WorldWideScience

Sample records for frequency quasi-periodic oscillations

  1. ON THE HIGH-FREQUENCY QUASI-PERIODIC OSCILLATIONS FROM BLACK HOLES

    International Nuclear Information System (INIS)

    Erkut, M. Hakan

    2011-01-01

    We apply the global mode analysis, which has been recently developed for the modeling of kHz quasi-periodic oscillations (QPOs) from neutron stars, to the inner region of an accretion disk around a rotating black hole. Within a pseudo-Newtonian approach that keeps the ratio of the radial epicyclic frequency κ to the orbital frequency Ω the same as the corresponding ratio for a Kerr black hole, we determine the innermost disk region where the hydrodynamic modes grow in amplitude. We find that the radiation flux emerging from the inner disk has the highest values within the same region. Using the flux-weighted averages of the frequency bands over this region we identify the growing modes with highest frequency branches Ω + κ and Ω to be the plausible candidates for the high-frequency QPO pairs observed in black hole systems. The observed frequency ratio around 1.5 can therefore be understood naturally in terms of the global free oscillations in the innermost region of a viscous accretion disk around a black hole without invoking a particular resonance to produce black hole QPOs. Although the frequency ratio (Ω + κ)/(Ω) is found to be not sensitive to the black hole's spin which is good for explaining the high-frequency QPOs, it may work as a limited diagnostic of the spin parameter to distinguish black holes with very large spin from the slowly rotating ones. Within our model we estimate the frequency ratio of a high-frequency QPO pair to be greater than 1.5 if the black hole is a slow rotator. For fast rotating black holes, we expect the same ratio to be less than 1.5.

  2. On one-parametric formula relating the frequencies of twin-peak quasi-periodic oscillations

    Science.gov (United States)

    Török, Gabriel; Goluchová, Kateřina; Šrámková, Eva; Horák, Jiří; Bakala, Pavel; Urbanec, Martin

    2018-01-01

    Twin-peak quasi-periodic oscillations (QPOs) are observed in several low-mass X-ray binary systems containing neutron stars. Timing the analysis of X-ray fluxes of more than dozen of such systems reveals remarkable correlations between the frequencies of two characteristic peaks present in the power density spectra. The individual correlations clearly differ, but they roughly follow a common individual pattern. High values of measured QPO frequencies and strong modulation of the X-ray flux both suggest that the observed correlations are connected to orbital motion in the innermost part of an accretion disc. Several attempts to model these correlations with simple geodesic orbital models or phenomenological relations have failed in the past. We find and explore a surprisingly simple analytic relation that reproduces individual correlations for a group of several sources through a single parameter. When an additional free parameter is considered within our relation, it well reproduces the data of a large group of 14 sources. The very existence and form of this simple relation support the hypothesis of the orbital origin of QPOs and provide the key for further development of QPO models. We discuss a possible physical interpretation of our relation's parameters and their links to concrete QPO models.

  3. Twin peak high-frequency quasi-periodic oscillations as a spectral imprint of dual oscillation modes of accretion tori

    Science.gov (United States)

    Bakala, P.; Goluchová, K.; Török, G.; Šrámková, E.; Abramowicz, M. A.; Vincent, F. H.; Mazur, G. P.

    2015-09-01

    Context. High-frequency (millisecond) quasi-periodic oscillations (HF QPOs) are observed in the X-ray power-density spectra of several microquasars and low-mass X-ray binaries. Two distinct QPO peaks, so-called twin peak QPOs, are often detected simultaneously exhibiting their frequency ratio close or equal to 3:2. A widely discussed class of proposed QPOs models is based on oscillations of accretion toroidal structures orbiting in the close vicinity of black holes or neutron stars. Aims: Following the analytic theory and previous studies of observable spectral signatures, we aim to model the twin peak QPOs as a spectral imprint of specific dual oscillation regime defined by a combination of the lowest radial and vertical oscillation mode of slender tori. We consider the model of an optically thick slender accretion torus with constant specific angular momentum. We examined power spectra and fluorescent Kα iron line profiles for two different simulation setups with the mode frequency relations corresponding to the epicyclic resonance HF QPOs model and modified relativistic precession QPOs model. Methods: We used relativistic ray-tracing implemented in the parallel simulation code LSDplus. In the background of the Kerr spacetime geometry, we analyzed the influence of the distant observer inclination and the spin of the central compact object. Relativistic optical projection of the oscillating slender torus is illustrated by images in false colours related to the frequency shift. Results: We show that performed simulations yield power spectra with the pair of dominant peaks that correspond to the frequencies of radial and vertical oscillation modes and with the peak frequency ratio equal to the proper value 3:2 on a wide range of inclinations and spin values. We also discuss exceptional cases of a very low and very high inclination, as well as unstable high spin relativistic precession-like configurations that predict a constant frequency ratio equal to 1:2. We

  4. A one-parametric formula relating the frequencies of twin-peak quasi-periodic oscillations

    Science.gov (United States)

    Török, Gabriel; Goluchová, Kateřina; Šrámková, Eva; Horák, Jiří; Bakala, Pavel; Urbanec, Martin

    2017-12-01

    Timing analysis of X-ray flux in more than a dozen low-mass X-ray binary systems containing a neutron star reveals remarkable correlations between frequencies of two characteristic peaks present in the power-density spectra. We find a simple analytic relation that well reproduces all these individual correlations. We link this relation to a physical model which involves accretion rate modulation caused by an oscillating torus.

  5. LOW-FREQUENCY QUASI-PERIODIC OSCILLATION FROM THE 11 Hz ACCRETING PULSAR IN TERZAN 5: NOT FRAME DRAGGING

    International Nuclear Information System (INIS)

    Altamirano, D.; Van der Klis, M.; Wijnands, R.; Ingram, A.; Linares, M.; Homan, J.

    2012-01-01

    We report on six RXTE observations taken during the 2010 outburst of the 11 Hz accreting pulsar IGR J17480–2446 located in the globular cluster Terzan 5. During these observations we find power spectra which resemble those seen in Z-type high-luminosity neutron star low-mass X-ray binaries, with a quasi-periodic oscillation (QPO) in the 35-50 Hz range simultaneous with a kHz QPO and broadband noise. Using well-known frequency-frequency correlations, we identify the 35-50 Hz QPOs as the horizontal branch oscillations, which were previously suggested to be due to Lense-Thirring (LT) precession. As IGR J17480–2446 spins more than an order of magnitude more slowly than any of the other neutron stars where these QPOs were found, this QPO cannot be explained by frame dragging. By extension, this casts doubt on the LT precession model for other low-frequency QPOs in neutron stars and perhaps even black hole systems.

  6. Low-frequency Quasi-periodic Oscillation from the 11 Hz Accreting Pulsar in Terzan 5: Not Frame Dragging

    Science.gov (United States)

    Altamirano, D.; Ingram, A.; van der Klis, M.; Wijnands, R.; Linares, M.; Homan, J.

    2012-11-01

    We report on six RXTE observations taken during the 2010 outburst of the 11 Hz accreting pulsar IGR J17480-2446 located in the globular cluster Terzan 5. During these observations we find power spectra which resemble those seen in Z-type high-luminosity neutron star low-mass X-ray binaries, with a quasi-periodic oscillation (QPO) in the 35-50 Hz range simultaneous with a kHz QPO and broadband noise. Using well-known frequency-frequency correlations, we identify the 35-50 Hz QPOs as the horizontal branch oscillations, which were previously suggested to be due to Lense-Thirring (LT) precession. As IGR J17480-2446 spins more than an order of magnitude more slowly than any of the other neutron stars where these QPOs were found, this QPO cannot be explained by frame dragging. By extension, this casts doubt on the LT precession model for other low-frequency QPOs in neutron stars and perhaps even black hole systems.

  7. An Optical Low-frequency Quasi-Periodic Oscillation in the Kepler Light Curve of an Active Galaxy

    Science.gov (United States)

    Mushotzky, Richard; Smith, Krista Lynne; Boyd, Patricia; Wagoner, Robert

    2018-01-01

    We report the discovery of a candidate quasi-periodic oscillation (QPO) in the optical light curve of KIC 9650712, a Seyfert 1 galaxy in the original Kepler field. After the development and application of a pipeline for Kepler data specific to active galactic nuclei (AGN), one of our sample of 21 AGN selected by infrared photometry and X-ray flux demonstrates a peak in the power spectrum at 10-6.58 Hz, corresponding to a temporal period of 44 days. >From optical spectroscopy, we measure the black hole mass of this AGN as log M = 8.17 M_sun. Despite this high mass, the optical spectrum of KIC 9650712 bears many similarities to Narrow Line Seyfert 1 (NLS1) galaxies, including strong Fe II emission and a low [O III]/Hβ ratio. So far, X-ray QPOs have primarily been seen in NLS1 galaxies. Finally, we find that this frequency lies along a correlation between low-frequency QPOs and black hole mass from stellar and intermediate mass black holes to AGN, similar to the known correlation in high-frequency QPOs.

  8. REPRODUCING THE CORRELATIONS OF TYPE C LOW-FREQUENCY QUASI-PERIODIC OSCILLATION PARAMETERS IN XTE J1550–564 WITH A SPIRAL STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Varniere, Peggy [APC, AstroParticule et Cosmologie, Universite Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Lonie Duquet, F-75205 Paris Cedex 13 (France); Vincent, Frederic H., E-mail: varniere@apc.univ-paris7.fr [Observatoire de Paris/LESIA, 5, place Jules Janssen, F-92195 Meudon Cedex (France)

    2017-01-10

    While it has been observed that the parameters intrinsic to the type C low-frequency quasi-periodic oscillations are related in a nonlinear manner among themselves, there has been, up to now, no model to explain or reproduce how the frequency, the FWHM, and the rms amplitude of the type C low-frequency quasi-periodic oscillations behave with respect to one another. Here we are using a simple toy model representing the emission from a standard disk and a spiral such as that caused by the accretion–ejection instability to reproduce the overall observed behavior and shed some light on its origin. This allows us to prove the ability of such a spiral structure to be at the origin of flux modulation over more than an order of magnitude in frequency.

  9. THE ENERGY DEPENDENCE OF THE CENTROID FREQUENCY AND PHASE LAG OF THE QUASI-PERIODIC OSCILLATIONS IN GRS 1915+105

    International Nuclear Information System (INIS)

    Qu, J. L.; Lu, F. J.; Lu, Y.; Song, L. M.; Zhang, S.; Wang, J. M.; Ding, G. Q.

    2010-01-01

    We present a study of the centroid frequencies and phase lags of quasi-periodic oscillations (QPOs) as functions of photon energy for GRS 1915+105. It is found that the centroid frequencies of the 0.5-10 Hz QPOs and their phase lags are both energy dependent, and there exists an anticorrelation between the QPO frequency and phase lag. These new results challenge the popular QPO models, because none of them can fully explain the observed properties. We suggest that the observed QPO phase lags are partially due to the variation of the QPO frequency with energy, especially for those with frequency higher than 3.5 Hz.

  10. DETECTION OF VERY LOW-FREQUENCY, QUASI-PERIODIC OSCILLATIONS IN THE 2015 OUTBURST OF V404 CYGNI

    Energy Technology Data Exchange (ETDEWEB)

    Huppenkothen, D. [Center for Data Science, New York University, 726 Broadway, 7th Floor, New York, NY 10003 (United States); Younes, G.; Kouveliotou, C. [Department of Physics, The George Washington University, Washington, DC 20052 (United States); Ingram, A.; Van der Klis, M. [Anton Pannekoek Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Göğüş, E. [Sabancı University, Orhanlı-Tuzla, İstanbul 34956 (Turkey); Bachetti, M. [INAF/Osservatorio Astronomico di Cagliari, via della Scienza 5, I-09047 Selargius (Italy); Sánchez-Fernández, C.; Kuulkers, E. [European Space Astronomy Centre (ESA/ESAC), Science Operations Department, E-28691 Villanueva de la Cañada, Madrid (Spain); Chenevez, J. [DTU Space—National Space Institute, Technical University of Denmark, Elektrovej 327-328, DK-2800 Lyngby (Denmark); Motta, S. [University of Oxford, Department of Physics, Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Granot, J. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Raanana 43537 (Israel); Gehrels, N. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Tomsick, J. A. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Walton, D. J., E-mail: daniela.huppenkothen@nyu.edu [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2017-01-01

    In 2015 June, the black hole X-ray binary (BHXRB) V404 Cygni went into outburst for the first time since 1989. Here, we present a comprehensive search for quasi-periodic oscillations (QPOs) of V404 Cygni during its recent outburst, utilizing data from six instruments on board five different X-ray missions: Swift /XRT, Fermi /GBM, Chandra /ACIS, INTEGRAL ’s IBIS/ISGRI and JEM-X, and NuSTAR . We report the detection of a QPO at 18 mHz simultaneously with both Fermi /GBM and Swift /XRT, another example of a rare but slowly growing new class of mHz-QPOs in BHXRBs linked to sources with a high orbital inclination. Additionally, we find a duo of QPOs in a Chandra /ACIS observation at 73 mHz and 1.03 Hz, as well as a QPO at 136 mHz in a single Swift /XRT observation that can be interpreted as standard Type-C QPOs. Aside from the detected QPOs, there is significant structure in the broadband power, with a strong feature observable in the Chandra observations between 0.1 and 1 Hz. We discuss our results in the context of current models for QPO formation.

  11. Low Frequency Quasi-periodic Oscillations in the High-eccentric LMXB Cir X-1: Extending the WK Correlation for Z Sources

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Qingcui; Chen, Li [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Belloni, T. M. [INAF-Osservatorio Astronomico di Brera, Via E, Bianchi 46, I-23807 Merate (Italy); Qu, Jinlu, E-mail: buqc@mail.bnu.edu.cn, E-mail: tomaso.belloni@brera.inaf.it, E-mail: chenli@bnu.edu.cn, E-mail: qujl@ihep.ac.cn [Laboratory for Particle Astrophysics, CAS, Beijing 100049 (China)

    2017-06-01

    Using archival Rossi X-ray Timing Explorer ( RXTE ) data, we studied the low-frequency quasi-periodic oscillations (LFQPOs) in the neutron star low-mass X-ray binary (LMXB) Cir X-1 and examined their contribution to frequency–frequency correlations for Z sources. We also studied the orbital phase effects on the LFQPO properties and found them to be phase independent. Comparing LFQPO frequencies in different classes of LMXBs, we found that systems that show both Z and atoll states form a common track with atoll/BH sources in the so-called WK correlation, while persistent Z systems are offset by a factor of about two. We found that neither source luminosity nor mass accretion rate is related to the shift of persistent Z systems. We discuss the possibility of a misidentification of fundamental frequency for horizontal branch oscillations from persistent Z systems and interpreted the oscillations in terms of models based on relativistic precession.

  12. Quasi-period oscillations of relay feedback systems

    International Nuclear Information System (INIS)

    Wen Guilin; Wang Qingguo; Lee, T.H.

    2007-01-01

    This paper presents an analytical method for investigation of the existence and stability of quasi-period oscillations (torus solutions) for a class of relay feedback systems. The idea is to analyze Poincare map from one switching surface to the next based on the Hopf bifurcation theory of maps. It is shown that there exist quasi-period oscillations in certain relay feedback systems

  13. ON THE GEOMETRIC NATURE OF LOW-FREQUENCY QUASI-PERIODIC OSCILLATIONS IN NEUTRON-STAR LOW-MASS X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Homan, Jeroen; Remillard, Ronald A. [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue 37-582D, Cambridge, MA 02139 (United States); Fridriksson, Joel K., E-mail: jeroen@space.mit.edu [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands)

    2015-10-10

    We report on a detailed analysis of the so-called ∼1 Hz quasi-periodic oscillation (QPO) in the eclipsing and dipping neutron-star low-mass X-ray binary EXO 0748–676. This type of QPO has previously been shown to have a geometric origin. Our study focuses on the evolution of the QPO as the source moves through the color–color diagram in which it traces out an atoll-source-like track. The QPO frequency increases from ∼0.4 Hz in the hard state to ∼25 Hz as the source approaches the soft state. Combining power spectra based on QPO frequency reveals additional features that strongly resemble those seen in non-dipping/eclipsing atoll sources. We show that the low-frequency QPOs in atoll sources and the ∼1 Hz QPO in EXO 0748–676 follow similar relations with respect to the noise components in their power spectra. We conclude that the frequencies of both types of QPOs are likely set by (the same) precession of a misaligned inner accretion disk. For high-inclination systems like EXO 0748–676 this results in modulations of the neutron-star emission due to obscuration or scattering, while for lower-inclination systems the modulations likely arise from relativistic Doppler-boosting and light-bending effects.

  14. Quasi-periodic synchronisation of self-modulation oscillations in a ring chip laser by an external periodic signal

    International Nuclear Information System (INIS)

    Aulova, T V; Kravtsov, Nikolai V; Lariontsev, E G; Chekina, S N

    2011-01-01

    The synchronisation of periodic self-modulation oscillations in a ring Nd:YAG chip laser under an external periodic signal modulating the pump power has been experimentally investigated. A new quasi-periodic regime of synchronisation of self-modulation oscillations is found. The characteristic features of the behaviour of spectral and temporal structures of synchronised quasi-periodic oscillations with a change in the external signal frequency are studied. (control of laser radiation parameters)

  15. QUASI-PERIODIC OSCILLATIONS AND BROADBAND VARIABILITY IN SHORT MAGNETAR BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Huppenkothen, Daniela; Watts, Anna L.; Uttley, Phil; Van der Horst, Alexander J.; Van der Klis, Michiel [Astronomical Institute ' ' Anton Pannekoek' ' , University of Amsterdam, Postbus 94249, 1090-GE Amsterdam (Netherlands); Kouveliotou, Chryssa [Office of Science and Technology, ZP12, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Goegues, Ersin [Sabanc Latin-Small-Letter-Dotless-I University, Orhanl Latin-Small-Letter-Dotless-I -Tuzla, Istanbul 34956 (Turkey); Granot, Jonathan [The Open University of Israel, 1 University Road, P.O. Box 808, Ra' anana 43537 (Israel); Vaughan, Simon [X-Ray and Observational Astronomy Group, University of Leicester, Leicester LE1 7RH (United Kingdom); Finger, Mark H., E-mail: D.Huppenkothen@uva.nl [Universities Space Research Association, Huntsville, AL 35805 (United States)

    2013-05-01

    The discovery of quasi-periodic oscillations (QPOs) in magnetar giant flares has opened up prospects for neutron star asteroseismology. However, with only three giant flares ever recorded, and only two with data of sufficient quality to search for QPOs, such analysis is seriously data limited. We set out a procedure for doing QPO searches in the far more numerous, short, less energetic magnetar bursts. The short, transient nature of these bursts requires the implementation of sophisticated statistical techniques to make reliable inferences. Using Bayesian statistics, we model the periodogram as a combination of red noise at low frequencies and white noise at high frequencies, which we show is a conservative approach to the problem. We use empirical models to make inferences about the potential signature of periodic and QPOs at these frequencies. We compare our method with previously used techniques and find that although it is on the whole more conservative, it is also more reliable in ruling out false positives. We illustrate our Bayesian method by applying it to a sample of 27 bursts from the magnetar SGR J0501+4516 observed by the Fermi Gamma-ray Burst Monitor, and we find no evidence for the presence of QPOs in any of the bursts in the unbinned spectra, but do find a candidate detection in the binned spectra of one burst. However, whether this signal is due to a genuine quasi-periodic process, or can be attributed to unmodeled effects in the noise is at this point a matter of interpretation.

  16. Quasi-periodic bifurcations and “amplitude death” in low-dimensional ensemble of van der Pol oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Emelianova, Yu.P., E-mail: yuliaem@gmail.com [Department of Electronics and Instrumentation, Saratov State Technical University, Polytechnicheskaya 77, Saratov 410054 (Russian Federation); Kuznetsov, A.P., E-mail: apkuz@rambler.ru [Kotel' nikov' s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch, Zelyenaya 38, Saratov 410019 (Russian Federation); Turukina, L.V., E-mail: lvtur@rambler.ru [Kotel' nikov' s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch, Zelyenaya 38, Saratov 410019 (Russian Federation); Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany)

    2014-01-10

    The dynamics of the four dissipatively coupled van der Pol oscillators is considered. Lyapunov chart is presented in the parameter plane. Its arrangement is discussed. We discuss the bifurcations of tori in the system at large frequency detuning of the oscillators. Here are quasi-periodic saddle-node, Hopf and Neimark–Sacker bifurcations. The effect of increase of the threshold for the “amplitude death” regime and the possibilities of complete and partial broadband synchronization are revealed.

  17. Quasi-periodic Oscillations in Flares and Coronal Mass Ejections Associated with Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takuya; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Qiu, Jiong, E-mail: takahasi@kusastro.kyoto-u.ac.jp [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States)

    2017-10-20

    We propose a mechanism for quasi-periodic oscillations of both coronal mass ejections (CMEs) and flare loops as related to magnetic reconnection in eruptive solar flares. We perform two-dimensional numerical MHD simulations of magnetic flux rope eruption, with three different values of the global Lundquist number. In the low Lundquist number run, no oscillatory behavior is found. In the moderate Lundquist number run, on the other hand, quasi-periodic oscillations are excited both at the bottom of the flux rope and at the flare loop top. In the high Lundquist number run, quasi-periodic oscillations are also excited; in the meanwhile, the dynamics become turbulent owing to the formation of multiple plasmoids in the reconnection current sheet. In high and moderate Lundquist number runs, thin reconnection jets collide with the flux rope bottom or flare loop top and dig them deeply. Steep oblique shocks are formed as termination shocks where reconnection jets are bent (rather than decelerated) in the horizontal direction, resulting in supersonic backflows. The structure becomes unstable, and quasi-periodic oscillations of supersonic backflows appear at locally confined high-beta regions at both the flux rope bottom and flare loop top. We compare the observational characteristics of quasi-periodic oscillations in erupting flux ropes, post-CME current sheets, flare ribbons, and light curves with corresponding dynamical structures found in our simulation.

  18. Variable Quasi Periodic Oscillations during an Outburst of the ...

    Indian Academy of Sciences (India)

    2006-02-21

    Feb 21, 2006 ... which is also supported from the optical observations of Hα emission line (Reig et al. .... quantifying the second peak as it has very low statistics. .... frequency of the neutron star will result into centrifugal inhibition of accretion.

  19. Strong gravity effects of rotating black holes: quasi-periodic oscillations

    International Nuclear Information System (INIS)

    Aliev, Alikram N; Esmer, Göksel Daylan; Talazan, Pamir

    2013-01-01

    We explore strong gravity effects of the geodesic motion in the spacetime of rotating black holes in general relativity and braneworld gravity. We focus on the description of the motion in terms of three fundamental frequencies: the orbital frequency, the radial and vertical epicyclic frequencies. For a Kerr black hole, we perform a detailed numerical analysis of these frequencies at the innermost stable circular orbits and beyond them as well as at the characteristic stable orbits, at which the radial epicyclic frequency attains its highest value. We find that the values of the epicyclic frequencies for a class of stable orbits exhibit good qualitative agreement with the observed frequencies of the twin peaks quasi-periodic oscillations (QPOs) in some black hole binaries. We also find that at the characteristic stable circular orbits, where the radial (or the vertical) epicyclic frequency has maxima, the vertical and radial epicyclic frequencies exhibit an approximate 2:1 ratio even in the case of near-extreme rotation of the black hole. Next, we perform a similar analysis of the fundamental frequencies for a rotating braneworld black hole and argue that the existence of such a black hole with a negative tidal charge, whose angular momentum exceeds the Kerr bound in general relativity, does not confront with the observations of high-frequency QPOs. (paper)

  20. Type I X-ray bursts, burst oscillations and kHz quasi-periodic oscillations in the neutron star system IGR J17191−2821

    NARCIS (Netherlands)

    Altamirano, D.; Linares, M.; Patruno, A.; Degenaar, N.; Wijnands, R.; Klein-Wolt, M.; van der Klis, M.; Markwardt, C.; Swank, J.

    2010-01-01

    We present a detailed study of the X-ray energy and power spectral properties of the neutron star transient IGR J17191−2821. We discovered four instances of pairs of simultaneous kilohertz quasi-periodic oscillations (kHz QPOs). The frequency difference between these kHz QPOs is between 315 and 362

  1. Quasi-periodic oscillations from post-shock accretion column of polars

    Science.gov (United States)

    Bera, Prasanta; Bhattacharya, Dipankar

    2018-02-01

    A set of strongly magnetized accreting white dwarfs (polars) shows quasi-periodic oscillations (QPOs) with frequency about a Hz in their optical luminosity. These Hz-frequency QPOs are thought to be generated by intensity variations of the emitted radiation originating at the post-shock accretion column. Thermal instability in the post-shock region, triggered by efficient cooling process at the base, is believed to be the primary reason behind the temporal variability. Here, we study the structure and the dynamical properties of the post-shock accretion column including the effects of bremsstrahlung and cyclotron radiation. We find that the presence of significant cyclotron emission in optical band reduces the overall variability of the post-shock region. In the case of a larger post-shock region above the stellar surface, the effects of stratification due to stellar gravity become important. An accretion column, influenced by the strong gravity, has a smaller variability as the strength of the thermal instability at the base of the column is reduced. On the other hand, the cool, dense plasma, accumulated just above the stellar surface, may enhance the post-shock variability due to the propagation of magnetic perturbations. These characteristics of the post-shock region are consistent with the observed properties of V834 Cen and in general with cataclysmic variable sources that exhibit QPO frequency of about a Hz.

  2. Mapping of the quasi-periodic oscillations at the flank magnetopause into the ionosphere

    Directory of Open Access Journals (Sweden)

    E. R. Dougal

    2013-11-01

    Full Text Available We have estimated the ionospheric location, area, and travel time of quasi-periodic oscillations originating from the magnetospheric flanks. This was accomplished by utilizing global and local MHD models and Tsyganenko semi-empirical magnetic field model on multiple published and four new cases believed to be caused by the Kelvin–Helmholtz Instability. Finally, we used auroral, magnetometer, and radar instruments to observe the ionospheric signatures. The ionospheric magnetic latitude determined using global MHD and Tsyganenko models ranged from 58.3–80.2 degrees in the Northern Hemisphere and −59.6 degrees to −83.4 degrees in the Southern Hemisphere. The ionospheric magnetic local time ranged between 5.0–13.8 h in the Northern Hemisphere and 1.3–11.9 h in the Southern Hemisphere. Typical Alfvén wave travel time from spacecraft location to the closest ionosphere ranged between 0.6–3.6 min. The projected ionospheric size calculated at an altitude of 100 km ranged from 47–606 km, the same order of magnitude as previously determined ionospheric signature sizes. Stationary and traveling convection vortices were observed in SuperDARN radar data in both hemispheres. The vortices were between 1000–1800 km in size. Some events were located within the ionospheric footprint ranges. Pc5 magnetic oscillations were observed in SuperMAG magnetometer data in both hemispheres. The oscillations had periods between 4–10 min with amplitudes of 3–25 nT. They were located within the ionospheric footprint ranges. Some ground magnetometer data power spectral density peaked at frequencies within one tenth of a mHz of the peaks found in the corresponding Cluster data. These magnetometer observations were consistent with previously published results.

  3. SOFT LAGS IN NEUTRON STAR kHz QUASI-PERIODIC OSCILLATIONS: EVIDENCE FOR REVERBERATION?

    Energy Technology Data Exchange (ETDEWEB)

    Barret, Didier, E-mail: didier.barret@irap.omp.eu [Universite de Toulouse, UPS-OMP, IRAP, F-31400 Toulouse (France); CNRS, Institut de Recherche en Astrophysique et Planetologie, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France)

    2013-06-10

    High frequency soft reverberation lags have now been detected from stellar mass and supermassive black holes. Their interpretation involves reflection of a hard source of photons onto an accretion disk, producing a delayed reflected emission, with a time lag consistent with the light travel time between the irradiating source and the disk. Independently of the location of the clock, the kHz quasi-periodic oscillation (QPO) emission is thought to arise from the neutron star boundary layer. Here, we search for the signature of reverberation of the kHz QPO emission, by measuring the soft lags and the lag energy spectrum of the lower kHz QPOs from 4U1608-522. Soft lags, ranging from {approx}15 to {approx}40 {mu}s, between the 3-8 keV and 8-30 keV modulated emissions are detected between 565 and 890 Hz. The soft lags are not constant with frequency and show a smooth decrease between 680 Hz and 890 Hz. The broad band X-ray spectrum is modeled as the sum of a disk and a thermal Comptonized component, plus a broad iron line, expected from reflection. The spectral parameters follow a smooth relationship with the QPO frequency, in particular the fitted inner disk radius decreases steadily with frequency. Both the bump around the iron line in the lag energy spectrum and the consistency between the lag changes and the inferred changes of the inner disk radius, from either spectral fitting or the QPO frequency, suggest that the soft lags may indeed involve reverberation of the hard pulsating QPO source on the disk.

  4. A Search for Quasi-periodic Oscillations in the Blazar 1ES 1959+650

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao-Pan; Luo, Yu-Hui; Yang, Hai-Yan; Cai, Yan; Yang, Hai-Tao [Department of Physics, Zhaotong University, Zhaotong, 657000 (China); Yang, Cheng, E-mail: lxpzrc@163.com [College of Photoelectron and Communication Engineering, Yunnan Open University, Kunming, 650223 (China)

    2017-09-20

    We have searched quasi-periodic oscillations (QPOs) in the 15 GHz light curve of the BL Lac object 1ES 1959+650 monitored by the Owens Valley Radio Observatory 40 m telescope during the period from 2008 January to 2016 February, using the Lomb–Scargle Periodogram, power spectral density (PSD), discrete autocorrelation function, and phase dispersion minimization (PDM) techniques. The red noise background has been established via the PSD method, and no QPO can be derived at the 3 σ confidence level accounting for the impact of the red noise variability. We conclude that the light curve of 1ES 1959+650 can be explained by a stochastic red noise process that contributes greatly to the total observed variability amplitude, dominates the power spectrum, causes spurious bumps and wiggles in the autocorrelation function and can result in the variance of the folded light curve decreasing toward lower temporal frequencies when few-cycle, sinusoid-like patterns are present. Moreover, many early supposed periodicity claims for blazar light curves need to be reevaluated assuming red noise.

  5. Quasi-periodic oscillations and the global modes of relativistic, MHD accretion discs

    Science.gov (United States)

    Dewberry, Janosz W.; Latter, Henrik N.; Ogilvie, Gordon I.

    2018-05-01

    The high-frequency quasi-periodic oscillations that punctuate the light curves of X-ray binary systems present a window on to the intrinsic properties of stellar-mass black holes and hence a testbed for general relativity. One explanation for these features is that relativistic distortion of the accretion disc's differential rotation creates a trapping region in which inertial waves (r-modes) might grow to observable amplitudes. Local analyses, however, predict that large-scale magnetic fields push this trapping region to the inner disc edge, where conditions may be unfavourable for r-mode growth. We revisit this problem from a pseudo-Newtonian but fully global perspective, deriving linearized equations describing a relativistic, magnetized accretion flow, and calculating normal modes with and without vertical density stratification. In an unstratified model we confirm that vertical magnetic fields drive r-modes towards the inner edge, though the effect depends on the choice of vertical wavenumber. In a global model we better quantify this susceptibility, and its dependence on the disc's vertical structure and thickness. Our calculations suggest that in thin discs, r-modes may remain independent of the inner disc edge for vertical magnetic fields with plasma betas as low as β ≈ 100-300. We posit that the appearance of r-modes in observations may be more determined by a competition between excitation and damping mechanisms near the ISCO than by the modification of the trapping region by magnetic fields.

  6. Investigation of Quasi-periodic Solar Oscillations in Sunspots Based on SOHO/MDI Magnetograms

    Science.gov (United States)

    Kallunki, J.; Riehokainen, A.

    2012-10-01

    In this work we study quasi-periodic solar oscillations in sunspots, based on the variation of the amplitude of the magnetic field strength and the variation of the sunspot area. We investigate long-period oscillations between three minutes and ten hours. The magnetic field synoptic maps were obtained from the SOHO/MDI. Wavelet (Morlet), global wavelet spectrum (GWS) and fast Fourier transform (FFT) methods are used in the periodicity analysis at the 95 % significance level. Additionally, the quiet Sun area (QSA) signal and an instrumental effect are discussed. We find several oscillation periods in the sunspots above the 95 % significance level: 3 - 5, 10 - 23, 220 - 240, 340 and 470 minutes, and we also find common oscillation periods (10 - 23 minutes) between the sunspot area variation and that of the magnetic field strength. We discuss possible mechanisms for the obtained results, based on the existing models for sunspot oscillations.

  7. Optical Frequency Mixing in Periodically-Patterned and in Quasi-Periodically-Patterned Nonlinear media

    International Nuclear Information System (INIS)

    Arie, A.

    1999-01-01

    Nonlinear frequency mixing processes, e.g. second harmonic generation, sum and difference frequency generation, etc., require matching of the phases of the interacting waves. The traditional method to achieve it is by selecting a specific angle of propagation in a birefringent nonlinear crystal. The main limitation of the birefringent phase matching method stems from the fact that for many interesting interactions, the phase matching condition cannot be satisfied in a specific crystal. This obstacle can be removed by the technique of quasi-phase-matching (QPM), where the nonlinear coefficient of the material is modulated at a fixed spatial frequency that equals the wave-vector phase mismatch between the interacting waves. An important development in recent years is the ability to periodically reverse the sign of the nonlinear coefficient in ferroelectric crystals by applying a high electric field through a periodic electrode. Some recent QPM interactions in periodically-poled KTP that were recently achieved at Tel-Aviv University include continuous-wave optical parametric oscillations, as well as generation of tunable mid-infrared radiation by difference frequency generation. Periodic patterning of the nonlinear coefficient enables to phase match only a single interaction. It would be advantageous to further extend the applications of this technique in order to simultaneously satisfy several interactions on a single crystal. This cannot be usually achieved in a periodic pattern, however more sophisticated quasi-periodic structures can be designed in this case. An interesting analogy can be drawn between artificially-made quasi-periodically-patterned nonlinear crystals and quasi-crystals found in nature, in rapidly-cooled metallic alloys

  8. Quasi-periodic oscillations and noise in low-mass X-ray binaries

    International Nuclear Information System (INIS)

    Van der Klis, M.

    1989-01-01

    The phenomenology of quasi-periodic oscillations (QPOs) and noise in low-mass X-ray binaries (LMXBs) is discussed. Signal analysis aspects of QPO and noise are addressed along with the relationship between LMXBs and millisecond radio pulsars. The history and prehistory of QPOs and noise in LMXBs are examined. Universal noise components and normal and flaring branch QPOs in Z sources are described and the phenomenology of Z sources is discussed. Bright LMXBs known as atoll sources are considered, as are nonpersistently bright LMXBs accreting pulsars and black hole candidates. 162 refs

  9. MILLIHERTZ QUASI-PERIODIC OSCILLATIONS AND THERMONUCLEAR BURSTS FROM TERZAN 5: A SHOWCASE OF BURNING REGIMES

    Energy Technology Data Exchange (ETDEWEB)

    Linares, M.; Chakrabarty, D. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States); Altamirano, D. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam and Center for High-Energy Astrophysics, P.O. BOX 94249, 1090 GE Amsterdam (Netherlands); Cumming, A. [Department of Physics, McGill University, 3600 Rue University, Montreal, QC H3A 2T8 (Canada); Keek, L. [School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States)

    2012-04-01

    We present a comprehensive study of the thermonuclear bursts and millihertz quasi-periodic oscillations (mHz QPOs) from the neutron star (NS) transient and 11 Hz X-ray pulsar IGR J17480-2446, located in the globular cluster Terzan 5. The increase in burst rate that we found during its 2010 outburst, when persistent luminosity rose from 0.1 to 0.5 times the Eddington limit, is in qualitative agreement with thermonuclear burning theory yet contrary to all previous observations of thermonuclear bursts. Thermonuclear bursts gradually evolved into a mHz QPO when the accretion rate increased, and vice versa. The mHz QPOs from IGR J17480-2446 resemble those previously observed in other accreting NSs, yet they feature lower frequencies (by a factor {approx}3) and occur when the persistent luminosity is higher (by a factor 4-25). We find four distinct bursting regimes and a steep (close to inverse cubic) decrease of the burst recurrence time with increasing persistent luminosity. We compare these findings to nuclear burning models and find evidence for a transition between the pure helium and mixed hydrogen/helium ignition regimes when the persistent luminosity was about 0.3 times the Eddington limit. We also point out important discrepancies between the observed bursts and theory, which predicts brighter and less frequent bursts, and suggest that an additional source of heat in the NS envelope is required to reconcile the observed and expected burst properties. We discuss the impact of NS magnetic field and spin on the expected nuclear burning regimes, in the context of this particular pulsar.

  10. NEAR-INFRARED AND X-RAY QUASI-PERIODIC OSCILLATIONS IN NUMERICAL MODELS OF Sgr A*

    International Nuclear Information System (INIS)

    Dolence, Joshua C.; Gammie, Charles F.; Shiokawa, Hotaka; Noble, Scott C.

    2012-01-01

    We report transient quasi-periodic oscillations (QPOs) on minute timescales in relativistic, radiative models of the galactic center source Sgr A*. The QPOs result from nonaxisymmetric m = 1 structure in the accretion flow excited by MHD turbulence. Near-infrared (NIR) and X-ray power spectra show significant peaks at frequencies comparable to the orbital frequency at the innermost stable circular orbit (ISCO) f o . The excess power is associated with inward propagating magnetic filaments inside the ISCO. The amplitudes of the QPOs are sensitive to the electron distribution function. We argue that transient QPOs appear at a range of frequencies in the neighborhood of f o and that the power spectra, averaged over long times, likely show a broad bump near f o rather than distinct, narrow QPO features.

  11. Dry soil diurnal quasi-periodic oscillations in soil 222Rn concentrations

    International Nuclear Information System (INIS)

    Tommasone Pascale, F.; De Francesco, S.; Carbone, P.; Cuoco, E.; Tedesco, D.

    2014-01-01

    222 Rn concentrations have been monitored during the dry season in August 2009 and August 2010, in a reworked alluvial-pyroclastic soil of the Pietramelara Plain, in Southern Italy, with the aim of determining the role of atmospheric factors in producing the quasi-periodic oscillations in soil 222 Rn concentrations reported in the literature. In this study we present the results of a detailed analysis and matching of soil 222 Rn concentrations, meteorological and solar parameters where the observed oscillations feature a characteristic behavior with second order build-up and depletion limbs, separated by a daily maximum and minimum. All these features are clearly shown to be tied to sunrise and sunset timings and environmental radiative flux regimes. Furthermore, a significant, and previously unreported, second order correlation (r 2  = 0.73) between daily maximum hourly global radiation and the daily range of soil 222 Rn concentrations has been detected, allowing estimates of the amplitude of these oscillations to be made from estimated or measured solar radiation data. The correlation has been found to be valid even in the presence of persistent patchy daytime cloudiness. In this case a daytime prolongation of the night-time build up stage and an attenuation or even suppression of daytime depletion is observed (a previously unreported effect). Neither soil cracking, nor precipitation, both suggested in some studies as causative factors for these oscillations, during the dry season appear to be necessary in explaining their occurrence. We also report the results of an artificial shading experiment, conducted in August 2009, that further support this conclusion. As soil 222 Rn concentrations during the dry season show a characteristic daily cycle, radon monitoring in soils under these conditions necessarily has to be gauged to the timings of the daily maximum and minimum, as well as to the eventual occurrence of cloudiness and to its related effects, in order to

  12. Quasi-periodic oscillations in accreting magnetic white dwarfs. II. The asset of numerical modelling for interpreting observations

    Science.gov (United States)

    Busschaert, C.; Falize, É.; Michaut, C.; Bonnet-Bidaud, J.-M.; Mouchet, M.

    2015-07-01

    Context. Magnetic cataclysmic variables are close binary systems containing a strongly magnetized white dwarf that accretes matter coming from an M-dwarf companion. The high magnetic field strength leads to the formation of an accretion column instead of an accretion disk. High-energy radiation coming from those objects is emitted from the column close to the white dwarf photosphere at the impact region. Its properties depend on the characteristics of the white dwarf and an accurate accretion column model allows the properties of the binary system to be inferred, such as the white dwarf mass, its magnetic field, and the accretion rate. Aims: We study the temporal and spectral behaviour of the accretion region and use the tools we developed to accurately connect the simulation results to the X-ray and optical astronomical observations. Methods: The radiation hydrodynamics code Hades was adapted to simulate this specific accretion phenomena. Classical approaches were used to model the radiative losses of the two main radiative processes: bremsstrahlung and cyclotron. Synthetic light curves and X-ray spectra were extracted from numerical simulations. A fast Fourier analysis was performed on the simulated light curves. The oscillation frequencies and amplitudes in the X-ray and optical domains are studied to compare those numerical results to observational ones. Different dimensional formulae were developed to complete the numerical evaluations. Results: The complete characterization of the emitting region is described for the two main radiative regimes: when only the bremsstrahlung losses and when both cyclotron and bremsstrahlung losses are considered. The effect of the non-linear cooling instability regime on the accretion column behaviour is analysed. Variation in luminosity on short timescales (~1 s quasi-periodic oscillations) is an expected consequence of this specific dynamic. The importance of secondary shock instability on the quasi-periodic oscillation

  13. Possible signature of the magnetic fields related to quasi-periodic oscillations observed in microquasars

    Science.gov (United States)

    Kološ, Martin; Tursunov, Arman; Stuchlík, Zdeněk

    2017-12-01

    The study of quasi-periodic oscillations (QPOs) of X-ray flux observed in the stellar-mass black hole binaries can provide a powerful tool for testing of the phenomena occurring in the strong gravity regime. Magnetized versions of the standard geodesic models of QPOs can explain the observationally fixed data from the three microquasars. We perform a successful fitting of the HF QPOs observed for three microquasars, GRS 1915+105, XTE 1550-564 and GRO 1655-40, containing black holes, for magnetized versions of both epicyclic resonance and relativistic precession models and discuss the corresponding constraints of parameters of the model, which are the mass and spin of the black hole and the parameter related to the external magnetic field. The estimated magnetic field intensity strongly depends on the type of objects giving the observed HF QPOs. It can be as small as 10^{-5} G if electron oscillatory motion is relevant, but it can be by many orders higher for protons or ions (0.02-1 G), or even higher for charged dust or such exotic objects as lighting balls, etc. On the other hand, if we know by any means the magnetic field intensity, our model implies strong limit on the character of the oscillating matter, namely its specific charge.

  14. Possible signature of the magnetic fields related to quasi-periodic oscillations observed in microquasars

    Energy Technology Data Exchange (ETDEWEB)

    Kolos, Martin; Tursunov, Arman; Stuchlik, Zdenek [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic)

    2017-12-15

    The study of quasi-periodic oscillations (QPOs) of X-ray flux observed in the stellar-mass black hole binaries can provide a powerful tool for testing of the phenomena occurring in the strong gravity regime. Magnetized versions of the standard geodesic models of QPOs can explain the observationally fixed data from the three microquasars. We perform a successful fitting of the HF QPOs observed for three microquasars, GRS 1915+105, XTE 1550-564 and GRO 1655-40, containing black holes, for magnetized versions of both epicyclic resonance and relativistic precession models and discuss the corresponding constraints of parameters of the model, which are the mass and spin of the black hole and the parameter related to the external magnetic field. The estimated magnetic field intensity strongly depends on the type of objects giving the observed HF QPOs. It can be as small as 10{sup -5} G if electron oscillatory motion is relevant, but it can be by many orders higher for protons or ions (0.02-1 G), or even higher for charged dust or such exotic objects as lighting balls, etc. On the other hand, if we know by any means the magnetic field intensity, our model implies strong limit on the character of the oscillating matter, namely its specific charge. (orig.)

  15. Analysis of Quasi-periodic Oscillations and Time Lag in Ultraluminous X-Ray Sources with XMM-Newton

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zi-Jian; Xiao, Guang-Cheng; Zhang, Shu; Ma, Xiang; Yan, Lin-Li; Qu, Jin-Lu [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049 (China); Chen, Li; Bu, Qing-Cui; Zhang, Liang, E-mail: lizijian@ihep.ac.cn, E-mail: qujl@ihep.ac.cn [Department of Astronomy, Beijing Normal University, Beijing 100875 (China)

    2017-04-10

    We investigated the power density spectrum (PDS) and time lag of ultraluminous X-ray sources (ULXs) observed by XMM-Newton . We determined the PDSs for each ULX and found that five of them show intrinsic variability due to obvious quasi-periodic oscillations (QPOs) of mHz–1 Hz, consistent with previous reports. We further investigated these five ULXs to determine their possible time lag. The ULX QPOs exhibit a soft time lag that is linearly related to the QPO frequency. We discuss the likelihood of the ULX QPOs being type-C QPO analogs, and the time lag models. The ULXs might harbor intermediate-mass black holes if their QPOs are type-C QPO analogs. We suggest that the soft lag and the linearity may be due to reverberation.

  16. LOW-FREQUENCY OBSERVATIONS OF TRANSIENT QUASI-PERIODIC RADIO EMISSION FROM THE SOLAR ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Sasikumar Raja, K.; Ramesh, R., E-mail: sasikumar@iiap.res.in [Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560 034 (India)

    2013-09-20

    We report low-frequency observations of quasi-periodic, circularly polarized, harmonic type III radio bursts whose associated sunspot active regions were located close to the solar limb. The measured periodicity of the bursts at 80 MHz was ≈5.2 s, and their average degree of circular polarization (dcp) was ≈0.12. We calculated the associated magnetic field B (1) using the empirical relationship between the dcp and B for the harmonic type III emission, and (2) from the observed quasi-periodicity of the bursts. Both the methods result in B ≈ 4.2 G at the location of the 80 MHz plasma level (radial distance r ≈ 1.3 R{sub ☉}) in the active region corona.

  17. Multiple-wavelength Variability and Quasi-periodic Oscillation of PMN J0948+0022

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jin [Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Zhang, Hai-Ming; Zhu, Yong-Kai; Lu, Rui-Jing; Liang, En-Wei [Guangxi Key Laboratory for Relativistic Astrophysics, Department of Physics, Guangxi University, Nanning 530004 (China); Yi, Ting-Feng [Department of Physics, Yunnan Normal University, Kunming 650500 (China); Yao, Su, E-mail: jinzhang@bao.ac.cn [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China)

    2017-11-01

    We present a comprehensive analysis of multiple-wavelength observational data of the first GeV-selected narrow-line Seyfert 1 galaxy PMN J0948+0022. We derive its light curves in the γ -ray and X-ray bands from the data observed with Fermi /LAT and Swift /XRT, and generate the optical and radio light curves by collecting the data from the literature. These light curves show significant flux variations. With the LAT data we show that this source is analogous to typical flat spectrum radio quasars in the L {sub γ} –Γ {sub γ} plane, where L {sub γ} and Γ {sub γ} are the luminosity and spectral index in the LAT energy band. The γ -ray flux is correlated with the V-band flux with a lag of ∼44 days, and a moderate quasi-periodic oscillation (QPO) with a periodicity of ∼490 days observed in the LAT light curve. A similar QPO signature is also found in the V-band light curve. The γ -ray flux is not correlated with the radio flux in 15 GHz, and no similar QPO signature is found at a confidence level of 95%. Possible mechanisms of the QPO are discussed. We propose that gravitational-wave observations in the future may clarify the current plausible models for the QPO.

  18. Disruption of Saturn's quasi-periodic equatorial oscillation by the great northern storm

    Science.gov (United States)

    Fletcher, Leigh N.; Guerlet, Sandrine; Orton, Glenn S.; Cosentino, Richard G.; Fouchet, Thierry; Irwin, Patrick G. J.; Li, Liming; Flasar, F. Michael; Gorius, Nicolas; Morales-Juberías, Raúl

    2017-11-01

    The equatorial middle atmospheres of the Earth1, Jupiter2 and Saturn3,4 all exhibit a remarkably similar phenomenon—a vertical, cyclic pattern of alternating temperatures and zonal (east-west) wind regimes that propagate slowly downwards with a well-defined multi-year period. Earth's quasi-biennial oscillation (QBO) (observed in the lower stratospheric winds with an average period of 28 months) is one of the most regular, repeatable cycles exhibited by our climate system1,5,6, and yet recent work has shown that this regularity can be disrupted by events occurring far away from the equatorial region, an example of a phenomenon known as atmospheric teleconnection7,8. Here, we reveal that Saturn's equatorial quasi-periodic oscillation (QPO) (with an 15-year period3,9) can also be dramatically perturbed. An intense springtime storm erupted at Saturn's northern mid-latitudes in December 201010-12, spawning a gigantic hot vortex in the stratosphere at 40° N that persisted for three years13. Far from the storm, the Cassini temperature measurements showed a dramatic 10 K cooling in the 0.5-5 mbar range across the entire equatorial region, disrupting the regular QPO pattern and significantly altering the middle-atmospheric wind structure, suggesting an injection of westward momentum into the equatorial wind system from waves generated by the northern storm. Hence, as on Earth, meteorological activity at mid-latitudes can have a profound effect on the regular atmospheric cycles in Saturn's tropics, demonstrating that waves can provide horizontal teleconnections between the phenomena shaping the middle atmospheres of giant planets.

  19. Quasi-periodic solutions of nonlinear beam equation with prescribed frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jing [College of Information Technology, Jilin Agricultural University, Changchun 130118 (China); Gao, Yixian, E-mail: gaoyx643@nenu.edu.cn; Li, Yong [School of Mathematics and Statistics, and Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024 (China)

    2015-05-15

    Consider the one dimensional nonlinear beam equation u{sub tt} + u{sub xxxx} + mu + u{sup 3} = 0 under Dirichlet boundary conditions. We show that for any m > 0 but a set of small Lebesgue measure, the above equation admits a family of small-amplitude quasi-periodic solutions with n-dimensional Diophantine frequencies. These Diophantine frequencies are the small dilation of a prescribed Diophantine vector. The proofs are based on an infinite dimensional Kolmogorov-Arnold-Moser iteration procedure and a partial Birkhoff normal form. .

  20. Quasi-periodic solutions of nonlinear beam equation with prescribed frequencies

    International Nuclear Information System (INIS)

    Chang, Jing; Gao, Yixian; Li, Yong

    2015-01-01

    Consider the one dimensional nonlinear beam equation u tt + u xxxx + mu + u 3 = 0 under Dirichlet boundary conditions. We show that for any m > 0 but a set of small Lebesgue measure, the above equation admits a family of small-amplitude quasi-periodic solutions with n-dimensional Diophantine frequencies. These Diophantine frequencies are the small dilation of a prescribed Diophantine vector. The proofs are based on an infinite dimensional Kolmogorov-Arnold-Moser iteration procedure and a partial Birkhoff normal form. 

  1. Stochastic modeling of kHz quasi-periodic oscillation light curves

    DEFF Research Database (Denmark)

    Vio, R.; Rebusco, P.; Andreani, P.

    2006-01-01

    Kluzniak & Abramowicz explain the high frequency, double peak, "3:2" QPOs observed in neutron star and black hole sources in terms of a non-linear parametric resonance between radial and vertical epicyclic oscillations of an almost Keplerian accretion disk. The 3:2 ratio of epicyclic frequencies ...

  2. Quasi-Periodic Oscillations in the X-ray Light Curves of Blazars Paul ...

    Indian Academy of Sciences (India)

    the quasi-periodic component could provide a powerful tool for diagnosing the jet's structure. ... tent with the red-noise seen in most power spectra of AGN variability; QPOs would ... A statistical analysis of the periodogram for that observation yields a peak at ... (2008) also employed structure functions to try to characterize.

  3. Quasi-periodic oscillations in short recurring bursts of the soft gamma repeater J1550–5418

    Energy Technology Data Exchange (ETDEWEB)

    Huppenkothen, D.; D' Angelo, C.; Watts, A. L.; Heil, L.; Van der Klis, M.; Van der Horst, A. J. [Astronomical Institute " Anton Pannekoek," University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Kouveliotou, C. [Astrophysics Office, ZP 12, NASA-Marshall Space Flight Center, Huntsville, AL 35812 (United States); Baring, M. G. [Department of Physics and Astronomy, Rice University, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Göğüş, E.; Kaneko, Y. [SabancıUniversity, Orhanlı-Tuzla, İstanbul 34956 (Turkey); Granot, J. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Ra' anana 43537 (Israel); Lin, L. [François Arago Centre, APC, 10 rue Alice Domon et Léonie Duquet, F-75205 Paris (France); Von Kienlin, A. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Younes, G., E-mail: D.Huppenkothen@uva.nl [NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States)

    2014-06-01

    The discovery of quasi-periodic oscillations (QPOs) in magnetar giant flares has opened up prospects for neutron star asteroseismology. The scarcity of giant flares makes a search for QPOs in the shorter, far more numerous bursts from soft gamma repeaters (SGRs) desirable. In Huppenkothen et al., we developed a Bayesian method for searching for QPOs in short magnetar bursts, taking into account the effects of the complicated burst structure, and have shown its feasibility on a small sample of bursts. Here we apply the same method to a much larger sample from a burst storm of 286 bursts from SGR J1550–5418. We report a candidate signal at 260 Hz in a search of the individual bursts, which is fairly broad. We also find two QPOs at ∼93 Hz, and one at 127 Hz, when averaging periodograms from a number of bursts in individual triggers, at frequencies close to QPOs previously observed in magnetar giant flares. Finally, for the first time, we explore the overall burst variability in the sample and report a weak anti-correlation between the power-law index of the broadband model characterizing aperiodic burst variability and the burst duration: shorter bursts have steeper power-law indices than longer bursts. This indicates that longer bursts vary over a broader range of timescales and are not simply longer versions of the short bursts.

  4. A new analytical approach for limit cycles and quasi-periodic solutions of nonlinear oscillators: the example of the forced Van der Pol Duffing oscillator

    International Nuclear Information System (INIS)

    Shukla, Anant Kant; Ramamohan, T R; Srinivas, S

    2014-01-01

    In this paper we propose a technique to obtain limit cycles and quasi-periodic solutions of forced nonlinear oscillators. We apply this technique to the forced Van der Pol oscillator and the forced Van der Pol Duffing oscillator and obtain for the first time their limit cycles (periodic) and quasi-periodic solutions analytically. We introduce a modification of the homotopy analysis method to obtain these solutions. We minimize the square residual error to obtain accurate approximations to these solutions. The obtained analytical solutions are convergent and agree well with numerical solutions even at large times. Time trajectories of the solution, its first derivative and phase plots are presented to confirm the validity of the proposed approach. We also provide rough criteria for the determination of parameter regimes which lead to limit cycle or quasi-periodic behaviour. (papers)

  5. CONSTRAINING MODELS OF TWIN-PEAK QUASI-PERIODIC OSCILLATIONS WITH REALISTIC NEUTRON STAR EQUATIONS OF STATE

    Energy Technology Data Exchange (ETDEWEB)

    Török, Gabriel; Goluchová, Katerina; Urbanec, Martin, E-mail: gabriel.torok@gmail.com, E-mail: katka.g@seznam.cz, E-mail: martin.urbanec@physics.cz [Research Centre for Computational Physics and Data Processing, Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo nám. 13, CZ-746, 01 Opava (Czech Republic); and others

    2016-12-20

    Twin-peak quasi-periodic oscillations (QPOs) are observed in the X-ray power-density spectra of several accreting low-mass neutron star (NS) binaries. In our previous work we have considered several QPO models. We have identified and explored mass–angular-momentum relations implied by individual QPO models for the atoll source 4U 1636-53. In this paper we extend our study and confront QPO models with various NS equations of state (EoS). We start with simplified calculations assuming Kerr background geometry and then present results of detailed calculations considering the influence of NS quadrupole moment (related to rotationally induced NS oblateness) assuming Hartle–Thorne spacetimes. We show that the application of concrete EoS together with a particular QPO model yields a specific mass–angular-momentum relation. However, we demonstrate that the degeneracy in mass and angular momentum can be removed when the NS spin frequency inferred from the X-ray burst observations is considered. We inspect a large set of EoS and discuss their compatibility with the considered QPO models. We conclude that when the NS spin frequency in 4U 1636-53 is close to 580 Hz, we can exclude 51 of the 90 considered combinations of EoS and QPO models. We also discuss additional restrictions that may exclude even more combinations. Namely, 13 EOS are compatible with the observed twin-peak QPOs and the relativistic precession model. However, when considering the low-frequency QPOs and Lense–Thirring precession, only 5 EOS are compatible with the model.

  6. X-Ray Quasi-periodic Oscillations in the Lense–Thirring Precession Model. I. Variability of Relativistic Continuum

    Science.gov (United States)

    You, Bei; Bursa, Michal; Życki, Piotr T.

    2018-05-01

    We develop a Monte Carlo code to compute the Compton-scattered X-ray flux arising from a hot inner flow that undergoes Lense–Thirring precession. The hot flow intercepts seed photons from an outer truncated thin disk. A fraction of the Comptonized photons will illuminate the disk, and the reflected/reprocessed photons will contribute to the observed spectrum. The total spectrum, including disk thermal emission, hot flow Comptonization, and disk reflection, is modeled within the framework of general relativity, taking light bending and gravitational redshift into account. The simulations are performed in the context of the Lense–Thirring precession model for the low-frequency quasi-periodic oscillations, so the inner flow is assumed to precess, leading to periodic modulation of the emitted radiation. In this work, we concentrate on the energy-dependent X-ray variability of the model and, in particular, on the evolution of the variability during the spectral transition from hard to soft state, which is implemented by the decrease of the truncation radius of the outer disk toward the innermost stable circular orbit. In the hard state, where the Comptonizing flow is geometrically thick, the Comptonization is weakly variable with a fractional variability amplitude of ≤10% in the soft state, where the Comptonizing flow is cooled down and thus becomes geometrically thin, the fractional variability of the Comptonization is highly variable, increasing with photon energy. The fractional variability of the reflection increases with energy, and the reflection emission for low spin is counterintuitively more variable than the one for high spin.

  7. Statistical properties of twin kilohertz quasi-periodic oscillations neutron star low-mass X-ray binaries

    Science.gov (United States)

    Wang, D. H.; Chen, L.; Zhang, C. M.; Lei, Y. J.; Qu, J. L.

    2014-02-01

    We collect the data of twin kilohertz quasi-periodic oscillations (kHz QPOs) published before 2012 from 26 neutron star (NS) low-mass X-ray binary (LMXB) sources, then we analyze the centroid frequency (ν) distribution of twin kHz QPOs (lower frequency ν_1 and upper frequency ν_2) both for Atoll and Z sources. For the data without shift-and-add, we find that Atoll and Z sources show different distributions of ν_1, ν_2 and ν_2/ν_1, but the same distribution of Δν (difference of twin kHz QPOs), which indicates that twin kHz QPOs may share the common properties of LXMBs and have the same physical origins. The distribution of Δν is quite different from a constant value, so is ν_2/ν_1 from a constant ratio. The weighted mean values and maxima of ν_1 and ν_2 in Atoll sources are slightly higher than those in Z sources. We also find that shift-and-add technique can reconstruct the distributions of ν_1 and Δν. The K-S test results of ν_1 and Δν between Atoll and Z sources from data with shift-and-add are quite different from those without it, and we think that this may be caused by the selection biases of the sample. We also study the properties of the quality factor (Q) and the root-mean-squared (rms) amplitude of 4U 0614+09 with data from the two observational methods, but the errors are too big to make a robust conclusion. The NS spin frequency (ν_s) distribution of 28 NS-LMXBs show a bigger mean value (˜ 408 Hz) than that (˜ 281 Hz) of the radio binary millisecond pulsars (MSPs), which may be due to the lack of the spin detections from Z sources (systematically lower than 281 Hz). Furthermore, on the relations between the kHz QPOs and NS spin frequency ν_s, we find the approximate correlations of the mean values of Δν with NS spin and its half, respectively.

  8. Quasi-periodic oscillations of aerosol backscatter profiles and surface meteorological parameters during winter nights over a tropical station

    Directory of Open Access Journals (Sweden)

    M. G. Manoj

    2011-03-01

    Full Text Available Atmospheric gravity waves, which are a manifestation of the fluctuations in buoyancy of the air parcels, are well known for their direct influence on concentration of atmospheric trace gases and aerosols, and also on oscillations of meteorological variables such as temperature, wind speed, visibility and so on. The present paper reports quasi-periodic oscillations in the lidar backscatter signal strength due to aerosol fluctuations in the nocturnal boundary layer, studied with a high space-time resolution polarimetric micro pulse lidar and concurrent meteorological parameters over a tropical station in India. The results of the spectral analysis of the data, archived on some typical clear-sky conditions during winter months of 2008 and 2009, exhibit a prominent periodicity of 20–40 min in lidar-observed aerosol variability and show close association with those observed in the near-surface temperature and wind at 5% statistical significance. Moreover, the lidar aerosol backscatter signal strength variations at different altitudes, which have been generated from the height-time series of the one-minute interval profiles at 2.4 m vertical resolution, indicate vertical propagation of these waves, exchanging energy between lower and higher height levels. Such oscillations are favoured by the stable atmospheric background condition and peculiar topography of the experimental site. Accurate representation of these buoyancy waves is essential in predicting the sporadic fluctuations of weather in the tropics.

  9. Phase lags of quasi-periodic oscillations across source states in the low-mass X-ray binary 4U 1636-53

    Science.gov (United States)

    de Avellar, Marcio G. B.

    2017-06-01

    The majority of attempts to explain the origin and phenomenology of the quasi-periodic oscillations (QPOs) detected in low-mass X-ray binaries invoke dynamical models, and it was just in recent years that renewed attention has been given on how radiative processes occurring in these extreme environments gives rise to the variability features observed in the X-ray light curves of these systems. The study of the dependence of the phase lags upon the energy and frequency of the QPOs is a step towards this end. The methodology we developed here allowed us to study for the first time these dependencies for all QPOs detected in the range of 1 to 1300 Hz in the low-mass X-ray binary 4U 1636-53 as the source changes its state during its cycle in the colour-colour diagram. Our results suggest that within the context of models of up-scattering Comptonization, the phase lags dependencies upon frequency and energy can be used to extract size scales and physical conditions of the medium that produces the lags.

  10. Phase lags of quasi-periodic oscillations across source states in the low-mass X-ray binary 4U 1636–53

    International Nuclear Information System (INIS)

    De Avellar, Marcio G B

    2017-01-01

    The majority of attempts to explain the origin and phenomenology of the quasi-periodic oscillations (QPOs) detected in low-mass X-ray binaries invoke dynamical models, and it was just in recent years that renewed attention has been given on how radiative processes occurring in these extreme environments gives rise to the variability features observed in the X-ray light curves of these systems. The study of the dependence of the phase lags upon the energy and frequency of the QPOs is a step towards this end. The methodology we developed here allowed us to study for the first time these dependencies for all QPOs detected in the range of 1 to 1300 Hz in the low-mass X-ray binary 4U 1636–53 as the source changes its state during its cycle in the colour-colour diagram. Our results suggest that within the context of models of up-scattering Comptonization, the phase lags dependencies upon frequency and energy can be used to extract size scales and physical conditions of the medium that produces the lags. (paper)

  11. Discovery of a 7 mHz X-Ray Quasi-Periodic Oscillation from the Most Massive Stellar-Mass Black Hole IC 10 X-1

    Science.gov (United States)

    Pasham, Dheeraj R.; Strohmayer, Tod E.; Mushotzky, Richard F.

    2013-01-01

    We report the discovery with XMM-Newton of an approx.. = 7 mHz X-ray (0.3-10.0 keV) quasi-periodic oscillation (QPO) from the eclipsing, high-inclination black hole binary IC 10 X-1. The QPO is significant at >4.33 sigma confidence level and has a fractional amplitude (% rms) and a quality factor, Q is identical with nu/delta nu, of approx. = 11 and 4, respectively. The overall X-ray (0.3-10.0 keV) power spectrum in the frequency range 0.0001-0.1 Hz can be described by a power-law with an index of approx. = -2, and a QPO at 7 mHz. At frequencies approx. > 0.02 Hz there is no evidence for significant variability. The fractional amplitude (rms) of the QPO is roughly energy-independent in the energy range of 0.3-1.5 keV. Above 1.5 keV the low signal-to-noise ratio of the data does not allow us to detect the QPO. By directly comparing these properties with the wide range of QPOs currently known from accreting black hole and neutron stars, we suggest that the 7 mHz QPO of IC 10 X-1 may be linked to one of the following three categories of QPOs: (1) the "heartbeat" mHz QPOs of the black hole sources GRS 1915+105 and IGR J17091-3624, or (2) the 0.6-2.4 Hz "dipper QPOs" of high-inclination neutron star systems, or (3) the mHz QPOs of Cygnus X-3.

  12. Radio and γ -Ray Variability in the BL Lac PKS 0219−164: Detection of Quasi-periodic Oscillations in the Radio Light Curve

    Energy Technology Data Exchange (ETDEWEB)

    Bhatta, Gopal, E-mail: gopalbhatta716@gmail.com [Astronomical Observatory of the Jagiellonian University, ul. Orla 171, 30-244 Kraków (Poland); Mt. Suhora Observatory, Pedagogical University, ul. Podchorazych 2, 30-084 Kraków (Poland)

    2017-09-20

    In this work, we explore the long-term variability properties of the blazar PKS 0219−164 in the radio and the γ -ray regime, utilizing the OVRO 15 GHz and the Fermi /LAT observations from the period 2008–2017. We found that γ -ray emission is more variable than the radio emission implying that γ -ray emission possibly originated in more compact regions while the radio emission represented continuum emission from the large-scale jets. Also, in the γ -ray, the source exhibited spectral variability, characterized by the softer-when-brighter trend, a less frequently observed feature in the high-energy emission by BL Lacs. In radio, using Lomb–Scargle periodogram and weighted wavelet z -transform, we detected a strong signal of quasi-periodic oscillation (QPO) with a periodicity of 270 ± 26 days with possible harmonics of 550 ± 42 and 1150 ± 157 day periods. At a time when detections of QPOs in blazars are still under debate, the observed QPO with high statistical significance (∼97%–99% global significance over underlying red-noise processes) and persistent over nearly 10 oscillations could make one of the strongest cases for the detection of QPOs in blazar light curves. We discuss various blazar models that might lead to the γ -ray and radio variability, QPO, and the achromatic behavior seen in the high-energy emission from the source.

  13. Quasi-periodic luminosity variations in dwarf novae

    International Nuclear Information System (INIS)

    Robinson, E.L.; Nather, R.E.

    1979-01-01

    We have identified quasi-periodic oscillations in the light curves of five dwarf novae--U Gem, SS Cyg, RU Peg, KT Per, and VW Hyi-- and in the light curve of the quasi-periodic X-ray source Sco X-1. The mean periods of the quasi-periodic oscillations range from 32 s in SS Cyg to 147 s in KT Per and 165 s in Sco X-l. Their amplitudes are typically 0.005--0.0l mag. The properties of the quasi-periodic oscillations are represented well by a second-order autoregressive process. Use of this representation shows that the length of time over which the quasi-periodic oscillations maintain coherence is very short, typically 3--5 cycles of the oscillations. Thus the quasi-periodic oscillations can be distinguished from the short-period coherent oscillations in dwarf novae, which are usually interpreted as white dwarf pulsations, because t the periods of the quasi-periodic oscillations are 3--4 times longer and their coherence time is much shorter. The quasi-periodic oscillations occur in dwarf novae only during their eruptions and occur in Sco X-l only when the system is bright. The presence of the oscillations does not depend on the subclass to which a dwarf nova belongs or on the morphology of the individual eruptions. We argue that their short periods, their short coherence times, and their presence in Sco X-l require that the quasi-periodic oscillations be produced by the accretion disk, and not by the stars or by the boundary between the a accretion disk and its central star

  14. Quasi-periodic solutions of nonlinear beam equations with quintic quasi-periodic nonlinearities

    Directory of Open Access Journals (Sweden)

    Qiuju Tuo

    2015-01-01

    Full Text Available In this article, we consider the one-dimensional nonlinear beam equations with quasi-periodic quintic nonlinearities $$ u_{tt}+u_{xxxx}+(B+ \\varepsilon\\phi(tu^5=0 $$ under periodic boundary conditions, where B is a positive constant, $\\varepsilon$ is a small positive parameter, $\\phi(t$ is a real analytic quasi-periodic function in t with frequency vector $\\omega=(\\omega_1,\\omega_2,\\dots,\\omega_m$. It is proved that the above equation admits many quasi-periodic solutions by KAM theory and partial Birkhoff normal form.

  15. On the Nature of the mHz X-ray Quasi-Periodic Oscillations from Ultraluminous X-ray source M82 X-1: Search for Timing-Spectral Correlations

    Science.gov (United States)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    Using all the archival XMM-Newton X-ray (3-10 keV) observations of the ultraluminous X-ray source (ULX) M82 X-1, we searched for a correlation between its variable mHz quasi-periodic oscillation (QPO) frequency and its hardness ratio (5-10 keV/3-5 keV), an indicator of the energy spectral power-law index. When stellar-mass black holes (StMBHs) exhibit type-C low-frequency QPOs (0.2-15 Hz), the centroid frequency of the QPO is known to correlate with the energy spectral index. The detection of such a correlation would strengthen the identification of M82 X-1's mHz QPOs as type-C and enable a more reliable mass estimate by scaling its QPO frequencies to those of type-C QPOs in StMBHs of known mass.We resolved the count rates and the hardness ratios of M82 X-1 and a nearby bright ULX (source 5/X42.3+59) through surface brightness modeling.We detected QPOs in the frequency range of 36-210 mHz during which M82 X-1's hardness ratio varied from 0.42 to 0.47. Our primary results are (1) that we do not detect any correlation between the mHz QPO frequency and the hardness ratio (a substitute for the energy spectral power-law index) and (2) similar to some accreting X-ray binaries, we find that M82 X-1's mHz QPO frequency increases with its X-ray count rate (Pearson's correlation coefficient = +0.97). The apparent lack of a correlation between the QPO centroid frequency and the hardness ratio poses a challenge to the earlier claims that the mHz QPOs of M82 X-1 are the analogs of the type-C low-frequency QPOs of StMBHs. On the other hand, it is possible that the observed relation between the hardness ratio and the QPO frequency represents the saturated portion of the correlation seen in type-C QPOs of StMBHs-in which case M82 X-1's mHz QPOs can still be analogous to type-C QPOs.

  16. X-Ray Timing Analysis of Cyg X-3 Using AstroSat/LAXPC: Detection of Milli-hertz Quasi-periodic Oscillations during the Flaring Hard X-Ray State

    Energy Technology Data Exchange (ETDEWEB)

    Pahari, Mayukh; Misra, Ranjeev [Inter-University Center for Astronomy and Astrophysics, Ganeshkhind, Pune 411007 (India); Antia, H M; Yadav, J S; Chauhan, Jai Verdhan; Chitnis, V R; Dedhia, Dhiraj; Katoch, Tilak; Madhwani, P; Shah, Parag [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Agrawal, P C [UM-DAE Center of Excellence for Basic Sciences, University of Mumbai, Kalina, Mumbai 400098 (India); Manchanda, R K [University of Mumbai, Kalina, Mumbai 400098 (India); Paul, B, E-mail: mayukh@iucaa.in [Department of Astronomy and Astrophysics, Raman Research Institute, Bengaluru 560080 (India)

    2017-11-01

    We present here results from the X-ray timing and spectral analysis of the X-ray binary Cyg X-3 using observations from the Large Area X-ray proportional Counter on board AstroSat . Consecutive light curves observed over a period of one year show the binary orbital period of 17253.56 ± 0.19 s. Another low-amplitude, slow periodicity of the order of 35.8 ± 1.4 days is observed, which may be due to the orbital precession as suggested earlier by Molteni et al. During the rising binary phase, power density spectra from different observations during the flaring hard X-ray state show quasi-periodic oscillations (QPOs) at ∼5–8 mHz, ∼12–14 mHz, and ∼18–24 mHz frequencies at the minimum confidence of 99%. However, during the consecutive binary decay phase, no QPO is detected up to 2 σ significance. Energy-dependent time-lag spectra show soft lag (soft photons lag hard photons) at the mHz QPO frequency and the fractional rms of the QPO increases with the photon energy. During the binary motion, the observation of mHz QPOs during the rising phase of the flaring hard state may be linked to the increase in the supply of the accreting material in the disk and corona via stellar wind from the companion star. During the decay phase, the compact source moves in the outer wind region causing the decrease in supply of material for accretion. This may cause weakening of the mHz QPOs below the detection limit. This is also consistent with the preliminary analysis of the orbital phase-resolved energy spectra presented in this paper.

  17. The Evolution of the Phase Lags Associated with the Type-C Quasi-periodic Oscillation in GX 339-4 during the 2006/2007 Outburst

    NARCIS (Netherlands)

    Zhang, Liang; Wang, Yanan; Méndez, Mariano; Chen, Li; Qu, Jinlu; Altamirano, Diego; Belloni, Tomaso

    2017-01-01

    We present the evolution of the phase lags associated with the type-C QPO in GX 339-4 during the rising phase of the 2006/2007 outburst. We find that the phase lags at the QPO frequency are always positive (hard) and show very different behavior between QPOs with frequencies below and above ˜1.7 Hz:

  18. The Evolution of the Phase Lags Associated with the Type-C Quasi-periodic Oscillation in GX 339–4 during the 2006/2007 Outburst

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang; Chen, Li [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Wang, Yanan; Méndez, Mariano [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, NL-9700 AV Groningen (Netherlands); Qu, Jinlu [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, CAS, Beijing 100049 (China); Altamirano, Diego [Department of Physics and Astronomy, University of Southampton, Southampton, Hampshire SO17 1BJ (United Kingdom); Belloni, Tomaso, E-mail: 201431160006@mail.bnu.edu.cn [INAF-Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Italy)

    2017-08-20

    We present the evolution of the phase lags associated with the type-C QPO in GX 339–4 during the rising phase of the 2006/2007 outburst. We find that the phase lags at the QPO frequency are always positive (hard) and show very different behavior between QPOs with frequencies below and above ∼1.7 Hz: when the QPO frequency is below ∼1.7 Hz, the phase lags increase both with QPO frequency and energy, while when the QPO frequency is above ∼1.7 Hz, the phase lags remain more or less constant. When the QPO frequency is higher than ∼1.7 Hz, a broad feature is always present in the lag–energy spectra at around 6.5 keV, suggesting that the reflection component may have a significant contribution to the phase lags. Below ∼1.7 Hz, the QPO rms first decreases with energy and then turns to almost flat, while above ∼1.7 Hz, the QPO rms increases with energy. During the transition from the low-hard state to the hard-intermediate state, the second harmonic and subharmonic of this QPO appear in the power density spectra. The second-harmonic and subharmonic phase lags show very similar evolutions for their centroid frequencies. However, the energy dependence of the second-harmonic and subharmonic phase lags are quite different. Our results suggest that, at different phases of the outburst, different mechanisms may be responsible for the phase lags of the QPO. We briefly discuss the possible scenarios for producing the lags.

  19. Detection of Very Low-Frequency Quasi-Periodic Oscillations in the 2015 Outburst of V404 Cygni

    DEFF Research Database (Denmark)

    Huppenkothen, D.; Younes, G.; Ingram, A.

    2016-01-01

    -ray missions: Swift/XRT, Fermi/GBM, Chandra/ACIS, INTEGRAL's IBIS/ISGRI and JEM-X, and NuSTAR. We report the detection of a QPO at 18 mHz simultaneously with both Fermi/GBM and Swift/XRT, another example of a rare but slowly growing new class of mHz-QPOs in BHXRBs linked to sources with a high orbital...

  20. Low-frequency quasi-periodic oscillation from the 11 Hz accreting pulsar in Terzan 5: not frame dragging

    NARCIS (Netherlands)

    Altamirano, D.; Ingram, A.; van der Klis, M.; Wijnands, R.; Linares, M.; Homan, J.

    2012-01-01

    We report on six RXTE observations taken during the 2010 outburst of the 11 Hz accreting pulsar IGR J17480-2446 located in the globular cluster Terzan 5. During these observations we find power spectra which resemble those seen in Z-type high-luminosity neutron star low-mass X-ray binaries, with a

  1. QUASI-PERIODIC ACCELERATION OF ELECTRONS IN THE FLARE ON 2012 JULY 19

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jing [Key Laboratory of Solar Activities, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 (China); Kontar, Eduard P. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Nakariakov, Valery M. [Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Gao, Guannan, E-mail: huangj@bao.ac.cn [Yunnan Observatory, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China)

    2016-11-10

    Quasi-periodic pulsations (QPPs) of nonthermal emission in an M7.7 class flare on 2012 July 19 are investigated with spatially resolved observations at microwave and HXR bands and with spectral observations at decimetric, metric waves. Microwave emission at 17 GHz of two footpoints, HXR emission at 20–50 keV of the north footpoint and loop top, and type III bursts at 0.7–3 GHz show prominent in-phase oscillations at 270 s. The microwave emission of the loop leg has less pulsation but stronger emission. Through the estimation of plasma density around the loop top from EUV observations, we find that the local plasma frequency would be 1.5 GHz or even higher. Thus, type III bursts at 700 MHz originate above the loop top. Quasi-periodic acceleration or injection of energetic electrons is proposed to dominate these in-phase QPPs of nonthermal emission from footpoints, loop top, and above. In the overlying region, drifting pulsations (DPS) at 200–600 MHz oscillate at a distinct period (200 s). Its global structure drifts toward lower frequency, which is closely related to upward plasmoids observed simultaneously from EUV emission. Hence, nonthermal emission from overlying plasmoids and underlying flaring loops show different oscillating periods. Two individual systems of quasi-periodic acceleration of electrons are proposed to coincide in the bi-direction outflows from the reconnection region.

  2. LOW-FREQUENCY OSCILLATIONS IN XTE J1550-564

    International Nuclear Information System (INIS)

    Rao Fengyun; Belloni, Tomaso; Stella, Luigi; Zhang Shuangnan; Li Tipei

    2010-01-01

    We present the results of a timing analysis of the low-frequency quasi-periodic oscillation (QPO) in the Rossi X-Ray Timing Explorer data of the black hole binary XTE J1550-564 during its 1998 outburst. The QPO frequency is observed to vary on timescales between ∼100 s and days, correlated with the count rate contribution from the optically thick accretion disk: we studied this correlation and discuss its influence on the QPO width. In all observations, the quality factors (ν 0 /FWHM) of the fundamental and second harmonic peaks were observed to be consistent, suggesting that the quasi-periodic nature of the oscillation is due to frequency modulation. In addition to the QPO and its harmonic peaks, a new 1.5ν component was detected in the power spectra. This component is broad, with a quality factor of ∼0.6. From this, we argue that the peak observed at half the QPO frequency, usually referred to as 'sub-harmonic', could be the fundamental frequency, leading to the sequence 1:2:3:4. We also studied the energy dependence of the timing features and conclude that the two continuum components observed in the power spectrum, although both more intense at high energies, show a different dependence on energy. At low energies, the lowest-frequency component dominates, while at high energies the higher-frequency one has a higher fractional rms. An interplay between these two components was also observed as a function of their characteristic frequency. In this source, the transition between the low/hard state and the hard-intermediate state appears to be a smooth process.

  3. Automatic oscillator frequency control system

    Science.gov (United States)

    Smith, S. F. (Inventor)

    1985-01-01

    A frequency control system makes an initial correction of the frequency of its own timing circuit after comparison against a frequency of known accuracy and then sequentially checks and corrects the frequencies of several voltage controlled local oscillator circuits. The timing circuit initiates the machine cycles of a central processing unit which applies a frequency index to an input register in a modulo-sum frequency divider stage and enables a multiplexer to clock an accumulator register in the divider stage with a cyclical signal derived from the oscillator circuit being checked. Upon expiration of the interval, the processing unit compares the remainder held as the contents of the accumulator against a stored zero error constant and applies an appropriate correction word to a correction stage to shift the frequency of the oscillator being checked. A signal from the accumulator register may be used to drive a phase plane ROM and, with periodic shifts in the applied frequency index, to provide frequency shift keying of the resultant output signal. Interposition of a phase adder between the accumulator register and phase plane ROM permits phase shift keying of the output signal by periodic variation in the value of a phase index applied to one input of the phase adder.

  4. Convergence acceleration of quasi-periodic and quasi-periodic-rational interpolations by polynomial corrections

    OpenAIRE

    Lusine Poghosyan

    2014-01-01

    The paper considers convergence acceleration of the quasi-periodic and the quasi-periodic-rational interpolations by application of polynomial corrections. We investigate convergence of the resultant quasi-periodic-polynomial and quasi-periodic-rational-polynomial interpolations and derive exact constants of the main terms of asymptotic errors in the regions away from the endpoints. Results of numerical experiments clarify behavior of the corresponding interpolations for moderate number of in...

  5. Low-frequency oscillations in Hall thrusters

    International Nuclear Information System (INIS)

    Wei Li-Qiu; Han Liang; Yu Da-Ren; Guo Ning

    2015-01-01

    In this paper, we summarize the research development of low-frequency oscillations in the last few decades. The findings of physical mechanism, characteristics and stabilizing methods of low-frequency oscillations are discussed. It shows that it is unreasonable and incomplete to model an ionization region separately to analyze the physical mechanism of low-frequency oscillations. Electro-dynamics as well as the formation conditions of ionization distribution play an important role in characteristics and stabilizing of low-frequency oscillations. Understanding the physical mechanism and characteristics of low- frequency oscillations thoroughly and developing a feasible method stabilizing this instability are still important research subjects. (review)

  6. High-frequency plasma oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Akhiezer, A I; Fainberg, Y B; Sitenko, A G; Stepanov, K; Kurilko, V; Gorbatenko, M; Kirochkin, U [Academy of Sciences of the Ukrainian SSR (USSR)

    1958-07-01

    It is well known that the electrical conductivity of a plasma, the ion-electron equilibration time, and the time required to heat the electron component of the plasma all increase greatly with increasing temperature. Consequently, the usual method of Joule heating a plasma may be difficult to apply in the region of high temperatures (> 10{sup 6}K), especially if the plasma current alone, without any additional measures, is used to generate magnetic fields for the confinement of the plasma. Therefore, it is of interest to study methods of plasma heating that do not directly use Joule heat, especially methods by which energy is directly supplied to the ion component during the time between collisions. Some of these methods make use of ionic resonance as well as other resonance phenomena which can occur in plasma in an external magnetic field. This paper deals with certain aspects of the theory of high-frequency plasma oscillations.

  7. QUASI-PERIODICITIES AT YEAR-LIKE TIMESCALES IN BLAZARS

    Energy Technology Data Exchange (ETDEWEB)

    Sandrinelli, A.; Treves, A. [Università degli Studi dell’Insubria, Dipartimento di Scienza ed Alta Tecnologia, Via Valleggio 11, I-22100 Como (Italy); Covino, S. [INAF—Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Brera, Via Emilio Bianchi 46, I-23807 Merate (Italy); Dotti, M. [Università degli Studi di Milano Bicocca, Dipartimento di Fisica G. Occhialini, Piazza della Scienza 3, I-20126 Milano (Italy)

    2016-03-15

    We searched for quasi-periodicities on year-like timescales in the light curves of six blazars in the optical—near-infrared bands and we made a comparison with the high energy emission. We obtained optical/NIR light curves from Rapid Eye Mounting photometry plus archival Small and Moderate Aperture Research Telescope System data and we accessed the Fermi light curves for the γ-ray data. The periodograms often show strong peaks in the optical and γ-ray bands, which in some cases may be inter-related. The significance of the revealed peaks is then discussed, taking into account that the noise is frequency dependent. Quasi-periodicities on a year-like timescale appear to occur often in blazars. No straightforward model describing these possible periodicities is yet available, but some plausible interpretations for the physical mechanisms causing periodic variabilities of these sources are examined.

  8. Stabilization of the quasi-periodic motion of a Q-switched Nd:YAG laser

    International Nuclear Information System (INIS)

    Kim, Chil-Min; Rim, Sunghwan; Kye, Won-Ho; Kim, Jeong-Moog; Lee, Kang-Soo

    2004-01-01

    We have developed a stabilization method of quasi-periodicity based on a return map. The method is explained in the forced Van der Pol oscillator, and applied experimentally to a quasi-periodic output of a Q-switched Nd:YAG laser. Even though the attractors have no unstable periodic orbit, we were able to stabilize them to an arbitrarily chosen orbit by targeting the trajectory into it

  9. Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares

    Science.gov (United States)

    McLaughlin, J. A.; Nakariakov, V. M.; Dominique, M.; Jelínek, P.; Takasao, S.

    2018-02-01

    Solar flare emission is detected in all EM bands and variations in flux density of solar energetic particles. Often the EM radiation generated in solar and stellar flares shows a pronounced oscillatory pattern, with characteristic periods ranging from a fraction of a second to several minutes. These oscillations are referred to as quasi-periodic pulsations (QPPs), to emphasise that they often contain apparent amplitude and period modulation. We review the current understanding of quasi-periodic pulsations in solar and stellar flares. In particular, we focus on the possible physical mechanisms, with an emphasis on the underlying physics that generates the resultant range of periodicities. These physical mechanisms include MHD oscillations, self-oscillatory mechanisms, oscillatory reconnection/reconnection reversal, wave-driven reconnection, two loop coalescence, MHD flow over-stability, the equivalent LCR-contour mechanism, and thermal-dynamical cycles. We also provide a histogram of all QPP events published in the literature at this time. The occurrence of QPPs puts additional constraints on the interpretation and understanding of the fundamental processes operating in flares, e.g. magnetic energy liberation and particle acceleration. Therefore, a full understanding of QPPs is essential in order to work towards an integrated model of solar and stellar flares.

  10. Dependence of synchronization frequency of Kuramoto oscillators ...

    Indian Academy of Sciences (India)

    Kuramoto oscillators have been proposed earlier as a model for interacting systems that exhibit synchronization. In this article, we study the difference between networks with symmetric and asymmetric distribution of natural frequencies. We first indicate that synchronization frequency of oscillators in a completely connected ...

  11. Phase noise and frequency stability in oscillators

    CERN Document Server

    Rubiola, Enrico

    2009-01-01

    Presenting a comprehensive account of oscillator phase noise and frequency stability, this practical text is both mathematically rigorous and accessible. An in-depth treatment of the noise mechanism is given, describing the oscillator as a physical system, and showing that simple general laws govern the stability of a large variety of oscillators differing in technology and frequency range. Inevitably, special attention is given to amplifiers, resonators, delay lines, feedback, and flicker (1/f) noise. The reverse engineering of oscillators based on phase-noise spectra is also covered, and end-of-chapter exercises are given. Uniquely, numerous practical examples are presented, including case studies taken from laboratory prototypes and commercial oscillators, which allow the oscillator internal design to be understood by analyzing its phase-noise spectrum. Based on tutorials given by the author at the Jet Propulsion Laboratory, international IEEE meetings, and in industry, this is a useful reference for acade...

  12. Dependence of synchronization frequency of Kuramoto oscillators ...

    Indian Academy of Sciences (India)

    2Department of Theoretical Physics, Physical Research Laboratory, ... on the sine of the phase difference between the oscillators and hence, ... we study the change in synchronization frequency as the symmetry is changed under the limit of.

  13. Damped Oscillator with Delta-Kicked Frequency

    Science.gov (United States)

    Manko, O. V.

    1996-01-01

    Exact solutions of the Schrodinger equation for quantum damped oscillator subject to frequency delta-kick describing squeezed states are obtained. The cases of strong, intermediate, and weak damping are investigated.

  14. A novel optogenetically tunable frequency modulating oscillator.

    Directory of Open Access Journals (Sweden)

    Tarun Mahajan

    Full Text Available Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour.

  15. Power spectrum density of stochastic oscillating accretion disk

    Indian Academy of Sciences (India)

    46

    2015-11-11

    Nov 11, 2015 ... National Natural Science Foundation of. China. (11463007) .... may be an alternative interpretation of the persistent low-frequency quasi-periodic oscillations (Wang ..... In this vision, we should revise our manuscript according.

  16. Low frequency temperature forcing of chemical oscillations.

    Science.gov (United States)

    Novak, Jan; Thompson, Barnaby W; Wilson, Mark C T; Taylor, Annette F; Britton, Melanie M

    2011-07-14

    The low frequency forcing of chemical oscillations by temperature is investigated experimentally in the Belousov-Zhabotinsky (BZ) reaction and in simulations of the Oregonator model with Arrhenius temperature dependence of the rate constants. Forcing with temperature leads to modulation of the chemical frequency. The number of response cycles per forcing cycle is given by the ratio of the natural frequency to the forcing frequency and phase locking is only observed in simulations when this ratio is a whole number and the forcing amplitude is small. The global temperature forcing of flow-distributed oscillations in a tubular reactor is also investigated and synchronisation is observed in the variation of band position with the external signal, reflecting the periodic modulation of chemical oscillations by temperature.

  17. LOW-FREQUENCY OSCILLATIONS IN GLOBAL SIMULATIONS OF BLACK HOLE ACCRETION

    International Nuclear Information System (INIS)

    O'Neill, Sean M.; Reynolds, Christopher S.; Coleman Miller, M.; Sorathia, Kareem A.

    2011-01-01

    We have identified the presence of large-scale, low-frequency dynamo cycles in a long-duration, global, magnetohydrodynamic (MHD) simulation of black hole accretion. Such cycles have previously been seen in local shearing box simulations, but we discuss their evolution over 1500 inner disk orbits of a global π/4 disk wedge spanning two orders of magnitude in radius and seven scale heights in elevation above/below the disk midplane. The observed cycles manifest themselves as oscillations in azimuthal magnetic field occupying a region that extends into a low-density corona several scale heights above the disk. The cycle frequencies are 10-20 times lower than the local orbital frequency, making them potentially interesting sources of low-frequency variability when scaled to real astrophysical systems. Furthermore, power spectra derived from the full time series reveal that the cycles manifest themselves at discrete, narrowband frequencies that often share power across broad radial ranges. We explore possible connections between these simulated cycles and observed low-frequency quasi-periodic oscillations (LFQPOs) in galactic black hole binary systems, finding that dynamo cycles have the appropriate frequencies and are located in a spatial region associated with X-ray emission in real systems. Derived observational proxies, however, fail to feature peaks with rms amplitudes comparable to LFQPO observations, suggesting that further theoretical work and more sophisticated simulations will be required to form a complete theory of dynamo-driven LFQPOs. Nonetheless, this work clearly illustrates that global MHD dynamos exhibit quasi-periodic behavior on timescales much longer than those derived from test particle considerations.

  18. Quasi Periodic Oscillations in Blazars Alok C. Gupta

    Indian Academy of Sciences (India)

    very important to understand AGN emission models. The centre of the .... the disk and in the optical/UV bands QPOs could arise from the hot-spots or spiral .... We used wavelet plus randomization technique, which had certain advantages over.

  19. Quasi-periodic Schroedinger operators in one dimension, absolutely continuous spectra, Bloch waves, and integrable Hamiltonian systems

    International Nuclear Information System (INIS)

    Chierchia, L.

    1986-01-01

    In the first chapter, the eigenvalue problem for a periodic Schroedinger operator, Lf = (-d 2 /dx 2 + v)f = Ef, is viewed as a two-dimensional Hamiltonian system which is integrable in the sense of Arnold and Liouville. With the aid of the Floquet-BLoch theory, it is shown that such a system is conjugate to two harmonic oscillators with frequencies α and omega, being the rotation number for L and 2π/omega the period of the potential v. This picture is generalized in the second chapter, to quasi periodic Schroedinger operators, L/sub epsilon/, with highly irrational frequencies (omega 1 , ..., omega/sub d/), which are a small perturbation of periodic operators. In the last chapter, the absolutely continuous spectrum σ/sub ac/ of a general quasi-periodic Schroedinger operators is considered. The Radon-Nikodym derivatives (with respect to Lebesgue measure) of the spectral measures are computed in terms of special independent eigensolutions existing for almost ever E in σ/sub ac/. Finally, it is shown that weak Bloch waves always exist for almost ever E in σ/sub ac/ and the question of the existence of genuine Bloch waves is turned into a regularity problem for a certain nonlinear partial differential equation on a d-dimensional torus

  20. Computation of Quasi-Periodic Normally Hyperbolic Invariant Tori: Algorithms, Numerical Explorations and Mechanisms of Breakdown

    Science.gov (United States)

    Canadell, Marta; Haro, Àlex

    2017-12-01

    We present several algorithms for computing normally hyperbolic invariant tori carrying quasi-periodic motion of a fixed frequency in families of dynamical systems. The algorithms are based on a KAM scheme presented in Canadell and Haro (J Nonlinear Sci, 2016. doi: 10.1007/s00332-017-9389-y), to find the parameterization of the torus with prescribed dynamics by detuning parameters of the model. The algorithms use different hyperbolicity and reducibility properties and, in particular, compute also the invariant bundles and Floquet transformations. We implement these methods in several 2-parameter families of dynamical systems, to compute quasi-periodic arcs, that is, the parameters for which 1D normally hyperbolic invariant tori with a given fixed frequency do exist. The implementation lets us to perform the continuations up to the tip of the quasi-periodic arcs, for which the invariant curves break down. Three different mechanisms of breakdown are analyzed, using several observables, leading to several conjectures.

  1. High frequency oscillations in brain hemodynamic response

    Science.gov (United States)

    Akin, Ata; Bolay, Hayrunnisa

    2007-07-01

    Tight autoregulation of vessel tone guarantees proper delivery of nutrients to the tissues. This regulation is maintained at a more delicate level in the brain since any decrease in the supply of glucose and oxygen to neuronal tissues might lead to unrecoverable injury. Functional near infrared spectroscopy has been proposed as a new tool to monitor the cerebrovascular response during cognitive activity. We have observed that during a Stroop task three distinct oscillatory patterns govern the control of the cerebrovascular reactivity: very low frequency (0.02-0.05 Hz), low frequency (0.08-0.12 Hz) and high frequency (0.12-0.18 Hz). High frequency oscillations have been shown to be related to stress level of the subjects. Our findings indicate that as the stress level is increased so does the energy of the high frequency component indicating a higher stimulation from the autonomic nervous system.

  2. Quasi-periodic Pulse Amplitude Modulation in the Accreting Millisecond Pulsar IGR J00291+5934

    Energy Technology Data Exchange (ETDEWEB)

    Bult, Peter [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Doesburgh, Marieke van; Klis, Michiel van der [Anton Pannekoek Institute, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands)

    2017-08-20

    We introduce a new method for analyzing the aperiodic variability of coherent pulsations in accreting millisecond X-ray pulsars (AMXPs). Our method involves applying a complex frequency correction to the time-domain light curve, allowing for the aperiodic modulation of the pulse amplitude to be robustly extracted in the frequency domain. We discuss the statistical properties of the resulting modulation spectrum and show how it can be correlated with the non-pulsed emission to determine if the periodic and aperiodic variability are coupled processes. Using this method, we study the 598.88 Hz coherent pulsations of the AMXP IGR J00291+5934 as observed with the Rossi X-ray Timing Explorer and XMM-Newton . We demonstrate that our method easily confirms the known coupling between the pulsations and a strong 8 mHz quasi-periodic oscillation (QPO) in XMM-Newton observations. Applying our method to the RXTE observations, we further show, for the first time, that the much weaker 20 mHz QPO and its harmonic are also coupled with the pulsations. We discuss the implications of this coupling and indicate how it may be used to extract new information on the underlying accretion process.

  3. Quasi-Periodic Pulse Amplitude Modulation in the Accreting Millisecond Pulsar IGR J00291+5934

    Science.gov (United States)

    Bult, Peter; van Doesburgh, Marieke; van der Klis, Michiel

    2017-01-01

    We introduce a new method for analyzing the a periodic variability of coherent pulsations in accreting millisecond X-ray pulsars (AMXPs). Our method involves applying a complex frequency correction to the time-domain lightcurve, allowing for the aperiodic modulation of the pulse amplitude to be robustly extracted in the frequency domain. We discuss the statistical properties of the resulting modulation spectrum and show how it can be correlated with the non-pulsed emission to determine if the periodic and a periodic variability are coupled processes. Using this method, we study the 598.88 Hz coherent pulsations of the AMXP IGR J00291+5934 as observed with the Rossi X-ray Timing Explorer and XMM-Newton. We demonstrate that our method easily confirms the known coupling between the pulsations and a strong 8 mHz quasi-periodic oscillation (QPO) in XMM-Newton observations. Applying our method to the RXTE observations, we further show, for the first time, that the much weaker 20 mHz QPO and its harmonic are also coupled with the pulsations. We discuss the implications of this coupling and indicate how it may be used to extract new information on the underlying accretion process.

  4. Concept of quasi-periodic undulator - control of radiation spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Shigemi [Japan Atomic Energy Research Institute, Ibaraki (Japan)

    1995-02-01

    A new type of undulator, the quasi-periodic undulator (QPU) is considered which generates the irrational harmonics in the radiation spectrum. This undulator consists of the arrays of magnet blocks aligned in a quasi-periodic order, and consequentially lead to a quasi-periodic motion of electron. A combination of the QPU and a conventional crystal/grating monochromator provides pure monochromatic photon beam for synchrotron radiation users because the irrational harmonics do not be diffracted in the same direction by a monochromator. The radiation power and width of each radiation peak emitted from this undulator are expected to be comparable with those of the conventional periodic undulator.

  5. Methods for the Quasi-Periodic Variability Analysis in Blazars Y. Liu ...

    Indian Academy of Sciences (India)

    the variability analysis in blazars in optical and radio bands, to search for possible quasi-periodic signals. 2. Power spectral density (PSD). In statistical signal processing and physics, the power spectral density (PSD) is a positive real function of a frequency variable associated with a stationary stochas- tic process. Intuitively ...

  6. TOWARDS THRESHOLD FREQUENCY IN CHAOTIC COLPITTS OSCILLATOR

    DEFF Research Database (Denmark)

    Lindberg, Erik; Tamasevicius, Arunas; Mykolaitis, Gytis

    2007-01-01

    A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations at the funda......A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations...

  7. Compensating for Quasi-periodic Motion in Robotic Radiosurgery

    CERN Document Server

    Ernst, Floris

    2012-01-01

    Compensating for Quasi-periodic Motion in Robotic Radiosurgery outlines the techniques needed to accurately track and compensate for respiratory and pulsatory motion during robotic radiosurgery. The algorithms presented within the book aid in the treatment of tumors that move during respiration. In Chapters 1 and 2,  the book introduces the concept of stereotactic body radiation therapy, motion compensation strategies and the clinical state-of-the-art. In Chapters 3 through 5, the author describes and evaluates new methods for motion prediction, for correlating external motion to internal organ motion, and for the evaluation of these algorithms’ output based on an unprecedented amount of real clinical data. Finally, Chapter 6 provides a brief introduction into currently investigated, open questions and further fields of research. Compensating for Quasi-periodic Motion in Robotic Radiosurgery targets researchers working in the related fields of surgical oncology, artificial intelligence, robotics and more. ...

  8. MULTIWAVELENGTH EVIDENCE FOR QUASI-PERIODIC MODULATION IN THE GAMMA-RAY BLAZAR PG 1553+113

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978 (United States); Albert, A.; Baldini, L.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d’Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Becerra Gonzalez, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Bonino, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino (Italy); Bregeon, J. [Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3, Montpellier (France); Bruel, P., E-mail: David.J.Thompson@nasa.gov, E-mail: sara.cutini@asdc.asi.it, E-mail: stefano.ciprini@asdc.asi.it, E-mail: stefan@astro.su.se, E-mail: stamerra@oato.inaf.it [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Palaiseau (France); and others

    2015-11-10

    We report for the first time a γ-ray and multiwavelength nearly periodic oscillation in an active galactic nucleus. Using the Fermi Large Area Telescope we have discovered an apparent quasi-periodicity in the γ-ray flux (E > 100 MeV) from the GeV/TeV BL Lac object PG 1553+113. The marginal significance of the 2.18 ± 0.08 year period γ-ray cycle is strengthened by correlated oscillations observed in radio and optical fluxes, through data collected in the Owens Valley Radio Observatory, Tuorla, Katzman Automatic Imaging Telescope, and Catalina Sky Survey monitoring programs and Swift-UVOT. The optical cycle appearing in ∼10 years of data has a similar period, while the 15 GHz oscillation is less regular than seen in the other bands. Further long-term multiwavelength monitoring of this blazar may discriminate among the possible explanations for this quasi-periodicity.

  9. MULTIWAVELENGTH EVIDENCE FOR QUASI-PERIODIC MODULATION IN THE GAMMA-RAY BLAZAR PG 1553+113

    International Nuclear Information System (INIS)

    Ackermann, M.; Buehler, R.; Ajello, M.; Albert, A.; Baldini, L.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Atwood, W. B.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Buson, S.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; Bonino, R.; Bregeon, J.; Bruel, P.

    2015-01-01

    We report for the first time a γ-ray and multiwavelength nearly periodic oscillation in an active galactic nucleus. Using the Fermi Large Area Telescope we have discovered an apparent quasi-periodicity in the γ-ray flux (E > 100 MeV) from the GeV/TeV BL Lac object PG 1553+113. The marginal significance of the 2.18 ± 0.08 year period γ-ray cycle is strengthened by correlated oscillations observed in radio and optical fluxes, through data collected in the Owens Valley Radio Observatory, Tuorla, Katzman Automatic Imaging Telescope, and Catalina Sky Survey monitoring programs and Swift-UVOT. The optical cycle appearing in ∼10 years of data has a similar period, while the 15 GHz oscillation is less regular than seen in the other bands. Further long-term multiwavelength monitoring of this blazar may discriminate among the possible explanations for this quasi-periodicity

  10. Quasi-Periodic beta-Expansions and Cut Languages

    Czech Academy of Sciences Publication Activity Database

    Šíma, Jiří; Savický, Petr

    2018-01-01

    Roč. 720, 11 April (2018), s. 1-23 ISSN 0304-3975 R&D Projects: GA ČR GBP202/12/G061 Institutional support: RVO:67985807 Keywords : beta-expansion * quasi-periodicity * Pisot number * cut language * Chomsky hierarchy Subject RIV: IN - Informatics, Computer Science OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 0.698, year: 2016

  11. Quasi-Periodic beta-Expansions and Cut Languages

    Czech Academy of Sciences Publication Activity Database

    Šíma, Jiří; Savický, Petr

    2018-01-01

    Roč. 720, 11 April (2018), s. 1-23 ISSN 0304-3975 R&D Projects: GA ČR GBP202/12/G061 Institutional support: RVO:67985807 Keywords : beta-expansion * quasi-periodicity * Pisot number * cut language * Chomsky hierarchy Subject RIV: IN - Informatics, Computer Science OBOR OECD: Computer science s, information science , bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 0.698, year: 2016

  12. Search for quasi-periodic signals in magnetar giant flares. Bayesian inspection of SGR 1806-20 and SGR 1900+14

    Science.gov (United States)

    Pumpe, Daniel; Gabler, Michael; Steininger, Theo; Enßlin, Torsten A.

    2018-02-01

    Quasi-periodic oscillations (QPOs) discovered in the decaying tails of giant flares of magnetars are believed to be torsional oscillations of neutron stars. These QPOs have a high potential to constrain properties of high-density matter. In search for quasi-periodic signals, we study the light curves of the giant flares of SGR 1806-20 and SGR 1900+14, with a non-parametric Bayesian signal inference method called D3PO. The D3PO algorithm models the raw photon counts as a continuous flux and takes the Poissonian shot noise as well as all instrument effects into account. It reconstructs the logarithmic flux and its power spectrum from the data. Using this fully noise-aware method, we do not confirm previously reported frequency lines at ν ≳ 17 Hz because they fall into the noise-dominated regime. However, we find two new potential candidates for oscillations at 9.2 Hz (SGR 1806-20) and 7.7 Hz (SGR 1900+14). If these are real and the fundamental magneto-elastic oscillations of the magnetars, current theoretical models would favour relatively weak magnetic fields B̅ 6× 1013-3 × 1014 G (SGR 1806-20) and a relatively low shear velocity inside the crust compared to previous findings. Data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A61

  13. Spontaneous low-frequency oscillations in cerebral vessels

    DEFF Research Database (Denmark)

    Schytz, Henrik W; Hansson, Andreas; Phillip, Dorte

    2010-01-01

    ). Analysis of CA by measurement of spontaneous oscillations in the low-frequency spectrum in cerebral vessels might be a useful tool for assessing risk and investigating different treatment strategies in carotid artery disease (CAD) and stroke. We reviewed studies exploring spontaneous oscillations...

  14. On the existence of eigenmodes of linear quasi-periodic differential equations and their relation to the MHD continuum

    International Nuclear Information System (INIS)

    Salat, A.

    1981-12-01

    The existence of quasi-periodic eigensolutions of a linear second order ordinary differential equation with quasi-periodic coefficient f(ω 1 t,ω 2 t) is investigated numerically and graphically. For sufficiently incommensurate frequencies ω 1 , ω 2 a doubly indexed infinite sequence of eigenvalues and eigenmodes is obtained. The equation considered is a model for the magneto-hydrodynamic 'continuum' in general toroidal geometry. The result suggests that continuum modes exist at least on sufficiently irrational magnetic surfaces. (orig.)

  15. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  16. Synchronization of Phase Oscillators in Networks with Certain Frequency Sequence

    International Nuclear Information System (INIS)

    Feng Yuan-Yuan; Wu Liang; Zhu Shi-Qun

    2014-01-01

    Synchronization of Kuramoto phase oscillators arranged in real complex neural networks is investigated. It is shown that the synchronization greatly depends on the sets of natural frequencies of the involved oscillators. The influence of network connectivity heterogeneity on synchronization depends particularly on the correlation between natural frequencies and node degrees. This finding implies a potential application that inhibiting the effects caused by the changes of network structure can be balanced out nicely by choosing the correlation parameter appropriately. (general)

  17. Dependence of synchronization frequency of Kuramoto oscillators on symmetry of intrinsic frequency in ring network

    Science.gov (United States)

    Saha, Arindam; Amritkar, R. E.

    2014-12-01

    Kuramoto oscillators have been proposed earlier as a model for interacting systems that exhibit synchronisation. In this article we study the difference between networks with symmetric and asymmetric distribution of natural frequencies. We first indicate that the synchronisation frequency of the oscillators is independent of the natural frequency distribution for a completely connected network. Further we analyse the case of oscillators in a directed ring-network where asymmetry in the natural frequency distribution is seen to shift the synchronisation frequency of the network. We also present an estimate of the shift in the frequencies for slightly asymmetric distributions.

  18. THz laser based on quasi-periodic AlGaAs superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Malyshev, K V [N.E. Bauman Moscow State Technical University, Moscow (Russian Federation)

    2013-06-30

    The use of quasi-periodic AlGaAs superlattices as an active element of a quantum cascade laser of terahertz range is proposed and theoretically investigated. A multi-colour emission, having from three to six peaks of optical gain, is found in Fibonacci, Thue-Morse, and figurate superlattices in electric fields of intensity F = 11 - 13 kV cm{sup -1} in the frequency range f = 2 - 4 THz. The peaks depend linearly on the electric field, retain the height of 20 cm{sup -1}, and strongly depend on the thickness of the AlGaAs-layers. (lasers)

  19. Entropy method of measuring and evaluating periodicity of quasi-periodic trajectories

    Science.gov (United States)

    Ni, Yanshuo; Turitsyn, Konstantin; Baoyin, Hexi; Junfeng, Li

    2018-06-01

    This paper presents a method for measuring the periodicity of quasi-periodic trajectories by applying discrete Fourier transform (DFT) to the trajectories and analyzing the frequency domain within the concept of entropy. Having introduced the concept of entropy, analytical derivation and numerical results indicate that entropies increase as a logarithmic function of time. Periodic trajectories typically have higher entropies, and trajectories with higher entropies mean the periodicities of the motions are stronger. Theoretical differences between two trajectories expressed as summations of trigonometric functions are also derived analytically. Trajectories in the Henon-Heiles system and the circular restricted three-body problem (CRTBP) are analyzed with the indicator entropy and compared with orthogonal fast Lyapunov indicator (OFLI). The results show that entropy is a better tool for discriminating periodicity in quasiperiodic trajectories than OFLI and can detect periodicity while excluding the spirals that are judged as periodic cases by OFLI. Finally, trajectories in the vicinity of 243 Ida and 6489 Golevka are considered as examples, and the numerical results verify these conclusions. Some trajectories near asteroids look irregular, but their higher entropy values as analyzed by this method serve as evidence of frequency regularity in three directions. Moreover, these results indicate that applying DFT to the trajectories in the vicinity of irregular small bodies and calculating their entropy in the frequency domain provides a useful quantitative analysis method for evaluating orderliness in the periodicity of quasi-periodic trajectories within a given time interval.

  20. Scaling properties of optical reflectance from quasi-periodic superlattices

    International Nuclear Information System (INIS)

    Wu Xiang; Yao Hesheng; Feng Weiguo

    1991-08-01

    The scaling properties of the optical reflectance from two types of quasi-periodic metal-insulator superlattices, one with the structure of Cantor bars and the other with the structure of Cantorian-Fibonaccian train, have been studied for the region of s-polarized soft x-rays and extreme ultraviolet. By using the hydrodynamic model of electron dynamics and transfer-matrix method, and be taking into account retardation effects, we have presented the formalism of the reflectivity for the superlattices. From our numerical results, we found that the reflection spectra of the quasi-superlattices have a rich structure of self-similarity. The interesting scaling indices, which are related to the fractal dimensions, of the spectra are also discussed for the two kinds of the quasi-superlattices. (author). 10 refs, 7 figs

  1. Effect of temperature on terahertz photonic and omnidirectional band gaps in one-dimensional quasi-periodic photonic crystals composed of semiconductor InSb.

    Science.gov (United States)

    Singh, Bipin K; Pandey, Praveen C

    2016-07-20

    Engineering of thermally tunable terahertz photonic and omnidirectional bandgaps has been demonstrated theoretically in one-dimensional quasi-periodic photonic crystals (PCs) containing semiconductor and dielectric materials. The considered quasi-periodic structures are taken in the form of Fibonacci, Thue-Morse, and double periodic sequences. We have shown that the photonic and omnidirectional bandgaps in the quasi-periodic structures with semiconductor constituents are strongly depend on the temperature, thickness of the constituted semiconductor and dielectric material layers, and generations of the quasi-periodic sequences. It has been found that the number of photonic bandgaps increases with layer thickness and generation of the quasi-periodic sequences. Omnidirectional bandgaps in the structures have also been obtained. Results show that the bandwidths of photonic and omnidirectional bandgaps are tunable by changing the temperature and lattice parameters of the structures. The generation of quasi-periodic sequences can also change the properties of photonic and omnidirectional bandgaps remarkably. The frequency range of the photonic and omnidirectional bandgaps can be tuned by the change of temperature and layer thickness of the considered quasi-periodic structures. This work will be useful to design tunable terahertz PC devices.

  2. Frequency modulation of neural oscillations according to visual task demands.

    Science.gov (United States)

    Wutz, Andreas; Melcher, David; Samaha, Jason

    2018-02-06

    Temporal integration in visual perception is thought to occur within cycles of occipital alpha-band (8-12 Hz) oscillations. Successive stimuli may be integrated when they fall within the same alpha cycle and segregated for different alpha cycles. Consequently, the speed of alpha oscillations correlates with the temporal resolution of perception, such that lower alpha frequencies provide longer time windows for perceptual integration and higher alpha frequencies correspond to faster sampling and segregation. Can the brain's rhythmic activity be dynamically controlled to adjust its processing speed according to different visual task demands? We recorded magnetoencephalography (MEG) while participants switched between task instructions for temporal integration and segregation, holding stimuli and task difficulty constant. We found that the peak frequency of alpha oscillations decreased when visual task demands required temporal integration compared with segregation. Alpha frequency was strategically modulated immediately before and during stimulus processing, suggesting a preparatory top-down source of modulation. Its neural generators were located in occipital and inferotemporal cortex. The frequency modulation was specific to alpha oscillations and did not occur in the delta (1-3 Hz), theta (3-7 Hz), beta (15-30 Hz), or gamma (30-50 Hz) frequency range. These results show that alpha frequency is under top-down control to increase or decrease the temporal resolution of visual perception.

  3. Improvement of the low frequency oscillation model for Hall thrusters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunsheng, E-mail: wangcs@hit.edu.cn; Wang, Huashan [Yanshan University, College of Vehicles and Energy, Qinhuangdao 066004, Hebei (China)

    2016-08-15

    The low frequency oscillation of the discharge current in Hall thrusters is a major aspect of these devices that requires further study. While the existing model captures the ionization mechanism of the low frequency oscillation, it unfortunately fails to express the dynamic characteristics of the ion acceleration. The analysis in this paper shows this is because of the simplification of the electron equation, which affects both the electric field distribution and the ion acceleration process. Additionally, the electron density equation is revised and a new model that is based on the physical properties of ion movement is proposed.

  4. Frequency and amplitude stabilization in MEMS and NEMS oscillators

    Science.gov (United States)

    Chen, Changyao; Lopez, Omar Daniel; Czaplewski, David A.

    2017-06-14

    This invention comprises a nonlinear micro- and nano-mechanical resonator that can maintain frequency of operation and amplitude of operation for a period of time after all external power has been removed from the device. Utilizing specific nonlinear dynamics of the micromechanical resonator, mechanical energy at low frequencies can be input and stored in higher frequencies modes, thus using the multiple degrees of freedom of the resonator to extend its energy storage capacity. Furthermore, the energy stored in multiple vibrational modes can be used to maintain the resonator oscillating for a fixed period of time, even without an external power supply. This is the first demonstration of an "autonomous" frequency source that can maintain a constant frequency and vibrating amplitude when no external power is provided, making it ideal for applications requiring an oscillator in low power, or limited and intermittent power supplies.

  5. Low-frequency oscillations in radiative-convective models

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qi; Randall, D.A.

    1991-12-31

    Although eastward propagation is usually regarded as an essential feature of the low-frequency ``Madden-Julian oscillation`` observed in the tropical atmosphere, many observations indicate that there is an important stationary or quasi-stationary component of the oscillation. Yasunari (1979), for example, investigated the stationary 30--60 day variation in upper tropospheric cloudiness in the Asian summer monsoon region. In a case study of the 30--60 day oscillation. Hsu et al. (1990) found a strong stationary oscillation of the divergence, outgoing longwave mdiadon and other fields. A recent observational study by Weickmann and Khalsa (1990) offers further evidence that the Madden-Julian oscillation has an important stationary component. In this paper, we present evidence that intraseasonal oscillations can be produced by local radiative and convective processes. This suggests that the observed propagating Madden-Julian wave is produced by interactions between these local processes and the large scale motion field, and is not essential for the existence of the observed oscillation.

  6. Low-frequency oscillations in radiative-convective models

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qi; Randall, D.A.

    1991-01-01

    Although eastward propagation is usually regarded as an essential feature of the low-frequency Madden-Julian oscillation'' observed in the tropical atmosphere, many observations indicate that there is an important stationary or quasi-stationary component of the oscillation. Yasunari (1979), for example, investigated the stationary 30--60 day variation in upper tropospheric cloudiness in the Asian summer monsoon region. In a case study of the 30--60 day oscillation. Hsu et al. (1990) found a strong stationary oscillation of the divergence, outgoing longwave mdiadon and other fields. A recent observational study by Weickmann and Khalsa (1990) offers further evidence that the Madden-Julian oscillation has an important stationary component. In this paper, we present evidence that intraseasonal oscillations can be produced by local radiative and convective processes. This suggests that the observed propagating Madden-Julian wave is produced by interactions between these local processes and the large scale motion field, and is not essential for the existence of the observed oscillation.

  7. On Quasi-Periodic Brightness Variations of P Cygni

    Science.gov (United States)

    Kochiashvili, N.; Beradze, S.; Natsvlishvili, R.; Kochiashvili, I.; Vardosanidze, M.; Pannicke, A.

    2018-03-01

    Until recent decades, it was considered that all Luminous Blue Variables are single massive and high luminosity stars. Now for several of them a companion has been found. The opinion exists that P Cygni also has a companion with an orbital period of about seven years. In accordance with this hypothesis, a known powerful eruption occurred near the periastron point. P Cygni, as well as several other well-known Luminous Blue Variable (LBV) stars, is a so-called "Supernova Impostor" because it survived after a powerful outburst. However, there were cases during the last decade when a LBV star survived after a powerful giant eruption, and then after a few years, explode as a supernova. Because the real reason for the great eruption and characteristic light variability of LBV, including P Cygni, is not established yet, any kind of photometric and spectral observational data is very significant. We present the results of analysis of the long-term photometric observations of hypergiant P Cygni. On the basis of these data, different quasi-periodic brightness changes of the star were revealed.

  8. Twin peak quasi-periodic oscillations as signature of oscillating cusp torus

    Czech Academy of Sciences Publication Activity Database

    Török, G.; Goluchová, K.; Horák, Jiří; Šrámková, E.; Urbanec, M.; Pecháček, T.; Bakala, P.

    2016-01-01

    Roč. 457, č. 1 (2016), L19-L23 ISSN 0035-8711 R&D Projects: GA MŠk(CZ) LH14049 Institutional support: RVO:67985815 Keywords : accretion discs * equation of state * neutron stars Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics Impact factor: 4.961, year: 2016

  9. Seismology and geodesy of the sun: low-frequency oscillations

    International Nuclear Information System (INIS)

    Dicke, R.H.

    1981-01-01

    The hourly averages of the solar ellipticity measured from June 13 to September 17, 1966, are analyzed for indications of solar oscillations with periods in excess of 2 h ν -1 . Nothing significant is found for frequencies ν > 0.1 hr -1 but for lower frequencies the power spectrum shows a very complex structure containing about 20 strong narrow peaks. The complexity is illusionary. The signal apparently consists of only two frequencies. The complexity is due to aliasing by the window function with its basic 24-h period, with many observational days missing, and with different numbers of hourly averages for the various observational days. Both signal frequencies are apparently due to odd-degree spherical harmonic oscillations of the sun

  10. Frequency comb generation in a continuously pumped optical parametric oscillator

    Science.gov (United States)

    Mosca, S.; Parisi, M.; Ricciardi, I.; Leo, F.; Hansson, T.; Erkintalo, M.; Maddaloni, P.; De Natale, P.; Wabnitz, S.; De Rosa, M.

    2018-02-01

    We demonstrate optical frequency comb generation in a continuously pumped optical parametric oscillator, in the parametric region around half of the pump frequency. We also model the dynamics of such quadratic combs using a single time-domain mean-field equation, and obtain simulation results that are in good agreement with experimentally observed spectra. Moreover, we numerically investigate the coherence properties of simulated combs, showing the existence of correlated and phase-locked combs. Our work could pave the way for a new class of frequency comb sources, which may enable straightforward access to new spectral regions and stimulate novel applications of frequency combs.

  11. Dynamics of multi-frequency oscillator ensembles with resonant coupling

    Science.gov (United States)

    Lück, S.; Pikovsky, A.

    2011-07-01

    We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2:1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed.

  12. Sustaining GHz oscillation of carbon nanotube based oscillators via a MHz frequency excitation

    International Nuclear Information System (INIS)

    Motevalli, Benyamin; Taherifar, Neda; Liu, Jefferson Zhe

    2016-01-01

    There have been intensive studies to investigate the properties of gigahertz nano-oscillators based on multi-walled carbon nanotubes (MWCNTs). Many of these studies, however, revealed that the unique telescopic translational oscillations in such devices would damp quickly due to various energy dissipation mechanisms. This challenge remains the primary obstacle against its practical applications. Herein, we propose a design concept in which a GHz oscillation could be re-excited by a MHz mechanical motion. This design involves a triple-walled CNT, in which sliding of the longer inner tube at a MHz frequency can re-excite and sustain a GHz oscillation of the shorter middle tube. Our molecular dynamics (MD) simulations prove this design concept at ∼10 nm scale. A mathematical model is developed to explore the feasibility at a larger size scale. As an example, in an oscillatory system with the CNT’s length above 100 nm, the high oscillatory frequency range of 1.8–3.3 GHz could be excited by moving the inner tube at a much lower frequency of 53.4 MHz. This design concept together with the mechanical model could energize the development of GHz nano-oscillators in miniaturized electro-mechanical devices. (paper)

  13. Photoinduced High-Frequency Charge Oscillations in Dimerized Systems

    Science.gov (United States)

    Yonemitsu, Kenji

    2018-04-01

    Photoinduced charge dynamics in dimerized systems is studied on the basis of the exact diagonalization method and the time-dependent Schrödinger equation for a one-dimensional spinless-fermion model at half filling and a two-dimensional model for κ-(bis[ethylenedithio]tetrathiafulvalene)2X [κ-(BEDT-TTF)2X] at three-quarter filling. After the application of a one-cycle pulse of a specifically polarized electric field, the charge densities at half of the sites of the system oscillate in the same phase and those at the other half oscillate in the opposite phase. For weak fields, the Fourier transform of the time profile of the charge density at any site after photoexcitation has peaks for finite-sized systems that correspond to those of the steady-state optical conductivity spectrum. For strong fields, these peaks are suppressed and a new peak appears on the high-energy side, that is, the charge densities mainly oscillate with a single frequency, although the oscillation is eventually damped. In the two-dimensional case without intersite repulsion and in the one-dimensional case, this frequency corresponds to charge-transfer processes by which all the bonds connecting the two classes of sites are exploited. Thus, this oscillation behaves as an electronic breathing mode. The relevance of the new peak to a recently found reflectivity peak in κ-(BEDT-TTF)2X after photoexcitation is discussed.

  14. U.S. Hail Frequency and the Global Wind Oscillation

    Science.gov (United States)

    Gensini, Vittorio A.; Allen, John T.

    2018-02-01

    Changes in Earth relative atmospheric angular momentum can be described by an index known as the Global Wind Oscillation. This global index accounts for changes in Earth's atmospheric budget of relative angular momentum through interactions of tropical convection anomalies, extratropical dynamics, and engagement of surface torques (e.g., friction and mountain). It is shown herein that U.S. hail events are more (less) likely to occur in low (high) atmospheric angular momentum base states when excluding weak Global Wind Oscillation days, with the strongest relationships found in the boreal spring and fall. Severe, significant severe, and giant hail events are more likely to occur during Global Wind Oscillation phases 8, 1, 2, and 3 during the peak of U.S. severe weather season. Lower frequencies of hail events are generally found in Global Wind Oscillation phases 4-7 but vary based on Global Wind Oscillation amplitude and month. In addition, probabilistic anomalies of atmospheric ingredients supportive of hail producing supercell thunderstorms closely mimic locations of reported hail frequency, helping to corroborate report results.

  15. Quasi-periodic latitudinal shift of Saturn's main auroral emission

    Science.gov (United States)

    Roussos, E.; Palmaerts, B.; Grodent, D. C.; Radioti, K.; Krupp, N.; Yao, Z.

    2017-12-01

    The main component of the ultraviolet auroral emissions at Saturn consists in a ring of emission around each pole of the planet. This main ring of emission has been revealed to oscillate by a few degrees in the prenoon-premidnight direction with a period of 10.8h. This auroral oscillation is thought to be induced by a rotating external magnetospheric current system associated with the planetary period oscillations. Here we report, by means of auroral imaging sequences obtained with the Ultraviolet Imaging Spectrograph (UVIS) on board the Cassini spacecraft, the first direct observation of an additional motion of the main emission superimposed to this oscillation. The whole main emission ring exhibits step-like displacements in latitude mainly towards dayside, decoupled from the 10.8h oscillation. These latitude shifts recur around every hour, which is a typical short periodicity at Saturn previously identified in the aurora intensity, in the charged particle fluxes and in the magnetic field. This unique observation directly demonstrates what has been inferred from past in-situ and remote measurements: the 1-hour periodicities reveal a global and fundamental magnetospheric oscillation mode that acts independently of the local magnetospheric conditions. However, the magnetospheric mechanism responsible for these 1-hour auroral shifts is still unknown. It is possible that Alfvén waves inducing hourly magnetic fluctuations might also modify the place where the field-aligned electrons precipitate in the ionosphere and produce the main emission.

  16. Low-frequency oscillations at high density in JFT-2

    International Nuclear Information System (INIS)

    Maeno, Masaki; Katagiri, Masaki; Suzuki, Norio; Fujisawa, Noboru

    1977-12-01

    Low-frequency oscillations in a plasma were measured with magnetic probes and Si surface-barrier detectors, and behaviour of the high density plasmas was studied. The plasma current profile in the phase of decreasing density after the interruption of gas input is more peaked than during gas input. The introduction of hydrogen during a discharge results in a reduction of the impurities flux. The increase of density by fast gas input is limited with a negative voltage spike. Immediately before a negative voltage spike, oscillations of m=1,2 grow, leading to the spike. (auth.)

  17. Seismology and geodesy of the sun: Low-frequency oscillations.

    Science.gov (United States)

    Dicke, R H

    1981-04-01

    The hourly averages of the solar ellipticity measured from June 13 to Sept. 17, 1966, are analyzed for indications of solar oscillations with periods in excess of 2 hr nu 0.1 hr(-1) but for lower frequencies the power spectrum shows a very complex structure containing about 20 strong narrow peaks. The complexity is illusionary. The signal apparently consists of only two frequencies. The complexity is due to aliasing by the window function with its basic 24-hr period, with many observational days missing, and with different numbers of hourly averages for the various observational days. Both signal frequencies are apparently due to odd-degree spherical harmonic oscillations of the sun.

  18. Dynamics of multi-frequency oscillator ensembles with resonant coupling

    International Nuclear Information System (INIS)

    Lueck, S.; Pikovsky, A.

    2011-01-01

    We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2:1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed. -- Highlights: → Kuramoto model is generalized on the case of resonantly interacting oscillators having frequency ratio 2:1. → Regimes of full and partial synchrony, as well as non-synchronous ones are reported. → Analytical description is developed on the basis of the Watanabe-Strogatz approach.

  19. Dynamics of multi-frequency oscillator ensembles with resonant coupling

    Energy Technology Data Exchange (ETDEWEB)

    Lueck, S. [Department of Physics and Astronomy, Potsdam University, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany); Pikovsky, A., E-mail: pikovsky@stat.physik.uni-potsdam.de [Department of Physics and Astronomy, Potsdam University, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany)

    2011-07-11

    We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2:1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed. -- Highlights: → Kuramoto model is generalized on the case of resonantly interacting oscillators having frequency ratio 2:1. → Regimes of full and partial synchrony, as well as non-synchronous ones are reported. → Analytical description is developed on the basis of the Watanabe-Strogatz approach.

  20. Quasi-periodic Pulsations in the Most Powerful Solar Flare of Cycle 24

    Science.gov (United States)

    Kolotkov, Dmitrii Y.; Pugh, Chloe E.; Broomhall, Anne-Marie; Nakariakov, Valery M.

    2018-05-01

    Quasi-periodic pulsations (QPPs) are common in solar flares and are now regularly observed in stellar flares. We present the detection of two different types of QPP signals in the thermal emission light curves of the X9.3-class solar flare SOL2017-09-06T12:02, which is the most powerful flare of Cycle 24. The period of the shorter-period QPP drifts from about 12 to 25 s during the flare. The observed properties of this QPP are consistent with a sausage oscillation of a plasma loop in the flaring active region. The period of the longer-period QPP is about 4 to 5 minutes. Its properties are compatible with standing slow magnetoacoustic oscillations, which are often detected in coronal loops. For both QPP signals, other mechanisms such as repetitive reconnection cannot be ruled out, however. The studied solar flare has an energy in the realm of observed stellar flares, and the fact that there is evidence of a short-period QPP signal typical of solar flares along with a long-period QPP signal more typical of stellar flares suggests that the different ranges of QPP periods typically observed in solar and stellar flares is likely due to observational constraints, and that similar physical processes may be occurring in solar and stellar flares.

  1. Trapped Ion Oscillation Frequencies as Sensors for Spectroscopy

    Directory of Open Access Journals (Sweden)

    Wilfried Nörtershäuser

    2010-03-01

    Full Text Available The oscillation frequencies of charged particles in a Penning trap can serve as sensors for spectroscopy when additional field components are introduced to the magnetic and electric fields used for confinement. The presence of so-called “magnetic bottles” and specific electric anharmonicities creates calculable energy-dependences of the oscillation frequencies in the radiofrequency domain which may be used to detect the absorption or emission of photons both in the microwave and optical frequency domains. The precise electronic measurement of these oscillation frequencies therefore represents an optical sensor for spectroscopy. We discuss possible applications for precision laser and microwave spectroscopy and their role in the determination of magnetic moments and excited state lifetimes. Also, the trap-assisted measurement of radiative nuclear de-excitations in the X-ray domain is discussed. This way, the different applications range over more than 12 orders of magnitude in the detectable photon energies, from below μeV in the microwave domain to beyond MeV in the X-ray domain.

  2. Ergodic theory and visualization. II. Fourier mesochronic plots visualize (quasi)periodic sets.

    Science.gov (United States)

    Levnajić, Zoran; Mezić, Igor

    2015-05-01

    We present an application and analysis of a visualization method for measure-preserving dynamical systems introduced by I. Mezić and A. Banaszuk [Physica D 197, 101 (2004)], based on frequency analysis and Koopman operator theory. This extends our earlier work on visualization of ergodic partition [Z. Levnajić and I. Mezić, Chaos 20, 033114 (2010)]. Our method employs the concept of Fourier time average [I. Mezić and A. Banaszuk, Physica D 197, 101 (2004)], and is realized as a computational algorithms for visualization of periodic and quasi-periodic sets in the phase space. The complement of periodic phase space partition contains chaotic zone, and we show how to identify it. The range of method's applicability is illustrated using well-known Chirikov standard map, while its potential in illuminating higher-dimensional dynamics is presented by studying the Froeschlé map and the Extended Standard Map.

  3. Spectral-Timing Analysis of Kilohetrz Quasi-Periodic Osciallations in Neutron Star Low-Mass X-ray Binaries

    Science.gov (United States)

    Cackett, Edward; Troyer, Jon; Peille, Philippe; Barret, Didier

    2018-01-01

    Kilohertz quasi-periodic oscillations or kHz QPOs are intensity variations that occur in the X-ray band observed in neutron star low-mass X-ray binary (LMXB) systems. In such systems, matter is transferred from a secondary low-mass star to a neutron star via the process of accretion. kHz QPOs occur on the timescale of the inner accretion flow and may carry signatures of the physics of strong gravity (c2 ~ GM/R) and possibly clues to constraining the neutron star equation of state (EOS). Both the timing behavior of kHz QPOs and the time-averaged spectra of these systems have been studied extensively. No model derived from these techniques has been able to illuminate the origin of kHz QPOs. Spectral-timing is an analysis technique that can be used to derive information about the nature of physical processes occurring within the accretion flow on the timescale of the kHz QPO. To date, kHz QPOs of (4) neutron star LMXB systems have been studied with spectral-timing techniques. We present a comprehensive study of spectral-timing products of kHz QPOs from systems where data is available in the RXTE archive to demonstrate the promise of this technique to gain insights regarding the origin of kHz QPOs. Using data averaged over the entire RXTE archive, we show correlated time-lags as a function of QPO frequency and energy, as well as energy-dependent covariance spectra for the various LMXB systems where spectral-timing analysis is possible. We find similar trends in all average spectral-timing products for the objects studied. This suggests a common origin of kHz QPOs.

  4. Resonant behavior of a fractional oscillator with fluctuating frequency

    Science.gov (United States)

    Soika, Erkki; Mankin, Romi; Ainsaar, Ain

    2010-01-01

    The long-time behavior of the first moment for the output signal of a fractional oscillator with fluctuating frequency subjected to an external periodic force is considered. Colored fluctuations of the oscillator eigenfrequency are modeled as a dichotomous noise. The viscoelastic type friction kernel with memory is assumed as a power-law function of time. Using the Shapiro-Loginov formula, exact expressions for the response to an external periodic field and for the complex susceptibility are presented. On the basis of the exact formulas it is demonstrated that interplay of colored noise and memory can generate a variety of cooperation effects, such as multiresonances versus the driving frequency and the friction coefficient as well as stochastic resonance versus noise parameters. The necessary and sufficient conditions for the cooperation effects are also discussed. Particularly, two different critical memory exponents have been found, which mark dynamical transitions in the behavior of the system.

  5. Lyapunov exponent of the random frequency oscillator: cumulant expansion approach

    International Nuclear Information System (INIS)

    Anteneodo, C; Vallejos, R O

    2010-01-01

    We consider a one-dimensional harmonic oscillator with a random frequency, focusing on both the standard and the generalized Lyapunov exponents, λ and λ* respectively. We discuss the numerical difficulties that arise in the numerical calculation of λ* in the case of strong intermittency. When the frequency corresponds to a Ornstein-Uhlenbeck process, we compute analytically λ* by using a cumulant expansion including up to the fourth order. Connections with the problem of finding an analytical estimate for the largest Lyapunov exponent of a many-body system with smooth interactions are discussed.

  6. Low Frequency (11 mHz) Oscillations in H1743-322: A New Class of Black Hole QPOs?

    Science.gov (United States)

    Altamirano, D.; Strohmayer, T.

    2012-01-01

    We report the discovery of quasi-periodic oscillations (QPO) at approx 11 mHz in two RXTE observations and one Chandra observation of the black hole candidate HI743-322. The QPO is observed only at the beginning of the 2010 and 2011 outbursts at similar hard color and intensity, suggestive of an accretion state dependence for the QPO. Although its frequency appears to be correlated with Xray intensity on timescales of a day, in successive outbursts eight months apart we measure a QPO frequency that differs by less than approximately equals 0.0015 Hz while the intensity had changed significantly. We show that this 11 mHz QPO is different from the so-called Type-C QPOs seen in black holes and that the mechanisms that produce the two flavors of variability are most probably independent. We compare the 11 mHz QPO with other variability phenomena seen in accreting black holes and neutron stars and conclude that although at 1-2 orders of magnitude lower in frequency, they best resemble the so-called "1 Hz" QPOs seen in dipping neutron star systems. If confirmed, H1743-322 is the first black hole showing this type of variability. Given the unusual characteristics and the hard-state dependence of the 11 mHz QPO, we speculate that these oscillations might instead be related to the radio jets observed in HI743-322. It remains unexplained, however, why similar QPOs have not yet been identified in other black holes and why they have only been seen in the last two outbursts of HI743-322.

  7. High frequency oscillations evoked by peripheral magnetic stimulation.

    Science.gov (United States)

    Biller, S; Simon, L; Fiedler, P; Strohmeier, D; Haueisen, J

    2011-01-01

    The analysis of somatosensory evoked potentials (SEP) and / or fields (SEF) is a well-established and important tool for investigating the functioning of the peripheral and central human nervous system. A standard technique to evoke SEPs / SEFs is the stimulation of the median nerve by using a bipolar electrical stimulus. We aim at an alternative stimulation technique enabling stimulation of deep nerve structures while reducing patient stress and error susceptibility. In the current study, we apply a commercial transcranial magnetic stimulation system for peripheral magnetic stimulation of the median nerve. We compare the results of simultaneously recorded EEG signals to prove applicability of our technique to evoke SEPs including low frequency components (LFC) as well as high frequency oscillations (HFO). Therefore, we compare amplitude, latency and time-frequency characteristics of the SEP of 14 healthy volunteers after electric and magnetic stimulation. Both low frequency components and high frequency oscillations were detected. The HFOs were superimposed onto the primary cortical response N20. Statistical analysis revealed significantly lower amplitudes and increased latencies for LFC and HFO components after magnetic stimulation. The differences indicate the inability of magnetic stimulation to elicit supramaximal responses. A psycho-perceptual evaluation showed that magnetic stimulation was less unpleasant for 12 out of the 14 volunteers. In conclusion, we showed that LFC and HFO components related to median nerve stimulation can be evoked by peripheral magnetic stimulation.

  8. Observation of quasi-periodic solar radio bursts associated with propagating fast-mode waves

    Science.gov (United States)

    Goddard, C. R.; Nisticò, G.; Nakariakov, V. M.; Zimovets, I. V.; White, S. M.

    2016-10-01

    Aims: Radio emission observations from the Learmonth and Bruny Island radio spectrographs are analysed to determine the nature of a train of discrete, periodic radio "sparks" (finite-bandwidth, short-duration isolated radio features) which precede a type II burst. We analyse extreme ultraviolet (EUV) imaging from SDO/AIA at multiple wavelengths and identify a series of quasi-periodic rapidly-propagating enhancements, which we interpret as a fast wave train, and link these to the detected radio features. Methods: The speeds and positions of the periodic rapidly propagating fast waves and the coronal mass ejection (CME) were recorded using running-difference images and time-distance analysis. From the frequency of the radio sparks the local electron density at the emission location was estimated for each. Using an empirical model for the scaling of density in the corona, the calculated electron density was used to obtain the height above the surface at which the emission occurs, and the propagation velocity of the emission location. Results: The period of the radio sparks, δtr = 1.78 ± 0.04 min, matches the period of the fast wave train observed at 171 Å, δtEUV = 1.7 ± 0.2 min. The inferred speed of the emission location of the radio sparks, 630 km s-1, is comparable to the measured speed of the CME leading edge, 500 km s-1, and the speeds derived from the drifting of the type II lanes. The calculated height of the radio emission (obtained from the density) matches the observed location of the CME leading edge. From the above evidence we propose that the radio sparks are caused by the quasi-periodic fast waves, and the emission is generated as they catch up and interact with the leading edge of the CME. The movie associated to Fig. 2 is available at http://www.aanda.org

  9. Pulse-coupled Belousov-Zhabotinsky oscillators with frequency modulation

    Science.gov (United States)

    Horvath, Viktor; Epstein, Irving R.

    2018-04-01

    Inhibitory perturbations to the ferroin-catalyzed Belousov-Zhabotinsky (BZ) chemical oscillator operated in a continuously fed stirred tank reactor cause long term changes to the limit cycle: the lengths of the cycles subsequent to the perturbation are longer than that of the unperturbed cycle, and the unperturbed limit cycle is recovered only after several cycles. The frequency of the BZ reaction strongly depends on the acid concentration of the medium. By adding strong acid or base to the perturbing solutions, the magnitude and the direction of the frequency changes concomitant to excitatory or inhibitory perturbations can be controlled independently of the coupling strength. The dynamics of two BZ oscillators coupled through perturbations carrying a coupling agent (activator or inhibitor) and a frequency modulator (strong acid or base) was explored using a numerical model of the system. Here, we report new complex temporal patterns: higher order, partially synchronized modes that develop when inhibitory coupling is combined with positive frequency modulation (FM), and complex bursting patterns when excitatory coupling is combined with negative FM. The role of time delay between the peak and perturbation (the analog of synaptic delays in networks of neurons) has also been studied. The complex patterns found under inhibitory coupling and positive FM vanish when the delay is significant, whereas a sufficiently long time delay is required for the complex temporal dynamics to occur when coupling is excitatory and FM is negative.

  10. High-Frequency Network Oscillations in Cerebellar Cortex

    Science.gov (United States)

    Middleton, Steven J.; Racca, Claudia; Cunningham, Mark O.; Traub, Roger D.; Monyer, Hannah; Knöpfel, Thomas; Schofield, Ian S.; Jenkins, Alistair; Whittington, Miles A.

    2016-01-01

    SUMMARY Both cerebellum and neocortex receive input from the somatosensory system. Interaction between these regions has been proposed to underpin the correct selection and execution of motor commands, but it is not clear how such interactions occur. In neocortex, inputs give rise to population rhythms, providing a spatiotemporal coding strategy for inputs and consequent outputs. Here, we show that similar patterns of rhythm generation occur in cerebellum during nicotinic receptor subtype activation. Both gamma oscillations (30–80 Hz) and very fast oscillations (VFOs, 80–160 Hz) were generated by intrinsic cerebellar cortical circuitry in the absence of functional glutamatergic connections. As in neocortex, gamma rhythms were dependent on GABAA receptor-mediated inhibition, whereas VFOs required only nonsynaptically connected intercellular networks. The ability of cerebellar cortex to generate population rhythms within the same frequency bands as neocortex suggests that they act as a common spatiotemporal code within which corticocerebellar dialog may occur. PMID:18549787

  11. A precise measurement of the $B^0$ meson oscillation frequency

    CERN Document Server

    Aaij, Roel; Adeva, Bernardo; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Buchanan, Emma; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fohl, Klaus; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Humair, Thibaud; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusardi, Nicola; Lusiani, Alberto; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monroy, Ignacio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Pappenheimer, Cheryl; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Edmund; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefkova, Slavomira; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zhukov, Valery; Zucchelli, Stefano

    2016-07-21

    The oscillation frequency, $\\Delta m_d$, of $B^0$ mesons is measured using semileptonic decays with a $D^-$ or $D^{*-}$ meson in the final state, in a data sample of $pp$ collisions collected by the LHCb detector corresponding to an integrated luminosity of 3.0$\\mbox{fb}^{-1}$. A combination of the two decay modes gives $\\Delta m_d = (505.0 \\pm 2.1 \\pm 1.0) \\rm \\,ns^{-1}$, where the first uncertainty is statistical and the second is systematic. This is the most precise single measurement of this parameter. It is compatible with the current world average and has similar precision.

  12. Measurement of the Bs0-Bs0 oscillation frequency.

    Science.gov (United States)

    Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cruz, A; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cyr, D; DaRonco, S; D'Auria, S; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Delli Paoli, F; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Di Ruzza, B; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Frisch, H J; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garcia Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giokaris, N; Giolo, K; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Heijboer, A; Heinemann, B; Heinrich, J; Herndon, M; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, V; Martínez, M; Maruyama, T; Mastrandrea, P; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Mitra, A; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Naganoma, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitin, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; van Remortel, N; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spezziga, M; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vaiciulis, A; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S

    2006-08-11

    We present the first precise measurement of the Bs0-Bs0 oscillation frequency Deltams. We use 1 fb-1 of data from pp collisions at sqrts=1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. The sample contains signals of 3600 fully reconstructed hadronic Bs decays and 37,000 partially reconstructed semileptonic Bs decays. We measure the probability as a function of proper decay time that the Bs decays with the same, or opposite, flavor as the flavor at production, and we find a signal consistent with Bs0-Bs0 oscillations. The probability that random fluctuations could produce a comparable signal is 0.2%. Under the hypothesis that the signal is due to Bs0-Bs0 oscillations, we measure Deltams=17.31(-0.18)+0.33(stat)+/-0.07(syst) ps-1 and determine |Vtd/Vts|=0.208(-0.002)+0.001(expt)-0.006(+0.008)(theor).

  13. Formation of quasi-periodic nano- and microstructures on silicon surface under IR and UV femtosecond laser pulses

    International Nuclear Information System (INIS)

    Ionin, Andrei A; Golosov, E V; Kolobov, Yu R; Kudryashov, Sergei I; Ligachev, A E; Makarov, Sergei V; Novoselov, Yurii N; Seleznev, L V; Sinitsyn, D V

    2011-01-01

    Quasi-periodic nano- and microstructures have been formed on silicon surface using IR ( λ ≈ 744 nm) and UV ( λ ≈ 248 nm) femtosecond laser pulses. The influence of the incident energy density and the number of pulses on the structured surface topology has been investigated. The silicon nanostructurisation thresholds have been determined for the above-mentioned wavelengths. Modulation of the surface relief at the doubled spatial frequency is revealed and explained qualitatively. The periods of the nanostructures formed on the silicon surface under IR and UV femtosecond laser pulses are comparatively analysed and discussed.

  14. Characteristics of low-frequency oscillation intensity of airsea turbulent heat fluxes over the northwest Pacific

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the daily turbulent heat fluxes and related meteorological variables datasets (1985-2006) from Objectively Analyzed air-sea Fluxes (OAFlux) Project of Woods Hole Oceanographic Institution (WHOI), characteristics of low-frequency oscillation intensity of air-sea turbulent heat fluxes over the northwest Pacific are analyzed by linear perturbation method and correlation analysis. It can be concluded that: 1) the distribution of low-frequency oscillation intensity of latent heat flux (LHF) over the northwest Pacific is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea humidity gradient (Δq′) as well as mean air-sea humidity gradient ( Δ q), while the distribution of low-frequency oscillation intensity of sensible heat flux (SHF) is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea temperature gradient (ΔT′). 2) The low-frequency oscillation of turbulent heat fluxes over the northwest Pacific is the strongest in winter and the weakest in summer. And the seasonal transition of low-frequency oscillation intensity of LHF is jointly influenced by those of low-frequency oscillation intensity of Δq′, low-frequency oscillation intensity of anomalous wind speed (U′), Δ q and mean wind speed (U ), while the seasonal transition of low-frequency oscillation intensity of SHF is mainly influenced by those of low-frequency oscillation intensity of ΔT′ and U . 3) Over the tropical west Pacific and sea areas north of 20°N, the low-frequency oscillation of LHF (SHF) is mainly influenced by atmospheric variables qa′ (Ta′) and U′, indicating an oceanic response to overlying atmospheric forcing. In contrast, over the tropical eastern and central Pacific south of 20°N, qs′ (Ts′) also greatly influences the low-frequency oscillation of LHF (SHF).

  15. Quasi-periodicity and chaos in a differentially heated cavity

    Energy Technology Data Exchange (ETDEWEB)

    Mercader, Isabel; Batiste, Oriol [Universitat Politecnica de Catalunya, Dep. Fisica Aplicada, Barcelona (Spain); Ruiz, Xavier [Univesitat Rovira i Virgili, Lab. Fisica Aplicada, Facultat de Ciencies Quimiques, Tarragona (Spain)

    2004-11-01

    Convective flows of a small Prandtl number fluid contained in a two-dimensional vertical cavity subject to a lateral thermal gradient are studied numerically. The chosen geometry and the values of the material parameters are relevant to semiconductor crystal growth experiments in the horizontal configuration of the Bridgman method. For increasing Rayleigh numbers we find a transition from a steady flow to periodic solutions through a supercritical Hopf bifurcation that maintains the centro-symmetry of the basic circulation. For a Rayleigh number of about ten times that of the Hopf bifurcation, the periodic solution loses stability in a subcritical Neimark-Sacker bifurcation, which gives rise to a branch of quasiperiodic states. In this branch, several intervals of frequency locking have been identified. Inside the resonance horns the stable limit cycles lose and gain stability via some typical scenarios in the bifurcation of periodic solutions. After a complicated bifurcation diagram of the stable limit cycle of the 1:10 resonance horn, a soft transition to chaos is obtained. (orig.)

  16. Characterising the structure of quasi-periodic mixing events in stratified turbulent Taylor-Couette flow

    Science.gov (United States)

    Singh, Kanwar Nain; Partridge, Jamie; Dalziel, Stuart; Caulfield, C. P.; Mathematical Underpinnings of Stratified Turbulence (MUST) Team

    2017-11-01

    We present results from experiments conducted to study mixing in a two-layer stably-stratified turbulent Taylor-Couette flow. It has previously been observed that there is a quasi-periodic mixing event located at the interface separating the layers. We observe, through conductivity probe measurements, that the power of the mixing event in the frequency spectrum of the density data at the interface is higher when measured near the inner cylinder than in the middle of the annular gap. This is consistent with Oglethorpe's (2014) hypothesis that the mixing structure is triggered near the inner cylinder, and then advects and decays or disperses radially. We also observe that at Ri =g/'Ro (RiΩi)2 7 , where Ri, Ro are the inner and outer cylinder radius, respectively, g ' the reduced gravity characterising the density jump between the layers and Ωi is the rotation rate of the inner cylinder, the power drops significantly at all radial locations, which is reminiscent of the onset of the enhanced flux regime as observed by Oglethorpe et al. (2013). We perform experiments to characterise the spatial extent and dynamics of this mixing structure using particle image velocimetry (PIV) giving further insights into this important mixing process. EPSRC programme Grant EP/K034529/1 & SGPC-CCT Scholarship.

  17. Measurement of the B$_{d}^{0}$ meson oscillation frequency

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alpat, B; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Antreasyan, D; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banicz, K; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Borgia, B; Boucham, A; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Brambilla, Elena; Branson, J G; Brigljevic, V; Brock, I C; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Buytenhuijs, A O; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Caria, M; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Castello, R; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chan, A; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Choi, M T; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; De Boeck, H; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dorne, I; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fernández, D; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Hangarter, K; Hartmann, B; Hasan, A; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Ilyas, M M; Innocente, Vincenzo; Janssen, H; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamyshkov, Yu A; Kapinos, P; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Korolko, I; Koutsenko, V F; Krämer, R W; Kramer, T; Krenz, W; Kuijten, H; Kunin, A; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee Jae Sik; Lee, K Y; Leggett, C; Le Goff, J M; Leiste, R; Lenti, M; Leonardi, E; Levchenko, P M; Li Chuan; Lieb, E H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Ludovici, L; Luminari, L; Lustermann, W; Ma Wen Gan; Macchiolo, A; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; McNally, D; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Mirabelli, G; Mnich, J; Monteleoni, B; Moore, R; Morganti, S; Mount, R; Müller, S; Muheim, F; Nagy, E; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nippe, A; Nowak, H; Organtini, G; Ostonen, R; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Pinto, J C; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Raghavan, R; Rahal-Callot, G; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riemers, B C; Riles, K; Rind, O; Ro, S; Robohm, A; Rodin, J; Rodríguez-Calonge, F J; Roe, B P; Röhner, S; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Rykaczewski, H; Salicio, J; Sánchez, E; Santocchia, A; Sarakinos, M E; Sarkar, S; Sassowsky, M; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Schneegans, M; Schöneich, B; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Sens, Johannes C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Sopczak, André; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Sticozzi, F; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonisch, F; Tonutti, M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Y F; Wang, Z M; Weber, A; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino

    1996-01-01

    Time-dependent \\Bd-\\Bbd\\ mixing is studied using 1.5 million hadronic Z decays collected by L3. Semileptonic B decays are selected by requiring at least one reconstructed lepton in both thrust hemispheres. Charge correlations between the tagged leptons are studied as a function of proper time. The proper time of the b-hadron decay is measured by reconstructing the production and decay vertices using a silicon microvertex detector. The measured \\Bd\\ meson oscillation frequency corresponds to a mass difference \\Dmd\\ between the two \\Bd\\ mass eigenstates of \\begin{displaymath} \\Dmd = \\left( 0.496 ^{+ 0.055}_{- 0.051}\\ \\mathrm{(stat)} \\pm{ 0.043}\\ \\mathrm{(syst)} \\right)\\ \\mathrm{ps}^{-1}. \\end{displaymath}

  18. Spontaneous Low Frequency Oscillations in Acute Ischemic Stroke

    DEFF Research Database (Denmark)

    Phillip, Dorte; Schytz, Henrik Winther; Iversen, Helle Klingenberg

    2014-01-01

    Background and purpose: Continuous wave near infrared spectroscopy (NIRS) is a non-invasive bed-side optical method to detect changes in oxygenated (oxyHb) and deoxygenated hemoglobin (deoxyHb) in the outermost layers of the cerebral cortex. Cortical oxyHb low frequency oscillations (LFOs) in the 0.......09-0.11 Hz range are affected by changes in cerebral autoregulation (CA), which is altered following stroke. We examined oxyHb LFOs at bed-side as a marker of CA in the subacute phase in stroke patients with or without recombinant tissue plasminogen activator thrombolytic therapy. Methods: We recruited 29...... patients admitted to the stroke unit with symptoms of ischemic stroke. 11/29 patients received thrombolytic therapy. NIRS examination was conducted 2 days (median time) from stroke onset. NIRS optodes were placed on each side of the head with a 3 cm source-detector distance. Using transfer function...

  19. A soft mHz quasi periodic oscillation in the fastest accreting millisecond pulsar.

    Science.gov (United States)

    Ferrigno, C.; Bozzo, E.; Sanna, A.; Pintore, F.; Papitto, A.; Riggio, A.; Burderi, L.; Di Salvo, T.; Iaria, R.; D'ai, A.

    2017-10-01

    We illustrate the peculiar X-ray variability displayed by the accreting millisecond X-ray pulsar IGR J00291+5934 in a 80 ks-long joint Nustar and XMM-Newton observation performed during the source outburst in 2015. The lightcurve of the source is characterized by a flaring behavior, with typical rise and decay timescales of ˜120 s. The flares are accompanied by a remarkable spectral variability, with the X- ray emission being generally softer at the peak of the flares. A strong QPO is detected at ˜8 mHz in the power spectrum of the source and clearly associated to its flaring-like behaviour. This feature has the strongest power at soft X-rays (hearth-beat in the black-hole binary GRS 1915+105, or, less likely, to unstable nuclear burning on the neutron star surface, as observed in the burster 4U 1636-536. This phenomenology could be ideally studied with the large throughput and wide energy coverage of present and future instruments.

  20. Measurement of Quasi-periodic Oscillating Flow Motion in Simulated Dual-cooled Annular Fuel Bundle

    International Nuclear Information System (INIS)

    Lee, Chi Young; Shin, Chang Hwan; Park, Ju Yong; Oh, Dong Seok; Chun, Tae Hyun; In, Wang Kee

    2012-01-01

    In order to increase a significant amount of reactor power in OPR1000, KAERI (Korea Atomic Energy Research Institute) has been developing a dual-cooled annular fuel. The dual-cooled annular fuel is simultaneously cooled by the water flow through the inner and the outer channels. KAERI proposed the 12x12 dual-cooled annular fuel array which was designed to be structurally compatible with the 16x16 cylindrical solid fuel array by maintaining the same array size and the guide tubes in the same locations, as shown in Fig. 1. In such a case, due to larger outer diameter of dual-cooled annular fuel than conventional solid fuel, a P/D (Pitch-to-Diameter ratio) of dual cooled annular fuel assembly becomes smaller than that of cylindrical solid fuel. A change in P/D of fuel bundle can cause a difference in the flow mixing phenomena between the dual-cooled annular and conventional cylindrical solid fuel assemblies. In this study, the rod bundle flow motion appearing in a small P/D case is investigated preliminarily using PIV (Particle Image Velocimetry) for dual-cooled annular fuel application

  1. An oscillation phenomenon of low frequency reverberation in the shallow water and its physical explanation

    Institute of Scientific and Technical Information of China (English)

    LI; Fenghua; LIU; Jianjun; LI; Zhenglin; ZHANG; Renhe

    2005-01-01

    An oscillation phenomenon of the low frequency reverberation intensity was observed in several shallow water reverberation experiments. This phenomenon cannot be explained by the widely used incoherent reverberation theory. In this paper, to explain the observed oscillation phenomenon, a normal mode based coherent reverberation theory is presented. The theoretical analysis and numerical results show that modal interference can cause the regular oscillation phenomenon of the low frequency reverberation intensity, and the oscillation frequency is determined by the normal mode eigen-values. A new method to estimate the bottom sound speed based on the oscillation frequency of reverberation intensity was presented in this paper. The experimental results at three different sites indicate that the bottom sound speed estimated from the oscillation frequency of reverberation intensity agrees with that inverted from Matched Field Processing (MFP) well.

  2. Modulation linearization of a frequency-modulated voltage controlled oscillator, part 3

    Science.gov (United States)

    Honnell, M. A.

    1975-01-01

    An analysis is presented for the voltage versus frequency characteristics of a varactor modulated VHF voltage controlled oscillator in which the frequency deviation is linearized by using the nonlinear characteristics of a field effect transistor as a signal amplifier. The equations developed are used to calculate the oscillator output frequency in terms of pertinent circuit parameters. It is shown that the nonlinearity exponent of the FET has a pronounced influence on frequency deviation linearity, whereas the junction exponent of the varactor controls total frequency deviation for a given input signal. A design example for a 250 MHz frequency modulated oscillator is presented.

  3. Power system low frequency oscillation monitoring and analysis based on multi-signal online identification

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The advance in the wide-area measurement system (WAMS) is driving the power system to the trend of wide-area monitoring and control.The Prony method is usually used for low frequency oscillation online identification.However,the identified amplitude and phase information is not sufficiently used.In this paper,the amplitude is adopted to detect the occurrence of the oscillation and to obtain the mode observability of the sites.The phase is adopted to identify the oscillation generator grouping and to obtain the mode shapes.The time varying characteristics of low frequency oscillations are studied.The behaviors and the characters of low frequency oscillations are displayed by dynamic visual techniques.Demonstrations on the "11.9" low frequency oscillation of the Guizhou Power Grid substantiate the feasibility and the validation of the proposed methods.

  4. APPLE-II type quasi-periodic variably polarizing undulator at HiSOR

    International Nuclear Information System (INIS)

    Sasaki, Shigemi; Miyamoto, Atsushi; Goto, Kiminori

    2012-01-01

    A newly constructed quasi-periodic APPLE-II undulator was installed in the HiSOR ring at Hiroshima Synchrotron Radiation Center, Hiroshima University during the summer shutdown period in 2011. This 1.8 m-long undulator has a period length of 78 mm. In this article, the mechanism of magnetic field generation for various polarization modes of APPLE undulator, the principle of quasi-periodic undulator and the performance of HiSOR QP-APPLE-II undulator are described. (author)

  5. Cross-frequency coupling of brain oscillations in studying motivation and emotion

    OpenAIRE

    Schutter, Dennis J. L. G.; Knyazev, Gennady G.

    2011-01-01

    Research has shown that brain functions are realized by simultaneous oscillations in various frequency bands. In addition to examining oscillations in pre-specified bands, interactions and relations between the different frequency bandwidths is another important aspect that needs to be considered in unraveling the workings of the human brain and its functions. In this review we provide evidence that studying interdependencies between brain oscillations may be a valuable approach to study the ...

  6. Optical, UV, and EUV Oscillations of SS Cygni in Outburst

    Science.gov (United States)

    Mauche, Christopher W.

    2004-07-01

    I provide a review of observations in the optical, UV (HST), and EUV (EUVE and Chandra LETG) of the rapid periodic oscillations of nonmagnetic, disk-accreting, high mass-accretion rate cataclysmic variables (CVs), with particular emphasis on the dwarf nova SS Cyg in outburst. In addition, I drawn attention to a correlation, valid over nearly six orders of magnitude in frequency, between the frequencies of the quasi-periodic oscillations (QPOs) of white dwarf, neutron star, and black hole binaries. This correlation identifies the high frequency quasi-coherent oscillations (so-called ``dwarf nova oscillations'') of CVs with the kilohertz QPOs of low mass X-ray binaries (LMXBs), and the low frequency and low coherence QPOs of CVs with the horizontal branch oscillations (or the broad noise component identified as such) of LMXBs. Assuming that the same mechanisms produce the QPOs of white dwarf, neutron star, and black hole binaries, this correlation has important implications for QPO models.

  7. Effect of section shape on frequencies of natural oscillations of tubular springs

    Science.gov (United States)

    Pirogov, S. P.; Chuba, A. Yu; Cherentsov, D. A.

    2018-05-01

    The necessity of determining the frequencies of natural oscillations of manometric tubular springs is substantiated. Based on the mathematical model and computer program, numerical experiments were performed that allowed us to reveal the effect of geometric parameters on the frequencies of free oscillations of manometric tubular springs.

  8. Cross-frequency coupling of brain oscillations in studying motivation and emotion

    NARCIS (Netherlands)

    Schutter, D.J.L.G.; Knyazev, G.G.

    2012-01-01

    Research has shown that brain functions are realized by simultaneous oscillations in various frequency bands. In addition to examining oscillations in pre-specified bands, interactions and relations between the different frequency bandwidths is another important aspect that needs to be considered in

  9. Frequency analysis of the 5.65-min oscillations in the rapidly oscillating Ap star HD 134214

    International Nuclear Information System (INIS)

    Kreidl, T.J.; Kurtz, D.W.

    1986-01-01

    High-speed photometric observations of HD 134214 obtained during 35 hr of observation in 1985 from Lowell Observatory and the South African Astronomical Observatory are presented. A frequency analysis of these data indicate the presence of only one frequency of oscillation in this star at f 1 = 2.94960 + - 0.00004 mHz. This is the highest frequency which is demonstrably not a harmonic of a lower frequency yet discovered in a rapidly oscillating Ap star. This frequency is above the critical frequency calculated for A star models by previous authors. The phase shift has been calculated for HD 134214 for simultaneous B and V observations obtained on three nights from Lowell Observatory. (author)

  10. Observation of multi-scale oscillation of laminar lifted flames with low-frequency AC electric fields

    KAUST Repository

    Ryu, Seol

    2010-01-01

    The oscillation behavior of laminar lifted flames under the influence of low-frequency AC has been investigated experimentally in coflow jets. Various oscillation modes were existed depending on jet velocity and the voltage and frequency of AC, especially when the AC frequency was typically smaller than 30 Hz. Three different oscillation modes were observed: (1) large-scale oscillation with the oscillation frequency of about 0.1 Hz, which was independent of the applied AC frequency, (2) small-scale oscillation synchronized to the applied AC frequency, and (3) doubly-periodic oscillation with small-scale oscillation embedded in large-scale oscillation. As the AC frequency decreased from 30 Hz, the oscillation modes were in the order of the large-scale oscillation, doubly-periodic oscillation, and small-scale oscillation. The onset of the oscillation for the AC frequency smaller than 30 Hz was in close agreement with the delay time scale for the ionic wind effect to occur, that is, the collision response time. Frequency-doubling behavior for the small-scale oscillation has also been observed. Possible mechanisms for the large-scale oscillation and the frequency-doubling behavior have been discussed, although the detailed understanding of the underlying mechanisms will be a future study. © 2009 The Combustion Institute.

  11. Non-Axisymmetric Oscillation of Acoustically Levitated Water Drops at Specific Frequencies

    International Nuclear Information System (INIS)

    Chang-Le, Shen; Wen-Jun, Xie; Bing-Bo, Wei

    2010-01-01

    A category of non-axisymmetric oscillations of acoustically levitated water drops was observed. These oscillations can be qualitatively described by superposing a sectorial oscillating term upon the initial oblate shape resulting from the effect of acoustic radiation pressure. The oscillation frequencies are around 25 Hz for the 2-lobed mode and exactly 50 Hz for the 3- and 4-lobed modes. These oscillations were excited by the disturbance from the power supply. For the same water drop, higher mode oscillations were observed with more oblate initial shape, indicating that the eigenfrequencies of these non-axisymmetric oscillations decrease with increasing initial distortion. The maximum velocity and acceleration within the oscillating drop can attain 0.3m·s −1 and 98.7m·s −2 respectively, resulting in strong fluid convection and enhanced heat and mass transfer. (condensed matter: structure, mechanical and thermal properties)

  12. Cross-frequency coupling of brain oscillations in studying motivation and emotion.

    Science.gov (United States)

    Schutter, Dennis J L G; Knyazev, Gennady G

    2012-03-01

    Research has shown that brain functions are realized by simultaneous oscillations in various frequency bands. In addition to examining oscillations in pre-specified bands, interactions and relations between the different frequency bandwidths is another important aspect that needs to be considered in unraveling the workings of the human brain and its functions. In this review we provide evidence that studying interdependencies between brain oscillations may be a valuable approach to study the electrophysiological processes associated with motivation and emotional states. Studies will be presented showing that amplitude-amplitude coupling between delta-alpha and delta-beta oscillations varies as a function of state anxiety and approach-avoidance-related motivation, and that changes in the association between delta-beta oscillations can be observed following successful psychotherapy. Together these studies suggest that cross-frequency coupling of brain oscillations may contribute to expanding our understanding of the neural processes underlying motivation and emotion.

  13. Periodicity and quasi-periodicity for super-integrable hamiltonian systems

    International Nuclear Information System (INIS)

    Kibler, M.; Winternitz, P.

    1990-01-01

    Classical trajectories are calculated for two Hamiltonian systems with ring shaped potentials. Both systems are super-integrable, but not maximally super-integrable, having four globally defined single-valued integrals of motion each. All finite trajectories are quasi-periodical; they become truly periodical if a commensurability condition is imposed on an angular momentum component

  14. Self-excited nonlinear plasma series resonance oscillations in geometrically symmetric capacitively coupled radio frequency discharges

    International Nuclear Information System (INIS)

    Donko, Z.; Schulze, J.; Czarnetzki, U.; Luggenhoelscher, D.

    2009-01-01

    At low pressures, nonlinear self-excited plasma series resonance (PSR) oscillations are known to drastically enhance electron heating in geometrically asymmetric capacitively coupled radio frequency discharges by nonlinear electron resonance heating (NERH). Here we demonstrate via particle-in-cell simulations that high-frequency PSR oscillations can also be excited in geometrically symmetric discharges if the driving voltage waveform makes the discharge electrically asymmetric. This can be achieved by a dual-frequency (f+2f) excitation, when PSR oscillations and NERH are turned on and off depending on the electrical discharge asymmetry, controlled by the phase difference of the driving frequencies

  15. Quasi-periodic Radio Bursts Associated with Fast-mode Waves near a Magnetic Null Point

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Nakariakov, Valery M. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, CV4 7AL (United Kingdom); Cho, Kyung-Suk, E-mail: pankaj.kumar@nasa.gov [Korea Astronomy and Space Science Institute (KASI), Daejeon, 305-348 (Korea, Republic of)

    2017-08-01

    This paper presents an observation of quasi-periodic rapidly propagating waves observed in the Atmospheric Image Assembly (AIA) 171/193 Å channels during the impulsive phase of an M1.9 flare that occurred on 2012 May 7. The instant period was found to decrease from 240 to 120 s, and the speed of the wavefronts was in the range of ∼664–1416 km s{sup −1}. Almost simultaneously, quasi-periodic bursts with similar instant periods, ∼70 and ∼140 s, occur in the microwave emission and in decimetric type IV and type III radio bursts, and in the soft X-ray emission. The magnetic field configuration of the flare site was consistent with a breakout topology, i.e., a quadrupolar field along with a magnetic null point. The quasi-periodic rapidly propagating wavefronts of the EUV emission are interpreted as a fast magnetoacoustic wave train. The observations suggest that the fast-mode waves are generated during the quasi-periodic magnetic reconnection in the cusp region above the flare arcade loops. For the first time, we provide evidence of a tadpole wavelet signature at about 70–140 s in decimetric (245/610 MHz) radio bursts, along with the direct observation of a coronal fast-mode wave train in EUV. In addition, at AIA 131/193 Å we observed quasi-periodic EUV disturbances with periods of 95 and 240 s propagating downward at apparent speeds of 172–273 km s{sup −1}. The nature of these downward propagating disturbances is not revealed, but they could be connected to magnetoacoustic waves or periodically shrinking loops.

  16. Quasi-periodic Radio Bursts Associated with Fast-mode Waves near a Magnetic Null Point

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Nakariakov, Valery M.; Cho, Kyung-Suk

    2017-01-01

    This paper presents an observation of quasi-periodic rapidly propagating waves observed in the Atmospheric Image Assembly (AIA) 171/193 Å channels during the impulsive phase of an M1.9 flare that occurred on 2012 May 7. The instant period was found to decrease from 240 to 120 s, and the speed of the wavefronts was in the range of ∼664–1416 km s −1 . Almost simultaneously, quasi-periodic bursts with similar instant periods, ∼70 and ∼140 s, occur in the microwave emission and in decimetric type IV and type III radio bursts, and in the soft X-ray emission. The magnetic field configuration of the flare site was consistent with a breakout topology, i.e., a quadrupolar field along with a magnetic null point. The quasi-periodic rapidly propagating wavefronts of the EUV emission are interpreted as a fast magnetoacoustic wave train. The observations suggest that the fast-mode waves are generated during the quasi-periodic magnetic reconnection in the cusp region above the flare arcade loops. For the first time, we provide evidence of a tadpole wavelet signature at about 70–140 s in decimetric (245/610 MHz) radio bursts, along with the direct observation of a coronal fast-mode wave train in EUV. In addition, at AIA 131/193 Å we observed quasi-periodic EUV disturbances with periods of 95 and 240 s propagating downward at apparent speeds of 172–273 km s −1 . The nature of these downward propagating disturbances is not revealed, but they could be connected to magnetoacoustic waves or periodically shrinking loops.

  17. Constant Switching Frequency Self-Oscillating Controlled Class-D Amplifiers

    DEFF Research Database (Denmark)

    Nguyen-Duy, Khiem; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    The self-oscillating control approach has been used extensively in class-D amplifiers. It has several advantages such as high bandwidth and high audio performance. However, one of the primary disadvantages in a self-oscillating controlled system is that the switching frequency of the amplifier...... varies with the ratio of the output voltage to the input rail voltage. In other words, the switching frequency varies with the duty cycle of the output. The drop in the frequency results in lower control bandwidth and higher output voltage ripple, which are undesirable. This paper proposes a new self-oscillating...... control scheme that maintains a constant switching frequency over the full range of output voltage. The frequency difference is processed by a compensator whose output adjusts the total loop gain of the control system. It has been proven by simulation that a con-stant switching frequency self-oscillating...

  18. Investigation of switching frequency variations and EMI properties in self-oscillating class D amplifiers

    OpenAIRE

    Nielsen, Dennis; Knott, Arnold; Pfaffinger, Gerhard; Andersen, Michael A. E.

    2009-01-01

    Class D audio amplifiers have gained significant influence in sound reproduction due to their high efficiency. One of the most commonly used control methods in these amplifiers is self-oscillation. A parameter of key interest in self-oscillating amplifiers is the switching frequency, which is known for its variation. Knowledge of switching frequency variations is of great importance with respect to electromagnetic interference (EMI). This paper will investigate, whether the switching frequenc...

  19. Optical parametric amplification and oscillation assisted by low-frequency stimulated emission

    OpenAIRE

    Longhi, Stefano

    2016-01-01

    Optical parametric amplification/oscillation provide a powerful tool for coherent light generation in spectral regions inaccessible to lasers. Parametric gain is based on a frequency {\\it down-conversion} process, and thus it can not be realized for signal waves at a frequency $\\omega_3$ {\\it higher} than the frequency of the pump wave $\\omega_1$. In this work we suggest a route toward the realization of {\\it up-conversion} optical parametric amplification and oscillation, i.e. amplification ...

  20. Observation of a Short Period Quasi-periodic Pulsation in Solar X-Ray, Microwave, and EUV Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj; Cho, Kyung-Suk [Korea Astronomy and Space Science Institute (KASI), Daejeon, 305-348 (Korea, Republic of); Nakariakov, Valery M., E-mail: pankaj@kasi.re.kr [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, CV4 7AL (United Kingdom)

    2017-02-10

    This paper presents the multiwavelength analysis of a 13 s quasi-periodic pulsation (QPP) observed in hard X-ray (12–300 keV) and microwave (4.9–34 GHz) emissions during a C-class flare that occurred on 2015 September 21. Atmospheric Image Assembly (AIA) 304 and 171 Å images show an emerging loop/flux tube (L1) moving radially outward, which interacts with the preexisting structures within the active region (AR). The QPP was observed during the expansion of and rising motion of L1. The Nobeyama Radioheliograph microwave images in 17/34 GHz channels reveal a single radio source that was co-spatial with a neighboring loop (L2). In addition, using AIA 304 Å images, we detected intensity oscillations in the legs of L2 with a period of about 26 s. A similar oscillation period was observed in the GOES soft X-ray flux derivative. This oscillation period seems to increase with time. We suggest that the observed QPP is most likely generated by the interaction between L2 and L3 observed in the AIA hot channels (131 and 94 Å). The merging speed of loops L2 and L3 was ∼35 km s{sup −1}. L1 was destroyed possibly by its interaction with preexisting structures in the AR, and produced a cool jet with the speed of ∼106–118 km s{sup −1} associated with a narrow CME (∼770 km s{sup −1}). Another mechanism of the QPP in terms of a sausage oscillation of the loop (L2) is also possible.

  1. Stimulus-dependent modulation of spontaneous low-frequency oscillations in the rat visual cortex.

    Science.gov (United States)

    Huang, Liangming; Liu, Yadong; Gui, Jianjun; Li, Ming; Hu, Dewen

    2014-08-06

    Research on spontaneous low-frequency oscillations is important to reveal underlying regulatory mechanisms in the brain. The mechanism for the stimulus modulation of low-frequency oscillations is not known. Here, we used the intrinsic optical imaging technique to examine stimulus-modulated low-frequency oscillation signals in the rat visual cortex. The stimulation was presented monocularly as a flashing light with different frequencies and intensities. The phases of low-frequency oscillations in different regions tended to be synchronized and the rhythms typically accelerated within a 30-s period after stimulation. These phenomena were confined to visual stimuli with specific flashing frequencies (12.5-17.5 Hz) and intensities (5-10 mA). The acceleration and synchronization induced by the flashing frequency were more marked than those induced by the intensity. These results show that spontaneous low-frequency oscillations can be modulated by parameter-dependent flashing lights and indicate the potential utility of the visual stimulus paradigm in exploring the origin and function of low-frequency oscillations.

  2. Wind/PV Generation for Frequency Regulation and Oscillation Damping in the Eastern Interconnection

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong [Univ. of Tennessee, Knoxville, TN (United States); Gracia, Jose R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hadley, Stanton W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Yilu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-12-01

    This report presents the control of renewable energy sources, including the variable-speed wind generators and solar photovoltaic (PV) generators, for frequency regulation and inter-area oscillation damping in the U.S. Eastern Interconnection (EI). In this report, based on the user-defined wind/PV generator electrical control model and the 16,000-bus Eastern Interconnection dynamic model, the additional controllers for frequency regulation and inter-area oscillation damping are developed and incorporated and the potential contributions of renewable energy sources to the EI system frequency regulation and inter-area oscillation damping are evaluated.

  3. Modulation of low-frequency oscillations in GaAs MESFETs' channel current by sidegating bias

    Institute of Scientific and Technical Information of China (English)

    DING Yong; LU Shengli; ZHAO Fuchuan

    2005-01-01

    Low-frequency oscillations in channel current are usually observed when measuring the GaAs MESFET's output characteristics. This paper studies the oscillations by testing the MESFET's output characteristics under different sidegate bias conditions. It is shown that the low-frequency oscillations of channel current are directly related to the sidegate bias. In other words, the sidegate bias can modulate the oscillations. Whether the sidegate bias varies positively or negatively, there will inevitably be a threshold voltage after which the low-frequency oscillations disappear. The observation is strongly dependent upon the peculiarities of channel-substrate (C-S) junction and impact ionization of traps-EL2 under high field. This conclusion is of particular pertinence to the design of low-noise GaAs IC's.

  4. Oscillation mode frequencies of 61 main-sequence and subgiant stars observed by Kepler

    DEFF Research Database (Denmark)

    Appourchaux, T.; Chaplin, W. J.; García, R. A.

    2012-01-01

    Solar-like oscillations have been observed by Kepler and CoRoT in several solar-type stars, thereby providing a way to probe the stars using asteroseismology Aims. We provide the mode frequencies of the oscillations of various stars required to perform a comparison with those obtained from stella...

  5. Clustering of Cochlear Oscillations in Frequency Plateaus as a Tool to Investigate SOAE Generation

    DEFF Research Database (Denmark)

    Epp, Bastian; Wit, Hero; van Dijk, Pim

    2016-01-01

    of coupled oscillators (OAM) [7] are also found in a transmission line model (TLM) which is able to generate realistic SOAEs [2] and if these frequency plateaus can be used to explain the formation of SOAEs. The simulations showed a clustering of oscillators along the simulated basilar membrane Both, the OAM...

  6. Investigation of switching frequency variations and EMI properties in self-oscillating class D amplifiers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Pfaffinger, Gerhard

    2009-01-01

    Class D audio amplifiers have gained significant influence in sound reproduction due to their high efficiency. One of the most commonly used control methods in these amplifiers is self-oscillation. A parameter of key interest in self-oscillating amplifiers is the switching frequency, which is kno...

  7. Discrete coupled derivative nonlinear Schroedinger equations and their quasi-periodic solutions

    International Nuclear Information System (INIS)

    Geng Xianguo; Su Ting

    2007-01-01

    A hierarchy of nonlinear differential-difference equations associated with a discrete isospectral problem is proposed, in which a typical differential-difference equation is a discrete coupled derivative nonlinear Schroedinger equation. With the help of the nonlinearization of the Lax pairs, the hierarchy of nonlinear differential-difference equations is decomposed into a new integrable symplectic map and a class of finite-dimensional integrable Hamiltonian systems. Based on the theory of algebraic curve, the Abel-Jacobi coordinates are introduced to straighten out the corresponding flows, from which quasi-periodic solutions for these differential-difference equations are obtained resorting to the Riemann-theta functions. Moreover, a (2+1)-dimensional discrete coupled derivative nonlinear Schroedinger equation is proposed and its quasi-periodic solutions are derived

  8. Wave propagation in one-dimensional solid-fluid quasi-periodic and aperiodic phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ali, E-mail: alchen@bjtu.edu.cn [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Wang Yuesheng [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57068 Siegen (Germany)

    2012-02-01

    The propagation of the elastic waves in one-dimensional (1D) solid-fluid quasi-periodic phononic crystals is studied by employing the concept of the localization factor, which is calculated by the transfer matrix method. The solid-fluid interaction effect at the interfaces between the solid and the fluid components is considered. For comparison, the periodic systems and aperiodic Thue-Morse sequence are also analyzed in this paper. The splitting phenomenon of the pass bands and bandgaps are discussed for these 1D solid-fluid systems. At last the influences of the material impedance ratios on the band structures of the 1D solid-fluid quasi-periodic phononic crystals arranged as Fibonacci sequence are discussed.

  9. Parkinsonian Rest Tremor Is Associated With Modulations of Subthalamic High-Frequency Oscillations.

    Science.gov (United States)

    Hirschmann, Jan; Butz, Markus; Hartmann, Christian J; Hoogenboom, Nienke; Özkurt, Tolga E; Vesper, Jan; Wojtecki, Lars; Schnitzler, Alfons

    2016-10-01

    High frequency oscillations (>200 Hz) have been observed in the basal ganglia of PD patients and were shown to be modulated by the administration of levodopa and voluntary movement. The objective of this study was to test whether the power of high-frequency oscillations in the STN is associated with spontaneous manifestation of parkinsonian rest tremor. The electromyogram of both forearms and local field potentials from the STN were recorded in 11 PD patients (10 men, age 58 [9.4] years, disease duration 9.2 [6.3] years). Patients were recorded at rest and while performing repetitive hand movements before and after levodopa intake. High-frequency oscillation power was compared across epochs containing rest tremor, tremor-free rest, or voluntary movement and related to the tremor cycle. We observed prominent slow (200-300 Hz) and fast (300-400 Hz) high-frequency oscillations. The ratio between slow and fast high-frequency oscillation power increased when tremor became manifest. This increase was consistent across nuclei (94%) and occurred in medication ON and OFF. The ratio outperformed other potential markers of tremor, such as power at individual tremor frequency, beta power, or low gamma power. For voluntary movement, we did not observe a significant difference when compared with rest or rest tremor. Finally, rhythmic modulations of high-frequency oscillation power occurred within the tremor cycle. Subthalamic high-frequency oscillation power is closely linked to the occurrence of parkinsonian rest tremor. The balance between slow and fast high-frequency oscillation power combines information on motor and medication state. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  10. Changes in frequency of spontaneous oscillations in procerebrum correlate to behavioural choice in terrestrial snails

    Directory of Open Access Journals (Sweden)

    Elena Samarova

    2009-08-01

    Full Text Available The aim of our study was to understand functional significance of spontaneous oscillations of local field potential in the olfactory brain lobe of terrestrial snail, the procerebrum (PC. We compared changes in frequency of oscillations in semi-intact preparations from snails trained to percept the same conditioned odor as positive (associated with food reinforcement or negative (associated with noxious reinforcement. In vivo recordings in freely behaving naïve snails showed a significant decrease of spontaneous PC oscillations frequency during a stage of tentacle withdrawal to odor presentation. In in vitro preparations from naïve snails, a similar decrease in frequency of the PC oscillations to odor presentation was observed. Changes in frequency of the oscillations to cineole presentations in the “aversive” group of snails (demonstrating withdrawal were much more pronounced than in naïve snails. No significant difference in responses to 5 and 20% cineole was noted. Changes in the spontaneous oscillations frequency in the snails trained to respond with positive reaction (approach to cineole depended on the concentration of the applied odor, and these responses were qualitatively similar to responses of other groups during the first 10 s of responses to odor, but significantly different (increase in PC oscillations frequency from the responses of the aversively trained and naïve snails in the interval 11-30 s, which corresponds to the end of the tentacle withdrawal and timing of decision making (approach or escape in the free behaving snails. Obtained results suggest that frequency of the PC lobe spontaneous oscillations correlate to the choice of behavior in snails: withdrawal (decrease in frequency or approach (increase in frequency to the source of odor.

  11. Synchronously Pumped Optical Parametric Oscillator with Intracavity Difference Frequency Mixing

    Science.gov (United States)

    1998-06-29

    departing from the Rrpubbc of Panama when traveling on official orders." * " De eonfortnidad con el Parrafo 5u) del Articulo XVII del Acuerdo para U...isotopic photochemistry using an optical parametric oscillator and a down converter," J. Opt. ( Paris ), , no. 14, pp. 43-48, 1983. [4] J. D. Kafka, M. L...isotopic photochemistry using an optical parametric oscillator and a down converter," J. Opt. ( Paris ), , no. 14, pp. 43-48, 1983. [4] J. D. Kafka, M. L

  12. New quasi-periodic waves of the (2+1)-dimensional sine-Gordon system

    International Nuclear Information System (INIS)

    Hu, H.C.; Lou, S.Y.

    2005-01-01

    New exact solutions of the well-known (2+1)-dimensional sine-Gordon system are studied by introducing the modified mapping relations between the cubic nonlinear Klein-Gordon and sine-Gordon equations. Two arbitrary functions are included into the Jacobi elliptic function solutions. By proper selections of the arbitrary functions, new quasi-periodic wave solutions are obtained and displayed graphically

  13. Types and stability of quasi-periodic response of a spherical pendulum

    Czech Academy of Sciences Publication Activity Database

    Náprstek, Jiří; Fischer, Cyril

    2013-01-01

    Roč. 124, č. 8 (2013), s. 74-87 ISSN 0045-7949 R&D Projects: GA ČR(CZ) GA103/09/0094; GA AV ČR(CZ) IAA200710902 Institutional support: RVO:68378297 Keywords : non-linear vibration * spherical pendulum * auto-parametric systems * quasi-periodic processes * dynamic stability * asymptotic methods Subject RIV: JM - Building Engineering Impact factor: 2.178, year: 2013 http://www.sciencedirect.com/science/article/pii/S0045794912002672

  14. DETECTION OF POLARIZED QUASI-PERIODIC MICROSTRUCTURE EMISSION IN MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    De, Kishalay; Sharma, Prateek [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Gupta, Yashwant, E-mail: kde@caltech.edu [National Centre for Radio Astrophysics, TIFR, Pune University Campus, Post Bag 3, Pune 411007 (India)

    2016-12-10

    Microstructure emission, involving short timescale, often quasi-periodic, intensity fluctuations in subpulse emission, is well known in normal period pulsars. In this Letter, we present the first detections of quasi-periodic microstructure emission from millisecond pulsars (MSPs), from Giant Metrewave Radio Telescope observations of two MSPs at 325 and 610 MHz. Similar to the characteristics of microstructure observed in normal period pulsars, we find that these features are often highly polarized and exhibit quasi-periodic behavior on top of broader subpulse emission, with periods of the order of a few μ s. By measuring their widths and periodicities from single pulse intensity profiles and their autocorrelation functions, we extend the microstructure timescale–rotation period relationship by more than an order of magnitude down to rotation periods ∼5 ms, and find it to be consistent with the relationship derived earlier for normal pulsars. The similarity of behavior is remarkable, given the significantly different physical properties of MSPs and normal period pulsars, and rules out several previous speculations about the possible different characteristics of microstructure in MSP radio emission. We discuss the possible reasons for the non-detection of these features in previous high time resolution MSP studies along with the physical implications of our results, both in terms of a geometric beam sweeping model and temporal modulation model for micropulse production.

  15. Analysis of Power System Low Frequency Oscillation Based on Energy Shift Theory

    Science.gov (United States)

    Zhang, Junfeng; Zhang, Chunwang; Ma, Daqing

    2018-01-01

    In this paper, a new method for analyzing low-frequency oscillation between analytic areas based on energy coefficient is proposed. The concept of energy coefficient is proposed by constructing the energy function, and the low-frequency oscillation is analyzed according to the energy coefficient under the current operating conditions; meanwhile, the concept of model energy is proposed to analyze the energy exchange behavior between two generators. Not only does this method provide an explanation of low-frequency oscillation from the energy point of view, but also it helps further reveal the dynamic behavior of complex power systems. The case analysis of four-machine two-area and the power system of Jilin Power Grid proves the correctness and effectiveness of the proposed method in low-frequency oscillation analysis of power system.

  16. Optical parametric amplification and oscillation assisted by low-frequency stimulated emission.

    Science.gov (United States)

    Longhi, Stefano

    2016-04-15

    Optical parametric amplification and oscillation provide powerful tools for coherent light generation in spectral regions inaccessible to lasers. Parametric gain is based on a frequency down-conversion process and, thus, it cannot be realized for signal waves at a frequency ω3 higher than the frequency of the pump wave ω1. In this Letter, we suggest a route toward the realization of upconversion optical parametric amplification and oscillation, i.e., amplification of the signal wave by a coherent pump wave of lower frequency, assisted by stimulated emission of the auxiliary idler wave. When the signal field is resonated in an optical cavity, parametric oscillation is obtained. Design parameters for the observation of upconversion optical parametric oscillation at λ3=465 nm are given for a periodically poled lithium-niobate (PPLN) crystal doped with Nd(3+) ions.

  17. New type of ensemble of quasi-periodic, long-lasting VLF emissions at the auroral zone

    Directory of Open Access Journals (Sweden)

    J. Manninen

    2012-12-01

    Full Text Available A new type of the series of quasi-periodic (QP very low frequency (VLF emissions in frequency range of 1–5 kHz, and not associated with geomagnetic pulsations, has been discovered at auroral latitudes (L = 5.3 during the Finnish VLF campaign (held in December 2011. At least five unusually spectacular events, each with a duration of several hours, have been observed during the night under conditions of quiet geomagnetic activity (Kp = 0–1, although QPs usually occur during the daytime. Contrary to the QP emissions typically occurring during the day, the spectral structure of these QP events represented an extended, complicated sequence of repeated discrete rising VLF signals. Their duration was about 2–3 min each, with the repetition periods ranging from ~1 min to ~10 min. Two such nighttime non-typical events are reported in this paper. The fine structure of the separated QP elements may represent a mixture of the different frequency band signals, which seem to have independent origins. It was found that the periodic signals with lower frequency appear to trigger the strong dispersive upper frequency signals. The temporal dynamics of the spectral structure of the QPs studied were significantly controlled by some disturbances in the solar wind and interplanetary magnetic field (IMF. This finding is very important for future theoretical investigations because the generation mechanism of this new type of QP emissions is not yet understood.

  18. Very High Frequency Interleaved Self-Oscillating Resonant SEPIC Converter

    DEFF Research Database (Denmark)

    Kovacevic, Milovan; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    interconnection network between the switches which provides self-oscillating and interleaved operation. A design approach to ensure zero voltage switching (ZVS) condition of the MOSFET devices is provided. To verify the proposed method, an 11 W, 50 MHz prototype was built using low-cost VDMOS devices...

  19. Investigation of switching frequency variations in self-oscillating class D amplifiers

    OpenAIRE

    Nielsen, Dennis; Knott, Arnold; Pfaffinger, Gerhard; Andersen, Michael A. E.

    2009-01-01

    Class D audio amplifiers have gained significant influence in sound reproduction due to their high efficiency. One of the most commonly used control methods in class D amplifiers is known as self-oscillation. An parameter of key interest in self-oscillating class D amplifiers is the switching frequency, which can be directly related to the performance of the amplifier. This paper will clearify the myth of the switching frequency through investigation of its dependency on modulation index and ...

  20. Stereotyped high-frequency oscillations discriminate seizure onset zones and critical functional cortex in focal epilepsy.

    Science.gov (United States)

    Liu, Su; Gurses, Candan; Sha, Zhiyi; Quach, Michael M; Sencer, Altay; Bebek, Nerses; Curry, Daniel J; Prabhu, Sujit; Tummala, Sudhakar; Henry, Thomas R; Ince, Nuri F

    2018-01-30

    High-frequency oscillations in local field potentials recorded with intracranial EEG are putative biomarkers of seizure onset zones in epileptic brain. However, localized 80-500 Hz oscillations can also be recorded from normal and non-epileptic cerebral structures. When defined only by rate or frequency, physiological high-frequency oscillations are indistinguishable from pathological ones, which limit their application in epilepsy presurgical planning. We hypothesized that pathological high-frequency oscillations occur in a repetitive fashion with a similar waveform morphology that specifically indicates seizure onset zones. We investigated the waveform patterns of automatically detected high-frequency oscillations in 13 epilepsy patients and five control subjects, with an average of 73 subdural and intracerebral electrodes recorded per patient. The repetitive oscillatory waveforms were identified by using a pipeline of unsupervised machine learning techniques and were then correlated with independently clinician-defined seizure onset zones. Consistently in all patients, the stereotypical high-frequency oscillations with the highest degree of waveform similarity were localized within the seizure onset zones only, whereas the channels generating high-frequency oscillations embedded in random waveforms were found in the functional regions independent from the epileptogenic locations. The repetitive waveform pattern was more evident in fast ripples compared to ripples, suggesting a potential association between waveform repetition and the underlying pathological network. Our findings provided a new tool for the interpretation of pathological high-frequency oscillations that can be efficiently applied to distinguish seizure onset zones from functionally important sites, which is a critical step towards the translation of these signature events into valid clinical biomarkers.awx374media15721572971001. © The Author(s) (2018). Published by Oxford University Press on

  1. Oscillator phenomena in the solar atmosphere and radiation modulation in microwaves

    International Nuclear Information System (INIS)

    Vaz, A.M.Z.

    1983-05-01

    An overview of the principal known descriptions of oscillations in the solar atmosphere at different ranges of periods was developed. Particular attention was given to oscillations with time scale of seconds, associated to active regions or bursts. 1.5 quasi-periodic oscillations were detected by the first time at more than one microwave frequency simultaneously (22 GHz and 44 GHz), with high sensitivity and high time resolution, superimposed on a burst on Dec. 15, 1980. An advance phase of 0,3s between the oscillations in the frequencies of 22 GHz and 44 GHz was discovered. The proposed mechanism to explain such oscillations is based on oscillations of the magnetic field at the source. These oscillations modulate the gyro-synchrotron emission from high energy electrons trapped in the magnetic structure. The phase difference is attributed to the influence of the optical thickness of the gyro-synchrotron emission at 22 GHz. (Author) [pt

  2. Solid state Ka-band pulse oscillator with frequency electronic switching

    Directory of Open Access Journals (Sweden)

    Dvornichenko V. P.

    2015-08-01

    Full Text Available Transmitting devices for small radars in the millimeter wavelength range with high resolution on range and noise immunity. The work presents the results of research and development of compact pulse oscillators with digital frequency switching from pulse to pulse. The oscillator consists of a frequency synthesizer and a synchronized amplifier on the IMPATT diode. Reference oscillator of synthesizer is synchronized by crystal oscillator with digital PLL system and contains a frequency multiplier and an amplifier operating in pulse mode. Small-sized frequency synthesizer of 8 mm wave lengths provides an output power of ~1.2 W per pulse with a frequency stability of no worse than 2•10–6. Radiation frequency is controlled by three-digit binary code in OOL levels. Synchronized amplifier made on IMPATT diodes provides microwave power up to 20 W in oscillator output with microwave pulse duration of 100—300 ns in an operating band. The oscillator can be used as a driving source for the synchronization of semiconductor and electro-vacuum devices of pulsed mode, and also as a transmitting device for small-sized radar of millimeter wave range.

  3. Simulation of stress-modulated magnetization precession frequency in Heusler-based spin torque oscillator

    International Nuclear Information System (INIS)

    Huang, Houbing; Zhao, Congpeng; Ma, Xingqiao

    2017-01-01

    We investigated stress-modulated magnetization precession frequency in Heusler-based spin transfer torque oscillator by combining micromagnetic simulations with phase field microelasticity theory, by encapsulating the magnetic tunnel junction into multilayers structures. We proposed a novel method of using an external stress to control the magnetization precession in spin torque oscillator instead of an external magnetic field. The stress-modulated magnetization precession frequency can be linearly modulated by externally applied uniaxial in-plane stress, with a tunable range 4.4–7.0 GHz under the stress of 10 MPa. By comparison, the out-of-plane stress imposes negligible influence on the precession frequency due to the large out-of-plane demagnetization field. The results offer new inspiration to the design of spin torque oscillator devices that simultaneously process high frequency, narrow output band, and tunable over a wide range of frequencies via external stress. - Highlights: • We proposed stress-modulated magnetization precession in spin torque oscillator. • The magnetization precession frequency can be linearly modulated by in-plane stress. • The stress also can widen the magnetization frequency range 4.4–7.0 GHz. • The stress-modulated oscillation frequency can simplify STO devices.

  4. Simulation of stress-modulated magnetization precession frequency in Heusler-based spin torque oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Houbing, E-mail: hbhuang@ustb.edu.cn; Zhao, Congpeng; Ma, Xingqiao, E-mail: xqma@sas.ustb.edu.cn

    2017-03-15

    We investigated stress-modulated magnetization precession frequency in Heusler-based spin transfer torque oscillator by combining micromagnetic simulations with phase field microelasticity theory, by encapsulating the magnetic tunnel junction into multilayers structures. We proposed a novel method of using an external stress to control the magnetization precession in spin torque oscillator instead of an external magnetic field. The stress-modulated magnetization precession frequency can be linearly modulated by externally applied uniaxial in-plane stress, with a tunable range 4.4–7.0 GHz under the stress of 10 MPa. By comparison, the out-of-plane stress imposes negligible influence on the precession frequency due to the large out-of-plane demagnetization field. The results offer new inspiration to the design of spin torque oscillator devices that simultaneously process high frequency, narrow output band, and tunable over a wide range of frequencies via external stress. - Highlights: • We proposed stress-modulated magnetization precession in spin torque oscillator. • The magnetization precession frequency can be linearly modulated by in-plane stress. • The stress also can widen the magnetization frequency range 4.4–7.0 GHz. • The stress-modulated oscillation frequency can simplify STO devices.

  5. Oscillations and Stability of Plasma in an External High-Frequency Electric Field

    International Nuclear Information System (INIS)

    Aliev, Ju.M.; Gorbunov, L.M.; Silin, V.P.; Uotson, H.

    1966-01-01

    A theory is developed for the oscillations and stability of plasma in a strong external HF electric field. The kinetic equation with self-congruent reciprocity is linearized for weak deviations from the ground state. Since the latter depends on an external HF field, the linearized equation obtained has coefficients with a periodic time dependence. From this equation and also from Maxwell's equations there is derived a dispersion equation for plasma oscillations that represents the zero value of the infinite order determinant, and that is solved both for external field frequencies considerably exceeding the electron Langmuir frequency and for frequencies that are less. The external HF field changes the oscillation branches in a plasma without an external field, and also leads to a new low-frequency oscillation branch. Movement of particles in the HF field gives spatial dispersion. If the frequency of the field exceeds the election Langmuir frequency, the plasma oscillations are stable. At frequencies less than this level there occurs a build-up of low-frequency oscillations. Here the maximum of the build-up occurs when the external field frequencies approach the electron Langmuir frequency and is equal to the product of the Langmuir frequency and the one-third power of the electron-ion mass ratio. Away from the resonance, -the increment of build-up has the same order of magnitude as the ion Langmuir frequency. An external magnetic field increases the number of possible natural plasma oscillations and thereby increases the possibility of resonance with the external HF field. Allowance for the thermal motion of the particles enables one to determine the attenuation of the oscillations in question. Expressions for the decrements are derived. The effect of the external HF field on a plasma in which there are beams is also discussed. An HF field has a destabilizing effect on a system of this kind, since on the one hand there can be a build-up of fresh, low-frequency

  6. Microbubble generator excited by fluidic oscillator's third harmonic frequency

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2014-01-01

    Roč. 92, č. 9 (2014), s. 1603-1615 ISSN 0263-8762 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidic oscillator * microbubble generation * fluidic feedback loop Subject RIV: BK - Fluid Dynamics Impact factor: 2.348, year: 2014 http://dx.doi.org/10.1016/j.cherd.2013.12.004

  7. Design and construction of an oscillator with a higly stable frequency

    International Nuclear Information System (INIS)

    Jardon, A.H.

    1978-01-01

    An instrument producing pulses with a highly stable frequency was considered necessary for time measurement at the INEN Plasma Physics Program. For this purpose an oscillator with a higly stable frequency which is a measurement instrument was designed and constructed since it can be used as a reference for the measurement of frequency, time, length and phase. The parameters required for this oscillator were as follows: aging lesser than 1 part/10 9 , for sampling period of 0.1 sec.; frequency change equal or smaller than 1 part/10 9 for normal temperature fluctuations found in the laboratory (10 0 C-30 0 C); frequency 1 MHz; amplitude 2 V. After the oscillator was built the parameters were not verified and therefore its characteristics are not exactly known; the reported partial results show that the approximations used for the design are generally valid. (author)

  8. Frequency-dependent transient response of an oscillating electrically actuated droplet

    International Nuclear Information System (INIS)

    Dash, S; Kumari, N; Garimella, S V

    2012-01-01

    The transient response of a millimeter-sized sessile droplet under electrical actuation is experimentally investigated. Under dc actuation, the droplet spreading rate increases as the applied voltage is increased due to the higher electrical forces induced. At sufficiently high dc voltages, competition between the electrical actuation force, droplet inertia, the retarding surface tension force and contact line friction leads to droplet oscillation. The timescale for the droplet to attain its maximum wetted diameter during step actuation is analyzed. Systematic experiments are conducted over a frequency range of 5–200 Hz and actuation voltages of 40–80 V rms to determine the dependence of droplet oscillation on these parameters. The response of the droplet to different actuation frequencies and voltages is determined in terms of its contact angle and contact radius variation. The frequency of the driving force (equal to twice the frequency of the applied electrical signal) determines the mode of oscillation of the droplet which, together with its resonance characteristics, governs whether the droplet contact angle and contact radius vary in phase or out of phase with each other. In addition to the primary frequency response at the electrical forcing frequency, the droplet oscillation exhibits sub-harmonic oscillation at half of the forcing frequency that is attributed to the parametric nature of the electrical force acting on the triple contact line of the droplet. (paper)

  9. Non-linear frequency and amplitude modulation of a nano-contact spin torque oscillator

    OpenAIRE

    Muduli, P. K.; Pogoryelov, Ye.; Bonetti, S.; Consolo, G.; Mancoff, Fred; Åkerman, Johan

    2009-01-01

    We study the current controlled modulation of a nano-contact spin torque oscillator. Three principally different cases of frequency non-linearity ($d^{2}f/dI^{2}_{dc}$ being zero, positive, and negative) are investigated. Standard non-linear frequency modulation theory is able to accurately describe the frequency shifts during modulation. However, the power of the modulated sidebands only agrees with calculations based on a recent theory of combined non-linear frequency and amplitude modulation.

  10. On the surface physics affecting solar oscillation frequencies

    DEFF Research Database (Denmark)

    Houdek, G.; Trampedach, R.; Aarslev, M. J.

    2017-01-01

    . In this Letter, we address the physical processes of turbulent convection that are predominantly responsible for the frequency differences between standard models and observations, also called 'surface effects'. We compare measured solar frequencies from the Michelson Doppler Imager instrument on the SOlar...... physics in our model computation, we are able to reproduce the observed solar frequencies to less than or similar to 3 mu Hz without the need of any additional ad hoc functional corrections....

  11. Quasi-periodic fluctuations of atmospheric pressure and cosmic rays observed in the stratosphere

    International Nuclear Information System (INIS)

    Kodama, Masahiro; Abe, Toshiaki; Sakai, Takasuke; Kato, Masato; Kogami, Shinichi.

    1976-01-01

    Quasi-periodicities of barometric pressure and cosmic ray intensity, with 5.5-minute period and one hour persistency, have been observed by means of a high-precision barometer and a large plastic scintillation counter in a balloon at an altitude of --18 km over the Pacific Ocean. From characteristics of such short period fluctuations, it is suggested that the observed pressure fluctuation may possibly be caused by the internal atmospheric gravity wave whose amplitude and wave length are --30 m and --30 km respectively. (auth.)

  12. Subarcsecond bright points and quasi-periodic upflows below a quiescent filament observed by IRIS

    Science.gov (United States)

    Li, T.; Zhang, J.

    2016-05-01

    Context. The new Interface Region Imaging Spectrograph (IRIS) mission provides high-resolution observations of UV spectra and slit-jaw images (SJIs). These data have become available for investigating the dynamic features in the transition region (TR) below the on-disk filaments. Aims: The driver of "counter-streaming" flows along the filament spine is still unknown yet. The magnetic structures and the upflows at the footpoints of the filaments and their relations with the filament mainbody have not been well understood. We study the dynamic evolution at the footpoints of filaments in order to find some clues for solving these questions. Methods: Using UV spectra and SJIs from the IRIS, along with coronal images and magnetograms from the Solar Dynamics Observatory (SDO), we present the new features in a quiescent filament channel: subarcsecond bright points (BPs) and quasi-periodic upflows. Results: The BPs in the TR have a spatial scale of about 350-580 km and lifetimes of more than several tens of minutes. They are located at stronger magnetic structures in the filament channel with a magnetic flux of about 1017-1018 Mx. Quasi-periodic brightenings and upflows are observed in the BPs, and the period is about 4-5 min. The BP and the associated jet-like upflow comprise a "tadpole-shaped" structure. The upflows move along bright filament threads, and their directions are almost parallel to the spine of the filament. The upflows initiated from the BPs with opposite polarity magnetic fields have opposite directions. The velocity of the upflows in the plane of sky is about 5-50 km s-1. The emission line of Si IV 1402.77 Å at the locations of upflows exhibits obvious blueshifts of about 5-30 km s-1, and the line profile is broadened with the width of more than 20 km s-1. Conclusions: The BPs seem to be the bases of filament threads, and the upflows are able to convey mass for the dynamic balance of the filament. The "counter-streaming" flows in previous observations

  13. Conjugate observations of quasi-periodic emissions by Cluster and DEMETER spacecraft

    Czech Academy of Sciences Publication Activity Database

    Němec, F.; Santolík, Ondřej; Parrot, M.; Pickett, J. S.; Hayosh, Mykhaylo; Cornilleau-Wehrlin, N.

    2013-01-01

    Roč. 118, č. 1 (2013), s. 198-208 ISSN 2169-9380 R&D Projects: GA ČR GAP205/10/2279; GA ČR(CZ) GAP209/11/2280 Grant - others:GA ČR(CZ) GPP209/12/P658 Program:GP Institutional support: RVO:68378289 Keywords : quasi-periodic * QP emissions Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1029/2012JA018380/abstract

  14. Constant Switching Frequency Self-Oscillating Controlled Class-D Amplifiers

    OpenAIRE

    Nguyen-Duy, Khiem; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    The self-oscillating control approach has been used extensively in class-D amplifiers. It has several advantages such as high bandwidth and high audio performance. However, one of the primary disadvantages in a self-oscillating controlled system is that the switching frequency of the amplifier varies with the ratio of the output voltage to the input rail voltage. In other words, the switching frequency varies with the duty cycle of the output. The drop in the frequency results in lower contro...

  15. Low-cost precise measurement of oscillator frequency instability based on GNSS carrier observation

    Science.gov (United States)

    Kou, Yanhong; Jiao, Yue; Xu, Dongyang; Zhang, Meng; Liu, Ya; Li, Xiaohui

    2013-03-01

    Global navigation satellite systems (GNSS) receivers can be used in time and frequency metrology by exploiting stable GNSS time scales. This paper proposes a low-cost method for precise measurement of oscillator frequency instability using a single-frequency software GNSS receiver. The only required hardware is a common radio frequency (RF) data collection device driven by the oscillator under test (OUT). The receiver solves the oscillator frequency error in high time resolution using the carrier Doppler observation and the broadcast ephemeris from one of the available satellites employing the onboard reference atomic frequency standard that is more stable than the OUT. Considering the non-stable and non-Gaussian properties of the frequency error measurement, an unbiased finite impulse response (FIR) filter is employed to obtain robust estimation and filter out measurement noise. The effects of different filter orders and convolution lengths are further discussed. The frequency error of an oven controlled oscillator (OCXO) is measured using live Beidou-2/Compass signals. The results are compared with the synchronous measurement using a specialized phase comparator with the standard coordinated universal time (UTC) signal from the master clock H226 in the national time service center (NTSC) of China as its reference. The Allan deviation (ADEV) estimates using the two methods have a 99.9% correlation coefficient and a 0.6% mean relative difference over 1-1000 s intervals. The experiment demonstrates the effectiveness and high precision of the software receiver method.

  16. Internal oscillation frequencies and anharmonic effects for the double sine-Gordon kink

    DEFF Research Database (Denmark)

    Salerno, M.; Samuelsen, Mogens Rugholm

    1989-01-01

    A simple derivation of the small oscillation frequency around 4π-kink solutions of the double sine-Gordon equation is presented. Small corrections to these frequencies due to anharmonic effects are also numerically and analytically investigated. The analysis is based on energetic considerations...

  17. High frequency spin torque oscillators with composite free layer spin valve

    International Nuclear Information System (INIS)

    Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda

    2016-01-01

    We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.

  18. High frequency spin torque oscillators with composite free layer spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda

    2016-07-15

    We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.

  19. Minimization of switching frequency oscillation of voltage inverter

    Czech Academy of Sciences Publication Activity Database

    Večerka, Tomáš

    2011-01-01

    Roč. 56, č. 2 (2011), s. 125-140 ISSN 0001-7043 Institutional research plan: CEZ:AV0Z20570509 Keywords : switching frequency * pulse-width modulation * induction motors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  20. Characteristics of low-frequency oscillation intensity of air-sea turbulent heat fluxes over the northwest Pacific

    Institute of Scientific and Technical Information of China (English)

    LI Gen; REN BaoHua; ZHENG JianOiu; WANG Jun

    2009-01-01

    Based on the daily turbulent heat fluxes and related meteorological variables dataeets (1985-2006) from Objectively Analyzed air-sea Fluxes (OAFlux) Project of Woods Hole Oceanographic Institution (WHOI), characteristics of low-frequency oscillation intensity of air-sea turbulent heat fluxes over the northwest Pacific are analyzed by linear perturbation method and correlation analysis. It can be concluded that: 1) the distribution of low-frequency oscillation intensity of latent heat flux (LHF) over the northwest Pacific is mainly affected by that of low-frequency oscillation intensity of anomalous air-eea humidity gradient (△q') as well as mean air-eea humidity gradient (△q), while the distribution of low-frequency oscillation Intensity of sensible heat flux (SHF) is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea temperature gradient (△T'). 2) The low-frequency oscillation of turbulent heat fluxes over the northwest Pacific is the strongest in winter and the weakest in summer. And the seasonal transition of low-frequency oscillation intensity of LHF is jointly influenced by those of low-frequency oscillation intensity of △q', low-frequency oscillation intensity of anomalous wind speed (U'), △q and mean wind speed (U), while the seasonal transition of low-frequency oscillation intensity of SHF is mainly influenced by those of low-frequency oscillation Intensity of △T' and U. 3) Over the tropical west Pacific and sea areas north of 20ON, the low-frequency oscillation of LHF (SHF) is mainly influenced by atmospheric variables qa' (Ta') and U', indicating an oceanic response to overlying atmospheric forcing. In contrast, over the tropical eastern and central Pacific south of 20°N, qs' (Ts') also greatly influences the low-frequency oscillation of LHF (SHF).

  1. Dependence of Helium II viscosity properties on oscillation frequency

    International Nuclear Information System (INIS)

    Nadirashvili, Z.S.; Tsakadze, J.S.

    1979-01-01

    The causes of a discrepancy in the results of measurements of He II viscosity below Tapprox. =1.6 K obtained with different measurement methods are investigated. It is shown that to obtain correct results in oscillation experiments, the condition delta>>lambda/sub ph/ should obtain, where delta is the depth of viscous wave penetration and lambda/sub ph/ is the phonon free path length. Results of viscosity measurements at different ratios delta/lambda/sub ph/ (by a wire viscometer) are presented. It is shown that for the condition delta>>lambda/sub ph/, the results obtained are in good agreement with the results of Andronikashvili (in which delta/lambda/sub ph/>100). If the mentioned relation is not satisfied, then as the value of the ratio delta/lambda/sub ph/ is decreased, the value measured for the viscosity is increasingly lower than the results of Andronikashvili

  2. Effects of dendritic load on the firing frequency of oscillating neurons.

    Science.gov (United States)

    Schwemmer, Michael A; Lewis, Timothy J

    2011-03-01

    We study the effects of passive dendritic properties on the dynamics of neuronal oscillators. We find that the addition of a passive dendrite can sometimes have counterintuitive effects on firing frequency. Specifically, the addition of a hyperpolarized passive dendritic load can either increase, decrease, or have negligible effects on firing frequency. We use the theory of weak coupling to derive phase equations for "ball-and-stick" model neurons and two-compartment model neurons. We then develop a framework for understanding how the addition of passive dendrites modulates the frequency of neuronal oscillators. We show that the average value of the neuronal oscillator's phase response curves measures the sensitivity of the neuron's firing rate to the dendritic load, including whether the addition of the dendrite causes an increase or decrease in firing frequency. We interpret this finding in terms of to the slope of the neuronal oscillator's frequency-applied current curve. We also show that equivalent results exist for constant and noisy point-source input to the dendrite. We note that the results are not specific to neurons but are applicable to any oscillator subject to a passive load.

  3. Dendritic calcium conductances generate high-frequency oscillation in thalamocortical neurons

    OpenAIRE

    Pedroarena, Christine; Llinás, Rodolfo

    1997-01-01

    Cortical-projecting thalamic neurons, in guinea pig brain slices, display high-frequency membrane potential oscillations (20–80 Hz), when their somata are depolarized beyond −45 mV. These oscillations, preferentially located at dendritic sites, are supported by the activation of P/Q type calcium channels, as opposed to the expected persistent sodium conductance responsible for such rhythmic behavior in other central neurons. Short hyperpolarizing pulses reset the phase and transiently increas...

  4. Beam-wave interaction in periodic and quasi-periodic structures. 2. ed.

    International Nuclear Information System (INIS)

    Schaechter, Levi

    2011-01-01

    The main theme of this book is the interaction of electrons with electromagnetic waves in the presence of periodic and quasi-periodic structures in vacuum, in view of applications in the design and operation of particle accelerators. The first part of the book is concerned with the textbook-like presentation of the basic material, in particular reviewing elementary electromagnetic phenomena and electron dynamics. The second part of the book describes the current models for beam-wave interactions with periodic and quasi-periodic structures. This is the basis for introducing, in the last part of the book, a number of particle and radiation sources that rest on these principles, in particular the free-electron laser, wake-field acceleration schemes and a number of other advanced particle accelerator concepts. This second edition brings this fundamental text up-to-date in view of the enormous advances that have been made over the last decade since the first edition was published. All chapters, as well as the bibliography, have been significantly revised and extended, and the number of end-of-chapter exercises has been further increased to enhance this book's usefulness for teaching specialized graduate courses. (orig.)

  5. Relaxation oscillations induced by amplitude-dependent frequency in dissipative trapped electron mode turbulence

    International Nuclear Information System (INIS)

    Terry, P.W.; Ware, A.S.; Newman, D.E.

    1994-01-01

    A nonlinear frequency shift in dissipative trapped electron mode turbulence is shown to give rise to a relaxation oscillation in the saturated power density spectrum. A simple non-Markovian closure for the coupled evolution of ion momentum and electron density response is developed to describe the oscillations. From solutions of a nonlinear oscillator model based on the closure, it is found that the oscillation is driven by the growth rate, as modified by the amplitude-dependent frequency shift, with inertia provided by the memory of the growth rate of prior amplitudes. This memory arises from time-history integrals common to statistical closures. The memory associated with a finite time of energy transfer between coupled spectrum components does not sustain the oscillation in the simple model. Solutions of the model agree qualitatively with the time-dependent numerical solutions of the original dissipative trapped electron model, yielding oscillations with the proper phase relationship between the fluctuation energy and the frequency shift, the proper evolution of the wave number spectrum shape and particle flux, and a realistic period

  6. Potentiostatic current and galvanostatic potential oscillations during electrodeposition of cadmium.

    Science.gov (United States)

    López-Sauri, D A; Veleva, L; Pérez-Ángel, G

    2015-09-14

    Cathodic current and potential oscillations were observed during electrodeposition of cadmium from a cyanide electrolyte on a vertical platinum electrode, in potentiostatic and galvanostatic experiments. Electrochemical impedance spectroscopy experiments revealed a region of negative real impedance in a range of non-zero frequencies, in the second descending branch with a positive slope of the N-shape current-potential curve. This kind of dynamical behaviour is characteristic of the HN-NDR oscillators (oscillators with the N-Shape current-potential curve and hidden negative differential resistance). The oscillations could be mainly attributed to the changes in the real active cathodic area, due to the adsorption of hydrogen molecules and their detachment from the surface. The instabilities of the electrochemical processes were characterized by time series, Fast Fourier Transforms and 2-D phase portraits showing quasi-periodic oscillations.

  7. Voluntary reduction of force variability via modulation of low-frequency oscillations.

    Science.gov (United States)

    Park, Seoung Hoon; Casamento-Moran, Agostina; Yacoubi, Basma; Christou, Evangelos A

    2017-09-01

    Visual feedback can influence the force output by changing the power in frequencies below 1 Hz. However, it remains unknown whether visual guidance can help an individual reduce force variability voluntarily. The purpose of this study, therefore, was to determine whether an individual can voluntarily reduce force variability during constant contractions with visual guidance, and whether this reduction is associated with a decrease in the power of low-frequency oscillations (0-1 Hz) in force and muscle activity. Twenty young adults (27.6 ± 3.4 years) matched a force target of 15% MVC (maximal voluntary contraction) with ankle dorsiflexion. Participants performed six visually unrestricted contractions, from which we selected the trial with the least variability. Following, participants performed six visually guided contractions and were encouraged to reduce their force variability within two guidelines (±1 SD of the least variable unrestricted trial). Participants decreased the SD of force by 45% (P  0.2). The decrease in force variability was associated with decreased low-frequency oscillations (0-1 Hz) in force (R 2  = 0.59), which was associated with decreased low-frequency oscillations in EMG bursts (R 2  = 0.35). The reduction in low-frequency oscillations in EMG burst was positively associated with power in the interference EMG from 35 to 60 Hz (R 2  = 0.47). In conclusion, voluntary reduction of force variability is associated with decreased low-frequency oscillations in EMG bursts and consequently force output. We provide novel evidence that visual guidance allows healthy young adults to reduce force variability voluntarily likely by adjusting the low-frequency oscillations in the neural drive.

  8. The effect of near-surface convection on oscillation frequencies of stars

    Science.gov (United States)

    Hanasoge, Shravan

    2015-08-01

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modelled frequencies, a phenomenon referred to as the “surface term”. The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modelling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelength (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary 3-D flows, can be reduced to an effective “quiet-Sun” wave equation with altered sound speed, Brünt-Väisäla frequency and Lamb frequency. We derive the modified wave equation and relations for the appropriate averaging of three dimensional flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from three dimensional numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies, and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.

  9. The role of low-frequency intraseasonal oscillations in the ...

    Indian Academy of Sciences (India)

    We analyze the dynamical features and responsible factors of the low-frequency intraseasonal time scales which influenced the nature of onset, intensity and duration of active/break phases and withdrawal of the monsoon during the anomalous Indian summer monsoon of 2002 – the most severe drought recorded in recent ...

  10. Dynamic modulation of epileptic high frequency oscillations by the phase of slower cortical rhythms.

    Science.gov (United States)

    Ibrahim, George M; Wong, Simeon M; Anderson, Ryan A; Singh-Cadieux, Gabrielle; Akiyama, Tomoyuki; Ochi, Ayako; Otsubo, Hiroshi; Okanishi, Tohru; Valiante, Taufik A; Donner, Elizabeth; Rutka, James T; Snead, O Carter; Doesburg, Sam M

    2014-01-01

    Pathological high frequency oscillations (pHFOs) have been proposed to be robust markers of epileptic cortex. Oscillatory activity below this frequency range has been shown to be modulated by phase of lower frequency oscillations. Here, we tested the hypothesis that dynamic cross-frequency interactions involving pHFOs are concentrated within the epileptogenic cortex. Intracranial electroencephalographic recordings from 17 children with medically-intractable epilepsy secondary to focal cortical dysplasia were obtained. A time-resolved analysis was performed to determine topographic concentrations and dynamic changes in cross-frequency amplitude-to-phase coupling (CFC). CFC between pHFOs and the phase of theta and alpha rhythms was found to be significantly elevated in the seizure-onset zone compared to non-epileptic regions (pfrequency oscillations at which pHFO amplitudes were maximal was inconsistent at seizure initiation, yet consistently at the trough of the low frequency rhythm at seizure termination. Amplitudes of pHFOs were most significantly modulated by the phase of alpha-band oscillations (p<0.01). These results suggest that increased CFC between pHFO amplitude and alpha phase may constitute a marker of epileptogenic brain areas and may be relevant for understanding seizure dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Simultaneously Suppressing Low-Frequency and Relaxation Oscillation Intensity Noise in a DBR Single-Frequency Phosphate Fiber Laser

    International Nuclear Information System (INIS)

    Xiao Yu; Li Can; Xu Shan-Hui; Feng Zhou-Ming; Yang Chang-Sheng; Zhao Qi-Lai; Yang Zhong-Min

    2015-01-01

    Effective multiple optoelectronic feedback circuits for simultaneously suppressing low-frequency and relaxation oscillation intensity noise in a single-frequency phosphate fiber laser are demonstrated. The forward transfer function, which relates the laser output intensity to the pump modulations, is measured and analyzed. A custom two-path feedback system operating at different frequency bands is designed to adjust the pump current directly. The relative intensity noise is decreased by 20 dB from 0.2 to 5kHz and over 10 dB from 5 to 10 kHz. The relaxation oscillation peak is suppressed by 22 dB. In addition, a long term (24 h) laser instability of less than 0.05% is achieved. (paper)

  12. Dependence of the colored frequency noise in spin torque oscillators on current and magnetic field

    Science.gov (United States)

    Eklund, Anders; Bonetti, Stefano; Sani, Sohrab R.; Majid Mohseni, S.; Persson, Johan; Chung, Sunjae; Amir Hossein Banuazizi, S.; Iacocca, Ezio; Östling, Mikael; Åkerman, Johan; Gunnar Malm, B.

    2014-03-01

    The nano-scale spin torque oscillator (STO) is a compelling device for on-chip, highly tunable microwave frequency signal generation. Currently, one of the most important challenges for the STO is to increase its longer-time frequency stability by decreasing the 1/f frequency noise, but its high level makes even its measurement impossible using the phase noise mode of spectrum analyzers. Here, we present a custom made time-domain measurement system with 150 MHz measurement bandwidth making possible the investigation of the variation of the 1/f as well as the white frequency noise in a STO over a large set of operating points covering 18-25 GHz. The 1/f level is found to be highly dependent on the oscillation amplitude-frequency non-linearity and the vicinity of unexcited oscillation modes. These findings elucidate the need for a quantitative theoretical treatment of the low-frequency, colored frequency noise in STOs. Based on the results, we suggest that the 1/f frequency noise possibly can be decreased by improving the microstructural quality of the metallic thin films.

  13. Dependence of the colored frequency noise in spin torque oscillators on current and magnetic field

    International Nuclear Information System (INIS)

    Eklund, Anders; Sani, Sohrab R.; Chung, Sunjae; Amir Hossein Banuazizi, S.; Östling, Mikael; Gunnar Malm, B.; Bonetti, Stefano; Majid Mohseni, S.; Persson, Johan; Iacocca, Ezio; Åkerman, Johan

    2014-01-01

    The nano-scale spin torque oscillator (STO) is a compelling device for on-chip, highly tunable microwave frequency signal generation. Currently, one of the most important challenges for the STO is to increase its longer-time frequency stability by decreasing the 1/f frequency noise, but its high level makes even its measurement impossible using the phase noise mode of spectrum analyzers. Here, we present a custom made time-domain measurement system with 150 MHz measurement bandwidth making possible the investigation of the variation of the 1/f as well as the white frequency noise in a STO over a large set of operating points covering 18–25 GHz. The 1/f level is found to be highly dependent on the oscillation amplitude-frequency non-linearity and the vicinity of unexcited oscillation modes. These findings elucidate the need for a quantitative theoretical treatment of the low-frequency, colored frequency noise in STOs. Based on the results, we suggest that the 1/f frequency noise possibly can be decreased by improving the microstructural quality of the metallic thin films

  14. Thin-film piezoelectric-on-silicon resonators for high-frequency reference oscillator applications.

    Science.gov (United States)

    Abdolvand, Reza; Lavasani, Hossein M; Ho, Gavin K; Ayazi, Farrokh

    2008-12-01

    This paper studies the application of lateral bulk acoustic thin-film piezoelectric-on-substrate (TPoS) resonators in high-frequency reference oscillators. Low-motional-impedance TPoS resonators are designed and fabricated in 2 classes--high-order and coupled-array. Devices of each class are used to assemble reference oscillators and the performance characteristics of the oscillators are measured and discussed. Since the motional impedance of these devices is small, the transimpedance amplifier (TIA) in the oscillator loop can be reduced to a single transistor and 3 resistors, a format that is very power-efficient. The lowest reported power consumption is approximately 350 microW for an oscillator operating at approximately 106 MHz. A passive temperature compensation method is also utilized by including the buried oxide layer of the silicon-on-insulator (SOI) substrate in the structural resonant body of the device, and a very small (-2.4 ppm/ degrees C) temperature coefficient of frequency is obtained for an 82-MHz oscillator.

  15. Electronically Tunable Quadrature Sinusoidal Oscillator with Equal Output Amplitudes during Frequency Tuning Process

    Directory of Open Access Journals (Sweden)

    Den Satipar

    2017-01-01

    Full Text Available A new configuration of voltage-mode quadrature sinusoidal oscillator is proposed. The proposed oscillator employs two voltage differencing current conveyors (VDCCs, two resistors, and two grounded capacitors. In this design, the use of multiple/dual output terminal active building block is not required. The tuning of frequency of oscillation (FO can be done electronically by adjusting the bias current of active device without affecting condition of oscillation (CO. The electronic tuning can be done by controlling the bias current using a digital circuit. The amplitude of two sinusoidal outputs is equal when the frequency of oscillation is tuned. This makes the sinusoidal output voltages meet good total harmonic distortions (THD. Moreover, the proposed circuit can provide the sinusoidal output current with high impedance which is connected to external load or to another circuit without the use of buffer device. To confirm that the oscillator can generate the quadrature sinusoidal output signal, the experimental results using VDCC constructed from commercially available ICs are also included. The experimental results agree well with theoretical anticipation.

  16. Computational Re-design of Synthetic Genetic Oscillators for Independent Amplitude and Frequency Modulation.

    Science.gov (United States)

    Tomazou, Marios; Barahona, Mauricio; Polizzi, Karen M; Stan, Guy-Bart

    2018-04-25

    To perform well in biotechnology applications, synthetic genetic oscillators must be engineered to allow independent modulation of amplitude and period. This need is currently unmet. Here, we demonstrate computationally how two classic genetic oscillators, the dual-feedback oscillator and the repressilator, can be re-designed to provide independent control of amplitude and period and improve tunability-that is, a broad dynamic range of periods and amplitudes accessible through the input "dials." Our approach decouples frequency and amplitude modulation by incorporating an orthogonal "sink module" where the key molecular species are channeled for enzymatic degradation. This sink module maintains fast oscillation cycles while alleviating the translational coupling between the oscillator's transcription factors and output. We characterize the behavior of our re-designed oscillators over a broad range of physiologically reasonable parameters, explain why this facilitates broader function and control, and provide general design principles for building synthetic genetic oscillators that are more precisely controllable. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Resonator as high frequency electromagnetic field oscillation generator

    International Nuclear Information System (INIS)

    Svoroba, O.V.; Scherbina, V.O.

    2007-01-01

    The problem of finding the u(x-vector) field potential in a specific waveguide with generalized corrugated core geometry is considered. The perturbation is brought to the system by high energy electron beam, injected in a waveguide. It is shown that the Neumann spectral problem can be reduced to finding Green approximation solution, and how it can be solved by the discretization technique. Considered parameterization allow to optimize the u(x-vector) field for specific frequency tuning. This method can be used as plasma heating method for thermonuclear temperature control

  18. Nonlinear Vibration of Oscillation Systems using Frequency-Amplitude Formulation

    Directory of Open Access Journals (Sweden)

    A. Fereidoon

    2012-01-01

    Full Text Available In this paper we study the periodic solutions of free vibration of mechanical systems with third and fifth-order nonlinearity for two examples using He's Frequency-Amplitude Formulation (HFAF.The effectiveness and convenience of the method is illustrated in these examples. It will be shown that the solutions obtained with current method have a fabulous conformity with those achieved from time marching solution. HFAF is easy with powerful concepts and the high accuracy, so it can be found widely applicable in vibrations, especially strong nonlinearity oscillatory problems.

  19. Low frequency noise in resonant Josephson soliton oscillators

    DEFF Research Database (Denmark)

    Hansen, Jørn Bindslev; Holst, T.; Wellstood, Frederick C.

    1991-01-01

    The noise in the resonant soliton mode of long and narrow Josephson tunnel junctions (Josephson transmission lines or JTLs) have been measured in the frequency range from 0.1 Hz to 25 kHz by means of a DC SQUID. The measured white noise was found, to within a factor of two, to be equal...... to the Nyquist voltage noise in a resistance equal to the dynamic resistance RD of the current-voltage characteristic of the bias point. In contrast, measurements of the linewidth of the microwave radiation from the same JTL showed that the spectral density of the underlying noise voltage scaled as R D2/RS where...

  20. Fast oscillations in cortical-striatal networks switch frequency following rewarding events and stimulant drugs.

    Science.gov (United States)

    Berke, J D

    2009-09-01

    Oscillations may organize communication between components of large-scale brain networks. Although gamma-band oscillations have been repeatedly observed in cortical-basal ganglia circuits, their functional roles are not yet clear. Here I show that, in behaving rats, distinct frequencies of ventral striatal local field potential oscillations show coherence with different cortical inputs. The approximately 50 Hz gamma oscillations that normally predominate in awake ventral striatum are coherent with piriform cortex, whereas approximately 80-100 Hz high-gamma oscillations are coherent with frontal cortex. Within striatum, entrainment to gamma rhythms is selective to fast-spiking interneurons, with distinct fast-spiking interneuron populations entrained to different gamma frequencies. Administration of the psychomotor stimulant amphetamine or the dopamine agonist apomorphine causes a prolonged decrease in approximately 50 Hz power and increase in approximately 80-100 Hz power. The same frequency switch is observed for shorter epochs spontaneously in awake, undrugged animals and is consistently provoked for reward receipt. Individual striatal neurons can participate in these brief high-gamma bursts with, or without, substantial changes in firing rate. Switching between discrete oscillatory states may allow different modes of information processing during decision-making and reinforcement-based learning, and may also be an important systems-level process by which stimulant drugs affect cognition and behavior.

  1. Flow and pressure drop fluctuations in a vertical tube subject to low frequency oscillations

    International Nuclear Information System (INIS)

    Pendyala, Rajashekhar; Jayanti, Sreenivas; Balakrishnan, A.R.

    2008-01-01

    Heat transfer and other equipment mounted on off-shore platforms may be subjected to low frequency oscillations. The effect of these oscillations, typically in the frequency range of 0.1-1 Hz, on the flow rate and pressure drop in a vertical tube has been studied experimentally in the present work. A 1.75 m-long vertical tube of inner diameter 0.016 m was mounted on a plate and the whole plate was subjected to oscillations in the vertical plane using a mechanical simulator capable of providing low frequency oscillations in the range of 8-30 cycles/min at an amplitude of 0.125 m. The effect of the oscillations on the flow rate and the pressure drop has been measured systematically in the Reynolds number range 500-6500. The induced flow rate fluctuations were found to be dependent on the Reynolds number with stronger fluctuations at lower Reynolds numbers. The effective friction factor, based on the mean pressure drop and the mean flow rate, was also found to be higher than expected. Correlations have been developed to quantify this Reynolds number dependence

  2. Flow and pressure drop fluctuations in a vertical tube subject to low frequency oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Pendyala, Rajashekhar; Jayanti, Sreenivas [Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Balakrishnan, A.R. [Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)], E-mail: arbala@iitm.ac.in

    2008-01-15

    Heat transfer and other equipment mounted on off-shore platforms may be subjected to low frequency oscillations. The effect of these oscillations, typically in the frequency range of 0.1-1 Hz, on the flow rate and pressure drop in a vertical tube has been studied experimentally in the present work. A 1.75 m-long vertical tube of inner diameter 0.016 m was mounted on a plate and the whole plate was subjected to oscillations in the vertical plane using a mechanical simulator capable of providing low frequency oscillations in the range of 8-30 cycles/min at an amplitude of 0.125 m. The effect of the oscillations on the flow rate and the pressure drop has been measured systematically in the Reynolds number range 500-6500. The induced flow rate fluctuations were found to be dependent on the Reynolds number with stronger fluctuations at lower Reynolds numbers. The effective friction factor, based on the mean pressure drop and the mean flow rate, was also found to be higher than expected. Correlations have been developed to quantify this Reynolds number dependence.

  3. Cannabinoid Receptors Mediate Methamphetamine Induction of High Frequency Gamma Oscillations in the Nucleus Accumbens

    Science.gov (United States)

    Morra, Joshua T.; Glick, Stanley D.; Cheer, Joseph F.

    2012-01-01

    Patients suffering from amphetamine---induced psychosis display repetitive behaviors, partially alleviated by antipsychotics, which are reminiscent of rodent stereotypies. Due to recent evidence implicating endocannabinoid involvement in brain disorders, including psychosis, we studied the effects of endocannabinoid signaling on neuronal oscillations of rats exhibiting methamphetamine stereotypy. Neuronal network oscillations were recorded with multiple single electrode arrays aimed at the nucleus accumbens of freely moving rats. During the experiments, animals were dosed intravenously with the CB1 receptor antagonist rimonabant (0.3 mg/kg) or vehicle followed by an ascending dose regimen of methamphetamine (0.01, 0.1, 1, and 3 mg/kg; cumulative dosing). The effects of drug administration on stereotypy and local gamma oscillations were evaluated. Methamphetamine treatment significantly increased high frequency gamma oscillations (~ 80 Hz). Entrainment of a subpopulation of nucleus accumbens neurons to high frequency gamma was associated with stereotypy encoding in putative fast-spiking interneurons, but not in putative medium spiny neurons. The observed ability of methamphetamine to induce both stereotypy and high frequency gamma power was potently disrupted following CB1 receptor blockade. The present data suggest that CB1 receptor-dependent mechanisms are recruited by methamphetamine to modify striatal interneuron oscillations that accompany changes in psychomotor state, further supporting the link between endocannabinoids and schizophrenia spectrum disorders. PMID:22609048

  4. Investigation on multi-frequency oscillations in InGaAs planar Gunn diode with multiple anode-cathode spacings

    Science.gov (United States)

    Li, B.; Alimi, Y.; Ma, G. L.

    2016-12-01

    Current oscillations in an AlGaAs/InGaAs/AlGaAs-based two-dimensional electron gas (2DEG)-based hetero-structure have been investigated by means of semiconductor device simulation software SILVACO, with an interest on the charge domain formation at large biases. Single-frequency oscillations are generated in planar Gunn diodes with uniform anode and cathode contacts. The oscillation frequency reduces as the applied bias voltage increases. We show that it is possible to create multiple, independent charge domains in a novel Gunn diode structure with designed multiple anode-cathode spacings. This enables simultaneous generation of multiple frequency oscillations in a single planar device, in contrast to traditional vertical Gunn diodes where only single-frequency oscillations can be achieved. More interestingly, frequency mixing in multiple-channel configured Gunn diodes appeared. This proof-of-concept opens up the possibility for realizing compact self-oscillating mixer at millimeter-wave applications.

  5. Fully Numerical Methods for Continuing Families of Quasi-Periodic Invariant Tori in Astrodynamics

    Science.gov (United States)

    Baresi, Nicola; Olikara, Zubin P.; Scheeres, Daniel J.

    2018-01-01

    Quasi-periodic invariant tori are of great interest in astrodynamics because of their capability to further expand the design space of satellite missions. However, there is no general consent on what is the best methodology for computing these dynamical structures. This paper compares the performance of four different approaches available in the literature. The first two methods compute invariant tori of flows by solving a system of partial differential equations via either central differences or Fourier techniques. In contrast, the other two strategies calculate invariant curves of maps via shooting algorithms: one using surfaces of section, and one using a stroboscopic map. All of the numerical procedures are tested in the co-rotating frame of the Earth as well as in the planar circular restricted three-body problem. The results of our numerical simulations show which of the reviewed procedures should be preferred for future studies of astrodynamics systems.

  6. Natural quasy-periodic binary structure with focusing property in near field diffraction pattern.

    Science.gov (United States)

    Mihailescu, Mona

    2010-06-07

    A naturally-inspired phase-only diffractive optical element with a circular symmetry given by a quasi-periodic structure of the phyllotaxis type is presented in this paper. It is generated starting with the characteristic parametric equations which are optimal for the golden angle interval. For some ideal geometrical parameters, the diffracted intensity distribution in near-field has a central closed ring with almost zero intensity inside. Its radius and intensity values depend on the geometry or non-binary phase distribution superposed onto the phyllotaxis geometry. Along propagation axis, the transverse diffraction patterns from the binary-phase diffractive structure exhibit a self-focusing behavior and a rotational motion.

  7. Study of possible chaotic, quasi-periodic and periodic structures in quantum dusty plasma

    International Nuclear Information System (INIS)

    Ghosh, Uday Narayan; Chatterjee, Prasanta; Roychoudhury, Rajkumar

    2014-01-01

    Existence of chaotic, quasi-periodic, and periodic structures of dust-ion acoustic waves is studied in quantum dusty plasmas through dynamical system approach. A system of coupled differential equations is derived from the fluid model and subsequently, variational matrix is obtained. The characteristic equation is obtained at the equilibrium point, and the behavior of nonlinear waves is studied numerically using Runge-Kutta method. The behavior of the dynamical system changes significantly when any of plasma parameters, such as the dust concentration parameter, temperature ratio, or the quantum diffraction parameter, is varied. The change of the characteristic of solution of the system is extensively studied. It is found that the system changes its behavior from chaotic pattern to limit cycle behavior

  8. Quasi-periodic motions in families of dynamical systems order amidst chaos

    CERN Document Server

    Broer, Hendrik W; Sevryuk, Mikhail B

    1996-01-01

    This book is on Kolmogorov-Arnol'd-Moser theory for quasi-periodic tori in dynamical systems. It gives an up-to-date report on the role parameters play for persis- tence of such tori, typically occuring on Cantor sets of positive Hausdorff measure inside phase and parameter space. The cases with preservation of symplectic or volume forms or time-reversal symmetries are included. The concepts of Whitney-smoothness and Diophantine approximation of Cantor sets on submanifolds of Euclidean space are treated, as well as Bruno's theory on analytic continuation of tori. Partly this material is new to Western mathematicians. The reader should be familiar with dynamical systems theory, differen- tial equations and some analysis. The book is directed to researchers, but its entrance level is introductory.

  9. Frequency-Splitting-Free Synchronous Tuning of Close-Coupling Self-Oscillating Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Po Hu

    2016-06-01

    Full Text Available The synchronous tuning of the self-oscillating wireless power transfer (WPT in a close-coupling condition is studied in this paper. The Hamel locus is applied to predict the self-oscillating points in the WPT system. In order to make the system operate stably at the most efficient point, which is the middle resonant point when there are middle resonant and split frequency points caused by frequency-splitting, the receiver (RX rather than the transmitter (TX current is chosen as the self-oscillating feedback variable. The automatic delay compensation is put forward to eliminate the influence of the intrinsic delay on frequency tuning for changeable parameters. In addition, the automatic circuit parameter tuning based on the phase difference is proposed to realize the synchronous tuning of frequency and circuit parameters. The experiments verified that the synchronous tuning proposed in this paper is effective, fully automatic, and more robust than the previous self-oscillating WPT system which use the TX current as the feedback variable.

  10. High-frequency oscillations and seizure activity and in the human anterior nucleus of the thalamus

    Czech Academy of Sciences Publication Activity Database

    Rektor, I.; Doležalová, I.; Chrastina, J.; Jurák, Pavel; Halámek, Josef; Brázdil, M.

    2015-01-01

    Roč. 56, S1 (2015), s. 29-30 ISSN 0013-9580. [International Epilepsy Congress /31./. 05.09.2015-09.09.2015, Istanbul] Institutional support: RVO:68081731 Keywords : high-frequency oscillations * anterior nucleus of the thalamus Subject RIV: FS - Medical Facilities ; Equipment

  11. A 60 GHz Frequency Generator Based on a 20 GHz Oscillator and an Implicit Multiplier

    NARCIS (Netherlands)

    Zong, Z.; Babaie, M.; Staszewski, R.B.

    2016-01-01

    This paper proposes a mm-wave frequency generation technique that improves its phase noise (PN) performance and power efficiency. The main idea is that a fundamental 20 GHz signal and its sufficiently strong third harmonic at 60 GHz are generated simultaneously in a single oscillator. The desired 60

  12. Interictal high-frequency oscillations indicate seizure onset zone in patients with focal cortical dysplasia

    Czech Academy of Sciences Publication Activity Database

    Brázdil, M.; Halámek, Josef; Jurák, Pavel; Daniel, P.; Kuba, R.; Chrastina, J.; Novák, Z.; Rektor, I.

    2010-01-01

    Roč. 90, 1-2 (2010), s. 28-32 ISSN 0920-1211 R&D Projects: GA MŠk ED0017/01/01 Institutional research plan: CEZ:AV0Z20650511 Keywords : epilepsy * hgh-frequency oscillations * intracerebral EEG Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.302, year: 2010

  13. A microwave exciter for Cs frequency standards based on a sapphire-loaded cavity oscillator.

    Science.gov (United States)

    Koga, Y; McNeilage, C; Searls, J H; Ohshima, S

    2001-01-01

    A low noise and highly stable microwave exciter system has been built for Cs atomic frequency standards using a tunable sapphire-loaded cavity oscillator (SLCO), which works at room temperature. This paper discusses the successful implementation of a control system for locking the SLCO to a long-term reference signal and reports an upper limit of the achieved frequency tracking error 6 x 10(-15) at tau = 1 s.

  14. Sinusoidal oscillators with lower gain requirements at higher frequencies based on an explicit tanh(x) nonlinearity

    KAUST Repository

    Elwakil, Ahmed S.

    2009-04-28

    Two novel sinusoidal oscillator structures with an explicit tanh(x) nonlinearity are proposed. The oscillators have the attractive feature: the higher the operating frequency, the lower the necessary gain required to start oscillations. A nonlinear model for the two oscillators is derived and verified numerically. Spice simulations using AMS BiCMOS 0.35 μ model parameters and experimental results are shown. Copyright © 2009 John Wiley & Sons, Ltd.

  15. Input-dependent frequency modulation of cortical gamma oscillations shapes spatial synchronization and enables phase coding.

    Science.gov (United States)

    Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter

    2015-02-01

    Fine-scale temporal organization of cortical activity in the gamma range (∼25-80Hz) may play a significant role in information processing, for example by neural grouping ('binding') and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes

  16. Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies

    DEFF Research Database (Denmark)

    Keiser, G. R.; Seren, H. R.; Strikwerda, Andrew C.

    2014-01-01

    The design of artificial nonlinear materials requires control over internal resonant charge densities and local electric field distributions. We present a MM design with a structurally controllable oscillator strength and local electric field enhancement at terahertz frequencies. The MM consists...... of a split ring resonator (SRR) array stacked above an array of closed conducting rings. An in-plane, lateral shift of a half unit cell between the SRR and closed ring arrays results in an increase of the MM oscillator strength by a factor of 4 and a 40% change in the amplitude of the resonant electric field...

  17. Dynamics of a nonlinear oscillator and a low-amplitude frequency-modulated wave

    International Nuclear Information System (INIS)

    White, R.C.; McNamara, B.

    1987-01-01

    When the frequency of a small amplitude plane wave is varied slowly over a large enough bandwidth and this wave is incident upon a nonlinear oscillator, the resulting perturbed motion can exhibit stochastic behavior. Applications for the study of this system are wide and varied. We apply Lie-transform perturbation theory and mapping techniques in the analysis of the stochastic transition and the consequent induced diffusion in the oscillator phase space. A constant of the motion to the first order in a peturbation parameter is calculated, a mapping approximation is derived, and diffusion calculations from the mapping are given. Copyright 1987 Academic Press, Inc

  18. Dust Storms in North China in 2002: A Case Study of the Low Frequency Oscillation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The low frequency oscillation in both hemispheres and its possible role in the dust weather storm events over North China in 2002 are analyzed as a case study. Results show that the Aleutian Low is linked with the Circumpolar Vortex in the Southern Hemisphere on a 30-60-day oscillation, with a weak Circumpolar Vortex tending to deepen the Aleutian Low which may be helpful for the generation of dust storm events.The possible mechanism behind this is the inter-hemispheric interaction of the mean meridional circulation,with the major variability over East Asia. The zonal mean westerly wind at high latitudes of the Southern Hemisphere in the upper level troposphere may lead that of the Northern Hemisphere, which then impacts the local circulation in the Northern Hemisphere. Thus, the low frequency oscillation teleconnection is one possible linkage in the coupling between the Southern Hemisphere circulation and dust events over North China. However, the interannual variation of the low frequency oscillation is unclear.

  19. Analysis of the analytic formulae application area for free oscillation frequency calculation in isochronous cyclotrons

    International Nuclear Information System (INIS)

    Kiyan, I.N.; Taraszkiewicz, R.

    2005-01-01

    Selection of optimal analytic formulae for calculation of free oscillation frequencies of the particles in isochronous cyclotrons, ν r (r) and ν z (r), and their application area are described. The selected formulae are used in the program BORP SR - Betatron Oscillation Research Program Second Release - written in C++ with the help of MS Visual C++ .NET. The free oscillation frequencies, calculated by using the program, are used for the evaluation of the modeled regimes of the work of the AIC144 isochronous cyclotron. The analytic formulae were selected by comparing the results of the calculations performed by using formulae adduced by T.Stammbach, Y.Jongen - S.Zaremba, V.V.Kolga with the results of the calculations performed by using the CYCLOPS iterative program, developed by M.M.Gordon. The least difference in the calculation results was obtained for the analytic formulae adduced by V.V.Kolga. The ν r (r) calculation difference ranged from -0.5 to 1.5% and the ν z (r) calculation difference ranged from -5 to 4% for the working radii of the isochronous cyclotron. As the beam was obtained, the selected analytic formulae can be successfully used in the program BORP SR for free oscillation frequency calculation during the evaluation of the modeled regimes of the work of different isochronous cyclotrons

  20. Kinetic energy dissipation of a tuning fork immersed in superfluid helium at different frequencies of oscillations

    International Nuclear Information System (INIS)

    Gritsenko, I.A.; Klokol, K.A.; Sokolov, S.S.; Sheshin, G.A.

    2016-01-01

    An experimental study is made of the drag coefficient, which is the characteristics of energy dissipation during oscillations of the tuning forks, immersed in liquid helium. The experiments were performed in the temperature range from 0.1 to 3.5 K covering both the range of a hydrodynamic flow, and the ballistic regime of transfer of thermal excitations of superfluid helium below 0.6 K. It is found that there is the frequency dependence of the drag coefficient in the hydrodynamic limit, when the main dissipation mechanism is the viscous friction of the fluid against the walls of the oscillating body at temperatures above 0.7 K. In this case, the drag coefficient is proportional to the square root of the frequency of oscillation, and its temperature dependence in He II is determined by the respective dependence of the normal component density of the normal component and the viscosity of the fluid. At lower temperatures, the dependence of drag coefficient on the frequency is not available, and the magnitude of the dissipative losses is determined only by the temperature dependence of the density of the normal component. At the same time in the entire range of temperatures value of dissipative losses depends on the geometry of the oscillating body.

  1. Are All Oscillators Created Equal? In vitro Performance Characteristics of Eight High-Frequency Oscillatory Ventilators.

    Science.gov (United States)

    Tingay, David G; John, Jubal; Harcourt, Edward R; Black, Don; Dargaville, Peter A; Mills, John F; Davis, Peter G

    2015-01-01

    The mode of waveform generation and circuit characteristics differ between high-frequency oscillators. It is unknown if this influences performance. To describe the relationships between set and delivered pressure amplitude (x0394;P), and the interaction with frequency and endotracheal tube (ETT) diameter, in eight high-frequency oscillators. Oscillators were evaluated using a 70-ml test lung at 1.0 and 2.0 ml/cm H2O compliance, with mean airway pressures (PAW) of 10 and 20 cm H2O, frequencies of 5, 10 and 15 Hz, and an ETT diameter of 2.5 and 3.5 mm. At each permutation of PAW, frequency and ETT, the set x0394;P was sequentially increased from 15 to 50 cm H2O, or from 20 to 100% maximum amplitude (10% increments) depending on the oscillator design. The x0394;P at the ventilator (x0394;PVENT), airway opening (x0394;PAO) and within the test lung (x0394;PTRACH), and tidal volume (V(T)) at the airway opening were determined at each set x0394;P. In two oscillators the relationships between set and delivered x0394;P were non-linear, with a plateau in x0394;P thresholds noted at all frequencies (Dräger Babylog 8000) or ≥10 Hz (Dräger VN500). In all other devices there was a linear relationship between x0394;PVENT, x0394;PAO and x0394;PTRACH (all r2 >0.93), with differing attenuation of the pressure wave. Delivered V(T) at the different settings tested varied between devices, with some unable to deliver V(T) >3 ml at 15 Hz, and others generating V(T)>20 ml at 5 Hz and a 1:1 inspiratory-to-expiratory time ratio. Clinicians should be aware that modern high-frequency oscillators exhibit important differences in the delivered x0394;P and V(T). © 2015 S. Karger AG, Basel.

  2. Wegner-type Bounds for a Two-particle Lattice Model with a Generic 'Rough' Quasi-periodic Potential

    International Nuclear Information System (INIS)

    Gaume, Martin

    2010-01-01

    In this paper, we consider a class of two-particle tight-binding Hamiltonians, describing pairs of interacting quantum particles on the lattice Z d , d ≥ 1, subject to a common external potential V(x) which we assume quasi-periodic and depending on auxiliary parameters. Such parametric families of ergodic deterministic potentials ('grands ensembles') have been introduced earlier in Chulaevsky (2007), in the framework of single-particle lattice systems, where it was proved that a non-uniform analog of the Wegner bound holds true for a class of quasi-periodic grands ensembles. Using the approach proposed in Chulaevsky and Suhov (Commun Math Phys 283(2):479-489, 2008), we establish volume-dependent Wegner-type bounds for a class of quasi-periodic two-particle lattice systems with a non-random short-range interaction.

  3. Different types of bursting calcium oscillations in non-excitable cells

    International Nuclear Information System (INIS)

    Perc, Matjaz; Marhl, Marko

    2003-01-01

    In the paper different types of bursting Ca 2+ oscillations are presented. We analyse bursting behaviour in four recent mathematical models for Ca 2+ oscillations in non-excitable cells. Separately, regular, quasi-periodic, and chaotic bursting Ca 2+ oscillations are classified into several subtypes. The classification is based on the dynamics of separated fast and slow subsystems, the so-called fast-slow burster analysis. For regular bursting Ca 2+ oscillations two types of bursting are specified: Point-Point and Point-Cycle bursting. In particular, the slow passage effect, important for the Hopf-Hopf and SubHopf-SubHopf bursting subtypes, is explained by local divergence calculated for the fast subsystem. Quasi-periodic bursting Ca 2+ oscillations can be found in only one of the four studied mathematical models and appear via a homoclinic bifurcation with a homoclinic torus structure. For chaotic bursting Ca 2+ oscillations, we found that bursting patterns resulting from the period doubling root to chaos considerably differ from those appearing via intermittency and have to be treated separately. The analysis and classification of different types of bursting Ca 2+ oscillations provides better insight into mechanisms of complex intra- and intercellular Ca 2+ signalling. This improves our understanding of several important biological phenomena in cellular signalling like complex frequency-amplitude signal encoding and synchronisation of intercellular signal transduction between coupled cells in tissue

  4. Damping of Low Frequency Power System Oscillations with Wind Power Plants

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz

    of wind power plants on power system low frequency oscillations and identify methods and limitations for potential contribution to the damping of such oscillations. Consequently, the first part of the studies focuses on how the increased penetration of wind power into power systems affects their natural...... oscillatory performance. To do so, at first a generic test grid displaying a complex inter-area oscillation pattern is introduced. After the evaluation of the test grid oscillatory profile for various wind power penetration scenarios, it is concluded that full-converter based wind power plant dynamics do......-synchronous power source. The main body of the work is devoted to the damping control design for wind power plants with focus on the impact of such control on the plant operation. It can be expected that the referred impact is directly proportional to the control effort, which for power processing devices should...

  5. Numerical prediction of the natural frequency of an Oscillating Water Column operating under resonant conditions

    Directory of Open Access Journals (Sweden)

    Marco Torresi

    2016-12-01

    Full Text Available Among the different technologies developed in order to harness wave energy, the Oscillating Water Column devices are the most accredited for an actual diffusion. Recently, Boccotti has patented the REWEC1 (REsonant sea Wave Energy Converter solution 1, a submerged breakwater that performs an active coast protection, embedding an Oscillating Water Column device, which is capable of operating under resonant conditions with that sea state, which gives the highest yearly energy contribution. The REWEC1 dynamic behavior can be approximated by means of a mass-spring-damper system. According to this approximation, a criterion for evaluating the oscillating natural frequency of the REWEC1 has been derived. This criterion has been validated against both experimental results and computational fluid dynamics simulations, performed on a REWEC1 laboratory-scale model. The numerical simulations have shown a good agreement between measurements and predictions.

  6. On the Origin of Quasi-Periodic Temperature Variations in Kun-1 Well (Kunashir Island)

    Science.gov (United States)

    Demezhko, D. Yu.; Yurkov, A. K.

    2017-12-01

    The results of temperature monitoring in the 300-m kun-1 well (Kunashir Island) in 2011-2015 are considered. Quasi-periodic temperature variations with an amplitude of up to 0.3°C and a variation period of 14-26 h were added from November 2011 to the previously observed temperature variations caused by tidal deformations, free thermal convection, and deformation processes associated with the preparation and occurrence of tectonic earthquakes. Five cycles of such variations lasting from 2 to 6 months have been recorded. Each cycle was initiated by an earthquake with magnitude M > 2.5log( R), where R is the epicentral distance (km). According to their characteristics, the variations are unique and have not been described previously. Assumptions have been made about the possible connection of the registered variations with the inertial currents of the ocean or with hydrothermal processes in the Earth's subsurface. The phenomenon discovered requires further study not only as an object of fundamental science, but also as a feature of an earlier unknown type of geodynamic activity that can be a significant threat to the regional population.

  7. A MODEL FOR (QUASI-)PERIODIC MULTIWAVELENGTH PHOTOMETRIC VARIABILITY IN YOUNG STELLAR OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Kesseli, Aurora Y. [Boston University, 725 Commonwealth Ave, Boston, MA 02215 (United States); Petkova, Maya A.; Wood, Kenneth; Gregory, Scott G. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9AD (United Kingdom); Whitney, Barbara A. [Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St, Madison, WI 53706 (United States); Hillenbrand, L. A. [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Stauffer, J. R.; Morales-Calderon, M.; Rebull, L. [Spitzer Science Center, California Institute of Technology, CA 91125 (United States); Alencar, S. H. P., E-mail: aurorak@bu.com [Departamento de Física—ICEx—UFMG, Av. Antônio Carlos, 6627, 30270-901, Belo Horizonte, MG (Brazil)

    2016-09-01

    We present radiation transfer models of rotating young stellar objects (YSOs) with hot spots in their atmospheres, inner disk warps, and other three-dimensional effects in the nearby circumstellar environment. Our models are based on the geometry expected from magneto-accretion theory, where material moving inward in the disk flows along magnetic field lines to the star and creates stellar hot spots upon impact. Due to rotation of the star and magnetosphere, the disk is variably illuminated. We compare our model light curves to data from the Spitzer YSOVAR project to determine if these processes can explain the variability observed at optical and mid-infrared wavelengths in young stars. We focus on those variables exhibiting “dipper” behavior that may be periodic, quasi-periodic, or aperiodic. We find that the stellar hot-spot size and temperature affects the optical and near-infrared light curves, while the shape and vertical extent of the inner disk warp affects the mid-IR light curve variations. Clumpy disk distributions with non-uniform fractal density structure produce more stochastic light curves. We conclude that magneto-accretion theory is consistent with certain aspects of the multiwavelength photometric variability exhibited by low-mass YSOs. More detailed modeling of individual sources can be used to better determine the stellar hot-spot and inner disk geometries of particular sources.

  8. Quasi-periodic recurrence of large earthquakes on the southern San Andreas fault

    Science.gov (United States)

    Scharer, Katherine M.; Biasi, Glenn P.; Weldon, Ray J.; Fumal, Tom E.

    2010-01-01

    It has been 153 yr since the last large earthquake on the southern San Andreas fault (California, United States), but the average interseismic interval is only ~100 yr. If the recurrence of large earthquakes is periodic, rather than random or clustered, the length of this period is notable and would generally increase the risk estimated in probabilistic seismic hazard analyses. Unfortunately, robust characterization of a distribution describing earthquake recurrence on a single fault is limited by the brevity of most earthquake records. Here we use statistical tests on a 3000 yr combined record of 29 ground-rupturing earthquakes from Wrightwood, California. We show that earthquake recurrence there is more regular than expected from a Poisson distribution and is not clustered, leading us to conclude that recurrence is quasi-periodic. The observation of unimodal time dependence is persistent across an observationally based sensitivity analysis that critically examines alternative interpretations of the geologic record. The results support formal forecast efforts that use renewal models to estimate probabilities of future earthquakes on the southern San Andreas fault. Only four intervals (15%) from the record are longer than the present open interval, highlighting the current hazard posed by this fault.

  9. Extraordinary Effects in Quasi-Periodic Gold Nanocavities: Enhanced Transmission and Polarization Control of Cavity Modes.

    Science.gov (United States)

    Dhama, Rakesh; Caligiuri, Vincenzo; Petti, Lucia; Rashed, Alireza R; Rippa, Massimo; Lento, Raffaella; Termine, Roberto; Caglayan, Humeyra; De Luca, Antonio

    2018-01-23

    Plasmonic quasi-periodic structures are well-known to exhibit several surprising phenomena with respect to their periodic counterparts, due to their long-range order and higher rotational symmetry. Thanks to their specific geometrical arrangement, plasmonic quasi-crystals offer unique possibilities in tailoring the coupling and propagation of surface plasmons through their lattice, a scenario in which a plethora of fascinating phenomena can take place. In this paper we investigate the extraordinary transmission phenomenon occurring in specifically patterned Thue-Morse nanocavities, demonstrating noticeable enhanced transmission, directly revealed by near-field optical experiments, performed by means of a scanning near-field optical microscope (SNOM). SNOM further provides an intuitive picture of confined plasmon modes inside the nanocavities and confirms that localization of plasmon modes is based on size and depth of nanocavities, while cross talk between close cavities via propagating plasmons holds the polarization response of patterned quasi-crystals. Our performed numerical simulations are in good agreement with the experimental results. Thus, the control on cavity size and incident polarization can be used to alter the intensity and spatial properties of confined cavity modes in such structures, which can be exploited in order to design a plasmonic device with customized optical properties and desired functionalities, to be used for several applications in quantum plasmonics.

  10. Detection of Quasi-Periodic Pulsations in Solar EUV Time Series

    Science.gov (United States)

    Dominique, M.; Zhukov, A. N.; Dolla, L.; Inglis, A.; Lapenta, G.

    2018-04-01

    Quasi-periodic pulsations (QPPs) are intrinsically connected to the mechanism of solar flares. They are regularly observed in the impulsive phase of flares since the 1970s. In the past years, the studies of QPPs regained interest with the advent of a new generation of soft X-ray/extreme ultraviolet radiometers that pave the way for statistical surveys. Since the amplitude of QPPs in these wavelengths is rather small, detecting them implies that the overall trend of the time series needs to be removed before applying any Fourier or wavelet transform. This detrending process is known to produce artificial detection of periods that must then be distinguished from real ones. In this paper, we propose a set of criteria to help identify real periods and discard artifacts. We apply these criteria to data taken by the Extreme Ultraviolet Variability Experiment (EVE)/ESP onboard the Solar Dynamics Observatory (SDO) and the Large Yield Radiometer (LYRA) onboard the PRoject for On-Board Autonomy 2 (PROBA2) to search for QPPs in flares stronger than M5.0 that occurred during Solar Cycle 24.

  11. Study of deformed quasi-periodic Fibonacci two dimensional photonic crystals

    International Nuclear Information System (INIS)

    Abdelaziz, K Ben; Bouazzi, Y; Kanzari, M

    2015-01-01

    Quasi-periodic photonic crystals are not periodic structures. These structures are generally obtained by the arrangement of layers according to a recursive rule. Properties of these structures make more attention the researchers especially in the case when applying defects. So, photonic crystals with defects present localized modes in the band gap leading to many potential applications such light localization.The objective of this work is to study by simulation the effect of the global deformation introduced in 2D quasiperiodic photonic crystals. Deformation was introduced by applying a power law, so that the coordinates y of the deformed object were determined through the coordinates x of the non-deformed structure in accordance with the following rule: y = x 1+k . Here k is the coefficient defining the deformation. Therefore, the objective is to study the effect of this deformation on the optical properties of 2D quasiperiodic photonic crystals, constructed by Fibonacci generation. An omnidirectional mirror was obtained for optimization Fibonacci iteration in a part of visible spectra. (paper)

  12. A daily oscillation in the fundamental frequency and amplitude of harmonic syllables of zebra finch song.

    Directory of Open Access Journals (Sweden)

    William E Wood

    Full Text Available Complex motor skills are more difficult to perform at certain points in the day (for example, shortly after waking, but the daily trajectory of motor-skill error is more difficult to predict. By undertaking a quantitative analysis of the fundamental frequency (FF and amplitude of hundreds of zebra finch syllables per animal per day, we find that zebra finch song follows a previously undescribed daily oscillation. The FF and amplitude of harmonic syllables rises across the morning, reaching a peak near mid-day, and then falls again in the late afternoon until sleep. This oscillation, although somewhat variable, is consistent across days and across animals and does not require serotonin, as animals with serotonergic lesions maintained daily oscillations. We hypothesize that this oscillation is driven by underlying physiological factors which could be shared with other taxa. Song production in zebra finches is a model system for studying complex learned behavior because of the ease of gathering comprehensive behavioral data and the tractability of the underlying neural circuitry. The daily oscillation that we describe promises to reveal new insights into how time of day affects the ability to accomplish a variety of complex learned motor skills.

  13. North-south asymmetry of ultra-low-frequency oscillations of Earth's electromagnetic field

    Science.gov (United States)

    Guglielmi, Anatol; Klain, Boris; Potapov, Alexander

    2017-12-01

    In the paper, we present the result of an experimental study of north-south asymmetry of ultralow-frequency electromagnetic oscillations IPCL. This study is based on observations made at Mirny Observatory (Antarctica). IPCLs are excited in the dayside sector of the auroral oval in the range 3-10 min periods and represent one of the most powerful types of oscillations of Earth's magnetosphere. These oscillations were discovered in the 1970s during IPhE AS USSR polar expeditions organized by Prof. V.A. Troitskaya. We have shown that IPCL activity in Mirny depends on the inclination (north-south asymmetry) of interplanetary magnetic field (IMF) lines to the plane of the geomagnetic equator before the front of the magnetosphere. The result suggests a controlling exposure of IMF on the magnetospheric oscillations and gives rise to the hypothesis that IPCLs are forced oscillations of a nonlinear dynamical system whose major structural elements are dayside polar cusps. The paper is dedicated to the memory of Professor V.A. Troitskaya (1917-2010).

  14. Servo-controlled pneumatic pressure oscillator for respiratory impedance measurements and high-frequency ventilation.

    Science.gov (United States)

    Kaczka, David W; Lutchen, Kenneth R

    2004-04-01

    The ability to provide forced oscillatory excitation of the respiratory system can be useful in mechanical impedance measurements as well as high frequency ventilation (HFV). Experimental systems currently used for generating forced oscillations are limited in their ability to provide high amplitude flows or maintain the respiratory system at a constant mean pressure during excitation. This paper presents the design and implementation of a pneumatic pressure oscillator based on a proportional solenoid valve. The device is capable of providing forced oscillatory excitations to the respiratory system over a bandwidth suitable for mechanical impedance measurements and HVF. It delivers high amplitude flows (> 1.4 l/s) and utilizes a servo-control mechanism to maintain a load at a fixed mean pressure during simultaneous oscillation. Under open-loop conditions, the device exhibited a static hysteresis of approximately 7%, while its dynamic magnitude and phase responses were flat out to 10 Hz. Broad-band measurement of total harmonic distortion was approximately 19%. Under closed-loop conditions, the oscillator was able to maintain a mechanical test load at both positive and negative mean pressures during oscillatory excitations from 0.1 to 10.0 Hz. Impedance of the test load agreed closely with theoretical predictions. We conclude that this servo-controlled oscillator can be a useful tool for respiratory impedance measurements as well as HFV.

  15. Investigation of low-frequency-oscillating water flow in metal foam with 10 pores per inch

    Science.gov (United States)

    Bağcı, Ö.; Arbak, A.; De Paepe, M.; Dukhan, N.

    2018-01-01

    In this study, oscillating water flow in metal foam with open cells is investigated experimentally. The metal foam sample has a porosity of 88% and 10 pores. The water was oscillated in the test section with three frequencies between 0.116 Hz and 0.348 Hz, which are considered low for water oscillation, and three flow displacements ranging between 74.35 mm and 111.53 mm. The combinations of frequencies of displacements were studied for their impacts of dimensional and non-dimensional pressure loss quantities. To this purpose, friction factor was correlated as a function of kinetic Reynolds number. The same metal foam sample was studied by exposing it to steady-state water flow to investigate its permeability and drag coefficient in low-velocity flow regimes. The friction factor distribution for oscillating flow was found to be over that found for steady state. The outcomes of the study are important for studying heat transfer under the same flow conditions.

  16. Low Frequency Plasma Oscillations in a 6-kW Magnetically Shielded Hall Thruster

    Science.gov (United States)

    Jorns, Benjamin A.; Hofery, Richard R.

    2013-01-01

    The oscillations from 0-100 kHz in a 6-kW magnetically shielded thruster are experimen- tally characterized. Changes in plasma parameters that result from the magnetic shielding of Hall thrusters have the potential to significantly alter thruster transients. A detailed investigation of the resulting oscillations is necessary both for the purpose of determin- ing the underlying physical processes governing time-dependent behavior in magnetically shielded thrusters as well as for improving thruster models. In this investigation, a high speed camera and a translating ion saturation probe are employed to examine the spatial extent and nature of oscillations from 0-100 kHz in the H6MS thruster. Two modes are identified at 8 kHz and 75-90 kHz. The low frequency mode is azimuthally uniform across the thruster face while the high frequency oscillation is concentrated close to the thruster centerline with an m = 1 azimuthal dependence. These experimental results are discussed in the context of wave theory as well as published observations from an unshielded variant of the H6MS thruster.

  17. The forgotten role of central volume in low frequency oscillations of heart rate variability.

    Directory of Open Access Journals (Sweden)

    Manuela Ferrario

    Full Text Available The hypothesis that central volume plays a key role in the source of low frequency (LF oscillations of heart rate variability (HRV was tested in a population of end stage renal disease patients undergoing conventional hemodialysis (HD treatment, and thus subject to large fluid shifts and sympathetic activation. Fluid overload (FO in 58 chronic HD patients was assessed by whole body bioimpedance measurements before the midweek HD session. Heart Rate Variability (HRV was measured using 24-hour Holter electrocardiogram recordings starting before the same HD treatment. Time domain and frequency domain analyses were performed on HRV signals. Patients were retrospectively classified in three groups according to tertiles of FO normalized to the extracellular water (FO/ECW%. These groups were also compared after stratification by diabetes mellitus. Patients with the low to medium hydration status before the treatment (i.e. 1st and 2nd FO/ECW% tertiles showed a significant increase in LF power during last 30 min of HD compared to dialysis begin, while no significant change in LF power was seen in the third group (i.e. those with high pre-treatment hydration values. In conclusion, several mechanisms can generate LF oscillations in the cardiovascular system, including baroreflex feedback loops and central oscillators. However, the current results emphasize the role played by the central volume in determining the power of LF oscillations.

  18. The forgotten role of central volume in low frequency oscillations of heart rate variability.

    Science.gov (United States)

    Ferrario, Manuela; Moissl, Ulrich; Garzotto, Francesco; Cruz, Dinna N; Tetta, Ciro; Signorini, Maria G; Ronco, Claudio; Grassmann, Aileen; Cerutti, Sergio; Guzzetti, Stefano

    2015-01-01

    The hypothesis that central volume plays a key role in the source of low frequency (LF) oscillations of heart rate variability (HRV) was tested in a population of end stage renal disease patients undergoing conventional hemodialysis (HD) treatment, and thus subject to large fluid shifts and sympathetic activation. Fluid overload (FO) in 58 chronic HD patients was assessed by whole body bioimpedance measurements before the midweek HD session. Heart Rate Variability (HRV) was measured using 24-hour Holter electrocardiogram recordings starting before the same HD treatment. Time domain and frequency domain analyses were performed on HRV signals. Patients were retrospectively classified in three groups according to tertiles of FO normalized to the extracellular water (FO/ECW%). These groups were also compared after stratification by diabetes mellitus. Patients with the low to medium hydration status before the treatment (i.e. 1st and 2nd FO/ECW% tertiles) showed a significant increase in LF power during last 30 min of HD compared to dialysis begin, while no significant change in LF power was seen in the third group (i.e. those with high pre-treatment hydration values). In conclusion, several mechanisms can generate LF oscillations in the cardiovascular system, including baroreflex feedback loops and central oscillators. However, the current results emphasize the role played by the central volume in determining the power of LF oscillations.

  19. Time-resolved Evolution of Low Frequency Electrostatic Fluctuations during Slow L-H Transition at the Boundary Plasma of HL-2A Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J.; Zhao, K. J.; Li, Y. G.; Song, X. M.; Yang, Q. W.; Ding, X. T.; Duan, X. R.; Liu, Y., E-mail: chengj@swip.ac.cn [Southwestern Institute of Physics, Chengdu (China); Huang, Z. H.; Yan, L. W.; Dong, J. Q.; Hong, W. Y.; Kong, D. F.; Lan, T.; Liu, A. D. [Southwestern Institute of Physics, Hefei (China); Xu, M. [CMTFO and CER and MAE Department, UCSD, La Jolla (United States)

    2012-09-15

    Full text: A quasi-period electrostatic oscillation with 2 - 3 kHz is observed using Langmuir probe array during slow L-H transition in edge plasma of HL-2A Tokomak. This low frequency oscillation radially propagates inwards with 0.3 - 0.6 km/s inside the separatrix about 3 - 8 mm, and it appears on potential, density, electron pressure and Reynolds stress gradients. The dP{sub e}/dr fluctuation amplitude can reach 30 - 40%. The dR{sub s}/dr is prior to E{sub r} fluctuation about {pi}/2, indicating the existence of nonlinear interaction between them. In near SOL, this low frequency oscillation also appears in potentials, E{sub r} and density fluctuation, suggesting a significant correlation among them at edge and near SOL plasma. This quasi-period oscillation might be correlated with mean flow or low frequency zonal flow, and the latter might set a condition for the former developing, implying a competitive process between them. The competition characterized by a quasi-period oscillation seems to determine the L-H transition. (author)

  20. Persistent hyperdopaminergia decreases the peak frequency of hippocampal theta oscillations during quiet waking and REM sleep.

    Directory of Open Access Journals (Sweden)

    Kafui Dzirasa

    Full Text Available Long-term changes in dopaminergic signaling are thought to underlie the pathophysiology of a number of psychiatric disorders. Several conditions are associated with cognitive deficits such as disturbances in attention processes and learning and memory, suggesting that persistent changes in dopaminergic signaling may alter neural mechanisms underlying these processes. Dopamine transporter knockout (DAT-KO mice exhibit a persistent five-fold increase in extracellular dopamine levels. Here, we demonstrate that DAT-KO mice display lower hippocampal theta oscillation frequencies during baseline periods of waking and rapid-eye movement sleep. These altered theta oscillations are not reversed via treatment with the antidopaminergic agent haloperidol. Thus, we propose that persistent hyperdopaminergia, together with secondary alterations in other neuromodulatory systems, results in lower frequency activity in neural systems responsible for various cognitive processes.

  1. Damping of Inter-Area Low Frequency Oscillation Using an Adaptive Wide-Area Damping Controller

    DEFF Research Database (Denmark)

    Yao, Wei; Jiang, L.; Fang, Jiakun

    2013-01-01

    This paper presents an adaptive wide-area damping controller (WADC) based on generalized predictive control (GPC) and model identification for damping the inter-area low frequency oscillations in large-scale inter-connected power system. A recursive least-squares algorithm (RLSA) with a varying...... forgetting factor is applied to identify online the reduced-order linearlized model which contains dominant inter-area low frequency oscillations. Based on this linearlized model, the generalized predictive control scheme considering control output constraints is employed to obtain the optimal control signal...... conditions and different disturbances, but also has better robustness against to the time delay existing in the remote signals. The comparison studies with the conventional lead-lag WADC are also provided....

  2. Direct measurement of density oscillation induced by a radio-frequency wave

    International Nuclear Information System (INIS)

    Yamada, T.; Ejiri, A.; Shimada, Y.; Oosako, T.; Tsujimura, J.; Takase, Y.; Kasahara, H.

    2007-01-01

    An O-mode reflectometer at a frequency of 25.85 GHz was applied to plasmas heated by the high harmonic fast wave (21 MHz) in the TST-2 spherical tokamak. An oscillation in the phase of the reflected microwave in the rf range was observed directly for the first time. In TST-2, the rf (250 kW) induced density oscillation depends mainly on the poloidal rf electric field, which is estimated to be about 0.2 kV/m rms by the reflectometer measurement. Sideband peaks separated in frequency by ion cyclotron harmonics from 21 MHz, and peaks at ion cyclotron harmonics which are suggested to be quasimodes generated by parametric decay, were detected

  3. Oscillations of non-isothermal N/S boundary with a high frequency and large amplitude

    International Nuclear Information System (INIS)

    Bezuglyj, A.I.; Shklovskij, V.A.

    2016-01-01

    Within the framework of the phenomenological approach based on the heat balance equation and the dependence of the critical temperature of the superconductor on the current value theoretically investigated the impact of high-frequency current of high amplitude and arbitrary shape on the non-isothermal balance of the oscillating N/S interface in a long superconductor. We introduce a self-consistent average temperature field of rapidly oscillating non-isothermal N/S boundary (heat kink), which allows to go beyond the well-known concept of mean-square heating and consider the impact of current waveform. With regard to experiments on the effects of microwave high-power radiation on the current-voltage characteristics (CVC) of superconducting films, we give the classification of the families of the CVC for inhomogeneous superconductors which carry a current containing a high frequency component of large amplitude. Several characteristics have hysteresis of thermal nature.

  4. Electric-field assisted spin torque nano-oscillator and binary frequency shift keying modulation

    Science.gov (United States)

    Zhang, Xiangli; Chen, Hao-Hsuan; Zhang, Zongzhi; Liu, Yaowen

    2018-04-01

    Electric-controlled magnetization precession introduces technologically relevant possibility for developing spin torque nano-oscillators (STNO) with potential applications in microwave emission. Using the perpendicularly magnetized magnetic tunnel junction (MTJ), we show that the magnetization oscillation frequency can be tuned by the co-action of electric field and spin polarized current. The dynamical phase diagram of MTJ-based STNO is analytically predicted through coordinate transformation from the laboratory frame to the rotation frame, by which the nonstationary out-of-plane magnetization precession process is therefore transformed into the stationary process in the rotation frame. Furthermore, using this STNO as a microwave source, we numerically demonstrate that the bit signal can be transmitted by a binary frequency shift keying (BFSK) modulation technique. The BFSK scheme shows good modulation features with no transient state.

  5. Impact of excitation waveform on the frequency stability of electrostatically-actuated micro-electromechanical oscillators

    Science.gov (United States)

    Juillard, J.; Brenes, A.

    2018-05-01

    In this paper, the frequency stability of high-Q electrostatically-actuated MEMS oscillators with cubic restoring forces, and its relation with the amplitude, the phase and the shape of the excitation waveform, is studied. The influence on close-to-the carrier frequency noise of additive processes (such as thermomechanical noise) or parametric processes (bias voltage fluctuations, feedback phase fluctuations, feedback level fluctuations) is taken into account. It is shown that the optimal operating conditions of electrostatically-actuated MEMS oscillators are highly waveform-dependent, a factor that is largely overlooked in the existing literature. This simulation-based study covers the cases of harmonic and pulsed excitation of a parallel-plate capacitive MEMS resonator.

  6. Power system low frequency oscillation mode estimation using wide area measurement systems

    Directory of Open Access Journals (Sweden)

    Papia Ray

    2017-04-01

    Full Text Available Oscillations in power systems are triggered by a wide variety of events. The system damps most of the oscillations, but a few undamped oscillations may remain which may lead to system collapse. Therefore low frequency oscillations inspection is necessary in the context of recent power system operation and control. Ringdown portion of the signal provides rich information of the low frequency oscillatory modes which has been taken into analysis. This paper provides a practical case study in which seven signal processing based techniques i.e. Prony Analysis (PA, Fast Fourier Transform (FFT, S-Transform (ST, Wigner-Ville Distribution (WVD, Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT, Hilbert-Huang Transform (HHT and Matrix Pencil Method (MPM were presented for estimating the low frequency modes in a given ringdown signal. Preprocessing of the signal is done by detrending. The application of the signal processing techniques is illustrated using actual wide area measurement systems (WAMS data collected from four different Phasor Measurement Unit (PMU i.e. Dadri, Vindyachal, Kanpur and Moga which are located near the recent disturbance event at the Northern Grid of India. Simulation results show that the seven signal processing technique (FFT, PA, ST, WVD, ESPRIT, HHT and MPM estimates two common oscillatory frequency modes (0.2, 0.5 from the raw signal. Thus, these seven techniques provide satisfactory performance in determining small frequency modes of the signal without losing its valuable property. Also a comparative study of the seven signal processing techniques has been carried out in order to find the best one. It was found that FFT and ESPRIT gives exact frequency modes as compared to other techniques, so they are recommended for estimation of low frequency modes. Further investigations were also carried out to estimate low frequency oscillatory mode with another case study of Eastern Interconnect Phasor Project

  7. Effect of the imposition of low-frequency mechanical oscillations on the extraction efficiency

    Directory of Open Access Journals (Sweden)

    Ju. I. Shitshatskij

    2018-01-01

    Full Text Available It was shown that the effective transfer of the target component from the raw material occurs under a turbulent regime conditions provided by applying mechanical oscillations to a two-phase system: solid-liquid. Due to this hydrodynamic situation, not only external but also internal diffusion is intensified in the extractor. The method for intensifying the extraction process using low-frequency mechanical oscillations in the case when the vibrational motion is performed by a device with a cheese whey containing suspended porous particles was studied in the work. The experiments were carried out on the laboratory equipment with a supply to a two-phase energy system from the outside, the source of which in the first case was an electromagnet, in the second - a mechanical drive with an eccentric device. Schemes of equipment were also presented in the work. The regime parameters varied in the following ranges: temperature - 40-60 оС, oscillation frequency - 30 - 40 osc / s, amplitude - 1 - 6.5 mm. In the extraction process, the current concentration of extractive substances was obtained from the material balance equation. Extraction curves obtained from experimental data were presented. Increasing extraction of extractive substances in time was observed, it being more intense with the increasing frequency of oscillations. It was found that the growth of the amplitude does not have a significant influence on the change of these indices. The intensity of oscillations was up to 260 mm / s. At the same time, the yield of extractive substances in particular from lupine in the form of grits was 25%, and the duration of the process was 18 min. The experiments showed that the application of the chosen extraction method results into a significant acceleration of the process (up to 2.5 times as compared to extraction in a dense layer. It is concluded that due to the imposition of mechanical oscillations on the surface and in the pores of the solid phase

  8. Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities

    International Nuclear Information System (INIS)

    Yang, Jinghui; Gu, Tingyi; Zheng, Jiangjun; Wei Wong, Chee; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee

    2014-01-01

    We report temporal and spectral domain observation of regenerative oscillation in monolithic silicon heterostructured photonic crystals cavities with high quality factor to mode volume ratios (Q/V). The results are interpreted by nonlinear coupled mode theory (CMT) tracking the dynamics of photon, free carrier population, and temperature variations. We experimentally demonstrate effective tuning of the radio frequency tones by laser-cavity detuning and laser power levels, confirmed by the CMT simulations with sensitive input parameters

  9. Update on the mechanisms and roles of high-frequency oscillations in seizures and epileptic disorders

    Czech Academy of Sciences Publication Activity Database

    Jiruška, Přemysl; Alvarado-Rojas, C.; Schevon, C.A.; Staba, R.; Stacey, W.; Wendling, F.; Avoli, M.

    2017-01-01

    Roč. 58, č. 8 (2017), s. 1330-1339 ISSN 0013-9580 R&D Projects: GA MZd(CZ) NV15-29835A; GA ČR(CZ) GA14-02634S Institutional support: RVO:67985823 Keywords : high-frequency oscillations * epilepsy * ripples * fast ripples * ictogenesis * epileptogenesis * seizures * interneurons * computer models Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 5.295, year: 2016

  10. Intracerebrally recorded high frequency oscillations: Simple visual assessment versus automated detection

    Czech Academy of Sciences Publication Activity Database

    Pail, M.; Halámek, Josef; Daniel, P.; Kuba, R.; Tyrlíková, I.; Chrastina, J.; Jurák, Pavel; Rektor, I.; Brázdil, M.

    2013-01-01

    Roč. 124, č. 10 (2013), s. 1935-1942 ISSN 1388-2457 R&D Projects: GA ČR GAP103/11/0933; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : High frequency oscillations * Spikes * Ripples * Temporal lobe epilepsy * Extratemporal lobe epilepsy * Seizure onset zone * Epileptogenic zone Subject RIV: FH - Neurology Impact factor: 2.979, year: 2013

  11. A dual resonant rectilinear-to-rotary oscillation converter for low frequency broadband electromagnetic energy harvesting

    Science.gov (United States)

    Deng, Wei; Wang, Ya

    2017-09-01

    This paper reports a dual resonant rectilinear-to-rotary oscillation converter (RROC) for low frequency broadband electromagnetic energy harvesting from ambient vibrations. An approximate theoretical model has been established to integrate the electromechanical coupling into a comprehensive electromagnetic-dynamic model of the dual resonant RROC. Numerical simulation has proved the nature of dual resonances by revealing that both the rectilinear resonance and the rotary resonance could be achieved when the stand-alone rectilinear oscillator (RLO) and the stand-alone rotary oscillator (RTO) were excited independently. Simulation on the magnetically coupled RROC has also shown that the rectilinear resonance and the rotary resonance could be obtained simultaneously in the low-frequency region (2-14 Hz) with well-defined restoring torque (M r ) and the initial rotation angle of the RLO (ψ). The magnetic interaction patterns between the rectilinear and the RTOs have been categorized based on aforementioned simulation results. Both simulation and experimental results have demonstrated broadband output attributing from the dual resonances. Experimental results have also indicated that the RROC could have wide bandwidth in a much lower frequency region (2-8 Hz) even without the rotary resonance as long as the system parameters are carefully tuned. Parameter analysis on different values of M r and ψ are experimentally carried out to provide a quantitative guidance of designing the RROC to achieve an optimal power density.

  12. ANALYSIS OF LOW-FREQUENCY OSCILLATIONS FOR THE SOUTH CHINA SEA SUMMER MONSOON IN 1998

    Institute of Scientific and Technical Information of China (English)

    徐国强; 朱乾根

    2003-01-01

    With NCEP/NCAR reanalysis daily data and SST for 1998, the paper investigates the features of summer monsoon low-frequency oscillation (LFO) over the South China Sea (SCS). Results show that SCS summer monsoon onset is enhanced because of its LFO. Low-frequency (LF) low-level convergence (divergence) region of SCS is in the LF positive (negative) rainfall area. LFO of the SCS region migrates from south to north in the meridian and from west to east in zonal direction. LF divergence of SCS is vertically compensating to each other between high and low level.

  13. Quasi-periodic fractal patterns in geomagnetic reversals, geological activity, and astronomical events

    International Nuclear Information System (INIS)

    Puetz, Stephen J.; Borchardt, Glenn

    2015-01-01

    Highlights: • Spectral analysis indicates similar harmonics in astronomical and geological events. • Quasi-periodic cycles occur in tripling patterns of 30.44, 91.33, 274, 822, and 2466 myr. • Similar astro- and geo-phases suggest that the cycles develop from a common source. - Abstract: The cause of geomagnetic reversals remains a geological mystery. With the availability of improved paleomagnetic databases in the past three years, a reexamination of possible periodicity in the geomagnetic reversal rate seems warranted. Previous reports of cyclicity in the reversal rate, along with the recent discovery of harmonic cycles in a variety of natural events, sparked our interest in reevaluating possible patterns in the reversal rate. Here, we focus on geomagnetic periodicity, but also analyze paleointensity, zircon formation, star formation, quasar formation, supernova, and gamma ray burst records to determine if patterns that occur in other types of data have similar periodicity. If so, then the degree of synchronization will indicate likely causal relationships with geomagnetic reversals. To achieve that goal, newly available time-series records from these disciplines were tested for cyclicity by using spectral analysis and time-lagged cross-correlation techniques. The results showed evidence of period-tripled cycles of 30.44, 91.33, 274, 822, and 2466 million years, corresponding to the periodicity from a new Universal Cycle model. Based on the results, a fractal model of the universe is hypothesized in which sub-electron fractal matter acts as a dynamic medium for large-scale waves that cause the cycles in astronomical and geological processes. According to this hypothesis, the medium of sub-electron fractal matter periodically compresses and decompresses according to the standard laws for mechanical waves. Consequently, the compressions contribute to high-pressure environments and vice versa for the decompressions, which are hypothesized to cause the

  14. A LARGE-SCALE SEARCH FOR EVIDENCE OF QUASI-PERIODIC PULSATIONS IN SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Inglis, A. R.; Ireland, J.; Dennis, B. R. [Solar Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hayes, L; Gallagher, P. [Trinity College Dublin, Dublin (Ireland)

    2016-12-20

    The nature of quasi-periodic pulsations (QPP) in solar flares is poorly constrained, and critically the general prevalence of such signals in solar flares is unknown. Therefore, we perform a large-scale search for evidence of signals consistent with QPP in solar flares, focusing on the 1–300 s timescale. We analyze 675 M- and X-class flares observed by the Geostationary Operational Environmental Satellite (GOES) series in 1–8 Å soft X-rays between 2011 February 1 and 2015 December 31. Additionally, over the same era we analyze Fermi /Gamma-ray Burst Monitor (GBM) 15–25 keV X-ray data for each of these flares associated with a Fermi /GBM solar flare trigger, a total of 261 events. Using a model comparison method, we determine whether there is evidence for a substantial enhancement in the Fourier power spectrum that may be consistent with a QPP signature, based on three tested models; a power-law plus a constant, a broken power-law plus constant, and a power-law-plus-constant with an additional QPP signature component. From this, we determine that ∼30% of GOES events and ∼8% of Fermi /GBM events show strong signatures consistent with classical interpretations of QPP. For the remaining events either two or more tested models cannot be strongly distinguished from each other, or the events are well-described by single power-law or broken power-law Fourier power spectra. For both instruments, a preferred characteristic timescale of ∼5–30 s was found in the QPP-like events, with no dependence on flare magnitude in either GOES or GBM data. We also show that individual events in the sample show similar characteristic timescales in both GBM and GOES data sets. We discuss the implications of these results for our understanding of solar flares and possible QPP mechanisms.

  15. On the quasi-periodic nature of magnetopause flux transfer events

    International Nuclear Information System (INIS)

    Lockwood, M.; Wild, M.N.

    1993-01-01

    The authors look at the interpretation of magnetopause flux transfer events (FTE), which claims to show that these events are quasi periodic with a mean period of about 8 minutes. FTE are characteristic signatures in the magnetic field observed by satellites in or near the magnetopause. They are mainly observed when the interplanetary magnetic field is southward, as is supported by a wide range of experimental evidence. There are several theoretical models which try to explain these events. The most successful to date is based upon a suggestion made by Saunders and Biernat, et al. This model has the advantage of accounting for some of the ground based observations of these events. It has been suggested that FTE represent bursts of enhanced magnetic reconnection, and may be the dominant mechanism of this solar wind-magnetosphere coupling. The authors also look at the variability of the IMF B z component as a potential source of the periodic FTE. Data from the ISEE 1 and 2 spacecraft taken during 1977 to 1979 were statistically surveyed for this report. The spacecraft crossed the magnetopause more than 172 times, and could observe FTE for typically 1 hr per pass. Data for the IMF came from the IMP8 spacecraft. Little data was available for the period of interest, but for the subsequent phase of the solar cycle there was considerable coverage. The data analysis shows a highly skewed recurrence period, with a mode of 3 min., and a lower and upper decile of 1.5 and 18.5 min. No significant peak is observed at 8 minutes. The shape of the distribution does not lend itself to any natural period of the magnetosphere-ionosphere system. There may be a correlation with the B z component of the IMF, but the correlation suffers most from the variability of the IMF dataset

  16. A Large-Scale Search for Evidence of Quasi-Periodic Pulsations in Solar Flares

    Science.gov (United States)

    Inglis, A. R.; Ireland, J.; Dennis, B. R..; Hayes, L.; Gallagher, P.

    2016-01-01

    The nature of quasi-periodic pulsations (QPP) in solar flares is poorly constrained, and critically the general prevalence of such signals in solar flares is unknown. Therefore, we perform a large-scale search for evidence of signals consistent with QPP in solar flares, focusing on the 1300 s timescale. We analyze 675 M- and X-class flares observed by the Geostationary Operational Environmental Satellite (GOES) series in 18 soft X-rays between 2011 February 1 and 2015 December 31. Additionally, over the same era we analyze Fermi/Gamma-ray Burst Monitor (GBM) 1525 keV X-ray data for each of these flares associated with a Fermi/GBM solar flare trigger, a total of 261 events. Using a model comparison method, we determine whether there is evidence for a substantial enhancement in the Fourier power spectrum that may be consistent with a QPP signature, based on three tested models; a power-law plus a constant, a broken power-law plus constant, and a power-law-plus-constant with an additional QPP signature component. From this, we determine that approx. 30% of GOES events and approx. 8% of Fermi/GBM events show strong signatures consistent with classical interpretations of QPP. For the remaining events either two or more tested models cannot be strongly distinguished from each other, or the events are well-described by single power-law or broken power-law Fourier power spectra. For both instruments, a preferred characteristic time-scale of approx. 5-30 s was found in the QPP-like events, with no dependence on flare magnitude in either GOES or GBM data. We also show that individual events in the sample show similar characteristic time-scales in both GBM and GOES data sets. We discuss the implications of these results for our understanding of solar flares and possible QPP mechanisms.

  17. A LARGE-SCALE SEARCH FOR EVIDENCE OF QUASI-PERIODIC PULSATIONS IN SOLAR FLARES

    International Nuclear Information System (INIS)

    Inglis, A. R.; Ireland, J.; Dennis, B. R.; Hayes, L; Gallagher, P.

    2016-01-01

    The nature of quasi-periodic pulsations (QPP) in solar flares is poorly constrained, and critically the general prevalence of such signals in solar flares is unknown. Therefore, we perform a large-scale search for evidence of signals consistent with QPP in solar flares, focusing on the 1–300 s timescale. We analyze 675 M- and X-class flares observed by the Geostationary Operational Environmental Satellite (GOES) series in 1–8 Å soft X-rays between 2011 February 1 and 2015 December 31. Additionally, over the same era we analyze Fermi /Gamma-ray Burst Monitor (GBM) 15–25 keV X-ray data for each of these flares associated with a Fermi /GBM solar flare trigger, a total of 261 events. Using a model comparison method, we determine whether there is evidence for a substantial enhancement in the Fourier power spectrum that may be consistent with a QPP signature, based on three tested models; a power-law plus a constant, a broken power-law plus constant, and a power-law-plus-constant with an additional QPP signature component. From this, we determine that ∼30% of GOES events and ∼8% of Fermi /GBM events show strong signatures consistent with classical interpretations of QPP. For the remaining events either two or more tested models cannot be strongly distinguished from each other, or the events are well-described by single power-law or broken power-law Fourier power spectra. For both instruments, a preferred characteristic timescale of ∼5–30 s was found in the QPP-like events, with no dependence on flare magnitude in either GOES or GBM data. We also show that individual events in the sample show similar characteristic timescales in both GBM and GOES data sets. We discuss the implications of these results for our understanding of solar flares and possible QPP mechanisms.

  18. Multi-Scale Peak and Trough Detection Optimised for Periodic and Quasi-Periodic Neuroscience Data.

    Science.gov (United States)

    Bishop, Steven M; Ercole, Ari

    2018-01-01

    The reliable detection of peaks and troughs in physiological signals is essential to many investigative techniques in medicine and computational biology. Analysis of the intracranial pressure (ICP) waveform is a particular challenge due to multi-scale features, a changing morphology over time and signal-to-noise limitations. Here we present an efficient peak and trough detection algorithm that extends the scalogram approach of Scholkmann et al., and results in greatly improved algorithm runtime performance. Our improved algorithm (modified Scholkmann) was developed and analysed in MATLAB R2015b. Synthesised waveforms (periodic, quasi-periodic and chirp sinusoids) were degraded with white Gaussian noise to achieve signal-to-noise ratios down to 5 dB and were used to compare the performance of the original Scholkmann and modified Scholkmann algorithms. The modified Scholkmann algorithm has false-positive (0%) and false-negative (0%) detection rates identical to the original Scholkmann when applied to our test suite. Actual compute time for a 200-run Monte Carlo simulation over a multicomponent noisy test signal was 40.96 ± 0.020 s (mean ± 95%CI) for the original Scholkmann and 1.81 ± 0.003 s (mean ± 95%CI) for the modified Scholkmann, demonstrating the expected improvement in runtime complexity from [Formula: see text] to [Formula: see text]. The accurate interpretation of waveform data to identify peaks and troughs is crucial in signal parameterisation, feature extraction and waveform identification tasks. Modification of a standard scalogram technique has produced a robust algorithm with linear computational complexity that is particularly suited to the challenges presented by large, noisy physiological datasets. The algorithm is optimised through a single parameter and can identify sub-waveform features with minimal additional overhead, and is easily adapted to run in real time on commodity hardware.

  19. Convective heat transfer in single-phase flow in a vertical tube subjected to axial low frequency oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Pendyala, Rajashekhar; Jayanti, Sreenivas; Balakrishnan, A.R. [Indian Institute of Technology Madras, Department of Chemical Engineering, Chennai, Tamil Nadu (India)

    2008-05-15

    The effect of oscillations on the heat transfer in a vertical tube has been studied experimentally. A vertical tube was mounted on a plate and the whole plate was subjected to oscillations in the vertical plane using a mechanical oscillator to provide low frequency oscillations. A section of the tube in the middle is subjected to a constant heat flux. The effect of the oscillations on the heat transfer coefficient has been examined. It was found that the heat transfer coefficient increased with oscillations in the laminar regime. In turbulent flow regime (Re > 2,100) it is found that the effect of oscillations did not show any change. A correlation has been developed for enhancement of the local Nusselt number in terms of the effective acceleration and Reynolds number. Using this, an expression has been proposed to calculate the mean Nusselt number as a function of the tube length. (orig.)

  20. Populations of striatal medium spiny neurons encode vibrotactile frequency in rats: modulation by slow wave oscillations.

    Science.gov (United States)

    Hawking, Thomas G; Gerdjikov, Todor V

    2013-01-01

    Dorsolateral striatum (DLS) is implicated in tactile perception and receives strong projections from somatosensory cortex. However, the sensory representations encoded by striatal projection neurons are not well understood. Here we characterized the contribution of DLS to the encoding of vibrotactile information in rats by assessing striatal responses to precise frequency stimuli delivered to a single vibrissa. We applied stimuli in a frequency range (45-90 Hz) that evokes discriminable percepts and carries most of the power of vibrissa vibration elicited by a range of complex fine textures. Both medium spiny neurons and evoked potentials showed tactile responses that were modulated by slow wave oscillations. Furthermore, medium spiny neuron population responses represented stimulus frequency on par with previously reported behavioral benchmarks. Our results suggest that striatum encodes frequency information of vibrotactile stimuli which is dynamically modulated by ongoing brain state.

  1. Frequency of gamma oscillations in humans is modulated by velocity of visual motion

    Science.gov (United States)

    Butorina, Anna V.; Sysoeva, Olga V.; Prokofyev, Andrey O.; Nikolaeva, Anastasia Yu.; Stroganova, Tatiana A.

    2015-01-01

    Gamma oscillations are generated in networks of inhibitory fast-spiking (FS) parvalbumin-positive (PV) interneurons and pyramidal cells. In animals, gamma frequency is modulated by the velocity of visual motion; the effect of velocity has not been evaluated in humans. In this work, we have studied velocity-related modulations of gamma frequency in children using MEG/EEG. We also investigated whether such modulations predict the prominence of the “spatial suppression” effect (Tadin D, Lappin JS, Gilroy LA, Blake R. Nature 424: 312-315, 2003) that is thought to depend on cortical center-surround inhibitory mechanisms. MEG/EEG was recorded in 27 normal boys aged 8–15 yr while they watched high-contrast black-and-white annular gratings drifting with velocities of 1.2, 3.6, and 6.0°/s and performed a simple detection task. The spatial suppression effect was assessed in a separate psychophysical experiment. MEG gamma oscillation frequency increased while power decreased with increasing velocity of visual motion. In EEG, the effects were less reliable. The frequencies of the velocity-specific gamma peaks were 64.9, 74.8, and 87.1 Hz for the slow, medium, and fast motions, respectively. The frequency of the gamma response elicited during slow and medium velocity of visual motion decreased with subject age, whereas the range of gamma frequency modulation by velocity increased with age. The frequency modulation range predicted spatial suppression even after controlling for the effect of age. We suggest that the modulation of the MEG gamma frequency by velocity of visual motion reflects excitability of cortical inhibitory circuits and can be used to investigate their normal and pathological development in the human brain. PMID:25925324

  2. Symmetries and invariants of the oscillator and envelope equations with time-dependent frequency

    Directory of Open Access Journals (Sweden)

    Hong Qin

    2006-05-01

    Full Text Available The single-particle dynamics in a time-dependent focusing field is examined. The existence of the Courant-Snyder invariant, a fundamental concept in accelerator physics, is fundamentally a result of the corresponding symmetry admitted by the harmonic oscillator equation with linear time-dependent frequency. It is demonstrated that the Lie algebra of the symmetry group for the oscillator equation with time-dependent frequency is eight dimensional, and is composed of four independent subalgebras. A detailed analysis of the admitted symmetries reveals a deeper connection between the nonlinear envelope equation and the oscillator equation. A general theorem regarding the symmetries and invariants of the envelope equation, which includes the existence of the Courant-Snyder invariant as a special case, is demonstrated. As an application to accelerator physics, the symmetries of the envelope equation enable a fast numerical algorithm for finding matched solutions without using the conventional iterative Newton’s method, where the envelope equation needs to be numerically integrated once for every iteration, and the Jacobi matrix needs to be calculated for the envelope perturbation.

  3. Cantilever-detected high-frequency ESR measurement using a backward travelling wave oscillator

    International Nuclear Information System (INIS)

    Tokuda, Y; Hirano, S; Ohmichi, E; Ohta, H

    2012-01-01

    Our cantilever-detected electron spin resonance (ESR) technique is motivated for terahertz ESR spectroscopy of a tiny single crystal at low temperature. In this technique, ESR signal is detected as deflection of a sample-mounted cantilever, which is sensitively detected by built-in piezoresistors. So far, ESR detection at 315 GHz was succeeded using Gunn oscillator. In this study, we combine our ESR technique with a backward traveling wave oscillator (BWO), which can cover a wide frequency range 120-1200 GHz, to achieve better spectral resolution. Experiments were carried out at 4.2 K for a single crystal of Co Tutton salt with a newly constructed optical system. We successfully observed two ESR absorption lines in BWO frequencies up to 370 GHz. From multi-frequency measurements, the observed ESR lines shifted linearly with BWO frequency, being consistent with paramagnetic resonance. The estimated g values are g 1 = 3.00 and g 2 = 3.21. The spin sensitivity was estimated to ∼10 12 spins/gauss at 370 GHz.

  4. Measurement of acoustic glitches in solar-type stars from oscillation frequencies observed by Kepler

    Energy Technology Data Exchange (ETDEWEB)

    Mazumdar, A. [Homi Bhabha Centre for Science Education, TIFR, V. N. Purav Marg, Mankhurd, Mumbai 400088 (India); Monteiro, M. J. P. F. G.; Cunha, M. S. [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Ballot, J. [CNRS, Institut de Recherche en Astrophysique et Planétologie, 14 avenue Edouard Belin, F-31400 Toulouse (France); Antia, H. M. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Basu, S. [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 065208101 (United States); Houdek, G.; Silva Aguirre, V.; Christensen-Dalsgaard, J.; Metcalfe, T. S. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Mathur, S. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); García, R. A. [Laboratoire AIM, CEA/DSM, CNRS, Université Paris Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Salabert, D. [Laboratoire Lagrange, UMR7293, Université de Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d' Azur, F-06304 Nice (France); Verner, G. A.; Chaplin, W. J. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Sanderfer, D. T. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Seader, S. E.; Smith, J. C. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2014-02-10

    For the very best and brightest asteroseismic solar-type targets observed by Kepler, the frequency precision is sufficient to determine the acoustic depths of the surface convective layer and the helium ionization zone. Such sharp features inside the acoustic cavity of the star, which we call acoustic glitches, create small oscillatory deviations from the uniform spacing of frequencies in a sequence of oscillation modes with the same spherical harmonic degree. We use these oscillatory signals to determine the acoustic locations of such features in 19 solar-type stars observed by the Kepler mission. Four independent groups of researchers utilized the oscillation frequencies themselves, the second differences of the frequencies and the ratio of the small and large separation to locate the base of the convection zone and the second helium ionization zone. Despite the significantly different methods of analysis, good agreement was found between the results of these four groups, barring a few cases. These results also agree reasonably well with the locations of these layers in representative models of the stars. These results firmly establish the presence of the oscillatory signals in the asteroseismic data and the viability of several techniques to determine the location of acoustic glitches inside stars.

  5. Determination of delayed neutrons source in the frequency domain based on in-pile oscillation measurements

    International Nuclear Information System (INIS)

    Yedvab, Y.; Reiss, I.; Bettan, M.; Harari, R.; Grober, A.; Ettedgui, H.; Caspi, E. N.

    2006-01-01

    A method for determining delayed neutrons source in the frequency domain based on measuring power oscillations in a non-critical reactor is presented. This method is unique in the sense that the delayed neutrons source is derived from the dynamic behavior of the reactor, which serves as the measurement system. An algorithm for analyzing power oscillation measurements was formulated, which avoids the need for a multi-parameter non-linear fit process used by other methods. Using this algorithm results of two sets of measurements performed in IRR-I and IRR-II (Israeli Research Reactors I and II) are presented. The agreement between measured values from both reactors and calculated values based on Keepin (and JENDL-3.3) group parameters is very good. (authors)

  6. Tunable femtosecond laser in the visible range with an intracavity frequency-doubled optical parametric oscillator

    International Nuclear Information System (INIS)

    Zhu Jiang-Feng; Xu Liang; Lin Qing-Feng; Zhong Xin; Han Hai-Nian; Wei Zhi-Yi

    2013-01-01

    We demonstrated experimentally a synchronously pumped intracavity frequency-doubled femtosecond optical parametric oscillator (OPO) using a periodically-poled lithium niobate (PPLN) as the nonlinear material in combination with a lithium triborate (LBO) as the doubling crystal. A Kerr-lens-mode-locked (KLM) Ti:sapphire oscillator at the wavelength of 790 nm was used as the pump source, which was capable of generating pulses with a duration as short as 117 fs. A tunable femtosecond laser covering the 624–672 nm range was realized by conveniently adjusting the OPO cavity length. A maximum average output power of 260 mW in the visible range was obtained at the pump power of 2.2 W, with a typical pulse duration of 205 fs assuming a sech 2 pulse profile. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  7. Controlled X-ray pumping in a wide range of piezo-electric oscillation frequencies

    CERN Document Server

    Navasardyan, M A; Galoyan, K G

    1986-01-01

    In case of Laue diffraction the transmitted X-ray reflection in shown to be effectively controllable in the perfect quartz single crystal when it generates ultrasonic oscillations at the resonance frequency or in its vicinity. The maximum effective amplitude of applied sinusoidal oscillations is equal to 70 V. The pumping degree depends on the voltage amplitude. In this work monochromatic K subalpha sub 1 and K subalpha sub 2 molybdenum lines satisfying the thin crystal condition, mu t<=1, are used (mu is the linear absorption coefficient of the sample for the given wavelength and t is its thickness). The radiation was reflected from different planes such as (1011), (1011), (2022) etc. The complete pumping strongly restricts the structural factor possibilities in estimating the intensity of diffracted X-rays in case of considerable deformations in the bulk of perfect single crystal.

  8. Decadal summer drought frequency in China: the increasing influence of the Atlantic Multi-decadal Oscillation

    International Nuclear Information System (INIS)

    Qian, Chengcheng; Yu, Jin-Yi; Chen, Ge

    2014-01-01

    Decadal variations in summer drought events during 1956–2005 are examined over Eastern China to identify their leading variability modes and their linkages to the Pacific Decadal Oscillation (PDO), Atlantic Multi-decadal Oscillation (AMO), and global warming. The PDO influence is found to dominate China drought frequency from the 1960s to early 1990s via modulating the Western Pacific Subtropical High and the Mongolian High. The four-pole drought pattern produced by the PDO diminished after the early 1990s, being replaced by a dipolar drought pattern that is produced by the AMO via a Eurasian wave train emanating from North Atlantic to China. The increasing influence of the AMO on China drought since the early 1990s is further shown to be a consequence of global warming. This study indicates that the early 1990s is a time when the Atlantic began to exert a stronger influence on climate over China and even larger part of Asia. (letter)

  9. Measurements of the B0-anti-B0 Oscillation Frequency in Hadronic B Decays

    Energy Technology Data Exchange (ETDEWEB)

    Raven, Gerhard

    2001-07-25

    B{sup 0}{bar B}{sup 0} flavor oscillations have been studied in 20.7 fb{sup -1} of e{sup +}e{sup -} annihilation data collected in 1999 and 2000 with the BABAR detector at center-of-mass energies near the {Upsilon}(4S) resonance. The event sample consists of one B{sup 0} meson fully reconstructed in a hadronic decay mode, while the flavor of the recoiling B{sup 0} in the event is determined with a tagging algorithm that exploits the correlation between the flavor of the heavy quark and the charges of its decay products. By fitting the time development of the observed mixed and unmixed final states, the B{sup 0}{bar B}{sup 0} oscillation frequency, {Delta}m{sub d}, is determined to be 0.519 {+-} 0.020 {+-} 0.016 {Dirac_h} ps{sup -1}.

  10. Numerical Investigation and Experimental Demonstration of Chaos from Two-Stage Colpitts Oscillator in the Ultrahigh Frequency Range

    DEFF Research Database (Denmark)

    Bumeliene, S.; Tamasevicius, A.; Mykolaitis, G.

    2006-01-01

    A hardware prototype of the two-stage Colpitts oscillator employing the microwave BFG520 type transistors with the threshold frequency of 9 GHz and designed to operate in the ultrahigh frequency range (300–1000 MHz) is described. The practical circuit in addition to the intrinsic two-stage oscill......A hardware prototype of the two-stage Colpitts oscillator employing the microwave BFG520 type transistors with the threshold frequency of 9 GHz and designed to operate in the ultrahigh frequency range (300–1000 MHz) is described. The practical circuit in addition to the intrinsic two......-stage oscillator contains an emitter follower acting as a buffer and minimizing the influence of the load. The circuit is investigated both numerically and experimentally. Typical phase portraits, Lyapunov exponents, Lyapunov dimension and broadband continuous power spectra are presented. The main advantage...

  11. Altered low frequency oscillations of cortical vessels in patients with cerebrovascular occlusive disease – a NIRS study

    DEFF Research Database (Denmark)

    Phillip, Dorte; Iversen, Helle K; Schytz, Henrik W

    2013-01-01

    Analysis of cerebral autoregulation by measuring spontaneous oscillations in the low frequency spectrum of cerebral cortical vessels might be a useful tool for assessing risk and investigating different treatment strategies in carotid artery disease and stroke. Near infrared spectroscopy (NIRS...

  12. QUASI-PERIODIC FLUCTUATIONS AND CHROMOSPHERIC EVAPORATION IN A SOLAR FLARE RIBBON OBSERVED BY HINODE /EIS, IRIS , AND RHESSI

    Energy Technology Data Exchange (ETDEWEB)

    Brosius, Jeffrey W.; Inglis, Andrew R. [Catholic University of America at NASA Goddard Space Flight Center, Solar Physics Laboratory, Code 671, Greenbelt, MD 20771 (United States); Daw, Adrian N., E-mail: Jeffrey.W.Brosius@nasa.gov [NASA Goddard Space Flight Center, Solar Physics Laboratory, Code 671, Greenbelt, MD 20771 (United States)

    2016-10-20

    The Hinode /Extreme-ultraviolet Imaging Spectrometer (EIS) obtained rapid cadence (11.2 s) EUV stare spectra of an M7.3 flare ribbon in AR 12036 on 2014 April 18. Quasi-periodic ( P ≈ 75.6 ± 9.2 s) intensity fluctuations occurred in emission lines of O iv, Mg vi, Mg vii, Si vii, Fe xiv, and Fe xvi during the flare's impulsive rise, and ended when the maximum intensity in Fe xxiii was reached. The profiles of the O iv–Fe xvi lines reveal that they were all redshifted during most of the interval of quasi-periodic intensity fluctuations, while the Fe xxiii profile revealed multiple components including one or two highly blueshifted ones. This indicates that the flare underwent explosive chromospheric evaporation during its impulsive rise. Fluctuations in the relative Doppler velocities were seen, but their amplitudes were too subtle to extract significant quasi-periodicities. RHESSI detected 25–100 keV hard-X-ray sources in the ribbon near the EIS slit's pointing position during the peaks in the EIS intensity fluctuations. The observations are consistent with a series of energy injections into the chromosphere by nonthermal particle beams. Electron densities derived with Fe xiv (4.6 × 10{sup 10} cm{sup −3}) and Mg vii (7.8 × 10{sup 9} cm{sup −3}) average line intensity ratios during the interval of quasi-periodic intensity fluctuations, combined with the radiative loss function of an optically thin plasma, yield radiative cooling times of 32 s at 2.0 × 10{sup 6} K, and 46 s at 6.3 × 10{sup 5} K (about half the quasi-period); assuming Fe xiv's density for Fe xxiii yields a radiative cooling time of 10{sup 3} s (13 times the quasi-period) at 1.4 × 10{sup 7} K.

  13. Measurements of natural frequency and damping constant of single steam bubble oscillating in water

    International Nuclear Information System (INIS)

    Morioka, Mikio

    1983-01-01

    The natural frequency fsub(n) and damping constant delta of a bubble in liquid have been determined by observing the resonance of the bubble to forced oscillation. The bubble was retained under a rigid plate horizontal disk, and the oscillation was applied by underwater speaker. The applied frequency f was kept constant while letting the bubble increase its volume and vary its radius R. Bubble resonance was detected by observing wrinkles appearing on the bubble due to surface waves. Resonance curves relating the amplitude of bubble radius variation to the intensity of applied oscillation is derived theoretically. Good agreement was seen between the data obtained from experiment and the theoretically derived resonance curves at test to the validity of the method proposed of determining fsub(n) and delta from bubble resonance. The values of delta and of the resonant bubble radius R 0 of large steam bubbles (8.5mm< R<11.5mm) in water were determined at f=270, 290 and 358 Hz. The results support the assumption that for large bubbles the value of fsub(n) is little influenced by the exchange of mass between liquid and gaseous phases through evaporation and condensation accompanying bubble pressure oscillation. On the other hand, delta is found to be one order of magnitude higher than calculated for steam bubbles without taking into evaporation and condensation the interphase exchange of mass. The effect brought on delta by the interphase mass exchange can be taken into account by adding a new constant deltasub(ph) to the terms constituting the total damping constant. (author)

  14. Chronic ketamine reduces the peak frequency of gamma oscillations in mouse prefrontal cortex ex vivo

    Directory of Open Access Journals (Sweden)

    James M. McNally

    2013-09-01

    Full Text Available Abnormalities in EEG gamma band oscillations (GBO, 30-80 Hz serve as a prominent biomarker of schizophrenia (Sz, associated with positive, negative and cognitive symptoms. Chronic, subanesthetic administration of antagonists of N-methyl-D-aspartate receptors (NMDAR, such as ketamine, elicits behavioral effects and alterations in cortical interneurons similar to those observed in Sz. However, the chronic effects of ketamine on neocortical GBO are poorly understood. Thus, here we examine the effects of chronic (5 daily i.p. injections application of ketamine (5 and 30 mg/kg and the more specific NMDAR antagonist, MK-801 (0.02, 0.5, and 2 mg/kg, on neocortical GBO ex vivo. Oscillations were generated by focal application of the glutamate receptor agonist, kainate, in coronal brain slices containing the prelimbic cortex. This region constitutes the rodent analogue of the human dorsolateral prefrontal cortex, a brain region strongly implicated in Sz-pathophysiology. Here we report the novel finding that chronic ketamine elicits a reduction in the peak oscillatory frequency of kainate-elicited oscillations (from 47 to 40 Hz at 30 mg/kg. Moreover, the power of GBO in the 40-50 Hz band was reduced. These findings are reminiscent of both the reduced resonance frequency and power of cortical oscillations observed in Sz clinical studies. Surprisingly, MK-801 had no significant effect, suggesting care is needed when equating Sz-like behavioral effects elicited by different NMDAR antagonists to alterations in GBO activity. We conclude that chronic ketamine in the mouse mimics GBO abnormalities observed in Sz patients. Use of this ex vivo slice model may be useful in testing therapeutic compounds which rescue these GBO abnormalities.

  15. Mid-Term Quasi-Periodicities and Solar Cycle Variation of the White-Light Corona from 18.5 Years (1996.0 - 2014.5) of LASCO Observations

    Science.gov (United States)

    Barlyaeva, T.; Lamy, P.; Llebaria, A.

    2015-07-01

    We report on the analysis of the temporal evolution of the solar corona based on 18.5 years (1996.0 - 2014.5) of white-light observations with the SOHO/LASCO-C2 coronagraph. This evolution is quantified by generating spatially integrated values of the K-corona radiance, first globally, then in latitudinal sectors. The analysis considers time series of monthly values and 13-month running means of the radiance as well as several indices and proxies of solar activity. We study correlation, wavelet time-frequency spectra, and cross-coherence and phase spectra between these quantities. Our results give a detailed insight on how the corona responds to solar activity over timescales ranging from mid-term quasi-periodicities (also known as quasi-biennial oscillations or QBOs) to the long-term 11 year solar cycle. The amplitude of the variation between successive solar maxima and minima (modulation factor) very much depends upon the strength of the cycle and upon the heliographic latitude. An asymmetry is observed during the ascending phase of Solar Cycle 24, prominently in the royal and polar sectors, with north leading. Most prominent QBOs are a quasi-annual period during the maximum phase of Solar Cycle 23 and a shorter period, seven to eight months, in the ascending and maximum phases of Solar Cycle 24. They share the same properties as the solar QBOs: variable periodicity, intermittency, asymmetric development in the northern and southern solar hemispheres, and largest amplitudes during the maximum phase of solar cycles. The strongest correlation of the temporal variations of the coronal radiance - and consequently the coronal electron density - is found with the total magnetic flux. Considering that the morphology of the solar corona is also directly controlled by the topology of the magnetic field, this correlation reinforces the view that they are intimately connected, including their variability at all timescales.

  16. Broadband electromagnetic power harvester from vibrations via frequency conversion by impact oscillations

    International Nuclear Information System (INIS)

    Yuksek, N. S.; Almasri, M.; Feng, Z. C.

    2014-01-01

    In this paper, we propose an electromagnetic power harvester that uses a transformative multi-impact approach to achieve a wide bandwidth response from low frequency vibration sources through frequency-up conversion. The device consists of a pick-up coil, fixed at the free edge of a cantilever beam with high resonant frequency, and two cantilever beams with low excitation frequencies, each with an impact mass attached at its free edge. One of the two cantilevers is designed to resonate at 25 Hz, while the other resonates at 50 Hz within the range of ambient vibration frequency. When the device is subjected to a low frequency vibration, the two low-frequency cantilevers responded by vibrating at low frequencies, and thus their thick metallic masses made impacts with the high resonance frequency cantilever repeatedly at two locations. This has caused it along with the pick-up coil to oscillate, relative to the permanent magnet, with decaying amplitude at its resonance frequency, and results in a wide bandwidth response from 10 to 63 Hz at 2 g. A wide bandwidth response between 10–51 Hz and 10–58 Hz at acceleration values of 0.5 g and 2 g, respectively, were achieved by adjusting the impact cantilever frequencies closer to each other (25 Hz and 45 Hz). A maximum output power of 85 μW was achieved at 5 g at 30 Hz across a load resistor, 2.68 Ω.

  17. An Analysis of Decentralized Demand Response as Frequency Control Support under CriticalWind Power Oscillations

    Directory of Open Access Journals (Sweden)

    Jorge Villena

    2015-11-01

    Full Text Available In power systems with high wind energy penetration, the conjunction of wind power fluctuations and power system inertia reduction can lead to large frequency excursions, where the operating reserves of conventional power generation may be insufficient to restore the power balance. With the aim of evaluating the demand-side contribution to frequency control, a complete process to determine critical wind oscillations in power systems with high wind penetration is discussed and described in this paper. This process implies thousands of wind power series simulations, which have been carried out through a validated offshore wind farm model. A large number of different conditions have been taken into account, such as frequency dead bands, the percentages of controllable demand and seasonal factor influence on controllable loads. Relevant results and statistics are also included in the paper.

  18. Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration.

    Science.gov (United States)

    Minamide, Hiroaki; Ikari, Tomofumi; Ito, Hiromasa

    2009-12-01

    We demonstrate a frequency-agile terahertz wave parametric oscillator (TPO) in a ring-cavity configuration (ring-TPO). The TPO consists of three mirrors and a MgO:LiNbO(3) crystal under noncollinear phase-matching conditions. A novel, fast frequency-tuning method was realized by controlling a mirror of the three-mirror ring cavity. The wide tuning range between 0.93 and 2.7 THz was accomplished. For first demonstration using the ring-TPO, terahertz spectroscopy was performed as the verification of the frequency-agile performance, measuring the transmission spectrum of the monosaccharide glucose. The spectrum was obtained within about 8 s in good comparison to those of Fourier transform infrared spectrometer.

  19. The effects of extra-low-frequency atmospheric pressure oscillations on human mental activity

    Science.gov (United States)

    Delyukov, A. A.; Didyk, L.

    Slight atmospheric pressure oscillations (APO) in the extra-low-frequency range below 0.1 Hz, which frequently occur naturally, can influence human mental activity. This phenomenon has been observed in experiments with a group of 12 healthy volunteers exposed to experimentally created APO with amplitudes 30-50 Pa in the frequency band 0.011-0.17 Hz. Exposure of the subjects to APO for 15-30 min caused significant changes in attention and short-term memory functions, performance rate, and mental processing flexibility. The character of the response depended on the APO frequency and coherence. Periodic APO promoted purposeful mental activity, accompanied by an increase in breath-holding duration and a slower heart rate. On the other hand, quasi-chaotic APO, similar to the natural perturbations of atmospheric pressure, disrupted mental activity. These observations suggest that APO could be partly responsible for meteorosensitivity in humans.

  20. Numerical investigations of single bubble oscillations generated by a dual frequency excitation

    International Nuclear Information System (INIS)

    Guédra, Matthieu; Inserra, Claude; Gilles, Bruno; Béra, Jean-Christophe

    2015-01-01

    The oscillations of a single bubble excited with a dual frequency acoustic field are numerically investigated. Computations are made for an air bubble in water exposed to an acoustic field with a linearly varying amplitude. The bubble response to an excitation containing two frequencies f 1 = 500 kHz and f 2 = 400 kHz at the same amplitude is compared to the monofrequency case where only f 1 is present. Time-frequency representations show a sharp transition in the bifrequency case, for which the low frequency component f 2 becomes resonant while the high frequency component f 1 is strongly attenuated. The temporal evolution of the power spectra reveals that the resonance of the low frequency component is correlated with the time varying mean radius of the bubble. It is also observed that the total power of the bubble response in the bifrequency case can reach almost twice the power obtained in the monofrequency case, which indicates a strong enhancement of the cavitating behavior of the bubble for this specific frequency combination. (paper)

  1. Multifaceted roles for low-frequency oscillations in bottom-up and top-down processing during navigation and memory.

    Science.gov (United States)

    Ekstrom, Arne D; Watrous, Andrew J

    2014-01-15

    A prominent and replicated finding is the correlation between running speed and increases in low-frequency oscillatory activity in the hippocampal local field potential. A more recent finding concerns low-frequency oscillations that increase in coherence between the hippocampus and neocortical brain areas such as prefrontal cortex during memory-related behaviors (i.e., remembering the correct location to visit). In this review, we tie together movement-related and memory-related low-frequency oscillations in the rodent with similar findings in humans. We argue that although movement-related low-frequency oscillations, in particular, may have slightly different characteristics in humans than rodents, placing important constraints on our thinking about this issue, both phenomena have similar functional foundations. We review four prominent theoretical models that provide partially conflicting accounts of movement-related low-frequency oscillations. We attempt to tie together these theoretical proposals, and existing data in rodents and humans, with memory-related low-frequency oscillations. We propose that movement-related low-frequency oscillations and memory-related low-frequency oscillatory activity, both of which show significant coherence with oscillations in other brain regions, represent different facets of "spectral fingerprints," or different resonant frequencies within the same brain networks underlying different cognitive processes. Together, movement-related and memory-related low-frequency oscillatory coupling may be linked by their distinct contributions to bottom-up, sensorimotor driven processing and top-down, controlled processing characterizing aspects of memory encoding and retrieval. Copyright © 2013. Published by Elsevier Inc.

  2. Sources of Quasi-periodic Pulses in the Flare of 18 August 2012

    Czech Academy of Sciences Publication Activity Database

    Altyntsev, A.; Meshalkina, N.; Mészárosová, Hana; Karlický, Marian; Palshin, V.; Lesovoi, S.

    2016-01-01

    Roč. 291, č. 2 (2016), s. 445-463 ISSN 0038-0938 R&D Projects: GA ČR GAP209/12/0103 Institutional support: RVO:67985815 Keywords : radio emission * active regions * oscillations Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.682, year: 2016

  3. Hippocampal Ripple Oscillations and Inhibition-First Network Models: Frequency Dynamics and Response to GABA Modulators.

    Science.gov (United States)

    Donoso, José R; Schmitz, Dietmar; Maier, Nikolaus; Kempter, Richard

    2018-03-21

    Hippocampal ripples are involved in memory consolidation, but the mechanisms underlying their generation remain unclear. Models relying on interneuron networks in the CA1 region disagree on the predominant source of excitation to interneurons: either "direct," via the Schaffer collaterals that provide feedforward input from CA3 to CA1, or "indirect," via the local pyramidal cells in CA1, which are embedded in a recurrent excitatory-inhibitory network. Here, we used physiologically constrained computational models of basket-cell networks to investigate how they respond to different conditions of transient, noisy excitation. We found that direct excitation of interneurons could evoke ripples (140-220 Hz) that exhibited intraripple frequency accommodation and were frequency-insensitive to GABA modulators, as previously shown in in vitro experiments. In addition, the indirect excitation of the basket-cell network enabled the expression of intraripple frequency accommodation in the fast-gamma range (90-140 Hz), as in vivo In our model, intraripple frequency accommodation results from a hysteresis phenomenon in which the frequency responds differentially to the rising and descending phases of the transient excitation. Such a phenomenon predicts a maximum oscillation frequency occurring several milliseconds before the peak of excitation. We confirmed this prediction for ripples in brain slices from male mice. These results suggest that ripple and fast-gamma episodes are produced by the same interneuron network that is recruited via different excitatory input pathways, which could be supported by the previously reported intralaminar connectivity bias between basket cells and functionally distinct subpopulations of pyramidal cells in CA1. Together, our findings unify competing inhibition-first models of rhythm generation in the hippocampus. SIGNIFICANCE STATEMENT The hippocampus is a part of the brain of humans and other mammals that is critical for the acquisition and

  4. Highly Stable Wideband Microwave Extraction by Synchronizing Widely Tunable Optoelectronic Oscillator with Optical Frequency Comb

    Science.gov (United States)

    Hou, D.; Xie, X. P.; Zhang, Y. L.; Wu, J. T.; Chen, Z. Y.; Zhao, J. Y.

    2013-12-01

    Optical frequency combs (OFCs), based on mode-locked lasers (MLLs), have attracted considerable attention in many fields over recent years. Among the applications of OFCs, one of the most challenging works is the extraction of a highly stable microwave with low phase noise. Many synchronisation schemes have been exploited to synchronise an electronic oscillator with the pulse train from a MLL, helping to extract an ultra-stable microwave. Here, we demonstrate novel wideband microwave extraction from a stable OFC by synchronising a single widely tunable optoelectronic oscillator (OEO) with an OFC at different harmonic frequencies, using an optical phase detection technique. The tunable range of the proposed microwave extraction extends from 2 GHz to 4 GHz, and in a long-term synchronisation experiment over 12 hours, the proposed synchronisation scheme provided a rms timing drift of 18 fs and frequency instabilities at 1.2 × 10-15/1 s and 2.2 × 10-18/10000 s.

  5. FREQUENCY CATASTROPHE AND CO-EXISTING ATTRACTORS IN A CELL Ca2+ NONLINEAR OSCILLATION MODEL WITH TIME DELAY*

    Institute of Scientific and Technical Information of China (English)

    应阳君; 黄祖洽

    2001-01-01

    Frequency catastrophe is found in a cell Ca2+ nonlinear oscillation model with time delay. The relation of the frequency transition to the time delay is studied by numerical simulations and theoretical analysis. There is a range of parameters in which two kinds of attractors with great frequency differences co-exist in the system. Along with parameter changes, a critical phenomenon occurs and the oscillation frequency changes greatly. This mechanism helps us to deepen the understanding of the complex dynamics of delay systems, and might be of some meaning in cell signalling.

  6. A precise measurement of the [Formula: see text] meson oscillation frequency.

    Science.gov (United States)

    Aaij, R; Abellán Beteta, C; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Buchanan, E; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Ruscio, F; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fohl, K; Fol, P; Fontana, M; Fontanelli, F; C Forshaw, D; Forty, R; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Humair, T; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; K Kuonen, A; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusardi, N; Lusiani, A; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Manning, P; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Müller, D; Müller, J; Müller, K; Müller, V; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Osorio Rodrigues, B; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Pappenheimer, C; Parkes, C; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; W Ronayne, J; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefkova, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Trabelsi, K; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yu, J; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zhukov, V; Zucchelli, S

    2016-01-01

    The oscillation frequency, [Formula: see text], of [Formula: see text] mesons is measured using semileptonic decays with a [Formula: see text] or [Formula: see text] meson in the final state. The data sample corresponds to 3.0[Formula: see text] of pp collisions, collected by the LHCb experiment at centre-of-mass energies [Formula: see text] = 7 and 8[Formula: see text]. A combination of the two decay modes gives [Formula: see text], where the first uncertainty is statistical and the second is systematic. This is the most precise single measurement of this parameter. It is consistent with the current world average and has similar precision.

  7. The importance of individual frequencies of endogenous brain oscillations for auditory cognition - A short review.

    Science.gov (United States)

    Baltus, Alina; Herrmann, Christoph Siegfried

    2016-06-01

    Oscillatory EEG activity in the human brain with frequencies in the gamma range (approx. 30-80Hz) is known to be relevant for a large number of cognitive processes. Interestingly, each subject reveals an individual frequency of the auditory gamma-band response (GBR) that coincides with the peak in the auditory steady state response (ASSR). A common resonance frequency of auditory cortex seems to underlie both the individual frequency of the GBR and the peak of the ASSR. This review sheds light on the functional role of oscillatory gamma activity for auditory processing. For successful processing, the auditory system has to track changes in auditory input over time and store information about past events in memory which allows the construction of auditory objects. Recent findings support the idea of gamma oscillations being involved in the partitioning of auditory input into discrete samples to facilitate higher order processing. We review experiments that seem to suggest that inter-individual differences in the resonance frequency are behaviorally relevant for gap detection and speech processing. A possible application of these resonance frequencies for brain computer interfaces is illustrated with regard to optimized individual presentation rates for auditory input to correspond with endogenous oscillatory activity. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Quasi-periodic processes in the flare loop generated by sudden temperature enhancements at loop footpoints

    Czech Academy of Sciences Publication Activity Database

    Karlický, Marian; Jelínek, Petr

    2016-01-01

    Roč. 590, June (2016), A4/1-A4/9 ISSN 0004-6361 R&D Projects: GA ČR GAP209/12/0103; GA ČR(CZ) GA16-13277S Grant - others:EC(XE) 295272; EC(XE) 606862 Program:FP7; FP7 Institutional support: RVO:67985815 Keywords : Sun flares * oscillations * magnetohydrodynamics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  9. Spatiotemporal frequency characteristics of cerebral oscillations during the perception of fundamental frequency contour changes in one-syllable intonation.

    Science.gov (United States)

    Ueno, Sanae; Okumura, Eiichi; Remijn, Gerard B; Yoshimura, Yuko; Kikuchi, Mitsuru; Shitamichi, Kiyomi; Nagao, Kikuko; Mochiduki, Masayuki; Haruta, Yasuhiro; Hayashi, Norio; Munesue, Toshio; Tsubokawa, Tsunehisa; Oi, Manabu; Nakatani, Hideo; Higashida, Haruhiro; Minabe, Yoshio

    2012-05-02

    Accurate perception of fundamental frequency (F0) contour changes in the human voice is important for understanding a speaker's intonation, and consequently also his/her attitude. In this study, we investigated the neural processes involved in the perception of F0 contour changes in the Japanese one-syllable interjection "ne" in 21 native-Japanese listeners. A passive oddball paradigm was applied in which "ne" with a high falling F0 contour, used when urging a reaction from the listener, was randomly presented as a rare deviant among a frequent "ne" syllable with a flat F0 contour (i.e., meaningless intonation). We applied an adaptive spatial filtering method to the neuromagnetic time course recorded by whole-head magnetoencephalography (MEG) and estimated the spatiotemporal frequency dynamics of event-related cerebral oscillatory changes in the oddball paradigm. Our results demonstrated a significant elevation of beta band event-related desynchronization (ERD) in the right temporal and frontal areas, in time windows from 100 to 300 and from 300 to 500 ms after the onset of deviant stimuli (high falling F0 contour). This is the first study to reveal detailed spatiotemporal frequency characteristics of cerebral oscillations during the perception of intonational (not lexical) F0 contour changes in the human voice. The results further confirmed that the right hemisphere is associated with perception of intonational F0 contour information in the human voice, especially in early time windows. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Exploring the time-frequency content of high frequency oscillations for automated identification of seizure onset zone in epilepsy.

    Science.gov (United States)

    Liu, Su; Sha, Zhiyi; Sencer, Altay; Aydoseli, Aydin; Bebek, Nerse; Abosch, Aviva; Henry, Thomas; Gurses, Candan; Ince, Nuri Firat

    2016-04-01

    High frequency oscillations (HFOs) in intracranial electroencephalography (iEEG) recordings are considered as promising clinical biomarkers of epileptogenic regions in the brain. The aim of this study is to improve and automatize the detection of HFOs by exploring the time-frequency content of iEEG and to investigate the seizure onset zone (SOZ) detection accuracy during the sleep, awake and pre-ictal states in patients with epilepsy, for the purpose of assisting the localization of SOZ in clinical practice. Ten-minute iEEG segments were defined during different states in eight patients with refractory epilepsy. A three-stage algorithm was implemented to detect HFOs in these segments. First, an amplitude based initial detection threshold was used to generate a large pool of HFO candidates. Then distinguishing features were extracted from the time and time-frequency domain of the raw iEEG and used with a Gaussian mixture model clustering to isolate HFO events from other activities. The spatial distribution of HFO clusters was correlated with the seizure onset channels identified by neurologists in seven patient with good surgical outcome. The overlapping rates of localized channels and seizure onset locations were high in all states. The best result was obtained using the iEEG data during sleep, achieving a sensitivity of 81%, and a specificity of 96%. The channels with maximum number of HFOs identified epileptogenic areas where the seizures occurred more frequently. The current study was conducted using iEEG data collected in realistic clinical conditions without channel pre-exclusion. HFOs were investigated with novel features extracted from the entire frequency band, and were correlated with SOZ in different states. The results indicate that automatic HFO detection with unsupervised clustering methods exploring the time-frequency content of raw iEEG can be efficiently used to identify the epileptogenic zone with an accurate and efficient manner.

  11. Low Noise Frequency Comb Sources Based on Synchronously Pumped Doubly Resonant Optical Parametric Oscillators

    Science.gov (United States)

    Wan, Chenchen

    Optical frequency combs are coherent light sources consist of thousands of equally spaced frequency lines. Frequency combs have achieved success in applications of metrology, spectroscopy and precise pulse manipulation and control. The most common way to generate frequency combs is based on mode-locked lasers which has the output spectrum of comb structures. To generate stable frequency combs, the output from mode-locked lasers need to be phase stabilized. The whole comb lines will be stabilized if the pulse train repetition rate corresponding to comb spacing and the pulse carrier envelope offset (CEO) frequency are both stabilized. The output from a laser always has fluctuations in parameters known as noise. In laser applications, noise is an important factor to limit the performance and often need to be well controlled. For example in precision measurement such as frequency metrology and precise spectroscopy, low laser intensity and phase noise is required. In mode-locked lasers there are different types of noise like intensity noise, pulse temporal position noise also known as timing jitter, optical phase noise. In term for frequency combs, these noise dynamics is more complex and often related. Understanding the noise behavior is not only of great interest in practical applications but also help understand fundamental laser physics. In this dissertation, the noise of frequency combs and mode-locked lasers will be studied in two projects. First, the CEO frequency phase noise of a synchronously pumped doubly resonant optical parametric oscillators (OPO) will be explored. This is very important for applications of the OPO as a coherent frequency comb source. Another project will focus on the intensity noise coupling in a soliton fiber oscillator, the finding of different noise coupling in soliton pulses and the dispersive waves generated from soliton perturbation can provide very practical guidance for low noise soliton laser design. OPOs are used to generate

  12. Low frequency acoustic properties of bilayer membrane acoustic metamaterial with magnetic oscillator

    Directory of Open Access Journals (Sweden)

    Nansha Gao

    2017-07-01

    Full Text Available A bilayer membrane acoustic metamaterial was proposed to overcome the influence of the mass law on traditional acoustic materials and obtain a lightweight thin-layer structure that can effectively isolate low frequency noise. The finite element analysis (FEA results agree well with the experimental results. It is proved that the sound transmission losses (STLs of the proposed structures are higher than those of same surface density acoustic materials. The introduction of the magnetic mass block is different from the traditional design method, in which only a passive mass block is fixed on the membrane. The magnetic force will cause tension in the membrane, increase membrane prestress, and improve overall structural stiffness. The effects of the geometry size on the STLs are discussed in detail. The kind of method presented in this paper can provide a new means for engineering noise control. Keywords: Bilayer membrane acoustic metamaterial, Low frequency sound insulation, Sound transmission loss, Magnet oscillator

  13. Distinguishing low frequency oscillations within the 1/f spectral behaviour of electromagnetic brain signals.

    Science.gov (United States)

    Demanuele, Charmaine; James, Christopher J; Sonuga-Barke, Edmund Js

    2007-12-10

    It has been acknowledged that the frequency spectrum of measured electromagnetic (EM) brain signals shows a decrease in power with increasing frequency. This spectral behaviour may lead to difficulty in distinguishing event-related peaks from ongoing brain activity in the electro- and magnetoencephalographic (EEG and MEG) signal spectra. This can become an issue especially in the analysis of low frequency oscillations (LFOs) - below 0.5 Hz - which are currently being observed in signal recordings linked with specific pathologies such as epileptic seizures or attention deficit hyperactivity disorder (ADHD), in sleep studies, etc. In this work we propose a simple method that can be used to compensate for this 1/f trend hence achieving spectral normalisation. This method involves filtering the raw measured EM signal through a differentiator prior to further data analysis. Applying the proposed method to various exemplary datasets including very low frequency EEG recordings, epileptic seizure recordings, MEG data and Evoked Response data showed that this compensating procedure provides a flat spectral base onto which event related peaks can be clearly observed. Findings suggest that the proposed filter is a useful tool for the analysis of physiological data especially in revealing very low frequency peaks which may otherwise be obscured by the 1/f spectral activity inherent in EEG/MEG recordings.

  14. Distinguishing low frequency oscillations within the 1/f spectral behaviour of electromagnetic brain signals

    Directory of Open Access Journals (Sweden)

    Sonuga-Barke Edmund JS

    2007-12-01

    Full Text Available Abstract Background It has been acknowledged that the frequency spectrum of measured electromagnetic (EM brain signals shows a decrease in power with increasing frequency. This spectral behaviour may lead to difficulty in distinguishing event-related peaks from ongoing brain activity in the electro- and magnetoencephalographic (EEG and MEG signal spectra. This can become an issue especially in the analysis of low frequency oscillations (LFOs – below 0.5 Hz – which are currently being observed in signal recordings linked with specific pathologies such as epileptic seizures or attention deficit hyperactivity disorder (ADHD, in sleep studies, etc. Methods In this work we propose a simple method that can be used to compensate for this 1/f trend hence achieving spectral normalisation. This method involves filtering the raw measured EM signal through a differentiator prior to further data analysis. Results Applying the proposed method to various exemplary datasets including very low frequency EEG recordings, epileptic seizure recordings, MEG data and Evoked Response data showed that this compensating procedure provides a flat spectral base onto which event related peaks can be clearly observed. Conclusion Findings suggest that the proposed filter is a useful tool for the analysis of physiological data especially in revealing very low frequency peaks which may otherwise be obscured by the 1/f spectral activity inherent in EEG/MEG recordings.

  15. Low and high frequency Madden-Julian oscillations in austral summer: interannual variations

    Energy Technology Data Exchange (ETDEWEB)

    Izumo, Takeshi [Research Institute For Global Change (JAMSTEC), Yokohama (Japan); LOCEAN, IRD-CNRS-UPMC, Paris (France); Masson, Sebastien; Vialard, Jerome; Madec, Gurvan [LOCEAN, IRD-CNRS-UPMC, Paris (France); Boyer Montegut, Clement de [IFREMER, Brest (France); Behera, Swadhin K. [Research Institute For Global Change (JAMSTEC), Yokohama (Japan); Takahashi, Keiko [Earth Simulator Center (JAMSTEC), Yokohama (Japan); Yamagata, Toshio [Research Institute For Global Change (JAMSTEC), Yokohama (Japan); University of Tokyo, Tokyo (Japan)

    2010-09-15

    The Madden-Julian oscillation (MJO) is the main component of intraseasonal variability of the tropical convection, with clear climatic impacts at an almost-global scale. Based on satellite observations, it is shown that there are two types of austral-summer MJO events (broadly defined as 30-120 days convective variability with eastward propagation of about 5 m/s). Equatorial MJO events have a period of 30-50 days and tend to be symmetric about the equator, whereas MJO events centered near 8 S tend to have a longer period of 55-100 days. The lower-frequency variability is associated with a strong upper-ocean response, having a clear signature in both sea surface temperature and its diurnal cycle. These two MJO types have different interannual variations, and are modulated by the Indian Ocean Dipole (IOD). Following a negative IOD event, the lower-frequency southern MJO variability increases, while the higher-frequency equatorial MJO strongly diminishes. We propose two possible explanations for this change in properties of the MJO. One possibility is that changes in the background atmospheric circulation after an IOD favour the development of the low-frequency MJO. The other possibility is that the shallower thermocline ridge and mixed layer depth, by enhancing SST intraseasonal variability and thus ocean-atmosphere coupling in the southwest Indian Ocean (the breeding ground of southern MJO onset), favour the lower-frequency southern MJO variability. (orig.)

  16. Filterless low-phase-noise frequency-quadrupled microwave generation based on a multimode optoelectronic oscillator

    Science.gov (United States)

    Teng, Yichao; Zhang, Pin; Zhang, Baofu; Chen, Yiwang

    2018-02-01

    A scheme to realize low-phase-noise frequency-quadrupled microwave generation without any filter is demonstrated. In this scheme, a multimode optoelectronic oscillator is mainly contributed by dual-parallel Mach-Zehnder modulators, fiber, photodetector, and microwave amplifier. The local source signal is modulated by a child MZM (MZMa), which is worked at maximum transmission point. Through properly adjusting the bias voltages of the other child MZM (MZMb) and the parent MZM (MZMc), optical carrier is effectively suppressed and second sidebands are retained, then the survived optical signal is fed back to the photodetector and MZMb to form an optoelectronic hybrid resonator and realize frequency-quadrupled signal generation. Due to the high Q-factor and mode selection effect of the optoelectronic hybrid resonator, compared with the source signal, the generated frequency-quadrupled signal has a lower phase noise. The approach has verified by experiments, and 18, 22, and 26 GHz frequency-quadrupled signal are generated by 4.5, 5.5, and 6.5 GHz local source signals. Compared with 4.5 GHz source signal, the phase noise of generated 18 GHz signal at 10 kHz frequency offset has 26.5 dB reduction.

  17. Nonlinear oscillation and interfacial stability of an encapsulated microbubble under dual-frequency ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunqiao [MOE Key Laboratory of Hydrodynamics, Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240 (China); Calvisi, Michael L [Department of Mechanical and Aerospace Engineering, University of Colorado, Colorado Springs, CO 80918, United States of America (United States); Wang, Qianxi, E-mail: yunqiaoliu@sjtu.edu.cn [School of Mathematics, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2017-04-15

    Encapsulated microbubbles (EMBs) are widely used in medical ultrasound imaging as contrast-enhanced agents. However, the potential damaging effects of violent collapsing EMBs to cells and tissues in clinical settings have remained a concern. Dual-frequency ultrasound is a promising technique for improving the efficacy and safety of sonography. The system modeled consists of the external liquid, membrane and internal gases of an EMB. The microbubble dynamics are simulated using a simple nonlinear interactive theory, considering the compressibility of the internal gas, viscosity of the liquid flow and viscoelasticity of the membrane. The radial oscillation and interfacial stability of an EMB under single- and dual-frequency excitations are compared. The simulation results show that the dual-frequency technique produces larger backscatter pressure at higher harmonics of the primary driving frequency—this enriched acoustic spectrum can enhance blood-tissue contrast and improve the quality of sonographic images. The results further show that the acoustic pressure threshold associated with the onset of shape instability is greater for dual-frequency driving. This suggests that the dual-frequency technique stabilizes the encapsulated bubble, thereby improving the efficacy and safety of contrast-enhanced agents. (paper)

  18. Model based PI power system stabilizer design for damping low frequency oscillations in power systems.

    Science.gov (United States)

    Salgotra, Aprajita; Pan, Somnath

    2018-05-01

    This paper explores a two-level control strategy by blending local controller with centralized controller for the low frequency oscillations in a power system. The proposed control scheme provides stabilization of local modes using a local controller and minimizes the effect of inter-connection of sub-systems performance through a centralized control. For designing the local controllers in the form of proportional-integral power system stabilizer (PI-PSS), a simple and straight forward frequency domain direct synthesis method is considered that works on use of a suitable reference model which is based on the desired requirements. Several examples both on one machine infinite bus and multi-machine systems taken from the literature are illustrated to show the efficacy of the proposed PI-PSS. The effective damping of the systems is found to be increased remarkably which is reflected in the time-responses; even unstable operation has been stabilized with improved damping after applying the proposed controller. The proposed controllers give remarkable improvement in damping the oscillations in all the illustrations considered here and as for example, the value of damping factor has been increased from 0.0217 to 0.666 in Example 1. The simulation results obtained by the proposed control strategy are favourably compared with some controllers prevalent in the literature. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Nonlinear oscillations of the FitzHugh-Nagumo equations under combined external and two-frequency parametric excitations

    International Nuclear Information System (INIS)

    Tatchim Bemmo, D.; Siewe Siewe, M.; Tchawoua, C.

    2011-01-01

    The continuous FitzHugh-Nagumo (FHN for short) model is transformed into modified van der Pol oscillator with asymmetry under external and two-frequency parametric excitations. At the first, the dependence of the solutions on a combined external and two-frequency parametric stimulus forcing is investigated. By using the multiple scale method, ranges of applied current and/or parametric forcing in which nonlinear oscillations are observed are described. Second, when the multiple scale method cannot be used, we numerically prove that in the modified van der Pol oscillator with asymmetry under external and two-frequency parametric excitations, chaos and periodic solution depending on the combination between different frequencies of the model should appear. We also show that the amplitude of the oscillations can be reduced or increased. To do this, we perform the study of the FHN model by choosing a range of parameters exhibiting Hopf bifurcation and two qualitative different regimes in phase portrait. - Highlights: → We model both external and two-frequency parametric excitations in FHN equations. → We examine effects of harmonic forcing on coupled nonlinear oscillator. → Jump and hysteresis phenomena are observed in the dynamical response. → By increasing the constant stimulus we obtain limit cycle. → Some combinations of frequencies produce limit cycle and chaos for other.

  20. Effective deep brain stimulation suppresses low frequency network oscillations in the basal ganglia by regularizing neural firing patterns

    Science.gov (United States)

    McConnell, George C.; So, Rosa Q.; Hilliard, Justin D; Lopomo, Paola; Grill, Warren M.

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for the motor symptoms of Parkinson’s disease (PD). The effects of DBS depend strongly on stimulation frequency: high frequencies (>90Hz) improve motor symptoms, while low frequencies (basal ganglia were studied in the unilateral 6-hydroxydopamine lesioned rat model of PD. Only high frequency DBS reversed motor symptoms and the effectiveness of DBS depended strongly on stimulation frequency in a manner reminiscent of its clinical effects in persons with PD. Quantification of single-unit activity in the globus pallidus externa (GPe) and substantia nigra reticulata (SNr) revealed that high frequency DBS, but not low frequency DBS, reduced pathological low frequency oscillations (~9Hz) and entrained neurons to fire at the stimulation frequency. Similarly, the coherence between simultaneously recorded pairs of neurons within and across GPe and SNr shifted from the pathological low frequency band to the stimulation frequency during high frequency DBS, but not during low frequency DBS. The changes in firing patterns in basal ganglia neurons were not correlated with changes in firing rate. These results indicate that high frequency DBS is more effective than low frequency DBS, not as a result of changes in firing rate, but rather due to its ability to replace pathological low frequency network oscillations with a regularized pattern of neuronal firing. PMID:23136407

  1. Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns.

    Science.gov (United States)

    McConnell, George C; So, Rosa Q; Hilliard, Justin D; Lopomo, Paola; Grill, Warren M

    2012-11-07

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for the motor symptoms of Parkinson's disease (PD). The effects of DBS depend strongly on stimulation frequency: high frequencies (>90 Hz) improve motor symptoms, while low frequencies (basal ganglia were studied in the unilateral 6-hydroxydopamine lesioned rat model of PD. Only high-frequency DBS reversed motor symptoms, and the effectiveness of DBS depended strongly on stimulation frequency in a manner reminiscent of its clinical effects in persons with PD. Quantification of single-unit activity in the globus pallidus externa (GPe) and substantia nigra reticulata (SNr) revealed that high-frequency DBS, but not low-frequency DBS, reduced pathological low-frequency oscillations (∼9 Hz) and entrained neurons to fire at the stimulation frequency. Similarly, the coherence between simultaneously recorded pairs of neurons within and across GPe and SNr shifted from the pathological low-frequency band to the stimulation frequency during high-frequency DBS, but not during low-frequency DBS. The changes in firing patterns in basal ganglia neurons were not correlated with changes in firing rate. These results indicate that high-frequency DBS is more effective than low-frequency DBS, not as a result of changes in firing rate, but rather due to its ability to replace pathological low-frequency network oscillations with a regularized pattern of neuronal firing.

  2. SDO/AIA Observations of Quasi-periodic Fast (~1000 km/s) Propagating (QFP) Waves as Evidence of Fast-mode Magnetosonic Waves in the Low Corona: Statistics and Implications

    Science.gov (United States)

    Liu, W.; Ofman, L.; Title, A. M.; Zhao, J.; Aschwanden, M. J.

    2011-12-01

    Recent EUV imaging observations from SDO/AIA led to the discovery of quasi-periodic fast (~2000 km/s) propagating (QFP) waves in active regions (Liu et al. 2011). They were interpreted as fast-mode magnetosonic waves and reproduced in 3D MHD simulations (Ofman et al. 2011). Since then, we have extended our study to a sample of more than a dozen such waves observed during the SDO mission (2010/04-now). We will present the statistical properties of these waves including: (1) Their projected speeds measured in the plane of the sky are about 400-2200 km/s, which, as the lower limits of their true speeds in 3D space, fall in the expected range of coronal Alfven or fast-mode speeds. (2) They usually originate near flare kernels, often in the wake of a coronal mass ejection, and propagate in narrow funnels of coronal loops that serve as waveguides. (3) These waves are launched repeatedly with quasi-periodicities in the 30-200 seconds range, often lasting for more than one hour; some frequencies coincide with those of the quasi-periodic pulsations (QPPs) in the accompanying flare, suggestive a common excitation mechanism. We obtained the k-omega diagrams and dispersion relations of these waves using Fourier analysis. We estimate their energy fluxes and discuss their contribution to coronal heating as well as their diagnostic potential for coronal seismology.

  3. Laser Raman spectroscopy of the effect of solvent on the low-frequency oscillations of organic molecules

    Science.gov (United States)

    Brandt, N. N.; Chikishev, A. Yu.; Dolgovskii, V. I.; Lebedenko, S. I.

    2007-09-01

    The effect of solvent on low-frequency oscillations is studied using an example of the 1,1,2,2-tetrachloroethane (TCE) and 1,1,2,2-tetrabromoethane (TBE) molecules, which exhibit torsional oscillations in the terahertz range. Dimethylsulfoxide (DMSO) and carbon tetrachloride (CTC) are used as solvents. It is demonstrated that a decrease in the concentration of the substance under study in the TBE/CTC, TCE/DMSO, and TCE/CTC mixtures leads to a frequency shift of the low-frequency oscillation. The shift is not observed in the TBE/DMSO mixture but a decrease in the TBE concentration causes significant broadening of the low-frequency line.

  4. Low-frequency oscillations in default mode subnetworks are associated with episodic memory impairments in Alzheimer's disease.

    Science.gov (United States)

    Veldsman, Michele; Egorova, Natalia; Singh, Baljeet; Mungas, Dan; DeCarli, Charles; Brodtmann, Amy

    2017-11-01

    Disruptions to functional connectivity in subsystems of the default mode network are evident in Alzheimer's disease (AD). Functional connectivity estimates correlations in the time course of low-frequency activity. Much less is known about other potential perturbations to this activity, such as changes in the amplitude of oscillations and how this relates to cognition. We examined the amplitude of low-frequency fluctuations in 44 AD patients and 128 cognitively normal participants and related this to episodic memory, the core deficit in AD. We show higher amplitudes of low-frequency oscillations in AD patients. Rather than being compensatory, this appears to be maladaptive, with greater amplitude in the ventral default mode subnetwork associated with poorer episodic memory. Perturbations to default mode subnetworks in AD are evident in the amplitude of low-frequency oscillations in the resting brain. These disruptions are associated with episodic memory demonstrating their behavioral and clinical relevance in AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Experiments and characterization of low-frequency oscillations in a granular column

    Science.gov (United States)

    Oyarte Gálvez, Loreto; Rivas, Nicolás; van der Meer, Devaraj

    2018-04-01

    The behavior of a vertically vibrated granular bed is reminiscent of a liquid in that it exhibits many phenomena such as convection and Faraday-like surface waves. However, when the lateral dimensions of the bed are confined such that a quasi-one-dimensional geometry is formed, the only phenomena that remain are bouncing bed and the granular Leidenfrost effect. This permits the observation of the granular Leidenfrost state for a wide range of energy injection parameters and more specifically allows for a thorough characterization of the low-frequency oscillation (LFO) that is present in this state. In both experiments and particle simulations we determine the LFO frequency from the power spectral density of the center-of-mass signal of the grains, varying the amplitude and frequency of the driving, the particle diameter, and the number of layers in the system. We thus find that the LFO frequency (i) is inversely proportional to the fast inertial timescale and (ii) decorrelates with a typical decay time proportional to the slow dissipative timescale in the system. The latter is consistent with the view that the LFO is driven by the inherent noise that is present in the granular Leidenfrost state with a low number of particles.

  6. Cross-frequency synchronization connects networks of fast and slow oscillations during visual working memory maintenance.

    Science.gov (United States)

    Siebenhühner, Felix; Wang, Sheng H; Palva, J Matias; Palva, Satu

    2016-09-26

    Neuronal activity in sensory and fronto-parietal (FP) areas underlies the representation and attentional control, respectively, of sensory information maintained in visual working memory (VWM). Within these regions, beta/gamma phase-synchronization supports the integration of sensory functions, while synchronization in theta/alpha bands supports the regulation of attentional functions. A key challenge is to understand which mechanisms integrate neuronal processing across these distinct frequencies and thereby the sensory and attentional functions. We investigated whether such integration could be achieved by cross-frequency phase synchrony (CFS). Using concurrent magneto- and electroencephalography, we found that CFS was load-dependently enhanced between theta and alpha-gamma and between alpha and beta-gamma oscillations during VWM maintenance among visual, FP, and dorsal attention (DA) systems. CFS also connected the hubs of within-frequency-synchronized networks and its strength predicted individual VWM capacity. We propose that CFS integrates processing among synchronized neuronal networks from theta to gamma frequencies to link sensory and attentional functions.

  7. High-frequency sarcomeric auto-oscillations induced by heating in living neonatal cardiomyocytes of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Shintani, Seine A.; Oyama, Kotaro [Department of Pure and Applied Physics, School of Advanced Science and Engineering, Waseda University, Tokyo (Japan); Fukuda, Norio, E-mail: noriof@jikei.ac.jp [Department of Cell Physiology, The Jikei University School of Medicine, Tokyo (Japan); Ishiwata, Shin’ichi, E-mail: ishiwata@waseda.jp [Department of Pure and Applied Physics, School of Advanced Science and Engineering, Waseda University, Tokyo (Japan); WASEDA Bioscience Research Institute in Singapore (WABIOS) (Singapore)

    2015-02-06

    Highlights: • We tested the effects of infra-red laser irradiation on cardiac sarcomere dynamics. • A rise in temperature (>∼38 °C) induced high-frequency sarcomeric auto-oscillations. • These oscillations occurred with and without blockade of intracellular Ca{sup 2+} stores. • Cardiac sarcomeres can play a role as a temperature-dependent rhythm generator. - Abstract: In the present study, we investigated the effects of infra-red laser irradiation on sarcomere dynamics in living neonatal cardiomyocytes of the rat. A rapid increase in temperature to >∼38 °C induced [Ca{sup 2+}]{sub i}-independent high-frequency (∼5–10 Hz) sarcomeric auto-oscillations (Hyperthermal Sarcomeric Oscillations; HSOs). In myocytes with the intact sarcoplasmic reticular functions, HSOs coexisted with [Ca{sup 2+}]{sub i}-dependent spontaneous beating in the same sarcomeres, with markedly varying frequencies (∼10 and ∼1 Hz for the former and latter, respectively). HSOs likewise occurred following blockade of the sarcoplasmic reticular functions, with the amplitude becoming larger and the frequency lower in a time-dependent manner. The present findings suggest that in the mammalian heart, sarcomeres spontaneously oscillate at higher frequencies than the sinus rhythm at temperatures slightly above the physiologically relevant levels.

  8. Investigation of Quasi Periodic Signals of X-Ray Bursts from Neutron ...

    African Journals Online (AJOL)

    Pheneas Nkundabakura

    package with FTools and IDL software for processing of the science events. A timing ... Carlo Simulation (MCS) by running random number of simulations in MATLAB ..... frequency variations, finite lifetime and amplitude modulation and.

  9. Interplay of intrinsic and synaptic conductances in the generation of high-frequency oscillations in interneuronal networks with irregular spiking.

    Directory of Open Access Journals (Sweden)

    Fabiano Baroni

    2014-05-01

    Full Text Available High-frequency oscillations (above 30 Hz have been observed in sensory and higher-order brain areas, and are believed to constitute a general hallmark of functional neuronal activation. Fast inhibition in interneuronal networks has been suggested as a general mechanism for the generation of high-frequency oscillations. Certain classes of interneurons exhibit subthreshold oscillations, but the effect of this intrinsic neuronal property on the population rhythm is not completely understood. We study the influence of intrinsic damped subthreshold oscillations in the emergence of collective high-frequency oscillations, and elucidate the dynamical mechanisms that underlie this phenomenon. We simulate neuronal networks composed of either Integrate-and-Fire (IF or Generalized Integrate-and-Fire (GIF neurons. The IF model displays purely passive subthreshold dynamics, while the GIF model exhibits subthreshold damped oscillations. Individual neurons receive inhibitory synaptic currents mediated by spiking activity in their neighbors as well as noisy synaptic bombardment, and fire irregularly at a lower rate than population frequency. We identify three factors that affect the influence of single-neuron properties on synchronization mediated by inhibition: i the firing rate response to the noisy background input, ii the membrane potential distribution, and iii the shape of Inhibitory Post-Synaptic Potentials (IPSPs. For hyperpolarizing inhibition, the GIF IPSP profile (factor iii exhibits post-inhibitory rebound, which induces a coherent spike-mediated depolarization across cells that greatly facilitates synchronous oscillations. This effect dominates the network dynamics, hence GIF networks display stronger oscillations than IF networks. However, the restorative current in the GIF neuron lowers firing rates and narrows the membrane potential distribution (factors i and ii, respectively, which tend to decrease synchrony. If inhibition is shunting instead

  10. Interplay of intrinsic and synaptic conductances in the generation of high-frequency oscillations in interneuronal networks with irregular spiking.

    Science.gov (United States)

    Baroni, Fabiano; Burkitt, Anthony N; Grayden, David B

    2014-05-01

    High-frequency oscillations (above 30 Hz) have been observed in sensory and higher-order brain areas, and are believed to constitute a general hallmark of functional neuronal activation. Fast inhibition in interneuronal networks has been suggested as a general mechanism for the generation of high-frequency oscillations. Certain classes of interneurons exhibit subthreshold oscillations, but the effect of this intrinsic neuronal property on the population rhythm is not completely understood. We study the influence of intrinsic damped subthreshold oscillations in the emergence of collective high-frequency oscillations, and elucidate the dynamical mechanisms that underlie this phenomenon. We simulate neuronal networks composed of either Integrate-and-Fire (IF) or Generalized Integrate-and-Fire (GIF) neurons. The IF model displays purely passive subthreshold dynamics, while the GIF model exhibits subthreshold damped oscillations. Individual neurons receive inhibitory synaptic currents mediated by spiking activity in their neighbors as well as noisy synaptic bombardment, and fire irregularly at a lower rate than population frequency. We identify three factors that affect the influence of single-neuron properties on synchronization mediated by inhibition: i) the firing rate response to the noisy background input, ii) the membrane potential distribution, and iii) the shape of Inhibitory Post-Synaptic Potentials (IPSPs). For hyperpolarizing inhibition, the GIF IPSP profile (factor iii)) exhibits post-inhibitory rebound, which induces a coherent spike-mediated depolarization across cells that greatly facilitates synchronous oscillations. This effect dominates the network dynamics, hence GIF networks display stronger oscillations than IF networks. However, the restorative current in the GIF neuron lowers firing rates and narrows the membrane potential distribution (factors i) and ii), respectively), which tend to decrease synchrony. If inhibition is shunting instead of

  11. Measurement of the Bs anti-Bs oscillation frequency using semileptonic decays

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Vivek [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2007-05-01

    This thesis reports a time dependent measurement of the B$0\\atop{s}$-$\\bar{B}$$0\\atop{s}$ oscillation frequency Δms using semileptonic decays B$0\\atop{s}$ → D$-\\atop{s}$ℓ+X. We use a data sample of 1 fb-1 of pp collisions at √s = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron Collider to reconstruct ~ 61, 500 semileptonic B$0\\atop{s}$ decays. This analysis of B$0\\atop{s}$-$\\bar{B}$$0\\atop{s}$ mixing has a sensitivity of 19.4 ps-1 and shows an evidence of B$0\\atop{s}$ oscillations at Δms ~17.75 ps-1 with an amplitude significance of ~2. In combination with the analyses of ~ 8,700 hadronic B$0\\atop{s}$ decays at CDF, we have made the first direct observation of time-dependent B$0\\atop{s}$-$\\bar{B}$$0\\atop{s}$ flavor oscillations measuring Δms = 17.77$+0.09\\atop{-0.10}$ (stat) ± 0.07 (syst) ps -1. The obtained value of Δms agrees with the Standard Model expectation. When combined with the world average values for Δmd, m$\\bar{B}$0s and m $\\bar{B}$0s, along with other theoretical input, this result yields the ratio of CKM matrix elements |Vtd/Vts| = 0.2060 ± 0.0007 (exp)$+0.0081\\atop{-0.0060}$ (theor).

  12. Spontaneous high-frequency (10-80 Hz) oscillations during up states in the cerebral cortex in vitro.

    Science.gov (United States)

    Compte, Albert; Reig, Ramon; Descalzo, Vanessa F; Harvey, Michael A; Puccini, Gabriel D; Sanchez-Vives, Maria V

    2008-12-17

    High-frequency oscillations in cortical networks have been linked to a variety of cognitive and perceptual processes. They have also been recorded in small cortical slices in vitro, indicating that neuronal synchronization at these frequencies is generated in the local cortical circuit. However, in vitro experiments have hitherto necessitated exogenous pharmacological or electrical stimulation to generate robust synchronized activity in the beta/gamma range. Here, we demonstrate that the isolated cortical microcircuitry generates beta and gamma oscillations spontaneously in the absence of externally applied neuromodulators or synaptic agonists. We show this in a spontaneously active slice preparation that engages in slow oscillatory activity similar to activity during slow-wave sleep. beta and gamma synchronization appeared during the up states of the slow oscillation. Simultaneous intracellular and extracellular recordings revealed synchronization between the timing of incoming synaptic events and population activity. This rhythm was mechanistically similar to pharmacologically induced gamma rhythms, as it also included sparse, irregular firing of neurons within the population oscillation, predominant involvement of inhibitory neurons, and a decrease of oscillation frequency after barbiturate application. Finally, we show in a computer model how a synaptic loop between excitatory and inhibitory neurons can explain the emergence of both the slow (network. We therefore conclude that oscillations in the beta/gamma range that share mechanisms with activity reported in vivo or in pharmacologically activated in vitro preparations can be generated during slow oscillatory activity in the local cortical circuit, even without exogenous pharmacological or electrical stimulation.

  13. Detection and Interpretation of Long-lived X-Ray Quasi-periodic Pulsations in the X-class Solar Flare on 2013 May 14

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, Brian R.; Tolbert, Anne K.; Inglis, Andrew; Ireland, Jack; Wang, Tongjiang; Holman, Gordon D. [Solar Physics Laboratory, Code 671, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hayes, Laura A. [ADNET Systems, Inc. at NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gallagher, Peter T., E-mail: brian.r.dennis@nasa.gov [School of Physics, Trinity College Dublin, Dublin 2 (Ireland)

    2017-02-10

    Quasi-periodic pulsations (QPP) seen in the time derivative of the GOES soft X-ray light curves are analyzed for the X3.2 event on 2013 May 14. The pulsations are apparent for a total of at least two hours from the impulsive phase to well into the decay phase, with a total of 163 distinct pulses evident to the naked eye. A wavelet analysis shows that the characteristic timescale of these pulsations increases systematically from ∼25 s at 01:10 UT, the time of the GOES peak, to ∼100 s at 02:00 UT. A second “ridge” in the wavelet power spectrum, most likely associated with flaring emission from a different active region, shows an increase from ∼40 s at 01:40 UT to ∼100 s at 03:10 UT. We assume that the QPP that produced the first ridge result from vertical kink-mode oscillations of the newly formed loops following magnetic reconnection in the coronal current sheet. This allows us to estimate the magnetic field strength as a function of altitude given the density, loop length, and QPP timescale as functions of time determined from the GOES light curves and Ramaty High Energy Solar Spectroscopic Imager ( RHESSI ) images. The calculated magnetic field strength of the newly formed loops ranges from ∼500 G at an altitude of 24 Mm to a low value of ∼10 G at 60 Mm, in general agreement with the expected values at these altitudes. Fast sausage-mode oscillations are also discussed and cannot be ruled out as an alternate mechanism for producing the QPP.

  14. High-frequency oscillations in distributed neural networks reveal the dynamics of human decision making

    Directory of Open Access Journals (Sweden)

    Adrian G Guggisberg

    2008-03-01

    Full Text Available We examine the relative timing of numerous brain regions involved in human decisions that are based on external criteria, learned information, personal preferences, or unconstrained internal considerations. Using magnetoencephalography (MEG and advanced signal analysis techniques, we were able to non-invasively reconstruct oscillations of distributed neural networks in the high-gamma frequency band (60–150 Hz. The time course of the observed neural activity suggested that two-alternative forced choice tasks are processed in four overlapping stages: processing of sensory input, option evaluation, intention formation, and action execution. Visual areas are activated fi rst, and show recurring activations throughout the entire decision process. The temporo-occipital junction and the intraparietal sulcus are active during evaluation of external values of the options, 250–500 ms after stimulus presentation. Simultaneously, personal preference is mediated by cortical midline structures. Subsequently, the posterior parietal and superior occipital cortices appear to encode intention, with different subregions being responsible for different types of choice. The cerebellum and inferior parietal cortex are recruited for internal generation of decisions and actions, when all options have the same value. Action execution was accompanied by activation peaks in the contralateral motor cortex. These results suggest that high-gamma oscillations as recorded by MEG allow a reliable reconstruction of decision processes with excellent spatiotemporal resolution.

  15. High-frequency Oscillations in Small Magnetic Elements Observed with Sunrise/SuFI

    International Nuclear Information System (INIS)

    Jafarzadeh, S.; Solanki, S. K.; Cameron, R. H.; Danilovic, S.; Stangalini, M.; Steiner, O.

    2017-01-01

    We characterize waves in small magnetic elements and investigate their propagation in the lower solar atmosphere from observations at high spatial and temporal resolution. We use the wavelet transform to analyze oscillations of both horizontal displacement and intensity in magnetic bright points found in the 300 nm and the Ca ii H 396.8 nm passbands of the filter imager on board the Sunrise balloon-borne solar observatory. Phase differences between the oscillations at the two atmospheric layers corresponding to the two passbands reveal upward propagating waves at high frequencies (up to 30 mHz). Weak signatures of standing as well as downward propagating waves are also obtained. Both compressible and incompressible (kink) waves are found in the small-scale magnetic features. The two types of waves have different, though overlapping, period distributions. Two independent estimates give a height difference of approximately 450 ± 100 km between the two atmospheric layers sampled by the employed spectral bands. This value, together with the determined short travel times of the transverse and longitudinal waves provide us with phase speeds of 29 ± 2 km s −1 and 31 ± 2 km s −1 , respectively. We speculate that these phase speeds may not reflect the true propagation speeds of the waves. Thus, effects such as the refraction of fast longitudinal waves may contribute to an overestimate of the phase speed.

  16. Foldover, quasi-periodicity, spin-wave instabilities in ultra-thin films subject to RF fields

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino, M. [Department of Electrical Engineering, University of Napoli ' Federico II' , Naples I-80125 (Italy)]. E-mail: mdaquino@unina.it; Bertotti, G. [Istituto Nazionale di Ricerca Metrologica (INRIM), I-10135 Turin (Italy); Serpico, C. [Department of Electrical Engineering, University of Napoli ' Federico II' , Naples I-80125 (Italy); Mayergoyz, I.D. [ECE Department and UMIACS, University of Maryland, College Park, MD 20742 (United States); Bonin, R. [Istituto Nazionale di Ricerca Metrologica (INRIM), I-10135 Turin (Italy); Guida, G. [Department of Electrical Engineering, University of Napoli ' Federico II' , Naples I-80125 (Italy)

    2007-09-15

    We study magnetization dynamics in a uniaxial ultra-thin ferromagnetic disk subject to spatially uniform microwave external fields. The rotational invariance of the system is such that the only admissible spatially uniform steady states are periodic (P-modes) and quasi-periodic (Q-modes) modes. The stability of P-modes versus spatially uniform and nonuniform perturbations is studied by using spin-wave analysis and the instability diagram for all possible P-modes is computed. The predictions of the spin-wave analysis are compared with micromagnetic simulations.

  17. Simultaneous observations of quasi-periodic ELF/VLF wave emissions and electron precipitation by DEMETER satellite: A case study

    Czech Academy of Sciences Publication Activity Database

    Hayosh, Mykhaylo; Pasmanik, D. L.; Demekhov, A. G.; Santolík, Ondřej; Parrot, M.; Titova, E. E.

    2013-01-01

    Roč. 118, č. 7 (2013), s. 4523-4533 ISSN 2169-9380 R&D Projects: GA ČR(CZ) GAP209/11/2280; GA MŠk LH12231 Institutional support: RVO:68378289 Keywords : quasi-periodic ELF/VLF emission s in the magnetosphere * wave-particle interactions * demeter spacecraft measurements * whistler-mode waves Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/jgra.50179/abstract

  18. Low-frequency blood pressure oscillations and inotrope treatment failure in premature infants.

    Science.gov (United States)

    Vesoulis, Zachary A; Hao, Jessica; McPherson, Christopher; El Ters, Nathalie M; Mathur, Amit M

    2017-07-01

    The underlying mechanism as to why some hypotensive preterm infants do not respond to inotropic medications remains unclear. For these infants, we hypothesize that impaired vasomotor function is a significant factor and is manifested through a decrease in low-frequency blood pressure variability across regulatory components of vascular tone. Infants born ≤28 wk estimated gestational age underwent prospective recording of mean arterial blood pressure for 72 h after birth. After error correction, root-mean-square spectral power was calculated for each valid 10-min data frame across each of four frequency bands ( B1 , 0.005-0.0095 Hz; B2 , 0.0095-0.02 Hz; B3 , 0.02-0.06 Hz; and B4 , 0.06-0.16) corresponding to different components of vasomotion control. Forty infants (twenty-nine normotensive control and eleven inotrope-exposed) were included with a mean ± SD estimated gestational age of 25.2 ± 1.6 wk and birth weight 790 ± 211 g. 9.7/11.8 Million (82%) data points were error-free and used for analysis. Spectral power across all frequency bands increased with time, although the magnitude was 20% less in the inotrope-exposed infants. A statistically significant increase in spectral power in response to inotrope initiation was noted across all frequency bands. Infants with robust blood pressure response to inotropes had a greater increase compared with those who had limited or no blood pressure response. In this study, hypotensive infants who require inotropes have decreased low-frequency variability at baseline compared with normotensive infants, which increases after inotrope initiation. Low-frequency spectral power does not change for those with inotrope treatment failure, suggesting dysfunctional regulation of vascular tone as a potential mechanism of treatment failure. NEW & NOTEWORTHY In this study, we examine patterns of low-frequency oscillations in blood pressure variability across regulatory components of vascular tone in normotensive and

  19. Analysis of hysteresis characteristics and low frequency oscillation in gas discharge plasma

    International Nuclear Information System (INIS)

    Matsunaga, Yasushi; Kato, Tomokazu

    1997-01-01

    Hysteresis of gas discharge plasma and nonlinear oscillation of low frequency, caused by the trapped ion, are analyzed. Mainly, the hysteresis and emergence of multiple-steady states are discussed by a simple model of chemical-reaction system. It is shown that a function describing the energy balance has three different real roots. The condition for plural roots depends on the ratio of the bulk energy increase to the surface energy loss of plasma. The criterion contains the non-thermodynamic variables such as conductivity and surface quantities. Examination of stabilities of three-obtained solutions by using linear analysis of differential equations manifests that a root represents a saddle point and other two roots represent stable points. (author)

  20. Measurement of the $B_{d}^{0} - \\overline{B}_{d}^{0}$ oscillation frequency

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Lacentre, P E; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lavorato, A; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Migani, D; Mihul, A; Van Mil, A J W; Milcent, H; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Moulik, T; Mount, R; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Opitz, H; Organtini, G; Ostonen, R; Palit, S; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Rind, O; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sarkar, S; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schneegans, M; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Vlachos, S; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1998-01-01

    Time-dependent ${\\mathrm{B^{0}}\\mbox{-}\\bar{\\mathrm{B}} ^{0}}$ mixing is studied using about two million hadronic Z decays registered by L3 in 1994 and 1995. For this study three techniques are used. Tagging of the b-quark charge at decay time is performed by identifying leptons from semileptonic B decays. The flavour of the b quark at production time is determined from the charge of the lepton in the opposite hemisphere or by using a jet-charge technique. The proper time of the B-particle decay is obtained by reconstructing the production and decay vertices or by a measurement of the lepton impact parameter. The combined result for the frequency of ${\\mathrm{B_d^0}}$ meson oscillations is \\begin{displaymath} {\\Delta m_d} = 0.444 \\pm 0.040 \\ \\mathrm{ps}^{-1}. \\end{displaymath} \\end{abstract} \\end{document}

  1. NMDA receptor antagonist-enhanced high frequency oscillations: are they generated broadly or regionally specific?

    Science.gov (United States)

    Olszewski, Maciej; Dolowa, Wioleta; Matulewicz, Pawel; Kasicki, Stefan; Hunt, Mark J

    2013-12-01

    Systemic administration of NMDA receptor antagonists, used to model schizophrenia, increase the power of high-frequency oscillations (130-180Hz, HFO) in a variety of neuroanatomical and functionally distinct brain regions. However, it is unclear whether HFO are independently and locally generated or instead spread from a distant source. To address this issue, we used local infusion of tetrodotoxin (TTX) to distinct brain areas to determine how accurately HFO recorded after injection of NMDAR antagonists reflect the activity actually generated at the electrode tip. Changes in power were evaluated in local field potentials (LFPs) recorded from the nucleus accumbens (NAc), prefrontal cortex and caudate and in electrocorticograms (ECoGs) from visual and frontal areas. HFO recorded in frontal and visual cortices (ECoGs) or in the prefrontal cortex, caudate (LFPs) co-varied in power and frequency with observed changes in the NAc. TTX infusion to the NAc immediately and profoundly reduced the power of accumbal HFO which correlated with changes in HFO recorded in distant cortical sites. In contrast, TTX infusion to the prefrontal cortex did not change HFO power recorded locally, although gamma power was reduced. A very similar result was found after TTX infusion to the caudate. These findings raise the possibility that the NAc is an important neural generator. Our data also support existing studies challenging the idea that high frequencies recorded in LFPs are necessarily generated at the recording site. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  2. Temporal Characteristics of High-Frequency Lower-Limb Oscillation during Freezing of Gait in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Don A. Yungher

    2014-01-01

    Full Text Available A cardinal feature of freezing of gait (FOG is high frequency (3–8 Hz oscillation of the legs, and this study aimed to quantify the temporal pattern of lower-body motion prior to and during FOG. Acceleration data was obtained from sensors attached to the back, thighs, shanks, and feet in 14 Parkinson’s disease patients performing timed-up-and-go tasks, and clinical assessment of FOG was performed by two experienced raters from video. A total of 23 isolated FOG events, defined as occurring at least 5 s after gait initiation and with no preceding FOG, were identified from the clinical ratings. The corresponding accelerometer records were analyzed within a 4 s window centered at the clinical onset of freezing. FOG-related high-frequency oscillation (an increase in power in the 3–8 Hz band >3 SD from baseline followed a distal to proximal onset pattern, appearing at the feet, shanks, thighs, and then back over a period of 250 ms. Peak power tended to decrease as the focus of oscillation moved from feet to back. There was a consistent delay (mean 872 ms between the onset of high frequency oscillation at the feet and clinical onset of FOG. We infer that FOG is characterized by high frequency oscillation at the feet, which progresses proximally and is mechanically damped at the torso.

  3. Abnormal excitability and episodic low-frequency oscillations in the cerebral cortex of the tottering mouse.

    Science.gov (United States)

    Cramer, Samuel W; Popa, Laurentiu S; Carter, Russell E; Chen, Gang; Ebner, Timothy J

    2015-04-08

    The Ca(2+) channelopathies caused by mutations of the CACNA1A gene that encodes the pore-forming subunit of the human Cav2.1 (P/Q-type) voltage-gated Ca(2+) channel include episodic ataxia type 2 (EA2). Although, in EA2 the emphasis has been on cerebellar dysfunction, patients also exhibit episodic, nonmotoric abnormalities involving the cerebral cortex. This study demonstrates episodic, low-frequency oscillations (LFOs) throughout the cerebral cortex of tottering (tg/tg) mice, a widely used model of EA2. Ranging between 0.035 and 0.11 Hz, the LFOs in tg/tg mice can spontaneously develop very high power, referred to as a high-power state. The LFOs in tg/tg mice are mediated in part by neuronal activity as tetrodotoxin decreases the oscillations and cortical neuron discharge contain the same low frequencies. The high-power state involves compensatory mechanisms because acutely decreasing P/Q-type Ca(2+) channel function in either wild-type (WT) or tg/tg mice does not induce the high-power state. In contrast, blocking l-type Ca(2+) channels, known to be upregulated in tg/tg mice, reduces the high-power state. Intriguingly, basal excitatory glutamatergic neurotransmission constrains the high-power state because blocking ionotropic or metabotropic glutamate receptors results in high-power LFOs in tg/tg but not WT mice. The high-power LFOs are decreased markedly by acetazolamide and 4-aminopyridine, the primary treatments for EA2, suggesting disease relevance. Together, these results demonstrate that the high-power LFOs in the tg/tg cerebral cortex represent a highly abnormal excitability state that may underlie noncerebellar symptoms that characterize CACNA1A mutations. Copyright © 2015 the authors 0270-6474/15/355664-16$15.00/0.

  4. Quasi-periodic 1-hour pulsations in the Saturn's outer magnetosphere

    Science.gov (United States)

    Rusaitis, L.; Khurana, K. K.; Walker, R. J.; Kivelson, M.

    2017-12-01

    Pulsations in the Saturn's magnetic field and particle fluxes of approximately 1-hour periodicity have been frequently detected in the outer Saturnian magnetosphere by the Cassini spacecraft since 2004. These particle and magnetic field enhancements have been typically observed more often in the dusk sector of the planet, and mid to high latitudes. We investigate nearly 200 of these events as detected by the magnetometer and the Cassini Low-Energy Magnetospheric Measurement System detector (LEMMS) data during the 2004-2015 time frame to characterize these pulsations and suggest their origin. The mechanism needed to produce these observed enhancements needs to permit the acceleration of the energetic electrons to a few MeV and a variable periodicity of enhancements from 40 to 90 minutes. We examine the relation of the oscillations to the periodic power modulations in Saturn kilometric radiation (SKR), using the SKR phase model of Kurth et al. [2007] and Provan et al. [2011]. Finally, we show that similar pulsations can also be observed at 2.5-D MHD simulations of Saturn's magnetosphere.

  5. MIPAS observations of longitudinal oscillations in the mesosphere and the lower thermosphere: climatology of odd-parity daily frequency modes

    Directory of Open Access Journals (Sweden)

    M. García-Comas

    2016-09-01

    Full Text Available MIPAS global Sun-synchronous observations are almost fixed in local time. Subtraction of the descending and ascending node measurements at each longitude only includes the longitudinal oscillations with odd daily frequencies nodd from the Sun's perspective at 10:00. Contributions from the background atmosphere, daily-invariant zonal oscillations and tidal modes with even-parity daily frequencies vanish. We have determined longitudinal oscillations in MIPAS temperature with nodd and wavenumber k = 0–4 from the stratosphere to 150 km from April 2007 to March 2012. To our knowledge, this is the first time zonal oscillations in temperature have been derived pole to pole in this altitude range from a single instrument. The major findings are the detection of (1 migrating tides at northern and southern high latitudes; (2 significant k = 1 activity at extratropical and high latitudes, particularly in the Southern Hemisphere; (3 k = 3 and k = 4 eastward-propagating waves that penetrate the lower thermosphere with a significantly larger vertical wavelength than in the mesosphere; and (4 a migrating tide quasi-biennial oscillation in the stratosphere, mesosphere and lower thermosphere. MIPAS global measurements of longitudinal oscillations are useful for testing tide modeling in the mesosphere and lower thermosphere region and as a lower boundary for models extending higher up in the atmosphere.

  6. Analysis on voltage oscillation of a mid-frequency series resonant inverter for DRMP coils on J-TEXT

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Long-jian, E-mail: liulongjian001@yeah.net [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yu, Ke-xun; Zhang, Ming; Nan, Jie-yin; Jiang, Guo-zhong; Rao, Bo; Li, Xuan [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-01-15

    Highlights: • The reason of high-voltage oscillation of a series resonant inverter for DRMP coils is analyzed. • The condition or method for reduction of high-voltage oscillation is discussed. • The considerations of dead time and switch frequency for reduction of high-voltage oscillation are discussed. - Abstract: This paper deals with the voltage oscillation of an AC power supply for generating dynamic magnetic perturbation (DRMP) on J-TEXT. The power supply is a series resonant inverter with a matching transformer. It was noted that the high-voltage oscillation at transformer primary side is caused by an interaction between the line inductance and the stray capacitance of the matching transformer at switching transitions. In order to reduce the high-voltage oscillation and consider the requirement for soft-switching technique simultaneously, the switching frequency should be chosen properly by fine-tuning. The dead time should be chosen according to the relative size of minimum required dead time for protection and the optimal dead time.

  7. Resection of ictal high-frequency oscillations leads to favorable surgical outcome in pediatric epilepsy

    Science.gov (United States)

    Fujiwara, Hisako; Greiner, Hansel M.; Lee, Ki Hyeong; Holland-Bouley, Katherine D.; Seo, Joo Hee; Arthur, Todd; Mangano, Francesco T.; Leach, James L.; Rose, Douglas F.

    2012-01-01

    Summary Purpose Intracranial electroencephalography (EEG) is performed as part of an epilepsy surgery evaluation when noninvasive tests are incongruent or the putative seizure-onset zone is near eloquent cortex. Determining the seizure-onset zone using intracranial EEG has been conventionally based on identification of specific ictal patterns with visual inspection. High-frequency oscillations (HFOs, >80 Hz) have been recognized recently as highly correlated with the epileptogenic zone. However, HFOs can be difficult to detect because of their low amplitude. Therefore, the prevalence of ictal HFOs and their role in localization of epileptogenic zone on intracranial EEG are unknown. Methods We identified 48 patients who underwent surgical treatment after the surgical evaluation with intracranial EEG, and 44 patients met criteria for this retrospective study. Results were not used in surgical decision making. Intracranial EEG recordings were collected with a sampling rate of 2,000 Hz. Recordings were first inspected visually to determine ictal onset and then analyzed further with time-frequency analysis. Forty-one (93%) of 44 patients had ictal HFOs determined with time-frequency analysis of intracranial EEG. Key Findings Twenty-two (54%) of the 41 patients with ictal HFOs had complete resection of HFO regions, regardless of frequency bands. Complete resection of HFOs (n = 22) resulted in a seizure-free outcome in 18 (82%) of 22 patients, significantly higher than the seizure-free outcome with incomplete HFO resection (4/19, 21%). Significance Our study shows that ictal HFOs are commonly found with intracranial EEG in our population largely of children with cortical dysplasia, and have localizing value. The use of ictal HFOs may add more promising information compared to interictal HFOs because of the evidence of ictal propagation and followed by clinical aspect of seizures. Complete resection of HFOs is a favorable prognostic indicator for surgical outcome. PMID

  8. On the (Frequency) Modulation of Coupled Oscillator Arrays in Phased Array Beam Control

    Science.gov (United States)

    Pogorzelski, R.; Acorn, J.; Zawadzki, M.

    2000-01-01

    It has been shown that arrays of voltage controlled oscillators coupled to nearest neighbors can be used to produce useful aperture phase distributions for phased array antennas. However, placing information of the transmitted signal requires that the oscillations be modulated.

  9. A revisit to self-excited push pull vacuum tube radio frequency oscillator for ion sources and power measurements

    International Nuclear Information System (INIS)

    Hlondo, L. R.; Lalremruata, B.; Punte, L. R. M.; Rebecca, L.; Lalnunthari, J.; Thanga, H. H.

    2016-01-01

    Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power are studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.

  10. The role of high-frequency oscillations in epilepsy surgery planning.

    Science.gov (United States)

    Gloss, David; Nevitt, Sarah J; Staba, Richard

    2017-10-05

    Epilepsy is a serious brain disorder characterized by recurrent unprovoked seizures. Approximately two-thirds of seizures can be controlled with antiepileptic medications (Kwan 2000). For some of the others, surgery can completely eliminate or significantly reduce the occurrence of disabling seizures. Localization of epileptogenic areas for resective surgery is far from perfect, and new tools are being investigated to more accurately localize the epileptogenic zone (the zone of the brain where the seizures begin) and improve the likelihood of freedom from postsurgical seizures. Recordings of pathological high-frequency oscillations (HFOs) may be one such tool. To assess the ability of HFOs to improve the outcomes of epilepsy surgery by helping to identify more accurately the epileptogenic areas of the brain. For the latest update, we searched the Cochrane Epilepsy Group Specialized Register (25 July 2016), the Cochrane Central Register of Controlled Trials (CENTRAL) via the Cochrane Register of Studies Online (CRSO, 25 July 2016), MEDLINE (Ovid, 1946 to 25 July 2016), CINAHL Plus (EBSCOhost, 25 July 2016), Web of Science (Thomson Reuters, 25 July 2016), ClinicalTrials.gov (25 July 2016), and the World Health Organization International Clinical Trials Registry Platform ICTRP (25 July 2016). We included studies that provided information on the outcomes of epilepsy surgery for at least six months and which used high-frequency oscillations in making decisions about epilepsy surgery. The primary outcome of the review was the Engel Class Outcome System (class I = no disabling seizures, II = rare disabling seizures, III = worthwhile improvement, IV = no worthwhile improvement). Secondary outcomes were responder rate, International League Against Epilepsy (ILAE) epilepsy surgery outcome, frequency of adverse events from any source and quality of life outcomes. We intended to analyse outcomes via an aggregated data fixed-effect model meta-analysis. Two studies representing

  11. Microwave frequency tuning in heterogeneous spin torque oscillator with perpendicular polarizer: A macrospin study

    Science.gov (United States)

    Bhoomeeswaran, H.; Vivek, T.; Sabareesan, P.

    2018-04-01

    In this article, we have theoretically devised a Spin Torque Nano Oscillator (STNO) with perpendicular polarizer using macro spin model. The devised spin valve structure is heterogeneous (i.e.) it is made of two different ferromagnetic materials [Co and its alloy CoFeB]. The dynamics of magnetization provoked by spin transfer torque is studied numerically by solving the famous Landau-Lifshitz-Gilbert-Slonczewski [LLGS] equation. The results are obtained for the perpendicular polarizer and for that particular out of plane orientation we vary the free layer angle from 10° to 90°. The obtained results are highly appealing, because frequency range is available in all the tilt angles of free layer and it is exceptionally tunable in all free layer tilt angles with zero applied field. Moreover, the utmost operating frequency of about 83.3 GHz and its corresponding power of 4.488 µW/mA2/GHz is acquired for the free layer tilt angle θ = 90° with the solid applied current density of 10 × 1010 A/m2. Also, our device emits high quality factor of about 396, which is remarkably desirable for making devices. These pioneering results provides a significant development for future spintronic based devices.

  12. Humidification during high-frequency oscillation ventilation is affected by ventilator circuit and ventilatory setting.

    Science.gov (United States)

    Chikata, Yusuke; Imanaka, Hideaki; Onishi, Yoshiaki; Ueta, Masahiko; Nishimura, Masaji

    2009-08-01

    High-frequency oscillation ventilation (HFOV) is an accepted ventilatory mode for acute respiratory failure in neonates. As conventional mechanical ventilation, inspiratory gas humidification is essential. However, humidification during HFOV has not been clarified. In this bench study, we evaluated humidification during HFOV in the open circumstance of ICU. Our hypothesis is that humidification during HFOV is affected by circuit design and ventilatory settings. We connected a ventilator with HFOV mode to a neonatal lung model that was placed in an infant incubator set at 37 degrees C. We set a heated humidifier (Fisher & Paykel) to obtain 37 degrees C at the chamber outlet and 40 degrees C at the distal temperature probe. We measured absolute humidity and temperature at the Y-piece using a rapid-response hygrometer. We evaluated two types of ventilator circuit: a circuit with inner heating wire and another with embedded heating element. In addition, we evaluated three lengths of the inspiratory limb, three stroke volumes, three frequencies, and three mean airway pressures. The circuit with embedded heating element provided significantly higher absolute humidity and temperature than one with inner heating wire. As an extended tube lacking a heating wire was shorter, absolute humidity and temperature became higher. In the circuit with inner heating wire, absolute humidity and temperature increased as stroke volume increased. Humidification during HFOV is affected by circuit design and ventilatory settings.

  13. Radio Frequency Transistors Using Aligned Semiconducting Carbon Nanotubes with Current-Gain Cutoff Frequency and Maximum Oscillation Frequency Simultaneously Greater than 70 GHz.

    Science.gov (United States)

    Cao, Yu; Brady, Gerald J; Gui, Hui; Rutherglen, Chris; Arnold, Michael S; Zhou, Chongwu

    2016-07-26

    In this paper, we report record radio frequency (RF) performance of carbon nanotube transistors based on combined use of a self-aligned T-shape gate structure, and well-aligned, high-semiconducting-purity, high-density polyfluorene-sorted semiconducting carbon nanotubes, which were deposited using dose-controlled, floating evaporative self-assembly method. These transistors show outstanding direct current (DC) performance with on-current density of 350 μA/μm, transconductance as high as 310 μS/μm, and superior current saturation with normalized output resistance greater than 100 kΩ·μm. These transistors create a record as carbon nanotube RF transistors that demonstrate both the current-gain cutoff frequency (ft) and the maximum oscillation frequency (fmax) greater than 70 GHz. Furthermore, these transistors exhibit good linearity performance with 1 dB gain compression point (P1dB) of 14 dBm and input third-order intercept point (IIP3) of 22 dBm. Our study advances state-of-the-art of carbon nanotube RF electronics, which have the potential to be made flexible and may find broad applications for signal amplification, wireless communication, and wearable/flexible electronics.

  14. Constructive influence of noise flatness and friction on the resonant behavior of a harmonic oscillator with fluctuating frequency.

    Science.gov (United States)

    Laas, Katrin; Mankin, Romi; Rekker, Astrid

    2009-05-01

    The influences of noise flatness and friction coefficient on the long-time behavior of the first two moments and the correlation function for the output signal of a harmonic oscillator with fluctuating frequency subjected to an external periodic force are considered. The colored fluctuations of the oscillator frequency are modeled as a trichotomous noise. The study is a follow up of the previous investigation of a stochastic oscillator [Phys. Rev. E 78, 031120 (2008)], where the connection between the occurrence of energetic instability and stochastic multiresonance is established. Here we report some unexpected results not considered in the previous work. Notably, we have found a nonmonotonic dependence of several stochastic resonance characteristics such as spectral amplification, variance of the output signal, and signal-to-noise ratio on the friction coefficient and on the noise flatness. In particular, in certain parameter regions spectral amplification exhibits a resonancelike enhancement at intermediate values of the friction coefficient.

  15. Frequency hopping due to acousto-electric interaction in ZnO based surface acoustic wave oscillator

    Science.gov (United States)

    Dasgupta, Daipayan; Sreenivas, K.

    2011-08-01

    A 36 MHz surface acoustic wave delay line based oscillator has been used to study the effect of acousto-electric interaction due to photo generated charge carriers in rf sputtered ZnO film under UV illumination (λ = 365 nm, 20-100 μW/cm2). Design aspects for developing a delay line based SAW oscillator are specified. The observed linear downshift in frequency (2.2 to 19.0 kHz) with varying UV intensity (20-100 μW/cm2) is related to the fractional velocity change due to acousto-electric interaction. UV illumination level of 100 μW/cm2 leads to a characteristic frequency hopping behavior arising due to a change in the oscillation criteria, and is attributed to the complex interplay between the increased attenuation and velocity shift.

  16. Ih tunes theta/gamma oscillations and cross-frequency coupling in an in silico CA3 model.

    Directory of Open Access Journals (Sweden)

    Samuel A Neymotin

    Full Text Available Ih channels are uniquely positioned to act as neuromodulatory control points for tuning hippocampal theta (4-12 Hz and gamma (25 Hz oscillations, oscillations which are thought to have importance for organization of information flow. contributes to neuronal membrane resonance and resting membrane potential, and is modulated by second messengers. We investigated oscillatory control using a multiscale computer model of hippocampal CA3, where each cell class (pyramidal, basket, and oriens-lacunosum moleculare cells, contained type-appropriate isoforms of . Our model demonstrated that modulation of pyramidal and basket allows tuning theta and gamma oscillation frequency and amplitude. Pyramidal also controlled cross-frequency coupling (CFC and allowed shifting gamma generation towards particular phases of the theta cycle, effected via 's ability to set pyramidal excitability. Our model predicts that in vivo neuromodulatory control of allows flexibly controlling CFC and the timing of gamma discharges at particular theta phases.

  17. High-frequency Oscillations in Small Magnetic Elements Observed with Sunrise/SuFI

    Energy Technology Data Exchange (ETDEWEB)

    Jafarzadeh, S. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Solanki, S. K.; Cameron, R. H.; Danilovic, S. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Stangalini, M. [INAF-Osservatorio Astronomico di Roma, I-00040 Monte Porzio Catone (RM) (Italy); Steiner, O., E-mail: shahin.jafarzadeh@astro.uio.no [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany)

    2017-04-01

    We characterize waves in small magnetic elements and investigate their propagation in the lower solar atmosphere from observations at high spatial and temporal resolution. We use the wavelet transform to analyze oscillations of both horizontal displacement and intensity in magnetic bright points found in the 300 nm and the Ca ii H 396.8 nm passbands of the filter imager on board the Sunrise balloon-borne solar observatory. Phase differences between the oscillations at the two atmospheric layers corresponding to the two passbands reveal upward propagating waves at high frequencies (up to 30 mHz). Weak signatures of standing as well as downward propagating waves are also obtained. Both compressible and incompressible (kink) waves are found in the small-scale magnetic features. The two types of waves have different, though overlapping, period distributions. Two independent estimates give a height difference of approximately 450 ± 100 km between the two atmospheric layers sampled by the employed spectral bands. This value, together with the determined short travel times of the transverse and longitudinal waves provide us with phase speeds of 29 ± 2 km s{sup −1} and 31 ± 2 km s{sup −1}, respectively. We speculate that these phase speeds may not reflect the true propagation speeds of the waves. Thus, effects such as the refraction of fast longitudinal waves may contribute to an overestimate of the phase speed.

  18. Investigation of non-uniform airflow signal oscillation during high frequency chest compression

    Directory of Open Access Journals (Sweden)

    Lee Jongwon

    2005-05-01

    Full Text Available Abstract Background High frequency chest compression (HFCC is a useful and popular therapy for clearing bronchial airways of excessive or thicker mucus. Our observation of respiratory airflow of a subject during use of HFCC showed the airflow oscillation by HFCC was strongly influenced by the nonlinearity of the respiratory system. We used a computational model-based approach to analyse the respiratory airflow during use of HFCC. Methods The computational model, which is based on previous physiological studies and represented by an electrical circuit analogue, was used for simulation of in vivo protocol that shows the nonlinearity of the respiratory system. Besides, airflow was measured during use of HFCC. We compared the simulation results to either the measured data or the previous research, to understand and explain the observations. Results and discussion We could observe two important phenomena during respiration pertaining to the airflow signal oscillation generated by HFCC. The amplitudes of HFCC airflow signals varied depending on spontaneous airflow signals. We used the simulation results to investigate how the nonlinearity of airway resistance, lung capacitance, and inertance of air characterized the respiratory airflow. The simulation results indicated that lung capacitance or the inertance of air is also not a factor in the non-uniformity of HFCC airflow signals. Although not perfect, our circuit analogue model allows us to effectively simulate the nonlinear characteristics of the respiratory system. Conclusion We found that the amplitudes of HFCC airflow signals behave as a function of spontaneous airflow signals. This is due to the nonlinearity of the respiratory system, particularly variations in airway resistance.

  19. A MULTI-SITE CAMPAIGN TO MEASURE SOLAR-LIKE OSCILLATIONS IN PROCYON. II. MODE FREQUENCIES

    International Nuclear Information System (INIS)

    Bedding, Timothy R.; Bruntt, Hans; Kiss, Laszlo L.; Kjeldsen, Hans; Campante, Tiago L.; Appourchaux, Thierry; Bonanno, Alfio; Chaplin, William J.; Garcia, Rafael A.; Martic, Milena; Mosser, Benoit; Butler, R. Paul; O'Toole, Simon J.; Kambe, Eiji; Izumiura, Hideyuki; Ando, Hiroyasu; Sato, Bun'ei; Hartmann, Michael; Hatzes, Artie

    2010-01-01

    We have analyzed data from a multi-site campaign to observe oscillations in the F5 star Procyon. The data consist of high-precision velocities that we obtained over more than three weeks with 11 telescopes. A new method for adjusting the data weights allows us to suppress the sidelobes in the power spectrum. Stacking the power spectrum in a so-called echelle diagram reveals two clear ridges, which we identify with even and odd values of the angular degree (l = 0 and 2, and l = 1 and 3, respectively). We interpret a strong, narrow peak at 446 μHz that lies close to the l = 1 ridge as a mode with mixed character. We show that the frequencies of the ridge centroids and their separations are useful diagnostics for asteroseismology. In particular, variations in the large separation appear to indicate a glitch in the sound-speed profile at an acoustic depth of ∼1000 s. We list frequencies for 55 modes extracted from the data spanning 20 radial orders, a range comparable to the best solar data, which will provide valuable constraints for theoretical models. A preliminary comparison with published models shows that the offset between observed and calculated frequencies for the radial modes is very different for Procyon than for the Sun and other cool stars. We find the mean lifetime of the modes in Procyon to be 1.29 +0.55 -0.49 days, which is significantly shorter than the 2-4 days seen in the Sun.

  20. Detection of High Frequency Oscillations by Hybrid Depth Electrodes in Standard Clinical Intracranial EEG Recordings

    Directory of Open Access Journals (Sweden)

    Efstathios D Kondylis

    2014-08-01

    Full Text Available High frequency oscillations (HFOs have been proposed as a novel marker for epileptogenic tissue, spurring tremendous research interest into the characterization of these transient events. A wealth of continuously recorded intracranial electroencephalographic (iEEG data is currently available from patients undergoing invasive monitoring for the surgical treatment of epilepsy. In contrast to data recorded on research-customized recording systems, data from clinical acquisition systems remain an underutilized resource for HFO detection in most centers. The effective and reliable use of this clinically obtained data would be an important advance in the ongoing study of HFOs and their relationship to ictogenesis. The diagnostic utility of HFOs ultimately will be limited by the ability of clinicians to detect these brief, sporadic, and low amplitude events in an electrically noisy clinical environment. Indeed, one of the most significant factors limiting the use of such clinical recordings for research purposes is their low signal to noise ratio, especially in the higher frequency bands. In order to investigate the presence of HFOs in clinical data, we first obtained continuous intracranial recordings in a typical clinical environment using a commercially available, commonly utilized data acquisition system and off the shelf hybrid macro/micro depth electrodes. This data was then inspected for the presence of HFOs using semi-automated methods and expert manual review. With targeted removal of noise frequency content, HFOs were detected on both macro- and micro-contacts, and preferentially localized to seizure onset zones. HFOs detected by the offline, semi-automated method were also validated in the clinical viewer, demonstrating that 1 this clinical system allows for the visualization of HFOs, and 2 with effective signal processing, clinical recordings can yield valuable information for offline analysis.

  1. Control of Full-Scale Converter based Wind Power Plants for damping of low frequency system oscillations

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz; Teodorescu, Remus; Rodriguez, Pedro

    2011-01-01

    Damping of low frequency power oscillations is one of essential aspects of maintaining power system stability. In literature can be found publications on damping capability of Doubly Fed Induction Generator based wind turbines. This paper extends discussion on Wind Power Plant damping capability...

  2. Selection of mother wavelets for the detection of the oscillation frequencies in power signals of nuclear reactors

    International Nuclear Information System (INIS)

    Amador G, R.; Castillo D, R.; Ortiz V, J.

    2007-01-01

    Diverse types of transitory events can lead to oscillations of power in nuclear reactors. In such events, the power monitors provide a signal that contains important characteristics of the transitory one, as the oscillation frequency, tendencies, changes and the instants or periods in those that important events are presented. This characteristics are detected by means of diverse analysis techniques, as Autoregressive methods, Fourier Transform, Fourier Transform in Short Time, Wavelets Transform, among others. Presently work is used the one Wavelets Continuous Transform because it allows to carry out studies of the stationary, quasi-stationary and transitory signals in the Time-scale and Time-scale-spectrum planes. Contrary to other similar works, this work describes a methodology for the selection of the scales and the Wavelet mother to be applied the one Wavelets Continuous Transform, with the objective of detecting to the dominant frequencies of the system. To prove the proposal a broadly well-known real signal of an event of power oscillations it has been used. The obtained results correspond to three families of Wavelets mothers that fulfilled the conditions of scales and central frequency of the proposal. The results show that the value of the certain frequency oscillation in this work is practically the same one reported in other studies with other techniques. (Author)

  3. Resection of individually identified high-rate high-frequency oscillations region is associated with favorable outcome in neocortical epilepsy

    Czech Academy of Sciences Publication Activity Database

    Cho, J.R.; Koo, D.L.; Joo, E.Y.; Seo, D.W.; Hong, S.-Ch.; Jiruška, Přemysl; Hong, S.B.

    2014-01-01

    Roč. 55, č. 11 (2014), s. 1872-1883 ISSN 0013-9580 R&D Projects: GA MZd(CZ) NT14489 Institutional support: RVO:67985823 Keywords : epilepsy surgery * high-frequency oscillations * neocortical epilepsy Subject RIV: FH - Neurology Impact factor: 4.571, year: 2014

  4. The Drop of the Coherence of the Lower Kilohertz Quasi-periodic Brightness Variations is Also Observed in XTE J1701-462

    Science.gov (United States)

    Barret, D.; Bachetti, M.; Miller, M. Coleman

    2011-02-01

    We investigate the quality factor and root mean square (rms) amplitude of the lower kilohertz quasi-periodic brightness variations (kHz QPOs) from XTE J1701-462, a unique X-ray source which was observed in both the so-called Z and atoll states. Correcting for the frequency drift of the QPO, we show that, as in all sources for which such a correction can be applied, the quality factor and rms amplitude drops sharply above a critical frequency. For XTE J1701-462, this frequency is estimated to be ~800 Hz, where the quality factor reaches a maximum of ~200 (e.g., a value consistent with the one observed from more classical systems, such as 4U 1636-536). Such a drop has been interpreted as the signature of the innermost stable circular orbit, and that interpretation is consistent with the observations we report here. The kHz QPOs in the Z state are much less coherent and lower amplitude than they are in the atoll state. We argue that the change of the QPO properties between the two source states is related to the change of the scale height of the accretion disk; a prediction of the toy model proposed by Barret et al. As a by-product of our analysis, we also increased the significance of the upper kHz QPO detected in the atoll phase up to 4.8σ (single trial significance) and show that the frequency separation (266.5 ± 13.1 Hz) is comparable with the one measured from simultaneous twin QPOs in the Z phase.

  5. PERIOD ESTIMATION FOR SPARSELY SAMPLED QUASI-PERIODIC LIGHT CURVES APPLIED TO MIRAS

    Energy Technology Data Exchange (ETDEWEB)

    He, Shiyuan; Huang, Jianhua Z.; Long, James [Department of Statistics, Texas A and M University, College Station, TX (United States); Yuan, Wenlong; Macri, Lucas M., E-mail: lmacri@tamu.edu [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX (United States)

    2016-12-01

    We develop a nonlinear semi-parametric Gaussian process model to estimate periods of Miras with sparsely sampled light curves. The model uses a sinusoidal basis for the periodic variation and a Gaussian process for the stochastic changes. We use maximum likelihood to estimate the period and the parameters of the Gaussian process, while integrating out the effects of other nuisance parameters in the model with respect to a suitable prior distribution obtained from earlier studies. Since the likelihood is highly multimodal for period, we implement a hybrid method that applies the quasi-Newton algorithm for Gaussian process parameters and search the period/frequency parameter space over a dense grid. A large-scale, high-fidelity simulation is conducted to mimic the sampling quality of Mira light curves obtained by the M33 Synoptic Stellar Survey. The simulated data set is publicly available and can serve as a testbed for future evaluation of different period estimation methods. The semi-parametric model outperforms an existing algorithm on this simulated test data set as measured by period recovery rate and quality of the resulting period–luminosity relations.

  6. Chaos and routes to chaos in coupled Duffing oscillators with multiple degrees of freedom

    International Nuclear Information System (INIS)

    Musielak, D.E.; Musielak, Z.E.; Benner, J.W.

    2005-01-01

    New results are reported on the routes to chaos in increasingly complex Duffing oscillator systems, which are formed by coupling several oscillators, thereby increasing the number of degrees of freedom. Other forms of increasing system complexity through distributed excitation, different forcing function phasing, different excitation frequency ratios, and higher order coupling are also studied. Changes in the quantitative aspects of the chaotic regions and in the routes to chaos of complex Duffing systems are investigated by performing numerical simulations. It is shown that the number of chaotic regions in these systems is significantly reduced when compared to the original Duffing system, and that crisis replaces period doubling as the dominant route to chaos when the number of degrees of freedom is increased. A new discovered phenomenon is that chaos emerges in the symmetrically and asymmetrically coupled Duffing oscillators only after the quasi-periodic torus breaks down through a 3-periodic and 2-periodic window, respectively

  7. High-frequency oscillations in human and monkey neocortex during the wake-sleep cycle.

    Science.gov (United States)

    Le Van Quyen, Michel; Muller, Lyle E; Telenczuk, Bartosz; Halgren, Eric; Cash, Sydney; Hatsopoulos, Nicholas G; Dehghani, Nima; Destexhe, Alain

    2016-08-16

    Beta (β)- and gamma (γ)-oscillations are present in different cortical areas and are thought to be inhibition-driven, but it is not known if these properties also apply to γ-oscillations in humans. Here, we analyze such oscillations in high-density microelectrode array recordings in human and monkey during the wake-sleep cycle. In these recordings, units were classified as excitatory and inhibitory cells. We find that γ-oscillations in human and β-oscillations in monkey are characterized by a strong implication of inhibitory neurons, both in terms of their firing rate and their phasic firing with the oscillation cycle. The β- and γ-waves systematically propagate across the array, with similar velocities, during both wake and sleep. However, only in slow-wave sleep (SWS) β- and γ-oscillations are associated with highly coherent and functional interactions across several millimeters of the neocortex. This interaction is specifically pronounced between inhibitory cells. These results suggest that inhibitory cells are dominantly involved in the genesis of β- and γ-oscillations, as well as in the organization of their large-scale coherence in the awake and sleeping brain. The highest oscillation coherence found during SWS suggests that fast oscillations implement a highly coherent reactivation of wake patterns that may support memory consolidation during SWS.

  8. High-frequency oscillations in human and monkey neocortex during the wake–sleep cycle

    Science.gov (United States)

    Le Van Quyen, Michel; Muller, Lyle E.; Telenczuk, Bartosz; Halgren, Eric; Cash, Sydney; Hatsopoulos, Nicholas G.; Dehghani, Nima; Destexhe, Alain

    2016-01-01

    Beta (β)- and gamma (γ)-oscillations are present in different cortical areas and are thought to be inhibition-driven, but it is not known if these properties also apply to γ-oscillations in humans. Here, we analyze such oscillations in high-density microelectrode array recordings in human and monkey during the wake–sleep cycle. In these recordings, units were classified as excitatory and inhibitory cells. We find that γ-oscillations in human and β-oscillations in monkey are characterized by a strong implication of inhibitory neurons, both in terms of their firing rate and their phasic firing with the oscillation cycle. The β- and γ-waves systematically propagate across the array, with similar velocities, during both wake and sleep. However, only in slow-wave sleep (SWS) β- and γ-oscillations are associated with highly coherent and functional interactions across several millimeters of the neocortex. This interaction is specifically pronounced between inhibitory cells. These results suggest that inhibitory cells are dominantly involved in the genesis of β- and γ-oscillations, as well as in the organization of their large-scale coherence in the awake and sleeping brain. The highest oscillation coherence found during SWS suggests that fast oscillations implement a highly coherent reactivation of wake patterns that may support memory consolidation during SWS. PMID:27482084

  9. A 200-Second Quasi-Periodicity After the Tidal Disruption of a Star by a Dormant Black Hole

    Science.gov (United States)

    Reis, R. C.; Miller, J. M.; Reynolds, M. T.; Gueltkinm K.; Maitra, D.; King, A. L.; Strohmayer, T.

    2012-01-01

    Supermassive black holes are known to exist at the center of most galaxies with sufficient stellar mass, In the local Universe, it is possible to infer their properties from the surrounding stars or gas. However, at high redshifts we require active, continuous accretion to infer the presence of the SMBHs, often coming in the form of long term accretion in active galactic nuclei. SMBHs can also capture and tidally disrupt stars orbiting nearby, resulting in bright flares from otherwise quiescent black holes. Here, we report on a approx.200-s X-ray quasi-periodicity around a previously dormant SMBH located in the center of a galaxy at redshift z = 0.3534. This result may open the possibility of probing general relativity beyond our local Universe.

  10. Phase identification of quasi-periodic flow measured by particle image velocimetry with a low sampling rate

    International Nuclear Information System (INIS)

    Pan, Chong; Wang, Hongping; Wang, Jinjun

    2013-01-01

    This work mainly deals with the proper orthogonal decomposition (POD) time coefficient method used for extracting phase information from quasi-periodic flow. The mathematical equivalence between this method and the traditional cross-correlation method is firstly proved. A two-dimensional circular cylinder wake flow measured by time-resolved particle image velocimetry within a range of Reynolds numbers is then used to evaluate the reliability of this method. The effect of both the sampling rate and Reynolds number on the identification accuracy is finally discussed. It is found that the POD time coefficient method provides a convenient alternative for phase identification, whose feasibility in low-sampling-rate measurement has additional advantages for experimentalists. (paper)

  11. Finite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures

    Directory of Open Access Journals (Sweden)

    N. Dadashzadeh

    2013-09-01

    Full Text Available Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We provide an overview of recent theoretical developments in a numerical modeling of Maxwell's equations to analyze the propagation of short laser pulses in photonic structures. The process of short light pulse propagation through 2D periodic and quasi-periodic photonic structures is simulated based on Finite-Difference Time-Domain calculations of Maxwell’s equations.

  12. Limit Cycles and Chaos via Quasi-periodicity in Two Coupled Ensembles of Ultra-cold Atoms.

    Science.gov (United States)

    Patra, Aniket; Yuzbashyan, Emil; Altshuler, Boris

    We study the dynamics of two mesoscopic ensembles of ultra-cold two level atoms, which are collectively coupled to an optical cavity and are being pumped incoherently to the excited state. Whereas the time independent steady states are well understood, little is known about the time dependent ones. We explore and categorize various time dependent steady states, e.g. limit cycles and chaotic behavior. We draw a non-equilibrium phase diagram indicating different steady-state behaviors in different parts of the parameter space. We discuss the synchronization of the two ensembles in the time dependent steady states. We also show the onset of chaos via quasi-periodicity. The rich time dependent steady-state behavior, especially the existence of chaos, opens up possibilities for several engineering applications. Supported in part by the University and Louis Bevier Graduate Fellowship.

  13. Electrodiagnostic applications of somatosensory evoked high-frequency EEG oscillations: Technical considerations.

    Science.gov (United States)

    Simpson, A J; Cunningham, M O; Baker, M R

    2018-03-01

    High frequency oscillations (HFOs) embedded within the somatosensory evoked potential (SEP) are not routinely recorded/measured as part of standard clinical SEPs. However, HFOs could provide important additional diagnostic/prognostic information in various patient groups in whom SEPs are tested routinely. One area is the management of patients with hypoxic ischaemic encephalopathy (HIE) in the intensive care unit (ICU). However, the sensitivity of standard clinical SEP recording techniques for detecting HFOs is unknown. SEPs were recorded using routine clinical methods in 17 healthy subjects (median nerve stimulation; 0.5 ms pulse width; 5 Hz; maximum 4000 stimuli) in an unshielded laboratory. Bipolar EEG recordings were acquired (gain 50 k; bandpass 3Hz-2 kHz; sampling rate 5 kHz; non-inverting electrode 2 cm anterior to C3/C4; inverting electrode 2 cm posterior to C3/C4). Data analysis was performed in MATLAB. SEP-HFOs were detected in 65% of controls using standard clinical recording techniques. In 3 controls without significant HFOs, experiments were repeated using a linear electrode array with higher spatial sampling frequency. SEP-HFOs were observed in all 3 subjects. Currently standard clinical methods of recording SEPs are not sufficiently sensitive to permit the inclusion of SEP-HFOs in routine clinical diagnostic/prognostic assessments. Whilst an increase in the number/density of EEG electrodes should improve the sensitivity for detecting SEP-HFOs, this requires confirmation. By improving and standardising clinical SEP recording protocols to permit the acquisition/analysis of SEP-HFOs, it should be possible to gain important insights into the pathophysiology of neurological disorders and refine the management of conditions such as HIE. Copyright © 2018. Published by Elsevier Inc.

  14. Very low frequency oscillations of heat load and recycling flux in steady-state tokamak discharge in TRIAM-1M

    International Nuclear Information System (INIS)

    Zushi, H.; Sakamoto, M.; Hanada, K.; Iyomasa, A.; Nakamura, K.; Sato, K.N.; Idei, H.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Hasegawa, M.; Matsuo, Y.; Kuramoto, K.; Sugata, T.; Maezono, N.; Hoshika, H.; Sasaki, K.

    2004-01-01

    Plasma wall interaction (PWI) driven relaxation oscillations are investigated in the steady state discharge for 5 hours. The oscillation frequency was about 10 -3 Hz and each perturbation lasted for about 300 s. The heat load, recycling flux and impurity influx were varied from a few % to several tens of %. The largest variation of 70% was seen on the Mo XIII (molybdenum), although the influx of Mo I was only 20 %. Although the input rf power is kept constant during the discharge, the coupling between the rf and plasma was increased by about 10%. The current drive efficiency is decreased by 24 % in spite of current ramp. The toroidal and poloidal profiles of the recycling flux were also changed. During the last relaxation phase, the plasma was finally terminated. The current reduction (> 4 kA) was not recovered by intense local perturbation of the recycling superposed on the relaxation oscillation. (authors)

  15. Very low frequency oscillations of heat load and recycling flux in steady-state tokamak discharge in TRIAM-1M

    Energy Technology Data Exchange (ETDEWEB)

    Zushi, H.; Sakamoto, M.; Hanada, K.; Iyomasa, A.; Nakamura, K.; Sato, K.N.; Idei, H.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Hasegawa, M. [Kyushu Univ., Research Institute for Applied Mechanics (Japan); Matsuo, Y.; Kuramoto, K.; Sugata, T.; Maezono, N.; Hoshika, H.; Sasaki, K. [Kyushu Univ., Interdisciplinary Graduate School of Engineering Sciences (Japan)

    2004-07-01

    Plasma wall interaction (PWI) driven relaxation oscillations are investigated in the steady state discharge for 5 hours. The oscillation frequency was about 10{sup -3} Hz and each perturbation lasted for about 300 s. The heat load, recycling flux and impurity influx were varied from a few % to several tens of %. The largest variation of 70% was seen on the Mo XIII (molybdenum), although the influx of Mo I was only 20 %. Although the input rf power is kept constant during the discharge, the coupling between the rf and plasma was increased by about 10%. The current drive efficiency is decreased by 24 % in spite of current ramp. The toroidal and poloidal profiles of the recycling flux were also changed. During the last relaxation phase, the plasma was finally terminated. The current reduction (> 4 kA) was not recovered by intense local perturbation of the recycling superposed on the relaxation oscillation. (authors)

  16. A survey of strong high-frequency sea level oscillations along the US East Coast between 2006 and 2011

    Directory of Open Access Journals (Sweden)

    S. Pasquet

    2013-02-01

    Full Text Available A systematic survey of high-frequency sea level oscillations (<6 h measured between 2006 and 2011 along the US East Coast is performed. Raw 1-min resolution sea level data is used. After performing a data quality check, the nine most intense events, with maximum recorded wave heights ranging from 40 to 100 cm, are identified. Focusing on three of these events enables us to recognize two different generation mechanisms: (i topographically-trapped edge waves which are found to be a significant contributor to the strongest observed oscillations, and (ii standing waves, which occur over enclosed shallow waters and may result in significant wave heights of up to 100 cm. A reproduction of the observed oscillations is a part of a future work, which will include an assessment of a generating force in the atmosphere, allowing for a better prevention of potential flooding along the US East Coast.

  17. Investigation of switching frequency variations in self-oscillating class D amplifiers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Pfaffinger, Gerhard

    2009-01-01

    Class D audio amplifiers have gained significant influence in sound reproduction due to their high efficiency. One of the most commonly used control methods in class D amplifiers is known as self-oscillation. An parameter of key interest in self-oscillating class D amplifiers is the switching fre...

  18. Enhanced detection of a low-frequency signal by using broad squeezed light and a bichromatic local oscillator

    Science.gov (United States)

    Li, Wei; Jin, Yuanbin; Yu, Xudong; Zhang, Jing

    2017-08-01

    We experimentally study a protocol of using the broadband high-frequency squeezed vacuum to detect the low-frequency signal. In this scheme, the lower sideband field of the squeezed light carries the low-frequency modulation signal, and the two strong coherent light fields are applied as the bichromatic local oscillator in the homodyne detection to measure the quantum entanglement of the upper and lower sideband for the broadband squeezed light. The power of one of the local oscillators for detecting the upper sideband can be adjusted to optimize the conditional variance in the low-frequency regime by subtracting the photocurrent of the upper sideband field of the squeezed light from that of the lower sideband field. By means of the quantum correlation of the upper and lower sideband for the broadband squeezed light, the low-frequency signal beyond the standard quantum limit is measured. This scheme is appropriate for enhancing the sensitivity of the low-frequency signal by the aid of the broad squeezed light, such as gravitational waves detection, and does not need to directly produce the low-frequency squeezing in an optical parametric process.

  19. The Influence of the External Signal Modulation Waveform and Frequency on the Performance of a Photonic Forced Oscillator.

    Science.gov (United States)

    Sánchez-Castro, Noemi; Palomino-Ovando, Martha Alicia; Estrada-Wiese, Denise; Valladares, Nydia Xcaret; Del Río, Jesus Antonio; de la Mora, Maria Beatriz; Doti, Rafael; Faubert, Jocelyn; Lugo, Jesus Eduardo

    2018-05-21

    Photonic crystals have been an object of interest because of their properties to inhibit certain wavelengths and allow the transmission of others. Using these properties, we designed a photonic structure known as photodyne formed by two porous silicon one-dimensional photonic crystals with an air defect between them. When the photodyne is illuminated with appropriate light, it allows us to generate electromagnetic forces within the structure that can be maximized if the light becomes localized inside the defect region. These electromagnetic forces allow the microcavity to oscillate mechanically. In the experiment, a chopper was driven by a signal generator to modulate the laser light that was used. The driven frequency and the signal modulation waveform (rectangular, sinusoidal or triangular) were changed with the idea to find optimal conditions for the structure to oscillate. The microcavity displacement amplitude, velocity amplitude and Fourier spectrum of the latter and its frequency were measured by means of a vibrometer. The mechanical oscillations are modeled and compared with the experimental results and show good agreement. For external frequency values of 5 Hz and 10 Hz, the best option was a sinusoidal waveform, which gave higher photodyne displacements and velocity amplitudes. Nonetheless, for an external frequency of 15 Hz, the best option was the rectangular waveform.

  20. The Influence of the External Signal Modulation Waveform and Frequency on the Performance of a Photonic Forced Oscillator

    Directory of Open Access Journals (Sweden)

    Noemi Sánchez-Castro

    2018-05-01

    Full Text Available Photonic crystals have been an object of interest because of their properties to inhibit certain wavelengths and allow the transmission of others. Using these properties, we designed a photonic structure known as photodyne formed by two porous silicon one-dimensional photonic crystals with an air defect between them. When the photodyne is illuminated with appropriate light, it allows us to generate electromagnetic forces within the structure that can be maximized if the light becomes localized inside the defect region. These electromagnetic forces allow the microcavity to oscillate mechanically. In the experiment, a chopper was driven by a signal generator to modulate the laser light that was used. The driven frequency and the signal modulation waveform (rectangular, sinusoidal or triangular were changed with the idea to find optimal conditions for the structure to oscillate. The microcavity displacement amplitude, velocity amplitude and Fourier spectrum of the latter and its frequency were measured by means of a vibrometer. The mechanical oscillations are modeled and compared with the experimental results and show good agreement. For external frequency values of 5 Hz and 10 Hz, the best option was a sinusoidal waveform, which gave higher photodyne displacements and velocity amplitudes. Nonetheless, for an external frequency of 15 Hz, the best option was the rectangular waveform.

  1. Periodic rotation noise induced by the crosstalk between two beat-frequency signals in multi-oscillator ring laser gyros

    International Nuclear Information System (INIS)

    Lu, Guangfeng; Wang, Zhiguo; Fan, Zhenfang; Luo, Hui

    2014-01-01

    Periodic rotation noise in the outputs of multi-oscillator ring laser gyros (MRLGs) is investigated in this paper for the first time. It is proved theoretically and experimentally that noise is induced by the crosstalk between two beat-frequency signals, which are combined from the left and right circularly polarized counter-propagating beams in MRLGs. Theoretical analysis and experimental results also indicate that the fundamental frequency of this noise is equal to the frequency difference between the two beat-frequency signals and the amplitude of the fundamental component is proportional to the crosstalk ratio between the two beat-frequency signals. Further, the amplitude of the nth-order component is proportional to the nth power of the crosstalk ratio. (paper)

  2. About periodic and quasi-periodic orbits of a new type for twist maps of the torus

    Directory of Open Access Journals (Sweden)

    SALVADOR ADDAS-ZANATA

    2002-03-01

    Full Text Available We prove that for a large and important class of C¹ twist maps of the torus periodic and quasi-periodic orbits of a new type exist, provided that there are no rotational invariant circles (R.I.C's. These orbits have a non-zero "vertical rotation number'' (V.R.N., in contrast to what happens to Birkhoff periodic orbits and Aubry-Mather sets. The V.R.N. is rational for a periodic orbit and irrational for a quasi-periodic. We also prove that the existence of an orbit with a V.R.N = a > 0, implies the existence of orbits with V.R.N = b, for all 0 Provamos que para uma relevante classe de aplicações C¹ no toro, que desviam a vertical para a direita, existem órbitas periódicas e quase-periódicas de um novo tipo, se e somente se, não existem círculos rotacionais invariantes. Essas órbitas têm um número de rotação vertical não nulo (N.R.V, em contraste com o que ocorre para órbitas periódicas do tipo Birkhoff e para os conjuntos de Aubry-Mather. O número de rotação vertical é racional para uma órbita periódica e irracional para uma quase-periódica. Também provamos que a existência de uma órbita com N.R.V = a implica a existência de órbitas com N.R.V = b, para todo 0 < b < a. Como consequência destes resultados, obtemos que uma aplicação do toro que desvia a vertical e não possui círculos rotacionais invariates, necessariamente tem entropia topológica positiva, que é um resultado clássico. No fim deste trabalho apresentamos aplicações e exemplos, como o Standard map, dos resultados obtidos.

  3. Damping of Low Frequency Oscillation in Power System using Robust Control of Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Lee, Jung Pil; Kim, Han Gun

    2012-01-01

    In this paper, the robust superconductor flywheel energy storage system(SFESS) controller using H control theory was designed to damp low frequency oscillation of power system. The main advantage of the controller is that uncertainties of power system can be included at the stage of controller design. Both disturbance attenuation and robust stability for the power system were treated simultaneously by using mixed sensitivity problem. The robust stability and the performance for uncertainties of power system were represented by frequency weighted transfer function. To verify control performance of proposed SFESS controller using control, the closed loop eigenvalue and the damping ratio in dominant oscillation mode of power system were analyzed and nonlinear simulation for one-machine infinite bus system was performed under disturbance for various operating conditions. The results showed that the proposed SFESS controller was more robust than conventional power system stabilizer (PSS).

  4. Study of the B s0overlineBs0 oscillation frequency using D s- ℓ + combinations in Z decays

    Science.gov (United States)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Pater, J. R.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Wildish, T.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Büscher, V.; Cowan, G.; Grupen, C.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    A lower limit on the oscillation frequency of the B s0overlineBs0 system is obtained from approximately four million hadronic Z decays accumulated using the ALEPH detector at LEP from 1991 to 1995. Leptons are combined with opposite sign D s- candidates reconstructed in seven different decay modes as evidence of semileptonic B s0 decays. Criteria designed to ensure precise proper time reconstruction select 277D s-ℓ + combinations. The initial state of these B s0 candidates is determined using an algorithm optimized to efficiently utilise the tagging information available for each event. The limit at 95% confidence level on the B s0overlineBs0 oscillation frequency is Δms > 6.6 ps -1. The same data is used to update the measurement of the B s0 lifetime, τs = 1.54 -0.13+0.14 (stat) ± 0.04 (syst) ps.

  5. Internal differential rotation of the Sun: the P-modes frequency splitting in the measurements of brightness oscillations

    International Nuclear Information System (INIS)

    Didkovskij, L.V.

    1989-01-01

    a 12-DAY SERIES OF TWO-DIMNIONAL IMAGES OF SOLAR BRIGHTNESS OSCILLATIONS EIGENFREQUENCIES in the range of 6-32 degrees. The rotational frequency splitting of separate modes as a function of inner turn-points radius of acoustic waves is found. The results of the analysis shw fast rotation of the central region of the Sun and non-monotonous trend of angular rotation velocity varitions with radius of the boundary of solar core

  6. Heartbeat of the Southern Oscillation explains ENSO climatic resonances

    Science.gov (United States)

    Bruun, John T.; Allen, J. Icarus; Smyth, Timothy J.

    2017-08-01

    The El Niño-Southern Oscillation (ENSO) nonlinear oscillator phenomenon has a far reaching influence on the climate and human activities. The up to 10 year quasi-period cycle of the El Niño and subsequent La Niña is known to be dominated in the tropics by nonlinear physical interaction of wind with the equatorial waveguide in the Pacific. Long-term cyclic phenomena do not feature in the current theory of the ENSO process. We update the theory by assessing low (>10 years) and high (features. The observational data sets of the Southern Oscillation Index (SOI), North Pacific Index Anomaly, and ENSO Sea Surface Temperature Anomaly, as well as a theoretical model all confirm the existence of long-term and short-term climatic cycles of the ENSO process with resonance frequencies of {2.5, 3.8, 5, 12-14, 61-75, 180} years. This fundamental result shows long-term and short-term signal coupling with mode locking across the dominant ENSO dynamics. These dominant oscillation frequency dynamics, defined as ENSO frequency states, contain a stable attractor with three frequencies in resonance allowing us to coin the term Heartbeat of the Southern Oscillation due to its characteristic shape. We predict future ENSO states based on a stable hysteresis scenario of short-term and long-term ENSO oscillations over the next century.Plain Language SummaryThe Pacific El Niño-Southern Oscillation (ENSO) nonlinear oscillator phenomenon has a far reaching influence on the climate and our human activities. This work can help predict both long-term and short-term future ENSO events and to assess the risk of future climate hysteresis changes: is the elastic band that regulates the ENSO climate breaking? We update the current theory of the ENSO process with a sophisticated analysis approach (Dominant Frequency State Analysis) to include long-term oscillations (up to 200 years) as well as tropical and extratropical interaction dynamics. The analysis uses instrumental and paleoproxy data

  7. High-Frequency Oscillations Recorded on the Scalp of Patients With Epilepsy Using Tripolar Concentric Ring Electrodes.

    Science.gov (United States)

    Besio, Walter G; Martínez-Juárez, Iris E; Makeyev, Oleksandr; Gaitanis, John N; Blum, Andrew S; Fisher, Robert S; Medvedev, Andrei V

    2014-01-01

    Epilepsy is the second most prevalent neurological disorder ([Formula: see text]% prevalence) affecting [Formula: see text] million people worldwide with up to 75% from developing countries. The conventional electroencephalogram is plagued with artifacts from movements, muscles, and other sources. Tripolar concentric ring electrodes automatically attenuate muscle artifacts and provide improved signal quality. We performed basic experiments in healthy humans to show that tripolar concentric ring electrodes can indeed record the physiological alpha waves while eyes are closed. We then conducted concurrent recordings with conventional disc electrodes and tripolar concentric ring electrodes from patients with epilepsy. We found that we could detect high frequency oscillations, a marker for early seizure development and epileptogenic zone, on the scalp surface that appeared to become more narrow-band just prior to seizures. High frequency oscillations preceding seizures were present in an average of 35.5% of tripolar concentric ring electrode data channels for all the patients with epilepsy whose seizures were recorded and absent in the corresponding conventional disc electrode data. An average of 78.2% of channels that contained high frequency oscillations were within the seizure onset or irritative zones determined independently by three epileptologists based on conventional disc electrode data and videos.

  8. Altered modulation of gamma oscillation frequency by speed of visual motion in children with autism spectrum disorders.

    Science.gov (United States)

    Stroganova, Tatiana A; Butorina, Anna V; Sysoeva, Olga V; Prokofyev, Andrey O; Nikolaeva, Anastasia Yu; Tsetlin, Marina M; Orekhova, Elena V

    2015-01-01

    Recent studies link autism spectrum disorders (ASD) with an altered balance between excitation and inhibition (E/I balance) in cortical networks. The brain oscillations in high gamma-band (50-120 Hz) are sensitive to the E/I balance and may appear useful biomarkers of certain ASD subtypes. The frequency of gamma oscillations is mediated by level of excitation of the fast-spiking inhibitory basket cells recruited by increasing strength of excitatory input. Therefore, the experimental manipulations affecting gamma frequency may throw light on inhibitory networks dysfunction in ASD. Here, we used magnetoencephalography (MEG) to investigate modulation of visual gamma oscillation frequency by speed of drifting annular gratings (1.2, 3.6, 6.0 °/s) in 21 boys with ASD and 26 typically developing boys aged 7-15 years. Multitaper method was used for analysis of spectra of gamma power change upon stimulus presentation and permutation test was applied for statistical comparisons. We also assessed in our participants visual orientation discrimination thresholds, which are thought to depend on excitability of inhibitory networks in the visual cortex. Although frequency of the oscillatory gamma response increased with increasing velocity of visual motion in both groups of participants, the velocity effect was reduced in a substantial proportion of children with ASD. The range of velocity-related gamma frequency modulation correlated inversely with the ability to discriminate oblique line orientation in the ASD group, while no such correlation has been observed in the group of typically developing participants. Our findings suggest that abnormal velocity-related gamma frequency modulation in ASD may constitute a potential biomarker for reduced excitability of fast-spiking inhibitory neurons in a subset of children with ASD.

  9. Spontaneous high frequency diameter oscillations of larger retinal arterioles are reduced in type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Bek, Toke; Jeppesen, Peter; Kanters, Jørgen K.

    2013-01-01

    Diabetic retinopathy is characterized by morphological changes in the retina secondary to disturbances in retinal blood flow. Vasomotion is a mechanism for regulating blood flow by spontaneous oscillations in the diameter of retinal resistance arterioles, and has been shown to be disturbed outside...... the eye in diabetic patients. Therefore, the purpose of the present study was to characterize spontaneous oscillations in the diameter of retinal arterioles in normal persons and in persons with different severity of diabetic retinopathy....

  10. Quasi-periodic Fibonacci and periodic one-dimensional hypersonic phononic crystals of porous silicon: Experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, Gazi N., E-mail: g.aliev@bath.ac.uk; Goller, Bernhard [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)

    2014-09-07

    A one-dimensional Fibonacci phononic crystal and a distributed Bragg reflector were constructed from porous silicon. The structures had the same number of layers and similar acoustic impedance mismatch, and were electrochemically etched in highly boron doped silicon wafers. The thickness of the individual layers in the stacks was approximately 2 μm. Both types of hypersonic band gap structure were studied by direct measurement of the transmittance of longitudinal acoustic waves in the 0.1–2.6 GHz range. Acoustic band gaps deeper than 50 dB were detected in both structures. The experimental results were compared with model calculations employing the transfer matrix method. The acoustic properties of periodic and quasi-periodic structures in which half-wave retarding bi-layers do not consist of two quarter-wave retarding layers are discussed. The strong correlation between width and depth of gaps in the transmission spectra is demonstrated. The dominant mechanisms of acoustic losses in porous multilayer structures are discussed. The elastic constants remain proportional over our range of porosity, and hence, the Grüneisen parameter is constant. This simplifies the expression for the porosity dependence of the Akhiezer damping.

  11. A PK-PD model of ketamine-induced high-frequency oscillations

    Science.gov (United States)

    Flores, Francisco J.; Ching, ShiNung; Hartnack, Katharine; Fath, Amanda B.; Purdon, Patrick L.; Wilson, Matthew A.; Brown, Emery N.

    2015-10-01

    Objective. Ketamine is a widely used drug with clinical and research applications, and also known to be used as a recreational drug. Ketamine produces conspicuous changes in the electrocorticographic (ECoG) signals observed both in humans and rodents. In rodents, the intracranial ECoG displays a high-frequency oscillation (HFO) which power is modulated nonlinearly by ketamine dose. Despite the widespread use of ketamine there is no model description of the relationship between the pharmacokinetic-pharmacodynamics (PK-PDs) of ketamine and the observed HFO power. Approach. In the present study, we developed a PK-PD model based on estimated ketamine concentration, its known pharmacological actions, and observed ECoG effects. The main pharmacological action of ketamine is antagonism of the NMDA receptor (NMDAR), which in rodents is accompanied by an HFO observed in the ECoG. At high doses, however, ketamine also acts at non-NMDAR sites, produces loss of consciousness, and the transient disappearance of the HFO. We propose a two-compartment PK model that represents the concentration of ketamine, and a PD model based in opposing effects of the NMDAR and non-NMDAR actions on the HFO power. Main results. We recorded ECoG from the cortex of rats after two doses of ketamine, and extracted the HFO power from the ECoG spectrograms. We fit the PK-PD model to the time course of the HFO power, and showed that the model reproduces the dose-dependent profile of the HFO power. The model provides good fits even in the presence of high variability in HFO power across animals. As expected, the model does not provide good fits to the HFO power after dosing the pure NMDAR antagonist MK-801. Significance. Our study provides a simple model to relate the observed electrophysiological effects of ketamine to its actions at the molecular level at different concentrations. This will improve the study of ketamine and rodent models of schizophrenia to better understand the wide and divergent

  12. Method to minimize the low-frequency neutral-point voltage oscillations with time-offset injection for neutral-point-clamped inverters

    DEFF Research Database (Denmark)

    Choi, Uimin; Lee, Kyo-Beum; Blaabjerg, Frede

    2013-01-01

    This paper proposes a method to reduce the low-frequency neutral-point voltage oscillations. The neutral-point voltage oscillations are considerably reduced by adding a time-offset to the three phase turn-on times. The proper time-offset is simply calculated considering the phase currents and dwell...

  13. TIME DELAYS IN QUASI-PERIODIC PULSATIONS OBSERVED DURING THE X2.2 SOLAR FLARE ON 2011 FEBRUARY 15

    Energy Technology Data Exchange (ETDEWEB)

    Dolla, L.; Marque, C.; Seaton, D. B.; Dominique, M.; Berghmans, D.; Cabanas, C.; De Groof, A.; Verdini, A.; West, M. J.; Zhukov, A. N. [Solar-Terrestrial Center of Excellence, Royal Observatory of Belgium, Avenue Circulaire 3, B-1180 Brussels (Belgium); Van Doorsselaere, T. [Centrum voor Plasma-Astrofysica, Department of Mathematics, KULeuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Schmutz, W. [Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos Dorf (Switzerland); Zender, J., E-mail: dolla@sidc.be [European Space Agency, ESTEC, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands)

    2012-04-10

    We report observations of quasi-periodic pulsations (QPPs) during the X2.2 flare of 2011 February 15, observed simultaneously in several wavebands. We focus on fluctuations on timescale 1-30 s and find different time lags between different wavebands. During the impulsive phase, the Reuven Ramaty High Energy Solar Spectroscopic Imager channels in the range 25-100 keV lead all the other channels. They are followed by the Nobeyama RadioPolarimeters at 9 and 17 GHz and the extreme-ultraviolet (EUV) channels of the Euv SpectroPhotometer (ESP) on board the Solar Dynamic Observatory. The zirconium and aluminum filter channels of the Large Yield Radiometer on board the Project for On-Board Autonomy satellite and the soft X-ray (SXR) channel of ESP follow. The largest lags occur in observations from the Geostationary Operational Environmental Satellite, where the channel at 1-8 A leads the 0.5-4 A channel by several seconds. The time lags between the first and last channels is up to Almost-Equal-To 9 s. We identified at least two distinct time intervals during the flare impulsive phase, during which the QPPs were associated with two different sources in the Nobeyama RadioHeliograph at 17 GHz. The radio as well as the hard X-ray channels showed different lags during these two intervals. To our knowledge, this is the first time that time lags are reported between EUV and SXR fluctuations on these timescales. We discuss possible emission mechanisms and interpretations, including flare electron trapping.

  14. Low frequency modulation of transionospheric radio wave amplitude at low-latitudes: possible role of field line oscillations

    Directory of Open Access Journals (Sweden)

    A. K. Sinha

    Full Text Available Ionospheric scintillations of radio waves at low-latitudes are associated with electron density irregularities. These irregularities are field-aligned and can provide excitation energy all along the field line to non-local field-aligned oscillations, such as the local field line oscillations. Eigen-periods of toroidal field line oscillations at low-latitudes, computed by using the dipole magnetic field and ion distributions obtained from the International Reference Ionosphere (IRI for typical nighttime conditions, fall in the range of 20–25 s. When subjected to spectral analysis, signal strength of the radio waves recorded on the 250 MHz beacon at Pondicherry (4.5° N dip, Mumbai (13.4° N dip and Ujjain (18.6° N dip exhibit periodicities in the same range. For the single event for which simultaneous ground magnetic data were available, the geomagnetic field also oscillated at the same periodicity. The systematic presence of a significant peak in the 20–25 s range during periods of strong radio wave scintillations, and its absence otherwise suggests the possibility that field line oscillations are endogenously excited by the irregularities, and the oscillations associated with the excited field line generate the modulation characteristics of the radio waves received on the ground. The frequency of modulation is found to be much lower than the characteristic frequencies that define the main body of scintillations, and they probably correspond to scales that are much larger than the typical Fresnel scale. It is possible that the refractive mechanism associated with larger scale long-lived irregularities could be responsible for the observed phenomenon. Results of a preliminary numerical experiment that uses a sinusoidal phase irregularity in the ionosphere as a refracting media are presented. The results show that phase variations which are large enough to produce a focal plane close to the ground can reproduce features that are not

  15. Low frequency modulation of transionospheric radio wave amplitude at low-latitudes: possible role of field line oscillations

    Directory of Open Access Journals (Sweden)

    A. K. Sinha

    2002-01-01

    Full Text Available Ionospheric scintillations of radio waves at low-latitudes are associated with electron density irregularities. These irregularities are field-aligned and can provide excitation energy all along the field line to non-local field-aligned oscillations, such as the local field line oscillations. Eigen-periods of toroidal field line oscillations at low-latitudes, computed by using the dipole magnetic field and ion distributions obtained from the International Reference Ionosphere (IRI for typical nighttime conditions, fall in the range of 20–25 s. When subjected to spectral analysis, signal strength of the radio waves recorded on the 250 MHz beacon at Pondicherry (4.5° N dip, Mumbai (13.4° N dip and Ujjain (18.6° N dip exhibit periodicities in the same range. For the single event for which simultaneous ground magnetic data were available, the geomagnetic field also oscillated at the same periodicity. The systematic presence of a significant peak in the 20–25 s range during periods of strong radio wave scintillations, and its absence otherwise suggests the possibility that field line oscillations are endogenously excited by the irregularities, and the oscillations associated with the excited field line generate the modulation characteristics of the radio waves received on the ground. The frequency of modulation is found to be much lower than the characteristic frequencies that define the main body of scintillations, and they probably correspond to scales that are much larger than the typical Fresnel scale. It is possible that the refractive mechanism associated with larger scale long-lived irregularities could be responsible for the observed phenomenon. Results of a preliminary numerical experiment that uses a sinusoidal phase irregularity in the ionosphere as a refracting media are presented. The results show that phase variations which are large enough to produce a focal plane close to the ground can reproduce features that are not

  16. Low-frequency photocurrent oscillations in InP in magnetic field

    International Nuclear Information System (INIS)

    Slobodchikov, S.V.; Salikhov, Kh.M.; Kovalevskaya, G.G.

    1994-01-01

    Results of investigations of magnetic field effect on the oscillating photocurrent in InP crytals are presented. It is shown that the magnetic field plays the part of an additional source of photocarrier injection in the sample bulk. 3 refs., 2 figs

  17. A Multi-Site Campaign to Measure Solar-Like Oscillations in Procyon. II. Mode Frequencies

    DEFF Research Database (Denmark)

    Bedding, Timothy R.; Kjeldsen, Hans; Campante, Tiago L.

    2010-01-01

      We have analyzed data from a multi-site campaign to observe oscillations in the F5 star Procyon. The data consist of high-precision velocities that we obtained over more than three weeks with 11 telescopes. A new method for adjusting the data weights allows us to suppress the sidelobes in the p...

  18. New Canonic Active RC Sinusoidal Oscillator Circuits Using Second-Generation Current Conveyors with Application as a Wide-Frequency Digitally Controlled Sinusoid Generator

    OpenAIRE

    Abhirup Lahiri

    2011-01-01

    This paper reports two new circuit topologies using second-generation current conveyors (CCIIs) for realizing variable frequency sinusoidal oscillators with minimum passive components. The proposed topologies in this paper provide new realizations of resistance-controlled and capacitor-controlled variable frequency oscillators (VFOs) using only four passive components. The first topology employs three CCIIs, while the second topology employs two CCIIs. The second topology provides an advantag...

  19. Frequency-dependent changes in amplitude of low-frequency oscillations in depression: A resting-state fMRI study.

    Science.gov (United States)

    Wang, Li; Kong, Qingmei; Li, Ke; Su, Yunai; Zeng, Yawei; Zhang, Qinge; Dai, Wenji; Xia, Mingrui; Wang, Gang; Jin, Zhen; Yu, Xin; Si, Tianmei

    2016-02-12

    We conducted this fMRI study to examine whether the alterations in amplitudes of low-frequency oscillation (LFO) of major depressive disorder (MDD) patients were frequency dependent. The LFO amplitudes (as indexed by amplitude of low-frequency fluctuation [ALFF] and fractional ALFF [fALFF]) within 4 narrowly-defined frequency bands (slow-5: 0.01-0.027Hz, slow-4: 0.027-0.073Hz, slow-3: 0.073-0.198Hz, and slow-2: 0.198-0.25Hz) were computed using resting-state fMRI data of 35 MDD patients and 32 healthy subjects. Repeated-measures analysis of variance (ANOVA) was performed on ALFF and fALFF both within the low frequency bands of slow-4 and slow-5 and within all of the four bands. We observed significant main effects of group and frequency on ALFF and fALFF in widely distributed brain regions. Importantly, significant group and frequency interaction effects were observed in the ventromedial prefrontal cortex, inferior frontal gyrus, precentral gyrus, in a left-sided fashion, the bilateral posterior cingulate and precuneus, during ANOVA both within slow-4 and slow-5 bands and within all the frequency bands. The results suggest that the alterations of LFO amplitudes in specific brain regions in MDD patients could be more sensitively detected in the slow-5 rather than the slow-4 bands. The findings may provide guidance for the frequency choice of future resting-state fMRI studies of MDD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Measurement of the $B^0$ Lifetime and Oscillation Frequency using $\\overline{B}^{0} \\to D^{*+}l^{-}\\overline{\

    CERN Document Server

    Abbiendi, G.; Ainsley, C.; Akesson, P.F.; Alexander, G.; Allison, John; Anderson, K.J.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Bailey, I.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Baumann, S.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Benelli, G.; Bentvelsen, S.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Cammin, J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; de Roeck, A.; de Wolf, E.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanti, M.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Glenzinski, D.; Goldberg, J.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauke, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lawson, I.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; Lillich, J.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rembser, C.; Renkel, P.; Rick, H.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Stoll, K.; Strom, David M.; Strohmer, R.; Stumpf, L.; Surrow, B.; Talbot, S.D.; Tarem, S.; Taylor, R.J.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Toya, D.; Trefzger, T.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Vachon, B.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.

    2000-01-01

    The lifetime and oscillation frequency of the B0 meson has been measured using B0->D*+l-v decays recorded on the Z0 peak with the OPAL detector at LEP. The D*+ -> D0pi+ decays were reconstructed using an inclusive technique and the production flavour of the B0 mesons was determined using a combination of tags from the rest of the event. The results t_B0 = 1.541 +- 0.028 +- 0.023 ps, Dm_d = 0.497 +- 0.024 +- 0.025 ps-1 were obtained, where in each case the first error is statistical and the second systematic.

  1. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator.

    Science.gov (United States)

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Vitiello, Miriam S

    2016-03-15

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology.

  2. Fluidic low-frequency oscillator with vortex spin-up time delay

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Smyk, E.

    2015-01-01

    Roč. 90, April (2015), s. 6-15 ISSN 0255-2701 R&D Projects: GA ČR GA13-23046S; GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : fluidics * oscillator * vortex chamber Subject RIV: BK - Fluid Dynamics Impact factor: 2.154, year: 2015 http://www.sciencedirect.com/science/article/pii/S0255270115000252

  3. New Canonic Active RC Sinusoidal Oscillator Circuits Using Second-Generation Current Conveyors with Application as a Wide-Frequency Digitally Controlled Sinusoid Generator

    Directory of Open Access Journals (Sweden)

    Abhirup Lahiri

    2011-01-01

    Full Text Available This paper reports two new circuit topologies using second-generation current conveyors (CCIIs for realizing variable frequency sinusoidal oscillators with minimum passive components. The proposed topologies in this paper provide new realizations of resistance-controlled and capacitor-controlled variable frequency oscillators (VFOs using only four passive components. The first topology employs three CCIIs, while the second topology employs two CCIIs. The second topology provides an advantageous feature of frequency tuning through two grounded elements. Application of the proposed circuits as a wide-frequency range digitally controlled sinusoid generator is exhibited wherein the digital frequency control has been enabled by replacing both the capacitors by two identical variable binary capacitor banks tunable by means of the same binary code. SPICE simulations of the CMOS implementation of the oscillators using 0.35 μm TSMC CMOS technology parameters and bipolar implementation of the oscillators using process parameters for NR200N-2X (NPN and PR200N-2X (PNP of bipolar arrays ALA400-CBIC-R have validated their workability. One of the oscillators (with CMOS implementation is exemplified as a digitally controlled sinusoid generator with frequency generation from 25 kHz to 6.36 MHz, achieved by switching capacitors and with power consumption of 7 mW in the entire operating frequency range.

  4. LOCO - a linearised model for analysing the onset of coolant oscillations and frequency response of boiling channels

    International Nuclear Information System (INIS)

    Romberg, T.M.

    1982-12-01

    Industrial plant such as heat exchangers and nuclear and conventional boilers are prone to coolant flow oscillations which may not be detected. In this report, a hydrodynamic model is formulated in which the one-dimensional, non-linear, partial differential equations for the conservation of mass, energy and momentum are perturbed with respect to time, linearised, and Laplace-transformed into the s-domain for frequency response analysis. A computer program has been developed to integrate numerically the resulting non-linear ordinary differential equations by finite difference methods. A sample problem demonstrates how the computer code is used to analyse the frequency response and flow stability characteristics of a heated channel

  5. Frequency comb generation by a continuous-wave-pumped optical parametric oscillator based on cascading quadratic nonlinearities.

    Science.gov (United States)

    Ulvila, Ville; Phillips, C R; Halonen, Lauri; Vainio, Markku

    2013-11-01

    We report optical frequency comb generation by a continuous-wave pumped optical parametric oscillator (OPO) without any active modulation. The OPO is configured as singly resonant with an additional nonlinear crystal (periodically poled MgO:LiNbO3) placed inside the OPO for phase mismatched second harmonic generation (SHG) of the resonating signal beam. The phase mismatched SHG causes cascading χ(2) nonlinearities, which can substantially increase the effective χ(3) nonlinearity in MgO:LiNbO3, leading to spectral broadening of the OPO signal beam via self-phase modulation. The OPO generates a stable 4 THz wide (-30 dB) frequency comb centered at 1.56 μm.

  6. Self-oscillating Galvanic Isolated Bidirectional Very High Frequency DC-DC Converter

    DEFF Research Database (Denmark)

    Pedersen, Jeppe Arnsdorf; Madsen, Mickey Pierre; Knott, Arnold

    2015-01-01

    This paper describes a galvanic isolated bidirectional Very High Frequency (VHF = 30 MHz - 300MHz) ClassE converter. The reason for increasing the switching frequency is to minimize the passive components in the converter. To make the converter topology bidirectional the rectifier has to be synch......This paper describes a galvanic isolated bidirectional Very High Frequency (VHF = 30 MHz - 300MHz) ClassE converter. The reason for increasing the switching frequency is to minimize the passive components in the converter. To make the converter topology bidirectional the rectifier has...

  7. Chromospheric oscillations

    NARCIS (Netherlands)

    Lites, B.W.; Rutten, R.J.; Thomas, J.H.

    1995-01-01

    We show results from SO/Sacramento Peak data to discuss three issues: (i)--the spatial occurrence of chromospheric 3--min oscillations; (ii)--the validity of Ca II H&K line-center Doppler Shift measurements; (iii)--the signi ?cance of oscillation power and phase at frequencies above 10 mHz.

  8. US Mains Stacked Very High Frequency Self-oscillating Resonant Power Converter with Unified Rectifier

    DEFF Research Database (Denmark)

    Pedersen, Jeppe Arnsdorf; Madsen, Mickey Pierre; Mønster, Jakob Døllner

    2016-01-01

    This paper describes a Very High Frequency (VHF) converter made with three Class-E inverters and a single ClassDE rectifier. The converter is designed for the US mains (120 V, 60 Hz) and can deliver 9 W to a 60 V LED. The converter has a switching frequency of 37 MHz and achieves an efficiency...

  9. Suppression of mechanical resonance in digital servo system considering oscillation frequency deviation

    DEFF Research Database (Denmark)

    Chen, Yangyang; Yang, Ming; Hu, Kun

    2017-01-01

    High-stiffness servo system is easy to cause mechanical resonance in elastic coupling servo system. Although on-line adaptive notch filter is effective in most cases, it will lead to a severer resonance when resonance frequency deviated from the natural torsional frequency. To explain...

  10. Characterization of the response of quasi-periodic masonry : geometrical investigation, homogenization and application to the Guimarães castle, Portugal

    OpenAIRE

    Milani, G.; Esquivel Fernández, Yhosimi Washington; Lourenço, Paulo B.; Riveiro, Belén; Oliveira, Daniel V.

    2013-01-01

    In many countries, historical buildings were built with masonry walls constituted by random assemblages of stones of variable dimensions and shapes. The analysis of historic masonry structures requires often complex and expensive computational tools that in many cases are difficult to handle, given this large variability of masonry. The present paper validates a methodology for the characterization of the ultimate response of quasi periodic masonry. For this purpose, the behaviour at colla...

  11. The impact research of control modes in steam turbine control system (digital electric hydraulic to the low-frequency oscillation of grid

    Directory of Open Access Journals (Sweden)

    Yanghai Li

    2016-01-01

    Full Text Available Through the analysis of the control theory for steam turbine, the transfer function of the steam turbine control modes in the parallel operation was obtained. The frequency domain analysis indicated that different control modes of turbine control system have different influence on the damping characteristics of the power system. The comparative analysis shows the direction and the degree of the influence under the different oscillation frequency range. This can provide the theory for the suppression of the low-frequency oscillation from turbine side and has a guiding significance for the stability of power system. The results of simulation tests are consistent with the theoretic analysis.

  12. Low- and high-frequency cortical brain oscillations reflect dissociable mechanisms of concurrent speech segregation in noise.

    Science.gov (United States)

    Yellamsetty, Anusha; Bidelman, Gavin M

    2018-04-01

    Parsing simultaneous speech requires listeners use pitch-guided segregation which can be affected by the signal-to-noise ratio (SNR) in the auditory scene. The interaction of these two cues may occur at multiple levels within the cortex. The aims of the current study were to assess the correspondence between oscillatory brain rhythms and determine how listeners exploit pitch and SNR cues to successfully segregate concurrent speech. We recorded electrical brain activity while participants heard double-vowel stimuli whose fundamental frequencies (F0s) differed by zero or four semitones (STs) presented in either clean or noise-degraded (+5 dB SNR) conditions. We found that behavioral identification was more accurate for vowel mixtures with larger pitch separations but F0 benefit interacted with noise. Time-frequency analysis decomposed the EEG into different spectrotemporal frequency bands. Low-frequency (θ, β) responses were elevated when speech did not contain pitch cues (0ST > 4ST) or was noisy, suggesting a correlate of increased listening effort and/or memory demands. Contrastively, γ power increments were observed for changes in both pitch (0ST > 4ST) and SNR (clean > noise), suggesting high-frequency bands carry information related to acoustic features and the quality of speech representations. Brain-behavior associations corroborated these effects; modulations in low-frequency rhythms predicted the speed of listeners' perceptual decisions with higher bands predicting identification accuracy. Results are consistent with the notion that neural oscillations reflect both automatic (pre-perceptual) and controlled (post-perceptual) mechanisms of speech processing that are largely divisible into high- and low-frequency bands of human brain rhythms. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Frequency-dependent changes in local intrinsic oscillations in chronic primary insomnia: A study of the amplitude of low-frequency fluctuations in the resting state.

    Science.gov (United States)

    Zhou, Fuqing; Huang, Suhua; Zhuang, Ying; Gao, Lei; Gong, Honghan

    2017-01-01

    New neuroimaging techniques have led to significant advancements in our understanding of cerebral mechanisms of primary insomnia. However, the neuronal low-frequency oscillation remains largely uncharacterized in chronic primary insomnia (CPI). In this study, the amplitude of low-frequency fluctuation (ALFF), a data-driven method based on resting-state functional MRI, was used to examine local intrinsic activity in 27 patients with CPI and 27 age-, sex-, and education-matched healthy controls. We examined neural activity in two frequency bands, slow-4 (between 0.027 and 0.073 Hz) and slow-5 (0.010-0.027 Hz), because blood-oxygen level dependent (BOLD) fluctuations in different low-frequency bands may present different neurophysiological manifestations that pertain to a spatiotemporal organization. The ALFF associated with the primary disease effect was widely distributed in the cerebellum posterior lobe (CPL), dorsal and ventral prefrontal cortex, anterior cingulate cortex, precuneus, somatosensory cortex, and several default-mode sub-regions. Several brain regions (i.e., the right cerebellum, anterior lobe, and left putamen) exhibited an interaction between the frequency band and patient group. In the slow-5 band, increased ALFF of the right postcentral gyrus/inferior parietal lobule (PoCG/IPL) was enhanced in association with the sleep quality (ρ = 0.414, P  = 0.044) and anxiety index (ρ = 0.406, P  = 0.049) of the CPI patients. These findings suggest that during chronic insomnia, the intrinsic functional plasticity primarily responds to the hyperarousal state, which is the loss of inhibition in sensory-informational processing. Our findings regarding an abnormal sensory input and intrinsic processing mechanism might provide novel insight into the pathophysiology of CPI. Furthermore, the frequency factor should be taken into consideration when exploring ALFF-related clinical manifestations.

  14. Analysis on oscillating actuator frequency influence of the fluid flow characterization for 2D contractile water jet thruster

    Science.gov (United States)

    Shaari, M. F.; Abu Bakar, H.; Nordin, N.; Saw, S. K.; Samad, Z.

    2013-12-01

    Contractile body is an alternative mechanism instead of rotating blade propeller to generate water jet for locomotion. The oscillating motion of the actuator at different frequencies varies the pressure and volume of the pressure chamber in time to draw in and jet out the water at a certain mass flow rate. The aim of this research was to analyze the influence of the actuating frequency of the fluid flow in the pressure chamber of the thruster during this inflation-deflation process. A 70mm × 70mm × 18mm (L × W × T) 2D water jet thruster was fabricated for this purpose. The contractile function was driven using two lateral pneumatic actuators where the fluid flow analysis was focused on the X-Y plane vector. Observation was carried out using a video camera and Matlab image measurement technique to determine the volume of the flowing mass. The result demonstrated that the greater actuating frequency decreases the fluid flow rate and the Reynolds number. This observation shows that the higher frequency would give a higher mass flow rate during water jet generation.

  15. Damping control strategies of inter-area low-frequency oscillation for DFIG-based wind farms integrated into a power system

    DEFF Research Database (Denmark)

    Li, Hui; Liu, Shengquan; Ji, Haiting

    2014-01-01

    on the power system stabilizer (PSS) control method. Transient simulation on different damping gain coefficients are conducted for justification. Following the OTEF mechanism analysis, an additional fuzzy damping control strategy with the active/reactive power loop is proposed by identifying the oscillation......This study investigates the inter-area low-frequency damping control strategies of a doubly fed induction generator (DFIG)-based wind farm through oscillation transient energy function (OTEF) analysis. Based on the OTEF descent expressions, the feasibility of damping the inter-area low...... oscillation of the wind turbine shaft. The proposed additional fuzzy control strategy with the active/reactive power loop has better damping performance than the presented PSS control, especially for damping the inter-area low-frequency oscillation....

  16. High energy single frequency Yb:YAG crystalline fiber waveguide master oscillator power amplifier, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective is to demonstrate the concept of Yb:YAG crystalline fiber MOPA laser and investigation the technical feasibility toward 50 mJ single frequency...

  17. Oscillator monitor

    International Nuclear Information System (INIS)

    McNeill, G.A.

    1981-01-01

    Present high-speed data acquisition systems in nuclear diagnostics use high-frequency oscillators to provide timing references for signals recorded on fast, traveling-wave oscilloscopes. An oscillator's sinusoidal wave shape is superimposed on the recorded signal with each cycle representing a fixed time increment. During data analysis the sinusoid is stripped from the signal, leaving a clean signal shape with known timing. Since all signal/time relationships are totally dependant upon working oscillators, these critical devices must have remote verification of proper operation. This manual presents the newly-developed oscillator monitor which will provide the required verification

  18. Spontaneous and visually-driven high-frequency oscillations in the occipital cortex: Intracranial recording in epileptic patients

    Science.gov (United States)

    Nagasawa, Tetsuro; Juhász, Csaba; Rothermel, Robert; Hoechstetter, Karsten; Sood, Sandeep; Asano, Eishi

    2011-01-01

    SUMMARY High-frequency oscillations (HFOs) at ≧80 Hz of nonepileptic nature spontaneously emerge from human cerebral cortex. In 10 patients with extra-occipital lobe epilepsy, we compared the spectral-spatial characteristics of HFOs spontaneously arising from the nonepileptic occipital cortex with those of HFOs driven by a visual task as well as epileptogenic HFOs arising from the extra-occipital seizure focus. We identified spontaneous HFOs at ≧80 Hz with a mean duration of 330 msec intermittently emerging from the occipital cortex during interictal slow-wave sleep. The spectral frequency band of spontaneous occipital HFOs was similar to that of visually-driven HFOs. Spontaneous occipital HFOs were spatially sparse and confined to smaller areas, whereas visually-driven HFOs involved the larger areas including the more rostral sites. Neither spectral frequency band nor amplitude of spontaneous occipital HFOs significantly differed from those of epileptogenic HFOs. Spontaneous occipital HFOs were strongly locked to the phase of delta activity, but the strength of delta-phase coupling decayed from 1 to 3 Hz. Conversely, epileptogenic extra-occipital HFOs were locked to the phase of delta activity about equally in the range from 1 to 3 Hz. The occipital cortex spontaneously generates physiological HFOs which may stand out on electrocorticography traces as prominently as pathological HFOs arising from elsewhere; this observation should be taken into consideration during presurgical evaluation. Coupling of spontaneous delta and HFOs may increase the understanding of significance of delta-oscillations during slow-wave sleep. Further studies are warranted to determine whether delta-phase coupling distinguishes physiological from pathological HFOs or simply differs across anatomical locations. PMID:21432945

  19. Applications of wind generation for power system frequency control, inter-area oscillations damping and parameter identification

    Science.gov (United States)

    Wilches-Bernal, Felipe

    Power systems around the world are experiencing a continued increase in wind generation as part of their energy mix. Because of its power electronics interface, wind energy conversion systems interact differently with the grid than conventional generation. These facts are changing the traditional dynamics that regulate power system behavior and call for a re-examination of traditional problems encountered in power systems like frequency response, inter-area oscillations and parameter identification. To address this need, realistic models for wind generation are necessary. The dissertation implements such models in a MATLAB-based flexible environment suited for power system research. The dissertation continues with an analysis of the frequency response of a test power system dependent mainly on a mode referred to as the frequency regulation mode. Using this test system it is shown that its frequency regulation capability is reduced with wind penetration levels of 25% and above. A controller for wind generation to restore the frequency response of the system is then presented. The proposed controller requires the WTG to operate in a deloaded mode, a condition that is obtained through pitching the wind turbine blades. Time simulations at wind penetration levels of 25% and 50% are performed to demonstrate the effectiveness of the proposed controller. Next, the dissertation evaluates how the inter-area oscillation of a two-machine power system is affected by wind integration. The assessment is performed based on the positioning of the WTG, the level of wind penetration, and the loading condition of the system. It is determined that integrating wind reduces the damping of the inter-area mode of the system when performed in an area that imports power. For this worst-case scenario, the dissertation proposes two controllers for wind generation to improve the damping of the inter-area mode. The first controller uses frequency as feedback signal for the active power control

  20. Improved measurement of the $B^0_d$--$\\overline{B}^0_d$ Oscillation frequency

    CERN Document Server

    Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Bright-Thomas, P G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Bauer, C; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, A M; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1997-01-01

    The time dependence of $B^0_d--\\bar{B}^0_d$ oscillations is measured by the ALEPH experiment at LEP, using three techniques, two of which are updates of previous measurements. In all cases the charge of the decaying $b$ quark and its decay time are measured in one hemisphere of the event; the quark charge at production is tagged mainly using the opposite hemisphere. The first method uses the charge correlation between a $D^{*-}$ and a lepton in the opposite hemisphere; if no lepton is present, the produced quark charge is determined from the hemisphere charges. In the second method, the decay time is measured using a lepton in one hemisphere and the initial state is inferred from the opposite-hemisphere jet charge. The third method uses a lepton in each hemisphere. The data used were collected from 1991 to 1994. The combined result is $\\Delta m_d = 0.436\\pm 0.033\\, {\\rm ps}^{-1}$

  1. Analysis and damping control of power system low-frequency oscillations

    CERN Document Server

    Wang, Haifeng

    2016-01-01

    This book presents the research and development results on power systems oscillations in three categories of analytical methods. First is damping torque analysis which was proposed in 1960’s, further developed between 1980-1990, and widely used in industry. Second is modal analysis which developed between the 1980’s and 1990’s as the most powerful method. Finally the linearized equal-area criterion analysis that is proposed and developed recently. The book covers three main types of controllers: Power System Stabilizer (PSS), FACTS (Flexible AC Transmission Systems) stabilizer, and ESS (Energy Storage Systems) stabilizer. The book provides a systematic and detailed introduction on the subject as the reference for industry applications and academic research.

  2. Method to Minimize the Low-Frequency Neutral-Point Voltage Oscillations With Time-Offset Injection for Neutral-Point-Clamped Inverters

    DEFF Research Database (Denmark)

    Choi, Ui-Min; Blaabjerg, Frede; Lee, Kyo-Beum

    2015-01-01

    time of small- and medium-voltage vectors. However, if the power factor is lower, there is a limitation to eliminate neutral-point oscillations. In this case, the proposed method can be improved by changing the switching sequence properly. Additionally, a method for neutral-point voltage balancing......This paper proposes a method to reduce the low-frequency neutral-point voltage oscillations. The neutral-point voltage oscillations are considerably reduced by adding a time offset to the three-phase turn-on times. The proper time offset is simply calculated considering the phase currents and dwell...

  3. Modulating wind power plant output using different frequency modulation components for damping grid oscillations

    DEFF Research Database (Denmark)

    2017-01-01

    A method, controller, wind power plant, and computer program product are disclosed for operating a wind power plant comprising a plurality of wind turbines, the wind power plant producing a plant power output. The method comprises receiving a modulation request signal indicating a requested...... modulation of the plant power output, the requested modulation specifying a modulation frequency. The method further comprises generating a respective power reference signal for each of at least two wind turbines of the plurality of wind turbines selected to fulfill the requested modulation, Each generated...... power reference signal includes a respective modulation component corresponding to a portion of the requested modulation and having a frequency different than the modulation frequency....

  4. Theoretical oscillation frequencies for solar-type dwarfs from stellar models with <3D >-atmospheres

    DEFF Research Database (Denmark)

    Jørgensen, Andreas Christ Sølvsten; Weiss, Achim; Mosumgaard, Jakob Rorsted

    2017-01-01

    We present a new method for replacing the outermost layers of stellar models with interpolated atmospheres based on results from 3D simulations, in order to correct for structural inadequacies of these layers. This replacement is known as patching. Tests, based on 3D atmospheres from three......, and the mismatch in T-eff and log g between the un-patched model and patched 3D atmosphere. We find the eigen frequencies to be unaltered by the patching depth deep within the adiabatic region, while changing the patching quantity or the employed atmosphere grid leads to frequency shifts that may exceed 1 mu Hz....... Likewise, the eigen frequencies are sensitive to mismatches in T-eff or log g. A thorough investigation of the accuracy of a new scheme, for interpolating mean 3D stratifications within the atmosphere grids, is furthermore performed. Throughout large parts of the atmosphere grids, our interpolation scheme...

  5. Design of Weighted Wide Area Damping Controller (WWADC Based PSS for Damping Inter-Area Low Frequency Oscillations

    Directory of Open Access Journals (Sweden)

    Saleh M. Bamasak

    2017-09-01

    Full Text Available Wide Area Measurement System (WAMS can extend and effectively improve the power system stabilizers (PSS capability in damping the inter-area low frequency oscillations in interconnected bulk power systems. This paper proposes the implementation of Weighted Wide Area Damping Controller (WWADC in which weighted factors are introduced for each remote feedback signals. Modal analysis approach is implemented for the purpose of identifying the optimal location as well as the input signals’ optimal combination of WWADC. Based on the linearized model, Differential Evolution (DE algorithm is applied to search for optimal controller parameters and optimal weighted factors. The successful application of the proposed approach is achieved in two power networks; the two-area 4-machine system and the IEEE-39 bus 10-machine system. The analysis of the eigenvalue and non-linear time domain simulations indicate that damping the inter-area oscillations and improving the system stability irrespective of the severity and the location of the disturbances can be effectively achieved by WADC

  6. Cortical drive of low-frequency oscillations in the human nucleus accumbens during action selection.

    Science.gov (United States)

    Stenner, Max-Philipp; Litvak, Vladimir; Rutledge, Robb B; Zaehle, Tino; Schmitt, Friedhelm C; Voges, Jürgen; Heinze, Hans-Jochen; Dolan, Raymond J

    2015-07-01

    The nucleus accumbens is thought to contribute to action selection by integrating behaviorally relevant information from multiple regions, including prefrontal cortex. Studies in rodents suggest that information flow to the nucleus accumbens may be regulated via task-dependent oscillatory coupling between regions. During instrumental behavior, local field potentials (LFP) in the rat nucleus accumbens and prefrontal cortex are coupled at delta frequencies (Gruber AJ, Hussain RJ, O'Donnell P. PLoS One 4: e5062, 2009), possibly mediating suppression of afferent input from other areas and thereby supporting cortical control (Calhoon GG, O'Donnell P. Neuron 78: 181-190, 2013). In this report, we demonstrate low-frequency cortico-accumbens coupling in humans, both at rest and during a decision-making task. We recorded LFP from the nucleus accumbens in six epilepsy patients who underwent implantation of deep brain stimulation electrodes. All patients showed significant coherence and phase-synchronization between LFP and surface EEG at delta and low theta frequencies. Although the direction of this coupling as indexed by Granger causality varied between subjects in the resting-state data, all patients showed a cortical drive of the nucleus accumbens during action selection in a decision-making task. In three patients this was accompanied by a significant coherence increase over baseline. Our results suggest that low-frequency cortico-accumbens coupling represents a highly conserved regulatory mechanism for action selection. Copyright © 2015 the American Physiological Society.

  7. Wavelet based comparison of high frequency oscillations in the geodetic and fluid excitation functions of polar motion

    Science.gov (United States)

    Kosek, W.; Popinski, W.; Niedzielski, T.

    2011-10-01

    It has been already shown that short period oscillations in polar motion, with periods less than 100 days, are very chaotic and are responsible for increase in short-term prediction errors of pole coordinates data. The wavelet technique enables to compare the geodetic and fluid excitation functions in the high frequency band in many different ways, e.g. by looking at the semblance function. The waveletbased semblance filtering enables determination the common signal in both geodetic and fluid excitation time series. In this paper the considered fluid excitation functions consist of the atmospheric, oceanic and land hydrology excitation functions from ECMWF atmospheric data produced by IERS Associated Product Centre Deutsches GeoForschungsZentrum, Potsdam. The geodetic excitation functions have been computed from the combined IERS pole coordinates data.

  8. Determination of frequencies of oscillations of cloud cavitation on a 2-D hydrofoil from high-speed camera observations

    Czech Academy of Sciences Publication Activity Database

    Zima, Patrik; Fürst, T.; Sedlář, M.; Komárek, M.; Huzlík, R.

    2016-01-01

    Roč. 28, č. 3 (2016), s. 369-378 ISSN 1001-6058 R&D Projects: GA ČR GA13-23550S Institutional support: RVO:61388998 Keywords : unsteady cavitation * oscillation frequency * high-speed camera observation Subject RIV: BK - Fluid Dynamics Impact factor: 1.174, year: 2016 http://ac.els-cdn.com/S1001605816606406/1-s2.0-S1001605816606406-main.pdf?_tid=dee3b8f4-4a62-11e6-9d83-00000aacb361&acdnat=1468570098_ce8b727c766e0f96ee20d505e7058102

  9. The effects of age on the spontaneous low-frequency oscillations in cerebral and systemic cardiovascular dynamics

    International Nuclear Information System (INIS)

    Peng, Tingying; Rowley, Alex B; Payne, Stephen J; Ainslie, Philip N; Murrell, Carissa; Thomas, Kate; Cotter, James D; Williams, Michael J A; George, Keith; Shave, Rob

    2008-01-01

    Although the effects of ageing on cardiovascular control and particularly the response to orthostatic stress have been the subject of many studies, the interaction between the cardiovascular and cerebral regulation mechanisms is still not fully understood. Wavelet cross-correlation is used here to assess the coupling and synchronization between low-frequency oscillations (LFOs) observed in cerebral hemodynamics, as measured using cerebral blood flow velocity (CBFV) and cerebral oxygenation (O 2 Hb), and systemic cardiovascular dynamics, as measured using heart rate (HR) and arterial blood pressure (ABP), in both old and young healthy subjects undergoing head-up tilt table testing. Statistically significant increases in correlation values are found in the interaction of cerebral and cardiovascular LFOs for young subjects (P 2 Hb and ABP–O 2 Hb), but not in old subjects under orthostatic stress. The coupling between the cerebrovascular and wider cardiovascular systems in response to orthostatic stress thus appears to be impaired with ageing

  10. Terahertz-Frequency Spin Hall Auto-oscillator Based on a Canted Antiferromagnet

    Science.gov (United States)

    Sulymenko, O. R.; Prokopenko, O. V.; Tiberkevich, V. S.; Slavin, A. N.; Ivanov, B. A.; Khymyn, R. S.

    2017-12-01

    We propose a design of a terahertz-frequency signal generator based on a layered structure consisting of a current-driven platinum (Pt) layer and a layer of an antiferromagnet (AFM) with easy-plane anisotropy, where the magnetization vectors of the AFM sublattices are canted inside the easy plane by the Dzyaloshinskii-Moriya interaction (DMI). The dc electric current flowing in the Pt layer creates due to the spin Hall effect, a perpendicular spin current that, being injected in the AFM layer, tilts the DMI-canted AFM sublattices out of the easy plane, thus exposing them to the action of a strong internal exchange magnetic field of the AFM. The sublattice magnetizations, along with the small net magnetization vector mDMI of the canted AFM, start to rotate about the hard anisotropy axis of the AFM with the terahertz frequency proportional to the injected spin current and the AFM exchange field. The rotation of the small net magnetization mDMI results in the terahertz-frequency dipolar radiation that can be directly received by an adjacent (e.g., dielectric) resonator. We demonstrate theoretically that the radiation frequencies in the range f =0.05 - 2 THz are possible at the experimentally reachable magnitudes of the driving current density, and we evaluate the power of the signal radiated into different types of resonators. This power increases with the increase of frequency f , and it can exceed 1 μ W at f ˜0.5 THz for a typical dielectric resonator of the electric permittivity ɛ ˜10 and a quality factor Q ˜750 .

  11. Alleviation SSR and Low Frequency Power Oscillations in Series Compensated Transmission Line using SVC Supplementary Controllers

    Science.gov (United States)

    Kumar, Sanjiv; Kumar, Narendra

    2017-06-01

    In this work, supplementary sub-synchronous damping controllers (SSDC) are proposed for damping sub-synchronous oscillations in power systems with series compensated transmission lines. Series compensation have extensively been used as effective means of increasing the power transfer capability of a transmission lines and improving transient stability limits of power systems. Series compensation with transmission lines may cause sub-synchronous resonance (SSR). The eigenvalue investigation tool is used to ascertain the existence of SSR. It is shown that the addition of supplementary controller is able to stabilize all unstable modes for T-network model. Eigenvalue investigation and time domain transient simulation of detailed nonlinear system are considered to investigate the performance of the controllers. The efficacies of the suggested supplementary controllers are compared on the IEEE first benchmark model for computer simulations of SSR by means of time domain simulation in Matlab/Simulink environment. Supplementary SSDC are considered in order to compare effectiveness of SSDC during higher loading in alleviating the small signal stability problem.

  12. Altered low frequency oscillations of cortical vessels in patients with cerebrovascular occlusive disease – a NIRS study

    Directory of Open Access Journals (Sweden)

    Dorte ePhillip

    2013-12-01

    Full Text Available Analysis of cerebral autoregulation by measuring spontaneous oscillations in the low frequency spectrum of cerebral cortical vessels might be a useful tool for assessing risk and investigating different treatment strategies in carotid artery disease (CAD and stroke. Near infrared spectroscopy (NIRS is a non-invasive optical method to investigate regional changes in oxygenated (oxyHb and deoxygenated hemoglobin (deoxyHb in the outermost layers of the cerebral cortex. In the present study we examined oxyHb low frequency oscillations (LFOs, believed to reflect cortical cerebral autoregulation, in 16 patients with both symptomatic carotid occlusive disease and cerebral hypoperfusion in comparison to healthy controls. Each hemisphere was examined with 2 NIRS channels using a 3 cm source detector distance. Arterial blood pressure (ABP was measured via a finger plethysmograph. Using transfer function analysis ABP-oxyHb phase shift and gain as well as inter-hemispheric phase shift and amplitude ratio were assessed. We found that inter-hemispheric amplitude ratio was significantly altered in hypoperfusion patients compared to healthy controls (P= 0.010, because of relatively lower amplitude on the hypoperfusion side. The inter-hemispheric phase shift showed a trend (P = 0.061 towards increased phase shift in hypoperfusion patients compared to controls. We found no statistical difference between hemispheres in hypoperfusion patients for phase shift or gain values. There were no differences between the hypoperfusion side and controls for phase shift or gain values. These preliminary results suggest an impairment of autoregulation in hypoperfusion patients at the cortical level using NIRS.

  13. Orbital and epicyclic frequencies around neutron and strange stars in R{sup 2} gravity

    Energy Technology Data Exchange (ETDEWEB)

    Staykov, Kalin V., E-mail: kstaykov@phys.uni-sofia.bg [Department of Theoretical Physics, Faculty of Physics, Sofia University, 1164, Sofia (Bulgaria); Doneva, Daniela D., E-mail: daniela.doneva@uni-tuebingen.de [Theoretical Astrophysics, Eberhard Karls University of Tübingen, 72076, Tübingen (Germany); INRNE-Bulgarian Academy of Sciences, 1784, Sofia (Bulgaria); Yazadjiev, Stoytcho S., E-mail: yazad@phys.uni-sofia.bg [Department of Theoretical Physics, Faculty of Physics, Sofia University, 1164, Sofia (Bulgaria); Theoretical Astrophysics, Eberhard Karls University of Tübingen, 72076, Tübingen (Germany)

    2015-12-21

    According to various models, the orbital and the epicyclic frequencies of particles moving on a circular orbit around compact objects are related to the quasi-periodic oscillations observed in the X-ray flux of some pulsars or black hole candidates. It is expected that they originate from the inner edge of the accretion discs, deep into the gravitational field of the compact objects. Considering the planned new generation X-ray timing observatories with large collective areas, the quasi-periodic oscillations might be an excellent tool for testing gravity in strong field regime and, respectively, alternative gravitational theories. We examine the orbital and the epicyclic frequencies of a particle moving on a circular orbit around neutron or strange stars in R{sup 2} gravity. The case of slow rotation is considered too. The R{sup 2} gravity results are compared to the general relativistic case. We comment on the deviations from general relativity, as well as the deviations due to rotation in both theories.

  14. Orbital and epicyclic frequencies around neutron and strange stars in R{sup 2} gravity

    Energy Technology Data Exchange (ETDEWEB)

    Staykov, Kalin V. [Sofia University, Department of Theoretical Physics, Faculty of Physics, Sofia (Bulgaria); Doneva, Daniela D. [Eberhard Karls University of Tuebingen, Theoretical Astrophysics, Tuebingen (Germany); INRNE-Bulgarian Academy of Sciences, Sofia (Bulgaria); Yazadjiev, Stoytcho S. [Sofia University, Department of Theoretical Physics, Faculty of Physics, Sofia (Bulgaria); Eberhard Karls University of Tuebingen, Theoretical Astrophysics, Tuebingen (Germany)

    2015-12-15

    According to various models, the orbital and the epicyclic frequencies of particles moving on a circular orbit around compact objects are related to the quasi-periodic oscillations observed in the X-ray flux of some pulsars or black hole candidates. It is expected that they originate from the inner edge of the accretion discs, deep into the gravitational field of the compact objects. Considering the planned new generation X-ray timing observatories with large collective areas, the quasi-periodic oscillations might be an excellent tool for testing gravity in strong field regime and, respectively, alternative gravitational theories. We examine the orbital and the epicyclic frequencies of a particle moving on a circular orbit around neutron or strange stars in R{sup 2} gravity. The case of slow rotation is considered too. The R{sup 2} gravity results are compared to the general relativistic case. We comment on the deviations from general relativity, as well as the deviations due to rotation in both theories. (orig.)

  15. Effects of electron scattering on the oscillations of an X-ray source

    International Nuclear Information System (INIS)

    Kylafis, N.D.; Klimis, G.S.

    1987-01-01

    The time variability observed at infinity due to a variable point source at the center of a spherical cloud of radius R and optical depth to electron scattering tau is analytically determined. The emissin pattern of the source and its time variability are assumed to be of the following three forms: (1) isotropic emission with intensity varying sinusoidally in time with angular frequency Omega(L), (2) emission in the form of a delta-function beam rotating with angular frequency Omega(R) about a fixed axis and with intensity constant in time, and (3) emission in the form of a delta-function beam rotating with angular frequency Omega(R) about a fixed axis and with intensity varying sinusoidally in time with angular frequency Omega(L). More complicated source emissions and variabilities are studied by superposing the above forms. The results of our calculations reveal the conditions under which quasi-periodic oscillations can be observed from X-ray sources, while periodic oscillations are completely smeared out. Furthermore, these results can be used to study the X-ray oscillations of such sources as Her X-1, Cyg X-3, and the Vela pulsar, which are believed to be embedded in scattering clouds. 35 references

  16. Dawn- Dusk Auroral Oval Oscillations Associated with High- Speed Solar Wind

    Science.gov (United States)

    Liou, Kan; Sibeck, David G.

    2018-01-01

    We report evidence of global-scale auroral oval oscillations in the millihertz range, using global auroral images acquired from the Ultraviolet Imager on board the decommissioned Polar satellite and concurrent solar wind measurements. On the basis of two events (15 January 1999 and 6 January 2000) studied, it is found that (1) quasi-periodic auroral oval oscillations (approximately 3 megahertz) can occur when solar wind speeds are high at northward or southward interplanetary magnetic field turning, (2) the oscillation amplitudes range from a few to more than 10 degrees in latitudes, (3) the oscillation frequency is the same for each event irrespective of local time and without any azimuthal phase shift (i.e., propagation), (4) the auroral oscillations occur in phase within both the dawn and dusk sectors but 180 degrees out of phase between the dawn and dusk sectors, and (5) no micropulsations on the ground match the auroral oscillation periods. While solar wind conditions favor the growth of the Kelvin-Helmholtz (K-H) instability on the magnetopause as often suggested, the observed wave characteristics are not consistent with predictions for K-H waves. The in-phase and out-of-phase features found in the dawn-dusk auroral oval oscillations suggest that wiggling motions of the magnetotail associated with fast solar winds might be the direct cause of the global-scale millihertz auroral oval oscillations. Plain Language Summary: We utilize global auroral image data to infer the motion of the magnetosphere and show, for the first time, the entire magnetospheric tail can move east-west in harmony like a windsock flapping in wind. The characteristic period of the flapping motion may be a major source of global long-period ULF (Ultra Low Frequency) waves, adding an extra source of the global mode ULF waves.

  17. Low-frequency, self-sustained oscillations in inductively coupled plasmas used for optical pumping

    Energy Technology Data Exchange (ETDEWEB)

    Coffer, J.; Encalada, N.; Huang, M.; Camparo, J. [Physical Sciences Laboratories, The Aerospace Corporation 2310, E. El Segundo Blvd., El Segundo, California 90245 (United States)

    2014-10-28

    We have investigated very low frequency, on the order of one hertz, self-pulsing in alkali-metal inductively-coupled plasmas (i.e., rf-discharge lamps). This self-pulsing has the potential to significantly vary signal-to-noise ratios and (via the ac-Stark shift) resonant frequencies in optically pumped atomic clocks and magnetometers (e.g., the atomic clocks now flying on GPS and Galileo global navigation system satellites). The phenomenon arises from a nonlinear interaction between the atomic physics of radiation trapping and the plasma's electrical nature. To explain the effect, we have developed an evaporation/condensation theory (EC theory) of the self-pulsing phenomenon.

  18. Wavelet analysis of low frequency plasma oscillations in the magnetosheath of Mars

    Science.gov (United States)

    Franco, A.; Echer, E.; Bolzam, M. J. A.; Fraenz, M.

    2017-09-01

    Wavelet analysis was employed to identify the major frequencies present in the Martian magnetosheath. The Morlet wavelet transform was selected and applied to the density and temperature data, obtained from the Analyzer of Space Plasmas and Energetic Atoms experiment (ASPERA-3), onboard the Mars Express (MEX). From a preliminary study of 836 magnetosheath crossings, observed in the years of 2005 and 2006, we have found 2357 periods with enhanced power between 5 and 60 mHz for the electron density data. The principal frequencies observed were in the range 5-20 mHz, where we found about 60 % of the frequencies identified. For electron temperature data, we have found about 57.5% of the periods with enhanced power were in the same range as for the density. This is an ongoing work which is part of a PhD Thesis which aims to study all the electron density and temperature data in the Mars magnetosheath during the MEX interval (2004-2015).

  19. Motor network plasticity and low-frequency oscillations abnormalities in patients with brain gliomas: a functional MRI study.

    Directory of Open Access Journals (Sweden)

    Chen Niu

    Full Text Available Brain plasticity is often associated with the process of slow-growing tumor formation, which remodels neural organization and optimizes brain network function. In this study, we aimed to investigate whether motor function plasticity would display deficits in patients with slow-growing brain tumors located in or near motor areas, but who were without motor neurological deficits. We used resting-state functional magnetic resonance imaging to probe motor networks in 15 patients with histopathologically confirmed brain gliomas and 15 age-matched healthy controls. All subjects performed a motor task to help identify individual motor activity in the bilateral primary motor cortex (PMC and supplementary motor area (SMA. Frequency-based analysis at three different frequencies was then used to investigate possible alterations in the power spectral density (PSD of low-frequency oscillations. For each group, the average PSD was determined for each brain region and a nonparametric test was performed to determine the difference in power between the two groups. Significantly reduced inter-hemispheric functional connectivity between the left and right PMC was observed in patients compared with controls (P<0.05. We also found significantly decreased PSD in patients compared to that in controls, in all three frequency bands (low: 0.01-0.02 Hz; middle: 0.02-0.06 Hz; and high: 0.06-0.1 Hz, at three key motor regions. These findings suggest that in asymptomatic patients with brain tumors located in eloquent regions, inter-hemispheric connection may be more vulnerable. A comparison of the two approaches indicated that power spectral analysis is more sensitive than functional connectivity analysis for identifying the neurological abnormalities underlying motor function plasticity induced by slow-growing tumors.

  20. Short Meditation Trainings Enhance Non-REM Sleep Low-Frequency Oscillations.

    Science.gov (United States)

    Dentico, Daniela; Ferrarelli, Fabio; Riedner, Brady A; Smith, Richard; Zennig, Corinna; Lutz, Antoine; Tononi, Giulio; Davidson, Richard J

    2016-01-01

    We have recently shown higher parietal-occipital EEG gamma activity during sleep in long-term meditators compared to meditation-naive individuals. This gamma increase was specific for NREM sleep, was present throughout the entire night and correlated with meditation expertise, thus suggesting underlying long-lasting neuroplastic changes induced through prolonged training. The aim of this study was to explore the neuroplastic changes acutely induced by 2 intensive days of different meditation practices in the same group of practitioners. We also repeated baseline recordings in a meditation-naive cohort to account for time effects on sleep EEG activity. High-density EEG recordings of human brain activity were acquired over the course of whole sleep nights following intervention. Sound-attenuated sleep research room. Twenty-four long-term meditators and twenty-four meditation-naïve controls. Two 8-h sessions of either a mindfulness-based meditation or a form of meditation designed to cultivate compassion and loving kindness, hereafter referred to as compassion meditation. We found an increase in EEG low-frequency oscillatory activities (1-12 Hz, centered around 7-8 Hz) over prefrontal and left parietal electrodes across whole night NREM cycles. This power increase peaked early in the night and extended during the third cycle to high-frequencies up to the gamma range (25-40 Hz). There was no difference in sleep EEG activity between meditation styles in long-term meditators nor in the meditation naïve group across different time points. Furthermore, the prefrontal-parietal changes were dependent on meditation life experience. This low-frequency prefrontal-parietal activation likely reflects acute, meditation-related plastic changes occurring during wakefulness, and may underlie a top-down regulation from frontal and anterior parietal areas to the posterior parietal and occipital regions showing chronic, long-lasting plastic changes in long-term meditators.

  1. Short Meditation Trainings Enhance Non-REM Sleep Low-Frequency Oscillations.

    Directory of Open Access Journals (Sweden)

    Daniela Dentico

    Full Text Available We have recently shown higher parietal-occipital EEG gamma activity during sleep in long-term meditators compared to meditation-naive individuals. This gamma increase was specific for NREM sleep, was present throughout the entire night and correlated with meditation expertise, thus suggesting underlying long-lasting neuroplastic changes induced through prolonged training. The aim of this study was to explore the neuroplastic changes acutely induced by 2 intensive days of different meditation practices in the same group of practitioners. We also repeated baseline recordings in a meditation-naive cohort to account for time effects on sleep EEG activity.High-density EEG recordings of human brain activity were acquired over the course of whole sleep nights following intervention.Sound-attenuated sleep research room.Twenty-four long-term meditators and twenty-four meditation-naïve controls.Two 8-h sessions of either a mindfulness-based meditation or a form of meditation designed to cultivate compassion and loving kindness, hereafter referred to as compassion meditation.We found an increase in EEG low-frequency oscillatory activities (1-12 Hz, centered around 7-8 Hz over prefrontal and left parietal electrodes across whole night NREM cycles. This power increase peaked early in the night and extended during the third cycle to high-frequencies up to the gamma range (25-40 Hz. There was no difference in sleep EEG activity between meditation styles in long-term meditators nor in the meditation naïve group across different time points. Furthermore, the prefrontal-parietal changes were dependent on meditation life experience.This low-frequency prefrontal-parietal activation likely reflects acute, meditation-related plastic changes occurring during wakefulness, and may underlie a top-down regulation from frontal and anterior parietal areas to the posterior parietal and occipital regions showing chronic, long-lasting plastic changes in long-term meditators.

  2. Non-linear Vibration of Oscillation Systems using Frequency-Amplitude Formulation

    DEFF Research Database (Denmark)

    Fereidoon, A.; Ghadimi, M.; Barari, Amin

    2012-01-01

    In this paper we study the periodic solutions of free vibration of mechanical systems with third and fifthorder nonlinearity for two examples using He’s Frequency Amplitude Formulation (HFAF).The effectiveness and convenience of the method is illustrated in these examples. It will be shown that t...... that the solutions obtained with current method have a fabulous conformity with those achieved from time marching solution. HFAF is easy with powerful concepts and the high accuracy, so it can be found widely applicable in vibrations, especially strong nonlinearity oscillatory problems....

  3. Application of modified homotopy perturbation method and amplitude frequency formulation to strongly nonlinear oscillators

    Directory of Open Access Journals (Sweden)

    seyd ghasem enayati

    2017-01-01

    Full Text Available In this paper, two powerful analytical methods known as modified homotopy perturbation method and Amplitude Frequency Formulation called respectively MHPM and AFF, are introduced to derive approximate solutions of a system of ordinary differential equations appear in mechanical applications. These methods convert a difficult problem into a simple one, which can be easily handled. The obtained solutions are compared with numerical fourth order runge-kutta method to show the applicability and accuracy of both MHPM and AFF in solving this sample problem. The results attained in this paper confirm the idea that MHPM and AFF are powerful mathematical tools and they can be applied to linear and nonlinear problems.

  4. Anisotropic frequency response of critical density fluctuation of NIPA gel under oscillation shear

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Masaaki [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan)]. E-mail: sugiyama@rri.kyoto-u.ac.jp; Vigild, Martin E. [Danish Polymer Centre, Technical University of Denmark, 2800 Lyngby (Denmark); Fukunaga, Toshiharu [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Itoh, Keiji [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Mori, Kazuhiro [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Sato, Takashi [Department of Engineering Physics and Mechanics, Kyoto University, Kyoto 606-8501 (Japan); Annaka, Masahiko [Department of Chemistry, Kyushu University, Fukuoka 812-8581 (Japan)

    2006-11-15

    A relation between rheology and structure of high density NIPA gel around a critical point on volume phase transition was studied by a simultaneous rheology and small-angle neutron scattering measurement. Just below the critical temperature, the NIPA gel showed softening: G{sup '} and G{sup '}' get closer (G{sup '}>G{sup '}'). At this temperature, the density fluctuation enhanced along the shear direction corresponding to the shear frequency but not to the shear strength. It means that this anisotropy is different from that observed in a statically stretched gel.

  5. EMC Investigation of a Very High Frequency Self-oscillating Resonant Power Converter

    DEFF Research Database (Denmark)

    Pedersen, Jeppe Arnsdorf; Knott, Arnold; Andersen, Michael A. E.

    2016-01-01

    This paper focuses on the electromagnetic compatibility (EMC) performance of a Very High Frequency (VHF) converter and how to lower the emissions. To test the EMC performance a VHF converter is implemented with a Class-E inverter and a Class-DE rectifier. The converter is designed to deliver 3 W...... the regulations. This converter shows to be well below the levels for conducted emission even without filtering. For the radiated emissions the converter is above the limits without input and output filters. Several designs with different ways to lower the emissions are implemented and the different layouts...

  6. Anterior Thalamic High Frequency Band Activity Is Coupled with Theta Oscillations at Rest

    Directory of Open Access Journals (Sweden)

    Catherine M. Sweeney-Reed

    2017-07-01

    Full Text Available Cross-frequency coupling (CFC between slow and fast brain rhythms, in the form of phase–amplitude coupling (PAC, is proposed to enable the coordination of neural oscillatory activity required for cognitive processing. PAC has been identified in the neocortex and mesial temporal regions, varying according to the cognitive task being performed and also at rest. PAC has also been observed in the anterior thalamic nucleus (ATN during memory processing. The thalamus is active during the resting state and has been proposed to be involved in switching between task-free cognitive states such as rest, in which attention is internally-focused, and externally-focused cognitive states, in which an individual engages with environmental stimuli. It is unknown whether PAC is an ongoing phenomenon during the resting state in the ATN, which is modulated during different cognitive states, or whether it only arises during the performance of specific tasks. We analyzed electrophysiological recordings of ATN activity during rest from seven patients who received thalamic electrodes implanted for treatment of pharmacoresistant focal epilepsy. PAC was identified between theta (4–6 Hz phase and high frequency band (80–150 Hz amplitude during rest in all seven patients, which diminished during engagement in tasks involving an external focus of attention. The findings are consistent with the proposal that theta–gamma coupling in the ATN is an ongoing phenomenon, which is modulated by task performance.

  7. Comparative study of optical properties of the one-dimensional multilayer Period-Doubling and Thue-Morse quasi-periodic photonic crystals

    Directory of Open Access Journals (Sweden)

    Y. Bouazzi

    2012-10-01

    Full Text Available The last decades have witnessed the growing interest in the use of photonic crystal as a new material that can be used to control electromagnetic wave. Actually, not only the periodic structures but also the quasi-periodic systems have become significant structures of photonic crystals. This work deals with optical properties of dielectric Thue-Morse multilayer and Period-Doubling multilayer. We use the so-called Transfer Matrix Method (TMM to determine the transmission spectra of the structures. Based on the representation of the transmittance spectra in the visible range a comparative analysis depending on the iteration number, number of layers and incidence angle is presented.

  8. Nonlinear asteroseismology: insight from amplitude and frequency modulations of oscillation modes in compact pulsators from Kepler photometry

    Directory of Open Access Journals (Sweden)

    Zong Weikai

    2017-01-01

    Full Text Available Nonlinear mode interactions are difficult to observe from ground-based telescopes as the typical periods of the modulations induced by those nonlinear phenomena are on timescales of weeks, months, even years. The launch of space telescopes, e.g., Kepler, has tremendously changed the situation and shredded new light on this research field. We present results from Kepler photometry showing evidence that nonlinear interactions between modes occur in the two compact pulsators KIC 8626021, a DB white dwarf, and KIC 10139564, a short period hot B subdwarf. KIC 8626021 and KIC 10139564 had been monitored by Kepler in short-cadence for nearly two years and more than three years without interruption, respectively. By analyzing these high-quality photometric data, we found that the modes within the triplets induced by rotation clearly reveal different behaviors: their frequencies and amplitudes may exhibit either periodic or irregular modulations, or remain constant. These various behaviors of the amplitude and of the frequency modulations of the oscillation modes observed in these two stars are in good agreement with those predicted within the amplitude equation formalism in the case of the nonlinear resonant mode coupling mechanism.

  9. Feasibility of recording high frequency oscillations with tripolar concentric ring electrodes during pentylenetetrazole-induced seizures in rats.

    Science.gov (United States)

    Makeyev, Oleksandr; Liu, Xiang; Wang, Liling; Zhu, Zhenghan; Taveras, Aristides; Troiano, Derek; Medvedev, Andrei V; Besio, Walter G

    2012-01-01

    As epilepsy remains a refractory condition in about 30% of patients with complex partial seizures, electrical stimulation of the brain has recently shown potential for additive seizure control therapy. Previously, we applied noninvasive transcranial focal stimulation via novel tripolar concentric ring electrodes (TCREs) on the scalp of rats after inducing seizures with pentylenetetrazole (PTZ). We developed a close-loop system to detect seizures and automatically trigger the stimulation and evaluated its effect on the electrographic activity recorded by TCREs in rats. In our previous work the detectors of seizure onset were based on seizure-induced changes in signal power in the frequency range up to 100 Hz, while in this preliminary study we assess the feasibility of recording high frequency oscillations (HFOs) in the range up to 300 Hz noninvasively with scalp TCREs during PTZ-induced seizures. Grand average power spectral density estimate and generalized likelihood ratio tests were used to compare power of electrographic activity at different stages of seizure development in a group of rats (n= 8). The results suggest that TCREs have the ability to record HFOs from the scalp as well as that scalp-recorded HFOs can potentially be used as features for seizure onset detection.

  10. The dielectric calibration of capacitance probes for soil hydrology using an oscillation frequency response model

    Directory of Open Access Journals (Sweden)

    D. A. Robinson

    1998-01-01

    Full Text Available Capacitance probes are a fast, safe and relatively inexpensive means of measuring the relative permittivity of soils, which can then be used to estimate soil water content. Initial experiments with capacitance probes used empirical calibrations between the frequency response of the instrument and soil water content. This has the disadvantage that the calibrations are instrument-dependent. A twofold calibration strategy is described in this paper; the instrument frequency is turned into relative permittivity (dielectric constant which can then be calibrated against soil water content. This approach offers the advantages of making the second calibration, from soil permittivity to soil water content. instrument-independent and allows comparison with other dielectric methods, such as time domain reflectometry. A physically based model, used to calibrate capacitance probes in terms of relative permittivity (εr is presented. The model, which was developed from circuit analysis, predicts, successfully, the frequency response of the instrument in liquids with different relative permittivities, using only measurements in air and water. lt was used successfully to calibrate 10 prototype surface capacitance insertion probes (SCIPS and a depth capacitance probe. The findings demonstrate that the geometric properties of the instrument electrodes were an important parameter in the model, the value of which could be fixed through measurement. The relationship between apparent soil permittivity and volumetric water content has been the subject of much research in the last 30 years. Two lines of investigation have developed, time domain reflectometry (TDR and capacitance. Both methods claim to measure relative permittivity and should therefore be comparable. This paper demonstrates that the IH capacitance probe overestimates relative permittivity as the ionic conductivity of the medium increases. Electrically conducting ionic solutions were used to test the

  11. Influence of the Basset force on the resonant behavior of an oscillator with fluctuating frequency

    Energy Technology Data Exchange (ETDEWEB)

    Rekker, A., E-mail: Astrid.Rekker@tlu.ee; Mankin, R., E-mail: Romi.Mankin@tlu.ee [Institute of Mathematics and Natural Sciences, Tallinn University, 29 Narva Road, 10120 Tallinn (Estonia)

    2015-10-28

    The influence of hydrodynamic interactions, such as Stokes and Basset forces, on the dynamics of a harmonically trapped Brownian tracer is considered. A generalized Langevin equation is used to describe the tracer’s response to an external periodic force and to dichotomous fluctuations of the stiffness of the trapping potential. Relying on the Shapiro-Loginov formula, exact expressions for the complex susceptibility and for the response function are presented. On the basis of these exact formulas, it is demonstrated that interplay of a multiplicative colored noise and the Basset force induced memory effects can generate a variety of cooperation effects, such as multiresonance versus the driving frequency, as well as stochastic resonance versus noise parameters. In particular, in certain parameter regions the response function exhibits a resonance-like enhancement at intermediate values of the intensity of the Basset force. Conditions for the appearance of these effects are also discussed.

  12. Influence of the Basset force on the resonant behavior of an oscillator with fluctuating frequency

    Science.gov (United States)

    Rekker, A.; Mankin, R.

    2015-10-01

    The influence of hydrodynamic interactions, such as Stokes and Basset forces, on the dynamics of a harmonically trapped Brownian tracer is considered. A generalized Langevin equation is used to describe the tracer's response to an external periodic force and to dichotomous fluctuations of the stiffness of the trapping potential. Relying on the Shapiro-Loginov formula, exact expressions for the complex susceptibility and for the response function are presented. On the basis of these exact formulas, it is demonstrated that interplay of a multiplicative colored noise and the Basset force induced memory effects can generate a variety of cooperation effects, such as multiresonance versus the driving frequency, as well as stochastic resonance versus noise parameters. In particular, in certain parameter regions the response function exhibits a resonance-like enhancement at intermediate values of the intensity of the Basset force. Conditions for the appearance of these effects are also discussed.

  13. Influence of the Basset force on the resonant behavior of an oscillator with fluctuating frequency

    International Nuclear Information System (INIS)

    Rekker, A.; Mankin, R.

    2015-01-01

    The influence of hydrodynamic interactions, such as Stokes and Basset forces, on the dynamics of a harmonically trapped Brownian tracer is considered. A generalized Langevin equation is used to describe the tracer’s response to an external periodic force and to dichotomous fluctuations of the stiffness of the trapping potential. Relying on the Shapiro-Loginov formula, exact expressions for the complex susceptibility and for the response function are presented. On the basis of these exact formulas, it is demonstrated that interplay of a multiplicative colored noise and the Basset force induced memory effects can generate a variety of cooperation effects, such as multiresonance versus the driving frequency, as well as stochastic resonance versus noise parameters. In particular, in certain parameter regions the response function exhibits a resonance-like enhancement at intermediate values of the intensity of the Basset force. Conditions for the appearance of these effects are also discussed

  14. Measurement of the $B^0_s-\\overline{B}^0_s$ oscillation frequency $\\Delta m_s$ in $B^0_s \\to D^-_s (3)\\pi$ decays

    CERN Document Server

    INSPIRE-00258707; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Alkhazov, G.; Alvarez Cartelle, P.; Alves Jr, A.A.; Amato, S.; Amhis, Y.; Anderson, J.; Appleby, R.B.; Aquines Gutierrez, O.; Archilli, F.; Arrabito, L.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Bachmann, S.; Back, J.J.; Bailey, D.S.; Balagura, V.; Baldini, W.; Barlow, R.J.; Barschel, C.; Barsuk, S.; Barter, W.; Bates, A.; Bauer, C.; Bauer, Th.; Bay, A.; Bediaga, I.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Benayoun, M.; Bencivenni, G.; Benson, S.; Benton, J.; Bernet, R.; Bettler, M.O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bizzeti, A.; Bjornstad, P.M.; Blake, T.; Blanc, F.; Blanks, C.; Blouw, J.; Blusk, S.; Bobrov, A.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Bowcock, T.J.V.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Brisbane, S.; Britsch, M.; Britton, T.; Brook, N.H.; Brown, H.; Buchler-Germann, A.; Burducea, I.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Caicedo Carvajal, J.M.; Callot, O.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cattaneo, M.; Charles, M.; Charpentier, Ph.; Chiapolini, N.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P.E.L.; Clemencic, M.; Cliff, H.V.; Closier, J.; Coca, C.; Coco, V.; Cogan, J.; Collins, P.; Constantin, F.; Conti, G.; Contu, A.; Cook, A.; Coombes, M.; Corti, G.; Cowan, G.A.; Currie, R.; D'Almagne, B.; D'Ambrosio, C.; David, P.; De Bonis, I.; De Capua, S.; De Cian, M.; De Lorenzi, F.; de Miranda, J.M.; De Paula, L.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Degaudenzi, H.; Deissenroth, M.; Del Buono, L.; Deplano, C.; Deschamps, O.; Dettori, F.; Dickens, J.; Dijkstra, H.; Diniz Batista, P.; Donleavy, S.; Dosil Suarez, A.; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Dzhelyadin, R.; Eames, C.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; van Eijk, D.; Eisele, F.; Eisenhardt, S.; Ekelhof, R.; Eklund, L.; Elsasser, Ch.; d'Enterria, D.G.; Esperante Pereira, D.; Esteve, L.; Falabella, A.; Fanchini, E.; Farber, C.; Fardell, G.; Farinelli, C.; Farry, S.; Fave, V.; Fernandez Albor, V.; Ferro-Luzzi, M.; Filippov, S.; Fitzpatrick, C.; Fontana, M.; Fontanelli, F.; Forty, R.; Frank, M.; Frei, C.; Frosini, M.; Furcas, S.; Gallas Torreira, A.; Galli, D.; Gandelman, M.; Gandini, P.; Gao, Y.; Garnier, J-C.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauvin, N.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gibson, V.; Gligorov, V.V.; Gobel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Grabalosa Gandara, M.; Graciani Diaz, R.; Granado Cardoso, L.A.; Grauges, E.; Graziani, G.; Grecu, A.; Gregson, S.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Haefeli, G.; Haen, C.; Haines, S.C.; Hampson, T.; Hansmann-Menzemer, S.; Harji, R.; Harnew, N.; Harrison, J.; Harrison, P.F.; He, J.; Heijne, V.; Hennessy, K.; Henrard, P.; Hernando Morata, J.A.; van Herwijnen, E.; Hicks, E.; Hofmann, W.; Holubyev, K.; Hopchev, P.; Hulsbergen, W.; Hunt, P.; Huse, T.; Huston, R.S.; Hutchcroft, D.; Hynds, D.; Iakovenko, V.; Ilten, P.; Imong, J.; Jacobsson, R.; Jaeger, A.; Jahjah Hussein, M.; Jans, E.; Jansen, F.; Jaton, P.; Jean-Marie, B.; Jing, F.; John, M.; Johnson, D.; Jones, C.R.; Jost, B.; Kandybei, S.; Karacson, M.; Karbach, T.M.; Keaveney, J.; Kerzel, U.; Ketel, T.; Keune, A.; Khanji, B.; Kim, Y.M.; Knecht, M.; Koblitz, S.; Koppenburg, P.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kruzelecki, K.; Kucharczyk, M.; Kukulak, S.; Kumar, R.; Kvaratskheliya, T.; La Thi, V.N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R.W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Le Gac, R.; van Leerdam, J.; Lees, J.P.; Lefevre, R.; Leflat, A.; Lefrancois, J.; Leroy, O.; Lesiak, T.; Li, L.; Li Gioi, L.; Lieng, M.; Liles, M.; Lindner, R.; Linn, C.; Liu, B.; Liu, G.; Lopes, J.H.; Lopez Asamar, E.; Lopez-March, N.; Luisier, J.; Machefert, F.; Machikhiliyan, I.V.; Maciuc, F.; Maev, O.; Magnin, J.; Malde, S.; Mamunur, R.M.D.; Manca, G.; Mancinelli, G.; Mangiafave, N.; Marconi, U.; Marki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martin, L.; Martin Sanchez, A.; Martinez Santos, D.; Massafferri, A.; Mathe, Z.; Matteuzzi, C.; Matveev, M.; Maurice, E.; Maynard, B.; Mazurov, A.; McGregor, G.; McNulty, R.; Mclean, C.; Meissner, M.; Merk, M.; Merkel, J.; Messi, R.; Miglioranzi, S.; Milanes, D.A.; Minard, M.N.; Monteil, S.; Moran, D.; Morawski, P.; Mountain, R.; Mous, I.; Muheim, F.; Muller, K.; Muresan, R.; Muryn, B.; Musy, M.; Mylroie-Smith, J.; Naik, P.; Nakada, T.; Nandakumar, R.; Nardulli, J.; Nasteva, I.; Nedos, M.; Needham, M.; Neufeld, N.; Nguyen-Mau, C.; Nicol, M.; Nies, S.; Niess, V.; Nikitin, N.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Orlandea, M.; Otalora Goicochea, J.M.; Owen, P.; Pal, B.; Palacios, J.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C.J.; Passaleva, G.; Patel, G.D.; Patel, M.; Paterson, S.K.; Patrick, G.N.; Patrignani, C.; Pavel-Nicorescu, C.; Pazos Alvarez, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perego, D.L.; Perez Trigo, E.; Perez-Calero Yzquierdo, A.; Perret, P.; Perrin-Terrin, M.; Pessina, G.; Petrella, A.; Petrolini, A.; Pie Valls, B.; Pietrzyk, B.; Pilar, T.; Pinci, D.; Plackett, R.; Playfer, S.; Plo Casasus, M.; Polok, G.; Poluektov, A.; Polycarpo, E.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; du Pree, T.; Prisciandaro, J.; Pugatch, V.; Puig Navarro, A.; Qian, W.; Rademacker, J.H.; Rakotomiaramanana, B.; Rangel, M.S.; Raniuk, I.; Raven, G.; Redford, S.; Reid, M.M.; dos Reis, A.C.; Ricciardi, S.; Rinnert, K.; Roa Romero, D.A.; Robbe, P.; Rodrigues, E.; Rodrigues, F.; Rodriguez Perez, P.; Rogers, G.J.; Roiser, S.; Romanovsky, V.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Sabatino, G.; Saborido Silva, J.J.; Sagidova, N.; Sail, P.; Saitta, B.; Salzmann, C.; Sannino, M.; Santacesaria, R.; Santinelli, R.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schaack, P.; Schiller, M.; Schleich, S.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.H.; Schwemmer, R.; Sciubba, A.; Seco, M.; Semennikov, A.; Senderowska, K.; Sepp, I.; Serra, N.; Serrano, J.; Seyfert, P.; Shao, B.; Shapkin, M.; Shapoval, I.; Shatalov, P.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, O.; Shevchenko, V.; Shires, A.; Coutinho, R.Silva; Skottowe, H.P.; Skwarnicki, T.; Smith, A.C.; Smith, N.A.; Sobczak, K.; Soler, F.J.P.; Solomin, A.; Soomro, F.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stoica, S.; Stone, S.; Storaci, B.; Straticiuc, M.; Straumann, U.; Styles, N.; Subbiah, V.K.; Swientek, S.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Teodorescu, E.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Topp-Joergensen, S.; Tran, M.T.; Tsaregorodtsev, A.; Tuning, N.; Ukleja, A.; Urquijo, P.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; Velthuis, J.J.; Veltri, M.; Vervink, K.; Viaud, B.; Videau, I.; Vilasis-Cardona, X.; Visniakov, J.; Vollhardt, A.; Voong, D.; Vorobyev, A.; Voss, H.; Wacker, K.; Wandernoth, S.; Wang, J.; Ward, D.R.; Webber, A.D.; Websdale, D.; Whitehead, M.; Wiedner, D.; Wiggers, L.; Wilkinson, G.; Williams, M.P.; Williams, M.; Wilson, F.F.; Wishahi, J.; Witek, M.; Witzeling, W.; Wotton, S.A.; Wyllie, K.; Xie, Y.; Xing, F.; Yang, Z.; Young, R.; Yushchenko, O.; Zavertyaev, M.; Zhang, L.; Zhang, W.C.; Zhang, Y.; Zhelezov, A.; Zhong, L.; Zverev, E.; Zvyagin, A.

    2012-01-01

    The $B^0_s$-$\\overline{B}^0_s$ oscillation frequency $\\Delta m_s$ is measured with 36 pb$^{-1}$ of data collected in $pp$ collisions at $\\sqrt{s}$ = 7 TeV by the LHCb experiment at the Large Hadron Collider. A total of 1381 $B^0_s \\rightarrow D_s^- \\pi^+$ and $B^0_s \\rightarrow D_s^- \\pi^+\\pi^-\\pi^+$ signal decays are reconstructed, with average decay time resolutions of 44~fs and 36~fs, respectively. An oscillation signal with a statistical significance of 4.6\\,$\\sigma$ is observed. The measured oscillation frequency is $\\Delta m_s$ = 17.63 $\\pm$ 0.11 (stat) $\\pm$ 0.02 (syst)~ps$^{-1}$.

  15. Increased low-frequency oscillation amplitude of sensorimotor cortex associated with the severity of structural impairment in cervical myelopathy.

    Directory of Open Access Journals (Sweden)

    Fuqing Zhou

    Full Text Available Decreases in metabolites and increased motor-related, but decreased sensory-related activation of the sensorimotor cortex (SMC have been observed in patients with cervical myelopathy (CM using advanced MRI techniques. However, the nature of intrinsic neuronal activity in the SMC, and the relationship between cerebral function and structural damage of the spinal cord in patients with CM are not fully understood. The purpose of this study was to assess intrinsic neuronal activity by calculating the regional amplitude of low frequency fluctuations (ALFF using resting-state functional MRI (rs-fMRI, and correlations with clinical and imaging indices. Nineteen patients and 19 age- and sex-matched healthy subjects underwent rs-fMRI scans. ALFF measurements were performed in the SMC, a key brain network likely to impaired or reorganized patients with CM. Compared with healthy subjects, increased amplitude of cortical low-frequency oscillations (LFO was observed in the right precentral gyrus, right postcentral gyrus, and left supplementary motor area. Furthermore, increased z-ALFF values in the right precentral gyrus and right postcentral gyrus correlated with decreased fractional anisotropy values at the C2 level, which indicated increased intrinsic neuronal activity in the SMC corresponding to the structural impairment in the spinal cord of patients with CM. These findings suggest a complex and diverging relationship of cortical functional reorganization and distal spinal anatomical compression in patients with CM and, thus, add important information in understanding how spinal cord integrity may be a factor in the intrinsic covariance of spontaneous low-frequency fluctuations of BOLD signals involved in cortical plasticity.

  16. Constraining properties of high-density matter in neutron stars with magneto-elastic oscillations

    Science.gov (United States)

    Gabler, Michael; Cerdá-Durán, Pablo; Stergioulas, Nikolaos; Font, José A.; Müller, Ewald

    2018-05-01

    We discuss torsional oscillations of highly magnetized neutron stars (magnetars) using two-dimensional, magneto-elastic-hydrodynamical simulations. Our model is able to explain both the low- and high-frequency quasi-periodic oscillations (QPOs) observed in magnetars. The analysis of these oscillations provides constraints on the breakout magnetic-field strength, on the fundamental QPO frequency, and on the frequency of a particularly excited overtone. By performing a new set of simulations, we are able to derive for the first time empirical relations for a self consistent model including a superfluid core which describe these constraints quantitatively. We use these relations to generically constrain properties of high-density matter in neutron stars, employing Bayesian analysis. In spite of current uncertainties and computational approximations, our model-dependent Bayesian posterior estimates for SGR 1806-20 yield a magnetic-field strength \\bar{B}˜ 2.1^{+1.3}_{-1.0}× 10^{15} G and a crust thickness of Δ r = 1.6^{+0.7}_{-0.6} km, which are both in remarkable agreement with observational and theoretical expectations, respectively (1σ error bars are indicated). Our posteriors also favour the presence of a superfluid phase in the core, a relatively low stellar compactness, M/R star, and high shear speeds at the base of the crust, cs > 1.4 × 108 cm s-1. Although the procedure laid out here still has large uncertainties, these constraints could become tighter when additional observations become available.

  17. Arc Length Coding by Interference of Theta Frequency Oscillations May Underlie Context-Dependent Hippocampal Unit Data and Episodic Memory Function

    Science.gov (United States)

    Hasselmo, Michael E.

    2007-01-01

    Many memory models focus on encoding of sequences by excitatory recurrent synapses in region CA3 of the hippocampus. However, data and modeling suggest an alternate mechanism for encoding of sequences in which interference between theta frequency oscillations encodes the position within a sequence based on spatial arc length or time. Arc length…

  18. The effect of methylphenidate on very low frequency electroencephalography oscillations in adult ADHD.

    Science.gov (United States)

    Cooper, Ruth E; Skirrow, Caroline; Tye, Charlotte; McLoughlin, Grainne; Rijsdijk, Fruhling; Banaschweski, Tobias; Brandeis, Daniel; Kuntsi, Jonna; Asherson, Philip

    2014-04-01

    Altered very low-frequency electroencephalographic (VLF-EEG) activity is an endophenotype of ADHD in children and adolescents. We investigated VLF-EEG case-control differences in adult samples and the effects of methylphenidate (MPH). A longitudinal case-control study was conducted examining the effects of MPH on VLF-EEG (.02-0.2Hz) during a cued continuous performance task. 41 untreated adults with ADHD and 47 controls were assessed, and 21 cases followed up after MPH treatment, with a similar follow-up for 38 controls (mean follow-up=9.4months). Cases had enhanced frontal and parietal VLF-EEG and increased omission errors. In the whole sample, increased parietal VLF-EEG correlated with increased omission errors. After controlling for subthreshold comorbid symptoms, VLF-EEG case-control differences and treatment effects remained. Post-treatment, a time by group interaction emerged; VLF-EEG and omission errors reduced to the same level as controls, with decreased inattentive symptoms in cases. Reduced VLF-EEG following MPH treatment provides preliminary evidence that changes in VLF-EEG may relate to MPH treatment effects on ADHD symptoms; and that VLF-EEG may be an intermediate phenotype of ADHD. Further studies of the treatment effect of MPH in larger controlled studies are required to formally evaluate any causal link between MPH, VLF-EEG and ADHD symptoms. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Safety and effectiveness of the high-frequency chest wall oscillation vs intrapulmonary percussive ventilation in patients with severe COPD

    Directory of Open Access Journals (Sweden)

    Nicolini A

    2018-02-01

    Full Text Available Antonello Nicolini,1 Bruna Grecchi,2 Maura Ferrari-Bravo,3 Cornelius Barlascini4 1Respiratory Diseases Unit, Hospital of Sestri Levante, Sestri Levante, Italy; 2Rehabilitation Unit, ASL4 Chiavarese, Chiavari, Italy; 3Statistics Unit, ASL4 Chiavarese, Chiavari, Italy; 4Health Medicine Unit, Hospital of Sestri Levante, Sestri Levante, Italy Purpose: Chest physiotherapy is an important tool in the treatment of COPD. Intrapulmonary percussive ventilation (IPV and high-frequency chest wall oscillation (HFCWO are techniques designed to create a global percussion of the lung which removes secretions and probably clears the peripheral bronchial tree. We tested the hypothesis that adding IPV or HFCWO to the best pharmacological therapy (PT may provide additional clinical benefit over chest physiotherapy in patients with severe COPD. Methods: Sixty patients were randomized into three groups (20 patients in each group: IPV group (treated with PT and IPV, PT group with (treated with PT and HFCWO, and control group (treated with PT alone. Primary outcome measures included results on the dyspnea scale (modified Medical Research Council and Breathlessness, Cough, and Sputum scale (BCSS, as well as an evaluation of daily life activity (COPD Assessment Test [CAT]. Secondary outcome measures were pulmonary function testing, arterial blood gas analysis, and hematological examinations. Moreover, sputum cell counts were performed at the beginning and at the end of the study. Results: Patients in both the IPV group and the HFCWO group showed a significant improvement in the tests of dyspnea and daily life activity evaluations (modified Medical Research Council scale, BCSS, and CAT compared to the control group, as well as in pulmonary function tests (forced vital capacity, forced expiratory volume in 1 second, forced expiratory volume in 1 second/forced vital capacity%, total lung capacity, residual volume, diffusing lung capacity monoxide, maximal inspiratory

  20. Effects of electron beam parameters and velocity spread on radio frequency output of a photonic band gap cavity gyrotron oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ashutosh, E-mail: asingh.rs.ece@iitbhu.ac.in [Faculty of Physical Sciences, Institute of Natural Sciences and Humanities, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Uttar Pradesh 225003 (India); Center of Research in Microwave Tubes, Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Jain, P. K. [Center of Research in Microwave Tubes, Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2015-09-15

    In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE{sub 041}–like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code “CST Particle Studio” has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typical PBG gyrotron has been obtained ∼108 kW with ∼15.5% efficiency in a well confined TE{sub 041}–like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.

  1. Pattern formation in arrays of chemical oscillators

    Indian Academy of Sciences (India)

    Chemical oscillators; phase flip; oscillation death. PACS No. 05.45 .... array oscillate (with varying amplitudes and frequencies), while the others experience oscillation death .... Barring the boundary cells, one observes near phase flip and near ...

  2. Phase inversion and frequency doubling of reflection high-energy electron diffraction intensity oscillations in the layer-by-layer growth of complex oxides

    Science.gov (United States)

    Mao, Zhangwen; Guo, Wei; Ji, Dianxiang; Zhang, Tianwei; Gu, Chenyi; Tang, Chao; Gu, Zhengbin; Nie*, Yuefeng; Pan, Xiaoqing

    In situ reflection high-energy electron diffraction (RHEED) and its intensity oscillations are extremely important for the growth of epitaxial thin films with atomic precision. The RHEED intensity oscillations of complex oxides are, however, rather complicated and a general model is still lacking. Here, we report the unusual phase inversion and frequency doubling of RHEED intensity oscillations observed in the layer-by-layer growth of SrTiO3 using oxide molecular beam epitaxy. In contacts to the common understanding that the maximum(minimum) intensity occurs at SrO(TiO2) termination, respectively, we found that both maximum or minimum intensities can occur at SrO, TiO2, or even incomplete terminations depending on the incident angle of the electron beam, which raises a fundamental question if one can rely on the RHEED intensity oscillations to precisely control the growth of thin films. A general model including surface roughness and termination dependent mean inner potential qualitatively explains the observed phenomena, and provides the answer to the question how to prepare atomically and chemically precise surface/interfaces using RHEED oscillations for complex oxides. We thank National Basic Research Program of China (No. 11574135, 2015CB654901) and the National Thousand-Young-Talents Program.

  3. Thermal-hydraulic oscillations in a low pressure two-phase natural circulation loop at low powers and high inlet subcoolings

    International Nuclear Information System (INIS)

    Wang, S.B.; Wu, J.Y.; Chin Pan; Lin, W.K.

    2004-01-01

    The stability of a natural circulation boiling loop is of great importance and interests for both academic researches and many industrial applications, such as next generation boiling water reactors. The present study investigated the thermal-hydraulic oscillation behavior in a low pressure two-phase natural circulation loop at low powers and high inlet subcoolings. The experiments were conducted at atmospheric pressure with heating power ranging from 4 to 8 kW and inlet subcooling ranging from 27 to 75 deg. C. Significant oscillations in loop mass flow rate, pressure drop in each section, and heated wall and fluid temperatures are present for all the cases studied here. The oscillation is typically quasi-periodic and with flow reversal with magnitudes smaller than forward flows. The magnitude of wall temperature oscillation could be as high as 60 deg. C, which will be of serious concern for practical applications. It is found that the first fundamental oscillation (large magnitude oscillation) frequency increases with increase in heated power and with decrease in inlet subcooling. (author)

  4. Attention-induced deactivations in very low frequency EEG oscillations: differential localisation according to ADHD symptom status.

    Directory of Open Access Journals (Sweden)

    Samantha J Broyd

    Full Text Available BACKGROUND: The default-mode network (DMN is characterised by coherent very low frequency (VLF brain oscillations. The cognitive significance of this VLF profile remains unclear, partly because of the temporally constrained nature of the blood oxygen-level dependent (BOLD signal. Previously we have identified a VLF EEG network of scalp locations that shares many features of the DMN. Here we explore the intracranial sources of VLF EEG and examine their overlap with the DMN in adults with high and low ADHD ratings. METHODOLOGY/PRINCIPAL FINDINGS: DC-EEG was recorded using an equidistant 66 channel electrode montage in 25 adult participants with high- and 25 participants with low-ratings of ADHD symptoms during a rest condition and an attention demanding Eriksen task. VLF EEG power was calculated in the VLF band (0.02 to 0.2 Hz for the rest and task condition and compared for high and low ADHD participants. sLORETA was used to identify brain sources associated with the attention-induced deactivation of VLF EEG power, and to examine these sources in relation to ADHD symptoms. There was significant deactivation of VLF EEG power between the rest and task condition for the whole sample. Using s-LORETA the sources of this deactivation were localised to medial prefrontal regions, posterior cingulate cortex/precuneus and temporal regions. However, deactivation sources were different for high and low ADHD groups: In the low ADHD group attention-induced VLF EEG deactivation was most significant in medial prefrontal regions while for the high ADHD group this deactivation was predominantly localised to the temporal lobes. CONCLUSIONS/SIGNIFICANCE: Attention-induced VLF EEG deactivations have intracranial sources that appear to overlap with those of the DMN. Furthermore, these seem to be related to ADHD symptom status, with high ADHD adults failing to significantly deactivate medial prefrontal regions while at the same time showing significant attenuation of

  5. Nitric Oxide Modulation of Low-Frequency Oscillations in Cortical Vessels in FHM – a NIRS Study

    Science.gov (United States)

    Schytz, Henrik W.; Hansen, Jakob M.; Phillip, Dorte; Selb, Juliette; Boas, David A.; Ashina, Messoud

    2013-01-01

    Background The pathophysiological alterations in patients with familial hemiplegic migraine (FHM) are not yet fully known. The headache characteristics in patients with FHM mutations have been examined in a series of glyceryl trinitrate (GTN) provocation studies in FHM patients, but the cortical vascular response to GTN in FHM patients has never been investigated before. Objective To investigate changes in spontaneous low-frequency oscillations (LFO) of cortical vessels in response to the nitric oxide donor GTN by near-infrared spectroscopy in FHM patients. Methods Twenty-three FHM patients without known mutations and 9 healthy controls received a continuous intravenous infusion of GTN 0.5 μg/kg/minute over 20 minutes. Using near-infrared spectroscopy, we recorded oxygenated hemoglobin (oxyHb) LFO amplitude bilateral at the frontal cortex at baseline and 15 minutes and 40 minutes after start of the GTN infusion. Results GTN changed oxyHb LFO amplitude in FHM patients (P = .002), but not in healthy controls (P = .121). Only in FHM patients with coexisting common migraine types did GTN infusion induced changes in LFO amplitudes (P < .001), where post-hoc analysis revealed an increase in LFO amplitude 15 minutes (P = .003) and 40 (P = .013) minutes after start of infusion compared with baseline. Interestingly, GTN infusion induced no changes in LFO amplitude in patients with a pure FHM phenotype (P = .695). Conclusion FHM patients with a mixed phenotype (coexisting common type of migraine) showed an increase in oxyHb LFO amplitude during GTN infusion, whereas FHM patients with pure phenotype showed no changes. These data suggest possible differences in frontal cortical nitric oxide vascular sensitivity between FHM patients with a mixed phenotype and patients with pure FHM. PMID:22352839

  6. RIPPLELAB: A Comprehensive Application for the Detection, Analysis and Classification of High Frequency Oscillations in Electroencephalographic Signals

    Science.gov (United States)

    Alvarado-Rojas, Catalina; Le Van Quyen, Michel; Valderrama, Mario

    2016-01-01

    High Frequency Oscillations (HFOs) in the brain have been associated with different physiological and pathological processes. In epilepsy, HFOs might reflect a mechanism of epileptic phenomena, serving as a biomarker of epileptogenesis and epileptogenicity. Despite the valuable information provided by HFOs, their correct identification is a challenging task. A comprehensive application, RIPPLELAB, was developed to facilitate the analysis of HFOs. RIPPLELAB provides a wide range of tools for HFOs manual and automatic detection and visual validation; all of them are accessible from an intuitive graphical user interface. Four methods for automated detection—as well as several options for visualization and validation of detected events—were implemented and integrated in the application. Analysis of multiple files and channels is possible, and new options can be added by users. All features and capabilities implemented in RIPPLELAB for automatic detection were tested through the analysis of simulated signals and intracranial EEG recordings from epileptic patients (n = 16; 3,471 analyzed hours). Visual validation was also tested, and detected events were classified into different categories. Unlike other available software packages for EEG analysis, RIPPLELAB uniquely provides the appropriate graphical and algorithmic environment for HFOs detection (visual and automatic) and validation, in such a way that the power of elaborated detection methods are available to a wide range of users (experts and non-experts) through the use of this application. We believe that this open-source tool will facilitate and promote the collaboration between clinical and research centers working on the HFOs field. The tool is available under public license and is accessible through a dedicated web site. PMID:27341033

  7. High frequency chest wall oscillation for asthma and chronic obstructive pulmonary disease exacerbations: a randomized sham-controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Lewis Stephanie

    2011-09-01

    Full Text Available Abstract Background High frequency chest wall oscillation (HFCWO is used for airway mucus clearance. The objective of this study was to evaluate the use of HFCWO early in the treatment of adults hospitalized for acute asthma or chronic obstructive pulmonary disease (COPD. Methods Randomized, multi-center, double-masked phase II clinical trial of active or sham treatment initiated within 24 hours of hospital admission for acute asthma or COPD at four academic medical centers. Patients received active or sham treatment for 15 minutes three times a day for four treatments. Medical management was standardized across groups. The primary outcomes were patient adherence to therapy after four treatments (minutes used/60 minutes prescribed and satisfaction. Secondary outcomes included change in Borg dyspnea score (≥ 1 unit indicates a clinically significant change, spontaneously expectorated sputum volume, and forced expired volume in 1 second. Results Fifty-two participants were randomized to active (n = 25 or sham (n = 27 treatment. Patient adherence was similarly high in both groups (91% vs. 93%; p = 0.70. Patient satisfaction was also similarly high in both groups. After four treatments, a higher proportion of patients in the active treatment group had a clinically significant improvement in dyspnea (70.8% vs. 42.3%, p = 0.04. There were no significant differences in other secondary outcomes. Conclusions HFCWO is well tolerated in adults hospitalized for acute asthma or COPD and significantly improves dyspnea. The high levels of patient satisfaction in both treatment groups justify the need for sham controls when evaluating the use of HFCWO on patient-reported outcomes. Additional studies are needed to more fully evaluate the role of HFCWO in improving in-hospital and post-discharge outcomes in this population. Trial Registration ClinicalTrials.gov: NCT00181285

  8. RIPPLELAB: A Comprehensive Application for the Detection, Analysis and Classification of High Frequency Oscillations in Electroencephalographic Signals.

    Directory of Open Access Journals (Sweden)

    Miguel Navarrete

    Full Text Available High Frequency Oscillations (HFOs in the brain have been associated with different physiological and pathological processes. In epilepsy, HFOs might reflect a mechanism of epileptic phenomena, serving as a biomarker of epileptogenesis and epileptogenicity. Despite the valuable information provided by HFOs, their correct identification is a challenging task. A comprehensive application, RIPPLELAB, was developed to facilitate the analysis of HFOs. RIPPLELAB provides a wide range of tools for HFOs manual and automatic detection and visual validation; all of them are accessible from an intuitive graphical user interface. Four methods for automated detection-as well as several options for visualization and validation of detected events-were implemented and integrated in the application. Analysis of multiple files and channels is possible, and new options can be added by users. All features and capabilities implemented in RIPPLELAB for automatic detection were tested through the analysis of simulated signals and intracranial EEG recordings from epileptic patients (n = 16; 3,471 analyzed hours. Visual validation was also tested, and detected events were classified into different categories. Unlike other available software packages for EEG analysis, RIPPLELAB uniquely provides the appropriate graphical and algorithmic environment for HFOs detection (visual and automatic and validation, in such a way that the power of elaborated detection methods are available to a wide range of users (experts and non-experts through the use of this application. We believe that this open-source tool will facilitate and promote the collaboration between clinical and research centers working on the HFOs field. The tool is available under public license and is accessible through a dedicated web site.

  9. Study of the B$_{s}^{0}\\overline{B}_{s}^{0}$ oscillation frequency using D$_{s}^{-}$l$^{+}$ combinations in Z decays

    CERN Document Server

    Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Moneta, L; Oest, T; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Wildish, T; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Büscher, V; Cowan, G D; Grupen, Claus; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    A lower limit on the oscillation frequency of the BsBsbar system is obtained from approximately four million hadronic Z decays accumulated using the ALEPH detector at LEP from 1991 to 1995. Leptons are combined with opposite sign Ds- candidates reconstructed in seven different decay modes as evidence of semileptonic Bs decays. Criteria designed to ensure precise proper time reconstruction select 277 Ds-,l+ combinations. The initial state of these Bs candidates is determined using an algorithm optimized to efficiently utilise the tagging information available for each event. The limit at 95\\% confidence level on the BsBsbar oscillation frequency is delta_m_s > 6.6 ps^-1. The same data is used to update the measurement of the Bs lifetime, tau_s = 1.54 +0.14 (stat) +0.04 (syst) ps. -0.13 -0.04

  10. Precision measurement of the $B^0_s - \\bar{B}^0_s$ oscillation frequency with the decay $B^0_s \\to D^-_s \\pi^+$

    CERN Document Server

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-01-01

    A key ingredient to searches for physics beyond the Standard Model in $B^{0}_{s}$ mixing phenomena is the measurement of the $B^{0}_{s}$-$\\bar{B}^{0}_{s}$ oscillation frequency, which is equivalent to the mass difference $\\Delta m_{s}$ of the $B^{0}_{s}$ mass eigenstates. Using the world's largest $B^{0}_{s}$ meson sample accumulated in a dataset, corresponding to an integrated luminosity of 1.0 fb$^{-1}$, collected by the LHCb experiment at the CERN LHC in 2011, a measurement of $\\Delta m_{s}$ is presented. A total of about 34,000 $B^{0}_{s}\\rightarrow D^{-}_{s}\\pi^{+}$ signal decays are reconstructed, with an average decay time resolution of 44 fs. The oscillation frequency is measured to be $\\Delta m_{s}$ = 17.768 $\\pm$ 0.023 (stat) $\\pm$ 0.006 (syst) ps$^{-1}$}, which is the most precise measurement to date.

  11. Sinusoidal oscillators with lo