WorldWideScience

Sample records for frequency resolved single-molecule

  1. Time-, Frequency-, and Wavevector-Resolved X-Ray Diffraction from Single Molecules

    CERN Document Server

    Bennett, Kochise; Zhang, Yu; Dorfman, Konstantin E; Mukamel, Shaul

    2014-01-01

    Using a quantum electrodynamic framework, we calculate the off-resonant scattering of a broad-band X-ray pulse from a sample initially prepared in an arbitrary superposition of electronic states. The signal consists of single-particle (incoherent) and two-particle (coherent) contributions that carry different particle form factors that involve different material transitions. Single-molecule experiments involving incoherent scattering are more influenced by inelastic processes compared to bulk measurements. The conditions under which the technique directly measures charge densities (and can be considered as diffraction) as opposed to correlation functions of the charge-density are specified. The results are illustrated with time- and wavevector-resolved signals from a single amino acid molecule (cysteine) following an impulsive excitation by a stimulated X-ray Raman process resonant with the sulfur K-edge. Our theory and simulations can guide future experimental studies on the structures of nano-particles and ...

  2. Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy.

    Science.gov (United States)

    Zhang, Zhengyang; Kenny, Samuel J; Hauser, Margaret; Li, Wan; Xu, Ke

    2015-10-01

    By developing a wide-field scheme for spectral measurement and implementing photoswitching, we synchronously obtained the fluorescence spectra and positions of ∼10(6) single molecules in labeled cells in minutes, which consequently enabled spectrally resolved, 'true-color' super-resolution microscopy. The method, called spectrally resolved stochastic optical reconstruction microscopy (SR-STORM), achieved cross-talk-free three-dimensional (3D) imaging for four dyes 10 nm apart in emission spectrum. Excellent resolution was obtained for every channel, and 3D localizations of all molecules were automatically aligned within one imaging path.

  3. Resolving the complexity of the human genome using single-molecule sequencing.

    Science.gov (United States)

    Chaisson, Mark J P; Huddleston, John; Dennis, Megan Y; Sudmant, Peter H; Malig, Maika; Hormozdiari, Fereydoun; Antonacci, Francesca; Surti, Urvashi; Sandstrom, Richard; Boitano, Matthew; Landolin, Jane M; Stamatoyannopoulos, John A; Hunkapiller, Michael W; Korlach, Jonas; Eichler, Evan E

    2015-01-29

    The human genome is arguably the most complete mammalian reference assembly, yet more than 160 euchromatic gaps remain and aspects of its structural variation remain poorly understood ten years after its completion. To identify missing sequence and genetic variation, here we sequence and analyse a haploid human genome (CHM1) using single-molecule, real-time DNA sequencing. We close or extend 55% of the remaining interstitial gaps in the human GRCh37 reference genome--78% of which carried long runs of degenerate short tandem repeats, often several kilobases in length, embedded within (G+C)-rich genomic regions. We resolve the complete sequence of 26,079 euchromatic structural variants at the base-pair level, including inversions, complex insertions and long tracts of tandem repeats. Most have not been previously reported, with the greatest increases in sensitivity occurring for events less than 5 kilobases in size. Compared to the human reference, we find a significant insertional bias (3:1) in regions corresponding to complex insertions and long short tandem repeats. Our results suggest a greater complexity of the human genome in the form of variation of longer and more complex repetitive DNA that can now be largely resolved with the application of this longer-read sequencing technology.

  4. Resolving Single-Molecule Assembled Patterns with Superresolution Blink-Microscopy

    NARCIS (Netherlands)

    Cordes, Thorben; Strackharn, Mathias; Stahl, Stefan W.; Summerer, Wolfram; Steinhauer, Christian; Forthmann, Carsten; Puchner, Elias M.; Vogelsang, Jan; Gaub, Hermann E.; Tinnefeld, Philip

    2010-01-01

    In this paper we experimentally combine a recently developed AFM-based molecule-by-molecule assembly (single-molecule cut-and-paste, SMCP) with subdiffraction resolution fluorescence imaging. Using “Blink-Microscopy”, which exploits the fluctuating emission of single molecules for the reconstruction

  5. Time resolved single molecule spectroscopy of semiconductor quantum dot/conjugated organic hybrid nanostructures

    Science.gov (United States)

    Odoi, Michael Yemoh

    Single molecule studies on CdSe quantum dots functionalized with oligo-phenylene vinylene ligands (CdSe-OPV) provide evidence of strong electronic communication that facilitate charge and energy transport between the OPV ligands and the CdSe quantum dot core. This electronic interaction greatly modify, the photoluminescence properties of both bulk and single CdSe-OPV nanostructure thin film samples. Size-correlated wide-field fluorescence imaging show that blinking suppression in single CdSe-OPV is linked to the degree of OPV coverage (inferred from AFM height scans) on the quantum dot surface. The effect of the complex electronic environment presented by photoexcited OPV ligands on the excited state property of CdSe-OPV is measured with single photon counting and photon-pair correlation spectroscopy techniques. Time-tagged-time-resolved (TTTR) single photon counting measurements from individual CdSe-OPV nanostructures, show excited state lifetimes an order of magnitude shorter relative to conventional ZnS/CdSe quantum dots. Second-order intensity correlation measurements g(2)(tau) from individual CdSe-OPV nanostructures point to a weak multi-excitonic character with a strong wavelength dependent modulation depth. By tuning in and out of the absorption of the OPV ligands we observe changes in modulation depth from g(2) (0) ≈ 0.2 to 0.05 under 405 and 514 nm excitation respectively. Defocused images and polarization anisotropy measurements also reveal a well-defined linear dipole emission pattern in single CdSe-OPV nanostructures. These results provide new insights into to the mechanism behind the electronic interactions in composite quantum dot/conjugated organic composite systems at the single molecule level. The observed intensity flickering , blinking suppression and associated lifetime/count rate and antibunching behaviour is well explained by a Stark interaction model. Charge transfer from photo-excitation of the OPV ligands to the surface of the Cd

  6. Single-molecule imaging reveals a common mechanism shared by G-quadruplex–resolving helicases

    Science.gov (United States)

    Tippana, Ramreddy; Hwang, Helen; Opresko, Patricia L.; Bohr, Vilhelm A.; Myong, Sua

    2016-01-01

    G-quadruplex (GQ) is a four stranded DNA secondary structure that arises from a guanine rich sequence. Stable formation of GQ in genomic DNA can be counteracted by the resolving activity of specialized helicases including RNA helicase AU (associated with AU rich elements) (RHAU) (G4 resolvase 1), Bloom helicase (BLM), and Werner helicase (WRN). However, their substrate specificity and the mechanism involved in GQ unfolding remain uncertain. Here, we report that RHAU, BLM, and WRN exhibit distinct GQ conformation specificity, but use a common mechanism of repetitive unfolding that leads to disrupting GQ structure multiple times in succession. Such unfolding activity of RHAU leads to efficient annealing exclusively within the same DNA molecule. The same resolving activity is sufficient to dislodge a stably bound GQ ligand, including BRACO-19, NMM, and Phen-DC3. Our study demonstrates a plausible biological scheme where different helicases are delegated to resolve specific GQ structures by using a common repetitive unfolding mechanism that provides a robust resolving power. PMID:27407146

  7. Angular-resolved magnetometry beyond triclinic crystals part II: torque magnetometry of Cp*ErCOT single-molecule magnets.

    Science.gov (United States)

    Perfetti, Mauro; Cucinotta, Giuseppe; Boulon, Marie-Emmanuelle; El Hallak, Fadi; Gao, Song; Sessoli, Roberta

    2014-10-20

    The experimental investigation of the molecular magnetic anisotropy in crystals in which the magnetic centers are symmetry related, but do not have a parallel orientation has been approached by using torque magnetometry. A single crystal of the orthorhombic organometallic Cp*ErCOT [Cp*=pentamethylcyclopentadiene anion (C5Me5(-)); COT=cyclooctatetraenedianion (C8H8(2-))] single-molecule magnet, characterized by the presence of two nonparallel families of molecules in the crystal, has been investigated above its blocking temperature. The results confirm an Ising-type anisotropy with the easy direction pointing along the pseudosymmetry axis of the complex, as previously suggested by out-of-equilibrium angular-resolved magnetometry. The use of torque magnetometry, not requiring the presence of magnetic hysteresis, proves to be even more powerful for these purposes than standard single-crystal magnetometry. Furthermore, exploiting the sensitivity and versatility of this technique, magnetic anisotropy has been investigated up to 150 K, providing additional information on the crystal-field splitting of the ground J multiplet of the Er(III) ion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Quasi-localized low-frequency vibrational modes of disordered solids II. Study by single-molecule spectroscopy

    Science.gov (United States)

    Naumov, A. V.; Vainer, Yu. G.; Bauer, M.; Kador, L.

    2004-12-01

    By means of single molecule (SM) spectroscopy we investigated elementary matrix excitations in a disordered solid, i.e., quasi-localized low-frequency vibrational modes (LFMs). To this end we recorded the spectra of single tetra-tert-butylterrylene molecules embedded in an amorphous polyisobutylene matrix in a temperature region, where the LFM contribution to line broadening dominates. The individual param- eters of LFMs in a polymer glass can be determined from the temperature-dependent linewidths of single molecules. The magnitude of the LFM contribution to SM spectra was obtained by the statistical analysis of the distribution of linewidths of SMs. Pronounced distributions of LFM frequencies and SM-LFM coupling constants were found. This result can be regarded as the first direct experimental proof of the localized nature of LFMs.

  9. A Monopole Antenna at Optical Frequencies: Single-Molecule Near-Field Measurements

    NARCIS (Netherlands)

    Taminiau, Tim H.; Segerink, Franciscus B.; van Hulst, N.F.

    2007-01-01

    We present a monopole antenna for optical frequencies (~600 THz) and discuss near-field measurements with single fluorescent molecules as a technique to characterize such antennas. The similarities and differences between near-field antenna measurements at optical and radio frequencies are discussed

  10. Resolving protein interactions and organization downstream the T cell antigen receptor using single-molecule localization microscopy: a review

    Science.gov (United States)

    Sherman, Eilon

    2016-06-01

    Signal transduction is mediated by heterogeneous and dynamic protein complexes. Such complexes play a critical role in diverse cell functions, with the important example of T cell activation. Biochemical studies of signalling complexes and their imaging by diffraction limited microscopy have resulted in an intricate network of interactions downstream the T cell antigen receptor (TCR). However, in spite of their crucial roles in T cell activation, much remains to be learned about these signalling complexes, including their heterogeneous contents and size distribution, their complex arrangements in the PM, and the molecular requirements for their formation. Here, we review how recent advancements in single molecule localization microscopy have helped to shed new light on the organization of signalling complexes in single molecule detail in intact T cells. From these studies emerges a picture where cells extensively employ hierarchical and dynamic patterns of nano-scale organization to control the local concentration of interacting molecular species. These patterns are suggested to play a critical role in cell decision making. The combination of SMLM with more traditional techniques is expected to continue and critically contribute to our understanding of multimolecular protein complexes and their significance to cell function.

  11. Towards Better Precision Medicine: PacBio Single-Molecule Long Reads Resolve the Interpretation of HIV Drug Resistant Mutation Profiles at Explicit Quasispecies (Haplotype) Level.

    Science.gov (United States)

    Huang, Da Wei; Raley, Castle; Jiang, Min Kang; Zheng, Xin; Liang, Dun; Rehman, M Tauseef; Highbarger, Helene C; Jiao, Xiaoli; Sherman, Brad; Ma, Liang; Chen, Xiaofeng; Skelly, Thomas; Troyer, Jennifer; Stephens, Robert; Imamichi, Tomozumi; Pau, Alice; Lempicki, Richard A; Tran, Bao; Nissley, Dwight; Lane, H Clifford; Dewar, Robin L

    2016-01-01

    Development of HIV-1 drug resistance mutations (HDRMs) is one of the major reasons for the clinical failure of antiretroviral therapy. Treatment success rates can be improved by applying personalized anti-HIV regimens based on a patient's HDRM profile. However, the sensitivity and specificity of the HDRM profile is limited by the methods used for detection. Sanger-based sequencing technology has traditionally been used for determining HDRM profiles at the single nucleotide variant (SNV) level, but with a sensitivity of only ≥ 20% in the HIV population of a patient. Next Generation Sequencing (NGS) technologies offer greater detection sensitivity (~ 1%) and larger scope (hundreds of samples per run). However, NGS technologies produce reads that are too short to enable the detection of the physical linkages of individual SNVs across the haplotype of each HIV strain present. In this article, we demonstrate that the single-molecule long reads generated using the Third Generation Sequencer (TGS), PacBio RS II, along with the appropriate bioinformatics analysis method, can resolve the HDRM profile at a more advanced quasispecies level. The case studies on patients' HIV samples showed that the quasispecies view produced using the PacBio method offered greater detection sensitivity and was more comprehensive for understanding HDRM situations, which is complement to both Sanger and NGS technologies. In conclusion, the PacBio method, providing a promising new quasispecies level of HDRM profiling, may effect an important change in the field of HIV drug resistance research.

  12. Single molecules and nanotechnology

    CERN Document Server

    Vogel, Horst

    2007-01-01

    This book focuses on recent advances in the rapidly evolving field of single molecule research. These advances are of importance for the investigation of biopolymers and cellular biochemical reactions, and are essential to the development of quantitative biology. Written by leading experts in the field, the articles cover a broad range of topics, including: quantum photonics of organic dyes and inorganic nanoparticles their use in detecting properties of single molecules the monitoring of single molecule (enzymatic) reactions single protein (un)folding in nanometer-sized confined volumes the dynamics of molecular interactions in biological cells The book is written for advanced students and scientists who wish to survey the concepts, techniques and results of single molecule research and assess them for their own scientific activities.

  13. Probing the magnetic moments of [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} single-molecule magnets—A cross comparison of XMCD and spin-resolved electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Helmstedt, Andreas, E-mail: helmstedt.andreas@gmail.com [Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld (Germany); Dohmeier, Niklas; Müller, Norbert; Gryzia, Aaron; Brechling, Armin; Heinzmann, Ulrich [Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld (Germany); Hoeke, Veronika; Krickemeyer, Erich; Glaser, Thorsten [Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld (Germany); Leicht, Philipp; Fonin, Mikhail [Fachbereich Physik, Universität Konstanz, Universitätsstr. 10, 78457 Konstanz (Germany); Tietze, Thomas [Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart (Germany); Joly, Loïc [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, CNRS-Université de Strasbourg, BP 43, 23 rue du Loess, F-67034 Strasbourg Cedex 2 (France); Kuepper, Karsten [Institut für Festkörperphysik, Universität Ulm, 89069 Ulm (Germany)

    2015-01-15

    Highlights: • [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} single-molecule magnets are investigated. • XMCD and spin-resolved electron spectroscopy (SPES) results are compared. • A simple sum rule evaluation is performed for comparison. • Differences between SPES and XMCD results are discussed. • Influences of the magnetic field on the Mn L edge absorption are observed. - Abstract: Single-molecule magnets (SMM) of the [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} structural type prepared on Si and gold-coated glass substrates have been investigated by spin-resolved electron spectroscopy (SPES) and X-ray magnetic circular dichroism (XMCD) at the Mn L{sub 3,2} edge and in addition by XMCD at the Cr L{sub 3,2} edge using synchrotron radiation. Differences between the two methods are discussed. Despite its severe limitations for 3d transition metals, a spin sum rule evaluation is nevertheless performed for the Mn{sup III} centres in the [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} SMM to provide a simple means of comparing XMCD and spin-resolved electron spectroscopy results.

  14. Lanthanide single molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jinkui; Zhang, Peng [Chinese Academy of Sciences, Changchun (China). Changchun Inst. of Applied Chemistry

    2015-10-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures - an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions.

  15. Lanthanide single molecule magnets

    CERN Document Server

    Tang, Jinkui

    2015-01-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs, and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures – an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and...

  16. Near-field single molecule spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xie, X.S.; Dunn, R.C.

    1995-02-01

    The high spatial resolution and sensitivity of near-field fluorescence microscopy allows one to study spectroscopic and dynamical properties of individual molecules at room temperature. Time-resolved experiments which probe the dynamical behavior of single molecules are discussed. Ground rules for applying near-field spectroscopy and the effect of the aluminum coated near-field probe on spectroscopic measurements are presented.

  17. Large Mn25 single-molecule magnet with spin S = 51/2: magnetic and high-frequency electron paramagnetic resonance spectroscopic characterization of a giant spin state.

    Science.gov (United States)

    Murugesu, Muralee; Takahashi, Susumu; Wilson, Anthony; Abboud, Khalil A; Wernsdorfer, Wolfgang; Hill, Stephen; Christou, George

    2008-10-20

    The synthesis and structural, spectroscopic, and magnetic characterization of a Mn25 coordination cluster with a large ground-state spin of S = 51/2 are reported. Reaction of MnCl2 with pyridine-2,6-dimethanol (pdmH2) and NaN3 in MeCN/MeOH gives the mixed valence cluster [Mn25O18(OH)2(N3)12(pdm)6(pdmH)6]Cl2 (1; 6Mn(II), 18Mn(III), Mn(IV)), which has a barrel-like cage structure. Variable temperature direct current (dc) magnetic susceptibility data were collected in the 1.8-300 K temperature range in a 0.1 T field. Variable-temperature and -field magnetization (M) data were collected in the 1.8-4.0 K and 0.1-7 T ranges and fit by matrix diagonalization assuming only the ground state is occupied at these temperatures. The fit parameters were S = 51/2, D = -0.020(2) cm(-1), and g = 1.87(3), where D is the axial zero-field splitting parameter. Alternating current (ac) susceptibility measurements in the 1.8-8.0 K range and a 3.5 G ac field oscillating at frequencies in the 50-1500 Hz range revealed a frequency-dependent out-of-phase (chi(M)'') signal below 3 K, suggesting 1 to be a single-molecule magnet (SMM). This was confirmed by magnetization vs dc field sweeps, which exhibited hysteresis loops but with no clear steps characteristic of resonant quantum tunneling of magnetization (QTM). However, magnetization decay data below 1 K were collected and used to construct an Arrhenius plot, and the fit of the thermally activated region above approximately 0.5 K gave U(eff)/k = 12 K, where U(eff) is the effective relaxation barrier. The g value and the magnitude and sign of the D value were independently confirmed by detailed high-frequency electron paramagnetic resonance (HFEPR) spectroscopy on polycrystalline samples. The combined studies confirm both the high ground-state spin S = 51/2 of complex 1 and that it is a SMM that, in addition, exhibits QTM.

  18. 3D-localization of the a-subunit in F 0F I-ATP synthase by time resolved single-molecule FRET

    Science.gov (United States)

    Düser, Monika G.; Zarrabi, Nawid; Bi, Yumin; Zimmermann, Boris; Dunn, Stanley D.; Börsch, Michael

    2006-02-01

    F °F I-ATP synthases catalyze the ATP formation from ADP and phosphate in the membranes of mitochondria, chloroplasts and bacteria. Internal rotation of subunits couples the chemical reaction at the F I part to the proton translocation through the F ° part. In these enzymes, the membrane-embedded a-subunit is part of the non-rotating 'stator' subunits and provides the proton channel of the F ° motor. At present, the relative position of the a-subunit is not known. We examined the rotary movements of the ɛ-subunit with respect to the non-rotating a-subunit by time resolved singlemolecule fluorescence resonance energy transfer (FRET) using a novel pulsed laser diode. Rotation of the ɛ-subunit during ATP hydrolysis was divided into three major steps. The stopping positions of ɛ resulted in three distinct FRET efficiency levels and FRET donor lifetimes. From these FRET efficiencies the position of the FRET donor at the asubunit was calculated. Different populations of the three resting positions of ɛ, which were observed previously, enabled us to scrutinize the models for the position of the a-subunit in the F ° part.

  19. Single-Molecule Stochastic Resonance

    Directory of Open Access Journals (Sweden)

    K. Hayashi

    2012-08-01

    Full Text Available Stochastic resonance (SR is a well-known phenomenon in dynamical systems. It consists of the amplification and optimization of the response of a system assisted by stochastic (random or probabilistic noise. Here we carry out the first experimental study of SR in single DNA hairpins which exhibit cooperatively transitions from folded to unfolded configurations under the action of an oscillating mechanical force applied with optical tweezers. By varying the frequency of the force oscillation, we investigate the folding and unfolding kinetics of DNA hairpins in a periodically driven bistable free-energy potential. We measure several SR quantifiers under varied conditions of the experimental setup such as trap stiffness and length of the molecular handles used for single-molecule manipulation. We find that a good quantifier of the SR is the signal-to-noise ratio (SNR of the spectral density of measured fluctuations in molecular extension of the DNA hairpins. The frequency dependence of the SNR exhibits a peak at a frequency value given by the resonance-matching condition. Finally, we carry out experiments on short hairpins that show how SR might be useful for enhancing the detection of conformational molecular transitions of low SNR.

  20. Single-molecule stochastic resonance

    CERN Document Server

    Hayashi, K; Manosas, M; Huguet, J M; Ritort, F; 10.1103/PhysRevX.2.031012

    2012-01-01

    Stochastic resonance (SR) is a well known phenomenon in dynamical systems. It consists of the amplification and optimization of the response of a system assisted by stochastic noise. Here we carry out the first experimental study of SR in single DNA hairpins which exhibit cooperatively folding/unfolding transitions under the action of an applied oscillating mechanical force with optical tweezers. By varying the frequency of the force oscillation, we investigated the folding/unfolding kinetics of DNA hairpins in a periodically driven bistable free-energy potential. We measured several SR quantifiers under varied conditions of the experimental setup such as trap stiffness and length of the molecular handles used for single-molecule manipulation. We find that the signal-to-noise ratio (SNR) of the spectral density of measured fluctuations in molecular extension of the DNA hairpins is a good quantifier of the SR. The frequency dependence of the SNR exhibits a peak at a frequency value given by the resonance match...

  1. Special Issue: Single Molecule Techniques

    Directory of Open Access Journals (Sweden)

    Hans H. Gorris

    2015-04-01

    Full Text Available Technological advances in the detection and manipulation of single molecules have enabled new insights into the function, structure and interactions of biomolecules. This Special Issue was launched to account for the rapid progress in the field of “Single Molecule Techniques”. Four original research articles and seven review articles provide an introduction, as well as an in-depth discussion, of technical developments that are indispensable for the characterization of individual biomolecules. Fluorescence microscopy takes center stage in this Special Issue because it is one of the most sensitive and flexible techniques, which has been adapted in many variations to the specific demands of single molecule analysis. Two additional articles are dedicated to single molecule detection based on atomic force microscopy.

  2. Optofluidic single molecule flow proteometry

    Science.gov (United States)

    Jing, Nan; Chou, Chao-Kai; Hung, Mien-Chie; Kameoka, Jun

    2009-02-01

    A microfluidic single molecule fluorescence-based detection scheme is developed to identify target protein direct from cell lysate by using polyclonal antibody. Relative concentration of target protein in solution is determined by twodimensional (2D) photon burst analysis. Compared to conventional ensemble measurement assays, this microfluidic single molecule approach combines the advantages of higher sensitivity, fast processing time, small sample consumption and high resolution quantitative analysis.

  3. Single Molecule Electronics and Devices

    Directory of Open Access Journals (Sweden)

    Makusu Tsutsui

    2012-05-01

    Full Text Available The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule.

  4. Spin resolved photoelectron spectroscopy of [Mn{sub 6}{sup III}Cr{sup III}]{sup 3+} single-molecule magnets and of manganese compounds as reference layers

    Energy Technology Data Exchange (ETDEWEB)

    Helmstedt, Andreas; Mueller, Norbert; Gryzia, Aaron; Dohmeier, Niklas; Brechling, Armin; Sacher, Marc D; Heinzmann, Ulrich [Fakultaet fuer Physik, Universitaet Bielefeld, Universitaetsstrasse 25, 33615 Bielefeld (Germany); Hoeke, Veronika; Krickemeyer, Erich; Glaser, Thorsten [Fakultaet fuer Chemie, Universitaet Bielefeld, Universitaetsstrasse 25, 33615 Bielefeld (Germany); Bouvron, Samuel; Fonin, Mikhail [Fachbereich Physik, Universitaet Konstanz, Universitaetsstrasse 10, 78457 Konstanz (Germany); Neumann, Manfred, E-mail: andreas.helmstedt@uni-bielefeld.de [Fachbereich Physik, Universitaet Osnabrueck, Barbarastrasse 7, 49069 Osnabrueck (Germany)

    2011-07-06

    Properties of the manganese-based single-molecule magnet [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} are studied. It contains six Mn{sup III} ions arranged in two bowl-shaped trinuclear triplesalen building blocks linked by a hexacyanochromate and exhibits a large spin ground state of S{sub t} = 21/2. The dominant structures in the electron emission spectra of [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} resonantly excited at the L{sub 3}-edge are the L{sub 3}M{sub 2,3}M{sub 2,3}, L{sub 3}M{sub 2,3}V and L{sub 3}VV Auger emission groups following the decay of the primary p{sub 3/2} core hole state. Significant differences of the Auger spectra from intact and degraded [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} show up. First measurements of the electron spin polarization in the L{sub 3}M{sub 2,3}V and L{sub 3}VV Auger emission peaks from the manganese constituents in [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} resonantly excited at the L{sub 3}-edge near 640 eV by circularly polarized synchrotron radiation are reported. In addition spin resolved Auger electron spectra of the reference substances MnO, Mn{sub 2}O{sub 3} and Mn{sup II}(acetate){sub 2{center_dot}}4H{sub 2}O are given. The applicability of spin resolved electron spectroscopy for characterizing magnetic states of constituent atoms compared to magnetic circular dichroism (MCD) is verified: the spin polarization obtained from Mn{sup II}(acetate){sub 2{center_dot}}4H{sub 2}O at room temperature in the paramagnetic state compares to the MCD asymmetry revealed for a star-shaped molecule with a Mn{sub 4}{sup II}O{sub 6} core at 5 K in an external magnetic field of 5 T.

  5. Single-molecule magnet engineering

    DEFF Research Database (Denmark)

    Pedersen, Kasper Steen; Bendix, Jesper; Clérac, Rodolphe

    2014-01-01

    to delicately tune, for instance, the properties of molecules that behave as "magnets", the so-called single-molecule magnets (SMMs). Although many interesting SMMs have been prepared by a more or less serendipitous approach, the assembly of predesigned, isolatable molecular entities into higher nuclearity...... complexes constitutes an elegant and fascinating strategy. This Feature article focuses on the use of building blocks or modules (both terms being used indiscriminately) to direct the structure, and therefore also the magnetic properties, of metal ion complexes exhibiting SMM behaviour. This journal...

  6. Photoemission of Mn6Cr single-molecule magnets

    Science.gov (United States)

    Heinzmann, U.; Merschjohann, F.; Helmstedt, A.; Gryzia, A.; Winter, A.; Steppeler, S.; Müller, N.; Brechling, A.; Sacher, M.; Richthofen, C.-G. Freiherr v.; Glaser, T.; Voss, S.; Fonin, M.; Rüdiger, U.

    2009-11-01

    We present the status of new experimental studies of X-ray absorption spectroscopy, magnetic circular dichroism in photoemission and spin-resolved photoelectron spectroscopy of Mn6Cr single-molecule magnet systems by use of circularly-polarized synchrotron radiation of the electron storage rings in Maxlab Lund, Sweden und BESSY, Berlin, Germany.

  7. Single Molecule Studies of Chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Jeans, C; Thelen, M P; Noy, A

    2006-02-06

    In eukaryotic cells, DNA is packaged as chromatin, a highly ordered structure formed through the wrapping of the DNA around histone proteins, and further packed through interactions with a number of other proteins. In order for processes such as DNA replication, DNA repair, and transcription to occur, the structure of chromatin must be remodeled such that the necessary enzymes can access the DNA. A number of remodeling enzymes have been described, but our understanding of the remodeling process is hindered by a lack of knowledge of the fine structure of chromatin, and how this structure is modulated in the living cell. We have carried out single molecule experiments using atomic force microscopy (AFM) to study the packaging arrangements in chromatin from a variety of cell types. Comparison of the structures observed reveals differences which can be explained in terms of the cell type and its transcriptional activity. During the course of this project, sample preparation and AFM techniques were developed and optimized. Several opportunities for follow-up work are outlined which could provide further insight into the dynamic structural rearrangements of chromatin.

  8. Making "Operations" inside a Single Molecule

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Free and delicate manipulation of single molecules has long been expected by scientists so as to realize specific functions. In the 1990s, the laboratory led by Prof. Wison Ho from the University of California was successful in inducing chemical reactions at the single molecule level with scanning tunneling microscopy (STM), revealing the extensive potentials of "single molecule operation." However, until recently, researchers have failed to utilize the reaction to give rise to special physical properties.

  9. Single-molecule dynamics at variable temperatures

    NARCIS (Netherlands)

    Zondervan, Rob

    2006-01-01

    Single-molecule optics has evolved from a specialized variety of optical spectroscopy at low temperatures into a versatile tool to address questions in physics, chemistry, biology, and materials science. In this thesis, the potential of single-molecule (and ensemble) optical microscopy at variable t

  10. Probing the Conformations of Single Molecule via Photon Counting Statistics

    CERN Document Server

    Peng, Yonggang; Yang, Chuanlu; Zheng, Yujun

    2014-01-01

    We suggest an approach to detect the conformation of single molecule by using the photon counting statistics. The generalized Smoluchoswki equation is employed to describe the dynamical process of conformational change of single molecule. The resonant trajectories of the emission photon numbers $$ and the Mandel's $Q$ parameter, in the space of conformational coordinates $\\bm{\\mathcal{X}}$ and frequency $\\omega_L$ of external field ($\\bm{\\mathcal{X}}-\\omega_L$ space), can be used to rebuild the conformation of the single molecule. As an example, we consider Thioflavin T molecule. It demonstrates that the results of conformations extracted by employing the photon counting statistics is excellent agreement with the results of {\\it ab initio} computation.

  11. Angstrom-Resolution Magnetic Resonance Imaging of Single Molecules via Wave-Function Fingerprints of Nuclear Spins

    Science.gov (United States)

    Ma, Wen-Long; Liu, Ren-Bao

    2016-08-01

    Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the "frequency fingerprints" of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using "wave-function fingerprints" of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the "frequency gradients" in conventional MRI and to reaching the angstrom-scale resolution.

  12. SINGLE MOLECULE ENZYMOLOGY FINDS ITS STRIDE.

    Science.gov (United States)

    Perkel, Jeffrey

    2015-10-01

    More techniques aimed at probing the nature of single molecules are being developed and advanced in biophysics labs. Jeffrey Perkel takes a look at the scientists leading the charge into the micro-world.

  13. Electronic Single Molecule Identification of Carbohydrate Isomers by Recognition Tunneling

    CERN Document Server

    Im, JongOne; Liu, Hao; Zhao, Yanan; Sen, Suman; Biswas, Sudipta; Ashcroft, Brian; Borges, Chad; Wang, Xu; Lindsay, Stuart; Zhang, Peiming

    2016-01-01

    Glycans play a central role as mediators in most biological processes, but their structures are complicated by isomerism. Epimers and anomers, regioisomers, and branched sequences contribute to a structural variability that dwarfs those of nucleic acids and proteins, challenging even the most sophisticated analytical tools, such as NMR and mass spectrometry. Here, we introduce an electron tunneling technique that is label-free and can identify carbohydrates at the single-molecule level, offering significant benefits over existing technology. It is capable of analyzing sub-picomole quantities of sample, counting the number of individual molecules in each subset in a population of coexisting isomers, and is quantitative over more than four orders of magnitude of concentration. It resolves epimers not well separated by ion-mobility and can be implemented on a silicon chip. It also provides a readout mechanism for direct single-molecule sequencing of linear oligosaccharides.

  14. Incoherent x-ray scattering in single molecule imaging

    CERN Document Server

    Slowik, Jan Malte; Dixit, Gopal; Jurek, Zoltan; Santra, Robin

    2014-01-01

    Imaging of the structure of single proteins or other biomolecules with atomic resolution would be enormously beneficial to structural biology. X-ray free-electron lasers generate highly intense and ultrashort x-ray pulses, providing a route towards imaging of single molecules with atomic resolution. The information on molecular structure is encoded in the coherent x-ray scattering signal. In contrast to crystallography there are no Bragg reflections in single molecule imaging, which means the coherent scattering is not enhanced. Consequently, a background signal from incoherent scattering deteriorates the quality of the coherent scattering signal. This background signal cannot be easily eliminated because the spectrum of incoherently scattered photons cannot be resolved by usual scattering detectors. We present an ab initio study of incoherent x-ray scattering from individual carbon atoms, including the electronic radiation damage caused by a highly intense x-ray pulse. We find that the coherent scattering pa...

  15. Mode-resolved Photon Counting via Cascaded Quantum Frequency Conversion

    CERN Document Server

    Huang, Yu-Ping

    2012-01-01

    Resources for the manipulation and measurements of high-dimensional photonic signals are crucial for implementing qu$d$it-based applications. Here we propose potentially high-performance, chip-compatible devices for such purposes by exploiting quantum-frequency conversion in nonlinear optical media. Specifically, by using sum-frequency generation in a $\\chi^{(2)}$ waveguide we show how mode-resolved photon counting can be accomplished for telecom-band photonic signals subtending multiple temporal modes. Our method is generally applicable to any nonlinear medium with arbitrary dispersion property.

  16. Single-Molecule Studies in Live Cells

    Science.gov (United States)

    Yu, Ji

    2016-05-01

    Live-cell single-molecule experiments are now widely used to study complex biological processes such as signal transduction, self-assembly, active trafficking, and gene regulation. These experiments' increased popularity results in part from rapid methodological developments that have significantly lowered the technical barriers to performing them. Another important advance is the development of novel statistical algorithms, which, by modeling the stochastic behaviors of single molecules, can be used to extract systemic parameters describing the in vivo biochemistry or super-resolution localization of biological molecules within their physiological environment. This review discusses recent advances in experimental and computational strategies for live-cell single-molecule studies, as well as a selected subset of biological studies that have utilized these new technologies.

  17. Theoretical study on single-molecule spectroscopy

    Institute of Scientific and Technical Information of China (English)

    SHAN Guang-cun; HUANG Wei

    2006-01-01

    The photon-by-photon approach for single molecule spectroscopy experiments utilizes the information carried by each detected photon and allows the measurements of conformational fluctuation with time resolution on a vast range of time scales,where each photon represents a data point.Here,we theoretically simulate the photon emission dynamics of a single molecule spectroscopy using the kinetic Monte Carlo algorithm to understand the underlying complex photon dynamic process of a single molecule.In addition,by following the molecular process in real time,the mechanism of complex biochemical reactions can be revealed.We hope that this theoretical study will serve as an introduction and a guideline into this exciting new field.

  18. Dysprosium Acetylacetonato Single-Molecule Magnet Encapsulated in Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ryo Nakanishi

    2016-12-01

    Full Text Available Dy single-molecule magnets (SMMs, which have several potential uses in a variety of applications, such as quantum computing, were encapsulated in multi-walled carbon nanotubes (MWCNTs by using a capillary method. Encapsulation was confirmed by using transmission electron microscopy (TEM. In alternating current magnetic measurements, the magnetic susceptibilities of the Dy acetylacetonato complexes showed clear frequency dependence even inside the MWCNTs, meaning that this hybrid can be used as magnetic materials in devices.

  19. Single Molecule Biophysics Experiments and Theory

    CERN Document Server

    Komatsuzaki, Tamiki; Takahashi, Satoshi; Yang, Haw; Silbey, Robert J; Rice, Stuart A; Dinner, Aaron R

    2011-01-01

    Discover the experimental and theoretical developments in optical single-molecule spectroscopy that are changing the ways we think about molecules and atoms The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. This latest volume explores the advent of optical single-molecule spectroscopy, and how atomic force microscopy has empowered novel experiments on individual biomolecules, opening up new frontiers in molecular and cell biology and leading to new theoretical approaches

  20. Nanoscience: Single-molecule instant replay

    Science.gov (United States)

    Camillone, Nicholas

    2016-11-01

    A nanoscale imaging method that uses ultrashort light pulses to initiate and follow the motion of a single molecule adsorbed on a solid surface opens a window onto the physical and chemical dynamics of molecules on surfaces. See Letter p.263

  1. Single Molecule Studies on Dynamics in Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Daniela Täuber

    2013-09-01

    Full Text Available Single molecule (SM methods are able to resolve structure related dynamics of guest molecules in liquid crystals (LC. Highly diluted small dye molecules on the one hand explore structure formation and LC dynamics, on the other hand they report about a distortion caused by the guest molecules. The anisotropic structure of LC materials is used to retrieve specific conformation related properties of larger guest molecules like conjugated polymers. This in particular sheds light on organization mechanisms within biological cells, where large molecules are found in nematic LC surroundings. This review gives a short overview related to the application of highly sensitive SM detection schemes in LC.

  2. Single-molecule Michaelis-Menten equations.

    Science.gov (United States)

    Kou, S C; Cherayil, Binny J; Min, Wei; English, Brian P; Xie, X Sunney

    2005-10-20

    This paper summarizes our present theoretical understanding of single-molecule kinetics associated with the Michaelis-Menten mechanism of enzymatic reactions. Single-molecule enzymatic turnover experiments typically measure the probability density f(t) of the stochastic waiting time t for individual turnovers. While f(t) can be reconciled with ensemble kinetics, it contains more information than the ensemble data; in particular, it provides crucial information on dynamic disorder, the apparent fluctuation of the catalytic rates due to the interconversion among the enzyme's conformers with different catalytic rate constants. In the presence of dynamic disorder, f(t) exhibits a highly stretched multiexponential decay at high substrate concentrations and a monoexponential decay at low substrate concentrations. We derive a single-molecule Michaelis-Menten equation for the reciprocal of the first moment of f(t), 1/, which shows a hyperbolic dependence on the substrate concentration [S], similar to the ensemble enzymatic velocity. We prove that this single-molecule Michaelis-Menten equation holds under many conditions, in particular when the intercoversion rates among different enzyme conformers are slower than the catalytic rate. However, unlike the conventional interpretation, the apparent catalytic rate constant and the apparent Michaelis constant in this single-molecule Michaelis-Menten equation are complicated functions of the catalytic rate constants of individual conformers. We also suggest that the randomness parameter r, defined as )2> / t2, can serve as an indicator for dynamic disorder in the catalytic step of the enzymatic reaction, as it becomes larger than unity at high substrate concentrations in the presence of dynamic disorder.

  3. Handbook of Single-Molecule Biophysics

    CERN Document Server

    Hinterdorfer, Peter

    2009-01-01

    The last decade has seen the development of a number of novel biophysical methods that allow the manipulation and study of individual biomolecules. The ability to monitor biological processes at this fundamental level of sensitivity has given rise to an improved understanding of the underlying molecular mechanisms. Through the removal of ensemble averaging, distributions and fluctuations of molecular properties can be characterized, transient intermediates identified, and catalytic mechanisms elucidated. By applying forces on biomolecules while monitoring their activity, important information can be obtained on how proteins couple function to structure. The Handbook of Single-Molecule Biophysics provides an introduction to these techniques and presents an extensive discussion of the new biological insights obtained from them. Coverage includes: Experimental techniques to monitor and manipulate individual biomolecules The use of single-molecule techniques in super-resolution and functional imaging Single-molec...

  4. The symmetry of single-molecule conduction.

    Science.gov (United States)

    Solomon, Gemma C; Gagliardi, Alessio; Pecchia, Alessandro; Frauenheim, Thomas; Di Carlo, Aldo; Reimers, Jeffrey R; Hush, Noel S

    2006-11-14

    We introduce the conductance point group which defines the symmetry of single-molecule conduction within the nonequilibrium Green's function formalism. It is shown, either rigorously or to within a very good approximation, to correspond to a molecular-conductance point group defined purely in terms of the properties of the conducting molecule. This enables single-molecule conductivity to be described in terms of key qualitative chemical descriptors that are independent of the nature of the molecule-conductor interfaces. We apply this to demonstrate how symmetry controls the conduction through 1,4-benzenedithiol chemisorbed to gold electrodes as an example system, listing also the molecular-conductance point groups for a range of molecules commonly used in molecular electronics research.

  5. Diamond based single molecule magnetic resonance spectroscopy

    CERN Document Server

    Cai, J -M; Plenio, M B; Retzker, A

    2011-01-01

    The detection of a nuclear spin in an individual molecule represents a key challenge in physics and biology whose solution has been pursued for many years. The small magnetic moment of a single nucleus and the unavoidable environmental noise present the key obstacles for its realization. Here, we theoretically demonstrate that a single nitrogen-vacancy (NV) center in diamond can be used to construct a nano-scale single molecule spectrometer that is capable of detecting the position and spin state of a single nucleus and can determine the distance and alignment of a nuclear or electron spin pair. In combination with organic spin labels, this device will find applications in single molecule spectroscopy in chemistry and biology, such as in determining protein structure or monitoring macromolecular motions and can thus provide a tool to help unravelling the microscopic mechanisms underlying bio-molecular function.

  6. Single molecule transcription profiling with AFM

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Jason [Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (United States); Mishra, Bud [Departments of Computer Science and Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States); Pittenger, Bede [Veeco Instruments, Santa Barbara, CA 93117 (United States); Magonov, Sergei [Veeco Instruments, Santa Barbara, CA 93117 (United States); Troke, Joshua [Department of Pathology and Center for Cell Control, an NIH Nanomedicine Development Center, UCLA, Los Angeles, CA 90095 (United States); Teitell, Michael A [Department of Pathology and Center for Cell Control, an NIH Nanomedicine Development Center, UCLA, Los Angeles, CA 90095 (United States); Gimzewski, James K [Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (United States)

    2007-01-31

    Established techniques for global gene expression profiling, such as microarrays, face fundamental sensitivity constraints. Due to greatly increasing interest in examining minute samples from micro-dissected tissues, including single cells, unorthodox approaches, including molecular nanotechnologies, are being explored in this application. Here, we examine the use of single molecule, ordered restriction mapping, combined with AFM, to measure gene transcription levels from very low abundance samples. We frame the problem mathematically, using coding theory, and present an analysis of the critical error sources that may serve as a guide to designing future studies. We follow with experiments detailing the construction of high density, single molecule, ordered restriction maps from plasmids and from cDNA molecules, using two different enzymes, a result not previously reported. We discuss these results in the context of our calculations.

  7. Automated imaging system for single molecules

    Science.gov (United States)

    Schwartz, David Charles; Runnheim, Rodney; Forrest, Daniel

    2012-09-18

    There is provided a high throughput automated single molecule image collection and processing system that requires minimal initial user input. The unique features embodied in the present disclosure allow automated collection and initial processing of optical images of single molecules and their assemblies. Correct focus may be automatically maintained while images are collected. Uneven illumination in fluorescence microscopy is accounted for, and an overall robust imaging operation is provided yielding individual images prepared for further processing in external systems. Embodiments described herein are useful in studies of any macromolecules such as DNA, RNA, peptides and proteins. The automated image collection and processing system and method of same may be implemented and deployed over a computer network, and may be ergonomically optimized to facilitate user interaction.

  8. Single Molecule Data Analysis: An Introduction

    CERN Document Server

    Tavakoli, Meysam; Li, Chun-Biu; Komatsuzaki, Tamiki; Pressé, Steve

    2016-01-01

    We review methods of data analysis for biophysical data with a special emphasis on single molecule applications. Our review is intended for anyone, from student to established researcher. For someone just getting started, we focus on exposing the logic, strength and limitations of each method and cite, as appropriate, the relevant literature for implementation details. We review traditional frequentist and Bayesian parametric approaches to data analysis and subsequently extend our discussion to recent non-parametric and information theoretic methods.

  9. Trapping and manipulating single molecules of DNA

    Science.gov (United States)

    Shon, Min Ju

    This thesis presents the development and application of nanoscale techniques to trap and manipulate biomolecules, with a focus on DNA. These methods combine single-molecule microscopy and nano- and micro-fabrication to study biophysical properties of DNA and proteins. The Dimple Machine is a lab-on-a-chip device that can isolate and confine a small number of molecules from a bulk solution. It traps molecules in nanofabricated chambers, or "dimples", and the trapped molecules are then studied on a fluorescence microscope at the single-molecule level. The sampling of bulk solution by dimples is representative, reproducible, and automated, enabling highthroughput single-molecule experiments. The device was applied to study hybridization of oligonucleotides, particularly in the context of reaction thermodynamics and kinetics in nanoconfinement. The DNA Pulley is a system to study protein binding and the local mechanical properties of DNA. A molecule of DNA is tethered to a surface on one end, and a superparamagnetic bead is attached to the other. A magnet pulls the DNA taut, and a silicon nitride knife with a nanoscale blade scans the DNA along its contour. Information on the local properties of the DNA is extracted by tracking the bead with nanometer precision in a white-light microscope. The system can detect proteins bound to DNA and localize their recognition sites, as shown with a model protein, EcoRI restriction enzyme. Progress on the measurements of nano-mechanical properties of DNA is included.

  10. Revealing Carrier-Envelope Phase through Frequency Mixing and Interference in Frequency Resolved Optical Gating

    CERN Document Server

    Snedden, Edward W; Jamison, Steven P

    2015-01-01

    We demonstrate that full temporal characterisation of few-cycle electromagnetic pulses, including retrieval of the carrier envelope phase (CEP), can be directly obtained from Frequency Resolved Optical Gating (FROG) techniques in which the interference between non-linear frequency mixing processes is resolved. We derive a framework for this scheme, defined Real Domain-FROG (ReD-FROG), as applied to the cases of interference between sum and difference frequency components and between fundamental and sum/difference frequency components. A successful numerical demonstration of ReD-FROG as applied to the case of a self-referenced measurement is provided. A proof-of-principle experiment is performed in which the CEP of a single-cycle THz pulse is accurately obtained and demonstrates the possibility for THz detection beyond the bandwidth limitations of electro-optic sampling.

  11. Variable-Temperature Tip-Enhanced Raman Spectroscopy of Single-Molecule Fluctuations and Dynamics.

    Science.gov (United States)

    Park, Kyoung-Duck; Muller, Eric A; Kravtsov, Vasily; Sass, Paul M; Dreyer, Jens; Atkin, Joanna M; Raschke, Markus B

    2016-01-13

    Structure, dynamics, and coupling involving single-molecules determine function in catalytic, electronic or biological systems. While vibrational spectroscopy provides insight into molecular structure, rapid fluctuations blur the molecular trajectory even in single-molecule spectroscopy, analogous to spatial averaging in measuring large ensembles. To gain insight into intramolecular coupling, substrate coupling, and dynamic processes, we use tip-enhanced Raman spectroscopy (TERS) at variable and cryogenic temperatures, to slow and control the motion of a single molecule. We resolve intrinsic line widths of individual normal modes, allowing detailed and quantitative investigation of the vibrational modes. From temperature dependent line narrowing and splitting, we quantify ultrafast vibrational dephasing, intramolecular coupling, and conformational heterogeneity. Through statistical correlation analysis of fluctuations of individual modes, we observe rotational motion and spectral fluctuations of the molecule. This work demonstrates single-molecule vibrational spectroscopy beyond chemical identification, opening the possibility for a complete picture of molecular motion ranging from femtoseconds to minutes.

  12. Deep learning for single-molecule science.

    Science.gov (United States)

    Albrecht, Tim; Slabaugh, Gregory; Alonso, Eduardo; Al-Arif, Masudur R

    2017-08-01

    Exploring and making predictions based on single-molecule data can be challenging, not only due to the sheer size of the datasets, but also because a priori knowledge about the signal characteristics is typically limited and poor signal-to-noise ratio. For example, hypothesis-driven data exploration, informed by an expectation of the signal characteristics, can lead to interpretation bias or loss of information. Equally, even when the different data categories are known, e.g., the four bases in DNA sequencing, it is often difficult to know how to make best use of the available information content. The latest developments in Machine Learning (ML), so-called Deep Learning (DL) offers an interesting, new avenues to address such challenges. In some applications, such as speech and image recognition, DL has been able to outperform conventional Machine Learning strategies and even human performance. However, to date DL has not been applied much in single-molecule science, presumably in part because relatively little is known about the 'internal workings' of such DL tools within single-molecule science as a field. In this Tutorial, we make an attempt to illustrate in a step-by-step guide how one of those, a Convolutional Neural Network, may be used for base calling in DNA sequencing applications. We compare it with a Support Vector Machine as a more conventional ML method, and and discuss some of the strengths and weaknesses of the approach. In particular, a 'deep' neural network has many features of a 'black box', which has important implications on how we look at and interpret data. © 2017 IOP Publishing Ltd.

  13. Deep learning for single-molecule science

    Science.gov (United States)

    Albrecht, Tim; Slabaugh, Gregory; Alonso, Eduardo; Al-Arif, SM Masudur R.

    2017-10-01

    Exploring and making predictions based on single-molecule data can be challenging, not only due to the sheer size of the datasets, but also because a priori knowledge about the signal characteristics is typically limited and poor signal-to-noise ratio. For example, hypothesis-driven data exploration, informed by an expectation of the signal characteristics, can lead to interpretation bias or loss of information. Equally, even when the different data categories are known, e.g., the four bases in DNA sequencing, it is often difficult to know how to make best use of the available information content. The latest developments in machine learning (ML), so-called deep learning (DL) offer interesting, new avenues to address such challenges. In some applications, such as speech and image recognition, DL has been able to outperform conventional ML strategies and even human performance. However, to date DL has not been applied much in single-molecule science, presumably in part because relatively little is known about the ‘internal workings’ of such DL tools within single-molecule science as a field. In this Tutorial, we make an attempt to illustrate in a step-by-step guide how one of those, a convolutional neural network (CNN), may be used for base calling in DNA sequencing applications. We compare it with a SVM as a more conventional ML method, and discuss some of the strengths and weaknesses of the approach. In particular, a ‘deep’ neural network has many features of a ‘black box’, which has important implications on how we look at and interpret data.

  14. Single molecule and single cell epigenomics.

    Science.gov (United States)

    Hyun, Byung-Ryool; McElwee, John L; Soloway, Paul D

    2015-01-15

    Dynamically regulated changes in chromatin states are vital for normal development and can produce disease when they go awry. Accordingly, much effort has been devoted to characterizing these states under normal and pathological conditions. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most widely used method to characterize where in the genome transcription factors, modified histones, modified nucleotides and chromatin binding proteins are found; bisulfite sequencing (BS-seq) and its variants are commonly used to characterize the locations of DNA modifications. Though very powerful, these methods are not without limitations. Notably, they are best at characterizing one chromatin feature at a time, yet chromatin features arise and function in combination. Investigators commonly superimpose separate ChIP-seq or BS-seq datasets, and then infer where chromatin features are found together. While these inferences might be correct, they can be misleading when the chromatin source has distinct cell types, or when a given cell type exhibits any cell to cell variation in chromatin state. These ambiguities can be eliminated by robust methods that directly characterize the existence and genomic locations of combinations of chromatin features in very small inputs of cells or ideally, single cells. Here we review single molecule epigenomic methods under development to overcome these limitations, the technical challenges associated with single molecule methods and their potential application to single cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Common fluorescent proteins for single-molecule localization microscopy

    Science.gov (United States)

    Klementieva, Natalia V.; Bozhanova, Nina G.; Mishina, Natalie M.; Zagaynova, Elena V.; Lukyanov, Konstantin A.; Mishin, Alexander S.

    2015-07-01

    Super-resolution techniques for breaking the diffraction barrier are spread out over multiple studies nowadays. Single-molecule localization microscopy such as PALM, STORM, GSDIM, etc allow to get super-resolved images of cell ultrastructure by precise localization of individual fluorescent molecules via their temporal isolation. However, these methods are supposed the use of fluorescent dyes and proteins with special characteristics (photoactivation/photoconversion). At the same time, there is a need for retaining high photostability of fluorophores during long-term acquisition. Here, we first showed the potential of common red fluorescent protein for single-molecule localization microscopy based on spontaneous intrinsic blinking. Also, we assessed the effect of different imaging media on photobleaching of these fluorescent proteins. Monomeric orange and red fluorescent proteins were examined for stochastic switching from a dark state to a bright fluorescent state. We studied fusions with cytoskeletal proteins in NIH/3T3 and HeLa cells. Imaging was performed on the Nikon N-STORM system equipped with EMCCD camera. To define the optimal imaging conditions we tested several types of cell culture media and buffers. As a result, high-resolution images of cytoskeleton structure were obtained. Essentially, low-intensity light was sufficient to initiate the switching of tested red fluorescent protein reducing phototoxicity and provide long-term live-cell imaging.

  16. State space approach to single molecule localization in fluorescence microscopy.

    Science.gov (United States)

    Vahid, Milad R; Chao, Jerry; Kim, Dongyoung; Ward, E Sally; Ober, Raimund J

    2017-03-01

    Single molecule super-resolution microscopy enables imaging at sub-diffraction-limit resolution by producing images of subsets of stochastically photoactivated fluorophores over a sequence of frames. In each frame of the sequence, the fluorophores are accurately localized, and the estimated locations are used to construct a high-resolution image of the cellular structures labeled by the fluorophores. Many methods have been developed for localizing fluorophores from the images. The majority of these methods comprise two separate steps: detection and estimation. In the detection step, fluorophores are identified. In the estimation step, the locations of the identified fluorophores are estimated through an iterative approach. Here, we propose a non-iterative state space-based localization method which combines the detection and estimation steps. We demonstrate that the estimated locations obtained from the proposed method can be used as initial conditions in an estimation routine to potentially obtain improved location estimates. The proposed method models the given image as the frequency response of a multi-order system obtained with a balanced state space realization algorithm based on the singular value decomposition of a Hankel matrix. The locations of the poles of the resulting system determine the peak locations in the frequency domain, and the locations of the most significant peaks correspond to the single molecule locations in the original image. The performance of the method is validated using both simulated and experimental data.

  17. Synthesis of single-molecule nanocars.

    Science.gov (United States)

    Vives, Guillaume; Tour, James M

    2009-03-17

    The drive to miniaturize devices has led to a variety of molecular machines inspired by macroscopic counterparts such as molecular motors, switches, shuttles, turnstiles, barrows, elevators, and nanovehicles. Such nanomachines are designed for controlled mechanical motion and the transport of nanocargo. As researchers miniaturize devices, they can consider two complementary approaches: (1) the "top-down" approach, which reduces the size of macroscopic objects to reach an equivalent microscopic entity using photolithography and related techniques and (2) the "bottom-up" approach, which builds functional microscopic or nanoscopic entities from molecular building blocks. The top-down approach, extensively used by the semiconductor industry, is nearing its scaling limits. On the other hand, the bottom-up approach takes advantage of the self-assembly of smaller molecules into larger networks by exploiting typically weak molecular interactions. But self-assembly alone will not permit complex assembly. Using nanomachines, we hope to eventually consider complex, enzyme-like directed assembly. With that ultimate goal, we are currently exploring the control of nanomachines that would provide a basis for the future bottom-up construction of complex systems. This Account describes the synthesis of a class of molecular machines that resemble macroscopic vehicles. We designed these so-called nanocars for study at the single-molecule level by scanning probe microscopy (SPM). The vehicles have a chassis connected to wheel-terminated axles and convert energy inputs such as heat, electric fields, or light into controlled motion on a surface, ultimately leading to transport of nanocargo. At first, we used C(60) fullerenes as wheels, which allowed the demonstration of a directional rolling mechanism of a nanocar on a gold surface by STM. However, because of the low solubility of the fullerene nanocars and the incompatibility of fullerenes with photochemical processes, we developed new

  18. Single Molecule Spectroscopy on Photosynthetic Pigment-Protein Complexes

    CERN Document Server

    Jelezko, F; Schuler, S; Thews, E; Tietz, C; Wechsler, A; Wrachtrup, J

    2001-01-01

    Single molecule spectroscopy was applied to unravel the energy transfer pathway in photosynthetic pigment-protein complexes. Detailed analysis of excitation and fluorescence emission spectra has been made for peripheral plant antenna LHC II and Photosystem I from cyanobacterium Synechococcus elongatus. Optical transitions of individual pigments were resolved under nonselective excitation of antenna chlorophylls. High-resolution fluorescence spectroscopy of individual plant antenna LHC II indicates that at low temperatures, the excitation energy is localized on the red-most Chl a pool absorbing at 680 nm. More than one pigment molecule is responsible for the fluorescence emission of the LHC II trimer. The spectral lines of single Chl a molecules absorbing at 675 nm are broadened because of the Foerster energy transfer towards the red-most pigments. Low-temperature spectroscopy on single PS I trimers indicates that two subgroups of pigments, which are present in the red antenna pool, differ by the strength of t...

  19. Single molecule energetics of F1-ATPase motor.

    Science.gov (United States)

    Muneyuki, Eiro; Watanabe-Nakayama, Takahiro; Suzuki, Tetsuya; Yoshida, Masasuke; Nishizaka, Takayuki; Noji, Hiroyuki

    2007-03-01

    Motor proteins are essential in life processes because they convert the free energy of ATP hydrolysis to mechanical work. However, the fundamental question on how they work when different amounts of free energy are released after ATP hydrolysis remains unanswered. To answer this question, it is essential to clarify how the stepping motion of a motor protein reflects the concentrations of ATP, ADP, and P(i) in its individual actions at a single molecule level. The F(1) portion of ATP synthase, also called F(1)-ATPase, is a rotary molecular motor in which the central gamma-subunit rotates against the alpha(3)beta(3) cylinder. The motor exhibits clear step motion at low ATP concentrations. The rotary action of this motor is processive and generates a high torque. These features are ideal for exploring the relationship between free energy input and mechanical work output, but there is a serious problem in that this motor is severely inhibited by ADP. In this study, we overcame this problem of ADP inhibition by introducing several mutations while retaining high enzymatic activity. Using a probe of attached beads, stepping rotation against viscous load was examined at a wide range of free energy values by changing the ADP concentration. The results showed that the apparent work of each individual step motion was not affected by the free energy of ATP hydrolysis, but the frequency of each individual step motion depended on the free energy. This is the first study that examined the stepping motion of a molecular motor at a single molecule level with simultaneous systematic control of DeltaG(ATP). The results imply that microscopically defined work at a single molecule level cannot be directly compared with macroscopically defined free energy input.

  20. Single Molecule Conductance of Oligothiophene Derivatives

    Science.gov (United States)

    Dell, Emma J.

    This thesis studies the electronic properties of small organic molecules based on the thiophene motif. If we are to build next-generation devices, advanced materials must be designed which possess requisite electronic functionality. Molecules present attractive candidates for these ad- vanced materials since nanoscale devices are particularly sought after. However, selecting a molecule that is suited to a certain electronic function remains a challenge, and characterization of electronic behavior is therefore critical. Single molecule conductance measurements are a powerful tool to determine properties on the nanoscale and, as such, can be used to investigate novel building blocks that may fulfill the design requirements of next-generation devices. Combining these conductance results with strategic chemical synthesis allows for the development of new families of molecules that show attractive properties for future electronic devices. Since thiophene rings are the fruitflies of organic semiconductors on the bulk scale, they present an intriguing starting point for building functional materials on the nanoscale, and therefore form the structural basis of all molecules studied herein. First, the single-molecule conductance of a family of bithiophene derivatives was measured. A broad distribution in the single-molecule conductance of bithiophene was found compared with that of a biphenyl. This increased breadth in the conductance distribution was shown to be explained by the difference in 5-fold symmetry of thiophene rings as compared to the 6-fold symmetry of benzene rings. The reduced symmetry of thiophene rings results in a restriction on the torsion angle space available to these molecules when bound between two metal electrodes in a junction, causing each molecular junction to sample a different set of conformers in the conductance measurements. By contrast, the rotations of biphenyl are essentially unimpeded by junction binding, allowing each molecular junction

  1. Capabilities for measuring the diffusivity of a single molecule by recycling it in a nanochannel

    Science.gov (United States)

    Wang, Bo; Davis, Lloyd

    2014-03-01

    Analysis of the fractions of fluorescently labeled molecules with different diffusivities within a microliter drop of solution is often used for high-throughput screening of molecular binding interactions in pharmaceutical drug discovery research. Assays frequently employ fluorescence correlation spectroscopy, an ensemble technique that is able to resolve fast diffusing small ligands from those bound to much larger biomolecules with considerably slower diffusion. Single-molecule measurements have the potential to resolve species with different diffusivities and to count the numbers of molecules of each species. Single-molecule recycling in a nanochannel, which entails detection of bursts of fluorescence photons from the repeated passage of a molecule through a focused laser beam as the flow along a nanochannel is periodically alternated, can be used to determine the diffusivity of a single molecule from the fluctuations in the intervals between successive detections. We discuss Monte Carlo studies to determine favorable experimental conditions for determining single-molecule diffusivities, together with a weighted-sliding-sum photon burst detection algorithm for flow-control and maximum-likelihood based analysis of recycle times. We also discuss incorporation of the algorithms into our experimental apparatus for single-molecule recycling, which uses a LabView real-time system for photon count analysis and flow control.

  2. Electronic Single Molecule Measurements with the Scanning Tunneling Microscope

    Science.gov (United States)

    Im, Jong One

    Richard Feynman said "There's plenty of room at the bottom". This inspired the techniques to improve the single molecule measurements. Since the first single molecule study was in 1961, it has been developed in various field and evolved into powerful tools to understand chemical and biological property of molecules. This thesis demonstrates electronic single molecule measurement with Scanning Tunneling Microscopy (STM) and two of applications of STM; Break Junction (BJ) and Recognition Tunneling (RT). First, the two series of carotenoid molecules with four different substituents were investigated to show how substituents relate to the conductance and molecular structure. The measured conductance by STM-BJ shows that Nitrogen induces molecular twist of phenyl distal substituents and conductivity increasing rather than Carbon. Also, the conductivity is adjustable by replacing the sort of residues at phenyl substituents. Next, amino acids and peptides were identified through STM-RT. The distribution of the intuitive features (such as amplitude or width) are mostly overlapped and gives only a little bit higher separation probability than random separation. By generating some features in frequency and cepstrum domain, the classification accuracy was dramatically increased. Because of large data size and many features, supporting vector machine (machine learning algorithm for big data) was used to identify the analyte from a data pool of all analytes RT data. The STM-RT opens a possibility of molecular sequencing in single molecule level. Similarly, carbohydrates were studied by STM-RT. Carbohydrates are difficult to read the sequence, due to their huge number of possible isomeric configurations. This study shows that STM-RT can identify not only isomers of mono-saccharides and disaccharides, but also various mono-saccharides from a data pool of eleven analytes. In addition, the binding affinity between recognition molecule and analyte was investigated by comparing with

  3. Single Molecule Experiments Challenge the Strict Wave-Particle Dualism of Light

    Directory of Open Access Journals (Sweden)

    Karl Otto Greulich

    2010-01-01

    Full Text Available Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the “single photon limit” of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. “Single photon detectors” do not meet their promise―only “photon number resolving single photon detectors” do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified.

  4. Single molecule experiments challenge the strict wave-particle dualism of light.

    Science.gov (United States)

    Greulich, Karl Otto

    2010-01-21

    Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the "single photon limit" of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. "Single photon detectors" do not meet their promise-only "photon number resolving single photon detectors" do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified.

  5. Grafting single molecule magnets on gold nanoparticles.

    Science.gov (United States)

    Perfetti, Mauro; Pineider, Francesco; Poggini, Lorenzo; Otero, Edwige; Mannini, Matteo; Sorace, Lorenzo; Sangregorio, Claudio; Cornia, Andrea; Sessoli, Roberta

    2014-01-29

    The chemical synthesis and characterization of the first hybrid material composed by gold nanoparticles and single molecule magnets (SMMs) are described. Gold nanoparticles are functionalized via ligand exchange using a tetrairon(III) SMM containing two 1,2-dithiolane end groups. The grafting is evidenced by the shift of the plasmon resonance peak recorded with a UV-vis spectrometer, by the suppression of nuclear magnetic resonance signals, by X-ray photoemission spectroscopy peaks, and by transmission electron microscopy images. The latter evidence the formation of aggregates of nanoparticles as a consequence of the cross-linking ability of Fe4 through the two 1,2-dithiolane rings located on opposite sides of the metal core. The presence of intact Fe4 molecules is directly proven by synchrotron-based X-ray absorption spectroscopy and X-ray magnetic circular dichroism spectroscopy, while a detailed magnetic characterization, obtained using electron paramagnetic resonance and alternating-current susceptibility, confirms the persistence of SMM behavior in this new hybrid nanostructure. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Single-Cell and Single-Molecule Analysis of Gene Expression Regulation

    Science.gov (United States)

    Vera, Maria; Biswas, Jeetayu; Senecal, Adrien

    2016-01-01

    Recent advancements in single-cell and single-molecule imaging technologies have resolved biological processes in time and space that are fundamental to understanding the regulation of gene expression. Observations of single-molecule events in their cellular context have revealed highly dynamic aspects of transcriptional and post-transcriptional control in eukaryotic cells. This approach can relate transcription with mRNA abundance and lifetimes. Another key aspect of single-cell analysis is the cell-to-cell variability among populations of cells. Definition of heterogeneity has revealed stochastic processes, determined characteristics of under-represented cell types or transitional states, and integrated cellular behaviors in the context of multicellular organisms. In this review, we discuss novel aspects of gene expression of eukaryotic cells and multicellular organisms revealed by the latest advances in single-cell and single-molecule imaging technology. PMID:27893965

  7. 'Single molecule': theory and experiments, an introduction.

    Science.gov (United States)

    Riveline, Daniel

    2013-01-01

    At scales below micrometers, Brownian motion dictates most of the behaviors. The simple observation of a colloid is striking: a permanent and random motion is seen, whereas inertial forces play a negligible role. This Physics, where velocity is proportional to force, has opened new horizons in biology. The random feature is challenged in living systems where some proteins--molecular motors--have a directed motion whereas their passive behaviors of colloid should lead to a Brownian motion. Individual proteins, polymers of living matter such as DNA, RNA, actin or microtubules, molecular motors, all these objects can be viewed as chains of colloids. They are submitted to shocks from molecules of the solvent. Shapes taken by these biopolymers or dynamics imposed by motors can be measured and modeled from single molecules to their collective effects. Thanks to the development of experimental methods such as optical tweezers, Atomic Force Microscope (AFM), micropipettes, and quantitative fluorescence (such as Förster Resonance Energy Transfer, FRET), it is possible to manipulate these individual biomolecules in an unprecedented manner: experiments allow to probe the validity of models; and a new Physics has thereby emerged with original biological insights. Theories based on statistical mechanics are needed to explain behaviors of these systems. When force-extension curves of these molecules are extracted, the curves need to be fitted with models that predict the deformation of free objects or submitted to a force. When velocity of motors is altered, a quantitative analysis is required to explain the motions of individual molecules under external forces. This lecture will give some elements of introduction to the lectures of the session 'Nanophysics for Molecular Biology'.

  8. Single-molecule electronics: from chemical design to functional devices.

    Science.gov (United States)

    Sun, Lanlan; Diaz-Fernandez, Yuri A; Gschneidtner, Tina A; Westerlund, Fredrik; Lara-Avila, Samuel; Moth-Poulsen, Kasper

    2014-11-07

    The use of single molecules in electronics represents the next limit of miniaturisation of electronic devices, which would enable us to continue the trend of aggressive downscaling of silicon-based electronic devices. More significantly, the fabrication, understanding and control of fully functional circuits at the single-molecule level could also open up the possibility of using molecules as devices with novel, not-foreseen functionalities beyond complementary metal-oxide semiconductor technology (CMOS). This review aims at highlighting the chemical design and synthesis of single molecule devices as well as their electrical and structural characterization, including a historical overview and the developments during the last 5 years. We discuss experimental techniques for fabrication of single-molecule junctions, the potential application of single-molecule junctions as molecular switches, and general physical phenomena in single-molecule electronic devices.

  9. Rotation of a single molecule within a supramolecular bearing

    DEFF Research Database (Denmark)

    Gimzewski, J.K.; Joachim, C.; Schlittler, R.R.;

    1998-01-01

    Experimental visualization and verification of a single-molecule rotor operating within a supramolecular bearing is reported. Using a scanning tunneling microscope, single molecules were observed to exist in one of two spatially defined states Laterally separated by 0.26 nanometers. One was ident......Experimental visualization and verification of a single-molecule rotor operating within a supramolecular bearing is reported. Using a scanning tunneling microscope, single molecules were observed to exist in one of two spatially defined states Laterally separated by 0.26 nanometers. One...

  10. SISGR: Room Temperature Single-Molecule Detection and Imaging by Stimulated Emission Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaoliang Sunney [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology

    2017-03-13

    Single-molecule spectroscopy has made considerable impact on many disciplines including chemistry, physics, and biology. To date, most single-molecule spectroscopy work is accomplished by detecting fluorescence. On the other hand, many naturally occurring chromophores, such as retinal, hemoglobin and cytochromes, do not have detectable fluorescence. There is an emerging need for single-molecule spectroscopy techniques that do not require fluorescence. In the last proposal period, we have successfully demonstrated stimulated emission microscopy, single molecule absorption, and stimulated Raman microscopy based on a high-frequency modulation transfer technique. These first-of-a- kind new spectroscopy/microscopy methods tremendously improved our ability to observe molecules that fluorescence weakly, even to the limit of single molecule detection for absorption measurement. All of these methods employ two laser beams: one (pump beam) excites a single molecule to a real or virtual excited state, and the other (probe beam) monitors the absorption/emission property of the single. We extract the intensity change of the probe beam with high sensitivity by implementing a high-frequency phase-sensitive detection scheme, which offers orders of magnitude improvement in detection sensitivity over direct absorption/emission measurement. However, single molecule detection based on fluorescence or absorption is fundamentally limited due to their broad spectral response. It is important to explore other avenues in single molecule detection and imaging which provides higher molecular specificity for studying a wide variety of heterogeneous chemical and biological systems. This proposal aimed to achieve single-molecule detection sensitivity with near resonance stimulated Raman scattering (SRS) microscopy. SRS microscopy was developed in our lab as a powerful technique for imaging heterogeneous samples based on their intrinsic vibrational contrasts, which provides much higher molecular

  11. Single-Molecule Spectroscopy, Imaging, and Photocontrol: Foundations for Super-Resolution Microscopy (Nobel Lecture).

    Science.gov (United States)

    Moerner, W E William E

    2015-07-06

    The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 90s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and current developments are summarized.

  12. Nobel Lecture: Single-molecule spectroscopy, imaging, and photocontrol: Foundations for super-resolution microscopy*

    Science.gov (United States)

    Moerner, W. E. William E.

    2015-10-01

    The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 1990s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room-temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts as a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and selected current developments are summarized.

  13. Single-Molecule FRET Study of DNA G-Quadruplex

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The DNA G-quadruplex formed by the human telomeric sequence is a potential target for novel anticancer drugs. We have investigated an intramolecular DNA G-quadruplex using single-molecule fluorescence resonance energy transfer and shown that individual folded quadruplexes can be identified. The mean proximity ratio measured at the single-molecule level was consistent with ensemble measurement.

  14. Single-molecule approaches to characterizing kinetics of biomolecular interactions

    NARCIS (Netherlands)

    van Oijen, Antoine M.

    2011-01-01

    Single-molecule fluorescence techniques have emerged as powerful tools to study biological processes at the molecular level. This review describes the application of these methods to the characterization of the kinetics of interaction between biomolocules. A large number of single-molecule assays ha

  15. Electrochemical Single-Molecule Transistors with Optimized Gate Coupling

    DEFF Research Database (Denmark)

    Osorio, Henrry M.; Catarelli, Samantha; Cea, Pilar

    2015-01-01

    Electrochemical gating at the single molecule level of viologen molecular bridges in ionic liquids is examined. Contrary to previous data recorded in aqueous electrolytes, a clear and sharp peak in the single molecule conductance versus electrochemical potential data is obtained in ionic liquids....

  16. Molecular electronics with single molecules in solid-state devices

    DEFF Research Database (Denmark)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-01-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule...

  17. Analyzing single-molecule time series via nonparametric Bayesian inference.

    Science.gov (United States)

    Hines, Keegan E; Bankston, John R; Aldrich, Richard W

    2015-02-03

    The ability to measure the properties of proteins at the single-molecule level offers an unparalleled glimpse into biological systems at the molecular scale. The interpretation of single-molecule time series has often been rooted in statistical mechanics and the theory of Markov processes. While existing analysis methods have been useful, they are not without significant limitations including problems of model selection and parameter nonidentifiability. To address these challenges, we introduce the use of nonparametric Bayesian inference for the analysis of single-molecule time series. These methods provide a flexible way to extract structure from data instead of assuming models beforehand. We demonstrate these methods with applications to several diverse settings in single-molecule biophysics. This approach provides a well-constrained and rigorously grounded method for determining the number of biophysical states underlying single-molecule data. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Thermal dynamics of thermoelectric phenomena from frequency resolved methods

    Directory of Open Access Journals (Sweden)

    J. García-Cañadas

    2016-03-01

    Full Text Available Understanding the dynamics of thermoelectric (TE phenomena is important for the detailed knowledge of the operation of TE materials and devices. By analyzing the impedance response of both a single TE element and a TE device under suspended conditions, we provide new insights into the thermal dynamics of these systems. The analysis is performed employing parameters such as the thermal penetration depth, the characteristic thermal diffusion frequency and the thermal diffusion time. It is shown that in both systems the dynamics of the thermoelectric response is governed by how the Peltier heat production/absorption at the junctions evolves. In a single thermoelement, at high frequencies the thermal waves diffuse semi-infinitely from the junctions towards the half-length. When the frequency is reduced, the thermal waves can penetrate further and eventually reach the half-length where they start to cancel each other and further penetration is blocked. In the case of a TE module, semi-infinite thermal diffusion along the thickness of the ceramic layers occurs at the highest frequencies. As the frequency is decreased, heat storage in the ceramics becomes dominant and starts to compete with the diffusion of the thermal waves towards the half-length of the thermoelements. Finally, the cancellation of the waves occurs at the lowest frequencies. It is demonstrated that the analysis is able to identify and separate the different physical processes and to provide a detailed understanding of the dynamics of different thermoelectric effects.

  19. Thermal dynamics of thermoelectric phenomena from frequency resolved methods

    Science.gov (United States)

    García-Cañadas, J.; Min, G.

    2016-03-01

    Understanding the dynamics of thermoelectric (TE) phenomena is important for the detailed knowledge of the operation of TE materials and devices. By analyzing the impedance response of both a single TE element and a TE device under suspended conditions, we provide new insights into the thermal dynamics of these systems. The analysis is performed employing parameters such as the thermal penetration depth, the characteristic thermal diffusion frequency and the thermal diffusion time. It is shown that in both systems the dynamics of the thermoelectric response is governed by how the Peltier heat production/absorption at the junctions evolves. In a single thermoelement, at high frequencies the thermal waves diffuse semi-infinitely from the junctions towards the half-length. When the frequency is reduced, the thermal waves can penetrate further and eventually reach the half-length where they start to cancel each other and further penetration is blocked. In the case of a TE module, semi-infinite thermal diffusion along the thickness of the ceramic layers occurs at the highest frequencies. As the frequency is decreased, heat storage in the ceramics becomes dominant and starts to compete with the diffusion of the thermal waves towards the half-length of the thermoelements. Finally, the cancellation of the waves occurs at the lowest frequencies. It is demonstrated that the analysis is able to identify and separate the different physical processes and to provide a detailed understanding of the dynamics of different thermoelectric effects.

  20. Effect of noise on Frequency-Resolved Optical Gating measurements of ultrashort pulses

    Energy Technology Data Exchange (ETDEWEB)

    Fittinghoff, D.N.; DeLong, K.W.; Ladera, C.L.; Trebino, R.

    1995-02-01

    We study the effects of noise in Frequency-Resolved Optical Gating measurements of ultrashort pulses. We quantify the measurement accuracy in the presence of additive, muliplicative, and quantization noise, and discuss filtering and pre-processing of the data.

  1. Frequency resolved transverse mode instability in rod fiber amplifiers

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Laurila, Marko; Maack, Martin D.

    2013-01-01

    Frequency dynamics of transverse mode instabilities (TMIs) are investigated by testing three 285/100 rod fibers in a single-pass amplifier setup reaching up to ~200W of extracted output power without beam instabilities. The pump power is increased well above the TMI threshold to uncover output...

  2. Stochastic protein expression in individual cells at the single molecule level

    Science.gov (United States)

    Cai, Long; Friedman, Nir; Xie, X. Sunney

    2006-03-01

    In a living cell, gene expression-the transcription of DNA to messenger RNA followed by translation to protein-occurs stochastically, as a consequence of the low copy number of DNA and mRNA molecules involved. These stochastic events of protein production are difficult to observe directly with measurements on large ensembles of cells owing to lack of synchronization among cells. Measurements so far on single cells lack the sensitivity to resolve individual events of protein production. Here we demonstrate a microfluidic-based assay that allows real-time observation of the expression of β-galactosidase in living Escherichia coli cells with single molecule sensitivity. We observe that protein production occurs in bursts, with the number of molecules per burst following an exponential distribution. We show that the two key parameters of protein expression-the burst size and frequency-can be either determined directly from real-time monitoring of protein production or extracted from a measurement of the steady-state copy number distribution in a population of cells. Application of this assay to probe gene expression in individual budding yeast and mouse embryonic stem cells demonstrates its generality. Many important proteins are expressed at low levels, and are thus inaccessible by current genomic and proteomic techniques. This microfluidic single cell assay opens up possibilities for system-wide characterization of the expression of these low copy number proteins.

  3. Thermal dynamics of thermoelectric phenomena from frequency resolved methods

    OpenAIRE

    2016-01-01

    Understanding the dynamics of thermoelectric (TE) phenomena is important for the detailed knowledge of the operation of TE materials and devices. By analyzing the impedance response of both a single TE element and a TE device under suspended conditions, we provide new insights into the thermal dynamics of these systems. The analysis is performed employing parameters such as the thermal penetration depth, the characteristic thermal diffusion frequency and the thermal diffusion time. It is show...

  4. An optical nanofiber-based interface for single molecules

    CERN Document Server

    Skoff, Sarah M; Schauffert, Hardy; Rauschenbeutel, Arno

    2016-01-01

    Optical interfaces for quantum emitters are a prerequisite for implementing quantum networks. Here, we couple single molecules to the guided modes of an optical nanofiber. The molecules are embedded within a crystal that provides photostability and due to its inhomogeneous environment, a means to spectrally address single molecules. Single molecules are excited and detected solely via the nanofiber interface without the requirement of additional optical access. In this way, we realize a fully fiber-integrated system that is scalable and may become a versatile constituent for quantum hybrid systems.

  5. Stochastic single-molecule dynamics of synaptic membrane protein domains

    CERN Document Server

    Kahraman, Osman; Haselwandter, Christoph A

    2016-01-01

    Motivated by single-molecule experiments on synaptic membrane protein domains, we use a stochastic lattice model to study protein reaction and diffusion processes in crowded membranes. We find that the stochastic reaction-diffusion dynamics of synaptic proteins provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the single-molecule trajectories observed for synaptic proteins, and spatially inhomogeneous protein lifetimes at the cell membrane. Our results suggest that central aspects of the single-molecule and collective dynamics observed for membrane protein domains can be understood in terms of stochastic reaction-diffusion processes at the cell membrane.

  6. Direct Characterization of Amyloidogenic Oligomers by Single-Molecule Fluorescence

    National Research Council Canada - National Science Library

    Angel Orte; Neil R. Birkett; Richard W. Clarke; Glyn L. Devlin; Christopher M. Dobson; David Klenerman

    2008-01-01

    .... We describe here the application of a two-color single-molecule fluorescence technique to examine the assembly of oligomeric species formed during the aggregation of the SH3 domain of PI3 kinase...

  7. Single Molecule Scanning of DNA Radiation Oxidative Damage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal will develop an assay to map genomic DNA, at the single molecule level and in a nanodevice, for oxidative DNA damage arising from radiation exposure;...

  8. Single Molecule Spectroscopy in Chemistry, Physics and Biology Nobel Symposium

    CERN Document Server

    Gräslund, Astrid; Widengren, Jerker

    2010-01-01

    Written by the leading experts in the field, this book describes the development and current state-of-the-art in single molecule spectroscopy. The application of this technique, which started 1989, in physics, chemistry and biosciences is displayed.

  9. Massively parallel single-molecule manipulation using centrifugal force

    CERN Document Server

    Halvorsen, Ken

    2009-01-01

    Precise manipulation of single molecules has already led to remarkable insights in physics, chemistry, biology and medicine. However, widespread adoption of single-molecule techniques has been impeded by equipment cost and the laborious nature of making measurements one molecule at a time. We have solved these issues with a new approach: massively parallel single-molecule force measurements using centrifugal force. This approach is realized in a novel instrument that we call the Centrifuge Force Microscope (CFM), in which objects in an orbiting sample are subjected to a calibration-free, macroscopically uniform force-field while their micro-to-nanoscopic motions are observed. We demonstrate high-throughput single-molecule force spectroscopy with this technique by performing thousands of rupture experiments in parallel, characterizing force-dependent unbinding kinetics of an antibody-antigen pair in minutes rather than days. Additionally, we verify the force accuracy of the instrument by measuring the well-est...

  10. Single Molecule Imaging in Living Cell with Optical Method

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Significance, difficult, international developing actuality and our completed works for single molecules imaging in living cell with optical method are described respectively. Additionally we give out some suggestions for the technology development further.

  11. Computer systems for annotation of single molecule fragments

    Science.gov (United States)

    Schwartz, David Charles; Severin, Jessica

    2016-07-19

    There are provided computer systems for visualizing and annotating single molecule images. Annotation systems in accordance with this disclosure allow a user to mark and annotate single molecules of interest and their restriction enzyme cut sites thereby determining the restriction fragments of single nucleic acid molecules. The markings and annotations may be automatically generated by the system in certain embodiments and they may be overlaid translucently onto the single molecule images. An image caching system may be implemented in the computer annotation systems to reduce image processing time. The annotation systems include one or more connectors connecting to one or more databases capable of storing single molecule data as well as other biomedical data. Such diverse array of data can be retrieved and used to validate the markings and annotations. The annotation systems may be implemented and deployed over a computer network. They may be ergonomically optimized to facilitate user interactions.

  12. Single-molecule emulsion PCR in microfluidic droplets.

    Science.gov (United States)

    Zhu, Zhi; Jenkins, Gareth; Zhang, Wenhua; Zhang, Mingxia; Guan, Zhichao; Yang, Chaoyong James

    2012-06-01

    The application of microfluidic droplet PCR for single-molecule amplification and analysis has recently been extensively studied. Microfluidic droplet technology has the advantages of compartmentalizing reactions into discrete volumes, performing highly parallel reactions in monodisperse droplets, reducing cross-contamination between droplets, eliminating PCR bias and nonspecific amplification, as well as enabling fast amplification with rapid thermocycling. Here, we have reviewed the important technical breakthroughs of microfluidic droplet PCR in the past five years and their applications to single-molecule amplification and analysis, such as high-throughput screening, next generation DNA sequencing, and quantitative detection of rare mutations. Although the utilization of microfluidic droplet single-molecule PCR is still in the early stages, its great potential has already been demonstrated and will provide novel solutions to today's biomedical engineering challenges in single-molecule amplification and analysis.

  13. A single molecule investigation of the photostability of quantum dots.

    Directory of Open Access Journals (Sweden)

    Eva Christensen Arnspang

    Full Text Available Quantum dots (QDs are very attractive probes for multi-color fluorescence imaging in biological applications because of their immense brightness and reported extended photostability. We report here however that single QDs, suitable for biological applications, that are subject to continuous blue excitation from a conventional 100 W mercury arc lamp will undergo a continuous blue-switching of the emission wavelength eventually reaching a permanent dark, photobleached state. We further show that β-mercaptoethanol has a dual stabilizing effect on the fluorescence emission of QDs: 1 by increasing the frequency of time that a QD is in its fluorescent state, and 2 by decreasing the photobleaching rate. The observed QD color spectral switching is especially detrimental for multi-color single molecule applications, as we regularly observe spectral blue-shifts of 50 nm, or more even after only ten seconds of illumination. However, of significant importance for biological applications, we find that even small, biologically compatible, concentrations (25 µM of β-mercaptoethanol has a significant stabilizing effect on the emission color of QDs, but that greater amounts are required to completely abolish the spectral blue shifting or to minimize the emission intermittency of QDs.

  14. A single-molecule view of gene regulation in cancer

    Science.gov (United States)

    Larson, Daniel

    2013-03-01

    Single-cell analysis has revealed that transcription is dynamic and stochastic, but tools are lacking that can determine the mechanism operating at a single gene. Here we utilize single-molecule observations of RNA in fixed and living cells to develop a single-cell model of steroid-receptor mediated gene activation. Steroid receptors coordinate a diverse range of responses in higher eukaryotes and are involved in a wide range of human diseases, including cancer. Steroid receptor response elements are present throughout the human genome and modulate chromatin remodeling and transcription in both a local and long-range fashion. As such, steroid receptor-mediated transcription is a paradigm of genetic control in the metazoan nucleus. Moreover, the ligand-dependent nature of these transcription factors makes them appealing targets for therapeutic intervention, necessitating a quantitative understanding of how receptors control output from target genes. We determine that steroids drive mRNA synthesis by frequency modulation of transcription. This digital behavior in single cells gives rise to the well-known analog dose response across the population. To test this model, we developed a light-activation technology to turn on a single gene and follow dynamic synthesis of RNA from the activated locus. The response delay is a measure of time required for chromatin remodeling at a single gene.

  15. Ferromagnetic manganese "cubes": from PSII to single-molecule magnets.

    Science.gov (United States)

    Inglis, Ross; Stoumpos, Constantinos C; Prescimone, Alessandro; Siczek, Milosz; Lis, Tadeusz; Wernsdorfer, Wolfgang; Brechin, Euan K; Milios, Constantinos J

    2010-05-28

    The reaction of Mn(O₂CMe)₂·2H₂O with Me-saoH₂ (Me-saoH₂ = 2-hydroxyphenylethanone oxime) in MeCN forms the complex [Mn(III)₄(Me-sao)₄(Me-saoH)₄] (1) in good yields. Replacing Me-saoH₂ with Naphth-saoH₂ (Naphth-saoH₂ = 2-hydroxy-1-napthaldoxime) in the presence of CH₃ONa forms the complex [Mn(III)₄(Naphth-sao)₄(Naphth-saoH)₄] (2) in low yields, while the reaction between Mn(ClO₄)₂·6H₂O, Et-saoH₂ (Et-saoH₂= 2-hydroxypropiophenone oxime) and NBu₄OH in MeCN gives the complex [Mn(III)₄(Et-sao)₄(Et-saoH)₄] (3) in moderate yields. All three tetrametallic cages exclusively contain Mn(III) centres arranged in a "cube"-like topology, in which the metal centres are connected by -N-O(oximate) groups. The magnetic properties of 1-3 are near identical, revealing the presence of only ferromagnetic interactions between the metal ions leading to high-spin ground states of S = 8. The complexes display frequency dependent out-of-phase signals in ac susceptibility studies and, in the case of 1 single-molecule magnetism has been observed by means of single-crystal hysteresis loop measurements.

  16. Optical Microcavity: Sensing down to Single Molecules and Atoms

    Directory of Open Access Journals (Sweden)

    Shu-Yu Su

    2011-02-01

    Full Text Available This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments, microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.

  17. Optical microcavity: sensing down to single molecules and atoms.

    Science.gov (United States)

    Yoshie, Tomoyuki; Tang, Lingling; Su, Shu-Yu

    2011-01-01

    This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q) factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments), microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED) would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.

  18. Probing molecular choreography through single-molecule biochemistry.

    Science.gov (United States)

    van Oijen, Antoine M; Dixon, Nicholas E

    2015-12-01

    Single-molecule approaches are having a dramatic impact on views of how proteins work. The ability to observe molecular properties at the single-molecule level allows characterization of subpopulations and acquisition of detailed kinetic information that would otherwise be hidden in the averaging over an ensemble of molecules. In this Perspective, we discuss how such approaches have successfully been applied to in vitro-reconstituted systems of increasing complexity.

  19. Rapid and economical data acquisition in ultrafast frequency-resolved spectroscopy using choppers and a microcontroller.

    Science.gov (United States)

    Guo, Liang; Monahan, Daniele M; Fleming, Graham

    2016-08-08

    Spectrometers and cameras are used in ultrafast spectroscopy to achieve high resolution in both time and frequency domains. Frequency-resolved signals from the camera pixels cannot be processed by common lock-in amplifiers, which have only a limited number of input channels. Here we demonstrate a rapid and economical method that achieves the function of a lock-in amplifier using mechanical choppers and a programmable microcontroller. We demonstrate the method's effectiveness by performing a frequency-resolved pump-probe measurement on the dye Nile Blue in solution.

  20. Uncovering hierarchical data structure in single molecule transport

    Science.gov (United States)

    Wu, Ben H.; Ivie, Jeffrey A.; Johnson, Tyler K.; Monti, Oliver L. A.

    2017-03-01

    Interpretation of single molecule transport data is complicated by the fact that all such data are inherently highly stochastic in nature. Features are often broad, seemingly unstructured and distributed over more than an order of magnitude. However, the distribution contains information necessary for capturing the full variety of processes relevant in nanoscale transport, and a better understanding of its hierarchical structure is needed to gain deeper insight into the physics and chemistry of single molecule electronics. Here, we describe a novel data analysis approach based on hierarchical clustering to aid in the interpretation of single molecule conductance-displacement histograms. The primary purpose of statistically partitioning transport data is to provide avenues for unbiased hypothesis generation in single molecule break junction experiments by revealing otherwise potentially hidden aspects in the conductance data. Our approach is generalizable to the analysis of a wide variety of other single molecule experiments in molecular electronics, as well as in single molecule fluorescence spectroscopy, force microscopy, and ion-channel conductance measurements.

  1. Theory on single molecule_photon cryocooler

    Institute of Scientific and Technical Information of China (English)

    QIN; Weiping

    2001-01-01

    [1]Pringsheim, P., Zwei Bemerkungen über den Unterschied von Lumineszenz_ und Temperaturstrahlung, Z. Phys., 929, 57(8): 739.[2]Djeu, N., Whitney, W. T., Laser cooling by spontaneous anti_Stokes scattering, Phys. Rev. Lett., 98, 46(4): 236.[3]Epstein, I., Buchwald, M. I., Edwards, B. C. et al., Observation of laser_induced fluorescent cooling of a solid, Nature, 995, 377(2): 500.[4]Clark, J. L., Rumbles, G., Laser cooling in the condensed phase by frequency up_conversion, Phys. Rev. Lett., 996, 76(2): 2037.[5]Mungan, C. E., Buchwald, M. I., Edwards, B. C. et al., Laser cooling of a solid by 6 K starting from room temperature, Phys. Rev. Lett., 997, 78(6): 030.[6]Luo, X., Eisaman, M. D., Gosnell, T. R., Laser cooling of a solid by 2K starting from room temperature, Opt. Lett., 998, 23(8): 639.[7]Gosnell, T. R., Laser cooling of a solid by 2K starting from room temperature, Optics Let., 999, 24(5): 04.[8]Epstein, I., Buchwald, M. I., Edwards, B. C. et al., The Los Alamos solid_state optical refrigerator, Cryocoolers 9, New York: Plenum, 997, 68—686.[9]Qin Weiping, Zhang Jiahua, Huang Shihua, Laser_induced anti_Stokes fluorescent cooling, Physics (in Chinese), 998, 27(6): 323.[10]Christiansen, W. H., Hertzberg, A., Gasdynamic lasers and photon machines, Proc. IEEE, 973, 6(8): 060.[11]Qin Weiping, Zhang Jiahua, Huang Shihua, Study on the fluorescent cooling by energy transfer within in homogenous line shape in solids, Acta Physica Sinica (in Chinese), 998, 47(8): 397.[12]Qin Weiping, Zhang Jiahua, Chen Baojiu et al., Two basic mechanism in anti_Stokes fluorescent cooling of solids, Chinese Journal of Luminescence, 999, 20(2): 26.[13]Fournier, J. T., Bartram, R. H., Inhomogeneous broadening of the optical spectra of Yb3+in phosphate glass, J. Phys. Chem. Solids, 970, 3(2): 265.

  2. PREFACE: Nanoelectronics, sensors and single molecule biophysics Nanoelectronics, sensors and single molecule biophysics

    Science.gov (United States)

    Tao, Nongjian

    2012-04-01

    This special section of Journal of Physics: Condensed Matter (JPCM) is dedicated to Professor Stuart M Lindsay on the occasion of his 60th birthday and in recognition of his outstanding contributions to multiple research areas, including light scattering spectroscopy, scanning probe microscopy, biophysics, solid-liquid interfaces and molecular and nanoelectronics. It contains a collection of 14 papers in some of these areas, including a feature article by Lindsay. Each paper was subject to the normal rigorous review process of JPCM. In Lindsay's paper, he discusses the next generations of hybrid chemical-CMOS devices for low cost and personalized medical diagnosis. The discussion leads to several papers on nanotechnology for biomedical applications. Kawaguchi et al report on the detection of single pollen allergen particles using electrode embedded microchannels. Stern et al describe a structural study of three-dimensional DNA-nanoparticle assemblies. Hihath et al measure the conductance of methylated DNA, and discuss the possibility of electrical detection DNA methylation. Portillo et al study the electrostatic effects on the aggregation of prion proteins and peptides with atomic force microscopy. In an effort to understand the interactions between nanostructures and cells, Lamprecht et al report on the mapping of the intracellular distribution of carbon nanotubes with a confocal Raman imaging technique, and Wang et al focus on the intracellular delivery of gold nanoparticles using fluorescence microscopy. Park and Kristic provide theoretical analysis of micro- and nano-traps and their biological applications. This section also features several papers on the fundamentals of electron transport in single atomic wires and molecular junctions. The papers by Xu et al and by Wandlowksi et al describe new methods to measure conductance and forces in single molecule junctions and metallic atomic wires. Scullion et al report on the conductance of molecules with similar

  3. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing.

    Science.gov (United States)

    Berlin, Konstantin; Koren, Sergey; Chin, Chen-Shan; Drake, James P; Landolin, Jane M; Phillippy, Adam M

    2015-06-01

    Long-read, single-molecule real-time (SMRT) sequencing is routinely used to finish microbial genomes, but available assembly methods have not scaled well to larger genomes. We introduce the MinHash Alignment Process (MHAP) for overlapping noisy, long reads using probabilistic, locality-sensitive hashing. Integrating MHAP with the Celera Assembler enabled reference-grade de novo assemblies of Saccharomyces cerevisiae, Arabidopsis thaliana, Drosophila melanogaster and a human hydatidiform mole cell line (CHM1) from SMRT sequencing. The resulting assemblies are highly continuous, include fully resolved chromosome arms and close persistent gaps in these reference genomes. Our assembly of D. melanogaster revealed previously unknown heterochromatic and telomeric transition sequences, and we assembled low-complexity sequences from CHM1 that fill gaps in the human GRCh38 reference. Using MHAP and the Celera Assembler, single-molecule sequencing can produce de novo near-complete eukaryotic assemblies that are 99.99% accurate when compared with available reference genomes.

  4. Quantitative study of single molecule location estimation techniques.

    Science.gov (United States)

    Abraham, Anish V; Ram, Sripad; Chao, Jerry; Ward, E S; Ober, Raimund J

    2009-12-21

    Estimating the location of single molecules from microscopy images is a key step in many quantitative single molecule data analysis techniques. Different algorithms have been advocated for the fitting of single molecule data, particularly the nonlinear least squares and maximum likelihood estimators. Comparisons were carried out to assess the performance of these two algorithms in different scenarios. Our results show that both estimators, on average, are able to recover the true location of the single molecule in all scenarios we examined. However, in the absence of modeling inaccuracies and low noise levels, the maximum likelihood estimator is more accurate than the nonlinear least squares estimator, as measured by the standard deviations of its estimates, and attains the best possible accuracy achievable for the sets of imaging and experimental conditions that were tested. Although neither algorithm is consistently superior to the other in the presence of modeling inaccuracies or misspecifications, the maximum likelihood algorithm emerges as a robust estimator producing results with consistent accuracy across various model mismatches and misspecifications. At high noise levels, relative to the signal from the point source, neither algorithm has a clear accuracy advantage over the other. Comparisons were also carried out for two localization accuracy measures derived previously. Software packages with user-friendly graphical interfaces developed for single molecule location estimation (EstimationTool) and limit of the localization accuracy calculations (FandPLimitTool) are also discussed.

  5. Single-molecule manipulation experiments to explore friction and adhesion

    Science.gov (United States)

    Pawlak, R.; Kawai, S.; Meier, T.; Glatzel, T.; Baratoff, A.; Meyer, E.

    2017-03-01

    Friction forces, which arise when two bodies that are in contact are moved with respect to one another, are ubiquitous phenomena. Although various measurement tools have been developed to study these phenomena at all length scales, such investigations are highly challenging when tackling the scale of single molecules in motion on a surface. This work reviews the recent advances in single-molecule manipulation experiments performed at low temperature with the aim of understanding the fundamental frictional response of single molecules. Following the advent of ‘nanotribology’ in the field based on the atomic force microscopy technique, we will show the technical requirements to direct those studies at the single-molecule level. We will also discuss the experimental prerequisites needed to obtain and interpret the phenomena, such as the implementation of single-molecule manipulation techniques, the processing of the experimental data or their comparison with appropriate numerical models. Finally, we will report examples of the controlled vertical and lateral manipulation of long polymeric chains, graphene nanoribbons or single porphyrin molecules that systematically reveal friction-like characteristics while sliding over atomically clean surfaces.

  6. Single-molecule mechanochemical sensing using DNA origami nanostructures.

    Science.gov (United States)

    Koirala, Deepak; Shrestha, Prakash; Emura, Tomoko; Hidaka, Kumi; Mandal, Shankar; Endo, Masayuki; Sugiyama, Hiroshi; Mao, Hanbin

    2014-07-28

    While single-molecule sensing offers the ultimate detection limit, its throughput is often restricted as sensing events are carried out one at a time in most cases. 2D and 3D DNA origami nanostructures are used as expanded single-molecule platforms in a new mechanochemical sensing strategy. As a proof of concept, six sensing probes are incorporated in a 7-tile DNA origami nanoassembly, wherein binding of a target molecule to any of these probes leads to mechanochemical rearrangement of the origami nanostructure, which is monitored in real time by optical tweezers. Using these platforms, 10 pM platelet-derived growth factor (PDGF) are detected within 10 minutes, while demonstrating multiplex sensing of the PDGF and a target DNA in the same solution. By tapping into the rapid development of versatile DNA origami nanostructures, this mechanochemical platform is anticipated to offer a long sought solution for single-molecule sensing with improved throughput.

  7. Single-Molecule Electronics: Chemical and Analytical Perspectives.

    Science.gov (United States)

    Nichols, Richard J; Higgins, Simon J

    2015-01-01

    It is now possible to measure the electrical properties of single molecules using a variety of techniques including scanning probe microcopies and mechanically controlled break junctions. Such measurements can be made across a wide range of environments including ambient conditions, organic liquids, ionic liquids, aqueous solutions, electrolytes, and ultra high vacuum. This has given new insights into charge transport across molecule electrical junctions, and these experimental methods have been complemented with increasingly sophisticated theory. This article reviews progress in single-molecule electronics from a chemical perspective and discusses topics such as the molecule-surface coupling in electrical junctions, chemical control, and supramolecular interactions in junctions and gating charge transport. The article concludes with an outlook regarding chemical analysis based on single-molecule conductance.

  8. Single molecule detection using charge-coupled device array technology

    Energy Technology Data Exchange (ETDEWEB)

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  9. Extending single-molecule microscopy using optical Fourier processing.

    Science.gov (United States)

    Backer, Adam S; Moerner, W E

    2014-07-17

    This article surveys the recent application of optical Fourier processing to the long-established but still expanding field of single-molecule imaging and microscopy. A variety of single-molecule studies can benefit from the additional image information that can be obtained by modulating the Fourier, or pupil, plane of a widefield microscope. After briefly reviewing several current applications, we present a comprehensive and computationally efficient theoretical model for simulating single-molecule fluorescence as it propagates through an imaging system. Furthermore, we describe how phase/amplitude-modulating optics inserted in the imaging pathway may be modeled, especially at the Fourier plane. Finally, we discuss selected recent applications of Fourier processing methods to measure the orientation, depth, and rotational mobility of single fluorescent molecules.

  10. Single Molecule Spectroscopy of Monomeric LHCII: Experiment and Theory

    CERN Document Server

    Malý, Pavel; van Grondelle, Rienk; Mančal, Tomáš

    2015-01-01

    We derive approximate equations of motion for excited state dynamics of a multilevel open quantum system weakly interacting with light to describe fluorescence detected single molecule spectra. Based on the Frenkel exciton theory, we construct a model for the chlorophyll part of the LHCII complex of higher plants and its interaction with previously proposed excitation quencher in the form of the lutein molecule Lut 1. The resulting description is valid over a broad range of timescales relevant for single molecule spectroscopy, i.e. from ps to minutes. Validity of these equations is demonstrated by comparing simulations of ensemble and single-molecule spectra of monomeric LHCII with experiments. Using a conformational change of the LHCII protein as a switching mechanism, the intensity and spectral time traces of individual LHCII complexes are simulated, and the experimental statistical distributions are reproduced. Based on our model, it is shown that with reasonable assumptions about its interaction with chlo...

  11. Step detection in single-molecule real time trajectories embedded in correlated noise.

    Directory of Open Access Journals (Sweden)

    Srikesh G Arunajadai

    Full Text Available Single-molecule real time trajectories are embedded in high noise. To extract kinetic or dynamic information of the molecules from these trajectories often requires idealization of the data in steps and dwells. One major premise behind the existing single-molecule data analysis algorithms is the gaussian 'white' noise, which displays no correlation in time and whose amplitude is independent on data sampling frequency. This so-called 'white' noise is widely assumed but its validity has not been critically evaluated. We show that correlated noise exists in single-molecule real time trajectories collected from optical tweezers. The assumption of white noise during analysis of these data can lead to serious over- or underestimation of the number of steps depending on the algorithms employed. We present a statistical method that quantitatively evaluates the structure of the underlying noise, takes the noise structure into account, and identifies steps and dwells in a single-molecule trajectory. Unlike existing data analysis algorithms, this method uses Generalized Least Squares (GLS to detect steps and dwells. Under the GLS framework, the optimal number of steps is chosen using model selection criteria such as Bayesian Information Criterion (BIC. Comparison with existing step detection algorithms showed that this GLS method can detect step locations with highest accuracy in the presence of correlated noise. Because this method is automated, and directly works with high bandwidth data without pre-filtering or assumption of gaussian noise, it may be broadly useful for analysis of single-molecule real time trajectories.

  12. Novel approaches for single molecule activation and detection

    CERN Document Server

    Benfenati, Fabio; Torre, Vincent

    2014-01-01

    How can we obtain tools able to process and exchange information at the molecular scale In order to do this, it is necessary to activate and detect single molecules under controlled conditions. This book focuses on the generation of biologically-inspired molecular devices. These devices are based on the developments of new photonic tools able to activate and stimulate single molecule machines. Additionally, new light sensitive molecules can be selectively activated by photonic tools. These technological innovations will provide a way to control activation of single light-sensitive molecules, a

  13. Frequency-resolved noise figure measurements of phase (in)sensitive fiber optical parametric amplifiers.

    Science.gov (United States)

    Malik, R; Kumpera, A; Lorences-Riesgo, A; Andrekson, P A; Karlsson, M

    2014-11-17

    We measure the frequency-resolved noise figure of fiber optical parametric amplifiers both in phase-insensitive and phase-sensitive modes in the frequency range from 0.03 to 3 GHz. We also measure the variation in noise figure due to the degradation in pump optical signal to noise ratio and also as a function of the input signal powers. Noise figure degradation due to stimulated Brillouin scattering is observed.

  14. Plastique: A synchrotron radiation beamline for time resolved fluorescence in the frequency domain

    Science.gov (United States)

    De Stasio, Gelsomina; Zema, N.; Antonangeli, F.; Savoia, A.; Parasassi, T.; Rosato, N.

    1991-06-01

    PLASTIQUE is the only synchrotron radiation beamline in the world that performs time resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and dynamics of molecules. We describe the beamline and some initial data.

  15. Single-molecule detection in electrochemical nanogap devices

    NARCIS (Netherlands)

    Kang, Shuo

    2014-01-01

    This thesis presents results obtained during a research project aimed at realizing electrochemical single-molecule detection in water. By virtue of being inherently electrical in nature, electrochemical sensors are particularly well suited for integration with microelectronics compared to sensors ba

  16. Atomic-Scale Control of Electron Transport through Single Molecules

    DEFF Research Database (Denmark)

    Wang, Y. F.; Kroger, J.; Berndt, R.

    2010-01-01

    Tin-phthalocyanine molecules adsorbed on Ag(111) were contacted with the tip of a cryogenic scanning tunneling microscope. Orders-of-magnitude variations of the single-molecule junction conductance were achieved by controllably dehydrogenating the molecule and by modifying the atomic structure...

  17. Single-molecule choreography between telomere proteins and G quadruplexes.

    Science.gov (United States)

    Hopfner, Karl-Peter

    2014-06-10

    Telomeric DNA binds proteins to protect chromosome ends, but it also adopts G quadruplex (GQ) structures. Two new studies by Hwang and colleagues (in this issue of Structure) and Ray and colleagues (published elsewhere) use single molecule imaging to reveal how GQs affect the binding of different telomere associated proteins. The data suggest that GQs play important roles in regulating accessibility of telomeres.

  18. Visualizing DNA Replication at the Single-Molecule Level

    NARCIS (Netherlands)

    Tanner, Nathan A.

    2010-01-01

    Recent advances in single-molecule methodology have made it possible to study the dynamic behavior of individual enzymes and their interactions with other proteins in multiprotein complexes. Here, we describe newly developed methods to study the coordination of DNA unwinding, priming, and synthesis

  19. VISUALIZING DNA REPLICATION AT THE SINGLE-MOLECULE LEVEL

    NARCIS (Netherlands)

    Tanner, Nathan A.; van Oijen, Antoine M.; Walter, NG

    2010-01-01

    Recent advances in single-molecule methodology have made it possible to study the dynamic behavior of individual enzymes and their interactions with other proteins in multiprotein complexes. Here, we describe newly developed methods to study the coordination of DNA unwinding, priming, and synthesis

  20. Visualizing Single-molecule DNA Replication with Fluorescence Microscopy

    NARCIS (Netherlands)

    Tanner, Nathan A.; Loparo, Joseph J.; Oijen, Antoine M. van

    2009-01-01

    We describe a simple fluorescence microscopy-based real-time method for observing DNA replication at the single-molecule level. A circular, forked DNA template is attached to a functionalized glass coverslip and replicated extensively after introduction of replication proteins and nucleotides. The

  1. Alternating-laser excitation : single-molecule FRET and beyond

    NARCIS (Netherlands)

    Hohlbein, Johannes; Craggs, Timothy D.; Cordes, Thorben

    2014-01-01

    The alternating-laser excitation (ALEX) scheme continues to expand the possibilities of fluorescence-based assays to study biological entities and interactions. Especially the combination of ALEX and single-molecule Forster Resonance Energy Transfer (smFRET) has been very successful as ALEX enables

  2. Electron transfer dynamics of bistable single-molecule junctions

    DEFF Research Database (Denmark)

    Danilov, A.V; Kubatkin, S.; Kafanov, S. G.

    2006-01-01

    We present transport measurements of single-molecule junctions bridged by a molecule with three benzene rings connected by two double bonds and with thiol end-groups that allow chemical binding to gold electrodes. The I-V curves show switching behavior between two distinct states. By statistical ...

  3. Large negative differential conductance in single-molecule break junctions

    NARCIS (Netherlands)

    Perrin, Mickael L.; Frisenda, Riccardo; Koole, Max; Seldenthuis, Johannes S.; Gil, Jose A. Celis; Valkenier, Hennie; Hummelen, Jan C.; Renaud, Nicolas; Grozema, Ferdinand C.; Thijssen, Joseph M.; Dulic, Diana; van der Zant, Herre S. J.

    2014-01-01

    Molecular electronics aims at exploiting the internal structure and electronic orbitals of molecules to construct functional building blocks(1). To date, however, the overwhelming majority of experimentally realized single-molecule junctions can be described as single quantum dots, where transport i

  4. Single Molecule Study of Cellulase Hydrolysis of Crystalline Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.-S.; Luo, Y.; Baker, J. O.; Zeng, Y.; Himmel, M. E.; Smith, S.; Ding, S.-Y.

    2009-12-01

    This report seeks to elucidate the role of cellobiohydrolase-I (CBH I) in the hydrolysis of crystalline cellulose. A single-molecule approach uses various imaging techniques to investigate the surface structure of crystalline cellulose and changes made in the structure by CBH I.

  5. Visualizing Single-molecule DNA Replication with Fluorescence Microscopy

    NARCIS (Netherlands)

    Tanner, Nathan A.; Loparo, Joseph J.; Oijen, Antoine M. van

    2009-01-01

    We describe a simple fluorescence microscopy-based real-time method for observing DNA replication at the single-molecule level. A circular, forked DNA template is attached to a functionalized glass coverslip and replicated extensively after introduction of replication proteins and nucleotides. The g

  6. VISUALIZING DNA REPLICATION AT THE SINGLE-MOLECULE LEVEL

    NARCIS (Netherlands)

    Tanner, Nathan A.; van Oijen, Antoine M.; Walter, NG

    2010-01-01

    Recent advances in single-molecule methodology have made it possible to study the dynamic behavior of individual enzymes and their interactions with other proteins in multiprotein complexes. Here, we describe newly developed methods to study the coordination of DNA unwinding, priming, and synthesis

  7. Visualizing DNA Replication at the Single-Molecule Level

    NARCIS (Netherlands)

    Tanner, Nathan A.

    2010-01-01

    Recent advances in single-molecule methodology have made it possible to study the dynamic behavior of individual enzymes and their interactions with other proteins in multiprotein complexes. Here, we describe newly developed methods to study the coordination of DNA unwinding, priming, and synthesis

  8. Investigating single molecule adhesion by atomic force spectroscopy.

    Science.gov (United States)

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-02-27

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment.

  9. Time-Varying Triplet State Lifetimes of Single Molecules

    NARCIS (Netherlands)

    Veerman, J.A.; Garcia-Parajo, M.F.; Kuipers, L.; Hulst, van N.F.

    1999-01-01

    It is found that triplet state lifetimes and intersystem crossing yields of individual molecules embedded in a polymer host at room temperature are not constant in time. The range over which the triplet lifetime of a single molecule varies during long observation times shows a strong similarity with

  10. Assembling a single-molecule view on nucleosome dynamics

    NARCIS (Netherlands)

    Vlijm, R.

    2014-01-01

    The main focus of this thesis is a better understanding of the basic compaction mechanism of our DNA using multiple single-molecule techniques. The stretched-out length of our DNA is enormous compared with the dimensions of a cell. To make DNA fit within a cell it is systematically wrapped around pr

  11. Large negative differential conductance in single-molecule break junctions

    NARCIS (Netherlands)

    Perrin, Mickael L.; Frisenda, Riccardo; Koole, Max; Seldenthuis, Johannes S.; Gil, Jose A. Celis; Valkenier, Hennie; Hummelen, Jan C.; Renaud, Nicolas; Grozema, Ferdinand C.; Thijssen, Joseph M.; Dulic, Diana; van der Zant, Herre S. J.

    2014-01-01

    Molecular electronics aims at exploiting the internal structure and electronic orbitals of molecules to construct functional building blocks(1). To date, however, the overwhelming majority of experimentally realized single-molecule junctions can be described as single quantum dots, where transport i

  12. An RNA toolbox for single-molecule force spectroscopy studies

    NARCIS (Netherlands)

    Vilfan, I.D.; Kamping, W.; Van den Hout, M.; Candelli, A.; Hage, S.; Dekker, N.H.

    2007-01-01

    Precise, controllable single-molecule force spectroscopy studies of RNA and RNA-dependent processes have recently shed new light on the dynamics and pathways of RNA folding and RNAenzyme interactions. A crucial component of this research is the design and assembly of an appropriate RNA construct. Su

  13. The optics inside an automated single molecule array analyzer

    Science.gov (United States)

    McGuigan, William; Fournier, David R.; Watson, Gary W.; Walling, Les; Gigante, Bill; Duffy, David C.; Rissin, David M.; Kan, Cheuk W.; Meyer, Raymond E.; Piech, Tomasz; Fishburn, Matthew W.

    2014-02-01

    Quanterix and Stratec Biomedical have developed an instrument that enables the automated measurement of multiple proteins at concentration ~1000 times lower than existing immunoassays. The instrument is based on Quanterix's proprietary Single Molecule Array technology (Simoa™ ) that facilitates the detection and quantification of biomarkers previously difficult to measure, thus opening up new applications in life science research and in-vitro diagnostics. Simoa is based on trapping individual beads in arrays of femtoliter-sized wells that, when imaged with sufficient resolution, allows for counting of single molecules associated with each bead. When used to capture and detect proteins, this approach is known as digital ELISA (Enzyme-linked immunosorbent assay). The platform developed is a merger of many science and engineering disciplines. This paper concentrates on the optical technologies that have enabled the development of a fully-automated single molecule analyzer. At the core of the system is a custom, wide field-of-view, fluorescence microscope that images arrays of microwells containing single molecules bound to magnetic beads. A consumable disc containing 24 microstructure arrays was developed previously in collaboration with Sony DADC. The system cadence requirements, array dimensions, and requirement to detect single molecules presented significant optical challenges. Specifically, the wide field-of-view needed to image the entire array resulted in the need for a custom objective lens. Additionally, cost considerations for the system required a custom solution that leveraged the image processing capabilities. This paper will discuss the design considerations and resultant optical architecture that has enabled the development of an automated digital ELISA platform.

  14. Revealing −1 Programmed Ribosomal Frameshifting Mechanisms by Single-Molecule Techniques and Computational Methods

    Directory of Open Access Journals (Sweden)

    Kai-Chun Chang

    2012-01-01

    Full Text Available Programmed ribosomal frameshifting (PRF serves as an intrinsic translational regulation mechanism employed by some viruses to control the ratio between structural and enzymatic proteins. Most viral mRNAs which use PRF adapt an H-type pseudoknot to stimulate −1 PRF. The relationship between the thermodynamic stability and the frameshifting efficiency of pseudoknots has not been fully understood. Recently, single-molecule force spectroscopy has revealed that the frequency of −1 PRF correlates with the unwinding forces required for disrupting pseudoknots, and that some of the unwinding work dissipates irreversibly due to the torsional restraint of pseudoknots. Complementary to single-molecule techniques, computational modeling provides insights into global motions of the ribosome, whose structural transitions during frameshifting have not yet been elucidated in atomic detail. Taken together, recent advances in biophysical tools may help to develop antiviral therapies that target the ubiquitous −1 PRF mechanism among viruses.

  15. Building a Pulse Detector using the Frequency Resolved Optical Gating Technique

    Energy Technology Data Exchange (ETDEWEB)

    Vallin, J

    2004-02-05

    We show how to construct a diagnostic optical layout known as Frequency Resolved Optical Gating (FROG) for an ir mode-locked laser by using the nonlinear effect known as second harmonic generation (SHG). In this paper, we explain the principle of operation and the theory upon which this diagnostic is based. Moreover, we described the procedure used to measure the duration and frequency components of a pulse. This process consists of calibrating the scales of a two-dimensional image, time delay vs. frequency, known as FROG spectrogram or FROG trace. This calibration of the time delay scale yields the correspondence between a pixel and time delay. Similarly, the calibration of the frequency scale yields the correspondence between a pixel, and frequency.

  16. Backreflection diagnostics for ultra-intense laser plasma experiments based on frequency resolved optical gating

    Science.gov (United States)

    Wagner, F.; Hornung, J.; Schmidt, C.; Eckhardt, M.; Roth, M.; Stöhlker, T.; Bagnoud, V.

    2017-02-01

    We report on the development and implementation of a time resolved backscatter diagnostics for high power laser plasma experiments at the petawatt-class laser facility PHELIX. Pulses that are backscattered or reflected from overcritical plasmas are characterized spectrally and temporally resolved using a specially designed second harmonic generation frequency resolved optical gating system. The diagnostics meets the requirements made by typical experiments, i.e., a spectral bandwidth of more than 30 nm with sub-nanometer resolution and a temporal window of 10 ps with 50 fs temporal resolution. The diagnostics is permanently installed at the PHELIX target area and can be used to study effects such as laser-hole boring or relativistic self-phase-modulation which are important features of laser-driven particle acceleration experiments.

  17. Electronic transport in benzodifuran single-molecule transistors

    Science.gov (United States)

    Xiang, An; Li, Hui; Chen, Songjie; Liu, Shi-Xia; Decurtins, Silvio; Bai, Meilin; Hou, Shimin; Liao, Jianhui

    2015-04-01

    Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices.Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices. Electronic supplementary information (ESI) available: The fabrication procedure for BDF single-molecule

  18. Single molecule photon emission statistics of driven three-level systems.

    Science.gov (United States)

    Peng, Yonggang; Zheng, Yujun; Brown, Frank L H

    2007-03-14

    We study the statistics of photon emission from three-level single molecule systems. The generating function method [Y. Zheng and F. L. H. Brown, Phys. Rev. Lett. 90, 238305 (2003)] is used to calculate steady state absorption line shapes and Mandel's Q parameter as a function of excitation frequency, as well as the time dependence associated with approach to the steady state. The line shape calculations confirm known results derived via other methods, while the Q parameter results display complex frequency dependences not amenable to simple interpretation. This study confirms the applicability of the generating function formalism to multilevel quantum systems, including the proper modeling of quantum coherence effects.

  19. Communication: atomic force detection of single-molecule nonlinear optical vibrational spectroscopy.

    Science.gov (United States)

    Saurabh, Prasoon; Mukamel, Shaul

    2014-04-28

    Atomic Force Microscopy (AFM) allows for a highly sensitive detection of spectroscopic signals. This has been first demonstrated for NMR of a single molecule and recently extended to stimulated Raman in the optical regime. We theoretically investigate the use of optical forces to detect time and frequency domain nonlinear optical signals. We show that, with proper phase matching, the AFM-detected signals closely resemble coherent heterodyne-detected signals. Applications are made to AFM-detected and heterodyne-detected vibrational resonances in Coherent Anti-Stokes Raman Spectroscopy (χ((3))) and sum or difference frequency generation (χ((2))).

  20. Single Molecule Junctions: Probing Contact Chemistry and Fundamental Circuit Laws

    Energy Technology Data Exchange (ETDEWEB)

    Hybertsen M. S.

    2013-04-11

    By exploiting selective link chemistry, formation of single molecule junctions with reproducible conductance has become established. Systematic studies reveal the structure-conductance relationships for diverse molecules. I will draw on experiments from my collaborators at Columbia University, atomic-scale calculations and theory to describe progress in two areas. First, I will describe a novel route to form single molecule junctions, based on SnMe3 terminated molecules, in which gold directly bonds to carbon in the molecule backbone resulting in near ideal contact resistance [1]. Second, comparison of the conductance of junctions formed with molecular species containing either one backbone or two backbones in parallel allows demonstration of the role of quantum interference in the conductance superposition law at the molecular scale [2].

  1. Coherent spectroscopy in the single molecule limit (Conference Presentation)

    Science.gov (United States)

    Potma, Eric O.; Crampton, Kevin; Fast, Alex; Alfonso García, Alba; Apkarian, Vartkess A.

    2016-10-01

    Surface enhanced Raman scattering (SERS) is a popular technique for detecting and analyzing molecules at very low concentrations. The sensitivity of SERS is high enough to detect single molecules. It has proven difficult, however, to perform similar measurements in the so-called nonlinear optical regime, a regime in which the molecule is responding to multiple light pulses. Nonetheless, recent experiments indicate that after careful optimization, it is possible to generate signals derived from nonlinear analogs of SERS. Such measurements make it possible to view molecular vibrations in real time, which amounts to the femto- to pico-second range. In this contribution, we discuss in detail under which conditions detectable surface-enhanced coherent Raman signals can be expected, provide experimental evidence of coherent Raman scattering of single molecules, and highlight the unique information that can be attained from such measurements.

  2. Directly measuring single molecule heterogeneity using force spectroscopy

    CERN Document Server

    Hinczewski, Michael; Thirumalai, D

    2016-01-01

    One of the most intriguing results of single molecule experiments on proteins and nucleic acids is the discovery of functional heterogeneity: the observation that complex cellular machines exhibit multiple, biologically active conformations. The structural differences between these conformations may be subtle, but each distinct state can be remarkably long-lived, with random interconversions between states occurring only at macroscopic timescales, fractions of a second or longer. Though we now have proof of functional heterogeneity in a handful of systems---enzymes, motors, adhesion complexes---identifying and measuring it remains a formidable challenge. Here we show that evidence of this phenomenon is more widespread than previously known, encoded in data collected from some of the most well-established single molecule techniques: AFM or optical tweezer pulling experiments. We present a theoretical procedure for analyzing distributions of rupture/unfolding forces recorded at different pulling speeds. This re...

  3. Single molecule insights on conformational selection and induced fit mechanism

    DEFF Research Database (Denmark)

    Hatzakis, Nikos

    2014-01-01

    Biomolecular interactions regulate a plethora of vital cellular processes, including signal transduction, metabolism, catalysis and gene regulation. Regulation is encoded in the molecular properties of the constituent proteins; distinct conformations correspond to different functional outcomes...... of unsynchronized molecules, often masking intrinsic dynamic behavior of proteins and biologically significant transient intermediates. Single molecule measurements are emerging as a powerful tool for characterizing protein function. They offer the direct observation and quantification of the activity, abundance...... and lifetime of multiple states and transient intermediates in the energy landscape, that are typically averaged out in non-synchronized ensemble measurements. Here we survey new insights from single molecule studies that advance our understanding of the molecular mechanisms underlying biomolecular recognition....

  4. Single molecule imaging with longer x-ray laser pulses

    CERN Document Server

    Martin, Andrew V; Caleman, Carl; Quiney, Harry M

    2015-01-01

    In serial femtosecond crystallography, x-ray laser pulses do not need to outrun all radiation damage processes because Bragg diffraction exceeds the damage-induced background scattering for longer pulses ($\\sim$ 50--100 fs). This is due to a "self-gating pulse" effect whereby damage terminates Bragg diffraction prior to the pulse completing its passage through the sample, as if that diffraction were produced by a shorter pulse of equal fluence. We show here that a similar gating effect applies to single molecule diffraction with respect to spatially uncorrelated damage processes like ionization and ion diffusion. The effect is clearly seen in calculations of the diffraction contrast, by calculating the diffraction of average structure separately to the diffraction from statistical fluctuations of the structure due to damage ("damage noise"). Our results suggest that sub-nanometer single molecule imaging with longer pulses, like those produced at currently operating facilities, should not yet be ruled out. The...

  5. Tetraanionic biphenyl lanthanide complexes as single-molecule magnets.

    Science.gov (United States)

    Huang, Wenliang; Le Roy, Jennifer J; Khan, Saeed I; Ungur, Liviu; Murugesu, Muralee; Diaconescu, Paula L

    2015-03-02

    Inverse sandwich biphenyl complexes [(NN(TBS))Ln]2(μ-biphenyl)[K(solvent)]2 [NN(TBS) = 1,1'-fc(NSi(t)BuMe2)2; Ln = Gd, Dy, Er; solvent = Et2O, toluene; 18-crown-6], containing a quadruply reduced biphenyl ligand, were synthesized and their magnetic properties measured. One of the dysprosium biphenyl complexes was found to exhibit antiferromagnetic coupling and single-molecule-magnet behavior with Ueff of 34 K under zero applied field. The solvent coordinated to potassium affected drastically the nature of the magnetic interaction, with the other dysprosium complex showing ferromagnetic coupling. Ab initio calculations were performed to understand the nature of magnetic coupling between the two lanthanide ions bridged by the anionic arene ligand and the origin of single-molecule-magnet behavior.

  6. Single Molecule Detection in Solution: Methods and Applications

    Science.gov (United States)

    Zander, Christoph; Enderlein, Jorg; Keller, Richard A.

    2002-07-01

    The detection of single molecules opens up new horizons in analytical chemistry, biology and medicine. This discipline, which belongs to the expanding field of nanoscience, has been rapidly emerging over the last ten years. This handbook provides a thorough overview of the field. It begins with basics of single molecule detection in solution, describes methods and devices (fluorescense correlation spectroscopy, surface enhanced Raman scattering, sensors, especially dyes, screening techniques, especially confocal laser scanning microscopy). In the second part, various applications in life sciences and medicine provide the latest research results. This modern handbook is a highly accessible reference for a broad community from advanced researchers, specialists and company professionals in physics, spectroscopy, biotechnology, analytical chemistry, and medicine. Written by leading authorities in the field, it is timely and fills a gap - up to now there exists no handbook concerning this theme.

  7. STM CONTROL OF CHEMICAL REACTIONS: Single-Molecule Synthesis

    Science.gov (United States)

    Hla, Saw-Wai; Rieder, Karl-Heinz

    2003-10-01

    The fascinating advances in single atom/molecule manipulation with a scanning tunneling microscope (STM) tip allow scientists to fabricate atomic-scale structures or to probe chemical and physical properties of matters at an atomic level. Owing to these advances, it has become possible for the basic chemical reaction steps, such as dissociation, diffusion, adsorption, readsorption, and bond-formation processes, to be performed by using the STM tip. Complete sequences of chemical reactions are able to induce at a single-molecule level. New molecules can be constructed from the basic molecular building blocks on a one-molecule-at-a-time basis by using a variety of STM manipulation schemes in a systematic step-by-step manner. These achievements open up entirely new opportunities in nanochemistry and nanochemical technology. In this review, various STM manipulation techniques useful in the single-molecule reaction process are reviewed, and their impact on the future of nanoscience and technology are discussed.

  8. Semisynthetic Nanoreactor for Reversible Single-Molecule Covalent Chemistry

    Science.gov (United States)

    2016-01-01

    Protein engineering has been used to remodel pores for applications in biotechnology. For example, the heptameric α-hemolysin pore (αHL) has been engineered to form a nanoreactor to study covalent chemistry at the single-molecule level. Previous work has been confined largely to the chemistry of cysteine side chains or, in one instance, to an irreversible reaction of an unnatural amino acid side chain bearing a terminal alkyne. Here, we present four different αHL pores obtained by coupling either two or three fragments by native chemical ligation (NCL). The synthetic αHL monomers were folded and incorporated into heptameric pores. The functionality of the pores was validated by hemolysis assays and by single-channel current recording. By using NCL to introduce a ketone amino acid, the nanoreactor approach was extended to an investigation of reversible covalent chemistry on an unnatural side chain at the single-molecule level. PMID:27537396

  9. Minimizing detection errors in single molecule localization microscopy.

    Science.gov (United States)

    Křížek, Pavel; Raška, Ivan; Hagen, Guy M

    2011-02-14

    Fluorescence microscopy using single molecule imaging and localization (PALM, STORM, and similar approaches) has quickly been adopted as a convenient method for obtaining multicolor, 3D superresolution images of biological samples. Using an approach based on extensive Monte Carlo simulations, we examined the performance of various noise reducing filters required for the detection of candidate molecules. We determined a suitable noise reduction method and derived an optimal, nonlinear threshold which minimizes detection errors introduced by conventional algorithms. We also present a new technique for visualization of single molecule localization microscopy data based on adaptively jittered 2D histograms. We have used our new methods to image both Atto565-phalloidin labeled actin in fibroblast cells, and mCitrine-erbB3 expressed in A431 cells. The enhanced methods developed here were crucial in processing the data we obtained from these samples, as the overall signal to noise ratio was quite low.

  10. Single Molecule DNA Detection with an Atomic Vapor Notch Filter

    CERN Document Server

    Uhland, Denis; Widmann, Matthias; Lee, Sang-Yun; Wrachtrup, Jörg; Gerhardt, Ilja

    2015-01-01

    The detection of single molecules has facilitated many advances in life- and material-sciences. Commonly, it founds on the fluorescence detection of single molecules, which are for example attached to the structures under study. For fluorescence microscopy and sensing the crucial parameters are the collection and detection efficiency, such that photons can be discriminated with low background from a labeled sample. Here we show a scheme for filtering the excitation light in the optical detection of single stranded labeled DNA molecules. We use the narrow-band filtering properties of a hot atomic vapor to filter the excitation light from the emitted fluorescence of a single emitter. The choice of atomic sodium allows for the use of fluorescent dyes, which are common in life-science. This scheme enables efficient photon detection, and a statistical analysis proves an enhancement of the optical signal of more than 15% in a confocal and in a wide-field configuration.

  11. Enhancing Single Molecule Imaging in Optofluidics and Microfluidics

    OpenAIRE

    Vasdekis, Andreas E.; Laporte, Gregoire P.J.

    2011-01-01

    Microfluidics and optofluidics have revolutionized high-throughput analysis and chemical synthesis over the past decade. Single molecule imaging has witnessed similar growth, due to its capacity to reveal heterogeneities at high spatial and temporal resolutions. However, both resolution types are dependent on the signal to noise ratio (SNR) of the image. In this paper, we review how the SNR can be enhanced in optofluidics and microfluidics. Starting with optofluidics, we outline integrated ph...

  12. Multiplex single-molecule interaction profiling of DNA barcoded proteins

    OpenAIRE

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E.; Vidal, Marc; Church, George M.

    2014-01-01

    In contrast with advances in massively parallel DNA sequencing1, high-throughput protein analyses2-4 are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule (SM) protein detection achieved using optical methods5 is limited by the number of spectrally nonoverlapping chromophores. Here, we introduce a single molecular interaction-sequencing (SMI-Seq) technology for parallel protein interaction profiling le...

  13. Density Functional Theory with Dissipation: Transport through Single Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Kieron Burke

    2012-04-30

    A huge amount of fundamental research was performed on this grant. Most of it focussed on fundamental issues of electronic structure calculations of transport through single molecules, using density functional theory. Achievements were: (1) First density functional theory with dissipation; (2) Pseudopotential plane wave calculations with master equation; (3) Weak bias limit; (4) Long-chain conductance; and (5) Self-interaction effects in tunneling.

  14. Quantum Chemical Characterization of Single Molecule Magnets Based on Uranium.

    Science.gov (United States)

    Spivak, Mariano; Vogiatzis, Konstantinos D; Cramer, Christopher J; Graaf, Coen de; Gagliardi, Laura

    2017-03-02

    Multiconfigurational electronic structure theory calculations including spin-orbit coupling effects were performed on four uranium-based single-molecule-magnets. Several quartet and doublet states were computed and the energy gaps between spin-orbit states were then used to determine magnetic susceptibility curves. Trends in experimental magnetic susceptibility curves were well reproduced by the calculations, and key factors affecting performance were identified.

  15. Single-molecule chemical reaction reveals molecular reaction kinetics and dynamics.

    Science.gov (United States)

    Zhang, Yuwei; Song, Ping; Fu, Qiang; Ruan, Mingbo; Xu, Weilin

    2014-06-25

    Understanding the microscopic elementary process of chemical reactions, especially in condensed phase, is highly desirable for improvement of efficiencies in industrial chemical processes. Here we show an approach to gaining new insights into elementary reactions in condensed phase by combining quantum chemical calculations with a single-molecule analysis. Elementary chemical reactions in liquid-phase, revealed from quantum chemical calculations, are studied by tracking the fluorescence of single dye molecules undergoing a reversible redox process. Statistical analyses of single-molecule trajectories reveal molecular reaction kinetics and dynamics of elementary reactions. The reactivity dynamic fluctuations of single molecules are evidenced and probably arise from either or both of the low-frequency approach of the molecule to the internal surface of the SiO2 nanosphere or the molecule diffusion-induced memory effect. This new approach could be applied to other chemical reactions in liquid phase to gain more insight into their molecular reaction kinetics and the dynamics of elementary steps.

  16. Predicting single-molecule conductance through machine learning

    Science.gov (United States)

    Lanzillo, Nicholas A.; Breneman, Curt M.

    2016-10-01

    We present a robust machine learning model that is trained on the experimentally determined electrical conductance values of approximately 120 single-molecule junctions used in scanning tunnelling microscope molecular break junction (STM-MBJ) experiments. Quantum mechanical, chemical, and topological descriptors are used to correlate each molecular structure with a conductance value, and the resulting machine-learning model can predict the corresponding value of conductance with correlation coefficients of r 2 = 0.95 for the training set and r 2 = 0.78 for a blind testing set. While neglecting entirely the effects of the metal contacts, this work demonstrates that single molecule conductance can be qualitatively correlated with a number of molecular descriptors through a suitably trained machine learning model. The dominant features in the machine learning model include those based on the electronic wavefunction, the geometry/topology of the molecule as well as the surface chemistry of the molecule. This model can be used to identify promising molecular structures for use in single-molecule electronic circuits and can guide synthesis and experiments in the future.

  17. Single Molecule Electrochemical Detection in Aqueous Solutions and Ionic Liquids.

    Science.gov (United States)

    Byers, Joshua C; Paulose Nadappuram, Binoy; Perry, David; McKelvey, Kim; Colburn, Alex W; Unwin, Patrick R

    2015-10-20

    Single molecule electrochemical detection (SMED) is an extremely challenging aspect of electroanalytical chemistry, requiring unconventional electrochemical cells and measurements. Here, SMED is reported using a "quad-probe" (four-channel probe) pipet cell, fabricated by depositing carbon pyrolytically into two diagonally opposite barrels of a laser-pulled quartz quadruple-barreled pipet and filling the open channels with electrolyte solution, and quasi-reference counter electrodes. A meniscus forms at the end of the probe covering the two working electrodes and is brought into contact with a substrate working electrode surface. In this way, a nanogap cell is produced whereby the two carbon electrodes in the pipet can be used to promote redox cycling of an individual molecule with the substrate. Anticorrelated currents generated at the substrate and tip electrodes, at particular distances (typically tens of nanometers), are consistent with the detection of single molecules. The low background noise realized in this droplet format opens up new opportunities in single molecule electrochemistry, including the use of ionic liquids, as well as aqueous solution, and the quantitative assessment and analysis of factors influencing redox cycling currents, due to a precisely known gap size.

  18. Single molecule microscopy in 3D cell cultures and tissues.

    Science.gov (United States)

    Lauer, Florian M; Kaemmerer, Elke; Meckel, Tobias

    2014-12-15

    From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy.

  19. Rational design of DNA-actuated enzyme nanoreactors guided by single molecule analysis

    Science.gov (United States)

    Dhakal, Soma; Adendorff, Matthew R.; Liu, Minghui; Yan, Hao; Bathe, Mark; Walter, Nils G.

    2016-01-01

    The control of enzymatic reactions using nanoscale DNA devices offers a powerful application of DNA nanotechnology uniquely derived from actuation. However, previous characterization of enzymatic reaction rates using bulk biochemical assays reported suboptimal function of DNA devices such as tweezers. To gain mechanistic insight into this deficiency and to identify design rules to improve their function, here we exploit the synergy of single molecule imaging and computational modeling to characterize the three-dimensional structures and catalytic functions of DNA tweezer-actuated nanoreactors. Our analysis revealed two important deficiencies - incomplete closure upon actuation and conformational heterogeneity. Upon rational redesign of the Holliday junctions located at their hinge and arms, we found that the DNA tweezers could be more completely and uniformly closed. A novel single molecule enzyme assay was developed to demonstrate that our design improvements yield significant, independent enhancements in the fraction of active enzyme nanoreactors and their individual substrate turnover frequencies. The sequence-level design strategies explored here may aid more broadly in improving the performance of DNA-based nanodevices including biological and chemical sensors.The control of enzymatic reactions using nanoscale DNA devices offers a powerful application of DNA nanotechnology uniquely derived from actuation. However, previous characterization of enzymatic reaction rates using bulk biochemical assays reported suboptimal function of DNA devices such as tweezers. To gain mechanistic insight into this deficiency and to identify design rules to improve their function, here we exploit the synergy of single molecule imaging and computational modeling to characterize the three-dimensional structures and catalytic functions of DNA tweezer-actuated nanoreactors. Our analysis revealed two important deficiencies - incomplete closure upon actuation and conformational

  20. Benzoxazole-based heterometallic dodecanuclear complex [Dy(III)4Cu(II)8] with single-molecule-magnet behavior.

    Science.gov (United States)

    Iasco, Olga; Novitchi, Ghenadie; Jeanneau, Erwann; Wernsdorfer, Wolfgang; Luneau, Dominique

    2011-08-15

    Three Cu-Ln (Ln = Dy, Gd, Y) dodecanuclear clusters assembled by a novel ligand of the benzoxazole type are reported. The dysprosium cluster exhibits a frequency dependence of the alternating-current susceptibility and hysteresis loop at low temperature, indicating single-molecule-magnet behavior.

  1. Super-resolved multimodal multiphoton microscopy with spatial frequency-modulated imaging

    CERN Document Server

    Field, Jeffrey J; Domingue, Scott R; Motz, Alyssa M Allende; DeLuca, Keith F; DeLuca, Jennifer G; Kuciauskas, Darius; Levi, Dean H; Squier, Jeff A; Bartels, Randy A

    2015-01-01

    Super-resolved far-field microscopy has emerged as a powerful tool for investigating the structure of objects with resolution well below the diffraction limit of light. Nearly all super-resolution imaging techniques reported to date rely on real energy states of probe molecules to circumvent the diffraction limit, preventing super-resolved imaging of contrast mechanisms that occur via virtual energy states such as harmonic generation (HG). Here we report a super-resolution technique based on SPatIal Frequency modulated Imaging (SPIFI) that permits super-resolved nonlinear microscopy with any contrast mechanism, and with single-pixel detection. We show multimodal super-resolved images with two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) from biological and inorganic media. Multiphoton SPIFI (MP-SPIFI) provides spatial resolution up to 2$\\eta$ below the diffraction limit, where $\\eta$ is the highest power of the nonlinear intensity response. MP-SPIFI has the potential to not only pro...

  2. Vibrationally coupled electron transport through single-molecule junctions

    Energy Technology Data Exchange (ETDEWEB)

    Haertle, Rainer

    2012-04-26

    Single-molecule junctions are among the smallest electric circuits. They consist of a molecule that is bound to a left and a right electrode. With such a molecular nanocontact, the flow of electrical currents through a single molecule can be studied and controlled. Experiments on single-molecule junctions show that a single molecule carries electrical currents that can even be in the microampere regime. Thereby, a number of transport phenomena have been observed, such as, for example, diode- or transistor-like behavior, negative differential resistance and conductance switching. An objective of this field, which is commonly referred to as molecular electronics, is to relate these transport phenomena to the properties of the molecule in the contact. To this end, theoretical model calculations are employed, which facilitate an understanding of the underlying transport processes and mechanisms. Thereby, one has to take into account that molecules are flexible structures, which respond to a change of their charge state by a profound reorganization of their geometrical structure or may even dissociate. It is thus important to understand the interrelation between the vibrational degrees of freedom of a singlemolecule junction and the electrical current flowing through the contact. In this thesis, we investigate vibrational effects in electron transport through singlemolecule junctions. For these studies, we calculate and analyze transport characteristics of both generic and first-principles based model systems of a molecular contact. To this end, we employ a master equation and a nonequilibrium Green's function approach. Both methods are suitable to describe this nonequilibrium transport problem and treat the interactions of the tunneling electrons on the molecular bridge non-perturbatively. This is particularly important with respect to the vibrational degrees of freedom, which may strongly interact with the tunneling electrons. We show in detail that the resulting

  3. Highly sensitive, non-invasive detection of colorectal cancer mutations using single molecule, third generation sequencing

    Directory of Open Access Journals (Sweden)

    Giancarlo Russo

    2015-12-01

    We present the first study that applies the high read accuracy and depth of single molecule, real time, circular consensus sequencing (SMRT-CCS to the detection of mutations in stool DNA in order to provide a non-invasive, sensitive and accurate test for CRC. In stool DNA isolated from patients diagnosed with adenocarcinoma, we are able to detect mutations at frequencies below 0.5% with no false positives. This approach establishes a foundation for a non-invasive, highly sensitive assay to screen the population for CRC and the early stage adenomas that lead to CRC.

  4. Cationic Mn4 single-molecule magnet with a sterically isolated core.

    Science.gov (United States)

    Heroux, Katie J; Quddusi, Hajrah M; Liu, Junjie; O'Brien, James R; Nakano, Motohiro; del Barco, Enrique; Hill, Stephen; Hendrickson, David N

    2011-08-15

    The synthesis, structure, and magnetic properties of a ligand-modified Mn(4) dicubane single-molecule magnet (SMM), [Mn(4)(Bet)(4)(mdea)(2)(mdeaH)(2)](BPh(4))(4), are presented, where the cationic SMM units are significantly separated from neighboring molecules in the crystal lattice. There are no cocrystallized solvate molecules, making it an ideal candidate for single-crystal magnetization hysteresis and high-frequency electron paramagnetic resonance studies. Increased control over intermolecular interactions in such materials is a crucial factor in the future application of SMMs.

  5. Fluorescence spectroscopy of single molecules at room temperature and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Taekjip [Univ. of California, Berkeley, CA (United States)

    1996-12-01

    We performed fluorescence spectroscopy of single and pairs of dye molecules on a surface at room temperature. Near field scanning optical microscope (NSOM) and far field scanning optical microscope with multi-color excitation/detection capability were built. The instrument is capable of optical imaging with 100nm resolution and has the sensitivity necessary for single molecule detection. A variety of dynamic events which cannot be observed from an ensemble of molecules is revealed when the molecules are probed one at a time. They include (1) spectral jumps correlated with dark states, (2) individually resolved quantum jumps to and from the meta-stable triplet state, (3) rotational jumps due to desorption/readsorption events of single molecules on the surface. For these studies, a computer controlled optical system which automatically and rapidly locates and performs spectroscopic measurements on single molecules was developed. We also studied the interaction between closely spaced pairs of molecules. In particular, fluorescence resonance energy transfer between a single resonant pair of donor and acceptor molecules was measured. Photodestruction dynamics of the donor or acceptor were used to determine the presence and efficiency of energy transfer Dual molecule spectroscopy was extended to a non-resonant pair of molecules to obtain high resolution differential distance information. By combining NSOM and dual color scheme, we studied the co-localization of parasite proteins and host proteins on a human red blood cell membrane infected with malaria. These dual-molecule techniques can be used to measure distances, relative orientations, and changes in distances/orientations of biological macromolecules with very good spatial, angular and temporal resolutions, hence opening new capabilities in the study of such systems.

  6. Single particle tracking and single molecule energy transfer

    CERN Document Server

    Bräuchle, Christoph; Michaelis, Jens

    2009-01-01

    Closing a gap in the literature, this handbook gathers all the information on single particle tracking and single molecule energy transfer. It covers all aspects of this hot and modern topic, from detecting virus entry to membrane diffusion, and from protein folding using spFRET to coupled dye systems, as well recent achievements in the field. Throughout, the first-class editors and top international authors present content of the highest quality, making this a must-have for physical chemists, spectroscopists, molecular physicists and biochemists.

  7. Single molecule studies of RNA polymerase II transcription in vitro.

    Science.gov (United States)

    Horn, Abigail E; Goodrich, James A; Kugel, Jennifer F

    2014-01-01

    Eukaryotic mRNA transcription by RNA polymerase II (RNAP II) is the first step in gene expression and a key determinant of cellular regulation. Elucidating the mechanism by which RNAP II synthesizes RNA is therefore vital to determining how genes are controlled under diverse biological conditions. Significant advances in understanding RNAP II transcription have been achieved using classical biochemical and structural techniques; however, aspects of the transcription mechanism cannot be assessed using these approaches. The application of single-molecule techniques to study RNAP II transcription has provided new insight only obtainable by studying molecules in this complex system one at a time.

  8. Single Molecule Study of Photoconversion and Spectral Heterogeneities of Fluorophores

    DEFF Research Database (Denmark)

    Liao, Zhiyu

    and mass spectrometry. Upon illumination, A3-TOTA+ degrades in a step-wise manner by de-ethylation on the periphery. The unusual red-shifted fluorescence from the photoproducts is not as intense as the original emission, but the photostability is improved. The acquired knowledge about photoconversion can...... stimulate new pathways in engineering and designing photoconvertible fluorophores, based on the reaction with oxygen or other chemicals. Besides, this results show that dyes that convert into other emissive species could give problems when interpreting single molecule FRET systems. The revealed mechanism...

  9. Electrochemical proton relay at the single-molecule level

    DEFF Research Database (Denmark)

    Kuznetsov, A. M.; Medvedev, I. G.; Ulstrup, Jens

    2009-01-01

    A scheme for the experimental study of single-proton transfer events, based on proton-coupled two-electron transfer between a proton donor and a proton acceptor molecule confined in the tunneling gap between two metal leads in electrolyte solution is suggested. Expressions for the electric current...... are derived and compared with formalism for electron tunneling through redox molecules. The scheme allows studying the kinetics of proton and hydrogen atom transfer as well as kinetic isotope effects at the single-molecule level under electrochemical potential control....

  10. Theoretical investigation on single-molecule chiroptical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wakabayashi, M. [Tokyo Institute of Technology, School and Graduate School of Bioscience and Biotechnology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa (Japan); Yokojima, S. [Tokyo University of Pharmacy and Life Sciences, 1423-1 Horinouchi, Hachiouji-shi, Tokyo (Japan); Fukaminato, T. [Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020 (Japan); Ogata, K.; Nakamura, S. [Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2013-12-10

    Some experimental results of chiroptical response of single molecule have already reported. In those experiments, dissymmetry parameter, g was used as an indicator of the relative circular dichroism intensity. The parameter for individual molecules was measured. For the purpose of giving an interpretation or explanation to the experimental result, the dissymmetry parameter is formulated on the basis of Fermi’s golden rule. Subsequently, the value of individual molecules is evaluated as a function of the direction of light propagation to the orientationary fixed molecules. The ground and excited wavefunction of electrons in the molecule and transition moments needed are culculated using the density functional theory.

  11. Hybrid photodetector for single-molecule spectroscopy and microscopy.

    Science.gov (United States)

    Michalet, X; Cheng, Adrian; Antelman, Joshua; Suyama, Motohiro; Arisaka, Katsushi; Weiss, Shimon

    2008-02-15

    We report benchmark tests of a new single-photon counting detector based on a GaAsP photocathode and an electron-bombarded avalanche photodiode developed by Hamamatsu Photonics. We compare its performance with those of standard Geiger-mode avalanche photodiodes. We show its advantages for FCS due to the absence of after-pulsing and for fluorescence lifetime measurements due to its excellent time resolution. Its large sensitive area also greatly simplifies setup alignment. Its spectral sensitivity being similar to that of recently introduced CMOS SPADs, this new detector could become a valuable tool for single-molecule fluorescence measurements, as well as for many other applications.

  12. Single Molecule Raman Detection of Enkephalin on Silver Colloidal Particles

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Holger; Abdali, Salim

    2004-01-01

    the Raman signal the enkephalin molecules have been attached to silver colloidal cluster structures. The experiments demonstrate that the SERS signal of the strongly enhanced ring breathing vibration of phenylalanine at 1000 cm-1 can be used as “intrinsic marker” for detecting a single enkephalin molecule......Enkephalin, an endogeneous substance in the human brain showing morphine-like biological functions, has been detected at the single molecule level based on the surface-enhanced Raman signal of the ring breathing mode of phenylalanine, which is one building block of the molecule. For enhancing...

  13. Single-molecule denaturation mapping of DNA in nanofluidic channels

    DEFF Research Database (Denmark)

    Reisner, Walter; Larsen, Niels Bent; Silahtaroglu, Asli

    2010-01-01

    Here we explore the potential power of denaturation mapping as a single-molecule technique. By partially denaturing YOYO (R)-1-labeled DNA in nanofluidic channels with a combination of formamide and local heating, we obtain a sequence-dependent "barcode" corresponding to a series of local dips....... Consequently, the technique is sensitive to sequence variation without requiring enzymatic labeling or a restriction step. This technique may serve as the basis for a new mapping technology ideally suited for investigating the long-range structure of entire genomes extracted from single cells....

  14. Single-Molecule Confocal FRET Microscopy to Dissect Conformational Changes in the Catalytic Cycle of DNA Topoisomerases.

    Science.gov (United States)

    Hartmann, S; Weidlich, D; Klostermeier, D

    2016-01-01

    Molecular machines undergo large-scale conformational changes during their catalytic cycles that are linked to their biological functions. DNA topoisomerases are molecular machines that interconvert different DNA topoisomers and resolve torsional stress that is introduced during cellular processes that involve local DNA unwinding. DNA gyrase catalyzes the introduction of negative supercoils into DNA in an ATP-dependent reaction. During its catalytic cycle, gyrase undergoes large-scale conformational changes that drive the supercoiling reaction. These conformational changes can be followed by single-molecule Förster resonance energy transfer (FRET). Here, we use DNA gyrase from Bacillus subtilis as an illustrative example to present strategies for the investigation of conformational dynamics of multisubunit complexes. We provide a brief introduction into single-molecule FRET and confocal microscopy, with a focus on practical considerations in sample preparation and data analysis. Different strategies in the preparation of donor-acceptor-labeled molecules suitable for single-molecule FRET experiments are outlined. The insight into the mechanism of DNA supercoiling by gyrase gained from single-molecule FRET experiment is summarized. The general strategies described here can also be applied to investigate conformational changes and their link to biological function of other multisubunit molecular machines. © 2016 Elsevier Inc. All rights reserved.

  15. Dual-Colored DNA Comb Polymers for Single Molecule Rheology

    Science.gov (United States)

    Mai, Danielle; Marciel, Amanda; Schroeder, Charles

    2014-03-01

    We report the synthesis and characterization of branched biopolymers for single molecule rheology. In our work, we utilize a hybrid enzymatic-synthetic approach to graft ``short'' DNA branches to ``long'' DNA backbones, thereby producing macromolecular DNA comb polymers. The branches and backbones are synthesized via polymerase chain reaction with chemically modified deoxyribonucleotides (dNTPs): ``short'' branches consist of Cy5-labeled dNTPs and a terminal azide group, and ``long'' backbones contain dibenzylcyclooctyne-modified (DBCO) dNTPs. In this way, we utilize strain-promoted, copper-free cycloaddition ``click'' reactions for facile grafting of azide-terminated branches at DBCO sites along backbones. Copper-free click reactions are bio-orthogonal and nearly quantitative when carried out under mild conditions. Moreover, comb polymers can be labeled with an intercalating dye (e.g., YOYO) for dual-color fluorescence imaging. We characterized these materials using gel electrophoresis, HPLC, and optical microscopy, with atomic force microscopy in progress. Overall, DNA combs are suitable for single molecule dynamics, and in this way, our work holds the potential to improve our understanding of topologically complex polymer melts and solutions.

  16. Single-molecule enzymology à la Michaelis-Menten.

    Science.gov (United States)

    Grima, Ramon; Walter, Nils G; Schnell, Santiago

    2014-01-01

    Over the past 100 years, deterministic rate equations have been successfully used to infer enzyme-catalysed reaction mechanisms and to estimate rate constants from reaction kinetics experiments conducted in vitro. In recent years, sophisticated experimental techniques have been developed that begin to allow the measurement of enzyme-catalysed and other biopolymer-mediated reactions inside single cells at the single-molecule level. Time-course data obtained using these methods are considerably noisy because molecule numbers within cells are typically quite small. As a consequence, the interpretation and analysis of single-cell data requires stochastic methods, rather than deterministic rate equations. Here, we concisely review both experimental and theoretical techniques that enable single-molecule analysis, with particular emphasis on the major developments in the field of theoretical stochastic enzyme kinetics, from its inception in the mid-20th century to its modern-day status. We discuss the differences between stochastic and deterministic rate equation models, how these depend on enzyme molecule numbers and substrate inflow into the reaction compartment, and how estimation of rate constants from single-cell data is possible using recently developed stochastic approaches. © 2013 FEBS.

  17. From single molecules to life: microscopy at the nanoscale.

    Science.gov (United States)

    Turkowyd, Bartosz; Virant, David; Endesfelder, Ulrike

    2016-10-01

    Super-resolution microscopy is the term commonly given to fluorescence microscopy techniques with resolutions that are not limited by the diffraction of light. Since their conception a little over a decade ago, these techniques have quickly become the method of choice for many biologists studying structures and processes of single cells at the nanoscale. In this review, we present the three main approaches used to tackle the diffraction barrier of ∼200 nm: stimulated-emission depletion (STED) microscopy, structured illumination microscopy (SIM), and single-molecule localization microscopy (SMLM). We first present a theoretical overview of the techniques and underlying physics, followed by a practical guide to all of the facets involved in designing a super-resolution experiment, including an approachable explanation of the photochemistry involved, labeling methods available, and sample preparation procedures. Finally, we highlight some of the most exciting recent applications of and developments in these techniques, and discuss the outlook for this field. Graphical Abstract Super-resolution microscopy techniques. Working principles of the common approaches stimulated-emission depletion (STED) microscopy, structured illumination microscopy (SIM), and single-molecule localization microscopy (SMLM).

  18. Surface passivation for single-molecule protein studies.

    Science.gov (United States)

    Chandradoss, Stanley D; Haagsma, Anna C; Lee, Young Kwang; Hwang, Jae-Ho; Nam, Jwa-Min; Joo, Chirlmin

    2014-04-24

    Single-molecule fluorescence spectroscopy has proven to be instrumental in understanding a wide range of biological phenomena at the nanoscale. Important examples of what this technique can yield to biological sciences are the mechanistic insights on protein-protein and protein-nucleic acid interactions. When interactions of proteins are probed at the single-molecule level, the proteins or their substrates are often immobilized on a glass surface, which allows for a long-term observation. This immobilization scheme may introduce unwanted surface artifacts. Therefore, it is essential to passivate the glass surface to make it inert. Surface coating using polyethylene glycol (PEG) stands out for its high performance in preventing proteins from non-specifically interacting with a glass surface. However, the polymer coating procedure is difficult, due to the complication arising from a series of surface treatments and the stringent requirement that a surface needs to be free of any fluorescent molecules at the end of the procedure. Here, we provide a robust protocol with step-by-step instructions. It covers surface cleaning including piranha etching, surface functionalization with amine groups, and finally PEG coating. To obtain a high density of a PEG layer, we introduce a new strategy of treating the surface with PEG molecules over two rounds, which remarkably improves the quality of passivation. We provide representative results as well as practical advice for each critical step so that anyone can achieve the high quality surface passivation.

  19. Studying the Nucleated Mammalian Cell Membrane by Single Molecule Approaches

    Science.gov (United States)

    Wang, Feng; Wu, Jiazhen; Gao, Jing; Liu, Shuheng; Jiang, Junguang; Jiang, Shibo; Wang, Hongda

    2014-01-01

    The cell membrane plays a key role in compartmentalization, nutrient transportation and signal transduction, while the pattern of protein distribution at both cytoplasmic and ectoplasmic sides of the cell membrane remains elusive. Using a combination of single-molecule techniques, including atomic force microscopy (AFM), single molecule force spectroscopy (SMFS) and stochastic optical reconstruction microscopy (STORM), to study the structure of nucleated cell membranes, we found that (1) proteins at the ectoplasmic side of the cell membrane form a dense protein layer (4 nm) on top of a lipid bilayer; (2) proteins aggregate to form islands evenly dispersed at the cytoplasmic side of the cell membrane with a height of about 10–12 nm; (3) cholesterol-enriched domains exist within the cell membrane; (4) carbohydrates stay in microdomains at the ectoplasmic side; and (5) exposed amino groups are asymmetrically distributed on both sides. Based on these observations, we proposed a Protein Layer-Lipid-Protein Island (PLLPI) model, to provide a better understanding of cell membrane structure, membrane trafficking and viral fusion mechanisms. PMID:24806512

  20. High contrast single molecule tracking in the pericellular coat

    Science.gov (United States)

    Scrimgeour, Jan; McLane, Louis T.; Curtis, Jennifer E.

    2014-03-01

    The pericellular coat is a robust, hydrated, polymer brush-like structure that can extend several micrometers into the extracellular space around living cells. By controlling access to the cell surface, acting as a filter and storage reservoir for proteins, and actively controlling tissue-immune system interactions, the cell coat performs many important functions at scales ranging from the single cell to whole tissues. The cell coat consists of a malleable backbone - the large polysaccharide hyaluronic acid (HA) - with its structure, material properties, and ultimately its bio-functionality tuned by a diverse set of HA binding proteins. These proteins add charge, cross-links and growth factor-like ligands to the coat To probe the dynamic behavior of this soft biomaterial we have used high contrast single molecule imaging, based on highly inclined laser illumination, to observe individual fluorescently labeled HA binding proteins within the cell coat. Our work focuses on the cell coat of living chondrocyte (cartilage) cells, and in particular the effect of the large, highly charged, protein aggrecan on the properties of the coat. Through single molecule imaging we observe that aggrecan is tightly tethered to HA, and plays an important role in cell coat extension and stiffening.

  1. Single molecule study of a processivity clamp sliding on DNA

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, T A; Kwon, Y; Johnson, A; Hollars, C; O?Donnell, M; Camarero, J A; Barsky, D

    2007-07-05

    Using solution based single molecule spectroscopy, we study the motion of the polIII {beta}-subunit DNA sliding clamp ('{beta}-clamp') on DNA. Present in all cellular (and some viral) forms of life, DNA sliding clamps attach to polymerases and allow rapid, processive replication of DNA. In the absence of other proteins, the DNA sliding clamps are thought to 'freely slide' along the DNA; however, the abundance of positively charged residues along the inner surface may create favorable electrostatic contact with the highly negatively charged DNA. We have performed single-molecule measurements on a fluorescently labeled {beta}-clamp loaded onto freely diffusing plasmids annealed with fluorescently labeled primers of up to 90 bases. We find that the diffusion constant for 1D diffusion of the {beta}-clamp on DNA satisfies D {le} 10{sup -14} cm{sup 2}/s, much slower than the frictionless limit of D = 10{sup -10} cm{sup 2}/s. We find that the {beta} clamp remains at the 3-foot end in the presence of E. coli single-stranded binding protein (SSB), which would allow for a sliding clamp to wait for binding of the DNA polymerase. Replacement of SSB with Human RP-A eliminates this interaction; free movement of sliding clamp and poor binding of clamp loader to the junction allows sliding clamp to accumulate on DNA. This result implies that the clamp not only acts as a tether, but also a placeholder.

  2. Large negative differential conductance in single-molecule break junctions.

    Science.gov (United States)

    Perrin, Mickael L; Frisenda, Riccardo; Koole, Max; Seldenthuis, Johannes S; Gil, Jose A Celis; Valkenier, Hennie; Hummelen, Jan C; Renaud, Nicolas; Grozema, Ferdinand C; Thijssen, Joseph M; Dulić, Diana; van der Zant, Herre S J

    2014-10-01

    Molecular electronics aims at exploiting the internal structure and electronic orbitals of molecules to construct functional building blocks. To date, however, the overwhelming majority of experimentally realized single-molecule junctions can be described as single quantum dots, where transport is mainly determined by the alignment of the molecular orbital levels with respect to the Fermi energies of the electrodes and the electronic coupling with those electrodes. Particularly appealing exceptions include molecules in which two moieties are twisted with respect to each other and molecules in which quantum interference effects are possible. Here, we report the experimental observation of pronounced negative differential conductance in the current-voltage characteristics of a single molecule in break junctions. The molecule of interest consists of two conjugated arms, connected by a non-conjugated segment, resulting in two coupled sites. A voltage applied across the molecule pulls the energy of the sites apart, suppressing resonant transport through the molecule and causing the current to decrease. A generic theoretical model based on a two-site molecular orbital structure captures the experimental findings well, as confirmed by density functional theory with non-equilibrium Green's functions calculations that include the effect of the bias. Our results point towards a conductance mechanism mediated by the intrinsic molecular orbitals alignment of the molecule.

  3. Tunable magnetoresistance in an asymmetrically coupled single-molecule junction

    Science.gov (United States)

    Warner, Ben; El Hallak, Fadi; Prüser, Henning; Sharp, John; Persson, Mats; Fisher, Andrew J.; Hirjibehedin, Cyrus F.

    2015-03-01

    Phenomena that are highly sensitive to magnetic fields can be exploited in sensors and non-volatile memories. The scaling of such phenomena down to the single-molecule level may enable novel spintronic devices. Here, we report magnetoresistance in a single-molecule junction arising from negative differential resistance that shifts in a magnetic field at a rate two orders of magnitude larger than Zeeman shifts. This sensitivity to the magnetic field produces two voltage-tunable forms of magnetoresistance, which can be selected via the applied bias. The negative differential resistance is caused by transient charging of an iron phthalocyanine (FePc) molecule on a single layer of copper nitride (Cu2N) on a Cu(001) surface, and occurs at voltages corresponding to the alignment of sharp resonances in the filled and empty molecular states with the Cu(001) Fermi energy. An asymmetric voltage-divider effect enhances the apparent voltage shift of the negative differential resistance with magnetic field, which inherently is on the scale of the Zeeman energy. These results illustrate the impact that asymmetric coupling to metallic electrodes can have on transport through molecules, and highlight how this coupling can be used to develop molecular spintronic applications.

  4. Probing Protein Channel Dynamics At The Single Molecule Level.

    Science.gov (United States)

    Lee, M. Ann; Dunn, Robert C.

    1997-03-01

    It would be difficult to overstate the importance played by protein ion channels in cellular function. These macromolecular pores allow the passage of ions across the cellular membrane and play indispensable roles in all aspects of neurophysiology. While the patch-clamp technique continues to provide elegant descriptions of the kinetic processes involved in ion channel gating, the associated conformational changes remain a mystery. We are using the spectroscopic capabilities and single molecule fluorescence sensitivity of near-field scanning optical microscopy (NSOM) to probe these dynamics at the single channel level. Using a newly developed cantilevered NSOM probe capable of probing soft biological samples with single molecule fluorescence sensitivity, we have begun mapping the location of single NMDA receptors in intact rat cortical neurons with <100 nm spatial resolution. We will also present recent results exploring the conformational changes accompanying activation of nuclear pore channels located in the nuclear membrane of Xenopus oocytes. Our recent NSOM and AFM measurements on single nuclear pore complexes reveal large conformational changes taking place upon activation, providing rich, new molecular level details of channel function.

  5. Limits of single-molecule super-resolution microscopy in thin polymer films

    Science.gov (United States)

    Wang, Muzhou; Davanco, Marcelo; Marr, James M.; Liddle, J. Alexander; Gilman, Jeffrey W.

    Structural characterization by super-resolution microscopy has become increasingly widespread, particularly in the biological community. The technique is powerful because it can produce real-space images with resolutions of tens of nanometers, while sample preparation is relatively non-invasive. Previous studies have applied these techniques to important scientific problems in the life sciences, but relatively little work has explored the attainable limit of resolution using samples of known structure. In this work, we apply photo-activated localization microscopy (PALM) to polymer films that have been nanopatterned using electron-beam lithography. Trace amounts of a rhodamine spiroamide dye are dispersed into nanostructured poly(methyl methacrylate), and UV-induced switching of the fluorophores enables nanoscale localization of single molecules to generate a final composite super-resolution image. Features as small as 50 nm are clearly resolvable. To determine the ultimate resolution limit, we investigate sources of error in the system, particularly from systematic mislocalizations due to the effect of fluorophore orientation on the single-molecule point-spread function.

  6. Single Molecule Bioelectronics and Their Application to Amplification-Free Measurement of DNA Lengths.

    Science.gov (United States)

    Gül, O Tolga; Pugliese, Kaitlin M; Choi, Yongki; Sims, Patrick C; Pan, Deng; Rajapakse, Arith J; Weiss, Gregory A; Collins, Philip G

    2016-06-24

    As biosensing devices shrink smaller and smaller, they approach a scale in which single molecule electronic sensing becomes possible. Here, we review the operation of single-enzyme transistors made using single-walled carbon nanotubes. These novel hybrid devices transduce the motions and catalytic activity of a single protein into an electronic signal for real-time monitoring of the protein's activity. Analysis of these electronic signals reveals new insights into enzyme function and proves the electronic technique to be complementary to other single-molecule methods based on fluorescence. As one example of the nanocircuit technique, we have studied the Klenow Fragment (KF) of DNA polymerase I as it catalytically processes single-stranded DNA templates. The fidelity of DNA polymerases makes them a key component in many DNA sequencing techniques, and here we demonstrate that KF nanocircuits readily resolve DNA polymerization with single-base sensitivity. Consequently, template lengths can be directly counted from electronic recordings of KF's base-by-base activity. After measuring as few as 20 copies, the template length can be determined with <1 base pair resolution, and different template lengths can be identified and enumerated in solutions containing template mixtures.

  7. All-Dielectric Silicon Nanogap Antennas To Enhance the Fluorescence of Single Molecules.

    Science.gov (United States)

    Regmi, Raju; Berthelot, Johann; Winkler, Pamina M; Mivelle, Mathieu; Proust, Julien; Bedu, Frédéric; Ozerov, Igor; Begou, Thomas; Lumeau, Julien; Rigneault, Hervé; García-Parajó, María F; Bidault, Sébastien; Wenger, Jérôme; Bonod, Nicolas

    2016-08-10

    Plasmonic antennas have a profound impact on nanophotonics as they provide efficient means to manipulate light and enhance light-matter interactions at the nanoscale. However, the large absorption losses found in metals can severely limit the plasmonic applications in the visible spectral range. Here, we demonstrate the effectiveness of an alternative approach using all-dielectric nanoantennas based on silicon dimers to enhance the fluorescence detection of single molecules. The silicon antenna design is optimized to confine the near-field intensity in the 20 nm nanogap and reach a 270-fold fluorescence enhancement in a nanoscale volume of λ(3)/1800 with dielectric materials only. Our conclusions are assessed by combining polarization resolved optical spectroscopy of individual antennas, scanning electron microscopy, numerical simulations, fluorescence lifetime measurements, fluorescence burst analysis, and fluorescence correlation spectroscopy. This work demonstrates that all-silicon nanoantennas are a valid alternative to plasmonic devices for enhanced single molecule fluorescence sensing, with the additional key advantages of reduced nonradiative quenching, negligible heat generation, cost-efficiency, and complementary metal-oxide-semiconductor (CMOS) compatibility.

  8. Electron diffraction of CBr4 in superfluid helium droplets: A step towards single molecule diffraction

    Science.gov (United States)

    He, Yunteng; Zhang, Jie; Kong, Wei

    2016-07-01

    We demonstrate the practicality of electron diffraction of single molecules inside superfluid helium droplets using CBr4 as a testing case. By reducing the background from pure undoped droplets via multiple doping, with small corrections for dimers and trimers, clearly resolved diffraction rings of CBr4 similar to those of gas phase molecules can be observed. The experimental data from CBr4 doped droplets are in agreement with both theoretical calculations and with experimental results of gaseous species. The abundance of monomers and clusters in the droplet beam also qualitatively agrees with the Poisson statistics. Possible extensions of this approach to macromolecular ions will also be discussed. This result marks the first step in building a molecular goniometer using superfluid helium droplet cooling and field induced orientation. The superior cooling effect of helium droplets is ideal for field induced orientation, but the diffraction background from helium is a concern. This work addresses this background issue and identifies a possible solution. Accumulation of diffraction images only becomes meaningful when all images are produced from molecules oriented in the same direction, and hence a molecular goniometer is a crucial technology for serial diffraction of single molecules.

  9. Single Molecule Bioelectronics and Their Application to Amplification-Free Measurement of DNA Lengths

    Directory of Open Access Journals (Sweden)

    O. Tolga Gül

    2016-06-01

    Full Text Available As biosensing devices shrink smaller and smaller, they approach a scale in which single molecule electronic sensing becomes possible. Here, we review the operation of single-enzyme transistors made using single-walled carbon nanotubes. These novel hybrid devices transduce the motions and catalytic activity of a single protein into an electronic signal for real-time monitoring of the protein’s activity. Analysis of these electronic signals reveals new insights into enzyme function and proves the electronic technique to be complementary to other single-molecule methods based on fluorescence. As one example of the nanocircuit technique, we have studied the Klenow Fragment (KF of DNA polymerase I as it catalytically processes single-stranded DNA templates. The fidelity of DNA polymerases makes them a key component in many DNA sequencing techniques, and here we demonstrate that KF nanocircuits readily resolve DNA polymerization with single-base sensitivity. Consequently, template lengths can be directly counted from electronic recordings of KF’s base-by-base activity. After measuring as few as 20 copies, the template length can be determined with <1 base pair resolution, and different template lengths can be identified and enumerated in solutions containing template mixtures.

  10. Excitonic Coupling in Linear and Trefoil Trimer Perylenediimide Molecules Probed by Single-Molecule Spectroscopy

    KAUST Repository

    Yoo, Hyejin

    2012-10-25

    Perylenediimide (PDI) molecules are promising building blocks for photophysical studies of electronic interactions within multichromophore arrays. Such PDI arrays are important materials for fabrication of molecular nanodevices such as organic light-emitting diodes, organic semiconductors, and biosensors because of their high photostability, chemical and physical inertness, electron affinity, and high tinctorial strength over the entire visible spectrum. In this work, PDIs have been organized into linear (L3) and trefoil (T3) trimer molecules and investigated by single-molecule fluorescence microscopy to probe the relationship between molecular structures and interchromophoric electronic interactions. We found a broad distribution of coupling strengths in both L3 and T3 and hence strong/weak coupling between PDI units by monitoring spectral peak shifts in single-molecule fluorescence spectra upon sequential photobleaching of each constituent chromophore. In addition, we used a wide-field defocused imaging technique to resolve heterogeneities in molecular structures of L3 and T3 embedded in a PMMA polymer matrix. A systematic comparison between the two sets of experimental results allowed us to infer the correlation between intermolecular interactions and molecular structures. Our results show control of the PDI intermolecular interactions using suitable multichromophoric structures. © 2012 American Chemical Society.

  11. Time resolved dosimetry of human brain exposed to low frequency pulsed magnetic fields

    Science.gov (United States)

    Paffi, Alessandra; Camera, Francesca; Lucano, Elena; Apollonio, Francesca; Liberti, Micaela

    2016-06-01

    An accurate dosimetry is a key issue to understanding brain stimulation and related interaction mechanisms with neuronal tissues at the basis of the increasing amount of literature revealing the effects on human brain induced by low-level, low frequency pulsed magnetic fields (PMFs). Most literature on brain dosimetry estimates the maximum E field value reached inside the tissue without considering its time pattern or tissue dispersivity. Nevertheless a time-resolved dosimetry, accounting for dispersive tissues behavior, becomes necessary considering that the threshold for an effect onset may vary depending on the pulse waveform and that tissues may filter the applied stimulatory fields altering the predicted stimulatory waveform’s size and shape. In this paper a time-resolved dosimetry has been applied on a realistic brain model exposed to the signal presented in Capone et al (2009 J. Neural Transm. 116 257-65), accounting for the broadband dispersivity of brain tissues up to several kHz, to accurately reconstruct electric field and current density waveforms inside different brain tissues. The results obtained by exposing the Duke’s brain model to this PMF signal show that the E peak in the brain is considerably underestimated if a simple monochromatic dosimetry is carried out at the pulse repetition frequency of 75 Hz.

  12. Single-Molecule Imaging of DNAs with Sticky Ends at Water/Fused Silica Interface

    Energy Technology Data Exchange (ETDEWEB)

    Isailovic, Slavica [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    Total internal reflection fluorescence microscopy (TIRFM) was used to study intermolecular interactions of DNAs with unpaired (sticky) ends of different lengths at water/fused silica interface at the single-molecule level. Evanescent field residence time, linear velocity and adsorption/desorption frequency were measured in a microchannel for individual DNA molecules from T7, Lambda, and PSP3 phages at various pH values. The longest residence times and the highest adsorption/desorption frequencies at the constant flow at pH 5.5 were found for PSP3 DNA, followed by lower values for Lambda DNA, and the lowest values for T7 DNA. Since T7, Lambda, and PSP3 DNA molecules contain none, twelve and nineteen unpaired bases, respectively, it was concluded that the affinity of DNAs for the surface increases with the length of the sticky ends. This confirms that hydrophobic and hydrogen-bonding interactions between sticky ends and fused-silica surface are driving forces for DNA adsorption at the fused-silica surface. Described single-molecule methodology and results therein can be valuable for investigation of interactions in liquid chromatography, as well as for design of DNA hybridization sensors and drug delivery systems.

  13. Single-molecule spectromicroscopy: a route towards sub-wavelength refractometry.

    Science.gov (United States)

    Anikushina, T A; Gladush, M G; Gorshelev, A A; Naumov, A V

    2015-01-01

    We suggest a novel approach for spatially resolved probing of local fluctuations of the refractive index n in solids by means of single-molecule (SM) spectroscopy. It is based on the dependence T1(n) of the effective radiative lifetime T1 of dye centres in solids on n due to the local-field effects. Detection of SM zero-phonon lines at low temperatures gives the values of the SM natural spectral linewidth (which is inversely proportional to T1) and makes it possible to reveal the distribution of the local n values in solids. Here we demonstrate this possibility on the example of amorphous polyethylene and polycrystalline naphthalene doped with terrylene. In particular, we show that the obtained distributions of lifetime limited spectral linewidths of terrylene molecules embedded into these matrices are due to the spatial fluctuations of the refractive index local values.

  14. Exchange biasing single molecule magnets: coupling of TbPc2 to antiferromagnetic layers.

    Science.gov (United States)

    Lodi Rizzini, A; Krull, C; Balashov, T; Mugarza, A; Nistor, C; Yakhou, F; Sessi, V; Klyatskaya, S; Ruben, M; Stepanow, S; Gambardella, P

    2012-11-14

    We investigate the possibility to induce exchange bias between single molecule magnets (SMM) and metallic or oxide antiferromagnetic substrates. Element-resolved X-ray magnetic circular dichroism measurements reveal, respectively, the presence and absence of unidirectional exchange anisotropy for TbPc(2) SMM deposited on antiferromagnetic Mn and CoO layers. TbPc(2) deposited on Mn thin films present magnetic hysteresis and a negative horizontal shift of the Tb magnetization loop after field cooling, consistent with the observation of pinned spins in the Mn layer coupled parallel to the Tb magnetic moment. Conversely, molecules deposited on CoO substrates present paramagnetic magnetization loops with no indication of exchange bias. These experiments demonstrate the ability of SMM to polarize the pinned uncompensated spins of an antiferromagnet during field-cooling and realize metal-organic exchange-biased heterostructures using antiferromagnetic pinning layers.

  15. Single-molecule chemical reactions on DNA origami

    DEFF Research Database (Denmark)

    Voigt, Niels Vinther; Tørring, Thomas; Rotaru, Alexandru

    2010-01-01

    on a DNA origami scaffold by atomic force microscopy. The high yields and chemoselectivities of successive cleavage and bond-forming reactions observed in these experiments demonstrate the feasibility of post-assembly chemical modification of DNA nanostructures and their potential use as locally......DNA nanotechnology and particularly DNA origami, in which long, single-stranded DNA molecules are folded into predetermined shapes, can be used to form complex self-assembled nanostructures. Although DNA itself has limited chemical, optical or electronic functionality, DNA nanostructures can serve...... as templates for building materials with new functional properties. Relatively large nanocomponents such as nanoparticles and biomolecules can also be integrated into DNA nanostructures and imaged. Here, we show that chemical reactions with single molecules can be performed and imaged at a local position...

  16. Single molecule Michaelis-Menten equation beyond quasistatic disorder.

    Science.gov (United States)

    Xue, Xiaochuan; Liu, Fei; Ou-Yang, Zhong-Can

    2006-09-01

    The classic Michaelis-Menten equation describes the catalytic activities for ensembles of enzyme molecules very well. But recent single-molecule experiments showed that the waiting time distribution and other properties of single enzyme molecules were not consistent with the prediction based on the ensemble viewpoint. They have contributed to the slow conformational changes of a single enzyme in the catalytic processes. In this work, we study the general dynamics of single enzymes in the presence of dynamic disorder. We find that, within the time separation regimes, i.e., the slow reaction and nondiffusion limits, the Michaelis-Menten equation holds exactly. In particular, by employing the decoupling approximation we demonstrate analytically that the classic Michaelis-Menten equation is still an excellent approximation in the presence of general dynamic disorder.

  17. Toward single-molecule microscopy on a smart phone.

    Science.gov (United States)

    Khatua, Saumyakanti; Orrit, Michel

    2013-10-22

    Thanks to fluorescence, single nano-objects down to individual fluorophores can now be imaged in optical microscopes. Fluorescence imaging is still restricted to laboratory facilities as it usually involves expensive and bulky instrumentation. A report by Wei et al. in this issue of ACS Nano, however, shows that a sensitive, cost-effective, and portable device can be developed to image individual nano-objects as small as large viruses. This work opens the fascinating prospects of single-molecule microscopy and spectroscopy on a smart phone. We speculate on the possible applications of such a portable imaging device and on the perspectives it may open in different fields of science and technology.

  18. Non-linear irreversible thermodynamics of single-molecule experiments

    CERN Document Server

    Santamaria-Holek, I; Hidalgo-Soria, M; Perez-Madrid, A

    2015-01-01

    Irreversible thermodynamics of single-molecule experiments subject to external constraining forces of a mechanical nature is presented. Extending Onsager's formalism to the non-linear case of systems under non-equilibrium external constraints, we are able to calculate the entropy production and the general non-linear kinetic equations for the variables involved. In particular, we analyze the case of RNA stretching protocols obtaining critical oscillations between di?erent con?gurational states when forced by external means to remain in the unstable region of its free-energy landscape, as observed in experiments. We also calculate the entropy produced during these hopping events, and show how resonant phenomena in stretching experiments of single RNA macromolecules may arise. We also calculate the hopping rates using Kramer's approach obtaining a good comparison with experiments.

  19. Linear trinuclear cobalt(II) single molecule magnet.

    Science.gov (United States)

    Zhang, Yuan-Zhu; Brown, Andrew J; Meng, Yin-Shan; Sun, Hao-Ling; Gao, Song

    2015-02-14

    The introduction of NaBPh(4) into a methanolic solution of CoCl(2)·(6)H(2)O and 2-[(pyridine-2-ylimine)-methyl]phenol (Hpymp) afforded {[Co(II)(3)(pymp)(4)(MeOH)(2)][BPh(4)](2)}·(2)MeOH (1) with a centro-symmetrically linear trinuclear structure. Magnetic analysis of 1 exhibited significant intracluster ferromagnetic exchange (2.4 cm(-1)) and slow relaxation of magnetization in both zero and non-zero static fields below 5 K, giving the first [Co(II)(3)] single molecule magnet with an effective energy barrier of 17.2(3) cm(-1) under a 500 Oe dc field.

  20. Enhancing single molecule imaging in optofluidics and microfluidics.

    Science.gov (United States)

    Vasdekis, Andreas E; Laporte, Gregoire P J

    2011-01-01

    Microfluidics and optofluidics have revolutionized high-throughput analysis and chemical synthesis over the past decade. Single molecule imaging has witnessed similar growth, due to its capacity to reveal heterogeneities at high spatial and temporal resolutions. However, both resolution types are dependent on the signal to noise ratio (SNR) of the image. In this paper, we review how the SNR can be enhanced in optofluidics and microfluidics. Starting with optofluidics, we outline integrated photonic structures that increase the signal emitted by single chromophores and minimize the excitation volume. Turning then to microfluidics, we review the compatible functionalization strategies that reduce noise stemming from non-specific interactions and architectures that minimize bleaching and blinking.

  1. Enhancing Single Molecule Imaging in Optofluidics and Microfluidics

    Directory of Open Access Journals (Sweden)

    Andreas E. Vasdekis

    2011-08-01

    Full Text Available Microfluidics and optofluidics have revolutionized high-throughput analysis and chemical synthesis over the past decade. Single molecule imaging has witnessed similar growth, due to its capacity to reveal heterogeneities at high spatial and temporal resolutions. However, both resolution types are dependent on the signal to noise ratio (SNR of the image. In this paper, we review how the SNR can be enhanced in optofluidics and microfluidics. Starting with optofluidics, we outline integrated photonic structures that increase the signal emitted by single chromophores and minimize the excitation volume. Turning then to microfluidics, we review the compatible functionalization strategies that reduce noise stemming from non-specific interactions and architectures that minimize bleaching and blinking.

  2. Low-temperature phonoemissive tunneling rates in single molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yun, E-mail: yl2192@gmail.com [University of Illinois, Department of Physics, 1110 W. Green St., Urbana, IL 61801 (United States); Garg, Anupam, E-mail: agarg@northwestern.edu [Northwestern University, Department of Physics and Astronomy, 2145 Sheridan Rd., Evanston, IL 60208 (United States)

    2016-03-15

    Tunneling between the two lowest energy levels of single molecule magnets with Ising type anisotropy, accompanied by the emission or absorption of phonons, is considered. Quantitatively accurate calculations of the rates for such tunneling are performed for a model Hamiltonian especially relevant to the best studied example, Fe{sub 8}. Two different methods are used: high-order perturbation theory in the spin–phonon interaction and the non-Ising-symmetric parts of the spin Hamiltonian, and a novel semiclassical approach based on spin-coherent-state-path-integral instantons. The methods are found to be in good quantitative agreement with other, and consistent with previous approaches to the problem. The implications of these results for magnetization of molecular solids of these molecules are discussed briefly.

  3. A Single-Molecule Hershey-Chase Experiment

    CERN Document Server

    Van Valen, David; Chen, Yi-Ju; Tuson, Hannah; Wiggins, Paul; Phillips, Rob

    2012-01-01

    Ever since Hershey and Chase used phages to establish DNA as the carrier of genetic information in 1952, the precise mechanisms of phage DNA translocation have been a mystery. While bulk measurements have set a time scale for in vivo DNA translocation during bacteriophage infection, measurements of DNA ejection by single bacteriophages have only been made in vitro. Here, we present direct visualization of single bacteriophages infecting individual Escherichia coli cells. For bacteriophage lambda, we establish a mean ejection time of roughly 5 minutes with significant cell-to-cell variability, including pausing events. In contrast, corresponding in vitro single-molecule ejections take only 10 seconds to reach completion and do not exhibit significant variability. Our data reveal that the velocity of ejection for two different genome lengths collapses onto a single curve. This suggests that in vivo ejections are controlled by the amount of DNA ejected, in contrast with in vitro DNA ejections, which are governed...

  4. Few-photon coherent nonlinear optics with a single molecule

    CERN Document Server

    Maser, Andreas; Utikal, Tobias; Götzinger, Stephan; Sandoghdar, Vahid

    2015-01-01

    The pioneering experiments of linear spectroscopy were performed using flames in the 1800s, but nonlinear optical measurements had to wait until lasers became available in the twentieth century. Because the nonlinear cross section of materials is very small, usually macroscopic bulk samples and pulsed lasers are used. Numerous efforts have explored coherent nonlinear signal generation from individual nanoparticles or small atomic ensembles with millions of atoms. Experiments on a single semiconductor quantum dot have also been reported, albeit with a very small yield. Here, we report on coherent nonlinear spectroscopy of a single molecule under continuous-wave single-pass illumination, where efficient photon-molecule coupling in a tight focus allows switching of a laser beam by less than a handful of pump photons nearly resonant with the sharp molecular transition. Aside from their fundamental importance, our results emphasize the potential of organic molecules for applications such as quantum information pro...

  5. Synergizing superresolution optical fluctuation imaging with single molecule localization microscopy

    CERN Document Server

    Schidorsky, Shachar; Razvag, Yair; Golan, Yonatan; Weiss, Shimon; Sherman, Eilon

    2016-01-01

    Single molecule localization microscopy (SMLM) techniques enable imaging biological samples well beyond the diffraction limit of light, but they vary significantly in their spatial and temporal resolutions. High-order statistical analysis of temporal fluctuations as in superresolution optical fluctuation imaging (SOFI) also enable imaging beyond diffraction limit, but usually at a lower resolution as compared to SMLM. Since the same data format is acquired for both methods, their algorithms can be applied to the same data set, and thus may be combined synergistically to improve overall imaging performance. Here, we find that SOFI converges much faster than SMLM, provides additive information to SMLM, and can efficiently reject background. We then show how SOFI-assisted SMLM imaging can improve SMLM image reconstruction by rejecting common sources of background, especially under low signal-to-background conditions. The performance of our approach was evaluated using a realistic simulation of fluorescence imagi...

  6. Single-Molecule Electrochemical Gating in Ionic Liquids

    DEFF Research Database (Denmark)

    Kay, Nicola J.; Higgins, Simon J.; Jeppesen, Jan O.

    2012-01-01

    The single-molecular conductance of a redox active molecular bridge has been studied in an electrochemical single-molecule transistor configuration in a room-temperature ionic liquid (RTIL). The redox active pyrrolo-tetrathiafulvalene (pTTF) moiety was attached to gold contacts at both ends through...... −(CH2)6S– groups, and gating of the redox state was achieved with the electrochemical potential. The water-free, room-temperature, ionic liquid environment enabled both the monocationic and the previously inaccessible dicationic redox states of the pTTF moiety to be studied in the in situ scanning...... and decreases again as the second redox process is passed. This is described as an “off–on–off–on–off” conductance switching behavior. This molecular conductance vs electrochemical potential relation could be modeled well as a sequential two-step charge transfer process with full or partial vibrational...

  7. Spin thermoelectric effects in organic single-molecule devices

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Wang, M.X.; Qian, C.; Hong, X.K.; Zhang, D.B.; Liu, Y.S.; Yang, X.F., E-mail: xfyang@cslg.edu.cn

    2017-05-25

    Highlights: • A stronger spin thermoelectric performance in a polyacetylene device is observed. • For the antiferromagnetic (AFM) ordering, a transport gap is opened. Thus the thermoelectric effects are largely enhanced. - Abstract: The spin thermoelectric performance of a polyacetylene chain bridging two zigzag graphene nanoribbons (ZGNRs) is investigated based on first principles method. Two different edge spin arrangements in ZGNRs are considered. For ferromagnetic (FM) ordering, transmission eigenstates with different spin indices distributed below and above Fermi level are observed, leading directly to a strong spin thermoelectric effect in a wide temperature range. With the edge spins arranged in the antiferromagnetic (AFM) ordering, an obvious transport gap appears in the system, which greatly enhances the thermoelectric effects. The presence of a small spin splitting also induces a spin thermoelectric effect greater than the charge thermoelectric effect in certain temperature range. In general, the single-molecule junction exhibits the potential to be used for the design of perfect thermospin devices.

  8. Electronic transport in benzodifuran single-molecule transistors.

    Science.gov (United States)

    Xiang, An; Li, Hui; Chen, Songjie; Liu, Shi-Xia; Decurtins, Silvio; Bai, Meilin; Hou, Shimin; Liao, Jianhui

    2015-05-07

    Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices.

  9. Single-molecule optomechanics in “picocavities”

    Science.gov (United States)

    Benz, Felix; Schmidt, Mikolaj K.; Dreismann, Alexander; Chikkaraddy, Rohit; Zhang, Yao; Demetriadou, Angela; Carnegie, Cloudy; Ohadi, Hamid; de Nijs, Bart; Esteban, Ruben; Aizpurua, Javier; Baumberg, Jeremy J.

    2016-11-01

    Trapping light with noble metal nanostructures overcomes the diffraction limit and can confine light to volumes typically on the order of 30 cubic nanometers. We found that individual atomic features inside the gap of a plasmonic nanoassembly can localize light to volumes well below 1 cubic nanometer (“picocavities”), enabling optical experiments on the atomic scale. These atomic features are dynamically formed and disassembled by laser irradiation. Although unstable at room temperature, picocavities can be stabilized at cryogenic temperatures, allowing single atomic cavities to be probed for many minutes. Unlike traditional optomechanical resonators, such extreme optical confinement yields a factor of 106 enhancement of optomechanical coupling between the picocavity field and vibrations of individual molecular bonds. This work sets the basis for developing nanoscale nonlinear quantum optics on the single-molecule level.

  10. Tracking Electrons in Biological Macromolecules: From Ensemble to Single Molecule

    Directory of Open Access Journals (Sweden)

    Leandro C. Tabares

    2014-08-01

    Full Text Available Nature utilizes oxido-reductases to cater to the energy demands of most biochemical processes in respiratory species. Oxido-reductases are capable of meeting this challenge by utilizing redox active sites, often containing transition metal ions, which facilitate movement and relocation of electrons/protons to create a potential gradient that is used to energize redox reactions. There has been a consistent struggle by researchers to estimate the electron transfer rate constants in physiologically relevant processes. This review provides a brief background on the measurements of electron transfer rates in biological molecules, in particular Cu-containing enzymes, and highlights the recent advances in monitoring these electron transfer events at the single molecule level or better to say, at the individual event level.

  11. The Single-Molecule Approach to Membrane Protein Stoichiometry.

    Science.gov (United States)

    Nichols, Michael G; Hallworth, Richard

    2016-01-01

    The advent of techniques for imaging solitary fluorescent molecules has made possible many new kinds of biological experiments. Here, we describe the application of single-molecule imaging to the problem of subunit stoichiometry in membrane proteins. A membrane protein of unknown stoichiometry, prestin, is coupled to the fluorescent enhanced green fluorescent protein (eGFP) and synthesized in the human embryonic kidney (HEK) cell line. We prepare adherent membrane fragments containing prestin-eGFP by osmotic lysis. The molecules are then exposed to continuous low-level excitation until their fluorescence reaches background levels. Their fluorescence decreases in discrete equal-amplitude steps, consistent with the photobleaching of single fluorophores. We count the number of steps required to photobleach each molecule. The molecular stoichiometry is then deduced using a binomial model.

  12. Single molecule DNA detection with an atomic vapor notch filter

    Energy Technology Data Exchange (ETDEWEB)

    Uhland, Denis; Rendler, Torsten; Widmann, Matthias; Lee, Sang-Yun [University of Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE) and IQST, 3rd Physics Institute, Stuttgart (Germany); Wrachtrup, Joerg; Gerhardt, Ilja [University of Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE) and IQST, 3rd Physics Institute, Stuttgart (Germany); Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2015-12-01

    The detection of single molecules has facilitated many advances in life- and material-science. Commonly the fluorescence of dye molecules is detected, which are attached to a non-fluorescent structure under study. For fluorescence microscopy one desires to maximize the detection efficiency together with an efficient suppression of undesired laser leakage. Here we present the use of the narrow-band filtering properties of hot atomic sodium vapor to selectively filter the excitation light from the red-shifted fluorescence of dye labeled single-stranded DNA molecules. A statistical analysis proves an enhancement in detection efficiency of more than 15% in a confocal and in a wide-field configuration. (orig.)

  13. Examining Sources of Error in PCR by Single-Molecule Sequencing

    Science.gov (United States)

    Potapov, Vladimir

    2017-01-01

    Next-generation sequencing technology has enabled the detection of rare genetic or somatic mutations and contributed to our understanding of disease progression and evolution. However, many next-generation sequencing technologies first rely on DNA amplification, via the Polymerase Chain Reaction (PCR), as part of sample preparation workflows. Mistakes made during PCR appear in sequencing data and contribute to false mutations that can ultimately confound genetic analysis. In this report, a single-molecule sequencing assay was used to comprehensively catalog the different types of errors introduced during PCR, including polymerase misincorporation, structure-induced template-switching, PCR-mediated recombination and DNA damage. In addition to well-characterized polymerase base substitution errors, other sources of error were found to be equally prevalent. PCR-mediated recombination by Taq polymerase was observed at the single-molecule level, and surprisingly found to occur as frequently as polymerase base substitution errors, suggesting it may be an underappreciated source of error for multiplex amplification reactions. Inverted repeat structural elements in lacZ caused polymerase template-switching between the top and bottom strands during replication and the frequency of these events were measured for different polymerases. For very accurate polymerases, DNA damage introduced during temperature cycling, and not polymerase base substitution errors, appeared to be the major contributor toward mutations occurring in amplification products. In total, we analyzed PCR products at the single-molecule level and present here a more complete picture of the types of mistakes that occur during DNA amplification. PMID:28060945

  14. Exploring single-molecule dynamics with fluorescence nanoscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ringemann, Christian; Harke, Ben; Von Middendorff, Claas; Medda, Rebecca; Leutenegger, Marcel; Schoenle, Andreas; W Hell, Stefan; Eggeling, Christian [Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen (Germany); Honigmann, Alf; Wagner, Richard [Biophysik, University Osnabrueck, FB Biologie/Chemie, Osnabrueck (Germany)], E-mail: ceggeli@gwdg.de

    2009-10-15

    The study of molecular dynamics at the single-molecule level with fluorescence correlation spectroscopy (FCS) and far-field optics has contributed greatly to the functional understanding of complex systems. Unfortunately, such studies are restricted to length scales of >200 nm because diffraction does not allow further reduction of the measurement volume. This sets an upper limit on the applicable concentration of fluorescently labeled molecules and even more importantly, averages out details of nanoscale dynamics. By combining FCS and fluorescence intensity distribution analysis (FIDA) with sub-diffraction-resolution stimulated emission depletion (STED) nanoscopy, we remove this restriction and obtain open measurement volumes of nanoscale dimensions which are tunable in size. As a consequence, single-molecule studies can now be extended to nanoscale dynamics and may be applied to much larger, often endogenous concentrations. In solution, low-brightness signal from axial out-of-focus volume shells was taken into account by using both FCS and FIDA in conjunction to analyze the data. In two-dimensional systems, such as lipid membranes, the background is greatly reduced and measurements feature excellent signal-to-noise ratios. Measurement foci of down to 30 nm in diameter directly reveal anomalous diffusion of lipids in the plasma membrane of living cells and allow for the determination of on/off rates of the binding of lipids to other membrane constituents. Such important insight into the prominent biological question of lipid membrane organization or 'lipid rafts' shows that combining fluctuation analysis with STED-engineered ultra-small measurement volumes is a viable and powerful new approach to probing molecular dynamics on the nanoscale.

  15. Structure and mechanics of proteins from single molecules to cells

    Science.gov (United States)

    Brown, Andre E.

    2009-07-01

    Physical factors drive evolution and play important roles in motility and attachment as well as in differentiation. As animal cells adhere to survive, they generate force and "feel" various mechanical features of their surroundings and respond to externally applied forces. This mechanosensitivity requires a substrate for cells to adhere to and a mechanism for cells to apply force, followed by a cellular response to the mechanical properties of the substrate. We have taken an outside-in approach to characterize several aspects of cellular mechanosensitivity. First, we used single molecule force spectroscopy to measure how fibrinogen, an extracellular matrix protein that forms the scaffold of blood clots, responds to applied force and found that it rapidly unfolds in 23 nm steps at forces around 100 pN. Second, we used tensile testing to measure the force-extension behavior of fibrin gels and found that they behave almost linearly to strains of over 100%, have extensibilities of 170 +/- 15%, and undergo a large volume decrease that corresponds to a large and negative peak in compressibility at low strain, which indicates a structural transition. Using electron microscopy and X-ray scattering we concluded that these properties are likely due to coiled-coil unfolding, as observed at the single molecule level in fibrinogen. Moving inside cells, we used total internal reflection fluorescence and atomic force microscopy to image self-assembled myosin filaments. These filaments of motor proteins that are responsible for cell and muscle contractility were found to be asymmetric, with an average of 32% more force generating heads on one half than the other. This could imply a force imbalance, so that rather than being simply contractile, myosin filaments may also be motile in cells.

  16. Single-molecule mechanics of protein-labelled DNA handles

    Directory of Open Access Journals (Sweden)

    Vivek S. Jadhav

    2016-01-01

    Full Text Available DNA handles are often used as spacers and linkers in single-molecule experiments to isolate and tether RNAs, proteins, enzymes and ribozymes, amongst other biomolecules, between surface-modified beads for nanomechanical investigations. Custom DNA handles with varying lengths and chemical end-modifications are readily and reliably synthesized en masse, enabling force spectroscopic measurements with well-defined and long-lasting mechanical characteristics under physiological conditions over a large range of applied forces. Although these chemically tagged DNA handles are widely used, their further individual modification with protein receptors is less common and would allow for additional flexibility in grabbing biomolecules for mechanical measurements. In-depth information on reliable protocols for the synthesis of these DNA–protein hybrids and on their mechanical characteristics under varying physiological conditions are lacking in literature. Here, optical tweezers are used to investigate different protein-labelled DNA handles in a microfluidic environment under different physiological conditions. Digoxigenin (DIG-dsDNA-biotin handles of varying sizes (1000, 3034 and 4056 bp were conjugated with streptavidin or neutravidin proteins. The DIG-modified ends of these hybrids were bound to surface-modified polystyrene (anti-DIG beads. Using different physiological buffers, optical force measurements showed consistent mechanical characteristics with long dissociation times. These protein-modified DNA hybrids were also interconnected in situ with other tethered biotinylated DNA molecules. Electron-multiplying CCD (EMCCD imaging control experiments revealed that quantum dot–streptavidin conjugates at the end of DNA handles remain freely accessible. The experiments presented here demonstrate that handles produced with our protein–DNA labelling procedure are excellent candidates for grasping single molecules exposing tags suitable for molecular

  17. Single-molecule experiments in biological physics: methods and applications.

    Science.gov (United States)

    Ritort, F

    2006-08-16

    I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.

  18. Efficient spin filter and spin valve in a single-molecule magnet Fe{sub 4} between two graphene electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Feng-Xia [School of Science, Wuhan Institute of Technology, Wuhan 430205 (China); School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Gao, Guo-Ying; Fu, Hua-Hua; Peng, Li; Yao, Kai-Lun, E-mail: klyao@hust.edu.cn [School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Xiong, Lun; Zhu, Si-Cong [School of Science, Wuhan Institute of Technology, Wuhan 430205 (China)

    2015-12-21

    We propose a magnetic molecular junction consisting of a single-molecule magnet Fe{sub 4} connected two graphene electrodes and investigate transport properties, using the nonequilibrium Green's function method in combination with spin-polarized density-functional theory. The results show that the device can be used as a nearly perfect spin filter with efficiency approaching 100%. Our calculations provide crucial microscopic information how the four iron cores of the chemical structure are responsible for the spin-resolved transmissions. Moreover, it is also found that the device behaves as a highly efficient spin valve, which is an excellent candidate for spintronics of molecular devices. The idea of combining single-molecule magnets with graphene provides a direction in designing a new class of molecular spintronic devices.

  19. Ptychographic reconstruction algorithm for frequency resolved optical gating: super-resolution and supreme robustness

    CERN Document Server

    Sidorenko, Pavel; Avnat, Zohar; Cohen, Oren

    2016-01-01

    Frequency-resolved optical gating (FROG) is probably the most popular technique for complete characterization of ultrashort laser pulses. In FROG, a reconstruction algorithm retrieves the pulse from a measured spectrogram, yet current FROG reconstruction algorithms require and exhibit several restricting features that weaken FROG performances. For example, the delay step must correspond to the spectral bandwidth measured with large enough SNR a condition that limits the temporal resolution of the reconstructed pulse, obscures measurements of weak broadband pulses, and makes measurement of broadband mid-IR pulses hard and slow because the spectrograms become huge. We develop a new approach for FROG reconstruction, based on ptychography (a scanning coherent diffraction imaging technique), that removes many of the algorithmic restrictions. The ptychographic reconstruction algorithm is significantly faster and more robust to noise than current FROG algorithms, which are based on generalized projections (GP). We d...

  20. A state space based approach to localizing single molecules from multi-emitter images.

    Science.gov (United States)

    Vahid, Milad R; Chao, Jerry; Ward, E Sally; Ober, Raimund J

    2017-01-28

    Single molecule super-resolution microscopy is a powerful tool that enables imaging at sub-diffraction-limit resolution. In this technique, subsets of stochastically photoactivated fluorophores are imaged over a sequence of frames and accurately localized, and the estimated locations are used to construct a high-resolution image of the cellular structures labeled by the fluorophores. Available localization methods typically first determine the regions of the image that contain emitting fluorophores through a process referred to as detection. Then, the locations of the fluorophores are estimated accurately in an estimation step. We propose a novel localization method which combines the detection and estimation steps. The method models the given image as the frequency response of a multi-order system obtained with a balanced state space realization algorithm based on the singular value decomposition of a Hankel matrix, and determines the locations of intensity peaks in the image as the pole locations of the resulting system. The locations of the most significant peaks correspond to the locations of single molecules in the original image. Although the accuracy of the location estimates is reasonably good, we demonstrate that, by using the estimates as the initial conditions for a maximum likelihood estimator, refined estimates can be obtained that have a standard deviation close to the Cramér-Rao lower bound-based limit of accuracy. We validate our method using both simulated and experimental multi-emitter images.

  1. Label-free free-solution nanoaperture optical tweezers for single molecule protein studies.

    Science.gov (United States)

    Al Balushi, Ahmed A; Kotnala, Abhay; Wheaton, Skyler; Gelfand, Ryan M; Rajashekara, Yashaswini; Gordon, Reuven

    2015-07-21

    Nanoaperture optical tweezers are emerging as useful label-free, free-solution tools for the detection and identification of biological molecules and their interactions at the single molecule level. Nanoaperture optical tweezers provide a low-cost, scalable, straight-forward, high-speed and highly sensitive (SNR ∼ 33) platform to observe real-time dynamics and to quantify binding kinetics of protein-small molecule interactions without the need to use tethers or labeling. Such nanoaperture-based optical tweezers, which are 1000 times more efficient than conventional optical tweezers, have been used to trap and isolate single DNA molecules and to study proteins like p53, which has been claimed to be in mutant form for 75% of human cancers. More recently, nanoaperture optical tweezers have been used to probe the low-frequency (in the single digit wavenumber range) Raman active modes of single nanoparticles and proteins. Here we review recent developments in the field of nanoaperture optical tweezers and how they have been applied to protein-antibody interactions, protein-small molecule interactions including single molecule binding kinetics, and protein-DNA interactions. In addition, recent works on the integration of nanoaperture optical tweezers at the tip of optical fiber and in microfluidic environments are presented.

  2. Single Molecule Screening of Disease DNA Without Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji-Young [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The potential of single molecule detection as an analysis tool in biological and medical fields is well recognized today. This fast evolving technique will provide fundamental sensitivity to pick up individual pathogen molecules, and therefore contribute to a more accurate diagnosis and a better chance for a complete cure. Many studies are being carried out to successfully apply this technique in real screening fields. In this dissertation, several attempts are shown that have been made to test and refine the application of the single molecule technique as a clinical screening method. A basic applicability was tested with a 100% target content sample, using electrophoretic mobility and multiple colors as identification tools. Both electrophoretic and spectral information of individual molecule were collected within a second, while the molecule travels along the flow in a capillary. Insertion of a transmission grating made the recording of the whole spectrum of a dye-stained molecule possible without adding complicated instrumental components. Collecting two kinds of information simultaneously and combining them allowed more thorough identification, up to 98.8% accuracy. Probing mRNA molecules with fluorescently labeled cDNA via hybridization was also carried out. The spectral differences among target, probe, and hybrid were interpreted in terms of dispersion distances after transmission grating, and used for the identification of each molecule. The probes were designed to have the least background when they are free, but have strong fluorescence after hybridization via fluorescence resonance energy transfer. The mRNA-cDNA hybrids were further imaged in whole blood, plasma, and saliva, to test how far a crude preparation can be tolerated. Imaging was possible with up to 50% of clear bio-matrix contents, suggesting a simple lysis and dilution would be sufficient for imaging for some cells. Real pathogen DNA of human papillomavirus (HPV) type-I6 in human genomic DNA

  3. Tunneling spectroscopy of organic monolayers and single molecules.

    Science.gov (United States)

    Hipps, K W

    2012-01-01

    Basic concepts in tunneling spectroscopy applied to molecular systems are presented. Junctions of the form M-A-M, M-I-A-M, and M-I-A-I'-M, where A is an active molecular layer, are considered. Inelastic electron tunneling spectroscopy (IETS) is found to be readily applied to all the above device types. It can provide both vibrational and electron spectroscopic data about the molecules comprising the A layer. In IETS there are no strong selection rules (although there are preferences) so that transitions that are normally IR, Raman, or even photon-forbidden can be observed. In the electronic transition domain, spin and Laporte forbidden transitions may be observed. Both vibrational and electronic IETS can be acquired from single molecules. The negative aspect of this seemingly ideal spectroscopic method is the thermal line width of about 5 k(B)T. This limits the useful measurement of vibrational IETS to temperatures below about 10 K. In the case of most electronic transitions where the intrinsic linewidth is much broader, useful experiments above 100 K are possible. One further limitation of electronic IETS is that it is generally limited to transitions with energy less than about 20,000 cm(-1). IETS can be identified by peaks in d(2) I/dV (2) vs bias voltage plots that occur at the same position (but not necessarily same intensity) in either bias polarity.Elastic tunneling spectroscopy is discussed in the context of processes involving molecular ionization and electron affinity states, a technique we call orbital mediated tunneling spectroscopy, or OMTS. OMTS can be applied readily to M-I-A-M and M-I-A-I'-M systems, but application to M-A-M junctions is problematic. Spectra can be obtained from single molecules. Ionization state results correlate well with UPS spectra obtained from the same systems in the same environment. Both ionization and affinity levels measured by OMTS can usually be correlated with one electron oxidation and reduction potentials for the

  4. Developing DNA nanotechnology using single-molecule fluorescence.

    Science.gov (United States)

    Tsukanov, Roman; Tomov, Toma E; Liber, Miran; Berger, Yaron; Nir, Eyal

    2014-06-17

    CONSPECTUS: An important effort in the DNA nanotechnology field is focused on the rational design and manufacture of molecular structures and dynamic devices made of DNA. As is the case for other technologies that deal with manipulation of matter, rational development requires high quality and informative feedback on the building blocks and final products. For DNA nanotechnology such feedback is typically provided by gel electrophoresis, atomic force microscopy (AFM), and transmission electron microscopy (TEM). These analytical tools provide excellent structural information; however, usually they do not provide high-resolution dynamic information. For the development of DNA-made dynamic devices such as machines, motors, robots, and computers this constitutes a major problem. Bulk-fluorescence techniques are capable of providing dynamic information, but because only ensemble averaged information is obtained, the technique may not adequately describe the dynamics in the context of complex DNA devices. The single-molecule fluorescence (SMF) technique offers a unique combination of capabilities that make it an excellent tool for guiding the development of DNA-made devices. The technique has been increasingly used in DNA nanotechnology, especially for the analysis of structure, dynamics, integrity, and operation of DNA-made devices; however, its capabilities are not yet sufficiently familiar to the community. The purpose of this Account is to demonstrate how different SMF tools can be utilized for the development of DNA devices and for structural dynamic investigation of biomolecules in general and DNA molecules in particular. Single-molecule diffusion-based Förster resonance energy transfer and alternating laser excitation (sm-FRET/ALEX) and immobilization-based total internal reflection fluorescence (TIRF) techniques are briefly described and demonstrated. To illustrate the many applications of SMF to DNA nanotechnology, examples of SMF studies of DNA hairpins and

  5. Frequency-resolved optical gating measurement of ultrashort pulses by using single nanowire

    Science.gov (United States)

    Yu, Jiaxin; Liao, Feng; Gu, Fuxing; Zeng, Heping

    2016-09-01

    The use of ultrashort pulses for fundamental studies and applications has been increasing rapidly in the past decades. Along with the development of ultrashort lasers, exploring new pulse diagnositic approaches with higher signal-to-noise ratio have attracted great scientific and technological interests. In this work, we demonstrate a simple technique of ultrashort pulses characterization with a single semiconductor nanowire. By performing a frequency-resolved optical gating method with a ZnO nanowire coupled to tapered optical microfibers, the phase and amplitude of a pulse series are extracted. The generated signals from the transverse frequency conversion process can be spatially distinguished from the input, so the signal-to-noise ratio is improved and permits lower energy pulses to be identified. Besides, since the nanometer scale of the nonlinear medium provides relaxed phase-matching constraints, a measurement of 300-nm-wide supercontinuum pulses is achieved. This system is highly compatible with standard optical fiber systems, and shows a great potential for applications such as on-chip optical communication.

  6. Frequency-resolved optical gating measurement of ultrashort pulses by using single nanowire

    Science.gov (United States)

    Yu, Jiaxin; Liao, Feng; Gu, Fuxing; Zeng, Heping

    2016-01-01

    The use of ultrashort pulses for fundamental studies and applications has been increasing rapidly in the past decades. Along with the development of ultrashort lasers, exploring new pulse diagnositic approaches with higher signal-to-noise ratio have attracted great scientific and technological interests. In this work, we demonstrate a simple technique of ultrashort pulses characterization with a single semiconductor nanowire. By performing a frequency-resolved optical gating method with a ZnO nanowire coupled to tapered optical microfibers, the phase and amplitude of a pulse series are extracted. The generated signals from the transverse frequency conversion process can be spatially distinguished from the input, so the signal-to-noise ratio is improved and permits lower energy pulses to be identified. Besides, since the nanometer scale of the nonlinear medium provides relaxed phase-matching constraints, a measurement of 300-nm-wide supercontinuum pulses is achieved. This system is highly compatible with standard optical fiber systems, and shows a great potential for applications such as on-chip optical communication. PMID:27609521

  7. Computing magnetic anisotropy constants of single molecule magnets

    Indian Academy of Sciences (India)

    S Ramasesha; Shaon Sahoo; Rajamani Raghunathan; Diptiman Sen

    2009-09-01

    We present here a theoretical approach to compute the molecular magnetic anisotropy parameters, and for single molecule magnets in any given spin eigenstate of exchange spin Hamiltonian. We first describe a hybrid constant -valence bond (VB) technique of solving spin Hamiltonians employing full spatial and spin symmetry adaptation and we illustrate this technique by solving the exchange Hamiltonian of the Cu6Fe8 system. Treating the anisotropy Hamiltonian as perturbation, we compute the and values for various eigenstates of the exchange Hamiltonian. Since, the dipolar contribution to the magnetic anisotropy is negligibly small, we calculate the molecular anisotropy from the single-ion anisotropies of the metal centers. We have studied the variation of and by rotating the single-ion anisotropies in the case of Mn12Ac and Fe8 SMMs in ground and few low-lying excited states of the exchange Hamiltonian. In both the systems, we find that the molecular anisotropy changes drastically when the single-ion anisotropies are rotated. While in Mn12Ac SMM values depend strongly on the spin of the eigenstate, it is almost independent of the spin of the eigenstate in Fe8 SMM. We also find that the value is almost insensitive to the orientation of the anisotropy of the core Mn(IV) ions. The dependence of on the energy gap between the ground and the excited states in both the systems has also been studied by using different sets of exchange constants.

  8. Light-Induced Switching of Tunable Single-Molecule Junctions

    KAUST Repository

    Sendler, Torsten

    2015-04-16

    A major goal of molecular electronics is the development and implementation of devices such as single-molecular switches. Here, measurements are presented that show the controlled in situ switching of diarylethene molecules from their nonconductive to conductive state in contact to gold nanoelectrodes via controlled light irradiation. Both the conductance and the quantum yield for switching of these molecules are within a range making the molecules suitable for actual devices. The conductance of the molecular junctions in the opened and closed states is characterized and the molecular level E 0, which dominates the current transport in the closed state, and its level broadening Γ are identified. The obtained results show a clear light-induced ring forming isomerization of the single-molecule junctions. Electron withdrawing side-groups lead to a reduction of conductance, but do not influence the efficiency of the switching mechanism. Quantum chemical calculations of the light-induced switching processes correlate these observations with the fundamentally different low-lying electronic states of the opened and closed forms and their comparably small modification by electron-withdrawing substituents. This full characterization of a molecular switch operated in a molecular junction is an important step toward the development of real molecular electronics devices.

  9. Mapping Transcription Factors on Extended DNA: A Single Molecule Approach

    Science.gov (United States)

    Ebenstein, Yuval; Gassman, Natalie; Weiss, Shimon

    The ability to determine the precise loci and distribution of nucleic acid binding proteins is instrumental to our detailed understanding of cellular processes such as transcription, replication, and chromatin reorganization. Traditional molecular biology approaches and above all Chromatin immunoprecipitation (ChIP) based methods have provided a wealth of information regarding protein-DNA interactions. Nevertheless, existing techniques can only provide average properties of these interactions, since they are based on the accumulation of data from numerous protein-DNA complexes analyzed at the ensemble level. We propose a single molecule approach for direct visualization of DNA binding proteins bound specifically to their recognition sites along a long stretch of DNA such as genomic DNA. Fluorescent Quantum dots are used to tag proteins bound to DNA, and the complex is deposited on a glass substrate by extending the DNA to a linear form. The sample is then imaged optically to determine the precise location of the protein binding site. The method is demonstrated by detecting individual, Quantum dot tagged T7-RNA polymerase enzymes on the bacteriophage T7 genomic DNA and assessing the relative occupancy of the different promoters.

  10. DONOR-ACCEPTOR CONJUGATED COOLIGOMERS FOR SINGLE MOLECULE SOLAR CELLS

    Institute of Scientific and Technical Information of China (English)

    Jian-fei Qu; Jian Liu; Si-da Li; Zhi-yuan Xie; Yan-hou Geng

    2013-01-01

    Five novel donor-acceptor (D-A) conjugated cooligomers (F4B-hP,F5B-hP,F5B2[1,2]-hP,F5B2[1,3]-hP and F7B2[1,2]-hP) were synthesized.The absorption spectra of the cooligomers cover a wide range from 300 nm to 630 nm.The cooligomers could form films featured by alternating D-A lamellar nanostructures with the periods relative to the molecular lengths after thermal annealing or solvent vapor annealing.Single molecule solar cells were fabricated,and F5B-hP exhibited the best device performance.When the film of F5B-hP was thermally annealed,a power conversion efficiency (PCE) of 1.56% was realized.With solvent vapor annealing,the PCE could be further improved to 1.72% with a short-circuit current (Jsc) of 5.76 mA/cm2,an open-circuit voltage (VoC) of 0.87 V and a fill factor (FF) of 0.34.

  11. Chapter 15: Live-cell single-molecule force spectroscopy.

    Science.gov (United States)

    Dobrowsky, Terrence M; Panorchan, Porntula; Konstantopoulos, Konstantinos; Wirtz, Denis

    2008-01-01

    We describe a method to measure the kinetics and micromechanical properties of individual receptor-ligand bonds formed between two living cells. Using living cells rather than recombinant proteins ensures that the orientation, surface density, and posttranslational modifications of the probed receptors are physiological and that their regulated attachment to the cytoskeleton can occur. A cell is tethered to a flexible cantilever and brought into contact with cells adherent to a substratum before being pulled at a controlled retraction velocity. Measurements of bond rupture forces and associated bond loading rates over an extended range of retraction velocities allow us to compute precisely the tensile strength, reactive compliance, lifetime, and dissociation rate of individual intercellular receptor-ligand bonds. We also describe tests of specificity and Monte Carlo simulations, which ensure that measurements obtained by this method correspond to a single type of intercellular adhesion bond. We illustrate this live-cell single molecule force spectroscopy assay by characterizing homotypic bonds composed of vascular endothelial -cadherin pairs formed between living endothelial cells. This versatile assay could be used to establish the molecular principles that drive a wide range of important physiological processes involving receptor-mediated intercellular adhesion, such as the immunological synapse between a lymphocyte and an antigen-presenting cell and synaptic interactions between neuron cells, and pathological processes resulting in altered intercellular adhesion.

  12. Single-Molecule Detection in Nanogap-Embedded Plasmonic Gratings

    Directory of Open Access Journals (Sweden)

    Biyan Chen

    2015-07-01

    Full Text Available We introduce nanogap-embedded silver plasmonic gratings for single-molecule (SM visualization using an epifluorescence microscope. This silver plasmonic platform was fabricated by a cost-effective nano-imprint lithography technique, using an HD DVD template. DNA/ RNA duplex molecules tagged with Cy3/Cy5 fluorophores were immobilized on SiO 2 -capped silver gratings. Light was coupled to the gratings at particular wavelengths and incident angles to form surface plasmons. The SM fluorescence intensity of the fluorophores at the nanogaps showed approximately a 100-fold mean enhancement with respect to the fluorophores observed on quartz slides using an epifluorescence microscope. This high level of enhancement was due to the concentration of surface plasmons at the nanogaps. When nanogaps imaged with epifluorescence mode were compared to quartz imaged using total internal reflection fluorescence (TIRF microscopy, more than a 30-fold mean enhancement was obtained. Due to the SM fluorescence enhancement of plasmonic gratings and the correspondingly high emission intensity, the required laser power can be reduced, resulting in a prolonged detection time prior to photobleaching. This simple platform was able to perform SM studies with a low-cost epifluorescence apparatus, instead of the more expensive TIRF or confocal microscopes, which would enable SM analysis to take place in most scientific laboratories.

  13. Experimental demonstration of a single-molecule electric motor.

    Science.gov (United States)

    Tierney, Heather L; Murphy, Colin J; Jewell, April D; Baber, Ashleigh E; Iski, Erin V; Khodaverdian, Harout Y; McGuire, Allister F; Klebanov, Nikolai; Sykes, E Charles H

    2011-09-04

    For molecules to be used as components in molecular machines, methods that couple individual molecules to external energy sources and that selectively excite motion in a given direction are required. Significant progress has been made in the construction of molecular motors powered by light and by chemical reactions, but electrically driven motors have not yet been built, despite several theoretical proposals for such motors. Here we report that a butyl methyl sulphide molecule adsorbed on a copper surface can be operated as a single-molecule electric motor. Electrons from a scanning tunnelling microscope are used to drive the directional motion of the molecule in a two-terminal setup. Moreover, the temperature and electron flux can be adjusted to allow each rotational event to be monitored at the molecular scale in real time. The direction and rate of the rotation are related to the chiralities of both the molecule and the tip of the microscope (which serves as the electrode), illustrating the importance of the symmetry of the metal contacts in atomic-scale electrical devices.

  14. Single molecule analysis of Trypanosoma brucei DNA replication dynamics.

    Science.gov (United States)

    Calderano, Simone Guedes; Drosopoulos, William C; Quaresma, Marina Mônaco; Marques, Catarina A; Kosiyatrakul, Settapong; McCulloch, Richard; Schildkraut, Carl L; Elias, Maria Carolina

    2015-03-11

    Eukaryotic genome duplication relies on origins of replication, distributed over multiple chromosomes, to initiate DNA replication. A recent genome-wide analysis of Trypanosoma brucei, the etiological agent of sleeping sickness, localized its replication origins to the boundaries of multigenic transcription units. To better understand genomic replication in this organism, we examined replication by single molecule analysis of replicated DNA. We determined the average speed of replication forks of procyclic and bloodstream form cells and we found that T. brucei DNA replication rate is similar to rates seen in other eukaryotes. We also analyzed the replication dynamics of a central region of chromosome 1 in procyclic forms. We present evidence for replication terminating within the central part of the chromosome and thus emanating from both sides, suggesting a previously unmapped origin toward the 5' extremity of chromosome 1. Also, termination is not at a fixed location in chromosome 1, but is rather variable. Importantly, we found a replication origin located near an ORC1/CDC6 binding site that is detected after replicative stress induced by hydroxyurea treatment, suggesting it may be a dormant origin activated in response to replicative stress. Collectively, our findings support the existence of more replication origins in T. brucei than previously appreciated.

  15. Single molecule atomic force microscopy and force spectroscopy of chitosan.

    Science.gov (United States)

    Kocun, Marta; Grandbois, Michel; Cuccia, Louis A

    2011-02-01

    Atomic force microscopy (AFM) and AFM-based force spectroscopy was used to study the desorption of individual chitosan polymer chains from substrates with varying chemical composition. AFM images of chitosan adsorbed onto a flat mica substrate show elongated single strands or aggregated bundles. The aggregated state of the polymer is consistent with the high level of flexibility and mobility expected for a highly positively charged polymer strand. Conversely, the visualization of elongated strands indicated the presence of stabilizing interactions with the substrate. Surfaces with varying chemical composition (glass, self-assembled monolayer of mercaptoundecanoic acid/decanethiol and polytetrafluoroethylene (PTFE)) were probed with chitosan modified AFM tips and the corresponding desorption energies, calculated from plateau-like features, were attributed to the desorption of individual polymer strands. Desorption energies of 2.0±0.3×10(-20)J, 1.8±0.3×10(-20)J and 3.5±0.3×10(-20)J were obtained for glass, SAM of mercaptoundecanoic/dodecanethiol and PTFE, respectively. These single molecule level results can be used as a basis for investigating chitosan and chitosan-based materials for biomaterial applications.

  16. Single Molecule Analysis of Serotonin Transporter Regulation Using Quantum Dots

    Science.gov (United States)

    Chang, Jerry; Tomlinson, Ian; Warnement, Michael; Ustione, Alessandro; Carneiro, Ana; Piston, David; Blakely, Randy; Rosenthal, Sandra

    2011-03-01

    For the first time, we implement a novel, single molecule approach to define the localization and mobility of the brain's major target of widely prescribed antidepressant medications, the serotonin transporter (SERT). SERT labeled with single quantum dot (Qdot) revealed unsuspected features of transporter mobility with cholesterol-enriched membrane microdomains (often referred to as ``lipid rafts'') and cytoskeleton network linked to transporter activation. We document two pools of surface SERT proteins defined by their lateral mobility, one that exhibits relatively free diffusion in the plasma membrane and a second that displays significantly restricted mobility and localizes to cholesterol-enriched microdomains. Diffusion model prediction and instantaneous velocity analysis indicated that stimuli that act through p38 MAPK-dependent signaling pathways to activate SERT trigger rapid SERT movements within membrane microdomains. Cytoskeleton disruption showed that SERT lateral mobility behaves a membrane raft-constrained, cytoskeleton-associated manner. Our results identify an unsuspected aspect of neurotransmitter transporter regulation that we propose reflects the dissociation of inhibitory, SERT-associated cytoskeletal anchors.

  17. A theoretical justification for single molecule peptide sequencing.

    Directory of Open Access Journals (Sweden)

    Jagannath Swaminathan

    2015-02-01

    Full Text Available The proteomes of cells, tissues, and organisms reflect active cellular processes and change continuously in response to intracellular and extracellular cues. Deep, quantitative profiling of the proteome, especially if combined with mRNA and metabolite measurements, should provide an unprecedented view of cell state, better revealing functions and interactions of cell components. Molecular diagnostics and biomarker discovery should benefit particularly from the accurate quantification of proteomes, since complex diseases like cancer change protein abundances and modifications. Currently, shotgun mass spectrometry is the primary technology for high-throughput protein identification and quantification; while powerful, it lacks high sensitivity and coverage. We draw parallels with next-generation DNA sequencing and propose a strategy, termed fluorosequencing, for sequencing peptides in a complex protein sample at the level of single molecules. In the proposed approach, millions of individual fluorescently labeled peptides are visualized in parallel, monitoring changing patterns of fluorescence intensity as N-terminal amino acids are sequentially removed, and using the resulting fluorescence signatures (fluorosequences to uniquely identify individual peptides. We introduce a theoretical foundation for fluorosequencing and, by using Monte Carlo computer simulations, we explore its feasibility, anticipate the most likely experimental errors, quantify their potential impact, and discuss the broad potential utility offered by a high-throughput peptide sequencing technology.

  18. High-resolution optical tweezers for single-molecule manipulation.

    Science.gov (United States)

    Zhang, Xinming; Ma, Lu; Zhang, Yongli

    2013-09-01

    Forces hold everything together and determine its structure and dynamics. In particular, tiny forces of 1-100 piconewtons govern the structures and dynamics of biomacromolecules. These forces enable folding, assembly, conformational fluctuations, or directional movements of biomacromolecules over sub-nanometer to micron distances. Optical tweezers have become a revolutionary tool to probe the forces, structures, and dynamics associated with biomacromolecules at a single-molecule level with unprecedented resolution. In this review, we introduce the basic principles of optical tweezers and their latest applications in studies of protein folding and molecular motors. We describe the folding dynamics of two strong coiled coil proteins, the GCN4-derived protein pIL and the SNARE complex. Both complexes show multiple folding intermediates and pathways. ATP-dependent chromatin remodeling complexes translocate DNA to remodel chromatin structures. The detailed DNA translocation properties of such molecular motors have recently been characterized by optical tweezers, which are reviewed here. Finally, several future developments and applications of optical tweezers are discussed. These past and future applications demonstrate the unique advantages of high-resolution optical tweezers in quantitatively characterizing complex multi-scale dynamics of biomacromolecules.

  19. Vectorial nanoscale mapping of optical antenna fields by single molecule dipoles.

    Science.gov (United States)

    Singh, Anshuman; Calbris, Gaëtan; van Hulst, Niek F

    2014-08-13

    Optical nanoantennas confine light on the nanoscale, enabling strong light-matter interactions and ultracompact optical devices. Such confined nanovolumes of light have nonzero field components in all directions (x, y, and z). Unfortunately mapping of the actual nanoscale field vectors has so far remained elusive, though antenna hotspots have been explored by several techniques. In this paper, we present a novel method to probe all three components of the local antenna field. To this end a resonant nanoantenna is fabricated at the vertex of a scanning tip. Next, the nanoantenna is deterministically scanned in close proximity to single fluorescent molecules, whose fixed excitation dipole moment reads out the local field vector. With nanometer molecular resolution, we distinctly map x-, y-, and z-field components of the dipole antenna, i.e. a full vectorial mode map, and show good agreement with full 3D FDTD simulations. Moreover, the fluorescence polarization maps the localized coupling, with emission through the longitudinal antenna mode. Finally, the resonant antenna probe is used for single molecule imaging with 40 nm fwhm response function. The total fluorescence enhancement is 7.6 times, while out-of-plane molecules, almost undetectable in far-field, are made visible by the strong antenna z-field with a fluorescence enhancement up to 100 times. Interestingly, the apparent position of molecules shifts up to 20 nm depending on their orientation. The capability to resolve orientational information on the single molecule level makes the scanning resonant antenna an ideal tool for extreme resolution bioimaging.

  20. Probing protein multidimensional conformational fluctuations by single-molecule multiparameter photon stamping spectroscopy.

    Science.gov (United States)

    Lu, Maolin; Lu, H Peter

    2014-10-16

    Conformational motions of proteins are highly dynamic and intrinsically complex. To capture the temporal and spatial complexity of conformational motions and further to understand their roles in protein functions, an attempt is made to probe multidimensional conformational dynamics of proteins besides the typical one-dimensional FRET coordinate or the projected conformational motions on the one-dimensional FRET coordinate. T4 lysozyme hinge-bending motions between two domains along α-helix have been probed by single-molecule FRET. Nevertheless, the domain motions of T4 lysozyme are rather complex involving multiple coupled nuclear coordinates and most likely contain motions besides hinge-bending. It is highly likely that the multiple dimensional protein conformational motions beyond the typical enzymatic hinged-bending motions have profound impact on overall enzymatic functions. In this report, we have developed a single-molecule multiparameter photon stamping spectroscopy integrating fluorescence anisotropy, FRET, and fluorescence lifetime. This spectroscopic approach enables simultaneous observations of both FRET-related site-to-site conformational dynamics and molecular rotational (or orientational) motions of individual Cy3-Cy5 labeled T4 lysozyme molecules. We have further observed wide-distributed rotational flexibility along orientation coordinates by recording fluorescence anisotropy and simultaneously identified multiple intermediate conformational states along FRET coordinate by monitoring time-dependent donor lifetime, presenting a whole picture of multidimensional conformational dynamics in the process of T4 lysozyme open-close hinge-bending enzymatic turnover motions under enzymatic reaction conditions. By analyzing the autocorrelation functions of both lifetime and anisotropy trajectories, we have also observed the dynamic and static inhomogeneity of T4 lysozyme multidimensional conformational fluctuation dynamics, providing a fundamental

  1. A systematic investigation of differential effects of cell culture substrates on the extent of artifacts in single-molecule tracking.

    Directory of Open Access Journals (Sweden)

    Laura C Zanetti-Domingues

    Full Text Available Single-molecule techniques are being increasingly applied to biomedical investigation, notwithstanding the numerous challenges they pose in terms of signal-to-noise ratio issues. Non-specific binding of probes to glass substrates, in particular, can produce experimental artifacts due to spurious molecules on glass, which can be particularly deleterious in live-cell tracking experiments. In order to resolve the issue of non-specific probe binding to substrates, we performed systematic testing of a range of available surface coatings, using three different proteins, and then extended our assessment to the ability of these coatings to foster cell growth and retain non-adhesive properties. Linear PEG, a passivating agent commonly used both in immobilized-molecule single-molecule techniques and in tissue engineering, is able to both successfully repel non-specific adhesion of fluorescent probes and to foster cell growth when functionalized with appropriate adhesive peptides. Linear PEG treatment results in a significant reduction of tracking artifacts in EGFR tracking with Affibody ligands on a cell line expressing EGFR-eGFP. The findings reported herein could be beneficial to a large number of experimental situations where single-molecule or single-particle precision is required.

  2. Superresolution Imaging of Clinical Formalin Fixed Paraffin Embedded Breast Cancer with Single Molecule Localization Microscopy

    Science.gov (United States)

    Creech, Matthew K.; Wang, Jing; Nan, Xiaolin; Gibbs, Summer L.

    2017-01-01

    Millions of archived formalin-fixed, paraffin-embedded (FFPE) specimens contain valuable molecular insight into healthy and diseased states persevered in their native ultrastructure. To diagnose and treat diseases in tissue on the nanoscopic scale, pathology traditionally employs electron microscopy (EM), but this platform has significant limitations including cost and painstaking sample preparation. The invention of single molecule localization microscopy (SMLM) optically overcame the diffraction limit of light to resolve fluorescently labeled molecules on the nanoscale, leading to many exciting biological discoveries. However, applications of SMLM in preserved tissues has been limited. Through adaptation of the immunofluorescence workflow on FFPE sections milled at histological thickness, cellular architecture can now be visualized on the nanoscale using SMLM including individual mitochondria, undulations in the nuclear lamina, and the HER2 receptor on membrane protrusions in human breast cancer specimens. Using astigmatism imaging, these structures can also be resolved in three dimensions to a depth of ~800 nm. These results demonstrate the utility of SMLM in efficiently uncovering ultrastructural information of archived clinical samples, which may offer molecular insights into the physiopathology of tissues to assist in disease diagnosis and treatment using conventional sample preparation methods. PMID:28098202

  3. Precision ESR measurements of transverse anisotropy in the single-molecule magnet Ni4

    Science.gov (United States)

    Collett, Charles A.; Allão Cassaro, Rafael A.; Friedman, Jonathan R.

    2016-12-01

    We present a method for precisely measuring the tunnel splitting in single-molecule magnets (SMMs) using electron-spin resonance, and use these measurements to precisely and independently determine the underlying transverse anisotropy parameter, given a certain class of transitions. By diluting samples of the SMM Ni4 via cocrystallization in a diamagnetic isostructural analog we obtain markedly narrower resonance peaks than are observed in undiluted samples. Using custom loop-gap resonators we measure the transitions at several frequencies, allowing a precise determination of the tunnel splitting. Because the transition under investigation occurs at zero field, and arises due to a first-order perturbation from the transverse anisotropy, we can determine the magnitude of this anisotropy independent of any other Hamiltonian parameters. This method can be applied to other SMMs with tunnel splittings arising from first-order transverse anisotropy perturbations.

  4. Photo-activation of Single Molecule Magnet Behavior in a Manganese-based Complex

    Science.gov (United States)

    Fetoh, Ahmed; Cosquer, Goulven; Morimoto, Masakazu; Irie, Masahiro; El-Gammal, Ola; El-Reash, Gaber Abu; Breedlove, Brian K.; Yamashita, Masahiro

    2016-03-01

    A major roadblock to fully realizing molecular electronic devices is the ability to control the properties of each molecule in the device. Herein we report the control of the magnetic properties of single-molecule magnets (SMMs), which can be used in memory devices, by using a photo-isomerizable diarthylenthene ligand. Photo-isomerization of the diarylethene ligand bridging two manganese salen complexes with visible light caused a significant change in the SMM behavior due to opening of the six-membered ring of diarylethene ligand, accompanied by reorganization of the entire molecule. The ring-opening activated the frequency-dependent magnetization of the complex. Our results are a major step towards the realization of molecular memory devices composed of SMMs because the SMM behaviour can be turned on and off simply by irradiating the molecule.

  5. Shot noise of the spin inelastic tunneling through a quantum dot with single molecule-magnet

    Institute of Scientific and Technical Information of China (English)

    Chang Bo; Liang Jiu-Qing

    2011-01-01

    We have studied the quantum fluctuations of inelastic spin-electron scattering in quantum dot with an embedded biaxial single molecule-magnet and particularly investigated the zero-frequency shot noise and Fano factor in different magnetic fields. It is found that the shot noise and Fano factor exhibit a stepwise behaviour as bias increases in the presence of interaction between the electron and molecule-magnet for a weak magnetic field. As magnetic field becomes strong, a dip is displayed in the shot-noise-bias curve due to the suppression of inelastic shot noise caused by the quantum tunneling of magnetisation. Because of the spontaneous inelastic tunneling at zero bias, a small shot noise occurs, which results in the case of Fano factor F > 1. Moreover, our results show that the sweeping speed can also influence the shot noise and Fano factor obviously.

  6. Single-molecule magnet Mn12 on graphene

    Science.gov (United States)

    Li, Xiang-Guo; Fry, James N.; Cheng, Hai-Ping

    2014-09-01

    We study energetics, electronic and magnetic structures, and magnetic anisotropy barriers of a monolayer of single-molecule magnets (SMMs), [Mn12O12(COOR)16](H2O)4 (abbreviated as Mn12, with R=H, CH3, C6H5, and CHCl2), on a graphene surface using spin-polarized density-functional theory with generalized gradient corrections and the inclusion of van der Waals interactions. We find that Mn12 molecules with ligands -H, -CH3, and -C6H5 are physically adsorbed on graphene through weak van der Waals interactions, and a much stronger ionic interaction occurs using a -CHCl2 ligand. The strength of bonding is closely related to the charge transfer between the molecule and the graphene sheet and can be manipulated by strain in the graphene; specifically, tension enhances n doping of graphene, and compression encourages p doping. The magnetic anisotropy barrier is computed by including the spin-orbit interaction within density-functional theory. The barriers for the Mn12 molecules with ligands -H, -CH3 and -C6H5 on graphene surfaces remain unchanged (within 1K) from those of isolated molecules because of their weak interaction, and a much larger reduction (10K) is observed when using the -CHCl2 ligand on graphene due to a substantial structural deformation as a consequence of the much stronger interaction. Neither strain in graphene nor charge transfer affects the magnetic anisotropy barrier significantly. Finally, we discuss the effect of strong correlation in the high-spin state of a Mn12 SMM and the consequence of SMM-surface adsorption.

  7. Molecular Order in Buried Layers of TbPc2 Single-Molecule Magnets Detected by Torque Magnetometry.

    Science.gov (United States)

    Perfetti, Mauro; Serri, Michele; Poggini, Lorenzo; Mannini, Matteo; Rovai, Donella; Sainctavit, Philippe; Heutz, Sandrine; Sessoli, Roberta

    2016-08-01

    Cantilever torque magnetometry is used to elucidate the orientation of magnetic molecules in thin films. The technique allows depth-resolved investigations by intercalating a layer of anisotropic magnetic molecules in a film of its isotropic analogues. The proof-of-concept is here demonstrated with the single-molecule magnet TbPc2 evidencing also an exceptional long-range templating effect on substrates coated by the organic molecule perylene-3,4,9,10-tetracarboxylic dianhydride. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Tracking of single molecules as a powerful method to characterize diffusivity of organic species in mesoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Hellriegel, Christian; Kirstein, Johanna; Braeuchle, Christoph [Dept. Chemie und Biochemie and CeNS, Ludwig-Maximilians-Universitaet Muenchen Butenandtstr. 11, D-81377 Munich (Germany)

    2005-01-01

    The diffusion of individual fluorescent molecules can be observed by single-molecule tracking techniques and characterized by the analysis of their diffusional trajectory. Heterogeneities in the diffusivity that would pass undetected by conventional ensemble methods or fluorescence correlation spectroscopy are resolved by this method. This is demonstrated using four different examples in which we analyse the diffusion of single organic dye molecules in mesoporous materials. We show that this method can be used to obtain structural information from the inner structure of nanoporous materials with a resolution better than the optical diffraction limit.

  9. Lab-on-a-chip technologies for single-molecule studies.

    Science.gov (United States)

    Zhao, Yanhui; Chen, Danqi; Yue, Hongjun; French, Jarrod B; Rufo, Joseph; Benkovic, Stephen J; Huang, Tony Jun

    2013-06-21

    Recent developments on various lab-on-a-chip techniques allow miniaturized and integrated devices to perform on-chip single-molecule studies. Fluidic-based platforms that utilize unique microscale fluidic behavior are capable of conducting single-molecule experiments with high sensitivities and throughputs, while biomolecular systems can be studied on-chip using techniques such as DNA curtains, magnetic tweezers, and solid-state nanopores. The advances of these on-chip single-molecule techniques lead to next-generation lab-on-a-chip devices, such as DNA transistors, and single-molecule real-time (SMRT) technology for rapid and low-cost whole genome DNA sequencing. In this Focus article, we will discuss some recent successes in the development of lab-on-a-chip techniques for single-molecule studies and expound our thoughts on the near future of on-chip single-molecule studies.

  10. DNA origami as biocompatible surface to match single-molecule and ensemble experiments

    OpenAIRE

    Gietl, Andreas; Holzmeister, Phil; Grohmann, Dina; Tinnefeld, Philip

    2012-01-01

    Single-molecule experiments on immobilized molecules allow unique insights into the dynamics of molecular machines and enzymes as well as their interactions. The immobilization, however, can invoke perturbation to the activity of biomolecules causing incongruities between single molecule and ensemble measurements. Here we introduce the recently developed DNA origami as a platform to transfer ensemble assays to the immobilized single molecule level without changing the nano-environment of the ...

  11. From nanofabrication to self-fabrication--tailored chemistry for control of single molecule electronic devices

    DEFF Research Database (Denmark)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2010-01-01

    as alternatives to the dominant top-down nanofabrication techniques. One example is solution-based self-assembly of a molecule enclosed by two gold nanorod electrodes. This article will discuss recent attempts to control the self-assembly process by the use of supramolecular chemistry and how to tailor......Single molecule electronics is a field of research focused on the use of single molecules as electronics components. During the past 15 years the field has concentrated on development of test beds for measurements on single molecules. Bottom-up approaches to single molecule devices are emerging...

  12. Calix[4]arene Based Single-Molecule Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Karotsis, Georgios; Teat, Simon J.; Wernsdorfer, Wolfgang; Piligkos, Stergios; Dalgarno, Scott J.; Brechin, Euan K.

    2009-06-04

    Single-molecule magnets (SMMs) have been the subject of much interest in recent years because their molecular nature and inherent physical properties allow the crossover between classical and quantum physics to be observed. The macroscopic observation of quantum phenomena - tunneling between different spin states, quantum interference between tunnel paths - not only allows scientists to study quantum mechanical laws in great detail, but also provides model systems with which to investigate the possible implementation of spin-based solid state qubits and molecular spintronics. The isolation of small, simple SMMs is therefore an exciting prospect. To date almost all SMMs have been made via the self-assembly of 3d metal ions in the presence of bridging/chelating organic ligands. However, very recently an exciting new class of SMMs, based on 3d metal clusters (or single lanthanide ions) housed within polyoxometalates, has appeared. These types of molecule, in which the SMM is completely encapsulated within (or shrouded by) a 'protective' organic or inorganic sheath have much potential for design and manipulation: for example, for the removal of unwanted dipolar interactions, the introduction of redox activity, or to simply aid functionalization for surface grafting. Calix[4]arenes are cyclic (typically bowl-shaped) polyphenols that have been used extensively in the formation of versatile self-assembled supramolecular structures. Although many have been reported, p-{sup t}But-calix[4]arene and calix[4]arene (TBC4 and C4 respectively, Figure 1A) are frequently encountered due to (a) synthetic accessibility, and (b) vast potential for alteration at either the upper or lower rim of the macrocyclic framework. Within the field of supramolecular chemistry, TBC4 is well known for interesting polymorphic behavior and phase transformations within anti-parallel bi-layer arrays, while C4 often forms self-included trimers. The polyphenolic nature of calix[n]arenes (where

  13. Theoretical analysis of single molecule spectroscopy lineshapes of conjugated polymers

    Science.gov (United States)

    Devi, Murali

    Conjugated Polymers(CPs) exhibit a wide range of highly tunable optical properties. Quantitative and detailed understanding of the nature of excitons responsible for such a rich optical behavior has significant implications for better utilization of CPs for more efficient plastic solar cells and other novel optoelectronic devices. In general, samples of CPs are plagued with substantial inhomogeneous broadening due to various sources of disorder. Single molecule emission spectroscopy (SMES) offers a unique opportunity to investigate the energetics and dynamics of excitons and their interactions with phonon modes. The major subject of the present thesis is to analyze and understand room temperature SMES lineshapes for a particular CP, called poly(2,5-di-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (DEH-PPV). A minimal quantum mechanical model of a two-level system coupled to a Brownian oscillator bath is utilized. The main objective is to identify the set of model parameters best fitting a SMES lineshape for each of about 200 samples of DEH-PPV, from which new insight into the nature of exciton-bath coupling can be gained. This project also entails developing a reliable computational methodology for quantum mechanical modeling of spectral lineshapes in general. Well-known optimization techniques such as gradient descent, genetic algorithms, and heuristic searches have been tested, employing an L2 measure between theoretical and experimental lineshapes for guiding the optimization. However, all of these tend to result in theoretical lineshapes qualitatively different from experimental ones. This is attributed to the ruggedness of the parameter space and inadequateness of the L2 measure. On the other hand, when the dynamic reduction of the original parameter space to a 2-parameter space through feature searching and visualization of the search space paths using directed acyclic graphs(DAGs), the qualitative nature of the fitting improved significantly. For a more

  14. Single molecule studies of DNA packaging by bacteriophages

    Science.gov (United States)

    Fuller, Derek Nathan

    The DNA packaging dynamics of bacteriophages φ29, gamma, and T4 were studied at the single molecule level using a dual trap optical tweezers. Also, a method for producing long DNA molecules by PCR for optical tweezers studies of protein DNA interactions is presented and thoroughly characterized. This DNA preparation technique provided DNA samples for the φ29 and T4 studies. In the studies of φ29, the role of charge was investigated by varying the ionic conditions of the packaging buffer. Ionic conditions in which the DNA charge was highly screened due to divalent and trivalent cations showed the lowest resistance to packaging of the DNA to high density. This confirmed the importance of counterions in shielding the DNA interstrand repulsion when packaged to high density. While the ionic nature of the packaging buffer had a strong effect on packaging velocities, there was no clear trend between the counterion-screened charge of the DNA and the maximum packaging velocity. The packaging studies of lambda and T4 served as systems for comparative studies with φ29. Each system showed similarities to the φ29 system and unique differences. Both the lambda and T4 packaging motors were capable of generating forces in excess of 50 pN and showed remarkably high processivity, similar to φ29. However, dynamic structural transitions were observed with lambda that are not observed with φ29. The packaging of the lambda genome showed capsid expansion at approximately 30 percent of the genome packaged and capsid rupture at 90 percent of the genome packaged in the absence of capsid stabilizing protein gpD. Unique to the T4 packaging motor, packaging dynamics showed a remarkable amount of variability in velocities. This variability was seen both within individual packaging phages and from one phage to the next. This is possibly due to different conformational states of the packaging machinery. Additionally, lambda and T4 had average packaging velocities under minimal load of 600

  15. Calix[4]arene Based Single-Molecule Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Karotsis, Georgios; Teat, Simon J.; Wernsdorfer, Wolfgang; Piligkos, Stergios; Dalgarno, Scott J.; Brechin, Euan K.

    2009-06-04

    Single-molecule magnets (SMMs) have been the subject of much interest in recent years because their molecular nature and inherent physical properties allow the crossover between classical and quantum physics to be observed. The macroscopic observation of quantum phenomena - tunneling between different spin states, quantum interference between tunnel paths - not only allows scientists to study quantum mechanical laws in great detail, but also provides model systems with which to investigate the possible implementation of spin-based solid state qubits and molecular spintronics. The isolation of small, simple SMMs is therefore an exciting prospect. To date almost all SMMs have been made via the self-assembly of 3d metal ions in the presence of bridging/chelating organic ligands. However, very recently an exciting new class of SMMs, based on 3d metal clusters (or single lanthanide ions) housed within polyoxometalates, has appeared. These types of molecule, in which the SMM is completely encapsulated within (or shrouded by) a 'protective' organic or inorganic sheath have much potential for design and manipulation: for example, for the removal of unwanted dipolar interactions, the introduction of redox activity, or to simply aid functionalization for surface grafting. Calix[4]arenes are cyclic (typically bowl-shaped) polyphenols that have been used extensively in the formation of versatile self-assembled supramolecular structures. Although many have been reported, p-{sup t}But-calix[4]arene and calix[4]arene (TBC4 and C4 respectively, Figure 1A) are frequently encountered due to (a) synthetic accessibility, and (b) vast potential for alteration at either the upper or lower rim of the macrocyclic framework. Within the field of supramolecular chemistry, TBC4 is well known for interesting polymorphic behavior and phase transformations within anti-parallel bi-layer arrays, while C4 often forms self-included trimers. The polyphenolic nature of calix[n]arenes (where

  16. Localization microscopy: mapping cellular dynamics with single molecules.

    Science.gov (United States)

    Nelson, A J; Hess, S T

    2014-04-01

    Resolution describes the smallest details within a sample that can be recovered by a microscope lens system. For optical microscopes detecting visible light, diffraction limits the resolution to ∼200-250 nm. In contrast, localization measures the position of an isolated object using its image. Single fluorescent molecules can be localized with an uncertainty of a few tens of nanometres, and in some cases less than one nanometre. Superresolution fluorescence localization microscopy (SRFLM) images and localizes fluorescent molecules in a sample. By controlling the visibility of the fluorescent molecules with light, it is possible to cause a sparse subset of the tags to fluoresce and be spatially separated from each other. A movie is acquired with a camera, capturing images of many sets of visible fluorescent tags over a period of time. The movie is then analysed by a computer whereby all of the single molecules are independently measured, and their positions are recorded. When the coordinates of a sufficient number of molecules are collected, an image can be rendered by plotting the coordinates of the localized molecules. The spatial resolution of these rendered images can be better than 20 nm, roughly an order of magnitude better than the diffraction limited resolution. The invention of SRFLM has led to an explosion of related techniques. Through the use of specialized optics, the fluorescent signal can be split into multiple detection channels. These channels can capture additional information such as colour (emission wavelength), orientation and three-dimensional position of the detected molecules. Measurement of the colour of the detected fluorescence can allow researchers to distinguish multiple types of fluorescent tags and to study the interaction between multiple molecules of interest. Three-dimensional imaging and determination of molecular orientations offer insight into structural organization of the sample. SRFLM is compatible with living samples and

  17. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging

    Science.gov (United States)

    Cocker, Tyler L.; Peller, Dominik; Yu, Ping; Repp, Jascha; Huber, Rupert

    2016-11-01

    Watching a single molecule move on its intrinsic timescale has been one of the central goals of modern nanoscience, and calls for measurements that combine ultrafast temporal resolution with atomic spatial resolution. Steady-state experiments access the requisite spatial scales, as illustrated by direct imaging of individual molecular orbitals using scanning tunnelling microscopy or the acquisition of tip-enhanced Raman and luminescence spectra with sub-molecular resolution. But tracking the intrinsic dynamics of a single molecule directly in the time domain faces the challenge that interactions with the molecule must be confined to a femtosecond time window. For individual nanoparticles, such ultrafast temporal confinement has been demonstrated by combining scanning tunnelling microscopy with so-called lightwave electronics, which uses the oscillating carrier wave of tailored light pulses to directly manipulate electronic motion on timescales faster even than a single cycle of light. Here we build on ultrafast terahertz scanning tunnelling microscopy to access a state-selective tunnelling regime, where the peak of a terahertz electric-field waveform transiently opens an otherwise forbidden tunnelling channel through a single molecular state. It thereby removes a single electron from an individual pentacene molecule’s highest occupied molecular orbital within a time window shorter than one oscillation cycle of the terahertz wave. We exploit this effect to record approximately 100-femtosecond snapshot images of the orbital structure with sub-ångström spatial resolution, and to reveal, through pump/probe measurements, coherent molecular vibrations at terahertz frequencies directly in the time domain. We anticipate that the combination of lightwave electronics and the atomic resolution of our approach will open the door to visualizing ultrafast photochemistry and the operation of molecular electronics on the single-orbital scale.

  18. Assessment of lifetime resolution limits in time-resolved photoacoustic calorimetry vs. transducer frequencies: setting the stage for picosecond resolution.

    Science.gov (United States)

    Schaberle, Fábio A; Rego Filho, Francisco de Assis M G; Reis, Luís A; Arnaut, Luis G

    2016-02-01

    Time-resolved photoacoustic calorimetry (PAC) gives access to lifetimes and energy fractions of reaction intermediates by deconvolution of the photoacoustic wave of a sample (E-wave) with that of the instrumental response (T-wave). The ability to discriminate between short lifetimes increases with transducer frequencies employed to detect the PAC waves. We investigate the lifetime resolution limits of PAC as a function of the transducer frequencies using the instrumental response obtained with the photoacoustic reference 2-hydroxybenzophenone in toluene or acetonitrile. The instrumental response was obtained for a set of transducers with central frequencies ranging from 0.5 MHz up to 225 MHz. The simulated dependence of the lifetime resolution with the transducer frequencies was anchored on experimental data obtained for the singlet state of naphthalene with a 2.25 MHz transducer. The shortest lifetime resolved with the 2.25 MHz transducer was 19 ns and our modelling of the transducer responses indicates that sub-nanosecond lifetimes of photoacoustic transients can be resolved with transducers of central frequencies above 100 MHz.

  19. Uncovering Single-Molecule Photophysical Heterogeneity of Bright, Thermally Activated Delayed Fluorescence Emitters Dispersed in Glassy Hosts.

    Science.gov (United States)

    Noriega, Rodrigo; Barnard, Edward S; Ursprung, Benedikt; Cotts, Benjamin L; Penwell, Samuel B; Schuck, P James; Ginsberg, Naomi S

    2016-10-04

    Recently developed all-organic emitters used in display applications achieve high brightness by harvesting triplet populations via thermally activated delayed fluorescence. The photophysical properties of these emitters therefore involve new inherent complexities and are strongly affected by interactions with their host material in the solid state. Ensemble measurements occlude the molecular details of how host-guest interactions determine fundamental properties such as the essential balance of singlet oscillator strength and triplet harvesting. Therefore, using time-resolved fluorescence spectroscopy, we interrogate these emitters at the single-molecule level and compare their properties in two distinct glassy polymer hosts. We find that nonbonding interactions with aromatic moieties in the host appear to mediate the molecular configurations of the emitters, but also promote nonradiative quenching pathways. We also find substantial heterogeneity in the time-resolved photoluminescence of these emitters, which is dominated by static disorder in the polymer. Finally, since singlet-triplet cycling underpins the mechanism for increased brightness, we present the first room-temperature measurement of singlet-triplet equilibration dynamics in this family of emitters. Our observations present a molecular-scale interrogation of host-guest interactions in a disordered film, with implications for highly efficient organic light-emitting devices. Combining a single-molecule experimental technique with an emitter that is sensitive to triplet dynamics, yet read out via fluorescence, should also provide a complementary approach to performing fundamental studies of glassy materials over a large dynamic range of time scales.

  20. Novel High-Activity Organic Piezoelectric Materials - From Single-Molecule Response to Energy Harvesting Films

    Science.gov (United States)

    2015-08-24

    Mirman, B.; Karapetian, E. “Relationship between Direct and Converse Piezoelectric Effect in a Nanoscale Electromechanical Contact,” Physical Review B...response of organic hydrogen-bonded crystals and single-molecule electromechanical response. Using the known piezoelectric response of crystalline 2...Using computational exploration of the electromechanical response other molecular scaffolds, we explored single-molecule ferroelectrics based on

  1. Direct Observation of Magnetic Anisotropy in an Individual Fe4 Single-Molecule Magnet

    NARCIS (Netherlands)

    Burzuri, E.; Zyazin, A.S.; Cornia, A.; Van der Zant, H.S.J.

    2012-01-01

    We study three-terminal charge transport through individual Fe4 single-molecule magnets. Magnetic anisotropy of the single molecule is directly observed by introducing a spectroscopic technique based on measuring the position of the degeneracy point as a function of gate voltage and applied magnetic

  2. Single-molecule analysis of DNA replication in Xenopus egg extracts

    NARCIS (Netherlands)

    Yardimci, Hasan; Loveland, Anna B.; van Oijen, Antoine M.; Walter, Johannes C.; Mechali, Marcel

    The recent advent in single-molecule imaging and manipulation methods has made a significant impact on the understanding of molecular mechanisms underlying many essential cellular processes. Single-molecule techniques such as electron microscopy and DNA fiber assays have been employed to study the

  3. Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions

    Science.gov (United States)

    Sansinena, Jose-Maria; Redondo, Antonio; Olazabal, Virginia; Hoffbauer, Mark A.; Akhadov, Elshan A.

    2009-12-29

    A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

  4. Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experiments

    DEFF Research Database (Denmark)

    Utko, Pawel; Persson, Karl Fredrik; Kristensen, Anders;

    2011-01-01

    We demonstrate that fabrication of nanofluidic systems can be greatly simplified by injection molding of polymers. We functionally test our devices by single-molecule DNA experiments in nanochannels.......We demonstrate that fabrication of nanofluidic systems can be greatly simplified by injection molding of polymers. We functionally test our devices by single-molecule DNA experiments in nanochannels....

  5. Direct Observation of Magnetic Anisotropy in an Individual Fe4 Single-Molecule Magnet

    NARCIS (Netherlands)

    Burzuri, E.; Zyazin, A.S.; Cornia, A.; Van der Zant, H.S.J.

    2012-01-01

    We study three-terminal charge transport through individual Fe4 single-molecule magnets. Magnetic anisotropy of the single molecule is directly observed by introducing a spectroscopic technique based on measuring the position of the degeneracy point as a function of gate voltage and applied magnetic

  6. Single molecules in soft matter : a study of biomolecular conformation, heterogeneity and plasmon enhanced fluorescence

    NARCIS (Netherlands)

    Yuan, Haifeng

    2013-01-01

    We study the dynamics of single molecules and individual gold nanorods in glycerol at variable temperatures. We demonstrate temperature-cycle microscopy on FRET-labeled polyproline and double-stranded DNA molecules to access micro-second dynamics of single molecules, and reveal the influences of dye

  7. Single-molecule analysis of DNA replication in Xenopus egg extracts

    NARCIS (Netherlands)

    Yardimci, Hasan; Loveland, Anna B.; van Oijen, Antoine M.; Walter, Johannes C.; Mechali, Marcel

    2012-01-01

    The recent advent in single-molecule imaging and manipulation methods has made a significant impact on the understanding of molecular mechanisms underlying many essential cellular processes. Single-molecule techniques such as electron microscopy and DNA fiber assays have been employed to study the d

  8. Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Sansinena, Jose-Maria; Redondo, Antonio; Olazabal, Virginia; Hoffbauer, Mark A.

    2017-09-12

    A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

  9. Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Sansinena, Jose-Maria; Redondo, Antonio; Olazabal, Virginia; Hoffbauer, Mark A.; Akhadov, Elshan A.

    2017-07-18

    A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

  10. Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy

    NARCIS (Netherlands)

    Hashemi Shabestari, M; Meijering, A E C; Roos, W H; Wuite, G J L; Peterman, E J G

    2017-01-01

    Over the past two decades, single-molecule techniques have evolved into robust tools to study many fundamental biological processes. The combination of optical tweezers with fluorescence microscopy and microfluidics provides a powerful single-molecule manipulation and visualization technique that

  11. An Organolanthanide Building Block Approach to Single-Molecule Magnets.

    Science.gov (United States)

    Harriman, Katie L M; Murugesu, Muralee

    2016-06-21

    Single-molecule magnets (SMMs) are highly sought after for their potential application in high-density information storage, spintronics, and quantum computing. SMMs exhibit slow relaxation of the magnetization of purely molecular origin, thus making them excellent candidates towards the aforementioned applications. In recent years, significant focus has been placed on the rare earth elements due to their large intrinsic magnetic anisotropy arising from the near degeneracy of the 4f orbitals. Traditionally, coordination chemistry has been utilized to fabricate lanthanide-based SMMs; however, heteroatomic donor atoms such as oxygen and nitrogen have limited orbital overlap with the shielded 4f orbitals. Thus, control over the anisotropic axis and induction of f-f interactions are limited, meaning that the performance of these systems can only extend so far. To this end, we have placed considerable attention on the development of novel SMMs whose donor atoms are conjugated hydrocarbons, thereby allowing us to perturb the crystal field of lanthanide ions through the use of an electronic π-cloud. This approach allows for fine tuning of the anisotropic axis of the molecule, allowing this method the potential to elicit SMMs capable of reaching much larger values for the two vital performance measurements of an SMM, the energy barrier to spin reversal (Ueff), and the blocking temperature of the magnetization (TB). In this Account, we describe our efforts to exploit the inherent anisotropy of the late 4f elements; namely, Dy(III) and Er(III), through the use of cyclooctatetraenyl (COT) metallocenes. With respect to the Er(III) derivatives, we have seen record breaking success, reaching blocking temperatures as high as 14 K with frozen solution magnetometry. These results represent the first example of such a high TB being observed for a system with only a single spin center, formally known as a single-ion magnet (SIM). Our continued interrelationship between theoretical

  12. Directional Raman scattering from single molecules in the feed gaps of optical antennas.

    Science.gov (United States)

    Wang, Dongxing; Zhu, Wenqi; Best, Michael D; Camden, Jon P; Crozier, Kenneth B

    2013-05-08

    Controlling light from single emitters is an overarching theme of nano-optics. Antennas are routinely used to modify the angular emission patterns of radio wave sources. "Optical antennas" translate these principles to visible and infrared wavelengths and have been recently used to modify fluorescence from single quantum dots and single molecules. Understanding the properties of single molecules, however, would be advanced were one able to observe their vibrational spectra through Raman scattering in a very reproducible manner but it is a hugely challenging task, as Raman scattering cross sections are very weak. Here we measure for the first time the highly directional emission patterns of Raman scattering from single molecules in the feed gaps of optical antennas fabricated on a chip. More than a thousand single molecule events are observed, revealing that an unprecedented near-unity fraction of optical antennas have single molecule sensitivity.

  13. An Optical Tweezers Platform for Single Molecule Force Spectroscopy in Organic Solvents.

    Science.gov (United States)

    Black, Jacob; Kamenetska, Maria; Ganim, Ziad

    2017-10-03

    Observation at the single molecule level has been a revolutionary tool for molecular biophysics and materials science, but single molecule studies of solution-phase chemistry are less widespread. In this work we develop an experimental platform for solution-phase single molecule force spectroscopy in organic solvents. This optical-tweezer-based platform was designed for broad chemical applicability and utilizes optically trapped core-shell microspheres, synthetic polymer tethers, and click chemistry linkages formed in situ. We have observed stable optical trapping of the core-shell microspheres in ten different solvents, and single molecule link formation in four different solvents. These experiments demonstrate how to use optical tweezers for single molecule force application in the study of solution-phase chemistry.

  14. A method for the frequency control in time-resolved two-dimensional gigahertz surface acoustic wave imaging

    Directory of Open Access Journals (Sweden)

    Shogo Kaneko

    2014-01-01

    Full Text Available We describe an extension of the time-resolved two-dimensional gigahertz surface acoustic wave imaging based on the optical pump-probe technique with periodic light source at a fixed repetition frequency. Usually such imaging measurement may generate and detect acoustic waves with their frequencies only at or near the integer multiples of the repetition frequency. Here we propose a method which utilizes the amplitude modulation of the excitation pulse train to modify the generation frequency free from the mentioned limitation, and allows for the first time the discrimination of the resulted upper- and lower-side-band frequency components in the detection. The validity of the method is demonstrated in a simple measurement on an isotropic glass plate covered by a metal thin film to extract the dispersion curves of the surface acoustic waves.

  15. Studying Chemical Reactions, One Bond at a Time, with Single Molecule AFM Techniques

    Science.gov (United States)

    Fernandez, Julio M.

    2008-03-01

    atomic force microscopy (AFM) techniques, as shown here, can probe dynamic rearrangements within an enzyme's active site which cannot be resolved with any other current structural biological technique. Furthermore, our work at the single bond level directly demonstrates that thiol/disulfide exchange in proteins is a force-dependent chemical reaction. Our findings suggest that mechanical force plays a role in disulfide reduction in vivo, a property which has never been explored by traditional biochemistry. 1.-Wiita, A.P., Ainavarapu, S.R.K., Huang, H.H. and Julio M. Fernandez (2006) Force-dependent chemical kinetics of disulfide bond reduction observed with single molecule techniques. Proc Natl Acad Sci U S A. 103(19):7222-7 2.-Wiita, A.P., Perez-Jimenez, R., Walther, K.A., Gräter, F. Berne, B.J., Holmgren, A., Sanchez-Ruiz, J.M., and Fernandez, J.M. (2007) Probing the chemistry of thioredoxin catalysis with force. Nature, 450:124-7.

  16. A Starting Point for Fluorescence-Based Single-Molecule Measurements in Biomolecular Research

    Directory of Open Access Journals (Sweden)

    Alexander Gust

    2014-09-01

    Full Text Available Single-molecule fluorescence techniques are ideally suited to provide information about the structure-function-dynamics relationship of a biomolecule as static and dynamic heterogeneity can be easily detected. However, what type of single-molecule fluorescence technique is suited for which kind of biological question and what are the obstacles on the way to a successful single-molecule microscopy experiment? In this review, we provide practical insights into fluorescence-based single-molecule experiments aiming for scientists who wish to take their experiments to the single-molecule level. We especially focus on fluorescence resonance energy transfer (FRET experiments as these are a widely employed tool for the investigation of biomolecular mechanisms. We will guide the reader through the most critical steps that determine the success and quality of diffusion-based confocal and immobilization-based total internal reflection fluorescence microscopy. We discuss the specific chemical and photophysical requirements that make fluorescent dyes suitable for single-molecule fluorescence experiments. Most importantly, we review recently emerged photoprotection systems as well as passivation and immobilization strategies that enable the observation of fluorescently labeled molecules under biocompatible conditions. Moreover, we discuss how the optical single-molecule toolkit has been extended in recent years to capture the physiological complexity of a cell making it even more relevant for biological research.

  17. A starting point for fluorescence-based single-molecule measurements in biomolecular research.

    Science.gov (United States)

    Gust, Alexander; Zander, Adrian; Gietl, Andreas; Holzmeister, Phil; Schulz, Sarah; Lalkens, Birka; Tinnefeld, Philip; Grohmann, Dina

    2014-09-30

    Single-molecule fluorescence techniques are ideally suited to provide information about the structure-function-dynamics relationship of a biomolecule as static and dynamic heterogeneity can be easily detected. However, what type of single-molecule fluorescence technique is suited for which kind of biological question and what are the obstacles on the way to a successful single-molecule microscopy experiment? In this review, we provide practical insights into fluorescence-based single-molecule experiments aiming for scientists who wish to take their experiments to the single-molecule level. We especially focus on fluorescence resonance energy transfer (FRET) experiments as these are a widely employed tool for the investigation of biomolecular mechanisms. We will guide the reader through the most critical steps that determine the success and quality of diffusion-based confocal and immobilization-based total internal reflection fluorescence microscopy. We discuss the specific chemical and photophysical requirements that make fluorescent dyes suitable for single-molecule fluorescence experiments. Most importantly, we review recently emerged photoprotection systems as well as passivation and immobilization strategies that enable the observation of fluorescently labeled molecules under biocompatible conditions. Moreover, we discuss how the optical single-molecule toolkit has been extended in recent years to capture the physiological complexity of a cell making it even more relevant for biological research.

  18. Temporal characterization of FEL micropulses as function of cavity length detuning using frequency-resolved optical gating

    Energy Technology Data Exchange (ETDEWEB)

    Richman, B.A. [Stanford Univ., CA (United States); DeLong, K.W.; Trebino, R. [Sandia National Lab., Livermore, CA (United States)

    1995-12-31

    Results of frequency resolved optical gating (FROG) measurements on the Stanford mid-IR FEL system show the effect of FEL cavity length detuning on the micropulse temporal structure. The FROG technique enables the acquisition of complete and uniquely invertible amplitude and phase temporal dependence of optical pulses. Unambiguous phase and amplitude profiles are recovered from the data. The optical pulses are nearly transform limited, and the pulse length increases with cavity length detuning.

  19. Future challenges in single-molecule fluorescence and laser trap approaches to studies of molecular motors.

    Science.gov (United States)

    Elting, Mary Williard; Spudich, James A

    2012-12-11

    Single-molecule analysis is a powerful modern form of biochemistry, in which individual kinetic steps of a catalytic cycle of an enzyme can be explored in exquisite detail. Both single-molecule fluorescence and single-molecule force techniques have been widely used to characterize a number of protein systems. We focus here on molecular motors as a paradigm. We describe two areas where we expect to see exciting developments in the near future: first, characterizing the coupling of force production to chemical and mechanical changes in motors, and second, understanding how multiple motors work together in the environment of the cell.

  20. Single-molecule force-conductance spectroscopy of hydrogen-bonded complexes

    DEFF Research Database (Denmark)

    Pirrotta, Alessandro; De Vico, Luca; Solomon, Gemma C.

    2017-01-01

    The emerging ability to study physical properties at the single-molecule limit highlights the disparity between what is observable in an ensemble of molecules and the heterogeneous contributions of its constituent parts. A particularly convenient platform for single-molecule studies are molecular...... junctions where forces and voltages can be applied to individual molecules, giving access to a series of electromechanical observables that can form the basis of highly discriminating multidimensional single-molecule spectroscopies. Here, we computationally examine the ability of force and conductance...

  1. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.

    Science.gov (United States)

    Zhu, Zhi; Yang, Chaoyong James

    2017-01-17

    Heterogeneity among individual molecules and cells has posed significant challenges to traditional bulk assays, due to the assumption of average behavior, which would lose important biological information in heterogeneity and result in a misleading interpretation. Single molecule/cell analysis has become an important and emerging field in biological and biomedical research for insights into heterogeneity between large populations at high resolution. Compared with the ensemble bulk method, single molecule/cell analysis explores the information on time trajectories, conformational states, and interactions of individual molecules/cells, all key factors in the study of chemical and biological reaction pathways. Various powerful techniques have been developed for single molecule/cell analysis, including flow cytometry, atomic force microscopy, optical and magnetic tweezers, single-molecule fluorescence spectroscopy, and so forth. However, some of them have the low-throughput issue that has to analyze single molecules/cells one by one. Flow cytometry is a widely used high-throughput technique for single cell analysis but lacks the ability for intercellular interaction study and local environment control. Droplet microfluidics becomes attractive for single molecule/cell manipulation because single molecules/cells can be individually encased in monodisperse microdroplets, allowing high-throughput analysis and manipulation with precise control of the local environment. Moreover, hydrogels, cross-linked polymer networks that swell in the presence of water, have been introduced into droplet microfluidic systems as hydrogel droplet microfluidics. By replacing an aqueous phase with a monomer or polymer solution, hydrogel droplets can be generated on microfluidic chips for encapsulation of single molecules/cells according to the Poisson distribution. The sol-gel transition property endows the hydrogel droplets with new functionalities and diversified applications in single

  2. Single Molecule Kinetics of ENTH Binding to Lipid Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Rozovsky, Sharon [Univ. of Delaware, Newark, DE (United States); Forstner, Martin B. [Syracuse Univ., NY (United States); Sondermann, Holger [Cornell Univ., Ithaca, NY (United States); Groves, Jay T. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-04-03

    Transient recruitment of proteins to membranes is a fundamental mechanism by which the cell exerts spatial and temporal control over proteins’ localization and interactions. Thus, the specificity and the kinetics of peripheral proteins’ membrane residence are an attribute of their function. In this article, we describe the membrane interactions of the interfacial epsin N-terminal homology (ENTH) domain with its target lipid phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2). The direct visualization and quantification of interactions of single ENTH molecules with supported lipid bilayers is achieved using total internal reflection fluorescence microscopy (TIRFM) with a time resolution of 13 ms. This enables the recording of the kinetic behavior of ENTH interacting with membranes with physiologically relevant concentrations of PtdIns(4,5)P2 despite the low effective binding affinity. Subsequent single fluorophore tracking permits us to build up distributions of residence times and to measure ENTH dissociation rates as a function of membrane composition. In addition, due to the high time resolution, we are able to resolve details of the motion of ENTH associated with a simple, homogeneous membrane. In this case ENTH’s diffusive transport appears to be the result of at least three different diffusion processes.

  3. Single-molecule atomic force microscopy reveals clustering of the yeast plasma-membrane sensor Wsc1.

    Science.gov (United States)

    Heinisch, Jürgen J; Dupres, Vincent; Wilk, Sabrina; Jendretzki, Arne; Dufrêne, Yves F

    2010-06-14

    Signalling is a key feature of living cells which frequently involves the local clustering of specific proteins in the plasma membrane. How such protein clustering is achieved within membrane microdomains ("rafts") is an important, yet largely unsolved problem in cell biology. The plasma membrane of yeast cells represents a good model to address this issue, since it features protein domains that are sufficiently large and stable to be observed by fluorescence microscopy. Here, we demonstrate the ability of single-molecule atomic force microscopy to resolve lateral clustering of the cell integrity sensor Wsc1 in living Saccharomyces cerevisiae cells. We first localize individual wild-type sensors on the cell surface, revealing that they form clusters of approximately 200 nm size. Analyses of three different mutants indicate that the cysteine-rich domain of Wsc1 has a crucial, not yet anticipated function in sensor clustering and signalling. Clustering of Wsc1 is strongly enhanced in deionized water or at elevated temperature, suggesting its relevance in proper stress response. Using in vivo GFP-localization, we also find that non-clustering mutant sensors accumulate in the vacuole, indicating that clustering may prevent endocytosis and sensor turnover. This study represents the first in vivo single-molecule demonstration for clustering of a transmembrane protein in S. cerevisiae. Our findings indicate that in yeast, like in higher eukaryotes, signalling is coupled to the localized enrichment of sensors and receptors within membrane patches.

  4. Single-molecule atomic force microscopy reveals clustering of the yeast plasma-membrane sensor Wsc1.

    Directory of Open Access Journals (Sweden)

    Jürgen J Heinisch

    Full Text Available Signalling is a key feature of living cells which frequently involves the local clustering of specific proteins in the plasma membrane. How such protein clustering is achieved within membrane microdomains ("rafts" is an important, yet largely unsolved problem in cell biology. The plasma membrane of yeast cells represents a good model to address this issue, since it features protein domains that are sufficiently large and stable to be observed by fluorescence microscopy. Here, we demonstrate the ability of single-molecule atomic force microscopy to resolve lateral clustering of the cell integrity sensor Wsc1 in living Saccharomyces cerevisiae cells. We first localize individual wild-type sensors on the cell surface, revealing that they form clusters of approximately 200 nm size. Analyses of three different mutants indicate that the cysteine-rich domain of Wsc1 has a crucial, not yet anticipated function in sensor clustering and signalling. Clustering of Wsc1 is strongly enhanced in deionized water or at elevated temperature, suggesting its relevance in proper stress response. Using in vivo GFP-localization, we also find that non-clustering mutant sensors accumulate in the vacuole, indicating that clustering may prevent endocytosis and sensor turnover. This study represents the first in vivo single-molecule demonstration for clustering of a transmembrane protein in S. cerevisiae. Our findings indicate that in yeast, like in higher eukaryotes, signalling is coupled to the localized enrichment of sensors and receptors within membrane patches.

  5. Binding and movement of individual Cel7A cellobiohydrolases on crystalline cellulose surfaces revealed by single-molecule fluorescence imaging.

    Science.gov (United States)

    Jung, Jaemyeong; Sethi, Anurag; Gaiotto, Tiziano; Han, Jason J; Jeoh, Tina; Gnanakaran, Sandrasegaram; Goodwin, Peter M

    2013-08-16

    The efficient catalytic conversion of biomass to bioenergy would meet a large portion of energy requirements in the near future. A crucial step in this process is the enzyme-catalyzed hydrolysis of cellulose to glucose that is then converted into fuel such as ethanol by fermentation. Here we use single-molecule fluorescence imaging to directly monitor the movement of individual Cel7A cellobiohydrolases from Trichoderma reesei (TrCel7A) on the surface of insoluble cellulose fibrils to elucidate molecular level details of cellulase activity. The motion of multiple, individual TrCel7A cellobiohydrolases was simultaneously recorded with ∼15-nm spatial resolution. Time-resolved localization microscopy provides insights on the activity of TrCel7A on cellulose and informs on nonproductive binding and diffusion. We measured single-molecule residency time distributions of TrCel7A bound to cellulose both in the presence of and absence of cellobiose the major product and a potent inhibitor of Cel7A activity. Combining these results with a kinetic model of TrCel7A binding provides microscopic insight into interactions between TrCel7A and the cellulose substrate.

  6. From the molecule to the mole: improving heterogeneous copper catalyzed click chemistry using single molecule spectroscopy.

    Science.gov (United States)

    Wang, Bowen; Durantini, Javier; Decan, Matthew R; Nie, Jun; Lanterna, Anabel E; Scaiano, Juan C

    2016-12-22

    Single molecule spectroscopy (SMS) inspired the optimization of a heterogeneous 'click' catalyst leading to enhanced yields of the Cu-catalyzed reaction of azides with terminal alkynes. Changes in SMS data after optimization confirm the improvements in catalyst performance.

  7. Single Molecule Photobleaching Probes the Exciton Wavefunction in a Multichromophoric System

    NARCIS (Netherlands)

    Hernando, J.; Hoogenboom, J.P.; Dijk, van E.M.H.P.; Garcia-Lopez, J.J.; Crego Calama, M.; Reinhoudt, D.N.; Hulst, van N.F.; Garcia-Parajo, M.F.

    2004-01-01

    The exciton wave function of a trichromophoric system is investigated by means of single molecule spectroscopy at room temperature. Individual trimers exhibit superradiance and loss of vibronic structure in emission spectrum, features proving exciton delocalization. We identify two distinct photodeg

  8. Single vesicle biochips for ultra-miniaturized nanoscale fluidics and single molecule bioscience

    DEFF Research Database (Denmark)

    Christensen, Andreas Lauge; Lohr, Christina; Christensen, Sune M.;

    2013-01-01

    , their fabrication via controlled self-assembly, and their characterization using fluorescence microscopy. We also highlight their applications in selected fields such as nanofluidics and single molecule bioscience. Despite their great potential for improved biocompatibility, extreme miniaturization and high...

  9. Shifting molecular localization by plasmonic coupling in a single-molecule mirage

    Science.gov (United States)

    Raab, Mario; Vietz, Carolin; Stefani, Fernando Daniel; Acuna, Guillermo Pedro; Tinnefeld, Philip

    2017-01-01

    Over the last decade, two fields have dominated the attention of sub-diffraction photonics research: plasmonics and fluorescence nanoscopy. Nanoscopy based on single-molecule localization offers a practical way to explore plasmonic interactions with nanometre resolution. However, this seemingly straightforward technique may retrieve false positional information. Here, we make use of the DNA origami technique to both control a nanometric separation between emitters and a gold nanoparticle, and as a platform for super-resolution imaging based on single-molecule localization. This enables a quantitative comparison between the position retrieved from single-molecule localization, the true position of the emitter and full-field simulations. We demonstrate that plasmonic coupling leads to shifted molecular localizations of up to 30 nm: a single-molecule mirage.

  10. Real-space observation of spin-split molecular orbitals of adsorbed single-molecule magnets

    National Research Council Canada - National Science Library

    Schwöbel, Jörg; Fu, Yingshuang; Brede, Jens; Dilullo, Andrew; Hoffmann, Germar; Klyatskaya, Svetlana; Ruben, Mario; Wiesendanger, Roland

    2012-01-01

    A key challenge in the field of molecular spintronics, and for the design of single-molecule magnet-based devices in particular, is the understanding and control of the molecular coupling at the electrode interfaces...

  11. Single-molecule detection at high concentrations with optical aperture nanoantennas

    Science.gov (United States)

    Alam, Md Shah; Karim, Farzia; Zhao, Chenglong

    2016-05-01

    Single-molecule detection has become an indispensable technology in life science, and medical research. In order to get meaningful information on many biological processes, single-molecule analysis is required in micro-molar concentrations. At such high concentrations, it is very challenging to isolate a single molecule with conventional diffraction-limited optics. Recently, optical aperture nanoantennas (OANs) have emerged as a powerful tool to enhance the single-molecule detection under a physiological environment. The OANs, which consist of nano-scale apertures on a metallic film, have the following unique properties: (1) nanoscale light confinement; (2) enhanced fluorescence emission; (3) tunable radiation pattern; (4) reduced background noise; and (5) massive parallel detection. This review presents the fundamentals, recent developments and future perspectives in this emerging field.

  12. Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices

    Science.gov (United States)

    Varela, Juan A.; Dupuis, Julien P.; Etchepare, Laetitia; Espana, Agnès; Cognet, Laurent; Groc, Laurent

    2016-03-01

    Single-molecule imaging has changed the way we understand many biological mechanisms, particularly in neurobiology, by shedding light on intricate molecular events down to the nanoscale. However, current single-molecule studies in neuroscience have been limited to cultured neurons or organotypic slices, leaving as an open question the existence of fast receptor diffusion in intact brain tissue. Here, for the first time, we targeted dopamine receptors in vivo with functionalized quantum dots and were able to perform single-molecule tracking in acute rat brain slices. We propose a novel delocalized and non-inflammatory way of delivering nanoparticles (NPs) in vivo to the brain, which allowed us to label and track genetically engineered surface dopamine receptors in neocortical neurons, revealing inherent behaviour and receptor activity regulations. We thus propose a NP-based platform for single-molecule studies in the living brain, opening new avenues of research in physiological and pathological animal models.

  13. Single-molecule strong coupling at room temperature in plasmonic nanocavities

    Science.gov (United States)

    Chikkaraddy, Rohit; de Nijs, Bart; Benz, Felix; Barrow, Steven J.; Scherman, Oren A.; Rosta, Edina; Demetriadou, Angela; Fox, Peter; Hess, Ortwin; Baumberg, Jeremy J.

    2016-07-01

    Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter, forming building blocks for quantum information systems and for ultralow-power switches and lasers. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use. Here, by scaling the cavity volume to less than 40 cubic nanometres and using host-guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light-matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules—matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds.

  14. A single molecule study of a fluorescently labeled telomestatin derivative and G-quadruplex interactions

    Science.gov (United States)

    Maleki, Parastoo; Ma, Yue; Iida, Keisuke; Nagasawa, Kazuo; Balci, Hamza

    2017-01-01

    The potential use of G-quadruplex (GQ) stabilizing small molecules as anti-cancer drugs has created a flurry of activity on various aspects of these molecules. Telomestatin and oxazole telomestatin derivatives (OTD) are some of the most prominent of such molecules, yet the underlying dynamics of their interactions with GQ and the extent of heterogeneities in these interactions are not known. We performed single molecule measurements to study binding kinetics, rotational freedom, and dwell time distributions of a Cy5-labeled OTD (L1Cy5–7OTD) as it interacted with several different GQ structures. Our measurements show that L1Cy5–7OTD dwells on more stable GQ for longer times and binds to such GQ with higher frequency. The dwell times showed a broad distribution, but were longer than a minute for a significant fraction of molecules (characteristic dwell time τ = 192 ± 15 s and τ = 98 ± 15 s for the more and less stable GQ, respectively). In addition, L1Cy5–7OTD might be able to bind to GQ in at least two different primary orientations and occasionally transition between these orientations. The dwell time in one of these orientations was significantly longer than that in the other one, suggesting different stabilities for different binding orientations. PMID:27899628

  15. Theory of single photon on demand from a single molecule source.

    Science.gov (United States)

    He, Yong; Barkai, Eli

    2006-11-21

    We consider the theory of single photon on demand from a two level atom or molecule source. Using optical Bloch equations and the generating function formalism we investigate three approaches to single photon control: (i) the square laser pulse; (ii) the square modulation of absorption frequency; and (iii) the rapid adiabatic following approach investigated in the experiments of Brunel et al., Phys. Rev. Lett., 1999, 83, 2722. We discuss the conditions for obtaining the maximum of the probability of emission of a single photon and a pair of photons, under the constrains of finite field strength and finite interaction time with excitation field. We obtain analytical expression for the probability of emitting zero, one, and two photons for the square pulse, and discuss semi-classical and strongly quantum limiting cases. Numerical results obtained from the generating function formalism are compared with experimental results showing that the two level system approach is suitable for the description of cryogenic temperature single molecules, and that experiments were conducted very close to the optimal conditions.

  16. Giant Suppression of Photobleaching for Single Molecule Detection via the Purcell Effect

    Science.gov (United States)

    2013-11-18

    Giant Suppression of Photobleaching for Single Molecule Detection via the Purcell Effect Hu Cang,†,‡ Yongmin Liu,†,§,∥ Yuan Wang,† Xiaobo Yin,†,⊥ and...Information ABSTRACT: We report giant suppression of photobleaching and a prolonged lifespan of single fluorescent molecules via the Purcell effect in... Purcell effect to manipulate photochemical reactions at the subwavelength scale. KEYWORDS: Nano-optics, single-molecule fluorescence spectroscopy

  17. SINGLE MOLECULE APPROACHES TO BIOLOGY, 2010 GORDON RESEARCH CONFERENCE, JUNE 27-JULY 2, 2010, ITALY

    Energy Technology Data Exchange (ETDEWEB)

    Professor William Moerner

    2010-07-09

    The 2010 Gordon Conference on Single-Molecule Approaches to Biology focuses on cutting-edge research in single-molecule science. Tremendous technical developments have made it possible to detect, identify, track, and manipulate single biomolecules in an ambient environment or even in a live cell. Single-molecule approaches have changed the way many biological problems are addressed, and new knowledge derived from these approaches continues to emerge. The ability of single-molecule approaches to avoid ensemble averaging and to capture transient intermediates and heterogeneous behavior renders them particularly powerful in elucidating mechanisms of biomolecular machines: what they do, how they work individually, how they work together, and finally, how they work inside live cells. The burgeoning use of single-molecule methods to elucidate biological problems is a highly multidisciplinary pursuit, involving both force- and fluorescence-based methods, the most up-to-date advances in microscopy, innovative biological and chemical approaches, and nanotechnology tools. This conference seeks to bring together top experts in molecular and cell biology with innovators in the measurement and manipulation of single molecules, and will provide opportunities for junior scientists and graduate students to present their work in poster format and to exchange ideas with leaders in the field. A number of excellent poster presenters will be selected for short oral talks. Topics as diverse as single-molecule sequencing, DNA/RNA/protein interactions, folding machines, cellular biophysics, synthetic biology and bioengineering, force spectroscopy, new method developments, superresolution imaging in cells, and novel probes for single-molecule imaging will be on the program. Additionally, the collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings in the beauty of the Il Ciocco site in

  18. pyFRET: A Python Library for Single Molecule Fluorescence Data Analysis

    OpenAIRE

    Murphy, Rebecca R.; Jackson, Sophie E.; Klenerman, David

    2014-01-01

    Single molecule F\\"orster resonance energy transfer (smFRET) is a powerful experimental technique for studying the properties of individual biological molecules in solution. However, as adoption of smFRET techniques becomes more widespread, the lack of available software, whether open source or commercial, for data analysis, is becoming a significant issue. Here, we present pyFRET, an open source Python package for the analysis of data from single-molecule fluorescence experiments from freely...

  19. Photon counting imaging and centroiding with an electron-bombarded CCD using single molecule localisation software

    OpenAIRE

    Hirvonen, Liisa Maija; Barber, Matthew; Suhling, Klaus

    2016-01-01

    Photon event centroiding in photon counting imaging and single-molecule localisation in super-resolution fluorescence microscopy share many traits. Although photon event centroiding has traditionally been performed with simple single-iteration algorithms, we recently reported that iterative fitting algorithms originally developed for single-molecule localisation fluorescence microscopy work very well when applied to centroiding photon events imaged with an MCP-intensified CMOS camera. Here, w...

  20. Diversity of Chemical Mechanisms in Thioredoxin Catalysis Revealed by Single-Molecule Force Spectroscopy

    OpenAIRE

    2009-01-01

    Thioredoxins (Trxs) are oxidoreductase enzymes, present in all organisms, that catalyze the reduction of disulfide bonds in proteins. By applying a calibrated force to a substrate disulfide, the chemical mechanisms of Trx catalysis can be examined in detail at the single-molecule level. Here we use single-molecule force-clamp spectroscopy to explore the chemical evolution of Trx catalysis by probing the chemistry of eight different Trx enzymes. All Trxs show a characteristic Michaelis-Menten ...

  1. Modulation of homochiral Dy(III) complexes: single-molecule magnets with ferroelectric properties.

    Science.gov (United States)

    Li, Xi-Li; Chen, Chun-Lai; Gao, Yu-Liang; Liu, Cai-Ming; Feng, Xiang-Li; Gui, Yang-Hai; Fang, Shao-Ming

    2012-11-12

    Homochiral Dy(III) complexes: by changing the ligand-to-metal ratio, enantiomeric pairs of a Dy(III) complex of different nuclearity could be obtained. The mono- and dinuclear complexes exhibit characteristics of single-molecule magnets and different slow magnetic relaxation processes. In addition, the dinuclear complexes exhibit ferroelectric behavior, thus representing the first chiral polynuclear lanthanide-based single-molecule magnets with ferroelectric properties.

  2. Deciphering the Structure and Function of Nuclear Pores Using Single-Molecule Fluorescence Approaches.

    Science.gov (United States)

    Musser, Siegfried M; Grünwald, David

    2016-05-22

    Due to its central role in macromolecular trafficking and nucleocytoplasmic information transfer, the nuclear pore complex (NPC) has been studied in great detail using a wide spectrum of methods. Consequently, many aspects of its architecture, general function, and role in the life cycle of a cell are well understood. Over the last decade, fluorescence microscopy methods have enabled the real-time visualization of single molecules interacting with and transiting through the NPC, allowing novel questions to be examined with nanometer precision. While initial single-molecule studies focused primarily on import pathways using permeabilized cells, it has recently proven feasible to investigate the export of mRNAs in living cells. Single-molecule assays can address questions that are difficult or impossible to answer by other means, yet the complexity of nucleocytoplasmic transport requires that interpretation be based on a firm genetic, biochemical, and structural foundation. Moreover, conceptually simple single-molecule experiments remain technically challenging, particularly with regard to signal intensity, signal-to-noise ratio, and the analysis of noise, stochasticity, and precision. We discuss nuclear transport issues recently addressed by single-molecule microscopy, evaluate the limits of existing assays and data, and identify open questions for future studies. We expect that single-molecule fluorescence approaches will continue to be applied to outstanding nucleocytoplasmic transport questions, and that the approaches developed for NPC studies are extendable to additional complex systems and pathways within cells.

  3. Time and Frequency Resolved Nanoscale Chemical Imaging of Dimercaptostilbene on Silver

    CERN Document Server

    El-Khoury, Patrick Z; Hess, Wayne P

    2014-01-01

    Non-resonant tip-enhanced Raman images of dimercaptostilbene on silver reveal that different vibrational resonances of the reporter are selectively enhanced at different sites on the metal substrate. Sequentially recorded images track molecular diffusion within the diffraction-limited laser spot which illuminates the substrate. In effect, the recorded time resolved (dt = 10 s) pixelated images (25 nm x 8 cm-1) broadcast molecule-local field interactions which take place on much finer scales.

  4. Super-resolved time-frequency analysis of wideband backscattered data

    DEFF Research Database (Denmark)

    Moore, John; Ling, H.

    1995-01-01

    A time-frequency super-resolution procedure is presented for processing wideband backscattered data containing both scattering center and natural resonance information. In this procedure, Prony's method is first applied in the frequency domain to locate scattering centers. The data is processed one...

  5. Mode-resolved frequency comb interferometry for high-accuracy long distance measurement

    NARCIS (Netherlands)

    Van den Berg, S.A.; Van Eldik, S.; Bhattacharya, N.

    2015-01-01

    Optical frequency combs have developed into powerful tools for distance metrology. In this paper we demonstrate absolute long distance measurement using a single femtosecond frequency comb laser as a multi-wavelength source. By applying a high-resolution spectrometer based on a virtually imaged phas

  6. Single-molecule surface-enhanced Raman scattering of R6G in aqueous environment under non-resonance conditions

    Institute of Scientific and Technical Information of China (English)

    Enzhong Tan; Penggang Yin; Lidong Li; Lin Guo

    2011-01-01

    The single-molecule surface-enhanced Raman scattering (SERS) spectra of Rhodamine 6G (R6G) in an aqueous environment under non-resonance conditions are studied. Series of spectra are recorded in time-mapping mode, and intensity fluctuations of SERS signals and spectral diffusion are observed. The correlations between the presence frequency of SERS spectra and number of hot spots as well as the quantity of molecules in scattering volume are examined thoroughly. The results indicate that only molecules located at hot spots produce good signal-to-noise ratio Raman spectra and the origin of fluctuating SERS signals are mainly ascribed to the movement of hot spots.%@@ The single-molecule surface-enhanced Raman scattering(SERS) spectra of Rhodamine 6G(R6G) in anaqueous environment under non-resonance conditions are studied.Series of spectra are recorded in timemapping mode,and intensity fluctuations of SERS signals and spectral diffusion are observed.The correlations between the presence frequency of SERS spectra and number of hot spots as well as the quantity of molecules in scattering volume are examined thoroughly.

  7. Spaced-Resolved Electron Density of Aluminum Plasma Produced by Frequency-Tripled Laser

    Institute of Scientific and Technical Information of China (English)

    Yang Boqian; Han Shensheng; Zhang Jiyan; Zheng Zhijian; Yang Guohong; Yang Jiaming; Li Jun; Wang Yan

    2005-01-01

    By using the space-resolved spectrograph, the K-shell emission from laser-produced plasma was investigated. Electron density profiles along the normal direction of the target surface in aluminum laser-plasmas were obtained by two different diagnostic methods and compared with the profiles from the theoretical simulation of hydrodynamics code MULTI1D. The results corroborate the feasibility to obtain the electron density above the critical surface by the diagnostic method based on the Stark-broadened wings in the intermediately coupled plasmas.

  8. Condensation of a nickel tetranuclear cubane into a heptanuclear single-molecule magnet.

    Science.gov (United States)

    Petit, Sarah; Neugebauer, Petr; Pilet, Guillaume; Chastanet, Guillaume; Barra, Anne-Laure; Antunes, Arlei B; Wernsdorfer, Wolfgang; Luneau, Dominique

    2012-06-18

    A tetranuclear complex, [Ni(4)], with a cubane-like structure synthesized from hexafluoroacetylacetone gives, after drying at high temperature and treatment with pyridine, a heptanuclear nickel(II) complex, [Ni(7)]. The crystal structures of both compounds have been determined by single-crystal X-ray diffraction. Their magnetic properties have been studied by SQUID and μ-SQUID magnetometry as well as by high-frequency EPR spectroscopy (HF-EPR). For [Ni(4)], the temperature dependence of the magnetic susceptibility can be fitted by taking into account strong Ni···Ni ferromagnetic interactions which lead to an S = 4 ground-state spin, in good agreement with the HF-EPR study. For [Ni(7)], the temperature dependence of the magnetic susceptibility shows that the Ni···Ni ferromagnetic interactions are kept within the metal core. However, it was not possible to fit this with a clear set of parameters, and the ground-state spin was undetermined. The field dependence of the magnetization indicates an S = 7 ground-state spin at high field. In contrast, the temperature dependence of the magnetic susceptibility indicates a ground-state spin of S = 6 or even S = 5. These results agree with complicated high-frequency EPR spectra which have been ascribed to the superposition of signals from the ground spin multiplet and from an excited spin multiplet very close in energy, with the excited state having a larger S value than the ground state. Very low temperature studies show that only the heptanuclear complex behaves as a single-molecule magnet.

  9. Measuring molecular reorientation at liquid surfaces with time-resolved sum-frequency spectroscopy: a theoretical framework.

    Science.gov (United States)

    Nienhuys, Han-Kwang; Bonn, Mischa

    2009-05-28

    A theoretical framework is presented for the design and analysis of ultrafast time- and polarization-resolved surface vibrational spectroscopy, aimed at elucidating surface molecular reorientational motion in real time. Vibrational excitation with linearly polarized light lifts the azimuthal symmetry of the surface transition-dipole distribution, causing marked, time-dependent changes in the surface sum-frequency generation (SFG) intensity. The subsequent recovery of the SFG signal generally reflects both vibrational relaxation and reorientational motion of surface molecules. We present experimental schemes that allow direct quantification of the time scale of surface molecular reorientational diffusive motion.

  10. Molecular order at polymer interfaces measured by broad-bandwidth vibrationally-resolved sum frequency generation spectroscopy.

    Science.gov (United States)

    Wilson, Philip T.; Briggman, Kimberly A.; Stephenson, John C.; Wallace, William E.; Richter, Lee J.

    2001-03-01

    Broad-bandwidth vibrationally-resolved sum frequency generation (VR-SFG)spectroscopy has been used to measure the molecular orientation distribution at polymer/dielectric interfaces. A novel three layer microcavity structure of polystyrene (i.e.,PS)/spin-on hydrogen silsesquioxane dielectric (i.e.,spin-on glass)/Au has been developed in which manipulation of Fresnel factors through the variation of dielectric thickness allows unique spectroscopic study of either the free or buried polymer interface. Chemically specific VR-SFG spectroscopy of the phenyl groups of PS reveals opposite absolute orientations of these groups for the two interfaces, each directed away from the bulk of the PS film.

  11. Multicolour single molecule imaging in cells with near infra-red dyes.

    Directory of Open Access Journals (Sweden)

    Christopher J Tynan

    Full Text Available BACKGROUND: The autofluorescence background of biological samples impedes the detection of single molecules when imaging. The most common method of reducing the background is to use evanescent field excitation, which is incompatible with imaging beyond the surface of biological samples. An alternative would be to use probes that can be excited in the near infra-red region of the spectrum, where autofluorescence is low. Such probes could also increase the number of labels that can be imaged in multicolour single molecule microscopes. Despite being widely used in ensemble imaging, there is a currently a shortage of information available for selecting appropriate commercial near infra-red dyes for single molecule work. It is therefore important to characterise available near infra-red dyes relevant to multicolour single molecule imaging. METHODOLOGY/PRINCIPAL FINDINGS: A range of commercially available near infra-red dyes compatible with multi-colour imaging was screened to find the brightest and most photostable candidates. Image series of immobilised samples of the brightest dyes (Alexa 700, IRDye 700DX, Alexa 790 and IRDye 800CW were analysed to obtain the mean intensity of single dye molecules, their photobleaching rates and long period blinking kinetics. Using the optimum dye pair, we have demonstrated for the first time widefield, multi-colour, near infra-red single molecule imaging using a supercontinuum light source in MCF-7 cells. CONCLUSIONS/SIGNIFICANCE: We have demonstrated that near infra-red dyes can be used to avoid autofluorescence background in samples where restricting the illumination volume of visible light fails or is inappropriate. We have also shown that supercontinuum sources are suited to single molecule multicolour imaging throughout the 470-1000 nm range. Our measurements of near infra-red dye properties will enable others to select optimal dyes for single molecule imaging.

  12. DNA origami as biocompatible surface to match single-molecule and ensemble experiments.

    Science.gov (United States)

    Gietl, Andreas; Holzmeister, Phil; Grohmann, Dina; Tinnefeld, Philip

    2012-08-01

    Single-molecule experiments on immobilized molecules allow unique insights into the dynamics of molecular machines and enzymes as well as their interactions. The immobilization, however, can invoke perturbation to the activity of biomolecules causing incongruities between single molecule and ensemble measurements. Here we introduce the recently developed DNA origami as a platform to transfer ensemble assays to the immobilized single molecule level without changing the nano-environment of the biomolecules. The idea is a stepwise transfer of common functional assays first to the surface of a DNA origami, which can be checked at the ensemble level, and then to the microscope glass slide for single-molecule inquiry using the DNA origami as a transfer platform. We studied the structural flexibility of a DNA Holliday junction and the TATA-binding protein (TBP)-induced bending of DNA both on freely diffusing molecules and attached to the origami structure by fluorescence resonance energy transfer. This resulted in highly congruent data sets demonstrating that the DNA origami does not influence the functionality of the biomolecule. Single-molecule data collected from surface-immobilized biomolecule-loaded DNA origami are in very good agreement with data from solution measurements supporting the fact that the DNA origami can be used as biocompatible surface in many fluorescence-based measurements.

  13. Blinking effect and the use of quantum dots in single molecule spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rombach-Riegraf, Verena; Oswald, Peter; Bienert, Roland; Petersen, Jan [Albert-Ludwigs-Universitaet Freiburg, Institut fuer Physikalische Chemie, Albertstrasse 23a, 79104 Freiburg (Germany); Domingo, M.P. [Instituto de Carboquimica (CSIC), Miguel Luesma 4, 50018 Zaragoza (Spain); Pardo, Julian [Grupo Apoptosis, Inmunidad y Cancer, Departamento Bioquimica y Biologia Molecular y Celular, Fac. Ciencias, Universidad de Zaragoza, Zaragoza (Spain); Fundacion Aragon I-D (ARAID), Gobierno de Aragon, Zaragoza (Spain); Immune Effector Cells Group, Aragon Health Research Institute (IIS Aragon), Biomedical Research Centre of Aragon (CIBA) Fundacion Aragon I-D - ARAID, Gobierno de Aragon, Zaragoza (Spain); Graeber, P. [Albert-Ludwigs-Universitaet Freiburg, Institut fuer Physikalische Chemie, Albertstrasse 23a, 79104 Freiburg (Germany); Galvez, E.M., E-mail: eva@icb.csic.es [Instituto de Carboquimica (CSIC), Miguel Luesma 4, 50018 Zaragoza (Spain); Immune Effector Cells Group, Aragon Health Research Institute (IIS Aragon), Biomedical Research Centre of Aragon (CIBA) Fundacion Aragon I-D - ARAID, Gobierno de Aragon, Zaragoza (Spain)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer It is possible to eliminate the blinking effect of a water-soluble QD. Black-Right-Pointing-Pointer We provide a direct method to study protein function and dynamics at the single level. Black-Right-Pointing-Pointer QD, potent tool for single molecule studies of biochemical and biological processes. -- Abstract: Luminescent semiconductor nanocrystals (quantum dots, QD) have unique photo-physical properties: high photostability, brightness and narrow size-tunable fluorescence spectra. Due to their unique properties, QD-based single molecule studies have become increasingly more popular during the last years. However QDs show a strong blinking effect (random and intermittent light emission), which may limit their use in single molecule fluorescence studies. QD blinking has been widely studied and some hypotheses have been done to explain this effect. Here we summarise what is known about the blinking effect in QDs, how this phenomenon may affect single molecule studies and, on the other hand, how the 'on'/'off' states can be exploited in diverse experimental settings. In addition, we present results showing that site-directed binding of QD to cysteine residues of proteins reduces the blinking effect. This option opens a new possibility of using QDs to study protein-protein interactions and dynamics by single molecule fluorescence without modifying the chemical composition of the solution or the QD surface.

  14. Single-molecule electrical contacts on silicon electrodes under ambient conditions

    Science.gov (United States)

    Aragonès, Albert C.; Darwish, Nadim; Ciampi, Simone; Sanz, Fausto; Gooding, J. Justin; Díez-Pérez, Ismael

    2017-04-01

    The ultimate goal in molecular electronics is to use individual molecules as the active electronic component of a real-world sturdy device. For this concept to become reality, it will require the field of single-molecule electronics to shift towards the semiconducting platform of the current microelectronics industry. Here, we report silicon-based single-molecule contacts that are mechanically and electrically stable under ambient conditions. The single-molecule contacts are prepared on silicon electrodes using the scanning tunnelling microscopy break-junction approach using a top metallic probe. The molecular wires show remarkable current-voltage reproducibility, as compared to an open silicon/nano-gap/metal junction, with current rectification ratios exceeding 4,000 when a low-doped silicon is used. The extension of the single-molecule junction approach to a silicon substrate contributes to the next level of miniaturization of electronic components and it is anticipated it will pave the way to a new class of robust single-molecule circuits.

  15. Experimental and Computational Characterization of Biological Liquid Crystals: A Review of Single-Molecule Bioassays

    Directory of Open Access Journals (Sweden)

    Sungsoo Na

    2009-09-01

    Full Text Available Quantitative understanding of the mechanical behavior of biological liquid crystals such as proteins is essential for gaining insight into their biological functions, since some proteins perform notable mechanical functions. Recently, single-molecule experiments have allowed not only the quantitative characterization of the mechanical behavior of proteins such as protein unfolding mechanics, but also the exploration of the free energy landscape for protein folding. In this work, we have reviewed the current state-of-art in single-molecule bioassays that enable quantitative studies on protein unfolding mechanics and/or various molecular interactions. Specifically, single-molecule pulling experiments based on atomic force microscopy (AFM have been overviewed. In addition, the computational simulations on single-molecule pulling experiments have been reviewed. We have also reviewed the AFM cantilever-based bioassay that provides insight into various molecular interactions. Our review highlights the AFM-based single-molecule bioassay for quantitative characterization of biological liquid crystals such as proteins.

  16. Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions.

    Science.gov (United States)

    Li, Xiaohui; Hu, Duan; Tan, Zhibing; Bai, Jie; Xiao, Zongyuan; Yang, Yang; Shi, Jia; Hong, Wenjing

    2017-04-01

    The major challenges of molecular electronics are the understanding and manipulation of the electron transport through the single-molecule junction. With the single-molecule break junction techniques, including scanning tunneling microscope break junction technique and mechanically controllable break junction technique, the charge transport through various single-molecule and supramolecular junctions has been studied during the dynamic fabrication and continuous characterization of molecular junctions. This review starts from the charge transport characterization of supramolecular junctions through a variety of noncovalent interactions, such as hydrogen bond, π-π interaction, and electrostatic force. We further review the recent progress in constructing highly conductive molecular junctions via chemical reactions, the response of molecular junctions to external stimuli, as well as the application of break junction techniques in controlling and monitoring chemical reactions in situ. We suggest that beyond the measurement of single molecular conductance, the single-molecule break junction techniques provide a promising access to study molecular assembly and chemical reactions at the single-molecule scale.

  17. Single-molecule imaging and manipulation of biomolecular machines and systems.

    Science.gov (United States)

    Iino, Ryota; Iida, Tatsuya; Nakamura, Akihiko; Saita, Ei-Ichiro; You, Huijuan; Sako, Yasushi

    2017-08-05

    Biological molecular machines support various activities and behaviors of cells, such as energy production, signal transduction, growth, differentiation, and migration. We provide an overview of single-molecule imaging methods involving both small and large probes used to monitor the dynamic motions of molecular machines in vitro (purified proteins) and in living cells, and single-molecule manipulation methods used to measure the forces, mechanical properties and responses of biomolecules. We also introduce several examples of single-molecule analysis, focusing primarily on motor proteins and signal transduction systems. Single-molecule analysis is a powerful approach to unveil the operational mechanisms both of individual molecular machines and of systems consisting of many molecular machines. Quantitative, high-resolution single-molecule analyses of biomolecular systems at the various hierarchies of life will help to answer our fundamental question: "What is life?" This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Next-Generation DNA Curtains for Single-Molecule Studies of Homologous Recombination.

    Science.gov (United States)

    Soniat, Michael M; Myler, Logan R; Schaub, Jeffrey M; Kim, Yoori; Gallardo, Ignacio F; Finkelstein, Ilya J

    2017-01-01

    Homologous recombination (HR) is a universally conserved DNA double-strand break repair pathway. Single-molecule fluorescence imaging approaches have revealed new mechanistic insights into nearly all aspects of HR. These methods are especially suited for studying protein complexes because multicolor fluorescent imaging can parse out subassemblies and transient intermediates that associate with the DNA substrates on the millisecond to hour timescales. However, acquiring single-molecule datasets remains challenging because most of these approaches are designed to measure one molecular reaction at a time. The DNA curtains platform facilitates high-throughput single-molecule imaging by organizing arrays of DNA molecules on the surface of a microfluidic flowcell. Here, we describe a second-generation UV lithography-based protocol for fabricating flowcells for DNA curtains. This protocol greatly reduces the challenges associated with assembling DNA curtains and paves the way for the rapid acquisition of large datasets from individual single-molecule experiments. Drawing on our recent studies of human HR, we also provide an overview of how DNA curtains can be used for observing facilitated protein diffusion, processive enzyme translocation, and nucleoprotein filament dynamics on single-stranded DNA. Together, these protocols and case studies form a comprehensive introduction for other researchers that may want to adapt DNA curtains for high-throughput single-molecule studies of DNA replication, transcription, and repair. © 2017 Elsevier Inc. All rights reserved.

  19. Single-molecule analysis of fluorescent carbon dots towards localization-based super-resolution microscopy

    Science.gov (United States)

    Verma, Navneet C.; Khan, Syamantak; Nandi, Chayan K.

    2016-12-01

    The advancement of high-resolution bioimaging has always been dependent on the discovery of bright and easily available fluorescent probes. Fluorescent carbon nanodots, an interesting class of relatively new nanomaterials, have emerged as a versatile alternative due to their superior optical properties, non-toxicity, cell penetrability and easy routes to synthesis. Although a plethora of reports is available on bioimaging using carbon dots, single-molecule-based super-resolution imaging is rare in the literature. In this study, we have systematically characterized the single-molecule fluorescence of three carbon dots and compared them with a standard fluorescent probe. Each of these carbon dots showed a long-lived dark state in the presence of an electron acceptor. The electron transfer mechanism was investigated in single-molecule as well as in ensemble experiments. The average on-off rate between the fluorescent bright and dark states, which is one of the important parameters for single-molecule localization-based super-resolution microscopy, was measured by changing the laser power. We report that the photon budget and on-off rate of these carbon dots were good enough to achieve single-molecule localization with a precision of ~35 nm.

  20. DNA origami as biocompatible surface to match single-molecule and ensemble experiments

    Science.gov (United States)

    Gietl, Andreas; Holzmeister, Phil; Grohmann, Dina; Tinnefeld, Philip

    2012-01-01

    Single-molecule experiments on immobilized molecules allow unique insights into the dynamics of molecular machines and enzymes as well as their interactions. The immobilization, however, can invoke perturbation to the activity of biomolecules causing incongruities between single molecule and ensemble measurements. Here we introduce the recently developed DNA origami as a platform to transfer ensemble assays to the immobilized single molecule level without changing the nano-environment of the biomolecules. The idea is a stepwise transfer of common functional assays first to the surface of a DNA origami, which can be checked at the ensemble level, and then to the microscope glass slide for single-molecule inquiry using the DNA origami as a transfer platform. We studied the structural flexibility of a DNA Holliday junction and the TATA-binding protein (TBP)-induced bending of DNA both on freely diffusing molecules and attached to the origami structure by fluorescence resonance energy transfer. This resulted in highly congruent data sets demonstrating that the DNA origami does not influence the functionality of the biomolecule. Single-molecule data collected from surface-immobilized biomolecule-loaded DNA origami are in very good agreement with data from solution measurements supporting the fact that the DNA origami can be used as biocompatible surface in many fluorescence-based measurements. PMID:22523083

  1. Dissecting contact mechanics from quantum interference in single-molecule junctions of stilbene derivatives.

    Science.gov (United States)

    Aradhya, Sriharsha V; Meisner, Jeffrey S; Krikorian, Markrete; Ahn, Seokhoon; Parameswaran, Radha; Steigerwald, Michael L; Nuckolls, Colin; Venkataraman, Latha

    2012-03-14

    Electronic factors in molecules such as quantum interference and cross-conjugation can lead to dramatic modulation and suppression of conductance in single-molecule junctions. Probing such effects at the single-molecule level requires simultaneous measurements of independent junction properties, as conductance alone cannot provide conclusive evidence of junction formation for molecules with low conductivity. Here, we compare the mechanics of the conducting para-terminated 4,4'-di(methylthio)stilbene and moderately conducting 1,2-bis(4-(methylthio)phenyl)ethane to that of insulating meta-terminated 3,3'-di(methylthio)stilbene single-molecule junctions. We simultaneously measure force and conductance across single-molecule junctions and use force signatures to obtain independent evidence of junction formation and rupture in the meta-linked cross-conjugated molecule even when no clear low-bias conductance is measured. By separately quantifying conductance and mechanics, we identify the formation of atypical 3,3'-di(methylthio)stilbene molecular junctions that are mechanically stable but electronically decoupled. While theoretical studies have envisaged many plausible systems where quantum interference might be observed, our experiments provide the first direct quantitative study of the interplay between contact mechanics and the distinctively quantum mechanical nature of electronic transport in single-molecule junctions.

  2. Elucidating low-frequency vibrational dynamics in calcite and water with time-resolved third-harmonic generation spectroscopy.

    Science.gov (United States)

    Wang, Liang; Liu, Weimin; Fang, Chong

    2015-07-14

    Low-frequency vibrations are foundational for material properties including thermal conductivity and chemical reactivity. To resolve the intrinsic molecular conformational dynamics in condensed phase, we implement time-resolved third-harmonic generation (TRTHG) spectroscopy to unravel collective skeletal motions in calcite, water, and aqueous salt solution in situ. The lifetime of three Raman-active modes in polycrystalline calcite at 155, 282 and 703 cm(-1) is found to be ca. 1.6 ps, 1.3 ps and 250 fs, respectively. The lifetime difference is due to crystallographic defects and anharmonic effects. By incorporating a home-built wire-guided liquid jet, we apply TRTHG to investigate pure water and ZnCl2 aqueous solution, revealing ultrafast dynamics of water intermolecular stretching and librational bands below 500 cm(-1) and a characteristic 280 cm(-1) vibrational mode in the ZnCl4(H2O)2(2-) complex. TRTHG proves to be a compact and versatile technique that directly uses the 800 nm fundamental laser pulse output to capture ultrafast low-frequency vibrational motion snapshots in condensed-phase materials including the omnipresent water, which provides the important time dimension to spectral characterization of molecular structure-function relationships.

  3. Trigonal antiprismatic Co(ii) single molecule magnets with large uniaxial anisotropies: importance of Raman and tunneling mechanisms.

    Science.gov (United States)

    Zhang, Yuan-Zhu; Gómez-Coca, Silvia; Brown, Andrew J; Saber, Mohamed R; Zhang, Xuan; Dunbar, Kim R

    2016-10-19

    The air-stable mononuclear Co(ii) compounds [Co(II)(Tpm)2][ClO4]2 (1, Tpm = tris(pyrazol-1-yl)methane), [Co(II)(Tpm)2][BPh4]2·2MeCN (2) with trigonal antiprismatic geometry (trigonally elongated octahedral geometry) are reported. Magnetic and theoretical studies reveal that the complexes exhibit single-molecule magnet behavior with uniaxial anisotropy and a huge energy difference between ground and first excited Karmers' doublets (∼200 cm(-1)). Under applied DC fields, compounds 1 and 2 exhibit frequency and temperature dependence of the imaginary susceptibility. The fit of the data to an Orbach relaxation process yields effective energy barriers of 30.6(1) and 44.7(6) cm(-1) for 1 and 2, respectively, but there is no real state at that energy. The inclusion of tunneling, direct and Raman relaxation processes leads to the conclusion that the inclusion of an Orbach process is not required to provide a good fit to the data. More interestingly, a detailed study of the dependence of the relaxation time with field shows that for these Kramers' ions, tunneling is the predominant process at low temperature and that differences in the counteranion allow for a tuning of the Raman process at higher temperatures. These findings underscore the fact that large uniaxial anisotropy can be achieved in hexacoordinate Co(ii) trigonal antiprismatic complexes which is an unexplored geometry in mononuclear single molecule magnets.

  4. Theory of frequency-filtered and time-resolved N-photon correlations

    CERN Document Server

    del Valle, Elena; Laussy, Fabrice P; Tejedor, Carlos; Hartmann, Michael J

    2012-01-01

    A theory of correlations between N photons of given frequencies and detected at given time delays is presented. These correlation functions are usually too cumbersome to be computed explicitly. We show that they are obtained exactly through intensity correlations between two-level sensors in the limit of their vanishing coupling to the system. This allows the computation of correlation functions hitherto unreachable. The uncertainties in time and frequency of the detection, which are necessary variables to describe the system, are intrinsic to the theory. We illustrate the formalism with the Jaynes--Cummings model, showing how correlations of various peaks at zero or finite time delays bring new insights into the dynamics of open quantum systems.

  5. Spatially resolved simulation of a radio frequency driven micro atmospheric pressure plasma jet and its effluent

    CERN Document Server

    Hemke, Torben; Gebhardt, Markus; Brinkmann, Ralf Peter; Mussenbrock, Thomas

    2011-01-01

    Radio frequency driven plasma jets are frequently employed as efficient plasma sources for surface modification and other processes at atmospheric pressure. The \\textit{radio-frequency driven micro-scaled atmospheric pressure plasma jet} ($\\mu$APPJ) is a particular variant of that concept whose geometry allows direct optical access. In this work, the characteristics of a $\\mu$APPJ operated with a helium-oxygen mixture and its interaction with a helium environment are studied by numerical simulation. The density and temperature of the electrons, as well as the concentration of all reactive species are studied both in the jet itself and in its effluent. It is found that the effluent is essentially free of charge carriers but contains a substantial amount of activated oxygen (O, O$_3$ and O$_2(^1\\Delta)$).

  6. An improved regularization method to resolve integer ambiguity in rapid positioning using single frequency GPS receivers

    Institute of Scientific and Technical Information of China (English)

    OU Jikun; WANG Zhenjie

    2004-01-01

    A new approach is employed in GPS rapid positioning using several-epoch single frequency phase data. Firstly, the structure characteristic of the normal matrix in GPS rapid positioning is analyzed. Then, in the light of the characteristic, based on TIKHONOV regularization theorem, a new regularizer is designed to mitigate the ill-condition of the normal matrix. The accurate float ambiguity solutions and their MSEM (Mean Squared Error Matrix) are obtained using several-epoch single frequency phase data. Combined with LAMBDA method, the new approach was used to fix the integer ambiguities correctly and quickly using MSEM instead of the cofactor matrix of the ambiguities. Finally, a baseline over 3 km is taken as an example. The fixed integer ambiguities by the new approach using five epoch single frequency phase data are the same as those fixed by Bernese software using long time data. The success rate of fixing the integer ambiguities is 100 percent using 197 group data. Compared with the traditional methods, the new approach provides better accuracy and efficiency in GPS rapid positioning. So, the new approach has an extensive application outlook in deformation monitoring, pseudokinematic relative positioning, and attitude determination, etc.

  7. Quantitation of glucocorticoid receptor DNA-binding dynamics by single-molecule microscopy and FRAP.

    Directory of Open Access Journals (Sweden)

    Femke L Groeneweg

    Full Text Available Recent advances in live cell imaging have provided a wealth of data on the dynamics of transcription factors. However, a consistent quantitative description of these dynamics, explaining how transcription factors find their target sequences in the vast amount of DNA inside the nucleus, is still lacking. In the present study, we have combined two quantitative imaging methods, single-molecule microscopy and fluorescence recovery after photobleaching, to determine the mobility pattern of the glucocorticoid receptor (GR and the mineralocorticoid receptor (MR, two ligand-activated transcription factors. For dexamethasone-activated GR, both techniques showed that approximately half of the population is freely diffusing, while the remaining population is bound to DNA. Of this DNA-bound population about half the GRs appeared to be bound for short periods of time (∼ 0.7 s and the other half for longer time periods (∼ 2.3 s. A similar pattern of mobility was seen for the MR activated by aldosterone. Inactive receptors (mutant or antagonist-bound receptors show a decreased DNA binding frequency and duration, but also a higher mobility for the diffusing population. Likely, very brief (≤ 1 ms interactions with DNA induced by the agonists underlie this difference in diffusion behavior. Surprisingly, different agonists also induce different mobilities of both receptors, presumably due to differences in ligand-induced conformational changes and receptor complex formation. In summary, our data provide a consistent quantitative model of the dynamics of GR and MR, indicating three types of interactions with DNA, which fit into a model in which frequent low-affinity DNA binding facilitates the search for high-affinity target sequences.

  8. Highly sensitive, non-invasive detection of colorectal cancer mutations using single molecule, third generation sequencing.

    Science.gov (United States)

    Russo, Giancarlo; Patrignani, Andrea; Poveda, Lucy; Hoehn, Frederic; Scholtka, Bettina; Schlapbach, Ralph; Garvin, Alex M

    2015-12-01

    Colorectal cancer (CRC) represents one of the most prevalent and lethal malignant neoplasms and every individual of age 50 and above should undergo regular CRC screening. Currently, the most effective preventive screening procedure to detect adenomatous polyps, the precursors to CRC, is colonoscopy. Since every colorectal cancer starts as a polyp, detecting all polyps and removing them is crucial. By exactly doing that, colonoscopy reduces CRC incidence by 80%, however it is an invasive procedure that might have unpleasant and, in rare occasions, dangerous side effects. Despite numerous efforts over the past two decades, a non-invasive screening method for the general population with detection rates for adenomas and CRC similar to that of colonoscopy has not yet been established. Recent advances in next generation sequencing technologies have yet to be successfully applied to this problem, because the detection of rare mutations has been hindered by the systematic biases due to sequencing context and the base calling quality of NGS. We present the first study that applies the high read accuracy and depth of single molecule, real time, circular consensus sequencing (SMRT-CCS) to the detection of mutations in stool DNA in order to provide a non-invasive, sensitive and accurate test for CRC. In stool DNA isolated from patients diagnosed with adenocarcinoma, we are able to detect mutations at frequencies below 0.5% with no false positives. This approach establishes a foundation for a non-invasive, highly sensitive assay to screen the population for CRC and the early stage adenomas that lead to CRC.

  9. Highly anisotropic rhenium(IV) complexes: new examples of mononuclear single-molecule magnets.

    Science.gov (United States)

    Martínez-Lillo, José; Mastropietro, Teresa F; Lhotel, Elsa; Paulsen, Carley; Cano, Joan; De Munno, Giovanni; Faus, Juan; Lloret, Francesc; Julve, Miguel; Nellutla, Saritha; Krzystek, J

    2013-09-18

    The rhenium(IV) complex (NBu4)2[ReBr4(ox)] (1) (ox = oxalate and NBu4(+) = tetra-n-butylammonium cation) has been prepared and its crystal structure determined by X-ray diffraction. The structure is made up of discrete [ReBr4(ox)](2-) anions and bulky NBu4(+) cations. Each [ReBr4(ox)](2-) anion is surrounded by six NBu4(+) cations, which preclude any significant intermolecular contact between the anionic entities, the shortest rhenium···rhenium distance being 9.373(1) Å. Variable temperature dc and ac magnetic susceptibility measurements and field-dependent magnetization experiments on polycrystalline samples of 1 reveal the occurrence of highly anisotropic magnetically isolated Re(IV) centers (S(Re) = 3/2), which exhibit slow relaxation of the magnetization at very low temperatures in a dc field. Ac measurements conducted on a polycrystalline sample of the complex (NBu4)2[ReCl4(ox)] (2) [compound isostructural to 1 whose structure and dc magnetic susceptibility study were previously reported in Tomkiewicz, A.; Bartczak, T. J.; Kruszyński, R.; Mroziński, J. J. Mol. Struct. 2001, 595, 225] show a similar behavior, both complexes thus constituting new examples of mononuclear single-molecule magnets. High-frequency and -field electron paramagnetic resonance on polycrystalline samples of 1 and 2 and on single crystals of 2 allowed for the determination for the first time of the negative sign and confirmed a significant magnitude and rhombicity (E/D) of the zero-field splitting tensor of the [ReCl4(ox)](2-) and [ReBr4(ox)](2-) centers, originating from a combination of spin-orbit coupling and low molecular symmetry. D and E values of 1 and 2 were estimated through magnetization measurements and theoretically calculated through complete active space and density functional theory methodologies.

  10. A Mn₁₅ single-molecule magnet consisting of a supertetrahedron incorporated in a loop.

    Science.gov (United States)

    Moushi, Eleni E; Masello, Antonio; Wernsdorfer, Wolfgang; Nastopoulos, Vassilios; Christou, George; Tasiopoulos, Anastasios J

    2010-05-28

    Two new Mn(15) clusters consisting of a supertetrahedron which is incorporated in a loop are reported. The reactions of [Mn(O(2)CEt)(2)]·2H(2)O with the diols 1,3-propanediol (H(2)pd) or 2-methyl-1,3-propanediol (H(2)mpd) in the presence of KX (X = CN(-), Cl(-), Br(-), NO(3)(-), ClO(4)(-), OCN(-), SCN(-)) afforded compounds [Mn(15)K(mu(4)-O)(4)(O(2)CEt)(11)(pd)(12)(py)(2)] (1) and [Mn(15)K(mu(4)-O)(4)(O(2)CEt)(11)(mpd)(12)(py)(2)] (2). The structural core of 1 and 2 consists of a Mn(11) loop and a Mn(9)K supertetrahedron sharing a Mn(5) triangle. To the best of our knowledge, the structural motif of a supertetrahedron incorporated in a loop appears for the first time in metal cluster chemistry. Variable-temperature, solid-state direct current (dc) magnetic susceptibility studies in the 300-5 K range showed that the chi(M)T value increases with decreasing T suggesting the existence of predominant ferromagnetic exchange interactions and a relatively large ground state spin. This was confirmed by field-variable temperature magnetization measurements which were fitted using a matrix diagonalization method to give S approximately 23/2, g = 1.92(1) and D = -0.071(2) cm(-1). In addition, compound 1 displays frequency-dependent alternating current (ac) signals suggesting single-molecule magnetism (SMM) behaviour. This was proven by magnetization vs. dc field sweeps on single-crystals of 1·0.7py·1.3MeCN, which displayed sweep rate- and temperature-dependent hysteresis loops.

  11. Single-molecule spectroscopy for plastic electronics: materials analysis from the bottom-up.

    Science.gov (United States)

    Lupton, John M

    2010-04-18

    pi-conjugated polymers find a range of applications in electronic devices. These materials are generally highly disordered in terms of chain length and chain conformation, besides being influenced by a variety of chemical and physical defects. Although this characteristic can be of benefit in certain device applications, disorder severely complicates materials analysis. Accurate analytical techniques are, however, crucial to optimising synthetic procedures and assessing overall material purity. Fortunately, single-molecule spectroscopic techniques have emerged as an unlikely but uniquely powerful approach to unraveling intrinsic material properties from the bottom up. Building on the success of such techniques in the life sciences, single-molecule spectroscopy is finding increasing applicability in materials science, effectively enabling the dissection of the bulk down to the level of the individual molecular constituent. This article reviews recent progress in single molecule spectroscopy of conjugated polymers as used in organic electronics.

  12. Measurement and understanding of single-molecule break junction rectification caused by asymmetric contacts.

    Science.gov (United States)

    Wang, Kun; Zhou, Jianfeng; Hamill, Joseph M; Xu, Bingqian

    2014-08-01

    The contact effects of single-molecule break junctions on rectification behaviors were experimentally explored by a systematic control of anchoring groups of 1,4-disubstituted benzene molecular junctions. Single-molecule conductance and I-V characteristic measurements reveal a strong correlation between rectifying effects and the asymmetry in contacts. Analysis using energy band models and I-V calculations suggested that the rectification behavior is mainly caused by asymmetric coupling strengths at the two contact interfaces. Fitting of the rectification ratio by a modified Simmons model we developed suggests asymmetry in potential drop across the asymmetric anchoring groups as the mechanism of rectifying I-V behavior. This study provides direct experimental evidence and sheds light on the mechanisms of rectification behavior induced simply by contact asymmetry, which serves as an aid to interpret future single-molecule electronic behavior involved with asymmetric contact conformation.

  13. Vibrationally dependent electron-electron interactions in resonant electron transport through single-molecule junctions

    Science.gov (United States)

    Erpenbeck, A.; Härtle, R.; Bockstedte, M.; Thoss, M.

    2016-03-01

    We investigate the role of electronic-vibrational coupling in resonant electron transport through single-molecule junctions, taking into account that the corresponding coupling strengths may depend on the charge and excitation state of the molecular bridge. Within an effective-model Hamiltonian approach for a molecule with multiple electronic states, this requires to extend the commonly used model and include vibrationally dependent electron-electron interaction. We use Born-Markov master equation methods and consider selected models to exemplify the effect of the additional interaction on the transport characteristics of a single-molecule junction. In particular, we show that it has a significant influence on local cooling and heating mechanisms, it may result in negative differential resistance, and it may cause pronounced asymmetries in the conductance map of a single-molecule junction.

  14. From single-molecule spectroscopy to super-resolution imaging of the neuron: a review

    Science.gov (United States)

    Laine, Romain F.; Kaminski Schierle, Gabriele S.; van de Linde, Sebastian; Kaminski, Clemens F.

    2016-06-01

    For more than 20 years, single-molecule spectroscopy has been providing invaluable insights into nature at the molecular level. The field has received a powerful boost with the development of the technique into super-resolution imaging methods, ca. 10 years ago, which overcome the limitations imposed by optical diffraction. Today, single molecule super-resolution imaging is routinely used in the study of macromolecular function and structure in the cell. Concomitantly, computational methods have been developed that provide information on numbers and positions of molecules at the nanometer-scale. In this overview, we outline the technical developments that have led to the emergence of localization microscopy techniques from single-molecule spectroscopy. We then provide a comprehensive review on the application of the technique in the field of neuroscience research.

  15. Assembly and diploid architecture of an individual human genome via single-molecule technologies.

    Science.gov (United States)

    Pendleton, Matthew; Sebra, Robert; Pang, Andy Wing Chun; Ummat, Ajay; Franzen, Oscar; Rausch, Tobias; Stütz, Adrian M; Stedman, William; Anantharaman, Thomas; Hastie, Alex; Dai, Heng; Fritz, Markus Hsi-Yang; Cao, Han; Cohain, Ariella; Deikus, Gintaras; Durrett, Russell E; Blanchard, Scott C; Altman, Roger; Chin, Chen-Shan; Guo, Yan; Paxinos, Ellen E; Korbel, Jan O; Darnell, Robert B; McCombie, W Richard; Kwok, Pui-Yan; Mason, Christopher E; Schadt, Eric E; Bashir, Ali

    2015-08-01

    We present the first comprehensive analysis of a diploid human genome that combines single-molecule sequencing with single-molecule genome maps. Our hybrid assembly markedly improves upon the contiguity observed from traditional shotgun sequencing approaches, with scaffold N50 values approaching 30 Mb, and we identified complex structural variants (SVs) missed by other high-throughput approaches. Furthermore, by combining Illumina short-read data with long reads, we phased both single-nucleotide variants and SVs, generating haplotypes with over 99% consistency with previous trio-based studies. Our work shows that it is now possible to integrate single-molecule and high-throughput sequence data to generate de novo assembled genomes that approach reference quality.

  16. Electrochemistry and bioelectrochemistry towards the single-molecule level: Theoretical notions and systems

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Chi, Qijin; Albrecht, Tim

    2005-01-01

    of metallic and semiconductor-based nanoparticles, nano-arrays, nanotubes, and nanopits. Others are based on self-assembled molecular monolayers. The latter extend to bioelectrochemical systems with redox metalloproteins and DNA-based molecules as targets. We overview here some recent achievements in areas...... of interfacial electrochemical ET systems, mapped to the nanoscale and single-molecule levels. Focus is on both experimental and theoretical studies in our group. Systems addressed are organized monolayers of redox active transition metal complexes, and metalloproteins and metalloenzymes on single-crystal Au(111...... have been supported by new theoretical frames, which extend established theory of interfacial electrochemical ET. The electrochemical nanoscale and single-molecule systems discussed are compared with other recent nanoscale and single-molecule systems with conspicuous device-like properties...

  17. Orbital-selective single molecule excitation and spectroscopy based on plasmon-exciton coupling

    CERN Document Server

    Imada, Hiroshi; Imai-Imada, Miyabi; Kawahara, Shota; Kimura, Kensuke; Kim, Yousoo

    2016-01-01

    The electronic excitation of molecules triggers diverse phenomena such as luminescence and photovoltaic effects, which are the bases of various energy-converting devices. Understanding and control of the excitations at the single-molecule level are long standing targets, however, they have been hampered by the limited spatial resolution in optical probing techniques. Here we investigate the electronic excitation of a single molecule with sub-molecular precision using a localised plasmon at the tip apex of a scanning tunnelling microscope (STM) as an excitation probe. Coherent energy transfer between the plasmon and molecular excitons is discovered when the plasmon is located in the proximity of isolated molecules, which is corroborated by a theoretical analysis. The polarised plasmonic field enables selective excitation of an electronic transition between anisotropic frontier molecular orbitals. Our findings have established the foundation of a novel single-molecule spectroscopy with STM, providing an integra...

  18. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique

    Science.gov (United States)

    Huang, Cancan; Jevric, Martyn; Borges, Anders; Olsen, Stine T.; Hamill, Joseph M.; Zheng, Jue-Ting; Yang, Yang; Rudnev, Alexander; Baghernejad, Masoud; Broekmann, Peter; Petersen, Anne Ugleholdt; Wandlowski, Thomas; Mikkelsen, Kurt V.; Solomon, Gemma C.; Brøndsted Nielsen, Mogens; Hong, Wenjing

    2017-05-01

    Charge transport by tunnelling is one of the most ubiquitous elementary processes in nature. Small structural changes in a molecular junction can lead to significant difference in the single-molecule electronic properties, offering a tremendous opportunity to examine a reaction on the single-molecule scale by monitoring the conductance changes. Here, we explore the potential of the single-molecule break junction technique in the detection of photo-thermal reaction processes of a photochromic dihydroazulene/vinylheptafulvene system. Statistical analysis of the break junction experiments provides a quantitative approach for probing the reaction kinetics and reversibility, including the occurrence of isomerization during the reaction. The product ratios observed when switching the system in the junction does not follow those observed in solution studies (both experiment and theory), suggesting that the junction environment was perturbing the process significantly. This study opens the possibility of using nano-structured environments like molecular junctions to tailor product ratios in chemical reactions.

  19. Biophysical Insights from Temperature-Dependent Single-Molecule Förster Resonance Energy Transfer

    Science.gov (United States)

    Holmstrom, Erik D.; Nesbitt, David J.

    2016-05-01

    Single-molecule fluorescence microscopy techniques can be used in combination with micrometer length-scale temperature control and Förster resonance energy transfer (FRET) in order to gain detailed information about fundamental biophysical phenomena. In particular, this combination of techniques has helped foster the development of remarkable quantitative tools for studying both time- and temperature-dependent structural kinetics of biopolymers. Over the past decade, multiple research efforts have successfully incorporated precise spatial and temporal control of temperature into single-molecule FRET (smFRET)-based experiments, which have uncovered critical thermodynamic information on a wide range of biological systems such as conformational dynamics of nucleic acids. This review provides an overview of various temperature-dependent smFRET approaches from our laboratory and others, highlighting efforts in which such methods have been successfully applied to studies of single-molecule nucleic acid folding.

  20. Structure from Fleeting Illumination of Faint Spinning Objects in Flight with Application to Single Molecules

    CERN Document Server

    Fung, Russell; Saldin, Dilano K; Ourmazd, Abbas

    2008-01-01

    There are many instances when the structure of a weakly-scattering spinning object in flight must be determined to high resolution. Examples range from comets to nanoparticles and single molecules. The latter two instances are the subject of intense current interest. Substantial progress has recently been made in illuminating spinning single particles in flight with powerful X-ray bursts to determine their structure with the ultimate goal of determining the structure of single molecules. However, proposals to reconstruct the molecular structure from diffraction "snapshots" of unknown orientation require ~1000x more signal than available from next-generation sources. Using a new approach, we demonstrate the recovery of the structure of a weakly scattering macromolecule at the anticipated next-generation X-ray source intensities. Our work closes a critical gap in determining the structure of single molecules and nanoparticles by X-ray methods, and opens the way to reconstructing the structure of spinning, or ra...

  1. Single-molecule analysis of DNA replication in Xenopus egg extracts.

    Science.gov (United States)

    Yardimci, Hasan; Loveland, Anna B; van Oijen, Antoine M; Walter, Johannes C

    2012-06-01

    The recent advent in single-molecule imaging and manipulation methods has made a significant impact on the understanding of molecular mechanisms underlying many essential cellular processes. Single-molecule techniques such as electron microscopy and DNA fiber assays have been employed to study the duplication of genome in eukaryotes. Here, we describe a single-molecule assay that allows replication of DNA attached to the functionalized surface of a microfluidic flow cell in a soluble Xenopus leavis egg extract replication system and subsequent visualization of replication products via fluorescence microscopy. We also explain a method for detection of replication proteins, through fluorescently labeled antibodies, on partially replicated DNA immobilized at both ends to the surface.

  2. Single molecule detection using charge-coupled device array technology. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  3. Shedding light on protein folding, structural and functional dynamics by single molecule studies

    DEFF Research Database (Denmark)

    Bavishi, Krutika; Hatzakis, Nikos

    2014-01-01

    The advent of advanced single molecule measurements unveiled a great wealth of dynamic information revolutionizing our understanding of protein dynamics and behavior in ways unattainable by conventional bulk assays. Equipped with the ability to record distribution of behaviors rather than the mean...... property of a population, single molecule measurements offer observation and quantification of the abundance, lifetime and function of multiple protein states. They also permit the direct observation of the transient and rarely populated intermediates in the energy landscape that are typically averaged out...... in non-synchronized ensemble measurements. Single molecule studies have thus provided novel insights about how the dynamic sampling of the free energy landscape dictates all aspects of protein behavior; from its folding to function. Here we will survey some of the state of the art contributions...

  4. Single-Molecule Investigations of Morphology and Mass Transport Dynamics in Nanostructured Materials

    Science.gov (United States)

    Higgins, Daniel A.; Park, Seok Chan; Tran-Ba, Khanh-Hoa; Ito, Takashi

    2015-07-01

    Nanostructured materials such as mesoporous metal oxides and phase-separated block copolymers form the basis for new monolith, membrane, and thin film technologies having applications in energy storage, chemical catalysis, and separations. Mass transport plays an integral role in governing the application-specific performance characteristics of many such materials. The majority of methods employed in their characterization provide only ensemble data, often masking the nanoscale, molecular-level details of materials morphology and mass transport. Single-molecule fluorescence methods offer direct routes to probing these characteristics on a single-molecule/single-nanostructure basis. This article provides a review of single-molecule studies focused on measurements of anisotropic diffusion, adsorption, partitioning, and confinement in nanostructured materials. Experimental methods covered include confocal and wide-field fluorescence microscopy. The results obtained promise to deepen our understanding of mass transport mechanisms in nanostructures, thus aiding in the realization of advanced materials systems.

  5. Biophysical Insights from Temperature-Dependent Single-Molecule Förster Resonance Energy Transfer.

    Science.gov (United States)

    Holmstrom, Erik D; Nesbitt, David J

    2016-05-27

    Single-molecule fluorescence microscopy techniques can be used in combination with micrometer length-scale temperature control and Förster resonance energy transfer (FRET) in order to gain detailed information about fundamental biophysical phenomena. In particular, this combination of techniques has helped foster the development of remarkable quantitative tools for studying both time- and temperature-dependent structural kinetics of biopolymers. Over the past decade, multiple research efforts have successfully incorporated precise spatial and temporal control of temperature into single-molecule FRET (smFRET)-based experiments, which have uncovered critical thermodynamic information on a wide range of biological systems such as conformational dynamics of nucleic acids. This review provides an overview of various temperature-dependent smFRET approaches from our laboratory and others, highlighting efforts in which such methods have been successfully applied to studies of single-molecule nucleic acid folding.

  6. Single-molecule three-color FRET with both negligible spectral overlap and long observation time.

    Directory of Open Access Journals (Sweden)

    Sanghwa Lee

    Full Text Available Full understanding of complex biological interactions frequently requires multi-color detection capability in doing single-molecule fluorescence resonance energy transfer (FRET experiments. Existing single-molecule three-color FRET techniques, however, suffer from severe photobleaching of Alexa 488, or its alternative dyes, and have been limitedly used for kinetics studies. In this work, we developed a single-molecule three-color FRET technique based on the Cy3-Cy5-Cy7 dye trio, thus providing enhanced observation time and improved data quality. Because the absorption spectra of three fluorophores are well separated, real-time monitoring of three FRET efficiencies was possible by incorporating the alternating laser excitation (ALEX technique both in confocal microscopy and in total-internal-reflection fluorescence (TIRF microscopy.

  7. Single-molecule force-conductance spectroscopy of hydrogen-bonded complexes

    Science.gov (United States)

    Pirrotta, Alessandro; De Vico, Luca; Solomon, Gemma C.; Franco, Ignacio

    2017-03-01

    The emerging ability to study physical properties at the single-molecule limit highlights the disparity between what is observable in an ensemble of molecules and the heterogeneous contributions of its constituent parts. A particularly convenient platform for single-molecule studies are molecular junctions where forces and voltages can be applied to individual molecules, giving access to a series of electromechanical observables that can form the basis of highly discriminating multidimensional single-molecule spectroscopies. Here, we computationally examine the ability of force and conductance to inform about molecular recognition events at the single-molecule limit. For this, we consider the force-conductance characteristics of a prototypical class of hydrogen bonded bimolecular complexes sandwiched between gold electrodes. The complexes consist of derivatives of a barbituric acid and a Hamilton receptor that can form up to six simultaneous hydrogen bonds. The simulations combine classical molecular dynamics of the mechanical deformation of the junction with non-equilibrium Green's function computations of the electronic transport. As shown, in these complexes hydrogen bonds mediate transport either by directly participating as a possible transport pathway or by stabilizing molecular conformations with enhanced conductance properties. Further, we observe that force-conductance correlations can be very sensitive to small changes in the chemical structure of the complexes and provide detailed information about the behavior of single molecules that cannot be gleaned from either measurement alone. In fact, there are regions during the elongation that are only mechanically active, others that are only conductance active, and regions where both force and conductance changes as the complex is mechanically manipulated. The implication is that force and conductance provide complementary information about the evolution of molecules in junctions that can be used to

  8. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current

    Science.gov (United States)

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C.

    2016-03-01

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.

  9. Resolving multipath interference in time-of-flight imaging via modulation frequency diversity and sparse regularization.

    Science.gov (United States)

    Bhandari, Ayush; Kadambi, Achuta; Whyte, Refael; Barsi, Christopher; Feigin, Micha; Dorrington, Adrian; Raskar, Ramesh

    2014-03-15

    Time-of-flight (ToF) cameras calculate depth maps by reconstructing phase shifts of amplitude-modulated signals. For broad illumination of transparent objects, reflections from multiple scene points can illuminate a given pixel, giving rise to an erroneous depth map. We report here a sparsity-regularized solution that separates K interfering components using multiple modulation frequency measurements. The method maps ToF imaging to the general framework of spectral estimation theory and has applications in improving depth profiles and exploiting multiple scattering.

  10. Understanding the physics of DNA using nanoscale single-molecule manipulation

    Science.gov (United States)

    Frey, Eric W.; Gooding, Ashton A.; Wijeratne, Sitara; Kiang, Ching-Hwa

    2012-10-01

    Processes for decoding the genetic information in cells, including transcription, replication, recombination and repair, involve the deformation of DNA from its equilibrium structures such as bending, stretching, twisting, and unzipping of the double helix. Single-molecule manipulation techniques have made it possible to control DNA conformation and simultaneously detect the induced changes, revealing a rich variety of mechanically-induced conformational changes and thermodynamic states. These single-molecule techniques helped us to reveal the physics of DNA and the processes involved in the passing on of the genetic code.

  11. Controlled switching of single-molecule junctions by mechanical motion of a phenyl ring

    Directory of Open Access Journals (Sweden)

    Yuya Kitaguchi

    2015-10-01

    Full Text Available Mechanical methods for single-molecule control have potential for wide application in nanodevices and machines. Here we demonstrate the operation of a single-molecule switch made functional by the motion of a phenyl ring, analogous to the lever in a conventional toggle switch. The switch can be actuated by dual triggers, either by a voltage pulse or by displacement of the electrode, and electronic manipulation of the ring by chemical substitution enables rational control of the on-state conductance. Owing to its simple mechanics, structural robustness, and chemical accessibility, we propose that phenyl rings are promising components in mechanical molecular devices.

  12. Highlights from Faraday Discussion 184: Single-Molecule Microscopy and Spectroscopy, London, UK, September 2015.

    Science.gov (United States)

    Gellings, E; Faez, S; Piatkowski, L

    2016-02-07

    The 2015 Faraday Discussion on single-molecule microscopy and spectroscopy brought together leading scientists involved in various topics of single-molecule research. It attracted almost a hundred delegates from a broad spectrum of backgrounds and experience levels - from experimentalists to theoreticians, from biologists to materials scientists, from masters students to Nobel Prize Laureates. The meeting was merely a reflection of how big of an impact the ability to detect individual molecules has had on science over the past quarter of a century. In the following we give an overview of the topics covered during this meeting and briefly highlight the content of each presentation.

  13. Single Molecule Science for Personalized Nanomedicine: Atomic Force Microscopy of Biopolymer-Protein Interactions

    Science.gov (United States)

    Hsueh, Carlin

    Nanotechnology has a unique and relatively untapped utility in the fields of medicine and dentistry at the level of single-biopolymer and -molecule diagnostics. In recent years atomic force microscopy (AFM) has garnered much interest due to its ability to obtain atomic-resolution of molecular structures and probe biophysical behaviors of biopolymers and proteins in a variety of biologically significant environments. The work presented in this thesis focuses on the nanoscale manipulation and observation of biopolymers to develop an innovative technology for personalized medicine while understanding complex biological systems. These studies described here primarily use AFM to observe biopolymer interactions with proteins and its surroundings with unprecedented resolution, providing a better understanding of these systems and interactions at the nanoscale. Transcriptional profiling, the measure of messenger RNA (mRNA) abundance in a single cell, is a powerful technique that detects "behavior" or "symptoms" at the tissue and cellular level. We have sought to develop an alternative approach, using our expertise in AFM and single molecule nanotechnology, to achieve a cost-effective high throughput method for sensitive detection and profiling of subtle changes in transcript abundance. The technique does not require amplification of the mRNA sample because the AFM provides three-dimensional views of molecules with unprecedented resolution, requires minimal sample preparation, and utilizes a simple tagging chemistry on cDNA molecules. AFM images showed collagen polymers in teeth and of Drebrin-A remodeling of filamentous actin structure and mechanics. AFM was used to image collagen on exposed dentine tubules and confirmed tubule occlusion with a desensitizing prophylaxis paste by Colgate-Palmolive. The AFM also superseded other microscopy tools in resolving F-actin helix remodeling and possible cooperative binding by a neuronal actin binding protein---Drebrin-A, an

  14. Spatially resolved optical-emission spectroscopy of a radio-frequency driven iodine plasma source

    Science.gov (United States)

    Dedrick, James; Doyle, Scott; Grondein, Pascaline; Aanesland, Ane

    2016-09-01

    Iodine is of interest for potential use as a propellant for spacecraft propulsion, and has become attractive as a replacement to xenon due to its similar mass and ionisation potential. Optical emission spectroscopy has been undertaken to characterise the emission from a low-pressure, radio-frequency driven inductively coupled plasma source operating in iodine with respect to axial distance across its transverse magnetic filter. The results are compared with axial profiles of the electron temperature and density for identical source conditions, and the spatial distribution of the emission intensity is observed to be closely correlated with the electron temperature. This work has been done within the LABEX Plas@Par project, and received financial state aid managed by the ``Agence Nationale de la Recherche'', as part of the ``Programme d'Investissements d'Avenir'' under the reference ANR-11-IDEX-0004-02.

  15. Nanosecond to submillisecond dynamics in dye-labeled single-stranded DNA, as revealed by ensemble measurements and photon statistics at single-molecule level.

    Science.gov (United States)

    Kaji, Takahiro; Ito, Syoji; Iwai, Shigenori; Miyasaka, Hiroshi

    2009-10-22

    Single-molecule and ensemble time-resolved fluorescence measurements were applied for the investigation of the conformational dynamics of single-stranded DNA, ssDNA, connected with a fluorescein dye by a C6 linker, where the motions both of DNA and the C6 linker affect the geometry of the system. From the ensemble measurement of the fluorescence quenching via photoinduced electron transfer with a guanine base in the DNA sequence, three main conformations were found in aqueous solution: a conformation unaffected by the guanine base in the excited state lifetime of fluorescein, a conformation in which the fluorescence is dynamically quenched in the excited-state lifetime, and a conformation leading to rapid quenching via nonfluorescent complex. The analysis by using the parameters acquired from the ensemble measurements for interphoton time distribution histograms and FCS autocorrelations by the single-molecule measurement revealed that interconversion in these three conformations took place with two characteristic time constants of several hundreds of nanoseconds and tens of microseconds. The advantage of the combination use of the ensemble measurements with the single-molecule detections for rather complex dynamic motions is discussed by integrating the experimental results with those obtained by molecular dynamics simulation.

  16. Coherent Anti-Stokes Raman Scattering Spectroscopy of Single Molecules in Solution

    Energy Technology Data Exchange (ETDEWEB)

    Sunney Xie, Wei Min, Chris Freudiger, Sijia Lu

    2012-01-18

    imaging based on endogenous contrast of haemoglobin. For all these applications, sensitivity is orders of magnitude higher than for spontaneous emission or absorption contrast, permitting nonfluorescent reporters for molecular imaging. Although we did not accomplish the original goal of detecting single-molecule by CARS, our quest for high sensitivity of nonlinear optical microscopy paid off in providing the two brand new enabling technologies. Both techniques were greatly benefited from the use of high frequency modulation for microscopy, which led to orders of magnitude increase in sensitivity. Extensive efforts have been made on optics and electronics to accomplish these breakthroughs.

  17. Blinking effect and the use of quantum dots in single molecule spectroscopy.

    Science.gov (United States)

    Rombach-Riegraf, Verena; Oswald, Peter; Bienert, Roland; Petersen, Jan; Domingo, M P; Pardo, Julian; Gräber, P; Galvez, E M

    2013-01-01

    Luminescent semiconductor nanocrystals (quantum dots, QD) have unique photo-physical properties: high photostability, brightness and narrow size-tunable fluorescence spectra. Due to their unique properties, QD-based single molecule studies have become increasingly more popular during the last years. However QDs show a strong blinking effect (random and intermittent light emission), which may limit their use in single molecule fluorescence studies. QD blinking has been widely studied and some hypotheses have been done to explain this effect. Here we summarise what is known about the blinking effect in QDs, how this phenomenon may affect single molecule studies and, on the other hand, how the "on"/"off" states can be exploited in diverse experimental settings. In addition, we present results showing that site-directed binding of QD to cysteine residues of proteins reduces the blinking effect. This option opens a new possibility of using QDs to study protein-protein interactions and dynamics by single molecule fluorescence without modifying the chemical composition of the solution or the QD surface.

  18. Optical detection of electrokinetically manipulated single molecules in a nanofluidic chip

    NARCIS (Netherlands)

    Parikesit, G.O.F.; Kutchoukov, V.G.; Bossche, A.; Young, I,T.; Garini, Y.

    2005-01-01

    We report on the progress of a novel nanofluidic device for detecting and manipulating single molecules in solution. This paper discusses the development of an earlier proposed molecule separation method, where electrokinetic forces separate different molecules based on their masses and charges.

  19. Nonequilibrium Chemical Effects in Single-Molecule SERS Revealed by Ab Initio Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Sean A.; Apra, Edoardo; Govind, Niranjan; Hess, Wayne P.; El-Khoury, Patrick Z.

    2017-02-03

    Recent developments in nanophotonics have paved the way for achieving significant advances in the realm of single molecule chemical detection, imaging, and dynamics. In particular, surface-enhanced Raman scattering (SERS) is a powerful analytical technique that is now routinely used to identify the chemical identity of single molecules. Understanding how nanoscale physical and chemical processes affect single molecule SERS spectra and selection rules is a challenging task, and is still actively debated. Herein, we explore underappreciated chemical phenomena in ultrasensitive SERS. We observe a fluctuating excited electronic state manifold, governed by the conformational dynamics of a molecule (4,4’-dimercaptostilbene, DMS) interacting with a metallic cluster (Ag20). This affects our simulated single molecule SERS spectra; the time trajectories of a molecule interacting with its unique local environment dictates the relative intensities of the observable Raman-active vibrational states. Ab initio molecular dynamics of a model Ag20-DMS system are used to illustrate both concepts in light of recent experimental results.

  20. 2012 Gordon Research Conference, Single molecule approaches to biology, July 15-20 2012

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Julio M. [Columbia Univ., New York, NY (United States)

    2012-04-20

    Single molecule techniques are rapidly occupying a central role in biological research at all levels. This transition was made possible by the availability and dissemination of robust techniques that use fluorescence and force probes to track the conformation of molecules one at a time, in vitro as well as in live cells. Single-molecule approaches have changed the way many biological problems are studied. These novel techniques provide previously unobtainable data on fundamental biochemical processes that are essential for all forms of life. The ability of single-molecule approaches to avoid ensemble averaging and to capture transient intermediates and heterogeneous behavior renders them particularly powerful in elucidating mechanisms of the molecular systems that underpin the functioning of living cells. Hence, our conference seeks to disseminate the implementation and use of single molecule techniques in the pursuit of new biological knowledge. Topics covered include: Molecular Motors on the Move; Origin And Fate Of Proteins; Physical Principles Of Life; Molecules and Super-resolution Microscopy; Nanoswitches In Action; Active Motion Or Random Diffusion?; Building Blocks Of Living Cells; From Molecular Mechanics To Physiology; Tug-of-war: Force Spectroscopy Of Single Proteins.

  1. Ninth international conference on hole burning, single molecule and related spectroscopies: science and applications (HBSM 2006)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This conference was organized around 9 sessions: -) single molecule, -) quantum optics, -) hole-burning materials and mechanisms, -) single nano-particle spectroscopy, -) dephasing and spectral diffusion, -) microwave photonics, -) biological systems, -) rare earth doped materials, -) novel laser sources. This document gathers only the slides of the presentations.

  2. Frozen-solution magnetisation dynamics of hexanuclear oxime-based MnIII single-molecule magnets

    DEFF Research Database (Denmark)

    Inglis, R.; Bendix, J.; Brock-Nannestad, T.

    2010-01-01

    Frozen solution SQUID measurements of the hexanuclear Single-Molecule Magnets [Mn6O2(Et-sao)(6)(EtOH)(6)(Me(2)benz)(2)] (1) and [Mn6O2(Et-sao)(6)(EtOH)(4)(H2O)(2)(benz)(2)] (2) allow the molecular and solid state contributions to the magnetic properties to be quantified...

  3. Single-molecule diodes with high rectification ratios through environmental control.

    Science.gov (United States)

    Capozzi, Brian; Xia, Jianlong; Adak, Olgun; Dell, Emma J; Liu, Zhen-Fei; Taylor, Jeffrey C; Neaton, Jeffrey B; Campos, Luis M; Venkataraman, Latha

    2015-06-01

    Molecular electronics aims to miniaturize electronic devices by using subnanometre-scale active components. A single-molecule diode, a circuit element that directs current flow, was first proposed more than 40 years ago and consisted of an asymmetric molecule comprising a donor-bridge-acceptor architecture to mimic a semiconductor p-n junction. Several single-molecule diodes have since been realized in junctions featuring asymmetric molecular backbones, molecule-electrode linkers or electrode materials. Despite these advances, molecular diodes have had limited potential for applications due to their low conductance, low rectification ratios, extreme sensitivity to the junction structure and high operating voltages. Here, we demonstrate a powerful approach to induce current rectification in symmetric single-molecule junctions using two electrodes of the same metal, but breaking symmetry by exposing considerably different electrode areas to an ionic solution. This allows us to control the junction's electrostatic environment in an asymmetric fashion by simply changing the bias polarity. With this method, we reliably and reproducibly achieve rectification ratios in excess of 200 at voltages as low as 370 mV using a symmetric oligomer of thiophene-1,1-dioxide. By taking advantage of the changes in the junction environment induced by the presence of an ionic solution, this method provides a general route for tuning nonlinear nanoscale device phenomena, which could potentially be applied in systems beyond single-molecule junctions.

  4. Detailed analysis of complex single molecule FRET data with the software MASH

    Science.gov (United States)

    Hadzic, Mélodie C. A. S.; Kowerko, Danny; Börner, Richard; Zelger-Paulus, Susann; Sigel, Roland K. O.

    2016-04-01

    The processing and analysis of surface-immobilized single molecule FRET (Förster resonance energy transfer) data follows systematic steps (e.g. single molecule localization, clearance of different sources of noise, selection of the conformational and kinetic model, etc.) that require a solid knowledge in optics, photophysics, signal processing and statistics. The present proceeding aims at standardizing and facilitating procedures for single molecule detection by guiding the reader through an optimization protocol for a particular experimental data set. Relevant features were determined from single molecule movies (SMM) imaging Cy3- and Cy5-labeled Sc.ai5γ group II intron molecules synthetically recreated, to test the performances of four different detection algorithms. Up to 120 different parameterizations per method were routinely evaluated to finally establish an optimum detection procedure. The present protocol is adaptable to any movie displaying surface-immobilized molecules, and can be easily reproduced with our home-written software MASH (multifunctional analysis software for heterogeneous data) and script routines (both available in the download section of www.chem.uzh.ch/rna).

  5. Quantifying and optimizing single-molecule switching nanoscopy at high speeds.

    Directory of Open Access Journals (Sweden)

    Yu Lin

    Full Text Available Single-molecule switching nanoscopy overcomes the diffraction limit of light by stochastically switching single fluorescent molecules on and off, and then localizing their positions individually. Recent advances in this technique have greatly accelerated the data acquisition speed and improved the temporal resolution of super-resolution imaging. However, it has not been quantified whether this speed increase comes at the cost of compromised image quality. The spatial and temporal resolution depends on many factors, among which laser intensity and camera speed are the two most critical parameters. Here we quantitatively compare the image quality achieved when imaging Alexa Fluor 647-immunolabeled microtubules over an extended range of laser intensities and camera speeds using three criteria - localization precision, density of localized molecules, and resolution of reconstructed images based on Fourier Ring Correlation. We found that, with optimized parameters, single-molecule switching nanoscopy at high speeds can achieve the same image quality as imaging at conventional speeds in a 5-25 times shorter time period. Furthermore, we measured the photoswitching kinetics of Alexa Fluor 647 from single-molecule experiments, and, based on this kinetic data, we developed algorithms to simulate single-molecule switching nanoscopy images. We used this software tool to demonstrate how laser intensity and camera speed affect the density of active fluorophores and influence the achievable resolution. Our study provides guidelines for choosing appropriate laser intensities for imaging Alexa Fluor 647 at different speeds and a quantification protocol for future evaluations of other probes and imaging parameters.

  6. Electron transfer behaviour of biological macromolecules towards the single-molecule level

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Grubb, Mikala; Hansen, Allan Glargaard

    2003-01-01

    on Au(111) by chemisorption via exposed sulfur-containing residues. Voltammetric, interfacial capacitance, x-ray photoelectron spectroscopy and microcantilever sensor data, together with in situ STM with single-molecule resolution, all point to a coherent view of monolayer organization with protein...

  7. Spectral multitude and spectral dynamics reflect changing conjugation length in single molecules of oligophenylenevinylenes

    KAUST Repository

    Kobayashi, Hiroyuki

    2012-01-01

    Single-molecule study of phenylenevinylene oligomers revealed distinct spectral forms due to different conjugation lengths which are determined by torsional defects. Large spectral jumps between different spectral forms were ascribed to torsional flips of a single phenylene ring. These spectral changes reflect the dynamic nature of electron delocalization in oligophenylenevinylenes and enable estimation of the phenylene torsional barriers. © 2012 The Owner Societies.

  8. A versatile low-temperature setup for the electrical characterization of single-molecule junctions

    NARCIS (Netherlands)

    Martin, C.A.; Smit, R.H.M.; Van Egmond, R.; Van der Zant, H.S.J.; Van Ruitenbeek, J.M.

    2011-01-01

    We present a modular high-vacuum setup for the electrical characterization of single molecules down to liquid helium temperatures. The experimental design is based on microfabricated mechanically controllable break junctions, which offer control over the distance of two electrodes via the bending of

  9. A general approach to break the concentration barrier in single-molecule imaging

    NARCIS (Netherlands)

    Loveland, Anna B.; Habuchi, Satoshi; Walter, Johannes C.; Oijen, Antoine M. van

    2012-01-01

    Single-molecule fluorescence imaging is often incompatible with physiological protein concentrations, as fluorescence background overwhelms an individual molecule’s signal. We solve this problem with a new imaging approach called PhADE (PhotoActivation, Diffusion and Excitation). A protein of intere

  10. Potential of protoporphyrin IX and metal derivatives for single molecule fluorescence studies

    Energy Technology Data Exchange (ETDEWEB)

    Hu Yi; Geissinger, Peter [Department of Chemistry and Biochemistry, Laboratory for Surface Studies, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI 53211 (United States); Woehl, Joerg C., E-mail: woehl@uwm.ed [Department of Chemistry and Biochemistry, Laboratory for Surface Studies, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI 53211 (United States)

    2011-03-15

    Metalloporphyrins are cofactors of a variety of proteins, and are often used as spectroscopic probes of the active site. Many high resolution techniques, such as single molecule spectroscopy, are based on fluorescence contrast and require the replacement of the native metalloporphyrin by a fluorescent analog. We have investigated the potential of several fluorescent analogs of heme, namely free-base protoporphyrin IX and its metal derivatives containing Zn, Sn, and Mg, for single molecule fluorescence studies by determining their room-temperature molecular absorption cross sections and fluorescence quantum yields. According to these data, free-base protoporphyrin IX and its Zn derivative, which have the highest fluorescence quantum yields, are the most suitable heme analogs for single molecule fluorescence studies. - Research highlights: Protoporphyrin IX and fluorescent metal derivatives for single molecule detection. Measurement of room temperature absorption cross sections for Q bands. Measurement of room temperature fluorescence quantum yields for Q bands. PPIX and Zn derivative have highest quantum yields for lowest-energy transition.

  11. Frontiers in Laser Cooling, Single-Molecule Biophysics, and Enrgy Science: A Talk by Carl Wieman

    Energy Technology Data Exchange (ETDEWEB)

    Wieman, Carl

    2008-08-30

    Carl Wieman presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.

  12. Large Conductance Switching in a Single-Molecule Device through Room Temperature Spin-Dependent Transport.

    Science.gov (United States)

    Aragonès, Albert C; Aravena, Daniel; Cerdá, Jorge I; Acís-Castillo, Zulema; Li, Haipeng; Real, José Antonio; Sanz, Fausto; Hihath, Josh; Ruiz, Eliseo; Díez-Pérez, Ismael

    2016-01-13

    Controlling the spin of electrons in nanoscale electronic devices is one of the most promising topics aiming at developing devices with rapid and high density information storage capabilities. The interface magnetism or spinterface resulting from the interaction between a magnetic molecule and a metal surface, or vice versa, has become a key ingredient in creating nanoscale molecular devices with novel functionalities. Here, we present a single-molecule wire that displays large (>10000%) conductance switching by controlling the spin-dependent transport under ambient conditions (room temperature in a liquid cell). The molecular wire is built by trapping individual spin crossover Fe(II) complexes between one Au electrode and one ferromagnetic Ni electrode in an organic liquid medium. Large changes in the single-molecule conductance (>100-fold) are measured when the electrons flow from the Au electrode to either an α-up or a β-down spin-polarized Ni electrode. Our calculations show that the current flowing through such an interface appears to be strongly spin-polarized, thus resulting in the observed switching of the single-molecule wire conductance. The observation of such a high spin-dependent conductance switching in a single-molecule wire opens up a new door for the design and control of spin-polarized transport in nanoscale molecular devices at room temperature.

  13. The more the merrier: high-throughput single-molecule techniques.

    Science.gov (United States)

    Hill, Flynn R; Monachino, Enrico; van Oijen, Antoine M

    2017-06-15

    The single-molecule approach seeks to understand molecular mechanisms by observing biomolecular processes at the level of individual molecules. These methods have led to a developing understanding that for many processes, a diversity of behaviours will be observed, representing a multitude of pathways. This realisation necessitates that an adequate number of observations are recorded to fully characterise this diversity. The requirement for large numbers of observations to adequately sample distributions, subpopulations, and rare events presents a significant challenge for single-molecule techniques, which by their nature do not typically provide very high throughput. This review will discuss many developing techniques which address this issue by combining nanolithographic approaches, such as zero-mode waveguides and DNA curtains, with single-molecule fluorescence microscopy, and by drastically increasing throughput of force-based approaches such as magnetic tweezers and laminar-flow techniques. These methods not only allow the collection of large volumes of single-molecule data in single experiments, but have also made improvements to ease-of-use, accessibility, and automation of data analysis. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  14. A new optical method for characterizing single molecule interactions based on dark field microscopy

    NARCIS (Netherlands)

    Dietrich, H.R.C.; Vermolen, B.J.; Rieger, B.; Young, I.T.; Garini, Y.

    2007-01-01

    Single-molecule techniques continue to gain in popularity in research disciplines such as the study of intermolecular interactions. These techniques provide information that otherwise would be lost by using bulk measurements that deal with a large number of molecules. We describe in this report the

  15. Single-Molecule Kinetics of λ Exonuclease Reveal Base Dependence and Dynamic Disorder

    NARCIS (Netherlands)

    Oijen, Antoine M. van; Blainey, Paul C.; Crampton, Donald J.; Richardson, Charles C.; Ellenberger, Tom; Xie, X. Sunney

    2003-01-01

    We used a multiplexed approach based on flow-stretched DNA to monitor the enzymatic digestion of λ-phage DNA by individual bacteriophage λ exonuclease molecules. Statistical analyses of multiple single-molecule trajectories observed simultaneously reveal that the catalytic rate is dependent on the l

  16. Single-molecule enzymatic analysis in a droplet-based microfluidic system

    NARCIS (Netherlands)

    Arayanarakool, R.; Shui, L.; Kengen, S.W.M.; Berg, van den A.; Eijkel, J.C.T.; Fujii, T.; Hibara, A.; Takeuchi, S.; Fukuba, T.

    2012-01-01

    The kinetic activity of individual enzyme molecules was determined in aqueous droplets generated in a nano- and microfluidic device. To avoid high background noise, the enzyme and substrate solution was confined into femtolitre carriers to achieve single-molecule encapsulation. The tiny droplets (f~

  17. Single-molecule tools for enzymology, structural biology, systems biology and nanotechnology: an update.

    Science.gov (United States)

    Widom, Julia R; Dhakal, Soma; Heinicke, Laurie A; Walter, Nils G

    2014-11-01

    Toxicology is the highly interdisciplinary field studying the adverse effects of chemicals on living organisms. It requires sensitive tools to detect such effects. After their initial implementation during the 1990s, single-molecule fluorescence detection tools were quickly recognized for their potential to contribute greatly to many different areas of scientific inquiry. In the intervening time, technical advances in the field have generated ever-improving spatial and temporal resolution and have enabled the application of single-molecule fluorescence to increasingly complex systems, such as live cells. In this review, we give an overview of the optical components necessary to implement the most common versions of single-molecule fluorescence detection. We then discuss current applications to enzymology and structural studies, systems biology, and nanotechnology, presenting the technical considerations that are unique to each area of study, along with noteworthy recent results. We also highlight future directions that have the potential to revolutionize these areas of study by further exploiting the capabilities of single-molecule fluorescence microscopy.

  18. Quantum interference effects at room temperature in OPV-based single-molecule junctions

    DEFF Research Database (Denmark)

    Arroyo, Carlos R.; Frisenda, Riccardo; Moth-Poulsen, Kasper;

    2013-01-01

    Interference effects on charge transport through an individual molecule can lead to a notable modulation and suppression on its conductance. In this letter, we report the observation of quantum interference effects occurring at room temperature in single-molecule junctions based on oligo(3...

  19. Electrostatic melting in a single-molecule field-effect transistor with applications in genomic identification

    Science.gov (United States)

    Vernick, Sefi; Trocchia, Scott M.; Warren, Steven B.; Young, Erik F.; Bouilly, Delphine; Gonzalez, Ruben L.; Nuckolls, Colin; Shepard, Kenneth L.

    2017-05-01

    The study of biomolecular interactions at the single-molecule level holds great potential for both basic science and biotechnology applications. Single-molecule studies often rely on fluorescence-based reporting, with signal levels limited by photon emission from single optical reporters. The point-functionalized carbon nanotube transistor, known as the single-molecule field-effect transistor, is a bioelectronics alternative based on intrinsic molecular charge that offers significantly higher signal levels for detection. Such devices are effective for characterizing DNA hybridization kinetics and thermodynamics and enabling emerging applications in genomic identification. In this work, we show that hybridization kinetics can be directly controlled by electrostatic bias applied between the device and the surrounding electrolyte. We perform the first single-molecule experiments demonstrating the use of electrostatics to control molecular binding. Using bias as a proxy for temperature, we demonstrate the feasibility of detecting various concentrations of 20-nt target sequences from the Ebolavirus nucleoprotein gene in a constant-temperature environment.

  20. Advances in single-molecule magnet surface patterning through microcontact printing

    NARCIS (Netherlands)

    Mannini, Matteo; Bonacchi, D.; Bonacchi, Daniele; Zobbi, Laura; Piras, Federica M.; Speets, E.A.; Caneschi, Andrea; Cornia, Andrea; Magnani, Agnese; Ravoo, B.J.; Reinhoudt, David; Sessoli, Roberta; Gatteschi, Dante

    2005-01-01

    We present an implementation of strategies to deposit single-molecule magnets (SMMs) using microcontact printing (uCP). We describe different approaches of CP to print stripes of a sulfur-functionalized dodecamanganese(III,IV) cluster on gold surfaces. Comparison by atomic force microscopy profile

  1. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    Science.gov (United States)

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  2. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    OpenAIRE

    Neuman, Keir C.; Nagy, Attila

    2008-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations.

  3. Real-time data acquisition incorporating high-speed software correlator for single-molecule spectroscopy.

    Science.gov (United States)

    Yang, L-L; Lee, H-Y; Wang, M-K; Lin, X-Y; Hsu, K-H; Chang, Y-R; Fann, W; White, J D

    2009-06-01

    Single-molecule spectroscopy and detection are powerful techniques for the study of single fluorescent particles and their interaction with their environment. We present a low-cost system for simultaneous real-time acquisition, storage of inter-photon arrival times and the calculation and display of the fluorescence time trace, autocorrelation function and distribution of delays histogram for single-molecule experiments. From a hardware perspective, in addition to a multi-core computer, only a standard low-cost counting board is required as processing is software-based. Software is written in a parallel programming environment with time crucial operations coded in ANSI-C. Crucial to system performance is a simple and efficient real-time autocorrelation algorithm (acf) optimized for the count rates (approximately 10(4) cps) encountered in single-molecule experiments. The algorithm's time complexity is independent of temporal resolution, which is maintained at all time delays. The system and algorithm's performance was validated by duplicating the signal from the photon detector and sending it to both the ordinary counter board and a commercial correlator simultaneously. The data acquisition system's robustness under typical single-molecule experimental conditions was tested by observing the diffusion of Rhodamine 6G molecules in deionized water.

  4. Theoretical Investigation of a Single Molecule Device:Geometrical Configurations and Electronic Properties

    Institute of Scientific and Technical Information of China (English)

    YUAN Zhe; SU Chang-Rong; ZHANG Shi-Zhong; LI Jia-Ming

    2004-01-01

    @@ Using the first-principle molecular dynamics simulations, we have studied the molecular geometrical configurations as well as the corresponding electronic structures of a single molecule device assembled by the mechanically controllable break junction technique with variations of the electrode distance. There are some very interesting features varying with the electrode distance.

  5. Probing the Conformational Landscape of DNA Polymerases Using Diffusion-Based Single-Molecule FRET

    NARCIS (Netherlands)

    Hohlbein, J.; Kapanidis, A.N.

    2016-01-01

    Monitoring conformational changes in DNA polymerases using single-molecule Förster resonance energy transfer (smFRET) has provided new tools for studying fidelity-related mechanisms that promote the rejection of incorrect nucleotides before DNA synthesis. In addition to the previously known open

  6. Photophysics of Fluorescent Probes for Single-Molecule Biophysics and Super-Resolution Imaging

    Science.gov (United States)

    Ha, Taekjip; Tinnefeld, Philip

    2012-05-01

    Single-molecule fluorescence spectroscopy and super-resolution microscopy are important elements of the ongoing technical revolution to reveal biochemical and cellular processes in unprecedented clarity and precision. Demands placed on the photophysical properties of the fluorophores are stringent and drive the choice of appropriate probes. Such fluorophores are not simple light bulbs of a certain color and brightness but instead have their own “personalities” regarding spectroscopic parameters, redox properties, size, water solubility, photostability, and several other factors. Here, we review the photophysics of fluorescent probes, both organic fluorophores and fluorescent proteins, used in applications such as particle tracking, single-molecule FRET, stoichiometry determination, and super-resolution imaging. Of particular interest is the thiol-induced blinking of Cy5, a curse for single-molecule biophysical studies that was later overcome using Trolox through a reducing/oxidizing system but a boon for super-resolution imaging owing to the controllable photoswitching. Understanding photophysics is critical in the design and interpretation of single-molecule experiments.

  7. Enhancing the blocking temperature in single-molecule magnets by incorporating 3d-5d exchange interactions

    DEFF Research Database (Denmark)

    Pedersen, Kasper Søndergaard; Schau-Magnussen, Magnus; Bendix, Jesper

    2010-01-01

    We report the first single-molecule magnet (SMM) to incorporate the [Os(CN)(6)](3-) moiety. The compound (1) has a trimeric, cyanide-bridged Mn(III)-Os(III)-Mn(III) skeleton in which Mn(III) designates a [Mn(5-Brsalen)(MeOH)](+) unit (5-Brsalen=N,N'-ethylenebis(5-bromosalicylideneiminato)). X......-ray crystallographic experiments reveal that 1 is isostructural with the Mn(III)-Fe(III)-Mn(III) analogue (2). Both compounds exhibit a frequency-dependent out-of-phase ¿''(T) alternating current (ac) susceptibility signal that is suggestive of SMM behaviour. From the Arrhenius expression, the effective barrier for 1...... for the design of a new generation of SMMs with enhanced SMM properties....

  8. High-Resolution Single-Molecule Fluorescence Imaging of Zeolite Aggregates within Real-Life Fluid Catalytic Cracking Particles**

    Science.gov (United States)

    Ristanović, Zoran; Kerssens, Marleen M; Kubarev, Alexey V; Hendriks, Frank C; Dedecker, Peter; Hofkens, Johan; Roeffaers, Maarten B J; Weckhuysen, Bert M

    2015-01-01

    Fluid catalytic cracking (FCC) is a major process in oil refineries to produce gasoline and base chemicals from crude oil fractions. The spatial distribution and acidity of zeolite aggregates embedded within the 50–150 μm-sized FCC spheres heavily influence their catalytic performance. Single-molecule fluorescence-based imaging methods, namely nanometer accuracy by stochastic chemical reactions (NASCA) and super-resolution optical fluctuation imaging (SOFI) were used to study the catalytic activity of sub-micrometer zeolite ZSM-5 domains within real-life FCC catalyst particles. The formation of fluorescent product molecules taking place at Brønsted acid sites was monitored with single turnover sensitivity and high spatiotemporal resolution, providing detailed insight in dispersion and catalytic activity of zeolite ZSM-5 aggregates. The results point towards substantial differences in turnover frequencies between the zeolite aggregates, revealing significant intraparticle heterogeneities in Brønsted reactivity. PMID:25504139

  9. Efficient calculation of time- and frequency-resolved four-wave-mixing signals.

    Science.gov (United States)

    Gelin, Maxim F; Egorova, Dassia; Domcke, Wolfgang

    2009-09-15

    "Four-wave-mixing" is the generic name for a family of nonlinear electronic and vibrational spectroscopies. These techniques are widely used to explore dissipation, dephasing, solvation, and interstate coupling mechanisms in various material systems. Four-wave-mixing spectroscopy needs a firm theoretical support, because it delivers information on material systems indirectly, through certain transients, which are measured as functions of carrier frequencies, durations, and relative time delays of the laser pulses. The observed transients are uniquely determined by the three-pulse-induced third-order polarization. There exist two conceptually different approaches to the calculation of the nonlinear polarization. In the standard perturbative approach to nonlinear spectroscopy, the third-order polarization is expressed in terms of the nonlinear response functions. As the material systems become more complex, the evaluation of the response functions becomes cumbersome and the calculation of the signals necessitates a number of approximations. Herein, we review alternative methods for the calculation of four-wave-mixing signals, in which the relevant laser pulses are incorporated into the system Hamiltonian and the driven system dynamics is simulated numerically exactly. The emphasis is on the recently developed equation-of-motion phase-matching approach (EOM-PMA), which allows us to calculate the three-pulse-induced third-order polarization in any phase-matching direction by performing three (with the rotating wave approximation) or seven (without the rotating wave approximation) independent propagations of the density matrix. The EOM-PMA is limited to weak laser fields (its domain of validity is equivalent to the approach based on the third-order response functions) but allows for arbitrary pulse durations and automatically accounts for pulse-overlap effects. As an illustration, we apply the EOM-PMA to the calculation of optical three-pulse photon-echo two

  10. Electrochemical setup - a unique chance to simultaneously control orbital energies and vibrational properties of single-molecule junctions with unprecedented efficiency

    CERN Document Server

    Baldea, Ioan

    2015-01-01

    Impressive advances in nanoscience permit nowadays to manipulate single molecules and broadly control many of their properties. Still, tuning the molecular charge and vibrational properties of single molecules embedded in nanojunctions in broad ranges escaped so far to an efficient control. By combining theoretical results with recent experimental data, we show that, under electrochemical control, it is possible to continuously drive a redox molecule (viologen) between almost perfect oxidized and reduced states. This yields an unprecedentedly efficient control on both vibrational frequencies and the surface-enhanced Raman scattering (SERS) intensities. The broad tuning achieved under electrochemical control by varying the overpotential ("gate potential") within experimentally accessible ranges contrasts to the case of two-terminal setups that require high biases, which real nanojunctions cannot withstand. The present study aim at stimulating concurrent transport and SERS measurements in electrochemical setup....

  11. Synthesis, structure, and magnetic properties of a [Mn22] wheel-like single-molecule magnet.

    Science.gov (United States)

    Murugesu, Muralee; Raftery, James; Wernsdorfer, Wolfgang; Christou, George; Brechin, Euan K

    2004-07-12

    The synthesis and magnetic properties of the compound [Mn(22)O(6)(OMe)(14)(O(2)CMe)(16)(tmp)(8)(HIm)(2)] 1 are reported. Complex 1 was prepared by treatment of [Mn(3)O(MeCO(2))(6)(HIm)(3)](MeCO(2)) (HIm = imidazole) with 1,1,1-tris(hydroxymethyl)propane (H(3)tmp) in MeOH. Complex 1.2MeOH crystallizes in the orthorhombic space group Pbca. The molecule consists of a metallic core of 2 Mn(IV), 18 Mn(III), and 2 Mn(II) ions linked by a combination of 6 micro(3)-bridging O(2)(-) ions, 14 micro(3)- and micro(2)-bridging MeO(-) ions, 16 micro-MeCO(2)(-) ligands, and 8 tmp(3)(-) ligands, which use their alkoxide arms to bridge in a variety of ways. The metal-oxygen core is best described as a wheel made from [Mn(3)O(4)] partial cubes and [Mn(3)O] triangles. Variable-temperature direct current (dc) magnetic susceptibility data were collected for complex 1 in the 1.8-300 K temperature range in a 1 T applied field. The chi(M)T value steadily decreases from 56 cm(3) K mol(-)(1) at 300 K to 48.3 cm(3) K mol(-)(1) at 30 K and then increases slightly to reach a maximum value of 48.6 cm(3) K mol(-)(1) at 15 K before dropping rapidly to 40.3 cm(3) K mol(-)(1) at 5 K. The ground-state spin of complex 1 was established by magnetization measurements in the 0.1-2.0 T and 1.80-4.00 K ranges. Fitting of the data by a matrix-diagonalization method to a model that assumes only the ground state is populated and incorporating only axial zero-field splitting (DS(z)()(2)), gave a best fit of S = 10, g = 1.96 and D = -0.10 cm(-)(1). The ac magnetization measurements performed on complex 1 in the 1.8-8 K range in a 3.5 G ac field oscillating at 50-1000 Hz showed frequency-dependent ac susceptibility signals below 3 K. Single-crystal hysteresis loop and relaxation measurements indicate loops whose coercivities are strongly temperature and time dependent, increasing with decreasing temperature and increasing field sweep rate, as expected for the superparamagnetic-like behavior of a single-molecule

  12. The manipulation of massive ro-vibronic superpositions using time-frequency-resolved coherent anti-Stokes Raman scattering (TFRCARS) from quantum control to quantum computing

    CERN Document Server

    Zadoyan, R; Lidar, D A; Apkarian, V A

    2001-01-01

    Molecular ro-vibronic coherences, joint energy-time distributions of quantum amplitudes, are selectively prepared, manipulated, and imaged in Time-Frequency-Resolved Coherent Anti-Stokes Raman Scattering (TFRCARS) measurements using femtosecond laser pulses. The studies are implemented in iodine vapor, with its thermally occupied statistical ro-vibrational density serving as initial state. The evolution of the massive ro-vibronic superpositions, consisting of 1000 eigenstates, is followed through two-dimensional images. The first- and second-order coherences are captured using time-integrated frequency-resolved CARS, while the third-order coherence is captured using time-gated frequency-resolved CARS. The Fourier filtering provided by time integrated detection projects out single ro-vibronic transitions, while time-gated detection allows the projection of arbitrary ro-vibronic superpositions from the coherent third-order polarization. Beside the control and imaging of chemistry, the controlled manipulation of...

  13. A spectroscopic case for SPSi detection: The third-row in a single molecule

    Science.gov (United States)

    Finney, Brian; Fortenberry, Ryan C.; Francisco, Joseph S.; Peterson, Kirk A.

    2016-09-01

    In moving beyond the second row of the periodic table for molecules of astronomical and atmospheric significance, the exploration of sulfur and phosphorus chemistry is essential. Additionally, silicon is abundant in most astrophysical environments and is a major component of most rocky bodies. The triatomic molecule composed of each of these atoms is therefore a tantalizing candidate for spectroscopic characterization for astrophysical reasons as well as gaining further understanding into the chemical physics of molecules that are not carbon-based. The current work employs high-level quantum chemical techniques to provide new insights into this simplest of heterogeneous third-row atom systems. The fundamental vibrational frequencies are all within the 350-600 cm-1 range and do not demonstrate strong anharmonicities. These frequencies, rotational constants, vibrationally excited state spectroscopic data, and related isotopic substitution information produced will aid in laboratory experimentation and, even potentially, telescopic observation since modern instruments possess the power to resolve extremely fine details.

  14. A single molecule magnet to single molecule magnet transformation via a solvothermal process: Fe4Dy2 → Fe6Dy3.

    Science.gov (United States)

    Chen, Sihuai; Mereacre, Valeriu; Anson, Christopher E; Powell, Annie K

    2016-01-01

    Two series of heterometallic Fe(III)-Ln(III) compounds, [FeLn(μ3-OH)2(mdea)4(m-NO2C6H4COO)8]·3MeCN where Ln = Y (1) and Dy (2) and [FeLn(μ4-O)3(μ3-O)(mdea)5(m-NO2C6H4COO)9]·3MeCN where Ln = Y (3) and Dy (4), were synthesized. Compounds 1 and 2 were obtained under ambient conditions, whereas 3 and 4 were obtained via a solvothermal transformation process by heating 1 or 2 at 120 °C in MeCN. The magnetic properties of all four compounds have been measured and show that compounds 2 and 4 containing Dy(III) ions exhibit slow relaxation of magnetization characteristic of Single Molecule Magnetic (SMM) behaviour.

  15. Organization of DNA partners and strand exchange mechanisms during Flp site-specific recombination analyzed by difference topology, single molecule FRET and single molecule TPM.

    Science.gov (United States)

    Ma, Chien-Hui; Liu, Yen-Ting; Savva, Christos G; Rowley, Paul A; Cannon, Brian; Fan, Hsiu-Fang; Russell, Rick; Holzenburg, Andreas; Jayaram, Makkuni

    2014-02-20

    Flp site-specific recombination between two target sites (FRTs) harboring non-homology within the strand exchange region does not yield stable recombinant products. In negatively supercoiled plasmids containing head-to-tail sites, the reaction produces a series of knots with odd-numbered crossings. When the sites are in head-to-head orientation, the knot products contain even-numbered crossings. Both types of knots retain parental DNA configuration. By carrying out Flp recombination after first assembling the topologically well defined Tn3 resolvase synapse, it is possible to determine whether these knots arise by a processive or a dissociative mechanism. The nearly exclusive products from head-to-head and head-to-tail oriented "non-homologous" FRT partners are a 4-noded knot and a 5-noded knot, respectively. The corresponding products from a pair of native (homologous) FRT sites are a 3-noded knot and a 4-noded catenane, respectively. These results are consistent with non-homology-induced two rounds of dissociative recombination by Flp, the first to generate reciprocal recombinants containing non-complementary base pairs and the second to produce parental molecules with restored base pairing. Single molecule fluorescence resonance energy transfer (smFRET) analysis of geometrically restricted FRTs, together with single molecule tethered particle motion (smTPM) assays of unconstrained FRTs, suggests that the sites are preferentially synapsed in an anti-parallel fashion. This selectivity in synapse geometry occurs prior to the chemical steps of recombination, signifying early commitment to a productive reaction path. The cumulative topological, smFRET and smTPM results have implications for the relative orientation of DNA partners and the directionality of strand exchange during recombination mediated by tyrosine site-specific recombinases.

  16. Studies of G-quadruplex DNA structures at the single molecule level

    DEFF Research Database (Denmark)

    Kragh, Sofie Louise

    2015-01-01

    Folding of G-quaduplex structures adopted by the human telomeric repeat is here studied by single molecule FRET microscopy. This method allows for the investigation of G-quadruplex structures and their conformational dynamic. Telomeres are located at the ends of our chromosomes and end in a single...... populations and thus providing more information than traditional ensemble experiments. Using single molecule FRET microscopy different aspects of G-quadruplex folding were investigated. We have obtained direct insight into G-quadruplex structural polymorphism both in K+ and Na+ solutions. Polymorphism have...... previously only been investigated in K+. Here, we observe significant polymorphism also in Na+. By investigating the dynamics of these conformational changes and comparing these findings with other experiments for G-quadruplexes with known topology we are able to identify different conformations and folding...

  17. Evidence of disorder in biological molecules from single molecule pulling experiments

    CERN Document Server

    Hyeon, Changbong; Thirumalai, D

    2014-01-01

    Heterogeneity in biological molecules, resulting in molecule-to-molecule variations in their dynamics and function, is an emerging theme. To elucidate the consequences of heterogeneous behavior at the single molecule level, we propose an exactly solvable model in which the unfolding rate due to mechanical force depends parametrically on an auxiliary variable representing an entropy barrier arising from fluctuations in internal dynamics. When the rate of fluctuations, a measure of dynamical disorder, is comparable to or smaller than the rate of force-induced unbinding, we show that there are two experimentally observable consequences: non-exponential survival probability at constant force, and a heavy-tailed rupture force distribution at constant loading rate. By fitting our analytical expressions to data from single molecule pulling experiments on proteins and DNA, we quantify the extent of disorder. We show that only by analyzing data over a wide range of forces and loading rates can the role of disorder due...

  18. The origin of relative intensity fluctuations in single-molecule tip-enhanced Raman spectroscopy.

    Science.gov (United States)

    Sonntag, Matthew D; Chulhai, Dhabih; Seideman, Tamar; Jensen, Lasse; Van Duyne, Richard P

    2013-11-13

    An explanation of the relative intensity fluctuations observed in single-molecule Raman experiments is described utilizing both single-molecule tip-enhanced Raman spectroscopy and time-dependent density functional theory calculations. No correlation is observed in mode to mode intensity fluctuations indicating that the changes in mode intensities are completely independent. Theoretical calculations provide convincing evidence that the fluctuations are not the result of diffusion, orientation, or local electromagnetic field gradients but rather are the result of subtle variations of the excited-state lifetime, energy, and geometry of the molecule. These variations in the excited-state properties will provide information on adsorbate-adsorbate and adsorbate-substrate interactions and may allow for inversion of experimental results to obtain these excited-state properties.

  19. Detection of Single Molecules Illuminated by a Light-Emitting Diode

    CERN Document Server

    Gerhardt, Ilja; Lamas-Linares, Antia; Kurtsiefer, Christian

    2011-01-01

    Optical detection and spectroscopy of single molecules has become an indispensable tool in biological imaging and sensing. Its success is based on fluorescence of organic dye molecules under carefully engineered laser illumination. In this paper we demonstrate optical detection of single molecules on a wide-field microscope with an illumination based on a commercially available, green light-emitting diode. The results are directly compared with laser illumination in the same experimental configuration. The setup and the limiting factors, such as light transfer to the sample, spectral filtering and the resulting signal-to-noise ratio are discussed. A theoretical and an experimental approach to estimate these parameters are presented. The results can be adapted to other single emitter and illumination schemes.

  20. Current rectification in a single molecule diode: the role of electrode coupling.

    Science.gov (United States)

    Sherif, Siya; Rubio-Bollinger, Gabino; Pinilla-Cienfuegos, Elena; Coronado, Eugenio; Cuevas, Juan Carlos; Agraït, Nicolás

    2015-07-24

    We demonstrate large rectification ratios (> 100) in single-molecule junctions based on a metal-oxide cluster (polyoxometalate), using a scanning tunneling microscope (STM) both at ambient conditions and at low temperature. These rectification ratios are the largest ever observed in a single-molecule junction, and in addition these junctions sustain current densities larger than 10(5) A cm(-2). By following the variation of the I-V characteristics with tip-molecule separation we demonstrate unambiguously that rectification is due to asymmetric coupling to the electrodes of a molecule with an asymmetric level structure. This mechanism can be implemented in other type of molecular junctions using both organic and inorganic molecules and provides a simple strategy for the rational design of molecular diodes.

  1. Supramolecular Chemistry and Mechanochemistry of Macromolecules: Recent Advances by Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Cheng, Bo; Cui, Shuxun

    2015-01-01

    Atomic force spectroscopy (AFM)-based single-molecule force spectroscopy (SMFS) was invented in the 1990s. Since then, SMFS has been developed into a powerful tool to study the inter- and intra-molecular interactions of macromolecules. Using SMFS, a number of problems in the field of supramolecular chemistry and mechanochemistry have been studied at the single-molecule level, which are not accessible by traditional ensemble characterization methods. In this review, the principles of SMFS are introduced, followed by the discussion of several problems of contemporary interest at the interface of supramolecular chemistry and mechanochemistry of macromolecules, including single-chain elasticity of macromolecules, interactions between water and macromolecules, interactions between macromolecules and solid surface, and the interactions in supramolecular polymers.

  2. Super-resolution Analysis of TCR-Dependent Signaling: Single-Molecule Localization Microscopy.

    Science.gov (United States)

    Barr, Valarie A; Yi, Jason; Samelson, Lawrence E

    2017-01-01

    Single-molecule localization microscopy (SMLM) comprises methods that produce super-resolution images from molecular locations of single molecules. These techniques mathematically determine the center of a diffraction-limited spot produced by a fluorescent molecule, which represents the most likely location of the molecule. Only a small cohort of well-separated molecules is visualized in a single image, and then many images are obtained from a single sample. The localizations from all the images are combined to produce a super-resolution picture of the sample. Here we describe the application of two methods, photoactivation localization microscopy (PALM) and direct stochastic optical reconstruction microscopy (dSTORM), to the study of signaling microclusters in T cells.

  3. Direct Measurement of Single-Molecule DNA Hybridization Dynamics with Single-Base Resolution.

    Science.gov (United States)

    He, Gen; Li, Jie; Ci, Haina; Qi, Chuanmin; Guo, Xuefeng

    2016-07-25

    Herein, we report label-free detection of single-molecule DNA hybridization dynamics with single-base resolution. By using an electronic circuit based on point-decorated silicon nanowires as electrical probes, we directly record the folding/unfolding process of individual hairpin DNAs with sufficiently high signal-to-noise ratio and bandwidth. These measurements reveal two-level current oscillations with strong temperature dependence, enabling us to determine the thermodynamic and kinetic properties of hairpin DNA hybridization. More importantly, successive, stepwise increases and decreases in device conductance at low temperature on a microsecond timescale are successfully observed, indicating a base-by-base unfolding/folding process. The process demonstrates a kinetic zipper model for DNA hybridization/dehybridization at the single base-pair level. This measurement capability promises a label-free single-molecule approach to probe biomolecular interactions with fast dynamics.

  4. Single-molecule diffusion and conformational dynamics by spatial integration of temporal fluctuations

    KAUST Repository

    Bayoumi, Maged Fouad

    2014-10-06

    Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields.

  5. Single-Molecule Diodes with High On/Off Ratios Through Environmental Control

    Science.gov (United States)

    Capozzi, Brian; Xia, Jianlong; Dell, Emma; Adak, Olgun; Liu, Zhen-Fei; Neaton, Jeffrey; Campos, Luis; Venkataraman, Latha

    2015-03-01

    Single-Molecule diodes were first proposed with an asymmetric molecule comprising a donor-bridge-acceptor architecture to mimic a semiconductor p-n junction. Progress in molecular electronics has led to the realization of several single-molecule diodes; these have relied on asymmetric molecular backbones, asymmetric molecule-electrode linkers, or asymmetric electrode materials. Despite these advances, molecular diodes have had limited potential for functional applications due to several pitfalls, including low rectification ratios (``on''/``off'' current ratios environment instead of an asymmetric molecule, we reproducibly achieve high rectification ratios at low operating voltages for molecular junctions based on a family of symmetric small-gap molecules. This technique serves as an unconventional approach for developing functional molecular-scale devices and probing their charge transport characteristics. Furthermore, this technique should be applicable to other nanoscale devices, providing a general route for tuning device properties.

  6. Inelastic transport and low-bias rectification in a single-molecule diode.

    Science.gov (United States)

    Hihath, Joshua; Bruot, Christopher; Nakamura, Hisao; Asai, Yoshihiro; Díez-Pérez, Ismael; Lee, Youngu; Yu, Luping; Tao, Nongjian

    2011-10-25

    Designing, controlling, and understanding rectification behavior in molecular-scale devices has been a goal of the molecular electronics community for many years. Here we study the transport behavior of a single molecule diode, and its nonrectifying, symmetric counterpart at low temperatures, and at both low and high biases to help elucidate the electron-phonon interactions and transport mechanisms in the rectifying system. We find that the onset of current rectification occurs at low biases, indicating a significant change in the elastic transport pathway. However, the peaks in the inelastic electron tunneling (IET) spectrum are antisymmetric about zero bias and show no significant changes in energy or intensity in the forward or reverse bias directions, indicating that despite the change in the elastic transmission probability there is little impact on the inelastic pathway. These results agree with first principles calculations performed to evaluate the IETS, which also allow us to identify which modes are active in the single molecule junction.

  7. Single molecule detection of 4-dimethylaminoazobenzene by surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Zhang, Z. L.; Yin, Y. F.; Jiang, J. W.; Mo, Y. J.

    2009-02-01

    4-Dimethylaminoazobenzene (DAB) is anticipated to be a human carcinogen based on sufficient evidence of carcinogenicity in experimental animals. The trace detection of DAB is of great significance in environmental protection and safe life of the people. To test the availability of DAB trace detection using surface-enhanced Raman scattering (SERS), the SERS spectra of DAB single molecules adsorbed on the silver particle aggregates in colloid were investigated. The phenomena of blinking, spectral diffusion, and intensity fluctuations of the vibrational lines in the SERS spectra were observed. Statistical analysis of spectral intensity fluctuations indicates a multimodal distribution of some specific Raman bands, which are consistent with the identification of single molecule detection. Our results demonstrated that SERS can be applied to the trace detection of DAB molecules and other azo dyes.

  8. Single-molecule chemistry and physics explored by low-temperature scanning probe microscopy.

    Science.gov (United States)

    Swart, Ingmar; Gross, Leo; Liljeroth, Peter

    2011-08-28

    It is well known that scanning probe techniques such as scanning tunnelling microscopy (STM) and atomic force microscopy (AFM) routinely offer atomic scale information on the geometric and the electronic structure of solids. Recent developments in STM and especially in non-contact AFM have allowed imaging and spectroscopy of individual molecules on surfaces with unprecedented spatial resolution, which makes it possible to study chemistry and physics at the single molecule level. In this feature article, we first review the physical concepts underlying image contrast in STM and AFM. We then focus on the key experimental considerations and use selected examples to demonstrate the capabilities of modern day low-temperature scanning probe microscopy in providing chemical insight at the single molecule level.

  9. Influence of quantum dot labels on single molecule movement in the plasma membrane

    DEFF Research Database (Denmark)

    Clausen, Mathias P.; Lagerholm, B. Christoffer

    2011-01-01

    Single particle tracking results are very dependent on the probe that is used. In this study we have investigated the influence that functionalized quantum dots (QDs) have on the recorded movement in single molecule tracking experiments of plasma membrane species in live cells. Potential issues...... in labeling single molecules with QDs (and other particles e.g. gold particles) are induction of cross-linking of the target molecules, which can cause activation of signaling pathways or reduced mobility, and steric hindrance as a result of the probe size. Cross-linking can be a result of the multivalent...... for simultaneous investigations of different plasma membrane species in order to discriminate the effect of the label from differences in movement of the target molecules....

  10. pyFRET: A Python Library for Single Molecule Fluorescence Data Analysis

    CERN Document Server

    Murphy, Rebecca R; Klenerman, David

    2014-01-01

    Single molecule F\\"orster resonance energy transfer (smFRET) is a powerful experimental technique for studying the properties of individual biological molecules in solution. However, as adoption of smFRET techniques becomes more widespread, the lack of available software, whether open source or commercial, for data analysis, is becoming a significant issue. Here, we present pyFRET, an open source Python package for the analysis of data from single-molecule fluorescence experiments from freely diffusing biomolecules. The package provides methods for the complete analysis of a smFRET dataset, from burst selection and denoising, through data visualisation and model fitting. We provide support for both continuous excitation and alternating laser excitation (ALEX) data analysis. pyFRET is available as a package downloadable from the Python Package Index (PyPI) under the open source three-clause BSD licence, together with links to extensive documentation and tutorials, including example usage and test data. Additio...

  11. Aptamer-based single-molecule imaging of insulin receptors in living cells

    Science.gov (United States)

    Chang, Minhyeok; Kwon, Mijin; Kim, Sooran; Yunn, Na-Oh; Kim, Daehyung; Ryu, Sung Ho; Lee, Jong-Bong

    2014-05-01

    We present a single-molecule imaging platform that quantitatively explores the spatiotemporal dynamics of individual insulin receptors in living cells. Modified DNA aptamers that specifically recognize insulin receptors (IRs) with a high affinity were selected through the SELEX process. Using quantum dot-labeled aptamers, we successfully imaged and analyzed the diffusive motions of individual IRs in the plasma membranes of a variety of cell lines (HIR, HEK293, HepG2). We further explored the cholesterol-dependent movement of IRs to address whether cholesterol depletion interferes with IRs and found that cholesterol depletion of the plasma membrane by methyl-β-cyclodextrin reduces the mobility of IRs. The aptamer-based single-molecule imaging of IRs will provide better understanding of insulin signal transduction through the dynamics study of IRs in the plasma membrane.

  12. Monitoring patterned enzymatic polymerization on DNA origami at single-molecule level

    Science.gov (United States)

    Okholm, A. H.; Aslan, H.; Besenbacher, F.; Dong, M.; Kjems, J.

    2015-06-01

    DNA origami has been used to orchestrate reactions with nano-precision using a variety of biomolecules. Here, the dynamics of albumin-assisted, localized single-molecule DNA polymerization by terminal deoxynucleotidyl transferase on a 2D DNA origami are monitored using AFM in liquid. Direct visualization of the surface activity revealed the mechanics of growth.DNA origami has been used to orchestrate reactions with nano-precision using a variety of biomolecules. Here, the dynamics of albumin-assisted, localized single-molecule DNA polymerization by terminal deoxynucleotidyl transferase on a 2D DNA origami are monitored using AFM in liquid. Direct visualization of the surface activity revealed the mechanics of growth. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01945a

  13. Influence of quantum dot labels on single molecule movement in the plasma membrane

    DEFF Research Database (Denmark)

    Clausen, Mathias P.; Lagerholm, B. Christoffer

    2011-01-01

    Single particle tracking results are very dependent on the probe that is used. In this study we have investigated the influence that functionalized quantum dots (QDs) have on the recorded movement in single molecule tracking experiments of plasma membrane species in live cells. Potential issues...... in labeling single molecules with QDs (and other particles e.g. gold particles) are induction of cross-linking of the target molecules, which can cause activation of signaling pathways or reduced mobility, and steric hindrance as a result of the probe size. Cross-linking can be a result of the multivalent...... functionalization tag (e.g. streptavidin (sAv)) or the presence of multiple mono- or multivalent functionalization tags per QD. In this work, we have compared commercially available sAv-QDs of different sizes with custom prepared Co enzyme A (CoA)-QDs both targeting a GPI-anchored protein modified with either...

  14. Single molecule fluorescence fluctuations of the cyanine dyes linked covalently to DNA

    Institute of Scientific and Technical Information of China (English)

    AUMILER; Damir

    2009-01-01

    The intersystem crossing and isomerization dynamics of free-Cy3,Cy3-ssDNA,free-Cy5 and Cy5-ssDNA are obtained through simple analysis of rapid on/off blinking from single molecule fluorescence intensity time-traces and the fluorescence correlation spectroscopy(FCS).The on-and off-times observed in fluorescence time traces of single cyanine dyes are due to the formation of the triplet state and isomerization,where both the interaction with DNA and long central polymethine chain of cyanine dyes increase the barriers of isomerization,leading to long off-time.The results indicate that the single molecule fluorescence fluctuation together with the resulting second autocorrelation analysis are powerful methods for determining the triplet state and isomerization dynamics,which could be the simple techniques and complementary to other spectroscopic techniques,such as fluorescence decay measurement and laser flash photolysis to study the photophysical processes of complex molecules.

  15. Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein.

    Science.gov (United States)

    Pirchi, Menahem; Ziv, Guy; Riven, Inbal; Cohen, Sharona Sedghani; Zohar, Nir; Barak, Yoav; Haran, Gilad

    2011-10-11

    Proteins attain their function only after folding into a highly organized three-dimensional structure. Much remains to be learned about the mechanisms of folding of large multidomain proteins, which may populate metastable intermediate states on their energy landscapes. Here we introduce a novel method, based on high-throughput single-molecule fluorescence experiments, which is specifically geared towards tracing the dynamics of folding in the presence of a plethora of intermediates. We employ this method to characterize the folding reaction of a three-domain protein, adenylate kinase. Using thousands of single-molecule trajectories and hidden Markov modelling, we identify six metastable states on adenylate kinase's folding landscape. Remarkably, the connectivity of the intermediates depends on denaturant concentration; at low concentration, multiple intersecting folding pathways co-exist. We anticipate that the methodology introduced here will find broad applicability in the study of folding of large proteins, and will provide a more realistic scenario of their conformational dynamics.

  16. A Stochastic Single-Molecule Event Triggers Phenotype Switching of a Bacterial Cell

    Science.gov (United States)

    Xie, Sunney; Choi, Paul; Cai, Long

    2009-03-01

    By monitoring fluorescently labeled lactose permease with single-molecule sensitivity, we investigated the molecular mechanism of how an Escherichia coli cell with the lac operon switches from one phenotype to another. At intermediate inducer concentrations, a population of genetically identical cells exhibits two phenotypes: induced cells with highly fluorescent membranes and uninduced cells with a small number of membrane-bound permeases. We found that this basal-level expression results from partial dissociation of the tetrameric lactose repressor from one of its operators on looped DNA. In contrast, infrequent events of complete dissociation of the repressor from DNA result in large bursts of permease expression that trigger induction of the lac operon. Hence, a stochastic single-molecule event determines a cell's phenotype.

  17. A stochastic model for magnetic dynamics in single-molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    López-Ruiz, R., E-mail: rlruiz@ifi.unicamp.br [Instituto de Física Gleb Wataghin - Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil); Almeida, P.T. [Instituto de Física Gleb Wataghin - Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil); Vaz, M.G.F. [Instituto de Química, Universidade Federal Fluminense, 24020-150 Niterói (RJ) (Brazil); Novak, M.A. [Instituto de Física - Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro (RJ) (Brazil); Béron, F.; Pirota, K.R. [Instituto de Física Gleb Wataghin - Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil)

    2016-04-01

    Hysteresis and magnetic relaxation curves were performed on double well potential systems with quantum tunneling possibility via stochastic simulations. Simulation results are compared with experimental ones using the Mn{sub 12} single-molecule magnet, allowing us to introduce time dependence in the model. Despite being a simple simulation model, it adequately reproduces the phenomenology of a thermally activated quantum tunneling and can be extended to other systems with different parameters. Assuming competition between the reversal modes, thermal (over) and tunneling (across) the anisotropy barrier, a separation of classical and quantum contributions to relaxation time can be obtained. - Highlights: • Single-molecule magnets are modeled using a simple stochastic approach. • Simulation reproduces thermally-activated tunnelling magnetization reversal features. • The time is introduced in hysteresis and relaxation simulations. • We can separate the quantum and classical contributions to decay time.

  18. Photon counting imaging and centroiding with an electron-bombarded CCD using single molecule localisation software

    Science.gov (United States)

    Hirvonen, Liisa M.; Barber, Matthew J.; Suhling, Klaus

    2016-06-01

    Photon event centroiding in photon counting imaging and single-molecule localisation in super-resolution fluorescence microscopy share many traits. Although photon event centroiding has traditionally been performed with simple single-iteration algorithms, we recently reported that iterative fitting algorithms originally developed for single-molecule localisation fluorescence microscopy work very well when applied to centroiding photon events imaged with an MCP-intensified CMOS camera. Here, we have applied these algorithms for centroiding of photon events from an electron-bombarded CCD (EBCCD). We find that centroiding algorithms based on iterative fitting of the photon events yield excellent results and allow fitting of overlapping photon events, a feature not reported before and an important aspect to facilitate an increased count rate and shorter acquisition times.

  19. Diversity of Chemical Mechanisms in Thioredoxin Catalysis Revealed by Single-Molecule Force Spectroscopy

    Science.gov (United States)

    Perez-Jimenez, Raul; Li, Jingyuan; Kosuri, Pallav; Sanchez-Romero, Inmaculada; Wiita, Arun P.; Rodriguez-Larrea, David; Chueca, Ana; Holmgren, Arne; Miranda-Vizuete, Antonio; Becker, Katja; Cho, Seung-Hyun; Beckwith, Jon; Gelhaye, Eric; Jacquot, Jean P.; Gaucher, Eric; Sanchez-Ruiz, Jose M.; Berne, Bruce J.; Fernandez, Julio M.

    2009-01-01

    Thioredoxins are oxido-reductase enzymes present in all organisms, catalyzing the reduction of disulfide bonds in proteins. By applying a calibrated force to a substrate disulfide, the chemical mechanisms of Trx catalysis can be examined in detail at the single molecule level. Here we use single molecule force-clamp spectroscopy to explore the chemical evolution of Trx catalysis by probing the chemistry of eight different thioredoxin enzymes. While all Trxs show a characteristic Michaelis-Menten mechanism detected when the disulfide bond is stretched at low forces, two different chemical behaviors distinguish bacterial from eukaryotic-origin Trxs at high forces. Eukaryotic-origin Trxs reduce disulfide bonds through a single-electron transfer reaction (SET) whereas bacterial-origin Trxs exhibit both nucleophilic substitution (SN2) and SET reactions. A computational analysis of Trx structures identifies the evolution of the binding groove as an important factor controlling the chemistry of Trx catalysis. PMID:19597482

  20. Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy

    Science.gov (United States)

    Kuzuya, Akinori; Sakai, Yusuke; Yamazaki, Takahiro; Xu, Yan; Komiyama, Makoto

    2011-01-01

    DNA origami involves the folding of long single-stranded DNA into designed structures with the aid of short staple strands; such structures may enable the development of useful nanomechanical DNA devices. Here we develop versatile sensing systems for a variety of chemical and biological targets at molecular resolution. We have designed functional nanomechanical DNA origami devices that can be used as 'single-molecule beacons', and function as pinching devices. Using 'DNA origami pliers' and 'DNA origami forceps', which consist of two levers ~170 nm long connected at a fulcrum, various single-molecule inorganic and organic targets ranging from metal ions to proteins can be visually detected using atomic force microscopy by a shape transition of the origami devices. Any detection mechanism suitable for the target of interest, pinching, zipping or unzipping, can be chosen and used orthogonally with differently shaped origami devices in the same mixture using a single platform. PMID:21863016

  1. Vibronic excitation of single molecules: a new technique for studying low-temperature dynamics.

    Science.gov (United States)

    Kiraz, Alper; Ehrl, Moritz; Hellriegel, Christian; Bräuchle, Christoph; Zumbusch, Andreas

    2005-05-01

    Herein, we present vibronic excitation and detection of purely electronic zero-phonon lines (ZPL) of single molecules as a new tool for investigating dynamics at cryogenic temperatures. Applications of this technique to study crystalline and amorphous matrix materials are presented. In the crystalline environment, spectrally stable ZPLs are observed at moderate excitation powers. By contrast, investigations at higher excitation intensities reveal the opening of local degrees of freedom and spectral jumps, which we interpret as the observation of elementary steps in the melting of a crystal. We compare these results to spectral single-molecule trajectories recorded in a polymer. The way in which much more complicated spectral features can be analysed is shown. Surprisingly, pronounced spectral shifts on a previously not accessible large energy scale are observed, which are hard to reconcile with the standard two-level model system used to describe low-temperature dynamics in disordered systems.

  2. Reconstructing multiple free energy pathways of DNA stretching from single molecule experiments.

    Science.gov (United States)

    Frey, Eric W; Li, Jingqiang; Wijeratne, Sithara S; Kiang, Ching-Hwa

    2015-04-23

    Free energy landscapes provide information on the dynamics of proteins and nucleic acid folding. It has been demonstrated that such landscapes can be reconstructed from single molecule force measurement data using Jarzynski's equality, which requires only stretching data. However, when the process is reversible, the Crooks fluctuation theorem combines both stretch and relaxation force data for the analysis and can offer more rapid convergence of free energy estimates of different states. Here we demonstrate that, similar to Jarzynski's equality, the Crooks fluctuation theorem can be used to reconstruct the full free energy landscapes. In addition, when the free energy landscapes exhibit multiple folding pathways, one can use Jarzynski's equality to reconstruct individual free energy pathways if the experimental data show distinct work distributions. We applied the method to reconstruct the overstretching transition of poly(dA) to demonstrate that the nonequilibrium work theorem combined with single molecule force measurements provides a clear picture of the free energy landscapes.

  3. Carbon nanotube nanoelectromechanical systems as magnetometers for single-molecule magnets.

    Science.gov (United States)

    Ganzhorn, Marc; Klyatskaya, Svetlana; Ruben, Mario; Wernsdorfer, Wolfgang

    2013-07-23

    Due to outstanding mechanical and electronic properties, carbon nanotube nanoelectromechanical systems (NEMS) were recently proposed as ultrasensitive magnetometers for single-molecule magnets (SMM). In this article, we describe a noninvasive grafting of a SMM on a carbon nanotube NEMS, which conserves both the mechanical properties of the carbon nanotube NEMS and the magnetic properties of the SMM. We will demonstrate that the nonlinearity of a carbon nanotube's mechanical motion can be used to probe the reversal of a molecular spin, associated with a bis(phthalocyaninato)terbium(III) single-molecule magnet, providing an experimental evidence for the detection of a single spin by a mechanical degree of freedom on a molecular level.

  4. High-Resolution Optical Tweezers Combined With Single-Molecule Confocal Microscopy.

    Science.gov (United States)

    Whitley, K D; Comstock, M J; Chemla, Y R

    2017-01-01

    We describe the design, construction, and application of an instrument combining dual-trap, high-resolution optical tweezers and a confocal microscope. This hybrid instrument allows nanomechanical manipulation and measurement simultaneously with single-molecule fluorescence detection. We present the general design principles that overcome the challenges of maximizing optical trap resolution while maintaining single-molecule fluorescence sensitivity, and provide details on the construction and alignment of the instrument. This powerful new tool is just beginning to be applied to biological problems. We present step-by-step instructions on an application of this technique that highlights the instrument's capabilities, detecting conformational dynamics in a nucleic acid-processing enzyme. © 2017 Elsevier Inc. All rights reserved.

  5. Single-Molecule Protein Folding Experiments Using High-Precision Optical Tweezers.

    Science.gov (United States)

    Jiao, Junyi; Rebane, Aleksander A; Ma, Lu; Zhang, Yongli

    2017-01-01

    How proteins fold from linear chains of amino acids to delicate three-dimensional structures remains a fundamental biological problem. Single-molecule manipulation based on high-resolution optical tweezers (OT) provides a powerful approach to study protein folding with unprecedented spatiotemporal resolution. In this method, a single protein or protein complex is tethered between two beads confined in optical traps and pulled. Protein unfolding induced by the mechanical force is counteracted by the spontaneous folding of the protein, reaching a dynamic equilibrium at a characteristic force and rate. The transition is monitored by the accompanying extension change of the protein and used to derive conformations and energies of folding intermediates and their associated transition kinetics. Here, we provide general strategies and detailed protocols to study folding of proteins and protein complexes using optical tweezers, including sample preparation, DNA-protein conjugation and methods of data analysis to extract folding energies and rates from the single-molecule measurements.

  6. Largely Enhanced Single-molecule Fluorescence in Plasmonic Nanogaps formed by Hybrid Silver Nanostructures

    Science.gov (United States)

    Zhang, Jian; Lakowicz, Joseph R.

    2013-01-01

    It has been suggested that narrow gaps between metallic nanostructures can be practical for producing large field enhancement. We design a hybrid silver nanostructure geometry in which fluorescent emitters are sandwiched between silver nanoparticles and silver island film (SIF). A desired number of polyelectrolyte layers are deposited on the SIF surface before the self-assembly of a second silver nanoparticle layer. Layer-by-layer configuration provides a well-defined dye position. It allows us to study the photophyical behaviors of fluorophores in the resulting gap at the single molecule level. The enhancement factor of a fluorophore located in the gap is much higher than those on silver surfaces alone and on glass. These effects may be used for increased detectability of single molecules bound to surfaces which contain metallic structures for either biophysical studies or high sensitivity assays. PMID:23373787

  7. Roles of vacuum tunnelling and contact mechanics in single-molecule thermopower

    Science.gov (United States)

    Tsutsui, Makusu; Yokota, Kazumichi; Morikawa, Takanori; Taniguchi, Masateru

    2017-01-01

    Molecular junction is a chemically-defined nanostructure whose discrete electronic states are expected to render enhanced thermoelectric figure of merit suitable for energy-harvesting applications. Here, we report on geometrical dependence of thermoelectricity in metal-molecule-metal structures. We performed simultaneous measurements of the electrical conductance and thermovoltage of aromatic molecules having different anchoring groups at room temperature in vacuum. We elucidated the mutual contributions of vacuum tunnelling on thermoelectricity in the short molecular bridges. We also found stretching-induced thermoelectric voltage enhancement in thiol-linked single-molecule bridges along with absence of the pulling effects in diamine counterparts, thereby suggested that the electromechanical effect would be a rather universal phenomenon in Au-S anchored molecular junctions that undergo substantial metal-molecule contact elongation upon stretching. The present results provide a novel concept for molecular design to achieve high thermopower with single-molecule junctions. PMID:28281684

  8. Single-Molecule Imaging with X-Ray Free-Electron Lasers: Dream or Reality?

    KAUST Repository

    Fratalocchi, Andrea

    2011-03-09

    X-ray free-electron lasers (XFEL) are revolutionary photon sources, whose ultrashort, brilliant pulses are expected to allow single-molecule diffraction experiments providing structural information on the atomic length scale of nonperiodic objects. This ultimate goal, however, is currently hampered by several challenging questions basically concerning sample damage, Coulomb explosion, and the role of nonlinearity. By employing an original ab initio approach, we address these issues showing that XFEL-based single-molecule imaging will be only possible with a few-hundred long attosecond pulses, due to significant radiation damage and the formation of preferred multisoliton clusters which reshape the overall electronic density of the molecular system at the femtosecond scale.

  9. Single-molecule magnet behavior with a single metal center enhanced through peripheral ligand modifications.

    Science.gov (United States)

    Jurca, Titel; Farghal, Ahmed; Lin, Po-Heng; Korobkov, Ilia; Murugesu, Muralee; Richeson, Darrin S

    2011-10-12

    Bis(imino)pyridine pincer ligands in conjunction with two isothiocyanate ligands have been used to prepare two mononuclear Co(II) complexes. Both complexes have a distorted square-pyramidal geometry with the Co(II) centers lying above the basal plane. This leads to significant spin-orbit coupling for the d(7) Co(II) ions and consequently to slow relaxation of the magnetization that is characteristic of Single-Molecule Magnet (SMM) behavior.

  10. A gate controlled conjugated single molecule diode: Its rectification could be reversed

    Science.gov (United States)

    Zhang, Qun

    2014-10-01

    A gate controlled Au/diphenyldipyrimidinyl/Au single molecule diode is simulated by a tight-binding Hamiltonian combined with Green's Function and transport methods. After calculating a number of electronic transport characteristics under various gate voltages, a clear modulation by gate is got and when the positive voltage is high enough, the rectification could be reversed. This is advisable for the designing and building future molecular logic devices and integrated circuits.

  11. All-electric-controlled spin current switching in single-molecule magnet-tunnel junctions

    Institute of Scientific and Technical Information of China (English)

    Zhang Zheng-Zhong; Shen Rui; Sheng Li; Wang Rui-Qiang; Wang Bai-Gen; Xing Ding-Yu

    2011-01-01

    A single-molecule magnet (SMM)coupled to two normal metallic electrodes can both switch spin-up and spindown electronic currents within two different windows of SMM gate voltage. Such spin current switching in the SMM tunnel junction arises from spin-selected single electron resonant tunneling via the lowest unoccupied molecular orbit of the SMM. Since it is not magnetically controlled but all-electrically controlled, the proposed spin current switching effect may have potential applications in future spintronics.

  12. Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology

    OpenAIRE

    Wang, Yuling; Irudayaraj, Joseph

    2013-01-01

    Single-molecule (SM) spectroscopy has been an exciting area of research offering significant promise and hope in the field of sensor development to detect targets at ultra-low levels down to SM resolution. To the experts and developers in the field of surface-enhanced Raman spectroscopy (SERS), this has often been a challenge and a significant opportunity for exploration. Needless to say, the opportunities and excitement of this multidisciplinary area impacts span the fields of physics, chemi...

  13. Single molecule studies of molecular diffusion in cellular membranes: determining membrane structure.

    Science.gov (United States)

    Ritchie, Ken; Spector, Jeff

    Since the advent of single particle/molecule microscopies, researchers have applied these techniques to understanding the fluid membranes of cells. By observing diffusion of membrane proteins and lipids in live cell membranes of eukaryotic cells, it has been found that membranes contain a mosaic of fluid compartments. Such structure may be instrumental in understanding key characteristics of the membrane. Recent single molecule observations on prokaryotic cell membranes will also be discussed.

  14. A Single-Molecule Study on the Structural Damage of Ultraviolet Radiated DNA

    Directory of Open Access Journals (Sweden)

    Pu Chun Ke

    2008-04-01

    Full Text Available The structural damage of double-stranded DNA under UV radiation was examined using single-molecule fluorescence microscopy. Compared to undamaged DNA, the diffusion coefficient of λ-DNA was significantly increased with 12 min or 20 min of radiation but remained unchanged for 40 min of exposure possibly due to strand crosslinking. The structural damage of DNA was further examined using transmission electron microscopy which revealed kinks and sharp bends along the DNA backbone.

  15. Molecular-crowding effects on single-molecule RNA folding/unfolding thermodynamics and kinetics.

    Science.gov (United States)

    Dupuis, Nicholas F; Holmstrom, Erik D; Nesbitt, David J

    2014-06-10

    The effects of "molecular crowding" on elementary biochemical processes due to high solute concentrations are poorly understood and yet clearly essential to the folding of nucleic acids and proteins into correct, native structures. The present work presents, to our knowledge, first results on the single-molecule kinetics of solute molecular crowding, specifically focusing on GAAA tetraloop-receptor folding to isolate a single RNA tertiary interaction using time-correlated single-photon counting and confocal single-molecule FRET microscopy. The impact of crowding by high-molecular-weight polyethylene glycol on the RNA folding thermodynamics is dramatic, with up to ΔΔG° ∼ -2.5 kcal/mol changes in free energy and thus >60-fold increase in the folding equilibrium constant (Keq) for excluded volume fractions of 15%. Most importantly, time-correlated single-molecule methods permit crowding effects on the kinetics of RNA folding/unfolding to be explored for the first time (to our knowledge), which reveal that this large jump in Keq is dominated by a 35-fold increase in tetraloop-receptor folding rate, with only a modest decrease in the corresponding unfolding rate. This is further explored with temperature-dependent single-molecule RNA folding measurements, which identify that crowding effects are dominated by entropic rather than enthalpic contributions to the overall free energy change. Finally, a simple "hard-sphere" treatment of the solute excluded volume is invoked to model the observed kinetic trends, and which predict ΔΔG° ∼ -5 kcal/mol free-energy stabilization at excluded volume fractions of 30%.

  16. An Undecanuclear Ferrimagnetic Cu9Dy2 Single Molecule Magnet Achieved through Ligand Fine-Tuning.

    Science.gov (United States)

    Kühne, Irina A; Kostakis, George E; Anson, Christopher E; Powell, Annie K

    2016-05-02

    We describe the concept of increasing the nuclearity of a previously reported high-spin Cu5Gd2 core using a "fine-tuning" ligand approach. Thus, two Cu9Ln2 coordination clusters, with Ln = Dy (1) and Gd (2), were synthesized with the Gd compound having a ground spin state of (17)/2 and the Dy analogue showing single-molecule-magnet behavior in zero field.

  17. Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes

    OpenAIRE

    Szczurek, Aleksander T; PRAKASH, KIRTI; Lee, Hyun-Keun; Żurek-Biesiada, Dominika J; Best, Gerrit; Hagmann, Martin; Dobrucki, Jurek W; Cremer, Christoph; Birk, Udo

    2014-01-01

    Several approaches have been described to fluorescently label and image DNA and chromatin in situ on the single-molecule level. These superresolution microscopy techniques are based on detecting optically isolated, fluorescently tagged anti-histone antibodies, fluorescently labeled DNA precursor analogs, or fluorescent dyes bound to DNA. Presently they suffer from various drawbacks such as low labeling efficiency or interference with DNA structure. In this report, we demonstrate that DNA mino...

  18. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics

    KAUST Repository

    Sobhy, M. A.

    2011-11-07

    Single-molecule fluorescence imaging is at the forefront of tools applied to study biomolecular dynamics both in vitro and in vivo. The ability of the single-molecule fluorescence microscope to conduct simultaneous multi-color excitation and detection is a key experimental feature that is under continuous development. In this paper, we describe in detail the design and the construction of a sophisticated and versatile multi-color excitation and emission fluorescence instrument for studying biomolecular dynamics at the single-molecule level. The setup is novel, economical and compact, where two inverted microscopes share a laser combiner module with six individual laser sources that extend from 400 to 640 nm. Nonetheless, each microscope can independently and in a flexible manner select the combinations, sequences, and intensities of the excitation wavelengths. This high flexibility is achieved by the replacement of conventional mechanical shutters with acousto-optic tunable filter (AOTF). The use of AOTF provides major advancement by controlling the intensities, duration, and selection of up to eight different wavelengths with microsecond alternation time in a transparent and easy manner for the end user. To our knowledge this is the first time AOTF is applied to wide-field total internal reflection fluorescence (TIRF) microscopy even though it has been commonly used in multi-wavelength confocal microscopy. The laser outputs from the combiner module are coupled to the microscopes by two sets of four single-mode optic fibers in order to allow for the optimization of the TIRF angle for each wavelength independently. The emission is split into two or four spectral channels to allow for the simultaneous detection of up to four different fluorophores of wide selection and using many possible excitation and photoactivation schemes. We demonstrate the performance of this new setup by conducting two-color alternating excitation single-molecule fluorescence resonance energy

  19. Effect of disorder on ultrafast exciton dynamics probed by single molecule spectroscopy

    OpenAIRE

    Hernando Campos, Jordi; van Dijk, Erik M. H. P.; Hoogenboom, Jacob P.; García López, Juan José; Reinhoudt, David N.; Crego Calama, Mercedes; García Parajó, María F.; van Hulst, Niek F.

    2006-01-01

    We present a single-molecule study unraveling the effect of static disorder on the vibrational-assisted ultrafast exciton dynamics in multichromophoric systems. For every single complex, we probe the initial exciton relaxation process by an ultrafast pump-probe approach and the coupling to vibrational modes by emission spectra, while fluorescence lifetime analysis measures the amount of static disorder. Exploiting the wide range of disorder found from complex to complex, we demonstrate that s...

  20. A Heterotetranuclear [NiIIReIV3] single-molecule magnet.

    Science.gov (United States)

    Martínez-Lillo, José; Armentano, Donatella; De Munno, Giovanni; Wernsdorfer, Wolfgang; Julve, Miguel; Lloret, Francesc; Faus, Juan

    2006-11-01

    The reaction of [ReIVCl4(ox)]2- and fully solvated Ni2+ ions in a MeCN/i-PrOH mixture affords the heterotetranuclear complex (NBu4)4[Ni{ReCl4(ox)}3] where the rhenium precursor acts as a bidentate ligand toward the nicke(II) ion through the oxalate group. The mixed 3d-5d species exhibits intramolecular ferromagnetic coupling and it behaves like a single-molecule magnet.

  1. Real-Time analysis and visualization for single-molecule based super-resolution microscopy

    OpenAIRE

    Kechkar, Adel; Nair, Deepak; Heilemann, Mike; Choquet, Daniel; Sibarita, Jean-Baptiste

    2013-01-01

    Accurate multidimensional localization of isolated fluorescent emitters is a time consuming process in single-molecule based super-resolution microscopy. We demonstrate a functional method for real-time reconstruction with automatic feedback control, without compromising the localization accuracy. Compatible with high frame rates of EM-CCD cameras, it relies on a wavelet segmentation algorithm, together with a mix of CPU/GPU implementation. A combination with Gaussian fitting allows direct ac...

  2. Real-Time Analysis and Visualization for Single-Molecule Based Super-Resolution Microscopy

    OpenAIRE

    Kechkar, Adel; Nair, Deepak; Heilemann, Mike; Choquet, Daniel; Sibarita, Jean-Baptiste

    2013-01-01

    Accurate multidimensional localization of isolated fluorescent emitters is a time consuming process in single-molecule based super-resolution microscopy. We demonstrate a functional method for real-time reconstruction with automatic feedback control, without compromising the localization accuracy. Compatible with high frame rates of EM-CCD cameras, it relies on a wavelet segmentation algorithm, together with a mix of CPU/GPU implementation. A combination with Gaussian fitting allows direct ac...

  3. Retention of transcription initiation factor sigma(70) in transcription elongation: Single-molecule analysis

    OpenAIRE

    Kapanidis, A. N.; Margeat, E; Laurence, T A; Doose, S.; Ho, S O; Mukhopadhyay, J.; Kortkhonjia, E; Mekler, V; Ebright, R H; S. Weiss

    2005-01-01

    We report a single-molecule assay that defines, simultaneously, the translocational position of a protein complex relative to DNA and the subunit stoichiometry of the complex. We applied the assay to define translocational positions and sigma(70) contents of bacterial transcription elongation complexes in vitro. The results confirm ensemble results indicating that a large fraction, similar to 70%-90%, of early elongation complexes retain sigma(70) and that a determinant for sigma(70) recognit...

  4. Single-Molecule Enzymology Based On The Principle Of The Millikan Oil Drop Experiment

    OpenAIRE

    Leiske, Danielle L; Chow, Andrea; Dettloff, Roger; Farinas, Javier

    2013-01-01

    The ability to monitor the progress of single molecule enzyme reactions is often limited by the need to use fluorogenic substrates. A method based on the principle of the Millikan Oil Drop Experiment was developed to monitor the change in charge of substrates bound to a nanoparticle and offers a means of detecting single enzyme reactions without fluorescence detection. As a proof of principle of the ability to monitor reactions which result in a change in substrate charge, polymerization on a...

  5. Single molecule magnet behaviour in a rare trinuclear {Cr(III)Dy} methoxo-bridged complex.

    Science.gov (United States)

    Car, Pierre-Emmanuel; Favre, Annaïck; Caneschi, Andrea; Sessoli, Roberta

    2015-09-28

    The reaction of the chromium(iii) chloride tetrahydrofuran complex with the dipivaloylmethane ligand, the lanthanide alcoholic salt DyCl3·CH3OH and the 1,1,1-tris(hydroxymethyl)-ethane ligand resulted in the formation of a new trinuclear chromium-dysprosium complex. Magnetic investigations revealed that the new 3d-4f complex exhibits single molecule magnet behaviour.

  6. Single-molecule spectroscopy of the temperature-induced collapse of unfolded proteins.

    Science.gov (United States)

    Nettels, Daniel; Müller-Späth, Sonja; Küster, Frank; Hofmann, Hagen; Haenni, Dominik; Rüegger, Stefan; Reymond, Luc; Hoffmann, Armin; Kubelka, Jan; Heinz, Benjamin; Gast, Klaus; Best, Robert B; Schuler, Benjamin

    2009-12-01

    We used single-molecule FRET in combination with other biophysical methods and molecular simulations to investigate the effect of temperature on the dimensions of unfolded proteins. With single-molecule FRET, this question can be addressed even under near-native conditions, where most molecules are folded, allowing us to probe a wide range of denaturant concentrations and temperatures. We find a compaction of the unfolded state of a small cold shock protein with increasing temperature in both the presence and the absence of denaturant, with good agreement between the results from single-molecule FRET and dynamic light scattering. Although dissociation of denaturant from the polypeptide chain with increasing temperature accounts for part of the compaction, the results indicate an important role for additional temperature-dependent interactions within the unfolded chain. The observation of a collapse of a similar extent in the extremely hydrophilic, intrinsically disordered protein prothymosin alpha suggests that the hydrophobic effect is not the sole source of the underlying interactions. Circular dichroism spectroscopy and replica exchange molecular dynamics simulations in explicit water show changes in secondary structure content with increasing temperature and suggest a contribution of intramolecular hydrogen bonding to unfolded state collapse.

  7. Single-molecule fluorescence study of the inhibition of the oncogenic functionality of STAT3

    Science.gov (United States)

    Liu, Baoxu; Badali, Daniel; Fletcher, Steven; Avadisian, Miriam; Gunning, Patrick; Gradinaru, Claudiu

    2009-06-01

    Signal-Transducer-and-Activator-of-Transcription 3 (STAT3) protein plays an important role in the onset of cancers such as leukemia and lymphoma. In this study, we aim to test the effectiveness of a novel peptide drug designed to tether STAT3 to the phospholipid bilayer of the cell membrane and thus inhibit unwanted transcription. As a first step, STAT3 proteins were successfully labelled with tetramethylrhodamine (TMR), a fluorescent dye with suitable photostability for single molecule studies. The effectiveness of labelling was determined using fluorescence correlation spectroscopy in a custom built confocal microscope, from which diffusion times and hydrodynamic radii of individual proteins were determined. A newly developed fluorescein derivative label (F-NAc) has been designed to be incorporated into the structure of the peptide drug so that peptide-STAT3 interactions can be examined. This dye is spectrally characterized and is found to be well suited for its application to this project, as well as other single-molecule studies. The membrane localization via high-affinity cholesterol-bound small-molecule binding agents can be demonstrated by encapsulating TMR-labeled STAT3 and inhibitors within a vesicle model cell system. To this end, unilaminar lipid vesicles were examined for size and encapsulation ability. Preliminary results of the efficiency and stability of the STAT3 anchoring in lipid membranes obtained via quantitative confocal imaging and single-molecule spectroscopy using a custom-built multiparameter fluorescence microscope are reported here.

  8. High-sensitivity single-molecule fluorescence detection in theory and practice

    Energy Technology Data Exchange (ETDEWEB)

    Mathies, R.A.; Peck, K. (California Univ., Berkeley, CA (United States). Dept. of Chemistry); Stryer, L. (Stanford Univ., CA (United States). Dept. of Cell Biology)

    1989-01-01

    The number of emitted photons that can be obtained from a fluorophore increases with the incident light intensity and the duration of illumination. However, saturation of the absorption transition and photodestruction place natural limits on the ultimate signal-to-noise ratio that can be obtained. Equations have been derived to describe the fluorescence-to-background-noise ratio in the presence of saturating light intensities and photodestruction. The fluorescence lifetime and the photodestruction quantum yield are the key parameters that determine the optimum light intensity and exposure time. To test this theory we have performed single molecule detection of phycoerythrin (PE). The laser power was selected to give a mean time between absorptions approximately equal to the fluorescence decay rate. The transit time was selected to be nearly equal to the photodestruction time of {approximately}600 {mu}s. Under these conditions the photocount distribution function, the photocount autocorrelation function, and the concentration dependence clearly show that we are detecting bursts of fluorescence from individual fluorophores. A hard-wired version of this single-molecule detection system was used to measure the concentration of PE down to 10{sup {minus}15} M. This single-molecule counter is three orders-of-magnitude more sensitive than conventional fluorescence detection systems. The approach presented here should be useful in the optimization of fluorescence detected DNA sequencing gels. 17 refs., 4 figs.

  9. Magnetic relaxations in a Tb-based single molecule magnet studied by quasielastic neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kofu, Maiko [Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581 (Japan); Kajiwara, Takashi [Faculty of Science, Nara Women’s University, Nara, Nara 630-8506 (Japan); Gardner, Jason S. [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-6102 (United States); Simeoni, Giovanna G. [Technische Universität München, Forschungsneutronenquelle Heinz Maier-Leibnitz FRM II, D-85747 Garching (Germany); Tyagi, Madhusudan; Faraone, Antonio [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-6102 (United States); Department of Materials Science, University of Maryland, College Park, MD 20742 (United States); Nakajima, Kenji; Ohira-Kawamura, Seiko [Neutron Science Section, J-PARC Center, Tokai, Ibaraki 319-1195 (Japan); Nakano, Motohiro [Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Yamamuro, Osamu, E-mail: yamamuro@issp.u-tokyo.ac.jp [Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581 (Japan)

    2013-12-12

    Highlights: • We examined a Tb based single molecule magnet by ac susceptibility and QENS. • We found two distinct magnetic relaxations in a wide time range from 0.1 ms to 1 ps. • The slower relaxation corresponds to the thermally activated tunneling process. • The faster one couples with the motion of H atoms around the magnetic ions. • The two relaxations exhibit a crossover around 100 ns. - Abstract: By using ac magnetic susceptibility and quasielatic neutron scattering (QENS) techniques, we have investigated a magnetization relaxation phenomenon of a rare-earth based single molecule magnet, TbCuC{sub 19}H{sub 20}N{sub 3}O{sub 16}. We clearly identified and characterized two magnetic relaxations. The slower relaxation observed in the ac susceptibility is at the ms timescale around T=2 K and its activation energy is 16 K. On the other hand, the faster relaxation in the QENS measurements occurs on the timescale between ns and ps with activation energy of 174 K. The slower relaxation may occur through thermally activated tunneling among magnetic substates. We discuss two possible origins for the faster relaxation; one is a thermally activated tunneling between the higher excited states, the other is the magnetic relaxation coupled with the motion of ligands around the magnetic ions. This is the first clear observation of magnetic relaxation on the single molecule magnet revealed by QENS.

  10. Single-Molecule Counting of Point Mutations by Transient DNA Binding

    Science.gov (United States)

    Su, Xin; Li, Lidan; Wang, Shanshan; Hao, Dandan; Wang, Lei; Yu, Changyuan

    2017-03-01

    High-confidence detection of point mutations is important for disease diagnosis and clinical practice. Hybridization probes are extensively used, but are hindered by their poor single-nucleotide selectivity. Shortening the length of DNA hybridization probes weakens the stability of the probe-target duplex, leading to transient binding between complementary sequences. The kinetics of probe-target binding events are highly dependent on the number of complementary base pairs. Here, we present a single-molecule assay for point mutation detection based on transient DNA binding and use of total internal reflection fluorescence microscopy. Statistical analysis of single-molecule kinetics enabled us to effectively discriminate between wild type DNA sequences and single-nucleotide variants at the single-molecule level. A higher single-nucleotide discrimination is achieved than in our previous work by optimizing the assay conditions, which is guided by statistical modeling of kinetics with a gamma distribution. The KRAS c.34 A mutation can be clearly differentiated from the wild type sequence (KRAS c.34 G) at a relative abundance as low as 0.01% mutant to WT. To demonstrate the feasibility of this method for analysis of clinically relevant biological samples, we used this technology to detect mutations in single-stranded DNA generated from asymmetric RT-PCR of mRNA from two cancer cell lines.

  11. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform

    Science.gov (United States)

    Baaske, Martin D.; Foreman, Matthew R.; Vollmer, Frank

    2014-11-01

    Biosensing relies on the detection of molecules and their specific interactions. It is therefore highly desirable to develop transducers exhibiting ultimate detection limits. Microcavities are an exemplary candidate technology for demonstrating such a capability in the optical domain and in a label-free fashion. Additional sensitivity gains, achievable by exploiting plasmon resonances, promise biosensing down to the single-molecule level. Here, we introduce a biosensing platform using optical microcavity-based sensors that exhibits single-molecule sensitivity and is selective to specific single binding events. Whispering gallery modes in glass microspheres are used to leverage plasmonic enhancements in gold nanorods for the specific detection of nucleic acid hybridization, down to single 8-mer oligonucleotides. Detection of single intercalating small molecules confirms the observation of single-molecule hybridization. Matched and mismatched strands are discriminated by their interaction kinetics. Our platform allows us to monitor specific molecular interactions transiently, hence mitigating the need for high binding affinity and avoiding permanent binding of target molecules to the receptors. Sensor lifetime is therefore increased, allowing interaction kinetics to be statistically analysed.

  12. Magnetic Relaxation Study on Single Crystals of Ni4 Single-Molecule Magnets

    Institute of Scientific and Technical Information of China (English)

    LI Yan-Rong; LIU Hai-Qing; LIU Ying; SU Shao-Kui; WANG Yun-Ping

    2009-01-01

    The ac susceptibility of single crystals of Nia single-molecule magnets is measured by a compensation measurement setup. The magnetic relaxation time calculated from the peak of the out-phase component of the susceptibility fits the Arrhenius law well and gives an effective spin-flipping energy barrier of Ueff = 7.2 K. This value is far below the classical activation energy barrier of U = 14 K, whereas it is close to the energy gap between the Sz = ±4 and Sz = ±3 doublets, which indicates that quantum tunneling between the Sz = 3 and Sz = -3 states plays a key role in the magnetic relaxation. Therefore the relaxation process combines thermal activation and quantum tunneling. Also we deduce that the blocking temperature of Ni4 single-molecule magnets is lower than 0.3 K by extrapolating the relaxation time plot, which ensures that this single-molecule magnet material enters a long-range magnetic ordered state instead of a spin glass state at 0.91 K.

  13. Research Update: Molecular electronics: The single-molecule switch and transistor

    Directory of Open Access Journals (Sweden)

    Kai Sotthewes

    2014-01-01

    Full Text Available In order to design and realize single-molecule devices it is essential to have a good understanding of the properties of an individual molecule. For electronic applications, the most important property of a molecule is its conductance. Here we show how a single octanethiol molecule can be connected to macroscopic leads and how the transport properties of the molecule can be measured. Based on this knowledge we have realized two single-molecule devices: a molecular switch and a molecular transistor. The switch can be opened and closed at will by carefully adjusting the separation between the electrical contacts and the voltage drop across the contacts. This single-molecular switch operates in a broad temperature range from cryogenic temperatures all the way up to room temperature. Via mechanical gating, i.e., compressing or stretching of the octanethiol molecule, by varying the contact's interspace, we are able to systematically adjust the conductance of the electrode-octanethiol-electrode junction. This two-terminal single-molecule transistor is very robust, but the amplification factor is rather limited.

  14. Ensemble and single-molecule studies on fluorescence quenching in transition metal bipyridine-complexes.

    Directory of Open Access Journals (Sweden)

    Dominik Brox

    Full Text Available Beyond their use in analytical chemistry fluorescent probes continuously gain importance because of recent applications of single-molecule fluorescence spectroscopy to monitor elementary reaction steps. In this context, we characterized quenching of a fluorescent probe by different metal ions with fluorescence spectroscopy in the bulk and at the single-molecule level. We apply a quantitative model to explain deviations from existing standard models for fluorescence quenching. The model is based on a reversible transition from a bright to a dim state upon binding of the metal ion. We use the model to estimate the stability constants of complexes with different metal ions and the change of the relative quantum yield of different reporter dye labels. We found ensemble data to agree widely with results from single-molecule experiments. Our data indicates a mechanism involving close molecular contact of dye and quenching moiety which we also found in molecular dynamics simulations. We close the manuscript with a discussion of possible mechanisms based on Förster distances and electrochemical potentials which renders photo-induced electron transfer to be more likely than Förster resonance energy transfer.

  15. DNA origami-based shape IDs for single-molecule nanomechanical genotyping

    Science.gov (United States)

    Zhang, Honglu; Chao, Jie; Pan, Dun; Liu, Huajie; Qiang, Yu; Liu, Ke; Cui, Chengjun; Chen, Jianhua; Huang, Qing; Hu, Jun; Wang, Lianhui; Huang, Wei; Shi, Yongyong; Fan, Chunhai

    2017-04-01

    Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorophores, the lack of shape-specific labels largely hampers widespread applications of AFM imaging. Here we report the development of a set of differentially shaped, highly hybridizable self-assembled DNA origami nanostructures serving as shape IDs for magnified nanomechanical imaging of single-nucleotide polymorphisms. Using these origami shape IDs, we directly genotype single molecules of human genomic DNA with an ultrahigh resolution of ~10 nm and the multiplexing ability. Further, we determine three types of disease-associated, long-range haplotypes in samples from the Han Chinese population. Single-molecule analysis allows robust haplotyping even for samples with low labelling efficiency. We expect this generic shape ID-based nanomechanical approach to hold great potential in genetic analysis at the single-molecule level.

  16. Rectifications in organic single-molecule diodes alkanethiolate-terminated heterocyclics

    Energy Technology Data Exchange (ETDEWEB)

    An, Yipeng, E-mail: ypan@htu.edu.cn [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007 (China); Zhang, Mengjun; Wang, Tianxing; Wang, Guangtao [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007 (China); Fu, Zhaoming, E-mail: fuzhm1979@163.com [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007 (China); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-02-22

    Based on the non-equilibrium Green's function formalism combined with the ab initio density functional theory, we investigate the rectifying behaviors of the organic single-molecule S(CH{sub 2}){sub 11}-terminated with a variety of heterocyclics (i.e., BIPY, PHE, PHEPY, and PYR) coupled with two semi-infinite Au electrodes. Our quantum transport calculation results show that the BIPY and PHE nanojunctions show the high-efficiency rectifying effects. While, differently, the current–voltage (I–V) curves of PHEPY and PYR nanojunctions display the insulating and linear characters, respectively. The corresponding electronic transport mechanisms are analyzed in detail. Our calculation results demonstrate that these investigated organic single-molecule nanojunctions have the potential applications in rectifiers and molecular wires. - Highlights: • The organic single-molecule diodes S(CH{sub 2}){sub 11}-terminated with bipyridyl and phenanthroline groups present rectifying effects. • The S(CH{sub 2}){sub 11}-terminated with phenylpyridyl exhibit the insulating character. • The I–V curve of S(CH{sub 2}){sub 11}-terminated with pyrazinyl group presents well linear character.

  17. Correlating anomalous diffusion with lipid bilayer membrane structure using single molecule tracking and atomic force microscopy

    Science.gov (United States)

    Skaug, Michael J.; Faller, Roland; Longo, Marjorie L.

    2011-06-01

    Anomalous diffusion has been observed abundantly in the plasma membrane of biological cells, but the underlying mechanisms are still unclear. In general, it has not been possible to directly image the obstacles to diffusion in membranes, which are thought to be skeleton bound proteins, protein aggregates, and lipid domains, so the dynamics of diffusing particles is used to deduce the obstacle characteristics. We present a supported lipid bilayer system in which we characterized the anomalous diffusion of lipid molecules using single molecule tracking, while at the same time imaging the obstacles to diffusion with atomic force microscopy. To explain our experimental results, we performed lattice Monte Carlo simulations of tracer diffusion in the presence of the experimentally determined obstacle configurations. We correlate the observed anomalous diffusion with obstacle area fraction, fractal dimension, and correlation length. To accurately measure an anomalous diffusion exponent, we derived an expression to account for the time-averaging inherent to all single molecule tracking experiments. We show that the length of the single molecule trajectories is critical to the determination of the anomalous diffusion exponent. We further discuss our results in the context of confinement models and the generating stochastic process.

  18. Dissociation rates from single-molecule pulling experiments under large thermal fluctuations or large applied force.

    Science.gov (United States)

    Abkenar, Masoud; Gray, Thomas H; Zaccone, Alessio

    2017-04-01

    Theories that are used to extract energy-landscape information from single-molecule pulling experiments in biophysics are all invariably based on Kramers' theory of the thermally activated escape rate from a potential well. As is well known, this theory recovers the Arrhenius dependence of the rate on the barrier energy and crucially relies on the assumption that the barrier energy is much larger than k_{B}T (limit of comparatively low thermal fluctuations). As was shown already in Dudko et al. [Phys. Rev. Lett. 96, 108101 (2006)PRLTAO0031-900710.1103/PhysRevLett.96.108101], this approach leads to the unphysical prediction of dissociation time increasing with decreasing binding energy when the latter is lowered to values comparable to k_{B}T (limit of large thermal fluctuations). We propose a theoretical framework (fully supported by numerical simulations) which amends Kramers' theory in this limit and use it to extract the dissociation rate from single-molecule experiments where now predictions are physically meaningful and in agreement with simulations over the whole range of applied forces (binding energies). These results are expected to be relevant for a large number of experimental settings in single-molecule biophysics.

  19. Synthesis and single-molecule imaging of highly mobile adamantane-wheeled nanocars.

    Science.gov (United States)

    Chu, Pin-Lei E; Wang, Lin-Yung; Khatua, Saumyakanti; Kolomeisky, Anatoly B; Link, Stephan; Tour, James M

    2013-01-22

    The synthesis and single-molecule imaging of two inherently fluorescent nanocars equipped with adamantane wheels is reported. The nanocars were imaged using 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) as the chromophore, which was rigidly incorporated into the nanocar chassis via Sonogashira cross-coupling chemistry that permitted the synthesis of nanocars having different geometries. In particular, studied here were four- and three-wheeled nanocars with adamantane wheels. It was found that, for the four-wheeled nanocar, the percentage of moving nanocars and the diffusion constant show a significant improvement over p-carborane-wheeled nanocars with the same chassis. The three-wheeled nanocar showed only limited mobility due to its geometry. These results are consistent with a requisite wheel-like rolling motion. We furthermore developed a model that relates the percentage of moving nanocars in single-molecule experiments with the diffusion constant. The excellent agreement between the model and the new results presented here as well as previous single-molecule studies of fluorescent nanocars yields an improved understanding of motion in these molecular machines.

  20. Wafer-scale metasurface for total power absorption, local field enhancement and single molecule Raman spectroscopy.

    Science.gov (United States)

    Wang, Dongxing; Zhu, Wenqi; Best, Michael D; Camden, Jon P; Crozier, Kenneth B

    2013-10-04

    The ability to detect molecules at low concentrations is highly desired for applications that range from basic science to healthcare. Considerable interest also exists for ultrathin materials with high optical absorption, e.g. for microbolometers and thermal emitters. Metal nanostructures present opportunities to achieve both purposes. Metal nanoparticles can generate gigantic field enhancements, sufficient for the Raman spectroscopy of single molecules. Thin layers containing metal nanostructures ("metasurfaces") can achieve near-total power absorption at visible and near-infrared wavelengths. Thus far, however, both aims (i.e. single molecule Raman and total power absorption) have only been achieved using metal nanostructures produced by techniques (high resolution lithography or colloidal synthesis) that are complex and/or difficult to implement over large areas. Here, we demonstrate a metasurface that achieves the near-perfect absorption of visible-wavelength light and enables the Raman spectroscopy of single molecules. Our metasurface is fabricated using thin film depositions, and is of unprecedented (wafer-scale) extent.

  1. Multiplex single-molecule interaction profiling of DNA-barcoded proteins.

    Science.gov (United States)

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E; Vidal, Marc; Church, George M

    2014-11-27

    In contrast with advances in massively parallel DNA sequencing, high-throughput protein analyses are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule protein detection using optical methods is limited by the number of spectrally non-overlapping chromophores. Here we introduce a single-molecular-interaction sequencing (SMI-seq) technology for parallel protein interaction profiling leveraging single-molecule advantages. DNA barcodes are attached to proteins collectively via ribosome display or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide thin film to construct a random single-molecule array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies) and analysed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimetre. Furthermore, protein interactions can be measured on the basis of the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor and antibody-binding profiling, are demonstrated. SMI-seq enables 'library versus library' screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity.

  2. Nonlinear reconstruction of single-molecule free-energy surfaces from univariate time series.

    Science.gov (United States)

    Wang, Jiang; Ferguson, Andrew L

    2016-03-01

    The stable conformations and dynamical fluctuations of polymers and macromolecules are governed by the underlying single-molecule free energy surface. By integrating ideas from dynamical systems theory with nonlinear manifold learning, we have recovered single-molecule free energy surfaces from univariate time series in a single coarse-grained system observable. Using Takens' Delay Embedding Theorem, we expand the univariate time series into a high dimensional space in which the dynamics are equivalent to those of the molecular motions in real space. We then apply the diffusion map nonlinear manifold learning algorithm to extract a low-dimensional representation of the free energy surface that is diffeomorphic to that computed from a complete knowledge of all system degrees of freedom. We validate our approach in molecular dynamics simulations of a C(24)H(50) n-alkane chain to demonstrate that the two-dimensional free energy surface extracted from the atomistic simulation trajectory is - subject to spatial and temporal symmetries - geometrically and topologically equivalent to that recovered from a knowledge of only the head-to-tail distance of the chain. Our approach lays the foundations to extract empirical single-molecule free energy surfaces directly from experimental measurements.

  3. Amplification of single molecule translocation signal using β-strand peptide functionalized nanopores.

    Science.gov (United States)

    Liebes-Peer, Yael; Rapaport, Hanna; Ashkenasy, Nurit

    2014-07-22

    Changes in ionic current flowing through nanopores due to binding or translocation of single biopolymer molecules enable their detection and characterization. It is, however, much more challenging to detect small molecules due to their rapid and small signal signature. Here we demonstrate the use of de novo designed peptides for functionalization of nanopores that enable the detection of a small analytes at the single molecule level. The detection relies on cooperative peptide conformational change that is induced by the binding of the small molecule to a receptor domain on the peptide. This change results in alteration of the nanopore effective diameter and hence induces current perturbation signal. On the basis of this approach, we demonstrate here the detection of diethyl 4-nitrophenyl phosphate (paraoxon), a poisonous organophosphate molecule. Paraoxon binding is induced by the incorporation of the catalytic triad of acetylcholine esterase in the hydrophilic domain of a short amphiphilic peptide and promotes β-sheet assembly of the peptide both in solution and for peptide molecules immobilized on solid surfaces. Nanopores coated with this peptide allowed the detection of paraoxon at the single molecule level revealing two binding arrangements. This unique approach, hence, provides the ability to study interactions of small molecules with the corresponding engineered receptors at the single molecule level. Furthermore, the suggested versatile platform may be used for the development of highly sensitive small analytes sensors.

  4. Time-Resolved Frequency Comb Spectroscopy for Studying the Kinetics and Branching Ratio of OD+CO

    Science.gov (United States)

    Bui, Thinh Quoc; Bjork, Bryce J.; Heckl, Oliver H.; Changala, Bryan; Spaun, Ben; Okumura, Mitchio; Ye, Jun

    2016-06-01

    The chemical kinetics of the OH+CO reaction plays important roles in combustion and atmospheric processes. OH+CO has two product channels, H+CO_2 and the stabilized HOCO intermediate, with a branching ratio that is highly pressure dependent. Therefore, establishing an accurate kinetic model for this chemical system requires knowledge of the reaction rates and product yields, and the lifetimes of all molecules along a particular reaction pathway. We report the application of time-resolved frequency comb spectroscopy (TRFCS) in the mid-infrared (3.7 μm) spectral region to address the complex reaction kinetics of OD+CO at room temperature. We use the deuterated forms to avoid atmospheric water interference. This technique allows us to detect the lowest energy conformer trans-DOCO intermediate with high time-resolution and sensitivity while also permitting the direct determination of rotational state distributions of all relevant molecules. We simultaneously observe the time-dependent concentrations of trans-DOCO, OD, and D_2O which are used in conjunction with kinetics modeling to obtain the pressure- and collision partner-dependent branching ratio of OD+CO.

  5. Experimental validation of free-energy-landscape reconstruction from non-equilibrium single-molecule force spectroscopy measurements

    Science.gov (United States)

    Gupta, Amar Nath; Vincent, Abhilash; Neupane, Krishna; Yu, Hao; Wang, Feng; Woodside, Michael T.

    2011-08-01

    Free-energy-landscape formalisms provide the fundamental conceptual framework for physical descriptions of how proteins and nucleic acids fold into specific three-dimensional structures. Although folding landscapes are difficult to measure experimentally, recent theoretical work by Hummer and Szabo has shown that landscape profiles can be reconstructed from non-equilibrium single-molecule force spectroscopy measurements using an extension of the Jarzynski equality. This method has been applied to simulations and experiments but never validated experimentally. We tested it using force-extension measurements on DNA hairpins with distinct, sequence-dependent folding landscapes. Quantitative agreement was found between the landscape profiles obtained from the non-equilibrium reconstruction and those from equilibrium probability distributions. We also tested the method on a riboswitch aptamer with three partially folded intermediate states, successfully reconstructing the landscape but finding some states difficult to resolve owing to low occupancy or overlap of the potential wells. These measurements validate the landscape-reconstruction method and provide a new test of non-equilibrium work relations.

  6. Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data.

    Science.gov (United States)

    Bronson, Jonathan E; Fei, Jingyi; Hofman, Jake M; Gonzalez, Ruben L; Wiggins, Chris H

    2009-12-16

    Time series data provided by single-molecule Förster resonance energy transfer (smFRET) experiments offer the opportunity to infer not only model parameters describing molecular complexes, e.g., rate constants, but also information about the model itself, e.g., the number of conformational states. Resolving whether such states exist or how many of them exist requires a careful approach to the problem of model selection, here meaning discrimination among models with differing numbers of states. The most straightforward approach to model selection generalizes the common idea of maximum likelihood--selecting the most likely parameter values--to maximum evidence: selecting the most likely model. In either case, such an inference presents a tremendous computational challenge, which we here address by exploiting an approximation technique termed variational Bayesian expectation maximization. We demonstrate how this technique can be applied to temporal data such as smFRET time series; show superior statistical consistency relative to the maximum likelihood approach; compare its performance on smFRET data generated from experiments on the ribosome; and illustrate how model selection in such probabilistic or generative modeling can facilitate analysis of closely related temporal data currently prevalent in biophysics. Source code used in this analysis, including a graphical user interface, is available open source via http://vbFRET.sourceforge.net.

  7. Irving Langmuir Prize Talk: Single-Molecule Fluorescence Imaging: Nanoscale Emitters with Photoinduced Switching Enable Superresolution.

    Science.gov (United States)

    Moerner, W. E.

    2009-03-01

    In the two decades since the first optical detection and spectroscopy of a single molecule in a solid (Phys. Rev. Lett. 62, 2535 (1989)), much has been learned about the ability of single molecules to probe local nanoenvironments and individual behavior in biological and nonbiological materials in the absence of ensemble averaging that can obscure heterogeneity. The early years concentrated on high-resolution spectroscopy in solids, which provided observations of lifetime-limited spectra, optical saturation, spectral diffusion, optical switching, vibrational spectra, and magnetic resonance of a single molecular spin. In the mid-1990's, much of the field moved to room temperature, where a wide variety of biophysical effects were subsequently explored, but it is worth noting that several features from the low-temperature studies have analogs at high temperature. For example, in our first studies of yellow-emitting variants of green fluorescent protein (EYFP) in the water-filled pores of a gel (Nature 388, 355 (1997)), optically induced switching of the emission was observed, a room-temperature analog of the earlier low-temperature behavior. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic imaging of individual fluorophores leads naturally to superlocalization, or determination of the position of the molecule with precision beyond the optical diffraction limit, simply by digitization of the point-spread function from the single emitter. Recent work has allowed measurement of the shape of single filaments in a living cell simply by allowing a single molecule to move through the filament (PNAS 103, 10929 (2006)). The additional use of photoinduced control of single-molecule emission allows imaging beyond the diffraction limit (superresolution) by several novel approaches proposed by different researchers. For example, using photoswitchable EYFP, a novel protein superstructure can now be directly imaged in a living bacterial cell at

  8. Irving Langmuir Prize in Chemical Physics Lecture: The Inner Machinery of Single Molecules: resolving the unresolved with the STM

    Science.gov (United States)

    Ho, Wilson

    2013-03-01

    The scanning tunneling microscope (STM) is a unique instrument that can probe and induce changes in a molecule with atomic scale resolution. Its operation is based on the current that flows between the tip and the substrate with the molecule sandwiched in between. Therefore, the STM can be used to understand the coupling of electrons to the different states and excitations in the molecule and to investigate the influence on them by its environment. From the spatial and energy dependences of the coupling to the charge, spin, and nuclear motions in the molecule, verification of and new insights into the quantum mechanical properties of molecules can be obtained, including the discovery of new conduction and energy transfer mechanisms. This understanding of electron-molecule interactions with the STM enables rational ways to control chemistry and the exploration of novel physical technologies based on molecules.

  9. Study on self-frequency-shift of femtosecond pulse in nonlinear dispersion medium using time-resolved cross-phase modulation method

    Institute of Scientific and Technical Information of China (English)

    赵应桥; 朱鹤元; 刘建华; 孙迭篪; 李富铭

    1997-01-01

    A time-resolved cross-phase modulation method combined with a modified nonlinear Schrodinger equation is used to study the effects of nonlinear response time on the propagation of ultrashort pulses in nonlinear dispersion media. Evolution of cross-phase modulation spectrum with the different time delay between the probe pulse and pump pulse is simulated using split-step Fourier method. It is shown that both normal self-frequency-shift-red-shift and abnormal self-frequency-shift-blue-shift can occur in the frequency domain for the probe pulse, and a satisfactory theoretical interpretation is given.

  10. Kinetic modeling of molecular motors: pause model and parameter determination from single-molecule experiments

    Science.gov (United States)

    Morin, José A.; Ibarra, Borja; Cao, Francisco J.

    2016-05-01

    Single-molecule manipulation experiments of molecular motors provide essential information about the rate and conformational changes of the steps of the reaction located along the manipulation coordinate. This information is not always sufficient to define a particular kinetic cycle. Recent single-molecule experiments with optical tweezers showed that the DNA unwinding activity of a Phi29 DNA polymerase mutant presents a complex pause behavior, which includes short and long pauses. Here we show that different kinetic models, considering different connections between the active and the pause states, can explain the experimental pause behavior. Both the two independent pause model and the two connected pause model are able to describe the pause behavior of a mutated Phi29 DNA polymerase observed in an optical tweezers single-molecule experiment. For the two independent pause model all parameters are fixed by the observed data, while for the more general two connected pause model there is a range of values of the parameters compatible with the observed data (which can be expressed in terms of two of the rates and their force dependencies). This general model includes models with indirect entry and exit to the long-pause state, and also models with cycling in both directions. Additionally, assuming that detailed balance is verified, which forbids cycling, this reduces the ranges of the values of the parameters (which can then be expressed in terms of one rate and its force dependency). The resulting model interpolates between the independent pause model and the indirect entry and exit to the long-pause state model

  11. Electron transfer behaviour of biological macromolecules towards the single-molecule level

    Science.gov (United States)

    Zhang, Jingdong; Grubb, Mikala; Hansen, Allan G.; Kuznetsov, Alexander M.; Boisen, Anja; Wackerbarth, Hainer; Ulstrup, Jens

    2003-05-01

    Redox metalloproteins immobilized on metallic surfaces in contact with aqueous biological media are important in many areas of pure and applied sciences. Redox metalloprotein films are currently being addressed by new approaches where biotechnology including modified and synthetic proteins is combined with state-of-the-art physical electrochemistry with emphasis on single-crystal, atomically planar electrode surfaces, in situ scanning tunnelling microscopy (STM) and other surface techniques. These approaches have brought bioelectrochemistry important steps forward towards the nanoscale and single-molecule levels. We discuss here these advances with reference to two specific redox metalloproteins, the blue single-copper protein Pseudomonas aeruginosa azurin and the single-haem protein Saccharomyces cerevisiae yeast cytochrome c, and a short oligonucleotide. Both proteins can be immobilized on Au(111) by chemisorption via exposed sulfur-containing residues. Voltammetric, interfacial capacitance, x-ray photoelectron spectroscopy and microcantilever sensor data, together with in situ STM with single-molecule resolution, all point to a coherent view of monolayer organization with protein electron transfer (ET) function retained. In situ STM can also address the microscopic mechanisms for electron tunnelling through the biomolecules and offers novel notions such as coherent multi-ET between the substrate and tip via the molecular redox levels. This differs in important respects from electrochemical ET at a single metal/electrolyte interface. Similar data for a short oligonucleotide immobilized on Au(111) show that oligonucleotides can be characterized with comparable detail, with novel perspectives for addressing DNA electronic conduction mechanisms and for biological screening towards the single-molecule level.

  12. Single-molecule chemistry of metal phthalocyanine on noble metal surfaces.

    Science.gov (United States)

    Li, Zhenyu; Li, Bin; Yang, Jinlong; Hou, Jian Guo

    2010-07-20

    To develop new functional materials and nanoscale electronics, researchers would like to accurately describe and precisely control the quantum state of a single molecule on a surface. Scanning tunneling microscopy (STM), combined with first-principles simulations, provides a powerful technique for acquiring this level of understanding. Traditionally, metal phthalocyanine (MPc) molecules, composed of a metal atom surrounded by a ligand ring, have been used as dyes and pigments. Recently, MPc molecules have shown great promise as components of light-emitting diodes, field-effect transistors, photovoltaic cells, and single-molecule devices. In this Account, we describe recent research on the characterization and control of adsorption and electronic states of a single MPc molecule on noble metal surfaces. In general, the electronic and magnetic properties of a MPc molecule largely depend on the type of metal ion within the phthalocyanine ligand and the type of surface on which the molecule is adsorbed. However, with the STM technique, we can use on-site molecular "surgery" to manipulate the structure and the properties of the molecule. For example, STM can induce a dehydrogenation reaction of the MPc, which allows us to control the Kondo effect, which describes the spin polarization of the molecule and its interaction with the complex environment. A specially designed STM tip can allow researchers to detect certain molecule-surface hybrid states that are not accessible by other techniques. By matching the local orbital symmetry of the STM tip and the molecule, we can generate the negative differential resistance effect in the formed molecular junction. This orbital symmetry based mechanism is extremely robust and does not critically depend on the geometry of the STM tip. In summary, this simple model system, a MPc molecule absorbed on a noble metal surface, demonstrates the power of STM for quantum characterization and manipulation of single molecules, highlighting the

  13. Plasmonic nano-protrusions: hierarchical nanostructures for single-molecule Raman spectroscopy

    Science.gov (United States)

    Basuray, Sagnik; Pathak, Avinash; Bok, Sangho; Chen, Biyan; Hamm, Steven C.; Mathai, Cherian J.; Guha, Suchismita; Gangopadhyay, Keshab; Gangopadhyay, Shubhra

    2017-01-01

    Classical methods for enhancing the electromagnetic field from substrates for spectroscopic applications, such as surface-enhanced Raman spectroscopy (SERS), have involved the generation of hotspots through directed self-assembly of nanoparticles or by patterning nanoscale features using expensive nanolithography techniques. A novel large-area, cost-effective soft lithographic technique involving glancing angle deposition (GLAD) of silver on polymer gratings is reported here. This method produces hierarchical nanostructures with high enhancement factors capable of analyzing single-molecule SERS. The uniform ordered and patterned nanostructures provide extraordinary field enhancements that serve as excitatory hotspots and are herein interrogated by SERS. The high spatial homogeneity of the Raman signal and signal enhancement over a large area from a self-assembled monolayer (SAM) of 2-naphthalenethiol demonstrated the uniformity of the hotspots. The enhancement was shown to have a critical dependence on the underlying nanostructure via the surface energy landscape and GLAD angles for a fixed deposition thickness, as evidenced by atomic force microscopy and scanning electron microscopy surface analysis of the substrate. The nanostructured surface leads to an extremely concentrated electromagnetic field at sharp nanoscale peaks, here referred to as ‘nano-protrusions’, due to the coupling of surface plasmon resonance (SPR) with localized SPR. These nano-protrusions act as hotspots which provide Raman enhancement factors as high as 108 over a comparable SAM on silver. Comparison of our substrate with the commercial substrate Klarite™ shows higher signal enhancement and minimal signal variation with hotspot spatial distribution. By using the proper plasmon resonance angle corresponding to the laser source wavelength, further enhancement in signal intensity can be achieved. Single-molecule Raman spectra for rhodamine 6G are obtained from the best SERS substrate (a

  14. Single molecule studies of solvent-dependent diffusion and entrapment in poly(dimethylsiloxane) thin films.

    Science.gov (United States)

    Lange, Jeffrey J; Culbertson, Christopher T; Higgins, Daniel A

    2008-12-15

    Single molecule microscopic and spectroscopic methods are employed to probe the mobility and physical entrapment of dye molecules in dry and solvent-loaded poly(dimethylsiloxane) (PDMS) films. PDMS films of approximately 220 nm thickness are prepared by spin casting dilute solutions of Sylgard 184 onto glass coverslips, followed by low temperature curing. A perylene diimide dye (BPPDI) is used to probe diffusion and molecule-matrix interactions. Two classes of dye-loaded samples are investigated: (i) those incorporating dye dispersed throughout the films ("in film" samples) and (ii) those in which the dye is restricted primarily to the PDMS surface ("on film" samples). Experiments are performed under dry nitrogen and at various levels of isopropyl alcohol (IPA) loading from the vapor phase. A PDMS-coated quartz-crystal microbalance is employed to monitor solvent loading and drying of the PDMS and to ensure equilibrium conditions are achieved. Single molecules are shown to be predominantly immobile under dry conditions and mostly mobile under IPA-saturated conditions. Quantitative methods for counting the fluorescent spots produced by immobile single molecules in optical images of the samples demonstrate that the population of mobile molecules increases nonlinearly with IPA loading. Even under IPA saturated conditions, the population of fixed molecules is found to be greater than zero and is greatest for "in film" samples. Fluorescence correlation spectroscopy is used to measure the apparent diffusion coefficient for the mobile molecules, yielding a mean value of D = 1.4(+/-0.4) x 10(-8) cm(2)/s that is virtually independent of IPA loading and sample class. It is concluded that a nonzero population of dye molecules is physically entrapped within the PDMS matrix under all conditions. The increase in the population of mobile molecules under high IPA conditions is attributed to the filling of film micropores with solvent, rather than by incorporation of molecularly

  15. BOBA FRET: bootstrap-based analysis of single-molecule FRET data.

    Directory of Open Access Journals (Sweden)

    Sebastian L B König

    Full Text Available Time-binned single-molecule Förster resonance energy transfer (smFRET experiments with surface-tethered nucleic acids or proteins permit to follow folding and catalysis of single molecules in real-time. Due to the intrinsically low signal-to-noise ratio (SNR in smFRET time traces, research over the past years has focused on the development of new methods to extract discrete states (conformations from noisy data. However, limited observation time typically leads to pronounced cross-sample variability, i.e., single molecules display differences in the relative population of states and the corresponding conversion rates. Quantification of cross-sample variability is necessary to perform statistical testing in order to assess whether changes observed in response to an experimental parameter (metal ion concentration, the presence of a ligand, etc. are significant. However, such hypothesis testing has been disregarded to date, precluding robust biological interpretation. Here, we address this problem by a bootstrap-based approach to estimate the experimental variability. Simulated time traces are presented to assess the robustness of the algorithm in conjunction with approaches commonly used in thermodynamic and kinetic analysis of time-binned smFRET data. Furthermore, a pair of functionally important sequences derived from the self-cleaving group II intron Sc.ai5γ (d3'EBS1/IBS1 is used as a model system. Through statistical hypothesis testing, divalent metal ions are shown to have a statistically significant effect on both thermodynamic and kinetic aspects of their interaction. The Matlab source code used for analysis (bootstrap-based analysis of smFRET data, BOBA FRET, as well as a graphical user interface, is available via http://www.aci.uzh.ch/rna/.

  16. Conformational equilibria in monomeric alpha-synuclein at the single-molecule level.

    Directory of Open Access Journals (Sweden)

    Massimo Sandal

    2008-01-01

    Full Text Available Human alpha-Synuclein (alphaSyn is a natively unfolded protein whose aggregation into amyloid fibrils is involved in the pathology of Parkinson disease. A full comprehension of the structure and dynamics of early intermediates leading to the aggregated states is an unsolved problem of essential importance to researchers attempting to decipher the molecular mechanisms of alphaSyn aggregation and formation of fibrils. Traditional bulk techniques used so far to solve this problem point to a direct correlation between alphaSyn's unique conformational properties and its propensity to aggregate, but these techniques can only provide ensemble-averaged information for monomers and oligomers alike. They therefore cannot characterize the full complexity of the conformational equilibria that trigger the aggregation process. We applied atomic force microscopy-based single-molecule mechanical unfolding methodology to study the conformational equilibrium of human wild-type and mutant alphaSyn. The conformational heterogeneity of monomeric alphaSyn was characterized at the single-molecule level. Three main classes of conformations, including disordered and "beta-like" structures, were directly observed and quantified without any interference from oligomeric soluble forms. The relative abundance of the "beta-like" structures significantly increased in different conditions promoting the aggregation of alphaSyn: the presence of Cu2+, the pathogenic A30P mutation, and high ionic strength. This methodology can explore the full conformational space of a protein at the single-molecule level, detecting even poorly populated conformers and measuring their distribution in a variety of biologically important conditions. To the best of our knowledge, we present for the first time evidence of a conformational equilibrium that controls the population of a specific class of monomeric alphaSyn conformers, positively correlated with conditions known to promote the formation of

  17. Electron transfer behaviour of biological macromolecules towards the single-molecule level

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jingdong [Department of Chemistry, Building 207, Technical University of Denmark, DK-2800 Lyngby (Denmark); Grubb, Mikala [Department of Chemistry, Building 207, Technical University of Denmark, DK-2800 Lyngby (Denmark); Hansen, Allan G [Department of Chemistry, Building 207, Technical University of Denmark, DK-2800 Lyngby (Denmark); Kuznetsov, Alexander M [A N Frumkin Institute of Electrochemistry of the Russian Academy of Sciences, Leninskij Prospect 31, 117071 Moscow (Russian Federation); Boisen, Anja [Microelectronics Centre, Building 345, Technical University of Denmark, DK-2800 Lyngby (Denmark); Wackerbarth, Hainer [Department of Chemistry, Building 207, Technical University of Denmark, DK-2800 Lyngby (Denmark); Ulstrup, Jens [Department of Chemistry, Building 207, Technical University of Denmark, DK-2800 Lyngby (Denmark)

    2003-05-14

    Redox metalloproteins immobilized on metallic surfaces in contact with aqueous biological media are important in many areas of pure and applied sciences. Redox metalloprotein films are currently being addressed by new approaches where biotechnology including modified and synthetic proteins is combined with state-of-the-art physical electrochemistry with emphasis on single-crystal, atomically planar electrode surfaces, in situ scanning tunnelling microscopy (STM) and other surface techniques. These approaches have brought bioelectrochemistry important steps forward towards the nanoscale and single-molecule levels. We discuss here these advances with reference to two specific redox metalloproteins, the blue single-copper protein Pseudomonas aeruginosa azurin and the single-haem protein Saccharomyces cerevisiae yeast cytochrome c, and a short oligonucleotide. Both proteins can be immobilized on Au(111) by chemisorption via exposed sulfur-containing residues. Voltammetric, interfacial capacitance, x-ray photoelectron spectroscopy and microcantilever sensor data, together with in situ STM with single-molecule resolution, all point to a coherent view of monolayer organization with protein electron transfer (ET) function retained. In situ STM can also address the microscopic mechanisms for electron tunnelling through the biomolecules and offers novel notions such as coherent multi-ET between the substrate and tip via the molecular redox levels. This differs in important respects from electrochemical ET at a single metal/electrolyte interface. Similar data for a short oligonucleotide immobilized on Au(111) show that oligonucleotides can be characterized with comparable detail, with novel perspectives for addressing DNA electronic conduction mechanisms and for biological screening towards the single-molecule level.

  18. Single-molecule TPM studies on the conversion of human telomeric DNA.

    Science.gov (United States)

    Chu, Jen-Fei; Chang, Ta-Chau; Li, Hung-Wen

    2010-04-21

    Human telomere contains guanine-rich (G-rich) tandem repeats of single-stranded DNA sequences at its 3' tail. The G-rich sequences can be folded into various secondary structures, termed G-quadruplexes (G4s), by Hoogsteen basepairing in the presence of monovalent cations (such as Na+ and K+). We developed a single-molecule tethered particle motion (TPM) method to investigate the unfolding process of G4s in the human telomeric sequence AGGG(TTAGGG)3 in real time. The TPM method monitors the DNA tether length change caused by formation of the G4, thus allowing the unfolding process and structural conversion to be monitored at the single-molecule level. In the presence of its antisense sequence, the folded G4 structure can be disrupted and converted to the unfolded conformation, with apparent unfolding time constants of 82 s and 3152 s. We also observed that the stability of the G4 is greatly affected by different monovalent cations. The folding equilibrium constant of G4 is strongly dependent on the salt concentration, ranging from 1.75 at 5 mM Na+ to 3.40 at 15 mM Na+. Earlier spectral studies of Na+- and K+-folded states suggested that the spectral conversion between these two different folded structures may go through a structurally unfolded intermediate state. However, our single-molecule TPM experiments did not detect any totally unfolded intermediate within our experimental resolution when sodium-folded G4 DNA molecules were titrated with high-concentration, excess potassium ions. This observation suggests that a totally unfolding pathway is likely not the major pathway for spectral conversion on the timescale of minutes, and that interconversion among folded states can be achieved by the loop rearrangement. This study also demonstrates that TPM experiments can be used to study conformational changes in single-stranded DNA molecules.

  19. Hydrophobic fluorescent probes introduce artifacts into single molecule tracking experiments due to non-specific binding.

    Science.gov (United States)

    Zanetti-Domingues, Laura C; Tynan, Christopher J; Rolfe, Daniel J; Clarke, David T; Martin-Fernandez, Marisa

    2013-01-01

    Single-molecule techniques are powerful tools to investigate the structure and dynamics of macromolecular complexes; however, data quality can suffer because of weak specific signal, background noise and dye bleaching and blinking. It is less well-known, but equally important, that non-specific binding of probe to substrates results in a large number of immobile fluorescent molecules, introducing significant artifacts in live cell experiments. Following from our previous work in which we investigated glass coating substrates and demonstrated that the main contribution to this non-specific probe adhesion comes from the dye, we carried out a systematic investigation of how different dye chemistries influence the behaviour of spectrally similar fluorescent probes. Single-molecule brightness, bleaching and probe mobility on the surface of live breast cancer cells cultured on a non-adhesive substrate were assessed for anti-EGFR affibody conjugates with 14 different dyes from 5 different manufacturers, belonging to 3 spectrally homogeneous bands (491 nm, 561 nm and 638 nm laser lines excitation). Our results indicate that, as well as influencing their photophysical properties, dye chemistry has a strong influence on the propensity of dye-protein conjugates to adhere non-specifically to the substrate. In particular, hydrophobicity has a strong influence on interactions with the substrate, with hydrophobic dyes showing much greater levels of binding. Crucially, high levels of non-specific substrate binding result in calculated diffusion coefficients significantly lower than the true values. We conclude that the physic-chemical properties of the dyes should be considered carefully when planning single-molecule experiments. Favourable dye characteristics such as photostability and brightness can be offset by the propensity of a conjugate for non-specific adhesion.

  20. Hydrophobic fluorescent probes introduce artifacts into single molecule tracking experiments due to non-specific binding.

    Directory of Open Access Journals (Sweden)

    Laura C Zanetti-Domingues

    Full Text Available Single-molecule techniques are powerful tools to investigate the structure and dynamics of macromolecular complexes; however, data quality can suffer because of weak specific signal, background noise and dye bleaching and blinking. It is less well-known, but equally important, that non-specific binding of probe to substrates results in a large number of immobile fluorescent molecules, introducing significant artifacts in live cell experiments. Following from our previous work in which we investigated glass coating substrates and demonstrated that the main contribution to this non-specific probe adhesion comes from the dye, we carried out a systematic investigation of how different dye chemistries influence the behaviour of spectrally similar fluorescent probes. Single-molecule brightness, bleaching and probe mobility on the surface of live breast cancer cells cultured on a non-adhesive substrate were assessed for anti-EGFR affibody conjugates with 14 different dyes from 5 different manufacturers, belonging to 3 spectrally homogeneous bands (491 nm, 561 nm and 638 nm laser lines excitation. Our results indicate that, as well as influencing their photophysical properties, dye chemistry has a strong influence on the propensity of dye-protein conjugates to adhere non-specifically to the substrate. In particular, hydrophobicity has a strong influence on interactions with the substrate, with hydrophobic dyes showing much greater levels of binding. Crucially, high levels of non-specific substrate binding result in calculated diffusion coefficients significantly lower than the true values. We conclude that the physic-chemical properties of the dyes should be considered carefully when planning single-molecule experiments. Favourable dye characteristics such as photostability and brightness can be offset by the propensity of a conjugate for non-specific adhesion.

  1. Single-molecule force spectroscopy reveals the individual mechanical unfolding pathways of a surface layer protein.

    Science.gov (United States)

    Horejs, Christine; Ristl, Robin; Tscheliessnig, Rupert; Sleytr, Uwe B; Pum, Dietmar

    2011-08-05

    Surface layers (S-layers) represent an almost universal feature of archaeal cell envelopes and are probably the most abundant bacterial cell proteins. S-layers are monomolecular crystalline structures of single protein or glycoprotein monomers that completely cover the cell surface during all stages of the cell growth cycle, thereby performing their intrinsic function under a constant intra- and intermolecular mechanical stress. In gram-positive bacteria, the individual S-layer proteins are anchored by a specific binding mechanism to polysaccharides (secondary cell wall polymers) that are linked to the underlying peptidoglycan layer. In this work, atomic force microscopy-based single-molecule force spectroscopy and a polyprotein approach are used to study the individual mechanical unfolding pathways of an S-layer protein. We uncover complex unfolding pathways involving the consecutive unfolding of structural intermediates, where a mechanical stability of 87 pN is revealed. Different initial extensibilities allow the hypothesis that S-layer proteins adapt highly stable, mechanically resilient conformations that are not extensible under the presence of a pulling force. Interestingly, a change of the unfolding pathway is observed when individual S-layer proteins interact with secondary cell wall polymers, which is a direct signature of a conformational change induced by the ligand. Moreover, the mechanical stability increases up to 110 pN. This work demonstrates that single-molecule force spectroscopy offers a powerful tool to detect subtle changes in the structure of an individual protein upon binding of a ligand and constitutes the first conformational study of surface layer proteins at the single-molecule level.

  2. Single molecule optical measurements of orientation and rotations of biological macromolecules

    Science.gov (United States)

    Shroder, Deborah Y.; Lippert, Lisa G.; Goldman, Yale E.

    2016-12-01

    Subdomains of macromolecules often undergo large orientation changes during their catalytic cycles that are essential for their activity. Tracking these rearrangements in real time opens a powerful window into the link between protein structure and functional output. Site-specific labeling of individual molecules with polarized optical probes and measurement of their spatial orientation can give insight into the crucial conformational changes, dynamics, and fluctuations of macromolecules. Here we describe the range of single molecule optical technologies that can extract orientation information from these probes, review the relevant types of probes and labeling techniques, and highlight the advantages and disadvantages of these technologies for addressing specific inquiries.

  3. Electron transfer behaviour of biological macromolecules towards the single-molecule level

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Grubb, Mikala; Hansen, Allan Glargaard

    2003-01-01

    Redox metalloproteins immobilized on metallic surfaces in contact with aqueous biological media are important in many areas of pure and applied sciences. Redox metalloprotein films are currently being addressed by new approaches where biotechnology including modified and synthetic proteins...... and single-molecule levels.We discuss here these advances with reference to two specific redox metalloproteins, the blue single-copper protein Pseudomonas aeruginosa azurin and the single-haem protein Saccharomyces cerevisiae yeast cytochrome c, and a short oligonucleotide. Both proteins can be immobilized...

  4. Nonlinear thermoelectric transport in single-molecule junctions: the effect of electron-phonon interactions

    Science.gov (United States)

    Zimbovskaya, Natalya A.

    2016-07-01

    In this paper, we theoretically analyze steady-state thermoelectric transport through a single-molecule junction with a vibrating bridge. The thermally induced charge current in the system is explored using a nonequilibrium Green function formalism. We study the combined effects of Coulomb interactions between charge carriers on the bridge and electron-phonon interactions on the thermocurrent beyond the linear response regime. It is shown that electron-vibron interactions may significantly affect both the magnitude and the direction of the thermocurrent, and vibrational signatures may appear.

  5. Theory of single-molecule experiments in the overstretching force regime

    CERN Document Server

    Manca, Fabio; Palla, Pier Luca; Cleri, Fabrizio; Colombo, Luciano

    2012-01-01

    We present a statistical mechanics analysis of the finite-size elasticity of biopolymers, consisting of domains which can exhibit transitions between more than one stable state at large applied force. The constant-force (Gibbs) and constant-displacement (Helmholtz) formulations of single molecule stretching experiments are shown to converge in the thermodynamic limit. Monte Carlo simulations of continuous three dimensional polymers of variable length are carried out, based on this formulation. We demonstrate that the experimental force-extension curves for short and long chain polymers are described by a unique universal model, despite the differences in chemistry and rate-dependence of transition forces.

  6. Salen-based [Zn2Ln3] complexes with fluorescence and single-molecule-magnet properties.

    Science.gov (United States)

    Burrow, Carolyn E; Burchell, Tara J; Lin, Po-Heng; Habib, Fatemah; Wernsdorfer, Wolfgang; Clérac, Rodolphe; Murugesu, Muralee

    2009-09-07

    A family of four isostructural complexes with a V-shaped pentanuclear [Zn(2)Ln(3)] core of general formula [Zn(2)Ln(3)(m-salen)(3)(N(3))(5)(OH)(2)] [Ln(III) = Tb(III) (1), Eu(III) (2), Ho(III) (3), Dy(III) (4); m-salen = N,N'-ethylenebis(3-methoxysalicylideneamine)] were isolated and structurally characterized. The fluorescence and magnetic measurements of the four compounds were investigated. Complex 1 exhibits strong fluorescence properties, while single-molecule-magnet behavior is seen in complex 4.

  7. Theory on single molecule_photon cryocooler—— Conception and quantum transition processes

    Institute of Scientific and Technical Information of China (English)

    秦伟平; 陈宝玖; 秦冠仕; 杜国同; 许武; 黄世华

    2001-01-01

    The micro mechanism of anti_Stokes fluorescent cooling was investigated on molecular or ionic scale. A new conception of single molecule_photon cryocooler (SMPC) was given, and the smallest cryocooler in the world was predicted. We described SMPC and its running principle in detail. The quantum transition processes of SMPC and the largest cooling coefficient that SMPC can get in an optical transition were given. Also we studied the random property of SMPC in cooling processes. The thermodynamic behavior of single Yb3+ ion as a photon cryocooler was imitated.

  8. Single-Molecule FRET Reveals Hidden Complexity in a Protein Energy Landscape

    OpenAIRE

    Tsytlonok, Maksym; Ibrahim, Shehu M.; Rowling, Pamela J.E.; Xu, Wenshu; Ruedas-Rama, Maria J.; Orte, Angel; Klenerman, David; Itzhaki, Laura S.

    2015-01-01

    Summary Here, using single-molecule FRET, we reveal previously hidden conformations of the ankyrin-repeat domain of AnkyrinR, a giant adaptor molecule that anchors integral membrane proteins to the spectrin-actin cytoskeleton through simultaneous binding of multiple partner proteins. We show that the ankyrin repeats switch between high-FRET and low-FRET states, controlled by an unstructured “safety pin” or “staple” from the adjacent domain of AnkyrinR. Opening of the safety pin leads to unrav...

  9. Interaction of spin and vibrations in transport through single-molecule magnets

    Directory of Open Access Journals (Sweden)

    Falk May

    2011-10-01

    Full Text Available We study electron transport through a single-molecule magnet (SMM and the interplay of its anisotropic spin with quantized vibrational distortions of the molecule. Based on numerical renormalization group calculations we show that, despite the longitudinal anisotropy barrier and small transverse anisotropy, vibrational fluctuations can induce quantum spin-tunneling (QST and a QST-Kondo effect. The interplay of spin scattering, QST and molecular vibrations can strongly enhance the Kondo effect and induce an anomalous magnetic field dependence of vibrational Kondo side-bands.

  10. Nano-magnetic materials: spin crossover compounds vs. single molecule magnets vs. single chain magnets.

    Science.gov (United States)

    Brooker, Sally; Kitchen, Jonathan A

    2009-09-28

    Brief introductions to spin crossover (SCO), single molecule magnetism (SMM) and single chain magnetism (SCM) are provided. Each section is illustrated by selected examples that have contributed significantly to the development of these fields, including recent efforts to produce materials (films, attachment to surfaces etc.). The advantages and disadvantages of each class of magnetically interesting compound are considered, along with the key challenges that remain to be overcome before such compounds can be used commercially as nanocomponents. This invited perspective article is intended to be easily comprehensible to non-specialists in the field.

  11. Preparation and single molecule structure of electroactive polysilane end-grafted on a crystalline silicon surface

    Science.gov (United States)

    Furukawa, Kazuaki; Ebata, Keisuke

    2000-12-01

    Electrically active polysilanes of poly(methylphenylsilane) (PMPS) and poly[bis(p-n-butylphenyl)silane] (PBPS), which are, respectively, known as a good hole transporting material and a near-ultraviolet electroluminescent material, are end-grafted directly on a crystalline silicon surface. The single polysilane molecules are clearly distinguished one from the other on the surface by means of atomic force microscopy observations. End-grafted single molecules of PMPS are observed as dots while end-grafted PBPS appear as worms extending for more than 100 nm on the crystalline silicon surface.

  12. Refractive index fluctuations in solids: nanoprobing by means of single-molecule spectroscopy

    CERN Document Server

    Anikushina, T A; Gorshelev, A A; Naumov, A V

    2015-01-01

    We suggest a novel approach for probing of local fluctuations of the refractive index $n$ in solids by means of single-molecule (SM) spectroscopy. It is based on the dependence $T_1(n)$ of the effective radiative lifetime $T_1$ of dye centres in solids on $n$ due to the local field effects. Detection of SM zero-phonon lines at ultra-low temperatures gives the values of SM natural spectral linewidth (which is inverse proportional to $T_1$) and makes it possible to reveal the distribution of the local $n$ values in solids. Here we demonstrate this possibility on the example of amorphous polyethylene and polycrystalline naphthalene doped with terrylene.

  13. A simple DNA handle attachment method for single molecule mechanical manipulation experiments.

    Science.gov (United States)

    Min, Duyoung; Arbing, Mark A; Jefferson, Robert E; Bowie, James U

    2016-08-01

    Manipulating single molecules and systems of molecules with mechanical force is a powerful technique to examine their physical properties. Applying force requires attachment of the target molecule to larger objects using some sort of molecular tether, such as a strand of DNA. DNA handle attachment often requires difficult manipulations of the target molecule, which can preclude attachment to unstable, hard to obtain, and/or large, complex targets. Here we describe a method for covalent DNA handle attachment to proteins that simply requires the addition of a preprepared reagent to the protein and a short incubation. The handle attachment method developed here provides a facile approach for studying the biomechanics of biological systems.

  14. A new multiplexing single molecule technique for measuring restriction enzyme activity

    Science.gov (United States)

    Harbottle, Allison; Cavanaugh, Jillian; Gordon, Wendy; Loparo, Joseph; Price, Allen

    2012-02-01

    We present a new multiplexing single molecule method for observing the cleavage of DNAs by restriction enzymes. DNAs are attached to a surface at one end using a biotin-streptavidin link and to a micro bead at the other end via a digoxigenin-antidigoxigenin link. The DNAs are stretched by applying a flow. After introduction of the restriction enzyme, the exact time of cleavage of individual DNAs is recorded with video microscopy. We can image hundreds to thousands of DNAs in a single experiment. We are using our technique to search for the signature of facilitated diffusion in the measured rate dependence on ionic strength.

  15. Direct measurement and modulation of single-molecule coordinative bonding forces in a transition metal complex

    DEFF Research Database (Denmark)

    Hao, Xian; Zhu, Nan; Gschneidtner, Tina

    2013-01-01

    Coordination chemistry has been a consistently active branch of chemistry since Werner's seminal theory of coordination compounds inaugurated in 1893, with the central focus on transition metal complexes. However, control and measurement of metal-ligand interactions at the single-molecule level...... remain a daunting challenge. Here we demonstrate an interdisciplinary and systematic approach that enables measurement and modulation of the coordinative bonding forces in a transition metal complex. Terpyridine is derived with a thiol linker, facilitating covalent attachment of this ligand on both gold...

  16. Comment on "A New Method for Determining Dipole Moment Orientation of Single Molecules"

    Institute of Scientific and Technical Information of China (English)

    Martin Vacha; Masahiro Kotani

    2004-01-01

    @@ In a recent issue of Chinese Physics Letters, Wang et al.[1] proposed a method for determining orientation of transition dipole moments of single molecules. The suggested method is based on differences in electric field profile in fluorescence microscope produced by excitation light in epi-fluorescence illumination and total internal reflection illumination configurations, respectively. Here, we wish to draw attention to the fact that the same method based on identical physical principles has been already proposed and experimentally demonstrated by us in a publication which appeared more than one year before Wang's paper.

  17. The Relation between Structure and Quantum Interference in Single Molecule Junctions

    DEFF Research Database (Denmark)

    Markussen, Troels; Stadler, Robert; Thygesen, Kristian Sommer

    2010-01-01

    Quantum interference (QI) of electron pathways has recently attracted increased interest as an enabling tool for single-molecule electronic devices. Although various molecular systems have been shown to exhibit QI effects and a number of methods have been proposed for its analysis, simple...... the existence of QI-induced transmission antiresonances. The generality of the scheme, which is exact for a certain class of tight-binding models, is proved by a comparison to first-principles transport calculations for 10 different configurations of anthraquinone as well as a set of cross-conjugated molecular...

  18. Single-Molecule Electrochemical Transistor Utilizing a Nickel-Pyridyl Spinterface

    DEFF Research Database (Denmark)

    Brooke, Richard J.; Jin, Chengjun; Szumski, Doug S.

    2015-01-01

    Using a scanning tunnelling microscope break-junction technique, we produce 4,4′-bipyridine (44BP) single-molecule junctions with Ni and Au contacts. Electrochemical control is used to prevent Ni oxidation and to modulate the conductance of the devices via nonredox gating - the first time this has...... been shown using non-Au contacts. Remarkably the conductance and gain of the resulting Ni-44BP-Ni electrochemical transistors is significantly higher than analogous Au-based devices. Ab-initio calculations reveal that this behavior arises because charge transport is mediated by spin-polarized Ni d...

  19. A single molecule switch based on two Pd nanocrystals linked by a conjugated dithiol

    Indian Academy of Sciences (India)

    Ved Varun Agrawal; Reji Thomas; G U Kulkarni; C N R Rao

    2005-11-01

    Tunneling spectroscopy measurements have been carried out on a single molecule device formed by two Pd nanocrystals (dia. ∼ 5 nm) electronically coupled by a conducting molecule, dimercaptodiphenylacetylene. The – data, obtained by positioning the tip over a nanocrystal electrode, exhibit negative differential resistance (NDR) on a background M-I-M characteristics. The NDR feature occurs at ∼ 0.67 V at 300 K and shifts to a higher bias of 1.93 V at 90 K. When the tip is held in the middle region of the device, a Coulomb blockade region is observed (± ∼ 0.3 V).

  20. Theoretical and Experimental Exploration of the Structures and Electronic States of Single Molecules

    Institute of Scientific and Technical Information of China (English)

    HOU Jianguo; YANG Jinlong; WANG Haiqian; WANG Bing; ZHU Qingshi

    2007-01-01

    @@ The scanning tunnel microscopy/spectroscopy(STM/STS) is a powerful technique in probing the surface structures and the electronic states on a single molecular scale. Although a scanning tunneling microscope has a high spatial resolution in a topographic image, the image just reflects the spatial distribution of the electronic states, instead of the geometric structure of single molecules. Moreover, some additional factors,like the influence of the substrate and the STM tip, may also affect an STM image. So, it is still a challenge to determine the molecular conformation, molecular orientation, and intramolecular structure and electronic states on a single molecular scale.