybean used as a diet supplement did not affect the productive performance, nor the tolerance to cold and heat, of juvenile freshwater angelfish.

  19. Methane emission from tidal freshwater marshes

    NARCIS (Netherlands)

    Van der Nat, F.J.; Middelburg, J.J.

    2000-01-01

    In two tidal freshwater marshes, methane emission, production and accumulation in the pore-water have been studied. The two sites differ in their dominant vegetation, i.e., reed and bulrush, and in their heights above sea level. The reed site was elevated in relation to the bulrush site and had

  20. Herbivory on freshwater and marine macrophytes

    NARCIS (Netherlands)

    Bakker, Elisabeth S.; Wood, Kevin A.; Pagès, Jordi F.; Veen, G.F.; Christianen, Marjolijn J.A.; Santamaría, Luis; Nolet, Bart A.; Hilt, Sabine

    2016-01-01

    Until the 1990s, herbivory on aquatic vascular plants was considered to be of minor importance, and the predominant view was that freshwater and marine macrophytes did not take part in the food web: their primary fate was the detritivorous pathway. In the last 25 years, a substantial body of

  1. Adaptive management in the context of barriers in European freshwater ecosystems

    DEFF Research Database (Denmark)

    Birnie-Gauvin, Kim; Tummers, Jeroen S.; Lucas, Martyn C.

    2017-01-01

    Many natural habitats have been modified to accommodate for the presence of humans and their needs. Infrastructures e such as hydroelectric dams, weirs, culverts and bridges e are now a common occurrence in streams and rivers across the world. As a result, freshwater ecosystems have been altered...... extensively, affecting both biological and geomorphological components of the habitats. Many fish species rely on these freshwater ecosystems to complete their lifecycles, and the presence of barriers has been shown to reduce their ability to migrate and sustain healthy populations. In the long run, barriers...... may have severe repercussions on population densities and dynamics of aquatic animal species. There is currently an urgent need to address these issues with adequate conservation approaches. Adaptive management provides a relevant approach to managing barriers in freshwater ecosystems as it addresses...

  2. Heterotrophs are key contributors to nitrous oxide production in mixed liquor under low C-to-N ratios during nitrification - batch experiments and modelling

    DEFF Research Database (Denmark)

    Domingo Felez, Carlos; Pellicer i Nàcher, Carles; Petersen, Morten S.

    2017-01-01

    Nitrous oxide (N2O), a by-product of biological nitrogen removal during wastewater treatment, is produced by ammonia-oxidizing bacteria (AOB) and heterotrophic denitrifying bacteria (HB). Mathematical models are used to predict N2O emissions, often including AOB as the main N2O producer. Several...

  3. Cadmium as toxicant in Freshwater Cyprinid, Labeo rohita

    African Journals Online (AJOL)

    Sajo

    2012-04-24

    Apr 24, 2012 ... urbanization, expansion of industrial activity, industrial wasteful effluents .... blood capillaries, and sinusoids were randomly distri- buted. ..... cholinesterase activity of freshwater fish, Oreochromis mossambicus. Peters. Asia.

  4. Bryozoans are returning home: recolonization of freshwater ecosystems inferred from phylogenetic relationships.

    Science.gov (United States)

    Koletić, Nikola; Novosel, Maja; Rajević, Nives; Franjević, Damjan

    2015-01-01

    Bryozoans are aquatic invertebrates that inhabit all types of aquatic ecosystems. They are small animals that form large colonies by asexual budding. Colonies can reach the size of several tens of centimeters, while individual units within a colony are the size of a few millimeters. Each individual within a colony works as a separate zooid and is genetically identical to each other individual within the same colony. Most freshwater species of bryozoans belong to the Phylactolaemata class, while several species that tolerate brackish water belong to the Gymnolaemata class. Tissue samples for this study were collected in the rivers of Adriatic and Danube basin and in the wetland areas in the continental part of Croatia (Europe). Freshwater and brackish taxons of bryozoans were genetically analyzed for the purpose of creating phylogenetic relationships between freshwater and brackish taxons of the Phylactolaemata and Gymnolaemata classes and determining the role of brackish species in colonizing freshwater and marine ecosystems. Phylogenetic relationships inferred on the genes for 18S rRNA, 28S rRNA, COI, and ITS2 region confirmed Phylactolaemata bryozoans as radix bryozoan group. Phylogenetic analysis proved Phylactolaemata bryozoan's close relations with taxons from Phoronida phylum as well as the separation of the Lophopodidae family from other families within the Plumatellida genus. Comparative analysis of existing knowledge about the phylogeny of bryozoans and the expansion of known evolutionary hypotheses is proposed with the model of settlement of marine and freshwater ecosystems by the bryozoans group during their evolutionary past. In this case study, brackish bryozoan taxons represent a link for this ecological phylogenetic hypothesis. Comparison of brackish bryozoan species Lophopus crystallinus and Conopeum seurati confirmed a dual colonization of freshwater ecosystems throughout evolution of this group of animals.

  5. Simulations of freshwater lens recharge and salt/freshwater interfaces using the HYDRUS and SWI2 packages for MODFLOW

    Directory of Open Access Journals (Sweden)

    Szymkiewicz Adam

    2018-06-01

    Full Text Available The paper presents an evaluation of the combined use of the HYDRUS and SWI2 packages for MODFLOW as a potential tool for modeling recharge in coastal aquifers subject to saltwater intrusion. The HYDRUS package for MODFLOW solves numerically the one-dimensional form of the Richards equation describing water flow in variablysaturated media. The code computes groundwater recharge to or capillary rise from the groundwater table while considering weather, vegetation, and soil hydraulic property data. The SWI2 package represents in a simplified way variable-density flow associated with saltwater intrusion in coastal aquifers. Combining these two packages within the MODFLOW framework provides a more accurate description of vadose zone processes in subsurface systems with shallow aquifers, which strongly depend upon infiltration. The two packages were applied to a two-dimensional problem of recharge of a freshwater lens in a sandy peninsula, which is a typical geomorphologic form along the Baltic and the North Sea coasts, among other places. Results highlighted the sensitivity of calculated recharge rates to the temporal resolution of weather data. Using daily values of precipitation and potential evapotranspiration produced average recharge rates more than 20% larger than those obtained with weekly or monthly averaged weather data, leading to different trends in the evolution of freshwater-saltwater interfaces. Root water uptake significantly influenced both the recharge rate and the position of the freshwater-saltwater interface. The results were less sensitive to changes in soil hydraulic parameters, which in our study were found to affect average yearly recharge rates by up to 13%.

  6. Viral lysis of Phaeocystis pouchetii: implications for algal population dynamics and heterotrophic C, N and P cycling

    DEFF Research Database (Denmark)

    Haaber, Jakob Brandt Borup; Middelboe, Mathias

    2009-01-01

    in the microbial food web was associated with significant N and P mineralization, supporting the current view that viral lysates can be an important source of inorganic nutrients in marine systems. In the presence of R. salina, the generated NH(4)(+) supported 11% of the observed R. salina growth. Regrowth...... of virus-resistant P. pouchetii following cell lysis was observed in long-term incubations (150 days), and possibly influenced by nutrient availability and competition from R. salina. The observed impact of viral activity on autotrophic and heterotrophic processes provides direct experimental evidence...

  7. Experimental study of a sustainable hybrid system for thermoelectric generation and freshwater production

    Science.gov (United States)

    de Souza, Gabriel Fernandes; Tan, Lippong; Singh, Baljit; Ding, Lai Chet; Date, Abhijit

    2017-04-01

    The paper presents a sustainable hybrid system, which is capable of generating electricity and producing freshwater from seawater using low grade heat source. This proposed system uses low grade heat that can be supplied from solar radiation, industrial waste heat or any other waste heat sources where the temperature is less than 150°C. The concept behind this system uses the Seebeck effect for thermoelectricity generation via incorporating the low boiling point of seawater under sub-atmospheric ambient pressure. A lab-test prototype of the proposed system was built and experimentally tested in RMIT University. The prototype utilised four commercial available thermoelectric generators (Bi2Te3) and a vacuum vessel to achieve the simultaneous production of electricity and freshwater. The temperature profiles, thermoelectric powers and freshwater productions were determined at several levels of salinity to study the influence of different salt concentrations. The theoretical description of system design and experimental results were analysed and discussed in detailed. The experiment results showed that 0.75W of thermoelectricity and 404g of freshwater were produced using inputs of 150W of simulated waste heat and 500g of 3% saline water. The proposed hybrid concept has demonstrated the potential to become the future sustainable system for electricity and freshwater productions.

  8. Future Freshwater Stress on Small Islands: Population, Aridity and Global Warming Targets

    Science.gov (United States)

    Karnauskas, K. B.; Schleussner, C. F.; Donnelly, J. P.; Anchukaitis, K. J.

    2017-12-01

    Small island developing states (SIDS) face multiple threats from anthropogenic climate change, including potential changes in freshwater resource availability. Future freshwater stress, including geographic and seasonal variability, has important implications for climate change adaptation scenarios for vulnerable human populations living on islands across the world ocean. Due to a mismatch in spatial scale between SIDS landforms and the horizontal resolution of global climate models (GCMs), SIDS are mostly unaccounted for in GCMs that are used to make future projections of global climate change and its regional impacts. Specific approaches are required to address this gap between broad-scale model projections and regional, policy-relevant outcomes. Here we apply a recently developed methodology to project future changes in aridity in combination with population projections associated with different shared socioeconomic pathways (SSPs) to evaluate overall changes in freshwater stress in SIDS at warming levels of 1.5°C and 2°C above pre-industrial levels. By accounting for evaporative demand a posteriori, we reveal a robust yet spatially variable tendency towards increasing aridity for 16 million people living on islands by mid-century. Although about half of the islands are projected to experience increased rainfall—predominantly in the deep tropics—projected changes in evaporation are more uniform, shifting the global distribution of changes in island freshwater balance towards greater aridity. In many cases, the magnitude of projected drying is comparable to the amplitude of the estimated observed interannual variability, with important consequences for extreme events. While we find that future population growth will dominate changes in projected freshwater stress especially towards the end of the century, projected changes in aridity are found to compound freshwater stress for the vast majority of SIDS. Particularly across the Caribbean region, a

  9. Heliozoa from Nigeria | Wujek | Tropical Freshwater Biology

    African Journals Online (AJOL)

    A total of seven scaled protistans were observed from four freshwater sites in Nigeria. They include the holiozoan genera Acanthocystis, Polyplacocystis, Pterocystis, and Raphidiophrys. All are new records for Africa. KEY WORDS: Heliozoa, Protozoa, Acanthocystis, Polyplacocystis, Pterocystis, Raphidiophrys Tropical ...

  10. Filling gaps in a large reserve network to address freshwater conservation needs.

    Science.gov (United States)

    Hermoso, Virgilio; Filipe, Ana Filipa; Segurado, Pedro; Beja, Pedro

    2015-09-15

    Freshwater ecosystems and biodiversity are among the most threatened at global scale, but efforts for their conservation have been mostly peripheral to terrestrial conservation. For example, Natura 2000, the world's largest network of protected areas, fails to cover adequately the distribution of rare and endangered aquatic species, and lacks of appropriate spatial design to make conservation for freshwater biodiversity effective. Here, we develop a framework to identify a complementary set of priority areas and enhance the conservation opportunities of Natura 2000 for freshwater biodiversity, using the Iberian Peninsula as a case study. We use a systematic planning approach to identify a minimum set of additional areas that would help i) adequately represent all freshwater fish, amphibians and aquatic reptiles at three different target levels, ii) account for key ecological processes derived from riverscape connectivity, and iii) minimize the impact of threats, both within protected areas and propagated from upstream unprotected areas. Addressing all these goals would need an increase in area between 7 and 46%, depending on the conservation target used and strength of connectivity required. These new priority areas correspond to subcatchments inhabited by endangered and range restricted species, as well as additional subcatchments required to improve connectivity among existing protected areas and to increase protection against upstream threats. Our study should help guide future revisions of the design of Natura 2000, while providing a framework to address deficiencies in reserve networks for adequately protecting freshwater biodiversity elsewhere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Quantifying the effect of catchment land-use and water nutrient concentrations on freshwater river and stream biodiversity

    NARCIS (Netherlands)

    Weijters, M.J.; Janse, J.H.; Alkemade, J.R.M.; Verhoeven, J.T.A.

    2009-01-01

    A major threat to freshwater taxon diversity is the alteration of natural catchment Land use into agriculture, industry or urban areas and the associated eutrophication of the water. In order to stop freshwater biodiversity loss, it is essential to quantify the relationships between freshwater

  12. Marine nutrient contributions to tidal creeks in Virginia: spawning marine fish as nutrient vectors to freshwater ecosystems

    Science.gov (United States)

    Macavoy, S. E.; Garman, G. C.

    2006-12-01

    Coastal freshwater streams are typically viewed as conduits for the transport of sediment and nutrients to the coasts. Some coastal streams however experience seasonal migrations of anadromous fish returning to the freshwater to spawn. The fish may be vectors for the delivery of marine nutrients to nutrient poor freshwater in the form of excreted waste and post-spawning carcasses. Nutrients derived from marine sources are 13C, 15N and 34S enriched relative to nutrients in freshwater. Here we examine sediment, particulate organic matter (POM), invertebrates and fish in two tidal freshwater tributaries of the James River USA. The d15N of POM became elevated (from 3.8 to 6.5%), coincident with the arrival of anadromous river herring (Alosa sp), indicating a pulse of marine nitrogen. However, the elevated 15N was not observed in sediment samples or among invertebrates, which did not experience a seasonal isotopic shift (there were significant differences however among the guilds of invertebrate). Anadromous Alosa aestivalis captured within the tidal freshwater were 13C and 34S enriched (-19.3 and 17.2%, respectively) relative to resident freshwater fishes (-26.4 and 3.6% respectively) captured within 2 weeks of the Alosa. Although it is likely that marine derived nitrogen was detected in the tidal freshwater, it was not in sufficient abundance to change the isotope signature of most ecosystem components.

  13. Current status of parasitic ciliates Chilodonella spp. (Phyllopharyngea: Chilodonellidae) in freshwater fish aquaculture.

    Science.gov (United States)

    Bastos Gomes, G; Jerry, D R; Miller, T L; Hutson, K S

    2017-05-01

    Freshwater fish farming contributes to more than two-thirds of global aquaculture production. Parasitic ciliates are one of the largest causes of production loss in freshwater farmed fishes, with species from the genus Chilodonella being particularly problematic. While Chilodonella spp. include 'free-living' fauna, some species are involved in mortality events of fish, particularly in high-density aquaculture. Indeed, chilodonellosis causes major productivity losses in over 16 species of farmed freshwater fishes in more than 14 countries. Traditionally, Chilodonella species are identified based on morphological features; however, the genus comprises yet uncharacterized cryptic species, which indicates the necessity for molecular diagnostic methods. This review synthesizes current knowledge on the biology, ecology and geographic distribution of harmful Chilodonella spp. and examines pathological signs, diagnostic methods and treatments. Recent advances in molecular diagnostics and the ability to culture Chilodonella spp. in vitro will enable the development of preventative management practices and sustained freshwater fish aquaculture production. © 2016 John Wiley & Sons Ltd.

  14. The Implications of Ranaviruses to European farmed and wild freshwater fish

    DEFF Research Database (Denmark)

    Jensen, Ann Britt Bang

    The present thesis explores the implications of ranaviruses to European farmed and wild freshwater fish. The work presented was carried out as a part of the EU project “Risk assessment of new and emerging systemic iridoviral diseases for European fish and aquatic ecosystems” which was initiated...... in 2005 as a reaction to the speculation that ranaviruses might pose a serious threat to both farmed and wild-living freshwater fish and amphibians within the European community. In the present thesis, the purpose is to determine the implications of ranaviruses to European freshwater farmed and wild...... describing the risk of introduction and spread of exotic ranaviruses in European wild and farmed aquatic ecosystems Objectives 1 and 2 have been addressed by experimental trials involving bath challenges of both European farmed and wild fish species and ornamental fish species. The results showed that some...

  15. Cultured branchial epithelia from freshwater fish gills

    Science.gov (United States)

    Wood; PÄRt

    1997-01-01

    We have developed a method for the primary culture of gill epithelial cells from freshwater rainbow trout on permeable supports, polyethylene terephthalate membranes ('filter inserts'). Primary cultures of gill cells (6-9 days in Leibowitz L-15 culture medium plus foetal bovine serum and glutamine) are trypsinized and the cells seeded onto the inserts. After 6 days of growth with L-15 medium on both surfaces (approximately isotonic to trout plasma), the cells form a tight epithelium as judged from a progressive rise in transepithelial resistance which reaches a stable plateau for a further 6 days, as long as L-15 exposure is continued on both surfaces. The cultured epithelium (approximately 8 µm thick) typically consists of 2-4 overlapping cell layers organized as in the lamellae in vivo, with large intercellular spaces, multiple desmosomes and putative tight junctions. The cells appear to be exclusively pavement-type cells with an apical surface glycocalyx, an abundance of rough endoplasmic reticulum, no selective DASPEI staining and relatively few mitochondria. Transepithelial resistance (approximately 3.5 k cm2), permeability to a paracellular marker (polyethylene glycol-4000; 0.17x10(-6) cm s-1) and unidirectional flux of Na+ and Cl- (approximately 300 nmol cm-2 h-1) all appear realistic because they compare well with in vivo values; net fluxes of Na+ and Cl- are zero. The preparation acidifies the apical medium, which accumulates a greater concentration of ammonia. Upon exposure to apical freshwater, resistance increases six- to elevenfold and a basolateral-negative transepithelial potential (TEP) develops as in vivo. These responses occur even when mannitol is used to prevent changes in apical osmotic pressure. Net Na+ and Cl- loss rates are low over the first 12 h (-125 nmol cm-2 h-1) but increase substantially by 48 h. The elevated resistance and negative TEP gradually attenuate but remain significantly higher than pre-exposure values after 48 h of apical

  16. Study on Waste Heat Utilization Device of High-Temperature Freshwater in the Modern Marine Diesel Engine

    Science.gov (United States)

    Wang, Shuaijun; Liu, Chentao; Zhou, Yao

    2018-01-01

    Based on using the waste heat recycling from high temperature freshwater in marine diesel engine to heat fuel oil tank, lubrication oil tank and settling tank and so on to achieve energy saving, improve fuel efficiency as the goal, study on waste heat utilization device of high-temperature freshwater in the modern marine diesel engine to make the combustion chamber effectively cooled by high-temperature freshwater and the inner liner freshwater temperature heat is effectively utilized and so on to improve the overall efficiency of the power plant of the ship and the diesel optimum working condition.

  17. Genetic calibration of species diversity among North America's freshwater fishes.

    Science.gov (United States)

    April, Julien; Mayden, Richard L; Hanner, Robert H; Bernatchez, Louis

    2011-06-28

    Freshwater ecosystems are being heavily exploited and degraded by human activities all over the world, including in North America, where fishes and fisheries are strongly affected. Despite centuries of taxonomic inquiry, problems inherent to species identification continue to hamper the conservation of North American freshwater fishes. Indeed, nearly 10% of species diversity is thought to remain undescribed. To provide an independent calibration of taxonomic uncertainty and to establish a more accessible molecular identification key for its application, we generated a standard reference library of mtDNA sequences (DNA barcodes) derived from expert-identified museum specimens for 752 North American freshwater fish species. This study demonstrates that 90% of known species can be delineated using barcodes. Moreover, it reveals numerous genetic discontinuities indicative of independently evolving lineages within described species, which points to the presence of morphologically cryptic diversity. From the 752 species analyzed, our survey flagged 138 named species that represent as many as 347 candidate species, which suggests a 28% increase in species diversity. In contrast, several species of parasitic and nonparasitic lampreys lack such discontinuity and may represent alternative life history strategies within single species. Therefore, it appears that the current North American freshwater fish taxonomy at the species level significantly conceals diversity in some groups, although artificially creating diversity in others. In addition to providing an easily accessible digital identification system, this study identifies 151 fish species for which taxonomic revision is required.

  18. Establishing a database of radionuclide transfer parameters for freshwater wildlife

    International Nuclear Information System (INIS)

    Yankovich, T.; Beresford, N.A.; Fesenko, S.; Fesenko, J.; Phaneuf, M.; Dagher, E.; Outola, I.; Andersson, P.; Thiessen, K.; Ryan, J.; Wood, M.D.; Bollhöfer, A.

    2013-01-01

    Environmental assessments to evaluate potentials risks to humans and wildlife often involve modelling to predict contaminant exposure through key pathways. Such models require input of parameter values, including concentration ratios, to estimate contaminant concentrations in biota based on measurements or estimates of concentrations in environmental media, such as water. Due to the diversity of species and the range in physicochemical conditions in natural ecosystems, concentration ratios can vary by orders of magnitude, even within similar species. Therefore, to improve model input parameter values for application in aquatic systems, freshwater concentration ratios were collated or calculated from national grey literature, Russian language publications, and refereed papers. Collated data were then input into an international database that is being established by the International Atomic Energy Agency. The freshwater database enables entry of information for all radionuclides listed in ICRP (1983), in addition to the corresponding stable elements, and comprises a total of more than 16,500 concentration ratio (CR wo-water ) values. Although data were available for all broad wildlife groups (with the exception of birds), data were sparse for many organism types. For example, zooplankton, crustaceans, insects and insect larvae, amphibians, and mammals, for which there were CR wo-water values for less than eight elements. Coverage was most comprehensive for fish, vascular plants, and molluscs. To our knowledge, the freshwater database that has now been established represents the most comprehensive set of CR wo-water values for freshwater species currently available for use in radiological environmental assessments

  19. Monitoring endangered freshwater biodiversity using environmental DNA

    DEFF Research Database (Denmark)

    Thomsen, Philip Francis; Kielgast, Jos; Iversen, Lars Lønsmann

    2012-01-01

    Freshwater ecosystems are among the most endangered habitats on Earth, with thousands of animal species known to be threatened or already extinct. Reliable monitoring of threatened organisms is crucial for data-driven conservation actions but remains a challenge owing to nonstandardized methods t...

  20. Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters.

    Science.gov (United States)

    Marcarelli, Amy M; Baxter, Colden V; Mineau, Madeleine M; Hall, Robert O

    2011-06-01

    Although the study of resource subsidies has emerged as a key topic in both ecosystem and food web ecology, the dialogue over their role has been limited by separate approaches that emphasize either subsidy quantity or quality. Considering quantity and quality together may provide a simple, but previously unexplored, framework for identifying the mechanisms that govern the importance of subsidies for recipient food webs and ecosystems. Using a literature review of > 90 studies of open-water metabolism in lakes and streams, we show that high-flux, low-quality subsidies can drive freshwater ecosystem dynamics. Because most of these ecosystems are net heterotrophic, allochthonous inputs must subsidize respiration. Second, using a literature review of subsidy quality and use, we demonstrate that animals select for high-quality food resources in proportions greater than would be predicted based on food quantity, and regardless of allochthonous or autochthonous origin. This finding suggests that low-flux, high-quality subsidies may be selected for by animals, and in turn may disproportionately affect food web and ecosystem processes (e.g., animal production, trophic energy or organic matter flow, trophic cascades). We then synthesize and review approaches that evaluate the role of subsidies and explicitly merge ecosystem and food web perspectives by placing food web measurements in the context of ecosystem budgets, by comparing trophic and ecosystem production and fluxes, and by constructing flow food webs. These tools can and should be used to address future questions about subsidies, such as the relative importance of subsidies to different trophic levels and how subsidies may maintain or disrupt ecosystem stability and food web interactions.

  1. Homogenization patterns of the world’s freshwater fish faunas

    Science.gov (United States)

    Villéger, Sébastien; Blanchet, Simon; Beauchard, Olivier; Oberdorff, Thierry; Brosse, Sébastien

    2011-01-01

    The world is currently undergoing an unprecedented decline in biodiversity, which is mainly attributable to human activities. For instance, nonnative species introduction, combined with the extirpation of native species, affects biodiversity patterns, notably by increasing the similarity among species assemblages. This biodiversity change, called taxonomic homogenization, has rarely been assessed at the world scale. Here, we fill this gap by assessing the current homogenization status of one of the most diverse vertebrate groups (i.e., freshwater fishes) at global and regional scales. We demonstrate that current homogenization of the freshwater fish faunas is still low at the world scale (0.5%) but reaches substantial levels (up to 10%) in some highly invaded river basins from the Nearctic and Palearctic realms. In these realms experiencing high changes, nonnative species introductions rather than native species extirpations drive taxonomic homogenization. Our results suggest that the “Homogocene era” is not yet the case for freshwater fish fauna at the worldwide scale. However, the distressingly high level of homogenization noted for some biogeographical realms stresses the need for further understanding of the ecological consequences of homogenization processes. PMID:22025692

  2. Explosive diversification following a benthic to pelagic shift in freshwater fishes

    OpenAIRE

    Hollingsworth, Phillip R; Simons, Andrew M; Fordyce, James A; Hulsey, C Darrin

    2013-01-01

    Background Interspecific divergence along a benthic to pelagic habitat axis is ubiquitous in freshwater fishes inhabiting lentic environments. In this study, we examined the influence of this habitat axis on the macroevolution of a diverse, lotic radiation using mtDNA and nDNA phylogenies for eastern North America’s most species-rich freshwater fish clade, the open posterior myodome (OPM) cyprinids. We used ancestral state reconstruction to identify the earliest benthic to pelagic transition ...

  3. Luminescence properties of a nanoporous freshwater diatom.

    Science.gov (United States)

    Goswami, Bondita; Choudhury, Amarjyoti; Buragohain, Alak K

    2012-01-01

    Freshwater diatom frustules show special optical properties. In this paper we observed luminescence properties of the freshwater diatom Cyclotella meneghiniana. To confirm the morphological properties we present scanning electron microscopy (SEM) images. X-ray diffraction (XRD) studies were carried out to visualize the structural properties of the frustules, confirming that silica present in diatom frustules crystallizes in an α-quartz structure. Study of the optical properties of the silica frustules of diatoms using ultra-violet-visible (UV-vis) spectroscopy and photoluminescence spectroscopy confirmed that the diatom C. meneghiniana shows luminescence in the blue region of the electromagnetic spectrum when irradiated with UV light. This property of diatoms can be exploited to obtain many applications in day-to-day life. Also, using time-resolved photoluminescence spectroscopy (TRPL) it was confirmed that this species of diatom shows bi-exponential decay. Copyright © 2011 John Wiley & Sons, Ltd.

  4. Natural and anthropogenic factors affecting freshwater lenses in coastal dunes of the Adriatic coast

    Science.gov (United States)

    Cozzolino, Davide; Greggio, Nicolas; Antonellini, Marco; Giambastiani, Beatrice Maria Sole

    2017-08-01

    This study characterizes the near-shore portion of the shallow coastal aquifer included in the Ravenna area (Northern Italy) with special attention to the roles of coastal dunes as freshwater reservoirs and their buffer on groundwater salinity. The paper focuses on the presence and evolution of freshwater lenses below coastal dunes and highlights the existing differences between preserved natural dunes and dunes strongly affected by human intervention. The influence that multiple natural and anthropogenic factors, such as land cover, local drainage network, and beach erosion have on the presence, size and evolution of the freshwater lenses in the aquifer is quantified and discussed. The methodology includes multiple seasonal monitoring and sampling campaigns of physical (water level, salinity, and temperature) and chemical (major cations and anions) groundwater parameters. Results indicate that freshwater lenses, where existing, are limited in thickness (about 1-2 m). Proximity to drainage ditches as well as limited dune elevation and size do not allow the formation and permanent storage of large freshwater lenses in the aquifer below the dunes. The pine forest land cover, that replaced the typical bush or sand cover, intensifies evapotranspiration reducing net infiltration and freshwater storage. The cation species distribution in the water shows that a freshening process is ongoing in preserved natural sites with stable or advancing beaches, whereas a salinization process is ongoing in anthropogenic-impacted areas with strongly-fragmented dune systems. Currently, the thin freshwater lenses in the shallow Ravenna coastal aquifer are limited in space and have no relevance for irrigation or any other human activity. The dune-beach system, however, is the recharge zone of the coastal aquifer and its protection is important to reduce water and soil salinization, which in turn control the health of the whole coastal ecosystem.

  5. The freshwater balance of polar regions in transient simulations from 1500 to 2100 AD using a comprehensive coupled climate model

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, Flavio; Raible, Christoph C.; Hofer, Dominik; Stocker, Thomas F. [University of Bern, Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, Bern (Switzerland)

    2012-07-15

    The ocean and sea ice in both polar regions are important reservoirs of freshwater within the climate system. While the response of these reservoirs to future climate change has been studied intensively, the sensitivity of the polar freshwater balance to natural forcing variations during preindustrial times has received less attention. Using an ensemble of transient simulations from 1500 to 2100 AD we put present-day and future states of the polar freshwater balance in the context of low frequency variability of the past five centuries. This is done by focusing on different multi-decadal periods of characteristic external forcing. In the Arctic, freshwater is shifted from the ocean to sea ice during the Maunder Minimum while the total amount of freshwater within the Arctic domain remains unchanged. In contrast, the subsequent Dalton Minimum does not leave an imprint on the slow-reacting reservoirs of the ocean and sea ice, but triggers a drop in the import of freshwater through the atmosphere. During the twentieth and twenty-first century the build-up of freshwater in the Arctic Ocean leads to a strengthening of the liquid export. The Arctic freshwater balance is shifted towards being a large source of freshwater to the North Atlantic ocean. The Antarctic freshwater cycle, on the other hand, appears to be insensitive to preindustrial variations in external forcing. In line with the rising temperature during the industrial era the freshwater budget becomes increasingly unbalanced and strengthens the high latitude's Southern Ocean as a source of liquid freshwater to lower latitude oceans. (orig.)

  6. Species persistence: a re-look at the freshwater fish fauna of Chennai, India

    Directory of Open Access Journals (Sweden)

    J.D.M. Knight

    2010-11-01

    Full Text Available Loss of habitat is one of the prime reasons for species extinction. It is generally established that certain classes of animals are more prone to extinction than others due to their restricted use of available habitats. Freshwater fish are among these sensitive animals. While local extinctions have rendered some species rare throughout their geographical range, many others have demonstrated higher levels of persistence. This paper focuses on a recent in-depth study of the primary freshwater fishes in and around Chennai. The study that spanned a period of two years recorded a total of 75 species of primary freshwater fish, of which 17 are new reports.

  7. Microbial pollution indicators and culturable heterotrophic bacteria in a Mediterranean area (Southern Adriatic Sea Italian coasts)

    Science.gov (United States)

    Stabili, L.; Cavallo, R. A.

    2011-05-01

    In the present study we evaluated the degree of microbial water pollution along the coast line between Brindisi and Santa Maria di Leuca (Southern Adriatic Sea) as well as the culturable heterotrophic bacteria abundances and biodiversity in relation to the microbiological quality of the water. A total of 3773 colonies were isolated, subcultured and identified by several morphological, cultural and biochemical methods including the standardized API 20 E and API 20 NE tests. Along the examined coastal tract the microbial pollution indicators were always below the tolerance limits for bathing waters defined by the CEE directive, suggesting a good sanitary quality. Concerning culturable heterotrophic bacteria, different temporal density trends were observed in the four sites in relation to their geographical position. A positive relationship between the bacterial abundances and the temperature was observed in S. Cataldo and Otranto. The culturable bacterial community was mainly composed of the genera Aeromonas, Pseudomonas, Photobacterium and Flavobacterium. The Enterobacteriaceae family represented a conspicuous component of the bacterial community too. Bacilli were predominant among the Gram-positive bacteria. Of interest is the isolation of yeasts (2% at the surface and 1% at the bottom) taking into account their capability of biodegradation of various materials. Because of the low level of microbial pollution recorded, our results are indicative of the natural variation and diversity of the culturable bacterial community in such an oligotrophic ecosystem and could represent a good point of comparison with other ecosystems as well as a baseline for long term studies aimed to evaluate the effects of environmental fluctuations and human impacts on this aspect of biodiversity in coastal areas.

  8. Macrophytes: Freshwater Forests of Lakes and Rivers.

    Science.gov (United States)

    McDermid, Karla J.; Naiman, Robert J.

    1983-01-01

    Physical, chemical, and biological effects on macrophytes (aquatic plants) on the freshwater ecosystem are discussed. Research questions and issues related to these organisms are also discussed, including adaptations for survival in a wet environment, ecological consequences of large-scale macrophyte eradication, seasonal changes in plant…

  9. Benthic freshwater nematode community dynamics under conditions ...

    African Journals Online (AJOL)

    Studies of the influence of fish aquaculture on benthic freshwater nematode assemblages are scarce, but could provide a way of gauging environmental effects. The abundance and diversity of nematode assemblages in response to Oreochromis niloticus aquaculture were investigated in Kafr El-Sheikh Governorate, Egypt, ...

  10. Assessing exposure risks for freshwater tilapia species posed by mercury and methylmercury.

    Science.gov (United States)

    Cheng, Yi-Hsien; Lin, Yi-Jun; You, Shu-Han; Yang, Ying-Fei; How, Chun Ming; Tseng, Yi-Ting; Chen, Wei-Yu; Liao, Chung-Min

    2016-08-01

    Waterborne and dietborne exposures of freshwater fish to mercury (Hg) in the forms of inorganic (Hg(II)) and organic (methylmercury or MeHg) affect their growth, development, and reproduction. However, an integrated mechanistic risk model framework to predict the impact of Hg(II)/MeHg on freshwater fish is lacking. Here, we integrated biokinetic, physiological and biogeographic data to calibrate and then establish key risk indices-hazardous quotient and exceedance risk-for freshwater tilapia species across geographic ranges of several major rivers in Taiwan. We found that Hg(II) burden was highest in kidney followed by gill, intestine, liver, blood, and muscle. Our results showed that Hg was less likely to pose mortality risk (mortality rate less than 5 %) for freshwater tilapia species. However, Hg is likely to pose the potential hazard to aquatic environments constrained by safety levels for aquatic organisms. Sensitivity analysis showed that amount of Hg accumulated in tilapia was most influenced by sediment uptake rate. Our approach opens up new possibilities for predicting future fish population health with the impacts of continued Hg exposure to provide information on which fish are deemed safe for human consumption.

  11. DISTRIBUTION OF HEAVY METALS AMONG THE COMPONENTS OF FRESHWATER ECOSYSTEMS (REVIEW)

    OpenAIRE

    N. Kolesnyk

    2014-01-01

    Purpose. To review scientific sources on the distribution of heavy metals among the components of freshwater ecosystems. Findings. The review of the works of many scientists showed that heavy metals are widespread in the biotic and abiotic components of freshwater ecosystems. The article highlights the distribution of heavy metals in water, bottom sediments, natural food base, fish organs and tissues. It has been shown that as a result of global pollution of the ecosystem, the majority of...

  12. Impacts of Freshwater Impoundment in the West Loch of Pearl Harbor

    Science.gov (United States)

    1993-05-01

    absence of applicable non-point standards, the "Yellow Book" criteria for freshwater aquatic life or domestic water supply could be applied to evaluate the...Waimalu, Waipahu, Wahiawa, and Ewa water use districts and contains the largest groundwater body on Oahu, supplying more than 50 percent of the island’s...irrigation; desalt existing brackish water supplies, and; 3 create a freshwater impoundment in West Loch. 6I I I The Board of Water Supply (BWS) and

  13. Human activities cause distinct dissolved organic matter composition across freshwater ecosystems

    Science.gov (United States)

    Williams, Clayton J.; Frost, Paul C.; Morales-Williams, Ana M.; Larson, James H.; Richardson, William B.; Chiandet, Aisha S.; Xenopoulos, Marguerite A.

    2016-01-01

    Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by interactions between physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes Region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic-like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic-rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in

  14. Prevalence of Clonorchis sinensis infection in freshwater fishes in northeastern China.

    Science.gov (United States)

    Zhang, Y; Chang, Q C; Zhang, Y; Na, L; Wang, W T; Xu, W W; Gao, D Z; Liu, Z X; Wang, C R; Zhu, X Q

    2014-08-29

    The prevalence of Clonorchis sinensis infection in freshwater fishes was surveyed in Heilongjiang Province, northeastern China, between August 2011 and September 2013. Thirteen species of freshwater fish (n=3221) and one species of shrimp (n=93) were collected from Songhua river, Nenjiang river and other lakes or ponds in 37 sites of 15 representative cities in Heilongjiang Province. They were individually examined by digestion technique, and the C. sinensis metacercariae were identified morphologically followed by confirmation using sequences of the second internal transcribed spacer of ribosomal DNA. Ten of the 13 examined species of freshwater fishes were infected with C. sinensis metacercariae, while all shrimps were negative. The overall prevalence of C. sinensis infection in 3221 examined freshwater fishes was 19.96%, with 42.57% (272/639) in Pseudorasbora parva, 22.55% (83/368) in Hemicculter leuciclus, 20.44% (121/592) in Carassius auratus, 17.71% (68/384) in Saurogobio dabryi, 10.85% (23/212) in Rhodeus ocellatus, 10.54% (48/455) in Phoxinus lagowskii, 8.20% (21/256) in Perccottus glehnii, 6.25% (5/80) in Misgurnus anguillicaudatus, 4.55% (1/22) in Xenocypris davidi, and 1.49% (1/67) in Cyprinus carpio. The average infection intensity in P. parva was 103.3 encysted metacercariae per gram of fish meat in Zhaoyuan city. The average prevalence of C. sinensis infection in Songhua river, Nenjiang river and lakes or ponds were 31.96% (503/1574), 11.30% (102/903) and 7.93% (59/744), respectively. The prevalence of C. sinensis infection in Zhaoyuan city (43.68%) was the highest among all sampling locations. These results revealed a high-prevalence of C. sinensis infection in freshwater fishes in Heilongjiang Province, northeastern China, posing significant public health concern. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Metabolic flux analysis of heterotrophic growth in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Nanette R Boyle

    Full Text Available Despite the wealth of knowledge available for C. reinhardtii, the central metabolic fluxes of growth on acetate have not yet been determined. In this study, 13C-metabolic flux analysis (13C-MFA was used to determine and quantify the metabolic pathways of primary metabolism in C. reinhardtii cells grown under heterotrophic conditions with acetate as the sole carbon source. Isotopic labeling patterns of compartment specific biomass derived metabolites were used to calculate the fluxes. It was found that acetate is ligated with coenzyme A in the three subcellular compartments (cytosol, mitochondria and plastid included in the model. Two citrate synthases were found to potentially be involved in acetyl-coA metabolism; one localized in the mitochondria and the other acting outside the mitochondria. Labeling patterns demonstrate that Acetyl-coA synthesized in the plastid is directly incorporated in synthesis of fatty acids. Despite having a complete TCA cycle in the mitochondria, it was also found that a majority of the malate flux is shuttled to the cytosol and plastid where it is converted to oxaloacetate providing reducing equivalents to these compartments. When compared to predictions by flux balance analysis, fluxes measured with 13C-MFA were found to be suboptimal with respect to biomass yield; C. reinhardtii sacrifices biomass yield to produce ATP and reducing equivalents.

  16. [Isolation, Identification and Nitrogen Removal Characteristics of a Heterotrophic Nitrification-Aerobic Denitrification Strain y3 Isolated from Marine Environment].

    Science.gov (United States)

    Sun, Qing-hua; Yu, De-shuang; Zhang, Pei-yu; Lin, Xue-zheng; Xu, Guang-yao; Li, Jin

    2016-03-15

    A heterotrophic nitrification--aerobic denitrification bacterium named y3 was isolated from the sludge of Jiaozhou Bay using the enrichment medium with seawater as the matrix. It was identified as Pseudomonas sp. based on the morphological observation, physiological experiments and sequence analysis of 16S rRNA. The experiment results showed that the optimal carbon resource was sodium citrate, the optimal pH was 7.0, and the optimal C/N was 13. The strain could use NH₄Cl, NaNO₂ and KNO₃ as sole nitrogen source, and the removal efficiencies were 98.69%, 78.38% and 72.95% within 20 hours, respectively. There was no nitrate and nitrite accumulation during the heterotrophic nitrification process. Within 20 hours, the nitrogen removal efficiencies were 99.56%, 99.75% and 99.41%, respectively, in the mixed system with NO₃⁻-N: NO²⁻-N of 2:1, 1:1 and 1:2. When the NH₄⁺-N: NO₃⁻-N ratios were 2: 1 , 1: 1 , 1: 2, the nitrogen removal efficiencies were all 100% . When the NH₄⁺-N:NO₂⁻-N ratios were 2:1,1:1,1:2, the nitrogen removal efficiencies were 90.43%, 92.79% and 99.96%, respectively. They were higher than those with single nitrogen source. As a result, strain y3 had good nitrogen removal performance in high saline wastewater treatment.

  17. Freshwater Choices in China: Options That Will Impact South and Southeast Asia

    Science.gov (United States)

    2014-12-04

    economies in the world. To sustain this economic growth and transform chronic hunger into food self-sufficiency, both China and India have embarked...FRESHWATER CHOICES IN CHINA: OPTIONS THAT WILL IMPACT SOUTH AND SOUTHEAST ASIA A Monograph by Mr. Steven M. Nystrom...TITLE AND SUBTITLE Freshwater Choices in China: Options that will Impact South and Southeast Asia 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  18. Global priorities for conservation of threatened species, carbon storage, and freshwater services

    DEFF Research Database (Denmark)

    Larsen, Frank Wugt; Londoño-Murcia, Maria C.; Turner, Will R.

    2011-01-01

    The potential of global biodiversity conservation efforts to also deliver critical benefits, such as carbon storage and freshwater services, is still unclear. Using spatially explicit data on 3,500 range-restricted threatened species, carbon storage, and freshwater provision to people, we conducted...... for which spatial planning and appropriate conservation mechanisms (e.g., payments for ecosystem services) can be used to realize synergies and mitigate tradeoffs....

  19. Measuring benefits of protected area management: trends across realms and research gaps for freshwater systems.

    Science.gov (United States)

    Adams, Vanessa M; Setterfield, Samantha A; Douglas, Michael M; Kennard, Mark J; Ferdinands, Keith

    2015-11-05

    Protected areas remain a cornerstone for global conservation. However, their effectiveness at halting biodiversity decline is not fully understood. Studies of protected area benefits have largely focused on measuring their impact on halting deforestation and have neglected to measure the impacts of protected areas on other threats. Evaluations that measure the impact of protected area management require more complex evaluation designs and datasets. This is the case across realms (terrestrial, freshwater, marine), but measuring the impact of protected area management in freshwater systems may be even more difficult owing to the high level of connectivity and potential for threat propagation within systems (e.g. downstream flow of pollution). We review the potential barriers to conducting impact evaluation for protected area management in freshwater systems. We contrast the barriers identified for freshwater systems to terrestrial systems and discuss potential measurable outcomes and confounders associated with protected area management across the two realms. We identify key research gaps in conducting impact evaluation in freshwater systems that relate to three of their major characteristics: variability, connectivity and time lags in outcomes. Lastly, we use Kakadu National Park world heritage area, the largest national park in Australia, as a case study to illustrate the challenges of measuring impacts of protected area management programmes for environmental outcomes in freshwater systems. © 2015 The Author(s).

  20. River and wetland classifications for freshwater conservation ...

    African Journals Online (AJOL)

    River and wetland classifications for freshwater conservation planning in KwaZulu-Natal, South Africa. ... regional- or provincial-scale conservation planning. The hierarchical structure of the classifications provides scope for finer resolution, by the addition of further levels, for application at a sub-regional or municipal scale.

  1. Microplastic effect thresholds for freshwater benthic macroinvertebrates

    NARCIS (Netherlands)

    Redondo Hasselerharm, P.E.; Dede Falahudin, Dede; Peeters, E.T.H.M.; Koelmans, A.A.

    2018-01-01

    Now that microplastics have been detected in lakes, rivers and estuaries all over the globe, evaluating their effects on biota has become an urgent research priority. This is the first study that aims at determining the effect thresholds for a battery of six freshwater benthic macroinvertebrates

  2. In Silico characterization of growth hormone from freshwater ...

    African Journals Online (AJOL)

    dimensional (3D) structure prediction and evolutionary profile of growth hormone (GH) from 14 ornamental freshwater fishes. The analyses were performed using the sequence data of growth hormone gene (gh) and its encoded GH protein.

  3. Mapping potential freshwater services, and their representation within Protected Areas (PAs, under conditions of sparse data. Pilot implementation for Cambodia

    Directory of Open Access Journals (Sweden)

    Leonardo Sáenz

    2016-07-01

    Full Text Available Freshwater is arguably one of Earth’s most threatened natural resources, on which more than 7 billion people depend. Pressures on freshwater resources from infrastructure, resource development, agricultural pollution and deforestation are mounting, particularly in developing countries. To date, conservation responses such as Protected Areas (PAs have not typically targeted freshwater ecosystems and their services, and thus little is known about the effectiveness of these efforts in protecting them. This paper proposes and pilots an innovative freshwater services metrics framework to quantify the representation of potential freshwater services in PAs under conditions of scarce data, with a pilot application for Cambodia. Our results indicate that conservation actions have more effectively represented potential freshwater regulation services than potential freshwater provisioning services, with major rivers remaining generally unprotected. Results from the framework are then used to propose a series of context and region specific management options to improve the conservation of freshwater services in Cambodia. There is an acute need for such management options, as the country’s food security depends largely on important freshwater ecosystems such as the Tonle Sap Lake and the deep water pools systems of the Mekong River. The framework proposed can be applied in other countries or large river basins to explore the degree of representation of freshwater services within PAs systems, under conditions of sparse data.

  4. Improved protocols to accelerate the assembly of DNA barcode reference libraries for freshwater zooplankton.

    Science.gov (United States)

    Elías-Gutiérrez, Manuel; Valdez-Moreno, Martha; Topan, Janet; Young, Monica R; Cohuo-Colli, José Angel

    2018-03-01

    Currently, freshwater zooplankton sampling and identification methodologies have remained virtually unchanged since they were first established in the beginning of the XX century. One major contributing factor to this slow progress is the limited success of modern genetic methodologies, such as DNA barcoding, in several of the main groups. This study demonstrates improved protocols which enable the rapid assessment of most animal taxa inhabiting any freshwater system by combining the use of light traps, careful fixation at low temperatures using ethanol, and zooplankton-specific primers. We DNA-barcoded 2,136 specimens from a diverse array of taxonomic assemblages (rotifers, mollusks, mites, crustaceans, insects, and fishes) from several Canadian and Mexican lakes with an average sequence success rate of 85.3%. In total, 325 Barcode Index Numbers (BINs) were detected with only three BINs (two cladocerans and one copepod) shared between Canada and Mexico, suggesting a much narrower distribution range of freshwater zooplankton than previously thought. This study is the first to broadly explore the metazoan biodiversity of freshwater systems with DNA barcodes to construct a reference library that represents the first step for future programs which aim to monitor ecosystem health, track invasive species, or improve knowledge of the ecology and distribution of freshwater zooplankton.

  5. Freshwater conservation planning in South Africa: Milestones to ...

    African Journals Online (AJOL)

    2012-03-01

    Mar 1, 2012 ... freshwaters, implemented through a water resource classifica- tion system ... piled for each of South Africa's 19 Water Management Areas, which are ..... et al., 2011) and integrated water and land-use prioritisation. (Nel et al.

  6. Predicting the 137Cs Contamination of Freshwater Fish in Hong Kong

    International Nuclear Information System (INIS)

    Poon, C.B.; Au, S.M.

    1999-01-01

    A predictive method for estimating the 137 Cs contamination of freshwater fish in Hong Kong after an acute deposition is presented. This method applies a published aquatic model to the freshwater fish culture ponds in Hong Kong. The predicted transfer coefficient, in terms of peak concentration in fish (wet weight) per unit deposition, is found to be generally lower than those observed in some European and UK lakes after the Chernobyl accident. While the water-fish concentration factor is undoubtedly an important factor, some unique features of the local freshwater fish culture systems, such as the absence of further radioactivity input from catchment to the fish ponds after deposition, and high removal of radioactivity by sedimentation, also play significant roles. Sensitivity of model parameters and uncertainties of prediction are also studied. This predictive model can serve as a useful tool in emergency planning and in countermeasure implementation during a nuclear emergency in Hong Kong. (author)

  7. Incipient toxicity of lithium to freshwater organisms representing a salmonid habitat

    International Nuclear Information System (INIS)

    Emery, R.; Klopfer, D.C.; Skalski, J.R.

    1981-07-01

    Because the eventual development of fusion power reactors could increase the mining, use and disposal of lithium five-fold by the year 2000, potential effects from unusual amounts of lithium in aquatic environments were investigated. Freshwater oganisms representing a Pacific Northwest salmonid habitat were exposed to elevated conentrations of lithium. Nine parameters were used to determine the incipient toxicity of lithium to rainbow trout (Salmo gairdneri), insect larvae (Chironomus sp.), and Columbia River periphyton. All three groups of biota were incipiently sensitive to lithium at concentrations ranging between 0.1 and 1 mg/L. These results correspond with the incipient toxicity of beryllium, a chemically similar component of fusion reactor cores. A maximum lithium concentration of 0.01 mg/L occurs naturally in most freshwater environments (beryllium is rarer). Therefore, a concentration range of 0.01 to 0.1 mg/L may be regarded as approaching toxic concentrations when assessing the hazards of lithium in freshwaters

  8. Pharmaceuticals and personal care products (PPCPs in the freshwater aquatic environment

    Directory of Open Access Journals (Sweden)

    Anekwe Jennifer Ebele

    2017-03-01

    Full Text Available Pharmaceuticals and personal care products (PPCPs are a unique group of emerging environmental contaminants, due to their inherent ability to induce physiological effects in human at low doses. An increasing number of studies has confirmed the presence of various PPCPs in different environmental compartments, which raises concerns about the potential adverse effects to humans and wildlife. Therefore, this article reviews the current state-of-knowledge on PPCPs in the freshwater aquatic environment. The environmental risk posed by these contaminants is evaluated in light of the persistence, bioaccumulation and toxicity criteria. Available literature on the sources, transport and degradation of PPCPs in the aquatic environment are evaluated, followed by a comprehensive review of the reported concentrations of different PPCP groups in the freshwater aquatic environment (water, sediment and biota of the five continents. Finally, future perspectives for research on PPCPs in the freshwater aquatic environment are discussed in light of the identified research gaps in current knowledge.

  9. Toxicology of freshwater cyanobacteria.

    Science.gov (United States)

    Liyanage, H M; Arachchi, D N Magana; Abeysekara, T; Guneratne, L

    2016-07-02

    Many chemical contaminants in drinking water have been shown to cause adverse health effects in humans after prolonged exposure. Cyanobacteria are one of the most potent and diverse groups of photosynthetic prokaryotes. One key component of cyanobacterial success in the environment is the production of potent toxins as secondary metabolites, which have been responsible for numerous adverse health impacts in humans. Anthropogenic activities have led to the increase of eutrophication in freshwater bodies' worldwide, causing cyanobacterial blooms to become more frequent. The present article will discuss about harmful cyanobacteria and their toxicology with special references to microcystin, nodularin, and cylindrospermopsin.

  10. Forest land cover continues to exacerbate freshwater acidification despite decline in sulphate emissions

    International Nuclear Information System (INIS)

    Dunford, Robert W.; Donoghue, Daniel N.M.; Burt, Tim P.

    2012-01-01

    Evidence from a multi-date regional-scale analysis of both high-flow and annual-average water quality data from Galloway, south-west Scotland, demonstrates that forest land cover continues to exacerbate freshwater acidification. This is in spite of significant reductions in airborne pollutants. The relationship between freshwater sulphate and forest cover has decreased from 1996 to 2006 indicating a decrease in pollutant scavenging. The relationship between forest cover and freshwater acidity (pH) is, however, still present over the same period, and does not show conclusive signs of having declined. Furthermore, evidence for forest cover contributing to a chlorine bias in marine ion capture suggests that forest scavenging of sea-salts may mean that the forest acidification effect may continue in the absence of anthropogenic pollutant inputs, particularly in coastal areas. - Highlights: ► Forest cover and water chemistry remain linked despite decreased sulphate emissions. ► Forest cover has significant relationships SO 4 2− , Cl − , Na + , pH, ANC and Na:Cl ratio. ► Forest cover: pH relationships shows some evidence of decline 1996–2006. ► Forest cover: freshwater sulphate relationships show evidence of decline 1996–2006. ► Natural forest-mechanisms may exacerbate acidification, particularly sea-salt scavenging. - Relationships between forest land cover and freshwater pH continue to be evident despite declines in anthropogenic pollutant sulphate deposition; sea-salt scavenging may play a role.

  11. Can environmental impact assessments alone conserve freshwater fish biota? Review of the Chilean experience

    International Nuclear Information System (INIS)

    Lacy, Shaw Nozaki; Meza, Francisco J.; Marquet, Pablo A.

    2017-01-01

    Chile was one of many countries that initiated environmental impact assessments in the 1990s, and has relied on their use for species conservation and territorial planning without the use of larger-scale environmental and ecological planning. The capacity of Chile's environmental impact assessment system (SEIA) to evaluate resident freshwater fishes and the potential impacts of water projects and aquaculture activities – two categories of projects that create direct threats to freshwater fishes – are assessed. Of the 3997 such submissions to the SEIA, only 0.6% conducted any freshwater fish assessment, and only 0.1% conducted any quantitative assessment of expected impacts from the associated project. The small number of assessments was characterized by poor study design, inconsistent sampling methodology, and species misidentification. Traditional assessments failed to include freshwater fish ecology in the general assessment framework. The new strategic environmental evaluation system only underscores the need for vastly improved field sampling protocols and assessment methodologies.

  12. Can environmental impact assessments alone conserve freshwater fish biota? Review of the Chilean experience

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, Shaw Nozaki, E-mail: shaw.lacy@gmail.com [Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago (Chile); Departmento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul (Chile); Centro Interdisciplinario de Cambio Global, Vicuña Mackenna 4860, Macul (Chile); Meza, Francisco J. [Departmento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul (Chile); Centro Interdisciplinario de Cambio Global, Vicuña Mackenna 4860, Macul (Chile); Marquet, Pablo A. [Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago (Chile); Instituto de Ecología y Biodiversidad, Las Palmeras 345, Santiago (Chile); Centro Interdisciplinario de Cambio Global, Vicuña Mackenna 4860, Macul (Chile)

    2017-03-15

    Chile was one of many countries that initiated environmental impact assessments in the 1990s, and has relied on their use for species conservation and territorial planning without the use of larger-scale environmental and ecological planning. The capacity of Chile's environmental impact assessment system (SEIA) to evaluate resident freshwater fishes and the potential impacts of water projects and aquaculture activities – two categories of projects that create direct threats to freshwater fishes – are assessed. Of the 3997 such submissions to the SEIA, only 0.6% conducted any freshwater fish assessment, and only 0.1% conducted any quantitative assessment of expected impacts from the associated project. The small number of assessments was characterized by poor study design, inconsistent sampling methodology, and species misidentification. Traditional assessments failed to include freshwater fish ecology in the general assessment framework. The new strategic environmental evaluation system only underscores the need for vastly improved field sampling protocols and assessment methodologies.

  13. Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S

    International Nuclear Information System (INIS)

    Feldman, David; Slough, Amanda; Garrett, Gary

    2008-01-01

    There is a myriad of uses to which our country's freshwater supply is currently committed. Together with increasing quantities of consumption, there are growing constraints on water availability. In our future there will be two elements of consumption at the forefront of concern: availability and efficiency. Availability of freshwater is the most important of these and is the subject of this report. To use water efficiently, we must first have it. Efficiency is key to ensuring availability for future needs. As population grows and economic and technology demands increase - especially for thermoelectric power - needs for freshwater will also increase. Thus, using our limited supplies of freshwater must be done as efficiently as possible. Thermoelectric generating industry is the largest user of our nation's water resources, including fresh, surface, ground, and saline water. Saline water use accounts for approximately 30% of thermoelectric use, while the remaining 70% is from freshwater sources. The U.S. Geological Survey (USGS) estimates that thermoelectric generation accounts for roughly 136,000 million gallons per day (MGD), or 39% of freshwater withdrawals. This ranks slightly behind agricultural irrigation as the top source of freshwater withdrawals in the U.S. in 2000. For Americans to preserve their standard of living and maintain a thriving economy it is essential that greater attention be paid to freshwater availability in efforts to meet energy demands - particularly for electric power. According to projections by the Energy Information Administration's (EIA) Annual Energy Outlook 2006 (AEO 2006) anticipated growth of thermoelectric generating capacity will be 22% between 2005 and 2030. In the 2007 Report, EIA estimates that capacity to grow from approximately 709 GW in 2005 to 862 GW in 20303. These large increases in generating capacity will result in increased water demands by thermoelectric power plants and greater competition over water between the

  14. Indirect Consequences of Recreational Fishing in Freshwater Ecosystems: An Exploration from an Australian Perspective

    Directory of Open Access Journals (Sweden)

    Shelley Burgin

    2017-02-01

    Full Text Available Recreational fishing in freshwater ecosystems is a popular pastime in Australia. Although most native fish are endemic, the fauna is depauperate compared to any landmass of similar size. With commercial fishing no longer a major industry in the country’s freshwaters, the future sustainability of these ecosystems will depend heavily on the actions of recreational fishers. However, there has been limited focus on the consequences of recreational fishing in freshwaters. There is particularly a dearth of information on the indirect consequences of fishers on the waterbodies they depend on for their sport. After outlining the respective trends in commercial and recreational fishing in Australia as a basis for placing the sport in context, the indirect impacts of fishers on water quality, movement (walking, off-road vehicles, the introduction/translocation of fauna (particularly fish, the dispersal of flora and the transmission of fish disease and pathogens are reviewed. It is concluded that with the decline of commercial fishing, the competition between commercial fin-fishing and recreational fishing is negligible, at least throughout most of the country. It is also concluded that each of the issues addressed has the potential to be detrimental to the long-term sustainability of the freshwater ecosystems that the fishers depend on for their recreation. However, information on these issues is scant. This is despite the current and predicted popularity of freshwater recreational fishing continuing to increase in Australia. Indeed, there has been insufficient quantitative assessment of the impacts to even determine what is required to ensure a comprehensive, adequate and representative protection of these freshwater ecosystems. To underpin the sustainability of inland recreational fishing in the country, it was concluded that research is required to underpin the development and implementation of appropriate policies. The alternative is that the

  15. Trophic transfer of metal nanoparticles in freshwater ecosystems

    DEFF Research Database (Denmark)

    Tangaa, Stine Rosendal

    freshwater ecosystems range from a few ng/L in surface waters and up to mg/kg in sediments. Several studies have shown Ag ENPs to be toxic, bioaccumulative and harmful to aquatic biota within these concentration ranges. However, research on potential trophic transfer of Ag ENPs is limited. To investigate...... the aquatic ecosystems, Ag ENPs will undergo several transformation processes, ultimately leading to particles settling out of the water column. This will likely result in an increased concentration of ENPs in the sediment. In fact, predicted environmental concentrations of Ag ENPs in Danish and European...... freshwater food web. Future studies should concentrate on the internal distribution of Me-ENPs after uptake in both prey and predator, as this will increase the understanding of fate and effects of Me-ENPs on aquatic biota. Trophic transfer studies including more trophic levels, and higher pelagic organisms...

  16. How close do we live to water? A global analysis of population distance to freshwater bodies.

    Directory of Open Access Journals (Sweden)

    Matti Kummu

    Full Text Available Traditionally, people have inhabited places with ready access to fresh water. Today, over 50% of the global population lives in urban areas, and water can be directed via tens of kilometres of pipelines. Still, however, a large part of the world's population is directly dependent on access to natural freshwater sources. So how are inhabited places related to the location of freshwater bodies today? We present a high-resolution global analysis of how close present-day populations live to surface freshwater. We aim to increase the understanding of the relationship between inhabited places, distance to surface freshwater bodies, and climatic characteristics in different climate zones and administrative regions. Our results show that over 50% of the world's population lives closer than 3 km to a surface freshwater body, and only 10% of the population lives further than 10 km away. There are, however, remarkable differences between administrative regions and climatic zones. Populations in Australia, Asia, and Europe live closest to water. Although populations in arid zones live furthest away from freshwater bodies in absolute terms, relatively speaking they live closest to water considering the limited number of freshwater bodies in those areas. Population distributions in arid zones show statistically significant relationships with a combination of climatic factors and distance to water, whilst in other zones there is no statistically significant relationship with distance to water. Global studies on development and climate adaptation can benefit from an improved understanding of these relationships between human populations and the distance to fresh water.

  17. Novel Synechococcus genomes reconstructed from freshwater reservoirs

    Czech Academy of Sciences Publication Activity Database

    Cabello-Yeves, P.J.; Haro-Moreno, J.M.; Martin-Cuadrado, A.B.; Ghai, Rohit; Picazo, A.; Camacho, A.; Rodriguez-Valera, F.

    2017-01-01

    Roč. 8, June (2017), č. článku 1151. ISSN 1664-302X R&D Projects: GA ČR(CZ) GA17-04828S Institutional support: RVO:60077344 Keywords : Synechococcus * picocyanobacteria * freshwater reservoirs * metagenomics * abundance Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.076, year: 2016

  18. A NEW FRESHWATER GOBY (TELEOSTEI: GOBIIDAE) FROM THE ...

    African Journals Online (AJOL)

    497. JUDB, R. A. 1967. Freshwater fishes of southern Africa. Cape Town: Balkema. KOUMANS, F. P. 1931. A preliminary revision of the genera of the gobioidfishes with united ventral fins. N. V. Lisse. (Netherlands) 1-174: Drukkerij, Imperator. R.

  19. Factors driving changes in freshwater mussel (Bivalvia, Unionida) diversity and distribution in Peninsular Malaysia.

    Science.gov (United States)

    Zieritz, Alexandra; Lopes-Lima, Manuel; Bogan, Arthur E; Sousa, Ronaldo; Walton, Samuel; Rahim, Khairul Adha A; Wilson, John-James; Ng, Pei-Yin; Froufe, Elsa; McGowan, Suzanne

    2016-11-15

    Freshwater mussels (Bivalvia, Unionida) fulfil important ecosystem functions and are one of the most threatened freshwater taxa globally. Knowledge of freshwater mussel diversity, distribution and ecology in Peninsular Malaysia is extremely poor, and the conservation status of half of the species presumed to occur in the region has yet to be assessed. We conducted the first comprehensive assessment of Peninsular Malaysia's freshwater mussels based on species presence/absence and environmental data collected from 155 sites spanning all major river catchments and diverse habitat types. Through an integrative morphological-molecular approach we recognised nine native and one widespread non-native species, i.e. Sinanodonta woodiana. Two species, i.e. Pilsbryoconcha compressa and Pseudodon cambodjensis, had not been previously recorded from Malaysia, which is likely a result of morphological misidentifications of historical records. Due to their restriction to single river catchments and declining distributions, Hyriopsis bialata, possibly endemic to Peninsular Malaysia, Ensidens ingallsianus, possibly already extinct in the peninsula, and Rectidens sumatrensis, particularly require conservation attention. Equally, the Pahang, the Perak and the north-western river catchments are of particular conservation value due to the presence of a globally unique freshwater mussel fauna. Statistical relationships of 15 water quality parameters and mussel presence/absence identified acidification and nutrient pollution (eutrophication) as the most important anthropogenic factors threatening freshwater mussel diversity in Peninsular Malaysia. These factors can be linked to atmospheric pollution, deforestation, oil-palm plantations and a lack of functioning waste water treatment, and could be mitigated by establishing riparian buffers and improving waste water treatment for rivers running through agricultural and residential land. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effects of Soil Moisture on the Temperature Sensitivity of Soil Heterotrophic Respiration: A Laboratory Incubation Study

    Science.gov (United States)

    Zhou, Weiping; Hui, Dafeng; Shen, Weijun

    2014-01-01

    The temperature sensitivity (Q10) of soil heterotrophic respiration (Rh) is an important ecological model parameter and may vary with temperature and moisture. While Q10 generally decreases with increasing temperature, the moisture effects on Q10 have been controversial. To address this, we conducted a 90-day laboratory incubation experiment using a subtropical forest soil with a full factorial combination of five moisture levels (20%, 40%, 60%, 80%, and 100% water holding capacity - WHC) and five temperature levels (10, 17, 24, 31, and 38°C). Under each moisture treatment, Rh was measured several times for each temperature treatment to derive Q10 based on the exponential relationships between Rh and temperature. Microbial biomass carbon (MBC), microbial community structure and soil nutrients were also measured several times to detect their potential contributions to the moisture-induced Q10 variation. We found that Q10 was significantly lower at lower moisture levels (60%, 40% and 20% WHC) than at higher moisture level (80% WHC) during the early stage of the incubation, but became significantly higher at 20%WHC than at 60% WHC and not significantly different from the other three moisture levels during the late stage of incubation. In contrast, soil Rh had the highest value at 60% WHC and the lowest at 20% WHC throughout the whole incubation period. Variations of Q10 were significantly associated with MBC during the early stages of incubation, but with the fungi-to-bacteria ratio during the later stages, suggesting that changes in microbial biomass and community structure are related to the moisture-induced Q10 changes. This study implies that global warming’s impacts on soil CO2 emission may depend upon soil moisture conditions. With the same temperature rise, wetter soils may emit more CO2 into the atmosphere via heterotrophic respiration. PMID:24647610

  1. Geographic variability in amoeboid protists and other microbial groups in the water column of the lower Hudson River Estuary (New York, USA)

    Science.gov (United States)

    Juhl, Andrew R.; Anderson, O. Roger

    2014-12-01

    In comparison to other groups of planktonic microorganisms, relatively little is known about the role of amoeboid protists (amebas) in planktonic ecosystems. This study describes the first geographic survey of the abundance and biomass of amebas in an estuarine water column. Samples collected in the lower Hudson River Estuary were used to investigate relationships between ameba abundance and biomass and hydrographic variables (temperature, salinity, and turbidity), water depth (surface and near bottom), distance from mid-channel to shore, phytoplankton biomass (chlorophyll fluorescence) and the occurrence of other heterotrophic microbial groups (heterotrophic bacteria, nanoflagellates, and ciliates) in the plankton. Although salinity increased significantly towards the mouth of the estuary, there were no significant differences in the abundance or biomass of any microbial group in surface samples collected at three stations separated by 44 km along the estuary's mid-channel. Peak biomass values for all microbial groups were found at the station closest to shore, however, cross-channel trends in microbial abundance and biomass were not statistically significant. Although ameba abundance and biomass in most samples were low compared to other microbial groups, clear patterns in ameba distribution were nevertheless found. Unlike other microbial groups examined, ameba numbers and biomass greatly increased in near bottom water compared to surface samples. Ameba abundance and biomass (in surface samples) were also strongly related to increasing turbidity. The different relationships of ameba abundance and biomass with turbidity suggest a rising contribution of large amebas in microbial communities of the Hudson estuary when turbidity increases. These results, emphasizing the importance of particle concentration as attachment and feeding surfaces for amebas, will help identify the environmental conditions when amebas are most likely to contribute significantly to estuarine

  2. Global diversity patterns of freshwater fishes - potential victims of their own success

    OpenAIRE

    Pelayo-Villamil, P.; Guisande, C.; Vari, R. P.; Manjarres-Hernandez, A.; Garcia-Rosello, E.; Gonzalez-Dacosta, J.; Heine, J.; Vilas, L. G.; Patti, B.; Quinci, E. M.; Jimenez, L. F.; Granado-Lorencio, C.; Tedesco, Pablo; Lobo, J. M.

    2015-01-01

    AimTo examine the pattern and cumulative curve of descriptions of freshwater fishes world-wide, the geographical biases in the available information on that fauna, the relationship between species richness and geographical rarity of such fishes, as well as to assess the relative contributions of different environmental factors on these variables. LocationGlobal. MethodsModestR was used to summarize the geographical distribution of freshwater fish species using information available from data-...

  3. FRESHWATER FISH FARMING CONDITIONS IN 1999 AND THE PRODUCTION PLAN FOR 2000

    Directory of Open Access Journals (Sweden)

    Zlatko Homen

    2000-09-01

    Full Text Available One of the activities of the Ministry of Agriculture and Forestry, Fishery and Mediterranean Agriculture Directorate, i. e. Fishery Directorate to be more specific, is the monitoring of conditions in freshwater fish farming. The objective of this work is to show conditions in freshwater fish farming during 1999. and to provide a production plan for 2000. It will also provide detailed insight into the present conditions in freshwater fish farming and into the production trends of this field. Regarding this issue, the »Questionnaire for the Monitoring of Conditions in Freshwater Fish Farming«, was sent to fish farmers aroud the country data was processed from 22 cap ponds and 13 trout ponds. Roughe estimates of conditions were conducted for 2 fish farms, since they haven’t yet returned the mandatoruy questionnaire, i. e. the necessary data. This work features data on the number of employees in fish farms, as well as their qualifications, on the actual production and distribution of farmed freshwater fish, on the areas where production was conducted and on the overall yield. Fish food, raw materials, used tools and incentive funds paid were also taken into consideration. The difficulties faced in this branch of the economy are also inicated. Compared to 1998, a slight decrease in the number of employees of freshwater fish farms has been recorded. The total number of employees in 1999 was 655, of which 555 were on carp ponds and 100 on trout ponds. Data on the qualifications of employees for 1999 show that most of them were unskilled workers, while highly skilled workers make up a minority in this work force. The total production of freshwater in 1999. amoounted to 6.185,51 tons. Of this amount 5.592,52 tons were warm-water fish specied and 592,99 tons were cold-water fish species. Compared to 1998, production decreased by 4,89 percent. Production for 2000 has been planned to increase by 22,15 percent, i. e. the production quantity is projected

  4. Functional integrity of freshwater forested wetlands, hydrologic alteration, and climate change

    Science.gov (United States)

    Middleton, Beth A.; Souter, Nicholas J.;

    2016-01-01

    Climate change will challenge managers to balance the freshwater needs of humans and wetlands. The Intergovernmental Panel on Climate Change predicts that most regions of the world will be exposed to higher temperatures, CO2, and more erratic precipitation, with some regions likely to have alternating episodes of intense flooding and mega-drought. Coastal areas will be exposed to more frequent saltwater inundation as sea levels rise. Local land managers desperately need intra-regional climate information for site-specific planning, management, and restoration activities. Managers will be challenged to deliver freshwater to floodplains during climate change-induced drought, particularly within hydrologically altered and developed landscapes. Assessment of forest health, both by field and remote sensing techniques, will be essential to signal the need for hydrologic remediation. Studies of the utility of the release of freshwater to remediate stressed forested floodplains along the Murray and Mississippi Rivers suggest that brief episodes of freshwater remediation for trees can have positive health benefits for these forests. The challenges of climate change in forests of the developing world will be considered using the Tonle Sap of Cambodia as an example. With little ecological knowledge of the impacts, managing climate change will add to environmental problems already faced in the developing world with new river engineering projects. These emerging approaches to remediate stressed trees will be of utmost importance for managing worldwide floodplain forests with predicted climate changes.

  5. Calanoid Copepod Behavior in Thin Layer Shear Flows: Freshwater Versus Marine

    Science.gov (United States)

    Skipper, A. N.; Webster, D. R.; Yen, J.

    2015-11-01

    Marine copepods have been shown to behaviorally respond to vertical gradients of horizontal velocity and aggregate around thin layers. The current study addresses whether a freshwater copepod from an alpine lake demonstrates similar behavior response. Hesperodiaptomus shoshone is often the greatest biomass in alpine lakes and is the dominant zooplankton predator within its environment. The hypothesis is that H. shoshone responds to vertical gradients of horizontal velocity, which are associated with river outflows from alpine lakes, with fine-scale changes in swimming kinematics. The two calanoid copepods studied here, H. shoshone (freshwater) and Calanus finmarchicus(marine), are of similar size (2 - 4 mm), have similar morphologies, and utilize cruising as their primary swimming mode. The two animals differ not only in environment, but also in diet; H. shoshone is a carnivore, whereas C. finmarchicusis an herbivore. A laminar, planar jet (Bickley) was used in the laboratory to simulate a free shear flow. Particle image velocimetry (PIV) quantified the flow field. The marine species changed its swimming behavior significantly (increased swimming speed and turning frequency) and spent more time in the layer (40% vs. 70%) from control to treatment. In contrast, the freshwater species exhibited very few changes in either swimming behavior or residence time. Swimming kinematics and residence time results were also similar between males and females. Unlike the marine copepod, the results suggest the environmental flow structure is unimportant to the freshwater species.

  6. Impact of transient freshwater releases in the Southern Ocean on the AMOC and climate

    Energy Technology Data Exchange (ETDEWEB)

    Swingedouw, Didier [Universite Catholique de Louvain, Institut d' Astronomie et de Geophysique Georges Lemaitre, Louvain-la-Neuve (Belgium); CERFACS/GlobC, Toulouse (France); Fichefet, T.; Goosse, H.; Loutre, M.F. [Universite Catholique de Louvain, Institut d' Astronomie et de Geophysique Georges Lemaitre, Louvain-la-Neuve (Belgium)

    2009-08-15

    The bipolar ocean seesaw is a process that explains the competition between deep waters formed in the North Atlantic (NA) and in the Southern Ocean (SO). In this picture, an increase in the rate of formation of one of these water masses is made at the expense of the other. However, recent studies have questioned the effectiveness of this process. Namely, they show that adding freshwater in the SO can reduce deep water formation in the SO as well as in the NA. In this study, we explore the mechanisms and time scales excited by such a SO freshwater release by performing sensitivity experiments where a freshwater input is added abruptly in the ocean, south of 60 S, with different rates and durations. For this purpose, we evaluate the separate effects of wind, temperature and salinity changes, and we put the emphasis on the time evolution of the system. We find three main processes that respond to these freshwater inputs and affect the NA Deep Water (NADW) production: (i) the deep water adjustment, which enhances the NADW cell, (ii) the salinity anomaly spread from the SO, which weakens the NADW cell, and (iii) the increase in the Southern Hemisphere wind stress, which enhances the NADW cell. We show that process (i) affects the Atlantic in a few years, due to an adjustment of the pycnocline depth through oceanic waves in response to the buoyancy perturbation in the SO. The salinity anomalies responsible for the NADW production decrease [process (ii)] invades the NA in around 30 years, while the wind stress from process (iii) increases in around 20 years after the beginning of the freshwater perturbation. Finally, by testing the response of the ocean to a large range of freshwater release fluxes, we show that for fluxes larger than 0.2 Sv, process (ii) dominates over the others and limits NADW production after a few centuries, while for fluxes lower than 0.2 Sv, process (ii) hardly affects the NADW production. On the opposite, the NADW export is increased by processes

  7. Effects of pollution on freshwater fish and amphibians

    International Nuclear Information System (INIS)

    Pickering, Q.H.; Hunt, E.P.; Phipps, G.L.; Roush, T.H.; Smith, W.E.; Spehar, D.L.; Stephan, C.E.; Tanner, D.K.

    1983-01-01

    A literature review is presented dealing with studies on the effects of pollution on freshwater fish and amphibians. The pollutants studied included acid mine drainage, PCBs, cadmium, lead, naphthalene, plutonium, in addition to several studies dealing with pH effects

  8. Reducing the impact of irrigated crops on freshwater availability: the case of Brazilian yellow melons

    NARCIS (Netherlands)

    Brito de Figueirêdo, M.C.; Boer, de I.J.M.; Kroeze, C.; Silva Barros, da V.; Sousa, de J.A.; Souza de Aragão, F.A.; Sonsol Gondim, R.; Potting, J.

    2014-01-01

    Purpose This study quantifies freshwater consumption throughout the life cycle of Brazilian exported yellow melons and assesses the resulting impact on freshwater availability. Results are used to identify improvement options. Moreover, the study explores the further impact of variations in

  9. Dactylobiotus luci , a new freshwater tardigrade (Eutardigrada ...

    African Journals Online (AJOL)

    A new freshwater eutardigrade, Dactylobiotus luci sp. nov., is described from a permanent marsh pool (Zaphania's Pool) at 4225 m elevation in the Alpine zone of the Rwenzori Mountains, Uganda. The new species is most similar to D. dervizi Biserov, 1998 in the shape of the egg processes, absence of papillae and ...

  10. Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis.

    Science.gov (United States)

    Leduc, Antoine O H C; Munday, Philip L; Brown, Grant E; Ferrari, Maud C O

    2013-01-01

    For many aquatic organisms, olfactory-mediated behaviour is essential to the maintenance of numerous fitness-enhancing activities, including foraging, reproduction and predator avoidance. Studies in both freshwater and marine ecosystems have demonstrated significant impacts of anthropogenic acidification on olfactory abilities of fish and macroinvertebrates, leading to impaired behavioural responses, with potentially far-reaching consequences to population dynamics and community structure. Whereas the ecological impacts of impaired olfactory-mediated behaviour may be similar between freshwater and marine ecosystems, the underlying mechanisms are quite distinct. In acidified freshwater, molecular change to chemical cues along with reduced olfaction sensitivity appear to be the primary causes of olfactory-mediated behavioural impairment. By contrast, experiments simulating future ocean acidification suggest that interference of high CO2 with brain neurotransmitter function is the primary cause for olfactory-mediated behavioural impairment in fish. Different physico-chemical characteristics between marine and freshwater systems are probably responsible for these distinct mechanisms of impairment, which, under globally rising CO2 levels, may lead to strikingly different consequences to olfaction. While fluctuations in pH may occur in both freshwater and marine ecosystems, marine habitat will remain alkaline despite future ocean acidification caused by globally rising CO2 levels. In this synthesis, we argue that ecosystem-specific mechanisms affecting olfaction need to be considered for effective management and conservation practices.

  11. Pathogenic features of heterotrophic plate count bacteria from drinking-water boreholes.

    Science.gov (United States)

    Horn, Suranie; Pieters, Rialet; Bezuidenhout, Carlos

    2016-12-01

    Evidence suggests that heterotrophic plate count (HPC) bacteria may be hazardous to humans with weakened health. We investigated the pathogenic potential of HPC bacteria from untreated borehole water, consumed by humans, for: their haemolytic properties, the production of extracellular enzymes such as DNase, proteinase, lipase, lecithinase, hyaluronidase and chondroitinase, the effect simulated gastric fluid has on their survival, as well as the bacteria's antibiotic-susceptible profile. HuTu-80 cells acted as model for the human intestine and were exposed to the HPC isolates to determine their effects on the viability of the cells. Several HPC isolates were α- or β-haemolytic, produced two or more extracellular enzymes, survived the SGF treatment, and showed resistance against selected antibiotics. The isolates were also harmful to the human intestinal cells to varying degrees. A novel pathogen score was calculated for each isolate. Bacillus cereus had the highest pathogen index: the pathogenicity of the other bacteria declined as follows: Aeromonas taiwanensis > Aeromonas hydrophila > Bacillus thuringiensis > Alcaligenes faecalis > Pseudomonas sp. > Bacillus pumilus > Brevibacillus sp. > Bacillus subtilis > Bacillus sp. These results demonstrated that the prevailing standards for HPCs in drinking water may expose humans with compromised immune systems to undue risk.

  12. Bibliography on cycling of trace metals in freshwater ecosystems

    International Nuclear Information System (INIS)

    LaRiviere, M.G.; Scott, A.J.; Woodfield, W.G.; Cushing, C.E.

    1978-07-01

    This bibliography is a listing of pertinent literature directly addressing the cycling of trace metals in freshwater ecosystems. Data on cycling, including the influences of environmental mediators, are included. 151 references

  13. Differential interactions between the nematocyst-bearing mixotrophic dinoflagellate Paragymnodinium shiwhaense and common heterotrophic protists and copepods: Killer or prey.

    Science.gov (United States)

    Jeong, Hae Jin; Kim, Jae Seong; Lee, Kyung Ha; Seong, Kyeong Ah; Yoo, Yeong Du; Kang, Nam Seon; Kim, Tae Hoon; Song, Jae Yoon; Kwon, Ji Eun

    2017-02-01

    To investigate interactions between the nematocyst-bearing mixotrophic dinoflagellate Paragymnodinium shiwhaense and different heterotrophic protist and copepod species, feeding by common heterotrophic dinoflagellates (Oxyrrhis marina and Gyrodinium dominans), naked ciliates (Strobilidium sp. approximately 35μm in cell length and Strombidinopsis sp. approximately 100μm in cell length), and calanoid copepods Acartia spp. (A. hongi and A. omorii) on P. shiwhaense was explored. In addition, the feeding activities of P. shiwhaense on these heterotrophic protists were investigated. Furthermore, the growth and ingestion rates of O. marina, G. dominans, Strobilidium sp., Strombidinopsis sp., and Acartia spp. as a function of P. shiwhaense concentration were measured. O. marina, G. dominans, and Strombidinopsis sp. were able to feed on P. shiwhaense, but Strobilidium sp. was not. However, the growth rates of O. marina, G. dominans, Strobilidium sp., and Strombidinopsis sp. feeding on P. shiwhaense were very low or negative at almost all concentrations of P. shiwhaense. P. shiwhaense frequently fed on O. marina and Strobilidium sp., but did not feed on Strombidinopsis sp. and G. dominans. G. dominans cells swelled and became dead when incubated with filtrate from the experimental bottles (G. dominans+P. shiwhaense) that had been incubated for one day. The ingestion rates of O. marina, G. dominans, and Strobilidium sp. on P. shiwhaense were almost zero at all P. shiwhaense concentrations, while those of Strombidinopsis sp. increased with prey concentration. The maximum ingestion rate of Strombidinopsis sp. on P. shiwhaense was 5.3ngC predator -1 d -1 (41 cells predator -1 d -1 ), which was much lower than ingestion rates reported in the literature for other mixotrophic dinoflagellate prey species. With increasing prey concentrations, the ingestion rates of Acartia spp. on P. shiwhaense increased up to 930ngCml -1 (7180cellsml -1 ) at the highest prey concentration. The

  14. An overview of freshwater prawn fishery in Bangladesh: present status and future prospect

    Directory of Open Access Journals (Sweden)

    Ferdous Ahamed

    2014-07-01

    Full Text Available The freshwater prawn fishery plays an important role in the economy of Bangladesh. The fishery is mainly based on the culture of Macrobrachium rosenbergii. The culture fishery has been growing rapidly, thus, masking the dwindling capture fishery which is faced with serious environmental issues augmented by deleterious fishing methods. Despite the high prospects of the freshwater prawn aquaculture in Bangladesh, a lot of research is needed to ensure the sustainable development of the capture fishery which forms a key source of prawn aquaculture seed as well as provide a baseline for future appraisals. Freshwater prawn aquaculture in Bangladesh is based on traditional methods with continuous adaptations by the rural fishers. However, numerous constraints to its full development are evident at all stages of its production. Lack of quality brood stock, seed, feeds and poor technical knowledge at farmers level are but some of the impediments challenging the sustainability of this industry. This paper reviews the freshwater prawn fishery of Bangladesh over the last few decades and outlines approaches for the development of an ecosystem-based management of both the culture and capture sectors of this important fishery.

  15. Evaluation of Drought Implications on Ecosystem Services: Freshwater Provisioning and Food Provisioning in the Upper Mississippi River Basin.

    Science.gov (United States)

    Li, Ping; Omani, Nina; Chaubey, Indrajeet; Wei, Xiaomei

    2017-05-08

    Drought is one of the most widespread extreme climate events with a potential to alter freshwater availability and related ecosystem services. Given the interconnectedness between freshwater availability and many ecosystem services, including food provisioning, it is important to evaluate the drought implications on freshwater provisioning and food provisioning services. Studies about drought implications on streamflow, nutrient loads, and crop yields have been increased and these variables are all process-based model outputs that could represent ecosystem functions that contribute to the ecosystem services. However, few studies evaluate drought effects on ecosystem services such as freshwater and food provisioning and quantify these services using an index-based ecosystem service approach. In this study, the drought implications on freshwater and food provisioning services were evaluated for 14 four-digit HUC (Hydrological Unit Codes) subbasins in the Upper Mississippi River Basin (UMRB), using three drought indices: standardized precipitation index ( SPI ), standardized soil water content index ( SSWI ), and standardized streamflow index ( SSI ). The results showed that the seasonal freshwater provisioning was highly affected by the precipitation deficits and/or surpluses in summer and autumn. A greater importance of hydrological drought than meteorological drought implications on freshwater provisioning was evident for the majority of the subbasins, as evidenced by higher correlations between freshwater provisioning and SSI 12 than SPI 12. Food provisioning was substantially affected by the precipitation and soil water deficits during summer and early autumn, with relatively less effect observed in winter. A greater importance of agricultural drought effects on food provisioning was evident for most of the subbasins during crop reproductive stages. Results from this study may provide insights to help make effective land management decisions in responding to

  16. Modeling the influence of atmospheric leading modes on the variability of the Arctic freshwater cycle

    Science.gov (United States)

    Niederdrenk, L.; Sein, D.; Mikolajewicz, U.

    2013-12-01

    Global general circulation models show remarkable differences in modeling the Arctic freshwater cycle. While they agree on the general sinks and sources of the freshwater budget, they differ largely in the magnitude of the mean values as well as in the variability of the freshwater terms. Regional models can better resolve the complex topography and small scale processes, but they are often uncoupled, thus missing the air-sea interaction. Additionally, regional models mostly use some kind of salinity restoring or flux correction, thus disturbing the freshwater budget. Our approach to investigate the Arctic hydrologic cycle and its variability is a regional atmosphere-ocean model setup, consisting of the global ocean model MPIOM with high resolution in the Arctic coupled to the regional atmosphere model REMO. The domain of the atmosphere model covers all catchment areas of the rivers draining into the Arctic. To account for all sinks and sources of freshwater in the Arctic, we include a discharge model providing terrestrial lateral waterflows. We run the model without salinity restoring but with freshwater correction, which is set to zero in the Arctic. This allows for the analysis of a closed freshwater budget in the Artic region. We perform experiments for the second half of the 20th century and use data from the global model MPIOM/ECHAM5 performed with historical conditions, that was used within the 4th Assessment Report of the IPCC, as forcing for our regional model. With this setup, we investigate how the dominant modes of large-scale atmospheric variability impact the variability in the freshwater components. We focus on the two leading empirical orthogonal functions of winter mean sea level pressure, as well as on the North Atlantic Oscillation and the Siberian High. These modes have a large impact on the Arctic Ocean circulation as well as on the solid and liquid export through Fram Strait and through the Canadian archipelago. However, they cannot explain

  17. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen.

    Science.gov (United States)

    Zou, Xiaoyan; Li, Penghui; Lou, Jie; Fu, Xiaoyan; Zhang, Hongwu

    2017-11-01

    Silver nanoparticles (AgNPs) are increasingly used in various commercial products. This increased use raises ecological concerns because of the large release of AgNPs into the environment. Once released, the local water chemistry has the potential to influence the environmental fates and behaviors of AgNPs. The impacts of dissolved oxygen and natural organic matter (NOM) on the dissolution and stability of AgNPs were investigated in synthetic and natural freshwaters for 7 days. In synthetic freshwater, the aggregation of AgNPs occurred due to the compression of the electric double layer, accompanied by the dissolution of AgNPs. However, once oxygen was removed, the highest dissolved Ag (Ag dis ) concentration decreased from 356.5 μg/L to 272.1 μg/L, the pH of the AgNP suspensions increased from less than 7.6 to more than 8.4, and AgNPs were regenerated by the reduction of released Ag + by citrate. The addition of NOM mitigated aggregation, inhibited oxidative dissolution and induced the transformation of AgNPs into Ag 2 S due to the formation of NOM-adsorbed layers, the reduction of Ag + by NOM, and the high affinity of sulfur-enriched species in NOM for Ag. Likewise, in oxygen-depleted natural freshwaters, the inhibition of oxidative dissolution was obtained in comparison with oxygenated freshwaters, showing a decrease in the maximum Ag dis concentration from 137.6 and 57.0 μg/L to 83.3 and 42.4 μg/L from two natural freshwater sites. Our results suggested that aggregation and dissolution of AgNPs in aquatic environments depend on the chemical composition, where oxygen-depleted freshwaters more significantly increase the colloidal stability. In comparison with oxic conditions, anoxic conditions were more favorable to the regeneration of AgNPs by reducing species (e.g., citrate and NOM) and enhanced the stability of nanoparticles. This indicates that some AgNPs will be more stable for long periods in oxygen-deprived freshwaters, and pose more serious

  18. Using species sensitivity distribution approach to assess the risks of commonly detected agricultural pesticides to Australia's tropical freshwater ecosystems.

    Science.gov (United States)

    Pathiratne, Asoka; Kroon, Frederieke J

    2016-02-01

    To assess the potential impacts of agricultural pesticides on tropical freshwater ecosystems, the present study developed temperature-specific, freshwater species protection concentrations (i.e., ecotoxicity threshold values) for 8 pesticides commonly detected in Australia's tropical freshwaters. Because relevant toxicity data for native tropical freshwater species to assess the ecological risks were mostly absent, scientifically robust toxicity data obtained at ≥20 °C were used for ecologically relevant taxonomic groups representing primary producers and consumers. Species sensitivity distribution (SSD) curves were subsequently generated for predicted chronic exposure using Burrlioz 2.0 software with mixed chronic and converted acute data relevant to exposure conditions at ≥20 °C. Ecotoxicity threshold values for tropical freshwater ecosystem protection were generated for ametryn, atrazine, diuron, metolachlor, and imidacloprid (all moderate reliability), as well as simazine, hexazinone, and tebuthiuron (all low reliability). Using these SSD curves, the retrospective risk assessments for recently reported pesticide concentrations highlight that the herbicides ametryn, atrazine, and diuron are of major concern for ecological health in Australia's tropical freshwater ecosystems. The insecticide imidacloprid also appears to pose an emerging threat to the most sensitive species in tropical freshwater ecosystems. The exposed temperature-specific approach may be applied to develop water quality guideline values for other environmental contaminants detected in tropical freshwater ecosystems until reliable and relevant toxicity data are generated using representative native species. © 2015 SETAC.

  19. Sensitivity ranking for freshwater invertebrates towards hydrocarbon contaminants.

    Science.gov (United States)

    Gerner, Nadine V; Cailleaud, Kevin; Bassères, Anne; Liess, Matthias; Beketov, Mikhail A

    2017-11-01

    Hydrocarbons have an utmost economical importance but may also cause substantial ecological impacts due to accidents or inadequate transportation and use. Currently, freshwater biomonitoring methods lack an indicator that can unequivocally reflect the impacts caused by hydrocarbons while being independent from effects of other stressors. The aim of the present study was to develop a sensitivity ranking for freshwater invertebrates towards hydrocarbon contaminants, which can be used in hydrocarbon-specific bioindicators. We employed the Relative Sensitivity method and developed the sensitivity ranking S hydrocarbons based on literature ecotoxicological data supplemented with rapid and mesocosm test results. A first validation of the sensitivity ranking based on an earlier field study has been conducted and revealed the S hydrocarbons ranking to be promising for application in sensitivity based indicators. Thus, the first results indicate that the ranking can serve as the core component of future hydrocarbon-specific and sensitivity trait based bioindicators.

  20. Cold-Active, Heterotrophic Bacteria from the Highly Oligotrophic Waters of Lake Vanda, Antarctica

    Directory of Open Access Journals (Sweden)

    Nicole A. Vander Schaaf

    2015-07-01

    Full Text Available The permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica are distinctive ecosystems that consist strictly of microbial communities. In this study, water samples were collected from Lake Vanda, a stratified Dry Valley lake whose upper waters (from just below the ice cover to nearly 60 m are highly oligotrophic, and used to establish enrichment cultures. Six strains of psychrotolerant, heterotrophic bacteria were isolated from lake water samples from a depth of 50 or 55 m. Phylogenetic analyses showed the Lake Vanda strains to be species of Nocardiaceae, Caulobacteraceae, Sphingomonadaceae, and Bradyrhizobiaceae. All Lake Vanda strains grew at temperatures near or below 0 °C, but optimal growth occurred from 18 to 24 °C. Some strains showed significant halotolerance, but no strains required NaCl for growth. The isolates described herein include cold-active species not previously reported from Dry Valley lakes, and their physiological and phylogenetic characterization broadens our understanding of these limnologically unique lakes.

  1. Production of heterotrophic bacteria inhabiting macroscopic organic aggregates (marine snow) from surface waters

    International Nuclear Information System (INIS)

    Alldredge, A.L.; Cole, J.J.; Caron, D.A.

    1986-01-01

    Macroscopic detrital aggregates, known as marine snow, are a ubiquitous and abundant component of the marine pelagic zone. Descriptions of microbial communities occurring at densities 2-5 orders of magnitude higher on these particles than in the surrounding seawater have led to the suggestion that marine snow may be a site of intense heterotrophic activity. The authors tested this hypothesis using incorporation of [ 3 H]thymidine into macromolecules as a measure of bacterial growth occurring on marine snow from oceanic waters in the North Atlantic and from neritic waters off southern California. Abundances of marine snow ranged from 0.1 to 4.3 aggregates per liter. However, only 0.1-4% ration per cell on aggregates was generally equal to or lower than that of bacteria found free-living in the surrounding seawater, indicating that attached bacteria were not growing more rapidly than free-living bacteria. Bacteria inhabiting aggregates were up to 25 times larger than free-living forms

  2. A synthetic phylogeny of freshwater crayfish: insights for conservation

    Science.gov (United States)

    Owen, Christopher L.; Bracken-Grissom, Heather; Stern, David; Crandall, Keith A.

    2015-01-01

    Phylogenetic systematics is heading for a renaissance where we shift from considering our phylogenetic estimates as a static image in a published paper and taxonomies as a hardcopy checklist to treating both the phylogenetic estimate and dynamic taxonomies as metadata for further analyses. The Open Tree of Life project (opentreeoflife.org) is developing synthesis tools for harnessing the power of phylogenetic inference and robust taxonomy to develop a synthetic tree of life. We capitalize on this approach to estimate a synthesis tree for the freshwater crayfish. The crayfish make an exceptional group to demonstrate the utility of the synthesis approach, as there recently have been a number of phylogenetic studies on the crayfishes along with a robust underlying taxonomic framework. Importantly, the crayfish have also been extensively assessed by an IUCN Red List team and therefore have accurate and up-to-date area and conservation status data available for analysis within a phylogenetic context. Here, we develop a synthesis phylogeny for the world's freshwater crayfish and examine the phylogenetic distribution of threat. We also estimate a molecular phylogeny based on all available GenBank crayfish sequences and use this tree to estimate divergence times and test for divergence rate variation. Finally, we conduct EDGE and HEDGE analyses and identify a number of species of freshwater crayfish of highest priority in conservation efforts. PMID:25561670

  3. [Freshwater malacofauna of medical importance located in Yaguajay municipality, Sancti Spíritus province].

    Science.gov (United States)

    Fimia Duarte, Rigoberto; Vázquez Perera, Antonio A; Luis Rodríguez, Yuodenis; Cepero Rodriguez, Omelio; Pereira Marin, Carlos A

    2010-01-01

    the study carried out in Yaguajay, Sancti Spíritus province was aimed at identifying the mollusk species present in the freshwater ecocystems as well as their distribution and abundance in each reservoir. two years--2005 and 2006--were analyzed through 2 samplings per years covering the rainy and the dry season; 20 reservoirs were sampled to determine the present freshwater mollusks. Data were processed by Excelxp and the statistical analysis used SPSS version 8 processor and 4 x 4 contingency tables. ten species were detected in 2005, being Tarebia granifera the most distributed and abundant followed by Marisa cornuarietis. It was observed that the highest amount of mosquitoes was collected in the rainy season during the two years under study in addition to proving that there was significant correlation between the occurrence of mollusk species and fish in the 20 researched reservoirs. Yaguajay municipality exhibits wide freshwater mollusk fauna if one takes into account the 14 identified species of which 4 turned out to be intermediate hosts for fascioliasis, schistosomiasis and angiostrongyliasis. There is close relation between freshwater malacofauna and vegetation.

  4. Tropical Freshwater Biology - Vol 18, No 2 (2009)

    African Journals Online (AJOL)

    Organic fertilizer decomposition and nutrient loads in water reservoir with changing temperature, Wakiso – Ug · EMAIL FULL TEXT EMAIL FULL TEXT ... benthos in response to the biodeposition and bioturbation activities of the freshwater mussel Lamellidens marginalis (Lamarck) · EMAIL FULL TEXT EMAIL FULL TEXT

  5. Anaemia in the freshwater catfish Clarias albopunctatus (Teleostei ...

    African Journals Online (AJOL)

    Haematological changes were studied in freshwater catfish Clarias albopunctatus exposed for 20 days to 25%, 50% and 100% concentrations of brewery wastewater prepared by dilution using tap water. Haemoglobin, haematocrit and erythrocyte counts in fish exposed to wastewater were significantly lower than in a ...

  6. Haff disease associated with the ingestion of the freshwater fish Mylossoma duriventre (pacu-manteiga).

    Science.gov (United States)

    Tolesani Júnior, Oswaldo; Roderjan, Christian Nejm; do Carmo Neto, Edgard; Ponte, Micheli Mikaeli; Seabra, Mariana Cristina Pelli; Knibel, Marcos Freitas

    2013-01-01

    Haff disease associated rhabdomyolysis is correlated with the ingestion of certain freshwater fish and shellfish and is caused by an unidentified toxin. We report the case of a patient who experienced rhabdomyolysis approximately 2 hours after ingestion of the freshwater fish Mylossoma duriventre (pacu-manteiga) approximately 3 years after an outbreak had been reported in Manaus, Brazilian Amazon.

  7. A physically based model of global freshwater surface temperature

    Science.gov (United States)

    van Beek, Ludovicus P. H.; Eikelboom, Tessa; van Vliet, Michelle T. H.; Bierkens, Marc F. P.

    2012-09-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through their tolerance to parasites and diseases. Models used to predict surface water temperature range between physically based deterministic models and statistical approaches. Here we present the initial results of a physically based deterministic model of global freshwater surface temperature. The model adds a surface water energy balance to river discharge modeled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff, and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by shortwave and longwave radiation and sensible and latent heat fluxes. Also included are ice formation and its effect on heat storage and river hydraulics. We use the coupled surface water and energy balance model to simulate global freshwater surface temperature at daily time steps with a spatial resolution of 0.5° on a regular grid for the period 1976-2000. We opt to parameterize the model with globally available data and apply it without calibration in order to preserve its physical basis with the outlook of evaluating the effects of atmospheric warming on freshwater surface temperature. We validate our simulation results with daily temperature data from rivers and lakes (U.S. Geological Survey (USGS), limited to the USA) and compare mean monthly temperatures with those recorded in the Global Environment Monitoring System (GEMS) data set. Results show that the model is able to capture the mean monthly surface temperature for the majority of the GEMS stations, while the interannual variability as derived from the USGS and NOAA data was captured reasonably well. Results are poorest for

  8. Freshwater autotrophic picoplankton: a review

    Directory of Open Access Journals (Sweden)

    John G. STOCKNER

    2002-02-01

    Full Text Available Autotrophic picoplankton (APP are distributed worldwide and are ubiquitous in all types of lakes of varying trophic state. APP are major players in carbon production in all aquatic ecosystems, including extreme environments such as cold ice-covered and/or warm tropical lakes and thermal springs. They often form the base of complex microbial food webs, becoming prey for a multitude of protozoan and micro-invertebrate grazers, that effectively channel APP carbon to higher trophic levels including fish. In this review we examine the existing literature on freshwater autotrophic picoplankton, setting recent findings and current ecological issues within an historic framework, and include a description of the occurrence and distribution of both single-cell and colonial APP (picocyanobacteria in different types of lakes. In this review we place considerable emphasis on methodology and ecology, including sampling, counting, preservation, molecular techniques, measurement of photosynthesis, and include extensive comment on their important role in microbial food webs. The model outlined by Stockner of an increase of APP abundance and biomass and a decrease of its relative importance with the increase of phosphorus concentration in lakes has been widely accepted, and only recently confirmed in marine and freshwater ecosystems. Nevertheless the relationship which drives the APP presence and importance in lakes of differing trophic status appears with considerable variation so we must conclude that the success of APP in oligotrophic lakes worldwide is not a certainty but highly probable.

  9. Heterotrophic respiration in drained tropical peat temperatures influenced by shading gradient

    Science.gov (United States)

    Jauhiainen, Jyrki; Kerojoki, Otto; Silvennoinen, Hanna; Limin, Suwido; Vasander, Harri

    2015-04-01

    Lowland peatlands in Southeast Asia constitute a highly concentrated carbon (C) pool of global significance. These peatlands have formed over periods of several millennia by forest vegetation tolerant to flooding and poor substrates. Uncontrollable drainage and reoccurring wild fires in lack of management after removal of forest cover has impaired the C-storing functions in large reclaimed areas. Intergovernmental Panel on Climate Change (IPCC) reporting sees drained tropical organic soils as one of the largest greenhouse gas emissions releasing terrestrial systems. Vast areas of deforested tropical peatlands do not receive noteworthy shading by vegetation, which increases the amount of solar radiation reaching the peat surface. We studied heterotrophic carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) fluxes in tropical peat in conditions, where; (i) peat temperatures were modified by artificial shading (no shade, 28%, 51% and 90% from the full sun exposure), (ii) root respiration was minimized, (iii) nutrient availability for peat decomposer community was changed (NPK fertilization of 0 and 313 kg ha-1). The experiment was repeated at two over 20 years ago drained fallow agricultural- and degraded sites in Central Kalimantan, Indonesia. Enhanced shading created a lasting decrease in peat temperatures, and decreased diurnal temperature fluctuations, in comparison to less shaded plots. The largest peat temperature difference was between the unshaded and 90% shaded peat surface, where the average temperatures within the topmost 50-cm peat profile differed 3 °C, and diurnal temperatures at 5 cm depth varied up to 4.2 °C in the unshaded and 0.4 °C in the 90% shaded conditions. Highest impacts on the heterotrophic CO2 fluxes caused by the treatments were on agricultural land, where 90% shading from the full exposure resulted in a 33% lower CO2 emission average on the unfertilised plots and a 66% lower emission average on the fertilised plots. Correlation

  10. Differential response of marine flagellate communities to prokaryotic food quality

    Science.gov (United States)

    De Corte, D.; Paredes, G.; Sintes, E.; Herndl, G. J.

    2016-02-01

    Marine prokaryotes play a major role in the biogeochemical cycles. The main predators of prokaryotes are heterotrophic nanoflagellates (HNF). HNF are thus a major link connecting dissolved organic material through prokaryotic grazing to the higher trophic levels. However, little is known about the grazing specificity of HNF on specific prokaryotic taxa. Bacterial and archaeal microbes may have different nutritive values for the HNF communities, thus affecting growth rates and community composition of HNFs. In this study we investigated the influence of prey food quality on Cafeteria roenbergensis and on a natural HNF community isolated in the northern Adriatic Sea. Two Nitrosopumilus maritimus-related strains isolated from the northern Adriatic Sea (Nitrosopumilus adriaticus, Nitrosopumilus piranensis), two Nitrosococcus strains and two fast growing marine Bacteria (Pseudomonas marina and Marinobacter algicola) were fed to the HNFs. The two fast growing bacterial strains resulted in high growth rates of Cafeteria roenbergensis and the mixed HNF community, while the two Nitrosococcus strains did not. Cafeteria roenbergensis fed on N. adriaticus but it did not graze N. piranensis, suggesting that the subtle metabolic and physiological differences between these two closely related thaumarchaeal strains affect the grazing pressure to which they are exposed. Our study also indicates that prokaryotic community composition influences the composition of the HNF community.

  11. Characterization of freshwater mosses as indicators of radioactive contamination

    International Nuclear Information System (INIS)

    Beaugelin-Seiller, K.

    1994-01-01

    The necessity of indicators of freshwater contamination has developed the interest for aquatic mosses. From a fundamental point of view, studying the influence of some biotic and abiotic factors has permitted to better know the mechanisms of radionuclides accumulation by these bryophytes. From a radioecological point of view, simulating real cases of water contamination has allowed to give results a very interesting representativeness. The use of mosses as bio-indicators was applied for two in situ experiments, the results of which have been interpreted from those obtained in laboratory. Finally, an approach by a mathematical model has showed that it is possible to have, in a middle term, an evaluation tool of freshwater contamination, based on the radionuclides concentrations measured in aquatic mosses. (author). refs., 57 figs., 24 tabs

  12. Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs.

    Science.gov (United States)

    Eerkes-Medrano, Dafne; Thompson, Richard C; Aldridge, David C

    2015-05-15

    Plastic contamination is an increasing environmental problem in marine systems where it has spread globally to even the most remote habitats. Plastic pieces in smaller size scales, microplastics (particles microplastic presence and interactions are equally as far reaching as are being observed in marine systems. Microplastics are being detected in freshwaters of Europe, North America, and Asia, and the first organismal studies are finding that freshwater fauna across a range of feeding guilds ingest microplastics. Drawing from the marine literature and these initial freshwater studies, we review the issue of microplastics in freshwater systems to summarise current understanding, identify knowledge gaps and suggest future research priorities. Evidence suggests that freshwater systems may share similarities to marine systems in the types of forces that transport microplastics (e.g. surface currents); the prevalence of microplastics (e.g. numerically abundant and ubiquitous); the approaches used for detection, identification and quantification (e.g. density separation, filtration, sieving and infrared spectroscopy); and the potential impacts (e.g. physical damage to organisms that ingest them, chemical transfer of toxicants). Differences between freshwater and marine systems include the closer proximity to point sources in freshwaters, the typically smaller sizes of freshwater systems, and spatial and temporal differences in the mixing/transport of particles by physical forces. These differences between marine and freshwater systems may lead to differences in the type of microplastics present. For example, rivers may show a predictable pattern in microplastic characteristics (size, shape, relative abundance) based on waste sources (e.g. household vs. industrial) adjacent to the river, and distance downstream from a point source. Given that the study of microplastics in freshwaters has only arisen in the last few years, we are still limited in our understanding of 1

  13. COMMERCIAL FRESHWATER FISHERIES IN REPUBLIC OF CROATIA IN 2009 AND 2010

    Directory of Open Access Journals (Sweden)

    Josip Suić

    2011-12-01

    Full Text Available Commercial freshwater fisheries in Republic of Croatia is regulated according to the Freshwater Fisheries Act (2001 and special sub-acts regarding commercial freshwater fisheries, as well as other sub-laws which deal with fish sizes, no-fishing periods and estimation of damages on fish stocks. Subjects of regulations are the areas for commercial fisheries, commercial fishermen exams, fishing permits, fishing tools and gear, yearly allowed catch quotas and catch data delivery. All the sub-acts are presented, as well the explanations of the key terminology and activities. The commercial fisheries catch data for 2009 were collected, analyzed and finally interacted to the yearly allowed catch quotas. According to the results of the analysis of particular interactions of catch/total catch, as well as the interaction between particular fish species and yearly allowed catch quotas, it is obvious that only the amount of carp catch on the Dunav in 2009 goes beyond the yearly allowed catch quota. According to the vast lack of inspectors, on local and state level as well, it is expected that after accepting of the new inspection regulations and competences, as well the lifting of the ban of recruiting state employees, it would be possible to ensure the more efficient surveillance and control of whole fisheries sector, also markets and restaurants. This will surely help decreasing of the black market. Also, according to the new Freshwater Fisheries Act, which is in the process of adoption, new regulations that relate to fish market will be accepted (landing places, first sell, first buyer.

  14. Investigation of road salts and biotic stressors on freshwater wetland communities.

    Science.gov (United States)

    Jones, Devin K; Mattes, Brian M; Hintz, William D; Schuler, Matthew S; Stoler, Aaron B; Lind, Lovisa A; Cooper, Reilly O; Relyea, Rick A

    2017-02-01

    The application of road deicing salts has led to the salinization of freshwater ecosystems in northern regions worldwide. Increased chloride concentrations in lakes, streams, ponds, and wetlands may negatively affect freshwater biota, potentially threatening ecosystem services. In an effort to reduce the effects of road salt, operators have increased the use of salt alternatives, yet we lack an understanding of how these deicers affect aquatic communities. We examined the direct and indirect effects of the most commonly used road salt (NaCl) and a proprietary salt mixture (NaCl, KCl, MgCl 2 ), at three environmentally relevant concentrations (150, 470, and 780 mg Cl - /L) on freshwater wetland communities in combination with one of three biotic stressors (control, predator cues, and competitors). The communities contained periphyton, phytoplankton, zooplankton, and two tadpole species (American toads, Anaxyrus americanus; wood frogs, Lithobates sylvaticus). Overall, we found the two road salts did not interact with the natural stressors. Both salts decreased pH and reduced zooplankton abundance. The strong decrease in zooplankton abundance in the highest NaCl concentration caused a trophic cascade that resulted in increased phytoplankton abundance. The highest NaCl concentration also reduced toad activity. For the biotic stressors, predatory stress decreased whereas competitive stress increased the activity of both tadpole species. Wood frog survival, time to metamorphosis, and mass at metamorphosis all decreased under competitive stress whereas toad time to metamorphosis increased and mass at metamorphosis decreased. Road salts and biotic stressors can both affect freshwater communities, but their effects are not interactive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Radurization of commercial freshwater fish species

    International Nuclear Information System (INIS)

    Chuaqui-Offermanns, N.; McDougall, T.E.; Sprung, W.; Sullivan, V.

    1988-01-01

    The effect of radurization on the shelf life of fresh Whitefish obtained through ordinary commercial channels has been determined. Whitefish fillets irradiated at 1.2 kGy and stored at 3 0 C have a shelf life three times longer than the unirradiated fish. When the fish was irradiated at 0.82 kGy a two fold shelf-life extension was obtained. The shelf life was estimated by sensory, chemical and microbiological evaluations. Sensory evaluation involved organoleptic assessment of raw and cooked samples. Since freshwater fish do not contain trimethylamine oxide (TMAO), alternate tests for freshness were required. It was found the determination of hypoxanthine and total volatile acid number (VAN) are excellent tests for freshness and quality of freshwater fish; thus, these analyses were adopted. The degree of radiation-induced lipid oxidation was measured by the thiobarbituric acid test (TBA). It was found at doses of 0.82 and 1.2 kGy the TBA number remained within acceptable limits in all samples. Microbiological analyses consisted of the total microbial load assessment in the sample, as well as Pseudomonas and total psychrotrophic counts. The estimated shelf lives as determined by the three separate evaluations were in very good agreement. (author)

  16. Radurization of commercial freshwater fish species

    Energy Technology Data Exchange (ETDEWEB)

    Chuaqui-Offermanns, N.; McDougall, T.E.; Sprung, W.; Sullivan, V.

    1988-01-01

    The effect of radurization on the shelf life of fresh Whitefish obtained through ordinary commercial channels has been determined. Whitefish fillets irradiated at 1.2 kGy and stored at 3/sup 0/C have a shelf life three times longer than the unirradiated fish. When the fish was irradiated at 0.82 kGy a two fold shelf-life extension was obtained. The shelf life was estimated by sensory, chemical and microbiological evaluations. Sensory evaluation involved organoleptic assessment of raw and cooked samples. Since freshwater fish do not contain trimethylamine oxide (TMAO), alternate tests for freshness were required. It was found the determination of hypoxanthine and total volatile acid number (VAN) are excellent tests for freshness and quality of freshwater fish;thus, these analyses were adopted. The degree of radiation-induced lipid oxidation was measured by the thiobarbituric acid test (TBA). It was found at doses of 0.82 and 1.2 kGy the TBA number remained within acceptable limits in all samples. Microbiological analyses consisted of the total microbial load assessment in the sample, as well as Pseudomonas and total psychrotrophic counts. The estimated shelf lives as determined by the three separate evaluations were in very good agreement

  17. First freshwater coralline alga and the role of local features in a major biome transition.

    Science.gov (United States)

    Žuljević, A; Kaleb, S; Peña, V; Despalatović, M; Cvitković, I; De Clerck, O; Le Gall, L; Falace, A; Vita, F; Braga, Juan C; Antolić, B

    2016-01-21

    Coralline red algae are significant components of sea bottom and up to now considered as exclusively marine species. Here we present the first coralline alga from a freshwater environment, found in the Cetina River (Adriatic Sea watershed). The alga is fully adapted to freshwater, as attested by reproductive structures, sporelings, and an inability to survive brackish conditions. Morphological and molecular phylogenetic analyses reveal the species belongs to Pneophyllum and is described as P. cetinaensis sp. nov. The marine-freshwater transition most probably occurred during the last glaciation. The brackish-water ancestor was preadapted to osmotic stress and rapid changes in water salinity and temperature. The particular characteristics of the karst Cetina River, such as hard water enriched with dissolved calcium carbonate and a pH similar to the marine environment, favoured colonization of the river by a marine species. The upstream advance and dispersal is facilitated by exceptionally pronounced zoochory by freshwater gastropods. Pneophyllum cetinaensis defies the paradigm of Corallinales as an exclusively marine group.

  18. Perfluoroalkyl acid contamination and polyunsaturated fatty acid composition of French freshwater and marine fishes.

    Science.gov (United States)

    Yamada, Ami; Bemrah, Nawel; Veyrand, Bruno; Pollono, Charles; Merlo, Mathilde; Desvignes, Virginie; Sirot, Véronique; Oseredczuk, Marine; Marchand, Philippe; Cariou, Ronan; Antignac, Jean-Phillippe; Le Bizec, Bruno; Leblanc, Jean-Charles

    2014-07-30

    In this study, French marine and freshwater fish perfluoroalkyl acid (PFAA) contamination are presented along with their fatty acid (FA) composition to provide further elements for a risk/benefit balance of fish consumption to be assessed. The 29 most consumed marine fish species were collected in four metropolitan French coastal areas in 2004 to constitute composite samples. Geographical differences in terms of consumed species and contamination level were taken into account. Three hundred and eighty-seven composite samples corresponding to 16 freshwater fish species collected between 2008 and 2010 in the six major French rivers or their tributaries were selected among the French national agency for water and aquatic environments freshwater fish sample library. The raw edible parts were analyzed for FA composition and PFAA contamination. Results show that freshwater fishes are more contaminated by PFAAs than marine fishes and do not share the same contamination profile. Freshwater fish contamination is mostly driven by perfluorooctane sulfonate (PFOS) (75%), whereas marine fish contamination is split between perfluorooctanoic acid (PFOA) (24%), PFOS (20%), perfluorohexanoic acid (PFHxA) (15%), perfluoropentanoic acid (PFHpA) (11%), and perfluorobutanoic acid (PFBA) (11%). Common carp, pike-perch, European perch, thicklip grey mullet, and common roach presented the most unfavorable balance profile due to their high level of PFAAs and low level of n-3 long-chain polyunsaturated fatty acids (LC-PUFAs). These data could be used, if needed, in an updated opinion on fish consumption that takes into account PFAA contamination.

  19. Distinct freshwater and seawater isoforms of Na+/K+-ATPase in gill chloride cells of Atlantic salmon

    Science.gov (United States)

    McCormick, Stephen D.; Regish, A.M.; Christensen, A.K.

    2009-01-01

    Gill Na(+)/K(+)-ATPase (NKA) in teleost fishes is involved in ion regulation in both freshwater and seawater. We have developed and validated rabbit polyclonal antibodies specific to the NKA alpha1a and alpha1b protein isoforms of Atlantic salmon (Salmo salar Linnaeus), and used western blots and immunohistochemistry to characterize their size, abundance and localization. The relative molecular mass of NKA alpha1a is slightly less than that for NKA beta1b. The abundance of gill NKA alpha1a was high in freshwater and became nearly undetectable after seawater acclimation. NKA alpha1b was present in small amounts in freshwater and increased 13-fold after seawater acclimation. Both NKA isoforms were detected only in chloride cells. NKA alpha1a was located in both filamental and lamellar chloride cells in freshwater, whereas in seawater it was present only as a faint background in filamental chloride cells. In freshwater, NKA alpha1b was found in a small number of filamental chloride cells, and after seawater acclimation it was found in all chloride cells on the filament and lamellae. Double simultaneous immunofluorescence indicated that NKA alpha1a and alpha1b are located in different chloride cells in freshwater. In many chloride cells in seawater, NKA alpha1b was present in greater amounts in the subapical region than elsewhere in the cell. The combined patterns in abundance and immunolocalization of these two isoforms can explain the salinity-related changes in total NKA and chloride cell abundance. The results indicate that there is a freshwater and a seawater isoform of NKA alpha-subunit in the gills of Atlantic salmon and that they are present in distinct chloride cells.

  20. Culture, hydrology, and other situational controls on atoll freshwater availability (Majuro, Republic of the Marshall Islands)

    Science.gov (United States)

    Shuster, W.

    2016-12-01

    The comparatively uncertain rainfall catch and rising seas in isolated North Pacific atoll communities has presented serious challenges to maintain human communities with freshwater volume. Moreover, the feudal hierarchy, which structures social and economic relationships among local governance and citizens contributes equally to problems and potential solutions. These relationships modulate the availability of critical ecosystem services generated by freshwater, with additional constraints contributed by climate change, rainfall variability (e.g., current El Niño climate pattern), and continuous threat of drought. The major freshwater resources for an atoll are the groundwater freshwater lens, residential and commercial rainwater harvesting, large-scale rainfall catchments (e.g., an airport runway), imported-virtual water, or desalinization subsidies. The significance of each of these resources scale across different atolls according to size, topography, soils, population, infrastructure, and land ownership. The potential integration and coordination of these water resources is largely unrealized due to land ownership, the lack of a contiguous catchment area, uneven and fractured governance. The situational aspects are further characterized by feuding among families and communities (some resource rich, some resource poor), and conflicting land use priorities where agriculture placement and practice can compromise the quality of already limited freshwater resources. This presentation uses the example of Majuro atoll (Republic of the Marshall Islands), field data and other observations, to illustrate sociohydrologic-drivers of freshwater availability, and suggests approaches that may improve on current and ongoing threats to public health and well-being.

  1. [Radioecological studies of freshwater mollusks in the Chernobyl accident exclusion zone].

    Science.gov (United States)

    Gudkov, D I; Nazarov, A B; Dziubenko, E V; Kaglian, A E; Klenus, V G

    2009-01-01

    Species-specificity and dynamics of 90Sr, 137Cs and some transuranic elements accumulation in bivalve and gastropod freshwater molluscs of the Chernobyl exclusion zone during 1997-2008 was analyzed. The results of radiation dose and chromosome aberration rate estimation and the analysis of hemolymph composition of freshwater snail (Lymnaea stagnalis L.) was produced. The absorbed dose rate was registered in the range of 0.3-85.0 microGy/h. In closed water bodies the heightened chromosome aberration rate (up to 27%) in embryo tissues, and also the change of haematological indexes for the adult individuals of snails was registered.

  2. Freshwater invertebrates of sub-Antarctic Marion Island | Dartnall ...

    African Journals Online (AJOL)

    The aquatic species include five platyhelminthes, a gastrotrich, three tardigrades, 28 rotifers, six nematodes, two annelids and 11 arthropods. Most are familiar species that have been recorded on other sub-Antarctic islands. The invertebrate faunas of the various freshwater habitats were basically similar in species ...

  3. Survival of marine heterotrophic flagellates isolated from the surface and the deep sea at high hydrostatic pressure: Literature review and own experiments

    Science.gov (United States)

    Živaljić, Suzana; Schoenle, Alexandra; Nitsche, Frank; Hohlfeld, Manon; Piechocki, Julia; Reif, Farina; Shumo, Marwa; Weiss, Alexandra; Werner, Jennifer; Witt, Madeleine; Voss, Janine; Arndt, Hartmut

    2018-02-01

    Although the abyssal seafloor represents the most common benthic environment on Earth, eukaryotic microbial life at abyssal depths is still an uncharted territory. This is in striking contrast to their potential importance regarding the material flux and bacteria consumption in the deep sea. Flagellate genotypes determined from sedimentary DNA deep-sea samples might originate from vital deep-sea populations or from cysts of organisms sedimented down from surface waters. The latter one may have never been active under deep-sea conditions. We wanted to analyze the principal ability of cultivable heterotrophic flagellates of different phylogenetic groups (choanoflagellates, ancyromonads, euglenids, kinetoplastids, bicosoecids, chrysomonads, and cercozoans) to survive exposure to high hydrostatic pressure (up to 670 bar). We summarized our own studies and the few available data from literature on pressure tolerances of flagellates isolated from different marine habitats. Our results demonstrated that many different flagellate species isolated from the surface waters and deep-sea sediments survived drastic changes in hydrostatic pressure. Barophilic behavior was also recorded for several species isolated from the deep sea indicating their possible genetic adaptation to high pressures. This is in accordance with records of heterotrophic flagellates present in environmental DNA surveys based on clone libraries established for deep-sea environments.

  4. Physical modeling of the effects of climate change on freshwater lenses

    Science.gov (United States)

    Stoeckl, L.; Houben, G.

    2012-04-01

    The investigation of the fragile equilibrium between fresh and saline water on oceanic islands is of major importance for a sustainable management and protection of freshwater lenses. Overexploitation will lead to salt water intrusion (up-coning), in turn causing damages or even destruction of a lens in the long term. We have performed a series of experiments on the laboratory scale to investigate and visualize processes of freshwater lenses under different boundary conditions. In addition these scenarios were numerically simulated using the finite-element model FEFLOW. Results were also compared to analytical solutions for problems regarding e.g. mean travel times of flow paths within a freshwater lens. On the laboratory scale, a cross section of an island was simulated by setting up a sand-box model (200 cm x 50 cm x 5 cm). Lens dynamics are driven by density contrasts of saline and fresh water, recharge rate and Kf-values of the medium. We used a time-dependent, sequential application of the tracers uranine, eosine and indigotine, to represent different recharge events. With a stepwise increase of freshwater recharge, we could show that the maximum thickness of the lens increased in a non-linear behavior. Moreover we measured that the degradation of a freshwater lens after turning off the precipitation does not follow the same function as its development does. This means that a steady state freshwater lens does not degrade as fast as it develops under constant recharge. On the other side, we could show that this is not true for a partial degradation of the lens due to passing forces, like anthropogenic pumping or climate change. This is, because the recovery to equilibrium is always a quasi asymptotic process. Thus, times of re-equilibration to steady state will take longer after e.g. a drought, than the degradation during the draught itself. This behavior could also be verified applying the numerical finite-element model FEFLOW. In addition, numerical

  5. The International Editorship of Freshwater Systems

    OpenAIRE

    Karl E. Havens

    2001-01-01

    It is my pleasure to announce that two distinguished internationalscientists have joined the editorship of the FreshwaterSystems domain of TheScientificWorldJOURNAL — Professor BrijGopal of Jawaharlal Nehru University (India) and Dr. Manual Gra柠of the Universityof Coimbra (Portugal). Professor Gopal is the Secretary General of the NationalInstitute of Ecology, Editor of the InternationalJournal of Ecology & Environmental Science,and Chairman of the SIL (International Association of Theoretica...

  6. Virus-mediated transfer of nitrogen from heterotrophic bacteria to phytoplankton

    Science.gov (United States)

    Shelford, Emma J.; Suttle, Curtis A.

    2018-02-01

    Lytic infection of bacteria by viruses releases nutrients during cell lysis and stimulates the growth of primary producers, but the path by which these nutrients flow from lysates to primary producers has not been traced. This study examines the remineralisation of nitrogen (N) from Vibrio lysates by heterotrophic bacterioplankton and its transfer to primary producers. In laboratory trials, Vibrio sp. strain PWH3a was infected with a lytic virus (PWH3a-P1) and the resulting 36.0 µmol L-1 of dissolved organic N (DON) in the lysate was added to cultures containing cyanobacteria (Synechococcus sp. strain DC2) and a natural bacterial assemblage. Based on the increase in cyanobacteria, 74 % (26.5 µmol L-1 N) of the DON in the lysate was remineralised and taken up. Lysate from Vibrio sp. strain PWH3a labeled with 15NH4+ was also added to seawater containing natural microbial communities, and in four field experiments, stable isotope analysis indicated that the uptake of 15N was 0.09 to 0.70 µmol N µg-1 of chlorophyll a. The results from these experiments demonstrate that DON from lysate can be efficiently remineralised and transferred to phytoplankton, and they provide further evidence that the viral shunt is an important link in nitrogen recycling in aquatic systems.

  7. Fatty Acid Composition of Six Freshwater Wild Cyanobacterial Species

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Dor, I.; Prell, Aleš; Dembitský, V. M.

    2003-01-01

    Roč. 48, č. 1 (2003), s. 71-75 ISSN 0015-5632 Institutional research plan: CEZ:AV0Z5020903 Keywords : cyanobacterial spcies * freshwater wild Subject RIV: EE - Microbiology, Virology Impact factor: 0.857, year: 2003

  8. Conservation status and distribution of freshwater fishes in South ...

    African Journals Online (AJOL)

    Indigenous fishes include 43 species of the Zambezian faunal group (70% of the ... andrewi, Pseudobarbus afer) all of which are classified as Endangered. ... support only half of the freshwater fish species occurring in all national parks.

  9. Occupational health issues in marine and freshwater research

    Directory of Open Access Journals (Sweden)

    Courtenay Glenn

    2012-03-01

    Full Text Available Abstract Marine and freshwater scientists are potentially exposed to a wide variety of occupational hazards. Depending on the focus of their research, risks may include animal attacks, physiological stresses, exposure to toxins and carcinogens, and dangerous environmental conditions. Many of these hazards have been investigated amongst the general population in their recreational use of the environment; however, very few studies have specifically related potential hazards to occupational exposure. For example, while the incidence of shark and crocodile attacks may invoke strong emotions and the occupational risk of working with these animals is certainly real, many more people are stung by jellyfish or bitten by snakes or dogs each year. Furthermore, a large proportion of SCUBA-related injuries and deaths are incurred by novice or uncertified divers, rather than professional divers using aquatic environments. Nonetheless, marine and freshwater research remains a potentially risky occupation, and the likelihood of death, injury and long-term health impacts still needs to be seriously considered.

  10. Review of Ghana's water resources: the quality and management with particular focus on freshwater resources

    Science.gov (United States)

    Yeleliere, E.; Cobbina, S. J.; Duwiejuah, A. B.

    2018-06-01

    Freshwater resources are continually decreasing in quality and quantity. Approximately, 1% of this freshwater is accessible in lakes, river channels and underground for domestic use. The study reviewed literature on water resources with focus on freshwater, the quality of our freshwater in terms of physical, chemical and biological variables, the main mechanisms of management, and the challenges associated with these mechanisms as well as blending integrated water management with the indigenous or traditional management of water resources for sustainable development and peaceful co-existence. Also the review offered potent recommendations for policy makers to consider sustainable management of freshwater resources. A total of 95 articles were downloaded from Google scholar in water-related issues. The search took place from June to September 2017, and research articles from 1998 to 2018 were reviewed. Basically Ghana is made up of three discharge or outlet systems, namely the Coastal River Systems which is the least and Volta constituting the largest and with the South-Western been the intermediate. Also, freshwater resources usage can be put into two main categories, namely ex situ (withdrawal use) and in situ or in-stream use, and could also be referred to as the consumptive and non-consumptive use, respectively. With the exception of localised pollution engineered by illegal mining and other nuisance perpetuated by indigenes, the quality of water (surface and groundwater) in Ghana is generally better. The review outlined high microbial contamination of water as almost all surface waters are contaminated with either E. coli, faecal coliforms or total coliforms or all. However, these contaminations were more prevalent in surface water than groundwater.

  11. Taxonomic composition and endemism of the helminth fauna of freshwater fishes of Mexico.

    Science.gov (United States)

    Salgado-Maldonado, Guillermo; Quiroz-Martínez, Benjamín

    2013-01-01

    We examine the taxonomic composition and endemism of adult helminth parasites of freshwater fishes of Mexico, with regard to the main hydrological basins of the country. A presence-absence matrix, including every species of adult helminth parasites of freshwater fishes from 23 Mexican hydrological basins was compiled and examined in this paper. The helminth fauna of freshwater fishes of Mexico consists of a large group of Central American Neotropical species (S = 119) and another set, less rich of Nearctic species (S = 48), which are distributed along with the families of its fish hosts; insufficient data preclude the assignation of three species. This fauna is composed predominantly by nematodes, trematodes, and monogeneans, which together contributed 86 % of the total species recorded; cestodes and acanthocephalans being the taxa with the least species recorded. Current data suggests a 22 % (37/170) endemism amongst helminths of freshwater fishes of Mexico. Data suggests that the isolation of bodies of water in the Mexican territory, mostly in the Neotropical areas of southeastern Mexico and in the central Altiplano Mexicano (Mexican Highland Plateau), with well delimited basins separated by orographic features, provided peculiar conditions that have been conducive to the diversification of a unique helminth fauna.

  12. INVESTIGATION ON BIODIVERSITY AND CONSERVATION OF FRESHWATER FISHES IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Sudarto Sudarto

    2012-12-01

    Full Text Available Indonesia is one of the richest regions in the world in terms of biodiversity. However, recent evidence has shown that tropical forests destruction has maintained at a high rate over the last few years in this country. At the same time, living resources in Indonesian freshwater ecosystems are important: this country ranks at number seven in terms of production of inland capture fisheries with 323,150 tonnes in 2008. Freshwater fishes represent 42% of the total estimated ichthyofauna, concentrated in 0.01% of the total water covered environment. This environment is closer to human activities, making it critically vulnerable to adverse impacts. Furthermore, there has been some recent debates on the general sustainability of fisheries and aquaculture production systems. This research was focused on initiating a multi-scale study of fish biodiversity in freshwater environments. Two specific actions have been started. A review based on the analyses of the existing scientific literature and of databases on fish taxonomy and distributions. In parallel to this work, a global analysis of the distribution of fish diversity in Indonesia was undertaken. This work aims at identifying the major features of this resource as well as its current and future threats.

  13. Combined ecological risks of nitrogen and phosphorus in European freshwaters

    International Nuclear Information System (INIS)

    Azevedo, Ligia B.; Zelm, Rosalie van; Leuven, Rob S.E.W.; Hendriks, A. Jan; Huijbregts, Mark A.J.

    2015-01-01

    Eutrophication is a key water quality issue triggered by increasing nitrogen (N) and phosphorus (P) levels and potentially posing risks to freshwater biota. We predicted the probability that an invertebrate species within a community assemblage becomes absent due to nutrient stress as the ecological risk (ER) for European lakes and streams subjected to N and P pollution from 1985 to 2011. The ER was calculated as a function of species-specific tolerances to NO 3 − and total P concentrations and water quality monitoring data. Lake and stream ER averaged 50% in the last monitored year (i.e. 2011) and we observed a decrease by 22% and 38% in lake and stream ER (respectively) of river basins since 1985. Additionally, the ER from N stress surpassed that of P in both freshwater systems. The ER can be applied to identify river basins most subjected to eutrophication risks and the main drivers of impacts. - Highlights: • Ecological risk was estimated as response additions of N and P. • The risk posed by N stress is higher than that by P in European freshwaters. • Ecological risks have remained unchanged in most European river basins. - Quantifying the ecological risk of invertebrate losses due to N and P pollution

  14. Effects of Nano-Titanium Dioxide on Freshwater Algal Population Dynamics

    Science.gov (United States)

    Kulacki, Konrad J.; Cardinale, Bradley J.

    2012-01-01

    To make predictions about the possible effects of nanomaterials across environments and taxa, toxicity testing must incorporate not only a variety of organisms and endpoints, but also an understanding of the mechanisms that underlie nanoparticle toxicity. Here, we report the results of a laboratory experiment in which we examined how titanium dioxide nanoparticles impact the population dynamics and production of biomass across a range of freshwater algae. We exposed 10 of the most common species of North American freshwater pelagic algae (phytoplankton) to five increasing concentrations of n-TiO2 (ranging from controls to 300 mg n-TiO2 L−1). We then examined the effects of n-TiO2 on the population growth rates and biomass production of each algal species over a period of 25 days. On average, increasing concentrations of n-TiO2 had no significant effects on algal growth rates (p = 0.376), even though there was considerable species-specific variation in responses. In contrast, exposure to n-TiO2 tended to increase maximum biomass achieved by species in culture (p = 0.06). Results suggest that titanium dioxide nanoparticles could influence certain aspects of population growth of freshwater phytoplankton, though effects are unlikely at environmentally relevant concentrations. PMID:23071735

  15. Kinetic modeling of growth and lipid body induction in Chlorella pyrenoidosa under heterotrophic conditions.

    Science.gov (United States)

    Sachdeva, Neha; Kumar, G Dinesh; Gupta, Ravi Prakash; Mathur, Anshu Shankar; Manikandan, B; Basu, Biswajit; Tuli, Deepak Kumar

    2016-10-01

    The aim of the present work was to develop a mathematical model to describe the biomass and (total) lipid productivity of Chlorella pyrenoidosa NCIM 2738 under heterotrophic conditions. Biomass growth rate was predicted by Droop's cell quota model, while changes observed in cell quota (utilization) under carbon excess conditions were used for the modeling and predicting the lipid accumulation rate. The model was simulated under non-limiting (excess) carbon and limiting nitrate concentration and validated with experimental data for the culture grown in batch (flask) mode under different nitrate concentrations. The present model incorporated two modes (growth and stressed) for the prediction of endogenous lipid synthesis/induction and aimed to predict the effect and response of the microalgae under nutrient starvation (stressed) conditions. MATLAB and Genetic Algorithm were employed for the prediction and validation of the model parameters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Diversity and antimicrobial potential of culturable heterotrophic bacteria associated with the endemic marine sponge Arenosclera brasiliensis

    Directory of Open Access Journals (Sweden)

    Cintia P.J. Rua

    2014-06-01

    Full Text Available Marine sponges are the oldest Metazoa, very often presenting a complex microbial consortium. Such is the case of the marine sponge Arenosclera brasiliensis, endemic to Rio de Janeiro State, Brazil. In this investigation we characterized the diversity of some of the culturable heterotrophic bacteria living in association with A. brasiliensis and determined their antimicrobial activity. The genera Endozoicomonas (N = 32, Bacillus (N = 26, Shewanella (N = 17, Pseudovibrio (N = 12, and Ruegeria (N = 8 were dominant among the recovered isolates, corresponding to 97% of all isolates. Approximately one third of the isolates living in association with A. brasiliensis produced antibiotics that inhibited the growth of Bacillus subtilis, suggesting that bacteria associated with this sponge play a role in its health.

  17. Body armour and lateral-plate reduction in freshwater three-spined stickleback Gasterosteus aculeatus: adaptations to a different buoyancy regime?

    Science.gov (United States)

    Myhre, F; Klepaker, T

    2009-11-01

    Several factors related to buoyancy were compared between one marine and two freshwater populations of three-spined stickleback Gasterosteus aculeatus. Fish from all three populations had buoyancy near to neutral to the ambient water. This showed that neither marine nor freshwater G. aculeatus used swimming and hydrodynamic lift to prevent sinking. Comparing the swimbladder volumes showed that freshwater completely plated G. aculeatus had a significantly larger swimbladder volume than both completely plated marine and low-plated freshwater G. aculeatus. Furthermore, body tissue density was lower in low-plated G. aculeatus than in the completely plated marine and freshwater fish. The results show that G. aculeatus either reduce tissue density or increase swimbladder volume to adapt to lower water density. Mass measurements of lateral plates and pelvis showed that loss of body armour in low-plated G. aculeatus could explain the tissue density difference between low-plated and completely plated G. aculeatus. This suggests that the common occurrence of plate and armour reduction in freshwater G. aculeatus populations can be an adaptation to a lower water density.

  18. Coupling of heterotrophic bacteria to phytoplankton bloom development at different pCO2 levels: a mesocosm study

    Directory of Open Access Journals (Sweden)

    R. Thyrhaug

    2008-07-01

    Full Text Available The predicted rise in anthropogenic CO2 emissions will increase CO2 concentrations and decrease seawater pH in the upper ocean. Recent studies have revealed effects of pCO2 induced changes in seawater chemistry on a variety of marine life forms, in particular calcifying organisms. To test whether the predicted increase in pCO2 will directly or indirectly (via changes in phytoplankton dynamics affect abundance, activities, and community composition of heterotrophic bacteria during phytoplankton bloom development, we have aerated mesocosms with CO2 to obtain triplicates with three different partial pressures of CO2 (pCO2: 350 μatm (1×CO2, 700 μatm (2×CO2 and 1050 μatm (3×CO2. The development of a phytoplankton bloom was initiated by the addition of nitrate and phosphate. In accordance to an elevated carbon to nitrogen drawdown at increasing pCO2, bacterial production (BPP of free-living and attached bacteria as well as cell-specific BPP (csBPP of attached bacteria were related to the C:N ratio of suspended matter. These relationships significantly differed among treatments. However, bacterial abundance and activities were not statistically different among treatments. Solely community structure of free-living bacteria changed with pCO2 whereas that of attached bacteria seemed to be independent of pCO2 but tightly coupled to phytoplankton bloom development. Our findings imply that changes in pCO2, although reflected by changes in community structure of free-living bacteria, do not directly affect bacterial activity. Furthermore, bacterial activity and dynamics of heterotrophic bacteria, especially of attached bacteria, were tightly correlated to phytoplankton development and, hence, may also potentially depend on changes in pCO2.

  19. Recolonization by heterotrophic bacteria after UV irradiation or ozonation of seawater; a simulation of ballast water treatment.

    Science.gov (United States)

    Hess-Erga, Ole-Kristian; Blomvågnes-Bakke, Bente; Vadstein, Olav

    2010-10-01

    Transport of ballast water with ships represents a risk for introduction of foreign species. If ballast water is treated during uptake, there will be a recolonization of the ballast water by heterotrophic bacteria during transport. We investigated survival and succession of heterotrophic bacteria after disinfection of seawater in the laboratory, representing a model system of ballast water treatment and transport. The seawater was exposed to ultraviolet (UV) irradiation, ozone (2 doses) or no treatment, incubated for 16 days and examined with culture-dependent and -independent methods. The number of colony-forming units (CFU) was reduced below the detection level after disinfection with UV and high ozone dose (700 mV), and 1% of the initial level for the low ozone dose (400 mV). After less than 3 days, the CFU was back or above the starting point for the control, UV and low ozone treatment, whereas it took slightly more than 6 days for the high ozone treatment. Disinfection increased substrate availability and reduced cell densities. Lack of competition and predation induced the recolonization by opportunistic bacteria (r-strategists), with significant increase in bacterial numbers and a low diversity (based on DGGE band pattern). All cultures stabilized after the initial recolonization phase (except Oz700) where competition due to crowding and nutrient limitation favoured bacteria with high substrate affinity (K-strategists), resulting in higher species richness and diversity (based on DGGE band pattern). The bacterial community was significantly altered qualitatively and quantitatively and may have a higher potential as invaders in the recipient depending on disinfection method and the time of release. These results have implications for the treatment strategy used for ballast water. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Distinction between saltwater drowning and freshwater drowning by assessment of sinus fluid on post-mortem computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kawasumi, Yusuke; Sato, Yuki; Sato, Yumi; Ishibashi, Tadashi [Tohoku University Graduate School of Medicine, Department of Clinical Imaging, Sendai, Miyagi (Japan); Usui, Akihito; Daigaku, Nami; Hosokai, Yoshiyuki [Tohoku University Graduate School of Medicine, Department of Diagnostic Image Analysis, Sendai, Miyagi (Japan); Hayashizaki, Yoshie; Funayama, Masato [Tohoku University Graduate School of Medicine, Department of Forensic Medicine, Sendai, Miyagi (Japan)

    2016-04-15

    To evaluate the difference in sinus fluid volume and density between saltwater and freshwater drowning and diagnose saltwater drowning in distinction from freshwater drowning. Ninety-three drowning cases (22 saltwater and 71 freshwater) were retrospectively investigated; all had undergone post-mortem CT and forensic autopsy. Sinus fluid volume and density were calculated using a 3D-DICOM workstation, and differences were evaluated. Diagnostic performance of these indicators for saltwater drowning was evaluated using a cut-off value calculated by receiver operating characteristic (ROC) analysis. The median sinus fluid volume was 5.68 mL in cases of saltwater drowning (range 0.08 to 37.55) and 5.46 mL in cases of freshwater drowning (0.02 to 27.68), and the average densities were 47.28 (14.26 to 75.98) HU and 32.56 (-14.38 to 77.43) HU, respectively. While sinus volume did not differ significantly (p = 0.6000), sinus density was significantly higher in saltwater than freshwater drowning cases (p = 0.0002). ROC analysis for diagnosis of saltwater drowning determined the cut-off value as 37.77 HU, with a sensitivity of 77 %, specificity of 72 %, PPV of 46 % and NPV of 91 %. The average density of sinus fluid in cases of saltwater drowning was significantly higher than in freshwater drowning cases; there was no significant difference in the sinus fluid volume. (orig.)