WorldWideScience

Sample records for frequency mixing technique

  1. Magnetic moment investigation by frequency mixing techniques.

    Science.gov (United States)

    Teliban, I; Thede, C; Chemnitz, S; Bechtold, C; Quadakkers, W J; Schütze, M; Quandt, E

    2009-11-01

    Gas turbines and other large industrial equipment are subjected to high-temperature oxidation and corrosion. Research and development of efficient protective coatings is the main task in the field. Also, knowledge about the depletion state of the coating during the operation time is important. To date, practical nondestructive methods for the measurement of the depletion state do not exist. By integrating magnetic phases into the coating, the condition of the coating can be determined by measuring its magnetic properties. In this paper, a new technique using frequency mixing is proposed to investigate the thickness of the coatings based on their magnetic properties. A sensor system is designed and tested on specific magnetic coatings. New approaches are proposed to overcome the dependency of the measurement on the distance between coil and sample that all noncontact techniques face. The novelty is a low cost sensor with high sensibility and selectivity which can provide very high signal-to-noise ratios. Prospects and limitations are discussed for future use of the sensor in industrial applications.

  2. Unidirectional ring-laser operation using sum-frequency mixing

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Cheng, Haynes Pak Hay; Pedersen, Christian

    2010-01-01

    A technique enforcing unidirectional operation of ring lasers is proposed and demonstrated. The approach relies on sum-frequency mixing between a single-pass laser and one of the two counterpropagating intracavity fields of the ring laser. Sum-frequency mixing introduces a parametric loss for the...... where lossless second-order nonlinear materials are available. Numerical modeling and experimental demonstration of parametric-induced unidirectional operation of a diode-pumped solid-state 1342 nm cw ring laser are presented.......A technique enforcing unidirectional operation of ring lasers is proposed and demonstrated. The approach relies on sum-frequency mixing between a single-pass laser and one of the two counterpropagating intracavity fields of the ring laser. Sum-frequency mixing introduces a parametric loss...

  3. Noise and Spurious Tones Management Techniques for Multi-GHz RF-CMOS Frequency Synthesizers Operating in Large Mixed Analog-Digital SOCs

    Directory of Open Access Journals (Sweden)

    Maxim Adrian

    2006-01-01

    Full Text Available This paper presents circuit techniques and power supply partitioning, filtering, and regulation methods aimed at reducing the phase noise and spurious tones in frequency synthesizers operating in large mixed analog-digital system-on-chip (SOC. The different noise and spur coupling mechanisms are presented together with solutions to minimize their impact on the overall PLL phase noise performance. Challenges specific to deep-submicron CMOS integration of multi-GHz PLLs are revealed, while new architectures that address these issues are presented. Layout techniques that help reducing the parasitic noise and spur coupling between digital and analog blocks are described. Combining system-level and circuit-level low noise design methods, low phase noise frequency synthesizers were achieved which are compatible with the demanding nowadays wireless communication standards.

  4. Experimental Study on Corrosion Detection of Aluminum Alloy Using Lamb Wave Mixing Technique

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heeung; Lee, Jaesun; Cho, Younho [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2016-11-15

    In this study, the Lamb wave mixing technique, which is basised on advanced research on the nonlinear bulk wave mixing technique, is applied for corrosion detection. To demonstrate the validity of the Lamb wave mixing technique, an experiment was performed with normal and corroded specimens. Comparison group in an experimentation are selected to mode and frequency with dominant in-plane displacement and out-of-plane displacement of Lamb waves. The results showed that the Lamb wave mixing technique can monitor corrosion defects, and it has a trend similar to that of the conventional Lamb wave technique. It was confirmed that the dominant displacement and mode matching the theory were generated. Flaw detectability is determined depending on displacement ratio instead of using the measurement method and mode selection.

  5. Magnetic nanoparticles colourization by a mixing-frequency method

    International Nuclear Information System (INIS)

    Tu, Liang; Wu, Kai; Klein, Todd; Wang, Jian-Ping

    2014-01-01

    Brownian and Néel relaxation of magnetic nanoparticles (MNPs) can be characterized by a highly sensitive mixing-frequency method using a search-coil based detection system. The unique magnetic properties of MNPs have been used for biomarkers detection. In this paper, we present a theory and implement an experimental detection scheme using the mixing-frequency method to identify different MNPs simultaneously. A low-frequency sinusoidal magnetic field is applied to saturate the MNPs periodically. A high-frequency sinusoidal magnetic field is then applied to generate mixing-frequency signals that are highly specific to the magnetization of MNPs. The spectra of each MNP can be defined as the complex magnetization of the MNPs over the field frequency. The magnetic spectra of various MNPs and magnetic beads have been characterized and compared. The differences between the MNPs spectra enable us to identify the individual MNPs at the same time. A test has been done to verify the ratio of two different MNPs in mixed samples based on the proposed theory. The experimental results show that the mixing-frequency method is a promising method for MNPs colourization. (paper)

  6. Frequency mixing in boron carbide laser ablation plasmas

    Science.gov (United States)

    Oujja, M.; Benítez-Cañete, A.; Sanz, M.; Lopez-Quintas, I.; Martín, M.; de Nalda, R.; Castillejo, M.

    2015-05-01

    Nonlinear frequency mixing induced by a bichromatic field (1064 nm + 532 nm obtained from a Q-switched Nd:YAG laser) in a boron carbide (B4C) plasma generated through laser ablation under vacuum is explored. A UV beam at the frequency of the fourth harmonic of the fundamental frequency (266 nm) was generated. The dependence of the efficiency of the process as function of the intensities of the driving lasers differs from the expected behavior for four-wave mixing, and point toward a six-wave mixing process. The frequency mixing process was strongly favored for parallel polarizations of the two driving beams. Through spatiotemporal mapping, the conditions for maximum efficiency were found for a significant delay from the ablation event (200 ns), when the medium is expected to be a low-ionized plasma. No late components of the harmonic signal were detected, indicating a largely atomized medium.

  7. A Lagrangian mixing frequency model for transported PDF modeling

    Science.gov (United States)

    Turkeri, Hasret; Zhao, Xinyu

    2017-11-01

    In this study, a Lagrangian mixing frequency model is proposed for molecular mixing models within the framework of transported probability density function (PDF) methods. The model is based on the dissipations of mixture fraction and progress variables obtained from Lagrangian particles in PDF methods. The new model is proposed as a remedy to the difficulty in choosing the optimal model constant parameters when using conventional mixing frequency models. The model is implemented in combination with the Interaction by exchange with the mean (IEM) mixing model. The performance of the new model is examined by performing simulations of Sandia Flame D and the turbulent premixed flame from the Cambridge stratified flame series. The simulations are performed using the pdfFOAM solver which is a LES/PDF solver developed entirely in OpenFOAM. A 16-species reduced mechanism is used to represent methane/air combustion, and in situ adaptive tabulation is employed to accelerate the finite-rate chemistry calculations. The results are compared with experimental measurements as well as with the results obtained using conventional mixing frequency models. Dynamic mixing frequencies are predicted using the new model without solving additional transport equations, and good agreement with experimental data is observed.

  8. Investigation of high frequency external perturbation effects on flow in a T-shape microchannel by μLIF technique

    Science.gov (United States)

    Kravtsova, A. Yu; Meshalkin, Yu E.; Bilsky, A. V.

    2017-11-01

    Investigation of high frequency external perturbation effect on flow inside T-shape microchannel was examined. In-phase pulsations of different frequencies were added to both inlets of the T-shaped microchannel to study mixing by means of Micro Laser Induced Fluorescence (μLIF) technique. For all flow regimes studied, mixing enhancement was obtained. Significant enhancement can be achieved at the beginning of the outlet channel operating in steady asymmetric regime (Re=186) by forcing at certain frequency ranges (f = 500Hz, f = 800Hz). Mixing suppression was also observed for two flow regimes (Re = 400, f = 1000Hz) and (Re = 120, f = 700Hz).

  9. Mixed frequency excitation of an electrostatically actuated resonator

    KAUST Repository

    Ramini, Abdallah

    2015-04-24

    We investigate experimentally and theoretically the dynamics of a capacitive resonator under mixed frequency excitation of two AC harmonic signals. The resonator is composed of a proof mass suspended by two cantilever beams. Experimental measurements are conducted using a laser Doppler vibrometer to reveal the interesting dynamics of the system when subjected to two-source excitation. A nonlinear single-degree-of-freedom model is used for the theoretical investigation. The results reveal combination resonances of additive and subtractive type, which are shown to be promising to increase the bandwidth of the resonator near primary resonance frequency. Our results also demonstrate the ability to shift the combination resonances to much lower or much higher frequency ranges. We also demonstrate the dynamic pull-in instability under mixed frequency excitation. © 2015 Springer-Verlag Berlin Heidelberg

  10. Testing for Granger causality in large mixed-frequency VARs

    NARCIS (Netherlands)

    Götz, T.B.; Hecq, A.W.

    2014-01-01

    In this paper we analyze Granger causality testing in a mixed-frequency VAR, originally proposed by Ghysels (2012), where the difference in sampling frequencies of the variables is large. In particular, we investigate whether past information on a low-frequency variable help in forecasting a

  11. ALMA High Frequency Techniques

    Science.gov (United States)

    Meyer, J. D.; Mason, B.; Impellizzeri, V.; Kameno, S.; Fomalont, E.; Chibueze, J.; Takahashi, S.; Remijan, A.; Wilson, C.; ALMA Science Team

    2015-12-01

    The purpose of the ALMA High Frequency Campaign is to improve the quality and efficiency of science observing in Bands 8, 9, and 10 (385-950 GHz), the highest frequencies available to the ALMA project. To this end, we outline observing modes which we have demonstrated to improve high frequency calibration for the 12m array and the ACA, and we present the calibration of the total power antennas at these frequencies. Band-to-band (B2B) transfer and bandwidth switching (BWSW), techniques which improve the speed and accuracy of calibration at the highest frequencies, are most necessary in Bands 8, 9, and 10 due to the rarity of strong calibrators. These techniques successfully enable increased signal-to-noise on the calibrator sources (and better calibration solutions) by measuring the calibrators at lower frequencies (B2B) or in wider bandwidths (BWSW) compared to the science target. We have also demonstrated the stability of the bandpass shape to better than 2.4% for 1 hour, hidden behind random noise, in Band 9. Finally, total power observing using the dual sideband receivers in Bands 9 and 10 requires the separation of the two sidebands; this procedure has been demonstrated in Band 9 and is undergoing further testing in Band 10.

  12. Forecasting Covariance Matrices: A Mixed Frequency Approach

    DEFF Research Database (Denmark)

    Halbleib, Roxana; Voev, Valeri

    This paper proposes a new method for forecasting covariance matrices of financial returns. The model mixes volatility forecasts from a dynamic model of daily realized volatilities estimated with high-frequency data with correlation forecasts based on daily data. This new approach allows for flexi......This paper proposes a new method for forecasting covariance matrices of financial returns. The model mixes volatility forecasts from a dynamic model of daily realized volatilities estimated with high-frequency data with correlation forecasts based on daily data. This new approach allows...... for flexible dependence patterns for volatilities and correlations, and can be applied to covariance matrices of large dimensions. The separate modeling of volatility and correlation forecasts considerably reduces the estimation and measurement error implied by the joint estimation and modeling of covariance...

  13. Quantum Frequency Conversion by Four-wave Mixing Using Bragg Scattering

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Rottwitt, Karsten; McKinstrie, C. J.

    2012-01-01

    Two theoretical models for frequency conversion (FC) using nondegenerate four-wave mixing are compared, and their range of validity are discussed. Quantum-statepreserving FC allows for arbitrary reshaping of states for an appropriate pump selection.......Two theoretical models for frequency conversion (FC) using nondegenerate four-wave mixing are compared, and their range of validity are discussed. Quantum-statepreserving FC allows for arbitrary reshaping of states for an appropriate pump selection....

  14. Digital implementation of a laser frequency stabilisation technique in the telecommunications band

    Science.gov (United States)

    Jivan, Pritesh; van Brakel, Adriaan; Manuel, Rodolfo Martínez; Grobler, Michael

    2016-02-01

    Laser frequency stabilisation in the telecommunications band was realised using the Pound-Drever-Hall (PDH) error signal. The transmission spectrum of the Fabry-Perot cavity was used as opposed to the traditionally used reflected spectrum. A comparison was done using an analogue as well as a digitally implemented system. This study forms part of an initial step towards developing a portable optical time and frequency standard. The frequency discriminator used in the experimental setup was a fibre-based Fabry-Perot etalon. The phase sensitive system made use of the optical heterodyne technique to detect changes in the phase of the system. A lock-in amplifier was used to filter and mix the input signals to generate the error signal. This error signal may then be used to generate a control signal via a PID controller. An error signal was realised at a wavelength of 1556 nm which correlates to an optical frequency of 1.926 THz. An implementation of the analogue PDH technique yielded an error signal with a bandwidth of 6.134 GHz, while a digital implementation yielded a bandwidth of 5.774 GHz.

  15. Electron heating mode transition induced by mixing radio frequency and ultrahigh frequency dual frequency powers in capacitive discharges

    International Nuclear Information System (INIS)

    Sahu, B. B.; Han, Jeon G.

    2016-01-01

    Electron heating mode transitions induced by mixing the low- and high-frequency power in dual-frequency nitrogen discharges at 400 mTorr pressure are presented. As the low-frequency (13.56 MHz) power decreases and high-frequency (320 MHz) power increases for the fixed power of 200 W, there is a transition of electron energy distribution function (EEDF) from Druyvesteyn to bi-Maxwellian type characterized by a distinguished warm electron population. It is shown that this EEDF evolution is attributed to the transition from collisional to collisionless stochastic heating of the low-energy electrons.

  16. A low-jitter RF PLL frequency synthesizer with high-speed mixed-signal down-scaling circuits

    International Nuclear Information System (INIS)

    Tang Lu; Wang Zhigong; Xue Hong; He Xiaohu; Xu Yong; Sun Ling

    2010-01-01

    A low-jitter RF phase locked loop (PLL) frequency synthesizer with high-speed mixed-signal down-scaling circuits is proposed. Several techniques are proposed to reduce the design complexity and improve the performance of the mixed-signal down-scaling circuit in the PLL. An improved D-latch is proposed to increase the speed and the driving capability of the DMP in the down-scaling circuit. Through integrating the D-latch with 'OR' logic for dual-modulus operation, the delays associated with both the 'OR' and D-flip-flop (DFF) operations are reduced, and the complexity of the circuit is also decreased. The programmable frequency divider of the down-scaling circuit is realized in a new method based on deep submicron CMOS technology standard cells and a more accurate wire-load model. The charge pump in the PLL is also realized with a novel architecture to improve the current matching characteristic so as to reduce the jitter of the system. The proposed RF PLL frequency synthesizer is realized with a TSMC 0.18-μm CMOS process. The measured phase noise of the PLL frequency synthesizer output at 100 kHz offset from the center frequency is only -101.52 dBc/Hz. The circuit exhibits a low RMS jitter of 3.3 ps. The power consumption of the PLL frequency synthesizer is also as low as 36 mW at a 1.8 V power supply. (semiconductor integrated circuits)

  17. FPGA based mixed-signal circuit novel testing techniques

    International Nuclear Information System (INIS)

    Pouros, Sotirios; Vassios, Vassilios; Papakostas, Dimitrios; Hristov, Valentin

    2013-01-01

    Electronic circuits fault detection techniques, especially on modern mixed-signal circuits, are evolved and customized around the world to meet the industry needs. The paper presents techniques used on fault detection in mixed signal circuits. Moreover, the paper involves standardized methods, along with current innovations for external testing like Design for Testability (DfT) and Built In Self Test (BIST) systems. Finally, the research team introduces a circuit implementation scheme using FPGA

  18. A Study of Frequency Mixing Approaches for Eddy Current Testing of Steam Generator Tubes

    International Nuclear Information System (INIS)

    Jung, Hee Jun; Song, Sung Jin; Kim, Chang Hwan; Kim, Dae Kwang

    2009-01-01

    The multifrequency eddy current testing(ECT) have been proposed various frequency mixing algorithms. In this study, we compare these approaches to frequency mixing of ECT signals from steam generator tubes; time-domain optimization, discrete cosine transform-domain optimization. Specifically, in this study, two different frequency mixing algorithms, a time-domain optimization method and a discrete cosine transform(DCT) optimization method, are investigated using the experimental signals captured from the ASME standard tube. The DCT domain optimization method is computationally fast but produces larger amount of residue.

  19. Francisella tularensis detection using magnetic labels and a magnetic biosensor based on frequency mixing

    International Nuclear Information System (INIS)

    Meyer, Martin H.F.; Krause, Hans-Joachim; Hartmann, Markus; Miethe, Peter; Oster, Juergen; Keusgen, Michael

    2007-01-01

    A biosensor that uses resonant coils with a special frequency-mixing technique and magnetic beads as detectable labels has been established for the detection of Francisella tularensis, the causative agent for tularemia. The detection principle is based on a sandwich immunoassay using an anti-Ft antibody for immunofiltration immobilized to ABICAP[reg] polyethylene filters, and biotinylated with streptavidin-coated magnetic beads as labels. The linear detection range of this biosensor was found to be 10 4 -10 6 cfu F. tularensis lipopolysaccharide (LPS) per ml. Tested sample matrices were physiological PBS buffer and rabbit serum

  20. MEMS Logic Using Mixed-Frequency Excitation

    KAUST Repository

    Ilyas, Saad

    2017-06-22

    We present multi-function microelectromechanical systems (MEMS) logic device that can perform the fundamental logic gate AND, OR, universal logic gates NAND, NOR, and a tristate logic gate using mixed-frequency excitation. The concept is based on exciting combination resonances due to the mixing of two or more input signals. The device vibrates at two steady states: a high state when the combination resonance is activated and a low state when no resonance is activated. These vibration states are assigned to logical value 1 or 0 to realize the logic gates. Using ac signals to drive the resonator and to execute the logic inputs unifies the input and output wave forms of the logic device, thereby opening the possibility for cascading among logic devices. We found that the energy consumption per cycle of the proposed logic resonator is higher than those of existing technologies. Hence, integration of such logic devices to build complex computational system needs to take into consideration lowering the total energy consumption. [2017-0041

  1. Gas spectroscopy with integrated frequency monitoring through self-mixing in a terahertz quantum-cascade laser.

    Science.gov (United States)

    Chhantyal-Pun, Rabi; Valavanis, Alexander; Keeley, James T; Rubino, Pierluigi; Kundu, Iman; Han, Yingjun; Dean, Paul; Li, Lianhe; Davies, A Giles; Linfield, Edmund H

    2018-05-15

    We demonstrate a gas spectroscopy technique, using self-mixing in a 3.4 terahertz quantum-cascade laser (QCL). All previous QCL spectroscopy techniques have required additional terahertz instrumentation (detectors, mixers, or spectrometers) for system pre-calibration or spectral analysis. By contrast, our system self-calibrates the laser frequency (i.e., with no external instrumentation) to a precision of 630 MHz (0.02%) by analyzing QCL voltage perturbations in response to optical feedback within a 0-800 mm round-trip delay line. We demonstrate methanol spectroscopy by introducing a gas cell into the feedback path and show that a limiting absorption coefficient of ∼1×10 -4   cm -1 is resolvable.

  2. Optical Frequency Mixing in Periodically-Patterned and in Quasi-Periodically-Patterned Nonlinear media

    International Nuclear Information System (INIS)

    Arie, A.

    1999-01-01

    Nonlinear frequency mixing processes, e.g. second harmonic generation, sum and difference frequency generation, etc., require matching of the phases of the interacting waves. The traditional method to achieve it is by selecting a specific angle of propagation in a birefringent nonlinear crystal. The main limitation of the birefringent phase matching method stems from the fact that for many interesting interactions, the phase matching condition cannot be satisfied in a specific crystal. This obstacle can be removed by the technique of quasi-phase-matching (QPM), where the nonlinear coefficient of the material is modulated at a fixed spatial frequency that equals the wave-vector phase mismatch between the interacting waves. An important development in recent years is the ability to periodically reverse the sign of the nonlinear coefficient in ferroelectric crystals by applying a high electric field through a periodic electrode. Some recent QPM interactions in periodically-poled KTP that were recently achieved at Tel-Aviv University include continuous-wave optical parametric oscillations, as well as generation of tunable mid-infrared radiation by difference frequency generation. Periodic patterning of the nonlinear coefficient enables to phase match only a single interaction. It would be advantageous to further extend the applications of this technique in order to simultaneously satisfy several interactions on a single crystal. This cannot be usually achieved in a periodic pattern, however more sophisticated quasi-periodic structures can be designed in this case. An interesting analogy can be drawn between artificially-made quasi-periodically-patterned nonlinear crystals and quasi-crystals found in nature, in rapidly-cooled metallic alloys

  3. High-resolution inverse Raman and resonant-wave-mixing spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rahn, L.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).

  4. Francisella tularensis detection using magnetic labels and a magnetic biosensor based on frequency mixing

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Martin H.F. [Institute for Pharmaceutical Chemistry, Philipps-Universitaet Marburg (Germany); Krause, Hans-Joachim [Institute of Bio-and Nanosystems (IBN-2), Research Center Juelich (Germany); Hartmann, Markus [Institute for Pharmaceutical Chemistry, Philipps-Universitaet Marburg (Germany); Miethe, Peter [SENOVA GmbH, Jena (Germany); Oster, Juergen [chemagen GmbH, Baesweiler (Germany); Keusgen, Michael [Institute for Pharmaceutical Chemistry, Philipps-Universitaet Marburg (Germany)]. E-mail: Keusgen@staff.uni-marburg.de

    2007-04-15

    A biosensor that uses resonant coils with a special frequency-mixing technique and magnetic beads as detectable labels has been established for the detection of Francisella tularensis, the causative agent for tularemia. The detection principle is based on a sandwich immunoassay using an anti-Ft antibody for immunofiltration immobilized to ABICAP[reg] polyethylene filters, and biotinylated with streptavidin-coated magnetic beads as labels. The linear detection range of this biosensor was found to be 10{sup 4}-10{sup 6} cfu F. tularensis lipopolysaccharide (LPS) per ml. Tested sample matrices were physiological PBS buffer and rabbit serum.

  5. Femtosecond frequency mixing in optically thick bulk GaAs

    International Nuclear Information System (INIS)

    Jho, Young Dahl; Kim, Dai Sik

    1999-01-01

    Femtosecond degenerate four-wave mixing experiment (FWM) has been performed at 11 K in transmission geometry. Strong signal where the energy extends well above the bandedge is still observed in FWM transmittance although the thickness is larger than the penetration depth by an order. In addition, these above-the-bandgap signals are mostly confined to the negative time delay region and shift further into the negative time as the detection energy increases. All these unusual phenomena can be understood by the third order frequency mixing (2ω 2 -ω 1 ; ω 2 > ω 1 )

  6. An Experimental and Theoretical Investigation of a Micromirror Under Mixed-Frequency Excitation

    KAUST Repository

    Ilyas, Saad; Ramini, Abdallah; Carreno, Armando Arpys Arevalo; Younis, Mohammad I.

    2015-01-01

    We present an experimental and theoretical investigation of a micromachined mirror under a mixed-frequency signal composed of two harmonic ac sources. The micromirror is made of polyimide as the main structural layer. The experimental and theoretical dynamics are explored via frequency sweeps in the desired neighborhoods. One frequency is fixed while the other frequency is swept through a wide range to study the dynamic responses. To simulate the behavior of the micromirror, it is modeled as a single degree of freedom system, where the parameters of the model are extracted experimentally. A good agreement is reported among the simulation results and the experimental data. These responses are studied under different frequencies and input voltages. The results show interesting dynamics, where the system exhibits primary resonance and combination resonances of additive and subtractive type. The mixed excitation is demonstrated as a way to increase the bandwidth of the resonator near primary resonance, which can be promising for resonant sensing applications in the effort to increase the signal-noise ratio over extended frequency range.

  7. An Experimental and Theoretical Investigation of a Micromirror Under Mixed-Frequency Excitation

    KAUST Repository

    Ilyas, Saad

    2015-01-12

    We present an experimental and theoretical investigation of a micromachined mirror under a mixed-frequency signal composed of two harmonic ac sources. The micromirror is made of polyimide as the main structural layer. The experimental and theoretical dynamics are explored via frequency sweeps in the desired neighborhoods. One frequency is fixed while the other frequency is swept through a wide range to study the dynamic responses. To simulate the behavior of the micromirror, it is modeled as a single degree of freedom system, where the parameters of the model are extracted experimentally. A good agreement is reported among the simulation results and the experimental data. These responses are studied under different frequencies and input voltages. The results show interesting dynamics, where the system exhibits primary resonance and combination resonances of additive and subtractive type. The mixed excitation is demonstrated as a way to increase the bandwidth of the resonator near primary resonance, which can be promising for resonant sensing applications in the effort to increase the signal-noise ratio over extended frequency range.

  8. Low-frequency scaling of the standard and mixed magnetic field and Müller integral equations

    KAUST Repository

    Bogaert, Ignace

    2014-02-01

    The standard and mixed discretizations for the magnetic field integral equation (MFIE) and the Müller integral equation (MUIE) are investigated in the context of low-frequency (LF) scattering problems involving simply connected scatterers. It is proved that, at low frequencies, the frequency scaling of the nonsolenoidal part of the solution current can be incorrect for the standard discretization. In addition, it is proved that the frequency scaling obtained with the mixed discretization is correct. The reason for this problem in the standard discretization scheme is the absence of exact solenoidal currents in the rotated RWG finite element space. The adoption of the mixed discretization scheme eliminates this problem and leads to a well-conditioned system of linear equations that remains accurate at low frequencies. Numerical results confirm these theoretical predictions and also show that, when the frequency is lowered, a finer and finer mesh is required to keep the accuracy constant with the standard discretization. © 1963-2012 IEEE.

  9. Preliminary study about frequencies of unstable chromosome alterations induced by gamma beam and neutron-gamma mixed field

    International Nuclear Information System (INIS)

    Mendes, Mariana E.; Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F.; Calixto, Merilane S.; Santos, Neide

    2011-01-01

    The estimate on approximate dose in exposed individual can be made through conventional cytogenetic analysis of dicentric, this technique has been used to support physical dosimetry. It is important to estimate the absorbed dose in case of accidents with the aim of developing an appropriate treatment and biological dosimetry can be very useful in case where the dosimetry is unavailable. Exposure to gamma and neutron radiation leads to the same biological effects such as chromosomal alterations and cancer. However, neutrons cause more genetic damage, such as mutation or more structural damage, such as chromosome alterations. The aim of research is to compare frequencies of unstable chromosome alterations induced by a gamma beam with those from neutron-gamma mixed field. Two blood samples were obtained from one healthy donor and irradiated at different sources. The first sample was exposed to mixed field neutron-gamma sources 241 AmBe at the Neutron Calibration Laboratory (NCL - CRCN/NE - PE - Brazil) and the second one was exposed to 137 Cs gamma rays at 137 Cs Laboratory (CRCN/NE - PE - Brazil), both exposures resulting in an absorbed dose of 0.66Gy. Mitotic metaphase cells were obtained by lymphocyte culture for chromosomal analysis and slides were stained with Giemsa 5%. These preliminary results showed a similarity in associated dicentrics frequency per cell (0.041 and 0.048) after 137 Cs and 241 AmBe sources irradiations, respectively. However, it was not observed centric rings frequency per cell (0.0 and 0.027). This study will be continue to verify the frequencies of unstable chromosome alterations induced by only gamma beam and neutron-gamma mixed field. (author)

  10. Preliminary study about frequencies of unstable chromosome alterations induced by gamma beam and neutron-gamma mixed field

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Mariana E.; Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F. [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Calixto, Merilane S.; Santos, Neide [Universidade Federal de Pernanmbuco (CCB/UFPE), Recife, PE (Brazil). Centro de Ciencias Biologicas. Dept. de Genetica

    2011-07-01

    The estimate on approximate dose in exposed individual can be made through conventional cytogenetic analysis of dicentric, this technique has been used to support physical dosimetry. It is important to estimate the absorbed dose in case of accidents with the aim of developing an appropriate treatment and biological dosimetry can be very useful in case where the dosimetry is unavailable. Exposure to gamma and neutron radiation leads to the same biological effects such as chromosomal alterations and cancer. However, neutrons cause more genetic damage, such as mutation or more structural damage, such as chromosome alterations. The aim of research is to compare frequencies of unstable chromosome alterations induced by a gamma beam with those from neutron-gamma mixed field. Two blood samples were obtained from one healthy donor and irradiated at different sources. The first sample was exposed to mixed field neutron-gamma sources {sup 241}AmBe at the Neutron Calibration Laboratory (NCL - CRCN/NE - PE - Brazil) and the second one was exposed to {sup 137}Cs gamma rays at {sup 137}Cs Laboratory (CRCN/NE - PE - Brazil), both exposures resulting in an absorbed dose of 0.66Gy. Mitotic metaphase cells were obtained by lymphocyte culture for chromosomal analysis and slides were stained with Giemsa 5%. These preliminary results showed a similarity in associated dicentrics frequency per cell (0.041 and 0.048) after {sup 137}Cs and {sup 241}AmBe sources irradiations, respectively. However, it was not observed centric rings frequency per cell (0.0 and 0.027). This study will be continue to verify the frequencies of unstable chromosome alterations induced by only gamma beam and neutron-gamma mixed field. (author)

  11. A frequency domain subspace algorithm for mixed causal, anti-causal LTI systems

    NARCIS (Netherlands)

    Fraanje, Rufus; Verhaegen, Michel; Verdult, Vincent; Pintelon, Rik

    2003-01-01

    The paper extends the subspacc identification method to estimate state-space models from frequency response function (FRF) samples, proposed by McKelvey et al. (1996) for mixed causal/anti-causal systems, and shows that other frequency domain subspace algorithms can be extended similarly. The method

  12. Fluid Structure Interaction Techniques For Extrusion And Mixing Processes

    Science.gov (United States)

    Valette, Rudy; Vergnes, Bruno; Coupez, Thierry

    2007-05-01

    This work focuses on the development of numerical techniques devoted to the simulation of mixing processes of complex fluids such as twin-screw extrusion or batch mixing. In mixing process simulation, the absence of symmetry of the moving boundaries (the screws or the rotors) implies that their rigid body motion has to be taken into account by using a special treatment We therefore use a mesh immersion technique (MIT), which consists in using a P1+/P1-based (MINI-element) mixed finite element method for solving the velocity-pressure problem and then solving the problem in the whole barrel cavity by imposing a rigid motion (rotation) to nodes found located inside the so called immersed domain, each sub-domain (screw, rotor) being represented by a surface CAD mesh (or its mathematical equation in simple cases). The independent meshes are immersed into a unique background computational mesh by computing the distance function to their boundaries. Intersections of meshes are accounted for, allowing to compute a fill factor usable as for the VOF methodology. This technique, combined with the use of parallel computing, allows to compute the time-dependent flow of generalized Newtonian fluids including yield stress fluids in a complex system such as a twin screw extruder, including moving free surfaces, which are treated by a "level set" and Hamilton-Jacobi method.

  13. Mixed Discretization of the Time Domain MFIE at Low Frequencies

    KAUST Repository

    Ulku, Huseyin Arda

    2017-01-10

    Solution of the magnetic field integral equation (MFIE), which is obtained by the classical marching on-in-time (MOT) scheme, becomes inaccurate when the time step is large, i.e., under low-frequency excitation. It is shown here that the inaccuracy stems from the classical MOT scheme’s failure to predict the correct scaling of the current’s Helmholtz components for large time steps. A recently proposed mixed discretization strategy is used to alleviate the inaccuracy problem by restoring the correct scaling of the current’s Helmholtz components under low-frequency excitation.

  14. Feasibility study on diagnosis of material damage using bulk wave mixing technique

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeong Seok; Cho, Youn Ho [Pusan National University, Busan (Korea, Republic of)

    2016-02-15

    Ultrasonic nonlinear evaluation is generally utilized for detection of not only defects but also microdamage such as corrosion and plastic deformation. Nonlinearity is determined by the amplitude ratio of primary wave second harmonic wave, and the results of its comparison are used for evaluation. Owing to the experimental features, the experimental nonlinearity result contains system nonlinearity and material nonlinearity. System nonlinearity is that which is unwanted by the user; hence, it acts as an error and interrupts analysis. In this study, a bulk wave mixing technique is implemented in order to minimize the system nonlinearity and obtain the reliable analysis results. The biggest advantage of this technique is that experimental nonlinearity contains less system nonlinearity than that for the conventional nonlinear ultrasonic technique. Theoretical and experimental verifications are performed in this study. By comparing the results of the bulk wave mixing technique with those of the conventional technique, the strengths, weaknesses, and application validity of the bulk wave mixing technique are determined.

  15. Nonlinear Wave Mixing Technique for Nondestructive Assessment of Infrastructure Materials

    Science.gov (United States)

    Ju, Taeho

    To operate safely, structures and components need to be inspected or monitored either periodically or in real time for potential failure. For this purpose, ultrasonic nondestructive evaluation (NDE) techniques have been used extensively. Most of these ultrasonic NDE techniques utilize only the linear behavior of the ultrasound. These linear techniques are effective in detecting discontinuities in materials such as cracks, voids, interfaces, inclusions, etc. However, in many engineering materials, it is the accumulation of microdamage that leads to degradation and eventual failure of a component. Unfortunately, it is difficult for linear ultrasonic NDE techniques to characterize or quantify such damage. On the other hand, the acoustic nonlinearity parameter (ANLP) of a material is often positively correlated with such damage in a material. Thus, nonlinear ultrasonic NDE methods have been used in recently years to characterize cumulative damage such as fatigue in metallic materials, aging in polymeric materials, and degradation of cement-based materials due to chemical reactions. In this thesis, we focus on developing a suit of novel nonlinear ultrasonic NDE techniques based on the interactions of nonlinear ultrasonic waves, namely wave mixing. First, a noncollinear wave mixing technique is developed to detect localized damage in a homogeneous material by using a pair of noncollinear a longitudinal wave (L-wave) and a shear wave (S-wave). This pair of incident waves make it possible to conduct NDE from a single side of the component, a condition that is often encountered in practical applications. The proposed noncollinear wave mixing technique is verified experimentally by carrying out measurements on aluminum alloy (AA 6061) samples. Numerical simulations using the Finite Element Method (FEM) are also conducted to further demonstrate the potential of the proposed technique to detect localized damage in structural components. Second, the aforementioned nonlinear

  16. Applying Mixed Methods Techniques in Strategic Planning

    Science.gov (United States)

    Voorhees, Richard A.

    2008-01-01

    In its most basic form, strategic planning is a process of anticipating change, identifying new opportunities, and executing strategy. The use of mixed methods, blending quantitative and qualitative analytical techniques and data, in the process of assembling a strategic plan can help to ensure a successful outcome. In this article, the author…

  17. Analysis of unstable chromosome alterations frequency induced by neutron-gamma mixed field radiation

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Vale, Carlos H.F.P.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F. [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil)], e-mail: psouza@cnen.gov.br, e-mail: jodinilson@cnen.gov.br; Calixto, Merilane S.; Santos, Neide [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Genetica

    2009-07-01

    Nowadays monitoring chromosome alterations in peripheral blood lymphocytes have been used to access the radiation absorbed dose in individuals exposed accidental or occupationally to gamma radiation. However there are not many studies based on the effects of mixed field neutron-gamma. The radiobiology of neutrons has great importance because in nuclear factories worldwide there are several hundred thousand individuals monitored as potentially receiving doses of neutron. In this paper it was observed the frequencies of unstable chromosome alterations induced by a gamma-neutron mixed field. Blood was obtained from one healthy donor and exposed to mixed field neutron-gamma sources {sup 241}AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL-CRCN/NE-PE-Brazil). The chromosomes were observed at metaphase, following colcemid accumulation and 1000 well-spread metaphases were analyzed for the presence of chromosome alterations by two experienced scorers. The results suggest that there is the possibility of a directly proportional relationship between absorbed dose of neutron-gamma mixed field radiation and the frequency of unstable chromosome alterations analyzed in this paper. (author)

  18. Analysis of unstable chromosome alterations frequency induced by neutron-gamma mixed field radiation

    International Nuclear Information System (INIS)

    Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Vale, Carlos H.F.P.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F.; Calixto, Merilane S.; Santos, Neide

    2009-01-01

    Nowadays monitoring chromosome alterations in peripheral blood lymphocytes have been used to access the radiation absorbed dose in individuals exposed accidental or occupationally to gamma radiation. However there are not many studies based on the effects of mixed field neutron-gamma. The radiobiology of neutrons has great importance because in nuclear factories worldwide there are several hundred thousand individuals monitored as potentially receiving doses of neutron. In this paper it was observed the frequencies of unstable chromosome alterations induced by a gamma-neutron mixed field. Blood was obtained from one healthy donor and exposed to mixed field neutron-gamma sources 241 AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL-CRCN/NE-PE-Brazil). The chromosomes were observed at metaphase, following colcemid accumulation and 1000 well-spread metaphases were analyzed for the presence of chromosome alterations by two experienced scorers. The results suggest that there is the possibility of a directly proportional relationship between absorbed dose of neutron-gamma mixed field radiation and the frequency of unstable chromosome alterations analyzed in this paper. (author)

  19. System equivalent model mixing

    Science.gov (United States)

    Klaassen, Steven W. B.; van der Seijs, Maarten V.; de Klerk, Dennis

    2018-05-01

    This paper introduces SEMM: a method based on Frequency Based Substructuring (FBS) techniques that enables the construction of hybrid dynamic models. With System Equivalent Model Mixing (SEMM) frequency based models, either of numerical or experimental nature, can be mixed to form a hybrid model. This model follows the dynamic behaviour of a predefined weighted master model. A large variety of applications can be thought of, such as the DoF-space expansion of relatively small experimental models using numerical models, or the blending of different models in the frequency spectrum. SEMM is outlined, both mathematically and conceptually, based on a notation commonly used in FBS. A critical physical interpretation of the theory is provided next, along with a comparison to similar techniques; namely DoF expansion techniques. SEMM's concept is further illustrated by means of a numerical example. It will become apparent that the basic method of SEMM has some shortcomings which warrant a few extensions to the method. One of the main applications is tested in a practical case, performed on a validated benchmark structure; it will emphasize the practicality of the method.

  20. Electromagnetic interference modeling and suppression techniques in variable-frequency drive systems

    Science.gov (United States)

    Yang, Le; Wang, Shuo; Feng, Jianghua

    2017-11-01

    Electromagnetic interference (EMI) causes electromechanical damage to the motors and degrades the reliability of variable-frequency drive (VFD) systems. Unlike fundamental frequency components in motor drive systems, high-frequency EMI noise, coupled with the parasitic parameters of the trough system, are difficult to analyze and reduce. In this article, EMI modeling techniques for different function units in a VFD system, including induction motors, motor bearings, and rectifierinverters, are reviewed and evaluated in terms of applied frequency range, model parameterization, and model accuracy. The EMI models for the motors are categorized based on modeling techniques and model topologies. Motor bearing and shaft models are also reviewed, and techniques that are used to eliminate bearing current are evaluated. Modeling techniques for conventional rectifierinverter systems are also summarized. EMI noise suppression techniques, including passive filter, Wheatstone bridge balance, active filter, and optimized modulation, are reviewed and compared based on the VFD system models.

  1. ProteinAC: a frequency domain technique for analyzing protein dynamics

    Science.gov (United States)

    Bozkurt Varolgunes, Yasemin; Demir, Alper

    2018-03-01

    It is widely believed that the interactions of proteins with ligands and other proteins are determined by their dynamic characteristics as opposed to only static, time-invariant processes. We propose a novel computational technique, called ProteinAC (PAC), that can be used to analyze small scale functional protein motions as well as interactions with ligands directly in the frequency domain. PAC was inspired by a frequency domain analysis technique that is widely used in electronic circuit design, and can be applied to both coarse-grained and all-atom models. It can be considered as a generalization of previously proposed static perturbation-response methods, where the frequency of the perturbation becomes the key. We discuss the precise relationship of PAC to static perturbation-response schemes. We show that the frequency of the perturbation may be an important factor in protein dynamics. Perturbations at different frequencies may result in completely different response behavior while magnitude and direction are kept constant. Furthermore, we introduce several novel frequency dependent metrics that can be computed via PAC in order to characterize response behavior. We present results for the ferric binding protein that demonstrate the potential utility of the proposed techniques.

  2. Mixing of nanosize particles by magnetically assisted impaction techniques

    Science.gov (United States)

    Scicolone, James V.

    approach based on use of small magnetic particles as mixing media is introduced that achieves a high-degree of mixing at scales of about a micron. The method is tested for binary mixture of alumina/silica and silica/titania. Various parameters such as processing time, size of the magnets, and magnetic particle to powder mixed ratio are considered. Experiments are carried out in batch containers in liquid and dry mediums, as well as a fluidized bed set-up. Homogeneity of Mixing (HoM), defined as the compliment of the Intensity of Segregation, was evaluated at the micron scale through field-emission scanning electron microscopy (FESEM) and the energy dispersive x-ray spectroscopy (EDS). Secondary electron images, along with elemental mappings, were used to visualize the change in agglomerate sizes. Compositional percent data of each element were obtained through an EDS spatial distribution point analysis and used to obtain quantitative analysis on the homogeneity of the mixture. The effect of magnet impaction on mixing quality was examined on the HoM of binary mixtures. The research shows that HoM improved with magnetically assisted impaction mixing techniques indicating that the HoM depends on the product of processing time with the number of magnets. In a fluidized bed set-up, MAIM not only improved dispersion, but it was also found that the magnetic particles served to break down the larger agglomerates, to reduce the minimum fluidization velocity, to delay the onset of bubbling, and to convert the fluidization behavior of ABF powder to APF. Thus MAIM techniques may be used to achieve mixing of nanopowders at a desired HoM through adjusting the number of magnets and processing time; and its inherent advantages are its simplicity, an environmentally benign operation, and reduced cost as compared with wet mixing techniques.

  3. A universal quantum frequency converter via four-wave-mixing processes

    Science.gov (United States)

    Cheng, Mingfei; Fang, Jinghuai

    2016-06-01

    We present a convenient and flexible way to realize a universal quantum frequency converter by using nondegenerate four-wave-mixing processes in the ladder-type three-level atomic system. It is shown that quantum state exchange between two fields with large frequency difference can be readily achieved, where one corresponds to the atomic resonant transition in the visible spectral region for quantum memory and the other to the telecommunication range wavelength (1550 nm) for long-distance transmission over optical fiber. This method would bring great facility in realistic quantum information processing protocols with atomic ensembles as quantum memory and low-loss optical fiber as transmission channel.

  4. Swept frequency acoustic interferometry technique for chemical weapons verification and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, D.N.; Anthony, B.W.; Lizon, D.C.

    1995-03-01

    Nondestructive evaluation (NDE) techniques are important for rapid on-site verification and monitoring of chemical munitions, such as artillery shells and bulk containers. Present NDE techniques provide only limited characterizations of such munitions. This paper describes the development of a novel noninvasive technique, swept-frequency acoustic interferometry (SFAI), that significantly enhances the capability of munitions characterizations. The SFAI technique allows very accurate and simultaneous determination of sound velocity and attenuation of chemical agents over a large frequency range inside artillery shells, in addition to determining agent density. The frequency-dependent sound velocity and attenuation can, in principle, provide molecular relaxation properties of the chemical agent. The same instrument also enables a direct fill-level measurement in bulk containers. Industrial and other applications of this general-purpose technique are also discussed.

  5. Passive Super-Low Frequency electromagnetic prospecting technique

    Science.gov (United States)

    Wang, Nan; Zhao, Shanshan; Hui, Jian; Qin, Qiming

    2017-03-01

    The Super-Low Frequency (SLF) electromagnetic prospecting technique, adopted as a non-imaging remote sensing tool for depth sounding, is systematically proposed for subsurface geological survey. In this paper, we propose and theoretically illustrate natural source magnetic amplitudes as SLF responses for the first step. In order to directly calculate multi-dimensional theoretical SLF responses, modeling algorithms were developed and evaluated using the finite difference method. The theoretical results of three-dimensional (3-D) models show that the average normalized SLF magnetic amplitude responses were numerically stable and appropriate for practical interpretation. To explore the depth resolution, three-layer models were configured. The modeling results prove that the SLF technique is more sensitive to conductive objective layers than high resistive ones, with the SLF responses of conductive objective layers obviously showing uprising amplitudes in the low frequency range. Afterwards, we proposed an improved Frequency-Depth transformation based on Bostick inversion to realize the depth sounding by empirically adjusting two parameters. The SLF technique has already been successfully applied in geothermal exploration and coalbed methane (CBM) reservoir interpretation, which demonstrates that the proposed methodology is effective in revealing low resistive distributions. Furthermore, it siginificantly contributes to reservoir identification with electromagnetic radiation anomaly extraction. Meanwhile, the SLF interpretation results are in accordance with dynamic production status of CBM reservoirs, which means it could provide an economical, convenient and promising method for exploring and monitoring subsurface geo-objects.

  6. High frequency magnetic field technique: mathematical modelling and development of a full scale water fraction meter

    Energy Technology Data Exchange (ETDEWEB)

    Cimpan, Emil

    2004-09-15

    This work is concerned with the development of a new on-line measuring technique to be used in measurements of the water concentration in a two component oil/water or three component (i.e. multiphase) oil/water/gas flow. The technique is based on using non-intrusive coil detectors and experiments were performed both statically (medium at rest) and dynamically (medium flowing through a flow rig). The various coil detectors were constructed with either one or two coils and specially designed electronics were used. The medium was composed by air, machine oil, and water having different conductivity values, i.e. seawater and salt water with various conductivities (salt concentrations) such as 1 S/m, 4.9 S/m and 9.3 S/m. The experimental measurements done with the different mixtures were further used to mathematically model the physical principle used in the technique. This new technique is based on measuring the coil impedance and signal frequency at the self-resonance frequency of the coil to determine the water concentration in the mix. By using numerous coils it was found, experimentally, that generally both the coil impedance and the self-resonance frequency of the coil decreased as the medium conductivity increased. Both the impedance and the self-resonance frequency of the coil depended on the medium loss due to the induced eddy currents within the conductive media in the mixture, i.e. water. In order to detect relatively low values of the medium loss, the self-resonance frequency of the coil and also of the magnetic field penetrating the media should be relatively high (within the MHz range and higher). Therefore, the technique was called and referred to throughout the entire work as the high frequency magnetic field technique (HFMFT). To practically use the HFMFT, it was necessary to circumscribe an analytical frame to this technique. This was done by working out a mathematical model that relates the impedance and the self-resonance frequency of the coil to the

  7. Frequency Mixing Magnetic Detection Scanner for Imaging Magnetic Particles in Planar Samples.

    Science.gov (United States)

    Hong, Hyobong; Lim, Eul-Gyoon; Jeong, Jae-Chan; Chang, Jiho; Shin, Sung-Woong; Krause, Hans-Joachim

    2016-06-09

    The setup of a planar Frequency Mixing Magnetic Detection (p-FMMD) scanner for performing Magnetic Particles Imaging (MPI) of flat samples is presented. It consists of two magnetic measurement heads on both sides of the sample mounted on the legs of a u-shaped support. The sample is locally exposed to a magnetic excitation field consisting of two distinct frequencies, a stronger component at about 77 kHz and a weaker field at 61 Hz. The nonlinear magnetization characteristics of superparamagnetic particles give rise to the generation of intermodulation products. A selected sum-frequency component of the high and low frequency magnetic field incident on the magnetically nonlinear particles is recorded by a demodulation electronics. In contrast to a conventional MPI scanner, p-FMMD does not require the application of a strong magnetic field to the whole sample because mixing of the two frequencies occurs locally. Thus, the lateral dimensions of the sample are just limited by the scanning range and the supports. However, the sample height determines the spatial resolution. In the current setup it is limited to 2 mm. As examples, we present two 20 mm × 25 mm p-FMMD images acquired from samples with 1 µm diameter maghemite particles in silanol matrix and with 50 nm magnetite particles in aminosilane matrix. The results show that the novel MPI scanner can be applied for analysis of thin biological samples and for medical diagnostic purposes.

  8. Formation of well-mixed warm water column in central Bohai Sea during summer: Role of high-frequency atmospheric forcing

    Science.gov (United States)

    Ma, Weiwei; Wan, Xiuquan; Wang, Zhankun; Liu, Yulong; Wan, Kai

    2017-12-01

    The influence of high-frequency atmospheric forcing on the formation of a well-mixed summer warm water column in the central Bohai Sea is investigated comparing model simulations driven by daily surface forcing and those using monthly forcing data. In the absence of high-frequency atmospheric forcing, numerical simulations have repeatedly failed to reproduce this vertically uniform column of warm water measured over the past 35 years. However, high-frequency surface forcing is found to strongly influence the structure and distribution of the well-mixed warm water column, and simulations are in good agreement with observations. Results show that high frequency forcing enhances vertical mixing over the central bank, intensifies downward heat transport, and homogenizes the water column to form the Bohai central warm column. Evidence presented shows that high frequency forcing plays a dominant role in the formation of the well-mixed warm water column in summer, even without the effects of tidal and surface wave mixing. The present study thus provides a practical and rational way of further improving the performance of oceanic simulations in the Bohai Sea and can be used to adjust parameterization schemes of ocean models.

  9. Perturbation treatment of mixing in Josephson junctions

    International Nuclear Information System (INIS)

    Levinsen, M.T.; Ulrich, B.T.

    1975-01-01

    A current biased, resistively shunted Josephson Junction irradiated at two frequencies is considered. The perturbation technique introduced by Aslamasov and Larkin is used in the calculations, and both signals are treated as perturbations. The second order calculation yields the size of the mixing steps at V/sub +-/ = h(ω 1 +- ω 2 )/2e. As in the case of a single frequency, subharmonic mixing steps are absent. The amplitude of the voltage oscillation at the difference and sum frequencies is shown to be non-zero at all voltages. The microwave resistance is calculated for one frequency ω 2 to third order in the perturbation. There are negative resistance regions near V/sub +-/ (as well as near V 2 = hω 2 /2e). Near V/sub -/, the negative resistance region appears for bias voltage V just above V/sub -/, while near V the region appears for V just below V/sub +/. This means that when an incident frequency mixes with a cavity mode, the mixing step at V/sub -/ will be inverted compared to the cavity step itself

  10. Injection-seeded tunable mid-infrared pulses generated by difference frequency mixing

    Science.gov (United States)

    Miyamoto, Yuki; Hara, Hideaki; Masuda, Takahiko; Hiraki, Takahiro; Sasao, Noboru; Uetake, Satoshi

    2017-03-01

    We report on the generation of nanosecond mid-infrared pulses having frequency tunability, a narrow linewidth, and a high pulse energy. These pulses are obtained by frequency mixing between injection-seeded near-infrared pulses in potassium titanyl arsenate crystals. A continuous-wave external cavity laser diode or a Ti:sapphire ring laser is used as a tunable seeding source for the near-infrared pulses. The typical energy of the generated mid-infrared pulses is in the range of 0.4-1 mJ/pulse. The tuning wavelength ranges from 3142 to 4806 nm. A narrow linewidth of 1.4 GHz and good frequency reproducibility of the mid-infrared pulses are confirmed by observing a rovibrational absorption line of gaseous carbon monoxide at 4587 nm.

  11. Bragg-Scattering Four-Wave Mixing in Nonlinear Fibers with Intracavity Frequency-Shifted Laser Pumps

    Directory of Open Access Journals (Sweden)

    Katarzyna Krupa

    2012-01-01

    Full Text Available We experimentally study four-wave mixing in highly nonlinear fibers using two independent and partially coherent laser pumps and a third coherent signal. We focus our attention on the Bragg-scattering frequency conversion. The two pumps were obtained by amplifying two Intracavity frequency-shifted feedback lasers working in a continuous wave regime.

  12. Industrial mixing techniques for Hanford double-shell tanks

    International Nuclear Information System (INIS)

    Daymo, E.A.

    1997-09-01

    Jet mixer pumps are currently the baseline technology for sludge mobilization and mixing in one-million gallon double-shell tanks at the Hanford and Savannah River Sites. Improvements to the baseline jet mixer pump technology are sought because jet mixer pumps have moving parts that may fail or require maintenance. Moreover, jet mixers are relatively expensive, they heat the waste, and, in some cases, may not mobilize enough of the sludge. This report documents a thorough literature search for commercially available applicable mixing technologies that could be used for double-shell tank sludge mobilization and mixing. Textbooks, research articles, conference proceedings, mixing experts, and the Thomas Register were consulted to identify applicable technologies. While there are many commercial methods that could be used to mobilize sludge or mix the contents of a one-million gallon tank, few will work given the geometrical constraints (e.g., the mixer must fit through a 1.07-m-diameter riser) or the tank waste properties (e.g., the sludge has such a high yield stress that it generally does not flow under its own weight). Pulsed fluid jets and submersible Flygt mixers have already been identified at Hanford and Savannah River Sites for double-shell tank mixing applications. While these mixing technologies may not be applicable for double-shell tanks that have a thick sludge layer at the bottom (since too many of these mixers would need to be installed to mobilize most of the sludge), they may have applications in tanks that do not have a settled solids layer. Retrieval projects at Hanford and other U.S. Department of Energy sites are currently evaluating the effectiveness of these mixing techniques for tank waste applications. The literature search did not reveal any previously unknown technologies that should be considered for sludge mobilization and mixing in one-million gallon double-shell tanks

  13. Energy and Food Commodity Prices Linkage: An Examination with Mixed-Frequency Data

    NARCIS (Netherlands)

    Trujillo Barrera, A.A.; Pennings, J.M.E.

    2013-01-01

    Abstract Is the relationship between energy and agricultural commodities an important factor in the increasing price variability of food commodities? Findings from the literature appear to be mixed and highly influenced by the data frequency used in those analysis. A recurrent task in time series

  14. Microstructure investigations of Ba-Sr mixed ferrites, using SEM technique

    International Nuclear Information System (INIS)

    Amighian, J.; Mozaffari, M.

    1996-01-01

    A series of isotropic Ba-Sr mixed ferrites were prepared, using a conventional dry technique. The starting materials were hematite by product of Isfahan steel factory, strontium carbonate from Merck company and barium carbonate obtained from local source. The principle phase of the samples was chosen to have a composition in the form of (BaO) sub 1-x (SrO) sub x nFe sub 2 O sub 3, in which x varied between 0 to l and n was varied between 5 to 6. The raw materials were thoroughly mixed and fired in an electrical furnace for 2 hours. They were then milled in an vibrating ball mill, in which the optimum milling time for each sample was obtained. After annealing at 750 degree C, the powders were compacted in a cylindrical die under 5 tons/cm sup 2. The compacts were then mixed with a binder and sintered in air for 10 minutes at their optimum temperatures. Using SEM technique, the microstructure of the samples were investigated. Using a permeameter, the coercive force Hc and remanent induction Br were measured. The microstructures obtained from SEM technique can be used to control the sintering stage in ferrite fabrication

  15. A Simplified Analytical Technique for High Frequency Characterization of Resonant Tunneling Diode

    Directory of Open Access Journals (Sweden)

    DESSOUKI, A. A. S.

    2014-11-01

    Full Text Available his paper proposes a simplified analytical technique for high frequency characterization of the resonant tunneling diode (RTD. An equivalent circuit of the RTD that consists of a parallel combination of conductance, G (V, f, and capacitance, C (V, f is formulated. The proposed approach uses the measured DC current versus voltage characteristic of the RTD to extract the equivalent circuit elements parameters in the entire bias range. Using the proposed analytical technique, the frequency response - including the high frequency range - of many characteristic aspects of the RTD is investigated. Also, the maximum oscillation frequency of the RTD is calculated. The results obtained have been compared with those concluded and reported in the literature. The reported results in literature were obtained through simulation of the RTD at high frequency using either a computationally complicated quantum simulator or through difficult RF measurements. A similar pattern of results and highly concordant conclusion are obtained. The proposed analytical technique is simple, correct, and appropriate to investigate the behavior of the RTD at high frequency. In addition, the proposed technique can be easily incorporated into SPICE program to simulate circuits containing RTD.

  16. Stochastic scalar mixing models accounting for turbulent frequency multiscale fluctuations

    International Nuclear Information System (INIS)

    Soulard, Olivier; Sabel'nikov, Vladimir; Gorokhovski, Michael

    2004-01-01

    Two new scalar micromixing models accounting for a turbulent frequency scale distribution are investigated. These models were derived by Sabel'nikov and Gorokhovski [Second International Symposium on Turbulence and Shear FLow Phenomena, Royal Institute of technology (KTH), Stockholm, Sweden, June 27-29, 2001] using a multiscale extension of the classical interaction by exchange with the mean (IEM) and Langevin models. They are, respectively, called Extended IEM (EIEM) and Extended Langevin (ELM) models. The EIEM and ELM models are tested against DNS results in the case of the decay of a homogeneous scalar field in homogeneous turbulence. This comparison leads to a reformulation of the law governing the mixing frequency distribution. Finally, the asymptotic behaviour of the modeled PDF is discussed

  17. Word frequency effects in immediate serial recall of pure and mixed lists: tests of the associative link hypothesis.

    Science.gov (United States)

    Saint-Aubin, Jean; LeBlanc, Jacinthe

    2005-12-01

    In immediate serial recall, high-frequency words are better recalled than low-frequency words. Recently, it has been suggested that high-frequency words are better recalled because of their better long-term associative links, and not because of the intrinsic properties of their long-term representations. In the experiment reported here, recall performance was compared for pure lists of high- and low-frequency words, and for mixed lists composed of either one low- and five high-frequency words or the reverse. The usual advantage of high-frequency words was found with pure lists and this advantage was reduced, but still significant with mixed lists composed of five low-frequency words. However, the low-frequency word included in a high-frequency list was recalled just as well as high-frequency words. Results are challenging for the associative link hypothesis and are best interpreted within an item-based reconstruction hypothesis, along with a distinctiveness account.

  18. Pulse frequency and soil-litter mixing alter the control of cumulative precipitation over litter decomposition.

    Science.gov (United States)

    Joly, François-Xavier; Kurupas, Kelsey L; Throop, Heather L

    2017-09-01

    Macroclimate has traditionally been considered the predominant driver of litter decomposition. However, in drylands, cumulative monthly or annual precipitation typically fails to predict decomposition. In these systems, the windows of opportunity for decomposer activity may rather depend on the precipitation frequency and local factors affecting litter desiccation, such as soil-litter mixing. We used a full-factorial microcosm experiment to disentangle the relative importance of cumulative precipitation, pulse frequency, and soil-litter mixing on litter decomposition. Decomposition, measured as litter carbon loss, saturated with increasing cumulative precipitation when pulses were large and infrequent, suggesting that litter moisture no longer increased and/or microbial activity was no longer limited by water availability above a certain pulse size. More frequent precipitation pulses led to increased decomposition at high levels of cumulative precipitation. Soil-litter mixing consistently increased decomposition, with greatest relative increase (+194%) under the driest conditions. Collectively, our results highlight the need to consider precipitation at finer temporal scale and incorporate soil-litter mixing as key driver of decomposition in drylands. © 2017 by the Ecological Society of America.

  19. Explanation for the temperature dependence of plasma frequencies in SrTiO3 using mixed-polaron theory

    International Nuclear Information System (INIS)

    Eagles, D.M.; Georgiev, M.; Petrova, P.C.

    1996-01-01

    A theory of mixed polarons is used to interpret the published experimental results of Gervais et al. on temperature-dependent plasma frequencies in Nb-doped SrTiO 3 . For given polaron masses before mixing, the appropriate average mixed-polaron mass at any temperature T depends on two quantities, δ and b, which are measures of the separation between the bottoms of large and nearly small polaron bands before mixing and of a mixing matrix element; δ and b are assumed to have arbitrary linear dependences on T, probably related to a T dependence of the bare mass, and a term quadratic in T is included in δ, determined from the T dependence of large-polaron binding energies. Including a constraint on the ratio δ/|b| at low T from known masses from specific-heat data, satisfactory agreement is obtained with masses determined from plasma frequencies. This gives further support for the theory of mixed polarons in SrTiO 3 in addition to that already published. copyright 1996 The American Physical Society

  20. An inkjet vision measurement technique for high-frequency jetting

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kye-Si, E-mail: kskwon@sch.ac.kr; Jang, Min-Hyuck; Park, Ha Yeong [Department of Mechanical Engineering, Soonchunhyang University 22, Soonchunhyang-Ro, Shinchang, Asan Chungnam 336-745 (Korea, Republic of); Ko, Hyun-Seok [Department of Electrical and Robot Engineering, Soonchunhyang University, 22, Soonchunhyang-Ro, Shinchang, Asan Chungnam 336-745 (Korea, Republic of)

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  1. An inkjet vision measurement technique for high-frequency jetting

    International Nuclear Information System (INIS)

    Kwon, Kye-Si; Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-01-01

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance

  2. A frequency domain radar interferometric imaging (FII) technique based on high-resolution methods

    Science.gov (United States)

    Luce, H.; Yamamoto, M.; Fukao, S.; Helal, D.; Crochet, M.

    2001-01-01

    In the present work, we propose a frequency-domain interferometric imaging (FII) technique for a better knowledge of the vertical distribution of the atmospheric scatterers detected by MST radars. This is an extension of the dual frequency-domain interferometry (FDI) technique to multiple frequencies. Its objective is to reduce the ambiguity (resulting from the use of only two adjacent frequencies), inherent with the FDI technique. Different methods, commonly used in antenna array processing, are first described within the context of application to the FII technique. These methods are the Fourier-based imaging, the Capon's and the singular value decomposition method used with the MUSIC algorithm. Some preliminary simulations and tests performed on data collected with the middle and upper atmosphere (MU) radar (Shigaraki, Japan) are also presented. This work is a first step in the developments of the FII technique which seems to be very promising.

  3. Control techniques for an automated mixed traffic vehicle

    Science.gov (United States)

    Meisenholder, G. W.; Johnston, A. R.

    1977-01-01

    The paper describes an automated mixed traffic vehicle (AMTV), a driverless low-speed tram designed to operate in mixed pedestrian and vehicular traffic. The vehicle is a six-passenger electric tram equipped with sensing and control which permit it to function on existing streets in an automatic mode. The design includes established wire-following techniques for steering and near-IR headway sensors. A 7-mph cruise speed is reduced to 2 mph or a complete stop in response to sensor (or passenger) inputs. The AMTV performance is evaluated by operation on a loop route and by simulation. Some necessary improvements involving sensors, sensor pattern, use of an audible signal, and control lag are discussed. It is suggested that appropriate modifications will eliminate collision incidents.

  4. Laser diode self-mixing technique for liquid velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrova, A., E-mail: a.alexandrova@liverpool.ac.uk [Cockcroft Institute, Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); University of Liverpool, Department of Physics, Liverpool L69 7ZE (United Kingdom); Welsch, C.P. [Cockcroft Institute, Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); University of Liverpool, Department of Physics, Liverpool L69 7ZE (United Kingdom)

    2016-09-11

    Using the self-mixing technique, or optical feedback interferometry, fluid velocity measurements of water seeded with titanium dioxide have been performed using a laser diode to measure the effect of the seeding particle concentration and also the pump speed of the flow. The velocimeter utilises commercially available laser diodes with a built-in photodiode for detection of the self-mixing effect. The device has demonstrated an accuracy better than 10% for liquid flow velocities up to 1.5 m/s with a concentration of scattering particles in the range of 0.8–0.03%. This is an improvement of one order of magnitude compared to previous experiments. The proposed velocimeter is to be developed further for application in gas-jet measurements.

  5. Measurement techniques for radio frequency nanoelectronics

    CERN Document Server

    Wallis, T Mitch

    2017-01-01

    Connect basic theory with real-world applications with this practical, cross-disciplinary guide to radio frequency measurement of nanoscale devices and materials.• Learn the techniques needed for characterizing the performance of devices and their constituent building blocks, including semiconducting nanowires, graphene, and other two dimensional materials such as transition metal dichalcogenides• Gain practical insights into instrumentation, including on-wafer measurement platforms and scanning microwave microscopy• Discover how measurement techniques can be applied to solve real-world problems, in areas such as passive and active nanoelectronic devices, semiconductor dopant profiling, subsurface nanoscale tomography, nanoscale magnetic device engineering, and broadband, spatially localized measurements of biological materialsFeaturing numerous practical examples, and written in a concise yet rigorous style, this is the ideal resource for researchers, practicing engineers, and graduate students new to ...

  6. FIR Filter Sharpening by Frequency Masking and Pipelining-Interleaving Technique

    Directory of Open Access Journals (Sweden)

    CIRIC, M. P.

    2014-11-01

    Full Text Available This paper focuses on the improvements of digital filters with a highly sharp transition zone on the Xilinx FPGA chips by combining a sharpening method based on the amplitude change function and frequency masking and PI (Pipelining-Interleaving techniques. A linear phase requires digital filter realizations with Finite Impulse Response (FIR filters. On the other hand, a drawback of FIR filters applications is a low computational efficiency, especially in applications such as filter sharpening techniques, because this technique uses processing the data by repeated passes through the same filter. Computational efficiency of FIR filters can be significantly improved by using some of the multirate techniques, and such a degree of computation savings cannot be achieved in multirate implementations of IIR (Infinite Impulse Response filters. This paper shows the realization of a filter sharpening method with FIR filters combined with frequency masking and PI (Pipelining-Interleaving technique in order to effectively realize the filter with improved characteristic. This realization at the same time keeps the good features of FIR filters such as the linear phase characteristic.

  7. The Factors Affecting the Sensitivity of the Ultrasonic Inter-Modulation Technique

    International Nuclear Information System (INIS)

    Courtney, C. R. P.; Drinkwater, B. W.; Neild, S. A.; Wilcox, P. D.

    2007-01-01

    A global non-destructive testing technique for detecting cracks in metal parts has been developed and the factors affecting its sensitivity investigated. A sample is excited at very-high-order modes of vibration at two frequencies and the frequency mixing measured. Experiments with fatigue-cracked steel beams demonstrate that these defects produce a strong mixing effect and that the signal relating to the frequency mixing is sensitive to the length of the crack. The sensitivity is also shown to be reliant on the modes of vibration used

  8. Under-Frequency Load Shedding Technique Considering Event-Based for an Islanded Distribution Network

    Directory of Open Access Journals (Sweden)

    Hasmaini Mohamad

    2016-06-01

    Full Text Available One of the biggest challenge for an islanding operation is to sustain the frequency stability. A large power imbalance following islanding would cause under-frequency, hence an appropriate control is required to shed certain amount of load. The main objective of this research is to develop an adaptive under-frequency load shedding (UFLS technique for an islanding system. The technique is designed considering an event-based which includes the moment system is islanded and a tripping of any DG unit during islanding operation. A disturbance magnitude is calculated to determine the amount of load to be shed. The technique is modeled by using PSCAD simulation tool. A simulation studies on a distribution network with mini hydro generation is carried out to evaluate the UFLS model. It is performed under different load condition: peak and base load. Results show that the load shedding technique have successfully shed certain amount of load and stabilized the system frequency.

  9. Mic it! microphones, microphone techniques, and their impact on the final mix

    CERN Document Server

    Corbett, Ian

    2014-01-01

    Capture great sound in the first place, and spend less time ""fixing it in the mix"" with Ian Corbett's Mic It! Microphones, Microphone Techniques, and Their Impact on the Final Mix. With his expert guidance, you'll quickly understand essential audio concepts as they relate to microphones and mic techniques, and learn how to apply them to your recording situation. Whether you only ever buy one microphone, are equipping a studio on a budget, or have a vast selection of great mics to use, you'll learn to better use whatever tools you have. Mic It! gives you the background to design and discover

  10. On the Berry-Esséen bound of frequency polygons for ϕ-mixing samples.

    Science.gov (United States)

    Huang, Gan-Ji; Xing, Guodong

    2017-01-01

    Under some mild assumptions, the Berry-Esséen bound of frequency polygons for ϕ -mixing samples is presented. By the bound derived, we obtain the corresponding convergence rate of uniformly asymptotic normality, which is nearly [Formula: see text] under the given conditions.

  11. Quantum control of multi-wave mixing

    CERN Document Server

    Zhang, Yanpeng; Xiao, Min

    2013-01-01

    Multi-wave mixing gives rise to new frequency components due to the interaction of light signals with a suitable nonlinear medium. In this book a systematic framework for the control of these processes is used to lead readers through a plethora of related effects and techniques.

  12. Low-frequency scaling of the standard and mixed magnetic field and Müller integral equations

    KAUST Repository

    Bogaert, Ignace; Cools, Kristof; Andriulli, Francesco P.; Bagci, Hakan

    2014-01-01

    The standard and mixed discretizations for the magnetic field integral equation (MFIE) and the Müller integral equation (MUIE) are investigated in the context of low-frequency (LF) scattering problems involving simply connected scatterers

  13. Serial recall, word frequency, and mixed lists: the influence of item arrangement.

    Science.gov (United States)

    Miller, Leonie M; Roodenrys, Steven

    2012-11-01

    Studies of the effect of word frequency in the serial recall task show that lists of high-frequency words are better recalled than lists of low-frequency words; however, when high- and low-frequency words are alternated within a list, there is no difference in the level of recall for the two types of words, and recall is intermediate between lists of pure frequency. This pattern has been argued to arise from the development of a network of activated long-term representations of list items that support the redintegration of all list items in a nondirectional and nonspecific way. More recently, it has been proposed that the frequency effect might be a product of the coarticulation of items at word boundaries and their influence on rehearsal rather than a consequence of memory representations. The current work examines recall performance in mixed lists of an equal number of high- and low-frequency items arranged in contiguous segments (i.e., HHHLLL and LLLHHH), under quiet and articulatory suppression conditions, to test whether the effect is (a) nondirectional and (b) dependent on articulatory processes. These experiments demonstrate that neither explanation is satisfactory, although the results suggest that the effect is mnemonic. A language-based approach to short-term memory is favored with emphasis on the role of speech production processes at output.

  14. New technique for fabrication of high frequency piezoelectric Micromachined Ultrasound Transducers

    DEFF Research Database (Denmark)

    Pedersen, T; Thomsen, Erik Vilain; Zawada, T

    2008-01-01

    A novel technique for fabrication of linear arrays of high frequency piezoelectric Micromachined Ultrasound Transducers (pMUT) on silicon substrates is presented. Piezoelectric elements are formed by deposition of PZT ((PbZrxTi1-x)O3) into etched features of the silicon substrate such that the de......A novel technique for fabrication of linear arrays of high frequency piezoelectric Micromachined Ultrasound Transducers (pMUT) on silicon substrates is presented. Piezoelectric elements are formed by deposition of PZT ((PbZrxTi1-x)O3) into etched features of the silicon substrate...

  15. Frequency-Shifted Interferometry — A Versatile Fiber-Optic Sensing Technique

    Directory of Open Access Journals (Sweden)

    Fei Ye

    2014-06-01

    Full Text Available Fiber-optic sensing is a field that is developing at a fast pace. Novel fiber-optic sensor designs and sensing principles constantly open doors for new opportunities. In this paper, we review a fiber-optic sensing technique developed in our research group called frequency-shifted interferometry (FSI. This technique uses a continuous-wave light source, an optical frequency shifter, and a slow detector. We discuss the operation principles of several FSI implementations and show their applications in fiber length and dispersion measurement, locating weak reflections along a fiber link, fiber-optic sensor multiplexing, and high-sensitivity cavity ring-down measurement. Detailed analysis of FSI system parameters is also presented.

  16. Digital instantaneous frequency measurement technique utilising high-speed ADC’s and FPGA’s

    CSIR Research Space (South Africa)

    Herselman, PL

    2006-02-27

    Full Text Available This paper presents the Digital Instantaneous Frequency Measurement (DIFM) technique, which can measure the carrier frequency of a received waveform within a fraction of a microsecond. The resulting frequency range, resolution and accuracy...

  17. Frequency of mixed onychomycosis with total nail dystrophy in patients attended in a Guatemalan Dermatology Center

    OpenAIRE

    Martínez-Herrera, Erick; Schlager-Ospino, Herbert; Torres-Guerrero, Edoardo; Porras-López, Carlos; Betancourt, Laura Ramos; Camarena, Stefanie Arroyo; Arenas, Roberto

    2018-01-01

    Abstract Introduction: Onychomycosis are fungal nail infections that can be caused by dermatophytes, non-dermatophytic molds and yeasts, which are capable of breaking down keratin. Mixed onychomycosis are a controversial subject and they are the outcome of the combination of two dermatophytes, dermatophytes/nondermatophytic molds or dermatophytes/yeast. Objetives: To determine the frequency of total dystrophic onychomycosis caused by more than one etiological agent (mixed onychomycosis) in ...

  18. Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems

    Science.gov (United States)

    Chen, Ming; He, Jing; Cao, Zizheng; Tang, Jin; Chen, Lin; Wu, Xian

    2014-09-01

    In this paper, we propose and experimentally demonstrate a symbol synchronization and sampling frequency synchronization techniques in real-time direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) system, over 100-km standard single mode fiber (SSMF) using a cost-effective directly modulated distributed feedback (DFB) laser. The experiment results show that the proposed symbol synchronization based on training sequence (TS) has a low complexity and high accuracy even at a sampling frequency offset (SFO) of 5000-ppm. Meanwhile, the proposed pilot-assisted sampling frequency synchronization between digital-to-analog converter (DAC) and analog-to-digital converter (ADC) is capable of estimating SFOs with an accuracy of technique can also compensate SFO effects within a small residual SFO caused by deviation of SFO estimation and low-precision or unstable clock source. The two synchronization techniques are suitable for high-speed DDO-OFDM transmission systems.

  19. Fuzzy interval Finite Element/Statistical Energy Analysis for mid-frequency analysis of built-up systems with mixed fuzzy and interval parameters

    Science.gov (United States)

    Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan

    2016-10-01

    This paper introduces mixed fuzzy and interval parametric uncertainties into the FE components of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model for mid-frequency analysis of built-up systems, thus an uncertain ensemble combining non-parametric with mixed fuzzy and interval parametric uncertainties comes into being. A fuzzy interval Finite Element/Statistical Energy Analysis (FIFE/SEA) framework is proposed to obtain the uncertain responses of built-up systems, which are described as intervals with fuzzy bounds, termed as fuzzy-bounded intervals (FBIs) in this paper. Based on the level-cut technique, a first-order fuzzy interval perturbation FE/SEA (FFIPFE/SEA) and a second-order fuzzy interval perturbation FE/SEA method (SFIPFE/SEA) are developed to handle the mixed parametric uncertainties efficiently. FFIPFE/SEA approximates the response functions by the first-order Taylor series, while SFIPFE/SEA improves the accuracy by considering the second-order items of Taylor series, in which all the mixed second-order items are neglected. To further improve the accuracy, a Chebyshev fuzzy interval method (CFIM) is proposed, in which the Chebyshev polynomials is used to approximate the response functions. The FBIs are eventually reconstructed by assembling the extrema solutions at all cut levels. Numerical results on two built-up systems verify the effectiveness of the proposed methods.

  20. A Model of High-Frequency Self-Mixing in Double-Barrier Rectifier

    Science.gov (United States)

    Palma, Fabrizio; Rao, R.

    2018-03-01

    In this paper, a new model of the frequency dependence of the double-barrier THz rectifier is presented. The new structure is of interest because it can be realized by CMOS image sensor technology. Its application in a complex field such as that of THz receivers requires the availability of an analytical model, which is reliable and able to highlight the dependence on the parameters of the physical structure. The model is based on the hydrodynamic semiconductor equations, solved in the small signal approximation. The model depicts the mechanisms of the THz modulation of the charge in the depleted regions of the double-barrier device and explains the self-mixing process, the frequency dependence, and the detection capability of the structure. The model thus substantially improves the analytical models of the THz rectification available in literature, mainly based on lamped equivalent circuits.

  1. Domain Immersion Technique And Free Surface Computations Applied To Extrusion And Mixing Processes

    Science.gov (United States)

    Valette, Rudy; Vergnes, Bruno; Basset, Olivier; Coupez, Thierry

    2007-04-01

    This work focuses on the development of numerical techniques devoted to the simulation of mixing processes of complex fluids such as twin-screw extrusion or batch mixing. In mixing process simulation, the absence of symmetry of the moving boundaries (the screws or the rotors) implies that their rigid body motion has to be taken into account by using a special treatment. We therefore use a mesh immersion technique (MIT), which consists in using a P1+/P1-based (MINI-element) mixed finite element method for solving the velocity-pressure problem and then solving the problem in the whole barrel cavity by imposing a rigid motion (rotation) to nodes found located inside the so called immersed domain, each subdomain (screw, rotor) being represented by a surface CAD mesh (or its mathematical equation in simple cases). The independent meshes are immersed into a unique backgound computational mesh by computing the distance function to their boundaries. Intersections of meshes are accounted for, allowing to compute a fill factor usable as for the VOF methodology. This technique, combined with the use of parallel computing, allows to compute the time-dependent flow of generalized Newtonian fluids including yield stress fluids in a complex system such as a twin screw extruder, including moving free surfaces, which are treated by a "level set" and Hamilton-Jacobi method.

  2. A mixed finite element domain decomposition method for nearly elastic wave equations in the frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xiaobing [Univ. of Tennessee, Knoxville, TN (United States)

    1996-12-31

    A non-overlapping domain decomposition iterative method is proposed and analyzed for mixed finite element methods for a sequence of noncoercive elliptic systems with radiation boundary conditions. These differential systems describe the motion of a nearly elastic solid in the frequency domain. The convergence of the iterative procedure is demonstrated and the rate of convergence is derived for the case when the domain is decomposed into subdomains in which each subdomain consists of an individual element associated with the mixed finite elements. The hybridization of mixed finite element methods plays a important role in the construction of the discrete procedure.

  3. Complex sparse spatial filter for decoding mixed frequency and phase coded steady-state visually evoked potentials.

    Science.gov (United States)

    Morikawa, Naoki; Tanaka, Toshihisa; Islam, Md Rabiul

    2018-07-01

    Mixed frequency and phase coding (FPC) can achieve the significant increase of the number of commands in steady-state visual evoked potential-based brain-computer interface (SSVEP-BCI). However, the inconsistent phases of the SSVEP over channels in a trial and the existence of non-contributing channels due to noise effects can decrease accurate detection of stimulus frequency. We propose a novel command detection method based on a complex sparse spatial filter (CSSF) by solving ℓ 1 - and ℓ 2,1 -regularization problems for a mixed-coded SSVEP-BCI. In particular, ℓ 2,1 -regularization (aka group sparsification) can lead to the rejection of electrodes that are not contributing to the SSVEP detection. A calibration data based canonical correlation analysis (CCA) and CSSF with ℓ 1 - and ℓ 2,1 -regularization cases were demonstrated for a 16-target stimuli with eleven subjects. The results of statistical test suggest that the proposed method with ℓ 1 - and ℓ 2,1 -regularization significantly achieved the highest ITR. The proposed approaches do not need any reference signals, automatically select prominent channels, and reduce the computational cost compared to the other mixed frequency-phase coding (FPC)-based BCIs. The experimental results suggested that the proposed method can be usable implementing BCI effectively with reduce visual fatigue. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. High field high frequency EPR techniques and their application to single molecule magnets

    International Nuclear Information System (INIS)

    Edwards, R.S.; Hill, S.; Goy, P.; Wylde, R.; Takahashi, S.

    2004-01-01

    We present details of a new high-field/high-frequency EPR technique, and its application to measurements of single-molecule magnets (SMMs). By using a quasi-optical set-up and microwave sources covering a continuous frequency range from 170 to 600 GHz, in conjunction with a millimetre-wave vector network analyser, we are able to measure EPR to high magnetic fields. For example, a g=2 system will exhibit EPR at about 14 T at a frequency of 400 GHz. We illustrate the technique by presenting details of recent high-frequency experiments on several SMMs which are variations of the well-known SMM Mn 12 -Ac. This material has a spin ground state of S=10 and large uniaxial anisotropy, hence frequencies above 300 GHz are required in order to observe EPR from the ground state

  5. CMOS integrated avalanche photodiodes and frequency-mixing optical sensor front end for portable NIR spectroscopy instruments.

    Science.gov (United States)

    Yun, Ruida; Sthalekar, Chirag; Joyner, Valencia M

    2011-01-01

    This paper presents the design and measurement results of two avalanche photodiode structures (APDs) and a novel frequency-mixing transimpedance amplifier (TIA), which are key building blocks towards a monolithically integrated optical sensor front end for near-infrared (NIR) spectroscopy applications. Two different APD structures are fabricated in an unmodified 0.18 \\im CMOS process, one with a shallow trench isolation (STI) guard ring and the other with a P-well guard ring. The APDs are characterized in linear mode. The STI bounded APD demonstrates better performance and exhibits 3.78 A/W responsivity at a wavelength of 690 nm and bias voltage of 10.55 V. The frequency-mixing TIA (FM-TIA) employs a T-feedback network incorporating gate-controlled transistors for resistance modulation, enabling the simultaneous down-conversion and amplification of the high frequency modulated photodiode (PD) current. The TIA achieves 92 dS Ω conversion gain with 0.5 V modulating voltage. The measured IIP(3) is 10.6/M. The amplifier together with the 50 Ω output buffer draws 23 mA from a1.8 V power supply.

  6. Bias-Flip Technique for Frequency Tuning of Piezo-Electric Energy Harvesting Devices

    Directory of Open Access Journals (Sweden)

    Jianguo Ma

    2013-06-01

    Full Text Available Devices that harvest electrical energy from mechanical vibrations have the problem that the frequency of the source vibration is often not matched to the resonant frequency of the energy harvesting device. Manufacturing tolerances make it difficult to match the Energy Harvesting Device (EHD resonant frequency to the source vibration frequency, and the source vibration frequency may vary with time. Previous work has recognized that it is possible to tune the resonant frequency of an EHD using a tunable, reactive impedance at the output of the device. The present paper develops the theory of electrical tuning, and proposes the Bias-Flip (BF technique, to implement this tunable, reactive impedance.

  7. Frequency conversion through spontaneous degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Olausson, Christina Bjarnal Thulin

    2014-01-01

    Frequency conversion through spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers. Different FWM processes are observed, phasematching between fiber modes of orthogonal polarization, intermodal phasematching across bandgaps, and intramodal...

  8. Study of axial mixing, holdup and slip velocity of dispersed phase in a pulsed sieve plate extraction column using radiotracer technique.

    Science.gov (United States)

    Ghiyas Ud Din; Imran Rafiq Chughtai; Hameed Inayat, Mansoor; Hussain Khan, Iqbal

    2009-01-01

    Axial mixing, holdup and slip velocity of dispersed phase which are parameters of fundamental importance in the design and operation of liquid-liquid extraction pulsed sieve plate columns have been investigated. Experiments for residence time distribution (RTD) analysis have been carried out for a range of pulsation frequency and amplitude in a liquid-liquid extraction pulsed sieve plate column with water as dispersed and kerosene as continuous phase using radiotracer technique. The column was operated in emulsion region and (99m)Tc in the form of sodium pertechnetate eluted from a (99)Mo/(99m)Tc generator was used to trace the dispersed phase. Axial dispersed plug flow model with open-open boundary condition and two points measurement method was used to simulate the hydrodynamics of dispersed phase. It has been observed that the axial mixing and holdup of dispersed phase increases with increase in pulsation frequency and amplitude until a maximum value is achieved while slip velocity decreases with increase in pulsation frequency and amplitude until it approaches a minimum value. Short lived and low energy radiotracer (99m)Tc in the form of sodium pertechnetate was found to be a good water tracer to study the hydrodynamics of a liquid-liquid extraction pulsed sieve plate column operating with two immiscible liquids, water and kerosene. Axial dispersed plug flow model with open-open boundary condition was found to be a suitable model to describe the hydrodynamics of dispersed phase in the pulsed sieve plate extraction column.

  9. Study of axial mixing, holdup and slip velocity of dispersed phase in a pulsed sieve plate extraction column using radiotracer technique

    International Nuclear Information System (INIS)

    Ghiyas Ud Din; Imran Rafiq Chughtai; Mansoor Hameed Inayat; Iqbal Hussain Khan

    2009-01-01

    Axial mixing, holdup and slip velocity of dispersed phase which are parameters of fundamental importance in the design and operation of liquid-liquid extraction pulsed sieve plate columns have been investigated. Experiments for residence time distribution (RTD) analysis have been carried out for a range of pulsation frequency and amplitude in a liquid-liquid extraction pulsed sieve plate column with water as dispersed and kerosene as continuous phase using radiotracer technique. The column was operated in emulsion region and 99m Tc in the form of sodium pertechnetate eluted from a 99 Mo/ 99m Tc generator was used to trace the dispersed phase. Axial dispersed plug flow model with open-open boundary condition and two points measurement method was used to simulate the hydrodynamics of dispersed phase. It has been observed that the axial mixing and holdup of dispersed phase increases with increase in pulsation frequency and amplitude until a maximum value is achieved while slip velocity decreases with increase in pulsation frequency and amplitude until it approaches a minimum value. Short lived and low energy radiotracer 99m Tc in the form of sodium pertechnetate was found to be a good water tracer to study the hydrodynamics of a liquid-liquid extraction pulsed sieve plate column operating with two immiscible liquids, water and kerosene. Axial dispersed plug flow model with open-open boundary condition was found to be a suitable model to describe the hydrodynamics of dispersed phase in the pulsed sieve plate extraction column.

  10. Radio frequency phototube and optical clock: High resolution, high rate and highly stable single photon timing technique

    Energy Technology Data Exchange (ETDEWEB)

    Margaryan, Amur

    2011-10-01

    A new timing technique for single photons based on the radio frequency phototube and optical clock or femtosecond optical frequency comb generator is proposed. The technique has a 20 ps resolution for single photons, is capable of operating with MHz frequencies and achieving 10 fs instability level.

  11. Simultaneous rotational and vibrational CARS generation through a multiple-frequency combination technique

    International Nuclear Information System (INIS)

    Alden, M.; Bengtsson, P.E.; Edner, H.

    1987-01-01

    One most promising laser technique for probing combustion processes is coherent anti-Stokes Raman scattering (CARS), which due to its coherent nature and signal strength is applied in several real-world applications. Until today almost all CARS experiments are based on probing the population of molecular vibrational energy levels. However, there are several reasons rotational CARS, i.e. probing of rotational energy levels, may provide a complement to or even a better choice than vibrational CARS. Recently an alternative way to produce rotational CARS spectra is proposed, which is based on a multiple-frequency combination technique. The energy-level diagram for this process is presented. Two dye laser beams at ω/sub r/, and one fix frequency laser beam at ω/sub g/ are employed. ω/sub r,1/ and ω/sub r,2/ are two frequencies of many possible pairs with a frequency difference matching a rotational transition in a molecule. The excitation induced by ω/sub r,1/ and ω/sub r,2/ is then scattered by the narrowband ω/sub g/ beam resulting in a CARS beam ω/sub g/ at ω/sub g/ + ω/sub r,1/ - ω/sub r,2/. An interesting feature with this technique is that it is possible to generate simultaneously a rotational and vibrational CARS spectrum by using a double-folded boxcars phase matching approach. The authors believe that the proposed technique for producing rotational and vibration CARS spectra could be of interest, e.g., when measuring in highly turbulent flows. In this case the rotational CARS spectra could use for temperature measurements in the cooler parts, whereas vibrational CARS are to be preferred when measuring in the hotter parts

  12. Diversity Techniques for Single-Carrier Packet Retransmissions over Frequency-Selective Channels

    Directory of Open Access Journals (Sweden)

    Assimi Abdel-Nasser

    2009-01-01

    Full Text Available In data packet communication systems over multipath frequency-selective channels, hybrid automatic repeat request (HARQ protocols are usually used in order to ensure data reliability. For single-carrier packet transmission in slow fading environment, an identical retransmission of the same packet, due to a decoding failure, does not fully exploit the available time diversity in retransmission-based HARQ protocols. In this paper, we compare two transmit diversity techniques, namely, cyclic frequency-shift diversity and bit-interleaving diversity. Both techniques can be integrated in the HARQ scheme in order to improve the performance of the joint detector. Their performance in terms of pairwise error probability is investigated using maximum likelihood detection and decoding. The impact of the channel memory and the modulation order on the performance gain is emphasized. In practice, we use low complexity linear filter-based equalization which can be efficiently implemented in the frequency domain. The use of iterative equalization and decoding is also considered. The performance gain in terms of frame error rate and data throughput is evaluated by numerical simulations.

  13. Observation of $B^0_s$-$\\bar{B}^0_s$ mixing and measurement of mixing frequencies using semileptonic B decays

    CERN Document Server

    Aaij, R; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Andrianala, F; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hess, M; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Martynov, A; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palczewski, T; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skwarnicki, T; Smith, N A; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Van Dijk, M; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vervink, K; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-12-04

    The $B^0_s$ and $B^0$ mixing frequencies, $\\Delta m_s$ and $\\Delta m_d$, are measured using a data sample corresponding to an integrated luminosity of 1.0 fb$^{-1}$ collected by the LHCb experiment in $pp$ collisions at a centre of mass energy of 7 TeV during 2011. Around 1.8x10$^{6}$ candidate events are selected of the type $B^0_{(s)} \\to D^-_{(s)} \\mu^+$(+anything), where about half are from peaking and combinatorial backgrounds. To determine the $B$ decay times, a correction is required for the momentum carried by missing particles, which is performed using a simulation-based statistical method. Associated production of muons or mesons allows us to tag the initial-state flavour and so to resolve oscillations due to mixing. We obtain \\begin{align} &\\Delta m_s = ( 17.93 \\pm 0.22\\,\\textrm{(stat)} \\pm 0.15\\,\\textrm{(syst)}) \\,\\textrm{ps}^{-1} \

  14. Parametric effects of word frequency effect in memory for mixed frequency lists

    OpenAIRE

    Lohnas, Lynn J.; Kahana, Michael J.

    2013-01-01

    The word frequency paradox refers to the finding that low frequency words are better recognized than high frequency words yet high frequency words are better recalled than low frequency words. Rather than comparing separate groups of low and high frequency words, we sought to quantify the functional relation between word frequency and memory performance across the broad range of frequencies typically used in episodic memory experiments. Here we report that both low frequency and high frequenc...

  15. Effect of chromium substitution on the dielectric properties of mixed Ni-Zn ferrite prepared by WOWS sol–gel technique

    International Nuclear Information System (INIS)

    Ashtar, M.; Munir, A.; Anis-ur-Rehman, M.; Maqsood, A.

    2016-01-01

    Graphical abstract: Variation of AC conductivity (σ AC ) as a function of natural log of angular frequency (lnω) for Ni 0.5 Zn 0.5 Fe 2-x Cr x O 4 nanoferrites at room temperature. - Highlights: • Cr doped mixed Ni-Zn ferrites were successfully synthesized by a newly developed WOWS sol gel technique. • The specific surface area and specific surface area to volume ratio increased with decrease in particle size. • The resonance peaks appeared in dielectric loss graphs, shifting towards low frequency with the increase in Cr concentration. • The prepared samples have the lowest values of the dielectric constant. • The dielectric constant were observed to be inversely proportional to square root of the AC resistivity. - Abstract: Cr +3 doped Ni-Zn nanoferrite samples with composition Ni 0.5 Zn 0.5 Fe 2-x Cr x O 4 (x = 0.1, 0.2, 0.3, 0.4) were synthesized With Out Water and Surfactant (WOWS) sol-gel technique. The structural, morphological and dielectric properties of the samples were investigated. The lattice constant, crystallite size, theoretical density and porosity of each sample were obtained from X-ray diffraction (XRD) data. The specific surface area and specific surface area to volume ratio increased with the decrease in the size of Cr +3 doped Ni-Zn ferrite nanoparticles, as the concentration of Cr +3 increased. The SEM analysis revealed that the particles were of nano size and of spherical shape. The dielectric parameters such as dielectric constant (ε′) and dielectric loss (tanδ) of all the samples as a function of frequency at room temperature were measured. The AC conductivity (σ AC ) was determined from the dielectric parameters, which showed increasing trend with the rise in frequency.

  16. Development and application of a novel technique for the measurement of mixing between subchannels

    International Nuclear Information System (INIS)

    Silin, Nicolas

    2004-01-01

    In this thesis we present the development of an experimental method for the measurement of mixing between coupled subchannels through the use of thermal traces.As this method can be applied to compact heterogeneous subchannels with high water flows and with presence of inserts and appendages, it is specially suited for the development of nuclear fuel elements, while showing advantages over other mixing measurement methods.The development of the method included the conceptual analysis of feasibility and application frame.Then the components necessary for the application of the technique to an experimental rig were developed and constructed, the most relevant being the high heat flux superficial heaters and a robust, low intrusivity, and a temperature measurement system with a precision better than 3mK.Preliminary tests were carried out to verify the technique, these included sensibility studies to flow rate and input power changes, settling time measurements, long term stability measurements and so forth. Also different error sources and their relative importance were analyzed.First, the method was applied to a channel of annular flow and then to a channel with three parallel rods generating four subchannels.Latter, measurements of inter subchannel mixing and mixing promoter performance assessment were carried out.The method developed allowed the proper measurement of the main parameters related to mixing, showing great potential as a design tool for nuclear fuel elements

  17. High-frequency internal waves and thick bottom mixed layers observed by gliders in the Gulf Stream

    Science.gov (United States)

    Todd, Robert E.

    2017-06-01

    Autonomous underwater gliders are conducting high-resolution surveys within the Gulf Stream along the U.S. East Coast. Glider surveys reveal two mechanisms by which energy is extracted from the Gulf Stream as it flows over the Blake Plateau, a portion of the outer continental shelf between Florida and North Carolina where bottom depths are less than 1000 m. Internal waves with vertical velocities exceeding 0.1 m s-1 and frequencies just below the local buoyancy frequency are routinely found over the Blake Plateau, particularly near the Charleston Bump, a prominent topographic feature. These waves are likely internal lee waves generated by the subinertial Gulf Stream flow over the irregular bathymetry of the outer continental shelf. Bottom mixed layers with O(100) m thickness are also frequently encountered; these thick bottom mixed layers likely form in the lee of topography due to enhanced turbulence generated by O(1) m s-1 near-bottom flows.

  18. Clock-Frequency Switching Technique for Energy Saving of Microcontroller Unit (MCU-Based Sensor Node

    Directory of Open Access Journals (Sweden)

    Pumin Duangmanee

    2018-05-01

    Full Text Available In this paper; a technique is proposed for reducing the energy consumption of microcontroller-based sensor nodes by switching the operating clock between low and high frequencies. The proposed concept is motivated by the fact that if the application codes of the microcontroller unit (MCU consist of no-wait state instruction sets, it consumes less energy when it operates with a higher frequency. When the application code of the MCU consists of wait instruction sets; e.g., a wait acknowledge signal, it switches to low clock frequency. The experimental results confirm that the proposed technique can reduce the MCU energy consumption up to 66.9%.

  19. Effect of mixing techniques on bacterial attachment and disinfection time of polyether impression material.

    Science.gov (United States)

    Guler, Umut; Budak, Yasemin; Ruh, Emrah; Ocal, Yesim; Canay, Senay; Akyon, Yakut

    2013-09-01

    The aim of this study was 2-fold. The first aim was to evaluate the effects of mixing technique (hand-mixing or auto-mixing) on bacterial attachment to polyether impression materials. The second aim was to determine whether bacterial attachment to these materials was affected by length of exposure to disinfection solutions. Polyether impression material samples (n = 144) were prepared by hand-mixing or auto-mixing. Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa were used in testing. After incubation, the bacterial colonies were counted and then disinfectant solution was applied. The effect of disinfection solution was evaluated just after the polymerization of impression material and 30 min after polymerization. Differences in adherence of bacteria to the samples prepared by hand-mixing and to those prepared by auto-mixing were assessed by Kruskal-Wallis and Mann-Whitney U-tests. For evaluating the efficiency of the disinfectant, Kruskal-Wallis multiple comparisons test was used. E. coli counts were higher in hand-mixed materials (P 2.394). The methods used for mixing polyether impression material did not affect bacterial attachment to impression surfaces. In contrast, the disinfection procedure greatly affects decontamination of the impression surface.

  20. Performance Evaluation of Frequency Transform Based Block Classification of Compound Image Segmentation Techniques

    Science.gov (United States)

    Selwyn, Ebenezer Juliet; Florinabel, D. Jemi

    2018-04-01

    Compound image segmentation plays a vital role in the compression of computer screen images. Computer screen images are images which are mixed with textual, graphical, or pictorial contents. In this paper, we present a comparison of two transform based block classification of compound images based on metrics like speed of classification, precision and recall rate. Block based classification approaches normally divide the compound images into fixed size blocks of non-overlapping in nature. Then frequency transform like Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) are applied over each block. Mean and standard deviation are computed for each 8 × 8 block and are used as features set to classify the compound images into text/graphics and picture/background block. The classification accuracy of block classification based segmentation techniques are measured by evaluation metrics like precision and recall rate. Compound images of smooth background and complex background images containing text of varying size, colour and orientation are considered for testing. Experimental evidence shows that the DWT based segmentation provides significant improvement in recall rate and precision rate approximately 2.3% than DCT based segmentation with an increase in block classification time for both smooth and complex background images.

  1. Effect of Turning Frequency on Composting of Empty Fruit Bunches Mixed with Activated Liquid Organic Fertilizer

    Science.gov (United States)

    Trisakti, B.; Lubis, J.; Husaini, T.; Irvan

    2017-03-01

    Composting of Empty Fruit Bunch (EFB) by mixing it with activated liquid organic fertilizer (ALOF) is an alternative way in the utilization of solid waste produced from the palm oil mill (POM). This research was to determine the effect of turning frequency on the rate of composting of EFB mixed with ALOF in a basket composter. The composting process was started with cutting the EFB into pieces with size 1-3 cm, inserting the EFB pieces into basket composter (33 cm W × 28 cm L × 40 cm H), and adding ALOF until moisture content (MC) in the range of 55-65%. During composting, the MC was maintained at 55-65% range by adding the ALOF. The turning frequency on each composter was varied i.e. once in every 1, 2, 3, 4, and 5 days. The parameters analysed during composting were temperature, pH, MC, compost weight, water holding capacity (WHC), CN ratio, and the quality of the final compost. Composting was carried out for 40 days and the best result obtained at turning frequency was 3 days. The best compost characteristic was pH 9.0; MC 57.24%; WHC 76%; CN ratio 12.15%; P 0.58%; and K 0. 95%.

  2. Sub-Frequency Interval Approach in Electromechanical Impedance Technique for Concrete Structure Health Monitoring

    Directory of Open Access Journals (Sweden)

    Bahador Sabet Divsholi

    2010-12-01

    Full Text Available The electromechanical (EM impedance technique using piezoelectric lead zirconate titanate (PZT transducers for structural health monitoring (SHM has attracted considerable attention in various engineering fields. In the conventional EM impedance technique, the EM admittance of a PZT transducer is used as a damage indicator. Statistical analysis methods such as root mean square deviation (RMSD have been employed to associate the damage level with the changes in the EM admittance signatures, but it is difficult to determine the location of damage using such methods. This paper proposes a new approach by dividing the large frequency (30–400 kHz range into sub-frequency intervals and calculating their respective RMSD values. The RMSD of the sub-frequency intervals (RMSD-S will be used to study the severity and location of damage. An experiment is carried out on a real size concrete structure subjected to artificial damage. It is observed that damage close to the PZT changes the high frequency range RMSD-S significantly, while the damage far away from the PZT changes the RMSD-S in the low frequency range significantly. The relationship between the frequency range and the PZT sensing region is also presented. Finally, a damage identification scheme is proposed to estimate the location and severity of damage in concrete structures.

  3. A forward model and conjugate gradient inversion technique for low-frequency ultrasonic imaging.

    Science.gov (United States)

    van Dongen, Koen W A; Wright, William M D

    2006-10-01

    Emerging methods of hyperthermia cancer treatment require noninvasive temperature monitoring, and ultrasonic techniques show promise in this regard. Various tomographic algorithms are available that reconstruct sound speed or contrast profiles, which can be related to temperature distribution. The requirement of a high enough frequency for adequate spatial resolution and a low enough frequency for adequate tissue penetration is a difficult compromise. In this study, the feasibility of using low frequency ultrasound for imaging and temperature monitoring was investigated. The transient probing wave field had a bandwidth spanning the frequency range 2.5-320.5 kHz. The results from a forward model which computed the propagation and scattering of low-frequency acoustic pressure and velocity wave fields were used to compare three imaging methods formulated within the Born approximation, representing two main types of reconstruction. The first uses Fourier techniques to reconstruct sound-speed profiles from projection or Radon data based on optical ray theory, seen as an asymptotical limit for comparison. The second uses backpropagation and conjugate gradient inversion methods based on acoustical wave theory. The results show that the accuracy in localization was 2.5 mm or better when using low frequencies and the conjugate gradient inversion scheme, which could be used for temperature monitoring.

  4. Four-Wave Mixing of a Laser and Its Frequency-Doubled Version in a Multimode Optical Fiber

    Directory of Open Access Journals (Sweden)

    Hamed Pourbeyram

    2015-08-01

    Full Text Available It is shown that it is possible to couple a laser beam and its frequency-doubled daughter into a multimode optical fiber through the four-wave mixing nonlinear process and generate a new wavelength. The frequency-doubled daughter can be generated in an external crystal with a large second order nonlinearity. It is argued that while this possibility is within the design parameter range of conventional multimode optical fibers, it necessitates a lower-bound for the core-cladding refractive index contrast of the multimode optical fiber.

  5. Text mixing shapes the anatomy of rank-frequency distributions

    Science.gov (United States)

    Williams, Jake Ryland; Bagrow, James P.; Danforth, Christopher M.; Dodds, Peter Sheridan

    2015-05-01

    Natural languages are full of rules and exceptions. One of the most famous quantitative rules is Zipf's law, which states that the frequency of occurrence of a word is approximately inversely proportional to its rank. Though this "law" of ranks has been found to hold across disparate texts and forms of data, analyses of increasingly large corpora since the late 1990s have revealed the existence of two scaling regimes. These regimes have thus far been explained by a hypothesis suggesting a separability of languages into core and noncore lexica. Here we present and defend an alternative hypothesis that the two scaling regimes result from the act of aggregating texts. We observe that text mixing leads to an effective decay of word introduction, which we show provides accurate predictions of the location and severity of breaks in scaling. Upon examining large corpora from 10 languages in the Project Gutenberg eBooks collection, we find emphatic empirical support for the universality of our claim.

  6. Forecasting Costa Rican Quarterly Growth with Mixed-frequency Models

    Directory of Open Access Journals (Sweden)

    Adolfo Rodríguez Vargas

    2014-11-01

    Full Text Available We assess the utility of mixed-frequency models to forecast the quarterly growth rate of Costa Rican real GDP: we estimate bridge and MiDaS models with several lag lengths using information of the IMAE and compute forecasts (horizons of 0-4 quarters which are compared between themselves, with those of ARIMA models and with those resulting from forecast combinations. Combining the most accurate forecasts is most useful when forecasting in real time, whereas MiDaS forecasts are the best-performing overall: as the forecasting horizon increases, their precisionis affected relatively little; their success rates in predicting the direction of changes in the growth rate are stable, and several forecastsremain unbiased. In particular, forecasts computed from simple MiDaS with 9 and 12 lags are unbiased at all horizons and information sets assessed, and show the highest number of significant differences in forecasting ability in comparison with all other models.

  7. Enhanced mixing characteristics of GaAs/3,4,9,10-perylenetetracarboxylic dianhydride Schottky diodes

    International Nuclear Information System (INIS)

    Ginev, G; Riedl, T; Parashkov, R; Johannes, H-H; Kowalsky, W

    2003-01-01

    The influences on the mixing properties of GaAs Schottky diodes containing an organic 3,4,9,10-perylenetetracarboxylic dianhydride layer were investigated. The frequency conversion ability of the devices was determined by considering the I-V characteristics and high frequency reflection parameters by using a mixing technique operated in the microwave range. The results show that an organic layer with 20 nm thickness enhances the diode conversion gain for mixing applications by 3 dB and lowers the device operating bias voltage by 0.1 V. This process is related to the specific properties of the organic semiconductor and resulting organic-inorganic interface

  8. A Measurement of the lifetime and mixing frequency of neutral B mesons with semileptonic decays in the BABAR detector

    CERN Document Server

    Cheng, C H

    2003-01-01

    The neutral B meson, consisting of a b quark and an anti-d quark, can mix (oscillate) to its own anti-particle through second-order weak interactions. The measurement of the mixing frequency can constrain the quark mixing matrix in the Standard Model of particle physics. The PEP-II B-factory at the Stanford Linear Accelerator Center provides a very large data sample that enables us to make measurements with much higher precisions than previous measurements, and to probe physics beyond the Standard Model. The lifetime of the neutral B meson tau sub B sub 0 and the B sup 0 -(bar B) sup 0 mixing frequency DELTA m sub d are measured with a sample of approximately 14,000 exclusively reconstructed B sup 0 -> D* sup - (ell) sup +nu sub e sub l sub l signal events, selected from 23 million B(bar B) pairs recorded at the UPSILON(4S)resonance with the BABAR detector at the asymmetric-energy e sup + e sup - collider, PEP-II. The decay position of the exclusively reconstructed B is determined by the charged tracks in the...

  9. Preparation of mixed oxides (Th,U)O2: an evaluation of different techniques

    International Nuclear Information System (INIS)

    Ayoub, Jamil Mahmoud Said

    1999-01-01

    An evaluation of different ways of obtaining (Th-U)O 2 mixed oxides is described. Coprecipitation, mechanical mixing of uranium and thorium powders, and the sol-gel technique were studied in order to get a large spectrum of knowledge of the process performance. The use of ultrasonic waves for the homogenization of the hydroxide mixture and microwave heating for powder drying was also investigated. Sol-gel showed the best results regarding the specific area for obtained samples. Oxide drying by microwave is an effective method to get mixed oxides for fuel fabrication. Neither coprecipitation nor mechanical mixing of the thorium and uranium oxide powders is suitable for the purpose. The obtained data are less than 70% than those achieved when sol-gel process is performed. Electronic microscopy, X-ray fluorescence and diffraction, thermogravimetry, specific gravidity and specific area determination (BET) used for sample characterization were convenient and accomplished good results. (author)

  10. Optimum cycle frequencies in hand-rim wheelchair propulsion. Wheelchair propulsion technique

    NARCIS (Netherlands)

    van der Woude, L H; Veeger, DirkJan (H. E. J.); Rozendal, R H; Sargeant, A J

    1989-01-01

    To study the effect of different cycle frequencies on cardio-respiratory responses and propulsion technique in hand-rim wheelchair propulsion, experienced wheelchair sportsmen (WS group; n = 6) and non-wheelchair users (NW group; n = 6) performed wheelchair exercise tests on a motor-driven

  11. Measurement of Mixing Rate between Fuel Subchannels: Development of a new Experimental Technique

    International Nuclear Information System (INIS)

    Silin, Nicolas; Barbero, Jose; Bubach, Ernesto; Juanico, Luis

    2000-01-01

    A superficial heater of nickel applied over a ceramic substrate was designed and constructed, together with a system of high sensitivity to measure temperature differentials. The use of both techniques was evaluated and it might allow for the wider use of the method of differential thermal analysis to quantify the turbulent mixing between coupled hydraulic subchannels in fuel elements. Even more, the method presents important advantages as compared to the more complicated techniques known (laser Doppler anemometry)

  12. Synthesis of MgO Nanoparticles by Solvent Mixed Spray Pyrolysis Technique for Optical Investigation

    OpenAIRE

    Nemade, K. R.; Waghuley, S. A.

    2014-01-01

    Solvent mixed spray pyrolysis technique has attracted a global interest in the synthesis of nanomaterials since reactions can be run in liquid state without further heating. Magnesium oxide (MgO) is a category of the practical semiconductor metal oxides, which is extensively used as catalyst and optical material. In the present study, MgO nanoparticles were successfully synthesized using a solvent mixed spray pyrolysis. The X-ray diffraction pattern confirmed the formation of MgO phase with a...

  13. GPS data processing of networks with mixed single- and dual-frequency receivers for deformation monitoring

    Science.gov (United States)

    Zou, X.; Deng, Z.; Ge, M.; Dick, G.; Jiang, W.; Liu, J.

    2010-07-01

    In order to obtain crustal deformations of higher spatial resolution, existing GPS networks must be densified. This densification can be carried out using single-frequency receivers at moderate costs. However, ionospheric delay handling is required in the data processing. We adapt the Satellite-specific Epoch-differenced Ionospheric Delay model (SEID) for GPS networks with mixed single- and dual-frequency receivers. The SEID model is modified to utilize the observations from the three nearest dual-frequency reference stations in order to avoid contaminations from more remote stations. As data of only three stations are used, an efficient missing data constructing approach with polynomial fitting is implemented to minimize data losses. Data from large scale reference networks extended with single-frequency receivers can now be processed, based on the adapted SEID model. A new data processing scheme is developed in order to make use of existing GPS data processing software packages without any modifications. This processing scheme is evaluated using a sub-network of the German SAPOS network. The results verify that the new scheme provides an efficient way to densify existing GPS networks with single-frequency receivers.

  14. An offset tone based gain stabilization technique for mixed-signal RF measurement systems

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Gopal, E-mail: gjos@barc.gov.in [BARC, Mumbai 400085 (India); Motiwala, Paresh D.; Randale, G.D.; Singh, Pitamber [BARC, Mumbai 400085 (India); Agarwal, Vivek; Kumar, Girish [IIT Bombay, Powai, Mumbai 400076 (India)

    2015-09-21

    This paper describes a gain stabilization technique for a RF signal measurement system. A sinusoidal signal of known amplitude, phase and close enough in frequency is added to the main, to be measured RF signal at the input of the analog section. The system stabilizes this offset tone in the digital domain, as it is sampled at the output of the analog section. This process generates a correction factor needed to stabilize the magnitude of the gain of the analog section for the main RF signal. With the help of a simple calibration procedure, the absolute amplitude of the main RF signal can be measured. The technique is especially suited for a system that processes signals around a single frequency, employs direct signal conversion into the digital domain, and processes subsequent steps in an FPGA. The inherent parallel signal processing in an FPGA-based implementation allows a real time stabilization of the gain. The effectiveness of the technique is derived from the fact, that the gain stabilization stamped to the main RF signal measurement branch requires only a few components in the system to be inherently stable. A test setup, along with experimental results is presented from the field of RF instrumentation for particle accelerators. Due to the availability of a phase synchronized RF reference signal in these systems, the measured phase difference between the main RF and the RF reference is also stabilized using this technique. A scheme of the signal processing is presented, where a moving average filter has been used to filter out not only the unwanted frequencies, but also to separate the main RF signal from the offset tone signal. This is achieved by a suitable choice of sampling and offset tone frequencies. The presented signal processing scheme is suitable to a variety of RF measurement applications.

  15. Optical frequency upconversion technique for transmission of wireless MIMO-type signals over optical fiber.

    Science.gov (United States)

    Shaddad, R Q; Mohammad, A B; Al-Gailani, S A; Al-Hetar, A M

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength.

  16. Frequency of mixed onychomycosis with total nail dystrophy in patients attended in a Guatemalan Dermatology Center

    Directory of Open Access Journals (Sweden)

    Erick Martinez Herrera

    2018-03-01

    Full Text Available Introduction: Onychomycosis are fungal nail infections that can be caused by dermatophytes, non-dermatophytic molds and yeasts, which are capable of breaking down keratin. Mixed onychomycosis are a controversial subject and they are the outcome of the combination of two dermatophytes, dermatophytes/nondermatophytic molds or dermatophytes/yeast. Objetives: To determine the frequency of total dystrophic onychomycosis caused by more than one etiological agent (mixed onychomycosis in outpatients from a Dermatologic Center in Guatemala and to establish the characteristics associated with this fungal infection. Methods: Prospective observational study from August to December of 2012. Nail samples were obtained from patients with total dystrophic onychomycosis to identify the causal agents by culture in Sabouraud dextrose and Mycosel® agar. Results: 32 of 130 patients had mixed onychomycosis. 68.5% were associated to tinea pedis. The most common association was between T. rubrum + Candida, T. rubrum + M. canis and T. rubrum + opportunist fungi. Conclusions: Mixed onychomycosis represent 25% of the total dystrophic onychomycosis in Guatemala. We observed an important relationship between diabetes and the main association was T. rubrum with Candida spp.

  17. A robust multi-frequency mixing algorithm for suppression of rivet signal in GMR inspection of riveted structures

    Science.gov (United States)

    Safdernejad, Morteza S.; Karpenko, Oleksii; Ye, Chaofeng; Udpa, Lalita; Udpa, Satish

    2016-02-01

    The advent of Giant Magneto-Resistive (GMR) technology permits development of novel highly sensitive array probes for Eddy Current (EC) inspection of multi-layer riveted structures. Multi-frequency GMR measurements with different EC pene-tration depths show promise for detection of bottom layer notches at fastener sites. However, the distortion of the induced magnetic field due to flaws is dominated by the strong fastener signal, which makes defect detection and classification a challenging prob-lem. This issue is more pronounced for ferromagnetic fasteners that concentrate most of the magnetic flux. In the present work, a novel multi-frequency mixing algorithm is proposed to suppress rivet signal response and enhance defect detection capability of the GMR array probe. The algorithm is baseline-free and does not require any assumptions about the sample geometry being inspected. Fastener signal suppression is based upon the random sample consensus (RANSAC) method, which iteratively estimates parameters of a mathematical model from a set of observed data with outliers. Bottom layer defects at fastener site are simulated as EDM notches of different length. Performance of the proposed multi-frequency mixing approach is evaluated on finite element data and experimental GMR measurements obtained with unidirectional planar current excitation. Initial results are promising demonstrating the feasibility of the approach.

  18. Prediction of Frequency for Simulation of Asphalt Mix Fatigue Tests Using MARS and ANN

    Directory of Open Access Journals (Sweden)

    Ali Reza Ghanizadeh

    2014-01-01

    Full Text Available Fatigue life of asphalt mixes in laboratory tests is commonly determined by applying a sinusoidal or haversine waveform with specific frequency. The pavement structure and loading conditions affect the shape and the frequency of tensile response pulses at the bottom of asphalt layer. This paper introduces two methods for predicting the loading frequency in laboratory asphalt fatigue tests for better simulation of field conditions. Five thousand (5000 four-layered pavement sections were analyzed and stress and strain response pulses in both longitudinal and transverse directions was determined. After fitting the haversine function to the response pulses by the concept of equal-energy pulse, the effective length of the response pulses were determined. Two methods including Multivariate Adaptive Regression Splines (MARS and Artificial Neural Network (ANN methods were then employed to predict the effective length (i.e., frequency of tensile stress and strain pulses in longitudinal and transverse directions based on haversine waveform. It is indicated that, under controlled stress and strain modes, both methods (MARS and ANN are capable of predicting the frequency of loading in HMA fatigue tests with very good accuracy. The accuracy of ANN method is, however, more than MARS method. It is furthermore shown that the results of the present study can be generalized to sinusoidal waveform by a simple equation.

  19. Novel Method for Sizing Metallic Bottom Crack Depth Using Multi-frequency Alternating Current Potential Drop Technique

    Directory of Open Access Journals (Sweden)

    Li Yuting

    2015-10-01

    Full Text Available Potential drop techniques are of two types: the direct current potential drop (DCPD technique and alternating current potential drop (ACPD technique, and both of them are used in nondestructive testing. ACPD, as a kind of valid method in sizing metal cracks, has been applied to evaluate metal structures. However, our review of most available approaches revealed that some improvements can be done in measuring depth of metal bottom crack by means of ACPD, such as accuracy and sensitivity of shallow crack. This paper studied a novel method which utilized the slope of voltage ratio-frequency curve to solve bottom crack depth by using a simple mathematic equation based on finite element analysis. It is found that voltage ratio varies linearly with frequency in the range of 5-15 Hz; this range is slightly higher than the equivalent frequency and lower than semi-permeable frequency. Simulation and experiment show that the novel method can measure the bottom crack depth accurately.

  20. Novel Method for Sizing Metallic Bottom Crack Depth Using Multi-frequency Alternating Current Potential Drop Technique

    Science.gov (United States)

    Li, Yuting; Gan, Fangji; Wan, Zhengjun; Liao, Junbi; Li, Wenqiang

    2015-10-01

    Potential drop techniques are of two types: the direct current potential drop (DCPD) technique and alternating current potential drop (ACPD) technique, and both of them are used in nondestructive testing. ACPD, as a kind of valid method in sizing metal cracks, has been applied to evaluate metal structures. However, our review of most available approaches revealed that some improvements can be done in measuring depth of metal bottom crack by means of ACPD, such as accuracy and sensitivity of shallow crack. This paper studied a novel method which utilized the slope of voltage ratio-frequency curve to solve bottom crack depth by using a simple mathematic equation based on finite element analysis. It is found that voltage ratio varies linearly with frequency in the range of 5-15 Hz; this range is slightly higher than the equivalent frequency and lower than semi-permeable frequency. Simulation and experiment show that the novel method can measure the bottom crack depth accurately.

  1. A technique to identify some typical radio frequency interference using support vector machine

    Science.gov (United States)

    Wang, Yuanchao; Li, Mingtao; Li, Dawei; Zheng, Jianhua

    2017-07-01

    In this paper, we present a technique to automatically identify some typical radio frequency interference from pulsar surveys using support vector machine. The technique has been tested by candidates. In these experiments, to get features of SVM, we use principal component analysis for mosaic plots and its classification accuracy is 96.9%; while we use mathematical morphology operation for smog plots and horizontal stripes plots and its classification accuracy is 86%. The technique is simple, high accurate and useful.

  2. The low-frequency sound power measuring technique for an underwater source in a non-anechoic tank

    Science.gov (United States)

    Zhang, Yi-Ming; Tang, Rui; Li, Qi; Shang, Da-Jing

    2018-03-01

    In order to determine the radiated sound power of an underwater source below the Schroeder cut-off frequency in a non-anechoic tank, a low-frequency extension measuring technique is proposed. This technique is based on a unique relationship between the transmission characteristics of the enclosed field and those of the free field, which can be obtained as a correction term based on previous measurements of a known simple source. The radiated sound power of an unknown underwater source in the free field can thereby be obtained accurately from measurements in a non-anechoic tank. To verify the validity of the proposed technique, a mathematical model of the enclosed field is established using normal-mode theory, and the relationship between the transmission characteristics of the enclosed and free fields is obtained. The radiated sound power of an underwater transducer source is tested in a glass tank using the proposed low-frequency extension measuring technique. Compared with the free field, the radiated sound power level of the narrowband spectrum deviation is found to be less than 3 dB, and the 1/3 octave spectrum deviation is found to be less than 1 dB. The proposed testing technique can be used not only to extend the low-frequency applications of non-anechoic tanks, but also for measurement of radiated sound power from complicated sources in non-anechoic tanks.

  3. Security and reliability analysis of diversity combining techniques in SIMO mixed RF/FSO with multiple users

    KAUST Repository

    Abd El-Malek, Ahmed H.; Salhab, Anas M.; Zummo, Salam A.; Alouini, Mohamed-Slim

    2016-01-01

    In this paper, we investigate the impact of different diversity combining techniques on the security and reliability analysis of a single-input-multiple-output (SIMO) mixed radio frequency (RF)/free space optical (FSO) relay network with opportunistic multiuser scheduling. In this model, the user of the best channel among multiple users communicates with a multiple antennas relay node over an RF link, and then, the relay node employs amplify-and-forward (AF) protocol in retransmitting the user data to the destination over an FSO link. Moreover, the authorized transmission is assumed to be attacked by a single passive RF eavesdropper equipped with multiple antennas. Therefore, the system security reliability trade-off analysis is investigated. Closed-form expressions for the system outage probability and the system intercept probability are derived. Then, the newly derived expressions are simplified to their asymptotic formulas at the high signal-to-noise- ratio (SNR) region. Numerical results are presented to validate the achieved exact and asymptotic results and to illustrate the impact of various system parameters on the system performance. © 2016 IEEE.

  4. Security and reliability analysis of diversity combining techniques in SIMO mixed RF/FSO with multiple users

    KAUST Repository

    Abd El-Malek, Ahmed H.

    2016-07-26

    In this paper, we investigate the impact of different diversity combining techniques on the security and reliability analysis of a single-input-multiple-output (SIMO) mixed radio frequency (RF)/free space optical (FSO) relay network with opportunistic multiuser scheduling. In this model, the user of the best channel among multiple users communicates with a multiple antennas relay node over an RF link, and then, the relay node employs amplify-and-forward (AF) protocol in retransmitting the user data to the destination over an FSO link. Moreover, the authorized transmission is assumed to be attacked by a single passive RF eavesdropper equipped with multiple antennas. Therefore, the system security reliability trade-off analysis is investigated. Closed-form expressions for the system outage probability and the system intercept probability are derived. Then, the newly derived expressions are simplified to their asymptotic formulas at the high signal-to-noise- ratio (SNR) region. Numerical results are presented to validate the achieved exact and asymptotic results and to illustrate the impact of various system parameters on the system performance. © 2016 IEEE.

  5. Characterisation of rotavirus strains among hospitalised and non-hospitalised children in Guinea-Bissau, 2002 A high frequency of mixed infections with serotype G8

    DEFF Research Database (Denmark)

    Nielsen, Nete Munk; Eugen-Olsen, Jesper; Aaby, Peter

    2005-01-01

    In a previous community-based cohort study in Guinea-Bissau from 1996 to 1998, characterisation of rotavirus strains showed a high frequency of less common genotypes such as G8 and G9 and a high proportion of mixed infections.......In a previous community-based cohort study in Guinea-Bissau from 1996 to 1998, characterisation of rotavirus strains showed a high frequency of less common genotypes such as G8 and G9 and a high proportion of mixed infections....

  6. The effect of river fluctuation frequencies and amplitudes on the extent of the river-aquifer mixing zone and on the dilution of substances

    Science.gov (United States)

    Derx, Julia; Blaschke, Alfred Paul

    2010-05-01

    The river-aquifer mixing zone has been identified in the past by both observations in the field and by applying coupled groundwater models. Its implications are important e.g. for macrozoobenthos or fish eggs, which react sensitively to changes in flow velocities. The groundwater quality is also strongly affected due to the transport of substances from the river into the aquifer and can be altered due to these mixing processes. At a field site east of Vienna, we recently found that the Danube River surface level fluctuations induce circular flow patterns within the mixing zone and cause a greater dispersion of substances dissolved in groundwater. This has possibly important implications for river management, for example, in the case of anthropogenic river level fluctuations. In this paper, we investigate these findings more generally for groundwater-river interaction with different river fluctuation amplitudes and frequencies. We apply an unsaturated-saturated groundwater model and perform an extensive systematic model analysis to identify the effects of river fluctuation frequencies and amplitudes on the extent and location of the mixing zone. Thereby we investigate the influence of the river bank slopes, the hydraulic aquifer properties and the exchange conditions (infiltration and groundwater exfiltration). The estimated extents and locations of the mixing zone are presented for a range of river fluctuation frequencies and amplitudes, for aquifers of high to low permeabilities, for flat and steep riverbanks and for infiltration and groundwater exfiltration. These parameters demonstrate the significant correlation to the extent of the mixing zone and can help to give an estimate for management strategies. Furthermore, we give an overview of how much a non-reactive substance dissolved in groundwater is diluted, due to dispersion within the mixing zone, for the full set of scenarios performed during our systematic model analysis.

  7. Wind Turbines Support Techniques during Frequency Drops — Energy Utilization Comparison

    Directory of Open Access Journals (Sweden)

    Ayman B. Attya

    2014-08-01

    Full Text Available The supportive role of wind turbines during frequency drops is still not clear enough, although there are many proposed algorithms. Most of the offered techniques make the wind turbine deviates from optimum power generation operation to special operation modes, to guarantee the availability of reasonable power support, when the system suffers frequency deviations. This paper summarizes the most dominant support algorithms and derives wind turbine power curves for each one. It also conducts a comparison from the point of view of wasted energy, with respect to optimum power generation. The authors insure the advantage of a frequency support algorithm, they previously presented, as it achieved lower amounts of wasted energy. This analysis is performed in two locations that are promising candidates for hosting wind farms in Egypt. Additionally, two different types of wind turbines from two different manufacturers are integrated. Matlab and Simulink are the implemented simulation environments.

  8. Highly efficient single-pass sum frequency generation by cascaded nonlinear crystals

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Andersen, Peter E.; Jensen, Ole Bjarlin

    2015-01-01

    , despite differences in the phase relations of the involved fields. An unprecedented 5.5 W of continuous-wave diffraction-limited green light is generated from the single-pass sum frequency mixing of two diode lasers in two periodically poled nonlinear crystals (conversion efficiency 50%). The technique......The cascading of nonlinear crystals has been established as a simple method to greatly increase the conversion efficiency of single-pass second-harmonic generation compared to a single-crystal scheme. Here, we show for the first time that the technique can be extended to sum frequency generation...... is generally applicable and can be applied to any combination of fundamental wavelengths and nonlinear crystals....

  9. A quadrature frequency converter in a feedback loop of high frequency cavities in the Proton Synchrotron at CERN.

    CERN Document Server

    Truszczynski, T

    This thesis presents the author’s work during the internship at the European Laboratory for Particle Physics (CERN). The quadrature frequency converter is one of the modules that has been developed to upgrade the Proton Synchrotron RF system. Basic information about accelerators, fundamentals of IQ signal representation, mixing and phase shifting techniques are introduced. The development process of the converter is presented with the design details and measurements of the prototype board.

  10. Performance prediction of hot mix asphalt from asphalt binders

    International Nuclear Information System (INIS)

    Hafeez, I.; Kamal, M.A.; Shahzad, Q.; Bashir, N.; Ahadi, M.R.

    2012-01-01

    Asphalt binder being a high weight hydrocarbon contains asphaltene and maltene and is widely used as cementing materials in the construction of flexible pavements. Its performance in hot mix asphalt also depends on combining with different proportions of aggregates. The main objective of this study was to characterize asphalt cement rheological behavior and to investigate the influence of asphalt on asphalt-aggregate mixtures prepared with virgin binders and using polymers. Binder rheology and mixtures stiffness were determined under a range of cyclic loadings and temperature conditions. Master curves were developed for the evaluation of relationship between parameters like complex modulus and phase angle at different frequencies. Horizontal shift factors were also computed to determine time and temperature response of binders and mixes. The results showed that the stiffness of both the binder and the mixes depends on temperature and frequency of load. Polymer modified binder is least susceptible to temperature variations as compared to other virgin asphalt cement. Performance of asphalt mixtures can be predicted from those of asphalt binders using the master curve technique. (author)

  11. The associations among family meal frequency, food preparation frequency, self-efficacy for cooking, and food preparation techniques in children and adolescents.

    Science.gov (United States)

    Woodruff, Sarah J; Kirby, Ashley R

    2013-01-01

    The purpose of this study was to describe family dinner frequency (FDF) by food preparation frequency (prep), self-efficacy for cooking (SE), and food preparation techniques (techniques) among a small sample in southwestern Ontario, Canada. A cross-sectional survey was administered under the supervision of the research team. After-school programs, sports programs, and 1 elementary school. The sample included 145 participants (41% boys, 59% girls) in grades 4-8. Demographics, prep, SE, techniques, FDF, and family meal attitudes and behaviors. Exploratory 1-way ANOVA and chi-square analyses were used. An ordinal regression analysis was used to determine the associations between FDF with descriptor variables (sex, grade, and ethnicity) and prep, SE, techniques, FDF, and family meal attitudes and behaviors (P < .05). Approximately 59% reported family dinners on 6 or 7 days per week. Half of participants were involved with prep 1-6 times per week. Mean SE was 25.3 (scale 1-32), and girls performed more techniques than boys (P = .02). Participants with greater SE (odds ratio = 1.15) and higher family meal attitudes and behaviors (odds ratio = 1.15) were more likely to have a higher FDF. Future health promotion strategies for family meals should aim at increasing children's and adolescents' SE. Copyright © 2013 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  12. A 200 mA CMOS low-dropout regulator with double frequency compensation techniques for SoC applications

    International Nuclear Information System (INIS)

    Lei Qianqian; Chen Zhiming; Gong Zheng; Shi Yin

    2011-01-01

    This paper presents a 200 mA low-dropout (LDO) linear regulator using two modified techniques for frequency compensation. One technique is that the error amplifier uses a common source stage with variable load, which is controlled by the output current, is served as the second stage for a stable frequency response. The other technique is that the LDO uses a pole-zero tracking compensation technique at the error amplifier to achieve a good frequency response. The proposed circuit was fabricated and tested in HJTC 0.18 μm CMOS technology. The designed LDO linear regulator works under the input voltage of 2.8–5 V and provides up to 200 mA load current for an output voltage of 1.8 V. The total error of the output voltage due to line and load variation is less than 0.015%. The LDO die area is 630 × 550 μm 2 and the quiescent current is 130 μA. (semiconductor integrated circuits)

  13. Application of Linear Quadratic Gaussian and Coefficient Diagram Techniques to Distributed Load Frequency Control of Power Systems

    Directory of Open Access Journals (Sweden)

    Tarek Hassan Mohamed

    2015-12-01

    Full Text Available This paper presented both the linear quadratic Gaussian technique (LQG and the coefficient diagram method (CDM as load frequency controllers in a multi-area power system to deal with the problem of variations in system parameters and load demand change. The full states of the system including the area frequency deviation have been estimated using the Kalman filter technique. The efficiency of the proposed control method has been checked using a digital simulation. Simulation results indicated that, with the proposed CDM + LQG technique, the system is robust in the face of parameter uncertainties and load disturbances. A comparison between the proposed technique and other schemes is carried out, confirming the superiority of the proposed CDM + LQG technique.

  14. Ignition and monitoring technique for plasma processing of multicell superconducting radio-frequency cavities

    Science.gov (United States)

    Doleans, Marc

    2016-12-01

    An in-situ plasma processing technique has been developed at the Spallation Neutron Source (SNS) to improve the performance of the superconducting radio-frequency (SRF) cavities in operation. The technique uses a low-density reactive neon-oxygen plasma at room-temperature to improve the surface work function, to help remove adsorbed gases on the RF surface, and to reduce its secondary emission yield. SNS SRF cavities have six accelerating cells and the plasma typically ignites in the cell where the electric field is the highest. This article details the technique to ignite and monitor the plasma in each cell of the SNS cavities.

  15. Influence of Traffic Vehicles Against Ground Fundamental Frequency Prediction using Ambient Vibration Technique

    Science.gov (United States)

    Kamarudin, A. F.; Noh, M. S. Md; Mokhatar, S. N.; Anuar, M. A. Mohd; Ibrahim, A.; Ibrahim, Z.; Daud, M. E.

    2018-04-01

    Ambient vibration (AV) technique is widely used nowadays for ground fundamental frequency prediction. This technique is easy, quick, non-destructive, less operator required and reliable result. The input motions of ambient vibration are originally collected from surrounding natural and artificial excitations. But, careful data acquisition controlled must be implemented to reduce the intrusion of short period noise that could imply the quality of frequency prediction of an investigated site. In this study, investigation on the primary noise intrusion under peak (morning, afternoon and evening) and off peak (early morning) traffic flows (only 8 meter from sensor to road shoulder) against the stability and quality of ground fundamental frequency prediction were carried out. None of specific standard is available for AV data acquisition and processing. Thus, some field and processing parameters recommended by previous studies and guideline were considered. Two units of 1 Hz tri-axial seismometer sensor were closely positioned in front of the main entrance Universiti Tun Hussein Onn Malaysia. 15 minutes of recording length were taken during peak and off peak periods of traffic flows. All passing vehicles were counted and grouped into four classes. Three components of ambient vibration time series recorded in the North-South: NS, East-West: EW and vertical: UD directions were automatically computed into Horizontal to Vertical Spectral Ratio (HVSR), by using open source software of GEOPSY for fundamental ground frequency, Fo determination. Single sharp peak pattern of HVSR curves have been obtained at peak frequencies between 1.33 to 1.38 Hz which classified under soft to dense soil classification. Even identical HVSR curves pattern with close frequencies prediction were obtained under both periods of AV measurement, however the total numbers of stable and quality windows selected for HVSR computation were significantly different but both have satisfied the requirement

  16. A Technique for Real-Time Ionospheric Ranging Error Correction Based On Radar Dual-Frequency Detection

    Science.gov (United States)

    Lyu, Jiang-Tao; Zhou, Chen

    2017-12-01

    Ionospheric refraction is one of the principal error sources for limiting the accuracy of radar systems for space target detection. High-accuracy measurement of the ionospheric electron density along the propagation path of radar wave is the most important procedure for the ionospheric refraction correction. Traditionally, the ionospheric model and the ionospheric detection instruments, like ionosonde or GPS receivers, are employed for obtaining the electron density. However, both methods are not capable of satisfying the requirements of correction accuracy for the advanced space target radar system. In this study, we propose a novel technique for ionospheric refraction correction based on radar dual-frequency detection. Radar target range measurements at two adjacent frequencies are utilized for calculating the electron density integral exactly along the propagation path of the radar wave, which can generate accurate ionospheric range correction. The implementation of radar dual-frequency detection is validated by a P band radar located in midlatitude China. The experimental results present that the accuracy of this novel technique is more accurate than the traditional ionospheric model correction. The technique proposed in this study is very promising for the high-accuracy radar detection and tracking of objects in geospace.

  17. The frequency analysis particle resolution technique of 6LiI(Eu) scintillation detector

    International Nuclear Information System (INIS)

    Duan Shaojie

    1995-01-01

    To measure the distribution and rate of tritium production by neutron in a 6 LiD sphere, the 6 LiI(Eu) scintillation detector was used. In the measurement, the frequency analysis particle resolution technique was used. The experiment was completed perfectly

  18. In-cylinder pressure-based direct techniques and time frequency analysis for combustion diagnostics in IC engines

    International Nuclear Information System (INIS)

    D’Ambrosio, S.; Ferrari, A.; Galleani, L.

    2015-01-01

    Highlights: • Direct pressure-based techniques have been applied successfully to spark-ignition engines. • The burned mass fraction of pressure-based techniques has been compared with that of 2- and 3-zone combustion models. • The time frequency analysis has been employed to simulate complex diesel combustion events. - Abstract: In-cylinder pressure measurement and analysis has historically been a key tool for off-line combustion diagnosis in internal combustion engines, but online applications for real-time condition monitoring and combustion management have recently become popular. The present investigation presents and compares different low computing-cost in-cylinder pressure based methods for the analyses of the main features of combustion, that is, the start of combustion, the end of combustion and the crankshaft angle that responds to half of the overall burned mass. The instantaneous pressure in the combustion chamber has been used as an input datum for the described analytical procedures and it has been measured by means of a standard piezoelectric transducer. Traditional pressure-based techniques have been shown to be able to predict the burned mass fraction time history more accurately in spark ignition engines than in diesel engines. The most suitable pressure-based techniques for both spark ignition and compression ignition engines have been chosen on the basis of the available experimental data. Time–frequency analysis has also been applied to the analysis of diesel combustion, which is richer in events than spark ignited combustion. Time frequency algorithms for the calculation of the mean instantaneous frequency are computationally efficient, allow the main events of the diesel combustion to be identified and provide the greatest benefits in the presence of multiple injection events. These algorithms can be optimized and applied to onboard diagnostics tools designed for real control, but can also be used as an advanced validation tool for

  19. Comparing the Titrations of Mixed-Acid Solutions Using Dropwise and Constant-Flow Techniques

    Science.gov (United States)

    Charlesworth, Paul; Seguin, Matthew J.; Chesney, David J.

    2003-11-01

    A mixed-acid solution containing hydrochloric and phosphoric acids was used to determine the error associated with performing a real-time titration. The results were compared against those obtained by performing the titration in a more traditional dropwise addition of titrant near the equivalence points. It was found that the real-time techniques resulted in significantly decreased analysis times while maintaining a low experimental error. The constant-flow techniques were implemented into two different levels of chemistry. It was found that students could successfully utilize the modified experiments. Problems associated with the techniques, major sources of error, and their solutions are discussed. In both cases, the use of the constant-flow setup has increased student recollection of key concepts, such as pKa determination, proper indicator choice, and recognizing the shape of specific titration curves by increasing student interest in the experiment.

  20. An efficient hybrid technique in RCS predictions of complex targets at high frequencies

    Science.gov (United States)

    Algar, María-Jesús; Lozano, Lorena; Moreno, Javier; González, Iván; Cátedra, Felipe

    2017-09-01

    Most computer codes in Radar Cross Section (RCS) prediction use Physical Optics (PO) and Physical theory of Diffraction (PTD) combined with Geometrical Optics (GO) and Geometrical Theory of Diffraction (GTD). The latter approaches are computationally cheaper and much more accurate for curved surfaces, but not applicable for the computation of the RCS of all surfaces of a complex object due to the presence of caustic problems in the analysis of concave surfaces or flat surfaces in the far field. The main contribution of this paper is the development of a hybrid method based on a new combination of two asymptotic techniques: GTD and PO, considering the advantages and avoiding the disadvantages of each of them. A very efficient and accurate method to analyze the RCS of complex structures at high frequencies is obtained with the new combination. The proposed new method has been validated comparing RCS results obtained for some simple cases using the proposed approach and RCS using the rigorous technique of Method of Moments (MoM). Some complex cases have been examined at high frequencies contrasting the results with PO. This study shows the accuracy and the efficiency of the hybrid method and its suitability for the computation of the RCS at really large and complex targets at high frequencies.

  1. Bioprinting of Cartilage and Skin Tissue Analogs Utilizing a Novel Passive Mixing Unit Technique for Bioink Precellularization

    Science.gov (United States)

    Thayer, Patrick Scott; Orrhult, Linnea Stridh; Martínez, Héctor

    2018-01-01

    Bioprinting is a powerful technique for the rapid and reproducible fabrication of constructs for tissue engineering applications. In this study, both cartilage and skin analogs were fabricated after bioink pre-cellularization utilizing a novel passive mixing unit technique. This technique was developed with the aim to simplify the steps involved in the mixing of a cell suspension into a highly viscous bioink. The resolution of filaments deposited through bioprinting necessitates the assurance of uniformity in cell distribution prior to printing to avoid the deposition of regions without cells or retention of large cell clumps that can clog the needle. We demonstrate the ability to rapidly blend a cell suspension with a bioink prior to bioprinting of both cartilage and skin analogs. Both tissue analogs could be cultured for up to 4 weeks. Histological analysis demonstrated both cell viability and deposition of tissue specific extracellular matrix (ECM) markers such as glycosaminoglycans (GAGs) and collagen I respectively. PMID:29364216

  2. Design of a GaP/Si composite waveguide for CW terahertz wave generation via difference frequency mixing.

    Science.gov (United States)

    Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka

    2014-06-10

    We design a GaP/Si composite waveguide to achieve efficient terahertz (THz) wave generation under collinear phase-matched difference frequency mixing (DFM) between near-infrared light sources. This waveguide structure provides a strong mode confinement of both near-infrared sources and THz wave, resulting in an efficient mode overlapping. The numerical results show that the waveguide can produce guided THz wave (5.93 THz) with a power conversion efficiency of 6.6×10(-4)  W(-1). This value is larger than previously obtained with the bulk GaP crystal: 0.5×10(-9)  W(-1) [J. Lightwave Technol.27, 3057 (2009)]. Our proposed composite waveguide can be achieved by bridging the telecom wavelength and THz frequency region.

  3. A Method for Dynamically Selecting the Best Frequency Hopping Technique in Industrial Wireless Sensor Network Applications.

    Science.gov (United States)

    Fernández de Gorostiza, Erlantz; Berzosa, Jorge; Mabe, Jon; Cortiñas, Roberto

    2018-02-23

    Industrial wireless applications often share the communication channel with other wireless technologies and communication protocols. This coexistence produces interferences and transmission errors which require appropriate mechanisms to manage retransmissions. Nevertheless, these mechanisms increase the network latency and overhead due to the retransmissions. Thus, the loss of data packets and the measures to handle them produce an undesirable drop in the QoS and hinder the overall robustness and energy efficiency of the network. Interference avoidance mechanisms, such as frequency hopping techniques, reduce the need for retransmissions due to interferences but they are often tailored to specific scenarios and are not easily adapted to other use cases. On the other hand, the total absence of interference avoidance mechanisms introduces a security risk because the communication channel may be intentionally attacked and interfered with to hinder or totally block it. In this paper we propose a method for supporting the design of communication solutions under dynamic channel interference conditions and we implement dynamic management policies for frequency hopping technique and channel selection at runtime. The method considers several standard frequency hopping techniques and quality metrics, and the quality and status of the available frequency channels to propose the best combined solution to minimize the side effects of interferences. A simulation tool has been developed and used in this work to validate the method.

  4. Application of non-intrusive geophysical techniques at the Mixed Waste Landfill, Technical Area 3, Sandia National Laboratories, New Mexico

    International Nuclear Information System (INIS)

    Peace, J.L.; Goering, T.J.

    1996-03-01

    The Environmental Restoration Project at Sandia National Laboratories, New Mexico is tasked with assessment and remediation of the Mixed Waste Landfill in Technical Area 3. The Mixed Waste Landfill is an inactive radioactive and mixed waste disposal site. The landfill contains disposal pits and trenches of questionable location and dimension. Non-intrusive geophysical techniques were utilized to provide an effective means of determining the location and dimension of suspected waste disposal trenches before Resource Conservation and Recovery Act intrusive assessment activities were initiated. Geophysical instruments selected for this investigation included a Geonics EM-31 ground conductivity meter, the new Geonics EM-61 high precision, time-domain metal detector, and a Geometrics 856 total field magnetometer. The results of these non-intrusive geophysical techniques were evaluated to enhance the efficiency and cost-effectiveness of future waste-site investigations at Environmental Restoration Project sites

  5. A technique for rocket-borne detection of electron bunching at megahertz frequencies

    International Nuclear Information System (INIS)

    Gough, M.P.

    1980-01-01

    Energetic electrons precipitating in the auroral ionosphere may be bunched at frequencies up to several megahertz as a result of local wave-particle interactions. A technique is described whereby this megahertz bunching can be observed using conventional rocket-borne energetic electron detectors counting at rates below 10 5 cps. Electron arrival time information is pre-processed on board the rocket and any bunching present can be realized by subsequent computer processing on the ground using only a modest data transmission rate from the rocket. Results of a pilot rocket experiment prove the value of the technique and lead on to formulating the design of a future experiment where the maximum amount of data processing is performed on the rocket. The technique should perform an important diagnostic role, helping us to understand the complex wave-particle interactions occurring in the auroral ionosphere. (orig.)

  6. Experimental approach to investigate the dynamics of mixing coolant flow in complex geometry using PIV and PLIF techniques

    Directory of Open Access Journals (Sweden)

    Hutli Ezddin

    2015-01-01

    Full Text Available The aim of this work is to investigate experimentally the increase of mixing phenomenon in a coolant flow in order to improve the heat transfer, the economical operation and the structural integrity of Light Water Reactors-Pressurized Water Reactors (LWRs-PWRs. Thus the parameters related to the heat transfer process in the system will be investigated. Data from a set of experiments, obtained by using high precision measurement techniques, Particle Image Velocimetry and Planar Laser-Induced Fluorescence (PIV and PLIF, respectively are to improve the basic understanding of turbulent mixing phenomenon and to provide data for CFD code validation. The coolant mixing phenomenon in the head part of a fuel assembly which includes spacer grids has been investigated (the fuel simulator has half-length of a VVER 440 reactor fuel. The two-dimensional velocity vector and temperature fields in the area of interest are obtained by PIV and PLIF technique, respectively. The measurements of the turbulent flow in the regular tube channel around the thermocouple proved that there is rotation and asymmetry in the coolant flow caused by the mixing grid and the geometrical asymmetry of the fuel bundle. Both PIV and PLIF results showed that at the level of the core exit thermocouple the coolant is homogeneous. The discrepancies that could exist between the outlet average temperature of the coolant and the temperature at in-core thermocouple were clarified. Results of the applied techniques showed that both of them can be used as good provider for data base and to validate CFD results.

  7. Monitoring cure of composite resins using frequency dependent electromagnetic sensing techniques

    Science.gov (United States)

    Kranbuehl, D. E.; Hoff, M. S.; Loos, A. C.; Freeman, W. T., Jr.; Eichinger, D. A.

    1988-01-01

    A nondestructive in situ measurement technique has been developed for monitoring and measuring the cure processing properties of composite resins. Frequency dependent electromagnetic sensors (FDEMS) were used to directly measure resin viscosity during cure. The effects of the cure cycle and resin aging on the viscosity during cure were investigated using the sensor. Viscosity measurements obtained using the sensor are compared with the viscosities calculated by the Loos-Springer cure process model. Good overall agreement was obtained except for the aged resin samples.

  8. Mixing of two co-directional Rayleigh surface waves in a nonlinear elastic material.

    Science.gov (United States)

    Morlock, Merlin B; Kim, Jin-Yeon; Jacobs, Laurence J; Qu, Jianmin

    2015-01-01

    The mixing of two co-directional, initially monochromatic Rayleigh surface waves in an isotropic, homogeneous, and nonlinear elastic solid is investigated using analytical, finite element method, and experimental approaches. The analytical investigations show that while the horizontal velocity component can form a shock wave, the vertical velocity component can form a pulse independent of the specific ratios of the fundamental frequencies and amplitudes that are mixed. This analytical model is then used to simulate the development of the fundamentals, second harmonics, and the sum and difference frequency components over the propagation distance. The analytical model is further extended to include diffraction effects in the parabolic approximation. Finally, the frequency and amplitude ratios of the fundamentals are identified which provide maximum amplitudes of the second harmonics as well as of the sum and difference frequency components, to help guide effective material characterization; this approach should make it possible to measure the acoustic nonlinearity of a solid not only with the second harmonics, but also with the sum and difference frequency components. Results of the analytical investigations are then confirmed using the finite element method and the experimental feasibility of the proposed technique is validated for an aluminum specimen.

  9. A digital instantaneous frequency measurement technique utilising high speed analogue to digital converters and field programmable gate arrays

    CSIR Research Space (South Africa)

    Herselman, PLR

    2007-09-01

    Full Text Available In modern information and sensor systems, the timely estimation of the carrier frequency of received signals is of critical importance. This paper presents a digital instantaneous frequency measurement (DIFM) technique, which can measure the carrier...

  10. The flotation and adsorption of mixed collectors on oxide and silicate minerals.

    Science.gov (United States)

    Xu, Longhua; Tian, Jia; Wu, Houqin; Lu, Zhongyuan; Sun, Wei; Hu, Yuehua

    2017-12-01

    The analysis of flotation and adsorption of mixed collectors on oxide and silicate minerals is of great importance for both industrial applications and theoretical research. Over the past years, significant progress has been achieved in understanding the adsorption of single collectors in micelles as well as at interfaces. By contrast, the self-assembly of mixed collectors at liquid/air and solid/liquid interfaces remains a developing area as a result of the complexity of the mixed systems involved and the limited availability of suitable analytical techniques. In this work, we systematically review the processes involved in the adsorption of mixed collectors onto micelles and at interface by examining four specific points, namely, theoretical background, factors that affect adsorption, analytical techniques, and self-assembly of mixed surfactants at the mineral/liquid interface. In the first part, the theoretical background of collector mixtures is introduced, together with several core solution theories, which are classified according to their application in the analysis of physicochemical properties of mixed collector systems. In the second part, we discuss the factors that can influence adsorption, including factors related to the structure of collectors and environmental conditions. We summarize their influence on the adsorption of mixed systems, with the objective to provide guidance on the progress achieved in this field to date. Advances in measurement techniques can greatly promote our understanding of adsorption processes. In the third part, therefore, modern techniques such as optical reflectometry, neutron scattering, neutron reflectometry, thermogravimetric analysis, fluorescence spectroscopy, ultrafiltration, atomic force microscopy, analytical ultracentrifugation, X-ray photoelectron spectroscopy, Vibrational Sum Frequency Generation Spectroscopy and molecular dynamics simulations are introduced in virtue of their application. Finally, focusing on

  11. Evaluation of frequency-dependent ultrasound attenuation in transparent medium using focused shadowgraph technique

    Science.gov (United States)

    Iijima, Yukina; Kudo, Nobuki

    2017-07-01

    Acoustic fields of a short-pulsed ultrasound propagating through a transparent medium with ultrasound attenuation were visualized by the focused shadowgraph technique. A brightness waveform and its spatial integrations were derived from a visualized field image and compared with a pressure waveform measured by a membrane hydrophone. The experimental results showed that first-order integration of the brightness wave has good agreement with the pressure waveforms. Frequency-dependent attenuation of the pulse propagating through castor oil was derived from brightness and pressure waveforms, and attenuation coefficients determined from focused shadowgraphy and hydrophone techniques showed good agreement. The results suggest the usefulness of the shadowgraph technique not only for the visualization of ultrasound fields but also for noncontact estimation of rough pressure waveforms and correct ultrasound attenuation.

  12. Simultaneously precise frequency transfer and time synchronization using feed-forward compensation technique via 120 km fiber link.

    Science.gov (United States)

    Chen, Xing; Lu, Jinlong; Cui, Yifan; Zhang, Jian; Lu, Xing; Tian, Xusheng; Ci, Cheng; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang

    2015-12-22

    Precision time synchronization between two remote sites is desired in many applications such as global positioning satellite systems, long-baseline interferometry, coherent radar detection and fundamental physics constant measurements. The recently developed frequency dissemination technologies based on optical fiber link have improved the transfer instability to the level of 10(-19)/day at remote location. Therefore it is possible to keep clock oscillation at remote locations continuously corrected, or to reproduce a "virtual" clock on the remote location. However the initial alignment and the correction of 1 pps timing signal from time to time are still required, besides the highly stabilized clock frequency transfer between distant locations. Here we demonstrate a time synchronization based on an ultra-stable frequency transfer system via 120-km commercial fiber link by transferring an optical frequency comb. Both the phase noise compensation in frequency dissemination and temporal basis alignment in time synchronization were implemented by a feed-forward digital compensation (FFDC) technique. The fractional frequency instability was measured to be 6.18 × 10(-20) at 2000 s. The timing deviation of time synchronization was measured to be 0.6 ps in 1500 s. This technique also can be applied in multi-node fiber network topology.

  13. Multiwatt-level continuous-wave midwave infrared generation using difference frequency mixing in periodically poled MgO-doped lithium niobate.

    Science.gov (United States)

    Guha, Shekhar; Barnes, Jacob O; Gonzalez, Leonel P

    2014-09-01

    Over 3.5 W of continuous-wave power at 3.4 μm was obtained by single-pass difference frequency mixing of 1.064 and 1.55 μm fiber lasers in a 5 cm long periodically poled lithium niobate crystal. Good agreement was obtained between the observed temperature dependence of the generated power and the prediction from focused Gaussian beam theory.

  14. Vibrational frequencies and dephasing times in excited electronic states by femtosecond time-resolved four-wave mixing

    Science.gov (United States)

    Joo, Taiha; Albrecht, A. C.

    1993-06-01

    Time-resolved degenerate four-wave mixing (TRDFWM) for an electronically resonant system in a phase-matching configuration that measures population decay is reported. Because the spectral width of input light exceeds the vibrational Bohr frequency of a strong Raman active mode, the vibrational coherence produces strong oscillations in the TRDFWM signal together with the usual population decay from the excited electronic state. The data are analyzed in terms of a four-level system: ground and excited electronic states each split by a vibrational quantum of a Raman active mode. Absolute frequencies and their dephasing times of the vibrational modes at ≈590 cm -1 are obtained for the excited as well as the ground electronic state. The vibrational dephasing rate in the excited electronic state is about an order of magnitude faster than that in the ground state, the origin of which is speculated upon.

  15. A MEASUREMENT OF THE LIFETIME AND MIXING FREQUENCY OF NEUTRAL B MESONS WITH SEMILEPTONIC DECAYS IN THE BABAR DETECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chih-Hsiang

    2003-08-29

    The neutral B meson, consisting of a b quark and an anti-d quark, can mix (oscillate) to its own anti-particle through second-order weak interactions. The measurement of the mixing frequency can constrain the quark mixing matrix in the Standard Model of particle physics. The PEP-II B-factory at the Stanford Linear Accelerator Center provides a very large data sample that enables us to make measurements with much higher precisions than previous measurements, and to probe physics beyond the Standard Model. The lifetime of the neutral B meson {tau}{sub B0} and the B{sup 0}-{bar B}{sup 0} mixing frequency {Delta}m{sub d} are measured with a sample of approximately 14,000 exclusively reconstructed B{sup 0} {yields} D*{sup -} {ell}{sup +}{nu}{sub {ell}} signal events, selected from 23 million B{bar B} pairs recorded at the {Upsilon}(4S)resonance with the BABAR detector at the asymmetric-energy e{sup +}e{sup -} collider, PEP-II. The decay position of the exclusively reconstructed B is determined by the charged tracks in the final state, and its b-quark flavor at the time of decay is known unambiguously from the charge of the lepton. The decay position of the other B is determined inclusively, and its b-quark flavor at the time of decay is determined (tagged) with the charge of tracks in the final state, where identified leptons or kaons give the most information. The decay time difference of two B mesons in the event is calculated from the distance between their decay vertices and the Lorentz boost of the center of mass. Additional samples of approximately 50,000 events are selected for studies of background events. The lifetime and mixing frequency, along with wrong-tag probabilities and the time-difference resolution function, are measured simultaneously with an unbinned maximum-likelihood fit that uses, for each event, the measured difference in B decay times ({Delta}t), the calculated uncertainty on {Delta}t, the signal and background probabilities, and b

  16. Over 8 W high peak power UV laser with a high power Q-switched Nd:YVO4 oscillator and the compact extra-cavity sum-frequency mixing

    International Nuclear Information System (INIS)

    Yan, X P; Liu, Q; Gong, M; Wang, D S; Fu, X

    2009-01-01

    A 8.2 W UV laser was reported with the compact extra-cavity sum-frequency mixing. The IR fundamental frequency source was a high power and high beam quality Q-switched Nd:YVO 4 oscillator. 38 W fundamental frequency laser at 1064 nm was obtained at the pulse repetition rate of 450 kHz with the beam quality factors of M 2 x = 1.27, M 2 y = 1.21. The type I and type II phase-matched LBO crystals were used as the extra-cavity frequency doubling and mixing crystals respectively. At 38 kHz, 8.2 W UV laser at 355 nm was achieved with the pulse duration of 8 ns corresponding to the pulse peak power as high as 27 kW, and the optical-optical conversion efficiency from IR to UV was 25.6%. The output characteristics of the IR and the harmonic generations varying with the pulse repetition rate were also investigated detailedly

  17. Blind Separation of Nonstationary Sources Based on Spatial Time-Frequency Distributions

    Directory of Open Access Journals (Sweden)

    Zhang Yimin

    2006-01-01

    Full Text Available Blind source separation (BSS based on spatial time-frequency distributions (STFDs provides improved performance over blind source separation methods based on second-order statistics, when dealing with signals that are localized in the time-frequency (t-f domain. In this paper, we propose the use of STFD matrices for both whitening and recovery of the mixing matrix, which are two stages commonly required in many BSS methods, to provide robust BSS performance to noise. In addition, a simple method is proposed to select the auto- and cross-term regions of time-frequency distribution (TFD. To further improve the BSS performance, t-f grouping techniques are introduced to reduce the number of signals under consideration, and to allow the receiver array to separate more sources than the number of array sensors, provided that the sources have disjoint t-f signatures. With the use of one or more techniques proposed in this paper, improved performance of blind separation of nonstationary signals can be achieved.

  18. Mixed mobile ion effect in fluorozincate glasses

    International Nuclear Information System (INIS)

    Ghosh, S; Ghosh, A

    2005-01-01

    The mixed mobile ion effect has been investigated for the first time in zinc fluoride glasses where in addition to alkali cations fluorine anions also participate in the diffusion process, unlike mixed alkali oxide glasses. The minimum in the conductivity, conductivity relaxation frequency, crossover frequency and decoupling index indicates the existence of the mixed mobile ion effect in these fluoride glasses. It has been observed that the non-exponential parameter and the frequency exponent are independent of temperature. It has been established that alkali ions and fluorine anions exhibit lower dimensionality of the conduction pathways in mixed alkali zinc fluoride glasses than that in the single alkali lithium based zinc fluoride glasses while they are migrating. From the scaling of the conductivity spectra, it has been established that the relaxation dynamics in mixed alkali zinc fluoride glasses is independent of temperature and composition

  19. Liquid mixing enhanced by pulse width modulation in a Y-shaped jet configuration

    Science.gov (United States)

    Xia, Qingfeng; Zhong, Shan

    2013-04-01

    In this paper, mixing between two fluid streams, which are injected into a planar mixing channel via a Y-shaped confluence section at the same volume flow rate, is studied experimentally. The injection of the two fluid streams is controlled by two separate solenoid valves, which are operated with a phase difference of 180°, using pulse width modulation. The experiments are conducted using water at a mean Reynolds number between 83 and 250, a range of pulsation frequencies and two duty cycles (25 and 50%). Both particle-image velocimetry and planar laser-induced fluorescence technique are used to visualize the flow patterns and to quantify the mixing degree in the mixing channel. This experiment shows that the pulsation of each jet produces vortical structures, which promotes mixing via vortex entrainment and vortex breakup, and at the same time the mixing is also greatly enhanced by sequential segmentation produced by a 180° out-of-phase pulsation of the two jets. This mixing enhancement method is effective at a Reynolds number greater than 125 with a mixing degree of 0.9 being achieved. For the Reynolds numbers studied in the present experiments, an optimal frequency exists, which corresponds to a Strouhal number in the range of 0.5-2. Furthermore, at a given mean Reynolds number a lower duty cycle is found to produce a better mixing due to the resultant higher instantaneous Reynolds number in the jet flow. It is also found that pulsation of only one jet can produce a similar mixing effect.

  20. Liquid mixing enhanced by pulse width modulation in a Y-shaped jet configuration

    Energy Technology Data Exchange (ETDEWEB)

    Xia Qingfeng; Zhong Shan, E-mail: shan.zhong@manchester.ac.uk [School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom)

    2013-04-15

    In this paper, mixing between two fluid streams, which are injected into a planar mixing channel via a Y-shaped confluence section at the same volume flow rate, is studied experimentally. The injection of the two fluid streams is controlled by two separate solenoid valves, which are operated with a phase difference of 180 Degree-Sign , using pulse width modulation. The experiments are conducted using water at a mean Reynolds number between 83 and 250, a range of pulsation frequencies and two duty cycles (25 and 50%). Both particle-image velocimetry and planar laser-induced fluorescence technique are used to visualize the flow patterns and to quantify the mixing degree in the mixing channel. This experiment shows that the pulsation of each jet produces vortical structures, which promotes mixing via vortex entrainment and vortex breakup, and at the same time the mixing is also greatly enhanced by sequential segmentation produced by a 180 Degree-Sign out-of-phase pulsation of the two jets. This mixing enhancement method is effective at a Reynolds number greater than 125 with a mixing degree of 0.9 being achieved. For the Reynolds numbers studied in the present experiments, an optimal frequency exists, which corresponds to a Strouhal number in the range of 0.5-2. Furthermore, at a given mean Reynolds number a lower duty cycle is found to produce a better mixing due to the resultant higher instantaneous Reynolds number in the jet flow. It is also found that pulsation of only one jet can produce a similar mixing effect. (paper)

  1. Single-centre review of radiologically guided percutaneous nephrostomy using 'mixed' technique: Success and complication rates

    Energy Technology Data Exchange (ETDEWEB)

    Montvilas, Paulius, E-mail: paulmont@rm.dk [Department of Radiology, Aarhus University Hospital, Skejby, Brendstrupgardsvej 100, 8200 Aarhus N (Denmark); Solvig, Jan, E-mail: jansolvi@rm.dk [Department of Radiology, Aarhus University Hospital, Skejby, Brendstrupgardsvej 100, 8200 Aarhus N (Denmark); Bjerklund Johansen, Truls Erik, E-mail: tebj@skejby.rm.dk [Department of Urology, Aarhus University Hospital, Skejby, Brendstrupgardsvej 100, 8200 Aarhus N (Denmark)

    2011-11-15

    Aim: A review of complication and success rates of the 'mixed' technique in percutaneous nephrostomy using both the Seldinger and one-step techniques in dilated and non-dilated systems. Materials and methods: We retrospectively analysed 500 percutaneous nephrostomies in dilated an non-dilated systems in 353 patients from 2006 to 2007 (208 males (range 19-95 years), 127 females (range 27-91 years) and 21 children (range 3 months-16 years: 6 females, 15 males)). Percutaneous nephrostomy was considered successful if catheter was placed in renal pelvis and drained urine spontaneously. Successful percutaneous nephrostomies were classified as primary (renal system drained instantly) or postponed (drainage achieved within 24 h after initial failure). Number of complications was registered. Results: All of the 500 nephrostomies were successful within 24 h (96.2% primary; 3.8% postponed). The success rate of primary nephrostomy in dilated and non-dilated systems was 98.2% and 82%, respectively. Major complications occurred in 0.45% and minor complications in 14.2%. Conclusion: Percutaneous nephrostomy using the 'mixed' technique is very successful in dilated systems, is not superior to other PCN techniques in non-dilated systems and has a very low rate of major complications.

  2. Nondestructive evaluation of differently doped InP wafers by time-resolved four-wave mixing technique

    International Nuclear Information System (INIS)

    Kadys, A.; Sudzius, M.; Jarasiunas, K.; Mao Luhong; Sun Niefeng

    2006-01-01

    Photoelectric properties of semi-insulating, differently doped, and undoped indium phosphide wafers, grown by the liquid encapsulation Czochralski method, have been investigated by time-resolved picosecond four-wave mixing technique. Deep defect related carrier generation, recombination, and transport properties were investigated experimentally by measuring four-wave mixing kinetics and exposure characteristics. The presence of deep donor states in undoped InP was confirmed by a pronounced effect of a space charge electric field to carrier transport. On the other hand, the recharging dynamics of electrically active residual impurities was observed in undoped and Fe-doped InP through the process of efficient trapping of excess carriers. The bipolar diffusion coefficients and mobilities were determined for the all wafers

  3. Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra

    International Nuclear Information System (INIS)

    Bellstedt, Peter; Herbst, Christian; Häfner, Sabine; Leppert, Jörg; Görlach, Matthias; Ramachandran, Ramadurai

    2012-01-01

    We have carried out chemical shift correlation experiments with symmetry-based mixing sequences at high MAS frequencies and examined different strategies to simultaneously acquire 3D correlation spectra that are commonly required in the structural studies of proteins. The potential of numerically optimised symmetry-based mixing sequences and the simultaneous recording of chemical shift correlation spectra such as: 3D NCAC and 3D NHH with dual receivers, 3D NC′C and 3D C′NCA with sequential 13 C acquisitions, 3D NHH and 3D NC′H with sequential 1 H acquisitions and 3D CANH and 3D C’NH with broadband 13 C– 15 N mixing are demonstrated using microcrystalline samples of the β1 immunoglobulin binding domain of protein G (GB1) and the chicken α-spectrin SH3 domain.

  4. Difference frequency generation spectroscopy as a vibrational optical activity measurement tool.

    Science.gov (United States)

    Cheon, Sangheon; Cho, Minhaeng

    2009-03-19

    Vibrational optical activity (VOA) of chiral molecules in condensed phases can be studied by using vibrational circular dichroism and Raman optical activity measurement techniques. Recently, IR-vis sum frequency generation has shown to be an alternative VOA measurement method. Such a three-wave-mixing method employing a polarization modulation technique can be a potentially useful VOA measurement tool. Here, a theoretical description of difference frequency generation (DFG) employing circularly polarized visible radiations is presented. Frequency scanning to obtain a VOA-DFG spectrum is achieved by controlling the difference between the two electronically nonresonant incident radiation frequencies. If the two incident beams are linearly polarized and their polarization directions are perpendicular to each other, one can selectively measure the all-electric-dipole-allowed chiral component of the DFG susceptibility. In addition, by using circularly polarized beams and taking the DFG difference intensity signal, which is defined as the difference between left and right circularly polarized DFG signals, additional chiral susceptibility components originating from the electric quadrupole transition can be measured. The DFG as a novel VOA measurement technique for solution samples containing chiral molecules will therefore be a useful coherent spectroscopic tool for determining absolute configuration of chiral molecules in condensed phases.

  5. Characterization of incompletely typed rotavirus strains from Guinea-Bissau: identification of G8 and G9 types and a high frequency of mixed infections

    DEFF Research Database (Denmark)

    Fischer, T.K.; Page, N.A.; Griffin, D.D.

    2003-01-01

    %, respectively, identical to other African G8 and G9 strains. Multiple G and/or P types were identified at a high frequency (59%), including two previously undescribed mixed infections, P[4]P[6], G2G8 and P[4]P[6], G2G9. These mixed infections most likely represent naturally occurring reassortance of rotavirus......] and P[6] primer binding sites were detected. These findings highlight the need for regular evaluation of the multiplex primer PCR method and typing primers. The high frequency of uncommon as well as reassortant rotavirus strains in countries where rotavirus is an important cause of child mortality...... underscores the need for extensive strain surveillance as a basis to develop appropriate rotavirus vaccine candidates....

  6. Characterization of Deficiencies in the Frequency Domain Forced Response Analysis Technique for Turbine Bladed Disks

    Science.gov (United States)

    Brown, Andrew M.; Schmauch, Preston

    2012-01-01

    Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. The standard technique for forced response analysis to assess structural integrity is to decompose a CFD generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non-harmonic excitation sources that become present in complex flows. These complications suggest the question of whether frequency domain analysis is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, have been performed. The first is of a bladed disk with each blade modeled by simple beam elements. It was hypothesized that the randomness and other variation from the standard harmonic excitation would reduce the blade structural response, but the results showed little reduction. The second study was of a realistic model of a bladed-disk excited by the same CFD used in the J2X engine program. The results showed that the transient analysis results were up to 10% higher for "clean" nodal diameter excitations and six times larger for "messy" excitations, where substantial Fourier content around the main harmonic exists.

  7. Mixed Models and Reduction Techniques for Large-Rotation, Nonlinear Analysis of Shells of Revolution with Application to Tires

    Science.gov (United States)

    Noor, A. K.; Andersen, C. M.; Tanner, J. A.

    1984-01-01

    An effective computational strategy is presented for the large-rotation, nonlinear axisymmetric analysis of shells of revolution. The three key elements of the computational strategy are: (1) use of mixed finite-element models with discontinuous stress resultants at the element interfaces; (2) substantial reduction in the total number of degrees of freedom through the use of a multiple-parameter reduction technique; and (3) reduction in the size of the analysis model through the decomposition of asymmetric loads into symmetric and antisymmetric components coupled with the use of the multiple-parameter reduction technique. The potential of the proposed computational strategy is discussed. Numerical results are presented to demonstrate the high accuracy of the mixed models developed and to show the potential of using the proposed computational strategy for the analysis of tires.

  8. Mixed Stimulus-Induced Mode Selection in Neural Activity Driven by High and Low Frequency Current under Electromagnetic Radiation

    Directory of Open Access Journals (Sweden)

    Lulu Lu

    2017-01-01

    Full Text Available The electrical activities of neurons are dependent on the complex electrophysiological condition in neuronal system, the three-variable Hindmarsh-Rose (HR neuron model is improved to describe the dynamical behaviors of neuronal activities with electromagnetic induction being considered, and the mode transition of electrical activities in neuron is detected when external electromagnetic radiation is imposed on the neuron. In this paper, different types of electrical stimulus impended with a high-low frequency current are imposed on new HR neuron model, and mixed stimulus-induced mode selection in neural activity is discussed in detail. It is found that mode selection of electrical activities stimulated by high-low frequency current, which also changes the excitability of neuron, can be triggered owing to adding the Gaussian white noise. Meanwhile, the mode selection of the neuron electrical activity is much dependent on the amplitude B of the high frequency current under the same noise intensity, and the high frequency response is selected preferentially by applying appropriate parameters and noise intensity. Our results provide insights into the transmission of complex signals in nerve system, which is valuable in engineering prospective applications such as information encoding.

  9. Efficient near diffraction limited blue light source by sum-frequency mixing of a BAL and a solid-state laser

    DEFF Research Database (Denmark)

    Sørensen, Knud Palmelund; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2011-01-01

    and slow axis of the diode, respectively. The BAL output beam is single-passed through a periodically poled KTiOPO4 (PPKTP) crystal placed in an intra-cavity beam waist of a 1064 nm Nd:YVO4 laser, resulting in 100 mW of sum-frequency generated blue output power. This corresponds to a power conversion......Sum-frequency mixing of an 808 nm broad area laser (BAL) with a build-in grating structure for spectral control and a 1064 nm solid-state laser is experimentally investigated. The spectrally improved 20 mu m wide BAL can deliver up to 700 mW of output power with an M-2 of 1.4 and 5.3 in the fast...

  10. Novel Frequency Swapping Technique for Conducted Electromagnetic Interference Suppression in Power Converter Applications

    Directory of Open Access Journals (Sweden)

    Ming-Tse Kuo

    2016-12-01

    Full Text Available Quasi-resonant flyback (QRF converters have been widely applied as the main circuit topology in power converters because of their low cost and high efficiency. Conventional QRF converters tend to generate higher average conducted electromagnetic interference (EMI in the low-frequency domain due to the switching noise generated by power switches, resulting in the fact they can exceed the EMI standards of the European Standard 55022 Class-B emission requirements. The presented paper develops a novel frequency swapping control method that spreads spectral energy to reduce the amplitude of sub-harmonics, thereby lowering average conducted EMI in the low-frequency domain. The proposed method is implemented in a control chip, which requires no extra circuit components and adds zero cost. The proposed control method is verified using a 24 W QRF converter. Experimental results reveals that conducted EMI has been reduced by approximately 13.24 dBμV at 498 kHz compared with a control method without the novel frequency swapping technique. Thus, the proposed method can effectively improve the flyback system to easily meet the CISPR 22/EN55022 standards.

  11. Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra

    Energy Technology Data Exchange (ETDEWEB)

    Bellstedt, Peter [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany); Herbst, Christian [Ubon Ratchathani University, Department of Physics, Faculty of Science (Thailand); Haefner, Sabine; Leppert, Joerg; Goerlach, Matthias; Ramachandran, Ramadurai, E-mail: raman@fli-leibniz.de [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany)

    2012-12-15

    We have carried out chemical shift correlation experiments with symmetry-based mixing sequences at high MAS frequencies and examined different strategies to simultaneously acquire 3D correlation spectra that are commonly required in the structural studies of proteins. The potential of numerically optimised symmetry-based mixing sequences and the simultaneous recording of chemical shift correlation spectra such as: 3D NCAC and 3D NHH with dual receivers, 3D NC Prime C and 3D C Prime NCA with sequential {sup 13}C acquisitions, 3D NHH and 3D NC Prime H with sequential {sup 1}H acquisitions and 3D CANH and 3D C'NH with broadband {sup 13}C-{sup 15}N mixing are demonstrated using microcrystalline samples of the {beta}1 immunoglobulin binding domain of protein G (GB1) and the chicken {alpha}-spectrin SH3 domain.

  12. Understanding seafloor morphology using remote high frequency acoustic methods: An appraisal to modern techniques and its effectiveness

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.

    Content-Type text/plain; charset=UTF-8 179 Understanding seafloor morphology using remote high frequency acoustic methods: an appraisal to modern techniques and its effectiveness Bishwajit Chakraborty National institute of Oceanography.... The two third of the earth surface i.e. 362 million square km (70 %) is covered by the ocean. In order to understand the seafloor various methods like: application of remote acoustic techniques, seafloor photographic and geological sampling techniques...

  13. Use of eddy current mixes to solve a weld examination application

    International Nuclear Information System (INIS)

    Ward, R.C.; LaBoissonniere, A.

    1995-01-01

    The augmentation of typical nondestructive (i.e., ultrasound) weld inspection techniques by the use of eddy current tools may significantly enhance the quality and reliability of weld inspections. One recent example is the development of an eddy current technique for use in the examination of BWR core shroud welds, where multi-frequency mixes are used to eliminate signals coming from the weld material so that the examination of the heat affected zone is enhanced. An analysis tool most commonly associated with ultrasound examinations, the C-Scan based on gated information, may be implemented with eddy current data to enhance analysis

  14. Free Flap Reconstruction Monitoring Techniques and Frequency in the Era of Restricted Resident Work Hours.

    Science.gov (United States)

    Patel, Urjeet A; Hernandez, David; Shnayder, Yelizaveta; Wax, Mark K; Hanasono, Matthew M; Hornig, Joshua; Ghanem, Tamer A; Old, Matthew; Jackson, Ryan S; Ledgerwood, Levi G; Pipkorn, Patrik; Lin, Lawrence; Ong, Adrian; Greene, Joshua B; Bekeny, James; Yiu, Yin; Noureldine, Salem; Li, David X; Fontanarosa, Joel; Greenbaum, Evan; Richmon, Jeremy D

    2017-08-01

    Free flap reconstruction of the head and neck is routinely performed with success rates around 94% to 99% at most institutions. Despite experience and meticulous technique, there is a small but recognized risk of partial or total flap loss in the postoperative setting. Historically, most microvascular surgeons involve resident house staff in flap monitoring protocols, and programs relied heavily on in-house resident physicians to assure timely intervention for compromised flaps. In 2003, the Accreditation Council for Graduate Medical Education mandated the reduction in the hours a resident could work within a given week. At many institutions this new era of restricted resident duty hours reshaped the protocols used for flap monitoring to adapt to a system with reduced resident labor. To characterize various techniques and frequencies of free flap monitoring by nurses and resident physicians; and to determine if adapted resident monitoring frequency is associated with flap compromise and outcome. This multi-institutional retrospective review included patients undergoing free flap reconstruction to the head and/or neck between January 2005 and January 2015. Consecutive patients were included from different academic institutions or tertiary referral centers to reflect evolving practices. Technique, frequency, and personnel for flap monitoring; flap complications; and flap success. Overall, 1085 patients (343 women [32%] and 742 men [78%]) from 9 institutions were included. Most patients were placed in the intensive care unit postoperatively (n = 790 [73%]), while the remaining were placed in intermediate care (n = 201 [19%]) or in the surgical ward (n = 94 [7%]). Nurses monitored flaps every hour (q1h) for all patients. Frequency of resident monitoring varied, with 635 patients monitored every 4 hours (q4h), 146 monitored every 8 hours (q8h), and 304 monitored every 12 hours (q12h). Monitoring techniques included physical examination (n = 949 [87

  15. Simulation of limiting dilution technique in determination of immunocompetent cells frequency in irradiated cell cultures

    International Nuclear Information System (INIS)

    Martini Filho, R.J.; Barlette, V.E.; Goes, E.G.; Covas, D.T.; Orellana, M.

    2001-01-01

    Limiting dilution techniques (LDA) dose-response data have been used to detect immunocompetent T-Cells in microcultures. In this work, LDA frequencies estimates was obtained using χ2 minimization for irradiated cells in a range of 500 to 1,500 cGy. (author)

  16. High efficiency single frequency 355 nm all-solid-state UV laser

    International Nuclear Information System (INIS)

    Xie, Xiaobing; Wei, Daikang; Ma, Xiuhua; Li, Shiguang; Liu, Jiqiao; Zhu, Xiaolei; Chen, Weibiao

    2016-01-01

    A novel conductively cooled high energy single-frequency 355 nm all-solid-state UV laser is presented based on sum-frequency mixing technique. In this system, a pulsed seeder laser at 1064 nm wavelength, modulated by an AOM, is directly amplified by the cascaded multi-stage hybrid laser amplifiers, and two LBO crystals are used for the SHG and SFG, finally a maximum UV pulse energy of 226 mJ at 355 nm wavelength is achieved with frequency-tripled conversion efficiency as high as 55%, the pulse width is around 12.2 ns at the repetition frequency of 30 Hz. The beam quality factor M 2 of the output UV laser is measured to be 2.54 and 2.98 respectively in two orthogonal directions. (paper)

  17. Radio Frequency Identification (RFID) in medical environment: Gaussian Derivative Frequency Modulation (GDFM) as a novel modulation technique with minimal interference properties.

    Science.gov (United States)

    Rieche, Marie; Komenský, Tomás; Husar, Peter

    2011-01-01

    Radio Frequency Identification (RFID) systems in healthcare facilitate the possibility of contact-free identification and tracking of patients, medical equipment and medication. Thereby, patient safety will be improved and costs as well as medication errors will be reduced considerably. However, the application of RFID and other wireless communication systems has the potential to cause harmful electromagnetic disturbances on sensitive medical devices. This risk mainly depends on the transmission power and the method of data communication. In this contribution we point out the reasons for such incidents and give proposals to overcome these problems. Therefore a novel modulation and transmission technique called Gaussian Derivative Frequency Modulation (GDFM) is developed. Moreover, we carry out measurements to show the inteference properties of different modulation schemes in comparison to our GDFM.

  18. Opto-electronic device for frequency standard generation and terahertz-range optical demodulation based on quantum interference

    Science.gov (United States)

    Georgiades, Nikos P.; Polzik, Eugene S.; Kimble, H. Jeff

    1999-02-02

    An opto-electronic system and technique for comparing laser frequencies with large frequency separations, establishing new frequency standards, and achieving phase-sensitive detection at ultra high frequencies. Light responsive materials with multiple energy levels suitable for multi-photon excitation are preferably used for nonlinear mixing via quantum interference of different excitation paths affecting a common energy level. Demodulation of a carrier with a demodulation frequency up to 100's THZ can be achieved for frequency comparison and phase-sensitive detection. A large number of materials can be used to cover a wide spectral range including the ultra violet, visible and near infrared regions. In particular, absolute frequency measurement in a spectrum from 1.25 .mu.m to 1.66 .mu.m for fiber optics can be accomplished with a nearly continuous frequency coverage.

  19. Characterization of Deficiencies in the Frequency Domain Forced Response Analysis Technique for Supersonic Turbine Bladed Disks

    Science.gov (United States)

    Brown, Andrew M.; Schmauch, Preston

    2011-01-01

    Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. Assessing the blade structural integrity is a complex task requiring an initial characterization of whether resonance is possible and then performing a forced response analysis if that condition is met. The standard technique for forced response analysis in rocket engines is to decompose a CFD-generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non-harmonic excitation sources that become present in complex flows. A substantial effort has been made to account for this denser spatial Fourier content in frequency response analysis (described in another paper by the author), but the question still remains whether the frequency response analysis itself is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, of bladed-disks undergoing this complex flow environment have been performed. The first is of a bladed disk with each blade modeled by simple beam elements. Six loading cases were generated by varying a baseline harmonic excitation in different ways based upon cold-flow testing from Heritage Fuel Air Turbine Test. It was hypothesized that the randomness and other variation from the standard harmonic excitation would reduce the blade structural response, but the results showed little reduction. The second study was of a realistic model of a bladed-disk excited by the same CFD used in the J2X engine program. It was hypothesized that enforcing periodicity in the CFD (inherent in the frequency response technique) would overestimate the

  20. Gearbox fault diagnosis based on time-frequency domain synchronous averaging and feature extraction technique

    Science.gov (United States)

    Zhang, Shengli; Tang, Jiong

    2016-04-01

    Gearbox is one of the most vulnerable subsystems in wind turbines. Its healthy status significantly affects the efficiency and function of the entire system. Vibration based fault diagnosis methods are prevalently applied nowadays. However, vibration signals are always contaminated by noise that comes from data acquisition errors, structure geometric errors, operation errors, etc. As a result, it is difficult to identify potential gear failures directly from vibration signals, especially for the early stage faults. This paper utilizes synchronous averaging technique in time-frequency domain to remove the non-synchronous noise and enhance the fault related time-frequency features. The enhanced time-frequency information is further employed in gear fault classification and identification through feature extraction algorithms including Kernel Principal Component Analysis (KPCA), Multilinear Principal Component Analysis (MPCA), and Locally Linear Embedding (LLE). Results show that the LLE approach is the most effective to classify and identify different gear faults.

  1. Polarization switching detection method using a ferroelectric liquid crystal for dichroic atomic vapor laser lock frequency stabilization techniques.

    Science.gov (United States)

    Dudzik, Grzegorz; Rzepka, Janusz; Abramski, Krzysztof M

    2015-04-01

    We present a concept of the polarization switching detection method implemented for frequency-stabilized lasers, called the polarization switching dichroic atomic vapor laser lock (PSDAVLL) technique. It is a combination of the well-known dichroic atomic vapor laser lock method for laser frequency stabilization with a synchronous detection system based on the surface-stabilized ferroelectric liquid crystal (SSFLC).The SSFLC is a polarization switch and quarter wave-plate component. This technique provides a 9.6 dB better dynamic range ratio (DNR) than the well-known two-photodiode detection configuration known as the balanced polarimeter. This paper describes the proposed method used practically in the VCSEL laser frequency stabilization system. The applied PSDAVLL method has allowed us to obtain a frequency stability of 2.7×10⁻⁹ and a reproducibility of 1.2×10⁻⁸, with a DNR of detected signals of around 81 dB. It has been shown that PSDAVLL might be successfully used as a method for spectra-stable laser sources.

  2. Millimeter-wave generation and characterization of a GaAs FET by optical mixing

    Science.gov (United States)

    Ni, David C.; Fetterman, Harold R.; Chew, Wilbert

    1990-01-01

    Coherent mixing of optical radiation from a tunable continuous-wave dye laser and a stabilized He-Ne laser was used to generate millimeter-wave signals in GaAs FETs attached to printed-circuit millimeter-wave antennas. The generated signal was further down-converted to a 2-GHz IF by an antenna-coupled millimeter-wave local oscillator at 62 GHz. Detailed characterizations of power and S/N under different bias conditions have been performed. This technique is expected to allow signal generation and frequency-response evaluation of millimeter-wave devices at frequencies as high as 100 GHz.

  3. A New Approach to Concrete Mix Design Using Computer Techniques

    African Journals Online (AJOL)

    In addition such a model can be used to generate data on mix proportions and their corresponding compressive strength, thereby furnishing useful information for general purpose, safe-ready-to-use mix design. Such data were generated and checked against values obtainable from standard mix design practice and found ...

  4. Controller design for flexible, distributed parameter mechanical arms via combined state space and frequency domain techniques

    Science.gov (United States)

    Book, W. J.; Majett, M.

    1982-01-01

    The potential benefits of the ability to control more flexible mechanical arms are discussed. A justification is made in terms of speed of movement. A new controller design procedure is then developed to provide this capability. It uses both a frequency domain representation and a state variable representation of the arm model. The frequency domain model is used to update the modal state variable model to insure decoupled states. The technique is applied to a simple example with encouraging results.

  5. High intensity signal of the posterior pituitary. A study with horizontal direction of frequency-encoding and fat suppression MR techniques

    International Nuclear Information System (INIS)

    Arslan, A.

    1999-01-01

    Purpose: To evaluate the consistency of fat in the high intensity signals of the normal neurohypophysis and to differentiate the high signal of posterior pituitary from that of dorsum sella. Sagittal SE T1-weighted images with frequency encoding in the horizontal direction were used in order to differentiate the high signal of posterior pituitary and dorsum sella by the vertically-oriented chemical shift artifact. Material and methods: The sellae of 46 normal volunteers were imaged with a commercially available fat suppression technique and SE sequences with frequency encoding in vertical (25 cases) and horizontal (21 cases) axes. Results: The high signal intensity was absent in 9% of the normal volunteers with no predilection to any specific age group. None of the cases with posterior pituitary high intensity signals showed suppression of the signal with fat suppression technique. A fat suppression technique was helpful in documenting the hyperintensity in 7% of normal volunteers. Nineteen of the 21 (90%) cases with high signal intensity were detected by routine SE T1-weighted images, whereas 18 of the 19 (95%) cases were detected by imaging with frequency encoding in the horizontal direction. Conclusion: The high signal does not indicate the presence of fat. Fat suppression technique and a horizontal direction of frequency encoding help in differentiating the high signal of the neurohypophysis from that of dorsum sella. (orig.)

  6. Determination of mating frequency by radiotracer technique

    International Nuclear Information System (INIS)

    Hamid Miah, M.A.

    1978-01-01

    Radioisotope ( 32 P) was used to study the frequency of mating of an insect. The radioactivity counts correlated positively with the number of matings. Radioactivity was also detected from the eggs and excised embryos. This work suggests that radioisotope like ( 32 P) may be conveninently used to detect virginity and mating frequency of female insects without killing them. (author)

  7. The fragrance mix and its constituents

    DEFF Research Database (Denmark)

    Johansen, J D; Menné, T

    1995-01-01

    Results from 14 years of patch testing with the fragrance mix and its constituents are reviewed. From 1979-1992, 8215 consecutive patients were patch tested with the fragrance mix and 449 (5.5%) had a positive reaction. An increase in the frequency of reactions to fragrance mix was seen from the ...

  8. Simulation of pattern and defect detection in periodic amplitude and phase structures using photorefractive four-wave mixing

    Science.gov (United States)

    Nehmetallah, Georges; Banerjee, Partha; Khoury, Jed

    2015-03-01

    The nonlinearity inherent in four-wave mixing in photorefractive (PR) materials is used for adaptive filtering. Examples include script enhancement on a periodic pattern, scratch and defect cluster enhancement, periodic pattern dislocation enhancement, etc. through intensity filtering image manipulation. Organic PR materials have large space-bandwidth product, which makes them useful in adaptive filtering techniques in quality control systems. For instance, in the case of edge enhancement, phase conjugation via four-wave mixing suppresses the low spatial frequencies of the Fourier spectrum of an aperiodic image and consequently leads to image edge enhancement. In this work, we model, numerically verify, and simulate the performance of a four wave mixing setup used for edge, defect and pattern detection in periodic amplitude and phase structures. The results show that this technique successfully detects the slightest defects clearly even with no enhancement. This technique should facilitate improvements in applications such as image display sharpness utilizing edge enhancement, production line defect inspection of fabrics, textiles, e-beam lithography masks, surface inspection, and materials characterization.

  9. Multivariate mixed linear model analysis of longitudinal data: an information-rich statistical technique for analyzing disease resistance data

    Science.gov (United States)

    The mixed linear model (MLM) is currently among the most advanced and flexible statistical modeling techniques and its use in tackling problems in plant pathology has begun surfacing in the literature. The longitudinal MLM is a multivariate extension that handles repeatedly measured data, such as r...

  10. Effect of the gas mixing technique on the production efficiency of ion beams extracted from an electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Tarvainen, O.; Suominen, P.; Koivisto, H.

    2004-01-01

    In this work the effect of gas mixing on the production efficiency of ion beams extracted from an ECR ion source has been studied with the JYFL 6.4 GHz electron cyclotron resonance ion source (ECRIS). It was found that the gas mixing affects strongly the confinement of ions in the plasma of the ECRIS. The information obtained can be used to minimize the consumption of expensive materials or isotopes and to reduce contamination of the plasma chamber. It was observed that the carbon contamination, which is built up when the MIVOC method is used could be decreased with the aid of the gas mixing technique. The best mixing gas for this purpose was found to be oxygen

  11. Investigation of mixing and diffusion processes in hybrid spot laser-MIG keyhole welding

    International Nuclear Information System (INIS)

    Zhou, J; Tsai, H L

    2009-01-01

    In hybrid laser-MIG keyhole welding, anti-crack elements can be added into the weld pool through a filler metal in anticipation of compensating mass loss, preventing porosity formation and improving compositional and mechanical properties of the welds. Understanding the mixing and diffusion of the filler metal in the molten pool is vital to achieve these desired objectives. In this study, mathematical models and associated numerical techniques have been developed to investigate the mixing and diffusion processes in hybrid laser-MIG keyhole welding. The transient interactions between droplets and weld pool and dynamics of the melt flow are studied. The effects of key process parameters, such as droplet size (wire diameter), droplet generation frequency (wire feed speed) and droplet impinging speed, on mixing/diffusion are systematically investigated. It was found that compositional homogeneity of the weld pool is determined by the competition between the mixing rate and the solidification rate. A small-size filler droplet together with high generation frequency can increase the latitudinal diffusion of the filler metal into the weld pool, while the large-size droplet along with the low generation frequency helps to get more uniform longitudinal diffusion. Increasing the impinging velocity of the filler droplet can improve the latitudinal diffusion of the filler metal. However, a high impinging velocity can cause a lower diffusion zone in the upper part of the welds. This study provides a good foundation for optimizing the hybrid laser-MIG keyhole welding process to achieve quality welds with desired properties.

  12. A Touch Sensing Technique Using the Effects of Extremely Low Frequency Fields on the Human Body.

    Science.gov (United States)

    Elfekey, Hatem; Bastawrous, Hany Ayad; Okamoto, Shogo

    2016-12-02

    Touch sensing is a fundamental approach in human-to-machine interfaces, and is currently under widespread use. Many current applications use active touch sensing technologies. Passive touch sensing technologies are, however, more adequate to implement low power or energy harvesting touch sensing interfaces. This paper presents a passive touch sensing technique based on the fact that the human body is affected by the surrounding extremely low frequency (ELF) electromagnetic fields, such as those of AC power lines. These external ELF fields induce electric potentials on the human body-because human tissues exhibit some conductivity at these frequencies-resulting in what is called AC hum. We therefore propose a passive touch sensing system that detects this hum noise when a human touch occurs, thus distinguishing between touch and non-touch events. The effectiveness of the proposed technique is validated by designing and implementing a flexible touch sensing keyboard.

  13. Raman and IR spectroscopic structural characterization of LiAlO2 powders prepared using a liquid mix technique

    International Nuclear Information System (INIS)

    Cornilsen, B.C.; Loyselle, P.L.; Saporta, J.D.

    1990-01-01

    γ-LiAlO 2 and β-LiAlO 2 have been characterized using Raman and infrared spectroscopy. Powders have been prepared using two different preparation techniques: a solution method known as the liquid mix technique (LMT) and the traditional ceramic method. The authors find that the LMT allows direct production of single phase γ-LiAlO 2 at 600 degrees C, below that found using other preparation methods. Furthermore, this solution technique appears to avoid formation of the β-LiAlO 2 intermediate phase. At lower temperatures, the LMT product is a disordered precursor of γ- LiAlO 2

  14. Application of a modified complementary filtering technique for increased aircraft control system frequency bandwidth in high vibration environment

    Science.gov (United States)

    Garren, J. F., Jr.; Niessen, F. R.; Abbott, T. S.; Yenni, K. R.

    1977-01-01

    A modified complementary filtering technique for estimating aircraft roll rate was developed and flown in a research helicopter to determine whether higher gains could be achieved. Use of this technique did, in fact, permit a substantial increase in system frequency bandwidth because, in comparison with first-order filtering, it reduced both noise amplification and control limit-cycle tendencies.

  15. Frequency and distribution of 152 genetic disease variants in over 100,000 mixed breed and purebred dogs.

    Directory of Open Access Journals (Sweden)

    Jonas Donner

    2018-04-01

    Full Text Available Knowledge on the genetic epidemiology of disorders in the dog population has implications for both veterinary medicine and sustainable breeding. Limited data on frequencies of genetic disease variants across breeds exists, and the disease heritage of mixed breed dogs remains poorly explored to date. Advances in genetic screening technologies now enable comprehensive investigations of the canine disease heritage, and generate health-related big data that can be turned into action. We pursued population screening of genetic variants implicated in Mendelian disorders in the largest canine study sample examined to date by examining over 83,000 mixed breed and 18,000 purebred dogs representing 330 breeds for 152 known variants using a custom-designed beadchip microarray. We further announce the creation of MyBreedData (www.mybreeddata.com, an online updated inherited disorder prevalence resource with its foundation in the generated data. We identified the most prevalent, and rare, disease susceptibility variants across the general dog population while providing the first extensive snapshot of the mixed breed disease heritage. Approximately two in five dogs carried at least one copy of a tested disease variant. Most disease variants are shared by both mixed breeds and purebreds, while breed- or line-specificity of others is strongly suggested. Mixed breed dogs were more likely to carry a common recessive disease, whereas purebreds were more likely to be genetically affected with one, providing DNA-based evidence for hybrid vigor. We discovered genetic presence of 22 disease variants in at least one additional breed in which they were previously undescribed. Some mutations likely manifest similarly independently of breed background; however, we emphasize the need for follow up investigations in each case and provide a suggested validation protocol for broader consideration. In conclusion, our study provides unique insight into genetic epidemiology of

  16. Effect of water-methanol mixed solvents on the ultrasonic relaxation of cadmium acetate

    International Nuclear Information System (INIS)

    Sree Rama Murthy, J.; Ramachandra Rao, B.

    1976-01-01

    Measurements of ultrasonic absorption have been made by pulse technique in 1 M solutions of cadmium acetate with water-methanol mixed solvents. Results are analysed by assuming a single relaxation mechanism. The characteristic frequency of relaxation is found to decrease with increasing composition of methanol in the solvent. It is proposed that the mechanism of relaxation may be perturbation of chemical equilibrium between complex CdAc + ions and Cd ++ , Ac - species by soundwaves. (author)

  17. Characterization of incompletely typed rotavirus strains from Guinea-Bissau: identification of G8 and G9 types and a high frequency of mixed infections

    DEFF Research Database (Denmark)

    Fischer, TK; Page, NA; Griffin, DD

    2003-01-01

    Among 167 rotavirus specimens collected from young children in a suburban area of Bissau, Guinea-Bissau, from 1996 to 1998, most identifiable strains belonged to the uncommon P[6], G2 type and approximately 50% remained incompletely typed. In the present study, 76 such strains were further......%, respectively, identical to other African G8 and G9 strains. Multiple G and/or P types were identified at a high frequency (59%), including two previously undescribed mixed infections, P[4]P[6], G2G8 and P[4]P[6], G2G9. These mixed infections most likely represent naturally occurring reassortance of rotavirus......] and P[6] primer binding sites were detected. These findings highlight the need for regular evaluation of the multiplex primer PCR method and typing primers. The high frequency of uncommon as well as reassortant rotavirus strains in countries where rotavirus is an important cause of child mortality...

  18. Generation of continuously tunable, 5-12 {mu}m radiation by difference frequency mixing of output waves of a KTP optical parametric oscillator in a ZnGeP{sub 2} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Haidar, S [Research Institute of Electrical Communication (RIEC), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi 980-8577 (Japan); Miyamoto, K [Research Institute of Electrical Communication (RIEC), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi 980-8577 (Japan); Ito, H [Research Institute of Electrical Communication (RIEC), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi 980-8577 (Japan)

    2004-12-07

    Signal and idlers waves obtained from a Nd : YAG laser pumped KTP optical parametric oscillator (OPO) are difference frequency mixed in a ZnGeP{sub 2} (ZGP) crystal to generate radiation in the mid-infrared. The KTP OPO is operated in the type-II phase matching mode, and the extraordinary and ordinary waves are tunable from 1.76 {mu}m to 2.36 {mu}m and from 2.61 {mu}m to 1.90 {mu}m, respectively. The orthogonally polarized waves are difference frequency mixed in a ZGP crystal to generate mid-IR radiation tunable from 5 to 12 {mu}m.

  19. Ultrasonic flow-through filtration of microparticles in a microfluidic channel using frequency sweep technique

    International Nuclear Information System (INIS)

    Seo, Dae Cheol; Ahn, Bong Young; Cho, Seung Hyun; Siddique, A. K. M. Ariful Haque; Kim, Cheol Gi

    2013-01-01

    Many studies have been conducted on the filtration of microparticles using the acoustic radiation force of ultrasonic standing wave. The present work concerns a flow-through particle filtration method by utilizing frequency varying ultrasound. The periodical frequency sweep of the ultrasonic standing wave translocates particles across a microchannel, where particles in fluid flow are filtrated without barriers. The present filtration technique in a microfluidic channel was proposed conceptually in the 1990s. However, its experimental realization on actual particles in a microfluidic channel has not been carried out in a notable way. Several sizes of polystyrene microspheres (10 µm to 90 µm) and silicon carbide (SiC) particles (37 µm) suspended in water were applied as a test sample. For filtration of those particles, a Y-branched microfluidic channel with one inlet and two outlets was made out of steel and acrylic as a form of modulized device. Ultrasound of a few MHz in band frequency (1.75 MHz to 3.05 MHz) was transmitted into one side of the channel wall to generate a standing wave field in fluid flow. The periodical frequency sweep operation showed successful filtration performance, whereby particles in water flowed into one outlet and purified water flowed into the other outlet of the Y branch of the channel.

  20. BUSPIRONE HYDROCHLORIDE EFFECTS ON HOSPITALIZATIONS FREQUENCY IN PATIENTS WITH CHRONIC HEART FAILURE AND MIXED ANXIETY-DEPRESSIVE DISORDER

    Directory of Open Access Journals (Sweden)

    M. A. Khristichenko

    2017-01-01

    Full Text Available Aim. Assessing the impact of buspirone hydrochloride on hospitalizations frequency in patients  with chronic heart failure (CHF and mixed anxietydepressive disorder (MADD. Materials and methods.  The study involved 49 patients  with heart failure of ischemic etiology and MADD. Patients in Group 1 (n = 25 received buspirone hydrochloride (in the starting dose of 15 mg/day with a gradual (within 2 weeks increasing to the effective (30 mg/day in addition to standard  CHF therapy and coronary heart disease (CHD. Patients in group 2 (n = 24 received standard  therapy of CHF and CHD. After 6 months, we evaluated hospitalizations frequency and duration in patients from both groups. Results. The risk of hospitalization for heart failure decompensation was significantly lower in patients  from group 1 compared with patients  from group 2 (HR 0.333, 95% CI 1,12-8,05, p = 0.035.Conclusions. Buspirone hydrochloride admission in addition to standard  therapy  is associated  with reduced risk of hospitalization for decompensation of chronic heart failure in patients with MADD.

  1. AUTOMATIC FREQUENCY CONTROL SYSTEM

    Science.gov (United States)

    Hansen, C.F.; Salisbury, J.D.

    1961-01-10

    A control is described for automatically matching the frequency of a resonant cavity to that of a driving oscillator. The driving oscillator is disconnected from the cavity and a secondary oscillator is actuated in which the cavity is the frequency determining element. A low frequency is mixed with the output of the driving oscillator and the resultant lower and upper sidebands are separately derived. The frequencies of the sidebands are compared with the secondary oscillator frequency. deriving a servo control signal to adjust a tuning element in the cavity and matching the cavity frequency to that of the driving oscillator. The driving oscillator may then be connected to the cavity.

  2. Experimental Assessment of the Effects of Temperature and Food Availability on Particle Mixing by the Bivalve Abra alba Using New Image Analysis Techniques.

    Science.gov (United States)

    Bernard, Guillaume; Duchêne, Jean-Claude; Romero-Ramirez, Alicia; Lecroart, Pascal; Maire, Olivier; Ciutat, Aurélie; Deflandre, Bruno; Grémare, Antoine

    2016-01-01

    The effects of temperature and food addition on particle mixing in the deposit-feeding bivalve Abra alba were assessed using an experimental approach allowing for the tracking of individual fluorescent particle (luminophore) displacements. This allowed for the computations of vertical profiles of a set of parameters describing particle mixing. The frequency of luminophore displacements (jumps) was assessed through the measurement of both waiting times (i.e., the time lapses between two consecutive jumps of the same luminophore) and normalized numbers of jumps (i.e., the numbers of jumps detected in a given area divided by the number of luminophores in this area). Jump characteristics included the direction, duration and length of each jump. Particle tracking biodiffusion coefficients (Db) were also computed. Data originated from 32 experiments carried out under 4 combinations of 2 temperature (Te) and 2 food addition (Fo) levels. For each of these treatments, parameters were computed for 5 experimental durations (Ed). The effects of Se, Fo and Ed were assessed using PERmutational Multivariate ANalyses Of VAriance (PERMANOVAs) carried out on vertical depth profiles of each particle mixing parameter. Inversed waiting times significantly decreased with Ed whereas the normalized number of jumps did not, thereby suggesting that it constitutes a better proxy of jump frequency when assessing particle mixing based on the measure of individual particle displacements. Particle mixing was low during autumn temperature experiments and not affected by Fo, which was attributed to the dominant effect of low temperature. Conversely, particle mixing was high during summer temperature experiments and transitory inhibited by food addition. This last result is coherent with the functional responses (both in terms of activity and particle mixing) already measured for individual of the closely related clam A. ovata originating from temperate populations. It also partly resulted from a

  3. Characterization of incompletely typed rotavirus strains from Guinea-Bissau: identification of G8 and G9 types and a high frequency of mixed infections

    International Nuclear Information System (INIS)

    Fischer, T.K.; Page, N.A.; Griffin, D.D.; Eugen-Olsen, J.; Pedersen, A.G.; Valentiner-Branth, P.; Moelbak, K.; Sommerfelt, H.; Nielsen, N. Munk

    2003-01-01

    Among 167 rotavirus specimens collected from young children in a suburban area of Bissau, Guinea-Bissau, from 1996 to 1998, most identifiable strains belonged to the uncommon P[6], G2 type and approximately 50% remained incompletely typed. In the present study, 76 such strains were further characterized. Due to interprimer interaction during the standard multiplex PCR approach, modifications of this procedure were implemented. The modified analyses revealed a high frequency of G2, G8, and G9 genotypes, often combined with P[4] and/or P[6]. The Guinean G8 and G9 strains were 97 and 98%, respectively, identical to other African G8 and G9 strains. Multiple G and/or P types were identified at a high frequency (59%), including two previously undescribed mixed infections, P[4]P[6], G2G8 and P[4]P[6], G2G9. These mixed infections most likely represent naturally occurring reassortance of rotavirus strains. Detection of such strains among the previously incompletely typed strains indicates a potential underestimation of mixed infections, if only a standard multiplex PCR procedure is followed. Furthermore cross-priming of the G3 primer with the G8 primer binding site and silent mutations at the P[4] and P[6] primer binding sites were detected. These findings highlight the need for regular evaluation of the multiplex primer PCR method and typing primers. The high frequency of uncommon as well as reassortant rotavirus strains in countries where rotavirus is an important cause of child mortality underscores the need for extensive strain surveillance as a basis to develop appropriate rotavirus vaccine candidates

  4. Measurements of quadrupole interaction frequencies of long-lived isomers with the level mixing spectroscopy (LEMS) method

    International Nuclear Information System (INIS)

    Neyens, G.; Nouwen, R.; S'heeren, G.; Bergh, M. van den; Coussement, R.

    1993-01-01

    The level mixing spectroscopy (LEMS) method has proven to be a very useful method to determine the quadrupole interaction frequency of an isomer in a solid host. Especially in the 'difficult' cases, e.g. when the isomeric lifetime is very long or its spin is very high, the method yields valuable information which is not accessible with other methods (such as TDPAD). Since the development of the method some years ago, many experiments have been performed on high spin isomers in the lead region. The static quadrupole moment of isomers with lifetimes ranging from 20 ns up to 13 ms and spins up to 65/2h have been determined in neutron deficient isotopes of Bi, At, Fr and Ra. (orig.)

  5. High-resolution broadband terahertz spectroscopy via electronic heterodyne detection of photonically generated terahertz frequency comb.

    Science.gov (United States)

    Pavelyev, D G; Skryl, A S; Bakunov, M I

    2014-10-01

    We report an alternative approach to the terahertz frequency-comb spectroscopy (TFCS) based on nonlinear mixing of a photonically generated terahertz pulse train with a continuous wave signal from an electronic synthesizer. A superlattice is used as a nonlinear mixer. Unlike the standard TFCS technique, this approach does not require a complex double-laser system but retains the advantages of TFCS-high spectral resolution and wide bandwidth.

  6. Transfer-free synthesis of graphene-like atomically thin carbon films on SiC by ion beam mixing technique

    Science.gov (United States)

    Zhang, Rui; Chen, Fenghua; Wang, Jinbin; Fu, Dejun

    2018-03-01

    Here we demonstrate the synthesis of graphene directly on SiC substrates at 900 °C using ion beam mixing technique with energetic carbon cluster ions on Ni/SiC structures. The thickness of 7-8 nm Ni films was evaporated on the SiC substrates, followed by C cluster ion bombarding. Carbon cluster ions C4 were bombarded at 16 keV with the dosage of 4 × 1016 atoms/cm2. After thermal annealing process Ni silicides were formed, whereas C atoms either from the decomposition of the SiC substrates or the implanted contributes to the graphene synthesis by segregating and precipitating process. The limited solubility of carbon atoms in silicides, involving SiC, Ni2Si, Ni5Si2, Ni3Si, resulted in diffusion and precipitation of carbon atoms to form graphene on top of Ni and the interface of Ni/SiC. The ion beam mixing technique provides an attractive production method of a transfer-free graphene growth on SiC and be compatible with current device fabrication.

  7. Elastic properties of fly ash-stabilized mixes

    Directory of Open Access Journals (Sweden)

    Sanja Dimter

    2015-12-01

    Full Text Available Stabilized mixes are used in the construction of bearing layers in asphalt and concrete pavement structures. Two nondestructive methods: resonant frequency method and ultrasonic pulse velocity method, were used for estimation of elastic properties of fly ash–stabilized mixes. Stabilized mixes were designed containing sand from the river Drava and binder composed of different share of cement and fly ash. The aim of the research was to analyze the relationship between the dynamic modulus of elasticity determined by different nondestructive methods. Data showed that average value of elasticity modulus obtained by the ultrasound velocity method is lower than the values of elasticity modulus obtained by resonant frequency method. For further analysis and enhanced discussion of elastic properties of fly ash stabilized mixes, see Dimter et al. [1].

  8. Instrumentation, computer software and experimental techniques used in low-frequency internal friction studies at WNRE

    International Nuclear Information System (INIS)

    Sprugmann, K.W.; Ritchie, I.G.

    1980-04-01

    A detailed and comprehensive account of the equipment, computer programs and experimental methods developed at the Whiteshell Nuclear Research Estalbishment for the study of low-frequency internal friction is presented. Part 1 describes the mechanical apparatus, electronic instrumentation and computer software, while Part II describes in detail the laboratory techniques and various types of experiments performed together with data reduction and analysis. Experimental procedures for the study of internal friction as a function of temperature, strain amplitude or time are described. Computer control of these experiments using the free-decay technique is outlined. In addition, a pendulum constant-amplitude drive system is described. (auth)

  9. Parity mixing

    International Nuclear Information System (INIS)

    Adelberger, E.G.

    1975-01-01

    The field of parity mixing in light nuclei bears upon one of the exciting and active problems of physics--the nature of the fundamental weak interaction. It is also a subject where polarization techniques play a very important role. Weak interaction theory is first reviewed to motivate the parity mixing experiments. Two very attractive systems are discussed where the nuclear physics is so beautifully simple that the experimental observation of tiny effects directly measures parity violating (PV) nuclear matrix elements which are quite sensitive to the form of the basic weak interaction. Since the measurement of very small analyzing powers and polarizations may be of general interest to this conference, some discussion is devoted to experimental techniques

  10. Frequency-domain Harman technique for rapid characterization of bulk and thin film thermoelectric materials

    Science.gov (United States)

    Moran, Samuel

    Nanostructured thermoelectrics, often in the form of thin films, may potentially improve the generally poor efficiency of bulk thermoelectric power generators and coolers. In order to characterize the efficiency of these new materials it is necessary to measure their thermoelectric figure of merit, ZT. The only direct measurement of ZT is based on the Harman technique and relies on measuring the voltage drop across a sample subjected to a passing continuous current. Application of this technique to thin films is currently carried out as a time-domain measurement of the voltage as the thermal component decays after switching off an applied voltage. This work develops a technique for direct simultaneous measurement of figure of merit and Seebeck coefficient from the harmonic response of a thermoelectric material under alternating current excitation. A thermocouple mounted on the top surface measures voltage across the device as the frequency of the applied voltage is varied. A thermal model allows the sample thermal conductivity to also be determined and shows good agreement with measurements. This technique provides improved signal-to-noise ratio and accuracy compared to time-domain ZT measurements for comparable conditions while simultaneously measuring Seebeck coefficient. The technique is applied to both bulk and thin film thermoelectric samples.

  11. Frequency selectivity at very low centre frequencies

    DEFF Research Database (Denmark)

    Orellana, Carlos Andrés Jurado; Pedersen, Christian Sejer; Marquardt, Torsten

    2010-01-01

    measurements based on OAE suppression techniques and notched-noise masking data psychophysically measured for centre frequencies in the range 50-125 Hz, this study examines how individual differences in frequency selectivity, as well as in masking, may occur at very low CFs due to individual differences...

  12. GHz band frequency hopping PLL-based frequency synthesizers

    Institute of Scientific and Technical Information of China (English)

    XU Yong; WANG Zhi-gong; GUAN Yu; XU Zhi-jun; QIAO Lu-feng

    2005-01-01

    In this paper we describe a full-integrated circuit containing all building blocks of a completed PLL-based synthesizer except for low pass filter(LPF).The frequency synthesizer is designed for a frequency hopping (FH) transceiver operating up to 1.5 GHz as a local oscillator. The architecture of Voltage Controlled Oscillator (VCO) is optimized to get better performance, and a phase noise of -111.85-dBc/Hz @ 1 MHz and a tuning range of 250 MHz are gained at a centre frequency of 1.35 GHz.A novel Dual-Modulus Prescaler(DMP) is designed to achieve a very low jitter and a lower power.The settling time of PLL is 80 μs while the reference frequency is 400 KHz.This monolithic frequency synthesizer is to integrate all main building blocks of PLL except for the low pass filter,with a maximum VCO output frequency of 1.5 GHz,and is fabricated with a 0.18 μm mixed signal CMOS process. Low power dissipation, low phase noise, large tuning range and fast settling time are gained in this design.

  13. Mixed field dosimetry with the twin chamber technique

    International Nuclear Information System (INIS)

    Burger, G.; Maier, E.

    1974-04-01

    For the separate dosimetry of the neutron- and gamma-component in a mixed beam it is principally possible to use two ionization chambers with different ratios of neutron- to gamma sensitivity. Several authors proposed for this purpose the use of a homogenious TE-chamber filled with the TE-gas and of a carbon-chamber filled with CO 2 -gas. This chamber combination is also commercially available in several countries. The chambers are normally equipped with a continuous gas-flow provision and with a waterproof-housing for the use within liquid phantoms. The application of such chambers for mixed field dosimetry in the intercomparison project of the ICRU at the RARAF-facility in Brookhaven (International Neutron Dosimetry Intercomparison - INDI) is described. (orig./HP) [de

  14. Detection of mixed OAM states via vortex breakup

    Energy Technology Data Exchange (ETDEWEB)

    Shutova, Mariia, E-mail: mariia.shutova@physics.tamu.edu; Zhdanova, Alexandra A.; Sokolov, Alexei V.

    2017-01-30

    We study the tilted lens technique for measuring the topological charge (TC) of an optical vortex and investigate how this technique works for optical vortices in mixed orbital angular momentum states (i.e. when one beam contains several components with different values of TC). We present experimental results and theoretical simulations for the measurement of the TC of mixed states. We investigate two different cases: when coherent interference (or addition) between components is present and when it is absent (incoherent addition). We discover that this technique is suitable for measuring the TC of the dominant component of a mixed state. - Highlights: • A tilted lens technique was used to detect and analyze the optical vortex in a mixed OAM state. • Two cases of mixed states were investigated: coherent and incoherent. • The theoretical results were in agreement with the experimental ones.

  15. Viscoelastic behaviour of cold recycled asphalt mixes

    Science.gov (United States)

    Cizkova, Zuzana; Suda, Jan

    2017-09-01

    Behaviour of cold recycled mixes depends strongly on both the bituminous binder content (bituminous emulsion or foamed bitumen) and the hydraulic binder content (usually cement). In the case of cold recycled mixes rich in bitumen and with low hydraulic binder content, behaviour is close to the viscoelastic behaviour of traditional hot mix asphalt. With decreasing bituminous binder content together with increasing hydraulic binder content, mixes are characteristic with brittle behaviour, typical for concrete pavements or hydraulically bound layers. The behaviour of cold recycled mixes with low content of both types of binders is similar to behaviour of unbound materials. This paper is dedicated to analysing of the viscoelastic behaviour of the cold recycled mixes. Therefore, the tested mixes contained higher amount of the bituminous binder (both foamed bitumen and bituminous emulsion). The best way to characterize any viscoelastic material in a wide range of temperatures and frequencies is through the master curves. This paper includes interesting findings concerning the dependency of both parts of the complex modulus (elastic and viscous) on the testing frequency (which simulates the speed of heavy traffic passing) and on the testing temperature (which simulates the changing climate conditions a real pavement is subjected to).

  16. MixedNotes

    DEFF Research Database (Denmark)

    Jokela, Tero; Lucero, Andrés

    2014-01-01

    Affinity Diagramming is a technique to organize and make sense of qualitative data. It is commonly used in Contextual Design and HCI research. However, preparing notes for and building an Affinity Diagram remains a laborious process, with a wide variety of different approaches and practices....... In this paper, we present MixedNotes, a novel technique to prepare physical paper notes for Affinity Diagramming, and a software tool to support this technique. The technique has been tested with large real-life Affinity Diagrams with overall positive results....

  17. Mixed Waste Treatment Using the ChemChar Thermolytic Detoxification Technique

    International Nuclear Information System (INIS)

    Kuchynka, D.J.

    1997-01-01

    This R and D program addresses the treatment of mixed waste employing the ChemChar Thermolytic Detoxification process. Surrogate mixed waste streams will be treated in a four inch diameter, continuous feed, adiabatic reactor with the goal of meeting all regulatory treatment levels for the contaminants in the surrogates with the concomitant production of contaminant free by-products. Successful completion of this program will show that organic contaminants in mixed waste surrogates will be converted to a clean, energy rich synthesis gas capable of being used, without further processing, for power or heat generation. The inorganic components in the surrogates will be found to be adsorbed on a macroporous coal char activated carbon substrate which is mixed with the waste prior to treatment. These contaminants include radioactive metal surrogate species, RCRA hazardous metals and any acid gases formed during the treatment process. The program has three main tasks that will be performed to meet the above objectives. The first task is the design and construction of the four inch reactor at Mirage Systems in Sunnyvale, CA. The second task is production and procurement of the activated carbon char employed in the ChemChartest runs and identification of two surrogate mixed wastes. The last task is testing and operation of the reactor on char/surrogate waste mixtures to be performed at the University of Missouri. The deliverables for the project are a Design Review Report, Operational Test Plan, Topical Report and Final Report. This report contains only the results of the design and construction carbon production-surrogate waste identification tasks.Treatment of the surrogate mixed wastes has just begun and will not be reported in this version of the Final Report. The latter will be reported in the final version of the Final Report

  18. Comparative Study of Time-Frequency Decomposition Techniques for Fault Detection in Induction Motors Using Vibration Analysis during Startup Transient

    Directory of Open Access Journals (Sweden)

    Paulo Antonio Delgado-Arredondo

    2015-01-01

    Full Text Available Induction motors are critical components for most industries and the condition monitoring has become necessary to detect faults. There are several techniques for fault diagnosis of induction motors and analyzing the startup transient vibration signals is not as widely used as other techniques like motor current signature analysis. Vibration analysis gives a fault diagnosis focused on the location of spectral components associated with faults. Therefore, this paper presents a comparative study of different time-frequency analysis methodologies that can be used for detecting faults in induction motors analyzing vibration signals during the startup transient. The studied methodologies are the time-frequency distribution of Gabor (TFDG, the time-frequency Morlet scalogram (TFMS, multiple signal classification (MUSIC, and fast Fourier transform (FFT. The analyzed vibration signals are one broken rotor bar, two broken bars, unbalance, and bearing defects. The obtained results have shown the feasibility of detecting faults in induction motors using the time-frequency spectral analysis applied to vibration signals, and the proposed methodology is applicable when it does not have current signals and only has vibration signals. Also, the methodology has applications in motors that are not fed directly to the supply line, in such cases the analysis of current signals is not recommended due to poor current signal quality.

  19. An optical technique to measure the frequency and mode emission of tunable lasers

    International Nuclear Information System (INIS)

    Marchetti, S.; Simili, R.

    1988-01-01

    To use mode tunable lasers it is necessary to measure the laser frequency and the mode emission. This problem is very important when waveguide lasers are used. Normally this information is obtained by a heterodyne technique, but there are some difficulties to perform this method in a large electrical noise environment, when pulsed of radiofrequency lasers are used. This laser information was obtained by using an alternative low-cost optical system. With this apparatus the cavity pulling was measured and an upper limit for the linewidth of a radiofrequency, high pressure, line and mode-tunable, CO 2 laser was roughly estimated

  20. Mixed Methods Research in School Psychology: A Mixed Methods Investigation of Trends in the Literature

    Science.gov (United States)

    Powell, Heather; Mihalas, Stephanie; Onwuegbuzie, Anthony J.; Suldo, Shannon; Daley, Christine E.

    2008-01-01

    This article illustrates the utility of mixed methods research (i.e., combining quantitative and qualitative techniques) to the field of school psychology. First, the use of mixed methods approaches in school psychology practice is discussed. Second, the mixed methods research process is described in terms of school psychology research. Third, the…

  1. Fast iterative technique for the calculation of frequency dependent gain in excimer laser amplifiers

    International Nuclear Information System (INIS)

    Sze, R.C.

    1991-01-01

    The motivation in initiating these calculations is to allow us to observe the frequency evolution of a laser pulse as it propagates through an amplifier and then through a sequence of amplifiers. The question we seek to answer is what pulse shape do we need to produce out of a front-end oscillator so that after it propagates through the whole Aurora KrF fusion amplifier chain will result in high energy, broad-band laser fields of a given bandwidth that can be focussed onto a fusion target. The propagation of a single frequency source through an amplifier with distributed loss was considered by Rigrod and was significantly expanded by Hunter and Hunter. The latter included amplified spontaneous emission [ASE] considerations both in the direction of and transverse to the coherent field. Analytic solutions that include forward and backward prapagating fields and ASE were derived which were transcendental in nature but allowed for fairly easy computer calculations. Transverse ASE were calculated using the unsaturated gain resulting from longitudinal fields and were used to compare this with the longitudinal field equations. Large computer programs are now available at LANL which include the influence of transverse ASE on the longitudinal fields. However, none of these considerations have worried about the changes in the frequency characteristics of the propagating field or of how each of the frequency field components contributes to the saturation of the gain. The inclusion of full frequency characteristics to the analytic solutions of Hunter and Hunter proved impossible at least for this author and a new calculational technique was developed and is the subject of this talk

  2. Passive Frequency Selective Surface Array as a Diffuser for Destroying Millimeter Wave Coherence

    Directory of Open Access Journals (Sweden)

    Saiful Islam

    2008-01-01

    Full Text Available This paper presents the design, construction, and testing of grounded frequency selective surface (FSS array as a diffuser for destroying millimeter wave coherence which is used to eliminate speckle in active millimeter wave imaging. To create stochastically independent illumination patterns, we proposed a diffuser based on random-phase distributions obtained by changing the incident frequency. The random-phase diffuser was obtained by mixing up the phase relations between the cells of a deterministic function (e.g., beam splitter. The slot length of FSS is the main design parameter used to optimize the phase shifting properties of the array. The critical parameters of the diffuser array design, such as phase relation with slot lengths, losses, and bandwidth, are discussed. We designed the FSS arrays with finite integral technique (FIT, fabricated by etching technique, and characterized the S-parameters with a free-space MVNA, and measured the radiation patterns with a BWO in motorized setup.

  3. Mixing it but not mixed-up: mixed methods research in medical education (a critical narrative review).

    Science.gov (United States)

    Maudsley, Gillian

    2011-01-01

    Some important research questions in medical education and health services research need 'mixed methods research' (particularly synthesizing quantitative and qualitative findings). The approach is not new, but should be more explicitly reported. The broad search question here, of a disjointed literature, was thus: What is mixed methods research - how should it relate to medical education research?, focused on explicit acknowledgement of 'mixing'. Literature searching focused on Web of Knowledge supplemented by other databases across disciplines. Five main messages emerged: - Thinking quantitative and qualitative, not quantitative versus qualitative - Appreciating that mixed methods research blends different knowledge claims, enquiry strategies, and methods - Using a 'horses for courses' [whatever works] approach to the question, and clarifying the mix - Appreciating how medical education research competes with the 'evidence-based' movement, health services research, and the 'RCT' - Being more explicit about the role of mixed methods in medical education research, and the required expertise Mixed methods research is valuable, yet the literature relevant to medical education is fragmented and poorly indexed. The required time, effort, expertise, and techniques deserve better recognition. More write-ups should explicitly discuss the 'mixing' (particularly of findings), rather than report separate components.

  4. An application of time-frequency signal analysis technique to estimate the location of an impact source on a plate type structure

    International Nuclear Information System (INIS)

    Park, Jin Ho; Lee, Jeong Han; Choi, Young Chul; Kim, Chan Joong; Seong, Poong Hyun

    2005-01-01

    It has been reviewed whether it would be suitable that the application of the time-frequency signal analysis techniques to estimate the location of the impact source in plate structure. The STFT(Short Time Fourier Transform), WVD(Wigner-Ville distribution) and CWT(Continuous Wavelet Transform) methods are introduced and the advantages and disadvantages of those methods are described by using a simulated signal component. The essential of the above proposed techniques is to separate the traveling waves in both time and frequency domains using the dispersion characteristics of the structural waves. These time-frequency methods are expected to be more useful than the conventional time domain analyses for the impact localization problem on a plate type structure. Also it has been concluded that the smoothed WVD can give more reliable means than the other methodologies for the location estimation in a noisy environment

  5. Comparison of mobile and stationary spore-sampling techniques for estimating virulence frequencies in aerial barley powdery mildew populations

    DEFF Research Database (Denmark)

    Hovmøller, M.S.; Munk, L.; Østergård, Hanne

    1995-01-01

    Gene frequencies in samples of aerial populations of barley powdery mildew (Erysiphe graminis f.sp. hordei), which were collected in adjacent barley areas and in successive periods of time, were compared using mobile and stationary sampling techniques. Stationary samples were collected from trap ...

  6. Guided Wave Propagation Study on Laminated Composites by Frequency-Wavenumber Technique

    Science.gov (United States)

    Tian, Zhenhua; Yu, Lingyu; Leckey, Cara A. C.

    2014-01-01

    Toward the goal of delamination detection and quantification in laminated composites, this paper examines guided wave propagation and wave interaction with delamination damage in laminated carbon fiber reinforced polymer (CFRP) composites using frequency-wavenumber (f-kappa) analysis. Three-dimensional elastodynamic finite integration technique (EFIT) is used to acquire simulated time-space wavefields for a CFRP composite. The time-space wavefields show trapped waves in the delamination region. To unveil the wave propagation physics, the time-space wavefields are further analyzed by using two-dimensional (2D) Fourier transforms (FT). In the analysis results, new f-k components are observed when the incident guided waves interact with the delamination damage. These new f-kappa components in the simulations are experimentally verified through data obtained from scanning laser Doppler vibrometer (SLDV) tests. By filtering the new f-kappa components, delamination damage is detected and quantified.

  7. Portable optical frequency standard based on sealed gas-filled hollow-core fiber using a novel encapsulation technique

    DEFF Research Database (Denmark)

    Triches, Marco; Brusch, Anders; Hald, Jan

    2015-01-01

    A portable stand-alone optical frequency standard based on a gas-filled hollow-core photonic crystal fiber is developed to stabilize a fiber laser to the 13C2H2 P(16) (ν1 + ν3) transition at 1542 nm using saturated absorption. A novel encapsulation technique is developed to permanently seal...

  8. Technique for long and absolute distance measurement based on laser pulse repetition frequency sweeping

    Science.gov (United States)

    Castro Alves, D.; Abreu, Manuel; Cabral, A.; Jost, Michael; Rebordão, J. M.

    2017-11-01

    In this work we present a technique to perform long and absolute distance measurements based on mode-locked diode lasers. Using a Michelson interferometer, it is possible to produce an optical cross-correlation between laser pulses of the reference arm with the pulses from the measurement arm, adjusting externally their degree of overlap either changing the pulse repetition frequency (PRF) or the position of the reference arm mirror for two (or more) fixed frequencies. The correlation of the travelling pulses for precision distance measurements relies on ultra-short pulse durations, as the uncertainty associated to the method is dependent on the laser pulse width as well as on a highly stable PRF. Mode-locked Diode lasers are a very appealing technology for its inherent characteristics, associated to compactness, size and efficiency, constituting a positive trade-off with regard to other mode-locked laser sources. Nevertheless, main current drawback is the non-availability of frequency-stable laser diodes. The laser used is a monolithic mode-locked semiconductor quantum-dot (QD) laser. The laser PRF is locked to an external stabilized RF reference. In this work we will present some of the preliminary results and discuss the importance of the requirements related to laser PRF stability in the final metrology system accuracy.

  9. Frequency Adaptive Control Technique for Periodic Runout and Wobble Cancellation in Optical Disk Drives

    Directory of Open Access Journals (Sweden)

    Yee-Pien Yang

    2006-10-01

    Full Text Available Periodic disturbance occurs in various applications on the control of the rotational mechanical systems. For optical disk drives, the spirally shaped tracks are usually not perfectly circular and the assembly of the disk and spindle motor is unavoidably eccentric. The resulting periodic disturbance is, therefore, synchronous with the disk rotation, and becomes particularly noticeable for the track following and focusing servo system. This paper applies a novel adaptive controller, namely Frequency Adaptive Control Technique (FACT, for rejecting the periodic runout and wobble effects in the optical disk drive with dual actuators. The control objective is to attenuate adaptively the specific frequency contents of periodic disturbances without amplifying its rest harmonics. FACT is implemented in a plug-in manner and provides a suitable framework for periodic disturbance rejection in the cases where the fundamental frequencies of the disturbance are alterable. It is shown that the convergence property of parameters in the proposed adaptive algorithm is exponentially stable. It is applicable to both the spindle modes of constant linear velocity (CLV and constant angular velocity (CAV for various operation speeds. The experiments showed that the proposed FACT has successful improvement on the tracking and focusing performance of the CD-ROM, and is extended to various compact disk drives.

  10. Experimental research on pressure fluctuation and vibration in a mixed flow pump

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Liu, Houlin; Wang, Wenbo [National Research Center of Pumps and Pumping System Engineering and Technology, Jiangsu University, Zhenjiang (China); Zhou, Xiaohua [Gree Electric Appliance Inc. of Zhuhai, Zhuhai (China)

    2016-01-15

    To study the pressure fluctuation and vibration in mixed flow pumps, we chose a mixed flow pump with specific speed of 436.1 to measure. The time domains and frequency domain at each monitoring point on diffuser and outlet elbow were analyzed, as well as the vibration frequency domain characteristics at the impeller outlet and near the motor. The results show that the peak value of pressure fluctuation peak decreased gradually with the increase of flow rate. The pressure fluctuation of each monitoring point had periodicity, and the frequency domain dominated by blade passing frequency and multiple shaft frequency. The vibration frequency of each monitoring point occurred at shaft frequency and its multiple shaft frequency. The dominant frequency and the second frequency were distributed in shaft frequency and double shaft frequency.

  11. Reduction of heart sound interference from lung sound signals using empirical mode decomposition technique.

    Science.gov (United States)

    Mondal, Ashok; Bhattacharya, P S; Saha, Goutam

    2011-01-01

    During the recording time of lung sound (LS) signals from the chest wall of a subject, there is always heart sound (HS) signal interfering with it. This obscures the features of lung sound signals and creates confusion on pathological states, if any, of the lungs. A novel method based on empirical mode decomposition (EMD) technique is proposed in this paper for reducing the undesired heart sound interference from the desired lung sound signals. In this, the mixed signal is split into several components. Some of these components contain larger proportions of interfering signals like heart sound, environmental noise etc. and are filtered out. Experiments have been conducted on simulated and real-time recorded mixed signals of heart sound and lung sound. The proposed method is found to be superior in terms of time domain, frequency domain, and time-frequency domain representations and also in listening test performed by pulmonologist.

  12. A Simple Semaphore Signaling Technique for Ultra-High Frequency Spacecraft Communications

    Science.gov (United States)

    Butman, S.; Satorius, E.; Illott, P.

    2005-11-01

    For planetary lander missions such as the upcoming Phoenix mission to Mars, the most challenging phase of the spacecraft-to-ground communications is during the critical phase termed entry, descent, and landing (EDL). At 8.4 GHz (X-band), the signals received by the largest Deep Space Network (DSN) antennas can be too weak for even 1 bit per second (bps) and therefore not able to communicate critical information to Earth. Fortunately, the lander's ultra-high frequency (UHF) link to an orbiting relay can meet the EDL requirements, but the data rate needs to be low enough to fit the capability of the UHF link during some or all of EDL. On Phoenix, the minimum data rate of the as-built UHF radio is 8 kbps and requires a signal level at the Odyssey orbiter of at least minus 120 dBm. For lower signaling levels, the effective data rate needs to be reduced, but without incurring the cost of rebuilding and requalifying the equipment. To address this scenario, a simple form of frequency-shift keying (FSK) has been devised by appropriately programming the data stream that is input to the UHF transceiver. This article describes this technique and provides performance estimates. Laboratory testing reveals that input signal levels at minus 140 dBm and lower can routinely be demodulated with the proposed signaling scheme, thereby providing a 20-dB and greater margin over the 8-kbps threshold.

  13. Survey on Prognostics Techniques for Updating Initiating Event Frequency in PSA

    International Nuclear Information System (INIS)

    Kim, Hyeonmin; Heo, Gyunyoung

    2015-01-01

    One of the applications using PSA is a risk monito. The risk monitoring is real-time analysis tool to decide real-time risk based on real state of components and systems. In order to utilize more effective, the methodologies that manipulate the data from Prognostics was suggested. Generally, Prognostic comprehensively includes not only prognostic but also monitoring and diagnostic. The prognostic method must need condition monitoring. In case of applying PHM to a PSA model, the latest condition of NPPs can be identified more clearly. For reducing the conservatism and uncertainties, we suggested the concept that updates the initiating event frequency in a PSA model by using Bayesian approach which is one of the prognostics techniques before. From previous research, the possibility that PSA is updated by using data more correctly was found. In reliability theory, the Bathtub curve divides three parts (infant failure, constant and random failure, wareout failure). In this paper, in order to investigate the applicability of prognostic methods in updating quantitative data in a PSA model, the OLM acceptance criteria from NUREG, the concept of how to using prognostic in PSA, and the enabling prognostic techniques are suggested. The prognostic has the motivation that improved the predictive capabilities using existing monitoring systems, data, and information will enable more accurate equipment risk assessment for improved decision-making

  14. Survey on Prognostics Techniques for Updating Initiating Event Frequency in PSA

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeonmin; Heo, Gyunyoung [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    One of the applications using PSA is a risk monito. The risk monitoring is real-time analysis tool to decide real-time risk based on real state of components and systems. In order to utilize more effective, the methodologies that manipulate the data from Prognostics was suggested. Generally, Prognostic comprehensively includes not only prognostic but also monitoring and diagnostic. The prognostic method must need condition monitoring. In case of applying PHM to a PSA model, the latest condition of NPPs can be identified more clearly. For reducing the conservatism and uncertainties, we suggested the concept that updates the initiating event frequency in a PSA model by using Bayesian approach which is one of the prognostics techniques before. From previous research, the possibility that PSA is updated by using data more correctly was found. In reliability theory, the Bathtub curve divides three parts (infant failure, constant and random failure, wareout failure). In this paper, in order to investigate the applicability of prognostic methods in updating quantitative data in a PSA model, the OLM acceptance criteria from NUREG, the concept of how to using prognostic in PSA, and the enabling prognostic techniques are suggested. The prognostic has the motivation that improved the predictive capabilities using existing monitoring systems, data, and information will enable more accurate equipment risk assessment for improved decision-making.

  15. Upper bounds for the changes of natural frequencies due to dynamic partitioning techniques

    International Nuclear Information System (INIS)

    Peters, K.; Wagner, U.; Albus, E.

    1981-01-01

    Dynamic partitioning or substructuring is the reduction of degrees of freedom by neglecting the dynamical influence of higher modes of certain substructure. One of the major reasons for these techniques not being widely accepted is the lack of criteria to judge the accuracy of the computed data. So far as natural frequencies are concerned a theorem is formulated which gives upper bounds for the error due to dynamic substructuring. The theorem is tested by applying it to a special statically exact substructuring method which is gained from a fixed-mode approach. The error estimation turns out to be strict enough to decide on the validity of DOF-reduction. (orig.)

  16. Techniques for measuring the atomic recoil frequency using a grating-echo atom interferometer

    Science.gov (United States)

    Barrett, Brynle

    I have developed three types of time-domain echo atom interferometer (AIs) that use either two or three standing-wave pulses in different configurations. Experiments approaching the transit time limit are achieved using samples of laser-cooled rubidium atoms with temperatures AI. This interferometer uses two standing-wave pulses applied at times t = 0 and t = T 21 to create a superposition of atomic momentum states differing by multiples of the two-photon momentum, ħq = 2 ħk where k is the optical wave number, that interfere in the vicinity of t = 2T 21. This interference or "echo" manifests itself as a density grating in the atomic sample, and is probed by applying a near-resonant traveling-wave "read-out" pulse and measuring the intensity of the coherent light Bragg-scattered in the backward direction. The scattered light from the grating is associated with a λ/2-periodic modulation produced by the interference of momentum states differing by ħq. Interfering states that differ by more than ħq—which produce higher-frequency spatial modulation within the sample—cannot be detected due to the nature of the Bragg scattering detection technique employed in the experiment. The intensity of the scattered light varies in a periodic manner as a function of the standing-wave pulse separation, T21. The fundamental frequency of this modulation is the two-photon atomic recoil frequency, ω q = ħq2/2M, where q = 2k and M is the mass of the atom (a rubidium isotope in this case). The recoil frequency, ω q, is related to the recoil energy, Eq = ħωq, which is the kinetic energy associated with the recoil of the atom after a coherent two-photon scattering process. By performing the experiment on a suitably long time scale ( T21 >> τq = π/ω q ˜32 μs), ωq can be measured precisely. Since ωq contains the ratio of Planck's constant to the mass of the atom, h/M, a precise measurement of ωq can be used as a strict test of quantum theories of the electromagnetic force

  17. Wave-mixing with high-order harmonics in extreme ultraviolet region

    International Nuclear Information System (INIS)

    Dao, Lap Van; Dinh, Khuong Ba; Le, Hoang Vu; Gaffney, Naylyn; Hannaford, Peter

    2015-01-01

    We report studies of the wave-mixing process in the extreme ultraviolet region with two near-infrared driving and controlling pulses with incommensurate frequencies (at 1400 nm and 800 nm). A non-collinear scheme for the two beams is used in order to spatially separate and to characterise the properties of the high-order wave-mixing field. We show that the extreme ultraviolet frequency mixing can be treated by perturbative, very high-order nonlinear optics; the modification of the wave-packet of the free electron needs to be considered in this process

  18. Mixed waste treatment using the ChemChar thermolytic detoxification technique

    Energy Technology Data Exchange (ETDEWEB)

    Kuchynka, D. [Mirage Systems, Sunnyvale, CA (United States)

    1995-10-01

    The diversity of mixed waste matrices contained at Department of Energy sites that require treatment preclude a single, universal treatment technology capable of handling sludges, solids, heterogeneous debris, aqueous and organic liquids and soils. This report describes the ChemChar thermolytic detoxification process. The process is a thermal, chemically reductive technology that converts the organic portion of mixed wastes to a synthesis gas, while simultaneously absorbing volatile inorganics on a carbon-based char.

  19. Frequency standards

    CERN Document Server

    Riehle, Fritz

    2006-01-01

    Of all measurement units, frequency is the one that may be determined with the highest degree of accuracy. It equally allows precise measurements of other physical and technical quantities, whenever they can be measured in terms of frequency.This volume covers the central methods and techniques relevant for frequency standards developed in physics, electronics, quantum electronics, and statistics. After a review of the basic principles, the book looks at the realisation of commonly used components. It then continues with the description and characterisation of important frequency standards

  20. A new frequency matching technique for FRF-based model updating

    Science.gov (United States)

    Yang, Xiuming; Guo, Xinglin; Ouyang, Huajiang; Li, Dongsheng

    2017-05-01

    Frequency Response Function (FRF) residues have been widely used to update Finite Element models. They are a kind of original measurement information and have the advantages of rich data and no extraction errors, etc. However, like other sensitivity-based methods, an FRF-based identification method also needs to face the ill-conditioning problem which is even more serious since the sensitivity of the FRF in the vicinity of a resonance is much greater than elsewhere. Furthermore, for a given frequency measurement, directly using a theoretical FRF at a frequency may lead to a huge difference between the theoretical FRF and the corresponding experimental FRF which finally results in larger effects of measurement errors and damping. Hence in the solution process, correct selection of the appropriate frequency to get the theoretical FRF in every iteration in the sensitivity-based approach is an effective way to improve the robustness of an FRF-based algorithm. A primary tool for right frequency selection based on the correlation of FRFs is the Frequency Domain Assurance Criterion. This paper presents a new frequency selection method which directly finds the frequency that minimizes the difference of the order of magnitude between the theoretical and experimental FRFs. A simulated truss structure is used to compare the performance of different frequency selection methods. For the sake of reality, it is assumed that not all the degrees of freedom (DoFs) are available for measurement. The minimum number of DoFs required in each approach to correctly update the analytical model is regarded as the right identification standard.

  1. Examining fire-induced forest changes using novel remote sensing technique: a case study in a mixed pine-oak forest

    Science.gov (United States)

    Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.

    2017-12-01

    Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire

  2. Coherent radio-frequency detection for narrowband direct comb spectroscopy.

    Science.gov (United States)

    Anstie, James D; Perrella, Christopher; Light, Philip S; Luiten, Andre N

    2016-02-22

    We demonstrate a scheme for coherent narrowband direct optical frequency comb spectroscopy. An extended cavity diode laser is injection locked to a single mode of an optical frequency comb, frequency shifted, and used as a local oscillator to optically down-mix the interrogating comb on a fast photodetector. The high spectral coherence of the injection lock generates a microwave frequency comb at the output of the photodiode with very narrow features, enabling spectral information to be further down-mixed to RF frequencies, allowing optical transmittance and phase to be obtained using electronics commonly found in the lab. We demonstrate two methods for achieving this step: a serial mode-by-mode approach and a parallel dual-comb approach, with the Cs D1 transition at 894 nm as a test case.

  3. A PLIF and PIV study of liquid mixing enhanced by a lateral synthetic jet pair

    International Nuclear Information System (INIS)

    Xia Qingfeng; Zhong Shan

    2012-01-01

    Highlights: ► Enhancement of mixing between two water streams in a planar channel by means of a lateral synthetic jet pair is studied using PLIF and PIV. ► The excellent mixing observed is largely caused by a strong interaction between the opposing vortex pairs produced by the lateral synthetic jets. ► The synthetic jet operating conditions, at which a nearly homogenous mixing is achieved, are also identified and they are expressed in terms of a functional relationship. - Abstract: In this paper, enhancement of mixing between two water streams of the same flow rate in a planar channel by means of a lateral synthetic jet pair is studied at a net flow Reynolds number of 83 using PLIF and PIV. The synthetic jet pair is operated 180° out-of-phase at a range of actuation frequencies and displacements, with the latter being characterized by the dimensionless stroke length. The extent of mixing is evaluated using PLIF data at a location further downstream in the mixing channel. It is found that at a fixed actuation frequency a higher dimensionless stroke length produces a better mixing, and as the actuation frequency increases a lower dimensionless stroke length is required to achieve a given mixing degree. At a sufficiently high frequency or dimensionless stroke length, a nearly homogenous mixing with a mixing degree greater than 0.9 can be obtained. A functional relationship between actuation frequency and dimensionless stroke length is also obtained by best fitting the experimental data, which can be used for selecting the synthetic jet operating conditions to ensure a good mixing. Furthermore, both PLIF and PIV results show that each synthetic jet actuation cycle produce two opposing vortex pairs, which play an important role in prompting mixing between the two fluid streams. The excellent mixing obtained at a high frequency or a high dimensionless stroke length is found to be largely caused by a strong interaction between these opposing vortex pairs.

  4. Emission computer tomography on a Dodewaard mixed oxide fuel pin. Comparative PIE work with non-destructive and destructive techniques

    Energy Technology Data Exchange (ETDEWEB)

    Buurveld, H.A.; Dassel, G.

    1993-12-01

    A nondestructive technique as well as a destructive PIE technique have been used to verify the results obtained with a newly 8-e computer tomography (GECT) system. Multi isotope Scanning (MIS), electron probe micro analysis (EPMA) and GECT were used on a mixed oxide (MOX) fuel rod from the Dodewaard reactor with an average burnup of 24 MWd/kg fuel. GECT shows migration of Cs to the periphery of fuel pellets and to radial cracks and pores in the fuel, whereas MIS shows Cs migration to pellet interfaces. The EPMA technique appeared not to be useful to show migration of Cs but, it shows the distribution of fission products from Pu. EPMA clearly shows the distribution of fission products from Pu, but did not reveal the Cs-migration. (orig./HP)

  5. Improvement of ISI techniques by multi-frequency eddy current testing method for steam generator tube in PWR plant

    International Nuclear Information System (INIS)

    Endo, Takashi; Kamimura, Takeo; Nishihara, Masatoshi; Araki, Yasuo; Fukui, Shigetaka.

    1982-05-01

    Eddy current flaw detection techniques are applied to the in-service inspection (ISI) of steam generator tubes in pressurized water reactors (PWR) plant. To improve the reliability and operating efficiency of the plants, efforts are being made to develop eddy current testing methods of various kinds. Multi-frequency eddy current testing method, one of new method, has recently been applied to actual heat exchanger tubes, contributing to the improvement of the detectability and signal evaluation of the ISI. The outline of multi-frequency eddy current testing method and its effects on the improvement of flaw detecting and signal evaluation accuracy are described. (author)

  6. Forest parameter estimation using polarimetric SAR interferometry techniques at low frequencies

    International Nuclear Information System (INIS)

    Lee, Seung-Kuk

    2013-01-01

    Polarimetric Synthetic Aperture Radar Interferometry (Pol-InSAR) is an active radar remote sensing technique based on the coherent combination of both polarimetric and interferometric observables. The Pol-InSAR technique provided a step forward in quantitative forest parameter estimation. In the last decade, airborne SAR experiments evaluated the potential of Pol-InSAR techniques to estimate forest parameters (e.g., the forest height and biomass) with high accuracy over various local forest test sites. This dissertation addresses the actual status, potentials and limitations of Pol-InSAR inversion techniques for 3-D forest parameter estimations on a global scale using lower frequencies such as L- and P-band. The multi-baseline Pol-InSAR inversion technique is applied to optimize the performance with respect to the actual level of the vertical wave number and to mitigate the impact of temporal decorrelation on the Pol-InSAR forest parameter inversion. Temporal decorrelation is a critical issue for successful Pol-InSAR inversion in the case of repeat-pass Pol-InSAR data, as provided by conventional satellites or airborne SAR systems. Despite the limiting impact of temporal decorrelation in Pol-InSAR inversion, it remains a poorly understood factor in forest height inversion. Therefore, the main goal of this dissertation is to provide a quantitative estimation of the temporal decorrelation effects by using multi-baseline Pol-InSAR data. A new approach to quantify the different temporal decorrelation components is proposed and discussed. Temporal decorrelation coefficients are estimated for temporal baselines ranging from 10 minutes to 54 days and are converted to height inversion errors. In addition, the potential of Pol-InSAR forest parameter estimation techniques is addressed and projected onto future spaceborne system configurations and mission scenarios (Tandem-L and BIOMASS satellite missions at L- and P-band). The impact of the system parameters (e.g., bandwidth

  7. Evaluation of the Efficacy of Different Mixing Techniques and Disinfection on Microbial Colonization of Polyether Impression Materials: A Comparative Study.

    Science.gov (United States)

    Singla, Youginder; Pachar, Renu B; Poriya, Sangeeta; Mishra, Aalok; Sharma, Rajni; Garg, Anshu

    2018-03-01

    This study aims to determine the role of mixing techniques of polyether impression materials and efficacy of disinfection on microbial colonization of these impression materials. Polyether impression material was mixed using two methods: First by hand mixing (group I) and second using an automixer (group II) with a total of 100 samples. Four microbial strains were studied, which included Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. After incubation, the bacterial colonies were counted, and then, disinfectant solution was applied. The effect of disinfection solution was evaluated for each specimen. The surface of polyether impression materials mixed with an automixer has less number of voids and overall a smoother surface as compared with the hand-mixed ones. On comparing the disinfection procedures, i.e., specimens without any disinfection and specimens after disinfection, statistically highly significant difference was seen between all the groups. We can conclude that impression mixing procedures are important in determining the surface characteristics of the impression and ultimately the colonization of bacteria and also determine the importance of disinfection on microbial colonization. This study emphasises the deleterious role of nosocomial infections and specific measures that should be taken regarding the prevention of such diseases. Dental impressions are proved to be a source of such infections and may lead to transmission of such diseases. Thus, proper measures should be taken right from the first step of impression taking to minimizing and preventing such kind of contaminations in clinical practice.

  8. Mixed Discretization of the Time Domain MFIE at Low Frequencies

    KAUST Repository

    Ulku, Huseyin Arda; Bogaert, Ignace; Cools, Kristof; Andriulli, Francesco Paolo; Bagci, Hakan

    2017-01-01

    stems from the classical MOT scheme’s failure to predict the correct scaling of the current’s Helmholtz components for large time steps. A recently proposed mixed discretization strategy is used to alleviate the inaccuracy problem by restoring

  9. Building Quakes: Detection of Weld Fractures in Buildings using High-Frequency Seismic Techniques

    Science.gov (United States)

    Heckman, V.; Kohler, M. D.; Heaton, T. H.

    2009-12-01

    Catastrophic fracture of welded beam-column connections in buildings was observed in the Northridge and Kobe earthquakes. Despite the structural importance of such connections, it can be difficult to locate damage in structural members underneath superficial building features. We have developed a novel technique to locate fracturing welds in buildings in real time using high-frequency information from seismograms. Numerical and experimental methods were used to investigate an approach for detecting the brittle fracture of welds of beam-column connections in instrumented steel moment-frame buildings through the use of time-reversed Green’s functions and wave propagation reciprocity. The approach makes use of a prerecorded catalogue of Green’s functions for an instrumented building to detect high-frequency failure events in the building during a later earthquake by screening continuous data for the presence of one or more of the events. This was explored experimentally by comparing structural responses of a small-scale laboratory structure under a variety of loading conditions. Experimentation was conducted on a polyvinyl chloride frame model structure with data recorded at a sample rate of 2000 Hz using piezoelectric accelerometers and a 24-bit digitizer. Green’s functions were obtained by applying impulsive force loads at various locations along the structure with a rubber-tipped force transducer hammer. We performed a blind test using cross-correlation techniques to determine if it was possible to use the catalogue of Green’s functions to pinpoint the absolute times and locations of subsequent, induced failure events in the structure. A finite-element method was used to simulate the response of the model structure to various source mechanisms in order to determine the types of elastic waves that were produced as well as to obtain a general understanding of the structural response to localized loading and fracture.

  10. On Secrecy Performance of Mixed RF-FSO Systems

    KAUST Repository

    Lei, Hongjiang; Dai, Zhijun; Ansari, Imran Shafique; Park, Kihong; pan, Gaofeng; Alouini, Mohamed-Slim

    2017-01-01

    In this work, we study the secrecy performance of a mixed radio frequency-free space optical (RF-FSO) transmission systems. All RF links experience Nakagami-m fading and the FSO link experiences the Gamma-Gamma fading. The effect of pointing error and two types of detection techniques (i.e., heterodyne detection and intensity modulation with direct detection) are considered. We derive closed-form expressions for lower bound of the secrecy outage probability (SOP) and exact average secrecy capacity (ASC). Furthermore, by utilizing the expansion of Meijer's G-function, asymptotic results for SOP and ASC are derived when the electrical signal-to-noise ratio of the FSO link tends to infinity. Numerical and Monte-Carlo simulation results are provided to verify the accuracy of our proposed results.

  11. On Secrecy Performance of Mixed RF-FSO Systems

    KAUST Repository

    Lei, Hongjiang

    2017-07-05

    In this work, we study the secrecy performance of a mixed radio frequency-free space optical (RF-FSO) transmission systems. All RF links experience Nakagami-m fading and the FSO link experiences the Gamma-Gamma fading. The effect of pointing error and two types of detection techniques (i.e., heterodyne detection and intensity modulation with direct detection) are considered. We derive closed-form expressions for lower bound of the secrecy outage probability (SOP) and exact average secrecy capacity (ASC). Furthermore, by utilizing the expansion of Meijer\\'s G-function, asymptotic results for SOP and ASC are derived when the electrical signal-to-noise ratio of the FSO link tends to infinity. Numerical and Monte-Carlo simulation results are provided to verify the accuracy of our proposed results.

  12. Mixed features in patients with a major depressive episode: the BRIDGE-II-MIX study.

    Science.gov (United States)

    Perugi, Giulio; Angst, Jules; Azorin, Jean-Michel; Bowden, Charles L; Mosolov, Sergey; Reis, Joao; Vieta, Eduard; Young, Allan H

    2015-03-01

    To estimate the frequency of mixed states in patients diagnosed with major depressive episode (MDE) according to conceptually different definitions and to compare their clinical validity. This multicenter, multinational cross-sectional Bipolar Disorders: Improving Diagnosis, Guidance and Education (BRIDGE)-II-MIX study enrolled 2,811 adult patients experiencing an MDE. Data were collected per protocol on sociodemographic variables, current and past psychiatric symptoms, and clinical variables that are risk factors for bipolar disorder. The frequency of mixed features was determined by applying both DSM-5 criteria and a priori described Research-Based Diagnostic Criteria (RBDC). Clinical variables associated with mixed features were assessed using logistic regression. Overall, 212 patients (7.5%) fulfilled DSM-5 criteria for MDE with mixed features (DSM-5-MXS), and 818 patients (29.1%) fulfilled diagnostic criteria for a predefined RBDC depressive mixed state (RBDC-MXS). The most frequent manic/hypomanic symptoms were irritable mood (32.6%), emotional/mood lability (29.8%), distractibility (24.4%), psychomotor agitation (16.1%), impulsivity (14.5%), aggression (14.2%), racing thoughts (11.8%), and pressure to keep talking (11.4%). Euphoria (4.6%), grandiosity (3.7%), and hypersexuality (2.6%) were less represented. In multivariate logistic regression analysis, RBDC-MXS was associated with the largest number of variables including diagnosis of bipolar disorder, family history of mania, lifetime suicide attempts, duration of the current episode > 1 month, atypical features, early onset, history of antidepressant-induced mania/hypomania, and lifetime comorbidity with anxiety, alcohol and substance use disorders, attention-deficit/hyperactivity disorder, and borderline personality disorder. Depressive mixed state, defined as the presence of 3 or more manic/hypomanic features, was present in around one-third of patients experiencing an MDE. The valid symptom, illness

  13. Hard-rock GMPEs versus Vs30-Kappa Host-to-Target Adjustment Techniques : Why so Large Differences in High Frequency Hard-Rock Motion ?

    Science.gov (United States)

    Bard, P. Y.; Laurendeau, A.; Hollender, F.; Perron, V.; Hernandez, B.; Foundotos, L.

    2016-12-01

    Assessment of local seismic hazard on hard rock sites (1000 processing of the Japanese KiK-net recordings from stiff sites (500 deep, within-motion to outcropping motion, or on a deconvolution of surface recordings using the velocity profile and 1D simulation, which has been performed both in the response spectrum and Fourier domains. Each of these virtual "outcropping hard-rock motion" data sets has then been used to derive GMPEs with simple functional forms, using as site condition proxy the S-wave velocity at depth (VSDH), ranging from 1000 to 3000 m/s. Both sets provide very similar predictions, which are much smaller at high frequencies (f > 10 Hz) than those estimated with the traditional HTTA technique - by a factor up to 3-4,. These differences decrease for decreasing frequency, and become negligible at low frequency (f shallow, moderate velocity layers. Not only this resonant amplification is not correctly accounted for by the quarter-wavelength approach used in the traditional HTTA adjustment techniques, but it may also significantly impact and bias the κ measurements, and the (VS30- κ0) relationships implicitly used in HTTA techniques.

  14. Characterization of ceramic materials using ultrasonic technique in the frequency domain and artificial networks

    International Nuclear Information System (INIS)

    Baroni, D.B.; Bittencourt, M.S.Q.; Pereira, C.M.N.A.

    2008-01-01

    The ceramic material characterization is very important to guarantee its mechanical properties. In the case of nuclear fuel (UO 2 ) the adequate porosity ensures its thermal efficiency and its structural integrity that contribute to the safety at nuclear power plants. The Ultrasound Laboratory of the Nuclear Engineering Institute (LABUS/IEN) has developed a technique to measure the porosity in ceramic materials. This technique uses ultrasound signal in the frequency domain and creates spectrum patterns related to the material porosity. Trained artificial neural networks recognizes these patterns and associates them to the porosities. In this work 20 pellets of Alumina were used with porosities in the same range used in the nuclear fuel (0.70% to 4.25%). In this case the used network was able to recognize the patterns of the pellets and to associate to the porosities with 100% of precision. It was possible to distinguished pellets with a difference of 0.01% of the porosity. (author)

  15. Microwave amplifier and active circuit design using the real frequency technique

    CERN Document Server

    Jarry, Pierre

    2016-01-01

    This book focuses on the authors' Real Frequency Technique (RFT) and its application to a wide variety of multi-stage microwave amplifiers and active filters, and passive equalizers for radar pulse shaping and antenna return loss applications. The first two chapters review the fundamentals of microwave amplifier design and provide a description of the RFT. Each subsequent chapter introduces a new type of amplifier or circuit design, reviews its design problems, and explains how the RFT can be adapted to solve these problems. The authors take a practical approach by summarizing the design steps and giving numerous examples of amplifier realizations and measured responses. Provides a complete description of the RFT as it is first used to design multistage lumped amplifiers using a progressive optimization of the equalizers, leading to a small umber of parameters to optimize simultaneously Presents modifications to the RFT to design trans-impedance microwave amplifiers that are used for photodiodes acti...

  16. Exploiting the spontaneous potential of the electrodes used in the capacitive mixing technique for the extraction of energy from salinity difference

    NARCIS (Netherlands)

    Brogioli, D.; Ziano, R.; Rica, R.A.; Salerno, D.; Kozynchenko, O.; Hamelers, H.V.M.; Mantegazza, F.

    2012-01-01

    The "capacitive mixing" (CAPMIX) technique is aimed at the extraction of energy from the salinity difference between the sea and rivers. It is based on the voltage rise that takes place at the electrodes when changing the salt concentration of the solution in which the two electrodes are dipped. In

  17. Nondegenerate Four-Wave Mixing in Gold Nanocomposites Formed by Ion Implantation

    International Nuclear Information System (INIS)

    Saonov, V.P.; Zhu, J.G.; Lepeshkin, N.N.; Armstrong, R.L.; Shalaev, V.M.; Ying, Z.C.; White, C.W.; Zuhr, R.A.

    1999-01-01

    Nondegenerate four-wave mixing technique has been used to investigate the third-order nonlinear susceptibility for nanocomposite material with Au nanocrystals formed inside a SiO 2 glass matrix. High concentrations of encapsulated Au nanocrystals are formed by implantation of Au ions into fused silica glass substrates and thermal annealing. The size distribution and the depth profiles of the Au nanoparticles can be controlled by the implantation dose, energy and annealing temperatures. The high value of the third-order susceptibility - (0.26--1.3)x10 -7 esu was found in the range of the frequency detunings near the surface plasmon resonance. Two characteristic relaxation times, 0.66 ps and 5.3 ps, have been extracted from the detuning curve of the third-order susceptibility as the probe-beam frequency changes and the pump-beam frequency fixed at the plasmon resonance. The first relaxation time was attributed to electron-phonon relaxation, and the second to thermal diffusion to the host medium. The efficient nondegenerate conversion is attractive for optical processing

  18. Source conductance scaling for high frequency superconducting quasiparticle receivers

    Science.gov (United States)

    Ke, Qing; Feldman, M. J.

    1992-01-01

    It has been suggested that the optimum source conductance G(sub s) for the superconductor-insulator-superconductor (SIS) quasiparticle mixer should have a l/f dependence. This would imply that the critical current density of SIS junctions used for mixing should increase as frequency squared, a stringent constraint on the design of submillimeter SIS mixers, rather than in simple proportion to frequency as previously believed. We have used Tucker's quantum theory of mixing for extensive numerical calculations to determine G(sub s) for an optimized SIS receiver. We find that G(sub s) is very roughly independent of frequency (except for the best junctions at low frequency), and discuss the implications of our results for the design of submillimeter SIS mixers.

  19. Type of presentation of dissociative disorder and frequency of co-morbid depressive disorder.

    Science.gov (United States)

    Alvi, Tabassum; Minhas, Fareed Aslam

    2009-02-01

    To determine the frequency distribution of various types of dissociative disorders, along with existing co-morbid depression and its level of severity in patients with dissociative disorder. Observational, cross-sectional study. The Institute of Psychiatry, Rawalpindi General Hospital from October 2004 to March 2005. Fifty consecutive patients were included in the study through non-probable purposive sampling technique. Encounter form included socio-demographic profile and brief psychiatric history. ICD 10 diagnostic criteria for research were administered for determining the presentation of dissociative disorder. Present state examination was applied to make diagnosis of depressive disorder in the studied patients. Descriptive statistics for frequency analysis of sociodemographic variables, type of presentation of dissociative disorder and the frequency of depressive disorder in patients of dissociative disorder. The mean age was 23.6+/-8.67 years with female preponderance (n=40, 80% patients). Most of them were single, unemployed and belonged to urban population. Main stress was primary support group issue. Mixed category of dissociative disorder was highest (n=18, 38%) followed by unspecified and motor symptoms (n=13, 26%) in each group. Depression was present in 42 (84%) patients. Moderate depression was most frequent (n=19, 38%). Mixed dissociative symptoms were found in 38%, while 26% had motor and unspecified category of dissociative symptoms respectively. Depressive disorder was present in 42 (84%) cases of dissociative disorder with 38% having moderate depression.

  20. Trend extraction of rail corrugation measured dynamically based on the relevant low-frequency principal components reconstruction

    International Nuclear Information System (INIS)

    Li, Yanfu; Liu, Hongli; Ma, Ziji

    2016-01-01

    Rail corrugation dynamic measurement techniques are critical to guarantee transport security and guide rail maintenance. During the inspection process, low-frequency trends caused by rail fluctuation are usually superimposed on rail corrugation and seriously affect the assessment of rail maintenance quality. In order to extract and remove the nonlinear and non-stationary trends from original mixed signals, a hybrid model based ensemble empirical mode decomposition (EEMD) and modified principal component analysis (MPCA) is proposed in this paper. Compared with the existing de-trending methods based on EMD, this method first considers low-frequency intrinsic mode functions (IMFs) thought to be underlying trend components that maybe contain some unrelated components, such as white noise and low-frequency signal itself, and proposes to use PCA to accurately extract the pure trends from the IMFs containing multiple components. On the other hand, due to the energy contribution ratio between trends and mixed signals is prior unknown, and the principal components (PCs) decomposed by PCA are arranged in order of energy reduction without considering frequency distribution, the proposed method modifies traditional PCA and just selects relevant low-frequency PCs to reconstruct the trends based on the zero-crossing numbers (ZCN) of each PC. Extensive tests are presented to illustrate the effectiveness of the proposed method. The results show the proposed EEMD-PCA-ZCN is an effective tool for trend extraction of rail corrugation measured dynamically. (paper)

  1. Protein folding kinetics by combined use of rapid mixing techniques and NMR observation of individual amide protons

    International Nuclear Information System (INIS)

    Roder, H.; Wuethrich, K.

    1986-01-01

    A method to be used for experimental studies of protein folding introduced by Schmid and Baldwin, which is based on the competition between amide hydrogen exchange and protein refolding, was extended by using rapid mixing techniques and 1 H NMR to provide site-resolved kinetic information on the early phases of protein structure acquisition. In this method, a protonated solution of the unfolded protein is rapidly mixed with a deuterated buffer solution at conditions assuring protein refolding in the mixture. This simultaneously initiates the exchange of unprotected amide protons with solvent deuterium and the refolding of protein segments which can protect amide groups from further exchange. After variable reaction times the amide proton exchange is quenched while folding to the native form continues to completion. By using 1 H NMR, the extent of exchange at individual amide sites is then measured in the refolded protein. Competition experiments at variable reaction times or variable pH indicate the time at which each amide group is protected in the refolding process. This technique was applied to the basic pancreatic trypsin inhibitor, for which sequence-specific assignments of the amide proton NMR lines had previously been obtained. For eight individual amide protons located in the beta-sheet and the C-terminal alpha-helix of this protein, apparent refolding rates in the range from 15 s-1 to 60 s-1 were observed. These rates are on the time scale of the fast folding phase observed with optical probes

  2. Inference of ICF Implosion Core Mix using Experimental Data and Theoretical Mix Modeling

    International Nuclear Information System (INIS)

    Welser-Sherrill, L.; Haynes, D.A.; Mancini, R.C.; Cooley, J.H.; Tommasini, R.; Golovkin, I.E.; Sherrill, M.E.; Haan, S.W.

    2009-01-01

    The mixing between fuel and shell materials in Inertial Confinement Fusion (ICF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model performed well in predicting trends in the width of the mix layer. With these results, we have contributed to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increased our confidence in the methods used to extract mixing information from experimental data.

  3. A Frequency-Weighted Energy Operator and complementary ensemble empirical mode decomposition for bearing fault detection

    Science.gov (United States)

    Imaouchen, Yacine; Kedadouche, Mourad; Alkama, Rezak; Thomas, Marc

    2017-01-01

    Signal processing techniques for non-stationary and noisy signals have recently attracted considerable attentions. Among them, the empirical mode decomposition (EMD) which is an adaptive and efficient method for decomposing signals from high to low frequencies into intrinsic mode functions (IMFs). Ensemble EMD (EEMD) is proposed to overcome the mode mixing problem of the EMD. In the present paper, the Complementary EEMD (CEEMD) is used for bearing fault detection. As a noise-improved method, the CEEMD not only overcomes the mode mixing, but also eliminates the residual of added white noise persisting into the IMFs and enhance the calculation efficiency of the EEMD method. Afterward, a selection method is developed to choose relevant IMFs containing information about defects. Subsequently, a signal is reconstructed from the sum of relevant IMFs and a Frequency-Weighted Energy Operator is tailored to extract both the amplitude and frequency modulations from the selected IMFs. This operator outperforms the conventional energy operator and the enveloping methods, especially in the presence of strong noise and multiple vibration interferences. Furthermore, simulation and experimental results showed that the proposed method improves performances for detecting the bearing faults. The method has also high computational efficiency and is able to detect the fault at an early stage of degradation.

  4. A Preliminary Rubric Design to Evaluate Mixed Methods Research

    Science.gov (United States)

    Burrows, Timothy J.

    2013-01-01

    With the increase in frequency of the use of mixed methods, both in research publications and in externally funded grants there are increasing calls for a set of standards to assess the quality of mixed methods research. The purpose of this mixed methods study was to conduct a multi-phase analysis to create a preliminary rubric to evaluate mixed…

  5. Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals

    International Nuclear Information System (INIS)

    Smith, A.V.; Armstrong, D.J.; Alford, W.J.

    1998-01-01

    We show by experiment and mathematical model that angular and frequency acceptance bandwidths for frequency mixing in a nonlinear crystal can often be improved by segmenting the crystal and reversing the spatial or temporal walk-off in alternating segments. We analyze nonlinear mixing primarily in real space, (x,t), rather than Fourier space, (k,ω), and show that acceptance bands for sum- and difference-frequency mixing can be increased by up to a factor equal to the number of crystal segments. We consider both high- and low-efficiency mixing as well as parametric gain, and show that in many cases of practical interest the increased bandwidth substantially improves conversion efficiency. We also attempt to clarify the role of acceptance bandwidths in frequency mixing. copyright 1998 Optical Society of America

  6. Portable (handheld) clinical device for quantitative spectroscopy of skin, utilizing spatial frequency domain reflectance techniques

    Science.gov (United States)

    Saager, Rolf B.; Dang, An N.; Huang, Samantha S.; Kelly, Kristen M.; Durkin, Anthony J.

    2017-09-01

    Spatial Frequency Domain Spectroscopy (SFDS) is a technique for quantifying in-vivo tissue optical properties. SFDS employs structured light patterns that are projected onto tissues using a spatial light modulator, such as a digital micromirror device. In combination with appropriate models of light propagation, this technique can be used to quantify tissue optical properties (absorption, μa, and scattering, μs', coefficients) and chromophore concentrations. Here we present a handheld implementation of an SFDS device that employs line (one dimensional) imaging. This instrument can measure 1088 spatial locations that span a 3 cm line as opposed to our original benchtop SFDS system that only collects a single 1 mm diameter spot. This imager, however, retains the spectral resolution (˜1 nm) and range (450-1000 nm) of our original benchtop SFDS device. In the context of homogeneous turbid media, we demonstrate that this new system matches the spectral response of our original system to within 1% across a typical range of spatial frequencies (0-0.35 mm-1). With the new form factor, the device has tremendously improved mobility and portability, allowing for greater ease of use in a clinical setting. A smaller size also enables access to different tissue locations, which increases the flexibility of the device. The design of this portable system not only enables SFDS to be used in clinical settings but also enables visualization of properties of layered tissues such as skin.

  7. Study of Ni Metallization in Macroporous Si Using Wet Chemistry for Radio Frequency Cross-Talk Isolation in Mixed Signal Integrated Circuits.

    Science.gov (United States)

    Zhang, Xi; Xu, Chengkun; Chong, Kyuchul; Tu, King-Ning; Xie, Ya-Hong

    2011-05-25

    A highly conductive moat or Faraday cage of through-the-wafer thickness in Si substrate was proposed to be effective in shielding electromagnetic interference thereby reducing radio frequency (RF) cross-talk in high performance mixed signal integrated circuits. Such a structure was realized by metallization of selected ultra-high-aspect-ratio macroporous regions that were electrochemically etched in p - Si substrates. The metallization process was conducted by means of wet chemistry in an alkaline aqueous solution containing Ni 2+ without reducing agent. It is found that at elevated temperature during immersion, Ni 2+ was rapidly reduced and deposited into macroporous Si and a conformal metallization of the macropore sidewalls was obtained in a way that the entire porous Si framework was converted to Ni. A conductive moat was as a result incorporated into p - Si substrate. The experimentally measured reduction of crosstalk in this structure is 5~18 dB at frequencies up to 35 GHz.

  8. Study of Ni Metallization in Macroporous Si Using Wet Chemistry for Radio Frequency Cross-Talk Isolation in Mixed Signal Integrated Circuits

    Directory of Open Access Journals (Sweden)

    King-Ning Tu

    2011-05-01

    Full Text Available A highly conductive moat or Faraday cage of through-the-wafer thickness in Si substrate was proposed to be effective in shielding electromagnetic interference thereby reducing radio frequency (RF cross-talk in high performance mixed signal integrated circuits. Such a structure was realized by metallization of selected ultra-high-aspect-ratio macroporous regions that were electrochemically etched in p− Si substrates. The metallization process was conducted by means of wet chemistry in an alkaline aqueous solution containing Ni2+ without reducing agent. It is found that at elevated temperature during immersion, Ni2+ was rapidly reduced and deposited into macroporous Si and a conformal metallization of the macropore sidewalls was obtained in a way that the entire porous Si framework was converted to Ni. A conductive moat was as a result incorporated into p− Si substrate. The experimentally measured reduction of crosstalk in this structure is 5~18 dB at frequencies up to 35 GHz.

  9. Study of Ni Metallization in Macroporous Si Using Wet Chemistry for Radio Frequency Cross-Talk Isolation in Mixed Signal Integrated Circuits

    Science.gov (United States)

    Zhang, Xi; Xu, Chengkun; Chong, Kyuchul; Tu, King-Ning; Xie, Ya-Hong

    2011-01-01

    A highly conductive moat or Faraday cage of through-the-wafer thickness in Si substrate was proposed to be effective in shielding electromagnetic interference thereby reducing radio frequency (RF) cross-talk in high performance mixed signal integrated circuits. Such a structure was realized by metallization of selected ultra-high-aspect-ratio macroporous regions that were electrochemically etched in p− Si substrates. The metallization process was conducted by means of wet chemistry in an alkaline aqueous solution containing Ni2+ without reducing agent. It is found that at elevated temperature during immersion, Ni2+ was rapidly reduced and deposited into macroporous Si and a conformal metallization of the macropore sidewalls was obtained in a way that the entire porous Si framework was converted to Ni. A conductive moat was as a result incorporated into p− Si substrate. The experimentally measured reduction of crosstalk in this structure is 5~18 dB at frequencies up to 35 GHz. PMID:28879960

  10. Inkjet printed paper based frequency selective surfaces and skin mounted RFID tags : the interrelation between silver nanoparticle ink, paper substrate and low temperature sintering technique

    NARCIS (Netherlands)

    Sanchez-Romaquera, V.; Wïnscher, S.; Turki, B.M.; Abbel, R.J.; Barbosa, S.; Tate, D.J.; Oyeka, D.; Batchelor, J.C.; Parker, E.A.; Schubert, U.S.; Yeates, S.G.

    2015-01-01

    Inkjet printing of functional frequency selective surfaces (FSS) and radio frequency identification (RFID) tags on commercial paper substrates using silver nanoparticle inks sintered using low temperature thermal, plasma and photonic techniques is reported. Printed and sintered FSS devices

  11. Up to 30 mW of broadly tunable CW green-to-orange light, based on sum-frequency mixing of Cr4+:forsterite and Nd:YVO4 lasers

    DEFF Research Database (Denmark)

    Mortensen, Jesper Liltorp; McWilliam, Allan; G. Leburn, Christopher

    2006-01-01

    Efficient generation of continuous-wave (CW) tunable light in the yellow region is reported. The method is based on sum-frequency mixing of a tunable Cr4+:forsterite laser with a Nd:YVO4 laser. A periodically poled lithium niobate crystal was placed intra-cavity in a Nd:YVO4 laser, and the Cr4...

  12. Time resolved high frequency spectrum of Br2 molecules using pulsed photoacoustic technique.

    Science.gov (United States)

    Yehya, Fahem; Chaudhary, A K

    2013-11-01

    The paper reports the time resolved spectral distribution of higher order acoustic modes generated in Br2 molecules using pulsed Photoacoustic (PA) technique. New time resolved vibrational spectrum of Br2 molecules are recorded using a single 532nm, pulses of 7ns duration at 10Hz repetition rate obtained from Q-switched Nd:YAG laser. Frank-Condon principle based assignments confirms the presence of 12 numbers of (ν″-ν') vibrational transitions covered by a single 532+2nm pulse profile. Inclusions of higher order zeroth modes in Bassel's function expansion series shows the probability of overlapping of different types of acoustic modes in the designed PA cells. These modes appear in the form of clusters which occupies higher frequency range. The study of decay behavior of PA signal with respect to time confirms the photolysis of Br2 at 532nm wavelength. In addition, the shifting and clustering effect of cavity eigen modes in Br2 molecules have been studied between 1 and 10ms time scale. The estimated Q-factor of PA cell (l=16cm, R=1.4cm) is 145±4 at 27kHz frequency. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Combining the power of stories and the power of numbers: mixed methods research and mixed studies reviews.

    Science.gov (United States)

    Pluye, Pierre; Hong, Quan Nha

    2014-01-01

    This article provides an overview of mixed methods research and mixed studies reviews. These two approaches are used to combine the strengths of quantitative and qualitative methods and to compensate for their respective limitations. This article is structured in three main parts. First, the epistemological background for mixed methods will be presented. Afterward, we present the main types of mixed methods research designs and techniques as well as guidance for planning, conducting, and appraising mixed methods research. In the last part, we describe the main types of mixed studies reviews and provide a tool kit and examples. Future research needs to offer guidance for assessing mixed methods research and reporting mixed studies reviews, among other challenges.

  14. Input current interharmonics in adjustable speed drives caused by fixed-frequency modulation techniques

    DEFF Research Database (Denmark)

    Soltani, Hamid; Davari, Pooya; Loh, Poh Chiang

    2016-01-01

    Adjustable Speed Drives (ASDs) based on double-stage conversion systems may inject interharmonics distortion into the grid, other than the well-known characteristic harmonic components. The problems created by interharmonics make it necessary to find their precise sources, and, to adopt an approp......Adjustable Speed Drives (ASDs) based on double-stage conversion systems may inject interharmonics distortion into the grid, other than the well-known characteristic harmonic components. The problems created by interharmonics make it necessary to find their precise sources, and, to adopt...... an appropriate strategy for minimizing their effects. This paper investigates the ASD's input current interharmonic sources caused by applying symmetrical regularly sampled fixed-frequency modulation techniques on the inverter. The interharmonics generation process is precisely formulated and comparative results...

  15. Mixed Frequency Data Sampling Regression Models: The R Package midasr

    Directory of Open Access Journals (Sweden)

    Eric Ghysels

    2016-08-01

    Full Text Available When modeling economic relationships it is increasingly common to encounter data sampled at different frequencies. We introduce the R package midasr which enables estimating regression models with variables sampled at different frequencies within a MIDAS regression framework put forward in work by Ghysels, Santa-Clara, and Valkanov (2002. In this article we define a general autoregressive MIDAS regression model with multiple variables of different frequencies and show how it can be specified using the familiar R formula interface and estimated using various optimization methods chosen by the researcher. We discuss how to check the validity of the estimated model both in terms of numerical convergence and statistical adequacy of a chosen regression specification, how to perform model selection based on a information criterion, how to assess forecasting accuracy of the MIDAS regression model and how to obtain a forecast aggregation of different MIDAS regression models. We illustrate the capabilities of the package with a simulated MIDAS regression model and give two empirical examples of application of MIDAS regression.

  16. Electric characterization of GaAs deposited on porous silicon by electrodeposition technique

    International Nuclear Information System (INIS)

    Lajnef, M.; Chtourou, R.; Ezzaouia, H.

    2010-01-01

    GaAs thin films were synthesized on porous Si substrate by the electrodeposition technique. The X-ray diffraction studies showed that the as-grown films were crystallised in mixed phase nature orthorhombic and cubic of GaAs. The GaAs film was then electrically characterized using current-voltage (I-V) and capacitance-voltage (C-V) techniques by the way of Al/GaAs Schottky junctions. The electric analysis allowed us to determine the n factor and the barrier height φ b0 parameters of Al/GaAs Schottky junctions. The (C-V) characteristics were recorded at frequency signal 1 MHz in order to identify the effect of the surface states on the behaviour of the capacitance of the device.

  17. Mixed waste treatment using the ChemChar thermolytic detoxification technique

    Energy Technology Data Exchange (ETDEWEB)

    Kuchynka, D.

    1995-12-31

    The diversity of mixed waste matrices contained at Department of Energy sites that require treatment preclude a single, universal treatment technology capable of handling sludges, solids, heterogeneous debris, aqueous and organic liquids and soils. Versatility of the treatment technology, volume reduction and containment of the radioactive component of the mixed waste streams are three criteria to be considered when evaluating potential treatment technologies. The ChemChar thermolytic detoxification process being developed under this R and D contract is a thermal, chemically reductive technology that converts the organic portion of a mixed waste stream to an energy-rich synthesis gas while simultaneously absorbing volatile inorganic species (metals and acid gases) on a macroporous, carbon-based char. The latter is mixed with the waste stream prior to entering the reactor. Substoichiometric amounts of oxidant are fed into the top portion of the cylindrical reactor generating a thin, radial thermochemical reaction zone. This zone generates all the necessary heat to promote the highly endothermic reduction of the organic components in the waste in the lower portion of the reactor, producing, principally, hydrogen and carbon monoxide. The solid by-product is a regenerated carbon char that, depending on the inorganic loading, is capable for reuse. The in situ scrubbing of contaminants by the char within the reactor coupled with a char filter for final polishing produce an exceptionally clean synthesis gas effluent suitable for on-site generation of heat, steam or electricity. Despite the elevated temperatures in the thermochemical reaction zone, the reductive nature of the process precludes formation of nitrogen oxides and halogenated organic compound by-products.

  18. Mixed waste treatment using the ChemChar thermolytic detoxification technique

    International Nuclear Information System (INIS)

    Kuchynka, D.

    1995-01-01

    The diversity of mixed waste matrices contained at Department of Energy sites that require treatment preclude a single, universal treatment technology capable of handling sludges, solids, heterogeneous debris, aqueous and organic liquids and soils. Versatility of the treatment technology, volume reduction and containment of the radioactive component of the mixed waste streams are three criteria to be considered when evaluating potential treatment technologies. The ChemChar thermolytic detoxification process being developed under this R and D contract is a thermal, chemically reductive technology that converts the organic portion of a mixed waste stream to an energy-rich synthesis gas while simultaneously absorbing volatile inorganic species (metals and acid gases) on a macroporous, carbon-based char. The latter is mixed with the waste stream prior to entering the reactor. Substoichiometric amounts of oxidant are fed into the top portion of the cylindrical reactor generating a thin, radial thermochemical reaction zone. This zone generates all the necessary heat to promote the highly endothermic reduction of the organic components in the waste in the lower portion of the reactor, producing, principally, hydrogen and carbon monoxide. The solid by-product is a regenerated carbon char that, depending on the inorganic loading, is capable for reuse. The in situ scrubbing of contaminants by the char within the reactor coupled with a char filter for final polishing produce an exceptionally clean synthesis gas effluent suitable for on-site generation of heat, steam or electricity. Despite the elevated temperatures in the thermochemical reaction zone, the reductive nature of the process precludes formation of nitrogen oxides and halogenated organic compound by-products

  19. THz-wave generation via difference frequency mixing in strained silicon based waveguide utilizing its second order susceptibility χ((2)).

    Science.gov (United States)

    Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka

    2014-07-14

    Terahertz (THz) wave generation via difference frequency mixing (DFM) process in strain silicon membrane waveguides by introducing the straining layer is theoretically investigated. The Si(3)N(4) straining layer induces anisotropic compressive strain in the silicon core and results in the appearance of the bulk second order nonlinear susceptibility χ((2)) by breaking the crystal symmetry. We have proposed waveguide structures for THz wave generation under the DFM process by .using the modal birefringence in the waveguide core. Our simulations show that an output power of up to 0.95 mW can be achieved at 9.09 THz. The strained silicon optical device may open a widow in the field of the silicon-based active THz photonic device applications.

  20. Photolysis frequency measurement techniques: results of a comparison within the ACCENT project

    Directory of Open Access Journals (Sweden)

    K. C. Clemitshaw

    2008-09-01

    Full Text Available An intercomparison of different radiometric techniques measuring atmospheric photolysis frequencies j(NO2, j(HCHO and j(O1D was carried out in a two-week field campaign in June 2005 at Jülich, Germany. Three double-monochromator based spectroradiometers (DM-SR, three single-monochromator based spectroradiometers with diode-array detectors (SM-SR and seventeen filter radiometers (FR (ten j(NO2-FR, seven j(O1D-FR took part in this comparison. For j(NO2, all spectroradiometer results agreed within ±3%. For j(HCHO, agreement was slightly poorer between −8% and +4% of the DM-SR reference result. For the SM-SR deviations were explained by poorer spectral resolutions and lower accuracies caused by decreased sensitivities of the photodiode arrays in a wavelength range below 350 nm. For j(O1D, the results were more complex within +8% and −4% with increasing deviations towards larger solar zenith angles for the SM-SR. The direction and the magnitude of the deviations were dependent on the technique of background determination. All j(NO2-FR showed good linearity with single calibration factors being sufficient to convert from output voltages to j(NO2. Measurements were feasible until sunset and comparison with previous calibrations showed good long-term stability. For the j(O1D-FR, conversion from output voltages to j(O1D needed calibration factors and correction functions considering the influences of total ozone column and elevation of the sun. All instruments showed good linearity at photolysis frequencies exceeding about 10% of maximum values. At larger solar zenith angles, the agreement was non-uniform with deviations explainable by insufficient correction functions. Comparison with previous calibrations for some j(O1D-FR indicated

  1. Reliability evaluation of high-performance, low-power FinFET standard cells based on mixed RBB/FBB technique

    Science.gov (United States)

    Wang, Tian; Cui, Xiaoxin; Ni, Yewen; Liao, Kai; Liao, Nan; Yu, Dunshan; Cui, Xiaole

    2017-04-01

    With shrinking transistor feature size, the fin-type field-effect transistor (FinFET) has become the most promising option in low-power circuit design due to its superior capability to suppress leakage. To support the VLSI digital system flow based on logic synthesis, we have designed an optimized high-performance low-power FinFET standard cell library based on employing the mixed FBB/RBB technique in the existing stacked structure of each cell. This paper presents the reliability evaluation of the optimized cells under process and operating environment variations based on Monte Carlo analysis. The variations are modelled with Gaussian distribution of the device parameters and 10000 sweeps are conducted in the simulation to obtain the statistical properties of the worst-case delay and input-dependent leakage for each cell. For comparison, a set of non-optimal cells that adopt the same topology without employing the mixed biasing technique is also generated. Experimental results show that the optimized cells achieve standard deviation reduction of 39.1% and 30.7% at most in worst-case delay and input-dependent leakage respectively while the normalized deviation shrinking in worst-case delay and input-dependent leakage can be up to 98.37% and 24.13%, respectively, which demonstrates that our optimized cells are less sensitive to variability and exhibit more reliability. Project supported by the National Natural Science Foundation of China (No. 61306040), the State Key Development Program for Basic Research of China (No. 2015CB057201), the Beijing Natural Science Foundation (No. 4152020), and Natural Science Foundation of Guangdong Province, China (No. 2015A030313147).

  2. Resonant difference-frequency atomic force ultrasonic microscope

    Science.gov (United States)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  3. Electric field measurements in near-atmospheric pressure nitrogen and air based on a four-wave mixing scheme

    International Nuclear Information System (INIS)

    Mueller, Sarah; Luggenhoelscher, Dirk; Czarnetzki, Uwe; Ito, Tsuyohito; Kobayashi, Kazunobu; Hamaguchi, Satoshi

    2010-01-01

    Electric fields are measured for the first time in molecular nitrogen at atmospheric pressures. Measurements are performed in either pure nitrogen or air. The laser spectroscopic technique applied here is based on a CARS-like four-wave mixing scheme originally developed for measurements in molecular hydrogen by Ochkin and Tskhai in 1995. The technique is ideal for investigation of microdischarges at atmospheric pressures. The frequencies of two focussed laser beams in the visible are tuned to match the energy difference between the two lowest vibrational levels in nitrogen. The presence of a static electric field then leads to the emission of coherent IR radiation at this difference frequency. The signal intensity scales with the square of the static electric field strength. Parallel to this process also anti-Stokes radiation by the standard CARS process is generated. Normalization of the IR signal by the CARS signal provides a population independent measurement quantity. Experimental results at various pressures and electric field strengths are presented.

  4. Instantaneous amplitude and frequency dynamics of coherent wave mixing in semiconductor quantum wells

    International Nuclear Information System (INIS)

    Chemla, D.S.

    1993-01-01

    This article reviews recent investigations of nonlinear optical processes in semiconductors. Section II discusses theory of coherent wave mixing in semiconductors, with emphasis on resonant excitation with only one exciton state. Section III reviews recent experimental investigations of amplitude and phase of coherent wave-mixing resonant with quasi-2d excitons in GaAs quantum wells

  5. Applying Lean Techniques to Reduce Intravenous Waste Through Premixed Solutions and Increasing Production Frequency.

    Science.gov (United States)

    Lin, Alex C; Penm, Jonathan; Ivey, Marianne F; Deng, Yihong; Commins, Monica

    This study aims to use lean techniques and evaluate the impact of increasing the use of premixed IV solutions and increased IV production frequency on IV waste. Study was conducted at a tertiary hospital pharmacy department in three phases. Phase I included evaluation of IV waste when IV production occurred three times a day and eight premixed IV products were used. Phase II increased the number of premixed IV products to 16. Phase III then increased IV production to five times a day. During Phase I, an estimate of 2,673 IV doses were wasted monthly, accounting for 6.14% of overall IV doses. This accounted for 688 L that cost $60,135. During Phase II, the average monthly IV wastage reduced significantly to 1,069 doses (2.84%), accounting for 447 L and $34,003. During Phase III, the average monthly IV wastage was further decreased to 675 doses (1.69%), accounting for 78 L and $3,431. Hence, a potential annual saving of $449,208 could result from these changes. IV waste was reduced through the increased use of premixed solutions and increasing IV production frequency.

  6. Tunable error-free optical frequency conversion of a 4ps optical short pulse over 25 nm by four-wave mixing in a polarisation-maintaining optical fibre

    Science.gov (United States)

    Morioka, T.; Kawanishi, S.; Saruwatari, M.

    1994-05-01

    Error-free, tunable optical frequency conversion of a transform-limited 4.0 ps optical pulse signalis demonstrated at 6.3 Gbit/s using four-wave mixing in a polarization-maintaining optical fibre. The process generates 4.0-4.6 ps pulses over a 25nm range with time-bandwidth products of 0.31-0.43 and conversion power penalties of less than 1.5 dB.

  7. Self-mixing laser Doppler vibrometry with high optical sensitivity application to real-time sound reproduction

    CERN Document Server

    Abe, K; Ko, J Y

    2003-01-01

    Nanometre vibration measurement of an audio speaker and a highly sensitive sound reproduction experiment have been successfully demonstrated by a self-aligned optical feedback vibrometry technique using the self-mixing modulation effect in a laser-diode-pumped microchip solid-state laser. By applying nanometre vibrations to the speaker, which produced nearly inaudible music below 20 dB (200 mu Pa) sound pressure level, we could reproduce clear sound in real time by the use of a simple frequency modulated wave demodulation circuit with a -120 dB light-intensity feedback ratio.

  8. Self-mixing laser Doppler vibrometry with high optical sensitivity: application to real-time sound reproduction

    International Nuclear Information System (INIS)

    Abe, Kazutaka; Otsuka, Kenju; Ko, Jing-Yuan

    2003-01-01

    Nanometre vibration measurement of an audio speaker and a highly sensitive sound reproduction experiment have been successfully demonstrated by a self-aligned optical feedback vibrometry technique using the self-mixing modulation effect in a laser-diode-pumped microchip solid-state laser. By applying nanometre vibrations to the speaker, which produced nearly inaudible music below 20 dB (200 μPa) sound pressure level, we could reproduce clear sound in real time by the use of a simple frequency modulated wave demodulation circuit with a -120 dB light-intensity feedback ratio

  9. Self-mixing laser Doppler vibrometry with high optical sensitivity: application to real-time sound reproduction

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Kazutaka [Department of Human and Information Science, Tokai University, 1117 Kitakaname, Hiratsuka, Kanagawa (Japan); Otsuka, Kenju [Department of Human and Information Science, Tokai University, 1117 Kitakaname, Hiratsuka, Kanagawa (Japan); Ko, Jing-Yuan [Department of Physics, Tunghai University, 181 Taichung-kang Road, Section 3, Taichung 407, Taiwan (China)

    2003-01-01

    Nanometre vibration measurement of an audio speaker and a highly sensitive sound reproduction experiment have been successfully demonstrated by a self-aligned optical feedback vibrometry technique using the self-mixing modulation effect in a laser-diode-pumped microchip solid-state laser. By applying nanometre vibrations to the speaker, which produced nearly inaudible music below 20 dB (200 {mu}Pa) sound pressure level, we could reproduce clear sound in real time by the use of a simple frequency modulated wave demodulation circuit with a -120 dB light-intensity feedback ratio.

  10. Wide-band analog frequency modulation of optic signals using indirect techniques

    Science.gov (United States)

    Fitzmartin, D. J.; Balboni, E. J.; Gels, R. G.

    1991-01-01

    The wideband frequency modulation (FM) of an optical carrier by a radio frequency (RF) or microwave signal can be accomplished independent of laser type when indirect modulation is employed. Indirect modulators exploit the integral relation of phase to frequency so that phase modulators can be used to impress frequency modulation on an optical carrier. The use of integrated optics phase modulators, which are highly linear, enables the generation of optical wideband FM signals with very low intermodulation distortion. This modulator can be used as part of an optical wideband FM link for RF and microwave signals. Experimental results from the test of an indirect frequency modulator for an optical carrier are discussed.

  11. Passive Mixing inside Microdroplets

    Directory of Open Access Journals (Sweden)

    Chengmin Chen

    2018-04-01

    Full Text Available Droplet-based micromixers are essential units in many microfluidic devices for widespread applications, such as diagnostics and synthesis. The mixers can be either passive or active. When compared to active methods, the passive mixer is widely used because it does not require extra energy input apart from the pump drive. In recent years, several passive droplet-based mixers were developed, where mixing was characterized by both experiments and simulation. A unified physical understanding of both experimental processes and simulation models is beneficial for effectively developing new and efficient mixing techniques. This review covers the state-of-the-art passive droplet-based micromixers in microfluidics, which mainly focuses on three aspects: (1 Mixing parameters and analysis method; (2 Typical mixing element designs and the mixing characters in experiments; and, (3 Comprehensive introduction of numerical models used in microfluidic flow and diffusion.

  12. A CMOS transconductance-C filter technique for very high frequencies

    NARCIS (Netherlands)

    Nauta, Bram

    1992-01-01

    CMOS circuits for integrated analog filters at very high frequencies, based on transconductance-C integrators, are presented. First a differential transconductance element based on CMOS inverters is described. With this circuit a linear, tunable integrator for very-high-frequency integrated filters

  13. Theoretical and experimental study of two-frequency solid-state lasers in the GHz to THz ranges. Opto-microwave applications waves

    International Nuclear Information System (INIS)

    Lai, N.D.

    2003-07-01

    We explored some new features of single- and dual-frequency solid-state lasers oscillating in continuous-wave or pulsed regimes. First, we have developed some techniques to optimise the characteristics of pulsed lasers. A weak modulation of the pump power made it possible to obtain a stable repetition rate with a relative stability of 10 -6 . The pulse duration was continuously controlled from ten nanoseconds to a few hundreds nanoseconds by three different methods: adjustment of the laser beam diameter in the absorber, adjustment of the pump beam diameter in the active medium, and, in particular, the use of forked eigenstates in a two-axis laser. Moreover, the forked eigenstates allows to increase the pulse energy by coherent addition of the pulses. A compact two-frequency Nd:YAG-Cr:YAG laser with a beat note frequency continuously adjustable up to 2,7 GHz was demonstrated. The two-frequency pulses are ideal sources to meet various needs of applications such as the Doppler lidar-radar. Moreover, we show that two-frequency pulses at 1,55 μm can be obtained by using a new c-cut Co:ASL saturable absorber in an Er-Yb:glass laser. These pulses are perfectly adapted to free-space detection systems requiring eye safety. The coherence time of the beat note in these lasers was also studied: it is limited by the pulse duration. A new technique of modulating the pump power of a solid-state laser at frequencies close to its relaxation oscillation frequency was studied and made it possible to generate a beat note coherence from pulse to pulse. Frequency conversion techniques using the nonlinear optical effects make it possible to obtain tunable two-frequency sources in the visible spectrum. Green and red two-frequency pulses were obtained by using different conversion techniques, intra-cavity or extra-cavity. A two-frequency THz source in the red spectrum was also obtained by doubling the frequencies of a two-frequency THz Er-Yb:glass laser using a mixed fan-out PPLN crystal

  14. Determining influence of four-wave mixing effect on quantum key distribution

    International Nuclear Information System (INIS)

    Vavulin, D N; Egorov, V I; Gleim, A V; Chivilikhin, S A

    2014-01-01

    We consider the possibility of multiplexing the classical and quantum signals in a quantum cryptography system with optical fiber used as a transmission medium. If the quantum signal is located at a frequency close to the frequency of classical signals, a set of nonlinear effects such as FWM (four-wave mixing) and Raman scattering is observed. The impact of four-wave mixing (FWM) effect on error level is described and analyzed in this work in case of large frequency diversity between classical and quantum signals. It is shown that the influence of FWM is negligible for convenient quantum key distribution

  15. CW light sources at the 589 nm sodium D2 line by sum-frequency mixing of diode pumped neodymium lasers

    International Nuclear Information System (INIS)

    Lü, Y F; Lu, J; Xu, L J; Sun, G C; Zhao, Z M; Gao, X; Lin, J Q

    2010-01-01

    We present a laser architecture to obtain continuous-wave (CW) light sources at the 589 nm sodium D2 line. A 808 nm diode-pumped a Nd:YLiF 4 (Nd:YLF) crystal emitting at 1053 nm. A part of the pump power was then absorbed by the Nd:YLF crystal. The remaining was used to pump a Nd:YAG crystal emitting at 1338 nm. Intracavity sum-frequency mixing at 1053 and 1338 nm was then realized in a LiB 3 O 5 (LBO) crystal to reach the yellow-orange radiation. We obtained a CW output power of 235 mW at 589 nm with a pump laser diode emitting 17.8 W at 808 nm

  16. Mixing audio concepts, practices and tools

    CERN Document Server

    Izhaki, Roey

    2013-01-01

    Your mix can make or break a record, and mixing is an essential catalyst for a record deal. Professional engineers with exceptional mixing skills can earn vast amounts of money and find that they are in demand by the biggest acts. To develop such skills, you need to master both the art and science of mixing. The new edition of this bestselling book offers all you need to know and put into practice in order to improve your mixes. Covering the entire process --from fundamental concepts to advanced techniques -- and offering a multitude of audio samples, tips and tricks, this boo

  17. Theory of multiwave mixing within the superconducting kinetic-inductance traveling-wave amplifier

    Science.gov (United States)

    Erickson, R. P.; Pappas, D. P.

    2017-03-01

    We present a theory of parametric mixing within the coplanar waveguide (CPW) of a superconducting nonlinear kinetic-inductance traveling-wave (KIT) amplifier engineered with periodic dispersion loadings. This is done by first developing a metamaterial band theory of the dispersion-engineered KIT using a Floquet-Bloch construction and then applying it to the description of mixing of the nonlinear RF traveling waves. Our theory allows us to calculate signal gain versus signal frequency in the presence of a frequency stop gap, based solely on loading design. We present results for both three-wave mixing (3WM), with applied dc bias, and four-wave mixing (4WM), without dc. Our theory predicts an intrinsic and deterministic origin to undulations of 4WM signal gain with signal frequency, apart from extrinsic sources, such as impedance mismatch, and shows that such undulations are absent from 3WM signal gain achievable with dc. Our theory is extensible to amplifiers based on Josephson junctions in a lumped LC-ladder transmission line (TWPA).

  18. Broadband Enhancement of Optical Frequency Comb Using Cascaded Four-Wave Mixing in Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Tawfig Eltaif

    2017-01-01

    Full Text Available A cascaded intensity modulator (IM and phase modulator (PM are used to modulate a continuous-wave (CW laser and generate an optical frequency comb (OFC. Thus, the generated comb is utilized as an initial seed and combined with another CW-laser to generate four-wave mixing (FWM in photonic crystal fiber (PCF. Results show that an initial flat 30 GHz OFC of 29, 55 lines within power fluctuation of 0.8 dB and 2 dB, respectively, can be achieved by setting the ratio of the DC bias to amplitude of sinusoidal signal at 0.1 and setting the modulation indices of both IM and PM at 10. Moreover, the 1st order of FWM created through 14 m of PCF has over 68 and 94 lines with fluctuation of 0.8 dB and 2 dB, respectively. Hence, the generated wavelengths of 1st left and right order of FWM can be tuned in a range from ~1500 nm to ~1525 nm and ~1590 nm to ~1604 nm, respectively.

  19. Assessing of bulk materials mixing and sorting by radiotracer methods

    International Nuclear Information System (INIS)

    Thyn, J.

    1983-01-01

    Various applications are indicated of tracer techniques for the evaluation of mixing and sorting of mixtures of solid particles. The evaluation of the process of mixing, i.e., the determination of the homogenization time is done by labelling of the entire volume of the monitored component of the mixture and continuous detection of radiation through the walls of the mixer using one or several detectors. The evaluation of the character of the flow and the evacuation of solid particles from the bin is done by labelling with a radiotracer the material which is spread out on the top along the whole cross-section of the bin, and the concentration is monitored of the tracer in the material outflow. The evaluation of material sorting in bins which takes place during the filling and emptying is done on the basis of significance tests or using self-correlation functions and frequency characteristics. Also monitored was the dependence of the equalizing ability of the continuous gravity mixer at the vertex angle of the tip. (M.D.)

  20. Application of the Goertzel’s algorithm in the airgap mixed eccentricity fault detection

    Directory of Open Access Journals (Sweden)

    Reljić Dejan

    2015-01-01

    Full Text Available In this paper, a suitable method for the on-line detection of the airgap mixed eccentricity fault in a three-phase cage induction motor has been proposed. The method is based on a Motor Current Signature Analysis (MCSA approach, a technique that is often used for an induction motor condition monitoring and fault diagnosis. It is based on the spectral analysis of the stator line current signal and the frequency identification of specific components, which are created as a result of motor faults. The most commonly used method for the current signal spectral analysis is based on the Fast Fourier transform (FFT. However, due to the complexity and memory demands, the FFT algorithm is not always suitable for real-time systems. Instead of the whole spectrum analysis, this paper suggests only the spectral analysis on the expected airgap fault frequencies employing the Goertzel’s algorithm to predict the magnitude of these frequency components. The method is simple and can be implemented in real-time airgap mixed eccentricity monitoring systems without much computational effort. A low-cost data acquisition system, supported by the LabView software, has been used for the hardware and software implementation of the proposed method. The method has been validated by the laboratory experiments on both the line-connected and the inverter-fed three-phase fourpole cage induction motor operated at the rated frequency and under constant load at a few different values. In addition, the results of the proposed method have been verified through the motor’s vibration signal analysis. [Projekat Ministarstva nauke Republike Srbije, br. III42004

  1. Frequency-domain beamformers using conjugate gradient techniques for speech enhancement.

    Science.gov (United States)

    Zhao, Shengkui; Jones, Douglas L; Khoo, Suiyang; Man, Zhihong

    2014-09-01

    A multiple-iteration constrained conjugate gradient (MICCG) algorithm and a single-iteration constrained conjugate gradient (SICCG) algorithm are proposed to realize the widely used frequency-domain minimum-variance-distortionless-response (MVDR) beamformers and the resulting algorithms are applied to speech enhancement. The algorithms are derived based on the Lagrange method and the conjugate gradient techniques. The implementations of the algorithms avoid any form of explicit or implicit autocorrelation matrix inversion. Theoretical analysis establishes formal convergence of the algorithms. Specifically, the MICCG algorithm is developed based on a block adaptation approach and it generates a finite sequence of estimates that converge to the MVDR solution. For limited data records, the estimates of the MICCG algorithm are better than the conventional estimators and equivalent to the auxiliary vector algorithms. The SICCG algorithm is developed based on a continuous adaptation approach with a sample-by-sample updating procedure and the estimates asymptotically converge to the MVDR solution. An illustrative example using synthetic data from a uniform linear array is studied and an evaluation on real data recorded by an acoustic vector sensor array is demonstrated. Performance of the MICCG algorithm and the SICCG algorithm are compared with the state-of-the-art approaches.

  2. Fiber optics frequency comb enabled linear optical sampling with operation wavelength range extension.

    Science.gov (United States)

    Liao, Ruolin; Wu, Zhichao; Fu, Songnian; Zhu, Shengnan; Yu, Zhe; Tang, Ming; Liu, Deming

    2018-02-01

    Although the linear optical sampling (LOS) technique is powerful enough to characterize various advanced modulation formats with high symbol rates, the central wavelength of a pulsed local oscillator (LO) needs to be carefully set according to that of the signal under test, due to the coherent mixing operation. Here, we experimentally demonstrate wideband LOS enabled by a fiber optics frequency comb (FOFC). Meanwhile, when the broadband FOFC acts as the pulsed LO, we propose a scheme to mitigate the enhanced sampling error arising in the non-ideal response of a balanced photodetector. Finally, precise characterizations of arbitrary 128 Gbps PDM-QPSK wavelength channels from 1550 to 1570 nm are successfully achieved, when a 101.3 MHz frequency spaced comb with a 3 dB spectral power ripple of 20 nm is used.

  3. Mixed-fault diagnosis in induction motors considering varying load and broken bars location

    International Nuclear Information System (INIS)

    Faiz, Jawad; Ebrahimi, Bashir Mahdi; Toliyat, H.A.; Abu-Elhaija, W.S.

    2010-01-01

    Simultaneous static eccentricity and broken rotor bars faults, called mixed-fault, in a three-phase squirrel-cage induction motor is analyzed by time stepping finite element method using fast Fourier transform. Generally, there is an inherent static eccentricity (below 10%) in a broken rotor bar induction motor and therefore study of the mixed-fault case could be considered as a real case. Stator current frequency spectrum over low frequencies, medium frequencies and high frequencies are analyzed; static eccentricity diagnosis and its distinguishing from the rotor bars breakage in the mixed-fault case are described. The contribution of the static eccentricity and broken rotor bars faults are precisely determined. Influence of the broken bars location upon the amplitudes of the harmonics due to the mixed-fault is also investigated. It is shown that the amplitudes of harmonics due to broken bars placed on one pole are larger than the case in which the broken bars are distributed on different poles. In addition, influence of varying load on the amplitudes of the harmonics due to the mixed-fault is studied and indicated that the higher load increases the harmonics components amplitudes due to the broken bars while the static eccentricity degree decreases. Simulation results are confirmed by the experimental results.

  4. Reported credibility techniques in higher education evaluation studies that use qualitative methods: A research synthesis.

    Science.gov (United States)

    Liao, Hongjing; Hitchcock, John

    2018-06-01

    This synthesis study examined the reported use of credibility techniques in higher education evaluation articles that use qualitative methods. The sample included 118 articles published in six leading higher education evaluation journals from 2003 to 2012. Mixed methods approaches were used to identify key credibility techniques reported across the articles, document the frequency of these techniques, and describe their use and properties. Two broad sets of techniques were of interest: primary design techniques (i.e., basic), such as sampling/participant recruitment strategies, data collection methods, analytic details, and additional qualitative credibility techniques (e.g., member checking, negative case analyses, peer debriefing). The majority of evaluation articles reported use of primary techniques although there was wide variation in the amount of supporting detail; most of the articles did not describe the use of additional credibility techniques. This suggests that editors of evaluation journals should encourage the reporting of qualitative design details and authors should develop strategies yielding fuller methodological description. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Measurements of the aerosol chemical composition and mixing state in the Po Valley using multiple spectroscopic techniques

    Science.gov (United States)

    Decesari, S.; Allan, J.; Plass-Duelmer, C.; Williams, B. J.; Paglione, M.; Facchini, M. C.; O'Dowd, C.; Harrison, R. M.; Gietl, J. K.; Coe, H.; Giulianelli, L.; Gobbi, G. P.; Lanconelli, C.; Carbone, C.; Worsnop, D.; Lambe, A. T.; Ahern, A. T.; Moretti, F.; Tagliavini, E.; Elste, T.; Gilge, S.; Zhang, Y.; Dall'Osto, M.

    2014-11-01

    The use of co-located multiple spectroscopic techniques can provide detailed information on the atmospheric processes regulating aerosol chemical composition and mixing state. So far, field campaigns heavily equipped with aerosol mass spectrometers have been carried out mainly in large conurbations and in areas directly affected by their outflow, whereas lesser efforts have been dedicated to continental areas characterised by a less dense urbanisation. We present here the results obtained at a background site in the Po Valley, Italy, in summer 2009. For the first time in Europe, six state-of-the-art spectrometric techniques were used in parallel: aerosol time-of-flight mass spectrometer (ATOFMS), two aerosol mass spectrometers (high-resolution time-of-flight aerosol mass spectrometer - HR-ToF-AMS and soot particle aerosol mass spectrometer - SP-AMS), thermal desorption aerosol gas chromatography (TAG), chemical ionisation mass spectrometry (CIMS) and (offline) proton nuclear magnetic resonance (1H-NMR) spectroscopy. The results indicate that, under high-pressure conditions, atmospheric stratification at night and early morning hours led to the accumulation of aerosols produced by anthropogenic sources distributed over the Po Valley plain. Such aerosols include primary components such as black carbon (BC), secondary semivolatile compounds such as ammonium nitrate and amines and a class of monocarboxylic acids which correspond to the AMS cooking organic aerosol (COA) already identified in urban areas. In daytime, the entrainment of aged air masses in the mixing layer is responsible for the accumulation of low-volatility oxygenated organic aerosol (LV-OOA) and also for the recycling of non-volatile primary species such as black carbon. According to organic aerosol source apportionment, anthropogenic aerosols accumulating in the lower layers overnight accounted for 38% of organic aerosol mass on average, another 21% was accounted for by aerosols recirculated in

  6. Measurement of the $B_{d}^{0} - \\overline{B}_{d}^{0}$ oscillation frequency

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Lacentre, P E; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lavorato, A; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Migani, D; Mihul, A; Van Mil, A J W; Milcent, H; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Moulik, T; Mount, R; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Opitz, H; Organtini, G; Ostonen, R; Palit, S; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Rind, O; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sarkar, S; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schneegans, M; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Vlachos, S; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1998-01-01

    Time-dependent ${\\mathrm{B^{0}}\\mbox{-}\\bar{\\mathrm{B}} ^{0}}$ mixing is studied using about two million hadronic Z decays registered by L3 in 1994 and 1995. For this study three techniques are used. Tagging of the b-quark charge at decay time is performed by identifying leptons from semileptonic B decays. The flavour of the b quark at production time is determined from the charge of the lepton in the opposite hemisphere or by using a jet-charge technique. The proper time of the B-particle decay is obtained by reconstructing the production and decay vertices or by a measurement of the lepton impact parameter. The combined result for the frequency of ${\\mathrm{B_d^0}}$ meson oscillations is \\begin{displaymath} {\\Delta m_d} = 0.444 \\pm 0.040 \\ \\mathrm{ps}^{-1}. \\end{displaymath} \\end{abstract} \\end{document}

  7. Mixed phase clouds: observations and theoretical advances (overview)

    Science.gov (United States)

    Korolev, Alexei

    2013-04-01

    Mixed phase clouds play important role in precipitation formation and radiation budget of the Earth. The microphysical measurements in mixed phase clouds are notoriously difficult due to many technical challenges. The airborne instrumentation for characterization of the microstructure of mixed phase clouds is discussed. The results multiyear airborne observations and measurements of frequency of occurrence of mixed phase, characteristic spatial scales, humidity in mixed phase and ice clouds are presented. A theoretical framework describing the thermodynamics and phase transformation of a three phase component system consisting of ice particles, liquid droplets and water vapor is discussed. It is shown that the Wegener-Bergeron-Findeisen process plays different role in clouds with different dynamics. The problem of maintenance and longevity of mixed phase clouds is discussed.

  8. Development and operation of an integrated sampling probe and gas analyzer for turbulent mixing studies in complex supersonic flows

    Science.gov (United States)

    Wiswall, John D.

    For many aerospace applications, mixing enhancement between co-flowing streams has been identified as a critical and enabling technology. Due to short fuel residence times in scramjet combustors, combustion is limited by the molecular mixing of hydrogen (fuel) and air. Determining the mixedness of fuel and air in these complex supersonic flowfields is critical to the advancement of novel injection schemes currently being developed at UTA in collaboration with NASA Langley and intended to be used on a future two-stage to orbit (~Mach 16) hypersonic air-breathing vehicle for space access. Expanding on previous work, an instrument has been designed, fabricated, and tested in order to measure mean concentrations of injected helium (a passive scalar used instead of hazardous hydrogen) and to quantitatively characterize the nature of the high-frequency concentration fluctuations encountered in the compressible, turbulent, and high-speed (up to Mach 3.5) complex flows associated with the new supersonic injection schemes. This important high-frequency data is not yet attainable when employing other techniques such as Laser Induced Fluorescence, Filtered Rayleigh Scattering or mass spectroscopy in the same complex supersonic flows. The probe operates by exploiting the difference between the thermodynamic properties of two species through independent massflow measurements and calibration. The probe samples isokinetically from the flowfield's area of interest and the helium concentration may be uniquely determined by hot-film anemometry and internally measured stagnation conditions. The final design has a diameter of 0.25" and is only 2.22" long. The overall accuracy of the probe is 3% in molar fraction of helium. The frequency response of mean concentration measurements is estimated at 103 Hz, while high-frequency hot-film measurements were conducted at 60 kHz. Additionally, the work presents an analysis of the probe's internal mixing effects and the effects of the spatial

  9. Developing a Virtual Teach-To-Goal™ Inhaler Technique Learning Module: A Mixed Methods Approach.

    Science.gov (United States)

    Wu, Meng; Woodrick, Nicole M; Arora, Vineet M; Farnan, Jeanne M; Press, Valerie G

    Most hospitalized patients with asthma or chronic obstructive pulmonary disease misuse respiratory inhalers. An in-person educational strategy, teach-to-goal (TTG), improves inpatients' inhaler technique. To develop an effective, portable education intervention that remains accessible to hospitalized patients postdischarge for reinforcement of proper inhaler technique. A mixed methods approach at an urban academic hospital was used to iteratively develop, modify, and test a virtual teach-to-goal ™ (V-TTG ™ ) educational intervention using patient end-user feedback. A survey examined access and willingness to use technology for self-management education. Focus groups evaluated patients' feedback on access, functionality, and quality of V-TTG ™ . Forty-eight participants completed the survey, with most reporting having Internet access; 77% used the Internet at home and 82% used the Internet at least once every few weeks. More than 80% reported that they were somewhat or very likely to use V-TTG ™ to gain skills to improve their health. Most participants reported smartphone access (73%); half owned laptop computers (52%). Participants with asthma versus chronic obstructive pulmonary disease were more likely to own a smartphone, have a data plan, and have daily Internet use (P platform and delivery, Internet access, and technological literacy; functionality-usefulness, content, and teaching strategy; and quality-clarity, ease of use, length, and likability. V-TTG ™ is a promising educational tool for improving patients' inhaler technique, iteratively developed and refined with patient input. Patients in our urban, academic hospital overwhelmingly reported access to platforms and willingness to use V-TTG ™ for health education. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  10. Measurement of $B^0$ Mixing Frequency Using a New Probability Based Self-Tagging Algorithm Applied to Inclusive Lepton Events from $p\\bar{p}$ Collisions at $\\sqrt{s}$ = 1.8-TeV

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Tushar [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2000-07-01

    We present a measurement of the Bd mixing frequency performed in an inclusive lepton sample, B → l+X. A secondary vertex identifies a B meson decay, and a high pt lepton determines the flavor at the time of decay.

  11. Mixed Reality Systems

    Directory of Open Access Journals (Sweden)

    Dieter Müller

    2009-11-01

    Full Text Available Currently one of the most challenging aspects of human computer interaction design is the integration of physical and digital worlds in a single environment. This fusion involves the development of "Mixed Reality Systems”, including various technologies from the domains of augmented and virtual reality. In this paper I will present related concepts and discuss lessons learned from our own research and prototype development. Our recent work involves the use of mixed reality (as opposed to ‘pure’ virtual reality techniques to support seamless collaborative work between remote and hands-on laboratories.

  12. High-frequency Trader Subjectivity

    DEFF Research Database (Denmark)

    Borch, Christian; Lange, Ann-Christina

    2017-01-01

    In this article, we examine the recent shift in financial markets toward high-frequency trading (HFT). This turn is being legitimized with reference to how algorithms are allegedly more rational and efficient than human traders, and less prone to emotionally motivated decisions. We argue......-techniques of the ideal high-frequency trader. We demonstrate that these traders face the challenge of avoiding emotional interference in their algorithms and that they deploy a set of disciplinary self-techniques to curb the importance of emotional attachment....

  13. Evidence of dithionite contribution to the low-frequency resonance Raman spectrum of reduced and mixed-valence cytochrome c oxidase.

    Science.gov (United States)

    Centeno, J A

    1992-02-01

    The resonance Raman spectra of deoxygenated solutions of mixed-valence cyanide-bound and fully reduced cytochrome oxidase derivatives that have been reduced in the presence of aqueous or solid sodium dithionite exhibit two new low-frequency lines centered at 474 and 590 cm-1. These lines were not observed when the reductant system was changed to a solution containing ascorbate and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). Under enzyme turnover conditions, the addition of dithionite to the reoxidized protein (the 428-nm or "oxygenated" form) increases the intensity of these lines, while reoxidation and rereduction of the enzyme in the presence of ascorbate/TMPD resulted in the absence of both lines. Our data suggest that both lines must have contributions from species formed from aqueous dithionite, presumably the SO2 species, since these two lines are also observed in the Raman spectrum of a solution of aqueous dithionite, but not in the spectrum of an ascorbate/TMPD solution. Since heme metal-ligand stretch vibrations are expected to appear in the low-frequency region from 215 to 670 cm-1, our results indicate that special care should be exercised during the interpretation of the cytochrome a3 resonance Raman spectrum.

  14. Investigation of dielectric behavior of the PVC/BaTiO3 composite in low-frequencies

    Science.gov (United States)

    Berrag, A.; Belkhiat, S.; Madani, L.

    2018-04-01

    Polyvinyl chloride (PVC) is widely used as insulator in electrical engineering especially as cable insulation sheaths. In order to improve the dielectric properties, polymers are mixed with ceramics. In this paper, PVC composites with different weight percentages 2 wt.%, 5 wt.%, 8 wt.% and 10 wt.% were prepared and investigated. Loss index (𝜀″) and dielectric constant (𝜀‧) have been measured using an impedance analyzer RLC. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) equipped with energy dispersive X-ray (EDX) have been used as characterization techniques. The incorporation of BaTiO3 does not modify the crystallinity and the morphology of the PVC but reduces the space charges, therefore the dielectric losses. The frequency response analysis has been followed in the frequency ranges (20-140 Hz and 115-1 MHz). Relaxation frequencies have been evaluated in each frequency range. Experimental measurements have been validated using Cole-Cole’s model. Experimental results show well that BaTiO3 as a filler improves the dielectric properties of PVC.

  15. Optimization of Quantum-state-preserving Frequency Conversion by Changing the Input Signal

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Reddy, D. V.; McKinstrie, C. J.

    We optimize frequency conversion based on four-wave mixing by using the input modes of the system. We find a 10-25 % higher conversion efficiency relative to a pump-shaped input signal.......We optimize frequency conversion based on four-wave mixing by using the input modes of the system. We find a 10-25 % higher conversion efficiency relative to a pump-shaped input signal....

  16. Mixed-Mode Oscillations in Complex-Plasma Instabilities

    International Nuclear Information System (INIS)

    Mikikian, Maxime; Cavarroc, Marjorie; Coueedel, Lenaiec; Tessier, Yves; Boufendi, Laiefa

    2008-01-01

    Instabilities in dusty plasmas are frequent phenomena. We show that some instabilities can be described by mixed-mode oscillations often encountered in chemical systems or neuronal dynamics and studied through dynamical system theories. The time evolution of these instabilities is studied through the change in the associated waveform. Frequency and interspike interval are analyzed and compared to results obtained in other scientific fields concerned by mixed-mode oscillations

  17. DETECTION OF MENDELIAN AND GENOTYPE FREQUENCY OF GROWTH HORMONE GENE IN ONGOLE CROSSBRED CATTLE MATED BY THE ARTIFICIAL INSEMINATION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    U. Paputungan

    2012-06-01

    Full Text Available The objectives of this study were to detect the Mendelian mode inheritance of growth hormone (GH and to establish genotype frequency of GH gene in Ongole-crossbred cattle mated by the artificial insemination (AI technique. Total of 76 blood samples were collected from Ongole-crossbred cows and bulls (G0, and their progenies (G1 at the Tumaratas AI service center in North Sulawesi province, Indonesia. All blood samples were screened for the presence of GH locus using a PCR-RFLP method involving restricted enzyme Msp1 on 1.2 % of agarose gel. Data were analyzed using statistical program function in Excel XP. The results showed that GH locus using alleles of Msp1+ and Msp1- enzyme restriction in Ongole-crossbred cows and bulls was inherited to their Ongole-crossbred progenies following the Mendelian mode inheritance. This Mendelian inheritance generated by AI technique was not under genetic equilibrium for the Msp1 genotype frequencies in groups of G0 and G1. The breeding program using genotypes of bulls and cows (G0 for generating the genotype of GH Msp1 enzyme restriction by AI technique should be maintained to increase these various allele dispersion rates for breeding under genetic equilibrium of the Ongole-crossbred cattle population.

  18. Electric characterization of GaAs deposited on porous silicon by electrodeposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Lajnef, M., E-mail: Mohamed.lajnef@yahoo.fr [Laboratoire de Photovoltaique et de Semi-conducteurs, Centre de Recherche et des Technologies de l' Energie, BP. 95, Hammam-Lif 2050 (Tunisia); Chtourou, R.; Ezzaouia, H. [Laboratoire de Photovoltaique et de Semi-conducteurs, Centre de Recherche et des Technologies de l' Energie, BP. 95, Hammam-Lif 2050 (Tunisia)

    2010-03-01

    GaAs thin films were synthesized on porous Si substrate by the electrodeposition technique. The X-ray diffraction studies showed that the as-grown films were crystallised in mixed phase nature orthorhombic and cubic of GaAs. The GaAs film was then electrically characterized using current-voltage (I-V) and capacitance-voltage (C-V) techniques by the way of Al/GaAs Schottky junctions. The electric analysis allowed us to determine the n factor and the barrier height {phi}{sub b0} parameters of Al/GaAs Schottky junctions. The (C-V) characteristics were recorded at frequency signal 1 MHz in order to identify the effect of the surface states on the behaviour of the capacitance of the device.

  19. Visualizing Statistical Mix Effects and Simpson's Paradox.

    Science.gov (United States)

    Armstrong, Zan; Wattenberg, Martin

    2014-12-01

    We discuss how "mix effects" can surprise users of visualizations and potentially lead them to incorrect conclusions. This statistical issue (also known as "omitted variable bias" or, in extreme cases, as "Simpson's paradox") is widespread and can affect any visualization in which the quantity of interest is an aggregated value such as a weighted sum or average. Our first contribution is to document how mix effects can be a serious issue for visualizations, and we analyze how mix effects can cause problems in a variety of popular visualization techniques, from bar charts to treemaps. Our second contribution is a new technique, the "comet chart," that is meant to ameliorate some of these issues.

  20. Generalized, Linear, and Mixed Models

    CERN Document Server

    McCulloch, Charles E; Neuhaus, John M

    2011-01-01

    An accessible and self-contained introduction to statistical models-now in a modernized new editionGeneralized, Linear, and Mixed Models, Second Edition provides an up-to-date treatment of the essential techniques for developing and applying a wide variety of statistical models. The book presents thorough and unified coverage of the theory behind generalized, linear, and mixed models and highlights their similarities and differences in various construction, application, and computational aspects.A clear introduction to the basic ideas of fixed effects models, random effects models, and mixed m

  1. Frequency Assignment for Joint Aerial Layer Network High-Capacity Backbone

    Science.gov (United States)

    2017-08-11

    Two Frequency Assignment Problems (FAPs) are considered in this work, which are called MMC-FAP and MS-FAP. MMC-FAP is to minimize the frequency usage... minimize the frequency span in both frequency bands. By exploiting problem-specific properties, MMC-FAP can be formulated as a Mixed Integer Linear...considered for JALN HCB. The first FAP problem, called MMC- FAP, is to minimize the frequency usage of the most congested aerial platform in both

  2. Visualizing turbulent mixing of gases and particles

    Science.gov (United States)

    Ma, Kwan-Liu; Smith, Philip J.; Jain, Sandeep

    1995-01-01

    A physical model and interactive computer graphics techniques have been developed for the visualization of the basic physical process of stochastic dispersion and mixing from steady-state CFD calculations. The mixing of massless particles and inertial particles is visualized by transforming the vector field from a traditionally Eulerian reference frame into a Lagrangian reference frame. Groups of particles are traced through the vector field for the mean path as well as their statistical dispersion about the mean position by using added scalar information about the root mean square value of the vector field and its Lagrangian time scale. In this way, clouds of particles in a turbulent environment are traced, not just mean paths. In combustion simulations of many industrial processes, good mixing is required to achieve a sufficient degree of combustion efficiency. The ability to visualize this multiphase mixing can not only help identify poor mixing but also explain the mechanism for poor mixing. The information gained from the visualization can be used to improve the overall combustion efficiency in utility boilers or propulsion devices. We have used this technique to visualize steady-state simulations of the combustion performance in several furnace designs.

  3. Three wave mixing test of hyperelasticity in highly nonlinear solids: sedimentary rocks.

    Science.gov (United States)

    D'Angelo, R M; Winkler, K W; Johnson, D L

    2008-02-01

    Measurements of three-wave mixing amplitudes on solids whose third order elastic constants have also been measured by means of the elasto-acoustic effect are reported. Because attenuation and diffraction are important aspects of the measurement technique results are analyzed using a frequency domain version of the KZK equation, modified to accommodate an arbitrary frequency dependence to the attenuation. It is found that the value of beta so deduced for poly(methylmethacrylate) (PMMA) agrees quite well with that predicted from the stress-dependent sound speed measurements, establishing that PMMA may be considered a hyperelastic solid, in this context. The beta values of sedimentary rocks, though they are typically two orders of magnitude larger than, e.g., PMMA's, are still a factor of 3-10 less than those predicted from the elasto-acoustic effect. Moreover, these samples exhibit significant heterogeneity on a centimeter scale, which heterogeneity is not apparent from a measurement of the position dependent sound speed.

  4. Pressure fluctuation characteristics of flow field of mixed flow nuclear primary pump

    International Nuclear Information System (INIS)

    Wang Chunlin; Yang Xiaoyong; Li Changjun; Jia Fei; Zhao Binjuan

    2013-01-01

    In order to research the pressure fluctuation characteristics of flow field of mixed flow nuclear primary pump, this study used the technique of ANSYS-Workbench and CFX fluid solid heat coupling to do numerical simulation analysis for model pump. According to the situation of pressure fluctuation of time domain and frequency domain, the main cause of pressure fluctuation was discussed. For different flow, the pressure fluctuations were compared. This study shows it is feasible that large eddy simulation method is used for the research of pressure fluctuation. The pressure fluctuation amplitudes of four sections are increasing from wheel hub to wheel rim. The pressure fluctuation of inlet and outlet of impeller depends on the rotational frequency of impeller. Along with the fluid flowing away from the impeller, the effect of the impeller on the fluid pressure fluctuation weakens gradually. Comparing the different results of three flow conditions, the pressure fluctuation in design condition flow is superior to the others. (authors)

  5. Intensity Modulation Techniques for Continuous-Wave Lidar for Column CO2 Measurements

    Science.gov (United States)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Kooi, S. A.; Fan, T. F.; Meadows, B.; Browell, E. V.; Erxleben, W. H.; McGregor, D.; Dobler, J. T.; Pal, S.; O'Dell, C.

    2017-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) and Linear Swept Frequency modulations to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that take advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. We compare BPSK to linear swept frequency and introduce a new technique to eliminate sidelobes in situations from linear swept frequency where the SNR is high with results that rival BPSK. We also investigate the effects of non-linear modulators, which can in some circumstances degrade the orthogonality of the waveforms, and show how to avoid this. These techniques are used in a new data processing architecture written in

  6. Recent advances in self-mixing laser-doppler velocimetry: use as an in-vivo blood flow meter

    NARCIS (Netherlands)

    Scalise, Lorenzo; de Mul, F.F.M.; Steenbergen, Wiendelt; Petoukhova, Anna

    2000-01-01

    In the present paper, recent experimental advances obtained with a laser Doppler self-mixing velocimeter are reported. The self-mixing effect in a semiconductor laser is used to realize the velocimeter. The velocity is calculated measuring the frequency peak of the frequency spectrum of the

  7. Extension of K-Means Algorithm for clustering mixed data | Onuodu ...

    African Journals Online (AJOL)

    Also proposed is a new dissimilarity measure that uses relative cumulative frequency-based method in clustering objects with mixed values. The dissimilarity model developed could serve as a predictive tool for identifying attributes of objects in mixed datasets. It has been implemented using JAVA programming language ...

  8. Presence of mixed modes in red giants in binary systems

    Directory of Open Access Journals (Sweden)

    Themeßl Nathalie

    2017-01-01

    Full Text Available The frequencies of oscillation modes in stars contain valueable information about the stellar properties. In red giants the frequency spectrum also contains mixed modes, with both pressure (p and gravity (g as restoring force, which are key to understanding the physical conditions in the stellar core. We observe a high fraction of red giants in binary systems, for which g-dominated mixed modes are not pronounced. This trend leads us to investigate whether this is specific for binary systems or a more general feature. We do so by comparing the fraction of stars with only p-dominated mixed modes in binaries and in a larger set of stars from the APOKASC sample. We find only p-dominated mixed modes in about 50% of red giants in detached eclipsing binaries compared to about 4% in the large sample. This could indicate that this phenomenon is tightly related to binarity and that the binary fraction in the APOKASC sample is about 8%.

  9. Determination of stability constants of iron(III and chromium(III-nitrilotriacetate-methyl cysteine mixed complexes by electrophoretic technique

    Directory of Open Access Journals (Sweden)

    Brij Bhushan Tewari

    2004-06-01

    Full Text Available The stability constants of Fe(III and Cr(III with methyl cysteine and nitrilotriacetate (NTA were determined by paper electrophoretic technique. Beside binary ternary complexes have also been studied, in which nitrilotriacetate and methyl cysteine acts as primary and secondary ligand, respectively. The stability constants of mixed ligand complexes metal (M-nitrilotriacetate-methyl cysteine have been found to be 5.72 plus or minus 0.09 and 5.54 plus or minus 0.11 (log K values for Fe(III and Cr(III complexes, respectively, at 35 oC and ionic strength 0.1 M.

  10. High frequency source localization in a shallow ocean sound channel using frequency difference matched field processing.

    Science.gov (United States)

    Worthmann, Brian M; Song, H C; Dowling, David R

    2015-12-01

    Matched field processing (MFP) is an established technique for source localization in known multipath acoustic environments. Unfortunately, in many situations, particularly those involving high frequency signals, imperfect knowledge of the actual propagation environment prevents accurate propagation modeling and source localization via MFP fails. For beamforming applications, this actual-to-model mismatch problem was mitigated through a frequency downshift, made possible by a nonlinear array-signal-processing technique called frequency difference beamforming [Abadi, Song, and Dowling (2012). J. Acoust. Soc. Am. 132, 3018-3029]. Here, this technique is extended to conventional (Bartlett) MFP using simulations and measurements from the 2011 Kauai Acoustic Communications MURI experiment (KAM11) to produce ambiguity surfaces at frequencies well below the signal bandwidth where the detrimental effects of mismatch are reduced. Both the simulation and experimental results suggest that frequency difference MFP can be more robust against environmental mismatch than conventional MFP. In particular, signals of frequency 11.2 kHz-32.8 kHz were broadcast 3 km through a 106-m-deep shallow ocean sound channel to a sparse 16-element vertical receiving array. Frequency difference MFP unambiguously localized the source in several experimental data sets with average peak-to-side-lobe ratio of 0.9 dB, average absolute-value range error of 170 m, and average absolute-value depth error of 10 m.

  11. Frequency-Modulated Continuous Flow Analysis Electrospray Ionization Mass Spectrometry (FM-CFA-ESI-MS) for Sample Multiplexing.

    Science.gov (United States)

    Filla, Robert T; Schrell, Adrian M; Coulton, John B; Edwards, James L; Roper, Michael G

    2018-02-20

    A method for multiplexed sample analysis by mass spectrometry without the need for chemical tagging is presented. In this new method, each sample is pulsed at unique frequencies, mixed, and delivered to the mass spectrometer while maintaining a constant total flow rate. Reconstructed ion currents are then a time-dependent signal consisting of the sum of the ion currents from the various samples. Spectral deconvolution of each reconstructed ion current reveals the identity of each sample, encoded by its unique frequency, and its concentration encoded by the peak height in the frequency domain. This technique is different from other approaches that have been described, which have used modulation techniques to increase the signal-to-noise ratio of a single sample. As proof of concept of this new method, two samples containing up to 9 analytes were multiplexed. The linear dynamic range of the calibration curve was increased with extended acquisition times of the experiment and longer oscillation periods of the samples. Because of the combination of the samples, salt had little effect on the ability of this method to achieve relative quantitation. Continued development of this method is expected to allow for increased numbers of samples that can be multiplexed.

  12. Temperament and personality in bipolar I patients with and without mixed episodes.

    Science.gov (United States)

    Röttig, Dörthe; Röttig, Stephan; Brieger, Peter; Marneros, Andreas

    2007-12-01

    Personality and temperament are supposed to have an impact on the clinical expression and course of an affective disorder. There is some indication, that mixed episodes result from an admixture of inverse temperamental factors to a manic syndrome. In a preliminary report [Brieger, P., Roettig, S., Ehrt, U., Wenzel, A., Bloink, R., Marneros, A., 2003. TEMPS-a scale in 'mixed' and 'pure' manic episodes: new data and methodological considerations on the relevance of joint anxious-depressive temperament traits. J. Affect. Disord. 73, 99-104] we reported support for this assumption. The present study completes the preliminary results and compares patients with and without mixed episodes with respect to personality and personality disorders in addition. Patients who had been hospitalized for bipolar I disorder were reassessed after 4.8 years. We examined temperament (TEMPS-A), personality (NEO-FFI) and frequency of personality disorders (SCID-II). Furthermore, illness-related parameters like age at first treatment, depressive and manic symptomatology, frequency and type of episodes and level of functioning were obtained and patients with and without mixed episodes were compared. Patients with (n=49) and without mixed episodes (n=86) did not differ significantly with regard to the illness-related parameters and personality dimensions. The frequency of personality disorders was significantly higher in patients with prior mixed episodes. With respect to temperament, scores of the depressive, cyclothymic, irritable and anxious temperament were significantly higher in patients with mixed episodes. We were not able to assess premorbid temperament and premorbid personality. The findings of the present study support the assumption of Akiskal [Akiskal, H.S., 1992b. The distinctive mixed states of bipolar I, II, and III. Clin. Neuropharmacol. 15 Suppl 1 Pt A, 632-633.] that mixed episodes are more frequent in subjects with inverse temperament.

  13. Experiments in mixed reality

    Science.gov (United States)

    Krum, David M.; Sadek, Ramy; Kohli, Luv; Olson, Logan; Bolas, Mark

    2010-01-01

    As part of the Institute for Creative Technologies and the School of Cinematic Arts at the University of Southern California, the Mixed Reality lab develops technologies and techniques for presenting realistic immersive training experiences. Such experiences typically place users within a complex ecology of social actors, physical objects, and collections of intents, motivations, relationships, and other psychological constructs. Currently, it remains infeasible to completely synthesize the interactivity and sensory signatures of such ecologies. For this reason, the lab advocates mixed reality methods for training and conducts experiments exploring such methods. Currently, the lab focuses on understanding and exploiting the elasticity of human perception with respect to representational differences between real and virtual environments. This paper presents an overview of three projects: techniques for redirected walking, displays for the representation of virtual humans, and audio processing to increase stress.

  14. Observation of sum-frequency-generation-induced cascaded four-wave mixing using two crossing femtosecond laser pulses in a 0.1 mm beta-barium-borate crystal.

    Science.gov (United States)

    Liu, Weimin; Zhu, Liangdong; Fang, Chong

    2012-09-15

    We demonstrate the simultaneous generation of multicolor femtosecond laser pulses spanning the wavelength range from UV to near IR in a 0.1 mm Type I beta-barium borate crystal from 800 nm fundamental and weak IR super-continuum white light (SCWL) pulses. The multicolor broadband laser pulses observed are attributed to two concomitant cascaded four-wave mixing (CFWM) processes as corroborated by calculation: (1) directly from the two incident laser pulses; (2) by the sum-frequency generation (SFG) induced CFWM process (SFGFWM). The latter signal arises from the interaction between the frequency-doubled fundamental pulse (400 nm) and the SFG pulse generated in between the fundamental and IR-SCWL pulses. The versatility and simplicity of this spatially dispersed multicolor self-compressed laser pulse generation offer compact and attractive methods to conduct femtosecond stimulated Raman spectroscopy and time-resolved multicolor spectroscopy.

  15. Compact, Frequency Reconfigurable, Printed Monopole Antenna

    Directory of Open Access Journals (Sweden)

    Ricardo Gonçalves

    2012-01-01

    Full Text Available This paper proposes a possible implementation of a compact printed monopole antenna, useful to operate in UMTS and WLAN bands. In order to accomplish that, a miniaturization technique based on the application of chip inductors is used in conjunction with frequency reconfiguration capability. The chip inductors change the impedance response of the monopole, allowing to reduce the resonant frequency. In order to be able to operate the antenna in these two different frequencies, an antenna reconfiguration technique based on PIN diodes is applied. This procedure allows the change of the active form of the antenna leading to a shift in the resonant frequency. The prototype measurements show good agreement with the simulation results.

  16. Robust low frequency current ripple elimination algorithm for grid-connected fuel cell systems with power balancing technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Soo; Choe, Gyu-Yeong; Lee, Byoung-Kuk [School of Information and Communication Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Kang, Hyun-Soo [R and D Center, Advanced Drive Technology (ADT) Company, 689-26 Geumjeong-dong, Gunpo-si, Gyeonggi-do 435-862 (Korea, Republic of)

    2011-05-15

    The low frequency current ripple in grid-connected fuel cell systems is generated from dc-ac inverter operation, which generates 60 Hz fundamental component, and gives harmful effects on fuel cell stack itself, such as making cathode surface responses slower, causing an increase of more than 10% in the fuel consumption, creating oxygen starvation, causing a reduction in the operating lifetime, and incurring a nuisance tripping such as overload situation. With these reasons, low frequency current ripple makes fuel cell system unstable and lifetime of fuel cell stack itself short. This paper presents a fast and robust control algorithm to eliminate low frequency current ripple in grid-connected fuel cell systems. Compared with the conventional methods, in the proposed control algorithm, dc link voltage controller is shifted from dc-dc converter to dc-ac inverter, resulting that dc-ac inverter handles dc link voltage control and output current control simultaneously with help of power balancing technique. The results indicate that the proposed algorithm can not only completely eliminate current ripple but also significantly reduce the overshoot or undershoot during transient states without any extra hardware. The validity of the proposed algorithm is verified by computer simulations and also by experiments with a 1 kW laboratory prototype. (author)

  17. Study of a new technique for measuring the travel time of ultrasonic waves using the frequency spectrum

    International Nuclear Information System (INIS)

    Santos, Allan Xavier dos

    2010-01-01

    During the operation of a nuclear plant and other industrial plants, the operational time and the exposition to severe working conditions may cause the wear of its components, consequently, compromising the safety and the performance of the installation. The implementation of periodical inspections helps to ensure the safe operation and the best performance of the plant. In this way, the use of ultrasonic techniques for inspection and materials characterization becomes more and more attractive, since they offer quick, precise results and are technically ease to implement. The usual ultrasonic techniques, need to the measure the travelling time of the ultrasonic wave in the material examined in order to extract information useful to characterize it. Thus, the measurement of the travelling time of the ultrasonic wave is the overriding factor in most of the applications made with ultrasound. In this work a new technique was developed for measuring the travelling time of the ultrasonic wave using a Fourier's Fast Transformer (FFT). It will be shown mathematically and experimentally that it is possible to use the ultrasonic signal in the frequency domain to determine the travelling time of the ultrasonic wave. Five experiments were carried out for the experimental validation of this new technique. The materials used were 20 ceramic pastilles with different porosities and 3 aluminum plates of different thicknesses. The obtained results have shown that the new technique proposed in this work was able to determine the travelling time of the ultrasonic wave with the same precision as the conventional technique. It was shown, furthermore, that this new technique is able to measure the travelling time of the ultrasonic wave in situations where the conventional technique cannot be applied greatly expanding the range of application of ultrasonic testing and inspections. (author)

  18. Measuring the photodetector frequency response for ultrasonic applications by a heterodyne system with difference- frequency servo control.

    Science.gov (United States)

    Koch, Christian

    2010-05-01

    A technique for the calibration of photodiodes in ultrasonic measurement systems using standard and cost-effective optical and electronic components is presented. A heterodyne system was realized using two commercially available distributed feedback lasers, and the required frequency stability and resolution were ensured by a difference-frequency servo control scheme. The frequency-sensitive element generating the error signal for the servo loop comprised a delay-line discriminator constructed from electronic elements. Measurements were carried out at up to 450 MHz, and the uncertainties of about 5% (k = 2) can be further reduced by improved radio frequency power measurement without losing the feature of using only simple elements. The technique initially dedicated to the determination of the frequency response of photodetectors applied in ultrasonic applications can be transferred to other application fields of optical measurements.

  19. Analysis of the mixing processes in the subtropical Advancetown Lake, Australia

    Science.gov (United States)

    Bertone, Edoardo; Stewart, Rodney A.; Zhang, Hong; O'Halloran, Kelvin

    2015-03-01

    This paper presents an extensive investigation of the mixing processes occurring in the subtropical monomictic Advancetown Lake, which is the main water body supplying the Gold Coast City in Australia. Meteorological, chemical and physical data were collected from weather stations, laboratory analysis of grab samples and an in-situ Vertical Profiling System (VPS), for the period 2008-2012. This comprehensive, high frequency dataset was utilised to develop a one-dimensional model of the vertical transport and mixing processes occurring along the water column. Multivariate analysis revealed that air temperature and rain forecasts enabled a reliable prediction of the strength of the lake stratification. Vertical diffusion is the main process driving vertical mixing, particularly during winter circulation. However, a high reservoir volume and warm winters can limit the degree of winter mixing, causing only partial circulation to occur, as was the case in 2013. This research study provides a comprehensive approach for understanding and predicting mixing processes for similar lakes, whenever high-frequency data are available from VPS or other autonomous water monitoring systems.

  20. A vibration energy harvesting device with bidirectional resonance frequency tunability

    International Nuclear Information System (INIS)

    Challa, Vinod R; Prasad, M G; Shi Yong; Fisher, Frank T

    2008-01-01

    Vibration energy harvesting is an attractive technique for potential powering of wireless sensors and low power devices. While the technique can be employed to harvest energy from vibrations and vibrating structures, a general requirement independent of the energy transfer mechanism is that the vibration energy harvesting device operate in resonance at the excitation frequency. Most energy harvesting devices developed to date are single resonance frequency based, and while recent efforts have been made to broaden the frequency range of energy harvesting devices, what is lacking is a robust tunable energy harvesting technique. In this paper, the design and testing of a resonance frequency tunable energy harvesting device using a magnetic force technique is presented. This technique enabled resonance tuning to ± 20% of the untuned resonant frequency. In particular, this magnetic-based approach enables either an increase or decrease in the tuned resonant frequency. A piezoelectric cantilever beam with a natural frequency of 26 Hz is used as the energy harvesting cantilever, which is successfully tuned over a frequency range of 22–32 Hz to enable a continuous power output 240–280 µW over the entire frequency range tested. A theoretical model using variable damping is presented, whose results agree closely with the experimental results. The magnetic force applied for resonance frequency tuning and its effect on damping and load resistance have been experimentally determined

  1. Self-Mixing Demodulation for Coherent Phase-Sensitive OTDR System

    Directory of Open Access Journals (Sweden)

    Haijun He

    2016-05-01

    Full Text Available Phase-sensitive optical time domain reflectometry (Ф-OTDR attracts much attention due to its capability of telling the type and position of an intrusion simultaneously. In recent decades, coherent Ф-OTDR has been demonstrated to realize long-distance detection. For coherent Ф-OTDR, there are three typical demodulation schemes in the reported studies. However, they still cannot realize real-time monitoring to satisfy practical demands. A simple and effective demodulation method based on self-mixing has been put forward to demodulate the beat signal in coherent Ф-OTDR. It not only saves a local electrical oscillator and frequency locked loop, but also demodulates the beat signal without residual frequency. Several vibrations with different frequency were separately applied at the same location of a 42.5 km fiber. The spatial resolution of 10 m and frequency response range from 8 Hz to 980 Hz have been achieved. The precise location with signal-to-noise ratio of 21.4 dB and broadband measurement demonstrate the self-mixing scheme can demodulate the coherent Ф-OTDR signal effectively.

  2. Mixed models for predictive modeling in actuarial science

    NARCIS (Netherlands)

    Antonio, K.; Zhang, Y.

    2012-01-01

    We start with a general discussion of mixed (also called multilevel) models and continue with illustrating specific (actuarial) applications of this type of models. Technical details on (linear, generalized, non-linear) mixed models follow: model assumptions, specifications, estimation techniques

  3. Bi-Frequency Modulated Quasi-Resonant Converters: Theory and Applications

    Science.gov (United States)

    Zhang, Yuefeng

    1995-01-01

    To avoid the variable frequency operation of quasi -resonant converters, many soft-switching PWM converters have been proposed, all of them require an auxiliary switch, which will increase the cost and complexity of the power supply system. In this thesis, a new kind of technique for quasi -resonant converters has been proposed, which is called the bi-frequency modulation technique. By operating the quasi-resonant converters at two switching frequencies, this technique enables quasi-resonant converters to achieve the soft-switching, at fixed switching frequencies, without an auxiliary switch. The steady-state analysis of four commonly used quasi-resonant converters, namely, ZVS buck, ZCS buck, ZVS boost, and ZCS boost converter has been presented. Using the concepts of equivalent sources, equivalent sinks, and resonant tank, the large signal models of these four quasi -resonant converters were developed. Based on these models, the steady-state control characteristics of BFM ZVS buck, BFM ZCS buck, BFM ZVS boost, and BFM ZCS boost converter have been derived. The functional block and design consideration of the bi-frequency controller were presented, and one of the implementations of the bi-frequency controller was given. A complete design example has been presented. Both computer simulations and experimental results have verified that the bi-frequency modulated quasi-resonant converters can achieve soft-switching, at fixed switching frequencies, without an auxiliary switch. One of the application of bi-frequency modulation technique is for EMI reduction. The basic principle of using BFM technique for EMI reduction was introduced. Based on the spectral analysis, the EMI performances of the PWM, variable-frequency, and bi-frequency modulated control signals was evaluated, and the BFM control signals show the lowest EMI emission. The bi-frequency modulated technique has also been applied to the power factor correction. A BFM zero -current switching boost converter has

  4. Beat frequency ultrasonic microsphere contrast agent detection system

    Science.gov (United States)

    Pretlow, III, Robert A. (Inventor); Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    1997-01-01

    A system for and method of detecting and measuring concentrations of an ultrasonically-reflective microsphere contrast agent involving detecting non-linear sum and difference beat frequencies produced by the microspheres when two impinging signals with non-identical frequencies are combined by mixing. These beat frequencies can be used for a variety of applications such as detecting the presence of and measuring the flow rates of biological fluids and industrial liquids, including determining the concentration level of microspheres in the myocardium.

  5. Instantaneous and Frequency-Warped Signal Processing Techniques for Auditory Source Separation.

    Science.gov (United States)

    Wang, Avery Li-Chun

    This thesis summarizes several contributions to the areas of signal processing and auditory source separation. The philosophy of Frequency-Warped Signal Processing is introduced as a means for separating the AM and FM contributions to the bandwidth of a complex-valued, frequency-varying sinusoid p (n), transforming it into a signal with slowly-varying parameters. This transformation facilitates the removal of p (n) from an additive mixture while minimizing the amount of damage done to other signal components. The average winding rate of a complex-valued phasor is explored as an estimate of the instantaneous frequency. Theorems are provided showing the robustness of this measure. To implement frequency tracking, a Frequency-Locked Loop algorithm is introduced which uses the complex winding error to update its frequency estimate. The input signal is dynamically demodulated and filtered to extract the envelope. This envelope may then be remodulated to reconstruct the target partial, which may be subtracted from the original signal mixture to yield a new, quickly-adapting form of notch filtering. Enhancements to the basic tracker are made which, under certain conditions, attain the Cramer -Rao bound for the instantaneous frequency estimate. To improve tracking, the novel idea of Harmonic -Locked Loop tracking, using N harmonically constrained trackers, is introduced for tracking signals, such as voices and certain musical instruments. The estimated fundamental frequency is computed from a maximum-likelihood weighting of the N tracking estimates, making it highly robust. The result is that harmonic signals, such as voices, can be isolated from complex mixtures in the presence of other spectrally overlapping signals. Additionally, since phase information is preserved, the resynthesized harmonic signals may be removed from the original mixtures with relatively little damage to the residual signal. Finally, a new methodology is given for designing linear-phase FIR filters

  6. Adaptive frequency-difference matched field processing for high frequency source localization in a noisy shallow ocean.

    Science.gov (United States)

    Worthmann, Brian M; Song, H C; Dowling, David R

    2017-01-01

    Remote source localization in the shallow ocean at frequencies significantly above 1 kHz is virtually impossible for conventional array signal processing techniques due to environmental mismatch. A recently proposed technique called frequency-difference matched field processing (Δf-MFP) [Worthmann, Song, and Dowling (2015). J. Acoust. Soc. Am. 138(6), 3549-3562] overcomes imperfect environmental knowledge by shifting the signal processing to frequencies below the signal's band through the use of a quadratic product of frequency-domain signal amplitudes called the autoproduct. This paper extends these prior Δf-MFP results to various adaptive MFP processors found in the literature, with particular emphasis on minimum variance distortionless response, multiple constraint method, multiple signal classification, and matched mode processing at signal-to-noise ratios (SNRs) from -20 to +20 dB. Using measurements from the 2011 Kauai Acoustic Communications Multiple University Research Initiative experiment, the localization performance of these techniques is analyzed and compared to Bartlett Δf-MFP. The results show that a source broadcasting a frequency sweep from 11.2 to 26.2 kHz through a 106 -m-deep sound channel over a distance of 3 km and recorded on a 16 element sparse vertical array can be localized using Δf-MFP techniques within average range and depth errors of 200 and 10 m, respectively, at SNRs down to 0 dB.

  7. The MIDAS Touch: Mixed Data Sampling Regression Models

    OpenAIRE

    Ghysels, Eric; Santa-Clara, Pedro; Valkanov, Rossen

    2004-01-01

    We introduce Mixed Data Sampling (henceforth MIDAS) regression models. The regressions involve time series data sampled at different frequencies. Technically speaking MIDAS models specify conditional expectations as a distributed lag of regressors recorded at some higher sampling frequencies. We examine the asymptotic properties of MIDAS regression estimation and compare it with traditional distributed lag models. MIDAS regressions have wide applicability in macroeconomics and �nance.

  8. The Value Estimation of an HFGW Frequency Time Standard for Telecommunications Network Optimization

    Science.gov (United States)

    Harper, Colby; Stephenson, Gary

    2007-01-01

    The emerging technology of gravitational wave control is used to augment a communication system using a development roadmap suggested in Stephenson (2003) for applications emphasized in Baker (2005). In the present paper consideration is given to the value of a High Frequency Gravitational Wave (HFGW) channel purely as providing a method of frequency and time reference distribution for use within conventional Radio Frequency (RF) telecommunications networks. Specifically, the native value of conventional telecommunications networks may be optimized by using an unperturbed frequency time standard (FTS) to (1) improve terminal navigation and Doppler estimation performance via improved time difference of arrival (TDOA) from a universal time reference, and (2) improve acquisition speed, coding efficiency, and dynamic bandwidth efficiency through the use of a universal frequency reference. A model utilizing a discounted cash flow technique provides an estimation of the additional value using HFGW FTS technology could bring to a mixed technology HFGW/RF network. By applying a simple net present value analysis with supporting reference valuations to such a network, it is demonstrated that an HFGW FTS could create a sizable improvement within an otherwise conventional RF telecommunications network. Our conservative model establishes a low-side value estimate of approximately 50B USD Net Present Value for an HFGW FTS service, with reasonable potential high-side values to significant multiples of this low-side value floor.

  9. Frequency of dentofacial asymmetries: a cross-sectional study on orthodontic patients.

    Science.gov (United States)

    Bhateja, Nita Kumari; Fida, Mubassar; Shaikh, Attiya

    2014-01-01

    Correction of orthodontic asymmetries is crucial to achieve functional occlusion, aesthetics and stability of post orthodontic treatment results. To date valid frequency data of dentofacial asymmetries in Pakistani orthodontic patients do not exist to document orthodontic treatment need. The objectives of this study were to determine frequency of dento-facial asymmetries, severity of dental asymmetries and to determine difference in frequency of dentofacial asymmetries in mixed and permanent dentition. The sample of this cross-sectional study comprised of 280 patients (177 females and 103 males) with no history of previous orthodontic treatment having no craniofacial anomalies. Dento-facial asymmetries were assessed from pre-treatment records of patients. Descriptive statistics were used to determine frequency of dentofacial asymmetries and severity of dental asymmetries. Chi-square test was used to determine difference in frequency of dentofacial asymmetries in mixed and permanent dentition. Seventy eight percent (219) of patients had noncoincident midlines, 67.5% (189) had mandibular midline asymmetry, 43.2% (122) had molar asymmetry, 15.7% (44) had mandibular arch asymmetry, 14.3% (40) had maxillary midline asymmetry, 13.6% (38) had maxillary arch asymmetry, 6.1% (17) had nose deviation, and 12.1% (34) had facial asymmetry and chin deviation. In most patients dental midlines were deviated from one another and from facial midline by ¼ lower incisor widths, while molar asymmetry was found in most patients by ¼ cusp width. Mandibular arch asymmetry was more frequent in permanent than mixed dentition (p = 0.054). Non-coincident dental midline is most commonly seen. Nose deviation is least commonly observed. Mandibular arch asymmetry is more frequent in permanent than mixed dentition.

  10. Singly-resonant sum frequency generation of visible light in a semiconductor disk laser

    DEFF Research Database (Denmark)

    Andersen, Martin Thalbitzer; Schlosser, P.J.; Hastie, J.E.

    2009-01-01

    In this paper a generic approach for visible light generation is presented. It is based on sum frequency generation between a semiconductor disk laser and a solid-state laser, where the frequency mixing is achieved within the cavity of the semiconductor disk laser using a singlepass of the solid......-state laser light. This exploits the good beam quality and high intra-cavity power present in the semiconductor disk laser to achieve high conversion efficiency. Combining sum frequency mixing and semiconductor disk lasers in this manner allows in principle for generation of any wavelength within the visible...

  11. Lucid Dreaming: Intensity, But Not Frequency, Is Inversely Related to Psychopathology

    Directory of Open Access Journals (Sweden)

    Liat Aviram

    2018-03-01

    Full Text Available Lucid dreaming (LD is awareness that one is dreaming, during the dream state. However, some define and assess LD relying also on controlling dream events, although control is present only in a subset of lucid dreams. LD has been claimed to represent well-being, and has even been used as a therapeutic agent. Conversely, LD is associated with mixed sleep-wake states, which are related to bizarre cognitions, stress, and psychopathology, and have been construed as arousal permeating and disrupting sleep. We propose that previous conflicting findings regarding relations between LD and both psychopathology and well-being, stem from the non-differentiated assessment of frequency and control. The present study aimed to develop an expansive measure of several LD characteristics (the Frequency and Intensity Lucid Dream questionnaire; FILD, and explore their relations with symptomatology. Undergraduate students (N = 187 self-reported trait LD, psychopathology (depression, anxiety, obsessive-compulsive symptoms, dissociation, and schizotypy, stress, and sleep problems; 2 months later, a subsample (n = 78 reported psychopathology again, and also completed a dream diary each morning for 14 days. Preliminary evidence supports the reliability and validity of the FILD. Items converged into four domains: frequency, intensity (e.g., control, activity, certainty of dreaming, emotional valence, and the use of induction techniques. We report an optimal frequency cutoff score to identify those likely to experience LD within a 2-week period. Whereas LD frequency was unrelated to psychopathology, LD intensity, and positive LD emotions, were inversely associated with several psychopathological symptoms. Use of deliberate induction techniques was positively associated with psychopathology and sleep problems. Additionally, we demonstrated directionality by employing a prospective-longitudinal design, showing that deliberate LD induction predicted an increase in

  12. Lucid Dreaming: Intensity, But Not Frequency, Is Inversely Related to Psychopathology

    Science.gov (United States)

    Aviram, Liat; Soffer-Dudek, Nirit

    2018-01-01

    Lucid dreaming (LD) is awareness that one is dreaming, during the dream state. However, some define and assess LD relying also on controlling dream events, although control is present only in a subset of lucid dreams. LD has been claimed to represent well-being, and has even been used as a therapeutic agent. Conversely, LD is associated with mixed sleep-wake states, which are related to bizarre cognitions, stress, and psychopathology, and have been construed as arousal permeating and disrupting sleep. We propose that previous conflicting findings regarding relations between LD and both psychopathology and well-being, stem from the non-differentiated assessment of frequency and control. The present study aimed to develop an expansive measure of several LD characteristics (the Frequency and Intensity Lucid Dream questionnaire; FILD), and explore their relations with symptomatology. Undergraduate students (N = 187) self-reported trait LD, psychopathology (depression, anxiety, obsessive-compulsive symptoms, dissociation, and schizotypy), stress, and sleep problems; 2 months later, a subsample (n = 78) reported psychopathology again, and also completed a dream diary each morning for 14 days. Preliminary evidence supports the reliability and validity of the FILD. Items converged into four domains: frequency, intensity (e.g., control, activity, certainty of dreaming), emotional valence, and the use of induction techniques. We report an optimal frequency cutoff score to identify those likely to experience LD within a 2-week period. Whereas LD frequency was unrelated to psychopathology, LD intensity, and positive LD emotions, were inversely associated with several psychopathological symptoms. Use of deliberate induction techniques was positively associated with psychopathology and sleep problems. Additionally, we demonstrated directionality by employing a prospective-longitudinal design, showing that deliberate LD induction predicted an increase in dissociation and

  13. B/sub s/ mixing at SLD

    CERN Document Server

    Usher, T

    2001-01-01

    A preliminary 95% C.L. exclusion on the oscillation frequency of B/sub s//sup 0/-B/sub s//sup 0/ mixing is presented by combining three analyses of a sample of 400,000 hadronic Z/sup 0/ decays collected by the SLD experiment at the SLC between 1996 and 1998. All three analyses exploit the large forward-backward asymmetry of polarized Z /sup 0/ to bbdecays, as well as information from the hemisphere opposite that of the reconstructed B decay, to determine the b-hadron flavor at production. The three analyses differ in their reconstruction of the proper time and flavor of the b-hadron at decay. The first analysis performs a full reconstruction of a cascade D/sub s / meson and a partial reconstruction of the b-hadron. In the second analysis, semileptonic decays are selected and the B decay point is reconstructed by vertexing a lepton with a partially reconstructed cascade D meson. The third analysis reconstructs B decay vertices inclusively using a topological technique, with separation between B /sub s//sup 0/ ...

  14. a new approach to concrete mix design using computer techniques

    African Journals Online (AJOL)

    Engr. Vincent okoloekwe

    required for a specified grade of concrete. 26 ... terms of the grade of the concrete required, its durability and ... experiments involves the use of a planned ..... machinery or vehicles. Nominal mix; 1:1:2. ½. 1. 1½. 2. 4½. 9. 1. 2. 3. 3¾. 82/3. 171/3.

  15. Using Enhanced Frequency Domain Decomposition as a Robust Technique to Harmonic Excitation in Operational Modal Analysis

    DEFF Research Database (Denmark)

    Jacobsen, Niels-Jørgen; Andersen, Palle; Brincker, Rune

    2006-01-01

    The presence of harmonic components in the measured responses is unavoidable in many applications of Operational Modal Analysis. This is especially true when measuring on mechanical structures containing rotating or reciprocating parts. This paper describes a new method based on the popular...... agreement is found and the method is proven to be an easy-to-use and robust tool for handling responses with deterministic and stochastic content....... Enhanced Frequency Domain Decomposition technique for eliminating the influence of these harmonic components in the modal parameter extraction process. For various experiments, the quality of the method is assessed and compared to the results obtained using broadband stochastic excitation forces. Good...

  16. Fast Hopping Frequency Generation in Digital CMOS

    CERN Document Server

    Farazian, Mohammad; Gudem, Prasad S

    2013-01-01

    Overcoming the agility limitations of conventional frequency synthesizers in multi-band OFDM ultra wideband is a key research goal in digital technology. This volume outlines a frequency plan that can generate all the required frequencies from a single fixed frequency, able to implement center frequencies with no more than two levels of SSB mixing. It recognizes the need for future synthesizers to bypass on-chip inductors and operate at low voltages to enable the increased integration and efficiency of networked appliances. The author examines in depth the architecture of the dividers that generate the necessary frequencies from a single base frequency and are capable of establishing a fractional division ratio.   Presenting the first CMOS inductorless single PLL 14-band frequency synthesizer for MB-OFDMUWB makes this volume a key addition to the literature, and with the synthesizer capable of arbitrary band-hopping in less than two nanoseconds, it operates well within the desired range on a 1.2-volt power s...

  17. Robust power system frequency control

    CERN Document Server

    Bevrani, Hassan

    2014-01-01

    This updated edition of the industry standard reference on power system frequency control provides practical, systematic and flexible algorithms for regulating load frequency, offering new solutions to the technical challenges introduced by the escalating role of distributed generation and renewable energy sources in smart electric grids. The author emphasizes the physical constraints and practical engineering issues related to frequency in a deregulated environment, while fostering a conceptual understanding of frequency regulation and robust control techniques. The resulting control strategi

  18. Carbon-enhanced Metal-poor Stars in SDSS/SEGUE. I. Carbon Abundance Estimation and Frequency of CEMP Stars

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Sun [NMSU, Las Cruces; Beers, Timothy C. [Michigan State U., JINA; Masseron, Thomas [Brussels U.; Plez, Bertrand [U. Montpellier 2, LUPM; Rockosi, Constance M. [Lick Observ.; Sobeck, Jennifer [Chicago U.; Yanny, Brian [Fermilab; Lucatello, Sara [Padua Observ.; Sivarani, Thirupathi [Bangalore, Indian Inst. Astrophys.; Placco, Vinicius M. [Sao Paulo U., IAG; Carollo, Daniela [Macquarie U.

    2013-10-17

    We describe a method for the determination of stellar [C/Fe] abundance ratios using low-resolution (R = 2000) stellar spectra from the SDSS and SEGUE. By means of a star-by-star comparison with a set of SDSS/SEGUE spectra with available estimates of [C/Fe] based on published high-resolution analyses, we demonstrate that we can measure [C/Fe] from SDSS/SEGUE spectra with S/N > 15 to a precision better than 0.35 dex. Using the measured carbon-to-iron abundance ratios obtained by this technique, we derive the frequency of carbon-enhanced stars ([C/Fe] > +0.7) as a function of [Fe/H], for both the SDSS/SEGUE stars and other samples from the literature. We find that the differential frequency slowly rises from almost zero to about 14% at [Fe/H] ~ -2.4, followed by a sudden increase, by about a factor of three, to 39% from [Fe/H] ~ -2.4 to [Fe/H] ~ -3.7. We also examine how the cumulative frequency of CEMP stars varies across different luminosity classes. The giant sample exhibits a cumulative CEMP frequency of 32% for [Fe/H] < -2.5, 31% for [Fe/H] < -3.0, and 33% for [Fe/H] < -3.5. For the main-sequence turnoff stars, we obtain a lower cumulative CEMP frequency, around 10% for [Fe/H] < -2.5. The dwarf population displays a large change in the cumulative frequency for CEMP stars below [Fe/H] = -2.5, jumping from 15% for [Fe/H] < -2.5 to about 75% for [Fe/H] < -3.0. When we impose a restriction with respect to distance from the Galactic mid-plane (|Z| < 5 kpc), the frequency of the CEMP giants does not increase at low metallicity ([Fe/H] < -2.5), but rather, decreases, due to the dilution of C-rich material in stars that have undergone mixing with CNO-processed material from their interiors. The frequency of CEMP stars near the main-sequence turnoff, which are not expected to have experienced mixing, increases for [Fe/H] < -3.0. [abridged

  19. Systematic analysis of the impact of mixing locality on Mixing-DAC linearity for multicarrier GSM

    NARCIS (Netherlands)

    Bechthum, E.; Radulov, G.I.; Briaire, J.; Geelen, G.; Roermund, van A.H.M.

    2012-01-01

    In an RF transmitter, the function of the mixer and the DAC can be combined in a single block: the Mixing-DAC. For the generation of multicarrier GSM signals in a basestation, high dynamic linearity is required, i.e. SFDR>85dBc, at high output signal frequency, i.e. ƒout ˜ 4GHz. This represents a

  20. Study of a dual frequency atmospheric pressure corona plasma

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Moon, S. Y.; Jung, H.; Gweon, B.; Choe, Wonho

    2010-01-01

    Radio frequency mixing of 2 and 13.56 MHz was investigated by performing experimental measurements on the atmospheric pressure corona plasma. As a result of the dual frequency, length, current density, and electron excitation temperature of the plasma were increased, while the gas temperature was maintained at roughly the same level when compared to the respective single frequency plasmas. Moreover, observation of time-resolved images revealed that the dual frequency plasma has a discharge mode of 2 MHz positive streamer, 2 MHz negative glow, and 13.56 MHz continuous glow.

  1. CFD modeling of thermal mixing in a T-junction geometry using LES model

    Energy Technology Data Exchange (ETDEWEB)

    Ayhan, Hueseyin, E-mail: huseyinayhan@hacettepe.edu.tr [Hacettepe University, Department of Nuclear Engineering, Beytepe, Ankara 06800 (Turkey); Soekmen, Cemal Niyazi, E-mail: cemalniyazi.sokmen@hacettepe.edu.tr [Hacettepe University, Department of Nuclear Engineering, Beytepe, Ankara 06800 (Turkey)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer CFD simulations of temperature and velocity fluctuations for thermal mixing cases in T-junction are performed. Black-Right-Pointing-Pointer It is found that the frequency range of 2-5 Hz contains most of the energy; therefore, may cause thermal fatigue. Black-Right-Pointing-Pointer This study shows that RANS based calculations fail to predict a realistic mixing between the fluids. Black-Right-Pointing-Pointer LES model can predict instantaneous turbulence behavior. - Abstract: Turbulent mixing of fluids at different temperatures can lead to temperature fluctuations at the pipe material. These fluctuations, or thermal striping, inducing cyclical thermal stresses and resulting thermal fatigue, may cause unexpected failure of pipe material. Therefore, an accurate characterization of temperature fluctuations is important in order to estimate the lifetime of pipe material. Thermal fatigue of the coolant circuits of nuclear power plants is one of the major issues in nuclear safety. To investigate thermal fatigue damage, the OECD/NEA has recently organized a blind benchmark study including some of results of present work for prediction of temperature and velocity fluctuations performing a thermal mixing experiment in a T-junction. This paper aims to estimate the frequency of velocity and temperature fluctuations in the mixing region using Computational Fluid Dynamics (CFD). Reynolds Averaged Navier-Stokes and Large Eddy Simulation (LES) models were used to simulate turbulence. CFD results were compared with the available experimental results. Predicted LES results, even in coarse mesh, were found to be in well-agreement with the experimental results in terms of amplitude and frequency of temperature and velocity fluctuations. Analysis of the temperature fluctuations and the power spectrum densities (PSD) at the locations having the strongest temperature fluctuations in the tee junction shows that the frequency range of 2-5 Hz

  2. Modeling tides and vertical tidal mixing: A reality check

    International Nuclear Information System (INIS)

    Robertson, Robin

    2010-01-01

    Recently, there has been a great interest in the tidal contribution to vertical mixing in the ocean. In models, vertical mixing is estimated using parameterization of the sub-grid scale processes. Estimates of the vertical mixing varied widely depending on which vertical mixing parameterization was used. This study investigated the performance of ten different vertical mixing parameterizations in a terrain-following ocean model when simulating internal tides. The vertical mixing parameterization was found to have minor effects on the velocity fields at the tidal frequencies, but large effects on the estimates of vertical diffusivity of temperature. Although there was no definitive best performer for the vertical mixing parameterization, several parameterizations were eliminated based on comparison of the vertical diffusivity estimates with observations. The best performers were the new generic coefficients for the generic length scale schemes and Mellor-Yamada's 2.5 level closure scheme.

  3. AnalogRF and mixed-signal circuit systematic design

    CERN Document Server

    Tlelo-Cuautle, Esteban; Castro-Lopez, Rafael

    2013-01-01

    Despite the fact that in the digital domain, designers can take full benefits of IPs and design automation tools to synthesize and design very complex systems, the analog designers’ task is still considered as a ‘handcraft’, cumbersome and very time consuming process. Thus, tremendous efforts are being deployed  to develop new design methodologies in the analog/RF and mixed-signal domains. This book collects 16 state-of-the-art contributions devoted to the topic of systematic design of analog, RF and mixed signal circuits. Divided in the two parts Methodologies and Techniques recent theories, synthesis techniques and design methodologies, as well as new sizing approaches in the field of robust analog and mixed signal design automation are presented for researchers and R/D engineers.  

  4. The event-mixing technique for modeling the tt background in a search for supersymmetry in the Di-lepton channel

    International Nuclear Information System (INIS)

    Schettler, Hannes

    2013-09-01

    In this thesis a search for Supersymmetry in the opposite-sign same-flavor di-lepton channel is presented. Data recorded by the CMS detector at the LHC accelerator corresponding to an integrated luminosity of 12.2 fb -1 at a center-of-mass energy of 8 TeV is analyzed. Events with at least two muons or two electrons with opposite charge, a significant transverse momentum imbalance, and at least one or at least two jets are selected. Supersymmetric particle decays are expected to form an edge-like structure in the di-lepton mass spectrum. The main background from Standard-Model processes is t anti t pair production. This background is estimated in a data-driven way using the event-mixing technique. Since event mixing is novel to estimate t anti t events, the method is validated in detail. In the analyzed data no significant excess w.r.t. the event-mixing prediction is observed. In a counting experiment as well as in a fit of the shape of the distribution the data is in agreement with the expectations from the Standard Model. Hence, exclusion limits are calculated in terms of number of events forming an edge in the di-lepton mass spectrum. Additionally, the results are interpreted within a simplified model spectrum, assuming direct gaugino production and a decay chainlike χ 2 0 →l ± l -+ →χ 1 0 l + l - . Limits are set on the masses of the supersymmetric particles. (orig.)

  5. Mixing and solid suspension of up-down agitators in a slab tank

    International Nuclear Information System (INIS)

    Ramsey, C.J.

    1989-01-01

    Seven different up-down agitators were studied for their ability to produce mixing and solid suspension in a slab tank. Mixing times were measured as the time needed to disperse injected dye. The solid suspension studies determined the minimum stroke frequency of the agitators needed for complete off-bottom suspension. The effects of stroke frequency, n; amplitude, a; blade width, w; blade clearance, c; and liquid depth, h, and weight percent solids, X, were studied. The most effective geometry, in terms of mixing, solid suspension and design simplicity, was a single flat blade with minimum off-bottom clearance and a blade width/tank thickness ratio, w/T, of 0.74 at the maximum stroke amplitude studied. 15 refs., 7 figs

  6. FET immunosensor for hemoglobin A1c using a gold nanofilm grown by a seed-mediated technique and covered with mixed self-assembled monolayers

    International Nuclear Information System (INIS)

    Xue, Q.; Bian, C.; Tong, J.; Sun, J.; Zhang, H.; Xia, S.

    2012-01-01

    A micro FET-based immunosensor was developed for the determination of hemoglobin-A1c (HbA1c). The HbA1c/hemoglobin ratio is an important index in diabetes control. The sensor was fabricated by Complementary Metal-Oxide-Semiconductor Transistor (CMOS) and Micro Electronic Mechanical System (MEMS) techniques. The antibodies were immobilized via mixed self-assembled monolayers (SAMs) on a gold nanofilm. The nanofilm was deposited on a gold electrode by seed-mediated growth and gave a uniform and well distributed coverage. Nonspecific sites and interferences by noise were eliminated by covering the AuNPs with mixed SAMs. Compared to the immunosensor fabricated via the mixed SAMs method without gold nanofilm, the immunosensor displays a more than 2-fold sensitivity. The immunosensor is capable of detecting HbA1c and hemoglobin in hemolyzed and diluted whole blood, and results showed good agreement with the established clinical method. (author)

  7. Efficient frequency conversion through absorptive bands of the nonlinear crystal

    OpenAIRE

    Porat, Gil; Arie, Ady

    2012-01-01

    Two simultaneous three wave mixing processes are analyzed, where an input frequency is converted to an output frequency via an intermediate stage. By employing simultaneous phase-matching and an adiabatic modulation of the nonlinear coupling strengths, the intermediate frequency is kept dark throughout the interaction, while obtaining high conversion efficiency. This feat is accomplished in a manner analogous to population transfer in atomic stimulated Raman adiabatic passage (STIRAP). Applic...

  8. Mixing Methods in Organizational Ethics and Organizational Innovativeness Research : Three Approaches to Mixed Methods Analysis

    OpenAIRE

    Riivari, Elina

    2015-01-01

    This chapter discusses three categories of mixed methods analysis techniques: variableoriented, case-oriented, and process/experience-oriented. All three categories combine qualitative and quantitative approaches to research methodology. The major differences among the categories are the focus of the study, available analysis techniques and timely aspect of the study. In variable-oriented analysis, the study focus is relationships between the research phenomena. In case-oriente...

  9. Discrete diffusion Monte Carlo for frequency-dependent radiative transfer

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Thompson, Kelly G.; Urbatsch, Todd J.

    2011-01-01

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique. (author)

  10. Prefabricated Vertical Drain (PVD) and Deep Cement Mixing (DCM)/Stiffened DCM (SDCM) techniques for soft ground improvement

    Science.gov (United States)

    Bergado, D. T.; Long, P. V.; Chaiyaput, S.; Balasubramaniam, A. S.

    2018-04-01

    Soft ground improvement techniques have become most practical and popular methods to increase soil strength, soil stiffness and reduce soil compressibility including the soft Bangkok clay. This paper focuses on comparative performances of prefabricated vertical drain (PVD) using surcharge, vacuum and heat preloading as well as the cement-admixed clay of Deep Cement Mixing (DCM) and Stiffened DCM (SDCM) methods. The Vacuum-PVD can increase the horizontal coefficient of consolidation, Ch, resulting in faster rate of settlement at the same magnitudes of settlement compared to Conventional PVD. Several field methods of applying vacuum preloading are also compared. Moreover, the Thermal PVD and Thermal Vacuum PVD can increase further the coefficient of horizontal consolidation, Ch, with the associated reduction of kh/ks values by reducing the drainage retardation effects in the smear zone around the PVD which resulted in faster rates of consolidation and higher magnitudes of settlements. Furthermore, the equivalent smear effect due to non-uniform consolidation is also discussed in addition to the smear due to the mechanical installation of PVDs. In addition, a new kind of reinforced deep mixing method, namely Stiffened Deep Cement Mixing (SDCM) pile is introduced to improve the flexural resistance, improve the field quality control, and prevent unexpected failures of the Deep Cement Mixing (DCM) pile. The SDCM pile consists of DCM pile reinforced with the insertion of precast reinforced concrete (RC) core. The full scale test embankment on soft clay improved by SDCM and DCM piles was also analysed. Numerical simulations using the 3D PLAXIS Foundation finite element software have been done to understand the behavior of SDCM and DCM piles. The simulation results indicated that the surface settlements decreased with increasing lengths of the RC cores, and, at lesser extent, increasing sectional areas of the RC cores in the SDCM piles. In addition, the lateral movements

  11. Dual-wavelength green laser with a 4.5 THz frequency difference based on self-frequency- doubling in Nd3+ -doped aperiodically poled lithium niobate.

    Science.gov (United States)

    Maestre, H; Torregrosa, A J; Fernández-Pousa, C R; Rico, M L; Capmany, J

    2008-05-01

    We report a dual-wavelength continuous-wave laser at 542.4 and 546.8 nm based on an Nd(3+)-doped aperiodically poled lithium niobate crystal. Two fundamental infrared (IR) wavelengths at 1084.8 and 1093.6 nm are simultaneously oscillated and self-frequency-doubled to green. The aperiodic domain distribution patterned in the crystal allows for quasi-phase matched self-frequency-doubling of both IR fundamentals while avoiding their sum-frequency mixing.

  12. High-frequency behavior of magnetic composites

    International Nuclear Information System (INIS)

    Lagarkov, Andrey N.; Rozanov, Konstantin N.

    2009-01-01

    The paper reviews recent progress in the field of microwave magnetic properties of composites. The problem under discussion is developing composites with high microwave permeability that are needed in many applications. The theory of magnetic composites is briefly sketched with the attention paid to the laws governing the magnetic frequency dispersion in magnetic materials and basic mixing rules for composites. Recent experimental reports on the microwave performance of magnetic composites, as well as data on the agreement of the mixing rules with the measured permeability of composites that are available from the literature are discussed. From the data, a conclusion is made that the validity of a mixing rule is determined by the permeability contrast in the composite, i.e., the difference between permeability of inclusions and that of the host matrix. When the contrast is low, the Maxwell Garnet mixing rule is frequently valid. When the contrast is high, which is of the most interest for obtaining high microwave permeability of a composite, no conventionally accepted theory is capable of accurately predicting the permeability of the composites. Therefore, the mixing rules do not allow the microwave properties of magnetic composites to be predicted when the permeability of inclusions is high, that is the case of the most interest. Because of that, general limitations to the microwave performance of composites are of importance. In particular, an important relation constraining the microwave permeability of composites follows from Kittel's theory of ferromagnetic resonance and analytical properties of frequency dependence of permeability. Another constraint concerning the bandwidth of electromagnetic wave absorbers follows from the Kramers-Kronig relations for the reflection coefficient. The constraints are of importance in design and analysis of electromagnetic wave absorbers and other devices that employ the microwave magnetic properties of composites, such as

  13. Optic-microwave mixing velocimeter for superhigh velocity measurement

    International Nuclear Information System (INIS)

    Weng Jidong; Wang Xiang; Tao Tianjiong; Liu Cangli; Tan Hua

    2011-01-01

    The phenomenon that a light beam reflected off a moving object experiences a Doppler shift in its frequency underlies practical interferometric techniques for remote velocity measurements, such as velocity interferometer system for any reflector (VISAR), displacement interferometer system for any reflector (DISAR), and photonic Doppler velocimetry (PDV). While VISAR velocimeters are often bewildered by the fringe loss upon high-acceleration dynamic process diagnosis, the optic-fiber velocimeters such as DISAR and PDV, on the other hand, are puzzled by high velocity measurement over 10 km/s, due to the demand for the high bandwidth digitizer. Here, we describe a new optic-microwave mixing velocimeter (OMV) for super-high velocity measurements. By using currently available commercial microwave products, we have constructed a simple, compact, and reliable OMV device, and have successfully obtained, with a digitizer of bandwidth 6 GH only, the precise velocity history of an aluminum flyer plate being accelerated up to 11.2 km/s in a three stage gas-gun experiment.

  14. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Final report

    International Nuclear Information System (INIS)

    Todreas, N.E.; Cheng, S.K.; Basehore, K.

    1984-08-01

    This project principally undertook the investigation of the thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions were emphasized. Continuing efforts are underway at MIT to complete the investigation of the mixed convection regime initiated here. A number of investigations on outlet plenum behavior were also made. The reports of these investigations are identified

  15. Effective switching frequency multiplier inverter

    Science.gov (United States)

    Su, Gui-Jia [Oak Ridge, TN; Peng, Fang Z [Okemos, MI

    2007-08-07

    A switching frequency multiplier inverter for low inductance machines that uses parallel connection of switches and each switch is independently controlled according to a pulse width modulation scheme. The effective switching frequency is multiplied by the number of switches connected in parallel while each individual switch operates within its limit of switching frequency. This technique can also be used for other power converters such as DC/DC, AC/DC converters.

  16. Radiotracer application in determining changes in cement mix homogeneity

    International Nuclear Information System (INIS)

    Breda, M.

    1979-01-01

    A small amount of cement labelled with 24 Na is added to the concrete mix and the relative activity of the mix is measured using a scintillation detector in preset points at different time intervals of the mixing process. The detector picks up information from a volume of 10 to 15 litres. The values characterize the degree of homogeneity of the cement component in the mix. Mathematical statistics methods are used for assessing mixing or the homogeneity changes. The technique is quick and simple and is used to advantage in determining the effect of the duration and method of transport of the cement mix on its homogeneity, and in monitoring the mixing process and determining the minimum mixing time for all types of concrete mix. (M.S.)

  17. Mixed Methods Sampling: A Typology with Examples

    Science.gov (United States)

    Teddlie, Charles; Yu, Fen

    2007-01-01

    This article presents a discussion of mixed methods (MM) sampling techniques. MM sampling involves combining well-established qualitative and quantitative techniques in creative ways to answer research questions posed by MM research designs. Several issues germane to MM sampling are presented including the differences between probability and…

  18. Recommendations for continuous emissions monitoring of mixed waste incinerators

    International Nuclear Information System (INIS)

    Quigley, G.P.

    1992-01-01

    Considerable quantities of incinerable mixed waste are being stored in and generated by the DOE complex. Mixed waste is defined as containing a hazardous component and a radioactive component. At the present time, there is only one incinerator in the complex which has the proper TSCA and RCRA permits to handle mixed waste. This report describes monitoring techniques needed for the incinerator

  19. Frequency Optimization for Enhancement of Surface Defect Classification Using the Eddy Current Technique

    Science.gov (United States)

    Fan, Mengbao; Wang, Qi; Cao, Binghua; Ye, Bo; Sunny, Ali Imam; Tian, Guiyun

    2016-01-01

    Eddy current testing is quite a popular non-contact and cost-effective method for nondestructive evaluation of product quality and structural integrity. Excitation frequency is one of the key performance factors for defect characterization. In the literature, there are many interesting papers dealing with wide spectral content and optimal frequency in terms of detection sensitivity. However, research activity on frequency optimization with respect to characterization performances is lacking. In this paper, an investigation into optimum excitation frequency has been conducted to enhance surface defect classification performance. The influences of excitation frequency for a group of defects were revealed in terms of detection sensitivity, contrast between defect features, and classification accuracy using kernel principal component analysis (KPCA) and a support vector machine (SVM). It is observed that probe signals are the most sensitive on the whole for a group of defects when excitation frequency is set near the frequency at which maximum probe signals are retrieved for the largest defect. After the use of KPCA, the margins between the defect features are optimum from the perspective of the SVM, which adopts optimal hyperplanes for structure risk minimization. As a result, the best classification accuracy is obtained. The main contribution is that the influences of excitation frequency on defect characterization are interpreted, and experiment-based procedures are proposed to determine the optimal excitation frequency for a group of defects rather than a single defect with respect to optimal characterization performances. PMID:27164112

  20. The Impact of the Stadium in the Supporter’s Consumption: How Does the Frequency at The Stadium Boosts the Demand for the Clubs’

    Directory of Open Access Journals (Sweden)

    Fernando A. Fleury

    2014-12-01

    Full Text Available The aim of this study is to investigate the relationship between the presence of supporter in the stadium, which demonstrates the supporter’s involvement with his soccer club, and its influence on the purchase of official products of the 12 largest Brazilian brands of soccer clubs. In this research, it was collected information from 1,296 supporters who responded to a questionnaire with 22 questions. It was defined as involvement with their soccer club the frequency this supporter goes to the stadium. In order to determine the consumption relationship it were used variables such as frequency of purchase of official products, the annual amount spent on such products, favorite venue to purchase and assortment of the products mix. For the supporters buying preferences analysis, it was applied the technique of correspondence analysis (Anacor. As a result, we can point out that the supporters’ loyalty, driven by the relationship marketing, is one of the catalysts for increasing the soccer clubs revenue, since the higher the products and average tickets purchase frequency, the more this frequency is associated with a higher number of attendance to the stadium, as well as the variety in the mix of products acquired by the supporter. In this sense, the work points to the importance of building a long term relationship which goes beyond the emotional bond with the club, reaching the brand products consumption.

  1. An Adaptive Frequency Strategy for Variable Speed Wind Turbines: Application to High Wind Integration Into Power Systems

    Directory of Open Access Journals (Sweden)

    Ana Fernández-Guillamón

    2018-06-01

    Full Text Available This paper presents a new frequency controller for variable speed wind turbines connected to the grid under power imbalance conditions. It is based on the fast power reserve emulation technique, having two different operation modes: overproduction and recovery mode. In the first mode, the active power provided by wind turbines is set over the mechanical power, reducing their rotational speed. This overproduction power is estimated according to the frequency excursion. In the second mode, the active power is established under the mechanical power to recover the initial rotational speed through a smooth trajectory. The power system considered for simulation purposes includes thermal, hydro-power and wind-power plants. The controller proposed has been evaluated under different mix-generation scenarios implemented in Matlab/Simulink. Extensive results and comparison to previous proposals are also included in the paper.

  2. Small-Signal Analysis of Single-Phase and Three-phase DC/AC and AC/DC PWM Converters with the Frequency-Shift Technique

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Aquila, A. Dell’; Liserre, Marco

    2004-01-01

    of dc/dc converters via a 50 Hz frequency-shift. The input admittance is calculated and measured for two study examples (a three-phase active rectifier and a single-phase photovoltaic inverter). These examples show that the purpose of a well designed controller for grid-connected converters......A systematic approach to study dc/ac and ac/dc converters without the use of synchronous transformation is proposed. The use of a frequency-shift technique allows a straightforward analysis of single-phase and three-phase systems. The study of dc/ac and of ac/dc converters is reported to the study...... is to minimize the input admittance in order to make the grid converter more robust to grid disturbance....

  3. Preparation of mixed oxides (Th,U)O{sub 2}: an evaluation of different techniques; Estudos de diferentes rotas de preparacao de oxidos binarios de torio e uranio

    Energy Technology Data Exchange (ETDEWEB)

    Ayoub, Jamil Mahmoud Said

    1999-07-01

    An evaluation of different ways of obtaining (Th-U)O{sub 2} mixed oxides is described. Coprecipitation, mechanical mixing of uranium and thorium powders, and the sol-gel technique were studied in order to get a large spectrum of knowledge of the process performance. The use of ultrasonic waves for the homogenization of the hydroxide mixture and microwave heating for powder drying was also investigated. Sol-gel showed the best results regarding the specific area for obtained samples. Oxide drying by microwave is an effective method to get mixed oxides for fuel fabrication. Neither coprecipitation nor mechanical mixing of the thorium and uranium oxide powders is suitable for the purpose. The obtained data are less than 70% than those achieved when sol-gel process is performed. Electronic microscopy, X-ray fluorescence and diffraction, thermogravimetry, specific gravidity and specific area determination (BET) used for sample characterization were convenient and accomplished good results. (author)

  4. Turbulent mixing induced by Richtmyer-Meshkov instability

    Science.gov (United States)

    Krivets, V. V.; Ferguson, K. J.; Jacobs, J. W.

    2017-01-01

    Richtmyer-Meshkov instability is studied in shock tube experiments with an Atwood number of 0.7. The interface is formed in a vertical shock tube using opposed gas flows, and three-dimensional random initial interface perturbations are generated by the vertical oscillation of gas column producing Faraday waves. Planar Laser Mie scattering is used for flow visualization and for measurements of the mixing process. Experimental image sequences are recorded at 6 kHz frequency and processed to obtain the time dependent variation of the integral mixing layer width. Measurements of the mixing layer width are compared with Mikaelian's [1] model in order to extract the growth exponent θ where a fairly wide range of values is found varying from θ ≈ 0.2 to 0.6.

  5. Low frequency radioastronomy

    International Nuclear Information System (INIS)

    Zarka, Philippe; Cecconi, Baptiste; Tagger, Michel; Torchinsky, Steve; Picard, Philippe; Pezzani, Jacques; Cognard, Ismael; Boone, Frederic; Woan, Graham; Weber, Rodolphe; Gousset, Thierry; Lautridou, Pascal; Dallier, Richard

    2011-07-01

    Low frequency radioastronomy deals with the direct detection (below 100 MHz) and heterodyne detection (up to few GHz) of electromagnetic waves (phase and amplitude) followed by a time or spectral analysis. The 30. Goutelas school covered several aspects of radioastronomy involving various aspects of physics: non-thermal phenomena in plasmas and physics of magnetized plasmas, atomic and molecular physics, and particle physics. These proceedings comprise 17 lectures dealing with: 1 - Low-Frequency Radioastronomy Basics (P. Zarka); 2 - Radioastronomy Historical Highlights (S. A. Torchinsky); 3 - Antennas (P. Picard, J. Pezzani); 4 - Receptors (P. Picard, J. Pezzani); 5 - Pulsars chronometry: metrology in radioastronomy (I. Cognard); 6 - Interferometry as imaging technique (F. Boone); 7 - Radio propagation and scintillation (G. Woan); 8 - Square Kilometer Array (S. A. Torchinsky); 9 - Techniques against radio-electrical interferences in low-frequency radioastronomy (R. Weber); 10 - Introduction to poly-phase filtering (R. Weber); 11 - Three decades of Jupiter's radio-emission studies: from the Nancay deca-meter network to LOFAR (P. Zarka); 12 - Atmospheric showers and their radio counterpart (T. Gousset); 13 - From cosmic rays radio-detection to pulse radioastronomy (P. Lautridou, R. Dallier); 14 - The CODALEMA project (R. Dallier, P. Lautridou); 15 - Space-based radio measurements: Gonio-polarimetry (B. Cecconi); 16 - Radio astronomy from space (G. Woan); 17 - LOFAR: the Low Frequency Array and the French FLOW consortium (M. Tagger, P. Zarka)

  6. Low frequency electromagnetic field sensor

    International Nuclear Information System (INIS)

    Zhu Min; Zhou Yan; He Yicheng; Zheng Zhenxing; Liu Sunkun

    2000-01-01

    The measurement technique of low frequency electromagnetic field is reported. According to this principle, the authors have designed a sensor, which is used to measure the natural electromagnetic field, SLEMP and electromagnetic signals generated by some explosions. The frequency band of this sensor is from 0.08 Hz to 2 MHz

  7. Photon acceleration versus frequency-domain interferometry for laser wakefield diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Dias, J M; Oliveira e Silva, L; Mendonca, J T [GoLP/Centro de Fisica de Plasmas, Inst. Superior Tecnico, Lisbon (Portugal)

    1998-03-01

    A detailed comparison between the photon acceleration diagnostic technique and the frequency-domain interferometric technique for laser wakefield diagnostics, by using ray-tracing equations is presented here. The dispersion effects on the probe beam and the implications of an arbitrary phase velocity of the plasma wave are discussed for both diagnostic techniques. In the presence of large amplitude plasma wave and long interaction distances significant frequency shifts can be observed. The importance of this effect on the determination of the phase and frequency shifts measurements given by each of the two diagnostic techniques, is also analyzed. The accuracy of both diagnostic techniques is discussed and some of their technical problems are reviewed. (author)

  8. Molecular energy transfer by fluid mixing. Progress report, 1 January 1968--1 January 1971

    International Nuclear Information System (INIS)

    Cool, T.A.

    1971-01-01

    Highlights are discussed of a program on the use of rapid mixing techniques and high speed flows for laser power enhancement. Three tasks are reviewed: (1) continuous wave chemical laser development, (2) N 2 --CO 2 electrically excited fluid mixing laser techniques, and (3) gas dynamic mixing behind shock waves. Purely chemical HF and DF laser operation is also discussed

  9. A wideband, frequency up-converting bounded vibration energy harvester for a low-frequency environment

    International Nuclear Information System (INIS)

    Ashraf, K; Md Khir, M H; Baharudin, Z; Dennis, J O

    2013-01-01

    This paper presents a bounded vibration energy harvester to effectively harvest energy from a wide band of low-frequency environmental vibrations ranging from 10 to 18 Hz. Rigid mechanical stoppers are used to confine the seismic mass movement within the elastic limits of the spring. Experimental results show the effectiveness of the proposed technique in increasing the efficiency of the energy harvester. When excited at a frequency of 10 Hz with a peak acceleration of 1 g, the harvester responds at a higher frequency of 20 Hz and gives a peak power of 2.68 mW and a peak to peak voltage of 2.62 V across a load of 220 Ω. The average power density of 65.74 μW cm −3 obtained at 10 Hz 1 g excitation monotonically increases with frequency up to 341.86 μW cm −3 at 18 Hz. An analytical model describing the nonlinear dynamics of the proposed harvester is also presented. A simple technique to estimate the energy losses during impact and thereof a method to incorporate these losses in the model are suggested. The presented model not only predicts the experimental voltage waveform and frequency response of the device with good similarity but also predicts the RMS voltage from the harvester for the whole range of operating frequencies with an RMS error of 5.2%. (paper)

  10. Mixed beams for the nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Breese, M.B.H.; Legge, G.L.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Recently the Micro-Analytical Research Centre (MARC) at Melbourne University has developed a technique to provide mixed beams of ions for a magnetically focussed nuclear microprobe. Such a mixed beam is defined as two (or more) beams of different species ions that can quickly and easily be made to have the same magnetic rigidity R{sub m} = (mE/q{sup 2}) and therefore be transported, focused and scanned the same in a magnetic nuclear microprobe. The production of mixed beams in an electrostatically focussed micro- probe have already been demonstrated. This paper will show how mixed beams can be produced on a single-ended accelerator. Indications of how to produce them on a tandem will also be given. Applications of these mixed beams in micro-lithography, scanning transmission ion microscopy (STIM) imaging and ion beam induced charge (IBIC) imaging will also be presented. 3 refs., 3 figs.

  11. Mixed beams for the nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A; Breese, M B.H.; Legge, G L.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    Recently the Micro-Analytical Research Centre (MARC) at Melbourne University has developed a technique to provide mixed beams of ions for a magnetically focussed nuclear microprobe. Such a mixed beam is defined as two (or more) beams of different species ions that can quickly and easily be made to have the same magnetic rigidity R{sub m} = (mE/q{sup 2}) and therefore be transported, focused and scanned the same in a magnetic nuclear microprobe. The production of mixed beams in an electrostatically focussed micro- probe have already been demonstrated. This paper will show how mixed beams can be produced on a single-ended accelerator. Indications of how to produce them on a tandem will also be given. Applications of these mixed beams in micro-lithography, scanning transmission ion microscopy (STIM) imaging and ion beam induced charge (IBIC) imaging will also be presented. 3 refs., 3 figs.

  12. Reduced dream-recall frequency in left-handed adolescents: a replication.

    Science.gov (United States)

    Schredl, Michael; Beaton, Alan A; Henley-Einion, Josie; Blagrove, Mark

    2014-01-01

    The ability to recall a dream upon waking up in the morning has been linked to a broad variety of factors such as personality, creativity, sleep behaviour and cognitive function. There have been conflicting findings as to whether dream recall is related more to the right or to the left hemisphere, and conflicting findings regarding the relationship of dream-recall frequency to handedness. We have found previously that right- and mixed-handers report having more dreams than left-handers, a finding more pronounced among adolescents than adults. In the present sample of 3535 participants aged from 6 to 18 years, right-handedness and mixed/inconsistent handedness were associated with higher dream-recall frequency compared to that of left-handed persons, again especially in adolescents compared with children. Further research is required to uncover the reason for the lower frequency of dream recall by left-handers.

  13. Peak-to-average power ratio reduction in orthogonal frequency division multiplexing-based visible light communication systems using a modified partial transmit sequence technique

    Science.gov (United States)

    Liu, Yan; Deng, Honggui; Ren, Shuang; Tang, Chengying; Qian, Xuewen

    2018-01-01

    We propose an efficient partial transmit sequence technique based on genetic algorithm and peak-value optimization algorithm (GAPOA) to reduce high peak-to-average power ratio (PAPR) in visible light communication systems based on orthogonal frequency division multiplexing (VLC-OFDM). By analysis of hill-climbing algorithm's pros and cons, we propose the POA with excellent local search ability to further process the signals whose PAPR is still over the threshold after processed by genetic algorithm (GA). To verify the effectiveness of the proposed technique and algorithm, we evaluate the PAPR performance and the bit error rate (BER) performance and compare them with partial transmit sequence (PTS) technique based on GA (GA-PTS), PTS technique based on genetic and hill-climbing algorithm (GH-PTS), and PTS based on shuffled frog leaping algorithm and hill-climbing algorithm (SFLAHC-PTS). The results show that our technique and algorithm have not only better PAPR performance but also lower computational complexity and BER than GA-PTS, GH-PTS, and SFLAHC-PTS technique.

  14. Multispectral mid-infrared imaging using frequency upconversion

    DEFF Research Database (Denmark)

    Sanders, Nicolai Højer; Dam, Jeppe Seidelin; Jensen, Ole Bjarlin

    2013-01-01

    It has recently been shown that it is possible to upconvert infrared images to the near infrared region with high quantum efficiency and low noise by three-wave mixing with a laser field [1]. If the mixing laser is single-frequency, the upconverted image is simply a band-pass filtered version...... parameter, allowing for fast tuning and hence potentially fast image acquisition, paving the way for upconversion based real time multispectral imaging. In the present realization the upconversion module consists of an external cavity tapered diode laser in a Littrow configuration with a computer controlled...

  15. Mixed time slicing in path integral simulations

    International Nuclear Information System (INIS)

    Steele, Ryan P.; Zwickl, Jill; Shushkov, Philip; Tully, John C.

    2011-01-01

    A simple and efficient scheme is presented for using different time slices for different degrees of freedom in path integral calculations. This method bridges the gap between full quantization and the standard mixed quantum-classical (MQC) scheme and, therefore, still provides quantum mechanical effects in the less-quantized variables. Underlying the algorithm is the notion that time slices (beads) may be 'collapsed' in a manner that preserves quantization in the less quantum mechanical degrees of freedom. The method is shown to be analogous to multiple-time step integration techniques in classical molecular dynamics. The algorithm and its associated error are demonstrated on model systems containing coupled high- and low-frequency modes; results indicate that convergence of quantum mechanical observables can be achieved with disparate bead numbers in the different modes. Cost estimates indicate that this procedure, much like the MQC method, is most efficient for only a relatively few quantum mechanical degrees of freedom, such as proton transfer. In this regime, however, the cost of a fully quantum mechanical simulation is determined by the quantization of the least quantum mechanical degrees of freedom.

  16. Millimeter-wave interconnects for microwave-frequency quantum machines

    Science.gov (United States)

    Pechal, Marek; Safavi-Naeini, Amir H.

    2017-10-01

    Superconducting microwave circuits form a versatile platform for storing and manipulating quantum information. A major challenge to further scalability is to find approaches for connecting these systems over long distances and at high rates. One approach is to convert the quantum state of a microwave circuit to optical photons that can be transmitted over kilometers at room temperature with little loss. Many proposals for electro-optic conversion between microwave and optics use optical driving of a weak three-wave mixing nonlinearity to convert the frequency of an excitation. Residual absorption of this optical pump leads to heating, which is problematic at cryogenic temperatures. Here we propose an alternative approach where a nonlinear superconducting circuit is driven to interconvert between microwave-frequency (7 ×109 Hz) and millimeter-wave-frequency photons (3 ×1011 Hz). To understand the potential for quantum state conversion between microwave and millimeter-wave photons, we consider the driven four-wave mixing quantum dynamics of nonlinear circuits. In contrast to the linear dynamics of the driven three-wave mixing converters, the proposed four-wave mixing converter has nonlinear decoherence channels that lead to a more complex parameter space of couplings and pump powers that we map out. We consider physical realizations of such converter circuits by deriving theoretically the upper bound on the maximum obtainable nonlinear coupling between any two modes in a lossless circuit, and synthesizing an optimal circuit based on realistic materials that saturates this bound. Our proposed circuit dissipates less than 10-9 times the energy of current electro-optic converters per qubit. Finally, we outline the quantum link budget for optical, microwave, and millimeter-wave connections, showing that our approach is viable for realizing interconnected quantum processors for intracity or quantum data center environments.

  17. Fibre multi-wave mixing combs reveal the broken symmetry of Fermi-Pasta-Ulam recurrence

    Science.gov (United States)

    Mussot, Arnaud; Naveau, Corentin; Conforti, Matteo; Kudlinski, Alexandre; Copie, Francois; Szriftgiser, Pascal; Trillo, Stefano

    2018-05-01

    In optical fibres, weak modulations can grow at the expense of a strong pump to form a triangular comb of sideband pairs, until the process is reversed. Repeated cycles of such conversion and back-conversion constitute a manifestation of the universal nonlinear phenomenon known as Fermi-Pasta-Ulam recurrence. However, it remains a major challenge to observe the coexistence of different types of recurrences owing to the spontaneous symmetry-breaking nature of such a phenomenon. Here, we implement a novel non-destructive technique that allows the evolution in amplitude and phase of frequency modes to be reconstructed via post-processing of the fibre backscattered light. We clearly observe how control of the input modulation seed results in different recursive behaviours emerging from the phase-space structure dictated by the spontaneously broken symmetry. The proposed technique is an important tool to characterize other mixing processes and new regimes of rogue-wave formation and wave turbulence in fibre optics.

  18. Analog and mixed-signal electronics

    CERN Document Server

    Stephan, Karl

    2015-01-01

    A practical guide to analog and mixed-signal electronics, with an emphasis on design problems and applications This book provides an in-depth coverage of essential analog and mixed-signal topics such as power amplifiers, active filters, noise and dynamic range, analog-to-digital and digital-to-analog conversion techniques, phase-locked loops, and switching power supplies. Readers will learn the basics of linear systems, types of nonlinearities and their effects, op-amp circuits, the high-gain analog filter-amplifier, and signal generation. The author uses system design examples to motivate

  19. On the cross-sensitivity between water vapor mixing ratio and stable isotope measurements of in-situ analyzers

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a

  20. On the cross-sensitivity between water vapor mixing ratio and stable isotope measurements of in-situ analyzers

    KAUST Repository

    Parkes, Stephen; Wang,  Lixin; McCabe, Matthew

    2015-01-01

    In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a

  1. Preconditioning for Mixed Finite Element Formulations of Elliptic Problems

    KAUST Repository

    Wildey, Tim; Xue, Guangri

    2013-01-01

    In this paper, we discuss a preconditioning technique for mixed finite element discretizations of elliptic equations. The technique is based on a block-diagonal approximation of the mass matrix which maintains the sparsity and positive definiteness of the corresponding Schur complement. This preconditioner arises from the multipoint flux mixed finite element method and is robust with respect to mesh size and is better conditioned for full permeability tensors than a preconditioner based on a diagonal approximation of the mass matrix. © Springer-Verlag Berlin Heidelberg 2013.

  2. What is the perceived impact of Alexander technique lessons on health status, costs and pain management in the real life setting of an English hospital? The results of a mixed methods evaluation of an Alexander technique service for those with chronic back pain

    OpenAIRE

    McClean, Stuart; Brilleman, Sam; Wye, Lesley

    2015-01-01

    Background: Randomised controlled trial evidence indicates that Alexander Technique is clinically and cost effective for chronic back pain. The aim of this mixed methods evaluation was to explore the role and perceived impact of Alexander Technique lessons in the naturalistic setting of an acute hospital Pain Management Clinic in England.\\ud \\ud Methods: To capture changes in health status and resource use amongst service users, 43 service users were administered three widely used questionnai...

  3. Optimizing MFT dewatering by controlling polymer mixing

    Energy Technology Data Exchange (ETDEWEB)

    Demoz, A.; Munoz, V.; Mikula, R. [Natural Resources Canada, Devon, AB (Canada). CANMET Western Research Centre

    2010-07-01

    A method of controlling polymer mixing for the dewatering of mature fine tailings (MFT) was presented. The method was developed to accelerate water release from MFT and to recover more water for re-use. Dewatering rates are dependent upon hydrodynamic conditions as well as various physical mixing variables. The effect of mixing energy on the rate and amount of released water flocculated MFT was investigated using different impellers in order to determine the release water amount and capillary suction time. The mixing energy effect on the structure of the flocculated MFT was analyzed using rheology and stereo microscopy techniques. Batch mixing tests were conducted to determine dewatering characteristics. Flow was described using the Herschel-Bulkley model. Results of the study demonstrated a clear peak in the amount of water released with the mixing time. The effect was applicable to rim-ditch thin-lift, and dewatering by centrifugation. tabs., figs.

  4. Radio-frequency transparent demodulation for broadband hybrid wireless-optical links

    DEFF Research Database (Denmark)

    Zibar, Darko; Sambaraju, Rakesh; Alemany, Ruben

    2010-01-01

    A novel demodulation technique which is transparent to radio-frequency (RF) carrier frequency is presented and experimentally demonstrated for multigigabit wireless signals. The presented demodulation technique employs optical single-sideband filtering, coherent detection, and baseband digital si...

  5. Accuracy of Single-Step versus 2-Step Double-Mix Impression Technique

    DEFF Research Database (Denmark)

    Franco, Eduardo Batista; da Cunha, Leonardo Fernandes; Herrera, Francyle Simões

    2011-01-01

    Objective. To investigate the accuracy of dies obtained from single-step and 2-step double-mix impressions. Material and Methods. Impressions (n = 10) of a stainless steel die simulating a complete crown preparation were performed using a polyether (Impregum Soft Heavy and Light body) and a vinyl...

  6. Optical generation of radio-frequency power

    International Nuclear Information System (INIS)

    Hietala, V.M.; Vawter, G.A.; Brennan, T.M.; Hammons, B.E.; Meyer, W.J.

    1994-11-01

    An optical technique for high-power radio-frequency (RF) signal generation is described. The technique uses a unique photodetector based on a traveling-wave design driven by an appropriately modulated light source. The traveling-wave photodetector (TWPD) exhibits simultaneously a theoretical quantum efficiency approaching 100 % and a very large electrical bandwidth. Additionally, it is capable of dissipating the high-power levels required for the RF generation technique. The modulated light source is formed by either the beating together of two lasers or by the direct modulation of a light source. A system example is given which predicts RF power levels of 100's of mW's at millimeter wave frequencies with a theoretical ''wall-plug'' efficiency approaching 34%

  7. A novel frequency domain fluorescence technique for determination of triplet decay times

    NARCIS (Netherlands)

    Sterenborg, H. J.; Janson, M. E.; van Gemert, M. J.

    1999-01-01

    Frequency domain fluorescence measurement using two diode lasers with amplitude modulation in the kHz range yields a signal component at the sum frequency. This intermodulation phenomenon was observed in an aqueous solution of haematoporphyrin (HP) and could be related to triplet state population

  8. High-resolution mid-IR spectrometer based on frequency upconversion

    DEFF Research Database (Denmark)

    Hu, Qi; Dam, Jeppe Seidelin; Pedersen, Christian

    2012-01-01

    We demonstrate a novel approach for high-resolution spectroscopy based on frequency upconversion and postfiltering by means of a scanning Fabryx2013;Perot interferometer. The system is based on sum-frequency mixing, shifting the spectral content from the mid-infrared to the near-visible region al......-frequency 1064xA0;nm laser. We investigate water vapor emission lines from a butane burner and compare the measured results to model data. The presented method we suggest to be used for real-time monitoring of specific gas lines and reference signals....

  9. Coherent Control of Four-Wave Mixing

    CERN Document Server

    Zhang, Yanpeng; Xiao, Min

    2011-01-01

    "Coherent Control of Four-Wave Mixing" discusses the frequency, temporal and spatial domain interplays of four-wave mixing (FWM) processes induced by atomic coherence in multi-level atomic systems. It covers topics in five major areas: the ultrafast FWM polarization beats due to interactions between multi-color laser beams and multi-level media; coexisting Raman-Rayleigh-Brillouin-enhanced polarization beats due to color-locking noisy field correlations; FWM processes with different kinds of dual-dressed schemes in ultra-thin, micrometer and long atomic cells; temporal and spatial interference between FWM and six-wave mixing (SWM) signals in multi-level electromagnetically induced transparency (EIT) media; spatial displacements and splitting of the probe and generated FWM beams, as well as the observations of gap soliton trains, vortex solitons, and stable multicomponent vector solitons in the FWM signals. The book is intended for scientists, researchers, advanced undergraduate and graduate students in Nonlin...

  10. Recommendation to include fragrance mix 2 and hydroxyisohexyl 3-cyclohexene carboxaldehyde (Lyral) in the European baseline patch test series.

    Science.gov (United States)

    Bruze, Magnus; Andersen, Klaus Ejner; Goossens, An

    2008-03-01

    The currently used fragrance mix in the European baseline patch test series (baseline series) fails to detect a substantial number of clinically relevant fragrance allergies. To investigate whether it is justified to include hydroxyisohexyl 3-cyclohexene carboxaldehyde (Lyral) and fragrance mix 2 containing hydroxyisohexyl 3-cyclohexene carboxaldehyde, citral, farnesol, coumarin, citronellol, and alpha-hexyl cinnamal in the European baseline patch test series. Survey of the literature on reported frequencies of contact allergy and allergic contact dermatitis from fragrance mix 2 and hydroxyisohexyl 3-cyclohexene carboxaldehyde (Lyral) as well as reported results of experimental provocation test. Fragrance mix 2 has been demonstrated to be a useful additional marker of fragrance allergy with contact allergy rates up to 5% when included in various national baseline patch test series. Of the fragrance substances present in fragrance mix 2, hydroxyisohexyl 3-cyclohexene carboxaldehyde is the most common sensitizer. Contact allergy rates between 1.5% and 3% have been reported for hydroxyisohexyl 3-cyclohexene carboxaldehyde in petrolatum (pet.) at 5% from various European centres when tested in consecutive dermatitis patients. From 2008, pet. preparations of fragrance mix 2 at 14% w/w (5.6 mg/cm(2)) and hydroxyisohexyl 3-cyclohexene carboxaldehyde at 5% w/w (2.0 mg/cm(2)) are recommended for inclusion in the baseline series. With the Finn Chamber technique, a dose of 20 mg pet. preparation is recommended. Whenever there is a positive reaction to fragrance mix 2, additional patch testing with the 6 ingredients, 5 if there are simultaneous positive reactions to hydroxyisohexyl 3-cyclohexene carboxaldehyde and fragrance mix 2, is recommended.

  11. METHODS FOR DETERMINING AGITATOR MIXING REQUIREMENTS FOR A MIXING & SAMPLING FACILITY TO FEED WTP (WASTE TREATMENT PLANT)

    Energy Technology Data Exchange (ETDEWEB)

    GRIFFIN PW

    2009-08-27

    The following report is a summary of work conducted to evaluate the ability of existing correlative techniques and alternative methods to accurately estimate impeller speed and power requirements for mechanical mixers proposed for use in a mixing and sampling facility (MSF). The proposed facility would accept high level waste sludges from Hanford double-shell tanks and feed uniformly mixed high level waste to the Waste Treatment Plant. Numerous methods are evaluated and discussed, and resulting recommendations provided.

  12. Hyaluronic acid filler injections for tear-trough deformity: injection technique and high-frequency ultrasound follow-up evaluation.

    Science.gov (United States)

    De Pasquale, Antonino; Russa, Giuseppina; Pulvirenti, Manuela; Di Rosa, Luigi

    2013-06-01

    This study aimed to describe the technique used by the authors in treating tear-trough deformity and to illustrate the effectiveness of high-frequency diagnostic ultrasound in the assessment of dermal filler longevity. In this consecutive interventional nonrandomized case series, 22 patients (18 women and 4 men) were evaluated. They ranged in age from 29 to 65 years (mean, 46.59 years ± 10.0 years). The patients were given multiple hyaluronic acid injections in the tear-trough area between 2009 and 2011. The injected areas then were evaluated with sonographic scans during the follow-up period. All the patients were examined preoperatively, 7 days after injection, then after 1, 6, and 12 months, and finally once a year. Pre- and postoperative photographs using standard positioning and lighting were taken as well as high-frequency ultrasound scans using a 15-MHz scanner with an axial resolution of 15 mm. The injection technique consisted of three to five injections perpendicular to the skin. These were administered just under the orbital rim, creating three column-shaped hyaluronic acid deposits deep in the orbicularis oculi muscle, from 0.2 mm to 0.5 mm below the orbital rim. Approximately 0.1 ml-0.3 ml was injected at a time. This technique creates a deep scaffolding that can fill the orbital hollow. The amount of filler used in each area ranged from 0.1 ml to 0.3 ml (mean, 0.267 ml ± 0.128 ml), whereas the mean filler quantity in each eyelid was 0.45 ml ± 0.14 ml. During the follow-up visit 1 week after the treatment, 21 patients (90 %) required a second series of injections either in the exact same areas or right next to the injected area to obtain a smoother appearance of the skin surface. During the sonographer examination, it was always possible to identify and measure the filler at the site of the injection. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please

  13. A new on-chip all-digital three-phase full-bridge dc/ac power inverter with feedforward and frequency control techniques.

    Science.gov (United States)

    Chen, Jiann-Jong; Kung, Che-Min

    2010-09-01

    The communication speed between components is far from satisfactory. To achieve high speed, simple control system configuration, and low cost, a new on-chip all-digital three-phase dc/ac power inverter using feedforward and frequency control techniques is proposed. The controller of the proposed power inverter, called the shift register, consists of six-stage D-latch flip-flops with a goal of achieving low-power consumption and area efficiency. Variable frequency is achieved by controlling the clocks of the shift register. One advantage regarding the data signal (D) and the common clock (CK) is that, regardless of the phase difference between the two, all of the D-latch flip-flops are capable of delaying data by one CK period. To ensure stability, the frequency of CK must be six times higher than that of D. The operation frequency of the proposed power inverter ranges from 10 Hz to 2 MHz, and the maximum output loading current is 0.8 A. The prototype of the proposed circuit has been fabricated with TSMC 0.35 μm 2P4M CMOS processes. The total chip area is 2.333 x 1.698 mm2. The three-phase dc/ac power inverter is applicable in uninterrupted power supplies, cold cathode fluorescent lamps, and motors, because of its ability to convert the dc supply voltage into the three-phase ac power sources.

  14. Concentration variance decay during magma mixing: a volcanic chronometer.

    Science.gov (United States)

    Perugini, Diego; De Campos, Cristina P; Petrelli, Maurizio; Dingwell, Donald B

    2015-09-21

    The mixing of magmas is a common phenomenon in explosive eruptions. Concentration variance is a useful metric of this process and its decay (CVD) with time is an inevitable consequence during the progress of magma mixing. In order to calibrate this petrological/volcanological clock we have performed a time-series of high temperature experiments of magma mixing. The results of these experiments demonstrate that compositional variance decays exponentially with time. With this calibration the CVD rate (CVD-R) becomes a new geochronometer for the time lapse from initiation of mixing to eruption. The resultant novel technique is fully independent of the typically unknown advective history of mixing - a notorious uncertainty which plagues the application of many diffusional analyses of magmatic history. Using the calibrated CVD-R technique we have obtained mingling-to-eruption times for three explosive volcanic eruptions from Campi Flegrei (Italy) in the range of tens of minutes. These in turn imply ascent velocities of 5-8 meters per second. We anticipate the routine application of the CVD-R geochronometer to the eruptive products of active volcanoes in future in order to constrain typical "mixing to eruption" time lapses such that monitoring activities can be targeted at relevant timescales and signals during volcanic unrest.

  15. Measuring isospin mixing in nuclei using π+- inelastic scattering

    International Nuclear Information System (INIS)

    Cottingame, W.B.; Braithwaite, W.J.; Morris, C.L.

    1979-01-01

    A new strongly isospin-mixed doublet has been found in 12 C near 19.5 MeV. in a comparison of π - and π + inelastic scattering at 180 MeV, The present techniques may be universally employable, at least in self-conjugate nuclei, in extracting isospin-mixing matrix elements

  16. Nonlinear beam clean-up using resonantly enhanced sum-frequency mixing

    DEFF Research Database (Denmark)

    Karamehmedovic, Emir; Pedersen, Christian; Jensen, Ole Bjarlin

    2009-01-01

    We investigate the possibility of improving the beam quality and obtaining high conversion efficiency in nonlinear sum-frequency generation. A 765 nm beam from an external cavity tapered diode laser is single-passed through a nonlinear crystal situated in the high intracavity field of a 1342 nm N......:YVO4 laser, generating a SFG beam at 488 nm. The ECDL have MH^2=1.9 and MV^2=2.4 and the solid-state laser has M^2...

  17. Frequency dependence of magnetic shielding performance of HTS plates in mixed states

    International Nuclear Information System (INIS)

    Kamitani, Atsushi; Yokono, Takafumi; Yokono, Takafumi

    2000-01-01

    The magnetic shielding performance of the high-Tc superconducting (HTS) plate is investigated numerically. The behavior of the shielding current density in the HTS plate is expressed as the integral-differential equation with a normal component of the current vector potential as a dependent variable. The numerical code for solving the equation has been developed by using the combination of the Newton-Raphson method and the successive substitution method and, by use of the code, damping coefficients and shielding factors are evaluated for the various values of the frequency ω. The results of computations show that the HTS plate has a possibility of shielding the high-frequency magnetic field with ω > or approx. 1 kHz. (author)

  18. Frequency dependence of magnetic shielding performance of HTS plates in mixed states

    Energy Technology Data Exchange (ETDEWEB)

    Kamitani, Atsushi; Yokono, Takafumi [Yamagata Univ., Yonezawa (Japan). Faculty of Engineering; Yokono, Takafumi [Tsukuba Univ., Ibaraki (Japan). Inst. of Information Sciences and Electronics

    2000-06-01

    The magnetic shielding performance of the high-Tc superconducting (HTS) plate is investigated numerically. The behavior of the shielding current density in the HTS plate is expressed as the integral-differential equation with a normal component of the current vector potential as a dependent variable. The numerical code for solving the equation has been developed by using the combination of the Newton-Raphson method and the successive substitution method and, by use of the code, damping coefficients and shielding factors are evaluated for the various values of the frequency {omega}. The results of computations show that the HTS plate has a possibility of shielding the high-frequency magnetic field with {omega} > or approx. 1 kHz. (author)

  19. A robust mixed H2/H∞ based LFC of a deregulated power system including SMES

    International Nuclear Information System (INIS)

    Shayeghi, H.; Jalili, A.; Shayanfar, H.A.

    2008-01-01

    This paper presents a new robust decentralized controller based on mixed H 2 /H ∞ control technique for the solution of load frequency control (LFC) problem including superconducting magnetic energy storage (SMES) in a deregulated electricity environment. To achieve decentralization, in each control area, the connections between this area and the rest of the system and the effects of possible contracts are treated as a set of new disturbance signals. In order to minimize effects of load disturbances and to achieve desired level of robust performance in the presence of modeling uncertainties and practical constraints on control action the idea of mixed H 2 /H ∞ control technique is being used for the solution of LFC problem. This newly developed design strategy combines advantage of H 2 and H ∞ control syntheses and gives a powerful multi-objectives design addressed by the linear matrix inequalities (LMI) technique. To demonstrate the effectiveness of the proposed method a four-area restructured power system is considered as a test system under different operating conditions. The simulation results with the proposed controller are shown to maintain robust performance in the presence of SMES unit in two areas at power system and without SMES unit in any of the areas. Analysis reveals that the proposed control strategy with considering SMES unit improves significantly the dynamical performances of system such as settling time and overshoot against parametric uncertainties for a wide range of area load demands and disturbances in either of the areas even in the presence of system nonlinearities

  20. On Frequency Combs in Monolithic Resonators

    Science.gov (United States)

    Savchenkov, A. A.; Matsko, A. B.; Maleki, L.

    2016-06-01

    Optical frequency combs have become indispensable in astronomical measurements, biological fingerprinting, optical metrology, and radio frequency photonic signal generation. Recently demonstrated microring resonator-based Kerr frequency combs point the way towards chip scale optical frequency comb generator retaining major properties of the lab scale devices. This technique is promising for integrated miniature radiofrequency and microwave sources, atomic clocks, optical references and femtosecond pulse generators. Here we present Kerr frequency comb development in a historical perspective emphasizing its similarities and differences with other physical phenomena. We elucidate fundamental principles and describe practical implementations of Kerr comb oscillators, highlighting associated solved and unsolved problems.

  1. Dual-band frequency selective surface with large band separation and stable performance

    Science.gov (United States)

    Zhou, Hang; Qu, Shao-Bo; Peng, Wei-Dong; Lin, Bao-Qin; Wang, Jia-Fu; Ma, Hua; Zhang, Jie-Qiu; Bai, Peng; Wang, Xu-Hua; Xu, Zhuo

    2012-05-01

    A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations.

  2. Effect of precession on the mixing of a jet

    Energy Technology Data Exchange (ETDEWEB)

    Nobes, D.S. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering; Nathan, G.J. [Adelaide Univ., Adelaide (Australia). Dept. of Mechanical Engineering

    2007-07-01

    The mixing of fuel and oxidant are fundamentally linked to the performance characteristics of a diffusion flame, including radiant emissions, flame stability, pollutant emissions and overall dimensions such as flame length and width. Modification of these characteristics through the mixing field can be achieved by appropriate nozzle design. One method is to precess the nozzle fluid which can be gained by fluidic or mechanical means. This paper described the effect of precession on the mixing field from a mechanical nozzle using a two-dimensional imaging technique based on Mie scattering. The paper discussed the experimental technique as well as the results and discussion. The effect of precessing the jet was to create a large scale helix in the near field that contained two counter-rotating vortices within it. This flow supplied high concentration fluid to a region above the nozzle exit that had low momentum and low shear. The resulting flow field had scale mixing larger than the local length scales of the flow in a region close to the nozzle exit. It was found that the flow field beyond this region had low rate of mixing similar to the far field of a jet. 11 refs., 5 figs.

  3. Comparison of measured and predicted thermal mixing tests using improved finite difference technique

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Rice, J.G.; Kim, J.H.

    1983-01-01

    The numerical diffusion introduced by the use of upwind formulations in the finite difference solution of the flow and energy equations for thermal mixing problems (cold water injection after small break LOCA in a PWR) was examined. The relative importance of numerical diffusion in the flow equations, compared to its effect on the energy equation was demonstrated. The flow field equations were solved using both first order accurate upwind, and second order accurate differencing schemes. The energy equation was treated using the conventional upwind and a mass weighted skew upwind scheme. Results presented for a simple test case showed that, for thermal mixing problems, the numerical diffusion was most significant in the energy equation. The numerical diffusion effect in the flow field equations was much less significant. A comparison of predictions using the skew upwind and the conventional upwind with experimental data from a two dimensional thermal mixing text are presented. The use of the skew upwind scheme showed a significant improvement in the accuracy of the steady state predicted temperatures. (orig./HP)

  4. Engineering characterisation of epoxidized natural rubber-modified hot-mix asphalt.

    Directory of Open Access Journals (Sweden)

    Ramez A Al-Mansob

    Full Text Available Road distress results in high maintenance costs. However, increased understandings of asphalt behaviour and properties coupled with technological developments have allowed paving technologists to examine the benefits of introducing additives and modifiers. As a result, polymers have become extremely popular as modifiers to improve the performance of the asphalt mix. This study investigates the performance characteristics of epoxidized natural rubber (ENR-modified hot-mix asphalt. Tests were conducted using ENR-asphalt mixes prepared using the wet process. Mechanical testing on the ENR-asphalt mixes showed that the resilient modulus of the mixes was greatly affected by testing temperature and frequency. On the other hand, although rutting performance decreased at high temperatures because of the increased elasticity of the ENR-asphalt mixes, fatigue performance improved at intermediate temperatures as compared to the base mix. However, durability tests indicated that the ENR-asphalt mixes were slightly susceptible to the presence of moisture. In conclusion, the performance of asphalt pavement can be enhanced by incorporating ENR as a modifier to counter major road distress.

  5. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... Active Cycle of Breathing Technique Airway Clearance Techniques Autogenic Drainage Basics of Lung Care Chest Physical Therapy ... clearance. Facebook Twitter Email More Related Content Medications Autogenic Drainage Positive Expiratory Pressure High-Frequency Chest Wall ...

  6. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... Cycle of Breathing Technique Airway Clearance Techniques Autogenic Drainage Basics of Lung Care Chest Physical Therapy Coughing ... Facebook Twitter Email More Related Content Medications Autogenic Drainage Positive Expiratory Pressure High-Frequency Chest Wall Oscillation ( ...

  7. Comparison between primary closure with karydakis's technique versus open procedure in treatment of pilonidal sinus in terms of frequency of postoperative wound infection

    International Nuclear Information System (INIS)

    Nafees, A.U.A.; Ahmed, M.

    2013-01-01

    Objective: The purpose of this study is to compare between primary closure with Karydakis's technique versus open procedure in treatment of pilonidal sinus in terms of frequency of postoperative wound infection. Study Design: Randomized Clinical Trials (RCT). Place and Duration of Study: This study was carried out at Department of Surgery, CMH, Kharian over a period of 2 years from Sept 2010 to Oct 2012. Patients and Methods: Sixty patients were selected out of which 30 patients underwent open excision and secondary healing and 30 patients underwent Karydakis procedure. Post operatively these patients were observed for wound infection on date of discharge and weeks 1, 2 and 3. Results of both groups were compared for wound infection by applying chi-square test. Results: There was no statistically significant difference in the frequency of infection between the two groups when calculated during the complete course of study. Conclusion: Primary closure with Karydakis's technique and open procedure are satisfactory surgical procedures for pilonidal sinus disease in terms of post-operative wound infection. (author)

  8. Improving mixing efficiency in a closed circuit water flow rig for ...

    African Journals Online (AJOL)

    . ... pulse velocity method, indicating that the flow meters functioned correctly. The modified rig with scaled-up mixing techniques could serve as platform for training in evaluating mixing vessels and flow meters in industrial process plants.

  9. 3-D optical profilometry at micron scale with multi-frequency fringe projection using modified fibre optic Lloyd's mirror technique

    Science.gov (United States)

    Inanç, Arda; Kösoğlu, Gülşen; Yüksel, Heba; Naci Inci, Mehmet

    2018-06-01

    A new fibre optic Lloyd's mirror method is developed for extracting 3-D height distribution of various objects at the micron scale with a resolution of 4 μm. The fibre optic assembly is elegantly integrated to an optical microscope and a CCD camera. It is demonstrated that the proposed technique is quite suitable and practical to produce an interference pattern with an adjustable frequency. By increasing the distance between the fibre and the mirror with a micrometre stage in the Lloyd's mirror assembly, the separation between the two bright fringes is lowered down to the micron scale without using any additional elements as part of the optical projection unit. A fibre optic cable, whose polymer jacket is partially stripped, and a microfluidic channel are used as test objects to extract their surface topographies. Point by point sensitivity of the method is found to be around 8 μm, changing a couple of microns depending on the fringe frequency and the measured height. A straightforward calibration procedure for the phase to height conversion is also introduced by making use of the vertical moving stage of the optical microscope. The phase analysis of the acquired image is carried out by One Dimensional Continuous Wavelet Transform for which the chosen wavelet is the Morlet wavelet and the carrier removal of the projected fringe patterns is achieved by reference subtraction. Furthermore, flexible multi-frequency property of the proposed method allows measuring discontinuous heights where there are phase ambiguities like 2π by lowering the fringe frequency and eliminating the phase ambiguity.

  10. Development of pulsating twin jets mechanism for mixing flow heat transfer analysis.

    Science.gov (United States)

    Gitan, Ali Ahmed; Zulkifli, Rozli; Abdullah, Shahrir; Sopian, Kamaruzzaman

    2014-01-01

    Pulsating twin jets mechanism (PTJM) was developed in the present work to study the effect of pulsating twin jets mixing region on the enhancement of heat transfer. Controllable characteristics twin pulsed jets were the main objective of our design. The variable nozzle-nozzle distance was considered to study the effect of two jets interaction at the mixing region. Also, the phase change between the frequencies of twin jets was taken into account to develop PTJM. All of these factors in addition to the ability of producing high velocity pulsed jet led to more appropriate design for a comprehensive study of multijet impingement heat transfer problems. The performance of PTJM was verified by measuring the pulse profile at frequency of 20 Hz, where equal velocity peak of around 64 m/s for both jets was obtained. Moreover, the jet velocity profile at different pulsation frequencies was tested to verify system performance, so the results revealed reasonable velocity profile configuration. Furthermore, the effect of pulsation frequency on surface temperature of flat hot plate in the midpoint between twin jets was studied experimentally. Noticeable enhancement in heat transfer was obtained with the increasing of pulsation frequency.

  11. Quantum molecular dynamics simulations of warm dense lithium hydride: Examination of mixing rules

    International Nuclear Information System (INIS)

    Horner, D. A.; Kress, J. D.; Collins, L. A.

    2008-01-01

    We have performed a systematic study of lithium hydride (LiH) in a density range from half to twice solid for temperatures from 0.5 to 3.0 eV using quantum molecular dynamics (QMD) methods and have tested density and pressure mixing rules for obtaining equations of state and optical properties such as frequency-dependent absorption coefficients and Rosseland mean opacities. The QMD simulations for the full LiH fluid served as a benchmark against which to assess the rules. In general, the mixing rule based on the pressure matching produces superior equations of state and mean opacities for the mixture except at the very lowest temperatures and densities. However, the frequency-dependent absorption coefficients displayed considerable differences in some frequency ranges except at the highest temperatures and densities

  12. The analysis of cable forces based on natural frequency

    Science.gov (United States)

    Suangga, Made; Hidayat, Irpan; Juliastuti; Bontan, Darwin Julius

    2017-12-01

    A cable is a flexible structural member that is effective at resisting tensile forces. Cables are used in a variety of structures that employ their unique characteristics to create efficient design tension members. The condition of the cable forces in the cable supported structure is an important indication of judging whether the structure is in good condition. Several methods have been developed to measure on site cable forces. Vibration technique using correlation between natural frequency and cable forces is a simple method to determine in situ cable forces, however the method need accurate information on the boundary condition, cable mass, and cable length. The natural frequency of the cable is determined using FFT (Fast Fourier Transform) Technique to the acceleration record of the cable. Based on the natural frequency obtained, the cable forces then can be determine by analytical or by finite element program. This research is focus on the vibration techniques to determine the cable forces, to understand the physical parameter effect of the cable and also modelling techniques to the natural frequency and cable forces.

  13. Methodological Reporting in Qualitative, Quantitative, and Mixed Methods Health Services Research Articles

    Science.gov (United States)

    Wisdom, Jennifer P; Cavaleri, Mary A; Onwuegbuzie, Anthony J; Green, Carla A

    2012-01-01

    Objectives Methodologically sound mixed methods research can improve our understanding of health services by providing a more comprehensive picture of health services than either method can alone. This study describes the frequency of mixed methods in published health services research and compares the presence of methodological components indicative of rigorous approaches across mixed methods, qualitative, and quantitative articles. Data Sources All empirical articles (n = 1,651) published between 2003 and 2007 from four top-ranked health services journals. Study Design All mixed methods articles (n = 47) and random samples of qualitative and quantitative articles were evaluated to identify reporting of key components indicating rigor for each method, based on accepted standards for evaluating the quality of research reports (e.g., use of p-values in quantitative reports, description of context in qualitative reports, and integration in mixed method reports). We used chi-square tests to evaluate differences between article types for each component. Principal Findings Mixed methods articles comprised 2.85 percent (n = 47) of empirical articles, quantitative articles 90.98 percent (n = 1,502), and qualitative articles 6.18 percent (n = 102). There was a statistically significant difference (χ2(1) = 12.20, p = .0005, Cramer's V = 0.09, odds ratio = 1.49 [95% confidence interval = 1,27, 1.74]) in the proportion of quantitative methodological components present in mixed methods compared to quantitative papers (21.94 versus 47.07 percent, respectively) but no statistically significant difference (χ2(1) = 0.02, p = .89, Cramer's V = 0.01) in the proportion of qualitative methodological components in mixed methods compared to qualitative papers (21.34 versus 25.47 percent, respectively). Conclusion Few published health services research articles use mixed methods. The frequency of key methodological components is variable. Suggestions are provided to increase the

  14. Detonation velocity in poorly mixed gas mixtures

    Science.gov (United States)

    Prokhorov, E. S.

    2017-10-01

    The technique for computation of the average velocity of plane detonation wave front in poorly mixed mixture of gaseous hydrocarbon fuel and oxygen is proposed. Here it is assumed that along the direction of detonation propagation the chemical composition of the mixture has periodic fluctuations caused, for example, by layered stratification of gas charge. The technique is based on the analysis of functional dependence of ideal (Chapman-Jouget) detonation velocity on mole fraction (with respect to molar concentration) of the fuel. It is shown that the average velocity of detonation can be significantly (by more than 10%) less than the velocity of ideal detonation. The dependence that permits to estimate the degree of mixing of gas mixture basing on the measurements of average detonation velocity is established.

  15. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  16. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron

    2015-01-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  17. METHODS FOR DETERMINING AGITATOR MIXING REQUIREMENTS FOR A MIXING and SAMPLING FACILITY TO FEED WTP (WASTE TREATMENT PLANT)

    International Nuclear Information System (INIS)

    Griffin, P.W.

    2009-01-01

    The following report is a summary of work conducted to evaluate the ability of existing correlative techniques and alternative methods to accurately estimate impeller speed and power requirements for mechanical mixers proposed for use in a mixing and sampling facility (MSF). The proposed facility would accept high level waste sludges from Hanford double-shell tanks and feed uniformly mixed high level waste to the Waste Treatment Plant. Numerous methods are evaluated and discussed, and resulting recommendations provided.

  18. Comments on Frequency Swept Rotating Input Perturbation Techniques and Identification of the Fluid Force Models in Rotor/bearing/seal Systems and Fluid Handling Machines

    Science.gov (United States)

    Muszynska, Agnes; Bently, Donald E.

    1991-01-01

    Perturbation techniques used for identification of rotating system dynamic characteristics are described. A comparison between two periodic frequency-swept perturbation methods applied in identification of fluid forces of rotating machines is presented. The description of the fluid force model identified by inputting circular periodic frequency-swept force is given. This model is based on the existence and strength of the circumferential flow, most often generated by the shaft rotation. The application of the fluid force model in rotor dynamic analysis is presented. It is shown that the rotor stability is an entire rotating system property. Some areas for further research are discussed.

  19. Application on technique of joint time-frequency analysis of seismic signal's first arrival estimation

    International Nuclear Information System (INIS)

    Xu Chaoyang; Liu Junmin; Fan Yanfang; Ji Guohua

    2008-01-01

    Joint time-frequency analysis is conducted to construct one joint density function of time and frequency. It can open out one signal's frequency components and their evolvements. It is the new evolvement of Fourier analysis. In this paper, according to the characteristic of seismic signal's noise, one estimation method of seismic signal's first arrival based on triple correlation of joint time-frequency spectrum is introduced, and the results of experiment and conclusion are presented. (authors)

  20. Improvement of the tetrachloromercurate absorption technique for measuring low atmospheric SO2 mixing ratios

    Science.gov (United States)

    Jaeschke, W.; Beltz, N.; Haunold, W.; Krischke, U.

    1997-07-01

    During the Gas-Phase Sulfur Intercomparison Experiment (GASIE) in 1994 an analytical system for measuring sulfur dioxide mixing ratios at low parts per trillion (pptv) levels was employed. It is based on the absorption of SO2 on a tetrachloromercurate(II)-impregnated filter. The subsequent analysis uses a chemiluminescence reaction by treating the resulting disulfitomercurate(II) complex with an acidic cerium sulfate solution. An improved sampling device has been introduced that increases the maximum sampling volume from 200 L to 500 L. It is also possible to determine the blank value accurately for each sample. The absorption efficiency of the sampling system is 98.7±6.4% at a nominal flow rate of 10 L/min. The calculated (3σ) detection limit is 3±1 pptv SO2. The sample solution is stable for up to 30 days, which allows the samples to be safely stored or shipped before analysis. This permits the use of a sensitive, compact, and reliable sampling system in the field with subsequent analysis under optimal conditions in the laboratory. A continuous flow chemiluminescence (CFCL) analyzer for on-line measurements is also presented. The system is based on the same chemical principles as the described filter technique.

  1. NATO Advanced Research Workshop on Explosives Detection Using Magnetic and Nuclear Resonance Techniques

    CERN Document Server

    Fraissard, Jacques

    2009-01-01

    Nuclear quadrupole resonance (NQR) a highly promising new technique for bulk explosives detection: relatively inexpensive, more compact than NMR, but with considerable selectivity. Since the NQR frequency is insensitive to long-range variations in composition, mixing explosives with other materials, such as the plasticizers in plastic explosives, makes no difference. The NQR signal strength varies linearly with the amount of explosive, and is independent of its distribution within the volume monitored. NQR spots explosive types in configurations missed by the X-ray imaging method. But if NQR is so good, why it is not used everywhere? Its main limitation is the low signal-to-noise ratio, particularly with the radio-frequency interference that exists in a field environment, NQR polarization being much weaker than that from an external magnetic field. The distinctive signatures are there, but are difficult to extract from the noise. In addition, the high selectivity is partly a disadvantage, as it is hard to bui...

  2. Fixed versus mixed RSA: Explaining visual representations by fixed and mixed feature sets from shallow and deep computational models.

    Science.gov (United States)

    Khaligh-Razavi, Seyed-Mahdi; Henriksson, Linda; Kay, Kendrick; Kriegeskorte, Nikolaus

    2017-02-01

    Studies of the primate visual system have begun to test a wide range of complex computational object-vision models. Realistic models have many parameters, which in practice cannot be fitted using the limited amounts of brain-activity data typically available. Task performance optimization (e.g. using backpropagation to train neural networks) provides major constraints for fitting parameters and discovering nonlinear representational features appropriate for the task (e.g. object classification). Model representations can be compared to brain representations in terms of the representational dissimilarities they predict for an image set. This method, called representational similarity analysis (RSA), enables us to test the representational feature space as is (fixed RSA) or to fit a linear transformation that mixes the nonlinear model features so as to best explain a cortical area's representational space (mixed RSA). Like voxel/population-receptive-field modelling, mixed RSA uses a training set (different stimuli) to fit one weight per model feature and response channel (voxels here), so as to best predict the response profile across images for each response channel. We analysed response patterns elicited by natural images, which were measured with functional magnetic resonance imaging (fMRI). We found that early visual areas were best accounted for by shallow models, such as a Gabor wavelet pyramid (GWP). The GWP model performed similarly with and without mixing, suggesting that the original features already approximated the representational space, obviating the need for mixing. However, a higher ventral-stream visual representation (lateral occipital region) was best explained by the higher layers of a deep convolutional network and mixing of its feature set was essential for this model to explain the representation. We suspect that mixing was essential because the convolutional network had been trained to discriminate a set of 1000 categories, whose frequencies

  3. Noise-cancelled, cavity-enhanced saturation laser spectroscopy for laser frequency stabilisation

    International Nuclear Information System (INIS)

    Vine, Glenn de; McClelland, David E; Gray, Malcolm B

    2006-01-01

    We employ a relatively simple experimental technique enabling mechanical-noise free, cavityenhanced spectroscopic measurements of an atomic transition and its hyperfine structure. We demonstrate this technique with the 532 nm frequency doubled output from a Nd:YAG laser and an iodine vapour cell. The resulting cavity-enhanced, noise-cancelled, iodine hyperfine error signal is used as a frequency reference with which we stabilise the frequency of the 1064nm Nd:YAG laser. Preliminary frequency stabilisation results are then presented

  4. Frequency response of electrochemical cells

    Science.gov (United States)

    Thomas, Daniel L.

    1990-01-01

    The main objective was to examine the feasibility of using frequency response techniques (1) as a tool in destructive physical analysis of batteries, particularly for estimating electrode structural parameters such as specific area, porosity, and tortuosity and (2) as a non-destructive testing technique for obtaining information such as state of charge and acceptability for space flight. The phenomena that contribute to the frequency response of an electrode include: (1) double layer capacitance; (2) Faradaic reaction resistance; (3) mass transfer of Warburg impedance; and (4) ohmic solution resistance. Nickel cadmium cells were investigated in solutions of KOH. A significant amount of data was acquired. Quantitative data analysis, using the developed software, is planned for the future.

  5. Fullerene-rare gas mixed plasmas in an electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Asaji, T., E-mail: asaji@oshima-k.ac.jp; Ohba, T. [Oshima National College of Maritime Technology, 1091-1 Komatsu, Suo-oshima, Oshima, Yamaguchi 742-2193 (Japan); Uchida, T.; Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Minezaki, H.; Ishihara, S. [Graduate School of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Racz, R.; Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem Tér 18/c (Hungary); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2014-02-15

    A synthesis technology of endohedral fullerenes such as Fe@C{sub 60} has developed with an electron cyclotron resonance (ECR) ion source. The production of N@C{sub 60} was reported. However, the yield was quite low, since most fullerene molecules were broken in the ECR plasma. We have adopted gas-mixing techniques in order to cool the plasma and then reduce fullerene dissociation. Mass spectra of ion beams extracted from fullerene-He, Ar or Xe mixed plasmas were observed with a Faraday cup. From the results, the He gas mixing technique is effective against fullerene destruction.

  6. Dual-band frequency selective surface with large band separation and stable performance

    International Nuclear Information System (INIS)

    Zhou Hang; Qu Shao-Bo; Lin Bao-Qin; Wang Jia-Fu; Ma Hua; Zhang Jie-Qiu; Peng Wei-Dong; Bai Peng; Wang Xu-Hua; Xu Zhuo

    2012-01-01

    A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  7. Elimination of frequency noise from groundwater measurements

    International Nuclear Information System (INIS)

    Chien, Y.M.; Bryce, R.W.; Strait, S.R.; Yeatman, R.A.

    1986-04-01

    Groundwater response to atmospheric fluctuation can be effectively removed from downhole-pressure records using the systematic approach. The technique is not as successful for removal of earth tides, due to a probable discrepancy between the actual earth tide and the theoretical earth tide. The advantage of the systematic technique is that a causative relationship is established for each component of the pressure response removed. This concept of data reduction is easily understood and well accepted. The disadvantage is that a record of the stress causing the pressure fluctuation must be obtained. This may be done by monitoring or synthesizing the stress. Frequency analysis offers a simpler way to eliminate the undesirable hydrologic fluctuations from the downhole pressure. Frequency analysis may prove to be impractical if the fluctuations being removed have broadband characteristics. A combination of the two techniques, such as eliminating the atmospheric effect with the systematic method and the earth-tide fluctuations with the frequency method, is the most effective and efficient approach

  8. Compact blue laser devices based on nonlinear frequency upconversion

    International Nuclear Information System (INIS)

    Risk, W.P.

    1989-01-01

    This paper reports how miniature sources of coherent blue radiation can be produced by using nonlinear optical materials for frequency upconversion of the infrared radiation emitted by laser diodes. Direct upconversion of laser diode radiation is possible, but there are several advantages to using the diode laser to pump a solid-state laser which is then upconverted. In either case, the challenge is to find combinations of nonlinear materials and laser for efficient frequency upconversion. Several examples have been demonstrated. These include intracavity frequency doubling of a diode-pumped 946-nm Nd:YAG laser, intracavity frequency mixing of a 809-nm GaAlAs laser diode with a diode- pumped 1064-nm Nd:YAG laser, and direct frequency doubling of a 994-nm strained-layer InGaAs laser diode

  9. A space-time mixed galerkin marching-on-in-time scheme for the time-domain combined field integral equation

    KAUST Repository

    Beghein, Yves

    2013-03-01

    The time domain combined field integral equation (TD-CFIE), which is constructed from a weighted sum of the time domain electric and magnetic field integral equations (TD-EFIE and TD-MFIE) for analyzing transient scattering from closed perfect electrically conducting bodies, is free from spurious resonances. The standard marching-on-in-time technique for discretizing the TD-CFIE uses Galerkin and collocation schemes in space and time, respectively. Unfortunately, the standard scheme is theoretically not well understood: stability and convergence have been proven for only one class of space-time Galerkin discretizations. Moreover, existing discretization schemes are nonconforming, i.e., the TD-MFIE contribution is tested with divergence conforming functions instead of curl conforming functions. We therefore introduce a novel space-time mixed Galerkin discretization for the TD-CFIE. A family of temporal basis and testing functions with arbitrary order is introduced. It is explained how the corresponding interactions can be computed efficiently by existing collocation-in-time codes. The spatial mixed discretization is made fully conforming and consistent by leveraging both Rao-Wilton-Glisson and Buffa-Christiansen basis functions and by applying the appropriate bi-orthogonalization procedures. The combination of both techniques is essential when high accuracy over a broad frequency band is required. © 2012 IEEE.

  10. On Frequency Combs in Monolithic Resonators

    Directory of Open Access Journals (Sweden)

    Savchenkov A. A.

    2016-06-01

    Full Text Available Optical frequency combs have become indispensable in astronomical measurements, biological fingerprinting, optical metrology, and radio frequency photonic signal generation. Recently demonstrated microring resonator-based Kerr frequency combs point the way towards chip scale optical frequency comb generator retaining major properties of the lab scale devices. This technique is promising for integrated miniature radiofrequency and microwave sources, atomic clocks, optical references and femtosecond pulse generators. Here we present Kerr frequency comb development in a historical perspective emphasizing its similarities and differences with other physical phenomena. We elucidate fundamental principles and describe practical implementations of Kerr comb oscillators, highlighting associated solved and unsolved problems.

  11. The phase mixing of shear Alfven waves

    International Nuclear Information System (INIS)

    Uberoi, C.

    1993-04-01

    The phase mixing of shear Alfven waves is discussed as a current sheets crossover phenomena by using the well-behaved time dependent solution of the Alfven wave equation. This method is a more direct approach than the initial value problem technique to find the collisionless damping time of the surface waves, which as it represents the coherency loss is argued to be the phase mixing time. The phase mixing time obtained by both the methods compares well. The direct method however, has an advantage that no particular profile for the magnetic field variation need to be chosen and secondly the phase mixing time and the time scale for which the resistivity effects become important can be expressed conveniently in terms of Alfven transit times before crossover. (author). 11 refs

  12. Solvability of Extended General Strongly Mixed Variational Inequalities

    Directory of Open Access Journals (Sweden)

    Balwant Singh Thakur

    2013-10-01

    Full Text Available In this paper, a new class of extended general strongly mixed variational inequalities is introduced and studied in Hilbert spaces. An existence theorem of solution is established and using resolvent operator technique, a new iterative algorithm for solving the extended general strongly mixed variational inequality is suggested. A convergence result for the iterative sequence generated by the new algorithm is also established.

  13. All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixer.

    Science.gov (United States)

    Kretschmann, H M; Heine, F; Huber, G; Halldórsson, T

    1997-10-01

    A new resonator design for doubly resonant continuous-wave intracavity sum-frequency mixing is presented. We generated 212 mW of coherent radiation at 618 nm by mixing the radiation of a 1080-nm Nd(3+):YAlO(3) laser and a 1444-nm Nd(3+):YAG laser. Two different mixing resonator setups and several nonlinear-optical crystals were investigated. So far output is limited by unequal performance of the two fundamental lasers and coating problems of the nonlinear crystals.

  14. Fundamental study on turbulent fluid mixing characteristics in piping systems. Fundamental study on fluid mixing mechanism in T-junction areas

    International Nuclear Information System (INIS)

    Toda, Saburo; Yuki, Kazuhisa; Muramatsu, Toshiharu

    2002-03-01

    In a region where two fluids with different temperatures are mixed together, unsteady temperature fluctuation, i.e. thermal striping, occurs in going through the unstable mixing process of the fluids, and structural materials in the surrounding area may be damaged by high-cycle thermal fatigue. In this report, in order to clarify the relation between the thermal striping and temperature fluctuation of structural wall, PIV measuring system is applied to visualize the fluid mixing state in a T-junction area in which important parameters for the fluid mixing are the flow velocity and aperture ratios of a main pipe to a small pipe and an incidence angle of the small pipe to the main pipe as well as temperature difference of the two flows. As a result of visualization experiments in a isothermal field, it is confirmed that a jet-axis, which is a stream line flowing out from the center of the small pipe, vibrates unsteadily and that its behavior is strongly affected by circulating flow, Karman vortex formed behind the jet axis, and especially flow-fluctuation which exists as a background-flow in the main pipe. Especially, the frequency band of the flow-fluctuation in the main pipe almost corresponds to that of the vibration of the jet-axis where the ratio of flow rate is low. Furthermore, in order to estimate the vibration state of the jet-axis and to find out the conditions for preventing the thermal fatigue, the penetration depth of the jet-axis is generalized. From measurements of temperature fluctuation of wall, it is shown that a high power fluctuation area exists universally behind the junction point of the small pipe where the flow rate of the small pipe flow is relatively lower than that of the main pipe flow. The band of dominant frequency of the temperature fluctuation is almost the same as the flow-fluctuation and the jet-axis vibration mentioned above. In addition, visualization experiments of secondary flow formed in a 90-degree bend, which is installed

  15. Digital pulse processing techniques for high resolution amplitude measurement of radiation detector

    International Nuclear Information System (INIS)

    Singhai, P.; Roy, A.; Dhara, P.; Chatterjee, S.

    2012-01-01

    The digital pulse processing techniques for high resolution amplitude measurement of radiation detector pulse is an effective replacement of expensive and bulky analog processing as the digital domain offers higher channel density and at the same time it is cheaper. We have demonstrated a prototype digital setup with highspeed sampling ADC with sampling frequency of 80-125 MHz followed by series of IIR filters for pulse shaping in a trigger-less acquisition mode. The IIR filters, peak detection algorithm and the data write-out logic was written on VHDL and implemented on FPGA. We used CAMAC as the read out platform. In conjunction with the full hardware implementation we also used a mixed platform with VME digitizer card with raw-sample read out using C code. The rationale behind this mixed platform is to test out various filter algorithms quickly on C and also to benchmark the performance of the chip level ADCs against the standard commercial digitizer in terms of noise or resolution. The paper describes implementation of both the methods with performance obtained in both the methods. (author)

  16. Application of cell-surface engineering for visualization of yeast in bread dough: development of a fluorescent bio-imaging technique in the mixing process of dough.

    Science.gov (United States)

    Maeda, Tatsuro; Shiraga, Seizaburo; Araki, Tetsuya; Ueda, Mitsuyoshi; Yamada, Masaharu; Takeya, Koji; Sagara, Yasuyuki

    2009-07-01

    Cell-surface engineering (Ueda et al., 2000) has been applied to develop a novel technique to visualize yeast in bread dough. Enhanced green fluorescent protein (EGFP) was bonded to the surface of yeast cells, and 0.5% EGFP yeasts were mixed into the dough samples at four different mixing stages. The samples were placed on a cryostat at -30 degrees C and sliced at 10 microm. The sliced samples were observed at an excitation wavelength of 480 nm and a fluorescent wavelength of 520 nm. The results indicated that the combination of the EGFP-displayed yeasts, rapid freezing, and cryo-sectioning made it possible to visualize 2-D distribution of yeast in bread dough to the extent that the EGFP yeasts could be clearly distinguished from the auto-fluorescent background of bread dough.

  17. Mixed Wastes Vitrification by Transferred Plasma

    International Nuclear Information System (INIS)

    Tapia-Fabela, J.; Pacheco-Pacheco, M.; Pacheco-Sotelo, J.; Torres-Reyes, C.; Valdivia-Barrientos, R.; Benitez-Read, J.; Lopez-Callejas, R.; Ramos-Flores, F.; Boshle, S.; Zissis, G.

    2007-01-01

    Thermal plasma technology provides a stable and long term treatment of mixed wastes through vitrification processes. In this work, a transferred plasma system was realized to vitrify mixed wastes, taking advantage of its high power density, enthalpy and chemical reactivity as well as its rapid quenching and high operation temperatures. To characterize the plasma discharge, a temperature diagnostic is realized by means of optical emission spectroscopy (OES). To typify the morphological structure of the wastes samples, scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques were applied before and after the plasma treatment

  18. Dielectric relaxation of selenium-tellurium mixed former glasses

    Science.gov (United States)

    Palui, A.; Ghosh, A.

    2017-05-01

    We report the study of dielectric properties of mixed network former glasses of composition 0.3Ag2O-0.7(xSeO2-(1-x)TeO2); x=0, 0.1, 0.3, 0.4, 0.5 and 0.6 in a wide frequency 10 Hz - 2 MHz and temperature range 223 K - 403 K. The experimental data have been analyzed in the framework of complex dielectric permittivity. The dielectric permittivity data have been analyzed using the Cole-Cole function. The inverse temperature dependence of relaxation time obtained from real part of dielectric permittivity data follows the Arrhenius relation. The activation energy shows mixed glass former effect with variation of mixed former ratio. A non-zero value of shape parameters is observed and it is almost independent of temperature and composition.

  19. Controlling mixing and segregation in time periodic granular flows

    Science.gov (United States)

    Bhattacharya, Tathagata

    Segregation is a major problem for many solids processing industries. Differences in particle size or density can lead to flow-induced segregation. In the present work, we employ the discrete element method (DEM)---one type of particle dynamics (PD) technique---to investigate the mixing and segregation of granular material in some prototypical solid handling devices, such as a rotating drum and chute. In DEM, one calculates the trajectories of individual particles based on Newton's laws of motion by employing suitable contact force models and a collision detection algorithm. Recently, it has been suggested that segregation in particle mixers can be thwarted if the particle flow is inverted at a rate above a critical forcing frequency. Further, it has been hypothesized that, for a rotating drum, the effectiveness of this technique can be linked to the probability distribution of the number of times a particle passes through the flowing layer per rotation of the drum. In the first portion of this work, various configurations of solid mixers are numerically and experimentally studied to investigate the conditions for improved mixing in light of these hypotheses. Besides rotating drums, many studies of granular flow have focused on gravity driven chute flows owing to its practical importance in granular transportation and to the fact that the relative simplicity of this type of flow allows for development and testing of new theories. In this part of the work, we observe the deposition behavior of both mono-sized and polydisperse dry granular materials in an inclined chute flow. The effects of different parameters such as chute angle, particle size, falling height and charge amount on the mass fraction distribution of granular materials after deposition are investigated. The simulation results obtained using DEM are compared with the experimental findings and a high degree of agreement is observed. Tuning of the underlying contact force parameters allows the achievement

  20. The Effects of Semantic Transparency and Base Frequency on the Recognition of English Complex Words

    Science.gov (United States)

    Xu, Joe; Taft, Marcus

    2015-01-01

    A visual lexical decision task was used to examine the interaction between base frequency (i.e., the cumulative frequencies of morphologically related forms) and semantic transparency for a list of derived words. Linear mixed effects models revealed that high base frequency facilitates the recognition of the complex word (i.e., a "base…

  1. Resonance frequency analysis

    Directory of Open Access Journals (Sweden)

    Rajiv K Gupta

    2011-01-01

    Full Text Available Initial stability at the placement and development of osseointegration are two major issues for implant survival. Implant stability is a mechanical phenomenon which is related to the local bone quality and quantity, type of implant, and placement technique used. The application of a simple, clinically applicable, non-invasive test to assess implant stability and osseointegration is considered highly desirable. Resonance frequency analysis (RFA is one of such techniques which is most frequently used now days. The aim of this paper was to review and analyze critically the current available literature in the field of RFA, and to also discuss based on scientific evidence, the prognostic value of RFA to detect implants at risk of failure. A search was made using the PubMed database to find all the literature published on "Resonance frequency analysis for implant stability" till date. Articles discussed in vivo or in vitro studies comparing RFA with other methods of implant stability measurement and articles discussing its reliability were thoroughly reviewed and discussed. A limited number of clinical reports were found. Various studies have demonstrated the feasibility and predictability of the technique. However, most of these articles are based on retrospective data or uncontrolled cases. Randomized, prospective, parallel-armed longitudinal human trials are based on short-term results and long-term follow up are still scarce in this field. Nonetheless, from available literature, it may be concluded that RFA technique evaluates implant stability as a function of stiffness of the implant bone interface and is influenced by factors such as bone type, exposed implant height above the alveolar crest. Resonance frequency analysis could serve as a non-invasive diagnostic tool for detecting the implant stability of dental implants during the healing stages and in subsequent routine follow up care after treatment. Future studies, preferably randomized

  2. An efficient continuous-wave 591 nm light source based on sum-frequency mixing of a diode pumped Nd:GdVO4–Nd:CNGG laser

    International Nuclear Information System (INIS)

    Zhao, Y D; Liu, J H

    2013-01-01

    We report a laser architecture to obtain continuous-wave (CW) yellow-orange light sources at the 591 nm wavelength. An 808 nm diode pumped a Nd:GdVO 4 crystal emitting at 1063 nm. A part of the pump power was then absorbed by the Nd:CNGG crystal. The remaining pump power was used to pump a Nd:CNGG crystal emitting at 1329 nm. Intracavity sum-frequency mixing at 1063 and 1329 nm was then realized in a LiB 3 O 5 (LBO) crystal to reach the yellow-orange radiation. We obtained a CW output power of 494 mW at 591 nm with a pump laser diode emitting 17.8 W at 808 nm. (paper)

  3. High-power continuous-wave mid-infrared radiation generated by difference frequency mixing of diode-laser-seeded fiber amplifiers and its application to dual-beam spectroscopy

    Science.gov (United States)

    Lancaster, D. G.; Richter, D.; Curl, R. F.; Tittel, F. K.; Goldberg, L.; Koplow, J.

    1999-01-01

    We report the generation of up to 0.7 mW of narrow-linewidth (radiation at 3.3 micrometers by difference frequency mixing of a Nd:YAG-seeded 1.6-W Yb fiber amplifier and a 1.5-micrometers diode-laser-seeded 0.6-W Er/Yb fiber amplifier in periodically poled LiNbO3. A conversion efficiency of 0.09%/W (0.47 mWW-2 cm-1) was achieved. A room-air CH4 spectrum acquired with a compact 80-m multipass cell and a dual-beam spectroscopic configuration indicates an absorption sensitivity of +/-2.8 x 10(-5) (+/-1 sigma), corresponding to a sub-parts-in-10(9) (ppb) CH4 sensitivity (0.8 ppb).

  4. Synthesis and characterization of porous crystalline SiC thin films prepared by radio frequency reactive magnetron sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, Afzaal, E-mail: afzaalqamar@gmail.com [Department of Physics and Applied Mathematics, PIEAS, Nilore, Islamabad, Punjab 42600 (Pakistan); Mahmood, Arshad [National Institute of Laser and Optronics, Nilore, Islamabad (Pakistan); Sarwar, Tuba; Ahmed, Nadeem [Department of Physics and Applied Mathematics, PIEAS, Nilore, Islamabad, Punjab 42600 (Pakistan)

    2011-05-15

    Hexagonal SiC thin films have been deposited using radio frequency reactive magnetron sputtering technique by varying the substrate temperature and other deposition conditions. Prior to deposition surface modification of the substrate Si(1 0 0) played an important role in deposition of the hexagonal SiC structure. The effect of substrate temperature during deposition on structure, composition and surface morphology of the SiC films has been analyzed using atomic force microscopy, Fourier transform infrared spectroscopy and spectroscopic ellipsometry. X-ray diffraction in conventional {theta}-2{theta} mode and omega scan mode revealed that the deposited films were crystalline having 8H-SiC structure and crystallinity improved with increase of deposition temperature. The bonding order and Si-C composition within the films showed improvement with the increase of deposition temperature. The surface of thin films grew in the shape of globes and columns depending upon deposition temperature. The optical properties also showed improvement with increase of deposition temperature and the results obtained by ellipsometry reinforced the results of other techniques.

  5. Josephson frequency meter for millimeter and submillimeter wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Anischenko, S.E.; Larkin, S.Y.; Chaikovsky, V.I. [State Research Center, Kiev (Ukraine)] [and others

    1994-12-31

    Frequency measurements of electromagnetic oscillations of millimeter and submillimeter wavebands with frequency growth due to a number of reasons become more and more difficult. First, these frequencies are considered to be cutoff for semiconductor converting devices and one has to use optical measurement methods instead of traditional ones with frequency transfer. Second, resonance measurement methods are characterized by using relatively narrow bands and optical ones are limited in frequency and time resolution due to the limited range and velocity of movement of their mechanical elements as well as the efficiency of these optical techniques decreases with the increase of wavelength due to diffraction losses. That requires the apriori information on the radiation frequency band of the source involved. Method of measuring frequency of harmonic microwave signals in millimeter and submillimeter wavebands based on the ac Josephson effect in superconducting contacts is devoid of all the above drawbacks. This approach offers a number of major advantages over the more traditional measurement methods, that is the one based on frequency conversion, resonance and interferrometric techniques. It can be characterized by high potential accuracy, wide range of frequencies measured, prompt measurement and the opportunity to obtain panoramic display of the results as well as full automation of the measuring process.

  6. Josephson frequency meter for millimeter and submillimeter wavelengths

    International Nuclear Information System (INIS)

    Anischenko, S.E.; Larkin, S.Y.; Chaikovsky, V.I.

    1994-01-01

    Frequency measurements of electromagnetic oscillations of millimeter and submillimeter wavebands with frequency growth due to a number of reasons become more and more difficult. First, these frequencies are considered to be cutoff for semiconductor converting devices and one has to use optical measurement methods instead of traditional ones with frequency transfer. Second, resonance measurement methods are characterized by using relatively narrow bands and optical ones are limited in frequency and time resolution due to the limited range and velocity of movement of their mechanical elements as well as the efficiency of these optical techniques decreases with the increase of wavelength due to diffraction losses. That requires the apriori information on the radiation frequency band of the source involved. Method of measuring frequency of harmonic microwave signals in millimeter and submillimeter wavebands based on the ac Josephson effect in superconducting contacts is devoid of all the above drawbacks. This approach offers a number of major advantages over the more traditional measurement methods, that is the one based on frequency conversion, resonance and interferrometric techniques. It can be characterized by high potential accuracy, wide range of frequencies measured, prompt measurement and the opportunity to obtain panoramic display of the results as well as full automation of the measuring process

  7. Analysis on optical heterodyne frequency error of full-field heterodyne interferometer

    Science.gov (United States)

    Li, Yang; Zhang, Wenxi; Wu, Zhou; Lv, Xiaoyu; Kong, Xinxin; Guo, Xiaoli

    2017-06-01

    The full-field heterodyne interferometric measurement technology is beginning better applied by employing low frequency heterodyne acousto-optical modulators instead of complex electro-mechanical scanning devices. The optical element surface could be directly acquired by synchronously detecting the received signal phases of each pixel, because standard matrix detector as CCD and CMOS cameras could be used in heterodyne interferometer. Instead of the traditional four-step phase shifting phase calculating, Fourier spectral analysis method is used for phase extracting which brings lower sensitivity to sources of uncertainty and higher measurement accuracy. In this paper, two types of full-field heterodyne interferometer are described whose advantages and disadvantages are also specified. Heterodyne interferometer has to combine two different frequency beams to produce interference, which brings a variety of optical heterodyne frequency errors. Frequency mixing error and beat frequency error are two different kinds of inescapable heterodyne frequency errors. In this paper, the effects of frequency mixing error to surface measurement are derived. The relationship between the phase extraction accuracy and the errors are calculated. :: The tolerance of the extinction ratio of polarization splitting prism and the signal-to-noise ratio of stray light is given. The error of phase extraction by Fourier analysis that caused by beat frequency shifting is derived and calculated. We also propose an improved phase extraction method based on spectrum correction. An amplitude ratio spectrum correction algorithm with using Hanning window is used to correct the heterodyne signal phase extraction. The simulation results show that this method can effectively suppress the degradation of phase extracting caused by beat frequency error and reduce the measurement uncertainty of full-field heterodyne interferometer.

  8. High Frequency Components Recovery in Music Signals

    Directory of Open Access Journals (Sweden)

    V. Sebesta

    1999-04-01

    Full Text Available A new technique is presented which improves the subjective quality of band-limited music by recovery of high frequency components. Sequences of harmonics are found in the band-limited signal and these sequences are expanded to the high frequency band to estimate the lost part of spectrum. High frequency signal is generated to match this estimation and is added to the band-limited signal.

  9. Higher-order techniques in computational electromagnetics

    CERN Document Server

    Graglia, Roberto D

    2016-01-01

    Higher-Order Techniques in Computational Electromagnetics explains 'high-order' techniques that can significantly improve the accuracy, computational cost, and reliability of computational techniques for high-frequency electromagnetics, such as antennas, microwave devices and radar scattering applications.

  10. Experimental study of the hollow cathode radio-frequency plasma mixture: Argon-Oxygen

    International Nuclear Information System (INIS)

    Saloum, S.; Naddaf, M.

    2008-01-01

    This study presents experimental results of plasma gas mixture Ar-O 2 for different mixing ratios in radio-frequency hollow cathode plasma. The following plasma parameters have been investigated: The electronic temperature, plasma potential, floating potential, emission atomic lines intensities, as a function of some variables, where the effect of power has been studied in the range [100-300 W], and the effect of pressure has been studied in the range [0.05-0.3 mbar]. The effect of relative composition has been studied for a fixed power and pressure. Two diagnostic techniques have been employed: Optical emission spectroscopy and langmuir probe. The most important result of this study is the ability to measure the relative atomic density of oxygen by optical emission spectroscopy, where the maximum of this density is obtained for the mixture 40% Ar - 60% O 2 . (author)

  11. Mixed convection flow of couple stress nanofluid over oscillatory stretching sheet with heat absorption/generation effects

    Directory of Open Access Journals (Sweden)

    Sami Ullah Khan

    2018-03-01

    Full Text Available The aim of this article is to highlight the unsteady mixed convective couple stress nanoliquid flow passed through stretching surface. The flow is generated due to periodic oscillations of sheet. An appropriate set of dimensionless variables are used to reduce the independent variables in governing equations arising from mathematical modeling. An analytical solution has been computed by employing the technique of homotopy method. The outcomes of various sundry parameters like couple stress parameter, the ratio of angular velocity to stretching rate, thermophoresis parameter, Hartmann number, Prandtl number, heat source/sink parameter, Schmidt number described graphically and in tabular form. It is observed that the velocity profile increases by increasing mixed convection parameter and concentration buoyancy parameter. The temperature enhances for larger values of Hartmann number and Brownian. The concentration profile increases by increasing thermophoresis parameter. Results show that wall shear stress increases by increasing couple stress parameter and ratio of oscillating frequency to stretching rate. Keywords: Oscillatory surface, Couple stress fluid, Nanoparticles, Heat absorption/generation

  12. THE COMPARISON OF STUDENTS’ READING COMPREHENSION IN RECOUNT TEXT INSTRUCTION BETWEEN USING STAD AND JIGSAW TECHNIQUE AT DIFFERENT READING FREQUENCY AT THE FIRST GRADE OF SMA N 1 RUMBIA ACADEMIC YEAR 2012/2013

    Directory of Open Access Journals (Sweden)

    Didik Firnadi -

    2014-04-01

    Full Text Available Reading as one of the four skills has always been as a part of the syllabus in English instruction. Based on the Pra survey, reading comprehension of the students of the first grade of SMA N 1 Rumbia is still low, most of them still lack structure knowledge and vocabulary, and their reading frequency in reading is still low. There are two techniques presented as a solution in this research. They are STAD Technique and Jigsaw technique. The objective of this research is to find out the difference result of using STAD and Jigsaw technique toward students’ reading comprehension in recount text at different high and low reading frequency and to find out there is significant interaction and comparison of reading comprehension in recount text, learning technique, and different reading frequency at the first grade students of SMA N 1 Rumbia academic year 2012/2013. The method of investigation is held through quantitative research. The researcher uses true experimental research. In this experiment, the the researcher applies factorials design. The research is conducted at the first grade of SMA N 1 Rumbia in academic year 2012/2013. The population in this research is 180 students. It consisted 6 classes and each class consist 30 students. The researcher takes 52 students from total population as the sample, 26 students as experiment class and 26 as control class that match based on classification of student level. The researcher uses cluster random sampling as technique sampling. To analyze data, the researcher uses ANOVA TWO WAYS formula. The researcher got the result of Fhit is 18, 2 and Ftable  is 7, 14. It means that Fhit > Ftable. And the criterion of Ftest is Ha accepted if Fhit  > Ftable. So, there is any difference result of students’ Reading comprehension in recount text using STAD and Jigsaw, and STAD technique is more effective technique than Jigsaw technique toward students Reading comprehension at different reading frequency at the

  13. Airborne non-contact and contact broadband ultrasounds for frequency attenuation profile estimation of cementitious materials.

    Science.gov (United States)

    Gosálbez, J; Wright, W M D; Jiang, W; Carrión, A; Genovés, V; Bosch, I

    2018-08-01

    In this paper, the study of frequency-dependent ultrasonic attenuation in strongly heterogeneous cementitious materials is addressed. To accurately determine the attenuation over a wide frequency range, it is necessary to have suitable excitation techniques. We have analysed two kinds of ultrasound techniques: contact ultrasound and airborne non-contact ultrasound. The mathematical formulation for frequency-dependent attenuation has been established and it has been revealed that each technique may achieve similar results but requires specific different calibration processes. In particular, the airborne non-contact technique suffers high attenuation due to energy losses at the air-material interfaces. Thus, its bandwidth is limited to low frequencies but it does not require physical contact between transducer and specimen. In contrast, the classical contact technique can manage higher frequencies but the measurement depends on the pressure between the transducer and the specimen. Cement specimens have been tested with both techniques and frequency attenuation dependence has been estimated. Similar results were achieved at overlapping bandwidth and it has been demonstrated that the airborne non-contact ultrasound technique could be a viable alternative to the classical contact technique. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Characterization of ion-beam mixed multilayers via grazing x-ray reflectometry

    International Nuclear Information System (INIS)

    Le Boite, M.G.; Traverse, A.; Nevot, L.; Pardo, B.; Corno, J.

    1988-01-01

    The grazing x-ray reflectrometry technique was used as a way to study modifications in metallic multilayers induced by ion-beam irradiation. Due to the high sensitivity of the technique, short-range atomic displacements of an atom A in a layer B can be detected so that the first stages of ion-beam mixing can be investigated. The rate of mixing is measured and the compound A/sub 1-//sub x/B/sub x/ formed at the layers' interfaces is characterized

  15. Phase distortions in sum- and difference-frequency mixing in crystals

    International Nuclear Information System (INIS)

    Smith, A.V.; Bowers, M.S.

    1995-01-01

    We show that if two waves are incident on a quadratically nonlinear crystal, with the third wave generated entirely within the crystal, a phase-velocity mismatch (Δk ≠ 0) leads to intensity-dependent phase shifts of the generated wave only if there is walk-off, linear absorption, or significant diffraction of at least one of the waves as well as significant energy exchange among the waves. The result is frequency broadening and wave-front distortion of the generated wave. Although the induced phase distortions are usually quite small, they may be significant in applications that require high spectral resolution or pointing accuracy

  16. Study and development of different techniques for the generation, conversion, propagation, and radiation of high power microwaves for the electronic cyclotron frequency plasma heating

    International Nuclear Information System (INIS)

    Rebuffi, L.

    1987-10-01

    The development and optimization of a microwave technique, concerning the high frequency (electronic cyclotron frequency) plasma heating is presented. The experiments are effectuated on the Fontenay-aux-Roses TFR tokamak, with 660 kw whole power, during 100 msec, produced at 60 GHz. Low power tests are performed on the different transmission line components (there are 3, formed by metallic circular waveguides). The work also includes: the development of a lens formed by thin metallic plans; the study of slotted surface mirror; the development of a system for the accurate measurement (5.10 -6 ) of the gyrotronic frequency; a theory, based on the equivalent circuits method, generalized to the rotational and polarization mirrors; the development of a numerical simulation code. A practical scheme, for the optimization of the parameters concerning the optical transmission line project, is given. The results of this work can be applied to the experiment involving power levels, frequencies and times of impulsion increasingly higher (respectively about MW, 100 GHz and 10s) than the reported ones. Moreover, they can also be used in any experiment in the microwave field [fr

  17. Novel IQ imbalance and offset compensation techniques for quadrature mixing radio transceivers

    CSIR Research Space (South Africa)

    De Witt, JJ

    2006-09-01

    Full Text Available Despite the advantages that quadrature mixing offers to radio front-ends, its practical use has been limited due to its sensitivity towards gain and phase mismatches between its in-phase and quadrature channels. DC offsets are also a problem when a...

  18. Study on mixing phenomena in T-pipe junction. Experimental analysis using DNS and investigation of mixing process

    International Nuclear Information System (INIS)

    Igarashi, Minoru; Tanaka, Masaaki; Kimura, Nobuyuki; Kamide, Hideki

    2003-02-01

    In the place where hot and cold fluids are mixed, a time and spatial temperature fluctuation occurs. When this temperature fluctuation amplitude is large, it causes high cycle thermal fatigue in surrounding structure (thermal striping phenomena). Mixing area of high and low temperature fluid exists not only in an atomic power plant but also in a general plant, then, it is significant to investigate this phenomena and also to establish an evaluation rule. In Japan Nuclear Cycle Development Institute, several experiments and the improvement of the analysis methods have been carried out to understand thermal striping phenomena and also to construct an evaluation rule, which can be applied to design. Water Experiment on Fluid Mixing in T-pipe with Long Cycle Fluctuation (WATLON), aiming at examining thermal striping phenomena in a mixing tee, is performed to investigate key factors of mixing phenomena. In this study, in order to investigate the fluid mixing phenomena, temperature and flow velocity distribution were measured by movable thermocouple tree and particle image velocimetry (PIV). And the analysis using a in-house direct numerical simulation (DNS) code, DINUS-3 was performed to understand applicability of the analytical method in mixing tee. The temperature and velocity fields obtained from the DINUS-3 were in good agreement with the experimental results. And the prominent frequency of temperature fluctuation was also in good agreement. The DINUS-3 calculation simulated vortex structure in the wake region behind the branch pipe jet. The results of analysis showed that a Karman vortex generated in the wake region behind the branch pipe jet influenced the temperature fluctuation behavior in the mixing tee. And the analytical results revealed that the vortex generated in the wake region behind the branch pipe jet showed the 3-dimensional behavior. (author)

  19. Radio frequency system for nuclear fusion

    International Nuclear Information System (INIS)

    Kozeki, Shoichiro; Sagawa, Norimoto; Takizawa, Teruhiro

    1987-01-01

    The importance of radio frequency waves has been increasing in the area of nuclear fusion since they are indispensable for heating of plasma, etc. This report outlines radio frequency techniques used for nuclear fusion and describes the development of radio frequency systems (radio frequency plasma heating system and current drive system). Presently, in-depth studies are underway at various research institutes to achieve plasma heating by injection of radio frequency electric power. Three ranges of frequencies, ICRF (ion cyclotron range of frequency), LHRF (lower hybrid range of frequency) and ECRF (electron cyclotron range of frequency), are considered promissing for radio frequency heating. Candidate waves for plasma current driving include ECW (electron cyclotron wave), LHW (lower hybrid wave), MSW (magnetic sound wave), ICW (ion cyclotron wave) with minority component, and FW (fast wave). FW is the greatest in terms of current drive efficiency. In general, a radio frequency system for nuclear fusion consists of a radio frequency power source, transmission/matching circuit component and plasma connection component. (Nogami, K.)

  20. Adsorption of β-casein-surfactant mixed layers at the air-water interface evaluated by interfacial rheology.

    Science.gov (United States)

    Maestro, Armando; Kotsmar, Csaba; Javadi, Aliyar; Miller, Reinhard; Ortega, Francisco; Rubio, Ramón G

    2012-04-26

    This work presents a detailed study of the dilational viscoelastic moduli of the adsorption layers of the milk protein β-casein (BCS) and a surfactant at the liquid/air interface, over a broad frequency range. Two complementary techniques have been used: a drop profile tensiometry technique and an excited capillary wave method, ECW. Two different surfactants were studied: the nonionic dodecyldimethylphosphine oxide (C12DMPO) and the cationic dodecyltrimethylammonium bromide (DoTAB). The interfacial dilational elasticity and viscosity are very sensitive to the composition of protein-surfactant mixed adsorption layers at the air/water interface. Two different dynamic processes have been observed for the two systems studied, whose characteristic frequencies are close to 0.01 and 100 Hz. In both systems, the surface elasticity was found to show a maximum when plotted versus the surfactant concentration. However, at frequencies above 50 Hz the surface elasticity of BCS + C12DMPO is higher than the one of the aqueous BCS solution over most of the surfactant concentration range, whereas for the BCS + DoTAB it is smaller for high surfactant concentrations and higher at low concentrations. The BCS-surfactant interaction modifies the BCS random coil structure via electrostatic and/or hydrophobic interactions, leading to a competitive adsorption of the BCS-surfactant complexes with the free, unbound surfactant molecules. Increasing the surfactant concentration decreases the adsorbed proteins. However, the BCS molecules are rather strongly bound to the interface due to their large adsorption energy. The results have been fitted to the model proposed by C. Kotsmar et al. ( J. Phys. Chem. B 2009 , 113 , 103 ). Even though the model describes well the concentration dependence of the limiting elasticity, it does not properly describe its frequency dependence.

  1. Fluid Mixing in the Eye Under Rapid Eye Movement

    Science.gov (United States)

    Huang, Jinglin; Gharib, Morteza

    2017-11-01

    Drug injection is an important technique in certain treatments of eye diseases. The efficacy of chemical mixing plays an important role in determining pharmacokinetics of injected drugs. In this study, we build a device to study the chemical mixing behavior in a spherical structure. The mixing process is visualized and analyzed qualitatively. We hope to understand the chemical convection and diffusion behaviors in correlation with controlled rapid mechanical movements. The results will have potential applications in treatment of eye diseases. Resnick Institute at Caltech.

  2. New experimental limit on photon hidden-sector paraphoton mixing

    Energy Technology Data Exchange (ETDEWEB)

    Afanasev, A. [Department of Physics, Hampton University, Hampton, VA 23668 (United States); Baker, O.K. [Department of Physics, Yale University, PO Box 208120, New Haven, CT 06520 (United States)], E-mail: oliver.baker@yale.edu; Beard, K.B. [Muons, Inc., 552 N. Batavia Avenue, Batavia, IL 60510 (United States); Biallas, G.; Boyce, J. [Free Electron Laser Division, Jefferson Laboratory, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Minarni, M. [Department of Physics, Universitas Riau (UNRI), Pekanbaru, Riau 28293 (Indonesia); Ramdon, R. [Department of Physics, Hampton University, Hampton, VA 23668 (United States); Shinn, M. [Free Electron Laser Division, Jefferson Laboratory, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Slocum, P. [Department of Physics, Yale University, PO Box 208120, New Haven, CT 06520 (United States)

    2009-08-31

    We report on the first results of a search for optical-wavelength photons mixing with hypothetical hidden-sector paraphotons in the mass range between 10{sup -5} and 10{sup -2} electron volts for a mixing parameter greater than 10{sup -7}. This was a generation-regeneration experiment using the 'light shining through a wall' technique in which regenerated photons are searched for downstream of an optical barrier that separates it from an upstream generation region. The new limits presented here are the most stringent limits to date on the mixing parameter. The present results indicate no evidence for photon-paraphoton mixing for the range of parameters investigated.

  3. A Comparison of Potential IM-CW Lidar Modulation Techniques for ASCENDS CO2 Column Measurements From Space

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Ismail, Syed

    2014-01-01

    Global atmospheric carbon dioxide (CO2) measurements through the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) Decadal Survey recommended space mission are critical for improving our understanding of CO2 sources and sinks. IM-CW (Intensity Modulated Continuous Wave) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS science requirements. In previous laboratory and flight experiments we have successfully used linear swept frequency modulation to discriminate surface lidar returns from intermediate aerosol and cloud contamination. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate clouds, which is a requirement for the inversion of the CO2 column-mixing ratio from the instrument optical depth measurements, has been demonstrated with the linear swept frequency modulation technique. We are concurrently investigating advanced techniques to help improve the auto-correlation properties of the transmitted waveform implemented through physical hardware to make cloud rejection more robust in special restricted scenarios. Several different carrier based modulation techniques are compared including orthogonal linear swept, orthogonal non-linear swept, and Binary Phase Shift Keying (BPSK). Techniques are investigated that reduce or eliminate sidelobes. These techniques have excellent auto-correlation properties while possessing a finite bandwidth (by way of a new cyclic digital filter), which will reduce bias error in the presence of multiple scatterers. Our analyses show that the studied modulation techniques can increase the accuracy of CO2 column measurements from space. A comparison of various properties such as signal to noise ratio (SNR) and time-bandwidth product are discussed.

  4. Vibro-Shock Dynamics Analysis of a Tandem Low Frequency Resonator—High Frequency Piezoelectric Energy Harvester

    Directory of Open Access Journals (Sweden)

    Darius Žižys

    2017-04-01

    Full Text Available Frequency up-conversion is a promising technique for energy harvesting in low frequency environments. In this approach, abundantly available environmental motion energy is absorbed by a Low Frequency Resonator (LFR which transfers it to a high frequency Piezoelectric Vibration Energy Harvester (PVEH via impact or magnetic coupling. As a result, a decaying alternating output signal is produced, that can later be collected using a battery or be transferred directly to the electric load. The paper reports an impact-coupled frequency up-converting tandem setup with different LFR to PVEH natural frequency ratios and varying contact point location along the length of the harvester. RMS power output of different frequency up-converting tandems with optimal resistive values was found from the transient analysis revealing a strong relation between power output and LFR-PVEH natural frequency ratio as well as impact point location. Simulations revealed that higher power output is obtained from a higher natural frequency ratio between LFR and PVEH, an increase of power output by one order of magnitude for a doubled natural frequency ratio and up to 150% difference in power output from different impact point locations. The theoretical results were experimentally verified.

  5. Power system low frequency oscillation mode estimation using wide area measurement systems

    Directory of Open Access Journals (Sweden)

    Papia Ray

    2017-04-01

    Full Text Available Oscillations in power systems are triggered by a wide variety of events. The system damps most of the oscillations, but a few undamped oscillations may remain which may lead to system collapse. Therefore low frequency oscillations inspection is necessary in the context of recent power system operation and control. Ringdown portion of the signal provides rich information of the low frequency oscillatory modes which has been taken into analysis. This paper provides a practical case study in which seven signal processing based techniques i.e. Prony Analysis (PA, Fast Fourier Transform (FFT, S-Transform (ST, Wigner-Ville Distribution (WVD, Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT, Hilbert-Huang Transform (HHT and Matrix Pencil Method (MPM were presented for estimating the low frequency modes in a given ringdown signal. Preprocessing of the signal is done by detrending. The application of the signal processing techniques is illustrated using actual wide area measurement systems (WAMS data collected from four different Phasor Measurement Unit (PMU i.e. Dadri, Vindyachal, Kanpur and Moga which are located near the recent disturbance event at the Northern Grid of India. Simulation results show that the seven signal processing technique (FFT, PA, ST, WVD, ESPRIT, HHT and MPM estimates two common oscillatory frequency modes (0.2, 0.5 from the raw signal. Thus, these seven techniques provide satisfactory performance in determining small frequency modes of the signal without losing its valuable property. Also a comparative study of the seven signal processing techniques has been carried out in order to find the best one. It was found that FFT and ESPRIT gives exact frequency modes as compared to other techniques, so they are recommended for estimation of low frequency modes. Further investigations were also carried out to estimate low frequency oscillatory mode with another case study of Eastern Interconnect Phasor Project

  6. Day-Ahead Scheduling Considering Demand Response as a Frequency Control Resource

    Directory of Open Access Journals (Sweden)

    Yu-Qing Bao

    2017-01-01

    Full Text Available The development of advanced metering technologies makes demand response (DR able to provide fast response services, e.g., primary frequency control. It is recognized that DR can contribute to the primary frequency control like thermal generators. This paper proposes a day-ahead scheduling method that considers DR as a frequency control resource, so that the DR resources can be dispatched properly with other resources. In the proposed method, the objective of frequency control is realized by defining a frequency limit equation under a supposed contingency. The frequency response model is used to model the dynamics of system frequency. The nonlinear frequency limit equation is transformed to a linear arithmetic equation by piecewise linearization, so that the problem can be solved by mixed integer linear programming (MILP. Finally, the proposed method is verified on numerical examples.

  7. Power system frequency estimation based on an orthogonal decomposition method

    Science.gov (United States)

    Lee, Chih-Hung; Tsai, Men-Shen

    2018-06-01

    In recent years, several frequency estimation techniques have been proposed by which to estimate the frequency variations in power systems. In order to properly identify power quality issues under asynchronously-sampled signals that are contaminated with noise, flicker, and harmonic and inter-harmonic components, a good frequency estimator that is able to estimate the frequency as well as the rate of frequency changes precisely is needed. However, accurately estimating the fundamental frequency becomes a very difficult task without a priori information about the sampling frequency. In this paper, a better frequency evaluation scheme for power systems is proposed. This method employs a reconstruction technique in combination with orthogonal filters, which may maintain the required frequency characteristics of the orthogonal filters and improve the overall efficiency of power system monitoring through two-stage sliding discrete Fourier transforms. The results showed that this method can accurately estimate the power system frequency under different conditions, including asynchronously sampled signals contaminated by noise, flicker, and harmonic and inter-harmonic components. The proposed approach also provides high computational efficiency.

  8. A Linear Mixed-Effects Model of Wireless Spectrum Occupancy

    Directory of Open Access Journals (Sweden)

    Pagadarai Srikanth

    2010-01-01

    Full Text Available We provide regression analysis-based statistical models to explain the usage of wireless spectrum across four mid-size US cities in four frequency bands. Specifically, the variations in spectrum occupancy across space, time, and frequency are investigated and compared between different sites within the city as well as with other cities. By applying the mixed-effects models, several conclusions are drawn that give the occupancy percentage and the ON time duration of the licensed signal transmission as a function of several predictor variables.

  9. A Study on Nondestructive Technique Using Laser Technique for Evaluation of Carbon fiber Reinforced Plastic

    International Nuclear Information System (INIS)

    Choi, Sang Woo; Lee, Joon Hyun; Seo, Kyeong Cheol; Byun, Joon Hyung

    2005-01-01

    Fiber reinforced plastic material should be inspected in fabrication process in order to enhance quality by prevent defects such as delamination and void. Generally, ultrasonic technique is widely used to evaluate FRP. In conventional ultrasonic techniques, transducer should be contacted on FRP. However, conventional contacting method could not be applied in fabrication process and novel non-contact evaluating technique was required. Laser-based ultrasonic technique was tried to evaluate CFRP plate. Laser-based ultrasonic waves propagated on CFRP were received with various transducers such as accelerometer and AE sensor in order to evaluate the properties of waves due to the variation of frequency. Velocities of laser-based ultrasonic waves were evaluated for various fiber orientation. In addition, laser interferometry was used to receive ultrasonic wave in CFRP and frequency was analysed

  10. The standardization of an apparatus for the mixing of soil samples ...

    African Journals Online (AJOL)

    Quantitative determination of nematode populations in soils frequently necessitates the mixing of representative soil samples to form a homogeneous, compound sample from which the nematodes are extracted. A mixing apparatus was developed and standardized with the aid of a spectrophotometric technique by which ...

  11. The event-mixing technique for modeling the t anti t background in a search for supersymmetry in the Di-lepton channel

    Energy Technology Data Exchange (ETDEWEB)

    Schettler, Hannes

    2013-09-15

    In this thesis a search for Supersymmetry in the opposite-sign same-flavor di-lepton channel is presented. Data recorded by the CMS detector at the LHC accelerator corresponding to an integrated luminosity of 12.2 fb{sup -1} at a center-of-mass energy of 8 TeV is analyzed. Events with at least two muons or two electrons with opposite charge, a significant transverse momentum imbalance, and at least one or at least two jets are selected. Supersymmetric particle decays are expected to form an edge-like structure in the di-lepton mass spectrum. The main background from Standard-Model processes is t anti t pair production. This background is estimated in a data-driven way using the event-mixing technique. Since event mixing is novel to estimate t anti t events, the method is validated in detail. In the analyzed data no significant excess w.r.t. the event-mixing prediction is observed. In a counting experiment as well as in a fit of the shape of the distribution the data is in agreement with the expectations from the Standard Model. Hence, exclusion limits are calculated in terms of number of events forming an edge in the di-lepton mass spectrum. Additionally, the results are interpreted within a simplified model spectrum, assuming direct gaugino production and a decay chainlike {chi}{sub 2}{sup 0}{yields}l{sup {+-}}l{sup -+}{yields}{chi}{sub 1}{sup 0}l{sup +}l{sup -}. Limits are set on the masses of the supersymmetric particles. (orig.)

  12. Minimization of mixed waste in explosive testing operations

    International Nuclear Information System (INIS)

    Gonzalez, M.A.; Sator, F.E.; Simmons, L.F.

    1993-02-01

    In the 1970s and 1980s, efforts to manage mixed waste and reduce pollution focused largely on post-process measures. In the late 1980s, the approach to waste management and pollution control changed, focusing on minimization and prevention rather than abatement, treatment, and disposal. The new approach, and the formulated guidance from the US Department of Energy, was to take all necessary measures to minimize waste and prevent the release of pollutants to the environment. Two measures emphasized in particular were source reduction (reducing the volume and toxicity of the waste source) and recycling. In 1988, a waste minimization and pollution prevention program was initiated at Site 300, where the Lawrence Livermore National Laboratory (LLNL) conducts explosives testing. LLNL's Defense Systems/Nuclear Design (DS/ND) Program has adopted a variety of conservation techniques to minimize waste generation and cut disposal costs associated with ongoing operations. The techniques include minimizing the generation of depleted uranium and lead mixed waste through inventory control and material substitution measures and through developing a management system to recycle surplus explosives. The changes implemented have reduced annual mixed waste volumes by more than 95% and reduced overall radioactive waste generation (low-level and mixed) by more than 75%. The measures employed were cost-effective and easily implemented

  13. Implementation of an Experimental Method for Coupled Subchannel Mixing Measurement

    International Nuclear Information System (INIS)

    Silin, Nicolas; Juanico, Luis; Delmastro, Dario

    2003-01-01

    In this work the application of a thermal tracing technique to the measurement of thermal turbulent mixing between coupled subchannels is presented.The experiment was carried out on a real scale model with geometry similar to nuclear fuel element rod bundles.Thermal mixing rates were measured for water flows at different Reynolds numbers

  14. A Real-Time Semiautonomous Audio Panning System for Music Mixing

    Directory of Open Access Journals (Sweden)

    Perez_Gonzalez Enrique

    2010-01-01

    Full Text Available A real-time semiautonomous stereo panning system for music mixing has been implemented. The system uses spectral decomposition, constraint rules, and cross-adaptive algorithms to perform real-time placement of sources in a stereo mix. A subjective evaluation test was devised to evaluate its quality against human panning. It was shown that the automatic panning technique performed better than a nonexpert and showed no significant statistical difference to the performance of a professional mixing engineer.

  15. Effects of chirping on the dissociation dynamics of H2 in a two-frequency laser field

    International Nuclear Information System (INIS)

    Datta, Avijit; Bhattacharyya, S.S.; Kim, Bongsoo

    2002-01-01

    We present the effects of frequency chirping of laser pulses on (1+1)-photon resonance-enhanced dissociation dynamics of H 2 . The dissociation occurs via two closely spaced nonadiabatically coupled intermediate levels which are in one-photon resonance or near resonance with the initial level. Predissociating levels embedded into continua are considered. When the first laser field is sufficiently intense and suitably chirped, the dissociation probability is enhanced by adiabatic rapid passage through the avoided crossing arising from the frequency swept radiative interaction. The whole population of the ground level can be effectively transferred to the intermediate levels by this technique facilitating the dissociation process by the second field. We also report the effect of frequency detuning and chirp width on the dissociation probability. Widths of the two peaks of the dissociation line shape increase with an increase in chirp width, resulting in the possibility of control in the dissociation yield. When the first field is a laser pulse of low intensity and constant frequency and the second laser frequency is chirped, predissociating levels take important parts in the dissociation dynamics and we obtain a signature of the nonadiabatic effect of the first step on the second step of photodissociation dynamics. This feature is due to the presence of the predissociating levels and the nonadiabatic mixing of two intermediate levels. All these results can be explained in terms of the adiabatic dressed levels

  16. Frequencies of X-ray induced chromosome aberrations in lymphocytes of xeroderma pigmentosum and Fanconi anemia patients estimated by Giemsa and fluorescence in situ hybridization staining techniques

    Directory of Open Access Journals (Sweden)

    Saraswathy Radha

    2000-01-01

    Full Text Available Blood lymphocytes from xeroderma pigmentosum (XP and Fanconi anemia (FA patients were assessed for their sensitivity to ionizing radiation by estimating the frequency of X-ray (1 and 2 Gy-induced chromosome aberrations (CA. The frequencies of aberrations in the whole genome were estimated in Giemsa-stained preparations of lymphocytes irradiated at G0 or G2 stages. The frequencies of translocations and dicentrics involving chromosomes 1 and 3 as well as the X-chromosome were determined in slides stained by fluorescence in situ hybridization (FISH technique. An increase in all types of CA was observed in XP and FA lymphocytes irradiated at G0 when compared to controls. The frequency of dicentrics and rings was 6 to 27% higher (at 1 and 2 Gy in XP lymphocytes and 37% higher (at 2 Gy in FA lymphocytes than in controls, while chromosome deletions were higher in irradiated (30% in 1 Gy and 72% in 2 Gy than in control XP lymphocytes and 28 to 102% higher in FA lymphocytes. In G2-irradiated lymphocytes the frequency of CA was 24 to 55% higher in XP lymphocytes than in controls. In most cases the translocation frequencies were higher than the frequencies of dicentrics (21/19.

  17. Layered mixing on the New England Shelf in summer

    Science.gov (United States)

    Wang, Jianing; Greenan, Blair J. W.; Lu, Youyu; Oakey, Neil S.; Shaw, William J.

    2014-09-01

    The layered structure of stratification and mixing on the New England Shelf (NES) in summer is examined by analyzing a comprehensive set of observations of hydrography, currents and turbulence. A clear distinction in mixing characteristics between the midcolumn water (consisting of subsurface stratification, middepth weak stratification and lower-layer stratification) and a well-mixed bottom boundary layer (BBL) is revealed. The combination of subtidal Ekman onshore bottom transport and cross-shore density gradient created a lower-layer stratification that inhibited the upward extension of the BBL turbulence. The BBL mixing was related to strong shear generated by bottom stress, and the magnitude and periodic variation of BBL mixing was determined by both the tidal and subtidal flows. Mixing in the midcolumn water occurred under stably stratified conditions and showed correspondence with the occurrence of near-inertial and semidiurnal internal waves. Positive correlations between buoyancy frequency squared (N2) and shear variance (S2), S2 and dissipation rate (ɛ), N2 and ɛ are established in the midcolumn, but not in the BBL. The midcolumn ɛ was reasonably described by a slightly modified MacKinnon-Gregg (MG) model.

  18. Mixed Interaction Spaces

    DEFF Research Database (Denmark)

    Lykke-Olesen, Andreas; Eriksson, E.; Hansen, T.R.

    In this paper, we describe a new interaction technique for mobile devices named Mixed Interaction Space that uses the camera of the mobile device to track the position, size and rotation of a fixed-point. In this demonstration we will present a system that uses a hand-drawn circle, colored object...... or a person’s face as a fixed-point to determine the location of the device. We use these features as a 4 dimensional input vector to a set of different applications....

  19. Experimental Study of Elements Promoting Mixing in Fuel Elements

    International Nuclear Information System (INIS)

    Silin, Nicolas; Juanico, Luis; Delmastro, Dario

    2003-01-01

    In the present work a thermal tracing technique is used to measure the increase of the mixing between subchannels in the presence of different mixing elements.As representative elements a spacer, a spacer with mixing vanes and turbulence promoter buttons were considered.The performance of these elements was evaluated by studying the behavior of a thermal trace in each case.Also the pressure drop for each case is presented.The results present a qualitative and quantitative guide for the application of each one of these appendages in future nuclear elements

  20. Thin Co films with tunable ferromagnetic resonance frequency

    International Nuclear Information System (INIS)

    Maklakov, Sergey S.; Maklakov, Sergey A.; Ryzhikov, Ilya A.; Rozanov, Konstantin N.; Osipov, Alexey V.

    2012-01-01

    The tailored production of thin Co films of 50 nm thick with ferromagnetic resonance frequency in a range from 2.9 to 7.3 GHz using the DC magnetron sputtering is reported. The ferromagnetic resonance frequency, coercivity, effective magnetic field and nanocrystalline structure parameters are shown to be governed by the Co deposition rate. For this investigation, FMR, VSM and TEM techniques were used. - Highlights: ► Thin Co films with FMR frequency in a range from 2.9 to 7.3 GHz are obtained. ► The films' properties are governed by the deposition rate during DC magnetron sputtering. ► FMR, VSM and TEM techniques were used during the study.