Sample records for frequency standard based

  1. Thermal-Diffusivity-Based Frequency References in Standard CMOS

    NARCIS (Netherlands)

    Kashmiri, S.M.


    In recent years, a lot of research has been devoted to the realization of accurate integrated frequency references. A thermal-diffusivity-based (TD) frequency reference provides an alternative method of on-chip frequency generation in standard CMOS technology. A frequency-locked loop locks the

  2. Frequency standards

    CERN Document Server

    Riehle, Fritz


    Of all measurement units, frequency is the one that may be determined with the highest degree of accuracy. It equally allows precise measurements of other physical and technical quantities, whenever they can be measured in terms of frequency.This volume covers the central methods and techniques relevant for frequency standards developed in physics, electronics, quantum electronics, and statistics. After a review of the basic principles, the book looks at the realisation of commonly used components. It then continues with the description and characterisation of important frequency standards

  3. Portable atomic frequency standard based on coherent population trapping (United States)

    Shi, Fan; Yang, Renfu; Nian, Feng; Zhang, Zhenwei; Cui, Yongshun; Zhao, Huan; Wang, Nuanrang; Feng, Keming


    In this work, a portable atomic frequency standard based on coherent population trapping is designed and demonstrated. To achieve a portable prototype, in the system, a single transverse mode 795nm VCSEL modulated by a 3.4GHz RF source is used as a pump laser which generates coherent light fields. The pump beams pass through a vapor cell containing atom gas and buffer gas. This vapor cell is surrounded by a magnetic shield and placed inside a solenoid which applies a longitudinal magnetic field to lift the Zeeman energy levels' degeneracy and to separate the resonance signal, which has no first-order magnetic field dependence, from the field-dependent resonances. The electrical control system comprises two control loops. The first one locks the laser wavelength to the minimum of the absorption spectrum; the second one locks the modulation frequency and output standard frequency. Furthermore, we designed the micro physical package and realized the locking of a coherent population trapping atomic frequency standard portable prototype successfully. The short-term frequency stability of the whole system is measured to be 6×10-11 for averaging times of 1s, and reaches 5×10-12 at an averaging time of 1000s.

  4. Mercury Atomic Frequency Standards for Space Based Navigation and Timekeeping (United States)

    Tjoelker, R. L.; Burt, E. A.; Chung, S.; Hamell, R. L.; Prestage, J. D.; Tucker, B.; Cash, P.; Lutwak, R.


    A low power Mercury Atomic Frequency Standard (MAFS) has been developed and demonstrated on the path towards future space clock applications. A self contained mercury ion breadboard clock: emulating flight clock interfaces, steering a USO local oscillator, and consuming approx 40 Watts has been operating at JPL for more than a year. This complete, modular ion clock instrument demonstrates that key GNSS size, weight, and power (SWaP) requirements can be achieved while still maintaining short and long term performance demonstrated in previous ground ion clocks. The MAFS breadboard serves as a flexible platform for optimizing further space clock development and guides engineering model design trades towards fabrication of an ion clock for space flight.

  5. Hg(+) Frequency Standards (United States)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute


    In this paper we review the development of Hg(+) microwave frequency standards for use in high reliability and continuous operation applications. In recent work we have demonstrated short-term frequency stability of 3 x 10(exp -14)/nu(sub tau) when a cryogenic oscillator of stability 2-3 x 10(exp 15) was used a the local oscillator. The trapped ion frequency standard employs a Hg-202 discharge lamp to optically pump the trapped Hg(+)-199 clock ions and a helium buffer gas to cool the ions to near room temperature. We describe a small Hg(+) ion trap based frequency standard with an extended linear ion trap (LITE) architecture which separates the optical state selection region from the clock resonance region. This separation allows the use of novel trap configurations in the resonance region since no optical pumping is carried out there. A method for measuring the size of an ion cloud inside a linear trap with a 12-rod trap is currently being investigated. At approx. 10(exp -12), the 2nd order Doppler shift for trapped mercury ion frequency standards is one of the largest frequency offsets and its measurement to the 1% level would represent an advance in insuring the very long-term stability of these standards to the 10(exp -14) or better level. Finally, we describe atomic clock comparison experiments that can probe for a time variation of the fine structure constant, alpha = e(exp 2)/2(pi)hc, at the level of 10(exp -20)/year as predicted in some Grand Unified String Theories.

  6. Dick Effect in a Microwave Frequency Standard Based on Laser-Cooled 113Cd+ Ions (United States)

    Zhang, Jian-Wei; Miao, Kai; Wang, Li-Jun


    The Dick effect is one of the main limits to the frequency stability of a passive frequency standard, especially for the fountain clock and ion clock operated in pulsed mode which require unavoidable dead time during interrogation. Here we measure the phase noise of the interrogation oscillator applied in the microwave frequency standard based on laser-cooled 113Cd+ ions, and analyze the Allan deviation limited by the Dick effect. The results indicate that the Dick effect is one of the key issues for the cadmium ion clock to reach expected frequency stability. This problem can be resolved by interrogating the local oscillator continuously with two ion traps.

  7. Microfabricated ion frequency standard (United States)

    Schwindt, Peter; Biedermann, Grant; Blain, Matthew G.; Stick, Daniel L.; Serkland, Darwin K.; Olsson, III, Roy H.


    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  8. Laser frequency standards based on gas-filled hollow-core fibres

    DEFF Research Database (Denmark)

    Triches, Marco

    within precision spectroscopy with the scope of developing a fiber-based, portable optical frequency standard in the telecommunication band. Nowadays, portable optical frequency standards are important not only in metrology and telecommunication industry but also for remote sensing applications. Since...... technology, which has been widely investigated in the past decades, using many different molecular and atomic transitions as optical reference. One of the recommended references in the telecommunication region of the light spectrum is given by a specific absorption line in 13C2H2 acetylene. However, many...... other molecular references (e.g. methane and carbon dioxide) maybe interesting for remote sensing applications in the near infrared region. Typically, molecules are weakly absorbing in the telecommunication band and, hence, they require a long interaction length to be detected. For these reasons...

  9. Portable optical frequency standard based on sealed gas-filled hollow-core fiber using a novel encapsulation technique

    DEFF Research Database (Denmark)

    Triches, Marco; Brusch, Anders; Hald, Jan


    A portable stand-alone optical frequency standard based on a gas-filled hollow-core photonic crystal fiber is developed to stabilize a fiber laser to the 13C2H2 P(16) (ν1 + ν3) transition at 1542 nm using saturated absorption. A novel encapsulation technique is developed to permanently seal...

  10. A Comparison of AOP Classification Based on Difficulty, Importance, and Frequency by Cluster Analysis and Standardized Mean

    International Nuclear Information System (INIS)

    Choi, Sun Yeong; Jung, Wondea


    In Korea, there are plants that have more than one-hundred kinds of abnormal operation procedures (AOPs). Therefore, operators have started to recognize the importance of classifying the AOPs. They should pay attention to those AOPs required to take emergency measures against an abnormal status that has a more serious effect on plant safety and/or often occurs. We suggested a measure of prioritizing AOPs for a training purpose based on difficulty, importance, and frequency. A DIF analysis based on how difficult the task is, how important it is, and how frequently they occur is a well-known method of assessing the performance, prioritizing training needs and planning. We used an SDIF-mean (Standardized DIF-mean) to prioritize AOPs in the previous paper. For the SDIF-mean, we standardized the three kinds of data respectively. The results of this research will be utilized not only to understand the AOP characteristics at a job analysis level but also to develop an effective AOP training program. The purpose of this paper is to perform a cluster analysis for an AOP classification and compare the results through a cluster analysis with that by a standardized mean based on difficulty, importance, and frequency. In this paper, we categorized AOPs into three groups by a cluster analysis based on D, I, and F. Clustering is the classification of similar objects into groups so that each group shares some common characteristics. In addition, we compared the result by the cluster analysis in this paper with the classification result by the SDIF-mean in the previous paper. From the comparison, we found that a reevaluation can be required to assign a training interval for the AOPs of group C' in the previous paper those have lower SDIF-mean. The reason for this is that some of the AOPs of group C' have quite high D and I values while they have the lowest frequencies. From an educational point of view, AOPs in group which have the highest difficulty and importance, but

  11. Design and industrial production of frequency standards in the USSR (United States)

    Demidov, Nikolai A.; Uljanov, Adolph A.


    Some aspects of research development and production of quantum frequency standards, carried out in QUARTZ Research and Production Association (RPA), Gorky, U.S.S.R., were investigated for the last 25 to 30 years. During this period a number of rubidium and hydrogen frequency standards, based on the active maser, were developed and put into production. The first industrial model of a passive hydrogen maser was designed in the last years. Besides frequency standards for a wide application range, RPA QUARTZ investigates metrological frequency standards--cesium standards with cavity length 1.9 m and hydrogen masers with a flexible storage bulb.

  12. A fractional-N frequency synthesizer-based multi-standard I/Q carrier generation system in 0.13 μm CMOS

    International Nuclear Information System (INIS)

    Lou Wenfeng; Geng Zhiqing; Feng Peng; Wu Nanjian


    This paper proposes a sigma-delta fractional-N frequency synthesizer-based multi-standard I/Q carrier generation system. With reasonable frequency planning, the system can be used in multi-standard wireless communication applications (GSM, WCDMA, GPRS, TD-SCDMA, WLAN (802.11a/b/g)). The implementation is achieved by a 0.13 μm RF CMOS process. The measured results demonstrate that three quadrature VCOs (QVCO) continuously cover the frequency from 3.1 to 6.1 GHz (65.2%), and through the successive divide-by-2 prescalers to achieve the frequency from 0.75 to 6.1 GHz continuously. The chip was fully integrated with the exception of an off-chip filter. The entire chip area is only 3.78 mm 2 , and the system consumes a 21.7 mA - 1.2 V supply without output buffers. The lock-in time of the PLL frequency synthesizer is less than 4 μs over the entire frequency range with a direct frequency presetting technique and the auxiliary non-volatile memory (NVM) can store the digital configuration signal of the system, including presetting signals to avoid the calibration process case by case. (semiconductor integrated circuits)

  13. A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection

    International Nuclear Information System (INIS)

    Oates, C.W.; Bondu, F.; Fox, R.W.; Hollberg, L.


    We report an optical frequency standard at 657 nm based on laser-cooled/trapped Ca atoms. The system consists of a novel, compact magneto-optic trap which uses 50 mW of frequency-doubled diode laser light at 423 nm and can trap >10 7 Ca atoms in 20 ms. High resolution spectroscopy on this atomic sample using the narrow 657 nm intercombination line resolves linewidths (FWHM) as narrow as 400 Hz, the natural linewidth of the transition. The spectroscopic signal-to-noise ratio is enhanced by an order of magnitude with the implementation of a ''shelving'' detection scheme on the 423 nm transition. Our present apparatus achieves a fractional frequency instability of 5 x 10 -14 in 1 s with a potential atom shot-noise-limited performance of 10 -16 τ -1/2 and excellent prospects for high accuracy. (orig.)

  14. Atomic frequency standard relativistic Doppler shift experiment (United States)

    Peters, H. E.; Reinhardt, V. S.


    An experiment has been performed to measure possible space anisotropy as it would effect the frequency of a cesium atomic beam standard clock in a laboratory on earth due to motion relative to external coordinate frames. The cesium frequency was measured as a function of orientation with respect to an atomic hydrogen maser standard. Over a period of 34 days 101 measurements were made. The results are consistent with a conclusion that no general orientation dependance attributable to spacial anisotropy was observed. It is shown that both the airplane clock results, and the null results for the atomic beam clock, are consistent with Einstein general or special relativity, or with the Lorentz transformations alone.

  15. Dual Transformer Model based on Standard Circuit Elements for the Study of Low- and Mid-frequency Transients (United States)

    Jazebi, Saeed

    This thesis is a step forward toward achieving the final objective of creating a fully dual model for transformers including eddy currents and nonlinearities of the iron core using the fundamental electrical components already available in the EMTP-type programs. The model is effective for the study of the performance of transformers during power system transients. This is very important for transformer designers, because the insulation of transformers is determined with the overvoltages caused by lightning or switching operations. There are also internally induced transients that occur when a switch is actuated. For example switching actions for reconfiguration of distribution systems that offers economic advantages, or protective actions to clear faults and large short-circuit currents. Many of the smart grid concepts currently under development by many utilities rely heavily on switching to optimize resources that produce transients in the system. On the other hand, inrush currents produce mechanical forces which deform transformer windings and cause malfunction of the differential protection. Also, transformer performance under ferroresonance and geomagnetic induced currents are necessary to study. In this thesis, a physically consistent dual model applicable to single-phase two-winding transformers is proposed. First, the topology of a dual electrical equivalent circuit is obtained from the direct application of the principle of duality. Then, the model parameters are computed considering the variations of the transformer electromagnetic behavior under various operating conditions. Current modeling techniques use different topological models to represent diverse transient situations. The reversible model proposed in this thesis unifies the terminal and topological equivalent circuits. The model remains invariable for all low-frequency transients including deep saturation conditions driven from any of the two windings. The very high saturation region of the

  16. Telemetry Standards, RCC Standard 106-17. Chapter 3. Frequency Division Multiplexing Telemetry Standards (United States)


    reference signal may be used as a detranslation frequency in a constant-bandwidth format. If the reference signal is recorded on a separate tape track...characteristics such as amplitude and phase nonlinearities of the transmitter, receiver, magnetic tape recorder /reproducer, or other system components...Telemetry Standards, RCC Standard 106-17 Chapter 3, July 2017 A-4 The use of magnetic tape recorders for recording a subcarrier multiplex may degrade the

  17. A graphene based frequency quadrupler (United States)

    Cheng, Chuantong; Huang, Beiju; Mao, Xurui; Zhang, Zanyun; Zhang, Zan; Geng, Zhaoxin; Xue, Ping; Chen, Hongda


    Benefit from exceptional electrical transport properties, graphene receives worldwide attentions, especially in the domain of high frequency electronics. Due to absence of effective bandgap causing off-state the device, graphene material is extraordinarily suitable for analog circuits rather than digital applications. With this unique ambipolar behavior, graphene can be exploited and utilized to achieve high performance for frequency multipliers. Here, dual-gated graphene field-effect transistors have been firstly used to achieve frequency quadrupling. Two Dirac points in the transfer curves of the designed GFETs can be observed by tuning top-gate voltages, which is essential to generate the fourth harmonic. By applying 200 kHz sinusoid input, arround 50% of the output signal radio frequency power is concentrated at the desired frequency of 800 kHz. Additionally, in suitable operation areas, our devices can work as high performance frequency doublers and frequency triplers. Considered both simple device structure and potential superhigh carrier mobility of graphene material, graphene-based frequency quadruplers may have lots of superiorities in regards to ultrahigh frequency electronic applications in near future. Moreover, versatility of carbon material system is far-reaching for realization of complementary metal-oxide-semiconductor compatible electrically active devices.

  18. Investigation of the receivability of VLF standard time and frequency ...

    African Journals Online (AJOL)

    This study is on the receivability of some standard time and frequency signals in the VLF range in Zaria, Nigeria. Signal field strengths of various stations were estimated, and a suitable radio receiving system was set up to receive them. Using the assembled receiver, some of the transmissions, including the Omega W/L at ...

  19. The JPL Hg(sup +) Extended Linear Ion Trap Frequency Standard: Status, Stability, and Accuracy Prospects (United States)

    Tjoelker, R. L.; Prestage, J. D.; Maleki, L.


    Microwave frequency standards based on room temperature (sup 199)Hg(sup +) ions in a Linear Ion Trap (LITS) presently achieve a Signal to Noise and line Q inferred short frequency stability. Long term stability has been measured for averaging intervals up to 5 months with apparent sensitivity to variations in ion number/temperature limiting the flicker floor.

  20. Hydrogenic systems for calculable frequency standards. Status and options

    International Nuclear Information System (INIS)

    Flowers, J.; Klein, H.; Knight, D.


    The study of hydrogen and hydrogenic (one-electron) ions is an area of rapid progress and one of great potential for future frequency standards. In 1997, the two-photon 1S-2S transition in the hydrogen atom was included in the list of approved radiations for the practical realisation of the metre, and since then revolutions in optical frequency metrology have reduced the uncertainty in its frequency by more than an order of magnitude, to 1.8 parts in 10 14 . Hydrogenic systems are simple enough that the frequencies of their transitions can be calculated in terms of the Rydberg constant with an accuracy that can approach or exceed the measurement uncertainty. Transitions in such systems can be thought of as forming a natural frequency scale, and offer the prospect of a set of quantum frequency standards which are directly related to the fundamental constants. The Rydberg constant is currently best determined from optical frequency measurements in hydrogen. However, to take full advantage of the recent high accuracy 1S-2S frequency measurement requires: Improved measurements of other transition frequencies in the hydrogen atom; Reduced uncertainty in the quantum electrodynamic (QED) contributions to the energy levels, in particular the two-loop binding corrections; An improved value for the proton charge radius. In He + and one-electron systems of higher atomic number Z, the two-loop binding corrections are a fractionally larger part of the Lamb shift due to their rapid scaling with Z. Measurements of the Lamb shift in medium-Z hydrogenic ions can therefore provide tests of these corrections, and feed in to the theoretical understanding of hydrogen itself Although both theory and experiment are less accurate at higher Z, there is the potential for a new range of X-ray standards, providing that the QED corrections are well understood and new absolute measurement techniques can be developed. A number of areas are suggested for future investigation: Improving the

  1. A Re-Evaluation of the Relativistic Redshift on Frequency Standards at NIST, Boulder, Colorado, USA (United States)

    Pavlis, N. K.; Weiss, M. A.


    Primary frequency standards that realize the definition of the second based on the Caesium (Cs) atom are used to steer International Atomic Time. According to the theory of relativity, their frequency should be adjusted to that at which these would operate, if located on the geoid. Current best standards for the current definition of the second are approaching uncertainties of one part in 1016. Optical frequency standards however are now reaching uncertainties of few parts in 1018 and are expected to lead to a new definition of the second. Their performance requires centimetre-level geoid accuracy, in order to calculate accurately the redshift frequency offset necessary for their inter-comparison. We re-evaluated the relativistic redshift of the frequency standards at NIST in Boulder, Colorado, USA, based on a recent precise GPS survey of several benchmarks on the roof of the building where these are housed, and on global and local geoid models supported by data from the GRACE and GOCE missions, including EGM2008, USGG2009, and USGG2012. We also evaluated the redshift offset based on the published NAVD88 geopotential number of the levelling benchmark Q407, after estimating the bias of the NAVD88 datum at our specific location. We present and discuss the results that we obtained using different methods, and provide our current estimate of the redshift offset and of its accuracy, considering the main error sources contributing to the total error budget. We compare our current estimates to those published by Pavlis and Weiss in 2003, using the data and models that were available at that time. We also discuss the prospects of using inter-connected ultra-precise frequency standards for the direct determination of geoid height differences, which may provide in the not-too-distant future an alternative approach for the establishment of vertical datums and the independent verification of the accuracy of global and local geoid models.

  2. A Simplified Laser and Optics System for Laser-Cooled RB Fountain Frequency Standards

    National Research Council Canada - National Science Library

    Kunz, P. D; Heavner, T. P; Jefferts, S. R


    ...) atomic fountain frequency standard. This system uses DFB (Distributed Feedback) diode lasers and a frequency offset-locking scheme to generate the optical frequencies needed for laser-cooling, launching, post-cooling, and detection of Rb atoms...

  3. Pursuing frequency standards and control: the invention of quartz clock technologies. (United States)

    Katzir, Shaul


    The quartz clock, the first to replace the pendulum as the time standard and later a ubiquitous and highly influential technology, originated in research on means for determining frequency for the needs of telecommunication and the interests of its users. This article shows that a few groups in the US, Britain, Italy and the Netherlands developed technologies that enabled the construction of the new clock in 1927-28. To coordinate complex and large communication networks, the monopolistic American Telephone and Telegraph Company, and national laboratories needed to determine and maintain a common 'standard' frequency measurement unit. Exploiting novel piezoelectric quartz methods and valve electronics techniques, researchers in these organizations constructed a new crystal-based frequency standard. To ensure its accuracy they compared it to an accepted absolute standard - an astronomical clock, constructing thereby the first quartz clock. Other groups, however, had different, though connected, technological aims, which originated from the diverse interests of the industrial, governmental and academic institutes to which they belonged, and for which they needed to measure, control and manipulate with frequencies of electric oscillations. The present article suggests a comparative examination of the research and development paths of these groups on their incentives, the technological and scientific resources they utilized, and the kind of research carried out in the various institutional settings.

  4. The PolyMAX Frequency-Domain Method: A New Standard for Modal Parameter Estimation?

    Directory of Open Access Journals (Sweden)

    Bart Peeters


    Full Text Available Recently, a new non-iterative frequency-domain parameter estimation method was proposed. It is based on a (weighted least-squares approach and uses multiple-input-multiple-output frequency response functions as primary data. This so-called “PolyMAX” or polyreference least-squares complex frequency-domain method can be implemented in a very similar way as the industry standard polyreference (time-domain least-squares complex exponential method: in a first step a stabilisation diagram is constructed containing frequency, damping and participation information. Next, the mode shapes are found in a second least-squares step, based on the user selection of stable poles. One of the specific advantages of the technique lies in the very stable identification of the system poles and participation factors as a function of the specified system order, leading to easy-to-interpret stabilisation diagrams. This implies a potential for automating the method and to apply it to “difficult” estimation cases such as high-order and/or highly damped systems with large modal overlap. Some real-life automotive and aerospace case studies are discussed. PolyMAX is compared with classical methods concerning stability, accuracy of the estimated modal parameters and quality of the frequency response function synthesis.

  5. The Brazilian time and frequency atomic standards program

    Directory of Open Access Journals (Sweden)

    Mushtaq Ahmed


    Full Text Available Cesium atomic beam clocks have been the workhorse for many demanding applications in science and technology for the past four decades. Tests of the fundamental laws of physics and the search for minute changes in fundamental constants, the synchronization of telecommunication networks, and realization of the satellite-based global positioning system would not be possible without atomic clocks. The adoption of optical cooling and trapping techniques, has produced a major advance in atomic clock precision. Cold-atom fountain and compact cold-atom clocks have also been developed. Measurement precision of a few parts in 10(15 has been demonstrated for a cold-atom fountain clock. We present here an overview of the time and frequency metrology program based on cesium atoms under development at USP São Carlos. This activity consists of construction and characterization of atomic-beam, and several variations of cold-atom clocks. We discuss the basic working principles, construction, evaluation, and important applications of atomic clocks in the Brazilian program.Relógios atômicos de feixe de Césio têm sido a base para diversas aplicações em ciência e tecnologia nas últimas quatro décadas. Testes de leis fundamentais de física, buscas por mínimas variações em constantes fundamentais, sincronização de redes de telecomunicações e o funcionamento do sistema de posicionamento global, baseado em satélites de navegação, não seriam possíveis sem os relógios atômicos. A adoção de técnicas de aprisionamento e resfriamento ópticos tem permitido um grande avanço na precisão dos relógios atômicos. Chafarizes de átomos frios e relógios compactos de átomos frios também têm sido desenvolvidos. Precisões de medida de algumas partes em 1015 foram demonstradas para relógios do tipo chafariz de átomos frios. Apresentamos uma visão geral do programa de metrologia de tempo e freqüência baseado em átomos de césio, em


    KAUST Repository

    Abdulwahed, Naif B.


    This thesis introduces a new chaos-based Advanced Encryption Standard (AES). The AES is a well-known encryption algorithm that was standardized by U.S National Institute of Standard and Technology (NIST) in 2001. The thesis investigates and explores the behavior of the AES algorithm by replacing two of its original modules, namely the S-Box and the Key Schedule, with two other chaos- based modules. Three chaos systems are considered in designing the new modules which are Lorenz system with multiplication nonlinearity, Chen system with sign modules nonlinearity, and 1D multiscroll system with stair case nonlinearity. The three systems are evaluated on their sensitivity to initial conditions and as Pseudo Random Number Generators (PRNG) after applying a post-processing technique to their output then performing NIST SP. 800-22 statistical tests. The thesis presents a hardware implementation of dynamic S-Boxes for AES that are populated using the three chaos systems. Moreover, a full MATLAB package to analyze the chaos generated S-Boxes based on graphical analysis, Walsh-Hadamard spectrum analysis, and image encryption analysis is developed. Although these S-Boxes are dynamic, meaning they are regenerated whenever the encryption key is changed, the analysis results show that such S-Boxes exhibit good properties like the Strict Avalanche Criterion (SAC) and the nonlinearity and in the application of image encryption. Furthermore, the thesis presents a new Lorenz-chaos-based key expansion for the AES. Many researchers have pointed out that there are some defects in the original key expansion of AES and thus have motivated such chaos-based key expansion proposal. The new proposed key schedule is analyzed and assessed in terms of confusion and diffusion by performing the frequency and SAC test respectively. The obtained results show that the new proposed design is more secure than the original AES key schedule and other proposed designs in the literature. The proposed

  7. Difference-Equation-Based Digital Frequency Synthesizer

    Directory of Open Access Journals (Sweden)

    Lu-Ting Ko


    Full Text Available This paper presents a novel algorithm and architecture for digital frequency synthesis (DFS. It is based on a simple difference equation. Simulation results show that the proposed DFS algorithm is preferable to the conventional phase-locked-loop frequency synthesizer and the direct digital frequency synthesizer in terms of the spurious-free dynamic range (SFDR and the peak-signal-to-noise ratio (PSNR. Specifically, the results of SFDR and PSNR are more than 186.91 dBc and 127.74 dB, respectively. Moreover, an efficient DFS architecture for VLSI implementation is also proposed, which has the advantage of saving hardware cost and power consumption.

  8. Frequency Based Fault Detection in Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob


    In order to obtain lower cost of energy for wind turbines fault detection and accommodation is important. Expensive condition monitoring systems are often used to monitor the condition of rotating and vibrating system parts. One example is the gearbox in a wind turbine. This system is operated...... in parallel to the control system, using different computers and additional often expensive sensors. In this paper a simple filter based algorithm is proposed to detect changes in a resonance frequency in a system, exemplified with faults resulting in changes in the resonance frequency in the wind turbine...... turbine fault detection and fault tolerant control benchmark model, in which one of the included faults results in a change in the gear box resonance frequency. This evaluation shows the potential of the proposed scheme to monitor the condition of wind turbine gear boxes in the existing control system....

  9. Design and test of the microwave cavity in an optically-pumped Rubidium beam frequency standard (United States)

    Liu, Chang; Wang, Yan-Hui


    We are developing a compact rubidium atomic beam frequency standard with optical pumping and detection. The cavity for microwave interrogation is an important part of the clock. The cavity in our design is a Ramsey-type, E-bend one, which is the same as the conventional method in most cesium beam clocks. Requirements for the design are proposed based on the frequency shift associated with the cavity. The basic structure of the cavity is given by theoretical analysis and detailed dimensions are determined by means of electromagnetic field simulation with the help of commercial software. The cavity is manufactured and fabricated successfully. The preliminary test result of the cavity is given, which is in good agreement with the simulation. The resonant frequency is 6.835 GHz, equal to the clock transition frequency of 87Rb, and the loaded quality factor is 500. These values are adjustable with posts outside the cavity. Estimations on the Ramsey line width and several frequency shifts are made. Project supported by the National Natural Science Foundation of China (Grant No. 11174015).

  10. Frequency-based Vehicle Idling Detection


    Kai-Chao Yang; Chih-Ting Kuo; Chun-Yu Chen; Chih-Chyau Yang; Chien-Ming Wu; Chun-Ming Huang


    Continuous increases in fuel prices and environmental awareness have raised the importance of reducing vehicle emissions, with many national governments passing anti-idling laws. To reduce air pollution and fuel consumption, we propose a frequency-based vehicle idling detection method to remind drivers to turn off the engine vehicle idling exceeds a certain time threshold. The method is implemented in existing handheld devices without any modification to the car or engine, making the solution...

  11. 78 FR 45479 - Frequency Response and Frequency Bias Setting Reliability Standard (United States)


    ... through . Documents created electronically using word processing software should be...\\ NERC Petition at 11. Additional background information about the engineering concepts that pertain to... such trends, and any change toward further frequency response decline will justify revisiting the issue...

  12. [Frequency-domain quantification based on the singular value decomposition and frequency-selection for magnetic resonance spectra]. (United States)

    Men, Kuo; Quan, Hong; Yang, Peipei; Cao, Ting; Li, Weihao


    The frequency-domain magnetic resonance spectroscopy (MRS) is achieved by the Fast Fourier Transform (FFT) of the time-domain signals. Usually we are only interested in the portion lying in a frequency band of the whole spectrum. A method based on the singular value decomposition (SVD) and frequency-selection is presented in this article. The method quantifies the spectrum lying in the interested frequency band and reduces the interference of the parts lying out of the band in a computationally efficient way. Comparative experiments with the standard time-domain SVD method indicate that the method introduced in this article is accurate and timesaving in practical situations.

  13. Analysis of thermal radiation in ion traps for optical frequency standards (United States)

    Doležal, M.; Balling, P.; Nisbet-Jones, P. B. R.; King, S. A.; Jones, J. M.; Klein, H. A.; Gill, P.; Lindvall, T.; Wallin, A. E.; Merimaa, M.; Tamm, C.; Sanner, C.; Huntemann, N.; Scharnhorst, N.; Leroux, I. D.; Schmidt, P. O.; Burgermeister, T.; Mehlstäubler, T. E.; Peik, E.


    In many of the high-precision optical frequency standards with trapped atoms or ions that are under development to date, the ac Stark shift induced by thermal radiation leads to a major contribution to the systematic uncertainty. We present an analysis of the inhomogeneous thermal environment experienced by ions in various types of ion traps. Finite element models which allow the determination of the temperature of the trap structure and the temperature of the radiation were developed for five ion trap designs, including operational traps at PTB and NPL and further optimized designs. Models were refined based on comparison with infrared camera measurement until an agreement of better than 10% of the measured temperature rise at critical test points was reached. The effective temperature rises of the radiation seen by the ion range from 0.8 K to 2.1 K at standard working conditions. The corresponding fractional frequency shift uncertainties resulting from the uncertainty in temperature are in the 10-18 range for optical clocks based on the Sr+ and Yb+ E2 transitions, and even lower for Yb+ E3, In+ and Al+. Issues critical for heating of the trap structure and its predictability were identified and design recommendations developed.

  14. Frequency based assessment of surgical activities

    Directory of Open Access Journals (Sweden)

    Maktabi Marianne


    Full Text Available In hospitals the duration of surgeries plays a decisive role in many areas, such as patient safety or financial aspects. By utilizing accurate automated online prediction efficient surgical patient care and effective resource management can be attained. In this work several surgical activities during an intervention were examined for their potential to forecast the remaining intervention time. The method used was based on analysing in the frequency domain of time series which represented the status of surgical activities during an intervention. A nonparametric estimation of power spectral density was calculated for single surgical tasks during an intervention. The power spectral densities (PSD of different surgical activities were compared in a leave-one-out cross validation of forty surgical workflow recordings of lumbar discectomies. The results showed that the activity irrigate with a mean prediction error of 26 min 23 s is best-suited for determining the remainder of the intervention. To construct a scheduling support for a wider range of surgery types the actions conducted by the surgeon’s right and left hand would eminently be more suitable; the error of the action right hand was 41 min 39 s, yet. In conclusion sophistication into the presented frequency based method might support time and resource management in a general manner.

  15. Potential of electric quadrupole transitions in radium isotopes for single-ion optical frequency standards

    NARCIS (Netherlands)

    Versolato, O. O.; Wansbeek, L. W.; Jungmann, K.; Timmermans, R. G. E.; Willmann, L.; Wilschut, H. W.


    We explore the potential of the electric quadrupole transitions 7s (2)S(1/2)-(6)d (2)D(3/2), 6d (2)D(5/2) in radium isotopes as single-ion optical frequency standards. The frequency shifts of the clock transitions due to external fields and the corresponding uncertainties are calculated. Several

  16. Real-time approximation of the second by industrial cesium-beam frequency standards

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jan; Čemusová, Blanka

    č. 18 (2002), s. 33-39 ISSN 1405-9967 R&D Projects: GA ČR GA102/02/0672 Institutional research plan: CEZ:AV0Z2067918 Keywords : atomic clocks * frequency standards * frequency stability Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  17. Dynamic phasor based frequency scanning for grid-connected ...

    Indian Academy of Sciences (India)

    Dynamic phasor based frequency scanning for grid-connected power electronic systems ... Frequency scanning; harmonic stability; impedance-based analysis; dynamic phasors; powerelectronics- based power system ... Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India ...

  18. Network-Based and Binless Frequency Analyses.

    Directory of Open Access Journals (Sweden)

    Sybil Derrible

    Full Text Available We introduce and develop a new network-based and binless methodology to perform frequency analyses and produce histograms. In contrast with traditional frequency analysis techniques that use fixed intervals to bin values, we place a range ±ζ around each individual value in a data set and count the number of values within that range, which allows us to compare every single value of a data set with one another. In essence, the methodology is identical to the construction of a network, where two values are connected if they lie within a given a range (±ζ. The value with the highest degree (i.e., most connections is therefore assimilated to the mode of the distribution. To select an optimal range, we look at the stability of the proportion of nodes in the largest cluster. The methodology is validated by sampling 12 typical distributions, and it is applied to a number of real-world data sets with both spatial and temporal components. The methodology can be applied to any data set and provides a robust means to uncover meaningful patterns and trends. A free python script and a tutorial are also made available to facilitate the application of the method.

  19. Optimal depth-based regional frequency analysis

    Directory of Open Access Journals (Sweden)

    H. Wazneh


    Full Text Available Classical methods of regional frequency analysis (RFA of hydrological variables face two drawbacks: (1 the restriction to a particular region which can lead to a loss of some information and (2 the definition of a region that generates a border effect. To reduce the impact of these drawbacks on regional modeling performance, an iterative method was proposed recently, based on the statistical notion of the depth function and a weight function φ. This depth-based RFA (DBRFA approach was shown to be superior to traditional approaches in terms of flexibility, generality and performance. The main difficulty of the DBRFA approach is the optimal choice of the weight function ϕ (e.g., φ minimizing estimation errors. In order to avoid a subjective choice and naïve selection procedures of φ, the aim of the present paper is to propose an algorithm-based procedure to optimize the DBRFA and automate the choice of ϕ according to objective performance criteria. This procedure is applied to estimate flood quantiles in three different regions in North America. One of the findings from the application is that the optimal weight function depends on the considered region and can also quantify the region's homogeneity. By comparing the DBRFA to the canonical correlation analysis (CCA method, results show that the DBRFA approach leads to better performances both in terms of relative bias and mean square error.

  20. Optimal depth-based regional frequency analysis (United States)

    Wazneh, H.; Chebana, F.; Ouarda, T. B. M. J.


    Classical methods of regional frequency analysis (RFA) of hydrological variables face two drawbacks: (1) the restriction to a particular region which can lead to a loss of some information and (2) the definition of a region that generates a border effect. To reduce the impact of these drawbacks on regional modeling performance, an iterative method was proposed recently, based on the statistical notion of the depth function and a weight function φ. This depth-based RFA (DBRFA) approach was shown to be superior to traditional approaches in terms of flexibility, generality and performance. The main difficulty of the DBRFA approach is the optimal choice of the weight function ϕ (e.g., φ minimizing estimation errors). In order to avoid a subjective choice and naïve selection procedures of φ, the aim of the present paper is to propose an algorithm-based procedure to optimize the DBRFA and automate the choice of ϕ according to objective performance criteria. This procedure is applied to estimate flood quantiles in three different regions in North America. One of the findings from the application is that the optimal weight function depends on the considered region and can also quantify the region's homogeneity. By comparing the DBRFA to the canonical correlation analysis (CCA) method, results show that the DBRFA approach leads to better performances both in terms of relative bias and mean square error.

  1. A re-evaluation of the relativistic redshift on frequency standards at NIST, Boulder, Colorado, USA (United States)

    Pavlis, Nikolaos K.; Weiss, Marc A.


    We re-evaluated the relativistic redshift correction applicable to the frequency standards at the National Institute of Standards and Technology (NIST) in Boulder, Colorado, USA, based on a precise GPS survey of three benchmarks on the roof of the building where these standards had been previously housed, and on global and regional geoid models supported by data from the GRACE and GOCE missions, including EGM2008, USGG2009, and USGG2012. We also evaluated the redshift offset based on the published NAVD88 geopotential number of the leveling benchmark Q407 located on the side of Building 1 at NIST, Boulder, Colorado, USA, after estimating the bias of the NAVD88 datum at our specific location. Based on these results, our current best estimate of the relativistic redshift correction, if frequency standards were located at the height of the leveling benchmark Q407 outside the second floor of Building 1, with respect to the EGM2008 geoid whose potential has been estimated to be {{W}0}=62 636 855.69 {{m}2} {{s}-2} , is equal to (-1798.50  ±  0.06)  ×  10-16. The corresponding value, with respect to an equipotential surface defined by the International Astronomical Union’s (IAU) adopted value of {{W}0}=62 636 856.0 {{m}2} {{s}-2} , is (-1798.53  ±  0.06)  ×  10-16. These values are comparable to the value of (-1798.70  ±  0.30)  ×  10-16, estimated by Pavlis and Weiss in 2003, with respect to an equipotential surface defined by {{W}0}=62 636 856.88 {{m}2} {{s}-2} . The minus sign implies that clocks run faster in the laboratory in Boulder than a corresponding clock located on the geoid. Contribution of US government, not subject to Copyright.

  2. Revision of NATO standardization agreement (STANAG) 2345 'Evaluation and control of personnel exposure to radio frequency fields'

    International Nuclear Information System (INIS)

    Klauenberg, B.J.; Merritt, J.H.; Gardner, R.


    North Atlantic Treaty Organization (NATO) joint operations, which reach across borders of countries that have different standards, could present a logistical nightmare were it not for standardization agreements, called STANAGs. STANAGs are established to provide uniform policies and procedures to insure international cooperation and to maintain the most effective levels of commonalty, compatibility, interchange-ability and inter-operability in military operations. Since signals produced by radar and communications equipment are not contained by national boundaries, a STANAG for Radiofrequency Radiation (RFR) is essential. The STANAG-2345 Control and Evaluation of Personnel Exposure to Radio Frequency Radiation. establishes criteria for the evaluation and control of personnel exposure to radio-frequency radiation within NATO forces. It defines hazard assessment, allows for control measures, indicates actions in case of accidental overexposures and establishes permissible exposure limits. The promulgation of this STANAG in 1979 was the culmination of deliberations among scientists and health professionals within the NATO community that began in May 1973. At the time of adoption it contained guidance based on the then state-of-knowledge. The standard has not been updated since it was issued, despite great advances in the knowledge-base defining health and safety aspects of RFR. Several standards setting groups recently updated their standards, including the American National Standards Institute revised safety guidance for RFR. This has left a large technology gap between the newer standards and STANAG 2345. (author)

  3. Silicon-Chip-Based Optical Frequency Combs (United States)


    microresonator,” Phys. Rev. Lett. 107, 063901 (2011). [54] H. Jung, et al., “Optical frequency comb generation from aluminum nitride microring resonator...supercontinuum generation in silicon nitride waveguides. 15. SUBJECT TERMS Nonlinear optics, parametric mixing, nanophotonics, optical frequency combs 16...Finally, we investigated comb generation via coherent supercontinuum generation in silicon nitride waveguides. Our research effort illustrates that the

  4. A Three-Dimensional Model of the Gas-Cell Atomic Frequency Standard. (United States)


    Clock Model Calculations ......................................................... 8 11. Exponents for Power-Law Formulas: oy -P a, S -P B, and PY...iz not substantiated oy the three-dimensional model. Considering Fig. 4 and Table IIi, it is more accurate tu state that the clock’s frequency offset...1985). [71 H. E. Williams, T. M. Kwon and T. McClelland, "Compact rectangular cavity for rubidium vapor cell frequency standards," Proceeding of the

  5. Mercury Trapped Ion Frequency Standard for Ultra-Stable Reference Applications (United States)

    Burt, Eric A. (Inventor); Hamell, Robert L. (Inventor); Tucker, Blake C. (Inventor); Larsen, Kameron (Inventor); Tjoelker, Robert L. (Inventor)


    An atomic clock including an ion trap assembly, a C-field coil positioned for generating a first magnetic field in the interrogation region of the ion trap assembly, a compensation coil positioned for generating a second magnetic field in the interrogation region, wherein the combination of the first and second magnetic fields produces an ion number-dependent second order Zeeman shift (Zeeman shift) in the resonance frequency that is opposite in sign to an ion number-dependent second order Doppler shift (Doppler shift) in the resonance frequency, the C-field coil has a radius selected using data indicating how changes in the radius affect an ion-number-dependent shift in the resonance frequency, such that a difference in magnitude between the Doppler shift and the Zeeman shift is controlled or reduced, and the resonance frequency, including the adjustment by the Zeeman shift, is used to obtain the frequency standard.

  6. SUBTLEX-ESP: Spanish Word Frequencies Based on Film Subtitles (United States)

    Cuetos, Fernando; Glez-Nosti, Maria; Barbon, Analia; Brysbaert, Marc


    Recent studies have shown that word frequency estimates obtained from films and television subtitles are better to predict performance in word recognition experiments than the traditional word frequency estimates based on books and newspapers. In this study, we present a subtitle-based word frequency list for Spanish, one of the most widely spoken…

  7. MFAM: Multiple Frequency Adaptive Model-Based Indoor Localization Method. (United States)

    Tuta, Jure; Juric, Matjaz B


    This paper presents MFAM (Multiple Frequency Adaptive Model-based localization method), a novel model-based indoor localization method that is capable of using multiple wireless signal frequencies simultaneously. It utilizes indoor architectural model and physical properties of wireless signal propagation through objects and space. The motivation for developing multiple frequency localization method lies in the future Wi-Fi standards (e.g., 802.11ah) and the growing number of various wireless signals present in the buildings (e.g., Wi-Fi, Bluetooth, ZigBee, etc.). Current indoor localization methods mostly rely on a single wireless signal type and often require many devices to achieve the necessary accuracy. MFAM utilizes multiple wireless signal types and improves the localization accuracy over the usage of a single frequency. It continuously monitors signal propagation through space and adapts the model according to the changes indoors. Using multiple signal sources lowers the required number of access points for a specific signal type while utilizing signals, already present in the indoors. Due to the unavailability of the 802.11ah hardware, we have evaluated proposed method with similar signals; we have used 2.4 GHz Wi-Fi and 868 MHz HomeMatic home automation signals. We have performed the evaluation in a modern two-bedroom apartment and measured mean localization error 2.0 to 2.3 m and median error of 2.0 to 2.2 m. Based on our evaluation results, using two different signals improves the localization accuracy by 18% in comparison to 2.4 GHz Wi-Fi-only approach. Additional signals would improve the accuracy even further. We have shown that MFAM provides better accuracy than competing methods, while having several advantages for real-world usage.

  8. Research-based standards for accessible housing

    DEFF Research Database (Denmark)

    Helle, Tina; Iwarsson, Susanne; Brandt, Åse

    Since standards for accessible housing seldom are manifestly based on research and vary cross nationally, it is important to examine if there exists any scientific evidence, supporting these standards. Thus, one aim of this study was to review the literature in search of such scientific evidence...... to inform research-based accessibility standards is available?, a descriptive literature review was conducted. The studies should be empirically based, published during 1990 to 2010, target adult persons, published in peer reviewed journals or, as architectural competitions, PhD-thesis or conference...... presentations. We contacted 22 leading researchers and resource persons, conducted a database search in CINAHL, PubMed, PsyINFO, socINDEX, ISI and Google Scholar, using 28 search terms in 81 combinations and hand searched 22 relevant scientific journals. The explorative part of this study was based on empirical...

  9. Optical frequency comb generation for DWDM transmission over 25- to 50-km standard single-mode fiber (United States)

    Ullah, Rahat; Bo, Liu; Yaya, Mao; Ullah, Sibghat; Khan, Muhammad Saad; Tian, Feng; Ali, Amjad; Ahmad, Ibrar; Xiangjun, Xin


    Dense wavelength division multiplexed (DWDM) transmission equal to 1.2 Tbps over 25 to 50 km across standard single-mode fiber (SSMF) in the C band is performed based on an optical frequency comb generator. Sixty-one flattened optical frequency tones were realized with 30-GHz frequency spacing, high side-mode suppression ratio over 35 dB, and minimum amplitude difference was realized using amplitude modulator for first time in cascade mode with two Mach-Zehnder modulators (MZMs) where all the modulators were tailored by RF signals. 20×61 Gbps DWDM-based differential quadrature phase shift keying modulated signals were successfully transmitted over SSMF and analyze its transmission capability for range of 25 to 50 km with acceptable power penalties and bit error rates.

  10. On the efficiency of frequency reconfigurable high-Q antennas for 4G standards

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Pelosi, Mauro; Pedersen, Gert Frølund


    as a tuning mechanism, simulations and measurements of a self-resonating antenna show the mismatch and the radiation efficiencies of the high-Q and the low-Q antennas. The investigated frequencies are in the low band of the 4G standard. Measurements are conducted for different tuning stages and the study...

  11. Standard techniques for presentation and analysis of crater size-frequency data (United States)


    In September 1977, a crater studies workshop was held for the purpose of developing standard data analysis and presentation techniques. This report contains the unanimous recommendations of the participants. This first meeting considered primarily crater size-frequency data. Future meetings will treat other aspects of crater studies such as morphologies.

  12. Historical Cost Curves for Hydrogen Masers and Cesium Beam Frequency and Timing Standards (United States)

    Remer, D. S.; Moore, R. C.


    Historical cost curves were developed for hydrogen masers and cesium beam standards used for frequency and timing calibration in the Deep Space Network. These curves may be used to calculate the cost of future hydrogen masers or cesium beam standards in either future or current dollars. The cesium beam standards are decreasing in cost by about 2.3% per year since 1966, and hydrogen masers are decreasing by about 0.8% per year since 1978 relative to the National Aeronautics and Space Administration inflation index.

  13. An Impact-Based Frequency Up-Converting Hybrid Vibration Energy Harvester for Low Frequency Application

    Directory of Open Access Journals (Sweden)

    Zhenlong Xu


    Full Text Available In this paper, a novel impact-based frequency up-converting hybrid energy harvester (FUCHEH was proposed. It consisted of a piezoelectric cantilever beam and a driving beam with a magnetic tip mass. A solenoid coil was attached at the end of the piezoelectric beam. This innovative configuration amplified the relative motion velocity between magnet and coil, resulting in an enhancement of the induced electromotive force in the coil. An electromechanical coupling model was developed and a numerical simulation was performed to study the principle of impact-based frequency up-converting. A prototype was fabricated and experimentally tested. The time-domain and frequency-domain analyses were performed. Fast Fourier transform (FFT analysis verified that fundamental frequencies and coupled vibration frequency contributes most of the output voltage. The measured maximum output power was 769.13 µW at a frequency of 13 Hz and an acceleration amplitude of 1 m/s2, which was 3249.4%- and 100.6%-times larger than that of the frequency up-converting piezoelectric energy harvesters (FUCPEH and frequency up-converting electromagnetic energy harvester (FUCEMEH, respectively. The root mean square (RMS voltage of the piezoelectric energy harvester subsystem (0.919 V was more than 16 times of that of the stand-alone PEH (0.055 V. This paper provided a new scheme to improve generating performance of the vibration energy harvester with high resonant frequency working in the low-frequency vibration environment.

  14. Investigation into the Effects of VHF and UHF Band Radiation on Hewlett-Packard (HP) Cesium Beam Frequency Standards

    National Research Council Canada - National Science Library

    Dickens, Andrew


    This paper documents an investigation into reports which have indicated that exposure to VHF and UHF band radiation has adverse effects on the frequency stability of HP cesium beam frequency standards...

  15. A Critical Examination of Frequency-Fixed Second-Order Generalized Integrator-Based Phase-Locked Loops

    DEFF Research Database (Denmark)

    Golestan, Saeed; Mousazadeh Mousavi, Seyyed-Yousef; Guerrero, Josep M.


    /accuracy tradeoff. The SOGI-QSG based PLL (or briefly the SOGI-PLL), in its standard form, involves a frequency feedback loop for adjusting the SOGI resonance frequency under frequency drifts. Some recent research works have reported that the speed/accuracy tradeoff of the SOGI-PLL can be considerably enhanced...... by removing the frequency feedback loop. In these methods, the SOGI resonance frequency is fixed at the nominal frequency and a compensation strategy for correcting errors caused under off-nominal frequencies are presented. The main aim of this letter is to provide a critical analysis of frequency-fixed SOGI...

  16. Laser frequency-offset locking based on the frequency modulation spectroscopy with higher harmonic detection (United States)

    Wang, Anqi; Meng, Zhixin; Feng, Yanying


    We design a fiber electro-optic modulator (FEOM)-based laser frequency-offset locking system using frequency modulation spectroscopy (FMS) with the 3F modulation. The modulation signal and the frequency-offset control signal are simultaneously loaded on the FEOM by a mixer in order to suppress the frequency and power jitter caused by internal modulation on the current or piezoelectric ceramic transducer (PZT). It is expected to accomplish a fast locking, a widely tunable frequency-offset, a sensitive and rapid detection of narrow spectral features with the 3F modulation. The laser frequency fluctuation is limited to +/-1MHz and its overlapping Allan deviation is around 10-12 in twenty minutes, which successfully meets the requirements of the cold atom interferometer.

  17. Critical parameters affecting the design of high frequency transmission lines in standard CMOS technology

    KAUST Repository

    Al Attar, Talal


    Different structures of transmission lines were designed and fabricated in standard CMOS technology to estimate some critical parameters including the RMS value of the surface roughness and the loss tangent. The input impedances for frequencies up to 50 GHz were modeled and compared with measurements. The results demonstrated a strong correlation between the used model with the proposed coefficients and the measured results, attesting the robustness of the model and the reliability of the incorporated coefficients values.

  18. A fully integrated multi-standard frequency synthesizer for GNSS receivers with cellular network positioning capability (United States)

    Bin, Li; Xiangning, Fan; Wei, Li; Li, Zhang; Zhigong, Wang


    A fully integrated hybrid integer/fractional frequency synthesizer is presented. With a single multiband voltage-controlled-oscillator (VCO), the frequency synthesizer can support GPS, Galileo, Compass and TD-SCDMA standards. Design is carefully performed to trade off power, die area and phase noise performance. By reconfiguring between the integer mode and fractional mode, different frequency resolution requirements and a constant loop bandwidth for each standard can be achieved simultaneously. Moreover, a long sequence length, reduced hardware complexity multi-stage-noise-shaping (MASH) Δ-Σ modulator is employed to reduce fractional spur in the fractional mode. Fabricated in a 0.18 μm CMOS technology, the frequency synthesizer occupies an active area of 1.48 mm2 and draws a current of 13.4-16.2 mA from a 1.8 V power supply. The measured phase noise is lower than -80 dBc/Hz at 100 kHz offset and -113 to -124 dBc/Hz at 1 MHz offset respectively, while the measured reference spur is -71 dBc in integer mode and the fractional spur is -65 dBc in fractional mode.

  19. Water based fluidic radio frequency metamaterials (United States)

    Cai, Xiaobing; Zhao, Shaolin; Hu, Mingjun; Xiao, Junfeng; Zhang, Naibo; Yang, Jun


    Electromagnetic metamaterials offer great flexibility for wave manipulation and enable exceptional functionality design, ranging from negative refraction, anomalous reflection, super-resolution imaging, transformation optics to cloaking, etc. However, demonstration of metamaterials with unprecedented functionalities is still challenging and costly due to the structural complexity or special material properties. Here, we demonstrate for the first time the versatile fluidic radio frequency metamaterials with negative refraction using a water-embedded and metal-coated 3D architecture. Effective medium analysis confirms that metallic frames create an evanescent environment while simultaneously water cylinders produce negative permeability under Mie resonance. The water-metal coupled 3D architectures and the accessory devices for measurement are fabricated by 3D printing with post electroless deposition. Our study also reveals the great potential of fluidic metamaterials and versatility of the 3D printing process in rapid prototyping of customized metamaterials.

  20. The Value Estimation of an HFGW Frequency Time Standard for Telecommunications Network Optimization (United States)

    Harper, Colby; Stephenson, Gary


    The emerging technology of gravitational wave control is used to augment a communication system using a development roadmap suggested in Stephenson (2003) for applications emphasized in Baker (2005). In the present paper consideration is given to the value of a High Frequency Gravitational Wave (HFGW) channel purely as providing a method of frequency and time reference distribution for use within conventional Radio Frequency (RF) telecommunications networks. Specifically, the native value of conventional telecommunications networks may be optimized by using an unperturbed frequency time standard (FTS) to (1) improve terminal navigation and Doppler estimation performance via improved time difference of arrival (TDOA) from a universal time reference, and (2) improve acquisition speed, coding efficiency, and dynamic bandwidth efficiency through the use of a universal frequency reference. A model utilizing a discounted cash flow technique provides an estimation of the additional value using HFGW FTS technology could bring to a mixed technology HFGW/RF network. By applying a simple net present value analysis with supporting reference valuations to such a network, it is demonstrated that an HFGW FTS could create a sizable improvement within an otherwise conventional RF telecommunications network. Our conservative model establishes a low-side value estimate of approximately 50B USD Net Present Value for an HFGW FTS service, with reasonable potential high-side values to significant multiples of this low-side value floor.

  1. Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber

    Directory of Open Access Journals (Sweden)

    Yosef London


    Full Text Available An opto-electronic radio-frequency oscillator that is based on forward scattering by the guided acoustic modes of a standard single-mode optical fiber is proposed and demonstrated. An optical pump wave is used to stimulate narrowband, resonant guided acoustic modes, which introduce phase modulation to a co-propagating optical probe wave. The phase modulation is converted to an intensity signal at the output of a Sagnac interferometer loop. The intensity waveform is detected, amplified, and driven back to modulate the optical pump. Oscillations are achieved at a frequency of 319 MHz, which matches the resonance of the acoustic mode that provides the largest phase modulation of the probe wave. Oscillations at the frequencies of competing acoustic modes are suppressed by at least 40 dB. The linewidth of the acoustic resonance is sufficiently narrow to provide oscillations at a single longitudinal mode of the hybrid cavity. Competing longitudinal modes are suppressed by at least 38 dB as well. Unlike other opto-electronic oscillators, no radio-frequency filtering is required within the hybrid cavity. The frequency of oscillations is entirely determined by the fiber opto-mechanics.

  2. Frequency-domain method based on the singular value decomposition for frequency-selective NMR spectroscopy. (United States)

    Stoica, Petre; Sandgren, Niclas; Selén, Yngve; Vanhamme, Leentje; Van Huffel, Sabine


    In several applications of NMR spectroscopy the user is interested only in the components lying in a small frequency band of the spectrum. A frequency selective analysis deals precisely with this kind of NMR spectroscopy: parameter estimation of only those spectroscopic components that lie in a preselected frequency band of the NMR data spectrum, with as little interference as possible from the out-of-band components and in a computationally efficient way. In this paper we introduce a frequency-domain singular value decomposition (SVD)-based method for frequency selective spectroscopy that is computationally simple, statistically accurate, and which has a firm theoretical basis. To illustrate the good performance of the proposed method we present a number of numerical examples for both simulated and in vitro NMR data.

  3. Circumvention of noise contributions in fiber laser based frequency combs. (United States)

    Benkler, Erik; Telle, Harald; Zach, Armin; Tauser, Florian


    We investigate the performance of an Er:fiber laser based femtosecond frequency comb for precision metrological applications. Instead of an active stabilization of the comb, the fluctuations of the carrier-envelope offset phase, the repetition phase, and the phase of the beat from a comb line with an optical reference are synchronously detected. We show that these fluctuations can be effectively eliminated by exploiting their known correlation. In our experimental scheme, we utilize two identically constructed frequency combs for the measurement of the fluctuations, rejecting the influence of a shared optical reference. From measuring a white frequency noise level, we demonstrate that a fractional frequency instability better than 1.4 x 10(-14) for 1 s averaging time can be achieved in frequency metrology applications using the Er:fiber based frequency comb.

  4. Standards for Measurements in the Field of High Frequency Electromagnetic Radiation for the Purpose of Protection Against Adverse Health Effects

    International Nuclear Information System (INIS)

    Tanatarec, B.; Nikolic, N.


    In this paper standards for measurements in the field of high frequency electromagnetic radiation are described with a view to protection from its hazardous action. Beside the standards which directly deal with high frequency electromagnetic radiation measurements, guidelines which describe hazardous influences of high frequency electromagnetic radiation on human body in the form of specific absorption rate (SAR) are given. Special attention is dedicated to standards and regulations, which are dealing with social responsibility, as well as with social responsibility in the field of high frequency radiation. This area is new and insufficiently known, rarely extended in everyday life. (author)

  5. Citizen Observatories: A Standards Based Architecture (United States)

    Simonis, Ingo


    A number of large-scale research projects are currently under way exploring the various components of citizen observatories, e.g. CITI-SENSE (, Citclops (, COBWEB (, OMNISCIENTIS (, and WeSenseIt ( Common to all projects is the motivation to develop a platform enabling effective participation by citizens in environmental projects, while considering important aspects such as security, privacy, long-term storage and availability, accessibility of raw and processed data and its proper integration into catalogues and international exchange and collaboration systems such as GEOSS or INSPIRE. This paper describes the software architecture implemented for setting up crowdsourcing campaigns using standardized components, interfaces, security features, and distribution capabilities. It illustrates the Citizen Observatory Toolkit, a software suite that allows defining crowdsourcing campaigns, to invite registered and unregistered participants to participate in crowdsourcing campaigns, and to analyze, process, and visualize raw and quality enhanced crowd sourcing data and derived products. The Citizen Observatory Toolkit is not a single software product. Instead, it is a framework of components that are built using internationally adopted standards wherever possible (e.g. OGC standards from Sensor Web Enablement, GeoPackage, and Web Mapping and Processing Services, as well as security and metadata/cataloguing standards), defines profiles of those standards where necessary (e.g. SWE O&M profile, SensorML profile), and implements design decisions based on the motivation to maximize interoperability and reusability of all components. The toolkit contains tools to set up, manage and maintain crowdsourcing campaigns, allows building on-demand apps optimized for the specific sampling focus, supports offline and online sampling modes using modern cell phones with

  6. Prestress Force Identification for Externally Prestressed Concrete Beam Based on Frequency Equation and Measured Frequencies

    Directory of Open Access Journals (Sweden)

    Luning Shi


    Full Text Available A prestress force identification method for externally prestressed concrete uniform beam based on the frequency equation and the measured frequencies is developed. For the purpose of the prestress force identification accuracy, we first look for the appropriate method to solve the free vibration equation of externally prestressed concrete beam and then combine the measured frequencies with frequency equation to identify the prestress force. To obtain the exact solution of the free vibration equation of multispan externally prestressed concrete beam, an analytical model of externally prestressed concrete beam is set up based on the Bernoulli-Euler beam theory and the function relation between prestress variation and vibration displacement is built. The multispan externally prestressed concrete beam is taken as the multiple single-span beams which must meet the bending moment and rotation angle boundary conditions, the free vibration equation is solved using sublevel simultaneous method and the semi-analytical solution of the free vibration equation which considered the influence of prestress on section rigidity and beam length is obtained. Taking simply supported concrete beam and two-span concrete beam with external tendons as examples, frequency function curves are obtained with the measured frequencies into it and the prestress force can be identified using the abscissa of the crosspoint of frequency functions. Identification value of the prestress force is in good agreement with the test results. The method can accurately identify prestress force of externally prestressed concrete beam and trace the trend of effective prestress force.

  7. Radio Frequency Based Water Level Monitor and Controller for ...

    African Journals Online (AJOL)

    This paper elucidates a radio frequency (RF) based transmission and reception system used to remotely monitor and control the water Level of an overhead tank placed up to 100 meters away from the pump and controller. It uses two Radio Frequency transceivers along with a controller each installed at the overhead tank ...

  8. Development of an Extremely Precision Buffer Amplifier for AC Shunt Standards at Audio Frequencies (United States)

    Kon, Seitaro; Yamada, Tatsuji

    The National Metrology Institute of Japan (AIST, NMIJ) has launched the project for the development of AC shunt standards since 2007. AC shunts allow the most precise masurement of current. A high precision AC shunt is an important component of non-sinusoidal power standards which is in progress. The AC shunt calibration system helps improve the uncertainty assesments of the national primary power standards. The calibration system design with uncertainties up to 10 ppm requires a precise buffer amplifier which has uncertainties up to 1 ppm in the frequency range from 10 Hz to 10 kHz with other uncertainty components taken care of. The two buffer amplifiers dealt with in this paper were verified to have accuracies within 2 ppm and uncertainties within 1 ppm in in-phase and quadrature error in the frequency range from 10 Hz to 10 kHz. It also implies that there is possibilities to reduce both in-phase and quadrature error at 10 kHz within 1 ppm, by taking advantage of the both features. This paper describes the circuit designs and the evaluation results of two different buffer amplifiers.

  9. Brain-Based Learning and Standards-Based Elementary Science. (United States)

    Konecki, Loretta R.; Schiller, Ellen

    This paper explains how brain-based learning has become an area of interest to elementary school science teachers, focusing on the possible relationships between, and implications of, research on brain-based learning to the teaching of science education standards. After describing research on the brain, the paper looks at three implications from…

  10. The CIPM list of recommended frequency standard values: guidelines and procedures (United States)

    Riehle, Fritz; Gill, Patrick; Arias, Felicitas; Robertsson, Lennart


    A list of standard reference frequency values (LoF) of quantum transitions from the microwave to the optical regime has been recommended by the International Committee for Weights and Measures (Comité international des poids et mesures, CIPM) for use in basic research, technology, and for the metrology of time, frequency and length. The CIPM LoF contains entries that are recommended as secondary representations of the second in the International System of Units, and entries that can be used to serve as realizations of the definition of the metre. The historical perspective that led to the CIPM LoF is outlined. Procedures have been developed for updating existing, and validating new, entries into the CIPM LoF. The CIPM LoF might serve as an entry for a future redefinition of the second by an optical transition.

  11. SUBTLEX- AL: Albanian word frequencies based on film subtitles

    Directory of Open Access Journals (Sweden)

    Dr.Sc. Rrezarta Avdyli


    Full Text Available Recently several studies have shown that word frequency estimation based on subtitle files explains better the variance in word recognition performance than traditional words frequency estimates did. The present study aims to show this frequency estimate in Albanian from more than 2M words coming from film subtitles. Our results show high correlation between the RT from a LD study (120 stimuli and the SUBTLEX- AL, as well as, high correlation between this and the unique existing frequency list of a hundred more frequent Albanian words. These findings suggest that SUBTLEX-AL it is good frequency estimation, furthermore, this is the first database of frequency estimation in Albanian larger than 100 words.

  12. Quartz crystal microbalance based on passive frequency to voltage converter

    International Nuclear Information System (INIS)

    Burda, Ioan; Tunyagi, Arthur


    In dynamics of evaporation or drying of microdrops from a solid surface, a faster and precise quartz crystal microbalance (QCM) is needed. The fast QCM based on frequency to voltage converter is an attractive and powerful tool in the investigation of the dynamic regime of evaporation to translate the frequency shift in terms of a continuous voltage change. The frequency shift monitoring in fast QCM applications is a real challenge for electronic processing interface. Originally developed as a frequency shift processing interface, this novel passive frequency to voltage converter can produce faster, stable, and accurate results in regard to the QCM sensor behavior. In this article, the concept and circuit of passive frequency to voltage converter will be explained followed by static and dynamic characterization. Experimental results of microdrops evaporation will be given.

  13. Fiber-based portable optical frequency standard for telecommunication

    DEFF Research Database (Denmark)

    Triches, Marco; Brusch, Anders; Hald, Jan


    Gas-filled hollow-core photonic crystal fibers are used to stabilize a fiber laser to the 13C2H2 P(16) (ν1 + ν3) transition at 1542 nm using saturated absorption. The fiber is encapsulated in glass cells for gas handling and compact free-space coupling, and packaged in a easy-to-use configuration...

  14. Image standards in Tissue-Based Diagnosis (Diagnostic Surgical Pathology

    Directory of Open Access Journals (Sweden)

    Vollmer Ekkehard


    acquisition systems (resolution, colour temperature, focus, brightness, and quality evaluation procedures, display resolution data, implemented image formats, storage, cycle frequency, backup procedures, operation system, and external system accessibility. The lowest third level describes the permitted limits and threshold in detail. At present, an applicable standard including all mentioned features does not exist to our knowledge; some aspects can be taken from radiological standards (PACS, DICOM 3; others require specific solutions or are not covered yet. Conclusion The progress in virtual microscopy and application of artificial intelligence (AI in tissue-based diagnosis demands fast preparation and implementation of an internationally acceptable standard. The described hierarchic order as well as analytic investigation in all potentially necessary aspects and details offers an appropriate tool to specifically determine standardized requirements.

  15. Frequency Based Real-time Pricing for Residential Prosumers (United States)

    Hambridge, Sarah Mabel

    This work is the first to explore frequency based pricing for secondary frequency control as a price-reactive control mechanism for residential prosumers. A frequency based real-time electricity rate is designed as an autonomous market control mechanism for residential prosumers to provide frequency support as an ancillary service. In addition, prosumers are empowered to participate in dynamic energy transactions, therefore integrating Distributed Energy Resources (DERs), and increasing distributed energy storage onto the distributed grid. As the grid transitions towards DERs, a new market based control system will take the place of the legacy distributed system and possibly the legacy bulk power system. DERs provide many benefits such as energy independence, clean generation, efficiency, and reliability to prosumers during blackouts. However, the variable nature of renewable energy and current lack of installed energy storage on the grid will create imbalances in supply and demand as uptake increases, affecting the grid frequency and system operation. Through a frequency-based electricity rate, prosumers will be encouraged to purchase energy storage systems (ESS) to offset their neighbor's distributed generation (DG) such as solar. Chapter 1 explains the deregulation of the power system and move towards Distributed System Operators (DSOs), as prosumers become owners of microgrids and energy cells connected to the distributed system. Dynamic pricing has been proposed as a benefit to prosumers, giving them the ability to make decisions in the energy market, while also providing a way to influence and control their behavior. Frequency based real-time pricing is a type of dynamic pricing which falls between price-reactive control and transactive control. Prosumer-to-prosumer transactions may take the place of prosumer-to-utility transactions, building The Energy Internet. Frequency based pricing could be a mechanism for determining prosumer prices and supporting

  16. Dual-frequency sound-absorbing metasurface based on visco-thermal effects with frequency dependence (United States)

    Ryoo, H.; Jeon, W.


    We investigate theoretically an acoustic metasurface with a high absorption coefficient at two frequencies and design it from subwavelength structures. We propose the use of a two-dimensional periodic array of four Helmholtz resonators in two types to obtain a metasurface with nearly perfect sound absorption at given target frequencies via interactions between waves emanating from different resonators. By considering how fluid viscosity affects acoustic energy dissipation in the narrow necks of the Helmholtz resonators, we obtain effective complex-valued material properties that depend on frequency and on the geometrical parameters of the resonators. We furthermore derive the effective acoustic impedance of the metasurface from the effective material properties and calculate the absorption spectra from the theoretical model, which we compare with the spectra obtained from a finite-element simulation. As a practical application of the theoretical model, we derive empirical formulas for the geometrical parameters of a metasurface which would yield perfect absorption at a given frequency. While previous works on metasurfaces based on Helmholtz resonators aimed to absorb sound at single frequencies, we use optimization to design a metasurface composed of four different Helmholtz resonators to absorb sound at two distinct frequencies.

  17. Research of hydroelectric generating set low-frequency vibration monitoring system based on optical fiber sensing (United States)

    Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, ShuJuan; Wang, Meng; Wang, Chang


    In order to satisfy hydroelectric generating set low-frequency vibration monitoring, the design of Passive low-frequency vibration monitoring system based on Optical fiber sensing in this paper. The hardware of the system adopts the passive optical fiber grating sensor and unbalanced-Michelson interferometer. The software system is used to programming by Labview software and finishing the control of system. The experiment show that this system has good performance on the standard vibration testing-platform and it meets system requirements. The frequency of the monitoring system can be as low as 0.2Hz and the resolution is 0.01Hz.

  18. Econometric analysis of realized covariation: high frequency based covariance, regression, and correlation in financial economics

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.


    This paper analyses multivariate high frequency financial data using realized covariation. We provide a new asymptotic distribution theory for standard methods such as regression, correlation analysis, and covariance. It will be based on a fixed interval of time (e.g., a day or week), allowing...

  19. Frequency selective bistable switching in metamaterial based photonic bandgap medium (United States)

    Jose, Jolly


    We present frequency selective bistable response at the defect mode of the zero-nbar bandgap of a photonic bandgap (PBG) material made of negative and positive index media. The nonlinear (Kerr) layer acts as the defect layer in the periodic PBG material. Incorporating metamaterial based electromagnetically induced transparency (EIT) like resonance in the positive layer leads to unprecedented line narrowing of the defect mode which in turn facilitates narrow frequency selective bistable operation, wherein all the bistable characteristics can be effectively engineered. Thresholding the output intensity selects the narrow band of frequencies that exhibit bistability.

  20. A Kalman-based Fundamental Frequency Estimation Algorithm

    DEFF Research Database (Denmark)

    Shi, Liming; Nielsen, Jesper Kjær; Jensen, Jesper Rindom


    Fundamental frequency estimation is an important task in speech and audio analysis. Harmonic model-based methods typically have superior estimation accuracy. However, such methods usually as- sume that the fundamental frequency and amplitudes are station- ary over a short time frame. In this paper...... model and formulated as a compact nonlinear matrix form, which is further used to derive an extended Kalman filter. Detailed and continuous fundamental frequency and ampli- tude estimates for speech, the sustained vowel /a/ and solo musical tones with vibrato are demonstrated....

  1. Cooperative Game Study of Airlines Based on Flight Frequency Optimization

    Directory of Open Access Journals (Sweden)

    Wanming Liu


    Full Text Available By applying the game theory, the relationship between airline ticket price and optimal flight frequency is analyzed. The paper establishes the payoff matrix of the flight frequency in noncooperation scenario and flight frequency optimization model in cooperation scenario. The airline alliance profit distribution is converted into profit distribution game based on the cooperation game theory. The profit distribution game is proved to be convex, and there exists an optimal distribution strategy. The results show that joining the airline alliance can increase airline whole profit, the change of negotiated prices and cost is beneficial to profit distribution of large airlines, and the distribution result is in accordance with aviation development.

  2. Frequency of Testing for Dyslipidemia: An Evidence-Based Analysis (United States)


    Background Dyslipidemias include high levels of total cholesterol, low-density lipoprotein (LDL) cholesterol, and triglycerides and low levels of high-density lipoprotein (HDL) cholesterol. Dyslipidemia is a risk factor for cardiovascular disease, which is a major contributor to mortality in Canada. Approximately 23% of the 2009/11 Canadian Health Measures Survey (CHMS) participants had a high level of LDL cholesterol, with prevalence increasing with age, and approximately 15% had a total cholesterol to HDL ratio above the threshold. Objectives To evaluate the frequency of lipid testing in adults not diagnosed with dyslipidemia and in adults on treatment for dyslipidemia. Research Methods A systematic review of the literature set out to identify randomized controlled trials (RCTs), systematic reviews, health technology assessments (HTAs), and observational studies published between January 1, 2000, and November 29, 2012, that evaluated the frequency of testing for dyslipidemia in the 2 populations. Results Two observational studies assessed the frequency of lipid testing, 1 in individuals not on lipid-lowering medications and 1 in treated individuals. Both studies were based on previously collected data intended for a different objective and, therefore, no conclusions could be reached about the frequency of testing at intervals other than the ones used in the original studies. Given this limitation and generalizability issues, the quality of evidence was considered very low. No evidence for the frequency of lipid testing was identified in the 2 HTAs included. Canadian and international guidelines recommend testing for dyslipidemia in individuals at an increased risk for cardiovascular disease. The frequency of testing recommended is based on expert consensus. Conclusions Conclusions on the frequency of lipid testing could not be made based on the 2 observational studies. Current guidelines recommend lipid testing in adults with increased cardiovascular risk, with

  3. Dissemination of optical-comb-based ultra-broadband frequency reference through a fiber network. (United States)

    Nagano, Shigeo; Kumagai, Motohiro; Li, Ying; Ido, Tetsuya; Ishii, Shoken; Mizutani, Kohei; Aoki, Makoto; Otsuka, Ryohei; Hanado, Yuko


    We disseminated an ultra-broadband optical frequency reference based on a femtosecond (fs)-laser optical comb through a kilometer-scale fiber link. Its spectrum ranged from 1160 nm to 2180 nm without additional fs-laser combs at the end of the link. By employing a fiber-induced phase noise cancellation technique, the linewidth and fractional frequency instability attained for all disseminated comb modes were of order 1 Hz and 10-18 in a 5000 s averaging time. The ultra-broad optical frequency reference, for which absolute frequency is traceable to Japan Standard Time, was applied in the frequency stabilization of an injection-seeded Q-switched 2051 nm pulse laser for a coherent light detection and ranging LIDAR system.

  4. Dynamic phasor based frequency scanning for grid-connected ...

    Indian Academy of Sciences (India)

    M K Das


    Oct 11, 2017 ... Keywords. Frequency scanning; harmonic stability; impedance-based analysis; dynamic phasors; power- electronics-based power system. 1. Introduction. Power electronic systems (PES) are increasingly being deployed in power systems in the form of HVDC systems,. FACTS controllers and grid-interfaces ...

  5. Standard techniques for presentation and analysis of crater size-frequency data. [on moon and planetary surfaces (United States)

    Arvidson, R.; Boyce, J.; Chapman, C.; Cintala, M.; Fulchignoni, M.; Moore, H.; Soderblom, L.; Neukum, G.; Schultz, P.; Strom, R.


    In September 1977 a crater studies workshop was held for the purpose of developing standardized data analysis and presentation techniques. The present report contains the unanimous recommendations of the participants. Recommendations are devoted primarily to crater size-frequency data and refer to cumulative and relative size-frequency distribution plots and to morphological analysis.

  6. Ontology-based information standards development


    Heravi, Bahareh Rahmanzadeh


    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Standards may be argued to be important enablers for achieving interoperability as they aim to provide unambiguous specifications for error-free exchange of documents and information. By implication, therefore, it is important to model and represent the concept of a standard in a clear, precise and unambiguous way. Although standards development organisations usually provide guidelines for th...

  7. Histochemical responses of rats exercised in two weekly frequencies and ingesting standard or hypercaloric diet

    Directory of Open Access Journals (Sweden)

    FI Freitas


    Full Text Available This study investigated if overfed rats present morphological and histochemical muscle adaptation similar to normally fed, both submitted to two different weekly frequencies of training. Thirty male Wistar rats were fed either with standard chow (SCØ or with hypercaloric diet (HCØ. They were subdivided into six subgroups: sedentary (SCØ and HCØ, trained twice/week (SC2 and HC2 and trained five times/week (SC5 and HC5. The trained groups swam 60 min/day, during 10 weeks. Twenty four hours after the last training, samples of Gastrocnemius were excised and stained with HE, NADH-TR and m-ATPase, and the capillary density was calculated. Total heart mass (HM and the mass of atrium (AM, left (LV and right (RV ventricles were excised and weighted. The comparisons were made by ANOVA and by Covariance analysis, adjusting the variables by body weight. The results showed that the HCØ achieved higher BM, however, absolute HM did not differ post training. Irrespective of the diet, rats that were trained twice a week presented significantly greater increase in the AM. In general, the SC5 and HC5 groups showed higher HM, LV, RV, proportion of oxidative fibres and capillary density, compared to the sedentary and twice week trained groups. A higher proportion of injuries (splitting was noted in the HC2 and HC5 compared to SC2 and SC5. These results indicate that the frequency of training influenced the skeletal and heart adaptation and larger changes were observed in the 5x/week group, which ingested the standard diet. The 5x/week training groups also presented large amount of muscle fibres damage.

  8. A New Control Logic for a Wind-Area on the Balancing Authority Area Control Error Limit Standard for Load Frequency Control

    Directory of Open Access Journals (Sweden)

    Yekui Chang


    Full Text Available Nowadays, the Balancing Authority Area Control Error (ACE Limit (BAAL Standard has been adopted to replace the Control Performance Standard 2 (CPS2 in the North American power grid. According to the new standard’s mechanism, a new control logic, named “Triggered Monitoring and Graded Regulation” (TM-GR is proposed. Its purpose is to improve wind power utilization, with good BAAL Standard compliance for load frequency control (LFC. With the TM logic, according to the real-time regulating ability of areas and forecasting results of wind power output, the triggering moments to give orders are found and a defined monitoring interval is set to track the succeeding fluctuation of Area Control Error (ACE. With the GR logic, based on whether or not over-limit frequency and over-limit ACE occur simultaneously, unit output is regulated in different grades. In cooperation with the existing control logic of Control Performance Standard 1 (CPS1, the proposed logic has a higher priority. From the test results, with the proposed control logic, the utilization of wind power output increases and, meanwhile, the area’s control performance meets the Standard BAL-001-2 requirements. The standard deviation of the frequency deviation is less than the target value, and the duration of over-limit ACE and over-limit frequency can both be restricted to be less than 30 min.

  9. Acoustic frequency filter based on anisotropic topological phononic crystals

    KAUST Repository

    Chen, Zeguo


    We present a design of acoustic frequency filter based on a two-dimensional anisotropic phononic crystal. The anisotropic band structure exhibits either a directional or a combined (global + directional) bandgap at certain frequency regions, depending on the geometry. When the time-reversal symmetry is broken, it may introduce a topologically nontrivial bandgap. The induced nontrivial bandgap and the original directional bandgap result in various interesting wave propagation behaviors, such as frequency filter. We develop a tight-binding model to characterize the effective Hamiltonian of the system, from which the contribution of anisotropy is explicitly shown. Different from the isotropic cases, the Zeeman-type splitting is not linear and the anisotropic bandgap makes it possible to achieve anisotropic propagation characteristics along different directions and at different frequencies.

  10. Frequency response of multipoint chemical shift-based spectral decomposition. (United States)

    Brodsky, Ethan K; Chebrolu, Venkata V; Block, Walter F; Reeder, Scott B


    To provide a framework for characterizing the frequency response of multipoint chemical shift based species separation techniques. Multipoint chemical shift based species separation techniques acquire complex images at multiple echo times and perform maximum likelihood estimation to decompose signal from different species into separate images. In general, after a nonlinear process of estimating and demodulating the field map, these decomposition methods are linear transforms from the echo-time domain to the chemical-shift-frequency domain, analogous to the discrete Fourier transform (DFT). In this work we describe a technique for finding the magnitude and phase of chemical shift decomposition for input signals over a range of frequencies using numerical and experimental modeling and examine several important cases of species separation. Simple expressions can be derived to describe the response to a wide variety of input signals. Agreement between numerical modeling and experimental results is very good. Chemical shift-based species separation is linear, and therefore can be fully described by the magnitude and phase curves of the frequency response. The periodic nature of the frequency response has important implications for the robustness of various techniques for resolving ambiguities in field inhomogeneity.

  11. Carbon nanotube transistor based high-frequency electronics (United States)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  12. Image contrast enhancement based on a local standard deviation model

    International Nuclear Information System (INIS)

    Chang, Dah-Chung; Wu, Wen-Rong


    The adaptive contrast enhancement (ACE) algorithm is a widely used image enhancement method, which needs a contrast gain to adjust high frequency components of an image. In the literature, the gain is usually inversely proportional to the local standard deviation (LSD) or is a constant. But these cause two problems in practical applications, i.e., noise overenhancement and ringing artifact. In this paper a new gain is developed based on Hunt's Gaussian image model to prevent the two defects. The new gain is a nonlinear function of LSD and has the desired characteristic emphasizing the LSD regions in which details are concentrated. We have applied the new ACE algorithm to chest x-ray images and the simulations show the effectiveness of the proposed algorithm

  13. Human exposure standards in the frequency range 1 Hz To 100 kHz: the case for adoption of the IEEE standard. (United States)

    Patrick Reilly, J


    Differences between IEEE C95 Standards (C95.6-2002 and C95.1-2005) in the low-frequency (1 Hz-100 kHz) and the ICNIRP-2010 guidelines appear across the frequency spectrum. Factors accounting for lack of convergence include: differences between the IEEE standards and the ICNIRP guidelines with respect to biological induction models, stated objectives, data trail from experimentally derived thresholds through physical and biological principles, selection and justification of safety/reduction factors, use of probability models, compliance standards for the limbs as distinct from the whole body, defined population categories, strategies for central nervous system protection below 20 Hz, and correspondence of environmental electric field limits with contact currents. This paper discusses these factors and makes the case for adoption of the limits in the IEEE standards.

  14. Dynamic phasor based frequency scanning for grid-connected ...

    Indian Academy of Sciences (India)

    M K Das


    Oct 11, 2017 ... This is an alternative to analytical derivation of small-signal models, especially for complex grid-connected power electronic systems ... Keywords. Frequency scanning; harmonic stability; impedance-based analysis; dynamic phasors; power- ...... control interactions between type 3 wind turbines and series.

  15. Time-frequency representation based on time-varying ...

    Indian Academy of Sciences (India)

    A parametric time-frequency representation is presented based on timevarying autoregressive model (TVAR), followed by applications to non-stationary vibration signal processing. The identification of time-varying model coefficients and the determination of model order, are addressed by means of neural networks and ...

  16. Remote sensing-based fire frequency mapping in a savannah ...

    African Journals Online (AJOL)


    Remote sensing-based fire frequency mapping in a savannah rangeland. Samuel Kusangaya1 and Vhusomuzi .B. Sithole2. 1Centre for Water Resources Research, University of KwaZulu Natal, Scottsville,. Pietermaritzburg 3209, South Africa. Email: 2Department of Geosciences, Nelson Mandela ...

  17. Low-frequency scaling of the standard and mixed magnetic field and Müller integral equations

    KAUST Repository

    Bogaert, Ignace


    The standard and mixed discretizations for the magnetic field integral equation (MFIE) and the Müller integral equation (MUIE) are investigated in the context of low-frequency (LF) scattering problems involving simply connected scatterers. It is proved that, at low frequencies, the frequency scaling of the nonsolenoidal part of the solution current can be incorrect for the standard discretization. In addition, it is proved that the frequency scaling obtained with the mixed discretization is correct. The reason for this problem in the standard discretization scheme is the absence of exact solenoidal currents in the rotated RWG finite element space. The adoption of the mixed discretization scheme eliminates this problem and leads to a well-conditioned system of linear equations that remains accurate at low frequencies. Numerical results confirm these theoretical predictions and also show that, when the frequency is lowered, a finer and finer mesh is required to keep the accuracy constant with the standard discretization. © 1963-2012 IEEE.

  18. Neutron Sources for Standard-Based Testing

    Energy Technology Data Exchange (ETDEWEB)

    Radev, Radoslav [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McLean, Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    The DHS TC Standards and the consensus ANSI Standards use 252Cf as the neutron source for performance testing because its energy spectrum is similar to the 235U and 239Pu fission sources used in nuclear weapons. An emission rate of 20,000 ± 20% neutrons per second is used for testing of the radiological requirements both in the ANSI standards and the TCS. Determination of the accurate neutron emission rate of the test source is important for maintaining consistency and agreement between testing results obtained at different testing facilities. Several characteristics in the manufacture and the decay of the source need to be understood and accounted for in order to make an accurate measurement of the performance of the neutron detection instrument. Additionally, neutron response characteristics of the particular instrument need to be known and taken into account as well as neutron scattering in the testing environment.

  19. Crack Detection of Fan Blade Based on Natural Frequencies

    Directory of Open Access Journals (Sweden)

    Mengyao Yu


    Full Text Available A simple method was developed to detect damage based on a discrete mathematical model for fan blades using changes in natural frequencies combined with a fluid-structure analysis. In addition, a numerical approach was developed for the fluid-structure analysis. The results of numerical simulation provided the natural frequency data for each mode under different locations and sizes of a single crack in a blade. A fault database was built using Matlab. The damage of a blade was detected using the changes in natural frequencies. This study will assist in investigating the effect of a crack on a structure from different perspectives; the simulation results show the effectiveness of this approach.

  20. Frequency-agile vector signal generation based on optical frequency comb and pre-coding (United States)

    Qu, Kun; Zhao, ShangHong; Tan, QingGui; Liang, DanYa


    In this paper, we experimentally demonstrate the generation of frequency-agile vector signals based on an optical frequency comb (OFC) and unbalanced pre-coding technology by employing a dual-driven Mach-Zehnder Modulator (DD-MZM) and an intensity modulator (IM). The OFC is generated by the DD-MZM and sent to the IM as a carrier. The IM is driven by a 5 GHz 2 Gbaud quadrature phase-shift keying (QPSK) vector signal with unbalanced pre-coding. The -1st order sideband of one OFC line and the +1st order sideband of another OFC line are selected by a programmable pulse shaper (PPS), after square-low photodiode detection, the frequency-agile vector signal can be obtained. The results show that the 2 Gbaud QPSK vector signals at 30 GHz, 50 GHz, 70 GHz and 90 GHz can be generated by only pre-coding once. It is possible to achieve a bit-error-rate (BER) below 1e-3 for wireless transmissions over 0.5 m using this method.

  1. Investigation into the effects of VHF and UHF band radiation on Hewlett-Packard (HP) Cesium Beam Frequency Standards (United States)

    Dickens, Andrew


    This paper documents an investigation into reports which have indicated that exposure to VHF and UHF band radiation has adverse effects on the frequency stability of HP cesium beam frequency standards. Tests carried out on the basis of these reports show that sources of VHF and UHF radiation such as two-way hand held police communications devices do cause reproducible adverse effects. This investigation examines reproducible effects and explores possible causes.

  2. Standardized quality in MOOC based learning

    Directory of Open Access Journals (Sweden)

    Maiorescu Irina


    Full Text Available Quality in the field of e-learning and, particularly, in the field of MOOC( Massive Open Online Courses, is a topic of growing importance in both academic institutions and in the private sector as it has generally been proved that quality management can contribute to improving the performance of organizations, regardless of their object of activity. Despite the fact that there are standards relating to quality management in a general manner, professionals, academic staff, specialists and bodies felt the need for having a standardized approach of the quality in the sector of e-learning. Therefore, in the last years, in different countries quality guidelines have been developed and used for e-Learning or distance education (for example the ASTD criteria for e- Learning, the BLA Quality Mark, Quality Platform Learning by D-ELAN etc.. The current paper aims to give insights to this new form of online education provided by MOOC platforms using the specific quality standard approach.

  3. Full-degrees-of-freedom frequency based substructuring (United States)

    Drozg, Armin; Čepon, Gregor; Boltežar, Miha


    Dividing the whole system into multiple subsystems and a separate dynamic analysis is common practice in the field of structural dynamics. The substructuring process improves the computational efficiency and enables an effective realization of the local optimization, modal updating and sensitivity analyses. This paper focuses on frequency-based substructuring methods using experimentally obtained data. An efficient substructuring process has already been demonstrated using numerically obtained frequency-response functions (FRFs). However, the experimental process suffers from several difficulties, among which, many of them are related to the rotational degrees of freedom. Thus, several attempts have been made to measure, expand or combine numerical correction methods in order to obtain a complete response model. The proposed methods have numerous limitations and are not yet generally applicable. Therefore, in this paper an alternative approach based on experimentally obtained data only, is proposed. The force-excited part of the FRF matrix is measured with piezoelectric translational and rotational direct accelerometers. The incomplete moment-excited part of the FRF matrix is expanded, based on the modal model. The proposed procedure is integrated in a Lagrange Multiplier Frequency Based Substructuring method and demonstrated on a simple beam structure, where the connection coordinates are mainly associated with the rotational degrees of freedom.

  4. A frequency conversion mode for dispenser in the service station based on flow rate signal

    International Nuclear Information System (INIS)

    Liu, Y J; Tang, D; Huang, J B; Liu, J; Jia, P F


    Dispenser is an integrated fuel transport and measurement system at the service station. In this paper, we developed a frequency conversion mode for the dispenser, based on the flow rate signal which is obtained from the converter measuring flow capacity. After introducing the frequency conversion mode to dispenser, we obtained that pump rotates at a high speed when fuelled with high flow rate, and it rotates at a low speed when fuelled with low flow rate. This makes the fuel dispenser more energy-efficient and controllable. We also did some valve optimizations on the dispenser and developed a new control mode for preset refuelling based on the frequency conversion mode, Experimental and theoretical studies have shown that the new dispenser not only can meet the national standards, but also performs better than the ordinary one especially in preset refuelling.

  5. A study of ultra-stable optical clocks, frequency sources and standards for space applications

    International Nuclear Information System (INIS)

    Klein, H.A.; Knight, D.J.E.


    Optical or laser-based communication systems are expected to supplement microwave based systems for satellite-to-satellite and spacecraft-to-satellite communications early in the next millennium. Optical systems can carry far more traffic than microwave and address the need to increase communication bandwidths to meet the demands of commerce and the entertainment industry. There is already significant research and commercial interest in this area (now driven particularly by the multi-media and Internet services delivery sector) and there is a strong need to establish which are the best choices of optical sources to develop for space based optical communications. In addition to communication requirements there are strong arguments for developing ultra-stable optical frequency sources and detectors in space for at least two other purposes. At present the microwave radiation that is used for communications is also used for other purposes, for example navigation or tracking, and 'space science' experiments. With the switch from the microwave to the optical for communications it may well be convenient to switch to the optical for these and other functions. This study has examined the potential stable laser requirements for a range of space applications. An interim report was presented in the form of a conference paper summarising our initial findings (see Appendix 5). This final report gives our conclusions in more detail and recommends areas for further study

  6. High frequency electromechanical memory cells based on telescoping carbon nanotubes. (United States)

    Popov, A M; Lozovik, Y E; Kulish, A S; Bichoutskaia, E


    A new method to increase the operational frequency of electromechanical memory cells based on the telescoping motion of multi-walled carbon nanotubes through the selection of the form of the switching voltage pulse is proposed. The relative motion of the walls of carbon nanotubes can be controlled through the shape of the interwall interaction energy surface. This allows the use of the memory cells in nonvolatile or volatile regime, depending on the structure of carbon nanotube. Simulations based on ab initio and semi-empirical calculations of the interwall interaction energies are used to estimate the switching voltage and the operational frequency of volatile cells with the electrodes made of carbon nanotubes. The lifetime of nonvolatile memory cells is also predicted.

  7. A Frequency Multiplier Based on Time Recursive Processing

    Directory of Open Access Journals (Sweden)

    D. M. Perisic


    Full Text Available This paper describes a digital frequency multiplier for a pulse rate. The multiplier is based on the recursive processing of the input and output periods and their time differences. Special emphasis is devoted to the techniques which provide the development of multipliers based on this principle. The circuit is defined by two system parameters. One is the ratio of two clock frequencies and the other is a division factor of a binary counter. The realization of the circuit is described. The region of the system parameters for the stable circuit is presented. The different aspects of applications and limitations in realization of the circuit are considered. All mathematical analyses are made using a Z transform approach. It is shown that the circuit can be also used in tracking and prediction applications. Computer simulations are performed to prove the correctness of the math and the whole approach.

  8. Wavelet based transformer protection using high frequency power directional signals

    Energy Technology Data Exchange (ETDEWEB)

    Valsan, Simi P.; Swarup, K.S. [Department of Electrical Engineering, Indian Institute of Technology Madras (India)


    This paper proposes a novel wavelet transform based relaying scheme for power transformer protection. The relay logic consists of two parts: disturbance detection based on first level high frequency details of the voltage signals only and fault discrimination using a power based directional signal derived from the first level high frequency details of both voltage and current signals. The logic is deterministic, computationally efficient, fast, secure and highly reliable. The operating time is 6 ms, about 1/3rd of power frequency cycle (20 ms). The scheme uses only the sign of the directional signals, rather than the difference in their magnitudes, hence it can work reliably in the presence of transformer tap variation, fault resistance and CT saturation. The validity of the proposed logic was exhaustively tested by simulating various types of internal and external faults, energization conditions and load variations on a 132 kV system modeled in ATP/EMTP with a 31.5 MVA, 132/33 kV, Y-{delta} transformer. The proposed logic was able to correctly discriminate between internal faults, external faults and non-fault disturbances for all the 880 test cases. (author)

  9. The analysis of cable forces based on natural frequency (United States)

    Suangga, Made; Hidayat, Irpan; Juliastuti; Bontan, Darwin Julius


    A cable is a flexible structural member that is effective at resisting tensile forces. Cables are used in a variety of structures that employ their unique characteristics to create efficient design tension members. The condition of the cable forces in the cable supported structure is an important indication of judging whether the structure is in good condition. Several methods have been developed to measure on site cable forces. Vibration technique using correlation between natural frequency and cable forces is a simple method to determine in situ cable forces, however the method need accurate information on the boundary condition, cable mass, and cable length. The natural frequency of the cable is determined using FFT (Fast Fourier Transform) Technique to the acceleration record of the cable. Based on the natural frequency obtained, the cable forces then can be determine by analytical or by finite element program. This research is focus on the vibration techniques to determine the cable forces, to understand the physical parameter effect of the cable and also modelling techniques to the natural frequency and cable forces.

  10. Improvement of Laser Frequency Stabilization for the Optical Pumping Cesium Beam Standard

    International Nuclear Information System (INIS)

    Wang Qing; Duan Jun; Qi Xiang-Hui; Zhang Yin; Chen Xu-Zong


    A method is presented to improve the laser frequency stabilization for the optical pumping cesium clock. By comparing the laser frequency stabilization of different schemes, we verify that the light angle is an important factor that limits the long-term frequency stability. We minimize the drift of the light angle by using a fiber-coupled output, and lock the frequency of a distributed-feedback diode laser to the fluorescence spectrum of the atomic beam. The measured frequency stability is about 3.5 × 10 −11 at 1 s and reaches 1.5 × 10 −12 at 2000 s. The Allan variance keeps going down for up to thousands of seconds, indicating that the medium- and long-term stability of the laser frequency is significantly improved and perfectly fulfills the requirement for the optical pumping cesium clock. (paper)

  11. 77 FR 39385 - Receipts-Based, Small Business Size Standard (United States)


    ... Business Size Standard AGENCY: Nuclear Regulatory Commission. ACTION: Direct final rule. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC or the Commission) is amending the size standard that it uses to.... The NRC is increasing its receipts-based, small business size standard from $6.5 million to $7 million...

  12. Two RFID standard-based security protocols for healthcare environments. (United States)

    Picazo-Sanchez, Pablo; Bagheri, Nasour; Peris-Lopez, Pedro; Tapiador, Juan E


    Radio Frequency Identification (RFID) systems are widely used in access control, transportation, real-time inventory and asset management, automated payment systems, etc. Nevertheless, the use of this technology is almost unexplored in healthcare environments, where potential applications include patient monitoring, asset traceability and drug administration systems, to mention just a few. RFID technology can offer more intelligent systems and applications, but privacy and security issues have to be addressed before its adoption. This is even more dramatical in healthcare applications where very sensitive information is at stake and patient safety is paramount. In Wu et al. (J. Med. Syst. 37:19, 43) recently proposed a new RFID authentication protocol for healthcare environments. In this paper we show that this protocol puts location privacy of tag holders at risk, which is a matter of gravest concern and ruins the security of this proposal. To facilitate the implementation of secure RFID-based solutions in the medical sector, we suggest two new applications (authentication and secure messaging) and propose solutions that, in contrast to previous proposals in this field, are fully based on ISO Standards and NIST Security Recommendations.

  13. Intermediate Frequency Digital Receiver Based on Multi-FPGA System

    Directory of Open Access Journals (Sweden)

    Chengchang Zhang


    Full Text Available Aiming at high-cost, large-size, and inflexibility problems of traditional analog intermediate frequency receiver in the aerospace telemetry, tracking, and command (TTC system, we have proposed a new intermediate frequency (IF digital receiver based on Multi-FPGA system in this paper. Digital beam forming (DBF is realized by coordinated rotation digital computer (CORDIC algorithm. An experimental prototype has been developed on a compact Multi-FPGA system with three FPGAs to receive 16 channels of IF digital signals. Our experimental results show that our proposed scheme is able to provide a great convenience for the design of IF digital receiver, which offers a valuable reference for real-time, low power, high density, and small size receiver design.

  14. Glaucoma progression detection with frequency doubling technology (FDT) compared to standard automated perimetry (SAP) in the Groningen Longitudinal Glaucoma Study

    NARCIS (Netherlands)

    Wesselink, Christiaan; Jansonius, Nomdo M.

    Purpose: To determine the usefulness of frequency doubling perimetry (FDT) for progression detection in glaucoma, compared to standard automated perimetry (SAP). Methods: Data were used from 150 eyes of 150 glaucoma patients from the Groningen Longitudinal Glaucoma Study. After baseline, SAP was

  15. A Derivation of the Long-Term Degradation of a Pulsed Atomic Frequency Standard from a Control-Loop Model (United States)

    Greenhall, C. A.


    The phase of a frequency standard that uses periodic interrogation and control of a local oscillator (LO) is degraded by a long-term random-walk component induced by downconversion of LO noise into the loop passband. The Dick formula for the noise level of this degradation is derived from an explicit solution of an LO control-loop model.

  16. FROM STABLE LASERS TO OPTICAL-FREQUENCY CLOCKS:. Merging the UltraFast and the UltraStable, for a New Epoch of Optical Frequency Measurements, Standards, & Applications (United States)

    Hall, J. L.; Ye, J.; Ma, L.-S.; Peng, J.-L.; Notcutt, M.; Jost, J. D.; Marian, A.


    This is a report on behalf of the World Team of Stable Laser and Optical Frequency Measurement Enthusiasts, even if most detailed illustrations draw mainly from our work at JILA. Specifically we trace some of the key ideas that have led from the first stabilized lasers, to frequency measurement up to 88 THz using frequency chains, revision of the Definition of the Metre, extension of coherent frequency chain technology into the visible, development of a vast array of stabilized lasers, and finally the recent explosive growth of direct frequency measurement capability in the visible using fs comb techniques. We present our recent work showing a Molecular Iodine-based Optical Clock which delivers, over a range of time scales, rf output at a stability level basically equivalent to the RF stability prototype, the Hydrogen Maser. We note the bifurcation between single-ion-based clocks - likely to be the stability/reproducibility ultimate winners in the next generation - and simpler systems based on gas cells, which can have impressive stabilities but may suffer from a variety of reproducibility-limiting processes. Active Phase-Lock synchronization of independent fs lasers allows sub-fs timing control. Copies of related works in our labs may be found/obtained at our website .

  17. Liquid metal actuation-based reversible frequency tunable monopole antenna (United States)

    Kim, Daeyoung; Pierce, Richard G.; Henderson, Rashaunda; Doo, Seok Joo; Yoo, Koangki; Lee, Jeong-Bong


    We report the fabrication and characterization of a reversible resonant frequency tunable antenna based on liquid metal actuation. The antenna is composed of a coplanar waveguide fed monopole stub printed on a copper-clad substrate, and a tunnel-shaped microfluidic channel linked to the printed metal. The gallium-based liquid metal can be injected and withdrawn from the channel in response to an applied air pressure. The gallium-based liquid metal is treated with hydrochloric acid to eliminate the oxide layer, and associated wetting/sticking problems, that arise from exposure to an ambient air environment. Elimination of the oxide layer allows for reliable actuation and repeatable and reversible tuning. By controlling the liquid metal slug on-demand with air pressure, the liquid metal can be readily controllable to connect/disconnect to the monopole antenna so that the physical length of the antenna reversibly tunes. The corresponding reversible resonant frequency changes from 4.9 GHz to 1.1 GHz. The antenna properties based on the liquid metal actuation were characterized by measuring the reflection coefficient and agreed well with simulation results. Additionally, the corresponding time-lapse images of controlling liquid metal in the channel were studied.

  18. Dual-Phase Lock-In Amplifier Based on FPGA for Low-Frequencies Experiments

    Directory of Open Access Journals (Sweden)

    Gonzalo Macias-Bobadilla


    Full Text Available Photothermal techniques allow the detection of characteristics of material without invading it. Researchers have developed hardware for some specific Phase and Amplitude detection (Lock-In Function applications, eliminating space and unnecessary electronic functions, among others. This work shows the development of a Digital Lock-In Amplifier based on a Field Programmable Gate Array (FPGA for low-frequency applications. This system allows selecting and generating the appropriated frequency depending on the kind of experiment or material studied. The results show good frequency stability in the order of 1.0 × 10−9 Hz, which is considered good linearity and repeatability response for the most common Laboratory Amplitude and Phase Shift detection devices, with a low error and standard deviation.

  19. Dual-Phase Lock-In Amplifier Based on FPGA for Low-Frequencies Experiments. (United States)

    Macias-Bobadilla, Gonzalo; Rodríguez-Reséndiz, Juvenal; Mota-Valtierra, Georgina; Soto-Zarazúa, Genaro; Méndez-Loyola, Maurino; Garduño-Aparicio, Mariano


    Photothermal techniques allow the detection of characteristics of material without invading it. Researchers have developed hardware for some specific Phase and Amplitude detection (Lock-In Function) applications, eliminating space and unnecessary electronic functions, among others. This work shows the development of a Digital Lock-In Amplifier based on a Field Programmable Gate Array (FPGA) for low-frequency applications. This system allows selecting and generating the appropriated frequency depending on the kind of experiment or material studied. The results show good frequency stability in the order of 1.0 × 10(-9) Hz, which is considered good linearity and repeatability response for the most common Laboratory Amplitude and Phase Shift detection devices, with a low error and standard deviation.

  20. Transmission control unit drive based on the AUTOSAR standard (United States)

    Guo, Xiucai; Qin, Zhen


    It is a trend of automotive electronics industry in the future that automotive electronics embedded system development based on the AUTOSAR standard. AUTOSAR automotive architecture standard has proposed the transmission control unit (TCU) development architecture and designed its interfaces and configurations in detail. This essay has discussed that how to drive the TCU based on AUTOSAR standard architecture. The results show that driving the TCU with the AUTOSAR system improves reliability and shortens development cycles.

  1. 77 FR 37587 - Updating OSHA Standards Based on National Consensus Standards; Head Protection (United States)


    ..., 1918, and 1926 [Docket No. OSHA-2011-0184] RIN 1218-AC65 Updating OSHA Standards Based on National Consensus Standards; Head Protection AGENCY: Occupational Safety and Health Administration (OSHA), Department of Labor. ACTION: Direct final rule; request for comments. SUMMARY: OSHA is issuing this direct...

  2. 77 FR 68717 - Updating OSHA Standards Based on National Consensus Standards; Head Protection (United States)


    ..., 1918, and 1926 [Docket No. OSH-2011-0184] RIN 1218-AC65 Updating OSHA Standards Based on National Consensus Standards; Head Protection AGENCY: Occupational Safety and Health Administration (OSHA), Labor. ACTION: Proposed rule; withdrawal. SUMMARY: With this notice, OSHA is withdrawing the proposed rule that...

  3. 77 FR 37617 - Updating OSHA Standards Based on National Consensus Standards; Head Protection (United States)


    ..., 1918, and 1926 [Docket No. OSHA-2011-0184] RIN 1218-AC65 Updating OSHA Standards Based on National Consensus Standards; Head Protection AGENCY: Occupational Safety and Health Administration (OSHA), Department of Labor. ACTION: Notice of proposed rulemaking; request for comments. SUMMARY: OSHA is proposing...

  4. 77 FR 68684 - Updating OSHA Standards Based on National Consensus Standards; Head Protection (United States)


    ..., 1918, and 1926 [Docket No. OSHA-2011-0184] RIN 1218-AC65 Updating OSHA Standards Based on National Consensus Standards; Head Protection AGENCY: Occupational Safety and Health Administration (OSHA), Labor. ACTION: Final rule; confirmation of effective date. SUMMARY: OSHA is confirming the effective date of its...

  5. 78 FR 65932 - Updating OSHA Standards Based on National Consensus Standards; Signage (United States)


    ... [Docket No. OSH-2013-0005] RIN No. 1218-AC77 Updating OSHA Standards Based on National Consensus Standards; Signage AGENCY: Occupational Safety and Health Administration (OSHA), Department of Labor. ACTION: Proposed rule; withdrawal. SUMMARY: With this notice, OSHA is withdrawing the proposed rule that...

  6. 78 FR 66642 - Updating OSHA Standards Based on National Consensus Standards; Signage (United States)


    ... [Docket No. OSHA-2013-0005] RIN 1218-AC77 Updating OSHA Standards Based on National Consensus Standards; Signage AGENCY: Occupational Safety and Health Administration (OSHA), Department of Labor. ACTION: Final rule; confirmation of effective date. SUMMARY: On June 13, 2013, OSHA published in the Federal Register...



    Islom Kuziev


    In this article are given main notion about international standard of financial reporting, order of the auditing on the base of IFRS, scheduling the report of the auditor, auditor conclusions and are given analysis of reporting based on the auditor procedures. At the audit of financial reporting are taken into account international standard to financial reporting 29 "Financial reporting in hyperinflationary economies".

  8. Frequency selective surfaces based high performance microstrip antenna

    CERN Document Server

    Narayan, Shiv; Jha, Rakesh Mohan


    This book focuses on performance enhancement of printed antennas using frequency selective surfaces (FSS) technology. The growing demand of stealth technology in strategic areas requires high-performance low-RCS (radar cross section) antennas. Such requirements may be accomplished by incorporating FSS into the antenna structure either in its ground plane or as the superstrate, due to the filter characteristics of FSS structure. In view of this, a novel approach based on FSS technology is presented in this book to enhance the performance of printed antennas including out-of-band structural RCS reduction. In this endeavor, the EM design of microstrip patch antennas (MPA) loaded with FSS-based (i) high impedance surface (HIS) ground plane, and (ii) the superstrates are discussed in detail. The EM analysis of proposed FSS-based antenna structures have been carried out using transmission line analogy, in combination with the reciprocity theorem. Further, various types of novel FSS structures are considered in desi...

  9. Single Frequency Network Based Distributed Passive Radar Technology

    Directory of Open Access Journals (Sweden)

    Wan Xian-rong


    Full Text Available The research and application of passive radar are heading from single transmitter-receiver pair to multiple transmitter-receiver pairs. As an important class of the illuminators of opportunity, most of modern digital broadcasting and television systems work on Single Frequency Network (SFN, which intrinsically determines that the passive radar based on such illuminators must be distributed and networked. In consideration of the remarkable working and processing mode of passive radar under SFN configuration, this paper proposes the concept of SFN-based Distributed Passive Radar (SDPR. The main characteristics and key problems of SDPR are first described. Then several potential solutions are discussed for part of the key technologies. The feasibility of SDPR is demonstrated by preliminary experimental results. Finally, the concept of four network convergence that includes the broadcast based passive radar network is conceived, and its application prospects are discussed.

  10. Comparative genetic mutation frequencies based on amino acid composition differences. (United States)

    Vieira, Amandio


    Genetic variation inferred from large-scale amino acid composition comparisons among genomes and chromosomes of several species, Saccharomyces cerevisiae, Drosophila melanogaster, Ceanorhabditis elegans, H. sapiens, is shown to be correlated (highest, r(2)=0.9855, p<0.01) with reported mutation rates for various genes in these species. This study, based largely on pseudogene data, helps to establish reference mutation frequencies that are likely to be representative of overall genome mutation rates in each of the species examined, and provides further insight into heterogeneity of mutation rates among genomes.

  11. Improving car-carrier safety through Performance-Based Standards

    CSIR Research Space (South Africa)

    De Saxe, C


    Full Text Available 2012 Slide 4 Prescriptive Standards Performance-Based Standards Images courtesy of the Australian National Transport Commission Background: Performance-Based Standards ? CSIR 2012 Slide 5 Manoeuvre/Test Performance Standard Low-speed 90? turn Low... Slide 6 Frontal swing Tail swing Background: South African car-carriers ? CSIR 2012 Slide 7 4 .3 m 4. 6 m 18.5 m 4. 3 m 4. 6 m 22 m22.5 m 19 m WITH abnormal load permit Courtesy Unipower (Natal) and Kh?ssbohrer. WITHOUT abnormal...

  12. Comparison of metatranscriptomic samples based on k-tuple frequencies.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available The comparison of samples, or beta diversity, is one of the essential problems in ecological studies. Next generation sequencing (NGS technologies make it possible to obtain large amounts of metagenomic and metatranscriptomic short read sequences across many microbial communities. De novo assembly of the short reads can be especially challenging because the number of genomes and their sequences are generally unknown and the coverage of each genome can be very low, where the traditional alignment-based sequence comparison methods cannot be used. Alignment-free approaches based on k-tuple frequencies, on the other hand, have yielded promising results for the comparison of metagenomic samples. However, it is not known if these approaches can be used for the comparison of metatranscriptome datasets and which dissimilarity measures perform the best.We applied several beta diversity measures based on k-tuple frequencies to real metatranscriptomic datasets from pyrosequencing 454 and Illumina sequencing platforms to evaluate their effectiveness for the clustering of metatranscriptomic samples, including three d2-type dissimilarity measures, one dissimilarity measure in CVTree, one relative entropy based measure S2 and three classical 1p-norm distances. Results showed that the measure d2(S can achieve superior performance on clustering metatranscriptomic samples into different groups under different sequencing depths for both 454 and Illumina datasets, recovering environmental gradients affecting microbial samples, classifying coexisting metagenomic and metatranscriptomic datasets, and being robust to sequencing errors. We also investigated the effects of tuple size and order of the background Markov model. A software pipeline to implement all the steps of analysis is built and is available at k-tuple based sequence signature measures can effectively reveal major groups and gradient variation among

  13. A Frequency-Based Approach to Intrusion Detection

    Directory of Open Access Journals (Sweden)

    Mian Zhou


    Full Text Available Research on network security and intrusion detection strategies presents many challenging issues to both theoreticians and practitioners. Hackers apply an array of intrusion and exploit techniques to cause disruption of normal system operations, but on the defense, firewalls and intrusion detection systems (IDS are typically only effective in defending known intrusion types using their signatures, and are far less than mature when faced with novel attacks. In this paper, we adapt the frequency analysis techniques such as the Discrete Fourier Transform (DFT used in signal processing to the design of intrusion detection algorithms. We demonstrate the effectiveness of the frequency-based detection strategy by running synthetic network intrusion data in simulated networks using the OPNET software. The simulation results indicate that the proposed intrusion detection strategy is effective in detecting anomalous traffic data that exhibit patterns over time, which include several types of DOS and probe attacks. The significance of this new strategy is that it does not depend on the prior knowledge of attack signatures, thus it has the potential to be a useful supplement to existing signature-based IDS and firewalls.

  14. Ultra High-Speed Radio Frequency Switch Based on Photonics. (United States)

    Ge, Jia; Fok, Mable P


    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  15. A frequency-based parameter for rapid estimation of magnitude (United States)

    Atefi, Sanam; Heidari, Reza; Mirzaei, Noorbakhsh; Siahkoohi, Hamid Reza


    This study introduce a new frequency parameter called τ_{fcwt}, which can be used to estimate earthquake magnitude on the basis of the first few seconds of P-waves, using the waveforms of earthquakes occurring in Japan. This new parameter is introduced using continuous wavelet transform as a tool for extracting the frequency contents carried by the first few seconds of P-wave. The empirical relationship between the logarithm of τ_{fcwt} within the initial 4 s of a waveform and magnitude was obtained. To evaluate the precision of τ_{fcwt}, we also calculated parameters τp^{ max } and τc. The average absolute values of observed and estimated magnitude differences (|M_{est} - M_{obs} |) were 0.43, 0.49, and 0.66 units of magnitude, as determined using τp^{ max }, τc, and τ_{fcwt}, respectively. For earthquakes with magnitudes greater than 6, these values were 0.34, 0.56, and 0.44 units of magnitude, as derived using τp^{ max }, τc, and τ_{fcwt}, respectively. The τ_{fcwt} parameter exhibited more precision in determining the magnitude of moderate- and small-scale earthquakes than did the τc-based approach. For a general range of magnitudes, however, the τp^{ max }-based method showed more acceptable precision than did the other two parameters.

  16. LPI Radar Waveform Recognition Based on Time-Frequency Distribution

    Directory of Open Access Journals (Sweden)

    Ming Zhang


    Full Text Available In this paper, an automatic radar waveform recognition system in a high noise environment is proposed. Signal waveform recognition techniques are widely applied in the field of cognitive radio, spectrum management and radar applications, etc. We devise a system to classify the modulating signals widely used in low probability of intercept (LPI radar detection systems. The radar signals are divided into eight types of classifications, including linear frequency modulation (LFM, BPSK (Barker code modulation, Costas codes and polyphase codes (comprising Frank, P1, P2, P3 and P4. The classifier is Elman neural network (ENN, and it is a supervised classification based on features extracted from the system. Through the techniques of image filtering, image opening operation, skeleton extraction, principal component analysis (PCA, image binarization algorithm and Pseudo–Zernike moments, etc., the features are extracted from the Choi–Williams time-frequency distribution (CWD image of the received data. In order to reduce the redundant features and simplify calculation, the features selection algorithm based on mutual information between classes and features vectors are applied. The superiority of the proposed classification system is demonstrated by the simulations and analysis. Simulation results show that the overall ratio of successful recognition (RSR is 94.7% at signal-to-noise ratio (SNR of −2 dB.

  17. Fast LCMV-based Methods for Fundamental Frequency Estimation

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Glentis, George-Othon; Christensen, Mads Græsbøll


    peaks and require matrix inversions for each point in the search grid. In this paper, we therefore consider fast implementations of LCMV-based fundamental frequency estimators, exploiting the estimators' inherently low displacement rank of the used Toeplitz-like data covariance matrices, using...... with several orders of magnitude, but, as we show, further computational savings can be obtained by the adoption of an approximative IAA-based data covariance matrix estimator, reminiscent of the recently proposed Quasi-Newton IAA technique. Furthermore, it is shown how the considered pitch estimators can...... as such either the classic time domain averaging covariance matrix estimator, or, if aiming for an increased spectral resolution, the covariance matrix resulting from the application of the recent iterative adaptive approach (IAA). The proposed exact implementations reduce the required computational complexity...

  18. Gold Standard Testing of Motion Based Tracking Systems (United States)


    AFRL-RH-WP-TR-2017-0032 GOLD STANDARD TESTING OF MOTION BASED TRACKING SYSTEMS Joshua Hagen Human Signatures Branch Human-Centered ISR Division...DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To) 15 03 17 Interim Report June 2016 – March 2017 4. TITLE AND SUBTITLE Gold Standard Testing against a ‘ Gold Standard ’ on-field measurement system for human physiological performance monitoring. Data shows that the accuracy of the

  19. Measurement and control from frequency to phase based on virtual signal reconstruction (United States)

    Li, Zhiqi; Zhou, Wei; Chen, Jingbiao; Bai, Lina; Chen, Faxi; Xu, Longfei; Ge, Xiaoxia; Miao, Miao


    A virtual reconstruction method of directly capturing phase information between different nominal frequency signals, without frequency transformation, is proposed in this paper, building a virtual standard frequency signal whose frequency equals the measured nominal frequency and then making continuous comparison in the measuring gate which is synchronous with multiple periods between the measured signal and the reference frequency signal. Phase variations of the measured signal in every continuous gate are determined, and continuous phase-measuring is implemented. The experimental result verifies this special method for directly processing the phase difference between different nominal frequency signals and realizes a comparison precision of 10-17/day in a wide range.

  20. Historical and future drought in Bangladesh using copula-based bivariate regional frequency analysis (United States)

    Mortuza, Md Rubayet; Moges, Edom; Demissie, Yonas; Li, Hong-Yi


    The study aims at regional and probabilistic evaluation of bivariate drought characteristics to assess both the past and future drought duration and severity in Bangladesh. The procedures involve applying (1) standardized precipitation index to identify drought duration and severity, (2) regional frequency analysis to determine the appropriate marginal distributions for both duration and severity, (3) copula model to estimate the joint probability distribution of drought duration and severity, and (4) precipitation projections from multiple climate models to assess future drought trends. Since drought duration and severity in Bangladesh are often strongly correlated and do not follow same marginal distributions, the joint and conditional return periods of droughts are characterized using the copula-based joint distribution. The country is divided into three homogeneous regions using Fuzzy clustering and multivariate discordancy and homogeneity measures. For given severity and duration values, the joint return periods for a drought to exceed both values are on average 45% larger, while to exceed either value are 40% less than the return periods from the univariate frequency analysis, which treats drought duration and severity independently. These suggest that compared to the bivariate drought frequency analysis, the standard univariate frequency analysis under/overestimate the frequency and severity of droughts depending on how their duration and severity are related. Overall, more frequent and severe droughts are observed in the west side of the country. Future drought trend based on four climate models and two scenarios showed the possibility of less frequent drought in the future (2020-2100) than in the past (1961-2010).

  1. Entropy-based derivation of generalized distributions for hydrometeorological frequency analysis (United States)

    Chen, Lu; Singh, Vijay P.


    Frequency analysis of hydrometeorological and hydrological extremes is needed for the design of hydraulic and civil infrastructure facilities as well as water resources management. A multitude of distributions have been employed for frequency analysis of these extremes. However, no single distribution has been accepted as a global standard. Employing the entropy theory, this study derived five generalized distributions for frequency analysis that used different kinds of information encoded as constraints. These distributions were the generalized gamma (GG), the generalized beta distribution of the second kind (GB2), and the Halphen type A distribution (Hal-A), Halphen type B distribution (Hal-B) and Halphen type inverse B distribution (Hal-IB), among which the GG and GB2 distribution were previously derived by Papalexiou and Koutsoyiannis (2012) and the Halphen family was first derived using entropy theory in this paper. The entropy theory allowed to estimate parameters of the distributions in terms of the constraints used for their derivation. The distributions were tested using extreme daily and hourly rainfall data. Results show that the root mean square error (RMSE) values were very small, which indicated that the five generalized distributions fitted the extreme rainfall data well. Among them, according to the Akaike information criterion (AIC) values, generally the GB2 and Halphen family gave a better fit. Therefore, those general distributions are one of the best choices for frequency analysis. The entropy-based derivation led to a new way for frequency analysis of hydrometeorological extremes.

  2. Autonomous prediction of performance-based standards for heavy vehicles

    CSIR Research Space (South Africa)

    Berman, R


    Full Text Available performance-based standards approach which specifies on-road vehicle performance measures. One such standard is the low-speed swept path, which is a measure of road width required by a vehicle to complete a prescribed turning manoeuvre. This is typically...

  3. Defining nuclear medical file format based on DICOM standard

    International Nuclear Information System (INIS)

    He Bin; Jin Yongjie; Li Yulan


    With the wide using of computer technology in medical area, DICOM is becoming the standard of digital imaging and communication. The author discusses how to define medical imaging file format based on DICOM standard. It also introduces the file format of ANMIS system authors defined and the validity and integrality of this format

  4. Defining nuclear medical file formal based on DICOM standard

    International Nuclear Information System (INIS)

    He Bin; Jin Yongjie; Li Yulan


    With the wide application of computer technology in medical area, DICOM is becoming the standard of digital imaging and communication. The author discusses how to define medical imaging file formal based on DICOM standard. It also introduces the format of ANMIS system the authors defined the validity and integrality of this format

  5. Rethinking Game Based Learning: applying pedagogical standards to educational games

    NARCIS (Netherlands)

    Schmitz, Birgit; Kelle, Sebastian


    Schmitz, B., & Kelle, S. (2010, 1-6 February). Rethinking Game Based Learning: applying pedagogical standards to educational games. Presentation at JTEL Winter School 2010 on Advanced Learning Technologies, Innsbruck, Austria.

  6. The ASEAN community-based tourism standards: looking beyond certification


    Novelli, M.; Klatte, N.; Dolezal, C.


    This paper reports findings from an opportunity study on the appropriateness of implementing community-based tourism standards (CBTS) certification through the Association of Southeast Asian Nations (ASEAN) criteria, as a way to improve sustainable tourism provision in the region. Framed by critical reflections on community-based tourism (CBT) literature and existing sustainable tourism standards (STS) practices, qualitative research consisting of interviews with six key industry experts prov...

  7. Frequency of damage by external hazards based on geographical information

    Energy Technology Data Exchange (ETDEWEB)

    Becker, G. [RISA Sicherheitsanalysen GmbH, Berlin (Germany); Camarinopoulos, A.; Karali, T. [ERRA, Athens (Greece); Camarinopoulos, L. [Piraeus Univ. (Greece); Schubert, B. [VENE, Hamburg (Germany)


    External explosions can significantly contribute to risk of damage for industrial plants. External explosions may origin from other plants in the neighborhood, which store and operate with explosive substances, or from transport of such substances on road, rail, or water. In all cases, some accident is a necessary condition for a hazard. Another probabilistic element is the probability of ignition. If transport causes the explosion, the location of the accident will influence the consequences. If deflagration is involved, ignition will not necessarily occur at the place of the accident, but a cloud of a combustible gas-air mixture may develop, which will ignite at some distance depending on wind velocity. In order to avoid unnecessarily pessimistic approaches, geographical information can be used in addition to local weather statistics. Geographical information systems provide map material for sites, roads, rail and rivers on a computer. This information can be used to find frequencies of damage based on numerical integration or on Monte Carlo simulation. A probabilistic model has been developed. It is based on: - A joint probability density function for wind direction and wind speed, which has been estimated from local weather statistics, - Frequency of hazards for neighboring plants and various types of traffic, - Statistics on the amounts and types of explosive materials, - The model has been implemented using one numerical integrations method and two variants of Monte Carlo method. Data has been collected and applied for a nuclear power plant in Northern Germany as an example. The method, however, can be used for any type of plant subject to external explosion hazards. In its present form, it makes use of design criteria specific for nuclear power plants, but these could be replaced by different criteria. (orig.)

  8. The Impact of Proposed Radio Frequency Radiation Standards on Military Operations. (United States)


    circuit body currents were first measured for exposure to the Haiku , Oahu, Hawaii 10.2 to 14 kHz Omega antenna. Maximum electric field strength levels up...FREQUENCY MEASURED THEORETICAL AND E-F IELD STRENGTH (kHz) CURRENT CURRENT (VA/(kV/i)) (mA/(kV/m)) WET ASPHALT HAIKU , HAWAII OMEGA 10.2 2.9 2.88

  9. Efficient block-based frequency domain wavelet transform implementations. (United States)

    Lin, Jianyu; Smith, Mark J T


    Subband decompositions for image coding have been explored extensively over the last few decades. The condensed wavelet packet (CWP) transform is one such decomposition that was recently shown to have coding performance advantages over conventional decompositions. A special feature of the CWP is that its design and implementation are performed in the cyclic frequency domain. While performance gains have been reported, efficient implementations of the CWP (or more generally, efficient implementations of cyclic filter banks) have not yet been fully explored. In this paper, we present efficient block-based implementations of cyclic filter banks along with an analysis of the arithmetic complexity. Block-based cyclic filter bank implementations of the CWP coder are compared with conventional subband/wavelet image coders whose filter banks are implemented in the time domain. It is shown that block-based cyclic filter bank implementations can result in CWP coding systems that outperform the popular image coding systems both in terms of arithmetic complexity and coding performance.

  10. Adaptive Window Zero-Crossing-Based Instantaneous Frequency Estimation

    Directory of Open Access Journals (Sweden)

    Sekhar S Chandra


    Full Text Available We address the problem of estimating instantaneous frequency (IF of a real-valued constant amplitude time-varying sinusoid. Estimation of polynomial IF is formulated using the zero-crossings of the signal. We propose an algorithm to estimate nonpolynomial IF by local approximation using a low-order polynomial, over a short segment of the signal. This involves the choice of window length to minimize the mean square error (MSE. The optimal window length found by directly minimizing the MSE is a function of the higher-order derivatives of the IF which are not available a priori. However, an optimum solution is formulated using an adaptive window technique based on the concept of intersection of confidence intervals. The adaptive algorithm enables minimum MSE-IF (MMSE-IF estimation without requiring a priori information about the IF. Simulation results show that the adaptive window zero-crossing-based IF estimation method is superior to fixed window methods and is also better than adaptive spectrogram and adaptive Wigner-Ville distribution (WVD-based IF estimators for different signal-to-noise ratio (SNR.

  11. Diagnostics of phonological lexical processing: pseudohomophone naming advantages, disadvantages, and base-word frequency effects. (United States)

    Borowsky, Ron; Owen, William J; Masson, Michael E J


    Phonological lexical access has been investigated by examining both a pseudohomophone (e.g., brane) base-word frequency effect and a pseudohomophone advantage over pronounceable nonwords (e.g., frane) in a single mixed block of naming trials. With a new set of pseudohomophones and non-words presented in a mixed block, we replicated the standard finding in the naming literature: no reliable base-word frequency effect, and apseudohomophone advantage. However, for this and two of three other sets of stimuli--those of McCann and Besner (1987), Seidenberg, Petersen, MacDonald, and Plaut (1996), and Herdman, LeFevre, and Greenham (1996), respectively--reliable effects of base-word frequency on pseudohomophone naming latency were found when pseudohomophones were presented in pure blocks prior to nonwords. Three of the four stimulus sets tested produced a pseudohomophone naming disadvantage when pseudohomophones were presented prior to nonwords. When nonwords were presented first, these effects were diminished. A strategy-based scaling account of the data is argued to provide a better explanation of the data than is the criterion-homogenization theory (Lupker, Brown, & Colombo, 1997).

  12. Evaluation of the characteristics of a field emission cathode for use in a Mercury ion trap frequency standard (United States)

    Christman, J. M.


    The performance is reported of a field emission array characterized for the purpose of replacing the filament in a trapped ion frequency standard. This dark electron emitter eliminates the need for the interference filter currently used in the trapped ion standard. While reducing the filament's unwanted light, this filter causes a significant reduction in the signal. The magnetic field associated with the filament is also eliminated, thus potentially improving the present stability of the trapped ion standard. The operation of the filament in the present system is described, as well as the associated concerns. The cathode considered for the filament's replacement is then described along with the experimental system. Experimental results, observations, and conclusions are presented.

  13. Autonomy and Accountability in Standards-Based Reform

    Directory of Open Access Journals (Sweden)

    Susan Watson


    Full Text Available In this article we discuss the effects of one urban school district's efforts to increase the autonomy and accountability of schools and teams of teachers through a standards-based reform known as team- based schooling. Team-based schooling is designed to devolve decision-making authority down to the school level by increasing teachers' autonomy to make decisions. Increased accountability is enacted in the form of a state-level standards-based initiative. Based on our evaluation over a two-year period involving extensive fieldwork and quantitative analysis, we describe the ways that teachers, teams and school administrators responded to the implementation of team-based schooling. What are the effects of increasing school-level autonomy and accountability in the context of standards- based reform? Our analysis highlights several issues: the "lived reality" of teaming as it interacts with the existing culture within schools, the ways that teachers respond to the pressures created by increased internal and external accountability, and the effects of resource constraints on the effectiveness of implementation. We conclude by using our findings to consider more broadly the trade-off between increased autonomy and accountability on which standards-based reforms like team-based schooling are based.

  14. Millisecond and binary pulsars as nature's frequency standards - II. The effects of low-frequency timing noise on residuals and measured parameters (United States)

    Kopeikin, Sergei M.


    Millisecond and binary pulsars are the most stable natural frequency standards. They can be applied to a number of principal problems in modern astronomy and time-keeping metrology, including the search for a stochastic gravitational wave background in the early Universe, testing general relativity and establishing a new ephemeris time-scale. The full exploration of pulsar properties requires that proper unbiased estimates of the spin and orbital parameters be obtained, a problem which deserves special investigation. These estimates depend essentially on the random noise component being revealed in the residuals of time of arrival (TOA) and having various physical origins. In the present paper, the influence of low-frequency (`red') timing noise with spectral indices from 1 to 6 on TOA residuals, variances, and covariances of the estimates of measured parameters of single and binary pulsars is studied. In order to determine the functional dependence of these quantities on time, an analytical technique for processing observational data in the time domain is developed. Data processing in the time domain is more informative, because it takes into account both the stationary and non-stationary components of noise. Data processing in the frequency domain is valid if and only if the noise is stationary. Our analysis includes a simplified timing model of a binary pulsar in a circular orbit and a procedure for estimating pulsar parameters and residuals under the influence of red noise. We reconfirm, in accordance with the results of previous authors, that uncorrelated white noise in the errors of measurements of TOA causes gradually decreasing residuals, variances and covariances of all parameters. On the other hand, we show that any low-frequency, correlated noise of terrestrial or/and astrophysical origin that is present causes the residuals, variances and covariances of certain parameters to increase with time. Hence, the low-frequency noise corrupts our observations

  15. Short-Term Frequency Response of a DFIG-Based Wind Turbine Generator for Rapid Frequency Stabilization

    Directory of Open Access Journals (Sweden)

    Dejian Yang


    Full Text Available This paper proposes a short-term frequency-response scheme of a doubly-fed induction generator (DFIG-based wind turbine generator (WTG for improving rotor speed recovery and frequency nadir. In the energy-releasing period, to improve the frequency nadir and rotor speed convergence by releasing a large amount of kinetic energy stored in the rotating masses in a DFIG-based WTG, the power reference is increased up to the torque limit referred to the power and reduces along with it for a predefined period which is determined based on the occurrence time of the frequency nadir in a power grid. Then, the reference decreases so that the rotor speed is forced to be converged to the preset value in the stable operating region of the rotor speed. In the energy-absorbing period, to quickly recover the rotor speed, the reference smoothly decreases with the rotor speed and time during a predefined period until it intersects with the maximum power point tracking curve. The simulation results demonstrate that the proposed scheme successfully achieves rapid frequency stabilization with the improved frequency nadir under various wind conditions based on the IEEE 14-bus system.

  16. Detection of High Frequency Oscillations by Hybrid Depth Electrodes in Standard Clinical Intracranial EEG Recordings

    Directory of Open Access Journals (Sweden)

    Efstathios D Kondylis


    Full Text Available High frequency oscillations (HFOs have been proposed as a novel marker for epileptogenic tissue, spurring tremendous research interest into the characterization of these transient events. A wealth of continuously recorded intracranial electroencephalographic (iEEG data is currently available from patients undergoing invasive monitoring for the surgical treatment of epilepsy. In contrast to data recorded on research-customized recording systems, data from clinical acquisition systems remain an underutilized resource for HFO detection in most centers. The effective and reliable use of this clinically obtained data would be an important advance in the ongoing study of HFOs and their relationship to ictogenesis. The diagnostic utility of HFOs ultimately will be limited by the ability of clinicians to detect these brief, sporadic, and low amplitude events in an electrically noisy clinical environment. Indeed, one of the most significant factors limiting the use of such clinical recordings for research purposes is their low signal to noise ratio, especially in the higher frequency bands. In order to investigate the presence of HFOs in clinical data, we first obtained continuous intracranial recordings in a typical clinical environment using a commercially available, commonly utilized data acquisition system and off the shelf hybrid macro/micro depth electrodes. This data was then inspected for the presence of HFOs using semi-automated methods and expert manual review. With targeted removal of noise frequency content, HFOs were detected on both macro- and micro-contacts, and preferentially localized to seizure onset zones. HFOs detected by the offline, semi-automated method were also validated in the clinical viewer, demonstrating that 1 this clinical system allows for the visualization of HFOs, and 2 with effective signal processing, clinical recordings can yield valuable information for offline analysis.

  17. Wavelet-Based Speech Enhancement Using Time-Frequency Adaptation (United States)

    Wang, Kun-Ching


    Wavelet denoising is commonly used for speech enhancement because of the simplicity of its implementation. However, the conventional methods generate the presence of musical residual noise while thresholding the background noise. The unvoiced components of speech are often eliminated from this method. In this paper, a novel algorithm of wavelet coefficient threshold (WCT) based on time-frequency adaptation is proposed. In addition, an unvoiced speech enhancement algorithm is also integrated into the system to improve the intelligibility of speech. The wavelet coefficient threshold (WCT) of each subband is first temporally adjusted according to the value of a posterior signal-to-noise ratio (SNR). To prevent the degradation of unvoiced sounds during noise, the algorithm utilizes a simple speech/noise detector (SND) and further divides speech signal into unvoiced and voiced sounds. Then, we apply appropriate wavelet thresholding according to voiced/unvoiced (V/U) decision. Based on the masking properties of human auditory system, a perceptual gain factor is adopted into wavelet thresholding for suppressing musical residual noise. Simulation results show that the proposed method is capable of reducing noise with little speech degradation and the overall performance is superior to several competitive methods.

  18. Frequency domain based LS channel estimation in OFDM based Power line communications


    Bogdanović, Mario


    This paper is focused on low voltage power line communication (PLC) realization with an emphasis on channel estimation techniques. The Orthogonal Frequency Division Multiplexing (OFDM) scheme is preferred technology in PLC systems because of its effective combat with frequency selective fading properties of PLC channel. As the channel estimation is one of the crucial problems in OFDM based PLC system because of a problematic area of PLC signal attenuation and interference, the improved LS est...

  19. Path loss variation of on-body UWB channel in the frequency bands of IEEE 802.15.6 standard. (United States)

    Goswami, Dayananda; Sarma, Kanak C; Mahanta, Anil


    The wireless body area network (WBAN) has gaining tremendous attention among researchers and academicians for its envisioned applications in healthcare service. Ultra wideband (UWB) radio technology is considered as excellent air interface for communication among body area network devices. Characterisation and modelling of channel parameters are utmost prerequisite for the development of reliable communication system. The path loss of on-body UWB channel for each frequency band defined in IEEE 802.15.6 standard is experimentally determined. The parameters of path loss model are statistically determined by analysing measurement data. Both the line-of-sight and non-line-of-sight channel conditions are considered in the measurement. Variations of parameter values with the size of human body are analysed along with the variation of parameter values with the surrounding environments. It is observed that the parameters of the path loss model vary with the frequency band as well as with the body size and surrounding environment. The derived parameter values are specific to the particular frequency bands of IEEE 802.15.6 standard, which will be useful for the development of efficient UWB WBAN system.

  20. A MEMS-based high frequency x-ray chopper

    Energy Technology Data Exchange (ETDEWEB)

    Siria, A; Schwartz, W; Chevrier, J [Institut Neel, CNRS-Universite Joseph Fourier Grenoble, BP 166, F-38042 Grenoble Cedex 9 (France); Dhez, O; Comin, F [ESRF, 6 rue Jules Horowitz, F-38043 Grenoble Cedex 9 (France); Torricelli, G [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)


    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  1. A MEMS-based high frequency x-ray chopper. (United States)

    Siria, A; Dhez, O; Schwartz, W; Torricelli, G; Comin, F; Chevrier, J


    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  2. A MEMS-based high frequency x-ray chopper

    International Nuclear Information System (INIS)

    Siria, A; Schwartz, W; Chevrier, J; Dhez, O; Comin, F; Torricelli, G


    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  3. 77 FR 43018 - Updating OSHA Construction Standards Based on National Consensus Standards; Head Protection... (United States)


    .... OSHA-2011-0184] RIN 1218-AC65 Updating OSHA Construction Standards Based on National Consensus... Health Administration (OSHA), Department of Labor. ACTION: Notice of proposed rulemaking; correction. SUMMARY: OSHA is correcting a notice of proposed rulemaking (NPRM) with regard to the construction...

  4. 77 FR 42988 - Updating OSHA Construction Standards Based on National Consensus Standards; Head Protection... (United States)


    .... OSHA-2011-0184] RIN 1218-AC65 Updating OSHA Construction Standards Based on National Consensus... Administration (OSHA), Department of Labor. ACTION: Direct final rule; correction. SUMMARY: OSHA is correcting a... confusion resulting from a drafting error. OSHA published the DFR on June 22, 2012 (77 FR 37587). OSHA also...

  5. Cloud-Based Collaborative Writing and the Common Core Standards (United States)

    Yim, Soobin; Warschauer, Mark; Zheng, Binbin; Lawrence, Joshua F.


    The Common Core State Standards emphasize the integration of technology skills into English Language Arts (ELA) instruction, recognizing the demand for technology-based literacy skills to be college- and career- ready. This study aims to examine how collaborative cloud-based writing is used in in a Colorado school district, where one-to-one…

  6. Standardized computer-based organized reporting of EEG

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Aurlien, Harald; Brøgger, Jan C.


    . In the end, the diagnostic significance is scored, using a standardized list of terms. SCORE has specific modules for scoring seizures (including seizure semiology and ictal EEG patterns), neonatal recordings (including features specific for this age group), and for Critical Care EEG Terminology. SCORE...... in the second, revised version of SCORE (Standardized Computer-based Organized Reporting of EEG), which is presented in this paper. The revised terminology was implemented in a software package (SCORE EEG), which was tested in clinical practice on 12,160 EEG recordings. Standardized terms implemented in SCORE...... is a useful clinical tool, with potential impact on clinical care, quality assurance, data-sharing, research and education....

  7. Demosaicking Based on Optimization and Projection in Different Frequency Bands

    Directory of Open Access Journals (Sweden)

    Omer OsamaA


    Full Text Available Abstract A fast and effective iterative demosaicking algorithm is described for reconstructing a full-color image from single-color filter array data. The missing color values are interpolated on the basis of optimization and projection in different frequency bands. A filter bank is used to decompose an initially interpolated image into low-frequency and high-frequency bands. In the low-frequency band, a quadratic cost function is minimized in accordance with the observation that the low-frequency components of chrominance slowly vary within an object region. In the high-frequency bands, the high-frequency components of the unknown values are projected onto the high-frequency components of the known values. Comparison of the proposed algorithm with seven state-of-the-art demosaicking algorithms showed that it outperforms all of them for 20 images on average in terms of objective quality and that it is competitive with them from the subjective quality and complexity points of view.

  8. Multi-frequency exciting and spectrogram-based ECT method

    CERN Document Server

    Chady, T


    The purpose of this paper is to experimentally demonstrate advantages of a multi-frequency ECT system. In this system, a precise crack imaging was achieved by using spectrograms obtained from an eddy-current probe multi-frequency response. A complex signal containing selected sinusoidal components was used as an excitation. The results of measurements for various test specimens are presented.

  9. SOGI-FLL Based Adaptive Filter for DSTATCOM Under Variable Supply Frequency (United States)

    Puranik, Vishal; Arya, Sabha Raj


    This paper presents an adaptive filter based on second order generalized integrator-frequency locked loop (SOGI-FLL) for distribution static compensator (DSTATCOM) operating under variable supply frequency with nonlinear load. It is observed that under variable supply frequency, the FLL provides an excellent frequency tracking performance. Necessary compensation can be provided by DSTATCOM at any frequency with the help of SOGI-FLL. The MATLAB simulink model of DSTATCOM is developed with SOGI-FLL based control algorithm and rectifier based nonlinear load. This three wire system is simulated in power factor correction and zero voltage regulation mode under variable supply frequency.

  10. Glaucoma progression detection with frequency doubling technology (FDT) compared to standard automated perimetry (SAP) in the Groningen Longitudinal Glaucoma Study. (United States)

    Wesselink, Christiaan; Jansonius, Nomdo M


    To determine the usefulness of frequency doubling perimetry (FDT) for progression detection in glaucoma, compared to standard automated perimetry (SAP). Data were used from 150 eyes of 150 glaucoma patients from the Groningen Longitudinal Glaucoma Study. After baseline, SAP was performed approximately yearly; FDT every other year. First and last visit had to contain both tests. Using linear regression, progression velocities were calculated for SAP (Humphrey Field Analyzer) mean deviation (MD) and FDT MD and the number of test locations with a total deviation probability below p glaucoma progression in patients who cannot perform SAP reliably. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  11. Capacitance-Based Frequency Adjustment of Micro Piezoelectric Vibration Generator

    Directory of Open Access Journals (Sweden)

    Xinhua Mao


    Full Text Available Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  12. Capacitance-based frequency adjustment of micro piezoelectric vibration generator. (United States)

    Mao, Xinhua; He, Qing; Li, Hong; Chu, Dongliang


    Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  13. Implementing new technologies for public safety communication: competing frequency demands and standardization issues (United States)

    Stevens, Kathryn J.


    Attempting to incorporate new technology into an existing environment is often very difficult. The problems are lengthy to resolve, wrought with confusion and seldom turn out like anyone expected. This document represents an overview of one such attempt. It outlines the general areas of concern which could be affected by a transition, and potential problems that may be encountered as a result of the effort. Over the past several decades, many local, state and federal agencies are pressing for more efficient use of frequency spectrums. The urgency of this issue has grown due to the demands of several groups wanting access to these channels for commercial use. Pager systems, cellular telephones, radio systems for private businesses all demand more space. Public safety agencies are starting to fear their needs will diminish in importance as the available channel spectrums are consumed by commercial ventures. How to share these channels, purchase appropriate equipment to meet your needs, and stay within a reasonable budget are not easy tasks. Public safety agencies who rely on communication networks in the performance of their jobs also know why encryption is important. Protecting the rights of citizens as police exchange information over the air, maintaining the integrity of an investigation and officer safety are all concerns police must address each time they use a radio.

  14. Organizing Community-Based Data Standards: Lessons from Developing a Successful Open Standard in Systems Biology (United States)

    Hucka, M.


    In common with many fields, including astronomy, a vast number of software tools for computational modeling and simulation are available today in systems biology. This wealth of resources is a boon to researchers, but it also presents interoperability problems. Despite working with different software tools, researchers want to disseminate their work widely as well as reuse and extend the models of other researchers. This situation led in the year 2000 to an effort to create a tool-independent, machine-readable file format for representing models: SBML, the Systems Biology Markup Language. SBML has since become the de facto standard for its purpose. Its success and general approach has inspired and influenced other community-oriented standardization efforts in systems biology. Open standards are essential for the progress of science in all fields, but it is often difficult for academic researchers to organize successful community-based standards. I draw on personal experiences from the development of SBML and summarize some of the lessons learned, in the hope that this may be useful to other groups seeking to develop open standards in a community-oriented fashion.

  15. Standardized patient and standardized interdisciplinary team meeting: validation of a new performance-based assessment tool. (United States)

    Yuasa, Misuzu; Nagoshi, Michael; Oshiro-Wong, Celeste; Tin, Maung; Wen, Aida; Masaki, Kamal


    The interdisciplinary team (IDT) approach is critical in the care of elderly adults. Performance-based tools to assess IDT skills have not been well validated. A novel assessment tool, the standardized patient (SP) and standardized interdisciplinary team meeting (SIDTM), consisting of two stations, was developed. First, trainees evaluate a SP hospitalized after a fall. Second, trainees play the role of the physician in a standardized IDT meeting with a standardized registered nurse (SRN) and standardized medical social worker (SMSW) for discharge planning. The SP-SIDTM was administered to 52 fourth-year medical students (MS4s) and six geriatric medicine fellows (GMFs) in 2011/12. The SP, SRN, and SMSW scored trainee performance on dichotomous checklists of clinical tasks and Likert scales of communication skills, which were compared according to level of training using t-tests. Trainees rated the SP-SIDTM experience as moderately difficult, length of time about right, and believability moderate to high. Reliability was high for both cases (Cronbach α = 0.73-0.87). Interobserver correlation between SRN and SMSW checklist scores (correlation coefficient (r) = 0.82, P < .001) and total scores (r = 0.69, P < .001) were high. The overall score on the SP-SIDTM case was significantly higher for GMF (75) than for MS4 (65, P = .002). These observations support the validity of this novel assessment tool. © 2013, Copyright the Authors Journal compilation © 2013, The American Geriatrics Society.

  16. Electro-optic transparent frequency conversion of a continuous light wave based on multistage phase modulation. (United States)

    Hisatake, Shintaro; Kobayashi, Tetsuro


    Frequency conversion of a continuous light wave based on multistage phase modulation has been investigated both analytically and numerically. The proposed frequency-conversion process consists of three stages: (i) phase modulation and chirp compression to generate a pulse train, (ii) Doppler shift of the pulse center frequency in a second phase modulation, and (iii) demodulation of the pulse train. By controlling the modulation power we can select the destination frequency from an equally spaced grid separated by the modulation frequency. A conversion efficiency of approximately 40% has been numerically confirmed with respect to a destination frequency of +/- 50 channels. Carrier frequency conversion of an analog data stream is numerically demonstrated.

  17. Quantification of LOCA core damage frequency based on thermal-hydraulics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jaehyun, E-mail:; Park, Jin Hee; Kim, Dong-San; Lim, Ho-Gon


    Highlights: • We quantified the LOCA core damage frequency based on the best-estimated success criteria analysis. • The thermal-hydraulic analysis using MARS code has been applied to Korea Standard Nuclear Power Plants. • Five new event trees with new break size boundaries and new success criteria were developed. • The core damage frequency is 5.80E−07 (/y), which is 12% less than the conventional PSA event trees. - Abstract: A loss-of-coolant accident (LOCA) has always been significantly considered one of the most important initiating events. However, most probabilistic safety assessment models, up to now, have undoubtedly adopted the three groups of LOCA, and even an exact break size boundary that used in WASH-1400 reports was published in 1975. With an awareness of the importance of a realistic PSA for a risk-informed application, several studies have tried to find the realistic thermal-hydraulic behavior of a LOCA, and improve the PSA model. The purpose of this research is to obtain realistic results of the LOCA core damage frequency based on a success criteria analysis using the best-estimate thermal-hydraulics code. To do so, the Korea Standard Nuclear Power Plant (KSNP) was selected for this study. The MARS code was used for a thermal hydraulics analysis and the AIMS code was used for the core damage quantification. One of the major findings in the thermal hydraulics analysis was that the decay power is well removed by only a normal secondary cooling in LOCAs of below 1.4 in and by only a high pressure safety injection in LOCAs of 0.8–9.4 in. Based on the thermal hydraulics results regarding new break size boundaries and new success criteria, five new event trees (ETs) were developed. The core damage frequency of new LOCA ETs is 5.80E−07 (/y), which is 12% less than the conventional PSA ETs. In this research, we obtained not only thermal-hydraulics characteristics for the entire break size of a LOCA in view of the deterministic safety

  18. Frequency agile OPO-based transmitters for multiwavelength DIAL

    Energy Technology Data Exchange (ETDEWEB)

    Velsko, S.P.; Ruggiero, A.; Herman, M.


    We describe a first generation mid-infrared transmitter with pulse to pulse frequency agility and both wide and narrow band capability. This transmitter was used to make multicomponent Differential Absorption LIDAR (DIAL) measurements in the field.

  19. Frequency agile OPO-based transmitters for multiwavelength DIAL

    Energy Technology Data Exchange (ETDEWEB)

    Velsko, S.P.; Ruggiero, A.; Herman, M.


    We describe a first generation mid-infrared transmitter with pulse-to- pulse frequency agility and both wide and narrow band capability. This transmitter was used to make multicomponent DIAL measurements in the field.

  20. A fit-based frequency programme for the PS

    CERN Document Server

    Hancock, S


    Since the probes in the PS reference magnet that generate the so-called B-train are fairly short, they cannot register any change in magnetic length due to saturation. Hence the idea to derive the effective dipole magnetic field seen by the beam from measurements of revolution frequency and mean radial position over an entire cycle, to fit a saturation law, and to use the result to make a new frequency programme. Although far from new, the idea has never been implemented due to the tacit assumption that any imperfections in the existing frequency programme are taken care of by the action of the servo loops of the various beam controls. More recently, the delivery of ions at low energy from LEIR has called into question the accuracy the raw frequency programme and the idea has been revisited in a brief parasitic MD.

  1. Quantum frequency doubling based on tripartite entanglement with cavities (United States)

    Juan, Guo; Zhi-Feng, Wei; Su-Ying, Zhang


    We analyze the entanglement characteristics of three harmonic modes, which are the output fields from three cavities with an input tripartite entangled state at fundamental frequency. The entanglement properties of the input beams can be maintained after their frequencies have been up-converted by the process of second harmonic generation. We have calculated the parametric dependences of the correlation spectrum on the initial squeezing factor, the pump power, the transmission coefficient, and the normalized analysis frequency of cavity. The numerical results provide references to choose proper experimental parameters for designing the experiment. The frequency conversion of the multipartite entangled state can also be applied to a quantum communication network. Project supported by the National Natural Science Foundation of China (Grant No. 91430109), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111401110004), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2014011005-3).

  2. Microresonator-Based Optical Frequency Combs: A Time Domain Perspective (United States)


    by compensating the comb’s frequency dependent phase with an external pulse shaper, we can compress the comb output to the bandwidth limit...realizing exceptionally clean trains of pulses ~318 fs in duration (Fig. 1(d)). Note that Fig. 1(d) overlaps autocorrelations for all 15 comb traces from...variation, corresponding to modulation of the instantaneous frequency , is also present. Although recently predicted in simulation papers [10], such dark

  3. Lack of research-based standards for accessible housing: problematization and exemplification of consequences. (United States)

    Helle, Tina; Brandt, Aase; Slaug, Björn; Iwarsson, Susanne


    To increase the understanding of how definitions of standards for housing design influence the proportion of dwellings not meeting the standards and the proportion of individuals defined as having accessibility problems. The sample included old people and their dwellings in three European countries (N = 1,150). Frequencies and percentages were reported and empirical distribution functions were used. Depending on the functional profile and standards in question, the magnitude of influence of the standards differs in extent, e.g., the existing standard for door openings at the entrance (defined ≥75 cm) implied that the proportion of dwellings not meeting it was 11.3% compared to 64.4%, if the standard was set to ≥83 cm. The proportion of individuals defined as having accessibility problems for profiles not using mobility devices was 4-5, 57% for profiles using them and 1-3% for the total sample if the standard was set to 90 cm. Research-based standard definitions for housing design are necessary to ensure that they actually lead to enhanced accessibility, which is a prerequisite for the independence and health of persons with functional limitations.

  4. Standardized computer-based organized reporting of EEG

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Aurlien, Harald; Brøgger, Jan C.


    are used to report the features of clinical relevance, extracted while assessing the EEGs. Selection of the terms is context sensitive: initial choices determine the subsequently presented sets of additional choices. This process automatically generates a report and feeds these features into a database......Standardized terminology for computer-based assessment and reporting of EEG has been previously developed in Europe. The International Federation of Clinical Neurophysiology established a taskforce in 2013 to develop this further, and to reach international consensus. This work resulted...... in the second, revised version of SCORE (Standardized Computer-based Organized Reporting of EEG), which is presented in this paper. The revised terminology was implemented in a software package (SCORE EEG), which was tested in clinical practice on 12,160 EEG recordings. Standardized terms implemented in SCORE...

  5. Frequency Response Function Based Damage Identification for Aerospace Structures (United States)

    Oliver, Joseph Acton

    Structural health monitoring technologies continue to be pursued for aerospace structures in the interests of increased safety and, when combined with health prognosis, efficiency in life-cycle management. The current dissertation develops and validates damage identification technology as a critical component for structural health monitoring of aerospace structures and, in particular, composite unmanned aerial vehicles. The primary innovation is a statistical least-squares damage identification algorithm based in concepts of parameter estimation and model update. The algorithm uses frequency response function based residual force vectors derived from distributed vibration measurements to update a structural finite element model through statistically weighted least-squares minimization producing location and quantification of the damage, estimation uncertainty, and an updated model. Advantages compared to other approaches include robust applicability to systems which are heavily damped, large, and noisy, with a relatively low number of distributed measurement points compared to the number of analytical degrees-of-freedom of an associated analytical structural model (e.g., modal finite element model). Motivation, research objectives, and a dissertation summary are discussed in Chapter 1 followed by a literature review in Chapter 2. Chapter 3 gives background theory and the damage identification algorithm derivation followed by a study of fundamental algorithm behavior on a two degree-of-freedom mass-spring system with generalized damping. Chapter 4 investigates the impact of noise then successfully proves the algorithm against competing methods using an analytical eight degree-of-freedom mass-spring system with non-proportional structural damping. Chapter 5 extends use of the algorithm to finite element models, including solutions for numerical issues, approaches for modeling damping approximately in reduced coordinates, and analytical validation using a composite

  6. Performance-based standards for South African car-carriers

    CSIR Research Space (South Africa)

    De Saxe, C


    Full Text Available with the Australian Performance-Based Standards (PBS) scheme. A low-speed turning model was developed in Matlab®, and used to benchmark the tail swing performance of the existing South African car-carrier fleet. About 80 per cent of the fleet were shown to not comply...

  7. Noise pollution filters bird communities based on vocal frequency.

    Directory of Open Access Journals (Sweden)

    Clinton D Francis

    Full Text Available BACKGROUND: Human-generated noise pollution now permeates natural habitats worldwide, presenting evolutionarily novel acoustic conditions unprecedented to most landscapes. These acoustics not only harm humans, but threaten wildlife, and especially birds, via changes to species densities, foraging behavior, reproductive success, and predator-prey interactions. Explanations for negative effects of noise on birds include disruption of acoustic communication through energetic masking, potentially forcing species that rely upon acoustic communication to abandon otherwise suitable areas. However, this hypothesis has not been adequately tested because confounding stimuli often co-vary with noise and are difficult to separate from noise exposure. METHODOLOGY/PRINCIPAL FINDINGS: Using a natural experiment that controls for confounding stimuli, we evaluate whether species vocal features or urban-tolerance classifications explain their responses to noise measured through habitat use. Two data sets representing nesting and abundance responses reveal that noise filters bird communities nonrandomly. Signal duration and urban tolerance failed to explain species-specific responses, but birds with low-frequency signals that are more susceptible to masking from noise avoided noisy areas and birds with higher frequency vocalizations remained. Signal frequency was also negatively correlated with body mass, suggesting that larger birds may be more sensitive to noise due to the link between body size and vocal frequency. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that acoustic masking by noise may be a strong selective force shaping the ecology of birds worldwide. Larger birds with lower frequency signals may be excluded from noisy areas, whereas smaller species persist via transmission of higher frequency signals. We discuss our findings as they relate to interspecific relationships among body size, vocal amplitude and frequency and suggest that they are

  8. Noise pollution filters bird communities based on vocal frequency. (United States)

    Francis, Clinton D; Ortega, Catherine P; Cruz, Alexander


    Human-generated noise pollution now permeates natural habitats worldwide, presenting evolutionarily novel acoustic conditions unprecedented to most landscapes. These acoustics not only harm humans, but threaten wildlife, and especially birds, via changes to species densities, foraging behavior, reproductive success, and predator-prey interactions. Explanations for negative effects of noise on birds include disruption of acoustic communication through energetic masking, potentially forcing species that rely upon acoustic communication to abandon otherwise suitable areas. However, this hypothesis has not been adequately tested because confounding stimuli often co-vary with noise and are difficult to separate from noise exposure. Using a natural experiment that controls for confounding stimuli, we evaluate whether species vocal features or urban-tolerance classifications explain their responses to noise measured through habitat use. Two data sets representing nesting and abundance responses reveal that noise filters bird communities nonrandomly. Signal duration and urban tolerance failed to explain species-specific responses, but birds with low-frequency signals that are more susceptible to masking from noise avoided noisy areas and birds with higher frequency vocalizations remained. Signal frequency was also negatively correlated with body mass, suggesting that larger birds may be more sensitive to noise due to the link between body size and vocal frequency. Our findings suggest that acoustic masking by noise may be a strong selective force shaping the ecology of birds worldwide. Larger birds with lower frequency signals may be excluded from noisy areas, whereas smaller species persist via transmission of higher frequency signals. We discuss our findings as they relate to interspecific relationships among body size, vocal amplitude and frequency and suggest that they are immediately relevant to the global problem of increases in noise by providing critical insight as

  9. Proprietary, standard, and government-supported nuclear data bases

    International Nuclear Information System (INIS)

    Poncelet, C.G.; Ozer, O.; Harris, D.R.


    This study presents an assessment of the complex situation surrounding nuclear data bases for nuclear power technology. Requirements for nuclear data bases are identified as regards engineering functions and system applications for the many and various user groups that rely on nuclear data bases. Current practices in the development and generation of nuclear data sets are described, and the competitive aspect of design nuclear data set development is noted. The past and current role of the federal government in nuclear data base development is reviewed, and the relative merits of continued government involvement are explored. National policies of the United States and other industrial countries regarding the availability of nationally supported nuclear data information are reviewed. Current proprietary policies of reactor vendors regarding design library data sets are discussed along with the basis for such proprietary policies. The legal aspects of protective policies are explored as are their impacts on the nuclear power industry as a whole. The effect of the regulatory process on the availability and documentation of nuclear data bases is examined. Current nuclear data standard developments are reviewed, including a discussion of the standard preparation process. Standards currently proposed or in preparation that directly relate to nuclear data bases are discussed in some detail. (auth)

  10. A simple web-based tool to compare freshwater fish data collected using AFS standard methods (United States)

    Bonar, Scott A.; Mercado-Silva, Norman; Rahr, Matt; Torrey, Yuta T.; Cate, Averill


    The American Fisheries Society (AFS) recently published Standard Methods for Sampling North American Freshwater Fishes. Enlisting the expertise of 284 scientists from 107 organizations throughout Canada, Mexico, and the United States, this text was developed to facilitate comparisons of fish data across regions or time. Here we describe a user-friendly web tool that automates among-sample comparisons in individual fish condition, population length-frequency distributions, and catch per unit effort (CPUE) data collected using AFS standard methods. Currently, the web tool (1) provides instantaneous summaries of almost 4,000 data sets of condition, length frequency, and CPUE of common freshwater fishes collected using standard gears in 43 states and provinces; (2) is easily appended with new standardized field data to update subsequent queries and summaries; (3) compares fish data from a particular water body with continent, ecoregion, and state data summaries; and (4) provides additional information about AFS standard fish sampling including benefits, ongoing validation studies, and opportunities to comment on specific methods. The web tool—programmed in a PHP-based Drupal framework—was supported by several AFS Sections, agencies, and universities and is freely available from the AFS website and With widespread use, the online tool could become an important resource for fisheries biologists.

  11. Spatial and frequency-based super-resolution of ultrasound images (United States)

    Wu, Mon-Ju; Karls, Joseph; Duenwald-Kuehl, Sarah; Vanderby, Ray; Sethares, William


    Modern ultrasound systems can output video images containing more spatial and temporal information than still images. Super-resolution techniques can exploit additional information but face two challenges: image registration and complex motion. In addition, information from multiple available frequencies is unexploited. Herein, we utilised these information sources to create better ultrasound images and videos, extending existing technologies for image capture. Spatial and frequency-based super-resolution processing using multiple motion estimation and frequency combination was applied to ultrasound videos of deforming models. Processed images are larger, have greater clarity and detail, and less variability in intensity between frames. Significantly, strain measurements are more accurate and precise than those from raw videos, and have a higher contrast ratio between ‘tumour’ and ‘surrounding tissue’ in a phantom model. We attribute improvements to reduced noise and increased resolution in processed images. Our methods can significantly improve quantitative and qualitative assessments of ultrasound images when compared assessments of standard images. PMID:25191631

  12. Approaches to setting organism-based ballast water discharge standards (United States)

    Lee, Henry; Reusser, Deborah A.; Frazier, Melanie


    As a vector by which foreign species invade coastal and freshwater waterbodies, ballast water discharge from ships is recognized as a major environmental threat. The International Maritime Organization (IMO) drafted an international treaty establishing ballast water discharge standards based on the number of viable organisms per volume of ballast discharge for different organism size classes. Concerns that the IMO standards are not sufficiently protective have initiated several state and national efforts in the United States to develop more stringent standards. We evaluated seven approaches to establishing discharge standards for the >50-μm size class: (1) expert opinion/management consensus, (2) zero detectable living organisms, (3) natural invasion rates, (4) reaction–diffusion models, (5) population viability analysis (PVA) models, (6) per capita invasion probabilities (PCIP), and (7) experimental studies. Because of the difficulty in synthesizing scientific knowledge in an unbiased and transparent fashion, we recommend the use of quantitative models instead of expert opinion. The actual organism concentration associated with a “zero detectable organisms” standard is defined by the statistical rigor of its monitoring program; thus it is not clear whether such a standard is as stringent as other standards. For several reasons, the natural invasion rate, reaction–diffusion, and experimental approaches are not considered suitable for generating discharge standards. PVA models can be used to predict the likelihood of establishment of introduced species but are limited by a lack of population vital rates for species characteristic of ballast water discharges. Until such rates become available, PVA models are better suited to evaluate relative efficiency of proposed standards rather than predicting probabilities of invasion. The PCIP approach, which is based on historical invasion rates at a regional scale, appears to circumvent many of the indicated problems

  13. Simulation Analysis of SPWM Variable Frequency Speed Based on Simulink

    Directory of Open Access Journals (Sweden)

    Min-Yan DI


    Full Text Available This article is studied on currently a very active field of researching sinusoidal pulse width modulation (SPWM frequency speed control system, and strengthen researched on the simulation model of speed control system with MATLAB / Simulink / Power System simulation tools, thus we can find the best way to simulation. We apply it to the actual conveyor belt, frequency conversion motor, when the obtained simulation results are compared with the measured data, we prove that the method is practical and effective. The results of our research have a guiding role for the future engineering and technical personnel in asynchronous motor SPWM VVVF CAD design.

  14. Time-frequency representation based on time-varying ...

    Indian Academy of Sciences (India)

    defined in a time-frequency space and represents the evolution of signal power as a function of both time and ... the physical meaning of the intrinsic mode function (IMF) resulting from the EMD sifting process and the ... In the case of the basis function approach, each of its time-varying coefficients is expressed as a weighted ...

  15. Ionospheric correction for spaceborne single-frequency GPS based ...

    Indian Academy of Sciences (India)

    A modified ionospheric correction method and the corresponding approximate algorithm for spaceborne single-frequency Global Positioning System (GPS) users are proposed in this study. Single Layer Model (SLM) mapping function for spaceborne GPS was analyzed. SLM mapping functions at different altitudes were ...

  16. Radio frequency power sensor based on MEMS technology

    NARCIS (Netherlands)

    Fernandez, L.J.; Visser, Eelke; Sesé, J.; Wiegerink, Remco J.; Jansen, Henricus V.; Flokstra, Jan; Flokstra, Jakob; Elwenspoek, Michael Curt


    We present the first measurement results of a power sensor for radio frequency (rf) signals (50 kHz - 40 GHz) with almost no dissipation during the measurement. This sensor is, therefore, a 'through' power sensor, that means that the rf signal is available during the measurement of its power. The

  17. Nano-Scale Devices for Frequency-Based Magnetic Biosensing (United States)


    state biological sensors (biosensors). We have demonstrated magnetic particle detection using ferromagnetic resonances in both large magnonic ...using ferromagnetic resonances in both large magnonic crystals and, via electrical measurements, in magnetic-vortex-containing, isolated micro- and...experiments and simulations was to characterize and interpret particle-induced FMR frequency shifts in magnetic nanostructures. In large area magnonic

  18. neural network based load frequency control for restructuring power

    African Journals Online (AJOL)


    Mar 1, 2012 ... Abstract. In this study, an artificial neural network (ANN) application of load frequency control. (LFC) of a Multi-Area power system by using a neural network controller is presented. The comparison between a conventional Proportional Integral (PI) controller and the proposed artificial neural networks ...

  19. High resolution mid-infrared spectroscopy based on frequency upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter


    signals can be analyzed. The obtainable frequency resolution is usually in the nm range where sub nm resolution is preferred in many applications, like gas spectroscopy. In this work we demonstrate how to obtain sub nm resolution when using upconversion. In the presented realization one object point...... high resolution spectral performance by observing emission from hot water vapor in a butane gas burner....

  20. A Frequency Domain Extraction Based Adaptive Joint Time Frequency Decomposition Method of the Maneuvering Target Radar Echo

    Directory of Open Access Journals (Sweden)

    Guochao Lao


    Full Text Available The maneuvering target echo of high-resolution radar can be expressed as a multicomponent polynomial phase signal (mc-PPS. However, with improvements in radar resolution and increases in the synthetic period, classical time frequency analysis methods cannot satisfy the requirements of maneuvering target radar echo processing. In this paper, a novel frequency domain extraction-based adaptive joint time frequency (FDE-AJTF decomposition method was proposed with three improvements. First, the maximum frequency spectrum of the phase compensation signal was taken as the fitness function, while the fitness comparison, component extraction, and residual updating were operated in the frequency domain; second, the time window was adopted on the basis function to fit the uncertain signal component time; and third, constant false alarm ratio (CFAR detection was applied in the component extraction to reduce the ineffective components. Through these means, the stability and speed of phase parameters estimation increased with one domination ignored in the phase parameter estimation, and the accuracy and effectiveness of the signal component extraction performed better with less influence from the estimation errors, clutters, and noises. Finally, these advantages of the FDE-AJTF decomposition method were verified through a comparison with the classical method in simulation and experimental tests.

  1. Heart rate variability analysis based on time–frequency representation and entropies in hypertrophic cardiomyopathy patients

    International Nuclear Information System (INIS)

    Clariá, F; Vallverdú, M; Caminal, P; Baranowski, R; Chojnowska, L


    In hypertrophic cardiomyopathy (HCM) patients there is an increased risk of premature death, which can occur with little or no warning. Furthermore, classification for sudden cardiac death on patients with HCM is very difficult. The aim of our study was to improve the prognostic value of heart rate variability (HRV) in HCM patients, giving insight into changes of the autonomic nervous system. In this way, the suitability of linear and nonlinear measures was studied to assess the HRV. These measures were based on time–frequency representation (TFR) and on Shannon and Rényi entropies, and compared with traditional HRV measures. Holter recordings of 64 patients with HCM and 55 healthy subjects were analyzed. The HCM patients consisted of two groups: 13 high risk patients, after aborted sudden cardiac death (SCD); 51 low risk patients, without SCD. Five-hour RR signals, corresponding to the sleep period of the subjects, were considered for the analysis as a comparable standard situation. These RR signals were filtered in the three frequency bands: very low frequency band (VLF, 0–0.04 Hz), low frequency band (LF, 0.04–0.15 Hz) and high frequency band (HF, 0.15–0.45 Hz). TFR variables based on instantaneous frequency and energy functions were able to classify HCM patients and healthy subjects (control group). Results revealed that measures obtained from TFR analysis of the HRV better classified the groups of subjects than traditional HRV parameters. However, results showed that nonlinear measures improved group classification. It was observed that entropies calculated in the HF band showed the highest statistically significant levels comparing the HCM group and the control group, p-value < 0.0005. The values of entropy measures calculated in the HCM group presented lower values, indicating a decreasing of complexity, than those calculated from the control group. Moreover, similar behavior was observed comparing high and low risk of premature death, the values of

  2. Combinatorics of transformations from standard to non-standard bases in Brauer algebras

    International Nuclear Information System (INIS)

    Chilla, Vincenzo


    Transformation coefficients between standard bases for irreducible representations of the Brauer centralizer algebra B f (x) and split bases adapted to the B f 1 (x) x B f 2 (x) subset of B f (x) subalgebra (f 1 + f 2 = f) are considered. After providing the suitable combinatorial background, based on the definition of the i-coupling relation on nodes of the subduction grid, we introduce a generalized version of the subduction graph which extends the one given in Chilla (2006 J. Phys. A: Math. Gen. 39 7657) for symmetric groups. Thus, we can describe the structure of the subduction system arising from the linear method and give an outline of the form of the solution space. An ordering relation on the grid is also given and then, as in the case of symmetric groups, the choices of the phases and of the free factors governing the multiplicity separations are discussed

  3. EGC: a time-frequency augmented template-based method for gravitational wave burst search in ground-based interferometers

    International Nuclear Information System (INIS)

    Clapson, Andre-Claude; Barsuglia, Matteo; Bizouard, Marie-Anne; Brisson, Violette; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Leroy, Nicolas; Varvella, Monica


    The detection of burst-type events in the output of ground gravitational wave detectors is particularly challenging. The potential variety of astrophysical waveforms, as proposed by simulations and analytic studies in general relativity and the discrimination of actual signals from instrumental noise both are critical issues. Robust methods that achieve reasonable detection performances over a wide range of signals are required. We present here a hybrid burst-detection pipeline related to time-frequency transforms while based on matched filtering to provide robustness against noise characteristics. Studies on simulated noise show that the algorithm has a detection efficiency similar to other methods over very different waveforms and particularly good timing even for low amplitude signals: no bias for most tested waveforms and an average accuracy of 1.1 ms (down to 0.1 ms in the best case). Time-frequency-type parameters, useful for event classification, are also derived for noise spectral densities unfavourable to standard time-frequency algorithms

  4. Facilitating Stewardship of scientific data through standards based workflows (United States)

    Bastrakova, I.; Kemp, C.; Potter, A. K.


    scientific data acquisition and analysis requirements and effective interoperable data management and delivery. This includes participating in national and international dialogue on development of standards, embedding data management activities in business processes, and developing scientific staff as effective data stewards. Similar approach is applied to the geophysical data. By ensuring the geophysical datasets at GA strictly follow metadata and industry standards we are able to implement a provenance based workflow where the data is easily discoverable, geophysical processing can be applied to it and results can be stored. The provenance based workflow enables metadata records for the results to be produced automatically from the input dataset metadata.

  5. Graphene-Based Sandwich Structures for Frequency Selectable Electromagnetic Shielding. (United States)

    Song, Wei-Li; Gong, Congcheng; Li, Huimin; Cheng, Xiao-Dong; Chen, Mingji; Yuan, Xujin; Chen, Haosen; Yang, Yazheng; Fang, Daining


    Due to substantial development of electronics and telecommunication techniques, materials with electromagnetic interference (EMI) shielding performance are significant in alleviating the interference impacts induced from a remarkable variety of devices. In the work, we propose novel sandwich structures for manipulating the EM wave transport, which holds unique EMI shielding features of frequency selectivity. By employing electrical and magnetic loss spacers, the resultant sandwich structures are endowed with tunable EMI shielding performance, showing substantial improvements in overall shielding effectiveness along with pronounced shielding peak shift. The mechanisms suggest that the multiple interfaces, electromagnetic loss media, and changes of representative EM wavelength could be critical roles in tailoring the EMI shielding performance. The results provide a versatile strategy that could be extended in other frequency ranges and various types of sandwich structures, promising great opportunities for designing and fabricating advanced electromagnetic attenuation materials and devices.

  6. Buried object location based on frequency-domain UWB measurements

    International Nuclear Information System (INIS)

    Soliman, M; Wu, Z


    In this paper, a wideband ground penetrating radar (GPR) system and a proposed frequency-domain data analysis technique are presented for the detection of shallow buried objects such as anti-personnel landmines. The GPR system uses one transmitting antenna and an array of six monopole receiving antenna elements and operates from 1 GHz to 20 GHz. This system is able to acquire, save and analyse data in the frequency domain. A common source or wide-angle reflection and refraction technique has been used for acquiring and processing the data. This technique is effective for the rejection of ground surface clutter. By applying the C-scan scheme, metallic and plastic mine-like targets buried in dry soil will be located

  7. Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications (United States)

    Wagner, Raymond S.


    Wireless sensor networks (WSNs) have the capacity to revolutionize data gathering in both spaceflight and terrestrial applications. WSNs provide a huge advantage over traditional, wired instrumentation since they do not require wiring trunks to connect sensors to a central hub. This allows for easy sensor installation in hard to reach locations, easy expansion of the number of sensors or sensing modalities, and reduction in both system cost and weight. While this technology offers unprecedented flexibility and adaptability, implementing it in practice is not without its difficulties. Recent advances in standards-based WSN protocols for industrial control applications have come a long way to solving many of the challenges facing practical WSN deployments. In this paper, we will overview two of the more promising candidates - WirelessHART from the HART Communication Foundation and ISA100.11a from the International Society of Automation - and present the architecture for a new standards-based sensor node for networking and applications research.

  8. Use of high-frequency visual stimuli above the critical flicker frequency in a SSVEP-based BMI. (United States)

    Sakurada, Takeshi; Kawase, Toshihiro; Komatsu, Tomoaki; Kansaku, Kenji


    This study presents a new steady-state visual evoked potential (SSVEP)-based brain-machine interface (BMI) using flickering visual stimuli at frequencies greater than the critical flicker frequency (CFF). We first asked participants to fixate on a green/blue flicker (30-70Hz), and SSVEP amplitude was evaluated. Participants were asked to indicate whether the stimulus was visibly flickering and to report their subjective level of discomfort. We then assessed visibly (41, 43, and 45Hz) vs. invisibly (61, 63, and 65Hz) flickering stimulus in an SSVEP-based BMI. Visual fatigue was assessed via the flicker test before and after operation of the BMI. Higher frequency stimuli reduced participants' subjective discomfort. Participants successfully controlled the SSVEP-based BMI using both the visibly and invisibly flickering stimuli (93.1% and 88.0%, respectively); the flicker test revealed a decrease in CFF (i.e., visual fatigue) under the visible condition only (-5.7%, Pflicker stimuli above the CFF were able to induce SSVEPs and may prove useful in the development of BMI-based assistive products. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Sparse time-frequency decomposition based on dictionary adaptation. (United States)

    Hou, Thomas Y; Shi, Zuoqiang


    In this paper, we propose a time-frequency analysis method to obtain instantaneous frequencies and the corresponding decomposition by solving an optimization problem. In this optimization problem, the basis that is used to decompose the signal is not known a priori. Instead, it is adapted to the signal and is determined as part of the optimization problem. In this sense, this optimization problem can be seen as a dictionary adaptation problem, in which the dictionary is adaptive to one signal rather than a training set in dictionary learning. This dictionary adaptation problem is solved by using the augmented Lagrangian multiplier (ALM) method iteratively. We further accelerate the ALM method in each iteration by using the fast wavelet transform. We apply our method to decompose several signals, including signals with poor scale separation, signals with outliers and polluted by noise and a real signal. The results show that this method can give accurate recovery of both the instantaneous frequencies and the intrinsic mode functions. © 2016 The Author(s).

  10. Enhanced Biogeography-based Optimization: A New Method for Size and Shape Optimization of Truss Structures with Natural Frequency Constraints

    Directory of Open Access Journals (Sweden)

    Seyed Heja Seyed Taheri

    Full Text Available Abstract The current study presents an enhanced biogeography-based optimization (EBBO algorithm for size and shape optimization of truss structures with natural frequency constraints. The BBO algorithm is one of the recently developed meta-heuristic algorithms inspired by the mathematical models in biogeography science and is based on the migration behavior of species among the habitats in the nature. In this study, the overall performance of the standard BBO algorithm is enhanced by new migration and mutation operators. The efficiency of the proposed algorithm is demonstrated by utilizing four benchmark truss design examples with frequency constraints. Numerical results show that the proposed EBBO algorithm not only significantly improves the performance of the standard BBO algorithm, but also finds competitive results compared with recently developed optimization methods.

  11. An automation of physics research on base of open standards

    International Nuclear Information System (INIS)

    Smirnov, V.A.


    A wide range of problems is considered concerning an automation of Laboratory of High Energies, JINR set-ups oriented to carry out the experimental researches in high energy and relativistic nuclear physics. Electronics of discussed automation systems is performed in open standards. Main peculiarities in the creation process of automation tools for experimental set-ups, stands and accelerators are shown. Some possibilities to build some accelerator control subsystems on base of industrial automation methods and techniques are discussed

  12. Quantitative data standardization of X-ray based densitometry methods (United States)

    Sergunova, K. A.; Petraikin, A. V.; Petrjajkin, F. A.; Akhmad, K. S.; Semenov, D. S.; Potrakhov, N. N.


    In the present work is proposed the design of special liquid phantom for assessing the accuracy of quantitative densitometric data. Also are represented the dependencies between the measured bone mineral density values and the given values for different X-ray based densitometry techniques. Shown linear graphs make it possible to introduce correction factors to increase the accuracy of BMD measurement by QCT, DXA and DECT methods, and to use them for standardization and comparison of measurements.

  13. Performance Evaluation of Frequency Transform Based Block Classification of Compound Image Segmentation Techniques (United States)

    Selwyn, Ebenezer Juliet; Florinabel, D. Jemi


    Compound image segmentation plays a vital role in the compression of computer screen images. Computer screen images are images which are mixed with textual, graphical, or pictorial contents. In this paper, we present a comparison of two transform based block classification of compound images based on metrics like speed of classification, precision and recall rate. Block based classification approaches normally divide the compound images into fixed size blocks of non-overlapping in nature. Then frequency transform like Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) are applied over each block. Mean and standard deviation are computed for each 8 × 8 block and are used as features set to classify the compound images into text/graphics and picture/background block. The classification accuracy of block classification based segmentation techniques are measured by evaluation metrics like precision and recall rate. Compound images of smooth background and complex background images containing text of varying size, colour and orientation are considered for testing. Experimental evidence shows that the DWT based segmentation provides significant improvement in recall rate and precision rate approximately 2.3% than DCT based segmentation with an increase in block classification time for both smooth and complex background images.

  14. Efficient Lattice-Based Signcryption in Standard Model

    Directory of Open Access Journals (Sweden)

    Jianhua Yan


    Full Text Available Signcryption is a cryptographic primitive that can perform digital signature and public encryption simultaneously at a significantly reduced cost. This advantage makes it highly useful in many applications. However, most existing signcryption schemes are seriously challenged by the booming of quantum computations. As an interesting stepping stone in the post-quantum cryptographic community, two lattice-based signcryption schemes were proposed recently. But both of them were merely proved to be secure in the random oracle models. Therefore, the main contribution of this paper is to propose a new lattice-based signcryption scheme that can be proved to be secure in the standard model.

  15. Wireless Chalcogenide Nanoionic-Based Radio-Frequency Switch (United States)

    Nessel, James; Miranda, Felix


    A new nonvolatile nanoionic switch is powered and controlled through wireless radio-frequency (RF) transmission. A thin layer of chalcogenide glass doped with a metal ion, such as silver, comprises the operational portion of the switch. For the switch to function, an oxidizable electrode is made positive (anode) with respect to an opposing electrode (cathode) when sufficient bias, typically on the order of a few tenths of a volt or more, is applied. This action causes the metal ions to flow toward the cathode through a coordinated hopping mechanism. At the cathode, a reduction reaction occurs to form a metal deposit. This metal deposit creates a conductive path that bridges the gap between electrodes to turn the switch on. Once this conductive path is formed, no further power is required to maintain it. To reverse this process, the metal deposit is made positive with respect to the original oxidizable electrode, causing the dissolution of the metal bridge thereby turning the switch off. Once the metal deposit has been completely dissolved, the process self-terminates. This switching process features the following attributes. It requires very little to change states (i.e., on and off). Furthermore, no power is required to maintain the states; hence, the state of the switch is nonvolatile. Because of these attributes the integration of a rectenna to provide the necessary power and control is unique to this embodiment. A rectenna, or rectifying antenna, generates DC power from an incident RF signal. The low voltages and power required for the nanoionic switch control are easily generated from this system and provide the switch with a novel capability to be operated and powered from an external wireless device. In one realization, an RF signal of a specific frequency can be used to set the switch into an off state, while another frequency can be used to set the switch to an on state. The wireless, miniaturized, and nomoving- part features of this switch make it

  16. Core damage frequency (reactor design) perspectives based on IPE results

    International Nuclear Information System (INIS)

    Camp, A.L.; Dingman, S.E.; Forester, J.A.


    This paper provides perspectives gained from reviewing 75 Individual Plant Examination (IPE) submittals covering 108 nuclear power plant units. Variability both within and among reactor types is examined to provide perspectives regarding plant-specific design and operational features, and C, modeling assumptions that play a significant role in the estimates of core damage frequencies in the IPEs. Human actions found to be important in boiling water reactors (BWRs) and in pressurized water reactors (PWRs) are presented and the events most frequently found important are discussed

  17. Pilot study of a high-frequency school-based hearing screen to detect adolescent hearing loss. (United States)

    Sekhar, Deepa L; Zalewski, Thomas R; Ghossaini, Soha N; King, Tonya S; Rhoades, Julie A; Czarnecki, Beth; Grounds, Shannon; Deese, Barry; Barr, Ashley L; Paul, Ian M


    Like most of the United States, school-based hearing screening in Pennsylvania focuses on low-frequency, conductive hearing losses typical for young children, rather than the high-frequency, noise-induced hearing loss more prevalent among adolescents. The objective of this study was to compare the sensitivity and specificity of current school hearing screening in Pennsylvania with hearing screening including high frequencies, designed to detect adolescent hearing loss. A single public high school. In the Autumn of 2011 the high-frequency screen was delivered alongside the Pennsylvania school screen for students in the 11(th) grade. Screening referrals and a subset of passes returned for "gold standard" testing with audiology in a sound treated booth, in order to determine the sensitivity and specificity of the screening tests. Of 282 participants, five (2%) were referred on the Pennsylvania school screen, and 85 (30%) were referred on the high-frequency screen. Of the 48 who returned for gold standard testing with audiology, hearing loss was diagnosed in 9/48 (19%). Sensitivity of the Pennsylvania and high-frequency screens were 13% (95% confidence interval [CI] 0-53%) and 100% (95% CI 66-100%) respectively. Specificity of the Pennsylvania and high-frequency screens were 97% (95% CI 87-100%) and 49% (95% CI 32-65%) respectively. Current school hearing screens have low sensitivity for detection of adolescent hearing loss. Modifying school-based protocols may be warranted to best screen adolescents, and make optimal use of school nurse time and effort.

  18. Comparative Analysis of Selected High Frequency Words Found in Commercial Spelling Series and Misspelled in Students' Writing to a Standard Measure of Word Frequency. (United States)

    Hagerty, Patricia Jo

    A major purpose of this study was to determine whether a selected number of current, commercially prepared spelling series used high frequency words for their word lists. A second purpose was to determine whether students misspelled high frequency words in their writing. Eleven commercially prepared spelling series were selected according to the…

  19. 78 FR 35585 - Updating OSHA Standards Based on National Consensus Standards; Signage (United States)


    ... standards by adding references to the latest versions of the American National Standards Institute (``ANSI... incorporate by reference Part VI of the Manual of Uniform Traffic Control Devices (``MUTCD''), 1988 Edition... to the latest versions of ANSI's Z535 series of standards to OSHA's signage standards. Letter dated...

  20. Hilbert-Huang transformation-based time-frequency analysis methods in biomedical signal applications. (United States)

    Lin, Chin-Feng; Zhu, Jin-De


    Hilbert-Huang transformation, wavelet transformation, and Fourier transformation are the principal time-frequency analysis methods. These transformations can be used to discuss the frequency characteristics of linear and stationary signals, the time-frequency features of linear and non-stationary signals, the time-frequency features of non-linear and non-stationary signals, respectively. The Hilbert-Huang transformation is a combination of empirical mode decomposition and Hilbert spectral analysis. The empirical mode decomposition uses the characteristics of signals to adaptively decompose them to several intrinsic mode functions. Hilbert transforms are then used to transform the intrinsic mode functions into instantaneous frequencies, to obtain the signal's time-frequency-energy distributions and features. Hilbert-Huang transformation-based time-frequency analysis can be applied to natural physical signals such as earthquake waves, winds, ocean acoustic signals, mechanical diagnosis signals, and biomedical signals. In previous studies, we examined Hilbert-Huang transformation-based time-frequency analysis of the electroencephalogram FPI signals of clinical alcoholics, and 'sharp I' wave-based Hilbert-Huang transformation time-frequency features. In this paper, we discuss the application of Hilbert-Huang transformation-based time-frequency analysis to biomedical signals, such as electroencephalogram, electrocardiogram signals, electrogastrogram recordings, and speech signals.

  1. The Sensitivity of Adolescent School-Based Hearing Screens Is Significantly Improved by Adding High Frequencies (United States)

    Sekhar, Deepa L.; Zalewski, Thomas R.; Beiler, Jessica S.; Czarnecki, Beth; Barr, Ashley L.; King, Tonya S.; Paul, Ian M.


    High frequency hearing loss (HFHL), often related to hazardous noise, affects one in six U.S. adolescents. Yet, only 20 states include school-based hearing screens for adolescents. Only six states test multiple high frequencies. Study objectives were to (1) compare the sensitivity of state school-based hearing screens for adolescents to gold…

  2. High-resolution mid-IR spectrometer based on frequency upconversion

    DEFF Research Database (Denmark)

    Hu, Qi; Dam, Jeppe Seidelin; Pedersen, Christian


    We demonstrate a novel approach for high-resolution spectroscopy based on frequency upconversion and postfiltering by means of a scanning Fabryx2013;Perot interferometer. The system is based on sum-frequency mixing, shifting the spectral content from the mid-infrared to the near-visible region al...

  3. Islanding Detection of Synchronous Machine-Based DGs using Average Frequency Based Index

    Directory of Open Access Journals (Sweden)

    M. Bakhshi


    Full Text Available Identification of intentional and unintentional islanding situations of dispersed generators (DGs is one of the most important protection concerns in power systems. Considering safety and reliability problems of distribution networks, an exact diagnosis index is required to discriminate the loss of the main network from the existing parallel operation. Hence, this paper introduces a new islanding detection method for synchronous machine–based DGs. This method uses the average value of the generator frequency to calculate a new detection index. The proposed method is an effective supplement of the over/under frequency protection (OFP/UFP system. The analytical equations and simulation results are used to assess the performance of the proposed method under various scenarios such as different types of faults, load changes and capacitor bank switching. To show the effectiveness of the proposed method, it is compared with the performance of both ROCOF and ROCOFOP methods.

  4. High frequency modulation circuits based on photoconductive wide bandgap switches (United States)

    Sampayan, Stephen


    Methods, systems, and devices for high voltage and/or high frequency modulation. In one aspect, an optoelectronic modulation system includes an array of two or more photoconductive switch units each including a wide bandgap photoconductive material coupled between a first electrode and a second electrode, a light source optically coupled to the WBGP material of each photoconductive switch unit via a light path, in which the light path splits into multiple light paths to optically interface with each WBGP material, such that a time delay of emitted light exists along each subsequent split light path, and in which the WBGP material conducts an electrical signal when a light signal is transmitted to the WBGP material, and an output to transmit the electrical signal conducted by each photoconductive switch unit. The time delay of the photons emitted through the light path is substantially equivalent to the time delay of the electrical signal.

  5. Sequence comparison alignment-free approach based on suffix tree and L-words frequency. (United States)

    Soares, Inês; Goios, Ana; Amorim, António


    The vast majority of methods available for sequence comparison rely on a first sequence alignment step, which requires a number of assumptions on evolutionary history and is sometimes very difficult or impossible to perform due to the abundance of gaps (insertions/deletions). In such cases, an alternative alignment-free method would prove valuable. Our method starts by a computation of a generalized suffix tree of all sequences, which is completed in linear time. Using this tree, the frequency of all possible words with a preset length L-L-words--in each sequence is rapidly calculated. Based on the L-words frequency profile of each sequence, a pairwise standard Euclidean distance is then computed producing a symmetric genetic distance matrix, which can be used to generate a neighbor joining dendrogram or a multidimensional scaling graph. We present an improvement to word counting alignment-free approaches for sequence comparison, by determining a single optimal word length and combining suffix tree structures to the word counting tasks. Our approach is, thus, a fast and simple application that proved to be efficient and powerful when applied to mitochondrial genomes. The algorithm was implemented in Python language and is freely available on the web.

  6. Sequence Comparison Alignment-Free Approach Based on Suffix Tree and L-Words Frequency

    Directory of Open Access Journals (Sweden)

    Inês Soares


    Full Text Available The vast majority of methods available for sequence comparison rely on a first sequence alignment step, which requires a number of assumptions on evolutionary history and is sometimes very difficult or impossible to perform due to the abundance of gaps (insertions/deletions. In such cases, an alternative alignment-free method would prove valuable. Our method starts by a computation of a generalized suffix tree of all sequences, which is completed in linear time. Using this tree, the frequency of all possible words with a preset length L—L-words—in each sequence is rapidly calculated. Based on the L-words frequency profile of each sequence, a pairwise standard Euclidean distance is then computed producing a symmetric genetic distance matrix, which can be used to generate a neighbor joining dendrogram or a multidimensional scaling graph. We present an improvement to word counting alignment-free approaches for sequence comparison, by determining a single optimal word length and combining suffix tree structures to the word counting tasks. Our approach is, thus, a fast and simple application that proved to be efficient and powerful when applied to mitochondrial genomes. The algorithm was implemented in Python language and is freely available on the web.

  7. Pulse retrieval algorithm for interferometric frequency-resolved optical gating based on differential evolution. (United States)

    Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter


    A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely, differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove the robustness of the algorithm against experimental artifacts and noise. These tests show that the integrated error-correction mechanisms of the iFROG method can be successfully used to remove the effect from timing errors and spectrally varying efficiency in the detection. Moreover, the accuracy and noise resilience of the new algorithm are shown to outperform retrieval based on the generalized projections algorithm, which is widely used as the standard method in FROG retrieval. The differential evolution algorithm is further validated with experimental data, measured with unamplified three-cycle pulses from a mode-locked Ti:sapphire laser. Additionally introducing group delay dispersion in the beam path, the retrieval results show excellent agreement with independent measurements with a commercial pulse measurement device based on spectral phase interferometry for direct electric-field retrieval. Further experimental tests with strongly attenuated pulses indicate resilience of differential-evolution-based retrieval against massive measurement noise.

  8. Nutrient-based standards for school lunches complement food-based standards and improve pupils' nutrient intake profile. (United States)

    Haroun, Dalia; Wood, Lesley; Harper, Clare; Nelson, Michael


    Following concerns about the nutritional content of school lunches and the increased prevalence of overweight and obesity in the UK, changes to the standards of school meals were made. From September 2008, all primary schools in England were required, by law, to be fully compliant with the new food-based standards (FBS) and nutrient-based standards (NBS) for school lunches. The aim of the present survey was to evaluate the introduction of the NBS for school lunches on the nutritional profile of food and drink items provided by schools and chosen by pupils at lunchtime. A nationally representative sample of 6696 pupils from 136 primary schools in England aged 3-12 years and having school lunches was recruited. Data were collected on lunchtime food and drink provision at each school and on pupil food and drink choices at lunchtime. Caterers also provided planned menus, recipes and other cooking information. Compliance with both the FBS and NBS was then assessed. Results show that even when the FBS was met, many schools did not provide a school lunch that met the NBS as well. The average school lunch eaten was significantly lower in fat, saturated fat and Na in schools that met both the FBS and NBS for school lunches compared with schools that met only the FBS. Change in school lunch policy has contributed to improvements in pupils' choices and the nutritional profile of foods selected at lunchtime.

  9. Switchable and tunable microwave frequency multiplication based on a dual-passband microwave photonic filter. (United States)

    Chen, Hao; Xu, Zuowei; Fu, Hongyan; Zhang, Shiwei; Wu, Congxian; Wu, Hao; Xu, Huiying; Cai, Zhiping


    In this paper, a novel approach to implement switchable and tunable microwave frequency multiplication has been proposed and experimentally demonstrated. High order harmonics of microwave signal with external modulation technique can be selected by using a novel switchable dual-passband microwave photonic filter (MPF) based on a modified fiber Mach-Zehnder interferometer (FMZI) and a dispersive medium. By adjusting the polarization controllers in the modified FMZI, the passbands of the MPF can switch between lower frequency, higher frequency or dual-passband states, and by changing the length of the variable optical delay line (VODL) in the modified FMZI, the central frequencies of these passbands can also be tuned. Therefore, tunable and switchable microwave signal frequency multiplication can be achieved. The experimental results show that by modulating a driving signal with frequency of 2.5 GHz, a signal with frequency of 7.5 GHz, which is three times of the driving frequency, the other one with the frequency of 15 GHz, which is six times of the driving frequency can be generated and freely switchable between two frequencies and dual frequency states by simply adjusting the polarization controllers in the modified FMZI.

  10. Implementation of Medical Information Exchange System Based on EHR Standard. (United States)

    Han, Soon Hwa; Lee, Min Ho; Kim, Sang Guk; Jeong, Jun Yong; Lee, Bi Na; Choi, Myeong Seon; Kim, Il Kon; Park, Woo Sung; Ha, Kyooseob; Cho, Eunyoung; Kim, Yoon; Bae, Jae Bong


    To develop effective ways of sharing patients' medical information, we developed a new medical information exchange system (MIES) based on a registry server, which enabled us to exchange different types of data generated by various systems. To assure that patient's medical information can be effectively exchanged under different system environments, we adopted the standardized data transfer methods and terminologies suggested by the Center for Interoperable Electronic Healthcare Record (CIEHR) of Korea in order to guarantee interoperability. Regarding information security, MIES followed the security guidelines suggested by the CIEHR of Korea. This study aimed to develop essential security systems for the implementation of online services, such as encryption of communication, server security, database security, protection against hacking, contents, and network security. The registry server managed information exchange as well as the registration information of the clinical document architecture (CDA) documents, and the CDA Transfer Server was used to locate and transmit the proper CDA document from the relevant repository. The CDA viewer showed the CDA documents via connection with the information systems of related hospitals. This research chooses transfer items and defines document standards that follow CDA standards, such that exchange of CDA documents between different systems became possible through ebXML. The proposed MIES was designed as an independent central registry server model in order to guarantee the essential security of patients' medical information.

  11. Soil Moisture Sensing via Swept Frequency Based Microwave Sensors

    Directory of Open Access Journals (Sweden)

    Greg A. Holt


    Full Text Available There is a need for low-cost, high-accuracy measurement of water content in various materials. This study assesses the performance of a new microwave swept frequency domain instrument (SFI that has promise to provide a low-cost, high-accuracy alternative to the traditional and more expensive time domain reflectometry (TDR. The technique obtains permittivity measurements of soils in the frequency domain utilizing a through transmission configuration, transmissometry, which provides a frequency domain transmissometry measurement (FDT. The measurement is comparable to time domain transmissometry (TDT with the added advantage of also being able to separately quantify the real and imaginary portions of the complex permittivity so that the measured bulk permittivity is more accurate that the measurement TDR provides where the apparent permittivity is impacted by the signal loss, which can be significant in heavier soils. The experimental SFI was compared with a high-end 12 GHz TDR/TDT system across a range of soils at varying soil water contents and densities. As propagation delay is the fundamental measurement of interest to the well-established TDR or TDT technique; the first set of tests utilized precision propagation delay lines to test the accuracy of the SFI instrument’s ability to resolve propagation delays across the expected range of delays that a soil probe would present when subjected to the expected range of soil types and soil moisture typical to an agronomic cropping system. The results of the precision-delay line testing suggests the instrument is capable of predicting propagation delays with a RMSE of +/−105 ps across the range of delays ranging from 0 to 12,000 ps with a coefficient of determination of r2 = 0.998. The second phase of tests noted the rich history of TDR for prediction of soil moisture and leveraged this history by utilizing TDT measured with a high-end Hewlett Packard TDR/TDT instrument to directly benchmark the

  12. Normalized Quantitative Western Blotting Based on Standardized Fluorescent Labeling. (United States)

    Faden, Frederik; Eschen-Lippold, Lennart; Dissmeyer, Nico


    Western blot (WB) analysis is the most widely used method to monitor expression of proteins of interest in protein extracts of high complexity derived from diverse experimental setups. WB allows the rapid and specific detection of a target protein, such as non-tagged endogenous proteins as well as protein-epitope tag fusions depending on the availability of specific antibodies. To generate quantitative data from independent samples within one experiment and to allow accurate inter-experimental quantification, a reliable and reproducible method to standardize and normalize WB data is indispensable. To date, it is a standard procedure to normalize individual bands of immunodetected proteins of interest from a WB lane to other individual bands of so-called housekeeping proteins of the same sample lane. These are usually detected by an independent antibody or colorimetric detection and do not reflect the real total protein of a sample. Housekeeping proteins-assumed to be constitutively expressed mostly independent of developmental and environmental states-can greatly differ in their expression under these various conditions. Therefore, they actually do not represent a reliable reference to normalize the target protein's abundance to the total amount of protein contained in each lane of a blot.Here, we demonstrate the Smart Protein Layers (SPL) technology, a combination of fluorescent standards and a stain-free fluorescence-based visualization of total protein in gels and after transfer via WB. SPL allows a rapid and highly sensitive protein visualization and quantification with a sensitivity comparable to conventional silver staining with a 1000-fold higher dynamic range. For normalization, standardization and quantification of protein gels and WBs, a sample-dependent bi-fluorescent standard reagent is applied and, for accurate quantification of data derived from different experiments, a second calibration standard is used. Together, the precise quantification of

  13. Patient Preference for Dosing Frequency Based on Prior Biologic Experience. (United States)

    Zhang, Mingliang; Carter, Chureen; Olson, William H; Johnson, Michael P; Brennem, Susan K; Lee, Seina; Farahi, Kamyar


    There is limited research exploring patient preferences regarding dosing frequency of biologic treatment of psoriasis. Patients with moderate-to-severe plaque psoriasis identified in a healthcare claims database completed a survey regarding experience with psoriasis treatments and preferred dosing frequency. Survey questions regarding preferences were posed in two ways: (1) by likelihood of choosing once per week or 2 weeks, or 12 weeks; and (2) by choosing one option among once every 1-2 or 3-4 weeks or 1-2 or 2-3 months. Data were analyzed by prior biologic history (biologic-experienced vs biologic-naïve, and with one or two specific biologics). Overall, 426 patients completed the survey: 163 biologic-naïve patients and 263 biologic-experienced patients (159 had some experience with etanercept, 105 with adalimumab, and 49 with ustekinumab). Among patients who indicated experience with one or two biologics, data were available for 219 (30 with three biologics and 14 did not specify which biologic experience). The majority of biologic-naïve (68.8%) and overall biologic-experienced (69.4%) patients indicated that they were very likely to choose the least frequent dosing option of once every 12 weeks (Table 1). In contrast, fewer biologic-naïve (9.1% and 16.7%) and biologic-experienced (22.5% and 25.3%) patients indicated that they were very likely to choose the 1-week and 2-week dosing interval options, respectively. In each cohort grouped by experience with specific biologics, among those with no experience with ustekinumab, the most chosen option was 1-2 weeks. The most frequently chosen option was every 2-3 months, among patients with any experience with ustekinumab, regardless of their experience with other biologics. The least frequent dosing interval was preferred among biologic naïve patients and patients who had any experience with ustekinumab. Dosing interval may influence the shared decision-making process for psoriasis treatment with biologics. J

  14. Updating OSHA Standards Based on National Consensus Standards; Eye and Face Protection. Final rule. (United States)


    On March 13, 2015, OSHA published in the Federal Register a notice of proposed rulemaking (NPRM) to revise its eye and face protection standards for general industry, shipyard employment, marine terminals, longshoring, and construction by updating the references to national consensus standards approved by the American National Standards Institute (ANSI). OSHA received no significant objections from commenters and therefore is adopting the amendments as proposed. This final rule updates the references in OSHA's eye and face standards to reflect the most recent edition of the ANSI/International Safety Equipment Association (ISEA) eye and face protection standard. It removes the oldest-referenced edition of the same ANSI standard. It also amends other provisions of the construction eye and face protection standard to bring them into alignment with OSHA's general industry and maritime standards.

  15. Minimizing the Standard Deviation of Spatially Averaged Surface Cross-Sectional Data from the Dual-Frequency Precipitation Radar (United States)

    Meneghini, Robert; Kim, Hyokyung


    For an airborne or spaceborne radar, the precipitation-induced path attenuation can be estimated from the measurements of the normalized surface cross section, sigma 0, in the presence and absence of precipitation. In one implementation, the mean rain-free estimate and its variability are found from a lookup table (LUT) derived from previously measured data. For the dual-frequency precipitation radar aboard the global precipitation measurement satellite, the nominal table consists of the statistics of the rain-free 0 over a 0.5 deg x 0.5 deg latitude-longitude grid using a three-month set of input data. However, a problem with the LUT is an insufficient number of samples in many cells. An alternative table is constructed by a stepwise procedure that begins with the statistics over a 0.25 deg x 0.25 deg grid. If the number of samples at a cell is too few, the area is expanded, cell by cell, choosing at each step that cell that minimizes the variance of the data. The question arises, however, as to whether the selected region corresponds to the smallest variance. To address this question, a second type of variable-averaging grid is constructed using all possible spatial configurations and computing the variance of the data within each region. Comparisons of the standard deviations for the fixed and variable-averaged grids are given as a function of incidence angle and surface type using a three-month set of data. The advantage of variable spatial averaging is that the average standard deviation can be reduced relative to the fixed grid while satisfying the minimum sample requirement.

  16. Separation of heart sound signal from noise in joint cycle frequency-time-frequency domains based on fuzzy detection. (United States)

    Tang, Hong; Li, Ting; Park, Yongwan; Qiu, Tianshuang


    Noise is generally unavoidable during recordings of heart sound signal. Therefore, noise reduction is one of the important preprocesses in the analysis of heart sound signal. This was achieved in joint cycle frequency-time-frequency domains in this study. Heart sound signal was decomposed into components (called atoms) characterized by time delay, frequency, amplitude, time width, and phase. It was discovered that atoms of heart sound signal congregate in the joint domains. On the other hand, atoms of noise were dispersed. The atoms of heart sound signal could, therefore, be separated from the atoms of noise based on fuzzy detection. In a practical experiment, heart sound signal was successfully separated from lung sounds and disturbances due to chest motion. Computer simulations for various clinical heart sound signals were also used to evaluate the performance of the proposed noise reduction. It was shown that heart sound signal can be reconstructed from simulated complex noise (perhaps non-Gaussian, nonstationary, and colored). The proposed noise reduction can recover variations in the both waveform and time delay of heart sound signal during the reconstruction. Correlation coefficient and normalized residue were used to indicate the closeness of the reconstructed and noise-free heart sound signal. Correlation coefficient may exceed 0.90 and normalized residue may be around 0.10 in 0-dB noise environment, even if the phonocardiogram signal covers only ten cardiac cycles.

  17. 78 FR 35559 - Updating OSHA Standards Based on National Consensus Standards; Signage (United States)


    ... signage standards by adding references to the latest versions of the American National Standards Institute... reference Part VI of the Manual of Uniform Traffic Control Devices (``MUTCD''), 1988 Edition, Revision 3... of the MUTCD, 1988 Edition, Revision 3. To enforce any other version of the cited ANSI standards...

  18. Usability standards meet scenario-based design: challenges and opportunities. (United States)

    Vincent, Christopher J; Blandford, Ann


    The focus of this paper is on the challenges and opportunities presented by developing scenarios of use for interactive medical devices. Scenarios are integral to the international standard for usability engineering of medical devices (IEC 62366:2007), and are also applied to the development of health software (draft standard IEC 82304-1). The 62366 standard lays out a process for mitigating risk during normal use (i.e. use as per the instructions, or accepted medical practice). However, this begs the question of whether "real use" (that which occurs in practice) matches "normal use". In this paper, we present an overview of the product lifecycle and how it impacts on the type of scenario that can be practically applied. We report on the development and testing of a set of scenarios intended to inform the design of infusion pumps based on "real use". The scenarios were validated by researchers and practitioners experienced in clinical practice, and their utility was assessed by developers and practitioners representing different stages of the product lifecycle. These evaluations highlighted previously unreported challenges and opportunities for the use of scenarios in this context. Challenges include: integrating scenario-based design with usability engineering practice; covering the breadth of uses of infusion devices; and managing contradictory evidence. Opportunities included scenario use beyond design to guide marketing, to inform purchasing and as resources for training staff. This study exemplifies one empirically grounded approach to communicating and negotiating the realities of practice. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Standards-based data interoperability in the climate sciences (United States)

    Woolf, Andrew; Cramer, Ray; Gutierrez, Marta; Kleese van Dam, Kerstin; Kondapalli, Siva; Latham, Susan; Lawrence, Bryan; Lowry, Roy; O'Neill, Kevin


    Emerging developments in geographic information systems and distributed computing offer a roadmap towards an unprecedented spatial data infrastructure in the climate sciences. Key to this are the standards developments for digital geographic information being led by the International Organisation for Standardisation (ISO) technical committee on geographic information/geomatics (TC211) and the Open Geospatial Consortium (OGC). These, coupled with the evolution of standardised web services for applications on the internet by the World Wide Web Consortium (W3C), mean that opportunities for both new applications and increased interoperability exist. These are exemplified by the ability to construct ISO-compliant data models that expose legacy data sources through OGC web services. This paper concentrates on the applicability of these standards to climate data by introducing some examples and outlining the challenges ahead. An abstract data model is developed, based on ISO standards, and applied to a range of climate data both observational and modelled. An OGC Web Map Server interface is constructed for numerical weather prediction (NWP) data stored in legacy data files. A W3C web service for remotely accessing gridded climate data is illustrated. Challenges identified include the following: first, both the ISO and OGC specifications require extensions to support climate data. Secondly, OGC services need to fully comply with W3C web services, and support complex access control. Finally, to achieve real interoperability, broadly accepted community-based semantic data models are required across the range of climate data types. These challenges are being actively pursued, and broad data interoperability for the climate sciences appears within reach.

  20. Evidence-based standard care of malignant glioma

    International Nuclear Information System (INIS)

    Shinoda, Jun; Yano, Hirohito; Sakai, Noboru


    The amount of scientific evidence regarding therapy for primary cases of glioblastoma and anaplastic astrocytoma is small compared with that for malignant tumors in other organs, and recommended therapeutic strategies derived from this evidence are not diverse. Evidence-based standard care of these tumors is very limited. At this moment, the benchmark treatment for these malignant gliomas is gross resection of the tumor bulk followed by local external beam radiotherapy (50-60 Gy) in combination with nitrosourea-based chemotherapy. Additional stereotactic radiosurgery or other strategies for localized therapeutic boosting have also been recommended. However, the clinical outcomes obtained through these standard treatments are unfortunately not always satisfactory. Novel therapeutic strategies for malignant gliomas are expected to develop and we hope that some scientific evidence would emerge from clinical trials using these novel strategies. New scientific evidence for practical and novel treatments appropriate for patients with malignant gliomas may come to be available as the evaluation of patients' quality of life is used as an end point for the analysis of clinical results, in addition to the commonly used survival analysis. (author)

  1. Standardizing Access to Computer-Based Medical Resources (United States)

    Cimino, Christopher; Barnett, G. Octo


    Methods of using computer-based medical resources efficiently have previously required either the user to manage the choice of resource and terms, or specialized programming to access each individual resource. Standardized descriptions of what resources can do and how they may be accessed would allow the creation of an interface for multiple resources. This interface would assist a user in formulating queries, accessing the resources and managing the results. This paper describes a working Interactive Query Workstation (IQW). The IQW allows users to query multiple resources: a medical knowledge base (DXplain*), a clinical database (COSTAR/MQL*), a bibliographic database (MEDLINE*), a cancer database (PDQ*), and a drug interaction database (PDR*). The IQW has evolved from requiring alteration of resource code to using off-the-shelf products (Kappa* & Microsoft® Windows) to control resources. Descriptions of each resource were developed to allow IQW to access these resources. There are three components to these descriptions; information on how data is sent and received from a resource, information on types of queries to which a resource can respond, and information on what types of information are needed to execute a query. These components form the basis of a standard description of resources.

  2. An application of multidimensional time-frequency analysis as a base for the unified watermarking approach. (United States)

    Stankovic, Srdjan; Orovic, Irena; Zaric, Nikola


    A watermarking approach based on multidimensional time-frequency analysis is proposed. It represents a unified concept that can be used for different types of data such as audio, speech signals, images or video. Time-frequency analysis is employed for speech signals, while space/spatial-frequency analysis is used for images. Their combination is applied for video signals. Particularly, we focus on the 2-D case: space/spatial-frequency based image watermarking procedure that will be subsequently extended to video signal. A method that selects coefficients for watermarking by estimating the local frequency content is proposed. In order to provide watermark imperceptibility, the nonstationary filtering is used to model the watermark which corresponds to the host signal components. Furthermore, the watermark detection within the multidimensional time-frequency domain is proposed. The efficiency and robustness of the procedure in the presence of various attacks is proven experimentally.

  3. Frequency support capability of variable speed wind turbine based on electromagnetic coupler

    DEFF Research Database (Denmark)

    You, Rui; Barahona Garzón, Braulio; Chai, Jianyun


    capability has to be enhanced. In this paper, the frequency support capability of WT-EMC is studied at three typical wind conditions and with two control strategies-droop control and inertial control to enhance its frequency support capability. The synchronous generator speed, more stable than the grid......In the variable speed wind turbine based on electromagnetic coupler (WT-EMC), a synchronous generator is directly coupled with grid. So like conventional power plants WT-EMC is able to support grid frequency inherently. But due to the reduced inertia of synchronous generator, its frequency support...... frequency which is the input signal for Type 3 and Type 4 wind turbine frequency support controller, is used for the calculation of WT-EMC supplementary torque command. The integrated simulation environment based on the aeroelastic code HAWC2 and software Matlab/Simulink is used to build a 2 MW WT-EMC model...

  4. High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yu; Che, Yuchi; Zhou, Chongwu, E-mail: [Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States); Seo, Jung-Woo T.; Hersam, Mark C. [Department of Materials Science and Engineering and Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States); Gui, Hui [Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089 (United States)


    In this paper, we report the high-performance radio-frequency transistors based on the single-walled semiconducting carbon nanotubes with a refined average diameter of ∼1.6 nm. These diameter-separated carbon nanotube transistors show excellent transconductance of 55 μS/μm and desirable drain current saturation with an output resistance of ∼100 KΩ μm. An exceptional radio-frequency performance is also achieved with current gain and power gain cut-off frequencies of 23 GHz and 20 GHz (extrinsic) and 65 GHz and 35 GHz (intrinsic), respectively. These radio-frequency metrics are among the highest reported for the carbon nanotube thin-film transistors. This study provides demonstration of radio frequency transistors based on carbon nanotubes with tailored diameter distributions, which will guide the future application of carbon nanotubes in radio-frequency electronics.

  5. Evaluation of Virtual Teaching-Learning Environments based on usability standards

    Directory of Open Access Journals (Sweden)

    Jose I. Cocunubo-Suarez


    Full Text Available The main objective of this review article is to determine the necessary sub-characteristics or aspects for the evaluation of Virtual Teaching-Learning Environments (VTLEs as final or finished products based on ISO 9126, 14598 and 25000-SQuaRE standards. A systematic information search was carried out. A total of 108 documents were retrieved about subjects such as web usability, virtual learning environments, usability, educational software, educational web evaluation, usability evaluation and web usability evaluation. Out of the 108 documents, 70 were selected by inclusion and exclusion analysis. The eight subfeatures of greater statistical frequency were identified among the subset of documents and then integrated as a proposal for standard 25000-SQuaRE.

  6. Multiple frequencies sequential coding for SSVEP-based brain-computer interface.

    Directory of Open Access Journals (Sweden)

    Yangsong Zhang

    Full Text Available BACKGROUND: Steady-state visual evoked potential (SSVEP-based brain-computer interface (BCI has become one of the most promising modalities for a practical noninvasive BCI system. Owing to both the limitation of refresh rate of liquid crystal display (LCD or cathode ray tube (CRT monitor, and the specific physiological response property that only a very small number of stimuli at certain frequencies could evoke strong SSVEPs, the available frequencies for SSVEP stimuli are limited. Therefore, it may not be enough to code multiple targets with the traditional frequencies coding protocols, which poses a big challenge for the design of a practical SSVEP-based BCI. This study aimed to provide an innovative coding method to tackle this problem. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we present a novel protocol termed multiple frequencies sequential coding (MFSC for SSVEP-based BCI. In MFSC, multiple frequencies are sequentially used in each cycle to code the targets. To fulfill the sequential coding, each cycle is divided into several coding epochs, and during each epoch, certain frequency is used. Obviously, different frequencies or the same frequency can be presented in the coding epochs, and the different epoch sequence corresponds to the different targets. To show the feasibility of MFSC, we used two frequencies to realize four targets and carried on an offline experiment. The current study shows that: 1 MFSC is feasible and efficient; 2 the performance of SSVEP-based BCI based on MFSC can be comparable to some existed systems. CONCLUSIONS/SIGNIFICANCE: The proposed protocol could potentially implement much more targets with the limited available frequencies compared with the traditional frequencies coding protocol. The efficiency of the new protocol was confirmed by real data experiment. We propose that the SSVEP-based BCI under MFSC might be a promising choice in the future.

  7. CDISC standard-based electronic archiving of clinical trials. (United States)

    Kuchinke, Wolfgang; Aerts, J; Semler, S C; Ohmann, C


    Our objectives were to develop, based on the analysis of archived clinical trial documents and data and on the requirements of GCP-compliant electronic archiving, a concept for legally secure and technically feasible archiving of the entire clinical trial, including the essential documents of the trial master file and the study database. Based on own experiences with CDISC, existing implementations and future developments, CDISC standards were evaluated concerning requirements for archiving clinical studies. Trial master files of a small, medium and large clinical study were analyzed to collect specifications for electronic archiving of records. Two different ways of long-term storage exist for the clinical trial archive: document-oriented archival and data archiving of the study database. The trial master file has a highly complex structure; its different parts can vary greatly in size, depending of the working style of investigators, number of patients recruited, the number of adverse event reports and the number of queries. The CDISC standard ODM is especially suited for archiving clinical trials, because among other features it contains the entire clinical trial data and full audit trail information. On the other hand SDTM is a content standard suited for data warehouses. Two recent developments in CDISC will affect the archival of studies: the further development of ODM in the area of "eCRF submission" and the use of "Electronic Source Data". The complexity and size of the trial master file requires new solutions. Though ODM provides effective means to archive the study database, it shows still deficiencies, especially for the joint archiving of data and the complex documentation of the trial master file. A concept was developed in which the ODM standard is part of an integrated archiving of the trial data and documents. ODM archiving of the study database enables long-term storage which is GCP-compliant. Archiving of documents of the trial master file in PDF

  8. Realization of a frequency standard at 778 nm: absolute frequency measurement of the 2S-8S/D transitions in hydrogen and deuterium and determination of the Rydberg constant; Realisation d'un etalon de frequence a 778 nm: mesure absolue des frequences 2S-8S/D des atomes d'hydrogene et de deuterium et determination de la constante de rydberg

    Energy Technology Data Exchange (ETDEWEB)

    Beauvoir, B. de


    The purpose of this work is to design a 778 nm standard laser for performing an absolute measurement of 2S-8S/D frequencies of hydrogen and deuterium atoms. This frequency calibration is based on a 5S-5D two-photon transition of the rubidium atom. Metrological performance of this laser is 10 times as good as that of He-Ne laser calibrated on iodine. It has been shown that the passage of a laser radiation through an optic fiber does not deteriorate its metrological properties. 2S-8S/8D transitions have been excited in an atomic jet by a titanium-sapphire laser. Spurious effects can shift and broaden lines. In order to prevent these effects, a theoretical line has been shaped and adjusted on experimental signals. The frequency comparison between the excitation laser and the standard laser has led to the measurement of the absolute frequency of the line concerned. The value of the Rydberg constant has been deduced: R{sub {infinity}} = 109737.3156859 (10) cm{sup -1}. The comparison of experimental data between deuterium and hydrogen has allowed us to determine the value of the Lamb shift of the 2S state of deuterium: L(2S-2P) = 1059,230 (9) MHz.

  9. Study on frequency characteristics of wireless power transmission system based on magnetic coupling resonance (United States)

    Liang, L. H.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Yue, Z. K.; Cui, S.


    In order to study the frequency characteristics of the wireless energy transmission system based on the magnetic coupling resonance, a circuit model based on the magnetic coupling resonant wireless energy transmission system is established. The influence of the load on the frequency characteristics of the wireless power transmission system is analysed. The circuit coupling theory is used to derive the minimum load required to suppress frequency splitting. Simulation and experimental results verify that when the load size is lower than a certain value, the system will appear frequency splitting, increasing the load size can effectively suppress the frequency splitting phenomenon. The power regulation scheme of the wireless charging system based on magnetic coupling resonance is given. This study provides a theoretical basis for load selection and power regulation of wireless power transmission systems.

  10. Three-frequency BDS precise point positioning ambiguity resolution based on raw observables (United States)

    Li, Pan; Zhang, Xiaohong; Ge, Maorong; Schuh, Harald


    All BeiDou navigation satellite system (BDS) satellites are transmitting signals on three frequencies, which brings new opportunity and challenges for high-accuracy precise point positioning (PPP) with ambiguity resolution (AR). This paper proposes an effective uncalibrated phase delay (UPD) estimation and AR strategy which is based on a raw PPP model. First, triple-frequency raw PPP models are developed. The observation model and stochastic model are designed and extended to accommodate the third frequency. Then, the UPD is parameterized in raw frequency form while estimating with the high-precision and low-noise integer linear combination of float ambiguity which are derived by ambiguity decorrelation. Third, with UPD corrected, the LAMBDA method is used for resolving full or partial ambiguities which can be fixed. This method can be easily and flexibly extended for dual-, triple- or even more frequency. To verify the effectiveness and performance of triple-frequency PPP AR, tests with real BDS data from 90 stations lasting for 21 days were performed in static mode. Data were processed with three strategies: BDS triple-frequency ambiguity-float PPP, BDS triple-frequency PPP with dual-frequency (B1/B2) and three-frequency AR, respectively. Numerous experiment results showed that compared with the ambiguity-float solution, the performance in terms of convergence time and positioning biases can be significantly improved by AR. Among three groups of solutions, the triple-frequency PPP AR achieved the best performance. Compared with dual-frequency AR, additional the third frequency could apparently improve the position estimations during the initialization phase and under constraint environments when the dual-frequency PPP AR is limited by few satellite numbers.

  11. The RFI situation for a space-based low-frequency radio astronomy instrument

    NARCIS (Netherlands)

    Bentum, Marinus Jan; Boonstra, A.J.


    Space based ultra-long wavelength radio astronomy has recently gained a lot of interest. Techniques to open the virtually unexplored frequency band below 30 MHz are becoming within reach at this moment. Due to the ionosphere and the radio interference (RFI) on Earth exploring this frequency band

  12. Spatial Frequency Scheduling for Uplink SC-FDMA based Linearly Precoded LTE Multiuser MIMO Systems

    DEFF Research Database (Denmark)

    Lin, Zihuai; Xiao, Pei; Sørensen, Troels Bundgaard


    This paper investigates the performance of the 3GPP Long Term Evolution (LTE) uplink Single Carrier (SC) Frequency Division Multiple Access (FDMA) based linearly precoded multiuserMultiple InputMultiple Output (MIMO) systems with frequency domain packet scheduling. A mathematical expression...

  13. Updating OSHA standards based on national consensus standards. Direct final rule. (United States)


    In this direct final rule, the Agency is removing several references to consensus standards that have requirements that duplicate, or are comparable to, other OSHA rules; this action includes correcting a paragraph citation in one of these OSHA rules. The Agency also is removing a reference to American Welding Society standard A3.0-1969 ("Terms and Definitions") in its general-industry welding standards. This rulemaking is a continuation of OSHA's ongoing effort to update references to consensus and industry standards used throughout its rules.

  14. Estimating High-Frequency Based (Co-) Variances: A Unified Approach

    DEFF Research Database (Denmark)

    Voev, Valeri; Nolte, Ingmar

    We propose a unified framework for estimating integrated variances and covariances based on simple OLS regressions, allowing for a general market microstructure noise specification. We show that our estimators can outperform, in terms of the root mean squared error criterion, the most recent...... and commonly applied estimators, such as the realized kernels of Barndorff-Nielsen, Hansen, Lunde & Shephard (2006), the two-scales realized variance of Zhang, Mykland & Aït-Sahalia (2005), the Hayashi & Yoshida (2005) covariance estimator, and the realized variance and covariance with the optimal sampling...

  15. submitter Linear encoder based low frequency inertial sensor

    CERN Document Server

    Hellegouarch, Sylvain; Artoos, Kurt; Lambert, Pierre; Collette, Christophe


    In this article, we present a novel concept of inertial sensor, based on a linear encoder. Compared to other interferometric sensors, the encoder is much more easy to mount, and the calibration more stable. A prototype has been built and validated experimentally by comparison with a commercial seismometer. It has a resolution of about 10 pm/√Hz. In order to further improve the resolution, two concepts of mechanical amplifiers have been studied and compared. One of them is shown to be extremely promising, provided that the amplifier does not stiffen the sensor.

  16. Time-Frequency-Based Speech Regions Characterization and Eigenvalue Decomposition Applied to Speech Watermarking

    Directory of Open Access Journals (Sweden)

    Orović Irena


    Full Text Available The eigenvalues decomposition based on the S-method is employed to extract the specific time-frequency characteristics of speech signals. This approach is used to create a flexible speech watermark, shaped according to the time-frequency characteristics of the host signal. Also, the Hermite projection method is applied for characterization of speech regions. Namely, time-frequency regions that contain voiced components are selected for watermarking. The watermark detection is performed in the time-frequency domain as well. The theory is tested on several examples.

  17. Statistical analysis of nature frequencies of hemispherical resonator gyroscope based on probability theory (United States)

    Yu, Xudong; Long, Xingwu; Wei, Guo; Li, Geng; Qu, Tianliang


    A finite element model of the hemispherical resonator gyro (HRG) is established and the natural frequencies and vibration modes are investigated. The matrix perturbation technology in the random finite element method is first introduced to analyze the statistical characteristics of the natural frequencies of HRG. The influences of random material parameters and dimensional parameters on the natural frequencies are quantitatively described based on the probability theory. The statistics expressions of the random parameters are given and the influences of three key parameters on natural frequency are pointed out. These results are important for design and improvement of high accuracy HRG.

  18. A general theory on frequency and time-frequency analysis of irregularly sampled time series based on projection methods - Part 1: Frequency analysis (United States)

    Lenoir, Guillaume; Crucifix, Michel


    We develop a general framework for the frequency analysis of irregularly sampled time series. It is based on the Lomb-Scargle periodogram, but extended to algebraic operators accounting for the presence of a polynomial trend in the model for the data, in addition to a periodic component and a background noise. Special care is devoted to the correlation between the trend and the periodic component. This new periodogram is then cast into the Welch overlapping segment averaging (WOSA) method in order to reduce its variance. We also design a test of significance for the WOSA periodogram, against the background noise. The model for the background noise is a stationary Gaussian continuous autoregressive-moving-average (CARMA) process, more general than the classical Gaussian white or red noise processes. CARMA parameters are estimated following a Bayesian framework. We provide algorithms that compute the confidence levels for the WOSA periodogram and fully take into account the uncertainty in the CARMA noise parameters. Alternatively, a theory using point estimates of CARMA parameters provides analytical confidence levels for the WOSA periodogram, which are more accurate than Markov chain Monte Carlo (MCMC) confidence levels and, below some threshold for the number of data points, less costly in computing time. We then estimate the amplitude of the periodic component with least-squares methods, and derive an approximate proportionality between the squared amplitude and the periodogram. This proportionality leads to a new extension for the periodogram: the weighted WOSA periodogram, which we recommend for most frequency analyses with irregularly sampled data. The estimated signal amplitude also permits filtering in a frequency band. Our results generalise and unify methods developed in the fields of geosciences, engineering, astronomy and astrophysics. They also constitute the starting point for an extension to the continuous wavelet transform developed in a companion

  19. A general theory on frequency and time–frequency analysis of irregularly sampled time series based on projection methods – Part 1: Frequency analysis

    Directory of Open Access Journals (Sweden)

    G. Lenoir


    Full Text Available We develop a general framework for the frequency analysis of irregularly sampled time series. It is based on the Lomb–Scargle periodogram, but extended to algebraic operators accounting for the presence of a polynomial trend in the model for the data, in addition to a periodic component and a background noise. Special care is devoted to the correlation between the trend and the periodic component. This new periodogram is then cast into the Welch overlapping segment averaging (WOSA method in order to reduce its variance. We also design a test of significance for the WOSA periodogram, against the background noise. The model for the background noise is a stationary Gaussian continuous autoregressive-moving-average (CARMA process, more general than the classical Gaussian white or red noise processes. CARMA parameters are estimated following a Bayesian framework. We provide algorithms that compute the confidence levels for the WOSA periodogram and fully take into account the uncertainty in the CARMA noise parameters. Alternatively, a theory using point estimates of CARMA parameters provides analytical confidence levels for the WOSA periodogram, which are more accurate than Markov chain Monte Carlo (MCMC confidence levels and, below some threshold for the number of data points, less costly in computing time. We then estimate the amplitude of the periodic component with least-squares methods, and derive an approximate proportionality between the squared amplitude and the periodogram. This proportionality leads to a new extension for the periodogram: the weighted WOSA periodogram, which we recommend for most frequency analyses with irregularly sampled data. The estimated signal amplitude also permits filtering in a frequency band. Our results generalise and unify methods developed in the fields of geosciences, engineering, astronomy and astrophysics. They also constitute the starting point for an extension to the continuous wavelet transform developed

  20. Frequency band adjustment match filtering based on variable frequency GPR antennas pairing scheme for shallow subsurface investigations (United States)

    Shaikh, Shahid Ali; Tian, Gang; Shi, Zhanjie; Zhao, Wenke; Junejo, S. A.


    Ground penetrating Radar (GPR) is an efficient tool for subsurface geophysical investigations, particularly at shallow depths. The non-destructiveness, cost efficiency, and data reliability are the important factors that make it an ideal tool for the shallow subsurface investigations. Present study encompasses; variations in central frequency of transmitting and receiving GPR antennas (Tx-Rx) have been analyzed and frequency band adjustment match filters are fabricated and tested accordingly. Normally, the frequency of both the antennas remains similar to each other whereas in this study we have experimentally changed the frequencies of Tx-Rx and deduce the response. Instead of normally adopted three pairs, a total of nine Tx-Rx pairs were made from 50 MHz, 100 MHz, and 200 MHz antennas. The experimental data was acquired at the designated near surface geophysics test site of the Zhejiang University, Hangzhou, China. After the impulse response analysis of acquired data through conventional as well as varied Tx-Rx pairs, different swap effects were observed. The frequency band and exploration depth are influenced by transmitting frequencies rather than the receiving frequencies. The impact of receiving frequencies was noticed on the resolution; the more noises were observed using the combination of high frequency transmitting with respect to low frequency receiving. On the basis of above said variable results we have fabricated two frequency band adjustment match filters, the constant frequency transmitting (CFT) and the variable frequency transmitting (VFT) frequency band adjustment match filters. By the principle, the lower and higher frequency components were matched and then incorporated with intermediate one. Therefore, this study reveals that a Tx-Rx combination of low frequency transmitting with high frequency receiving is a better choice. Moreover, both the filters provide better radargram than raw one, the result of VFT frequency band adjustment filter is

  1. Legal Time of the Republic of Colombia and its international traceability using the Cesium Atomic Clock - Time and Frequency National Standard (United States)

    Hernández Forero, Liz Catherine; Bahamón Cortés, Nelson


    Around the world, there are different providers of timestamp (mobile, radio or television operators, satellites of the GPS network, astronomical measurements, etc.), however, the source of the legal time for a country is either the national metrology institute or another designated laboratory. This activity requires a time standard based on an atomic time scale. The International Bureau of Weights and Measures (BIPM) calculates a weighted average of the time kept in more than 60 nations and produces a single international time scale, called Coordinated Universal Time (UTC). This article presents the current time scale that generates Legal Time for the Republic of Colombia produced by the Instituto Nacional de Metrología (INM) using the time and frequency national standard, a cesium atomic oscillator. It also illustrates how important it is for the academic, scientific and industrial communities, as well as the general public, to be synchronized with this time scale, which is traceable to the International System (SI) of units, through international comparisons that are made in real time.

  2. Structural Health Monitoring Based on Combined Structural Global and Local Frequencies

    Directory of Open Access Journals (Sweden)

    Jilin Hou


    Full Text Available This paper presents a parameter estimation method for Structural Health Monitoring based on the combined measured structural global frequencies and structural local frequencies. First, the global test is experimented to obtain the low order modes which can reflect the global information of the structure. Secondly, the mass is added on the member of structure to increase the local dynamic characteristic and to make the member have local primary frequency, which belongs to structural local frequency and is sensitive to local parameters. Then the parameters of the structure can be optimized accurately using the combined structural global frequencies and structural local frequencies. The effectiveness and accuracy of the proposed method are verified by the experiment of a space truss.

  3. Frequency-shaped and observer-based discrete-time sliding mode control

    CERN Document Server

    Mehta, Axaykumar


    It is well established that the sliding mode control strategy provides an effective and robust method of controlling the deterministic system due to its well-known invariance property to a class of bounded disturbance and parameter variations. Advances in microcomputer technologies have made digital control increasingly popular among the researchers worldwide. And that led to the study of discrete-time sliding mode control design and its implementation. This brief presents, a method for multi-rate frequency shaped sliding mode controller design based on switching and non-switching type of reaching law. In this approach, the frequency dependent compensator dynamics are introduced through a frequency-shaped sliding surface by assigning frequency dependent weighing matrices in a linear quadratic regulator (LQR) design procedure. In this way, the undesired high frequency dynamics or certain frequency disturbance can be eliminated. The states are implicitly obtained by measuring the output at a faster rate than th...

  4. Population based allele frequencies of disease associated polymorphisms in the Personalized Medicine Research Project. (United States)

    Cross, Deanna S; Ivacic, Lynn C; Stefanski, Elisha L; McCarty, Catherine A


    There is a lack of knowledge regarding the frequency of disease associated polymorphisms in populations and population attributable risk for many populations remains unknown. Factors that could affect the association of the allele with disease, either positively or negatively, such as race, ethnicity, and gender, may not be possible to determine without population based allele frequencies.Here we used a panel of 51 polymorphisms previously associated with at least one disease and determined the allele frequencies within the entire Personalized Medicine Research Project population based cohort. We compared these allele frequencies to those in dbSNP and other data sources stratified by race. Differences in allele frequencies between self reported race, region of origin, and sex were determined. There were 19544 individuals who self reported a single racial category, 19027 or (97.4%) self reported white Caucasian, and 11205 (57.3%) individuals were female. Of the 11,208 (57%) individuals with an identifiable region of origin 8337 or (74.4%) were German.41 polymorphisms were significantly different between self reported race at the 0.05 level. Stratification of our Caucasian population by self reported region of origin revealed 19 polymorphisms that were significantly different (p = 0.05) between individuals of different origins. Further stratification of the population by gender revealed few significant differences in allele frequencies between the genders. This represents one of the largest population based allele frequency studies to date. Stratification by self reported race and region of origin revealed wide differences in allele frequencies not only by race but also by region of origin within a single racial group. We report allele frequencies for our Asian/Hmong and American Indian populations; these two minority groups are not typically selected for population allele frequency detection. Population wide allele frequencies are important for the design and

  5. A space-based radio frequency transient event classifier

    Energy Technology Data Exchange (ETDEWEB)

    Moore, K.R.; Blain, C.P.; Caffrey, M.P.; Franz, R.C.; Henneke, K.M.; Jones, R.G.


    The Department of Energy is currently investigating economical and reliable techniques for space-based nuclear weapon treaty verification. Nuclear weapon detonations produce RF transients that are signatures of illegal nuclear weapons tests. However, there are many other sources of RF signals, both natural and man-made. Direct digitization of RF signals requires rates of 300 MSamples per second and produces 10{sup 13} samples per day of data to analyze. it is impractical to store and downlink all digitized RF data from such a satellite without a prohibitively expensive increase in the number and capacities of ground stations. Reliable and robust data processing and information extraction must be performed onboard the spacecraft in order to reduce downlinked data to a reasonable volume. The FORTE (Fast On-Orbit Recording of Transient Events) satellite records RF transients in space. These transients will be classified onboard the spacecraft with an Event Classifier specialized hardware that performs signal preprocessing and neural network classification. The authors describe the Event Classifier requirements, scientific constraints, design and implementation.

  6. Frequency Control in Autanamous Microgrid in the Presence of DFIG based Wind Turbine

    Directory of Open Access Journals (Sweden)

    Ghazanfar Shahgholian


    Full Text Available Despite their ever-increasing power injection into power grid, wind turbines play no role in frequency control. On the other hand, power network frequency is mainly adjusted by conventional power plants. DFIG-based wind turbines not only are able to produce power in various mechanical speeds, but they can also reduce speed instantaneously which, in turn, leads to mechanical energy release. Thus, they can aid conventional units in system frequency control. In this paper, the effect of wind energy conversion systems, especially variable speed DFIG-based wind turbines, in controlling and tuning of frequency is investigated when different penetration coefficients are considered in a isolated microgrid comprising of conventional thermal and non-thermal generating unit. To do this, optimal tuning of DFIG's speed controller is performed in different penetration levels using particle swarm optimization (PSO technique. In addition, optimum penetration of wind energy conversion system is studied considering frequency change parameters in a microgrid.

  7. A new low-frequency power unit based on principle of converting phase condenser

    International Nuclear Information System (INIS)

    Liu Lianye; Zhu Yulong


    While a magnetic reluctance motor is used for driving a reactor control rod, it needs a low-frequency power unit. In this case it's phase sequence can be positive or negative. In a project this power unit is a frequency converter based on principle of converting phase resistance from a alternative current frequency to another one controlled by silicon controlled rectifier. But in practical use, it often broke down due to fusing of fuses or malfunction of silicon controlled rectifiers and converting phase resistances and so on. A new low-frequency power unit based on principle of converting phase condenser instead of converting phase resistance is described. It stood up to all tests of laboratory and actual application, it is proved that the new low-frequency power unit has the advantage over the old one in many sides, such as simpler circuit, smaller heat generating, higher lifting power of drive mechanism, and increased reliability

  8. GaN-based High Power High Frequency Wide Range LLC Resonant Converter, Phase I (United States)

    National Aeronautics and Space Administration — SET Group will design, build and demonstrate a Gallium Nitride (GaN) based High Power High Frequency Wide Range LLC Resonant Converter capable of handling high power...

  9. Variable Sampling Composite Observer Based Frequency Locked Loop and its Application in Grid Connected System

    Directory of Open Access Journals (Sweden)

    ARUN, K.


    Full Text Available A modified digital signal processing procedure is described for the on-line estimation of DC, fundamental and harmonics of periodic signal. A frequency locked loop (FLL incorporated within the parallel structure of observers is proposed to accommodate a wide range of frequency drift. The error in frequency generated under drifting frequencies has been used for changing the sampling frequency of the composite observer, so that the number of samples per cycle of the periodic waveform remains constant. A standard coupled oscillator with automatic gain control is used as numerically controlled oscillator (NCO to generate the enabling pulses for the digital observer. The NCO gives an integer multiple of the fundamental frequency making it suitable for power quality applications. Another observer with DC and second harmonic blocks in the feedback path act as filter and reduces the double frequency content. A systematic study of the FLL is done and a method has been proposed to design the controller. The performance of FLL is validated through simulation and experimental studies. To illustrate applications of the new FLL, estimation of individual harmonics from nonlinear load and the design of a variable sampling resonant controller, for a single phase grid-connected inverter have been presented.

  10. Temporal Masking for Bit-rate Reduction in Audio Codec Based on Frequency Domain Linear Prediction


    Ganapathy, Sriram; Motlicek, Petr; Hermansky, Hynek; Garudadri, Harinath


    Audio coding based on Frequency Domain Linear Prediction (FDLP) uses auto-regressive model to approximate Hilbert envelopes in frequency sub-bands for relatively long temporal segments. Although the basic technique achieves good quality of the reconstructed signal, there is a need for improving the coding efficiency. In this paper, we present a novel method for the application of temporal masking to reduce the bit-rate in a FDLP based codec. Temporal masking refers to the hearing phenomenon, ...

  11. Crack detection of arch dam using statistical neural network based on the reductions of natural frequencies (United States)

    Wang, B. S.; He, Z. C.


    This paper presents the numerical simulation and the model experiment upon a hypothetical concrete arch dam for the research of crack detection based on the reduction of natural frequencies. The influence of cracks on the dynamic property of the arch dam is analyzed. A statistical neural network is proposed to detect the crack through measuring the reductions of natural frequencies. Numerical analysis and model experiment show that the crack occurring in the arch dam will reduce natural frequencies and can be detected by using the statistical neural network based on the information of such reduction.

  12. Data distribution architecture based on standard real time protocol

    International Nuclear Information System (INIS)

    Castro, R.; Vega, J.; Pereira, A.; Portas, A.


    Data distribution architecture (DDAR) has been designed conforming to new requirements, taking into account the type of data that is going to be generated from experiments in International Thermonuclear Experimental Reactor (ITER). The main goal of this architecture is to implement a system that is able to manage on line all data that is being generated by an experiment, supporting its distribution for: processing, storing, analysing or visualizing. The first objective is to have a distribution architecture that supports long pulse experiments (even hours). The described system is able to distribute, using real time protocol (RTP), stored data or live data generated while the experiment is running. It enables researchers to access data on line instead of waiting for the end of the experiment. Other important objective is scalability, so the presented architecture can easily grow based on actual necessities, simplifying estimation and design tasks. A third important objective is security. In this sense, the architecture is based on standards, so complete security mechanisms can be applied, from secure transmission solutions until elaborated access control policies, and it is full compatible with multi-organization federation systems as PAPI or Shibboleth.


    Directory of Open Access Journals (Sweden)

    U. Vepakomma


    Full Text Available Several thousand hectares of forest blocks are regenerating after harvest in Canada. Monitoring their performance over different stages of growth is critical in ensuring future productivity and ecological balance. Tools for rapid evaluation can support timely and reliable planning of interventions. Conventional ground surveys or visual image assessments are either time intensive or inaccurate, while alternate operational remote sensing tools are unavailable. In this study, we test the feasibility and strength of UAV-based photogrammetry with an EO camera on a UAV platform in assessing regeneration performance. Specifically we evaluated stocking, spatial density and height distribution of naturally growing (irregularly spaced stems or planted (regularly spaced stems conifer regeneration in different phases of growth. Standard photogrammetric workflow was applied on the 785 acquired images for 3D reconstruction of the study sites. The required parameters were derived based on automated single stem detection algorithm developed in-house. Comparing with field survey data, preliminary results hold promise. Future studies are planned to expand the scope to larger areas and different stand conditions.

  14. Effects of GPR antenna configuration on subpavement drain detection based on the frequency-shift phenomenon (United States)

    Bai, Hao; Sinfield, Joseph V.


    The water and clay content of subsurface soil can significantly influence the detection results obtained from ground penetrating radar (GPR). Due to the variation of the material properties underground, the center frequency of transmitted GPR signals shifts to a lower range as wave attenuation increases. Examination of wave propagation in the subsurface employing an attenuation filter based on a linear system model shows that received GPR signals will be shifted to lower frequencies than those originally transmitted. The amount of the shift is controlled by a wave attenuation factor, which is determined by the dielectric constant, electric conductivity, and magnetic susceptibility of the transmitted medium. This paper introduces a receiver-transmitter-receiver dual-frequency configuration for GPR that employs two operational frequencies for a given test - one higher and one slightly lower - to take advantage of this phenomenon to improve subpavement drain detection results. In this configuration, the original signal is transmitted from the higher frequency transmitter. After traveling through underground materials, the signal is received by two receivers with different frequencies. One of the receivers has the same higher center frequency as the transmitter, and the other receiver has a lower center frequency. This configuration can be expressed as Rx(low-frequency)-Tx(high-frequency)-Rx(high-frequency) and was applied in both laboratory experiments and field tests. Results are analyzed in the frequency domain to evaluate and compare the properties of the signal obtained by both receivers. The laboratory experiment used the configuration of Rx(400MHz)-Tx(900MHz)-Rx(900MHz). The field tests, in addition to the configuration used in the lab tests, employed another configuration of Rx(270MHz)-Tx(400MHz)-Rx(400MHz) to obtain more information about this phenomenon. Both lab and field test results illustrate the frequency-shift phenomenon described by theoretical

  15. Updating OSHA standards based on national consensus standards. final rule; confirmation of effective date. (United States)


    OSHA is confirming the effective date of its direct final rule that revises a number of standards for general industry that refer to national consensus standards. The direct final rule states that it would become effective on March 13, 2008 unless OSHA receives significant adverse comment on these revisions by January 14, 2008. OSHA received no adverse comments by that date and, therefore, is confirming that the rule will become effective on March 13, 2008.

  16. A fractional-N frequency divider for multi-standard wireless transceiver fabricated in 0.18 μm CMOS process (United States)

    Wang, Jiafeng; Fan, Xiangning; Shi, Xiaoyang; Wang, Zhigong


    With the rapid evolution of wireless communication technology, integrating various communication modes in a mobile terminal has become the popular trend. Because of this, multi-standard wireless technology is one of the hot spots in current research. This paper presents a wideband fractional-N frequency divider of the multi-standard wireless transceiver for many applications. High-speed divider-by-2 with traditional source-coupled-logic is designed for very wide band usage. Phase switching technique and a chain of divider-by-2/3 are applied to the programmable frequency divider with 0.5 step. The phase noise of the whole frequency synthesizer will be decreased by the narrower step of programmable frequency divider. Δ-Σ modulator is achieved by an improved MASH 1-1-1 structure. This structure has excellent performance in many ways, such as noise, spur and input dynamic range. Fabricated in TSMC 0.18μm CMOS process, the fractional-N frequency divider occupies a chip area of 1130 × 510 μm2 and it can correctly divide within the frequency range of 0.8-9 GHz. With 1.8 V supply voltage, its division ratio ranges from 62.5 to 254 and the total current consumption is 29 mA.

  17. A general theory on frequency and time-frequency analysis of irregularly sampled time series based on projection methods - Part 2: Extension to time-frequency analysis (United States)

    Lenoir, Guillaume; Crucifix, Michel


    Geophysical time series are sometimes sampled irregularly along the time axis. The situation is particularly frequent in palaeoclimatology. Yet, there is so far no general framework for handling the continuous wavelet transform when the time sampling is irregular. Here we provide such a framework. To this end, we define the scalogram as the continuous-wavelet-transform equivalent of the extended Lomb-Scargle periodogram defined in Part 1 of this study (Lenoir and Crucifix, 2018). The signal being analysed is modelled as the sum of a locally periodic component in the time-frequency plane, a polynomial trend, and a background noise. The mother wavelet adopted here is the Morlet wavelet classically used in geophysical applications. The background noise model is a stationary Gaussian continuous autoregressive-moving-average (CARMA) process, which is more general than the traditional Gaussian white and red noise processes. The scalogram is smoothed by averaging over neighbouring times in order to reduce its variance. The Shannon-Nyquist exclusion zone is however defined as the area corrupted by local aliasing issues. The local amplitude in the time-frequency plane is then estimated with least-squares methods. We also derive an approximate formula linking the squared amplitude and the scalogram. Based on this property, we define a new analysis tool: the weighted smoothed scalogram, which we recommend for most analyses. The estimated signal amplitude also gives access to band and ridge filtering. Finally, we design a test of significance for the weighted smoothed scalogram against the stationary Gaussian CARMA background noise, and provide algorithms for computing confidence levels, either analytically or with Monte Carlo Markov chain methods. All the analysis tools presented in this article are available to the reader in the Python package WAVEPAL.

  18. Sum-Frequency-Generation-Based Laser Sidebands for Tunable Femtosecond Raman Spectroscopy in the Ultraviolet

    Directory of Open Access Journals (Sweden)

    Liangdong Zhu


    Full Text Available Femtosecond stimulated Raman spectroscopy (FSRS is an emerging molecular structural dynamics technique for functional materials characterization typically in the visible to near-IR range. To expand its applications we have developed a versatile FSRS setup in the ultraviolet region. We use the combination of a narrowband, ~400 nm Raman pump from a home-built second harmonic bandwidth compressor and a tunable broadband probe pulse from sum-frequency-generation-based cascaded four-wave mixing (SFG-CFWM laser sidebands in a thin BBO crystal. The ground state Raman spectrum of a laser dye Quinolon 390 in methanol that strongly absorbs at ~355 nm is systematically studied as a standard sample to provide previously unavailable spectroscopic characterization in the vibrational domain. Both the Stokes and anti-Stokes Raman spectra can be collected by selecting different orders of SFG-CFWM sidebands as the probe pulse. The stimulated Raman gain with the 402 nm Raman pump is >21 times larger than that with the 550 nm Raman pump when measured at the 1317 cm−1 peak for the aromatic ring deformation and ring-H rocking mode of the dye molecule, demonstrating that pre-resonance enhancement is effectively achieved in the unique UV-FSRS setup. This added tunability in the versatile and compact optical setup enables FSRS to better capture transient conformational snapshots of photosensitive molecules that absorb in the UV range.

  19. Dielectric response of transformer oil based ferrofluid in low frequency range (United States)

    Rajnak, M.; Kurimsky, J.; Dolnik, B.; Marton, K.; Tomco, L.; Taculescu, A.; Vekas, L.; Kovac, J.; Vavra, I.; Tothova, J.; Kopcansky, P.; Timko, M.


    In this article, our experimental study of the dynamic dielectric behaviour of transformer oil-based ferrofluid with magnetite nanoparticles is presented. Frequency-dependent dielectric permittivity and dissipation factor were measured within the frequency range from 20 Hz to 2 MHz by a capacitance method. The ferrofluid samples were placed in a liquid crystal cell, and experiments were carried out in an electromagnetically anechoic chamber. Two polarization processes and corresponding relaxations were revealed within the applied frequency range. Schwarz theory of electric double layer polarization is used to explain the low frequency relaxation maximum. Moreover, the shift of the maximum position towards higher frequencies is observed as the magnetic volume fraction in the ferrofluid increases. The related decrease in relaxation time due to higher counterion mobility is analysed. Reduced electric field intensity due to depolarization field, which is dependent on the particle concentration, is proposed as the reason for the maxima shift. This assumption is wholly supported by a complementary experiment.

  20. EEMD-MUSIC-Based Analysis for Natural Frequencies Identification of Structures Using Artificial and Natural Excitations

    Directory of Open Access Journals (Sweden)

    David Camarena-Martinez


    Full Text Available This paper presents a new EEMD-MUSIC- (ensemble empirical mode decomposition-multiple signal classification- based methodology to identify modal frequencies in structures ranging from free and ambient vibration signals produced by artificial and natural excitations and also considering several factors as nonstationary effects, close modal frequencies, and noisy environments, which are common situations where several techniques reported in literature fail. The EEMD and MUSIC methods are used to decompose the vibration signal into a set of IMFs (intrinsic mode functions and to identify the natural frequencies of a structure, respectively. The effectiveness of the proposed methodology has been validated and tested with synthetic signals and under real operating conditions. The experiments are focused on extracting the natural frequencies of a truss-type scaled structure and of a bridge used for both highway traffic and pedestrians. Results show the proposed methodology as a suitable solution for natural frequencies identification of structures from free and ambient vibration signals.

  1. Ancillary Frequency Control of Direct Drive Full-Scale Converter Based Wind Power Plants

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Fang, Jiakun


    emulation, primary frequency control and secondary frequency control, are proposed in order to improve the frequency stability of power systems. The modified IEEE 39-bus test system with a large-scale wind power penetration is chosen as the studied power system. Simulation results show that the proposed......This paper presents a simulation model of a wind power plant based on a MW-level variable speed wind turbine with a full-scale back-to-back power converter developed in the simulation tool of DIgSILENT Power Factory. Three different kinds of ancillary frequency control strategies, namely inertia...... control strategies are effective means for providing ancillary frequency control of variable speed wind turbines with full-scale back-to-back power converters....

  2. A stabilized optical frequency comb based on an Er-doped fiber femtosecond laser (United States)

    Xia, Chuanqing; Wu, Tengfei; Zhao, Chunbo; Xing, Shuai


    An optical frequency comb based on a 250 MHz home-made Er-doped fiber femtosecond laser is presented in this paper. The Er-doped fiber laser has a ring cavity and operates mode-locked in femtosecond regime with the technique of nonlinear polarization rotation. The pulse duration is 118 fs and the spectral width is 30 nm. A part of the femtosecond laser is amplified in Er-doped fiber amplifier before propagating through a piece of highly nonlinear fiber for expanding the spectrum. The carrier-envelope offset frequency of the comb which has a signal-to-noise ratio more than 35 dB is extracted by means of f-2f beating. It demonstrates that both carrier-envelope offset frequency and repetition frequency keep phase locked to a Rubidium atomic clock simultaneously for 2 hours. The frequency stabilized fiber combs will be increasingly applied in optical metrology, attosecond pulse generation, and absolute distance measurement.

  3. Preliminary In-vivo Results For Spatially Coded Synthetic Transmit Aperture Ultrasound Based On Frequency Division

    DEFF Research Database (Denmark)

    Gran, Fredrik; Hansen, Kristoffer Lindskov; Jensen, Jørgen Arendt


    . This increases the maximum transmit power compared to conventional STA, where only one transmitter can be active. The signal-to-noise-ratio can therefore he increased and better penetration can be obtained. For frequency division, the coding is achieved by designing a number of transmit waveforms with disjoint......This paper investigates the possibility of using spatial coding based on frequency division for in-vivo synthetic transmit aperture (STA) ultrasound imaging. When using spatial encoding for STA, it is possible to use several transmitters simultaneously and separate the signals at the receiver...... waveforms are designed as non-linear frequency modulated signals. This allows for efficient design of the amplitude spectrum of the signals. The duration of the signals was 25 lis and the bandwidth of each frequency band was 2.8 MHz. Eight frequency bands were designed which allowed for four transmitters...

  4. Frequency domain indirect identification of AMB rotor systems based on fictitious proportional feedback gain

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hyeong Joon [Dept. of Mechanical Engineering, Soongsil University, Seoul (Korea, Republic of); Kim, Chan Jung [Dept. of Mechanical Design Engineering, Pukyong National University, Busan(Korea, Republic of)


    It is very difficult to directly identify an unstable system with uncertain dynamics from frequency domain input-output data. Hence, in these cases, closed-loop frequency responses calculated using a fictitious feedback could be more identifiable than open-loop data. This paper presents a frequency domain indirect identification of AMB rotor systems based on a Fictitious proportional feedback gain (FPFG). The closed-loop effect due to the FPFG can enhance the detectability of the system by moving the system poles, and significantly weigh the target mode in the frequency domain. The effectiveness of the proposed identification method was verified through the frequency domain identification of active magnetic bearing rotor systems.

  5. Using Learning Analytics to Enhance Student Learning in Online Courses Based on Quality Matters Standards (United States)

    Martin, Florence; Ndoye, Abdou; Wilkins, Patricia


    Quality Matters is recognized as a rigorous set of standards that guide the designer or instructor to design quality online courses. We explore how Quality Matters standards guide the identification and analysis of learning analytics data to monitor and improve online learning. Descriptive data were collected for frequency of use, time spent, and…

  6. Simulation of stress-modulated magnetization precession frequency in Heusler-based spin torque oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Houbing, E-mail:; Zhao, Congpeng; Ma, Xingqiao, E-mail:


    We investigated stress-modulated magnetization precession frequency in Heusler-based spin transfer torque oscillator by combining micromagnetic simulations with phase field microelasticity theory, by encapsulating the magnetic tunnel junction into multilayers structures. We proposed a novel method of using an external stress to control the magnetization precession in spin torque oscillator instead of an external magnetic field. The stress-modulated magnetization precession frequency can be linearly modulated by externally applied uniaxial in-plane stress, with a tunable range 4.4–7.0 GHz under the stress of 10 MPa. By comparison, the out-of-plane stress imposes negligible influence on the precession frequency due to the large out-of-plane demagnetization field. The results offer new inspiration to the design of spin torque oscillator devices that simultaneously process high frequency, narrow output band, and tunable over a wide range of frequencies via external stress. - Highlights: • We proposed stress-modulated magnetization precession in spin torque oscillator. • The magnetization precession frequency can be linearly modulated by in-plane stress. • The stress also can widen the magnetization frequency range 4.4–7.0 GHz. • The stress-modulated oscillation frequency can simplify STO devices.

  7. A digital frequency stabilization system of external cavity diode laser based on LabVIEW FPGA (United States)

    Liu, Zhuohuan; Hu, Zhaohui; Qi, Lu; Wang, Tao


    Frequency stabilization for external cavity diode laser has played an important role in physics research. Many laser frequency locking solutions have been proposed by researchers. Traditionally, the locking process was accomplished by analog system, which has fast feedback control response speed. However, analog system is susceptible to the effects of environment. In order to improve the automation level and reliability of the frequency stabilization system, we take a grating-feedback external cavity diode laser as the laser source and set up a digital frequency stabilization system based on National Instrument's FPGA (NI FPGA). The system consists of a saturated absorption frequency stabilization of beam path, a differential photoelectric detector, a NI FPGA board and a host computer. Many functions, such as piezoelectric transducer (PZT) sweeping, atomic saturation absorption signal acquisition, signal peak identification, error signal obtaining and laser PZT voltage feedback controlling, are totally completed by LabVIEW FPGA program. Compared with the analog system, the system built by the logic gate circuits, performs stable and reliable. User interface programmed by LabVIEW is friendly. Besides, benefited from the characteristics of reconfiguration, the LabVIEW program is good at transplanting in other NI FPGA boards. Most of all, the system periodically checks the error signal. Once the abnormal error signal is detected, FPGA will restart frequency stabilization process without manual control. Through detecting the fluctuation of error signal of the atomic saturation absorption spectrum line in the frequency locking state, we can infer that the laser frequency stability can reach 1MHz.

  8. Adapting standards to the site. Example of Seismic Base Isolation

    International Nuclear Information System (INIS)

    Viallet, Emmanuel


    Emmanuel Viallet, Civil Design Manager at EDF engineering center SEPTEN, concluded the morning's lectures with a presentation on how to adapt a standard design to site characteristics. He presented the example of the seismic isolation of the Cruas NPP for which the standard 900 MW design was indeed built on 'anti-seismic pads' to withstand local seismic load

  9. Lack of research-based standards for accessible housing

    DEFF Research Database (Denmark)

    Helle, Tina; Brandt, Åse; Slaug, Bjørn


    Abstract Objective To increase the understanding of how definitions of standards for housing design influence the proportion of dwellings not meeting the standards and the proportion of individuals defined as having accessibility problems. Methods The sample was old people and their dwellings in ...

  10. NODC Standard Product: International ocean atlas Volume 4 - Atlas of temperature / salinity frequency distributions (2 disc set) (NCEI Accession 0101473) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Atlas presents more than 80,000 plots of the empirical frequency distributions of temperature and salinity for each 5-degree square area of the North Atlantic...

  11. Application of energies of optimal frequency bands for fault diagnosis based on modified distance function

    Energy Technology Data Exchange (ETDEWEB)

    Zamanian, Amir Hosein [Southern Methodist University, Dallas (United States); Ohadi, Abdolreza [Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of)


    Low-dimensional relevant feature sets are ideal to avoid extra data mining for classification. The current work investigates the feasibility of utilizing energies of vibration signals in optimal frequency bands as features for machine fault diagnosis application. Energies in different frequency bands were derived based on Parseval's theorem. The optimal feature sets were extracted by optimization of the related frequency bands using genetic algorithm and a Modified distance function (MDF). The frequency bands and the number of bands were optimized based on the MDF. The MDF is designed to a) maximize the distance between centers of classes, b) minimize the dispersion of features in each class separately, and c) minimize dimension of extracted feature sets. The experimental signals in two different gearboxes were used to demonstrate the efficiency of the presented technique. The results show the effectiveness of the presented technique in gear fault diagnosis application.

  12. Analysis and Design of a Multi-Frequency Microstrip Antenna Based on a PBG Substrate

    Directory of Open Access Journals (Sweden)

    YANG Hong


    Full Text Available Based on the C-shaped microstrip slot antenna, a new photonic band gap substrate for multi-frequency microstrip slot antenna is designed. The antenna has a groove been dug below the radiation plate, within which the radiation plate is placed, and air triangular prism column gaps with different height are placed in the substrate periodically. Numerical simulation is performed for the antenna with Ansoft HFSS10.0, which is a kind of simulation software based on Finite Element Method. Comparing with the C-shaped microstrip slot antenna, the resonant frequency of the antenna was reduced by 230 MHz, and the low frequency bandwidth was increased from 12.63 % to 18.95 %, both the radiation and multi-frequency characteristics of this proposed antenna are improved. The result demonstrates that the structure is efficient in improving the antenna gain and radiation directivity by suppressing surface wave of the microstrip antenna.

  13. Under-Frequency Load Shedding Technique Considering Event-Based for an Islanded Distribution Network

    Directory of Open Access Journals (Sweden)

    Hasmaini Mohamad


    Full Text Available One of the biggest challenge for an islanding operation is to sustain the frequency stability. A large power imbalance following islanding would cause under-frequency, hence an appropriate control is required to shed certain amount of load. The main objective of this research is to develop an adaptive under-frequency load shedding (UFLS technique for an islanding system. The technique is designed considering an event-based which includes the moment system is islanded and a tripping of any DG unit during islanding operation. A disturbance magnitude is calculated to determine the amount of load to be shed. The technique is modeled by using PSCAD simulation tool. A simulation studies on a distribution network with mini hydro generation is carried out to evaluate the UFLS model. It is performed under different load condition: peak and base load. Results show that the load shedding technique have successfully shed certain amount of load and stabilized the system frequency.

  14. Fundamental Frequency Estimation using Polynomial Rooting of a Subspace-Based Method

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Christensen, Mads Græsbøll; Jensen, Søren Holdt


    We consider the problem of estimating the fundamental frequency of periodic signals such as audio and speech. A novel estimation method based on polynomial rooting of the harmonic MUltiple SIgnal Classification (HMUSIC) is presented. By applying polynomial rooting, we obtain two significant...... improvements compared to HMUSIC. First, by using the proposed method we can obtain an estimate of the fundamental frequency without doing a grid search like in HMUSIC. This is due to that the fundamental frequency is estimated as the argument of the root lying closest to the unit circle. Second, we obtain...

  15. Method for Assessing Grid Frequency Deviation Due to Wind Power Fluctuation Based on “Time-Frequency Transformation”

    DEFF Research Database (Denmark)

    Jin, Lin; Yuan-zhang, Sun; Sørensen, Poul Ejnar


    alternative of the existing dynamic frequency deviation simulation model. In this way, the method takes the stochastic wind power fluctuation into full account so as to give a quantitative risk assessment of grid frequency deviation to grid operators, even without using any dynamic simulation tool. The case......Grid frequency deviation caused by wind power fluctuation has been a major concern for secure operation of a power system with integrated large-scale wind power. Many approaches have been proposed to assess this negative effect on grid frequency due to wind power fluctuation. Unfortunately, most...

  16. The effect of a low-frequency noise signal on a single-frequency millimeter-band oscillator based on an avalanche-transit diode (United States)

    Kotov, V. D.; Myasin, E. A.


    Noise-wave generation in a single-frequency oscillator based on a 7-mm-band avalanche-transit diode has been implemented for the first time under the action of a low-frequency narrow-band ( 3 MHz) noise signal on an avalanche-transit-diode feed circuit.

  17. Autonomous Power Management in LVDC Microgrids based on a Superimposed Frequency Droop

    DEFF Research Database (Denmark)

    Peyghami, Saeed; Mokhtari, Hossein; Blaabjerg, Frede


    In this paper a novel droop approach for autonomous power management in low voltage dc microgrids based on a master-slave concept is presented. Conventional voltage-based droop approaches suffer from poor power sharing due to line resistance effects on a virtual resistance, which is solved...... a by introducing a communication system to increase the current sharing accuracy. In this paper, a virtual frequency is superimposed by the master units, and slave units determine their output power according to the corresponding frequency-based droop characteristics. Unlike the voltage-droop methods, the proposed...

  18. Optimization of base-to-emitter spacer thickness to maximize the frequency response of bipolar transistors (United States)

    Lee, Wai-Kit; Chan, Alain C. K.; Chan, Mansun


    The impacts of base-to-emitter spacer thickness on the unity gain frequency ( fT), base resistance ( rB), base collector capacitance ( CBC) and maximum oscillation frequency ( fmax) of a bipolar junction transistor (BJT) are studied. Using the extracted Y-parameters from a simulated device with structural parameters calibrated to an actual process, the resulting fT and fmax with different spacer thickness is reported. A tradeoff between peak fT and fmax is observed and the process window to obtain high fT and fmax is proposed.

  19. Gear-box fault detection using time-frequency based methods

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob


    Gear-box fault monitoring and detection is important for optimization of power generation and availability of wind turbines. The current industrial approach is to use condition monitoring systems, which runs in parallel with the wind turbine control system, using expensive additional sensors...... in the gear-box resonance frequency can be detected. Two different time–frequency based approaches are presented in this paper. One is a filter based approach and the other is based on a Karhunen–Loeve basis. Both of them detect the gear-box fault with an acceptable detection delay of maximum 100s, which...... is neglectable compared with the fault developing time....

  20. Radiological Evaluation Standards in the Radiology Department of Shahid Beheshti Hospital (RAH) YASUJ Based on Radiology standards in 92


    A َKalantari; SAM Khosravani


    Background & aim: Radiology personnel’s working in terms of performance and safety is one of the most important functions in order to increase the quality and quantity. This study aimed to evaluate the radiological standards in Shahid Beheshti Hospital of Yasuj, Iran, in 2013. Methods: The present cross-sectional study was based on a 118 randomly selected graphs and the ranking list, with full knowledge of the standards in radiology was performed two times. Data were analyzed using descri...

  1. Standardized fluoroscopy-based technique to measure intraoperative cup anteversion. (United States)

    Zingg, Matthieu; Boudabbous, Sana; Hannouche, Didier; Montet, Xavier; Boettner, Friedrich


    Direct anterior approach (DAA) with the patient lying supine has facilitated the use of intraoperative fluoroscopy and allows for standardized positioning of the patient. The current study presents a new technique to measure acetabular component anteversion using intraoperative fluoroscopy. The current paper describes a mathematical formula to calculate true acetabular component anteversion based on the acetabular component abduction angle and the c-arm tilt angle (CaT). The CaT is determined by tilting the c-arm until an external pelvic oblique radiograph with the equatorial plane of the acetabular component perpendicular to the fluoroscopy receptor is obtained. CaT is determined by direct reading on the C-arm device. The technique was validated using a radiopaque synbone model comparing the described technique to computed tomography anteversion measurement. The experiment was repeated 25 times. The difference in anteversion between the two measuring techniques was on average 0.2° (range -3.0-3.1). The linear regression coefficients evaluating the agreement between the experimental and control methods were 0.99 (95%CI 0.88-1.10, p < 0.001) and 0.33 (95%CI -1.53-2.20, p = 0.713) for the slope and intercept, respectively. The current study confirms that the described three-step c-arm acetabular cup measuring technique can reproducibly and reliably assess acetabular component anteversion in the supine position, as compared to CT-imaging. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2307-2312, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Roles of Frequency, Attitudes, and Multiple Intelligence Modality Surrounding Electricity Content-Based Reader's Theatre (United States)

    Hosier, Julie Winchester


    Integration of subjects is something elementary teachers must do to insure required objectives are covered. Science-based Reader's Theatre is one way to weave reading into science. This study examined the roles of frequency, attitudes, and Multiple Intelligence modalities surrounding Electricity Content-Based Reader's Theatre. This study used…

  3. School-Based Communities of Practice as Mechanisms for Standards-Based Mathematics Curriculum Implementation (United States)

    Hodges, Thomas E.; Jong, Cindy


    The authors drew upon Remillard and Bryans' categorization of curriculum use in observating two middle-grade teachers' integration of Standards-based curriculum materials produced by the National Council of Teachers of Mathematics. Each teacher participated in a two-year professional development program focused on increasing content knowledge and…

  4. The nature frequency identification of tunnel lining based on the microtremor method

    Directory of Open Access Journals (Sweden)

    Yujing Jiang


    Full Text Available Many tunnels all over the world have been in service for several decades, which require effective inspection methods to assess their health conditions. Microtremor, as a type of ambient vibration originating from natural or artificial oscillations without specific sources, has attracted more and more attentions in the recent study of the microtremor dynamic properties of concrete structures. In this study, the microtremors of the tunnel lining were simulated numerically based on the Distinct Element Method (DEM. The Power Spectra Density (PSD of signals obtained from numerical simulations were calculated and the nature frequencies were identified using the peak-picking method. The influences of the rock-concrete joint, the rock type and the concrete type on the nature frequencies were also evaluated. The results of a comprehensive numerical analysis show that the nature frequencies lower than 100 Hz can be identified. As the bonding condition becomes worse, the nature frequencies decrease. The nature frequencies change proportionally with the normal stiffness of the rock-concrete joint. As the concrete grade decreases, the third mode of frequency also decreases gradually while the variation of the first two modes of frequencies can hardly be identified. Additionally, the field microtremor measurements of tunnel lining were also carried out to verify the numerical results.

  5. Damage detection in multi-span beams based on the analysis of frequency changes

    International Nuclear Information System (INIS)

    Gillich, G R; Ntakpe, J L; Praisach, Z I; Mimis, M C; Abdel Wahab, M


    Crack identification in multi-span beams is performed to determine whether the structure is healthy or not. Among all crack identification methods, these based on measured natural frequency changes present the advantage of simplicity and easy to use in practical engineering. To accurately identify the cracks characteristics for multi-span beam structure, a mathematical model is established, which can predict frequency changes for any boundary conditions, the intermediate supports being hinges. This relation is based on the modal strain energy concept. Since frequency changes are relative small, to obtain natural frequencies with high resolution, a signal processing algorithm based on superposing of numerous spectra is also proposed, which overcomes the disadvantage of Fast Fourier Transform in the aspect of frequency resolution. Based on above-mentioned mathematical model and signal processing algorithm, the method of identifying cracks on multi-span beams is presented. To verify the accuracy of this identification method, experimental examples are conducted on a two-span structure. The results demonstrate that the method proposed in this paper can accurately identify the crack position and depth. (paper)

  6. Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis. (United States)

    Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej


    Canonical correlation analysis (CCA) has been one of the most popular methods for frequency recognition in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs). Despite its efficiency, a potential problem is that using pre-constructed sine-cosine waves as the required reference signals in the CCA method often does not result in the optimal recognition accuracy due to their lack of features from the real electro-encephalo-gram (EEG) data. To address this problem, this study proposes a novel method based on multiset canonical correlation analysis (MsetCCA) to optimize the reference signals used in the CCA method for SSVEP frequency recognition. The MsetCCA method learns multiple linear transforms that implement joint spatial filtering to maximize the overall correlation among canonical variates, and hence extracts SSVEP common features from multiple sets of EEG data recorded at the same stimulus frequency. The optimized reference signals are formed by combination of the common features and completely based on training data. Experimental study with EEG data from 10 healthy subjects demonstrates that the MsetCCA method improves the recognition accuracy of SSVEP frequency in comparison with the CCA method and other two competing methods (multiway CCA (MwayCCA) and phase constrained CCA (PCCA)), especially for a small number of channels and a short time window length. The superiority indicates that the proposed MsetCCA method is a new promising candidate for frequency recognition in SSVEP-based BCIs.

  7. Frequency scanning-based stability analysis method for grid-connected inverter system

    DEFF Research Database (Denmark)

    Wang, Yanbo; Wang, Xiongfei; Blaabjerg, Frede


    This paper proposes a frequency scanning-based impedance analysis for stability assessment of grid-connected inverter system, which is able to perform stability assessment without using system mathematical models and inherit the superior feature of impedance-based stability criterion with conside......This paper proposes a frequency scanning-based impedance analysis for stability assessment of grid-connected inverter system, which is able to perform stability assessment without using system mathematical models and inherit the superior feature of impedance-based stability criterion...... with consideration of the inverter nonlinearities. Small current disturbance is injected into grid-connected inverter system in a particular frequency range, and the impedance is computed according to the harmonic-frequency response using Fourier analysis, and then the stability is predicted on the basis...... of the impedance stability criterion. The stability issues of grid-connected inverters with grid-current feedback and the converter-current feedback are addressed using the proposed method. The results obtained from simulation and experiments validate the effectiveness of the method. The frequency scanning...

  8. Waveguiding Effect in the Gigahertz Frequency Range in Pillar-based Phononic-Crystal Slabs (United States)

    Pourabolghasem, Reza; Dehghannasiri, Razi; Eftekhar, Ali Asghar; Adibi, Ali


    The waveguiding effect for a phononic-crystal (PnC)-based device operating in the gigahertz (GHz) frequency regime is experimentally demonstrated. To that end, a metallic pillar-based PnC membrane with a PnC band gap in the GHz frequency range is designed, and, based on that, an acoustic waveguide operating in the GHz regime is designed and fabricated. To characterize the fabricated PnC waveguide, a set of focusing interdigital transducers is designed and fabricated, enabling efficient excitation and detection of acoustic signals inside the PnC waveguide. The finite-element method is used to study the acoustic properties of the proposed structures and optimize their design. Experimental evidence supporting the existence of the waveguiding effect in the proposed structure in the GHz frequency regime is provided, showing reasonable agreement with the numerical calculations.

  9. A wide-range programmable frequency synthesizer based on a finite state machine filter (United States)

    Alser, Mohammed H.; Assaad, Maher M.; Hussin, Fawnizu A.


    In this article, an FPGA-based design and implementation of a fully digital wide-range programmable frequency synthesizer based on a finite state machine filter is presented. The advantages of the proposed architecture are that, it simultaneously generates a high frequency signal from a low frequency reference signal (i.e. synthesising), and synchronising the two signals (signals have the same phase, or a constant difference) without jitter accumulation issue. The architecture is portable and can be easily implemented for various platforms, such as FPGAs and integrated circuits. The frequency synthesizer circuit can be used as a part of SERDES devices in intra/inter chip communication in system-on-chip (SoC). The proposed circuit is designed using Verilog language and synthesized for the Altera DE2-70 development board, with the Cyclone II (EP2C35F672C6) device on board. Simulation and experimental results are included; they prove the synthesizing and tracking features of the proposed architecture. The generated clock signal frequency of a range from 19.8 MHz to 440 MHz is synchronized to the input reference clock with a frequency step of 0.12 MHz.

  10. Interference graph-based dynamic frequency reuse in optical attocell networks (United States)

    Liu, Huanlin; Xia, Peijie; Chen, Yong; Wu, Lan


    Indoor optical attocell network may achieve higher capacity than radio frequency (RF) or Infrared (IR)-based wireless systems. It is proposed as a special type of visible light communication (VLC) system using Light Emitting Diodes (LEDs). However, the system spectral efficiency may be severely degraded owing to the inter-cell interference (ICI), particularly for dense deployment scenarios. To address these issues, we construct the spectral interference graph for indoor optical attocell network, and propose the Dynamic Frequency Reuse (DFR) and Weighted Dynamic Frequency Reuse (W-DFR) algorithms to decrease ICI and improve the spectral efficiency performance. The interference graph makes LEDs can transmit data without interference and select the minimum sub-bands needed for frequency reuse. Then, DFR algorithm reuses the system frequency equally across service-providing cells to mitigate spectrum interference. While W-DFR algorithm can reuse the system frequency by using the bandwidth weight (BW), which is defined based on the number of service users. Numerical results show that both of the proposed schemes can effectively improve the average spectral efficiency (ASE) of the system. Additionally, improvement of the user data rate is also obtained by analyzing its cumulative distribution function (CDF).

  11. Increased frequency of single base substitutions in a population of transcripts expressed in cancer cells

    Directory of Open Access Journals (Sweden)

    Bianchetti Laurent


    Full Text Available Abstract Background Single Base Substitutions (SBS that alter transcripts expressed in cancer originate from somatic mutations. However, recent studies report SBS in transcripts that are not supported by the genomic DNA of tumor cells. Methods We used sequence based whole genome expression profiling, namely Long-SAGE (L-SAGE and Tag-seq (a combination of L-SAGE and deep sequencing, and computational methods to identify transcripts with greater SBS frequencies in cancer. Millions of tags produced by 40 healthy and 47 cancer L-SAGE experiments were compared to 1,959 Reference Tags (RT, i.e. tags matching the human genome exactly once. Similarly, tens of millions of tags produced by 7 healthy and 8 cancer Tag-seq experiments were compared to 8,572 RT. For each transcript, SBS frequencies in healthy and cancer cells were statistically tested for equality. Results In the L-SAGE and Tag-seq experiments, 372 and 4,289 transcripts respectively, showed greater SBS frequencies in cancer. Increased SBS frequencies could not be attributed to known Single Nucleotide Polymorphisms (SNP, catalogued somatic mutations or RNA-editing enzymes. Hypothesizing that Single Tags (ST, i.e. tags sequenced only once, were indicators of SBS, we observed that ST proportions were heterogeneously distributed across Embryonic Stem Cells (ESC, healthy differentiated and cancer cells. ESC had the lowest ST proportions, whereas cancer cells had the greatest. Finally, in a series of experiments carried out on a single patient at 1 healthy and 3 consecutive tumor stages, we could show that SBS frequencies increased during cancer progression. Conclusion If the mechanisms generating the base substitutions could be known, increased SBS frequency in transcripts would be a new useful biomarker of cancer. With the reduction of sequencing cost, sequence based whole genome expression profiling could be used to characterize increased SBS frequency in patient’s tumor and aid diagnostic.

  12. Increased frequency of single base substitutions in a population of transcripts expressed in cancer cells

    International Nuclear Information System (INIS)

    Bianchetti, Laurent; Kieffer, David; Féderkeil, Rémi; Poch, Olivier


    Single Base Substitutions (SBS) that alter transcripts expressed in cancer originate from somatic mutations. However, recent studies report SBS in transcripts that are not supported by the genomic DNA of tumor cells. We used sequence based whole genome expression profiling, namely Long-SAGE (L-SAGE) and Tag-seq (a combination of L-SAGE and deep sequencing), and computational methods to identify transcripts with greater SBS frequencies in cancer. Millions of tags produced by 40 healthy and 47 cancer L-SAGE experiments were compared to 1,959 Reference Tags (RT), i.e. tags matching the human genome exactly once. Similarly, tens of millions of tags produced by 7 healthy and 8 cancer Tag-seq experiments were compared to 8,572 RT. For each transcript, SBS frequencies in healthy and cancer cells were statistically tested for equality. In the L-SAGE and Tag-seq experiments, 372 and 4,289 transcripts respectively, showed greater SBS frequencies in cancer. Increased SBS frequencies could not be attributed to known Single Nucleotide Polymorphisms (SNP), catalogued somatic mutations or RNA-editing enzymes. Hypothesizing that Single Tags (ST), i.e. tags sequenced only once, were indicators of SBS, we observed that ST proportions were heterogeneously distributed across Embryonic Stem Cells (ESC), healthy differentiated and cancer cells. ESC had the lowest ST proportions, whereas cancer cells had the greatest. Finally, in a series of experiments carried out on a single patient at 1 healthy and 3 consecutive tumor stages, we could show that SBS frequencies increased during cancer progression. If the mechanisms generating the base substitutions could be known, increased SBS frequency in transcripts would be a new useful biomarker of cancer. With the reduction of sequencing cost, sequence based whole genome expression profiling could be used to characterize increased SBS frequency in patient’s tumor and aid diagnostic

  13. Observer-Based Load Frequency Control for Island Microgrid with Photovoltaic Power

    Directory of Open Access Journals (Sweden)

    Chaoxu Mu


    Full Text Available As renewable energy is widely integrated into the power system, the stochastic and intermittent power generation from renewable energy may cause system frequency deviating from the prescribed level, especially for a microgrid. In this paper, the load frequency control (LFC of an island microgrid with photovoltaic (PV power and electric vehicles (EVs is investigated, where the EVs can be treated as distributed energy storages. Considering the disturbances from load change and PV power, an observer-based integral sliding mode (OISM controller is designed to regulate the frequency back to the prescribed value, where the neural network observer is used to online estimate the PV power. Simulation studies on a benchmark microgrid system are presented to illustrate the effectiveness of OISM controller, and comparative results also demonstrate that the proposed method has a superior performance for stabilizing the frequency over the PID control.

  14. Adaptive frequency-separation-based energy management system for electric vehicles (United States)

    Florescu, Adrian; Bacha, Seddik; Munteanu, Iulian; Bratcu, Antoneta Iuliana; Rumeau, Axel


    This paper deals with an adaptive frequency-based power sharing method between batteries and ultracapacitors (UC) as power sources within an electric vehicle. An adaptive frequency splitter is used for routing the low-frequency content of power demand into the battery and its high-frequency content into the UC system, taking profit from the UC as a peak power unit. Autonomy may thus be increased while preserving battery state of health and ensuring that UC voltage variations remain confined within certain desired range. Results obtained by real-time experiments on a dedicated test rig validate the proposed energy management approach and recommend it to be applied as power source coordination method to microgrids in general.

  15. The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements (United States)

    Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu


    Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.

  16. A noise level prediction method based on electro-mechanical frequency response function for capacitors. (United States)

    Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao


    The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective.

  17. Laser heterodyne interferometric signal processing method based on rising edge locking with high frequency clock signal. (United States)

    Zhang, Enzheng; Chen, Benyong; Yan, Liping; Yang, Tao; Hao, Qun; Dong, Wenjun; Li, Chaorong


    A novel phase measurement method composed of the rising-edge locked signal processing and the digital frequency mixing is proposed for laser heterodyne interferometer. The rising-edge locked signal processing, which employs a high frequency clock signal to lock the rising-edges of the reference and measurement signals, not only can improve the steepness of the rising-edge, but also can eliminate the error counting caused by multi-rising-edge phenomenon in fringe counting. The digital frequency mixing is realized by mixing the digital interference signal with a digital base signal that is different from conventional frequency mixing with analogue signals. These signal processing can improve the measurement accuracy and enhance anti-interference and measurement stability. The principle and implementation of the method are described in detail. An experimental setup was constructed and a series of experiments verified the feasibility of the method in large displacement measurement with high speed and nanometer resolution.

  18. Analysis of Power System Low Frequency Oscillation Based on Energy Shift Theory (United States)

    Zhang, Junfeng; Zhang, Chunwang; Ma, Daqing


    In this paper, a new method for analyzing low-frequency oscillation between analytic areas based on energy coefficient is proposed. The concept of energy coefficient is proposed by constructing the energy function, and the low-frequency oscillation is analyzed according to the energy coefficient under the current operating conditions; meanwhile, the concept of model energy is proposed to analyze the energy exchange behavior between two generators. Not only does this method provide an explanation of low-frequency oscillation from the energy point of view, but also it helps further reveal the dynamic behavior of complex power systems. The case analysis of four-machine two-area and the power system of Jilin Power Grid proves the correctness and effectiveness of the proposed method in low-frequency oscillation analysis of power system.

  19. On-Chip Power-Combining for High-Power Schottky Diode-Based Frequency Multipliers (United States)

    Chattopadhyay, Goutam; Mehdi, Imran; Schlecht, Erich T.; Lee, Choonsup; Siles, Jose V.; Maestrini, Alain E.; Thomas, Bertrand; Jung, Cecile D.


    A 1.6-THz power-combined Schottky frequency tripler was designed to handle approximately 30 mW input power. The design of Schottky-based triplers at this frequency range is mainly constrained by the shrinkage of the waveguide dimensions with frequency and the minimum diode mesa sizes, which limits the maximum number of diodes that can be placed on the chip to no more than two. Hence, multiple-chip power-combined schemes become necessary to increase the power-handling capabilities of high-frequency multipliers. The design presented here overcomes difficulties by performing the power-combining directly on-chip. Four E-probes are located at a single input waveguide in order to equally pump four multiplying structures (featuring two diodes each). The produced output power is then recombined at the output using the same concept.

  20. Damage Detection of Axially Loaded Beam: A Frequency-Based Method

    Directory of Open Access Journals (Sweden)

    Omid Rezaifar


    Full Text Available The present study utilizes an analytical method to formulate the three lowest modal frequencies of axially-loaded notched beam through both crack location and load level in a specific format that can be used in existing frequency-based crack-identification methods. The proposed formula provides a basis to shift into two states, one with axial loading and the other without any loading whatsoever. When any two natural frequencies in simply-supported beam with an open crack, subjected to axial load, are measured, crack position and extent can be determined, using a characteristic equation, which is a function of crack location, sectional flexibility, and eigenvalue (natural frequency. Theoretical results show high accuracy for service axial loads. In this range, errors for crack location and extent are less than 12% and 10%, respectively.

  1. 76 FR 42395 - Business Conduct Standards for Security-Based Swap Dealers and Major Security-Based Swap... (United States)


    ... dealers marketing swaps and security-based swaps that they knew or should have known to be inappropriate... Business Conduct Standards for Security-Based Swap Dealers and Major Security-Based Swap Participants...-11] RIN 3235-AL10 Business Conduct Standards for Security-Based Swap Dealers and Major Security-Based...

  2. Non-stationary regional flood frequency analysis: a new framework based on the index-flood method (United States)

    Mondal, A.; Kalai, C.


    Prediction in ungauged basins is necessary for water resources planning and management, and also for engineering and design. Regional frequency analysis approaches that are used for flood prediction in ungauged basins assume stationarity of flood generation mechanisms, that is, the statistical properties of the processes do not change with time and that the past can act as a guide to the future. The index flood method is one such approach for obtaining flood quantile estimates using regionalization techniques. However, under man-made or natural changes, the stationarity assumption may not be valid. For example, a warmer climate under greenhouse effect can hold more moisture leading to an intensification of the hydrologic cycle. Most existing tools and techniques on regional flood frequency analysis do not account for such changes. In this study, we use a mathematical approach based on a simple transformation within the index flood method framework, to circumvent the stationarity assumption and demonstrate its applicability for time-varying floods. The approach involves i) estimation of at-site parameters using the maximum likelihood approach, ii) transformation of observed non-stationary floods to standardized residuals, iii) computation of regional parameters using the standardized residuals, iv) obtaining flood quantile estimates for the standardized residuals, and v) back-transformation of the quantiles to the original domain to obtain non-stationary flood return levels. Monte Carlo simulation experiments, assuming all sites in the region belong to the Generalized Extreme Value (GEV) distribution, show that the proposed method can capture time-varying behaviour of the flood quantiles quite well and can act as an effective way to address non-stationarity in regional flood frequency analysis. Efforts are underway to illustrate the applicability of this framework on real catchments where flood behaviour show significant change with time.

  3. Mapping the annual exceedance frequencies of the PM10 air quality standard - Comparing kriging to a generalized linear spatial model

    CSIR Research Space (South Africa)

    Khuluse, S


    Full Text Available compare ordinary and regression kriging models to the Poisson log-linear spatial model (Diggle et al. 1998, Diggle et al. 2007) with and without covariate information in mapping annual average exceedance frequencies of the South African PM10 air quality...

  4. Frequency of diabetic retinopathy and associated risk factors in Khartoum, Sudan: population based study

    Directory of Open Access Journals (Sweden)

    Einas S Elwali


    Full Text Available AIM: To assess the frequency and associated risk factors of diabetic retinopathy among Sudanese individuals with diabetes attending Makka Eye complex in Khartoum, Sudan. METHODS: The cross sectional hospital based study recruited 316 individuals with diabetes from Makkah Eye Complex Retina Clinic. Standard questionnaire was used to collect demographic data, medical history and life style characteristics. Blood samples were taken to measure HbA1c and lipid profile. Fundus and slit lamp examination were performed for screening of diabetic retinopathy. RESULTS: Among 316 participants, 187 (59.2% were males and 129 (40.8% were females. The mean age of participants was 58.7±10.5y. The overall frequency of retinopathy was 261 (82.6%. The percentages of the total participants with proliferative diabetic retinopathy (PDR were 126 (39.9% and non-proliferative diabetic retinopathy (NPDR were 135 (42.7%. Importantly, duration of diabetes mellitus (DM (72.2% of more than 10y, being on oral hypoglycaemic drugs (versus insulin, and hypertension were all significant risk factors for diabetic retinopathy (P=0.00, 0.01 and 0.00 respectively. Complications of diabetes like diabetic foot (17.7%, history of amputation (6.7% and clinically significant macular edema (CSME (47.4% of the eyes were all significant risk factors (P<0.05. Logistic regression analysis showed that duration of diabetes, hypertension and CSME were found to be absolute risk factors (P=0.007, 0.003 and 0.000 respectively. Duration of DM of more than 10y have more than double risk (OR=2.8, while having hypertension triples the risk of retinopathy (OR=3.1. CONCLUSION: High rates of diabetic retinopathy are noted among individuals with diabetes attending Makkah Eye hospital in capital Khartoum. Urgent strategies are needed to monitor and treat hypertension and optimize diabetes control in individuals with diabetes. More investment in diabetes services is urgently needed.

  5. Developing a community-based flood resilience measurement standard (United States)

    Keating, Adriana; Szoenyi, Michael; Chaplowe, Scott; McQuistan, Colin; Campbell, Karen


    Given the increased attention to resilience-strengthening in international humanitarian and development work, there has been concurrent interest in its measurement and the overall accountability of "resilience strengthening" initiatives. The literature is reaching beyond the polemic of defining resilience to its measurement. Similarly, donors are increasingly expecting organizations to go beyond claiming resilience programing to measuring and showing it. However, key questions must be asked, in particular "Resilience of whom and to what?". There is no one-size-fits-all solution. The approach to measuring resilience is dependent on the audience and the purpose of the measurement exercise. Deriving a resilience measurement system needs to be based on the question it seeks to answer and needs to be specific. This session highlights key lessons from the Zurich Flood Resilience Alliance approach to develop a flood resilience measurement standard to measure and assess the impact of community based flood resilience interventions, and to inform decision-making to enhance the effectiveness of these interventions. We draw on experience in methodology development to-date, together with lessons from application in two case study sites in Latin America. Attention will be given to the use of a consistent measurement methodology for community resilience to floods over time and place; challenges to measuring a complex and dynamic phenomenon such as community resilience; methodological implications of measuring community resilience versus impact on and contribution to this goal; and using measurement and tools such as cost-benefit analysis to prioritize and inform strategic decision making for resilience interventions. The measurement tool follows the five categories of the Sustainable Livelihoods Framework and the 4Rs of complex adaptive systems - robustness, rapidity, redundancy and resourcefulness -5C-4R. A recent white paper by the Zurich Flood Resilience Alliance traces the

  6. A frequency output ferroelectric phase PNZT capacitor-based temperature sensor

    KAUST Repository

    Khan, Naveed


    In this paper, a frequency output temperature sensor based on a 4% Niobium doped 20/80 Zr/Ti Lead Zirconate Titanate (PNZT) capacitor is proposed. The sensor capacitance vs temperature and capacitance vs voltage characteristics are experimentally measured below the Curie temperature of the ferroelectric capacitor. The capacitance of the 20/80 (Zr/Ti) composition PNZT capacitor changes by 29% for a temperature change from 10°C to 100°C, which translates to 0.32%/°C temperature sensitivity. The measured sensor characteristics show less than ∼0.7°C deviation from the ideal linear response. A Wien bridge oscillator based temperature sensor is demonstrated based on the PNZT capacitors. Mathematical analysis for the effect of the op-amp finite unity-gain frequency on the sensor circuit oscillation frequency is provided. The experimentally realized frequency output temperature sensor shows -17.6% relative frequency change for a temperature change from 10°C to 100°C. The proposed capacitive temperature sensor can be used in low-power smart sensor nodes without the need for extensive calibration. © 2015 IEEE.

  7. High frequency magnetic properties of Fe-based nanocrystalline alloy powder cores

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.K. [Seoul National University of Technology, Seoul 139-743 (Korea); Korea Institute of Science and Technology, Seoul 136-791 (Korea); Kim, Yoon B.; Jee, K.K. [Korea Institute of Science and Technology, Seoul 136-791 (Korea); Choi, G.B. [R and D Center, Changsung Corporation, Incheon (Korea)


    Toroidal shape Fe-based nanocrystalline alloy powder cores were prepared from the melt spun Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 15.5}B{sub 7} ribbons by cold pressing using silicon and phenol resin as an insulating material, respectively. The effect of the insulating materials and their content on the high-frequency magnetic properties of the compacted cores were investigated. The Fe-based nanocrystalline alloy powder cores using phenol resin exhibit stable permeability over 1 MHz, showing excellent high-frequency characteristics. The core loss was reduced significantly and the dc-bias property was improved by using phenol resin. Uniform and good insulation by phenol resin leads to the excellent high-frequency characteristics of the cores. Silicon resin as an insulating material was also effective in improving the high frequency characteristics of the Fe-based nanocrystalline alloy powder cores. However, an appropriate coating process for silicon resin should be applied in order to achieve more improved high frequency characteristics of the nanocrystalline alloy powder cores by controlling the thickness of coated layer. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Detection of arc fault based on frequency constrained independent component analysis (United States)

    Yang, Kai; Zhang, Rencheng; Xu, Renhao; Chen, Yongzhi; Yang, Jianhong; Chen, Shouhong


    Arc fault is one of the main reasons of electrical fires. As a result of weakness, randomness and cross talk of arc faults, very few of methods have been successfully used to protect loads from all arc faults in low-voltage circuits. Therefore, a novel detection method is developed for detection of arc faults. The method is based on frequency constrained independent component analysis. In the process of the method derivation, a band-pass filter was introduced as a constraint condition to separate independent components of mixed signals. In the process of the independent component separations, although the fault mixed signals were under the conditions of the strong background noise and the frequency aliasing, the effective high frequency components of arc faults could be separated by frequency constrained independent component analysis. Based on the separated components, the power spectrums of them were calculated to classify the normal and the arc fault conditions. The validity of the developed method was verified by using an arc fault experimental platform set up. The results show that arc faults of nine typical electrical loads are successfully detected based on frequency constrained independent component analysis.

  9. Standard monomial bases and geometric consequences for certain ...

    Indian Academy of Sciences (India)

    ... V = K n , K an algebraically closed field of arbitrary characteristic and m , q > n . We construct a `standard monomial' basis for the ring of invariants K [ X ] S L n ( K ) . As a consequence, we deduce that K [ X ] S L n ( K ) is Cohen–Macaulay. We also present the first and second fundamental theorems for S L n ( K ) -actions.

  10. 78 FR 1256 - Guam Military Base Realignment Contractor Recruitment Standards (United States)


    ... issuing this notice to announce recruitment standards that construction contractors are required to follow... Gallo, Office of Workforce Investment, Employment and Training Administration, U.S. Department of Labor..., 2009) amended Section 2824(c) of the Military Construction Authorization Act (Pub. L. 110-417, Division...

  11. Standardized Procedures for Use of Nucleic Acid-Based Tools (United States)


    Madigan, M., J. Martinko, P. Dunlap and D. Clark (2006). Brock Biology Of Microorganisms , Benjamin Cummings. Mailloux, B. J. and M. E. Fuller...Methods for Enumeration of Microorganisms and Development of a Dhc Reference Standard...Dehalococcoides (Dhc) and other environmentally relevant microorganisms . The results of these analyses are increasingly used by site owners

  12. Open standard CMO for parametric modelling based on semantic web

    NARCIS (Netherlands)

    Bonsma, P.; Bonsma, I.; Zayakova, T.; Van Delft, A.; Sebastian, R.; Böhms, M.


    The Open Standard Concept Modelling Ontology (CMO) with Extensions makes it possible to store parametric modelling semantics and parametric geometry in a Semantic Web environment. The parametric and geometrical part of CMO with Extensions is developed within the EU project Proficient. The nature of

  13. Using Project-Based Instruction to Meet Foreign Language Standards (United States)

    Mikulec, Erin; Miller, Paul Chamness


    A challenge that language teachers face is meeting state and national standards while implementing sound methods and techniques. The authors addressed this challenge in a qualitative study of an eighth-grade exploratory French class where students were engaged in a variety of projects to enhance the learning of francophone language and culture.…

  14. Frequency Control Strategy for Black Starts via PMSG-Based Wind Power Generation

    Directory of Open Access Journals (Sweden)

    Yi Tang


    Full Text Available The use of wind power generation (WPG as a source for black starts will significantly enhance the resiliency of power systems and shorten their recovery time from blackouts. Given that frequency stability is the most serious issue during the initial recovery period, virtual inertia control can enable wind turbines to provide frequency support to an external system. In this study, a general procedure of WPG participating in black starts is presented, and the key issues are discussed. The adaptability of existing virtual inertia control strategies is analyzed, and improvement work is performed. A new coordinated frequency control strategy is proposed based on the presented improvement work. A local power network with a permanent-magnet synchronous generator (PMSG-based wind farm is modeled and used to verify the effectiveness of the strategy.

  15. In-cylinder pressure-based direct techniques and time frequency analysis for combustion diagnostics in IC engines

    International Nuclear Information System (INIS)

    D’Ambrosio, S.; Ferrari, A.; Galleani, L.


    Highlights: • Direct pressure-based techniques have been applied successfully to spark-ignition engines. • The burned mass fraction of pressure-based techniques has been compared with that of 2- and 3-zone combustion models. • The time frequency analysis has been employed to simulate complex diesel combustion events. - Abstract: In-cylinder pressure measurement and analysis has historically been a key tool for off-line combustion diagnosis in internal combustion engines, but online applications for real-time condition monitoring and combustion management have recently become popular. The present investigation presents and compares different low computing-cost in-cylinder pressure based methods for the analyses of the main features of combustion, that is, the start of combustion, the end of combustion and the crankshaft angle that responds to half of the overall burned mass. The instantaneous pressure in the combustion chamber has been used as an input datum for the described analytical procedures and it has been measured by means of a standard piezoelectric transducer. Traditional pressure-based techniques have been shown to be able to predict the burned mass fraction time history more accurately in spark ignition engines than in diesel engines. The most suitable pressure-based techniques for both spark ignition and compression ignition engines have been chosen on the basis of the available experimental data. Time–frequency analysis has also been applied to the analysis of diesel combustion, which is richer in events than spark ignited combustion. Time frequency algorithms for the calculation of the mean instantaneous frequency are computationally efficient, allow the main events of the diesel combustion to be identified and provide the greatest benefits in the presence of multiple injection events. These algorithms can be optimized and applied to onboard diagnostics tools designed for real control, but can also be used as an advanced validation tool for

  16. Operational Risk Aggregation across Business Lines Based on Frequency Dependence and Loss Dependence

    Directory of Open Access Journals (Sweden)

    Jianping Li


    Full Text Available In loss distribution approach (LDA, the most popular approach in operational risk modeling, frequency dependence and loss distribution dependence across business lines are two dependences which banks should consider. In practice, mainly for simplicity, many banks only model frequency dependence although they think that the impact of frequency dependence is insignificant. In this study, two approaches, respectively, models frequency dependence and loss distribution dependence, are introduced. Both approaches are modeled by copula function, which is capable of capturing nonlinear correlation. Based on the most comprehensive operational risk dataset of Chinese banking as far as we know, the operational risk capital charge of the overall Chinese banking is calculated by the two approaches. The results show that there is an obvious distinction between the capital calculated by modeling frequency dependence and the capital calculated by modeling loss dependence. The approach with very limited attention exactly yields a much larger capital result. So it is advised in this paper that banks should not just rely on the approach to modeling frequency dependence for it is natural and easy to deal with. A safer and more effective way for banks is to comprehensively take the results of the two kinds of approach into consideration.

  17. Gear fault diagnosis based on the structured sparsity time-frequency analysis (United States)

    Sun, Ruobin; Yang, Zhibo; Chen, Xuefeng; Tian, Shaohua; Xie, Yong


    Over the last decade, sparse representation has become a powerful paradigm in mechanical fault diagnosis due to its excellent capability and the high flexibility for complex signal description. The structured sparsity time-frequency analysis (SSTFA) is a novel signal processing method, which utilizes mixed-norm priors on time-frequency coefficients to obtain a fine match for the structure of signals. In order to extract the transient feature from gear vibration signals, a gear fault diagnosis method based on SSTFA is proposed in this work. The steady modulation components and impulsive components of the defective gear vibration signals can be extracted simultaneously by choosing different time-frequency neighborhood and generalized thresholding operators. Besides, the time-frequency distribution with high resolution is obtained by piling different components in the same diagram. The diagnostic conclusion can be made according to the envelope spectrum of the impulsive components or by the periodicity of impulses. The effectiveness of the method is verified by numerical simulations, and the vibration signals registered from a gearbox fault simulator and a wind turbine. To validate the efficiency of the presented methodology, comparisons are made among some state-of-the-art vibration separation methods and the traditional time-frequency analysis methods. The comparisons show that the proposed method possesses advantages in separating feature signals under strong noise and accounting for the inner time-frequency structure of the gear vibration signals.

  18. Accurate Frequency Estimation Based On Three-Parameter Sine-Fitting With Three FFT Samples

    Directory of Open Access Journals (Sweden)

    Liu Xin


    Full Text Available This paper presents a simple DFT-based golden section searching algorithm (DGSSA for the single tone frequency estimation. Because of truncation and discreteness in signal samples, Fast Fourier Transform (FFT and Discrete Fourier Transform (DFT are inevitable to cause the spectrum leakage and fence effect which lead to a low estimation accuracy. This method can improve the estimation accuracy under conditions of a low signal-to-noise ratio (SNR and a low resolution. This method firstly uses three FFT samples to determine the frequency searching scope, then – besides the frequency – the estimated values of amplitude, phase and dc component are obtained by minimizing the least square (LS fitting error of three-parameter sine fitting. By setting reasonable stop conditions or the number of iterations, the accurate frequency estimation can be realized. The accuracy of this method, when applied to observed single-tone sinusoid samples corrupted by white Gaussian noise, is investigated by different methods with respect to the unbiased Cramer-Rao Low Bound (CRLB. The simulation results show that the root mean square error (RMSE of the frequency estimation curve is consistent with the tendency of CRLB as SNR increases, even in the case of a small number of samples. The average RMSE of the frequency estimation is less than 1.5 times the CRLB with SNR = 20 dB and N = 512.

  19. Double Standards: Using Teachers' Perceptions to Develop a Standards-Based Technology Integration Method for Social Studies (United States)

    Hineman, John M.


    This qualitative collective case study with an action research design identified teachers' perceptions of the use of technology in standards-based social studies education. Data were collected from semi-structured, one-on-one interviews conducted with a purposive sample of ten in-service social studies teachers from southwestern Pennsylvania.…

  20. Sparse blind deconvolution based low-frequency seismic data reconstruction for multiscale full waveform inversion (United States)

    Zhang, Pan; Han, Liguo; Xu, Zhuo; Zhang, Fengjiao; Wei, Yajie


    Full waveform inversion (FWI) reconstructs the underground velocity structures by minimizing the data residual between calculated wavefields and observed wavefileds. The conventional FWI usually uses some local optimization algorithms which lead to a strong dependency on initial velocity model. The objective function corresponding to low-frequency data components has less local minima. Reconstructing low-frequency information from recorded seismic data and using it in FWI can reduce cycle-skipping and thus weaken the dependency of inversion process on initial model. In this paper, based on the conventional frequency down-shifting method, we propose a sparse blind deconvolution-convolution low-frequency data reconstruction method, which can simultaneously update the wavelet and reconstruct the low-frequency components. First, we extract the subsurface reflection impulse responses (SRIR) by solving a L1 norm sparse constraint problem using the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). Then we test the accuracy of our algorithm, and discuss the effect of wavelet error and noises on the reconstruction result. When the wavelet is inaccurate, we update the amplitude of wavelet by alternately inverting L1 norm constraint and Tikhonov regularization problems, and correct the time-shift error by cross-correlating the direct waves. After that we can get the accurate wavelet and SRIR simultaneously. Then using the reconstructed data successively as observed data, combining it with dynamic random sources and layer-stripping methods, we propose a new strategy for the fast multiscale FWI. We test our method by numerical examples in several cases including blended acquisition cases. The results show that it has good anti-noise property and it can reconstruct valid low-frequency components when the observed data lacking low-frequency information. The example using inaccurate wavelet shows that the blind deconvolution-convolution algorithm is able to obtain accurate

  1. A high frequency active voltage doubler in standard CMOS using offset-controlled comparators for inductive power transmission. (United States)

    Lee, Hyung-Min; Ghovanloo, Maysam


    In this paper, we present a fully integrated active voltage doubler in CMOS technology using offset-controlled high speed comparators for extending the range of inductive power transmission to implantable microelectronic devices (IMD) and radio-frequency identification (RFID) tags. This active voltage doubler provides considerably higher power conversion efficiency (PCE) and lower dropout voltage compared to its passive counterpart and requires lower input voltage than active rectifiers, leading to reliable and efficient operation with weakly coupled inductive links. The offset-controlled functions in the comparators compensate for turn-on and turn-off delays to not only maximize the forward charging current to the load but also minimize the back current, optimizing PCE in the high frequency (HF) band. We fabricated the active voltage doubler in a 0.5-μm 3M2P std . CMOS process, occupying 0.144 mm(2) of chip area. With 1.46 V peak AC input at 13.56 MHz, the active voltage doubler provides 2.4 V DC output across a 1 kΩ load, achieving the highest PCE = 79% ever reported at this frequency. In addition, the built-in start-up circuit ensures a reliable operation at lower voltages.

  2. Estimation of fundamental frequencies in polyphonic music sound using subspace-based approach (United States)

    Lee, Jong H.; Chun, Joohwan


    Music is a sum of several instrumental sounds whose individual fundamental frequencies are based on the musical score. Reversely musical sound contains information about the score, such as the instruments played and their fundamental frequencies. Automatic identification of scores from the musical sound is called the automatic transcription. There are many items to be estimated; the type of instruments, fundamental frequency, and note. Among these, the fundamental frequency estimation problem (FFE) has been widely studied. It is extensively studied for more than thirty years and there are many algorithms for the estimation of mono-phonic sound and poly-phonic sound. In this paper we propose a new estimation method of musical sound using the subspace approach. Our algorithm can be used to estimate poly-phonic and poly-instrumental sounds. This subspace approach is based on the autocorrelation of sounds and the orthogonality property. First, we gather subspaces of various instruments with different fundamental frequency. We define the subspaces as sound manifold. Next, we compare sound manifold and the subspace of measurement musical sound. We use the noise subspace of measurement sound and apply a MUSIC-like algorithm which use the orthogonality property of the signal subspace and the noise subspace. We test our algorithm with MIDI signals and show good identification capability.

  3. Frequency Support of PMSG-WTG Based on Improved Inertial Control: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.; Wang, X.; Gao, W.; Kang, M.; Hwang, M.; Kang, Y.; Gevorgian, Vahan; Muljadi, Eduard


    With increasing integrations of large-scale systems based on permanent magnet synchronous generator wind turbine generators (PMSG-WTGs), the overall inertial response of a power system will tend to deteriorate as a result of the decoupling of rotor speed and grid frequency through the power converter as well as the scheduled retirement of conventional synchronous generators. Thus, PMSG-WTGs can provide value to an electric grid by contributing to the system's inertial response by utilizing the inherent kinetic energy stored in their rotating masses and fast power control. In this work, an improved inertial control method based on the maximum power point tracking operation curve is introduced to enhance the overall frequency support capability of PMSG-WTGs in the case of large supply-demand imbalances. Moreover, this method is implemented in the CART2-PMSG integrated model in MATLAB/Simulink to investigate its impact on the wind turbine's structural loads during the inertial response process. Simulation results indicate that the proposed method can effectively reduce the frequency nadir, arrest the rate of change of frequency, and mitigate the secondary frequency drop while imposing no negative impact on the major mechanical components of the wind turbine.

  4. Frequency Support of PMSG-WTG Based on Improved Inertial Control

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.; Wang, X.; Gao, W.; Kang, M.; Hwang, M.; Kang, Y.; Gevorgian, Vahan; Muljadi, Eduard


    With increasing integrations of large-scale systems based on permanent magnet synchronous generator wind turbine generators (PMSG-WTGs), the overall inertial response of a power system will tend to deteriorate as a result of the decoupling of rotor speed and grid frequency through the power converter as well as the scheduled retirement of conventional synchronous generators. Thus, PMSG-WTGs can provide value to an electric grid by contributing to the system's inertial response by utilizing the inherent kinetic energy stored in their rotating masses and fast power control. In this work, an improved inertial control method based on the maximum power point tracking operation curve is introduced to enhance the overall frequency support capability of PMSG-WTGs in the case of large supply-demand imbalances. Moreover, this method is implemented in the CART2-PMSG integrated model in MATLAB/Simulink to investigate its impact on the wind turbine's structural loads during the inertial response process. Simulation results indicate that the proposed method can effectively reduce the frequency nadir, arrest the rate of change of frequency, and mitigate the secondary frequency drop while imposing no negative impact on the major mechanical components of the wind turbine.

  5. Performance-based standards (PBS) vehicles for transport in the agricultural sector

    CSIR Research Space (South Africa)

    Nordengen, Paul A


    Full Text Available (2007a). Performance Based Standards Scheme – The Standards and Vehicle Assessment Rules. Prepared by National Transport Commission: Melbourne, Vic. Australia. National Transport Commission (2007b). Performance Based Standards Scheme – Network..., Australia. Standards South Africa (2007). ARP 067-1: Road Transport Management Systems: Part 1: Operator Requirements – Goods. ISBN: 978-0-626-19331-7. SABS, Pretoria, South Africa. Proc S Afr Sug Technol Ass (2008) 81: 445 - 453 ...

  6. A Lattice-Based Identity-Based Proxy Blind Signature Scheme in the Standard Model

    Directory of Open Access Journals (Sweden)

    Lili Zhang


    Full Text Available A proxy blind signature scheme is a special form of blind signature which allowed a designated person called proxy signer to sign on behalf of original signers without knowing the content of the message. It combines the advantages of proxy signature and blind signature. Up to date, most proxy blind signature schemes rely on hard number theory problems, discrete logarithm, and bilinear pairings. Unfortunately, the above underlying number theory problems will be solvable in the postquantum era. Lattice-based cryptography is enjoying great interest these days, due to implementation simplicity and provable security reductions. Moreover, lattice-based cryptography is believed to be hard even for quantum computers. In this paper, we present a new identity-based proxy blind signature scheme from lattices without random oracles. The new scheme is proven to be strongly unforgeable under the standard hardness assumption of the short integer solution problem (SIS and the inhomogeneous small integer solution problem (ISIS. Furthermore, the secret key size and the signature length of our scheme are invariant and much shorter than those of the previous lattice-based proxy blind signature schemes. To the best of our knowledge, our construction is the first short lattice-based identity-based proxy blind signature scheme in the standard model.

  7. Influence of laser frequency noise on scanning Fabry-Perot interferometer based laser Doppler velocimetry

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian


    n this work, we study the performance of a scanning Fabry-Perot interferometer based laser Doppler velocimeter (sFPILDV) and compare two candidate 1.5 um single-frequency laser sources for the system – a fiber laser (FL) and a semiconductor laser (SL). We describe a straightforward calibration...

  8. Polarization-sensitive optical frequency domain imaging based on unpolarized light

    NARCIS (Netherlands)

    Kim, K.H.; Park, B. H.; Tu, Y.P.; Hasan, T.; Lee, B.; Li, J.; de Boer, J.F.


    Polarization-sensitive optical coherence tomography (PS-OCT) is an augmented form of OCT, providing 3D images of both tissue structure and polarization properties. We developed a new method of polarization-sensitive optical frequency domain imaging (PS-OFDI), which is based on a wavelength-swept

  9. Two stage DOA and Fundamental Frequency Estimation based on Subspace Techniques

    DEFF Research Database (Denmark)

    Zhou, Zhenhua; Christensen, Mads Græsbøll; So, Hing-Cheung


    In this paper, the problem of fundamental frequency and direction-of-arrival (DOA) estimation for multi-channel harmonic sinusoidal signal is addressed. The estimation procedure consists of two stages. Firstly, by making use of the subspace technique and Markov-based eigenanalysis, a multi- channel...

  10. Time-Frequency Distribution of Music based on Sparse Wavelet Packet Representations

    DEFF Research Database (Denmark)

    Endelt, Line Ørtoft

    We introduce a new method for generating time-frequency distributions, which is particularly useful for the analysis of music signals. The method presented here is based on $\\ell1$ sparse representations of music signals in a redundant wavelet packet dictionary. The representations are found using...

  11. Steps for Creating a Specialized Corpus and Developing an Annotated Frequency-Based Vocabulary List (United States)

    Toriida, Marie-Claude


    This article provides introductory, step-by-step explanations of how to make a specialized corpus and an annotated frequency-based vocabulary list. One of my objectives is to help teachers, instructors, program administrators, and graduate students with little experience in this field be able to do so using free resources. Instructions are first…

  12. Test Standards for Contingency Base Waste-to-Energy Technologies (United States)


    standard and challenge recipes by weight percent ........6 Table 3 Recommended breakout of plastic recipes by weight percent ...............7 Table select the appropriate VOC and SVOC target compounds, it is recommended to review the list of hazardous air pollutants provided in 42 United...Class A explosives, or Class B explosives classifications. Toxicity: Toxic wastes are harmful or fatal when ingested or absorbed. When toxic wastes

  13. Channel and delay estimation for base-station–based cooperative communications in frequency-selective fading channels

    Directory of Open Access Journals (Sweden)

    Hongjun Xu


    Full Text Available A channel and delay estimation algorithm for both positive and negative delay, based on the distributed Alamouti scheme, has been recently discussed for base-station–based asynchronous cooperative systems in frequency-flat fading channels. This paper extends the algorithm, the maximum likelihood estimator, to work in frequency-selective fading channels. The minimum mean square error (MMSE performance of channel estimation for both packet schemes and normal schemes is discussed in this paper. The symbol error rate (SER performance of equalisation and detection for both time-reversal space-time block code (STBC and single-carrier STBC is also discussed in this paper. The MMSE simulation results demonstrated the superior performance of the packet scheme over the normal scheme with an improvement in performance of up to 6 dB when feedback was used in the frequency-selective channel at a MSE of 3 x 10–2. The SER simulation results showed that, although both the normal and packet schemes achieved similar diversity orders, the packet scheme demonstrated a 1 dB coding gain over the normal scheme at a SER of 10–5. Finally, the SER simulations showed that the frequency-selective fading system outperformed the frequency-flat fading system.

  14. Blood velocity estimation using spatio-temporal encoding based on frequency division approach

    DEFF Research Database (Denmark)

    Gran, Fredrik; Nikolov, Svetoslav; Jensen, Jørgen Arendt


    In this paper a feasibility study of using a spatial encoding technique based on frequency division for blood flow estimation is presented. The spatial encoding is carried out by dividing the available bandwidth of the transducer into a number of narrow frequency bands with approximately disjoint...... spectral support. By assigning one band to one virtual source, all virtual sources can be excited simultaneously. The received echoes are beamformed using Synthetic Transmit Aperture beamforming. The velocity of the moving blood is estimated using a cross- correlation estimator. The simulation tool Field...

  15. Voltage and frequency control of wind-powered islanded microgrids based on induction generator and STATCOM

    DEFF Research Database (Denmark)

    Bouzid, Allal; Sicard, Pierre; Guerrero, Josep M.


    This paper presents a comprehensive modeling of a three-phase cage induction machine used as a self-excited squirrel-cage induction generator (SEIG), and discusses the regulation of the voltage and frequency of a self-excited SEIG based on the action of the static synchronous Compensator (STATCOM......). The STATCOM with the proposed controller consists of a three-phase voltage-sourced inverter and a DC voltage. The compensator can provide the active and reactive powers and regulate AC system bus voltage and the frequency, but also may enhance the load stability. Moreover, a feed forward control method...

  16. Cough Recognition Based on Mel Frequency Cepstral Coefficients and Dynamic Time Warping (United States)

    Zhu, Chunmei; Liu, Baojun; Li, Ping

    Cough recognition provides important clinical information for the treatment of many respiratory diseases, but the assessment of cough frequency over a long period of time remains unsatisfied for either clinical or research purpose. In this paper, according to the advantage of dynamic time warping (DTW) and the characteristic of cough recognition, an attempt is made to adapt DTW as the recognition algorithm for cough recognition. The process of cough recognition based on mel frequency cepstral coefficients (MFCC) and DTW is introduced. Experiment results of testing samples from 3 subjects show that acceptable performances of cough recognition are obtained by DTW with a small training set.

  17. Mutagenic treatments towards increasing the frequency of day-neutral mutations and standardization of procedures for tissue culture, in potato

    International Nuclear Information System (INIS)

    Upadhya, M.D.; Chandra, R.; Abraham, M.J.


    Various chemical mutagens and gamma radiation have been used on single dormant eyes and true seeds with a view to finding effective mutagenic treatment for the induction of day-length neutral mutants in potato using an effective screening technique for the isolation of day-length neutral mutants. Sodium meta bisulphite (SMS) was found to be an efficient mutagen in inducing mutations for this trait in true seeds although the same concentrations, when used for treating the single tuber eyes proved lethal. Pre-soaking the seeds for 24 hrs prior to treatment with 0.0025M SMS gave highest frequency of the mutants followed by 48 hrs presoaking, indicating a sensitive stage during the cell cycle in true seeds. Other mutagen treatments gave different frequencies of mutations. The highest frequency of day-length neutral mutants was observed when seeds irradiated with 40 Kr of gamma radiation were treated with 0.05M hydrazinium dichloride solution. Screening procedures have also been standardised with the development of synethetic media for the isolation of biochemical mutants at the true seed level. Initial efforts have yielded mutants resistant to LD 100 doses of ethionine. Another aspect of the study was to develop a proper potato callus culture technique. A medium has been developed to produce and maintain callus from potato leaf strips. Efforts on the regeneration of shoot and roots from callus, have so far lead to differentiation of callus to form roots. The ultimate aim of these studies is to develop plantlets from single cell which would form the units of mutation induction and isolation. (author)

  18. Development and evaluation of a novel low power, high frequency piezoelectric-based ultrasonic reactor for intensifying the transesterification reaction

    Directory of Open Access Journals (Sweden)

    Mortaza Aghbashlo


    Full Text Available In this study, a novel low power, high frequency piezoelectric-based ultrasonic reactor was developed and evaluated for intensifying the transesterification process. The reactor was equipped with an automatic temperature control system, a heating element, a precise temperature sensor, and a piezoelectric-based ultrasonic module. The conversion efficiency and specific energy consumption of the reactor were examined under different operational conditions, i.e., reactor temperature (40‒60 °C, ultrasonication time (6‒10 min, and alcohol/oil molar ratio (4:1‒8:1. Transesterification of waste cooking oil (WCO was performed in the presence of a base-catalyst (potassium hydroxide using methanol. According to the obtained results, alcohol/oil molar ratio of 6:1, ultrasonication time of 10 min, and reactor temperature of 60 °C were found as the best operational conditions. Under these conditions, the reactor converted WCO to biodiesel with a conversion efficiency of 97.12%, meeting the ASTM standard satisfactorily, while the lowest specific energy consumption of 378 kJ/kg was also recorded. It should be noted that the highest conversion efficiency of 99.3 %, achieved at reactor temperature of 60 °C, ultrasonication time of 10 min, and alcohol/oil molar ratio of 8:1, was not favorable as the associated specific energy consumption was higher at 395 kJ/kg. Overall, the low power, high frequency piezoelectric-based ultrasonic module could be regarded as an efficient and reliable technology for intensifying the transesterification process in terms of energy consumption, conversion efficiency, and processing time, in comparison with high power, low frequency ultrasonic system reported previously. Finally, this technology could also be considered for designing, developing, and retrofitting chemical reactors being employed for non-biofuel applications as well.

  19. A Low Frequency Uni-variate Model for the Effective Diagnosis and Prognosis of Bearing Signals Based Upon High Frequency Data (United States)


    identical conditions (for instance, in a production facility or wind turbine ), by utilising known normal behaviour of a single bearing , the...extend this analysis to non- stationary signals for wind turbine gearbox analysis by normalising for loading transitions. The signal can be broken into a...A Low Frequency Uni-variate Model for the Effective Diagnosis and Prognosis of Bearing Signals Based Upon High Frequency Data Jamie L. Godwin1

  20. Low Noise Frequency Comb Sources Based on Synchronously Pumped Doubly Resonant Optical Parametric Oscillators (United States)

    Wan, Chenchen

    Optical frequency combs are coherent light sources consist of thousands of equally spaced frequency lines. Frequency combs have achieved success in applications of metrology, spectroscopy and precise pulse manipulation and control. The most common way to generate frequency combs is based on mode-locked lasers which has the output spectrum of comb structures. To generate stable frequency combs, the output from mode-locked lasers need to be phase stabilized. The whole comb lines will be stabilized if the pulse train repetition rate corresponding to comb spacing and the pulse carrier envelope offset (CEO) frequency are both stabilized. The output from a laser always has fluctuations in parameters known as noise. In laser applications, noise is an important factor to limit the performance and often need to be well controlled. For example in precision measurement such as frequency metrology and precise spectroscopy, low laser intensity and phase noise is required. In mode-locked lasers there are different types of noise like intensity noise, pulse temporal position noise also known as timing jitter, optical phase noise. In term for frequency combs, these noise dynamics is more complex and often related. Understanding the noise behavior is not only of great interest in practical applications but also help understand fundamental laser physics. In this dissertation, the noise of frequency combs and mode-locked lasers will be studied in two projects. First, the CEO frequency phase noise of a synchronously pumped doubly resonant optical parametric oscillators (OPO) will be explored. This is very important for applications of the OPO as a coherent frequency comb source. Another project will focus on the intensity noise coupling in a soliton fiber oscillator, the finding of different noise coupling in soliton pulses and the dispersive waves generated from soliton perturbation can provide very practical guidance for low noise soliton laser design. OPOs are used to generate

  1. Recognition of phonetic Arabic figures via wavelet based Mel Frequency Cepstrum using HMMs

    Directory of Open Access Journals (Sweden)

    Ibrahim M. El-Henawy


    A comparison between different features of speech is given. The features based on the Cepstrum give accuracy of 94% for speech recognition while the features based on the short time energy in time domain give accuracy of 92%. The features based on formant frequencies give accuracy of 95.5%. It is clear that the features based on MFCCs with accuracy of 98% give the best accuracy rate. So the features depend on MFCCs with HMMs may be recommended for recognition of the spoken Arabic digits.

  2. Towards standardization of microarray-based genotyping of Salmonella

    DEFF Research Database (Denmark)

    Löfström, Charlotta; Grønlund, Hugo Ahlm; Riber, Leise


    Genotyping is becoming an increasingly important tool to improve risk assessments of Salmonella. DNA microarray technology is a promising diagnostic tool that can provide high resolution genomic profile of many genes simultaneously. However, standardization of DNA microarray analysis is needed...... of Salmonella at two different laboratories. The low-density array contained 281 of 57-60-mer oligonucleotide probes for detecting a wide range of specific genomic markers associated with antibiotic resistance, cell envelope structures, mobile genetic elements and pathogenicity. Several test parameters...... for a decentralized and simple-to-implement DNA microarray as part of a pan-European source-attribution model for risk assessment of Salmonella....

  3. Biological bases of the maximum permissible exposure levels of the UK laser standard BS 4803 1983

    CERN Document Server

    MacKinlay, Alistair F


    The use of lasers has increased greatly over the past 15 years or so, to the extent that they are now used routinely in many occupational and public situations. There has been an increasing awareness of the potential hazards presented by lasers and substantial efforts have been made to formulate safety standards. In the UK the relevant Safety Standard is the British Standards Institution Standard BS 4803. This Standard was originally published in 1972 and a revision has recently been published (BS 4803: 1983). The revised standard has been developed using the American National Standards Institute Standard, ANSI Z136.1 (1973 onwards), as a model. In other countries, national standards have been similarly formulated, resulting in a large measure of international agreement through participation in the work of the International Electrotechnical Commission (IEC). The bases of laser safety standards are biophysical data on threshold injury effects, particularly on the retina, and the development of theoretical mode...

  4. Methods for determining magnitude and frequency of floods in California, based on data through water year 2006 (United States)

    Gotvald, Anthony J.; Barth, Nancy A.; Veilleux, Andrea G.; Parrett, Charles


    of all three parameters (mean, standard deviation, and skew) of the log-Pearson Type III distribution. The regional estimates were then used to develop a set of equations for estimating flows with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities for ungaged basins. The final regional regression equations are functions of drainage area. Average standard errors of prediction for these regression equations range from 214.2 to 856.2 percent. Annual peak-flow data through water year 2006 were analyzed for eight streamgages in California having 10 or more years of data considered to be affected by urbanization. Flood-frequency estimates were computed for the urban streamgages by fitting a Pearson Type III distribution to logarithms of annual peak flows for each streamgage. Regression analysis could not be used to develop flood-frequency estimation equations for urban streams because of the limited number of sites. Flood-frequency estimates for the eight urban sites were graphically compared to flood-frequency estimates for 630 non-urban sites. The regression equations developed from this study will be incorporated into the U.S. Geological Survey (USGS) StreamStats program. The StreamStats program is a Web-based application that provides streamflow statistics and basin characteristics for USGS streamgages and ungaged sites of interest. StreamStats can also compute basin characteristics and provide estimates of streamflow statistics for ungaged sites when users select the location of a site along any stream in California.

  5. Development of a fast piezo-based frequency tuner for superconducting CH cavities

    International Nuclear Information System (INIS)

    Amberg, Michael


    In this thesis, a fast piezo-based frequency tuner for current and prospective superconducting (sc) CH-cavities has been developed. The novel tuning concept differs fundamentally from conventional tuning systems for superconducting cavities. So called dynamic bellow tuners are welded into the resonator to act against slow and fast frequency variations during operation. Because of their adjustable length it is possible to specifically influence the capacitance and therefore the resonance frequency of the cavity. To change the length of the dynamic bellow tuners the frequency tuner drive, which consists of a slow tuning device controlled by a stepper motor and a fast piezo-based tuning system, is mounted to the helium vessel of the cavity. To validate the whole tuning concept a frequency tuner drive prototype was built in the workshop of the Institute for Applied Physics (IAP) of Frankfurt University. First successful room temperature measurements show that the developed frequency tuning system is an excellent and promising candidate to fulfill the requirements of slow and fast frequency tuning of sc CH-cavities during operation. Furthermore, several coupled structural and electromagnetic simulations of the sc 325 MHz CH-cavity as well as the sc 217 MHz CH-cavity have been performed with the simulation softwares ANSYS Workbench and CST MicroWave Studio, respectively. With these simulations it was possible to reduce the required frequency range and thus the mechanical stroke of the dynamic bellow tuners on the one hand, and on the other hand the mechanical stability of the particular CH-cavity was investigated to avoid plastic deformations due to limiting external effects. To verify the accuracy of the coupled simulations the structural mechanical behaviour and the resulting frequency variations of the sc CH-cavities dependent on the external influences were measured at room temperature as well as at cryogenic temperatures around 4.2 K. The measurement results of both

  6. Frequency-Based Precursory Acoustic Emission Failure Sequences In Sedimentary And Igneous Rocks Under Uniaxial Compression (United States)

    Colin, C.; Anderson, R. C.; Chasek, M. D.; Peters, G. H.; Carey, E. M.


    Identifiable precursors to rock failure have been a long pursued and infrequently encountered phenomena in rock mechanics and acoustic emission studies. Since acoustic emissions in compressed rocks were found to follow the Gutenberg-Richter law, failure-prediction strategies based on temporal changes in b-value have been recurrent. In this study, we extend on the results of Ohnaka and Mogi [Journal of Geophysical Research, Vol. 87, No. B5, p. 3873-3884, (1982)], where the bulk frequency characteristics of rocks under incremental uniaxial compression were observed in relation to changes in b-value before and after failure. Based on the proposition that the number of low-frequency acoustic emissions is proportional to the number of high-amplitude acoustic emissions in compressed rocks, Ohnaka and Mogi (1982) demonstrated that b-value changes in granite and andesite cores under incremental uniaxial compression could be expressed in terms of the percent abundance of low-frequency events. In this study, we attempt to demonstrate that the results of Ohnaka and Mogi (1982) hold true for different rock types (basalt, sandstone, and limestone) and different sample geometries (rectangular prisms). In order to do so, the design of the compression tests was kept similar to that of Ohnaka and Mogi (1982). Two high frequency piezoelectric transducers of 1 MHz and a 500 kHz coupled to the sides of the samples detected higher and lower frequency acoustic emission signals. However, rather than gathering parametric data from an analog signal using a counter as per Ohnaka and Mogi (1982), we used an oscilloscope as an analog to digital converter interfacing with LabVIEW 2015 to record the complete waveforms. The digitally stored waveforms were then processed, detecting acoustic emission events using a statistical method, and filtered using a 2nd order Butterworth filter. In addition to calculating the percent abundance of low-frequency events over time, the peak frequency of the

  7. Current status of the dual-frequency precipitation radar on the global precipitation measurement core spacecraft and the new version of GPM standard products (United States)

    Furukawa, K.; Nio, T.; Konishi, T.; Masaki, T.; Kubota, T.; Oki, R.; Iguchi, T.


    The Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) core satellite was developed by Japan Aerospace Exploration Agency (JAXA) and National Institute of Information and Communications Technology (NICT). The objective of the GPM mission is to observe global precipitation more frequently and accurately. The GPM core satellite is a joint product of National Aeronautics and Space Administration (NASA), JAXA and NICT. NASA developed the satellite bus and the GPM Microwave Imager (GMI), and JAXA and NICT developed the DPR. The inclination of the GPM core satellite is 65 degrees, and the nominal flight altitude is 407 km. The non-sunsynchronous circular orbit is necessary for measuring the diurnal change of rainfall. The DPR consists of two radars, which are Ku-band precipitation radar (KuPR) and Ka-band precipitation radar (KaPR). GPM core observatory was successfully launched by H2A launch vehicle on Feb. 28, 2014. DPR keeps its performances on orbit after launch. DPR products were released to the public on Sep. 2, 2014. JAXA is continuing DPR trend monitoring, calibration and validation operations to confirm that DPR keeps its function and performance on orbit. JAXA have started to provide new version (Version 4) of GPM standard products on March 3, 2016. Various improvements of the DPR algorithm were implemented in the Version 4 product. Moreover, the latent heat product based on the Spectral Latent Heating (SLH) algorithm is available since Version 4 product. Current orbital operation status of the GPM/DPR and highlights of the Version 4 product are reported.

  8. A low-frequency vibration energy harvester based on diamagnetic levitation (United States)

    Kono, Yuta; Masuda, Arata; Yuan, Fuh-Gwo


    This article presents 3-degree-of-freedom theoretical modeling and analysis of a low-frequency vibration energy harvester based on diamagnetic levitation. In recent years, although much attention has been placed on vibration energy harvesting technologies, few harvesters still can operate efficiently at extremely low frequencies in spite of large potential demand in the field of structural health monitoring and wearable applications. As one of the earliest works, Liu, Yuan and Palagummi proposed vertical and horizontal diamagnetic levitation systems as vibration energy harvesters with low resonant frequencies. This study aims to pursue further improvement along this direction, in terms of expanding maximum amplitude and enhancing the flexibility of the operation direction for broader application fields by introducing a new topology of the levitation system.

  9. Gearbox fault diagnosis based on time-frequency domain synchronous averaging and feature extraction technique (United States)

    Zhang, Shengli; Tang, Jiong


    Gearbox is one of the most vulnerable subsystems in wind turbines. Its healthy status significantly affects the efficiency and function of the entire system. Vibration based fault diagnosis methods are prevalently applied nowadays. However, vibration signals are always contaminated by noise that comes from data acquisition errors, structure geometric errors, operation errors, etc. As a result, it is difficult to identify potential gear failures directly from vibration signals, especially for the early stage faults. This paper utilizes synchronous averaging technique in time-frequency domain to remove the non-synchronous noise and enhance the fault related time-frequency features. The enhanced time-frequency information is further employed in gear fault classification and identification through feature extraction algorithms including Kernel Principal Component Analysis (KPCA), Multilinear Principal Component Analysis (MPCA), and Locally Linear Embedding (LLE). Results show that the LLE approach is the most effective to classify and identify different gear faults.

  10. Demultiplexing based on frequency-domain joint decision MMA for MDM system (United States)

    Caili, Gong; Li, Li; Guijun, Hu


    In this paper, we propose a demultiplexing method based on frequency-domain joint decision multi-modulus algorithm (FD-JDMMA) for mode division multiplexing (MDM) system. The performance of FD-JDMMA is compared with frequency-domain multi-modulus algorithm (FD-MMA) and frequency-domain least mean square (FD-LMS) algorithm. The simulation results show that FD-JDMMA outperforms FD-MMA in terms of BER and convergence speed in the cases of mQAM (m=4, 16 and 64) formats. And it is also demonstrated that FD-JDMMA achieves better BER performance and converges faster than FD-LMS in the cases of 16QAM and 64QAM. Furthermore, FD-JDMMA maintains similar computational complexity as the both equalization algorithms.

  11. Cryocooled wideband digital channelizing radio-frequency receiver based on low-pass ADC

    International Nuclear Information System (INIS)

    Vernik, Igor V; Kirichenko, Dmitri E; Dotsenko, Vladimir V; Miller, Robert; Webber, Robert J; Shevchenko, Pavel; Talalaevskii, Andrei; Gupta, Deepnarayan; Mukhanov, Oleg A


    We have demonstrated a digital receiver performing direct digitization of radio-frequency signals over a wide frequency range from kilohertz to gigahertz. The complete system, consisting of a cryopackaged superconductor all-digital receiver (ADR) chip followed by room-temperature interface electronics and a field programmable gate array (FPGA) based post-processing module, has been developed. The ADR chip comprises a low-pass analog-to-digital converter (ADC) delta modulator with phase modulation-demodulation architecture together with digital in-phase and quadrature mixer and a pair of digital decimation filters. The chip is fabricated using a 4.5 kA cm -2 process and is cryopackaged using a commercial-off-the-shelf cryocooler. Experimental results in HF, VHF, UHF and L bands and their analysis, proving consistent operation of the cryopackaged ADR chip up to 24.32 GHz clock frequency, are presented and discussed

  12. Modeling of low frequency dynamics of a smart system and its state feedback based active control (United States)

    Kant, Mohit; Parameswaran, Arun P.


    Major physical systems/structures suffer from unwanted vibrations. For efficient working of such systems, these vibrations have to be controlled. In this paper, mathematical modeling of an aluminum cantilever beam with bonded multiple piezoelectric patches which act as the disturbance generator, sensor as well as control actuator has been presented. This piezoelectric laminate cantilever beam is assumed to be vibrating in a single degree of freedom i.e. in the flexural mode only and the corresponding state space models have been derived analytically using the finite element technique. Dominant modes of flexural vibration are identified from the frequency response of the developed model of the system and finally a state feedback controller based on pole placement technique is designed to actively suppress the vibrations. Through numerous simulations as well as experimental validation, the effectiveness of the active controller in damping the vibrations at various excitation frequencies as well as frequency ranges along the flexural mode is established.

  13. A novel metamaterial filter with stable passband performance based on frequency selective surface

    Directory of Open Access Journals (Sweden)

    C. Y. Fang


    Full Text Available In this paper, a novel metamaterial filter based on frequency selective surface (FSS is proposed. Using the mode matching method, we theoretically studied the transmission performance of the structure. Results show that, by rotating its neighboring elements 90 degree, the novel filter has a better stability to angle of incidence than traditional structures for TE and TM polarization. As the incident angles vary from 0 to 50 degrees, the metamaterial filter exhibits a transmittance higher than 0.98 and the center frequency slightly shifts downward (from 10 GHz to 0.96 GHz for TE polarization. For TM polarization, a transmittance of 0.98 is achieved and the center frequency retains 0.96 GHz with the varying of the incident angles. Furthermore, an experimental prototype fabricated was tested in a microwave chamber, and the measured results show good agreement with the simulated ones.

  14. High Frequency Resonance Damping of DFIG based Wind Power System under Weak Network

    DEFF Research Database (Denmark)

    Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede


    When operating in a micro or weak grid which has a relatively large network impedance, the Doubly Fed Induction Generator (DFIG) based wind power generation system is prone to suffer high frequency resonance due to the impedance interaction between DFIG system and the parallel compensated network...... (series RL + shunt C). In order to improve the performance of the DFIG system as well as other units and loads connected to the weak grid, the high frequency resonance needs to be effectively damped. In this paper, the proposed active damping control strategy is able to implement effective damping either...... in the Rotor Side Converter (RSC) or in the Grid Side Converter (GSC), through the introduction of virtual positive capacitor or virtual negative inductor to reshape the DFIG system impedance and mitigate the high frequency resonance. A detailed theoretical explanation on the virtual positive capacitor...

  15. Reduction of low frequency error for SED36 and APS based HYDRA star trackers (United States)

    Ouaknine, Julien; Blarre, Ludovic; Oddos-Marcel, Lionel; Montel, Johan; Julio, Jean-Marc


    In the frame of the CNES Pleiades satellite, a reduction of the star tracker low frequency error, which is the most penalizing error for the satellite attitude control, was performed. For that purpose, the SED36 star tracker was developed, with a design based on the flight qualified SED16/26. In this paper, the SED36 main features will be first presented. Then, the reduction process of the low frequency error will be developed, particularly the optimization of the optical distortion calibration. The result is an attitude low frequency error of 1.1" at 3 sigma along transverse axes. The implementation of these improvements to HYDRA, the new multi-head APS star tracker developed by SODERN, will finally be presented.

  16. Simulation of power fluctuation of wind farms based on frequency domain

    DEFF Research Database (Denmark)

    Lin, Jin; Sun, Yuanzhang; Li, Guojie


    The wind power fluctuation model built up in the frequency domain is mathematically equivalent with that in the time domain, and has a clearer physical meaning therefore describes the fluctuation more accurately. However, the simulation of this model is required to deal with the time......-frequency transformation related to the power spectrum density (PSD), which is more special and complicated than normal transformations. Meanwhile, the computational complexity also increases significantly, more computation resources are needed. These problems negatively affect the engineering application of the model....... To overcome these disadvantages, the physical meaning of PSD based on fundamental concepts is presented, so that the specialties of this model compared with conventional ones can be understood. Then the time-frequency transformation algorithm is derived, which is fast to be implemented in digital computers...

  17. Frequency locking of a field-widened Michelson interferometer based on optimal multi-harmonics heterodyning. (United States)

    Cheng, Zhongtao; Liu, Dong; Zhou, Yudi; Yang, Yongying; Luo, Jing; Zhang, Yupeng; Shen, Yibing; Liu, Chong; Bai, Jian; Wang, Kaiwei; Su, Lin; Yang, Liming


    A general resonant frequency locking scheme for a field-widened Michelson interferometer (FWMI), which is intended as a spectral discriminator in a high-spectral-resolution lidar, is proposed based on optimal multi-harmonics heterodyning. By transferring the energy of a reference laser to multi-harmonics of different orders generated by optimal electro-optic phase modulation, the heterodyne signal of these multi-harmonics through the FWMI can reveal the resonant frequency drift of the interferometer very sensitively within a large frequency range. This approach can overcome the locking difficulty induced by the low finesse of the FWMI, thus contributing to excellent locking accuracy and lock acquisition range without any constraint on the interferometer itself. The theoretical and experimental results are presented to verify the performance of this scheme.

  18. Ultra-wideband microwave photonic frequency downconverter based on carrier-suppressed single-sideband modulation (United States)

    Wang, Yunxin; Li, Jingnan; Wang, Dayong; Zhou, Tao; Xu, Jiahao; Zhong, Xin; Yang, Dengcai; Rong, Lu


    An ultra-wideband microwave photonic frequency downconverter is proposed based on carrier-suppressed single-sideband (CS-SSB) modulation. A radio frequency (RF) signal and a local oscillator (LO) signal are combined to drive a dual-parallel Mach-Zehnder modulator (DPMZM) through the electrical 90°hybrid coupler. To break through the bandwidth limit, an optical bandpass filter (OBPF) is applied simultaneously. Then a photodetector (PD) after OBPF is used to obtain intermediate frequency (IF) signal. Experimental results demonstrate that the proposed frequency downconverter can generate the CS-SSB modulation signal from 2 to 40 GHz in optical spectrum. All the mixing spurs are completely suppressed under the noise floor in electrical spectrum, and the output IF signal possesses high purity with a suppression ratio of the undesired signals (≥40 dB). Furthermore, the multi-octave downconversion can also be implemented to satisfy the bandwidth requirement of multi-channel communication. The proposed frequency downconverter supplies an ultra-wideband and high-purity alternative for the signal processing in microwave photonic applications.

  19. A compact ADPLL based on symmetrical binary frequency searching with the same circuit (United States)

    Li, Hangbiao; Zhang, Bo; Luo, Ping; Liao, Pengfei; Liu, Junjie; Li, Zhaoji


    A compact all-digital phase-locked loop (C-ADPLL) based on symmetrical binary frequency searching (BFS) with the same circuit is presented in this paper. The minimising relative frequency variation error Δη (MFE) rule is derived as guidance of design and is used to weigh the accuracy of the digitally controlled oscillator (DCO) clock frequency. The symmetrical BFS is used in the coarse-tuning process and the fine-tuning process of DCO clock frequency to achieve the minimum Δη of the locked DCO clock, which simplifies the circuit architecture and saves the die area. The C-ADPLL is implemented in a 0.13 μm one-poly-eight-metal (1P8M) CMOS process and the on-chip area is only 0.043 mm2, which is much smaller. The measurement results show that the peak-to-peak (Pk-Pk) jitter and the root-mean-square jitter of the DCO clock frequency are 270 ps at 72.3 MHz and 42 ps at 79.4 MHz, respectively, while the power consumption of the proposed ADPLL is only 2.7 mW (at 115.8 MHz) with a 1.2 V power supply. The measured Δη is not more than 1.14%. Compared with other ADPLLs, the proposed C-ADPLL has simpler architecture, smaller size and lower Pk-Pk jitter.

  20. An improved peak frequency shift method for Q estimation based on generalized seismic wavelet function (United States)

    Wang, Qian; Gao, Jinghuai


    As a powerful tool for hydrocarbon detection and reservoir characterization, the quality factor, Q, provides useful information in seismic data processing and interpretation. In this paper, we propose a novel method for Q estimation. The generalized seismic wavelet (GSW) function was introduced to fit the amplitude spectrum of seismic waveforms with two parameters: fractional value and reference frequency. Then we derive an analytical relation between the GSW function and the Q factor of the medium. When a seismic wave propagates through a viscoelastic medium, the GSW function can be employed to fit the amplitude spectrum of the source and attenuated wavelets, then the fractional values and reference frequencies can be evaluated numerically from the discrete Fourier spectrum. After calculating the peak frequency based on the obtained fractional value and reference frequency, the relationship between the GSW function and the Q factor can be built by the conventional peak frequency shift method. Synthetic tests indicate that our method can achieve higher accuracy and be more robust to random noise compared with existing methods. Furthermore, the proposed method is applicable to different types of source wavelet. Field data application also demonstrates the effectiveness of our method in seismic attenuation and the potential in the reservoir characteristic.

  1. Taste Sensing Based on Frequency Characteristics of Quartz Resonator with Oleic Acid Film Electrodeposition (United States)

    Mukai, Keiichi; Misawa, Kenji; Kitama, Masataka; Yamashita, Masaji; Arisawa, Junij

    In this paper, we studied a possibility of a taste sensing using a quartz crystal microbalance (hereafter cited as QCM) sensor. We modified oleic acid film to Au electrode of the quartz resonator by an electrodeposition method. The electrodeposition film was used as the adsorber for taste substances. We consider that oscillation frequency decreases with the mass changes due to adsorption. Frequency characteristics differed in each basic taste solution. Their characteristics were based on chemical nature of taste substances. Ions or organic molecules were attached to electrodeposition film by electrostatic interaction or hydrophobic interaction respectively. Moreover, we studied the taste evaluation of sweetness solutions and sourness solutions. As a result, in case of sweetness solutions, the frequency changes correlated with Brix (%) (r = -0.98). In case of sourness solutions, especially, the frequency changes correlated in pH (r = 0.89) of organic acids. Differences of the frequency changes depended on the amount of undissociated molecule in the acid solutions. Additionally, taste evaluation by the QCM sensor related to gustatory sense of human. Therefore, we suggested the validity of the QCM sensor for evaluation of the taste solutions.

  2. System frequency support of permanent magnet synchronous generator-based wind power plant (United States)

    Wu, Ziping

    With ever-increasing penetration of wind power into modern electric grids all over the world, a trending replacement of conventional synchronous generators by large wind power plants will likely result in the poor overall frequency regulation performance. On the other hand, permanent magnet synchronous generator wind Turbine System (PMSG-WTG) with full power back to back converters tends to become one of the most promising wind turbine technologies thanks to various advantages. It possesses a significant amount of kinetic energy stored in the rotating mass of turbine blades, which can be utilized to enhance the total inertia of power system. Additionally, the deloaded operation and decoupled control of active and reactive power make it possible for PMSG-WTG to provide a fast frequency regulation through full-power converter. First of all, a comprehensive and in-depth survey is conducted to analyze the motivations for incorporating the inertial response and frequency regulation of VSWT into the system frequency regulation. Besides, control classifications, fundamental control concepts and advanced control schemes implemented for auxiliary frequency support of individual WT or wind power plant are elaborated along with a comparison of the potential frequency regulation capabilities of four major types of WTs. Secondly, a Controls Advanced Research Turbine2-Permanent Magnet Synchronous Generator wind turbine (CART2-PMSG) integrated model representing the typical configuration and operation characteristics of PMSG-WT is established in Matlab/Simulink,. Meanwhile, two different rotor-side converter control schemes, including rotor speed-based control and active power-based control, are integrated into this CART2-PMSG integrated model to perform Maximum Power Point Tracking (MPPT) operation over a wide range of wind speeds, respectively. Thirdly, a novel comprehensive frequency regulation (CFR) control scheme is developed and implemented into the CART2-PMSG model based

  3. Multi-Frequency Target Detection Techniques for DVB-T Based Passive Radar Sensors

    Directory of Open Access Journals (Sweden)

    Tatiana Martelli


    Full Text Available This paper investigates the possibility to improve target detection capability in a DVB-T- based passive radar sensor by jointly exploiting multiple digital television channels broadcast by the same transmitter of opportunity. Based on the remarkable results obtained by such a multi-frequency approach using other signals of opportunity (i.e., FM radio broadcast transmissions, we propose appropriate modifications to the previously devised signal processing techniques for them to be effective in the newly considered scenarios. The resulting processing schemes are extensively applied against experimental DVB-T-based passive radar data pertaining to different surveillance applications. The obtained results clearly show the effectiveness of the proposed multi-frequency approaches and demonstrate their suitability for application in the considered scenarios.

  4. An Islanding Detection Method by Using Frequency Positive Feedback Based on FLL for Single-Phase Microgrid

    DEFF Research Database (Denmark)

    Sun, Qinfei; Guerrero, Josep M.; Jing, Tianjun


    An active islanding detection method based on Frequency-Locked Loop (FLL) for constant power controlled inverter in single-phase microgrid is proposed. This method generates a phase shift comparing the instantaneous frequency obtained from FLL unit with the nominal frequency to modify the reference...

  5. A Risk and Standards Based Approach to Quality Assurance in Australia's Diverse Higher Education Sector (United States)

    Australian Government Tertiary Education Quality and Standards Agency, 2015


    The Australian Government Tertiary Education Quality and Standards Agency's (TEQSA's) role is to assure that quality standards are being met by all registered higher education providers. This paper explains how TEQSA's risk-based approach to assuring higher education standards is applied in broad terms to a diverse sector. This explanation is…

  6. Are Standards-Based Quality Systems a Threat to the Internationalization of Teaching and Learning? (United States)

    Thompson-Whiteside, Scott


    This paper explores the current shift in Australia's higher education system moving to a more explicit, standards-based quality system and its potential impact on international partnerships in teaching and learning, particularly in Asia. The new Tertiary Education Quality and Standards Agency and the underlying Higher Education Standards Framework…

  7. Intense high-frequency gyrotron-based microwave beams for material processing

    Energy Technology Data Exchange (ETDEWEB)

    Hardek, T.W.; Cooke, W.D.; Katz, J.D.; Perry, W.L.; Rees, D.E.


    Microwave processing of materials has traditionally utilized frequencies in the 0.915 and 2.45 GHz regions. Microwave power sources are readily available at these frequencies but the relatively long wavelengths can present challenges in uniformly heating materials. An additional difficulty is the poor coupling of ceramic based materials to the microwave energy. Los Alamos National Laboratory scientists, working in conjunction with the National Center for Manufacturing Sciences (NCMS), have assembled a high-frequency demonstration processing facility utilizing gyrotron based RF sources. The facility is primarily intended to demonstrate the unique features available at frequencies as high as 84 GHz. The authors can readily provide quasi-optical, 37 GHz beams at continuous wave (CW) power levels in the 10 kW range. They have also provided beams at 84 GHz at 10 kW CW power levels. They are presently preparing a facility to demonstrate the sintering of ceramics at 30 GHz. This paper presents an overview of the present demonstration processing facility and describes some of the features they have available now and will have available in the near future.

  8. A multi-frequency EIT system design based on telecommunication signal processors. (United States)

    Robitaille, Nicolas; Guardo, Robert; Maurice, Isabelle; Hartinger, Alzbeta E; Gagnon, Hervé


    A multi-frequency electrical impedance tomography system for cardiopulmonary monitoring has been designed with specialized digital signal processors developed primarily for the telecommunications sector. The system consists of two modules: a scan-head and a base-station. The scan-head, located close to the patient's torso, contains front-end circuits for measuring transfer impedance with a 16-electrode array. The base-station, placed at the bedside, comprises 16 direct digital synthesizers, 32 digital down-converters, digital circuits to control the data acquisition sequence and a USB-2.0 microcontroller. At every step of the scan sequence, the system simultaneously measures four complex variables at eight frequencies. These variables are the potential difference between the selected pair of sense electrodes, the currents applied by the source and sink electrodes, and the current flowing through the ground electrode. Frequencies are programmable from 10 kHz to 2 MHz with a resolution of 2 mHz. Characterization tests were performed with a precision mesh phantom connected to the scan-head. For a 5 Hz frame rate, the mean signal-to-noise ratio and accuracy are, respectively, 43 dB and 95.4% for eight frequencies logarithmically spaced from 70 to 950 kHz. In vitro and in vivo time-difference images have been reconstructed.

  9. Wideband optical vector network analyzer based on optical single-sideband modulation and optical frequency comb. (United States)

    Xue, Min; Pan, Shilong; He, Chao; Guo, Ronghui; Zhao, Yongjiu


    A novel approach to increase the measurement range of the optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation is proposed and experimentally demonstrated. In the proposed system, each comb line in an optical frequency comb (OFC) is selected by an optical filter and used as the optical carrier for the OSSB-based OVNA. The frequency responses of an optical device-under-test (ODUT) are thus measured channel by channel. Because the comb lines in the OFC have fixed frequency spacing, by fitting the responses measured in all channels together, the magnitude and phase responses of the ODUT can be accurately achieved in a large range. A proof-of-concept experiment is performed. A measurement range of 105 GHz and a resolution of 1 MHz is achieved when a five-comb-line OFC with a frequency spacing of 20 GHz is applied to measure the magnitude and phase responses of a fiber Bragg grating.

  10. a Thz Photomixing Synthesizer Based on a Fiber Frequency Comb for High Resolution Rotational Spectroscopy (United States)

    Hindle, Francis; Mouret, Gael; Cuisset, Arnaud; Yang, Chun; Eliet, Sophie; Bocquet, Robin


    To date the principal application for photomixing sources has been for high resolution spectroscopy of gases due to the large tuning range and spectral purity. New Developments of the Opto-Electronic THz Spectrometer have been performed in order to obtain a powerful tool for High-Resolution Spectroscopy. The combination of two extended cavity laser diodes and fast charge carrier lifetime semiconductor materials has allowed a continuous-wave THz spectrometer to be constructed based on optical heterodyning. Unlike many THz sources, this instrument gives access to all frequencies in the range 0.3 to 3.5 THz with a resolution of 1 MHz. The main spectroscopic applications of this spectrometer were dedicated to line profile analysis of rotational transitions referenced in the spectroscopic databases. One limitation of the THz spectrometer was accuracy with which the generated frequency is known. Recently, this obstacle has been circled with the construction of a photomixing spectrometer where the two pump lasers are phase locked to two modes of a repetition rate stabilized frequency doubled fiber laser frequency comb. In order to achieve a tuning range in excess to 100 MHz a third cw laser was required in the new configuration of the THz spectrometer. To assess the performances of this instrument, the frequencies of the pure rotational transitions of OCS molecules have been measured between 0,8 to 1,2 THz. A rms inferior to 100 kHz, deduced from the frequencies measured, demonstrates that the THz photomixing synthesizer is now able to be competitive with microwave and submillimeter techniques. S. Matton, F. Rohart, R. Bocquet, D. Bigourd, A. Cuisset, F. Hindle, G. Mouret, J. Mol. Spectrosc., 2006, 239: 182. C. Yang, J. Buldyreva, I. E. Gordon, F. Rohart, A. Cuisset, G. Mouret, R. Bocquet, F. Hindle, J. Quant. Spectrosc. Radiat. Transfer, 2008, 109: 2857. G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, D. Rovera, Opt. Express, 2009, 17: 22031.

  11. Low frequency noise of gallium nitride-based deep ultraviolet light emitting diodes (United States)

    Sawyer, Shayla Maya Louise

    This study covers the investigation of deep UV GaN-based light emitting diodes using low frequency noise characterization. Using this technique, device improvements were analyzed as feedback to developers and practical parameters were created for system use. AlGaN LEDs emit wavelengths into the deep UV spectral region (lambda food and water sterilization, non-line-of-sight short range communication, counterfeit identification, photolithography, and general white lighting. The current technological trend demonstrates a decrease in material quality and device performance with decreasing wavelength. However, progress has allowed for its commercialization in a relatively short period of time. Characterization of material and device improvements provides feedback for changes in development. Secondly, methods to determine the reliability and stability of these devices are essential to the applications for which they are used. One such method is through optical and current low frequency noise (LFN) measurements in which both system related parameters such as a signal-to-noise ratio for light sources and insight into the fundamental physics within the devices can be determined. The quality of the device can be compared before costly integration into systems that require low noise, high reliability, and optical stability. It not only quantifies performance limiting noise levels, but it is known to be a sensitive, nondestructive measure of material quality and reliability. The research highlighted in this thesis demonstrates a new measurement technique in analyzing the light intensity fluctuations through low frequency optical noise. From this work, a proposed figure-of-merit is presented. Low frequency current noise was performed as a well known indicator of material quality. Each technique compares LEDs grown by SET Inc. LEDs of varying wavelengths along the UV spectrum, with different growth methods and device structures. The cross-correlation between optical and current

  12. Power MOSFET-diode-based limiter for high-frequency ultrasound systems. (United States)

    Choi, Hojong; Kim, Min Gon; Cummins, Thomas M; Hwang, Jae Youn; Shung, K Kirk


    The purpose of the limiter circuits used in the ultrasound imaging systems is to pass low-voltage echo signals generated by ultrasonic transducers while preventing high-voltage short pulses transmitted by pulsers from damaging front-end circuits. Resistor-diode-based limiters (a 50 Ω resistor with a single cross-coupled diode pair) have been widely used in pulse-echo measurement and imaging system applications due to their low cost and simple architecture. However, resistor-diode-based limiters may not be suited for high-frequency ultrasound transducer applications since they produce large signal conduction losses at higher frequencies. Therefore, we propose a new limiter architecture utilizing power MOSFETs, which we call a power MOSFET-diode-based limiter. The performance of a power MOSFET-diode-based limiter was evaluated with respect to insertion loss (IL), total harmonic distortion (THD), and response time (RT). We compared these results with those of three other conventional limiter designs and showed that the power MOSFET-diode-based limiter offers the lowest IL (-1.33 dB) and fastest RT (0.10 µs) with the lowest suppressed output voltage (3.47 Vp-p) among all the limiters at 70 MHz. A pulse-echo test was performed to determine how the new limiter affected the sensitivity and bandwidth of the transducer. We found that the sensitivity and bandwidth of the transducer were 130% and 129% greater, respectively, when combined with the new power MOSFET-diode-based limiter versus the resistor-diode-based limiter. Therefore, these results demonstrate that the power MOSFET-diode-based limiter is capable of producing lower signal attenuation than the three conventional limiter designs at higher frequency operation. © The Author(s) 2014.

  13. [Application of the computer-based respiratory sound analysis system based on Mel-frequency cepstral coefficient and dynamic time warping in healthy children]. (United States)

    Yan, W Y; Li, L; Yang, Y G; Lin, X L; Wu, J Z


    We designed a computer-based respiratory sound analysis system to identify pediatric normal lung sound. To verify the validity of the computer-based respiratory sound analysis system. First we downloaded the standard lung sounds from the network database (website: http: // and recorded 3 samples of abnormal loud sound (rhonchi, wheeze and crackles) from three patients of The Department of Pediatrics, the First Affiliated Hospital of Xiamen University. We regarded such lung sounds as"reference lung sounds". The"test lung sounds"were recorded from 29 children form Kindergarten of Xiamen University. we recorded lung sound by portable electronic stethoscope and valid lung sounds were selected by manual identification. We introduced Mel-frequency cepstral coefficient (MFCC) to extract lung sound features and dynamic time warping (DTW) for signal classification. We had 39 standard lung sounds, recorded 58 test lung sounds. This computer-based respiratory sound analysis system was carried out in 58 lung sound recognition, correct identification of 52 times, error identification 6 times. Accuracy was 89.7%. Based on MFCC and DTW, our computer-based respiratory sound analysis system can effectively identify healthy lung sounds of children (accuracy can reach 89.7%), fully embodies the reliability of the lung sounds analysis system.

  14. Accounting standards and earnings management : The role of rules-based and principles-based accounting standards and incentives on accounting and transaction decisions

    NARCIS (Netherlands)

    Beest, van F.


    This book examines the effect that rules-based and principles-based accounting standards have on the level and nature of earnings management decisions. A cherry picking experiment is conducted to test the hypothesis that a substitution effect is expected from accounting decisions to transaction

  15. Teaching Standard English Usage: A Dialect-Based Approach. (United States)

    Schierloh, Jane McCabe


    In a Cleveland (Ohio) program, writing instruction for adults who speak nonstandard English is based on respect for students' spoken language as a dialect. Adapting foreign language instructional techniques such as translation, teachers avoided formal grammar terms and used extensive oral practice. (SK)

  16. On-Chip Power-Combining for High-Power Schottky Diode Based Frequency Multipliers (United States)

    Siles Perez, Jose Vicente (Inventor); Chattopadhyay, Goutam (Inventor); Lee, Choonsup (Inventor); Schlecht, Erich T. (Inventor); Jung-Kubiak, Cecile D. (Inventor); Mehdi, Imran (Inventor)


    A novel MMIC on-chip power-combined frequency multiplier device and a method of fabricating the same, comprising two or more multiplying structures integrated on a single chip, wherein each of the integrated multiplying structures are electrically identical and each of the multiplying structures include one input antenna (E-probe) for receiving an input signal in the millimeter-wave, submillimeter-wave or terahertz frequency range inputted on the chip, a stripline based input matching network electrically connecting the input antennas to two or more Schottky diodes in a balanced configuration, two or more Schottky diodes that are used as nonlinear semiconductor devices to generate harmonics out of the input signal and produce the multiplied output signal, stripline based output matching networks for transmitting the output signal from the Schottky diodes to an output antenna, and an output antenna (E-probe) for transmitting the output signal off the chip into the output waveguide transmission line.

  17. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors

    Directory of Open Access Journals (Sweden)

    John G. Baker


    Full Text Available We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10^{-5} – 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  18. Displacement sensor based on intra-cavity tuning of dual-frequency gas laser (United States)

    Niu, Haisha; Niu, Yanxiong; Liu, Ning; Li, Jiyang


    A nanometer-resolution displacement measurement instrument based on tunable cavity frequency-splitting method is presented. One beam is split into two orthogonally polarized beams when anisotropic element inserted in the cavity. The two beams with fixed frequency difference are modulated by the movement of the reflection mirror. The changing law of the power tuning curves between the total output and the two orthogonally polarized beams is researched, and a method splitting one tuning cycle to four equal parts is proposed based on the changing law, each part corresponds to one-eighth wavelength of displacement. A laser feedback interferometer (LFI) and piezoelectric ceramic are series connected to the sensor head to calibrate the displacement that less than one-eighth wavelength. The displacement sensor achieves to afford measurement range of 20mm with resolution of 6.93nm.

  19. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors. (United States)

    Gair, Jonathan R; Vallisneri, Michele; Larson, Shane L; Baker, John G


    We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10 -5 - 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  20. Degradation Behaviour of Lithium-Ion Batteries based on Field Measured Frequency Regulation Mission Profile

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Swierczynski, Maciej Jozef; Stroe, Ana-Irina


    is required. This paper aims to investigate, based on a laboratory developed lifetime model, the degradation behaviour of the performance parameters (i.e., capacity and power capability) of a Lithium-ion battery cell when it is subjected to a field measured mission profile, which is characteristic......Energy storage systems based on Lithium-ion batteries have been proposed as an environmental friendly alternative to traditional conventional generating units for providing grid frequency regulation. One major challenge regarding the use of Lithium-ion batteries in such applications is their cost...... competitiveness in comparison to other storage technologies or with the traditional frequency regulation methods. In order to surpass this challenge and to allow for optimal sizing and proper use of the battery, accurate knowledge about the lifetime of the Lithium-ion battery and its degradation behaviour...

  1. F-state quenching with CH4 for buffer-gas cooled 171Y b+ frequency standard

    Directory of Open Access Journals (Sweden)

    Y.-Y. Jau


    Full Text Available We report that methane, CH4, can be used as an efficient F-state quenching gas for trapped ytterbium ions. The quenching rate coefficient is measured to be (2.8 ± 0.3 × 106 s−1 Torr−1. For applications that use microwave hyperfine transitions of the ground-state 171Y b ions, the CH4 induced frequency shift coefficient and the decoherence rate coefficient are measured as δν/ν = (−3.6 ± 0.1 × 10−6 Torr−1 and 1/T2 = (1.5 ± 0.2 × 105 s−1 Torr−1. In our buffer-gas cooled 171Y b+ microwave clock system, we find that only ≤10−8 Torr of CH4 is required under normal operating conditions to efficiently clear the F-state and maintain ≥85% of trapped ions in the ground state with insignificant pressure shift and collisional decoherence of the clock resonance.

  2. On employing H216O, H217O, H218O, and D216O lines as frequency standards in the 15-170 cm-1 window

    International Nuclear Information System (INIS)

    Furtenbacher, Tibor; Csaszar, Attila G.


    The protocol MARVEL, standing for measured active rotational-vibrational energy levels, is used to study high-accuracy measurements of rotational lines of four isotopologues of water, H 2 16 O, H 2 17 O, H 2 18 O, and D 2 16 O, obtained by spectroscopy in the far-infrared (FIR) region of 15-170 cm -1 by Matsushima et al. [Matsushima F, Odashima H, Iwasaki T, Tsunekawa S, Takagi K. Frequency measurement of pure rotational transitions of H 2 O from 0.5 to 5 THz. J Mol Struct 1995; 352/353, 371-8; Matsushima F, Nagase H, Nakauchi T, Odashima H, Takagi K. Frequency measurement of pure rotational transitions of H 2 17 O and H 2 18 O from 0.5 to 5 THz. J Mol Spectrosc 1999;193: 217-23; Matsushima F, Matsunaga M, Qian GY, Ohtaki Y, Wang RL, Takagi K. Frequency measurement of pure rotational transitions of D 2 O from 0.5 to 5 THz. J Mol Spectrosc 2001;206: 41-6; Matsushima F, Tomatsu N, Nagai T, Moriwaki Y, Takagi K. Frequency measurement of pure rotational transitions in the v 2 =1 state of H 2 O. J Mol Spectrosc 2006;235: 190-5]. MARVEL validates the high accuracy of most of the measured line positions. It results in a considerable number of energy levels with an average internal uncertainty of only 40 kHz (2σ). It also supports serious inaccuracy problems when Watson-type A-reduced Hamiltonians are used for predicting the highly accurate rotational measurements for water. Finally, MARVEL suggests a large number of para-water levels, for example 41 for H 2 16 O, which are candidates for becoming frequency standards in the FIR region of 15-170 cm -1 (the 0.5-5 THz window) when an accuracy of about 0.1 MHz is deemed to be sufficient





    This paper presents a low power, high slew rate, high gain, ultra wide band two stage CMOS cascode operational amplifier for radio frequency application. Current mirror based cascoding technique and pole zero cancelation technique is used to ameliorate the gain and enhance the unity gain bandwidth respectively, which is the novelty of the circuit. In cascading technique a common source transistor drive a common gate transistor. The cascoding is used to enhance the output resistance and hence ...

  4. Pulse Retrieval Algorithm for Interferometric Frequency-Resolved Optical Gating Based on Differential Evolution


    Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter


    A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove robustness of the algorithm against experimental artifacts and noise. These tests show that the i...

  5. Radio frequency identification and time-driven activity based costing:RFID-TDABC application in warehousing


    Bahr, Witold; Price, Brian J


    Purpose: This paper extends the use of Radio Frequency Identification (RFID) data for accounting of warehouse costs and services. Time Driven Activity Based Costing (TDABC) methodology is enhanced with the real-time collected RFID data about duration of warehouse activities. This allows warehouse managers to have accurate and instant calculations of costs. The RFID enhanced TDABC (RFID-TDABC) is proposed as a novel application of the RFID technology. Research Approach: Application of RFID-TDA...

  6. Early Seizure Detection by Applying Frequency-Based Algorithm Derived from the Principal Component Analysis. (United States)

    Lee, Jiseon; Park, Junhee; Yang, Sejung; Kim, Hani; Choi, Yun Seo; Kim, Hyeon Jin; Lee, Hyang Woon; Lee, Byung-Uk


    The use of automatic electrical stimulation in response to early seizure detection has been introduced as a new treatment for intractable epilepsy. For the effective application of this method as a successful treatment, improving the accuracy of the early seizure detection is crucial. In this paper, we proposed the application of a frequency-based algorithm derived from principal component analysis (PCA), and demonstrated improved efficacy for early seizure detection in a pilocarpine-induced epilepsy rat model. A total of 100 ictal electroencephalographs (EEG) during spontaneous recurrent seizures from 11 epileptic rats were finally included for the analysis. PCA was applied to the covariance matrix of a conventional EEG frequency band signal. Two PCA results were compared: one from the initial segment of seizures (5 sec of seizure onset) and the other from the whole segment of seizures. In order to compare the accuracy, we obtained the specific threshold satisfying the target performance from the training set, and compared the False Positive (FP), False Negative (FN), and Latency (Lat) of the PCA based feature derived from the initial segment of seizures to the other six features in the testing set. The PCA based feature derived from the initial segment of seizures performed significantly better than other features with a 1.40% FP, zero FN, and 0.14 s Lat. These results demonstrated that the proposed frequency-based feature from PCA that captures the characteristics of the initial phase of seizure was effective for early detection of seizures. Experiments with rat ictal EEGs showed an improved early seizure detection rate with PCA applied to the covariance of the initial 5 s segment of visual seizure onset instead of using the whole seizure segment or other conventional frequency bands.

  7. Impedance-Based High Frequency Resonance Analysis of DFIG System in Weak Grids


    Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede


    The impedance-based model of Doubly Fed Induction Generator (DFIG) systems, including the rotor part (Rotor Side Converter (RSC) and induction machine), and the grid part (Grid Side Converter (GSC) and its output filter), has been developed for analysis and mitigation of the Sub- Synchronous Resonance (SSR). However, the High Frequency Resonance (HFR) of DFIG systems due to the impedance interaction between DFIG system and parallel compensated weak network is often overlooked. This paper thus...

  8. Consumer Product Perceptions and Salmon Consumption Frequency: The Role of Heterogeneity Based on Food Lifestyle Segments


    Yuko Onozaka; Håvard Hansen; Arne Sørvig


    Seafood consumers are vastly heterogeneous in terms of their knowledge, confidence, and perceptions about seafood. This article examines the relationship between consumer perceptions (healthiness, value for money, and convenience) and salmon consumption frequencies while modeling unobserved consumer heterogeneity by segmenting consumers based on their food-related lifestyle. We employ latent class analysis (LCA) that embeds the structural equation modeling (SEM) to ensure the latent nature of...

  9. Comparison of visual field test results obtained through Humphrey matrix frequency doubling technology perimetry versus standard automated perimetry in healthy children

    Directory of Open Access Journals (Sweden)

    Sibel Kocabeyoglu


    Full Text Available Aims : The aim of this study was to compare the visual field test results in healthy children obtained via the Humphrey matrix 24-2 threshold program and standard automated perimetry (SAP using the Swedish interactive threshold algorithm (SITA-Standard 24-2 test. Materials and Methods: This prospective study included 55 healthy children without ocular or systemic disorders who underwent both SAP and frequency doubling technology (FDT perimetry visual field testing. Visual field test reliability indices, test duration, global indices (mean deviation [MD], and pattern standard deviation [PSD] were compared between the 2 tests using the Wilcoxon signed-rank test and paired t-test. The performance of the Humphrey field analyzer (HFA 24-2 SITA-standard and frequency-doubling technology Matrix 24-2 tests between genders were compared with Mann-Whitney U-test. Results: Fifty-five healthy children with a mean age of 12.2 ± 1.9 years (range from 8 years to 16 years were included in this prospective study. The test durations of SAP and FDT were similar (5.2 ± 0.5 and 5.1 ± 0.2 min, respectively, P = 0.651. MD and the PSD values obtained via FDT Matrix were significantly higher than those obtained via SAP (P < 0.001, and fixation losses and false negative errors were significantly less with SAP (P < 0.05. A weak positive correlation between the two tests in terms of MD (r = 0.352, P = 0.008 and PSD (r = 0.329, P = 0.014 was observed. Conclusion: Children were able to complete both the visual test algorithms successfully within 6 min. However, SAP testing appears to be associated with less depression of the visual field indices of healthy children. FDT Matrix and SAP should not be used interchangeably in the follow-up of children.

  10. A novel biomarker of amnestic MCI based on dynamic Cross-Frequency Coupling patterns during cognitive brain responses

    Directory of Open Access Journals (Sweden)

    Stavros I Dimitriadis


    Full Text Available The detection of mild cognitive impairment (MCI, the transitional stage between normal cognitive changes of aging and the cognitive decline caused by AD, is of paramount clinical importance, since MCI patients are at increased risk of progressing into AD. Electroencephalographic (EEG alterations in the spectral content of brainwaves and connectivity at resting state have been associated with early-stage AD. Recently, cognitive event-related potentials (ERPs have entered into the picture as an easy to perform screening test. Motivated by the recent findings about the role of cross-frequency coupling (CFC in cognition, we introduce a relevant methodological approach for detecting MCI based on cognitive responses from a standard auditory oddball paradigm. By using the single trial signals recorded at Pz sensor and comparing the responses to target and non-target stimuli, we first demonstrate that increased CFC is associated with the cognitive task. Then, considering the dynamic character of CFC, we identify instances during which the coupling between particular pairs of brainwave frequencies carries sufficient information for discriminating between normal subjects and patients with MCI. In this way, we form a multiparametric signature of impaired cognition. The new composite biomarker was tested using data from a cohort that consists of 25 amnestic MCI patients and 15 age-matched controls. Standard machine-learning algorithms were employed so as to implement the binary classification task. Based on leave-one-out cross-validation, the measured classification rate was found reaching very high levels (95%. Our approach compares favorably with the traditional alternative of using the morphology of averaged ERP response to make the diagnosis and the usage of features from spectro-temporal analysis of single-trial response. This further indicates that task-related CFC measurements can provide invaluable analytics in AD diagnosis and prognosis.

  11. Bipolar-power-transistor-based limiter for high frequency ultrasound imaging systems. (United States)

    Choi, Hojong; Yang, Hao-Chung; Shung, K Kirk


    High performance limiters are described in this paper for applications in high frequency ultrasound imaging systems. Limiters protect the ultrasound receiver from the high voltage (HV) spikes produced by the transmitter. We present a new bipolar power transistor (BPT) configuration and compare its design and performance to a diode limiter used in traditional ultrasound research and one commercially available limiter. Limiter performance depends greatly on the insertion loss (IL), total harmonic distortion (THD) and response time (RT), each of which will be evaluated in all the limiters. The results indicated that, compared with commercial limiter, BPT-based limiter had less IL (-7.7 dB), THD (-74.6 dB) and lower RT (43 ns) at 100 MHz. To evaluate the capability of these limiters, they were connected to a 100 MHz single element transducer and a two-way pulse-echo test was performed. It was found that the -6 dB bandwidth and sensitivity of the transducer using BPT-based limiter were better than those of the commercial limiter by 22% and 140%, respectively. Compared to the commercial limiter, BPT-based limiter is shown to be capable of minimizing signal attenuation, RT and THD at high frequencies and is thus suited for high frequency ultrasound applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Frequency Monitoring and Control during Power System Restoration Based on Wide Area Measurement System

    Directory of Open Access Journals (Sweden)

    Saber Nourizadeh


    Full Text Available Frequency control during power system restoration has not been strongly addressed. Operators are often concerned with the offline sizing of load and generation steps, but, nowadays, the introduction of Wide Area Measurement System (WAMS makes it possible to monitor the stability of power system online. The constraints of WAMS operation result in some changes in power system frequency control. This paper proposes a novel methodology for frequency control and monitoring during the early steps of power system restoration based on WAMS. Detailed load modeling is achieved based on the static load modeling approach. Power generators' modeling is also accomplished utilizing the single machine equivalent of the power system based on PMU measurements. Simulation results of the presented methodology on the 39 bus New England power system clearly show the effectiveness and applicability of the proposed method. The simulation results show that the presented approach has a completely acceptable precision and an outstanding speed with less than 0.05% error. The outstanding speed of the presented approach along with the result precision will result in a great promotion in power system restoration methodologies.

  13. Proposed Volume Standards for 2018, and the Biomass-Based Diesel Volume for 2019 (United States)

    EPA proposed volume requirements under the Renewable Fuel Standard (RFS) program for 2018 for cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel, and biomass-based diesel for 2019 under the RFS.

  14. A Method for Measurement of Nonlinearity of Laser Interferometer Based on Optical Frequency Tuning

    Directory of Open Access Journals (Sweden)

    Zhenyu Zhu


    Full Text Available A method for measuring the nonlinearity of laser interferometer using optical frequency tuning technique is presented in this paper. The basic principle of this method is to make the fractional part of an interference fringe change by tuning the laser frequency and determining the nonlinearity of interferometer by comparing the fractional fringe change measured by the interferometer to that calculated from the laser frequency change. An experimental interferometric system with a wavelength tunable laser source is set up and the nonlinearity of the interferometer is measured. Since it does not require the precise displacement mechanism to produce the optical path difference change, this method is more convenient to use and may achieve a higher accuracy than the conventional measurement methods. The nonlinearity of the arbitrary interferometric phase can be measured by changing the laser frequency with this method. Experiments results have shown that the repeatability of nonlinearity measurement is less than 0.2 nm. This method can be applied to interferometry-based high precision dimensional measurements, such as coordinate measurement and displacement sensor calibration.

  15. Development of a Flow Injection Based High Frequency Dual Channel Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Jinxing Liang


    Full Text Available When the quartz crystal microbalance (QCM is used in liquid for adsorption or desorption monitoring based bio- or chemical sensing applications, the frequency shift is not only determined by the surface mass change, but also by the change of liquid characteristics, such as density and viscosity, which are greatly affected by the liquid environmental temperature. A monolithic dual-channel QCM is designed and fabricated by arranging two QCM resonators on one single chip for cancelling the fluctuation induced by environmental factors. In actual applications, one QCM works as a specific sensor by modifying with functional membranes and the other acts as a reference, only measuring the liquid property. The dual-channel QCM is designed with an inverted-mesa structure, aiming to realize a high frequency miniaturized chip and suppress the frequency interference between the neighbored QCM resonators. The key problem of dual-channel QCMs is the interference between two channels, which is influenced by the distance of adjacent resonators. The diameter of the reference electrode has been designed into several values in order to find the optimal parameter. Experimental results demonstrated that the two QCMs could vibrate individually and the output frequency stability and drift can be greatly improved with the aid of the reference QCM.

  16. Powering autonomous sensors with miniaturized piezoelectric based energy harvesting devices operating at very low frequency

    International Nuclear Information System (INIS)

    Ferin, G; Bantignies, C; Khanh, H Le; Flesch, E; Nguyen-Dinh, A


    Harvesting energy from ambient mechanical vibrations is a smart and efficient way to power autonomous sensors and support innovative developments in IoT (Internet of Things), WSN (Wireless Sensor Network) and even implantable medical devices. Beyond the environmental operating conditions, efficiency of such devices is mainly related to energy source properties like the amplitude of vibrations and its spectral contain and some of these applications exhibit a quite low frequency spectrum where harvesting surrounding mechanical energy make sense, typically 5-50Hz for implantable medical devices or 50Hz-150Hz for industrial machines. Harvesting such low frequency vibrations is a challenge since it leads to adapt the resonator geometries to the targeted frequency or to use out-off band indirect harvesting strategies. In this paper we present a piezoelectric based vibrational energy harvesting device (PEH) which could be integrated into a biocompatible package to power implantable sensor or therapeutic medical devices. The presented architecture is a serial bimorph laminated with ultra-thinned (ranging from 15μm to 100μm) outer PZT “skins” that could operate at a “very low frequency”, below 25Hz typically. The core process flow is disclosed and performances highlighted with regards to other low frequency demonstrations. (paper)

  17. Powering autonomous sensors with miniaturized piezoelectric based energy harvesting devices operating at very low frequency (United States)

    Ferin, G.; Bantignies, C.; Le Khanh, H.; Flesch, E.; Nguyen-Dinh, A.


    Harvesting energy from ambient mechanical vibrations is a smart and efficient way to power autonomous sensors and support innovative developments in IoT (Internet of Things), WSN (Wireless Sensor Network) and even implantable medical devices. Beyond the environmental operating conditions, efficiency of such devices is mainly related to energy source properties like the amplitude of vibrations and its spectral contain and some of these applications exhibit a quite low frequency spectrum where harvesting surrounding mechanical energy make sense, typically 5-50Hz for implantable medical devices or 50Hz-150Hz for industrial machines. Harvesting such low frequency vibrations is a challenge since it leads to adapt the resonator geometries to the targeted frequency or to use out-off band indirect harvesting strategies. In this paper we present a piezoelectric based vibrational energy harvesting device (PEH) which could be integrated into a biocompatible package to power implantable sensor or therapeutic medical devices. The presented architecture is a serial bimorph laminated with ultra-thinned (ranging from 15μm to 100μm) outer PZT “skins” that could operate at a “very low frequency”, below 25Hz typically. The core process flow is disclosed and performances highlighted with regards to other low frequency demonstrations.

  18. Transformative Shifts in Art History Teaching: The Impact of Standards-Based Assessment (United States)

    Ormond, Barbara


    This article examines pedagogical shifts in art history teaching that have developed as a response to the implementation of a standards-based assessment regime. The specific characteristics of art history standards-based assessment in the context of New Zealand secondary schools are explained to demonstrate how an exacting form of assessment has…

  19. A standard protocol for describing individual-based and agent-based models (United States)

    Grimm, Volker; Berger, Uta; Bastiansen, Finn; Eliassen, Sigrunn; Ginot, Vincent; Giske, Jarl; Goss-Custard, John; Grand, Tamara; Heinz, Simone K.; Huse, Geir; Huth, Andreas; Jepsen, Jane U.; Jorgensen, Christian; Mooij, Wolf M.; Muller, Birgit; Pe'er, Guy; Piou, Cyril; Railsback, Steven F.; Robbins, Andrew M.; Robbins, Martha M.; Rossmanith, Eva; Ruger, Nadja; Strand, Espen; Souissi, Sami; Stillman, Richard A.; Vabo, Rune; Visser, Ute; DeAngelis, Donald L.


    Simulation models that describe autonomous individual organisms (individual based models, IBM) or agents (agent-based models, ABM) have become a widely used tool, not only in ecology, but also in many other disciplines dealing with complex systems made up of autonomous entities. However, there is no standard protocol for describing such simulation models, which can make them difficult to understand and to duplicate. This paper presents a proposed standard protocol, ODD, for describing IBMs and ABMs, developed and tested by 28 modellers who cover a wide range of fields within ecology. This protocol consists of three blocks (Overview, Design concepts, and Details), which are subdivided into seven elements: Purpose, State variables and scales, Process overview and scheduling, Design concepts, Initialization, Input, and Submodels. We explain which aspects of a model should be described in each element, and we present an example to illustrate the protocol in use. In addition, 19 examples are available in an Online Appendix. We consider ODD as a first step for establishing a more detailed common format of the description of IBMs and ABMs. Once initiated, the protocol will hopefully evolve as it becomes used by a sufficiently large proportion of modellers.

  20. Performance analysis on quality of optical frequency comb generated by the recirculating frequency shifter based on linear IQ modulator (United States)

    Sun, Lu; Li, Jianping; Lin, Jiachuan; Xi, Lixia; Tang, Xianfeng; Zhang, Xiaoguang


    An optical frequency comb generator using a modified single-sideband recirculating frequency shifter scheme adopting a linear IQ modulator as the kernel device (SSB-RFS-LIQM) is proposed. The optical comb lines generated by the proposed scheme possess good features such as extreme flatness and high optical signal-to-noise ratio (OSNR), compared to the quality we can obtain when we use a conventional IQ modulator in the SSB-RFS structure (called SSB-RFS-CIQM scheme). The mechanism of how the SSB-RFS-LIQM works is carefully analyzed with analytical and numerical methods. With the capability of strong suppression of high-order crosstalk and less demand of the gain of erbium-doped fiber amplifiers (and hence less amplified spontaneous noise induced) in the loop, 5.5 dB OSNR improvement can be achieved when 100 extreme flat comb lines are generated using the SSB-RFS-LIQM scheme compared to using the SSB-RFS-CIQM scheme.

  1. Standardized computer-based organized reporting of EEG:SCORE

    DEFF Research Database (Denmark)

    Beniczky, Sandor; H, Aurlien,; JC, Brøgger,


    in free-text format. The purpose of our endeavor was to create a computer-based system for EEG assessment and reporting, where the physicians would construct the reports by choosing from predefined elements for each relevant EEG feature, as well as the clinical phenomena (for video-EEG recordings....... SCORE can potentially improve the quality of EEG assessment and reporting; it will help incorporate the results of computer-assisted analysis into the report, it will make possible the build-up of a multinational database, and it will help in training young neurophysiologists....

  2. Features of endometrial cancer in patients with 'metabolically healthy' versus 'standard' obesity: the decreasing frequency of metabolically healthy obesity. (United States)

    Berstein, Lev M; Poroshina, Tatyana E; Turkevich, Elena A; Vasilyev, Dmitry A; Baltrukova, Alexandra N; Kovalenko, Irina M; Berlev, Igor V


    As endometrial cancer (EC) prevalence increases with obesity, we aimed to determine whether EC characteristics depend upon obesity type: 'standard' (SO) or 'metabolically healthy obesity' (MHO). 258 EC patients were included. Data on anthropometry, blood hormones, lipids and glucose, and tumor features were collected. EC clinicopathologic characteristics and clinical stage correlate differently with BMI and obesity type. BMI is related inversely with tumor grade while SO patients are characterized by a more advanced clinical stage than those with MHO. Besides typical insulin resistance signs, EC patients with SO often display a higher serum leptin/adiponectin ratio compared with MHO patients. Historical data suggest a gradual increase in EC patient height and weight, and a decrease in MHO prevalence. It is currently unknown whether the latter observation reflects the evolution of EC, or obesity alongside the current epidemic. Regardless, the reduced MHO prevalence demonstrates the need for more intensive preventive measures aimed at obesity and obesity-associated conditions, including different EC subtypes.

  3. Scenario-based stochastic optimal operation of wind, photovoltaic, pump-storage hybrid system in frequency- based pricing

    International Nuclear Information System (INIS)

    Zare Oskouei, Morteza; Sadeghi Yazdankhah, Ahmad


    Highlights: • Two-stage objective function is proposed for optimization problem. • Hourly-based optimal contractual agreement is calculated. • Scenario-based stochastic optimization problem is solved. • Improvement of system frequency by utilizing PSH unit. - Abstract: This paper proposes the operating strategy of a micro grid connected wind farm, photovoltaic and pump-storage hybrid system. The strategy consists of two stages. In the first stage, the optimal hourly contractual agreement is determined. The second stage corresponds to maximizing its profit by adapting energy management strategy of wind and photovoltaic in coordination with optimum operating schedule of storage device under frequency based pricing for a day ahead electricity market. The pump-storage hydro plant is utilized to minimize unscheduled interchange flow and maximize the system benefit by participating in frequency control based on energy price. Because of uncertainties in power generation of renewable sources and market prices, generation scheduling is modeled by a stochastic optimization problem. Uncertainties of parameters are modeled by scenario generation and scenario reduction method. A powerful optimization algorithm is proposed using by General Algebraic Modeling System (GAMS)/CPLEX. In order to verify the efficiency of the method, the algorithm is applied to various scenarios with different wind and photovoltaic power productions in a day ahead electricity market. The numerical results demonstrate the effectiveness of the proposed approach.

  4. Joint DOA and Fundamental Frequency Estimation Methods based on 2-D Filtering

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Christensen, Mads Græsbøll; Jensen, Søren Holdt


    methods are well-suited for solving the joint estimation problem. Furthermore, it is shown that the methods are able to resolve signals separated sufficiently in only one dimension. In the case of closely spaced sources, however, the 2-D Capon-based method shows the best performance....... of the fundamental frequency and the DOA of spatio-temporarily sampled periodic signals. The first and simplest method is based on the 2-D periodogram, whereas the second method is a generalization of the 2-D Capon method. In the experimental part, both qualitative and quantitative measurements show that the proposed...

  5. Wavelet-Based Frequency Response Function: Comparative Study of Input Excitation

    Directory of Open Access Journals (Sweden)

    K. Dziedziech


    Full Text Available Time-variant systems can be found in many areas of engineering. It is widely accepted that the classical Fourier-based methods are not suitable for the analysis and identification of such systems. The time-variant frequency response function—based on the continuous wavelet transform—is used in this paper for the analysis of time-variant systems. The focus is on the comparative study of various broadband input excitations. The performance of the method is tested using simulated data from a simple MDOF system and experimental data from a frame-like structure.

  6. Direct Spectroscopy in Hollow Optical with Fiber-Based Optical Frequency Combs (United States)


    Perrella, P. S. Light, F. Benabid, and A. N. Luiten, "Towards a compact optical fibre clock," in Precision Electromagnetic Measurements (CPEM), 2010...AFRL-OSR-VA-TR-2015-0184 DIRECT SPECTROSCOPY IN HOLLOW OPTICAL WITH FIBER-BASED OPTICAL FREQUENCY COMBS Kristan Corwin KANSAS STATE UNIVERSITY Final...Performance 3.  DATES COVERED (From - To)      01-06-2011 to 31-05-2015 4.  TITLE AND SUBTITLE DIRECT SPECTROSCOPY IN HOLLOW OPTICAL WITH FIBER-BASED

  7. X-ray spatial frequency heterodyne imaging of protein-based nanobubble contrast agents. (United States)

    Rand, Danielle; Uchida, Masaki; Douglas, Trevor; Rose-Petruck, Christoph


    Spatial Frequency Heterodyne Imaging (SFHI) is a novel x-ray scatter imaging technique that utilizes nanoparticle contrast agents. The enhanced sensitivity of this new technique relative to traditional absorption-based x-ray radiography makes it promising for applications in biomedical and materials imaging. Although previous studies on SFHI have utilized only metal nanoparticle contrast agents, we show that nanomaterials with a much lower electron density are also suitable. We prepared protein-based "nanobubble" contrast agents that are comprised of protein cage architectures filled with gas. Results show that these nanobubbles provide contrast in SFHI comparable to that of gold nanoparticles of similar size.

  8. Development of an international standard on instruments setpoints based on ISA S67.04 - 1994

    International Nuclear Information System (INIS)

    Quinn, E.L.


    This is a summary of the application for and development of an international standard on instrument setpoints, based on the Instrument Society of America (ISA) Standard S67.04 - 1994. The forum this new standard was proposed in is the International Electrotechnique Commission (IEC), based in Geneva, Switzerland, which is the international commission which oversees electrical and instrumentation standards for all applications around the world. The Instrument Society of America (ISA) is a United States based Society for the advancement of instrumentation and controls related science and technology and has 30,000 members. A division within the ISA is the Standard and Practices board which has over 5000 members actively involved in standards development and approval. In 1994, the ISA SP67, Nuclear Power Plant Standards Committee authorized that the IEC be approached to develop and issue an IEC standard on Instrument Setpoints. This application was formally submitted in January, 1995 to the IEC and approved for ballot to member countries in June, 1995. Approval for standard development by IEC was received in October, 1995 and the first draft vas issued in February, 1996, and is currently under review by the IEC working group. It is very important to focus on the approach that the U.S. and other countries are taking toward development of IEC standards that can apply to all nuclear instrumentation applications around the world. By referencing IEC standards in design specification, vendors can be solicited from many different countries, thereby ensuring that the highest quality products can be used. This also offsets the need to specify individual standards in the specification, based on the country that each vendor solicited, represents. In summary, this standard development process, with support from the American National Standards Institute (ANSI) will assist U.S. suppliers in competing in the global market for products and services into the next century. (author)

  9. Terahertz-Frequency Spin Hall Auto-oscillator Based on a Canted Antiferromagnet (United States)

    Sulymenko, O. R.; Prokopenko, O. V.; Tiberkevich, V. S.; Slavin, A. N.; Ivanov, B. A.; Khymyn, R. S.


    We propose a design of a terahertz-frequency signal generator based on a layered structure consisting of a current-driven platinum (Pt) layer and a layer of an antiferromagnet (AFM) with easy-plane anisotropy, where the magnetization vectors of the AFM sublattices are canted inside the easy plane by the Dzyaloshinskii-Moriya interaction (DMI). The dc electric current flowing in the Pt layer creates due to the spin Hall effect, a perpendicular spin current that, being injected in the AFM layer, tilts the DMI-canted AFM sublattices out of the easy plane, thus exposing them to the action of a strong internal exchange magnetic field of the AFM. The sublattice magnetizations, along with the small net magnetization vector mDMI of the canted AFM, start to rotate about the hard anisotropy axis of the AFM with the terahertz frequency proportional to the injected spin current and the AFM exchange field. The rotation of the small net magnetization mDMI results in the terahertz-frequency dipolar radiation that can be directly received by an adjacent (e.g., dielectric) resonator. We demonstrate theoretically that the radiation frequencies in the range f =0.05 - 2 THz are possible at the experimentally reachable magnitudes of the driving current density, and we evaluate the power of the signal radiated into different types of resonators. This power increases with the increase of frequency f , and it can exceed 1 μ W at f ˜0.5 THz for a typical dielectric resonator of the electric permittivity ɛ ˜10 and a quality factor Q ˜750 .

  10. Detection of damaged supports under railway track based on frequency shift (United States)

    Wang, Longqi; Zhang, Yao; Lie, Seng Tjhen


    In railway transportation systems, the tracks are usually fastened on sleepers which are supported by the ballast. A lot of research has been conducted to guarantee the safety of railway track because of its importance, and more concern is expressed about monitoring of track itself such as railway level and alignment. The ballast and fasteners which provide strong support to the railway track are important as well whereas the detection of loose or missing fasteners and damaged ballast mainly relies on visual inspection. Although it is reliable when the fastener is missing and the damaged ballast is on the surface, it provides less help if the fastener is only loose and the damaged ballast is under the sleepers, which are however frequently observed in practice. This paper proposes an approach based on frequency shift to identify the damaged supports including the loose or missing fasteners and damaged ballast. In this study, the rail-sleeper-ballast system is modeled as an Euler beam evenly supported by a series of springs, the stiffness of which are reduced when the fastener is loose or missing and the ballast under the sleepers is damaged. An auxiliary mass is utilized herein and when it is mounted on the beam, the natural frequencies of the whole system will change with respect to the location of the auxiliary mass. The auxiliary mass induced frequency shift is analyzed and it is found the natural frequencies change periodically when the supports are undamaged, whereas the periodicity will be broken due to damaged supports. In fact, the natural frequencies drop clearly when the auxiliary mass moves over the damaged support. A special damage index only using the information of the damaged states is proposed and both numerical and experimental examples are carried out to validate the proposed method.

  11. Calculation of shear stiffness in noise dominated magnetic resonance elastography data based on principal frequency estimation

    Energy Technology Data Exchange (ETDEWEB)

    McGee, K P; Lake, D; Mariappan, Y; Manduca, A; Ehman, R L [Department of Radiology, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905 (United States); Hubmayr, R D [Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905 (United States); Ansell, K, E-mail: [Schaeffer Academy, 2700 Schaeffer Lane NE, Rochester, MN 55906 (United States)


    Magnetic resonance elastography (MRE) is a non-invasive phase-contrast-based method for quantifying the shear stiffness of biological tissues. Synchronous application of a shear wave source and motion encoding gradient waveforms within the MRE pulse sequence enable visualization of the propagating shear wave throughout the medium under investigation. Encoded shear wave-induced displacements are then processed to calculate the local shear stiffness of each voxel. An important consideration in local shear stiffness estimates is that the algorithms employed typically calculate shear stiffness using relatively high signal-to-noise ratio (SNR) MRE images and have difficulties at an extremely low SNR. A new method of estimating shear stiffness based on the principal spatial frequency of the shear wave displacement map is presented. Finite element simulations were performed to assess the relative insensitivity of this approach to decreases in SNR. Additionally, ex vivo experiments were conducted on normal rat lungs to assess the robustness of this approach in low SNR biological tissue. Simulation and experimental results indicate that calculation of shear stiffness by the principal frequency method is less sensitive to extremely low SNR than previously reported MRE inversion methods but at the expense of loss of spatial information within the region of interest from which the principal frequency estimate is derived.

  12. Relationship between soft stratum thickness and predominant frequency of ground based on microtremor observation data (United States)

    Chia, Kenny; Lau, Tze Liang


    Despite categorized as low seismicity group, until being affected by distant earthquake ground motion from Sumatra and the recent 2015 Sabah Earthquake, Malaysia has come to realize that seismic hazard in the country is real and has the potential to threaten the public safety and welfare. The major concern in this paper is to study the effect of local site condition, where it could amplify the magnitude of ground vibration at sites. The aim for this study is to correlate the thickness of soft stratum with the predominant frequency of soil. Single point microtremor measurements were carried out at 24 selected points where the site investigation reports are available. Predominant period and frequency at each site are determined by Nakamura's method. The predominant period varies from 0.22 s to 0.98 s. Generally, the predominant period increases when getting closer to the shoreline which has thicker sediments. As far as the thickness of the soft stratum could influence the amplification of seismic wave, the advancement of micotremor observation to predict the thickness of soft stratum (h) from predominant frequency (fr) is of the concern. Thus an empirical relationship h =54.917 fr-1.314 is developed based on the microtremor observation data. The empirical relationship will be benefited in the prediction of thickness of soft stratum based on microtremor observation for seismic design with minimal cost compared to conventional boring method.

  13. Robust structural damage detection and localization based on joint approximate diagonalization technique in frequency domain (United States)

    Cao, Shancheng; Ouyang, Huajiang


    The structural characteristic deflection shapes (CDS’s) such as mode shapes and operational deflection shapes are highly sensitive to structural damage in beam- or plate-type structures. Nevertheless, they are vulnerable to measurement noise and could result in unacceptable identification errors. In order to increase the accuracy and noise robustness of damage identification based on CDS’s using vibration responses of random excitation, joint approximate diagonalization (JAD) technique and gapped smoothing method (GSM) are combined to form a sensitive and robust damage index (DI), which can simultaneously detect the existence of damage and localize its position. In addition, it is possible to apply this approach to damage identification of structures under ambient excitation. First, JAD method which is an essential technique of blind source separation is investigated to simultaneously diagonalize a set of power spectral density matrices corresponding to frequencies near a certain natural frequency to estimate a joint unitary diagonalizer. The columns of this joint diagonalizer contain dominant CDS’s. With the identified dominant CDS’s around different natural frequencies, GSM is used to extract damage features and a robust damage identification index is then proposed. Numerical and experimental examples of beams with cracks are used to verify the validity and noise robustness of JAD based CDS estimation and the proposed DI. Furthermore, damage identification using dominant CDS’s estimated by JAD method is demonstrated to be more accurate and noise robust than by the commonly used singular value decomposition method.

  14. Frequency domain averaging based experimental evaluation of gear fault without tachometer for fluctuating speed conditions (United States)

    Sharma, Vikas; Parey, Anand


    In the purview of fluctuating speeds, gear fault diagnosis is challenging due to dynamic behavior of forces. Various industrial applications employing gearbox which operate under fluctuating speed conditions. For diagnostics of a gearbox, various vibrations based signal processing techniques viz FFT, time synchronous averaging and time-frequency based wavelet transform, etc. are majorly employed. Most of the time, theories about data or computational complexity limits the use of these methods. In order to perform fault diagnosis of a gearbox for fluctuating speeds, frequency domain averaging (FDA) of intrinsic mode functions (IMFs) after their dynamic time warping (DTW) has been done in this paper. This will not only attenuate the effect of fluctuating speeds but will also extract the weak fault feature those masked in vibration signal. Experimentally signals were acquired from Drivetrain Diagnostic Simulator for different gear health conditions i.e., healthy pinion, pinion with tooth crack, chipped tooth and missing tooth and were analyzed for the different fluctuating profiles of speed. Kurtosis was calculated for warped IMFs before DTW and after DTW of the acquired vibration signals. Later on, the application of FDA highlights the fault frequencies present in the FFT of faulty gears. The result suggests that proposed approach is more effective towards the fault diagnosing with fluctuating speed.

  15. Proposed Sandia frequency shift for anti-islanding detection method based on artificial immune system

    Directory of Open Access Journals (Sweden)

    A.Y. Hatata


    Full Text Available Sandia frequency shift (SFS is one of the active anti-islanding detection methods that depend on frequency drift to detect an islanding condition for inverter-based distributed generation. The non-detection zone (NDZ of the SFS method depends to a great extent on its parameters. Improper adjusting of these parameters may result in failure of the method. This paper presents a proposed artificial immune system (AIS-based technique to obtain optimal parameters of SFS anti-islanding detection method. The immune system is highly distributed, highly adaptive, and self-organizing in nature, maintains a memory of past encounters, and has the ability to continually learn about new encounters. The proposed method generates less total harmonic distortion (THD than the conventional SFS, which results in faster island detection and better non-detection zone. The performance of the proposed method is derived analytically and simulated using Matlab/Simulink. Two case studies are used to verify the proposed method. The first case includes a photovoltaic (PV connected to grid and the second includes a wind turbine connected to grid. The deduced optimized parameter setting helps to achieve the “non-islanding inverter” as well as least potential adverse impact on power quality. Keywords: Anti-islanding detection, Sandia frequency shift (SFS, Non-detection zone (NDZ, Total harmonic distortion (THD, Artificial immune system (AIS, Clonal selection algorithm

  16. A variable-frequency structural health monitoring system based on omnidirectional shear horizontal wave piezoelectric transducers (United States)

    Huan, Qiang; Miao, Hongchen; Li, Faxin


    Structural health monitoring (SHM) is of great importance for engineering structures as it may detect the early degradation and thus avoid life and financial loss. Guided wave based inspection is very useful in SHM due to its capability for long distance and wide range monitoring. The fundamental shear horizontal (SH0) wave based method should be most promising since SH0 is the unique non-dispersive wave mode in plate-like structures. In this work, a sparse array SHM system based on omnidirectional SH wave piezoelectric transducers (OSH-PT) was proposed and the multi data fusion method was used for defect inspection in a 2 mm thick aluminum plate. Firstly, the performances of three types OSH-PTs was comprehensively compared and the thickness-poled d15 mode OSH-PT used in this work was demonstrated obviously superior to the other two. Then, the signal processing method and imaging algorithm for this SHM system was presented. Finally, experiments were carried out to examine the performance of the proposed SHM system in defect localization and imaging. Results indicated that this SHM system can locate a through hole as small as 0.12λ (4 mm) in diameter (where λ is the wavelength corresponding to the central operation frequency) under frequencies from 90 to 150 kHz. It can also locate multiple defects accurately based on the baseline subtraction method. Obviously, this SHM system can detect larger areas with sparse sensors because of the adopted single mode, non-dispersive and low frequency SH0 wave which can propagate long distance with small attenuation. Considering its good performances, simple data processing and sparse array, this SH0 wave-based SHM system is expected to greatly promote the applications of guided wave inspection.

  17. Selecting frequency feature for license plate detection based on AdaBoost (United States)

    Tan, Huachun; Chen, Hao; Deng, Yafeng; Liu, Junhui


    In this paper, a new method for license plate detection based on AdaBoost is proposed. In the new method, character frequency feature, which is powerful feature for detecting license plate character, are introduced to feature pool. The frequency features obtained from the FFT of horizontal projection of binary image are selected by AdaBoost. Then, Haar-like features selected by AdaBoost are used to capture subtle structure of license plate. Furthermore, considering the characteristic of Chinese license plate that there are two types of license plate: deeper background-lighter character and lighter background-deeper character license plates, two detectors are designed to extract different license plates respectively. Experimental results show the efficiency of the proposed method.

  18. Vibration energy harvester with low resonant frequency based on flexible coil and liquid spring (United States)

    Wang, Y.; Zhang, Q.; Zhao, L.; Tang, Y.; Shkel, A.; Kim, E. S.


    This paper reports an electromagnetic vibration-energy harvester with low resonant frequency based on liquid spring composed of ferrofluid. Cylinder magnet array formed by four disc NdFeB magnets is suspended by ferrofluid in a laser-machined acrylic tube which is wrapped by flexible planar coil fabricated with microfabrication process. The magnet array and coil are aligned automatically by the ferrofluid. Restoring force when the magnet array is deviated from the balance position is proportional to the deviated distance, which makes the ferrofluid work as a liquid spring obeying Hook's law. Experimental results show that the electromagnetic energy harvester occupying 1.8 cc and weighing 5 g has a resonant frequency of 16 Hz and generates an induced electromotive force of Vrms = 2.58 mV (delivering 79 nW power into matched load of 21 Ω) from 3 g acceleration at 16 Hz.

  19. Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy

    DEFF Research Database (Denmark)

    Zhang, Liang; Lu, Ping; Chen, Li


    A novel (to our best knowledge) optical fiber strain sensor using a fiber ring resonator based on frequency comb Vernier spectroscopy is proposed and demonstrated. A passively mode-locked optical fiber laser is employed to generate a phased-locked frequency comb. Strain applied to the optical fiber...... be proportionally improved by increasing the length of the optical fiber ring resonator....... of the fiber ring resonator can be measured with the transmission spectrum. A good linearity is obtained between displacement and the inverse of wavelength spacing with an R2 of 0.9989, and high sensitivities better than 40  pm/με within the range of 0 to 10  με are achieved. The sensitivity can...

  20. Development of monitoring and control system for a mine main fan based on frequency converter (United States)

    Zhang, Y. C.; Zhang, R. W.; Kong, X. Z.; Y Gong, J.; Chen, Q. G.


    In the process of mine exploitation, the requirement of air flow rate often changes. The procedure of traditional control mode of the fan is complex and it is hard to meet the worksite requirement for air. This system is based on Principal Computer (PC) monitoring system and high performance PLC control system. In this system, the frequency converter is adapted to adjust the fan speed and the air of worksite can be regulated steplessly. The function of the monitoring and control system contains on-line monitoring and centralized control. The system can monitor the parameters of fan in real-time, control the operation of frequency converter, as well as, control the fan and its accessory equipments. At the same time, the automation level of the system is highly, the field equipments can be monitored and controlled automatically. So, the system is an important safeguard for mine production.

  1. Development of monitoring and control system for a mine main fan based on frequency converter

    International Nuclear Information System (INIS)

    Zhang, Y C; Kong, X Z; Chen, Q G; Zhang, R W; Gong, J Y


    In the process of mine exploitation, the requirement of air flow rate often changes. The procedure of traditional control mode of the fan is complex and it is hard to meet the worksite requirement for air. This system is based on Principal Computer (PC) monitoring system and high performance PLC control system. In this system, the frequency converter is adapted to adjust the fan speed and the air of worksite can be regulated steplessly. The function of the monitoring and control system contains on-line monitoring and centralized control. The system can monitor the parameters of fan in real-time, control the operation of frequency converter, as well as, control the fan and its accessory equipments. At the same time, the automation level of the system is highly, the field equipments can be monitored and controlled automatically. So, the system is an important safeguard for mine production

  2. Remote Impedance-based Loose Bolt Inspection Using a Radio-Frequency Active Sensing Node

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Hee; Yun, Chung Bang [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Inman, Daniel J. [Virginia Polytechnic Institute and State University, Virginia (United States)


    This paper introduces an active sensing node using radio-frequency (RF) telemetry. This device has brought the traditional impedance-based structural health monitoring (SHM) technique to a new paradigm. The RF active sensing node consists of a miniaturized impedance measuring device (AD5933), a microcontroller (ATmega128L), and a radio frequency (RF) transmitter (XBee). A macro-fiber composite (MFC) patch interrogates a host structure by using a self-sensing technique of the miniaturized impedance measuring device. All the process including structural interrogation, data acquisition, signal processing, and damage diagnostic is being performed at the sensor location by the microcontroller. The RF transmitter is used to communicate the current status of the host structure. The feasibility of the proposed SHM strategy is verified through an experimental study inspecting loose bolts in a bolt-jointed aluminum structure

  3. Phase noise characterization of a QD-based diode laser frequency comb. (United States)

    Vedala, Govind; Al-Qadi, Mustafa; O'Sullivan, Maurice; Cartledge, John; Hui, Rongqing


    We measure, simultaneously, the phases of a large set of comb lines from a passively mode locked, InAs/InP, quantum dot laser frequency comb (QDLFC) by comparing the lines to a stable comb reference using multi-heterodyne coherent detection. Simultaneity permits the separation of differential and common mode phase noise and a straightforward determination of the wavelength corresponding to the minimum width of the comb line. We find that the common mode and differential phases are uncorrelated, and measure for the first time for a QDLFC that the intrinsic differential-mode phase (IDMP) between adjacent subcarriers is substantially the same for all subcarrier pairs. The latter observation supports an interpretation of 4.4ps as the standard deviation of IDMP on a 200µs time interval for this laser.

  4. Resonance-Based Time-Frequency Manifold for Feature Extraction of Ship-Radiated Noise

    Directory of Open Access Journals (Sweden)

    Jiaquan Yan


    Full Text Available In this paper, a novel time-frequency signature using resonance-based sparse signal decomposition (RSSD, phase space reconstruction (PSR, time-frequency distribution (TFD and manifold learning is proposed for feature extraction of ship-radiated noise, which is called resonance-based time-frequency manifold (RTFM. This is suitable for analyzing signals with oscillatory, non-stationary and non-linear characteristics in a situation of serious noise pollution. Unlike the traditional methods which are sensitive to noise and just consider one side of oscillatory, non-stationary and non-linear characteristics, the proposed RTFM can provide the intact feature signature of all these characteristics in the form of a time-frequency signature by the following steps: first, RSSD is employed on the raw signal to extract the high-oscillatory component and abandon the low-oscillatory component. Second, PSR is performed on the high-oscillatory component to map the one-dimensional signal to the high-dimensional phase space. Third, TFD is employed to reveal non-stationary information in the phase space. Finally, manifold learning is applied to the TFDs to fetch the intrinsic non-linear manifold. A proportional addition of the top two RTFMs is adopted to produce the improved RTFM signature. All of the case studies are validated on real audio recordings of ship-radiated noise. Case studies of ship-radiated noise on different datasets and various degrees of noise pollution manifest the effectiveness and robustness of the proposed method.

  5. Organic permeable-base transistors - superb power efficiency at highest frequencies (Conference Presentation) (United States)

    Klinger, Markus P.; Fischer, Axel; Kaschura, Felix; Scholz, Reinhard; Lüssem, Björn; Kheradmand-Boroujeni, Bahman; Ellinger, Frank; Kasemann, Daniel; Leo, Karl


    Organic field-effect transistors (OFET) are important elements in thin-film electronics, being considered for flat-panel or flexible displays, radio frequency identification systems, and sensor arrays. To optimize the devices for high-frequency operation, the channel length, defined as the horizontal distance between the source and the drain contact, can be scaled down. Here, an architecture with a vertical current flow, in particular the Organic Permeable-Base Transistors (OPBT), opens up new opportunities, because the effective transit length in vertical direction is precisely tunable in the nanometer range by the thickness of the semiconductor layer. We present an advanced OPBT, competing with best OFETs while a low-cost, OLED-like fabrication with low-resolution shadow masks is used (Klinger et al., Adv. Mater. 27, 2015). Its design consists of a stack of three parallel electrodes separated by two semiconductor layers of C60 . The vertical current flow is controlled by the middle base electrode with nano-sized openings passivated by an native oxide. Using insulated layers to structure the active area, devices show an on/off ratio of 10⁶ , drive 11 A/cm² at an operation voltage of 1 V, and have a low subthreshold slope of 102 mV/decade. These OPBTs show a unity current-gain transit frequency of 2.2 MHz and off-state break-down fields above 1 MV/cm. Thus, our optimized setup does not only set a benchmark for vertical organic transistors, but also outperforms best lateral OFETs using similar low-cost structuring techniques in terms of power efficiency at high frequencies.

  6. Bearing performance degradation assessment based on time-frequency code features and SOM network

    International Nuclear Information System (INIS)

    Zhang, Yan; Tang, Baoping; Han, Yan; Deng, Lei


    Bearing performance degradation assessment and prognostics are extremely important in supporting maintenance decision and guaranteeing the system’s reliability. To achieve this goal, this paper proposes a novel feature extraction method for the degradation assessment and prognostics of bearings. Features of time-frequency codes (TFCs) are extracted from the time-frequency distribution using a hybrid procedure based on short-time Fourier transform (STFT) and non-negative matrix factorization (NMF) theory. An alternative way to design the health indicator is investigated by quantifying the similarity between feature vectors using a self-organizing map (SOM) network. On the basis of this idea, a new health indicator called time-frequency code quantification error (TFCQE) is proposed to assess the performance degradation of the bearing. This indicator is constructed based on the bearing real-time behavior and the SOM model that is previously trained with only the TFC vectors under the normal condition. Vibration signals collected from the bearing run-to-failure tests are used to validate the developed method. The comparison results demonstrate the superiority of the proposed TFCQE indicator over many other traditional features in terms of feature quality metrics, incipient degradation identification and achieving accurate prediction. Highlights • Time-frequency codes are extracted to reflect the signals’ characteristics. • SOM network served as a tool to quantify the similarity between feature vectors. • A new health indicator is proposed to demonstrate the whole stage of degradation development. • The method is useful for extracting the degradation features and detecting the incipient degradation. • The superiority of the proposed method is verified using experimental data. (paper)

  7. Radiological Evaluation Standards in the Radiology Department of Shahid Beheshti Hospital (RAH YASUJ Based on Radiology standards in 92

    Directory of Open Access Journals (Sweden)

    A َKalantari


    Full Text Available Background & aim: Radiology personnel’s working in terms of performance and safety is one of the most important functions in order to increase the quality and quantity. This study aimed to evaluate the radiological standards in Shahid Beheshti Hospital of Yasuj, Iran, in 2013. Methods: The present cross-sectional study was based on a 118 randomly selected graphs and the ranking list, with full knowledge of the standards in radiology was performed two times. Data were analyzed using descriptive statistics. Results: 87.3% of the students chose the cassette, 76.3%, patients chose the position, 87.3%, member state, the central ray 83.9%, and the distance between the tube and the patient 68.6% had been operated in accordance with the standards practice. Among all the factors and variables, between view with cassette, view with SID, sex with position patients, grid with central ray, grid with SID, Request with positioning the patient and between density with patient position and member position significant relationship were observed p<0.05 . Conclusions: Staff and students in terms of performance were at high levels, but in the levels of protection were in poor condition. Therefore, in order to promote their conservation, education and periodical monitoring should be carried out continuously.

  8. Frequency and voltage dependent electrical responses of poly(triarylamine) thin film-based organic Schottky diode (United States)

    Anuar Mohamad, Khairul; Tak Hoh, Hang; Alias, Afishah; Ghosh, Bablu Kumar; Fukuda, Hisashi


    A metal-organic-metal (MOM) type Schottky diode based on poly (triarylamine) (PTAA) thin films has been fabricated by using the spin coating method. Investigation of the frequency dependent conductance-voltage (G-V-f) and capacitance-voltage (C-V-f) characteristics of the ITO/PTAA/Al MOM type diode were carried out in the frequency range from 12 Hz to 100 kHz using an LCR meter at room temperature. The frequency and bias voltage dependent electrical response were determined by admittance-based measured method in terms of an equivalent circuit model of the parallel combination of resistance and capacitance (RC circuit). Investigation revealed that the conductance is frequency and a bias voltage dependent in which conductance continuous increase as the increasing frequency, respectively. Meanwhile, the capacitance is dependent on frequency up to a certain value of frequency (100 Hz) but decreases at high frequency (1 - 10 kHz). The interface state density in the Schottky diode was determined from G-V and C-V characteristics. The interface state density has values almost constant of 2.8 x 1012 eV-1cm-2 with slightly decrease by increasing frequencies. Consequently, both series resistance and interface trap density were found to decrease with increasing frequency. The frequency dependence of the electrical responses is attributed the distribution density of interface states that could follow the alternating current (AC) signal.

  9. Frequency and voltage dependent electrical responses of poly(triarylamine thin film-based organic Schottky diode

    Directory of Open Access Journals (Sweden)

    Mohamad Khairul Anuar


    Full Text Available A metal-organic-metal (MOM type Schottky diode based on poly (triarylamine (PTAA thin films has been fabricated by using the spin coating method. Investigation of the frequency dependent conductance-voltage (G-V-f and capacitance-voltage (C-V-f characteristics of the ITO/PTAA/Al MOM type diode were carried out in the frequency range from 12 Hz to 100 kHz using an LCR meter at room temperature. The frequency and bias voltage dependent electrical response were determined by admittance-based measured method in terms of an equivalent circuit model of the parallel combination of resistance and capacitance (RC circuit. Investigation revealed that the conductance is frequency and a bias voltage dependent in which conductance continuous increase as the increasing frequency, respectively. Meanwhile, the capacitance is dependent on frequency up to a certain value of frequency (100 Hz but decreases at high frequency (1 – 10 kHz. The interface state density in the Schottky diode was determined from G-V and C-V characteristics. The interface state density has values almost constant of 2.8 x 1012 eV−1cm−2 with slightly decrease by increasing frequencies. Consequently, both series resistance and interface trap density were found to decrease with increasing frequency. The frequency dependence of the electrical responses is attributed the distribution density of interface states that could follow the alternating current (AC signal.

  10. Sparse representation based on local time-frequency template matching for bearing transient fault feature extraction (United States)

    He, Qingbo; Ding, Xiaoxi


    The transients caused by the localized fault are important measurement information for bearing fault diagnosis. Thus it is crucial to extract the transients from the bearing vibration or acoustic signals that are always corrupted by a large amount of background noise. In this paper, an iterative transient feature extraction approach is proposed based on time-frequency (TF) domain sparse representation. The approach is realized by presenting a new method, called local TF template matching. In this method, the TF atoms are constructed based on the TF distribution (TFD) of the Morlet wavelet bases and local TF templates are formulated from the TF atoms for the matching process. The instantaneous frequency (IF) ridge calculated from the TFD of an analyzed signal provides the frequency parameter values for the TF atoms as well as an effective template matching path on the TF plane. In each iteration, local TF templates are employed to do correlation with the TFD of the analyzed signal along the IF ridge tube for identifying the optimum parameters of transient wavelet model. With this iterative procedure, transients can be extracted in the TF domain from measured signals one by one. The final signal can be synthesized by combining the extracted TF atoms and the phase of the raw signal. The local TF template matching builds an effective TF matching-based sparse representation approach with the merit of satisfying the native pulse waveform structure of transients. The effectiveness of the proposed method is verified by practical defective bearing signals. Comparison results also show that the proposed method is superior to traditional methods in transient feature extraction.

  11. Iron Oxide Nanoparticle-Based Magnetic Ink Development for Fully Printed Tunable Radio-Frequency Devices

    KAUST Repository

    Vaseem, Mohammad


    The field of printed electronics is still in its infancy and most of the reported work is based on commercially available nanoparticle-based metallic inks. Although fully printed devices that employ dielectric/semiconductor inks have recently been reported, there is a dearth of functional inks that can demonstrate controllable devices. The lack of availability of functional inks is a barrier to the widespread use of fully printed devices. For radio-frequency electronics, magnetic materials have many uses in reconfigurable components but rely on expensive and rigid ferrite materials. A suitable magnetic ink can facilitate the realization of fully printed, magnetically controlled, tunable devices. This report presents the development of an iron oxide nanoparticle-based magnetic ink. First, a tunable inductor is fully printed using iron oxide nanoparticle-based magnetic ink. Furthermore, iron oxide nanoparticles are functionalized with oleic acid to make them compatible with a UV-curable SU8 solution. Functionalized iron oxide nanoparticles are successfully embedded in the SU8 matrix to make a magnetic substrate. The as-fabricated substrate is characterized for its magnetostatic and microwave properties. A frequency tunable printed patch antenna is demonstrated using the magnetic and in-house silver-organo-complex inks. This is a step toward low-cost, fully printed, controllable electronic components.

  12. Adaptive radiation image enhancement based on different image quality evaluation standards

    International Nuclear Information System (INIS)

    Guo Xiaojing; Wu Zhifang


    Genetic algorithm based on incomplete Beta function was realized, and adaptive gray transform based on the said genetic algorithm was implemented, based as such, three image quality evaluation standards were applied in the adaptive gray transform of radiation images, and effects of processing time, stability, generation number and so on of the three standards were compared. The better algorithm scheme was applied in image processing module of container DR/CT inspection system to obtain effective adaptive image enhancement. (authors)

  13. An evidence-based recommendation to increase the dosing frequency of buprenorphine during pregnancy. (United States)

    Caritis, Steve N; Bastian, Jaime R; Zhang, Hongfei; Kalluri, Hari; English, Dennis; England, Michael; Bobby, Stephanie; Venkataramanan, Raman


    Dose-adjusted plasma concentrations of buprenorphine are significantly decreased during pregnancy compared with the nonpregnant state. This observation suggests that pregnant women may need a higher dose of buprenorphine than nonpregnant individuals to maintain similar drug exposure (plasma concentrations over time after a dose). The current dosing recommendations for buprenorphine during pregnancy address the total daily dose of buprenorphine to be administered, but the frequency of dosing is not clearly addressed. Based on buprenorphine's long terminal half-life, once-daily or twice-daily dosing has generally been suggested. The objective of the study was to assess the impact of dosing frequency on buprenorphine plasma concentration time course during pregnancy. We utilized 3 data sources to determine an optimal frequency for dosing of buprenorphine during pregnancy: data from a pharmacokinetic study of 14 pregnant and postpartum women on maintenance buprenorphine in a supervised clinical setting; data from pregnant women attending a buprenorphine clinic; and data from a physiologically based pharmacokinetic modeling of buprenorphine pharmacokinetics in nonpregnant subjects. Among the 14 women participating in the pharmacokinetic study during and after pregnancy, plasma concentrations of buprenorphine were <1 ng/mL (the theoretical concentration required to prevent withdrawal symptoms) for 50-80% of the 12 hour dosing interval while at steady state. Among 62 women followed up in a opioid agonist treatment program, in which dosing frequency is determined in part by patient preference, 10 (16%) were on once-daily dosing, 10 (16%) were on twice-daily dosing, 28 (45%) were on thrice-daily dosing, and 14 (23%) were on four-times-daily dosing. A physiologically based pharmacokinetic model in nonpregnant subjects demonstrated that dosing frequency has an impact on the duration over which the plasma concentrations are below a specified plasma concentration threshold. A

  14. On time-domain and frequency-domain MMSE-based TEQ design for DMT transmission

    CERN Document Server

    Vanbleu, K; Moonen, M; Ysebaert, G; 10.1109/TSP.2005.851161


    We reconsider the minimum mean square error (MMSE) time-domain equalizer (TEQ), bitrate maximizing TEQ (BM-TEQ), and per-tone equalizer design (PTEQ) for discrete multitone (DMT) transmission and cast them in a common least-squares (LS) based framework. The MMSE- TEQ design criterion can be formulated as a constrained linear least-squares (CLLS) criterion that minimizes a time-domain (TD) error energy. From this CLLS-based TD-MMSE-TEQ criterion, we derive two new least-squares (LS) based frequency-domain (FD) MMSE-TEQ design criteria: a CLLS-based FD-MMSE-TEQ criterion and a so-called separable nonlinear LS (SNLLS) based FD-MMSE-TEQ design. Finally, the original BM-TEQ design is shown to be equivalent to a so-called iteratively-reweighted (IR) version of the SNLLS-based FD-MMSE-TEQ design. This LS-based framework then results in the following contributions. The new, IR-SNLLS-based BM-TEQ design criterion gives rise to an elegant, iterative, fast converging, Gauss-Newton-based design algorithm that exploits th...

  15. IPE Data Base: Plant design, core damage frequency and containment performance information

    International Nuclear Information System (INIS)

    Lehner, J.; Lin, C.C.; Pratt, W.T.; Su, T.; Danziger, L.


    This data base stores data obtained from the Individual Plant Examinations (IPEs) which licensees of nuclear power plants have conducted in response to NRC's Generic Letter GL88-20. The IPE Data Base is a collection of linked files which store information about plant design, core damage frequency, and containment performance in a uniform, structured way. The information contined in the various files is based on data contained in the IPE submittals. The information extracted from the submittals and entered into the IPE Data Base can be maniulated so that queries regarding individual or groups of plants can be answered using the IPE Data Base. The IPE Data Base supports detailed inquiries into the characteristics of individual plants or classes of plants. Progress has been made on the IPE Data Base and it is largely complete. Recent focus has been the development of a user friendly version which is menu driven and allows the user to ask queries of varying complexity easily, without the need to become familiar with particular data base formats or conventions such as those of DBase IV or Microsoft Access. The user can obtain the information he desired by quickly moving through a series of on-screen menus and ''clicking'' on appropriate choices. In this way even a first time user can benefit from the large amount of information stored in the IPE Data Base without the need of a learning period

  16. A Multi-Center Space Data System Prototype Based on CCSDS Standards (United States)

    Rich, Thomas M.


    Deep space missions beyond earth orbit will require new methods of data communications in order to compensate for increasing Radio Frequency (RF) propagation delay. The Consultative Committee for Space Data Systems (CCSDS) standard protocols Spacecraft Monitor & Control (SM&C), Asynchronous Message Service (AMS), and Delay/Disruption Tolerant Networking (DTN) provide such a method. However, the maturity level of this protocol stack is insufficient for mission inclusion at this time. This Space Data System prototype is intended to provide experience which will raise the Technical Readiness Level (TRL) of this protocol set. In order to reduce costs, future missions can take advantage of these standard protocols, which will result in increased interoperability between control centers. This prototype demonstrates these capabilities by implementing a realistic space data system in which telemetry is published to control center applications at the Jet Propulsion Lab (JPL), the Marshall Space Flight Center (MSFC), and the Johnson Space Center (JSC). Reverse publishing paths for commanding from each control center are also implemented. The target vehicle consists of realistic flight computer hardware running Core Flight Software (CFS) in the integrated Power, Avionics, and Power (iPAS) Pathfinder Lab at JSC. This prototype demonstrates a potential upgrade path for future Deep Space Network (DSN) modification, in which the automatic error recovery and communication gap compensation capabilities of DTN would be exploited. In addition, SM&C provides architectural flexibility by allowing new service providers and consumers to be added efficiently anywhere in the network using the common interface provided by SM&C's Message Abstraction Layer (MAL). In FY 2015, this space data system was enhanced by adding telerobotic operations capability provided by the Robot API Delegate (RAPID) family of protocols developed at NASA. RAPID is one of several candidates for consideration and

  17. Dietary diversity and meal frequency among infant and young children: a community based study. (United States)

    Belew, Aysheshim Kassahun; Ali, Bekrie Mohammed; Abebe, Zegeye; Dachew, Berihun Assefa


    Insufficient quantities, frequencies, and inadequate quality of complementary feedings have a negative effect on child health and growth, especially in the first two years of life. Therefore, the aim of this study was to assess the minimum dietary diversity, meal frequency and its associated factors among infants and young children aged 6-23 months at Dabat District, northwest, Ethiopia. A community- based cross-sectional study was conducted from February 15 to March 10, 2016. The simple random sampling method was used to select study participants. An interviewer- administered structured questionnaire was used to collect data. Both Crude and Adjusted Odds Ratio with the corresponding 95% confidence interval were calculated to show the strength of association. In the multivariable analysis, variables with less than 0.05 P-value were considered statistically significant. The proportion of children who met the minimum dietary diversity and meal frequency were 17% (95% CI: 14.9, 19.4%) and 72.2% (95% CL: 69.3, 75%), respectively. Satisfactory media exposure (AOR = 2.79; 95% CI: 1.74, 4.47), postnatal care visits (AOR = 1.96; 95% CI: 1.32, 2.88), participation in child growth and monitoring follow ups (AOR = 1.65; 95% CI: 1.14, 2.39), age of children (AOR = 2.34; 95% CI: 1.33, 4.11) and age of mothers (AOR = 1.89; 95% CI: 1.09, 3.27) were positively associated with dietary diversity. Similarly, age of children (AOR = 2.38; 95% CI: 1.56, 3.65), household wealth status (AOR = 1.84; 95% CI: 1.27, 2.68), residence (AOR = 3.02; 95% CI: 1.41, 6.48), sources of information (AOR = 1.72; 95% CI:1.14, 2.59) and participation in child growth monitoring folow ups (AOR = 1.57; 95% CI: 1.13, 2.19) were significantly associated with meal frequency. In this study, the proportion of children who received the minimum dietary diversity and meal frequency were low. Media exposure, age of children, postnatal care visits, and participation in child growth and monitoring

  18. Phase noise measurement of wideband microwave sources based on a microwave photonic frequency down-converter. (United States)

    Zhu, Dengjian; Zhang, Fangzheng; Zhou, Pei; Pan, Shilong


    An approach for phase noise measurement of microwave signal sources based on a microwave photonic frequency down-converter is proposed. Using the same optical carrier, the microwave signal under test is applied to generate two +1st-order optical sidebands by two stages of electro-optical modulations. A time delay is introduced between the two sidebands through a span of fiber. By beating the two +1st-order sidebands at a photodetector, frequency down-conversion is implemented, and phase noise of the signal under test can be calculated thereafter. The system has a very large operation bandwidth thanks to the frequency conversion in the optical domain, and good phase noise measurement sensitivity can be achieved since the signal degradation caused by electrical amplifiers is avoided. An experiment is carried out. The phase noise measured by the proposed system agrees well with that measured by a commercial spectrum analyzer or provided by the datasheet. A large operation bandwidth of 5-40 GHz is demonstrated using the proposed system. Moreover, good phase noise floor is achieved (-123  dBc/Hz at 1 kHz and -137  dBc/Hz at 10 kHz at 10 GHz), which is nearly constant over the full measurement range.

  19. A direct method for soil-structure interaction analysis based on frequency-dependent soil masses

    International Nuclear Information System (INIS)

    Danisch, R.; Delinic, K.; Marti, J.; Trbojevic, V.M.


    In a soil-structure interaction analysis, the soil, as a subsystem of the global vibrating system, exerts a strong influence on the response of the nuclear reactor building to the earthquake excitation. The volume of resources required for dealing with the soil have led to a number of different types of frequency-domain solutions, most of them based on the impedance function approach. These procedures require coupling the soil to the lumped-mass finite-element model of the reactor building. In most practical cases, the global vibrating system is analysed in the time domain (i.e. modal time history, linear or non-linear direct time-integration). Hence, it follows that the frequency domain solution for soil must be converted to an 'equivalent' soil model in the time domain. Over the past three decades, different approaches have been developed and used for earthquake analysis of nuclear power plants. In some cases, difficulties experienced in modelling the soil have affected the methods of global analysis, thus leading to approaches like the substructuring technique, e.g. 3-step method. In the practical applications, the limitations of each specific method must be taken into account in order to avoid unrealistic results. The aim of this paper is to present the recent development on an equivalent SDOF system for soil including frequency-dependent soil masses. The method will be compared with the classical 3-step method. (author)

  20. Multi-mode dynamics of optical oscillators based on intracavity nonlinear frequency down-conversion (United States)

    Morozov, Yuri A.


    The transient power characteristics of two optical oscillators—a difference frequency generator (ICDFG) and a singly resonant optical parametric oscillator (ICSRO)—based on intracavity nonlinear optical frequency conversion, are described. The simulation has been performed via the rate-equation mathematical model, which features a multi-mode behavior of all optical fields. The reason for unattainability of single-mode emission in these devices without an additional frequency-selective element (e.g., a Fabry-Perot etalon) is clarified. It is shown that the dynamics of a short-wavelength emission (pump) results mainly from the nonlinear optical interaction, while that of the longer-wavelength optical fields (signal and idler) depends on selectivity of the etalon. With the suitable etalons inserted in their cavities, both devices are shown to operate dynamically single-mode under conventional experimental conditions. The nonlinear interaction makes the pump emission collapse to the single-mode operation very fast (it takes no more than a few tens of the photon lifetimes). To overcome the threshold of parametric generation, the intracavity pump power in the ICSRO has to exceed ˜ 100 W, while the ICDFG is essentially a "thresholdless" device.

  1. A Simulation-Based Optimization Method for Hybrid Frequency Regulation System Configuration

    Directory of Open Access Journals (Sweden)

    Jie Song


    Full Text Available Frequency regulation is essential for the stability of a power grid with high load fluctuation and integration of new energies. Constrained by the large ramping, a generator alone is not capable of conducting load frequency controls effectively and economically. In this paper, an energy storage system (ESS is introduced to coordinate with generators in automatic generation control (AGC, where ESS and the generator respectively deal with high-frequency load fluctuation and low-portion. We develop a system configuration framework for such a hybrid system, including the operation strategy and capacity optimization. Due to the complexity of the hybrid system, the operation process is captured by a simulation model which considers practical constraints as well as remaining energy management of ESS. Taking advantage of the gradient-based approximation algorithm, we are then able to optimize the capacity of a hybrid system. According to the numerical experiments with real historical AGC data, the hybrid system is shown to perform well in cost reduction and to achieve the regulation tasks.

  2. Photonic chip-based soliton frequency combs covering the biological imaging window. (United States)

    Karpov, Maxim; Pfeiffer, Martin H P; Liu, Junqiu; Lukashchuk, Anton; Kippenberg, Tobias J


    Dissipative Kerr solitons (DKS) in optical microresonators provide a highly miniaturised, chip-integrated frequency comb source with unprecedentedly high repetition rates and spectral bandwidth. To date, such frequency comb sources have been successfully applied in the optical telecommunication band for dual-comb spectroscopy, coherent telecommunications, counting of optical frequencies and distance measurements. Yet, the range of applications could be significantly extended by operating in the near-infrared spectral domain, which is a prerequisite for biomedical and Raman imaging applications, and hosts commonly used optical atomic transitions. Here we show the operation of photonic-chip-based soliton Kerr combs driven with 1 micron laser light. By engineering the dispersion properties of a Si 3 N 4 microring resonator, octave-spanning soliton Kerr combs extending to 776 nm are attained, thereby covering the optical biological imaging window. Moreover, we show that soliton states can be generated in normal group-velocity dispersion regions when exploiting mode hybridisation with other mode families.

  3. Validation of simulated earthquake ground motions based on evolution of intensity and frequency content (United States)

    Rezaeian, Sanaz; Zhong, Peng; Hartzell, Stephen; Zareian, Farzin


    Simulated earthquake ground motions can be used in many recent engineering applications that require time series as input excitations. However, applicability and validation of simulations are subjects of debate in the seismological and engineering communities. We propose a validation methodology at the waveform level and directly based on characteristics that are expected to influence most structural and geotechnical response parameters. In particular, three time-dependent validation metrics are used to evaluate the evolving intensity, frequency, and bandwidth of a waveform. These validation metrics capture nonstationarities in intensity and frequency content of waveforms, making them ideal to address nonlinear response of structural systems. A two-component error vector is proposed to quantify the average and shape differences between these validation metrics for a simulated and recorded ground-motion pair. Because these metrics are directly related to the waveform characteristics, they provide easily interpretable feedback to seismologists for modifying their ground-motion simulation models. To further simplify the use and interpretation of these metrics for engineers, it is shown how six scalar key parameters, including duration, intensity, and predominant frequency, can be extracted from the validation metrics. The proposed validation methodology is a step forward in paving the road for utilization of simulated ground motions in engineering practice and is demonstrated using examples of recorded and simulated ground motions from the 1994 Northridge, California, earthquake.

  4. Complex Road Intersection Modelling Based on Low-Frequency GPS Track Data (United States)

    Huang, J.; Deng, M.; Zhang, Y.; Liu, H.


    It is widely accepted that digital map becomes an indispensable guide for human daily traveling. Traditional road network maps are produced in the time-consuming and labour-intensive ways, such as digitizing printed maps and extraction from remote sensing images. At present, a large number of GPS trajectory data collected by floating vehicles makes it a reality to extract high-detailed and up-to-date road network information. Road intersections are often accident-prone areas and very critical to route planning and the connectivity of road networks is mainly determined by the topological geometry of road intersections. A few studies paid attention on detecting complex road intersections and mining the attached traffic information (e.g., connectivity, topology and turning restriction) from massive GPS traces. To the authors' knowledge, recent studies mainly used high frequency (1 s sampling rate) trajectory data to detect the crossroads regions or extract rough intersection models. It is still difficult to make use of low frequency (20-100 s) and easily available trajectory data to modelling complex road intersections geometrically and semantically. The paper thus attempts to construct precise models for complex road intersection by using low frequency GPS traces. We propose to firstly extract the complex road intersections by a LCSS-based (Longest Common Subsequence) trajectory clustering method, then delineate the geometry shapes of complex road intersections by a K-segment principle curve algorithm, and finally infer the traffic constraint rules inside the complex intersections.

  5. A Switched Capacitor Based AC/DC Resonant Converter for High Frequency AC Power Generation

    Directory of Open Access Journals (Sweden)

    Cuidong Xu


    Full Text Available A switched capacitor based AC-DC resonant power converter is proposed for high frequency power generation output conversion. This converter is suitable for small scale, high frequency wind power generation. It has a high conversion ratio to provide a step down from high voltage to low voltage for easy use. The voltage conversion ratio of conventional switched capacitor power converters is fixed to n, 1/n or −1/n (n is the switched capacitor cell. In this paper, A circuit which can provide n, 1/n and 2n/m of the voltage conversion ratio is presented (n is stepping up the switched capacitor cell, m is stepping down the switching capacitor cell. The conversion ratio can be changed greatly by using only two switches. A resonant tank is used to assist in zero current switching, and hence the current spike, which usually exists in a classical switching switched capacitor converter, can be eliminated. Both easy operation and efficiency are possible. Principles of operation, computer simulations and experimental results of the proposed circuit are presented. General analysis and design methods are given. The experimental result verifies the theoretical analysis of high frequency AC power generation.

  6. Microwave amplification based on quasiparticle SIS up and down frequency converters

    Directory of Open Access Journals (Sweden)

    T. Kojima


    Full Text Available Heterodyne instruments have recently attained quantum-limited low-noise performance, particularly in radio astronomy, but it is difficult to develop large heterodyne arrays such as a modern radio camera using cryogenic sensitive detectors based on microwave kinetic inductance detectors, transition edge sensors, etc. In the realization of the heterodyne array, the reduction of power dissipation for semiconductor-based amplifiers remains a major challenge. Alternatively, superconducting parametric amplifiers still seem to have several barriers to application, especially in terms of operating temperature. Here, we show a novel concept of microwave amplification based on up and down frequency-conversion processes using quasiparticle superconductor-insulator-superconductor (SIS tunnel junctions. We demonstrate positive gain using a proof-of-concept test module, which operates with a power dissipation of several μW at a bath temperature of 4 K. The performance of the module suggests great potential for application in large arrays.

  7. Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review. (United States)

    Ding, Zhenyang; Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen


    Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on.

  8. Analysis of High Frequency Resonance in DFIG-based Offshore Wind Farm via Long Transmission Cable

    DEFF Research Database (Denmark)

    Song, Yipeng; Ebrahimzadeh, Esmaeil; Blaabjerg, Frede


    . This paper discusses the HFR of the large scale DFIG based wind farm connected to the long cable. Several influencing factors, including 1) the length of the cable, 2) the output active power and 3) the rotor speed, are investigated. Simulation validations using MATLAB / Simulink have been conducted......During the past two decades, the Doubly Fed Induction Generator (DFIG) based wind farm has been under rapid growth, and the increasing wind power penetration has been seen. Practically, these wind farms are connected to the three-phase AC grid through long transmission cable which can be modelled...... as several II units. The impedance of this cable cannot be neglected and requires careful investigation due to its long distance. As a result, the impedance interaction between the DFIG based wind farm and the long cable is inevitable, and may produce High Frequency Resonance (HFR) in the wind farm...

  9. Ozone concentration-monitoring photoacoustic system based on a frequency-quadrupled Nd:YAG laser (United States)

    Ajtai, T.; Filep, Á.; Varga, A.; Motika, G.; Bozóki, Z.; Szabó, G.


    A novel type of system based on a frequency-quadrupled Nd:YAG laser light source at 266 nm and a dual-cell photoacoustic detection unit was developed, and its applicability for ozone-concentration measurement with a minimum detectable ozone concentration of about 100 pptV was demonstrated. The instrument was calibrated against an ozone generator, and it was installed at a regional environmental monitoring station to be operated in parallel with a commercial UV-absorption photometry based ozone-monitoring instrument. While good agreement between the readings of the two systems was found, the photoacoustic system outperformed its optical absorption based counterpart as far as minimum detectable concentration and measurement accuracy is concerned.

  10. Microwave amplification based on quasiparticle SIS up and down frequency converters (United States)

    Kojima, T.; Uzawa, Y.; Shan, W.


    Heterodyne instruments have recently attained quantum-limited low-noise performance, particularly in radio astronomy, but it is difficult to develop large heterodyne arrays such as a modern radio camera using cryogenic sensitive detectors based on microwave kinetic inductance detectors, transition edge sensors, etc. In the realization of the heterodyne array, the reduction of power dissipation for semiconductor-based amplifiers remains a major challenge. Alternatively, superconducting parametric amplifiers still seem to have several barriers to application, especially in terms of operating temperature. Here, we show a novel concept of microwave amplification based on up and down frequency-conversion processes using quasiparticle superconductor-insulator-superconductor (SIS) tunnel junctions. We demonstrate positive gain using a proof-of-concept test module, which operates with a power dissipation of several μW at a bath temperature of 4 K. The performance of the module suggests great potential for application in large arrays.

  11. Analysis of High Frequency Resonance in DFIG-based Offshore Wind Farm via Long Transmission Cable

    DEFF Research Database (Denmark)

    Song, Yipeng; Ebrahimzadeh, Esmaeil; Blaabjerg, Frede


    During the past two decades, the Doubly Fed Induction Generator (DFIG) based wind farm has been under rapid growth, and the increasing wind power penetration has been seen. Practically, these wind farms are connected to the three-phase AC grid through long transmission cable which can be modelled...... as several II units. The impedance of this cable cannot be neglected and requires careful investigation due to its long distance. As a result, the impedance interaction between the DFIG based wind farm and the long cable is inevitable, and may produce High Frequency Resonance (HFR) in the wind farm....... This paper discusses the HFR of the large scale DFIG based wind farm connected to the long cable. Several influencing factors, including 1) the length of the cable, 2) the output active power and 3) the rotor speed, are investigated. Simulation validations using MATLAB / Simulink have been conducted...

  12. Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy (United States)

    Tamarov, Konstantin P.; Osminkina, Liubov A.; Zinovyev, Sergey V.; Maximova, Ksenia A.; Kargina, Julia V.; Gongalsky, Maxim B.; Ryabchikov, Yury; Al-Kattan, Ahmed; Sviridov, Andrey P.; Sentis, Marc; Ivanov, Andrey V.; Nikiforov, Vladimir N.; Kabashin, Andrei V.; Timoshenko, Victor Yu


    Offering mild, non-invasive and deep cancer therapy modality, radio frequency (RF) radiation-induced hyperthermia lacks for efficient biodegradable RF sensitizers to selectively target cancer cells and thus avoid side effects. Here, we assess crystalline silicon (Si) based nanomaterials as sensitizers for the RF-induced therapy. Using nanoparticles produced by mechanical grinding of porous silicon and ultraclean laser-ablative synthesis, we report efficient RF-induced heating of aqueous suspensions of the nanoparticles to temperatures above 45-50°C under relatively low nanoparticle concentrations (Combined with the possibility of involvement of parallel imaging and treatment channels based on unique optical properties of Si-based nanomaterials, the proposed method promises a new landmark in the development of new modalities for mild cancer therapy.

  13. Building Modern Vibration Diagnostics Systems Based on the Frequency-Time Transformations of A Measured Signal

    Directory of Open Access Journals (Sweden)

    Yasoveev Vasikh


    Full Text Available Basic methods of analysis of vibration transducers signals were reviewed. Continuous wavelet transform, being a time-frequency transform, was found to be an advanced mathematical tool for analysis of vibration signals. Experimental studies revealed obvious changes in the continuous wavelet transform spectrum depending on the existing defects. A method for detection and identification of technological violations based on the analysis of CWT spectrum components and normalized correlation coefficient was suggested. In accordance with the suggested method software for vibration diagnostics was developed.

  14. Frequency comb-based time transfer over a 159 km long installed fiber network (United States)

    Lessing, M.; Margolis, H. S.; Brown, C. T. A.; Marra, G.


    We demonstrate a frequency comb-based time transfer technique on a 159 km long installed fiber link. Timing information is superimposed onto the optical pulse train of an ITU-channel-filtered mode-locked laser using an intensity modulation scheme. The environmentally induced optical path length fluctuations are compensated using a round-trip phase noise cancellation technique. When the fiber link is stabilized, a time deviation of 300 fs at 5 s and an accuracy at the 100 ps level are achieved.

  15. A Fast Algorithm for Maximum Likelihood-based Fundamental Frequency Estimation

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær; Jensen, Tobias Lindstrøm; Jensen, Jesper Rindom


    including a maximum likelihood (ML) approach. Unfortunately, the ML estimator has a very high computational complexity, and the more inaccurate, but faster correlation-based estimators are therefore often used instead. In this paper, we propose a fast algorithm for the evaluation of the ML cost function...... for complex-valued data over all frequencies on a Fourier grid and up to a maximum model order. The proposed algorithm significantly reduces the computational complexity to a level not far from the complexity of the popular harmonic summation method which is an approximate ML estimator....

  16. Dynamic frequency feature selection based approach for classification of motor imageries. (United States)

    Luo, Jing; Feng, Zuren; Zhang, Jun; Lu, Na


    Electroencephalography (EEG) is one of the most popular techniques to record the brain activities such as motor imagery, which is of low signal-to-noise ratio and could lead to high classification error. Therefore, selection of the most discriminative features could be crucial to improve the classification performance. However, the traditional feature selection methods employed in brain-computer interface (BCI) field (e.g. Mutual Information-based Best Individual Feature (MIBIF), Mutual Information-based Rough Set Reduction (MIRSR) and cross-validation) mainly focus on the overall performance on all the trials in the training set, and thus may have very poor performance on some specific samples, which is not acceptable. To address this problem, a novel sequential forward feature selection approach called Dynamic Frequency Feature Selection (DFFS) is proposed in this paper. The DFFS method emphasized the importance of the samples that got misclassified while only pursuing high overall classification performance. In the DFFS based classification scheme, the EEG data was first transformed to frequency domain using Wavelet Packet Decomposition (WPD), which is then employed as the candidate set for further discriminatory feature selection. The features are selected one by one in a boosting manner. After one feature being selected, the importance of the correctly classified samples based on the feature will be decreased, which is equivalent to increasing the importance of the misclassified samples. Therefore, a complement feature to the current features could be selected in the next run. The selected features are then fed to a classifier trained by random forest algorithm. Finally, a time series voting-based method is utilized to improve the classification performance. Comparisons between the DFFS-based approach and state-of-art methods on BCI competition IV data set 2b have been conducted, which have shown the superiority of the proposed algorithm. Copyright © 2016

  17. Research on a Micro-Grid Frequency Modulation Strategy Based on Optimal Utilization of Air Conditioners

    Directory of Open Access Journals (Sweden)

    Qingzhu Wan


    Full Text Available With the proportion of air conditioners increasing gradually, they can provide a certain amount of frequency-controlled reserves for a micro-grid. Optimizing utilization of air conditioners and considering load response characteristics and customer comfort, the frequency adjustment model is a quadratic function model between the trigger temperature of the air conditioner compressor, and frequency variation is provided, which can be used to regulate the trigger temperature of the air conditioner when the micro-grid frequency rises and falls. This frequency adjustment model combines a primary frequency modulation method and a secondary frequency modulation method of the energy storage system, in order to optimize the frequency of a micro-grid. The simulation results show that the frequency modulation strategy for air conditioners can effectively improve the frequency modulation ability of air conditioners and frequency modulation effects of a micro-grid in coordination with an energy storage system.

  18. High accuracy microwave frequency measurement based on single-drive dual-parallel Mach-Zehnder modulator

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei


    A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing...... 10−3 relative error. This high accuracy frequency measurement technique is a promising candidate for high-speed electronic warfare and defense applications....

  19. Making Meaning in a Standards-Based World: Negotiating Tensions in Global Education (United States)

    Klein, Jennifer D.


    In a largely standards-driven educational climate, educators are challenged to navigate the tensions between standards-based, scholarly pursuits and the more experiential, student-driven techniques of technology-enabled global education. At a time when these tensions are at their zenith, we need to prioritize global competencies and other…

  20. Evaluation of a performance-based standards approach to heavy vehicle design to reduce pavement wear

    CSIR Research Space (South Africa)

    Nordengen, Paul A


    Full Text Available of the Australian PBS system while the infrastructure performance standards are based on South African bridge and pavement design standards. In order to optimise road wear per ton of payload, the South African Mechanistic-Empirical Design Method, which is the basis...

  1. COOMET.EM-S8 (469/RU-a/09). International supplementary comparison of inductance standards at frequencies up to 10 MHz (United States)


    This report describes the results of supplementary comparison COOMET.EM-S8 (also known as regional comparison COOMET 469/RU-a/09) of inductance standards of nominal values 0.1 μH to 100 μH, up to frequencies of 10 MHz. Six participants of the COOMET region were involved in the measurements carried out from July 2008 to October 2011. All results, but one, agreed well with the comparison reference value. This fully confirms the uncertainties declared by the participants in the CMC database on the BIPM website. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  2. Computerized detection of breast cancer using resonance-frequency-based electrical impedance spectroscopy (United States)

    Gao, Wei; Fan, Ming; Zhao, Weijie; Zheng, Bin; Li, Lihua


    This study developed and tested a multi-probe resonance-frequency-based electrical impedance spectroscopy (REIS) system aimed at detection of breast cancer. The REIS system consists of specially designed mechanical supporting device that can be easily lifted to fit women of different height, a seven probe sensor cup, and a computer providing software for system control and management. The sensor cup includes one central probe for direct contact with the nipple, and other six probes uniformly distributed at a distance of 35mm away from the center probe to enable contact with breast skin surface. It takes about 18 seconds for this system to complete a data acquisition process. We utilized this system for examination of breast cancer, collecting a dataset of 289 cases including biopsy verified 74 malignant and 215 benign tumors. After that, 23 REIS based features, including seven frequency, fifteen magnitude features were extracted, and an age feature. To reduce redundancy we selected 6 features using the evolutionary algorithm for classification. The area under a receiver operating characteristic curve (AUC) was computed to assess classifier performance. A multivariable logistic regression method was performed for detection of the tumors. The results of our study showed for the 23 REIS features AUC and ACC, Sensitivity and Specificity of 0.796, 0.727, 0.731 and 0.726, respectively. The AUC and ACC, Sensitivity and Specificity for the 6 REIS features of 0.840, 0.80, 0.703 and 0.833, respectively, and AUC of 0.662 and 0.619 for the frequency and magnitude based REIS features, respectively. The performance of the classifiers using all the 6 features was significantly better than solely using magnitude features (p=3.29e-08) and frequency features (5.61e-07). Smote algorithm was used to expand small samples to balance the dataset, the AUC after data balance of 0.846 increased than the original data classification performance. The results indicated that the REIS system is

  3. Status of existing federal environmental risk-based standards applicable to Department of Energy operations

    International Nuclear Information System (INIS)

    Bilyard, G.R.


    When conducting its environmental restoration, waste management, and decontamination and decommissioning activities, the US Department of Energy (DOE) must comply with a myriad of regulatory procedures and environmental standards. This paper assesses the status of existing federal risk-based standards that may be applied to chemical and radioactive substances on DOE sites. Gaps and inconsistencies among the existing standards and the technical issues associated with the application of those standards are identified. Finally, the implications of the gaps, inconsistencies, and technical issues on DOE operations are discussed, and approaches to resolving the gaps, inconsistencies, and technical issues are identified. 6 refs

  4. Detection of the Third Heart Sound Based on Nonlinear Signal Decomposition and Time-Frequency Localization. (United States)

    Barma, Shovan; Chen, Bo-Wei; Ji, Wen; Rho, Seungmin; Chou, Chih-Hung; Wang, Jhing-Fa


    This study presents a precise way to detect the third ( S3 ) heart sound, which is recognized as an important indication of heart failure, based on nonlinear single decomposition and time-frequency localization. The detection of the S3 is obscured due to its significantly low energy and frequency. Even more, the detected S3 may be misunderstood as an abnormal second heart sound with a fixed split, which was not addressed in the literature. To detect such S3, the Hilbert vibration decomposition method is applied to decompose the heart sound into a certain number of subcomponents while intactly preserving the phase information. Thus, the time information of all of the decomposed components are unchanged, which further expedites the identification and localization of any module/section of a signal properly. Next, the proposed localization step is applied to the decomposed subcomponents by using smoothed pseudo Wigner-Ville distribution followed by the reassignment method. Finally, based on the positional information, the S3 is distinguished and confirmed by measuring time delays between the S2 and S3. In total, 82 sets of cardiac cycles collected from different databases including Texas Heart Institute database are examined for evaluation of the proposed method. The result analysis shows that the proposed method can detect the S3 correctly, even when the normalized temporal energy of S3 is larger than 0.16, and the frequency of those is larger than 34 Hz. In a performance analysis, the proposed method demonstrates that the accuracy rate of S3 detection is as high as 93.9%, which is significantly higher compared with the other methods. Such findings prove the robustness of the proposed idea for detecting substantially low-energized S3 .

  5. Origami-based mechanical metamaterials with tunable frequency band structures (Conference Presentation) (United States)

    Yasuda, Hiromi; Pratt, Riley; Yang, Jinkyu


    We investigate wave dynamics in origami-based mechanical metamaterials composed of bellows-like origami structures, specifically the Tachi-Miura Polyhedron (TMP). One of the unique features of the TMP is that its structural deformations take place only along the crease lines, therefore the structure can be made of rigid plates and hinges. By utilizing this feature, we introduce linear torsional springs to model the crease lines and derive the force and displacement relationship of the TMP structure along the longitudinal direction. Our analysis shows strain softening/hardening behaviors in compression/tensile regions respectively, and the force-displacement curve can be manipulated by altering the initial configuration of the TMP (e.g., the initial folding angle). We also fabricate physical prototypes and measure the force-displacement behavior to verify our analytical model. Based on this static analysis on the TMP, we simplify the TMP structure into a linkage model, preserving the tunable strain softening/hardening behaviors. Dynamic analysis is also conducted numerically to analyze the frequency response of the simplified TMP unit cell under harmonic excitations. The simplified TMP exhibits a transition between linear and nonlinear behaviors, which depends on the amplitude of the excitation and the initial configuration. In addition, we design a 1D system composed of simplified TMP unit cells and analyze the relationship between frequency and wave number. If two different configurations of the unit cell (e.g., different initial folding angles) are connected in an alternating arrangement, the system develops frequency bandgaps. These unique static/dynamic behaviors can be exploited to design engineering devices which can handle vibrations and impact in an efficient manner.

  6. A Critical Examination of IT-21: Thinking Beyond Vendor-Based Standards

    National Research Council Canada - National Science Library

    Trupp, Travis


    .... This thesis takes a critical look at the IT-21 policy from an economic, security, availability, procurement, and practical level, and explores the role of vendor-based standards in the Navy computing architecture...

  7. Proposed Renewable Fuel Standards for 2017, and the Biomass-Based Diesel Volume for 2018 (United States)

    EPA is proposing the volume requirements and associated percentage standards that would apply under the RFS program in calendar years 2016, 2017 and 2018 for cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel.

  8. Council for Exceptional Children: Standards for Evidence-Based Practices in Special Education (United States)

    TEACHING Exceptional Children, 2014


    In this article, the "Council for Exceptional Children (CEC)" presents Standards for Evidence-Based Practices in Special Education. The statement presents an approach for categorizing the evidence base of practices in special education. The quality indicators and the criteria for categorizing the evidence base of special education…

  9. High-frequency combination coding-based steady-state visual evoked potential for brain computer interface

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Zhang, Xin; Xie, Jun; Li, Yeping; Han, Chengcheng; Lili, Li; Wang, Jing [School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Xu, Guang-Hua [School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054 (China)


    This study presents a new steady-state visual evoked potential (SSVEP) paradigm for brain computer interface (BCI) systems. The goal of this study is to increase the number of targets using fewer stimulation high frequencies, with diminishing subject’s fatigue and reducing the risk of photosensitive epileptic seizures. The new paradigm is High-Frequency Combination Coding-Based High-Frequency Steady-State Visual Evoked Potential (HFCC-SSVEP).Firstly, we studied SSVEP high frequency(beyond 25 Hz)response of SSVEP, whose paradigm is presented on the LED. The SNR (Signal to Noise Ratio) of high frequency(beyond 40 Hz) response is very low, which is been unable to be distinguished through the traditional analysis method; Secondly we investigated the HFCC-SSVEP response (beyond 25 Hz) for 3 frequencies (25Hz, 33.33Hz, and 40Hz), HFCC-SSVEP produces n{sup n} with n high stimulation frequencies through Frequence Combination Code. Further, Animproved Hilbert-huang transform (IHHT)-based variable frequency EEG feature extraction method and a local spectrum extreme target identification algorithmare adopted to extract time-frequency feature of the proposed HFCC-SSVEP response.Linear predictions and fixed sifting (iterating) 10 time is used to overcome the shortage of end effect and stopping criterion,generalized zero-crossing (GZC) is used to compute the instantaneous frequency of the proposed SSVEP respondent signals, the improved HHT-based feature extraction method for the proposed SSVEP paradigm in this study increases recognition efficiency, so as to improve ITR and to increase the stability of the BCI system. what is more, SSVEPs evoked by high-frequency stimuli (beyond 25Hz) minimally diminish subject’s fatigue and prevent safety hazards linked to photo-induced epileptic seizures, So as to ensure the system efficiency and undamaging.This study tests three subjects in order to verify the feasibility of the proposed method.

  10. Time-frequency doubly selective channel estimation based on compressed sensing

    Directory of Open Access Journals (Sweden)

    Tu Yuliang


    Full Text Available In this paper,considering time-frequency doubly selective channel,we utilize the channel's time correlation that the channel coefficientscorresponding tothe neighboring instants have a strong correlation.And we present a linear approximation method,which effectively reduces the number of unknown parameters.Considering the sparseness of the wireless channel in the delay domain,this paper reconstructs unknown channel parameters of the proposed model based on compressed sensing (CS theory.In the simulations,we observe the system performance of the linear approximation model and the non-linear approximation model,respectively,and present the normalized mean squared error (NMSE curves based on the least square (LS,orthogonal matching pursuit (OMP and sparse Bayesian learning (SBL algorithms.Simulation results show that the linear approximation method can effectively model the time-frequency doubly-selective channels.For the proposed linear approximation model,SBL algorithm can accurately recover the channel response,and overcome the Doppler effecteffectively.

  11. Research on Health State Perception Algorithm of Mining Equipment Based on Frequency Closeness

    Directory of Open Access Journals (Sweden)

    Gang Wang


    Full Text Available The health state perception of mining equipment is intended to have an online real- time knowledge and analysis of the running conditions of large mining equipments. Due to its unknown failure mode, a challenge was raised to the traditional fault diagnosis of mining equipments. A health state perception algorithm of mining equipment was introduced in this paper, and through continuous sampling of the machine vibration data, the time-series data set was set up; subsequently, the mode set based on the frequency closeness was constructed by the d neighborhood method combined with the TSDM algorithm, thus the forecast method on the basis of the dual mode set was eventually formed. In the calculation of the frequency closeness, the Goertzel algorithm was introduced to effectively decrease the computation amount. It was indicated through the simulation test on the vibration data of the drum shaft base that the health state of the device could be effectively distinguished. The algorithm has been successfully applied to equipment monitoring in the Huoer Xinhe Coal Mine of Shanxi Coal Imp&Exp. Group Co., Ltd.

  12. Identification of seizure onset zone and preictal state based on characteristics of high frequency oscillations. (United States)

    Malinowska, Urszula; Bergey, Gregory K; Harezlak, Jaroslaw; Jouny, Christophe C


    We investigate the relevance of high frequency oscillations (HFO) for biomarkers of epileptogenic tissue and indicators of preictal state before complex partial seizures in humans. We introduce a novel automated HFO detection method based on the amplitude and features of the HFO events. We examined intracranial recordings from 33 patients and compared HFO rates and characteristics between channels within and outside the seizure onset zone (SOZ). We analyzed changes of HFO activity from interictal to preictal and to ictal periods. The average HFO rate is higher for SOZ channels compared to non-SOZ channels during all periods. Amplitudes and durations of HFO are higher for events within the SOZ in all periods compared to non-SOZ events, while their frequency is lower. All analyzed HFO features increase for the ictal period. HFO may occur in all channels but their rate is significantly higher within SOZ and HFO characteristics differ from HFO outside the SOZ, but the effect size of difference is small. The present results show that based on accumulated dataset it is possible to distinguish HFO features different for SOZ and non-SOZ channels, and to show changes in HFO characteristics during the transition from interictal to preictal and to ictal periods. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. High-Frequency EMI Noise Suppression by Polymer-Based Composite Magnetic Materials

    Directory of Open Access Journals (Sweden)

    Rastislav Dosoudil


    Full Text Available The complex permeability and EM-wave absorption properties of hybrid polymer-based composite magneticmaterials (with MnZn and LiZn ferrite fillers and PVC matrix prepared with constant total filler content (65 vol% andparticle size (0-250 mm have been investigated in the 1-1000 MHz frequency range. Within this filler concentrationthe permeability of composites changed continuously with the change of ferrite filler content ratio between two types offerrite fillers. The observed relaxation type of permeability dispersion was due to the domain wall and natural ferromagneticresonance phenomena and was also attributed to the high damping of spin motion. Measured values of permeability wereused to determine the EM-wave absorption properties (return loss RL, matching frequency fm, matching thickness dm andbandwidth Df for RL £ -20 dB. The calculation of these properties was based on a model of single-layered absorber backedby a perfect conductor using transmission-line and EM-field theory. The composite with the volume fraction ratio of hybridMnZn:LiZn ferrite filler set to 0.5:0.5 has shown a return loss of -57 dB (> 99 % power absorption at fm = 714 MHz with the-20 dB bandwidth of Df = 232 MHz for an absorber thickness of 7.79 mm.

  14. The Standardization Method of Address Information for POIs from Internet Based on Positional Relation

    Directory of Open Access Journals (Sweden)

    WANG Yong


    Full Text Available As points of interest (POIon the internet, exists widely incomplete addresses and inconsistent literal expressions, a fast standardization processing method of network POIs address information based on spatial constraints was proposed. Based on the model of the extensible address expression, first of all, address information of POI was segmented and extracted. Address elements are updated by means of matching with the address tree layer by layer. Then, by defining four types of positional relations, corresponding set are selected from standard POI library as candidate for enrichment and amendment of non-standard address. At last, the fast standardized processing of POI address information was achieved with the help of backtracking address elements with minimum granularity. Experiments in this paper proved that the standardization processing of an address can be realized by means of this method with higher accuracy in order to build the address database.

  15. A comparison of a novel time-based summary measure of dairy cow health against cumulative disease frequency. (United States)

    McConnel, Craig S; McNeil, Ashleigh A; Hadrich, Joleen C; Lombard, Jason E; Heller, Jane; Garry, Franklyn B


    There is an increasing push for dairy production to be scientifically grounded and ethically responsible in the oversight of animal health and well-being. Addressing underlying challenges affecting the quality and length of productive life necessitates novel assessment and accountability metrics. Human medical epidemiologists developed the Disability-Adjusted Life Year metric as a summary measure of health addressing the complementary nature of disease and death. The goal of this project was to develop and implement a dairy Disease-Adjusted Lactation (DALact) summary measure of health, as a comparison against cumulative disease frequency. A total of 5694 cows were enrolled at freshening from January 1st, 2014 through May 26th, 2015 on 3 similarly managed U.S. Midwestern Plains' region dairies. Eleven health categories of interest were tracked from enrollment until culling, death, or the study's completion date. The DALact accounted for the days of life lost due to illness, forced removal, and death relative to the average lactation length across the participating farms. The DALact consistently identified mastitis as the primary disease of concern on all 3 dairies (19,007-23,955 days lost). Secondary issues included musculoskeletal injuries (19,559 days), pneumonia (11,034 days), or lameness (8858 days). By comparison, cumulative frequency measures pointed to mastitis (31-50%) and lameness (25-54%) as the 2 most frequent diseases. Notably, the DALact provided a robust accounting of health events such as musculoskeletal injuries (5010-19,559 days) and calving trauma (2952-5868 days) otherwise overlooked by frequency measures (0-3%). The DALact provides a time-based method for assessing the overall burden of disease on dairies. It is important to emphasize that a summary measure of dairy health goes beyond simply linking morbidity to culling and mortality in a standardized fashion. A summary measure speaks to the burden of disease on both the well-being and

  16. Rule Based System for Medicine Inventory Control Using Radio Frequency Identification (RFID

    Directory of Open Access Journals (Sweden)

    Ardhyanti Mita Nugraha Joanna


    Full Text Available Rule based system is very efficient to ensure stock of drug to remain available by utilizing Radio Frequency Identification (RFID as input means automatically. This method can ensure the stock of drugs to remain available by analyzing the needs of drug users. The research data was the amount of drug usage in hospital for 1 year. The data was processed by using ABC classification to determine the drug with fast, medium and slow movement. In each classification result, rule based algorithm was given for determination of safety stock and Reorder Point (ROP. This research yielded safety stock and ROP values that vary depending on the class of each drug. Validation is done by comparing the calculation of safety stock and reorder point both manually and by system, then, it was found that the mean deviation value at safety stock was 0,03 and and ROP was 0,08.

  17. Rule Based System for Medicine Inventory Control Using Radio Frequency Identification (RFID) (United States)

    Nugraha, Joanna Ardhyanti Mita; Suryono; Suseno, dan Jatmiko Endro


    Rule based system is very efficient to ensure stock of drug to remain available by utilizing Radio Frequency Identification (RFID) as input means automatically. This method can ensure the stock of drugs to remain available by analyzing the needs of drug users. The research data was the amount of drug usage in hospital for 1 year. The data was processed by using ABC classification to determine the drug with fast, medium and slow movement. In each classification result, rule based algorithm was given for determination of safety stock and Reorder Point (ROP). This research yielded safety stock and ROP values that vary depending on the class of each drug. Validation is done by comparing the calculation of safety stock and reorder point both manually and by system, then, it was found that the mean deviation value at safety stock was 0,03 and and ROP was 0,08.

  18. Determination of delayed neutrons source in the frequency domain based on in-pile oscillation measurements

    International Nuclear Information System (INIS)

    Yedvab, Y.; Reiss, I.; Bettan, M.; Harari, R.; Grober, A.; Ettedgui, H.; Caspi, E. N.


    A method for determining delayed neutrons source in the frequency domain based on measuring power oscillations in a non-critical reactor is presented. This method is unique in the sense that the delayed neutrons source is derived from the dynamic behavior of the reactor, which serves as the measurement system. An algorithm for analyzing power oscillation measurements was formulated, which avoids the need for a multi-parameter non-linear fit process used by other methods. Using this algorithm results of two sets of measurements performed in IRR-I and IRR-II (Israeli Research Reactors I and II) are presented. The agreement between measured values from both reactors and calculated values based on Keepin (and JENDL-3.3) group parameters is very good. (authors)

  19. Mechanical logic switches based on DNA-inspired acoustic metamaterials with ultrabroad low-frequency band gaps (United States)

    Zheng, Bowen; Xu, Jun


    Mechanical information processing and control has attracted great attention in recent years. A challenging pursuit is to achieve broad functioning frequency ranges, especially at low-frequency domain. Here, we propose a design of mechanical logic switches based on DNA-inspired chiral acoustic metamaterials, which are capable of having ultrabroad band gaps at low-frequency domain. Logic operations can be easily performed by applying constraints at different locations and the functioning frequency ranges are able to be low, broad and tunable. This work may have an impact on the development of mechanical information processing, programmable materials, stress wave manipulation, as well as the isolation of noise and harmful vibration.

  20. Disease causality extraction based on lexical semantics and document-clause frequency from biomedical literature. (United States)

    Lee, Dong-Gi; Shin, Hyunjung


    Recently, research on human disease network has succeeded and has become an aid in figuring out the relationship between various diseases. In most disease networks, however, the relationship between diseases has been simply represented as an association. This representation results in the difficulty of identifying prior diseases and their influence on posterior diseases. In this paper, we propose a causal disease network that implements disease causality through text mining on biomedical literature. To identify the causality between diseases, the proposed method includes two schemes: the first is the lexicon-based causality term strength, which provides the causal strength on a variety of causality terms based on lexicon analysis. The second is the frequency-based causality strength, which determines the direction and strength of causality based on document and clause frequencies in the literature. We applied the proposed method to 6,617,833 PubMed literature, and chose 195 diseases to construct a causal disease network. From all possible pairs of disease nodes in the network, 1011 causal pairs of 149 diseases were extracted. The resulting network was compared with that of a previous study. In terms of both coverage and quality, the proposed method showed outperforming results; it determined 2.7 times more causalities and showed higher correlation with associated diseases than the existing method. This research has novelty in which the proposed method circumvents the limitations of time and cost in applying all possible causalities in biological experiments and it is a more advanced text mining technique by defining the concepts of causality term strength.