WorldWideScience

Sample records for frequency mini-rf technology

  1. Bistatic Radar Observations of the Moon Using Mini-RF on LRO and the Arecibo Observatory

    Science.gov (United States)

    Patterson, G. W.; Stickle, A. M.; Turner, F. S.; Jensen, J. R.; Bussey, D. B. J.; Spudis, P.; Espiritu, R. C.; Schulze, R. C.; Yocky, D. A.; Wahl, D. E.; hide

    2016-01-01

    The Miniature Radio Frequency (Mini-RF) instrument aboard NASA's Lunar Reconnaissance Orbiter (LRO) is a hybrid dual-polarized synthetic aperture radar (SAR) that operated in concert with the Arecibo Observatory to collect bistatic radar data of the lunar nearside from 2012 to 2015. The purpose of this bistatic campaign was to characterize the radar scattering properties of the surface and near-surface, as a function of bistatic angle, for a variety of lunar terrains and search for a coherent backscatter opposition effect indicative of the presence of water ice. A variety of lunar terrain types were sampled over a range of incidence and bistatic angles; including mare, highland, pyroclastic, crater ejecta, and crater floor materials. Responses consistent with an opposition effect were observed for the ejecta of several Copernican-aged craters and the floor of the south-polar crater Cabeus. The responses of ejecta material varied by crater in a manner that suggests a relationship with crater age. The response for Cabeus was observed within the portion of its floor that is not in permanent shadow. The character of the response differs from that of crater ejecta and appears unique with respect to all other lunar terrains observed. Analysis of data for this region suggests that the unique nature of the response may indicate the presence of near-surface deposits of water ice.

  2. Mini-RF S- and X-band Bistatic Observations of the Floor of Cabeus Crater

    Science.gov (United States)

    Patterson, Gerald Wesley; Stickle, Angela; Turner, Franklin; Jensen, James; Cahill, Joshua; Mini-RF Team

    2017-10-01

    The Mini-RF instrument aboard NASA’s Lunar Reconnaissance Orbiter (LRO) is a hybrid dual-polarized synthetic aperture radar (SAR) and operates in concert with the Arecibo Observatory (AO) and the Goldstone deep space communications complex 34 meter antenna DSS-13 to collect S- and X-band bistatic radar data of the Moon. Bistatic radar data provide a means to probe the near subsurface for the presence of water ice, which exhibits a strong response in the form of a Coherent Backscatter Opposition Effect (CBOE). This effect has been observed in radar data for the icy surfaces of the Galilean satellites, the polar caps of Mars, polar craters on Mercury, and terrestrial ice sheets in Greenland. Previous work using Mini-RF S-band (12.6 cm) bistatic data suggests the presence of a CBOE associated with the floor of the lunar south polar crater Cabeus. The LRO spacecraft has begun its third extended mission. For this phase of operations Mini-RF is leveraging the existing AO architecture to make S-band radar observations of additional polar craters (e.g., Haworth, Shoemaker, Faustini). The purpose of acquiring these data is to determine whether other polar craters exhibit the response observed for Cabeus. Mini-RF has also initiated a new mode of operation that utilizes the X-band (4.2cm) capability of the instrument receiver and a recently commissioned X/C-band transmitter within the Deep Space Network’s (DSN) Goldstone complex to collect bistatic X-band data of the Moon. The purpose of acquiring these data is to constrain the depth/thickness of materials that exhibit a CBOE response - with an emphasis on observing the floor of Cabeus. Recent Mini-RF X-band observations of the floors of the craters Cabeus do not show evidence for a CBOE. This would suggest that the upper ~0.5 meters of the regolith for the floor of Cabeus do not harber water ice in a form detectable at 4.2 cm wavelengths.

  3. Research on synchronization technology of frequency hopping communication system

    Science.gov (United States)

    Zhao, Xiangwu; Quan, Houde; Cui, Peizhang

    2018-05-01

    Frequency Hopping (FH) communication is a technology of spread spectrum communication. It has strong anti-interference, anti-interception and security capabilities, and has been widely applied in the field of communications. Synchronization technology is one of the most crucial technologies in frequency hopping communication. The speed of synchronization establishment and the reliability of synchronous system directly affect the performance of frequency hopping communication system. Therefore, the research of synchronization technology in frequency hopping communication has important value.

  4. 75 FR 81284 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Draft...

    Science.gov (United States)

    2010-12-27

    ... Frequency and Ultra High Frequency Active SONAR Technology; Draft Programmatic Environmental Assessment and... Programmatic Environmental Assessment (PEA) for the Nationwide Use of High Frequency (HF) and Ultra High... potential impacts of each alternative on the human and natural environments. DATES: Comments and related...

  5. Precision Spectroscopy, Diode Lasers, and Optical Frequency Measurement Technology

    Science.gov (United States)

    Hollberg, Leo (Editor); Fox, Richard (Editor); Waltman, Steve (Editor); Robinson, Hugh

    1998-01-01

    This compilation is a selected set of reprints from the Optical Frequency Measurement Group of the Time and Frequency Division of the National Institute of Standards and Technology, and consists of work published between 1987 and 1997. The two main programs represented here are (1) development of tunable diode-laser technology for scientific applications and precision measurements, and (2) research toward the goal of realizing optical-frequency measurements and synthesis. The papers are organized chronologically in five, somewhat arbitrarily chosen categories: Diode Laser Technology, Tunable Laser Systems, Laser Spectroscopy, Optical Synthesis and Extended Wavelength Coverage, and Multi-Photon Interactions and Optical Coherences.

  6. 78 FR 70567 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Final...

    Science.gov (United States)

    2013-11-26

    ... Frequency and Ultra High Frequency Active SONAR Technology; Final Programmatic Environmental Assessment and... each alternative on the human and natural environments. FOR FURTHER INFORMATION CONTACT: If you have... Programmatic Environmental Assessment The scope of the PEA focuses on potential impacts associated with the...

  7. How can radio frequency identification technology impact nursing practice?

    Science.gov (United States)

    Billingsley, Luanne; Wyld, David

    2014-12-01

    Radio frequency identification (RFID) technology can save nurses time, improve quality of care, en hance patient and staff safety, and decrease costs. However, without a better understanding of these systems and their benefits to patients and hospitals, nurses may be slower to recommend, implement, or adopt RFID technology into practice.

  8. Radio Frequency Identification (RFID) technology and patient safety

    OpenAIRE

    Ajami, Sima; Rajabzadeh, Ahmad

    2013-01-01

    Background: Radio frequency identification (RFID) systems have been successfully applied in areas of manufacturing, supply chain, agriculture, transportation, healthcare, and services to name a few. However, the different advantages and disadvantages expressed in various studies of the challenges facing the technology of the use of the RFID technology have been met with skepticism by managers of healthcare organizations. The aim of this study was to express and display the role of RFID techno...

  9. High frequency MOSFET gate drivers technologies and applications

    CERN Document Server

    Zhang, Zhiliang

    2017-01-01

    This book describes high frequency power MOSFET gate driver technologies, including gate drivers for GaN HEMTs, which have great potential in the next generation of switching power converters. Gate drivers serve as a critical role between control and power devices.

  10. RFID explained a primer on radio frequency identification technologies

    CERN Document Server

    Want, Roy

    2006-01-01

    This lecture provides an introduction to Radio Frequency Identification (RFID), a technology enabling automatic identification of objects at a distance without requiring line-of-sight. Electronic tagging can be divided into technologies that have a power source (active tags), and those that are powered by the tag interrogation signal (passive tags); the focus here is on passive tags. An overview of the principles of the technology divides passive tags into devices that use either near field or far field coupling to communicate with a tag reader. The strengths and weaknesses of the approaches a

  11. Femtosecond Optical Frequency Comb Technology Principle, Operation and Application

    CERN Document Server

    Ye, Jun

    2005-01-01

    Over the last few years, there has been a remarkable convergence among the fields of ultrafast optics, optical frequency metrology, and precision laser spectroscopy. This convergence has enabled unprecedented advances in control of the electric field of the pulses produced by femtosecond mode-locked lasers. The resulting spectrum consists of a comb of sharp spectral lines with well-defined frequencies. These new techniques and capabilities are generally known as "femtosecond comb technology." They have had dramatic impact on the diverse fields of precision measurement and extreme nonlinear optical physics. This book provides an introductory description of mode-locked lasers, the connection between time and frequency descriptions of their output and the physical origins of the electric field dynamics, together with an overview of applications of femtosecond comb technology. Individual chapters go into more detail on mode-locked laser development, spectral broadening in microstructure fiber, optical parametric ...

  12. Scientific applications of frequency-stabilized laser technology in space

    Science.gov (United States)

    Schumaker, Bonny L.

    1990-01-01

    A synoptic investigation of the uses of frequency-stabilized lasers for scientific applications in space is presented. It begins by summarizing properties of lasers, characterizing their frequency stability, and describing limitations and techniques to achieve certain levels of frequency stability. Limits to precision set by laser frequency stability for various kinds of measurements are investigated and compared with other sources of error. These other sources include photon-counting statistics, scattered laser light, fluctuations in laser power, and intensity distribution across the beam, propagation effects, mechanical and thermal noise, and radiation pressure. Methods are explored to improve the sensitivity of laser-based interferometric and range-rate measurements. Several specific types of science experiments that rely on highly precise measurements made with lasers are analyzed, and anticipated errors and overall performance are discussed. Qualitative descriptions are given of a number of other possible science applications involving frequency-stabilized lasers and related laser technology in space. These applications will warrant more careful analysis as technology develops.

  13. Technologies for low radio frequency observations of the Cosmic Dawn

    Science.gov (United States)

    Jones, D. L.

    2014-03-01

    The Jet Propulsion Laboratory (JPL) is developing concepts and technologies for low frequency radio astronomy space missions aimed at observing highly redshifted neutral Hydrogen from the Dark Ages. This is the period of cosmic history between the recombination epoch when the microwave background radiation was produced and the re-ionization of the intergalactic medium by the first generation of stars (Cosmic Dawn). This period, at redshifts z > ~20, is a critical epoch for the formation and evolution of large-scale structure in the universe. The 21-cm spectral line of Hydrogen provides the most promising method for directly studying the Dark Ages, but the corresponding frequencies at such large redshifts are only tens of MHz and thus require space-based observations to avoid terrestrial RFI and ionospheric absorption and refraction. This paper reports on the status of several low frequency technology development activities at JPL, including deployable bi-conical dipoles for a planned lunar-orbiting mission, and both rover-deployed and inflation-deployed long dipole antennas for use on the lunar surface. In addition, recent results from laboratory testing of low frequency receiver designs are presented. Finally, several concepts for space-based imaging interferometers utilizing deployable low frequency antennas are described. Some of these concepts involve large numbers of antennas and consequently a large digital cross-correlator will be needed. JPL has studied correlator architectures that greatly reduce the DC power required for this step, which can dominate the power consumption of real-time signal processing. Strengths and weaknesses of each mission concept are discussed in the context of the additional technology development required.

  14. Technologies for Low Frequency Radio Observations of the Cosmic Dawn

    Science.gov (United States)

    Jones, Dayton L.

    2014-01-01

    The Jet Propulsion Laboratory (JPL) is developing concepts and technologies for low frequency radio astronomy space missions aimed at observing highly redshifted neutral Hydrogen from the Dark Ages. This is the period of cosmic history between the recombination epoch when the microwave background radiation was produced and the re-ionization of the intergalactic medium by the first generation of stars (Cosmic Dawn). This period, at redshifts greater than about 20, is a critical epoch for the formation and evolution of large-scale structure in the universe. The 21-cm spectral line of Hydrogen provides the most promising method for directly studying the Dark Ages, but the corresponding frequencies at such large redshifts are only tens of MHz and thus require space-based observations to avoid terrestrial RFI and ionospheric absorption and refraction. This paper reports on the status of several low frequency technology development activities at JPL, including deployable bi-conical dipoles for a planned lunar-orbiting mission, and both rover-deployed and inflation-deployed long dipole antennas for use on the lunar surface.

  15. Closed-Cycle, Frequency-Stable CO2 Laser Technology

    Science.gov (United States)

    Batten, Carmen E. (Editor); Miller, Irvin M. (Editor); Wood, George M., Jr. (Editor); Willetts, David V. (Editor)

    1987-01-01

    These proceedings contain a collection of papers and comments presented at a workshop on technology associated with long-duration closed-cycle operation of frequency-stable, pulsed carbon dioxide lasers. This workshop was held at the NASA Langley Research Center June 10 to 12, 1986. The workshop, jointly sponsored by the National Aeronautics and Space Administration (NASA) and the Royal Signals and Radar Establishment (RSRE), was attended by 63 engineers and scientists from the United States and the United Kingdom. During the 2 1/2 days of the workshop, a number of issues relating to obtaining frequency-stable operation and to the catalytic control of laser gas chemistry were discussed, and specific recommendations concerning future activities were drafted.

  16. Superconducting radio frequency technology: Expanding the horizons of physics and technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Leemann, C.W.; Sundelin, R.M.; Hartline, B.K.

    1986-01-01

    This paper describes a major new technology supporting the further evolution of accelerators: superconducting radio frequency (SRF) technology, which is today on the verge of large-scale application in accelerators. Originally foreseen in the early 1960s as a promising technology, SRF only recently has overcome several technological and practical hurdles. SRF accelerating structures promise low rf losses and high gradients under cw operation. High-quality, intense cw beams can be accelerated without risk of melting the structure and without requiring enormous amounts of input rf power

  17. The technology of the ion cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Hoffman, D.J.; Barber, G.C.

    1988-01-01

    Plasma heating in the ion cyclotron range of frequencies (ICRF) is the least expensive means of accomplishing auxiliary heating in fusion experiments. RF systems comprise two major elements: the transmitter and the antenna. The state of the art for the transmitter is already at the megawatt level. The technology of the antenna is strongly coupled to the plasma character. Typically, these antennas are designed to operate at a high power density (1.2 kW/cm 2 ) with an efficiency of 96%. ICRF technology and options have improved over the past few years, owing to development and experiments; however, the optimal combination of options can be defined only when results from confinement experiments and test facilities are in hand. 19 refs., 5 figs., 1 tab

  18. Radio Frequency Identification (RFID) technology and patient safety

    Science.gov (United States)

    Ajami, Sima; Rajabzadeh, Ahmad

    2013-01-01

    Background: Radio frequency identification (RFID) systems have been successfully applied in areas of manufacturing, supply chain, agriculture, transportation, healthcare, and services to name a few. However, the different advantages and disadvantages expressed in various studies of the challenges facing the technology of the use of the RFID technology have been met with skepticism by managers of healthcare organizations. The aim of this study was to express and display the role of RFID technology in improving patient safety and increasing the impact of it in healthcare. Materials and Methods: This study was non-systematical review, which the literature search was conducted with the help of libraries, books, conference proceedings, PubMed databases and also search engines available at Google, Google scholar in which published between 2004 and 2013 during Febuary 2013. We employed the following keywords and their combinations; RFID, healthcare, patient safety, medical errors, and medication errors in the searching areas of title, keywords, abstract, and full text. Results: The preliminary search resulted in 68 articles. After a careful analysis of the content of each paper, a total of 33 papers was selected based on their relevancy. Conclusion: We should integrate RFID with hospital information systems (HIS) and electronic health records (EHRs) and support it by clinical decision support systems (CDSS), it facilitates processes and reduce medical, medication and diagnosis errors. PMID:24381626

  19. Radio Frequency Identification (RFID) technology and patient safety.

    Science.gov (United States)

    Ajami, Sima; Rajabzadeh, Ahmad

    2013-09-01

    Radio frequency identification (RFID) systems have been successfully applied in areas of manufacturing, supply chain, agriculture, transportation, healthcare, and services to name a few. However, the different advantages and disadvantages expressed in various studies of the challenges facing the technology of the use of the RFID technology have been met with skepticism by managers of healthcare organizations. The aim of this study was to express and display the role of RFID technology in improving patient safety and increasing the impact of it in healthcare. This study was non-systematical review, which the literature search was conducted with the help of libraries, books, conference proceedings, PubMed databases and also search engines available at Google, Google scholar in which published between 2004 and 2013 during Febuary 2013. We employed the following keywords and their combinations; RFID, healthcare, patient safety, medical errors, and medication errors in the searching areas of title, keywords, abstract, and full text. The preliminary search resulted in 68 articles. After a careful analysis of the content of each paper, a total of 33 papers was selected based on their relevancy. We should integrate RFID with hospital information systems (HIS) and electronic health records (EHRs) and support it by clinical decision support systems (CDSS), it facilitates processes and reduce medical, medication and diagnosis errors.

  20. Radio Frequency Identification (RFID technology and patient safety

    Directory of Open Access Journals (Sweden)

    Sima Ajami

    2013-01-01

    Full Text Available Background: Radio frequency identification (RFID systems have been successfully applied in areas of manufacturing, supply chain, agriculture, transportation, healthcare, and services to name a few. However, the different advantages and disadvantages expressed in various studies of the challenges facing the technology of the use of the RFID technology have been met with skepticism by managers of healthcare organizations. The aim of this study was to express and display the role of RFID technology in improving patient safety and increasing the impact of it in healthcare. Materials and Methods: This study was non-systematical review, which the literature search was conducted with the help of libraries, books, conference proceedings, PubMed databases and also search engines available at Google, Google scholar in which published between 2004 and 2013 during Febuary 2013. We employed the following keywords and their combinations; RFID, healthcare, patient safety, medical errors, and medication errors in the searching areas of title, keywords, abstract, and full text. Results: The preliminary search resulted in 68 articles. After a careful analysis of the content of each paper, a total of 33 papers was selected based on their relevancy. Conclusion: We should integrate RFID with hospital information systems (HIS and electronic health records (EHRs and support it by clinical decision support systems (CDSS, it facilitates processes and reduce medical, medication and diagnosis errors.

  1. Single Frequency Network Based Distributed Passive Radar Technology

    Directory of Open Access Journals (Sweden)

    Wan Xian-rong

    2015-01-01

    Full Text Available The research and application of passive radar are heading from single transmitter-receiver pair to multiple transmitter-receiver pairs. As an important class of the illuminators of opportunity, most of modern digital broadcasting and television systems work on Single Frequency Network (SFN, which intrinsically determines that the passive radar based on such illuminators must be distributed and networked. In consideration of the remarkable working and processing mode of passive radar under SFN configuration, this paper proposes the concept of SFN-based Distributed Passive Radar (SDPR. The main characteristics and key problems of SDPR are first described. Then several potential solutions are discussed for part of the key technologies. The feasibility of SDPR is demonstrated by preliminary experimental results. Finally, the concept of four network convergence that includes the broadcast based passive radar network is conceived, and its application prospects are discussed.

  2. Manufacturing technologies for ultrasonic transducers in a broad frequency range

    OpenAIRE

    Gebhardt, Sylvia; Hohlfeld, Kai; Günther, Paul; Neubert, Holger

    2018-01-01

    According to the application field, working frequency of ultrasonic transducers needs to be tailored to a certain value. Low frequency ultrasonic transducers with working frequencies of 1 kHz to 1 MHz are especially interesting for sonar applications, whereas high frequency ultrasonic transducers with working frequencies higher than 15 MHz are favorable for high-resolution imaging in biomedical and non-destructive evaluation. Conventional non-destructive testing devices and clinical ultrasoun...

  3. Solid state frequency conversion technology for remote sensing

    International Nuclear Information System (INIS)

    Velsko, S.P.; Webb, M.S.; Cook, W.M.; Neuman, W.A.

    1994-07-01

    Long range remote sensing from airborne or other highly mobile platforms will require high average power tunable radiation from very compact and efficient laser systems. The solid state laser pumped optical parametric oscillator (OPO) has emerged as a leading candidate for such high average power, widely tunable sources. In contrast to laboratory systems, efficiency and simplicity can be the decisive issues which determine the practicality of a particular airborne remote sensing application. The recent advent of diode laser pumped solid state lasers has produced high average power OPO pump sources which are themselves both compact and efficient. However, parametric oscillator technology which can efficiently convert the average powers provided by these pump sources remains to be demonstrated. In addition to the average power requirement, many airborne long range sensing tasks will require a high degree of frequency multiplexing to disentangle data from multiple chemical species. A key advantage in system simplicity can be obtained, for example, if a single OPO can produce easily controlled multispectral output. In this paper the authors address several topics pertaining to the conversion efficiency, power handling, and multispectral capabilities of OPOs which they are currently investigating. In Section 2, single pulse conversion efficiency issues are addressed, while average power effects are treated in Section 3. Section 4 is concerned with multispectral performance of a single OPO. The last section contains a short summary and some concluding remarks

  4. Offshore windfarm connection with low frequency AC transmission technology

    DEFF Research Database (Denmark)

    Qin, Nan; Xu, Zhao; You, Shi

    2009-01-01

    This paper investigates the feasibility of using the low frequency AC transmission (LFAC) system, e.g. fraction of 50 Hz or 60 Hz, for connecting the large offshore wind farm to the grid by modelling and simulation. The LFAC system improves the transmission capacity and distance compared...... to the conventional AC solution at the nominal frequency, e.g. 50 Hz or 60 Hz. and reduces the investment cost compared to the HVDC solution. It is estimated that the LFAC system is competitive in the transmission distance of about 30-150 km. The simulation model of the wind integration using the LFAC system has been...... developed, which consists of three parts, the fixed-speed wind turbine representing a wind farm, the transmission line and the frequency converter. Although the transmission capability is greatly improved by the LFAC system, simulation shows it gives negative influences on the wind turbine operation due...

  5. Biomedical Monitoring by a Novel Noncontact Radio Frequency Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — The area of Space Health and Medicine is one of the NASA's Space Technology Grand Challenges. Space is an extreme environment which is not conducive to human life....

  6. The Relationship between Social Cognitive Barriers and Technology Integration Frequency in a Northeastern School District

    Science.gov (United States)

    Miles, Pauline

    2013-01-01

    Although federal and state departments of education have provided funding, programs, and policies to address barriers to technology integration, the frequency to which technology is used in classrooms for teaching and learning remains relatively unchanged. Without justification for continued funding, districts stand to lose a portion of their…

  7. Construction Project Performance Improvement through Radio Frequency Identification Technology Application on a Project Supply Chain

    Science.gov (United States)

    Wang, Heng

    2017-01-01

    Construction project productivity typically lags other industries and it has been the focus of numerous studies in order to improve the project performance. This research investigated the application of Radio Frequency Identification (RFID) technology on construction projects' supply chain and determined that RFID technology can improve the…

  8. Applying radio-frequency identification (RFID) technology in transfusion medicine.

    Science.gov (United States)

    Hohberger, Clive; Davis, Rodeina; Briggs, Lynne; Gutierrez, Alfonso; Veeramani, Dhamaraj

    2012-05-01

    ISO/IEC 18000-3 mode 1 standard 13.56 MHz RFID tags have been accepted by the International Society for Blood Transfusion (ISBT) and the United States Food and Drug Administration (FDA) as data carriers to integrate with and augment ISBT 128 barcode data carried on blood products. The use of 13.56 MHz RFID carrying ISBT 128 data structures allows the global deployment and use of RFID, supporting both international transfer of blood and international disaster relief. The deployment in process at the BloodCenter of Wisconsin and testing at the University of Iowa Health Center is the first FDA-permitted implementation of RFID throughout in all phases of blood banking, donation through transfusion. RFID technology and equipment selection will be discussed along with FDA-required RF safety testing; integration with the blood enterprise computing system and required RFID tag performance. Tag design and survivability is an issue due to blood bag centrifugation and irradiation. Deployment issues will be discussed. Use of RFID results in significant return on investment over the use of barcodes in the blood center operations through labor savings and error reduction. Copyright © 2011 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  9. History and Technology Developments of Radio Frequency (RF) Systems for Particle Accelerators

    Science.gov (United States)

    Nassiri, A.; Chase, B.; Craievich, P.; Fabris, A.; Frischholz, H.; Jacob, J.; Jensen, E.; Jensen, M.; Kustom, R.; Pasquinelli, R.

    2016-04-01

    This article attempts to give a historical account and review of technological developments and innovations in radio frequency (RF) systems for particle accelerators. The evolution from electrostatic field to the use of RF voltage suggested by R. Wideröe made it possible to overcome the shortcomings of electrostatic accelerators, which limited the maximum achievable electric field due to voltage breakdown. After an introduction, we will provide reviews of technological developments of RF systems for particle accelerators.

  10. Applying the Multisim Technology to Teach the Course of High Frequency Power Amplifier

    Science.gov (United States)

    Lv, Gang; Xue, Yuan-Sheng

    2011-01-01

    As one important professional base course in the electric information specialty, the course of "high frequency electronic circuit" has strong theoretical characteristic and abstract content. To enhance the teaching quality of this course, the computer simulation technology based on Multisim is introduced into the teaching of "high…

  11. Wideband Monolithic Microwave Integrated Circuit Frequency Converters with GaAs mHEMT Technology

    DEFF Research Database (Denmark)

    Krozer, Viktor; Johansen, Tom Keinicke; Djurhuus, Torsten

    2005-01-01

    We present monolithic microwave integrated circuit (MMIC) frequency converter, which can be used for up and down conversion, due to the large RF and IF port bandwidth. The MMIC converters are based on commercially available GaAs mHEMT technology and are comprised of a Gilbert mixer cell core...

  12. Radio frequency for particle accelerators: evolution and anatomy of a technology

    CERN Document Server

    Vretenar, M

    2011-01-01

    This introductory lecture outlines the impressive progress of radio frequency technology, from the first table-top equipment to the present gigantic installations. The outcome of 83 years of evolution is subsequently submitted to an anatomical analysis, which allows identifying the main components of a modern RF system and their interrelations.

  13. Wideband Monolithic Microwave Integrated Circuit Frequency Converters with GaAs mHEMT Technology

    OpenAIRE

    Krozer, Viktor; Johansen, Tom Keinicke; Djurhuus, Torsten; Vidkjær, Jens

    2005-01-01

    We present monolithic microwave integrated circuit (MMIC) frequency converter, which can be used for up and down conversion, due to the large RF and IF port bandwidth. The MMIC converters are based on commercially available GaAs mHEMT technology and are comprised of a Gilbert mixer cell core, baluns and combiners. Single ended and balanced configurations DC and AC coupled have been investigated. The instantaneous 3 dB bandwidth at both the RF and the IF port of the frequency converters is ∼ 2...

  14. Development of scalable frequency and power Phase-Locked Loop in 130nm CMOS technology

    CERN Document Server

    Firlej, M; Idzik, M; Moron, J; Swientek, K

    2014-01-01

    The design and measurements results of a prototype very low power Phase-Locked Loop (PLL) ASIC for applications in readout systems of particle physics detectors are presented. The PLL was fabricated in 130 nm CMOS technology. It was designed and simulated for frequency range 10 MHz–3.5 GHz. Four division factors i.e. 6, 8, 10 and 16 were implemented in the PLL feedback loop. The main PLL block-voltage controlled oscillator (VCO) should work in 16 frequency ranges/modes, switched either manually or automatically. Preliminary measurements done in frequency range 20 MHz–1.6 GHz showed that the ASIC is functional and generates proper clock signal. The automatic VCO mode switching, one of the main design goals, was positively verified. Power consumption of around 0.6mW was measured at 1 GHz for a division factor equal to 10.

  15. Development of scalable frequency and power Phase-Locked Loop in 130 nm CMOS technology

    International Nuclear Information System (INIS)

    Firlej, M; Fiutowski, T; Idzik, M; Moroń, J; Świentek, K

    2014-01-01

    The design and measurements results of a prototype very low power Phase-Locked Loop (PLL) ASIC for applications in readout systems of particle physics detectors are presented. The PLL was fabricated in 130 nm CMOS technology. It was designed and simulated for frequency range 10 MHz–3.5 GHz. Four division factors i.e. 6, 8, 10 and 16 were implemented in the PLL feedback loop. The main PLL block-voltage controlled oscillator (VCO) should work in 16 frequency ranges/modes, switched either manually or automatically. Preliminary measurements done in frequency range 20 MHz–1.6 GHz showed that the ASIC is functional and generates proper clock signal. The automatic VCO mode switching, one of the main design goals, was positively verified. Power consumption of around 0.6 mW was measured at 1 GHz for a division factor equal to 10

  16. High performance superconducting radio frequency ingot niobium technology for continuous wave applications

    International Nuclear Information System (INIS)

    Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati R.

    2015-01-01

    Future continuous wave (CW) accelerators require the superconducting radio frequency cavities with high quality factor and medium accelerating gradients (≤20 MV/m). Ingot niobium cavities with medium purity fulfill the specifications of both accelerating gradient and high quality factor with simple processing techniques and potential reduction in cost. This contribution reviews the current superconducting radiofrequency research and development and outlines the potential benefits of using ingot niobium technology for CW applications

  17. Critical parameters affecting the design of high frequency transmission lines in standard CMOS technology

    KAUST Repository

    Al Attar, Talal

    2017-05-13

    Different structures of transmission lines were designed and fabricated in standard CMOS technology to estimate some critical parameters including the RMS value of the surface roughness and the loss tangent. The input impedances for frequencies up to 50 GHz were modeled and compared with measurements. The results demonstrated a strong correlation between the used model with the proposed coefficients and the measured results, attesting the robustness of the model and the reliability of the incorporated coefficients values.

  18. Critical parameters affecting the design of high frequency transmission lines in standard CMOS technology

    KAUST Repository

    Al Attar, Talal; Alshehri, Abdullah; Almansouri, Abdullah Saud Mohammed; Al-Turki, Abdullah Turki

    2017-01-01

    Different structures of transmission lines were designed and fabricated in standard CMOS technology to estimate some critical parameters including the RMS value of the surface roughness and the loss tangent. The input impedances for frequencies up to 50 GHz were modeled and compared with measurements. The results demonstrated a strong correlation between the used model with the proposed coefficients and the measured results, attesting the robustness of the model and the reliability of the incorporated coefficients values.

  19. Evaluation of magnocellular pathway abnormalities in schizophrenia: a frequency doubling technology study and clinical implications

    Directory of Open Access Journals (Sweden)

    Fabiana Benites Vaz de Lima

    2013-04-01

    Full Text Available BACKGROUND: Visual processing deficits have been reported for patients with schizophrenia. Previous studies demonstrated differences in early-stage processing of schizophrenics, although the nature, extent, and localization of the disturbance are unknown. The magnocellular and parvocellular visual pathways are associated with transient and sustained channels, but their respective contributions to schizophrenia-related visual deficits remains controversial. PURPOSE: The aim of this study was to evaluate magnocellular dysfunction in schizophrenia using frequency doubling technology. METHODS: Thirty-one patients with schizophrenia and 34 healthy volunteers were examined. Frequency doubling technology testing was performed in one session, consisting of a 15-minute screening strategy followed by the C-20 program for frequency doubling technology. RESULTS: Schizophrenic patients showed lower global mean sensitivity (30,97 ± 2,25 dB compared with controls (32,17 ± 3,08 dB, p<0.009. Although there was no difference in the delta sensitivity of hemispheres, there was a difference in sensitivity analysis of the fibers crossing the optic chiasm, with lower mean sensitivity in the patient group (28,80 dB versus controls (30,66 dB. The difference was higher in fibers that do not cross the optic chiasm, with lower mean sensitivity in patients (27,61 dB versus controls (30,26 dB, p<0.005. CONCLUSIONS: Our results suggest that there are differences between global sensitivity and fiber sensitivity measured by frequency doubling technology. The different sensitivity of fibers that do not cross the optic chiasm is consistent with most current etiological hypotheses for schizophrenia. The decreased sensitivity responses in the optic radiations may significantly contribute to research assessing early-stage visual processing deficits for patients with schizophrenia.

  20. Power supply and impedance matching to drive technological radio-frequency plasmas with customized voltage waveforms.

    Science.gov (United States)

    Franek, James; Brandt, Steven; Berger, Birk; Liese, Martin; Barthel, Matthias; Schüngel, Edmund; Schulze, Julian

    2015-05-01

    We present a novel radio-frequency (RF) power supply and impedance matching to drive technological plasmas with customized voltage waveforms. It is based on a system of phase-locked RF generators that output single frequency voltage waveforms corresponding to multiple consecutive harmonics of a fundamental frequency. These signals are matched individually and combined to drive a RF plasma. Electrical filters are used to prevent parasitic interactions between the matching branches. By adjusting the harmonics' phases and voltage amplitudes individually, any voltage waveform can be approximated as a customized finite Fourier series. This RF supply system is easily adaptable to any technological plasma for industrial applications and allows the commercial utilization of process optimization based on voltage waveform tailoring for the first time. Here, this system is tested on a capacitive discharge based on three consecutive harmonics of 13.56 MHz. According to the Electrical Asymmetry Effect, tuning the phases between the applied harmonics results in an electrical control of the DC self-bias and the mean ion energy at almost constant ion flux. A comparison with the reference case of an electrically asymmetric dual-frequency discharge reveals that the control range of the mean ion energy can be significantly enlarged by using more than two consecutive harmonics.

  1. A low-frequency versatile wireless power transfer technology for biomedical implants.

    Science.gov (United States)

    Jiang, Hao; Zhang, Junmin; Lan, Di; Chao; Liou, Shyshenq; Shahnasser, Hamid; Fechter, Richard; Hirose, Shinjiro; Harrison, Michael; Roy, Shuvo

    2013-08-01

    Implantable biomedical sensors and actuators are highly desired in modern medicine. In many cases, the implant's electrical power source profoundly determines its overall size and performance . The inductively coupled coil pair operating at the radio-frequency (RF) has been the primary method for wirelessly delivering electrical power to implants for the last three decades . Recent designs significantly improve the power delivery efficiency by optimizing the operating frequency, coil size and coil distance . However, RF radiation hazard and tissue absorption are the concerns in the RF wireless power transfer technology (RF-WPTT) , . Also, it requires an accurate impedance matching network that is sensitive to operating environments between the receiving coil and the load for efficient power delivery . In this paper, a novel low-frequency wireless power transfer technology (LF-WPTT) using rotating rare-earth permanent magnets is demonstrated. The LF-WPTT is able to deliver 2.967 W power at  ∼ 180 Hz to an 117.1 Ω resistor over 1 cm distance with 50% overall efficiency. Because of the low operating frequency, RF radiation hazard and tissue absorption are largely avoided, and the power delivery efficiency from the receiving coil to the load is independent of the operating environment. Also, there is little power loss observed in the LF-WPTT when the receiving coil is enclosed by non-magnetic implant-grade stainless steel.

  2. The Engineering Development Array: A Low Frequency Radio Telescope Utilising SKA Precursor Technology

    Science.gov (United States)

    Wayth, Randall; Sokolowski, Marcin; Booler, Tom; Crosse, Brian; Emrich, David; Grootjans, Robert; Hall, Peter J.; Horsley, Luke; Juswardy, Budi; Kenney, David; Steele, Kim; Sutinjo, Adrian; Tingay, Steven J.; Ung, Daniel; Walker, Mia; Williams, Andrew; Beardsley, A.; Franzen, T. M. O.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Pallot, D.; Trott, C. M.; Wu, C.

    2017-08-01

    We describe the design and performance of the Engineering Development Array, which is a low-frequency radio telescope comprising 256 dual-polarisation dipole antennas working as a phased array. The Engineering Development Array was conceived of, developed, and deployed in just 18 months via re-use of Square Kilometre Array precursor technology and expertise, specifically from the Murchison Widefield Array radio telescope. Using drift scans and a model for the sky brightness temperature at low frequencies, we have derived the Engineering Development Array's receiver temperature as a function of frequency. The Engineering Development Array is shown to be sky-noise limited over most of the frequency range measured between 60 and 240 MHz. By using the Engineering Development Array in interferometric mode with the Murchison Widefield Array, we used calibrated visibilities to measure the absolute sensitivity of the array. The measured array sensitivity matches very well with a model based on the array layout and measured receiver temperature. The results demonstrate the practicality and feasibility of using Murchison Widefield Array-style precursor technology for Square Kilometre Array-scale stations. The modular architecture of the Engineering Development Array allows upgrades to the array to be rolled out in a staged approach. Future improvements to the Engineering Development Array include replacing the second stage beamformer with a fully digital system, and to transition to using RF-over-fibre for the signal output from first stage beamformers.

  3. The relationship between technology acceptance and frequency of mobile commerce use amongst Generation Y consumers

    Directory of Open Access Journals (Sweden)

    Nobukhosi Dlodlo

    2013-05-01

    Research purpose: To examine the nature of the relationships that exist between technology acceptance and frequency of mobile commerce usage amongst Generation Y consumers. Motivation for the study: The Generation Y cohort has emerged as an important age-group due to its economic contribution to the economy. It is therefore essential that their attitudes and behaviour continue to receive empirical introspection, particularly since mobile commerce has gathered momentum as an important and arguably, the most popular medium for commercial transactions. In a global space that is technology based, it becomes imperative to investigate the interplay between mobile commerce acceptance dimensions and frequency of use amongst Generation Ys. Research design, approach and method: A survey was conducted with the aid of a structured self-administered questionnaire with a view to collecting primary data from a sample consisting of 204 Generation Y consumers. Main findings: There were positive correlations between frequency of use and five mobile commerce acceptance dimensions. Cronbach Alpha values ranged between 0.714 and 0.898, thereby indicating high internal consistency amongst the subscales as well as within the entire survey instrument. Correlation coefficients ranged between 0.164 and 0.677 at both the p < 0.01 and p < 0.05 significance levels (2-tailed test, indicating very high levels of association amongst the subscales. Predictive validity of the five subscales and the variable frequency of use resulted in positive and statistically-significant results that were established at an adjusted R2 value of 0.674. Practical/managerial implications: Marketers and business practitioners are presented with practical insights into dimensions that enhance frequency of use of mobile commerce technology amongst Generation Y consumers. Furthermore, an increased usage of mobile commerce technologies is projected to have a stimulus effect on profitability, sustainability and loyalty

  4. Review of Radio Frequency Identification and Wireless Technology for Structural Health Monitoring

    International Nuclear Information System (INIS)

    Dhital, Dipesh; Chia, Chen Ciang; Lee, Jung Ryul; Park, Chan Yik

    2010-01-01

    Radio frequency identification(RFID) combined with wireless technology has good potential for structural health monitoring(SHM). We describe several advantages of RFID and wireless technologies for SHM, and review SHM examples with working principles, design and technical details for damage detection, heat exposure monitoring, force/strain sensing, and corrosion detection in concrete, steel, carbon fiber reinforced polymer(CFRP), and other materials. Various sensors combined with wireless communication are also discussed. These methodologies can be readily developed, implemented, and customized. There are some technical difficulties, but solutions are being addressed. Lastly, a surface acoustic wave-based RFID system is presented, and possible future trends of SHM based on RFID and wireless technology are presented

  5. Review of Radio Frequency Identification and Wireless Technology for Structural Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Dhital, Dipesh; Chia, Chen Ciang; Lee, Jung Ryul [Chonbuk National University, Jeonju (Korea, Republic of); Park, Chan Yik [Aeronautical Technology Directorate, Agency for Defense Development, Daejeon (Korea, Republic of)

    2010-06-15

    Radio frequency identification(RFID) combined with wireless technology has good potential for structural health monitoring(SHM). We describe several advantages of RFID and wireless technologies for SHM, and review SHM examples with working principles, design and technical details for damage detection, heat exposure monitoring, force/strain sensing, and corrosion detection in concrete, steel, carbon fiber reinforced polymer(CFRP), and other materials. Various sensors combined with wireless communication are also discussed. These methodologies can be readily developed, implemented, and customized. There are some technical difficulties, but solutions are being addressed. Lastly, a surface acoustic wave-based RFID system is presented, and possible future trends of SHM based on RFID and wireless technology are presented

  6. Frequency and amplitude dependences of molding accuracy in ultrasonic nanoimprint technology

    International Nuclear Information System (INIS)

    Mekaru, Harutaka; Takahashi, Masaharu

    2009-01-01

    We use neither a heater nor ultraviolet lights, and are researching and developing an ultrasonic nanoimprint as a new nano-patterning technology. In our ultrasonic nanoimprint technology, ultrasonic vibration is not used as a heat generator instead of the heater. A mold is connected with an ultrasonic generator, and mold patterns are pushed down and pulled up at a high speed into a thermoplastic. Frictional heat is generated by ultrasonic vibration between mold patterns and thermoplastic patterns formed by an initial contact force. However, because frictional heat occurs locally, the whole mold is not heated. Therefore, a molding material can be comprehensively processed at room temperature. A magnetostriction actuator was built into our ultrasonic nanoimprint system as an ultrasonic generator, and the frequency and amplitude can be changed between dc–10 kHz and 0–4 µm, respectively. First, the ultrasonic nanoimprint was experimented by using this system on polyethylene terephthalate (PET, T g = 69 °C), whose the glass transition temperature (T g ) is comparatively low in engineering plastics, and it was ascertained that the most suitable elastic material for this technique was an ethyl urethane rubber. In addition, we used a changeable frequency of the magnetostriction actuator, and nano-patterns in an electroformed-Ni mold were transferred to a 0.5 mm thick sheet of PET, polymethylmethacrylate (PMMA) and polycarbonate (PC), which are typical engineering plastics, under variable molding conditions. The frequency and amplitude dependence of ultrasonic vibration to the molding accuracy were investigated by measuring depth and width of imprinted patterns. As a result, regardless of the molding material, the imprinted depth was changed drastically when the frequency exceeded 5 kHz. On the other hand, when the amplitude of ultrasonic vibration grew, the imprinted depth gradually deepened. Influence of the frequency and amplitude of ultrasonic vibration was not

  7. A Stretchable Radio-Frequency Strain Sensor Using Screen Printing Technology.

    Science.gov (United States)

    Jeong, Heijun; Lim, Sungjoon

    2016-11-02

    In this paper, we propose a stretchable radio-frequency (RF) strain sensor fabricated with screen printing technology. The RF sensor is designed using a half-wavelength patch that resonates at 3.7 GHz. The resonant frequency is determined by the length of the patch, and it therefore changes when the patch is stretched. Polydimethylsiloxane (PDMS) is used to create the substrate, because of its stretchable and screen-printable surface. In addition, Dupont PE872 (Dupont, NC, American) silver conductive ink is used to create the stretchable conductive patterns. The sensor performance is demonstrated both with full-wave simulations and with measurements carried out on a fabricated sample. When the length of the patch sensor is increased by a 7.8% stretch, the resonant frequency decreases from 3.7 GHz to 3.43 GHz, evidencing a sensitivity of 3.43 × 10⁷ Hz/%. Stretching the patch along its width does not change the resonant frequency.

  8. Low-cost, smartphone based frequency doubling technology visual field testing using virtual reality (Conference Presentation)

    Science.gov (United States)

    Alawa, Karam A.; Sayed, Mohamed; Arboleda, Alejandro; Durkee, Heather A.; Aguilar, Mariela C.; Lee, Richard K.

    2017-02-01

    Glaucoma is the leading cause of irreversible blindness worldwide. Due to its wide prevalence, effective screening tools are necessary. The purpose of this project is to design and evaluate a system that enables portable, cost effective, smartphone based visual field screening based on frequency doubling technology. The system is comprised of an Android smartphone to display frequency doubling stimuli and handle processing, a Bluetooth remote for user input, and a virtual reality headset to simulate the exam. The LG Nexus 5 smartphone and BoboVR Z3 virtual reality headset were used for their screen size and lens configuration, respectively. The system is capable of running the C-20, N-30, 24-2, and 30-2 testing patterns. Unlike the existing system, the smartphone FDT tests both eyes concurrently by showing the same background to both eyes but only displaying the stimulus to one eye at a time. Both the Humphrey Zeiss FDT and the smartphone FDT were tested on five subjects without a history of ocular disease with the C-20 testing pattern. The smartphone FDT successfully produced frequency doubling stimuli at the correct spatial and temporal frequency. Subjects could not tell which eye was being tested. All five subjects preferred the smartphone FDT to the Humphrey Zeiss FDT due to comfort and ease of use. The smartphone FDT is a low-cost, portable visual field screening device that can be used as a screening tool for glaucoma.

  9. Impact of radio-frequency identification (RFID) technologies on the hospital supply chain: a literature review.

    Science.gov (United States)

    Coustasse, Alberto; Tomblin, Shane; Slack, Chelsea

    2013-01-01

    Supply costs account for more than one-third of the average operating budget and constitute the second largest expenditure in hospitals. As hospitals have sought to reduce these costs, radio-frequency identification (RFID) technology has emerged as a solution. This study reviews existing literature to gauge the recent and potential impact and direction of the implementation of RFID in the hospital supply chain to determine current benefits and barriers of adoption. Findings show that the application of RFID to medical equipment and supplies tracking has resulted in efficiency increases in hospitals with lower costs and increased service quality. RFID technology can reduce costs, improve patient safety, and improve supply chain management effectiveness by increasing the ability to track and locate equipment, as well as monitoring theft prevention, distribution management, and patient billing. Despite ongoing RFID implementation in the hospital supply chain, barriers to widespread and rapid adoption include significant total expenditures, unclear return on investment, and competition with other strategic imperatives.

  10. Balanced G-band Gm-boosted frequency doublers in transferred substrate InP HBT technology

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Thualfiqar, Al-Sawaf; Weimann, Nils

    2016-01-01

    In this paper, balanced G-band Gm-boosted frequency doublers in transferred substrate (TS) InP HBT technology are reported for the first time. The Gm-boosted frequency doublers consist of a phase compensated Marchand balun, Gm-boosted doubler stage, and an optional cascode gain stage at the outpu...

  11. Radio Frequency Identification (RFID) and communication technologies for solid waste bin and truck monitoring system.

    Science.gov (United States)

    Hannan, M A; Arebey, Maher; Begum, R A; Basri, Hassan

    2011-12-01

    This paper deals with a system of integration of Radio Frequency Identification (RFID) and communication technologies for solid waste bin and truck monitoring system. RFID, GPS, GPRS and GIS along with camera technologies have been integrated and developed the bin and truck intelligent monitoring system. A new kind of integrated theoretical framework, hardware architecture and interface algorithm has been introduced between the technologies for the successful implementation of the proposed system. In this system, bin and truck database have been developed such a way that the information of bin and truck ID, date and time of waste collection, bin status, amount of waste and bin and truck GPS coordinates etc. are complied and stored for monitoring and management activities. The results showed that the real-time image processing, histogram analysis, waste estimation and other bin information have been displayed in the GUI of the monitoring system. The real-time test and experimental results showed that the performance of the developed system was stable and satisfied the monitoring system with high practicability and validity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. An ultra-high-speed direct digital frequency synthesizer implemented in GaAs HBT technology

    International Nuclear Information System (INIS)

    Chen Gaopeng; Wu Danyu; Jin Zhi; Liu Xinyu

    2010-01-01

    This paper presents a 10-GHz 8-bit direct digital synthesizer (DDS) microwave monolithic integrated circuit implemented in 1 μm GaAs HBT technology. The DDS takes a double-edge-trigger (DET) 8-stage pipeline accumulator with sine-weighted DAC-based ROM-less architecture, which can maximize the utilization ratio of the GaAs HBT's high-speed potential. With an output frequency up to 5 GHz, the DDS gives an average spurious free dynamic range of 23.24 dBc through the first Nyquist band, and consumes 2.4 W of DC power from a single -4.6 V DC supply. Using 1651 GaAs HBT transistors, the total area of the DDS chip is 2.4 x 2.0 mm 2 . (semiconductor integrated circuits)

  13. Influence of aspheric intraocular lens on frequency doubling technology and contrast sensitivity: a fellow eye study

    Directory of Open Access Journals (Sweden)

    Rodrigo França de Espíndola

    2014-12-01

    Full Text Available Purpose: To evaluate whether implantation of an aspheric intraocular lens (IOL results in reduced ocular aberrations and improved contrast sensitivity after cataract surgery and, therefore, changes on frequency-doubling technology (FDT testing. Methods: The present prospective clinical study enrolled 25 patients with bilateral cataract (50 eyes, who randomly received either an aspheric (Akreos AO or a spherical (Akreos Fit IOL in one eye and the other IOL in the second eye. Assessment 12 months postoperatively included photopic and mesopic contrast sensitivity testing. Higher-order aberrations (HOAs were computed. FDT testing was divided into four areas to evaluate the variation of the values at different points. The median values of the local pattern thresholds (median area contrast sensitivity [MACS] obtained with that division were calculated. Results: The Akreos AO group obtained statistically significantly lower values of HOAs and spherical aberration compared with the Akreos Fit group. There was a statistically significant between-group difference in contrast sensitivity under mesopic conditions at all spatial frequencies. No statistically significant differences were observed in mean deviation and pattern standard deviation. The aspheric IOL exhibited higher MACS in all areas, although a statistically significant difference was reached only in the 20-degree field area (P=0.043. Conclusion: Aspheric IOLs significantly reduced spherical aberration and HOAs, improving mesopic contrast sensitivity. Although there was a trend toward slightly improved FDT in the aspheric IOL group, it was not statistically significant.

  14. Using vehicle-to-grid technology for frequency regulation and peak-load reduction

    Science.gov (United States)

    White, Corey D.; Zhang, K. Max

    This paper explores the potential financial return for using plug-in hybrid electric vehicles as a grid resource. While there is little financial incentive for individuals when the vehicle-to-grid (V2G) service is used exclusively for peak reduction, there is a significant potential for financial return when the V2G service is used for frequency regulation. We propose that these two uses for V2G technology are not mutually exclusive, and that there could exist a "dual-use" program that utilizes V2G for multiple uses simultaneously. In our proposition, V2G could be used for regulation on a daily basis to ensure profits, and be used for peak reduction on days with high electricity demand and poor ambient air quality in order to reap the greatest environmental benefits. The profits for the individual in this type of dual-use program are close to or even higher than the profits experienced in either of the single-use programs. More importantly, we argue that the external benefits of this type of program are much greater as well. At higher V2G participation rates, our analysis shows that the market for regulation capacity could become saturated by V2G-based regulation providers. At the same time, there is plenty of potential for widespread use of V2G technology, especially if the demand for regulation, reserves, and storage grows as more intermittent renewable resources are being incorporated into the power systems.

  15. Impact of Radio-Frequency Identification (RFID) Technologies on the Hospital Supply Chain: A Literature Review

    Science.gov (United States)

    Coustasse, Alberto; Tomblin, Shane; Slack, Chelsea

    2013-01-01

    Supply costs account for more than one-third of the average operating budget and constitute the second largest expenditure in hospitals. As hospitals have sought to reduce these costs, radio-frequency identification (RFID) technology has emerged as a solution. This study reviews existing literature to gauge the recent and potential impact and direction of the implementation of RFID in the hospital supply chain to determine current benefits and barriers of adoption. Findings show that the application of RFID to medical equipment and supplies tracking has resulted in efficiency increases in hospitals with lower costs and increased service quality. RFID technology can reduce costs, improve patient safety, and improve supply chain management effectiveness by increasing the ability to track and locate equipment, as well as monitoring theft prevention, distribution management, and patient billing. Despite ongoing RFID implementation in the hospital supply chain, barriers to widespread and rapid adoption include significant total expenditures, unclear return on investment, and competition with other strategic imperatives. PMID:24159272

  16. Empty substrate integrated waveguide technology for E plane high-frequency and high-performance circuits

    Science.gov (United States)

    Belenguer, Angel; Cano, Juan Luis; Esteban, Héctor; Artal, Eduardo; Boria, Vicente E.

    2017-01-01

    Substrate integrated circuits (SIC) have attracted much attention in the last years because of their great potential of low cost, easy manufacturing, integration in a circuit board, and higher-quality factor than planar circuits. A first suite of SIC where the waves propagate through dielectric have been first developed, based on the well-known substrate integrated waveguide (SIW) and related technological implementations. One step further has been made with a new suite of empty substrate integrated waveguides, where the waves propagate through air, thus reducing the associated losses. This is the case of the empty substrate integrated waveguide (ESIW) or the air-filled substrate integrated waveguide (air-filled SIW). However, all these SIC are H plane structures, so classical H plane solutions in rectangular waveguides have already been mapped to most of these new SIC. In this paper a novel E plane empty substrate integrated waveguide (ESIW-E) is presented. This structure allows to easily map classical E plane solutions in rectangular waveguide to this new substrate integrated solution. It is similar to the ESIW, although more layers are needed to build the structure. A wideband transition (covering the frequency range between 33 GHz and 50 GHz) from microstrip to ESIW-E is designed and manufactured. Measurements are successfully compared with simulation, proving the validity of this new SIC. A broadband high-frequency phase shifter (for operation from 35 GHz to 47 GHz) is successfully implemented in ESIW-E, thus proving the good performance of this new SIC in a practical application.

  17. Applications for radio-frequency identification technology in the perioperative setting.

    Science.gov (United States)

    Zhao, Tiyu; Zhang, Xiaoxiang; Zeng, Lili; Xia, Shuyan; Hinton, Antentor Othrell; Li, Xiuyun

    2014-06-01

    We implemented a two-year project to develop a security-gated management system for the perioperative setting using radio-frequency identification (RFID) technology to enhance the management efficiency of the OR. We installed RFID readers beside the entrances to the OR and changing areas to receive and process signals from the RFID tags that we sewed into surgical scrub attire and shoes. The system also required integrating automatic access control panels, computerized lockers, light-emitting diode (LED) information screens, wireless networks, and an information system. By doing this, we are able to control the flow of personnel and materials more effectively, reduce OR costs, optimize the registration and attire-changing process for personnel, and improve management efficiency. We also anticipate this system will improve patient safety by reducing the risk of surgical site infection. Application of security-gated management systems is an important and effective way to help ensure a clean, convenient, and safe management process to manage costs in the perioperative area and promote patient safety. Copyright © 2014 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  18. Role of frequency doubling technology perimetry in screening of diabetic retinopathy.

    Directory of Open Access Journals (Sweden)

    Parikh Rajul

    2006-01-01

    Full Text Available Purpose: To study the ability of frequency-doubling technology perimetry (FDT to detect sight-threatening diabetic retinopathy. Method: Fifty-eight eyes of fifty-eight patients with established diagnosis of diabetes mellitus with diabetic retinopathy, fifty-five eyes of fifty-five diabetic patients without retinopathy, and forty-one eyes of forty-one normals underwent FDT and dilated stereo-biomicroscopic fundus examination. The sensitivity and specificity of FDT in identification of "sight-threatening retinopathy" (severe and very severe nonproliferative diabetic retinopathy and proliferative diabetic retinopathy and clinically significant macular edema (CSME were determined. Results: For the detection of sight-threatening retinopathy, two abnormal adjacent points depressed to any level on the 20-1 screening program had a sensitivity of 90.5% and specificity of 97.6%. At (assuming a 10% prevalence of sight-threatening retinopathy in a diabetic clinic, two abnormal adjacent points anywhere in the field depressed to any level has a positive predictive value (PPV of 48% with a negative predictive value of 98.8%. Sensitivity and specificity for the detection of CSME was poor. Conclusions: The 20-1 screening program of the FDT is useful in the detection of sight-threatening diabetic retinopathy (PPV 48%. A normal 20-1 test rules out sight-threatening retinopathy. FDT was not useful in the detection of CSME.

  19. Implementing new technologies for public safety communication: competing frequency demands and standardization issues

    Science.gov (United States)

    Stevens, Kathryn J.

    1997-01-01

    Attempting to incorporate new technology into an existing environment is often very difficult. The problems are lengthy to resolve, wrought with confusion and seldom turn out like anyone expected. This document represents an overview of one such attempt. It outlines the general areas of concern which could be affected by a transition, and potential problems that may be encountered as a result of the effort. Over the past several decades, many local, state and federal agencies are pressing for more efficient use of frequency spectrums. The urgency of this issue has grown due to the demands of several groups wanting access to these channels for commercial use. Pager systems, cellular telephones, radio systems for private businesses all demand more space. Public safety agencies are starting to fear their needs will diminish in importance as the available channel spectrums are consumed by commercial ventures. How to share these channels, purchase appropriate equipment to meet your needs, and stay within a reasonable budget are not easy tasks. Public safety agencies who rely on communication networks in the performance of their jobs also know why encryption is important. Protecting the rights of citizens as police exchange information over the air, maintaining the integrity of an investigation and officer safety are all concerns police must address each time they use a radio.

  20. MicroElectroMechanical devices and fabrication technologies for radio-frequency analog signal processing

    Science.gov (United States)

    Young, Darrin Jun

    The proliferation of wireless services creates a pressing need for compact and low cost RF transceivers. Modern sub-micron technologies provide the active components needed for miniaturization but fail to deliver high quality passives needed in oscillators and filters. This dissertation demonstrates procedures for adding high quality inductors and tunable capacitors to a standard silicon integrated circuits. Several voltage-controlled oscillators operating in the low Giga-Hertz range demonstrate the suitability of these components for high performance RF building blocks. Two low-temperature processes are described to add inductors and capacitors to silicon ICs. A 3-D coil geometry is used for the inductors rather than the conventional planar spiral to substantially reduce substrate loss and hence improve the quality factor and self-resonant frequency. Measured Q-factors at 1 GHz are 30 for a 4.8 nH device, 16 for 8.2 nH and 13.8 nH inductors. Several enhancements are proposed that are expected to result in a further improvement of the achievable Q-factor. This research investigates the design and fabrication of silicon-based IC-compatible high-Q tunable capacitors and inductors. The goal of this investigation is to develop a monolithic low phase noise radio-frequency voltage-controlled oscillator using these high-performance passive components for wireless communication applications. Monolithic VCOs will help the miniaturization of current radio transceivers, which offers a potential solution to achieve a single hand-held wireless phone with multistandard capabilities. IC-compatible micromachining fabrication technologies have been developed to realize on-chip high-Q RF tunable capacitors and 3-D coil inductors. The capacitors achieve a nominal capacitance value of 2 pF and can be tuned over 15% with 3 V. A quality factor over 60 has been measured at 1 GHz. 3-D coil inductors obtain values of 4.8 nH, 8.2 nH and 13.8 nH. At 1 GHz a Q factor of 30 has been achieved

  1. Broad frequency band full field measurements for advanced applications: Point-wise comparisons between optical technologies

    Science.gov (United States)

    Zanarini, Alessandro

    2018-01-01

    The progress of optical systems gives nowadays at disposal on lightweight structures complex dynamic measurements and modal tests, each with its own advantages, drawbacks and preferred usage domains. It is thus more easy than before to obtain highly spatially defined vibration patterns for many applications in vibration engineering, testing and general product development. The potential of three completely different technologies is here benchmarked on a common test rig and advanced applications. SLDV, dynamic ESPI and hi-speed DIC are here first deployed in a complex and unique test on the estimation of FRFs with high spatial accuracy from a thin vibrating plate. The latter exhibits a broad band dynamics and high modal density in the common frequency domain where the techniques can find an operative intersection. A peculiar point-wise comparison is here addressed by means of discrete geometry transforms to put all the three technologies on trial at each physical point of the surface. Full field measurement technologies cannot estimate only displacement fields on a refined grid, but can exploit the spatial consistency of the results through neighbouring locations by means of numerical differentiation operators in the spatial domain to obtain rotational degrees of freedom and superficial dynamic strain distributions, with enhanced quality, compared to other technologies in literature. Approaching the task with the aid of superior quality receptance maps from the three different full field gears, this work calculates and compares rotational and dynamic strain FRFs. Dynamic stress FRFs can be modelled directly from the latter, by means of a constitutive model, avoiding the costly and time-consuming steps of building and tuning a numerical dynamic model of a flexible component or a structure in real life conditions. Once dynamic stress FRFs are obtained, spectral fatigue approaches can try to predict the life of a component in many excitation conditions. Different

  2. Experience of Using Domestic High-Frequency Electric Welding Technology in Surgical Treatment of Patients with Abdominal Pathology

    Directory of Open Access Journals (Sweden)

    A.M. Babiy

    2014-04-01

    Full Text Available The article presents the experience of using electric welding technology of biological tissues with domestic high-frequency electrical generator EC 300 M1 in 176 patients at open and laparoscopic surgery for abdominal pathology. The analysis of findings showed that electric welding of living tissue provides reliable hemostasis, promotes tissue repair after their separation.

  3. Predictive Accuracy of Sweep Frequency Impedance Technology in Identifying Conductive Conditions in Newborns.

    Science.gov (United States)

    Aithal, Venkatesh; Kei, Joseph; Driscoll, Carlie; Murakoshi, Michio; Wada, Hiroshi

    2018-02-01

    Diagnosing conductive conditions in newborns is challenging for both audiologists and otolaryngologists. Although high-frequency tympanometry (HFT), acoustic stapedial reflex tests, and wideband absorbance measures are useful diagnostic tools, there is performance measure variability in their detection of middle ear conditions. Additional diagnostic sensitivity and specificity measures gained through new technology such as sweep frequency impedance (SFI) measures may assist in the diagnosis of middle ear dysfunction in newborns. The purpose of this study was to determine the test performance of SFI to predict the status of the outer and middle ear in newborns against commonly used reference standards. Automated auditory brainstem response (AABR), HFT (1000 Hz), transient evoked otoacoustic emission (TEOAE), distortion product otoacoustic emission (DPOAE), and SFI tests were administered to the study sample. A total of 188 neonates (98 males and 90 females) with a mean gestational age of 39.4 weeks were included in the sample. Mean age at the time of testing was 44.4 hr. Diagnostic accuracy of SFI was assessed in terms of its ability to identify conductive conditions in neonates when compared with nine different reference standards (including four single tests [AABR, HFT, TEOAE, and DPOAE] and five test batteries [HFT + DPOAE, HFT + TEOAE, DPOAE + TEOAE, DPOAE + AABR, and TEOAE + AABR]), using receiver operating characteristic (ROC) analysis and traditional test performance measures such as sensitivity and specificity. The test performance of SFI against the test battery reference standard of HFT + DPOAE and single reference standard of HFT was high with an area under the ROC curve (AROC) of 0.87 and 0.82, respectively. Although the HFT + DPOAE test battery reference standard performed better than the HFT reference standard in predicting middle ear conductive conditions in neonates, the difference in AROC was not significant. Further analysis revealed that the

  4. Application of phased array technology for identification of low frequency noise sources

    Energy Technology Data Exchange (ETDEWEB)

    Hugo E. Camargo; Patricio A. Ravetta; Ricardo A. Burdisso; Adam K. Smith [NIOSH (United States)

    2009-12-15

    A study conducted by the National Institute for Occupational Safety and Health (NIOSH) revealed that 90% of coal miners have hearing impairment by age 50, compared to only 10% of those not exposed to occupational noise. According to the Mine Safety and Health Administration (MSHA), Continuous Mining Machine (CM) operators account for 30% of workers exposed to noise doses exceeding the Permissible Exposure Level (PEL). In this context, NIOSH is conducting research to identify and control dominant noise sources in CMs. Previous noise source identification was performed using a Bruel & Kjaer (B&K) 1.92-m diameter, 42-microphone phased array. These measurements revealed that the impacts from the conveyor chain onto the tail roller, and the impacts from the conveyor chain onto the upper deck are the dominant noise sources at the tail-section of the CM. The objectives of the work presented in this paper were: (1) To rank the noise radiated by the different sections of the conveyor, and (2) to determine the effect of a urethane-coated tail roller on the noise radiated by the tail-section. This test was conducted using an Acoustical and Vibrations Engineering Consultants (AVEC) 3.5-m diameter, 121-microphone phased array. The results from this new test show that a urethane-coated tail roller yields reductions in the tail-section of 2 to 8 dB in Sound Pressure Level in the frequency range of 1 kHz to 5 kHz. However, integration of the acoustic maps shows that the front-section and mid-section of the conveyor also contain dominant noise sources. Therefore, a urethane-coated tail roller in combination with a chain with urethane-coated flights that reduces the noise sources in the front and mid sections of the conveyor is required to yield a significant noise reduction on the CM operator's overall exposure. These results show the applicability of phased array technology for low frequency noise source identification.

  5. Combining Frequency Doubling Technology Perimetry and Scanning Laser Polarimetry for Glaucoma Detection.

    Science.gov (United States)

    Mwanza, Jean-Claude; Warren, Joshua L; Hochberg, Jessica T; Budenz, Donald L; Chang, Robert T; Ramulu, Pradeep Y

    2015-01-01

    To determine the ability of frequency doubling technology (FDT) and scanning laser polarimetry with variable corneal compensation (GDx-VCC) to detect glaucoma when used individually and in combination. One hundred ten normal and 114 glaucomatous subjects were tested with FDT C-20-5 screening protocol and the GDx-VCC. The discriminating ability was tested for each device individually and for both devices combined using GDx-NFI, GDx-TSNIT, number of missed points of FDT, and normal or abnormal FDT. Measures of discrimination included sensitivity, specificity, area under the curve (AUC), Akaike's information criterion (AIC), and prediction confidence interval lengths. For detecting glaucoma regardless of severity, the multivariable model resulting from the combination of GDx-TSNIT, number of abnormal points on FDT (NAP-FDT), and the interaction GDx-TSNIT×NAP-FDT (AIC: 88.28, AUC: 0.959, sensitivity: 94.6%, specificity: 89.5%) outperformed the best single-variable model provided by GDx-NFI (AIC: 120.88, AUC: 0.914, sensitivity: 87.8%, specificity: 84.2%). The multivariable model combining GDx-TSNIT, NAP-FDT, and interaction GDx-TSNIT×NAP-FDT consistently provided better discriminating abilities for detecting early, moderate, and severe glaucoma than the best single-variable models. The multivariable model including GDx-TSNIT, NAP-FDT, and the interaction GDx-TSNIT×NAP-FDT provides the best glaucoma prediction compared with all other multivariable and univariable models. Combining the FDT C-20-5 screening protocol and GDx-VCC improves glaucoma detection compared with using GDx or FDT alone.

  6. Glaucomatous patterns in Frequency Doubling Technology (FDT) perimetry data identified by unsupervised machine learning classifiers.

    Science.gov (United States)

    Bowd, Christopher; Weinreb, Robert N; Balasubramanian, Madhusudhanan; Lee, Intae; Jang, Giljin; Yousefi, Siamak; Zangwill, Linda M; Medeiros, Felipe A; Girkin, Christopher A; Liebmann, Jeffrey M; Goldbaum, Michael H

    2014-01-01

    The variational Bayesian independent component analysis-mixture model (VIM), an unsupervised machine-learning classifier, was used to automatically separate Matrix Frequency Doubling Technology (FDT) perimetry data into clusters of healthy and glaucomatous eyes, and to identify axes representing statistically independent patterns of defect in the glaucoma clusters. FDT measurements were obtained from 1,190 eyes with normal FDT results and 786 eyes with abnormal FDT results from the UCSD-based Diagnostic Innovations in Glaucoma Study (DIGS) and African Descent and Glaucoma Evaluation Study (ADAGES). For all eyes, VIM input was 52 threshold test points from the 24-2 test pattern, plus age. FDT mean deviation was -1.00 dB (S.D. = 2.80 dB) and -5.57 dB (S.D. = 5.09 dB) in FDT-normal eyes and FDT-abnormal eyes, respectively (p<0.001). VIM identified meaningful clusters of FDT data and positioned a set of statistically independent axes through the mean of each cluster. The optimal VIM model separated the FDT fields into 3 clusters. Cluster N contained primarily normal fields (1109/1190, specificity 93.1%) and clusters G1 and G2 combined, contained primarily abnormal fields (651/786, sensitivity 82.8%). For clusters G1 and G2 the optimal number of axes were 2 and 5, respectively. Patterns automatically generated along axes within the glaucoma clusters were similar to those known to be indicative of glaucoma. Fields located farther from the normal mean on each glaucoma axis showed increasing field defect severity. VIM successfully separated FDT fields from healthy and glaucoma eyes without a priori information about class membership, and identified familiar glaucomatous patterns of loss.

  7. W-band push—push monolithic frequency doubler in 1-μm InP DHBT technology

    International Nuclear Information System (INIS)

    Yao Hongfei; Wang Xiantai; Wu Danyu; Su Yongbo; Cao Yuxiong; Ge Ji; Ning Xiaoxi; Jin Zhi

    2013-01-01

    A W-band frequency doubler MMIC is designed and fabricated using 1-μm InP DHBT technology. Active balun is employed to transform the single-ended signal into differential output. Push—push configuration loaded with harmonic resonant network is utilized to acquire the second harmonic frequency. A multi-stage differential structure improves the conversion gain and suppresses the fundamental frequency. The MMIC occupies an area of 0.55 × 0.5 mm 2 with 18 DHBTs integrated. Measurements show that the output power is above 5.8 dBm with the suppression of fundamental frequency below −16 dBc and the conversion gain above 4.7 dB over 75–80 GHz. (semiconductor integrated circuits)

  8. Rule Based Expert System for Monitoring Real Time Drug Supply in Hospital Using Radio Frequency Identification Technology

    Science.gov (United States)

    Driandanu, Galih; Surarso, Bayu; Suryono

    2018-02-01

    A radio frequency identification (RFID) has obtained increasing attention with the emergence of various applications. This study aims to examine the implementation of rule based expert system supported by RFID technology into a monitoring information system of drug supply in a hospital. This research facilitates in monitoring the real time drug supply by using data sample from the hospital pharmacy. This system able to identify and count the number of drug and provide warning and report in real time. the conclusion is the rule based expert system and RFID technology can facilitate the performance in monitoring the drug supply quickly and precisely.

  9. Proton-irradiation technology for high-frequency high-current silicon welding diode manufacturing

    International Nuclear Information System (INIS)

    Lagov, P B; Drenin, A S; Zinoviev, M A

    2017-01-01

    Different proton irradiation regimes were tested to provide more than 20 kHz-frequency, soft reverse recovery “snap-less” behavior, low forward voltage drop and leakage current for 50 mm diameter 7 kA/400 V welding diode Al/Si/Mo structure. Silicon diode with such parameters is very suitable for high frequency resistance welding machines of new generation for robotic welding. (paper)

  10. Proton-irradiation technology for high-frequency high-current silicon welding diode manufacturing

    Science.gov (United States)

    Lagov, P. B.; Drenin, A. S.; Zinoviev, M. A.

    2017-05-01

    Different proton irradiation regimes were tested to provide more than 20 kHz-frequency, soft reverse recovery “snap-less” behavior, low forward voltage drop and leakage current for 50 mm diameter 7 kA/400 V welding diode Al/Si/Mo structure. Silicon diode with such parameters is very suitable for high frequency resistance welding machines of new generation for robotic welding.

  11. Frequency Regulation Strategies in Grid Integrated Offshore Wind Turbines via VSC-HVDC Technology: A Review

    Directory of Open Access Journals (Sweden)

    Jafar Jallad

    2017-08-01

    Full Text Available The inclusion of wind energy in a power system network is currently seeing a significant increase. However, this inclusion has resulted in degradation of the inertia response, which in turn seriously affects the stability of the power system’s frequency. This problem can be solved by using an active power reserve to stabilize the frequency within an allowable limit in the event of a sudden load increment or the loss of generators. Active power reserves can be utilized via three approaches: (1 de-loading method (pitching or over-speeding by a variable speed wind turbine (VSWT; (2 stored energy in the capacitors of voltage source converter-high voltage direct current (VSC-HVDC transmission; and (3 coordination of frequency regulation between the offshore wind farms and the VSC-HVDC transmission. This paper reviews the solutions that can be used to overcome problems related to the frequency stability of grid- integrated offshore wind turbines. It also details the permanent magnet synchronous generator (PMSG with full-scale back to back (B2B converters, its corresponding control strategies, and a typical VSC-HVDC system with an associated control system. The control methods, both on the levels of a wind turbine and the VSC-HVDC system that participate in a system’s primary frequency control and emulation inertia, are discussed.

  12. Readiness of hospitals affiliated with Shiraz university of medical sciences for implementation of radio frequency identification technology

    Directory of Open Access Journals (Sweden)

    Saeid Ebrahimi

    2015-10-01

    Full Text Available Introduction: Applying information technology in healthcare system is one of the most important criteria of the World Health Organization for evaluating the quality of healthcare systems of different countries. Moreover, applying this technology in different parts of health care system can create great potentials for improving the quality of healthcare services. In this regard, Radio Frequency Identification (RFID technology is one of the most practical technologies in identifying and collecting data. The present study aimed to compare the readiness of Shiraz University of medical sciences hospitals for implementation of RFID system in 2014. Method: This was a cross-sectional study conducted in 2014. The research population consisted of 110 senior and middle managers. Due to the limited research population, census method was used. The research tool was a questionnaire prepared by the researcher to investigate the hospitals’ readiness for implementation of RFID technology. Face and content validity of the questionnaire were approved by the experts. Cronbach’s alpha test was run to determine the reliability of the questionnaire (data were considered significant at p <0.05. Also, the data were analyzed in SPSS software using descriptive statistics (mean, standard deviation, and percentage and inferential statistics (one-way ANOVA. Results: The study showed that the readiness level of the hospitals was moderate. Comparing the mean of the total readiness level in the hospitals under the study revealed that there was a statistically significant difference between hospital M and other hospitals (P=0.003. However, the total readiness of hospital I was higher than others. Conclusion: Among 13 hospitals under the study, the hospitals I and A were moderately ready and others were not ready for implementation of RFID technology. Thus, considering various applications and advantages of RFID technology, it is suggested that the hospitals should prepare

  13. Multiband Radio Frequency Interconnect (MRFI) Technology For Next Generation Mobile/Airborne Computing Systems

    Science.gov (United States)

    2017-02-01

    between CPUs and memories , and then demodulated by the same frequency carriers to restore the data back to a parallel bus. This implies that one can...performance. With limited I/O pin count, higher bandwidth implies higher data rate per pin. As the data rate of double data rate (DDR) memory ...either expressed or implied , of Air Force Research Laboratory (AFRL) and the Defense Advanced Research Agency (DARPA) or the U.S. Government. Report

  14. Introducing Discrete Frequency Infrared Technology for High-Throughput Biofluid Screening

    Science.gov (United States)

    Hughes, Caryn; Clemens, Graeme; Bird, Benjamin; Dawson, Timothy; Ashton, Katherine M.; Jenkinson, Michael D.; Brodbelt, Andrew; Weida, Miles; Fotheringham, Edeline; Barre, Matthew; Rowlette, Jeremy; Baker, Matthew J.

    2016-02-01

    Accurate early diagnosis is critical to patient survival, management and quality of life. Biofluids are key to early diagnosis due to their ease of collection and intimate involvement in human function. Large-scale mid-IR imaging of dried fluid deposits offers a high-throughput molecular analysis paradigm for the biomedical laboratory. The exciting advent of tuneable quantum cascade lasers allows for the collection of discrete frequency infrared data enabling clinically relevant timescales. By scanning targeted frequencies spectral quality, reproducibility and diagnostic potential can be maintained while significantly reducing acquisition time and processing requirements, sampling 16 serum spots with 0.6, 5.1 and 15% relative standard deviation (RSD) for 199, 14 and 9 discrete frequencies respectively. We use this reproducible methodology to show proof of concept rapid diagnostics; 40 unique dried liquid biopsies from brain, breast, lung and skin cancer patients were classified in 2.4 cumulative seconds against 10 non-cancer controls with accuracies of up to 90%.

  15. The development of small-scale mechanization means positioning algorithm using radio frequency identification technology in industrial plants

    Science.gov (United States)

    Astafiev, A.; Orlov, A.; Privezencev, D.

    2018-01-01

    The article is devoted to the development of technology and software for the construction of positioning and control systems for small mechanization in industrial plants based on radio frequency identification methods, which will be the basis for creating highly efficient intelligent systems for controlling the product movement in industrial enterprises. The main standards that are applied in the field of product movement control automation and radio frequency identification are considered. The article reviews modern publications and automation systems for the control of product movement developed by domestic and foreign manufacturers. It describes the developed algorithm for positioning of small-scale mechanization means in an industrial enterprise. Experimental studies in laboratory and production conditions have been conducted and described in the article.

  16. Improving the Quality and Cost of Healthcare Delivery: The Potential of Radio Frequency Identification (RFID) Technology

    Science.gov (United States)

    Vilamovska, Anna-Marie

    2010-01-01

    The study investigated whether an upcoming class of health information technology (HIT) can be used to address currently outstanding issues in the quality and cost of healthcare delivery. Expert interviews and a literature review were used to describe the 2009 universe of in- and outpatient healthcare RFID applications and to identify those…

  17. Millimeter wave technology IV and radio frequency power sources; Proceedings of the Meeting, Orlando, FL, May 21, 22, 1987

    International Nuclear Information System (INIS)

    Wiltse, J.C.; Coleman, J.T.

    1987-01-01

    The present conference on mm-wave technology and radio-frequency power sources discusses topics in the fields of vacuum devices, mm-wave antennas and transmission lines, mm-wave systems and subsystems, and mm-wave techniques and components. Attention is given to recent experiments with planar orotrons, a high peak power X-band gyroklystron for linear supercolliders, cathode-driven crossed-field amplifiers, multi-MW quasi-optical gyrotrons, the radiation coupling of interinjection-locked oscillators, air-to-air mm-wave communications, mm-wave active and passive sensors for terrain mapping, and mm-wave components for electronically controllable antennas

  18. Research on Wide-field Imaging Technologies for Low-frequency Radio Array

    Science.gov (United States)

    Lao, B. Q.; An, T.; Chen, X.; Wu, X. C.; Lu, Y.

    2017-09-01

    Wide-field imaging of low-frequency radio telescopes are subject to a number of difficult problems. One particularly pernicious problem is the non-coplanar baseline effect. It will lead to distortion of the final image when the phase of w direction called w-term is ignored. The image degradation effects are amplified for telescopes with the wide field of view. This paper summarizes and analyzes several w-term correction methods and their technical principles. Their advantages and disadvantages have been analyzed after comparing their computational cost and computational complexity. We conduct simulations with two of these methods, faceting and w-projection, based on the configuration of the first-phase Square Kilometre Array (SKA) low frequency array. The resulted images are also compared with the two-dimensional Fourier transform method. The results show that image quality and correctness derived from both faceting and w-projection are better than the two-dimensional Fourier transform method in wide-field imaging. The image quality and run time affected by the number of facets and w steps have been evaluated. The results indicate that the number of facets and w steps must be reasonable. Finally, we analyze the effect of data size on the run time of faceting and w-projection. The results show that faceting and w-projection need to be optimized before the massive amounts of data processing. The research of the present paper initiates the analysis of wide-field imaging techniques and their application in the existing and future low-frequency array, and fosters the application and promotion to much broader fields.

  19. HERO: a space based low frequency interferometric observatory for heliophysicsenabled by novel vector sensor technology

    Science.gov (United States)

    2017-04-07

    baseline of HeRO-S or HeRO-G will detect type II and III solar bursts over several decades of intensity and frequency. Shown for comparison are an...and disturbances in a key region of the helio-11 sphere, from two to tens of solar radii, using interferometric observations of solar12 radio bursts at...fronts14 will be traced via type II burst emissions, and heliospheric magnetic field geometries15 will be probed by measuring precise trajectories of type

  20. A Computational Method based on Radio Frequency Technologies for the Analysis of Accessibility of Disabled People in Sustainable Cities

    Directory of Open Access Journals (Sweden)

    Virgilio Gilart-Iglesias

    2015-11-01

    Full Text Available The sustainability strategy in urban spaces arises from reflecting on how to achieve a more habitable city and is materialized in a series of sustainable transformations aimed at humanizing different environments so that they can be used and enjoyed by everyone without exception and regardless of their ability. Modern communication technologies allow new opportunities to analyze efficiency in the use of urban spaces from several points of view: adequacy of facilities, usability, and social integration capabilities. The research presented in this paper proposes a method to perform an analysis of movement accessibility in sustainable cities based on radio frequency technologies and the ubiquitous computing possibilities of the new Internet of Things paradigm. The proposal can be deployed in both indoor and outdoor environments to check specific locations of a city. Finally, a case study in a controlled context has been simulated to validate the proposal as a pre-deployment step in urban environments.

  1. The Extent of DoD Influence on the Development and Application of Radio Frequency (RFID) Technology in the Civilian Sector

    National Research Council Canada - National Science Library

    Acevedo, Rafael A; Cooper, Robert W

    2005-01-01

    ... the Internet. The internet, however, was conceived in the minds of government employees. Just as Government influenced the development of the internet, the same can be said of Radio Frequency Identification (RFID) Technology...

  2. Microwave frequency detector at X-band using GaAs MMIC technology

    International Nuclear Information System (INIS)

    Zhang Jun; Liao Xiaoping; Jiao Yongchang

    2009-01-01

    The design, fabrication, and experimental results of an MEMS microwave frequency detector are presented for the first time. The structure consists of a microwave power divider, two CPW transmission lines, a microwave power combiner, an MEMS capacitive power sensor and a thermopile. The detector has been designed and fabricated on GaAs substrate using the MMIC process at the X-band successfully. The MEMS capacitive power sensor is used for detecting the high power signal, while the thermopile is used for detecting the low power signal. Signals of 17 and 10 dBm are measured over the X-band. The sensitivity is 0.56 MHz/fF under 17 dBm by the capacitive power sensor, and 6.67 MHz/μV under 10 dBm by the thermopile, respectively. The validity of the presented design has been confirmed by the experiment.

  3. Measurement of sound velocity made easy using harmonic resonant frequencies with everyday mobile technology

    Science.gov (United States)

    Hirth, Michael; Kuhn, Jochen; Müller, Andreas

    2015-02-01

    Recent articles about smartphone experiments have described their applications as experimental tools in different physical contexts.1-4 They have established that smartphones facilitate experimental setups, thanks to the small size and diverse functions of mobile devices, in comparison to setups with computer-based measurements. In the experiment described in this article, the experimental setup is reduced to a minimum. The objective of the experiment is to determine the speed of sound with a high degree of accuracy using everyday tools. An article published recently proposes a time-of-flight method where sound or acoustic pulses are reflected at the ends of an open tube.5 In contrast, the following experiment idea is based on the harmonic resonant frequencies of such a tube, simultaneously triggered by a noise signal.

  4. Could the Pharmaceutical Industry Benefit from Full-Scale Adoption of Radio-Frequency Identification (RFID) Technology with New Regulations?

    Science.gov (United States)

    Coustasse, Alberto; Kimble, Craig A; Stanton, Robert B; Naylor, Mariah

    2016-01-01

    Healthcare regulators are directing attention to the pharmaceutical supply chain with the passage of the Drug Quality and Security Act (DQSA) and the Drug Supply Chain Security Act (DSCSA). Adoption of Radio-Frequency Identification (RFID) technology has the ability to improve compliance, reduce costs, and improve safety in the supply chain but its implementation has been limited; primarily because of hardware and tag costs. The purpose of this research study was to analyze the benefits to the pharmaceutical industry and healthcare system of the adoption of RFID technology as a result of newly implemented supply chain regulations. The methodology was a review following the steps of a systematic review with a total of 96 sources used. With the DSCSA, pharmaceutical companies must track and trace prescription drugs across the supply chain, and RFID can resolve many track-and-trace issues with manufacturer control of data. The practical implication of this study is that pharmaceutical companies must continue to have the potential to increase revenues, decrease associated costs, and increase compliance with new FDA regulations with RFID. Still, challenges related to regulatory statute wording, implementation of two-dimensional barcode technology, and the variety of interfaces within the pharmaceutical supply chain have delayed adoption and its full implementation.

  5. Effect of Radio Frequency Heating on Yoghurt, I: Technological Applicability, Shelf-Life and Sensorial Quality

    Science.gov (United States)

    Siefarth, Caroline; Tran, Thi Bich Thao; Mittermaier, Peter; Pfeiffer, Thomas; Buettner, Andrea

    2014-01-01

    This first part of a two-part study focuses on the technical feasibility of applying radio frequency (RF) heating at different temperatures (58, 65 and 72 °C) to a stirred yoghurt gel after culturing. For comparison, a convectional (CV) heating process was also applied. The aim was to increase the yoghurt shelf-life, by preventing post-acidification and the growth of yeasts and molds. At the same time, the viability of lactic acid bacteria (LAB) was investigated in view of existing legal regulations for yoghurts. Additionally, the yoghurt color, aroma and taste profiles were evaluated. It was found that the application of RF heating was effective for the rapid attainment of homogenous temperatures of 58 and 65 °C, respectively. For RF heating at 72 °C, it was not possible to establish a stable heating regime, since in some cases, there was significant overheating followed by strong contraction of the yoghurt curd and whey separation. Hence, it was decided not to continue with the RF heating series at 72 °C. In the case of CV heating, heat transfer limitations were observed, and prolonged heating was required. Nevertheless, we showed that yeasts and molds survived neither the RF nor CV heat treatment. LAB were found not to survive the CV treatment, but these beneficial microorganisms were still present in reduced numbers after RF heating to 58 and 65 °C. This important observation is most likely related to the mildness of RF treatment. While post-acidification was not observed on yoghurt storage, slight color changes occurred after heat treatment. The flavor and taste profiles were shown to be similar to the reference product. Furthermore, a trained sensory panel was not able to distinguish between, for example, the reference yoghurt and the RF 65 °C sample by triangular testing (α = 5%), showing the potential of novel strategies for further improvements of heat-treated yoghurt. PMID:28234322

  6. New technology based on clamping for high gradient radio frequency photogun

    Science.gov (United States)

    Alesini, David; Battisti, Antonio; Ferrario, Massimo; Foggetta, Luca; Lollo, Valerio; Ficcadenti, Luca; Pettinacci, Valerio; Custodio, Sean; Pirez, Eylene; Musumeci, Pietro; Palumbo, Luigi

    2015-09-01

    High gradient rf photoguns have been a key development to enable several applications of high quality electron beams. They allow the generation of beams with very high peak current and low transverse emittance, satisfying the tight demands for free-electron lasers, energy recovery linacs, Compton/Thomson sources and high-energy linear colliders. In the present paper we present the design of a new rf photogun recently developed in the framework of the SPARC_LAB photoinjector activities at the laboratories of the National Institute of Nuclear Physics in Frascati (LNF-INFN, Italy). This design implements several new features from the electromagnetic point of view and, more important, a novel technology for its realization that does not involve any brazing process. From the electromagnetic point of view the gun presents high mode separation, low peak surface electric field at the iris and minimized pulsed heating on the coupler. For the realization, we have implemented a novel fabrication design that, avoiding brazing, strongly reduces the cost, the realization time and the risk of failure. Details on the electromagnetic design, low power rf measurements and high power radiofrequency and beam tests performed at the University of California in Los Angeles (UCLA) are discussed in the paper.

  7. A wide range ultra-low power Phase-Locked Loop with automatic frequency setting in 130 nm CMOS technology for data serialisation

    International Nuclear Information System (INIS)

    Firlej, M.; Fiutowski, T.; Idzik, M.; Moroń, J.; Świentek, K.

    2015-01-01

    The design and measurements results of a wide frequency range ultra-low power Phase-Locked Loop (PLL) for applications in readout systems of particle physics detectors are presented. The PLL was fabricated in a 130 nm CMOS technology. To allow the implementation of different data serialisation schemes multiple division factors (6, 8, 10, 16) were implemented in the PLL feedback loop. The main PLL block—VCO works in 16 frequency ranges/modes, switched either manually or automatically. A dedicated automatic frequency mode switching circuit was developed to allow simple frequency tuning. Although the PLL was designed and simulated for a frequency range of 30 MHz–3 GHz, due to the SLVS interface limits, the measurements were done only up to 1.3 GHz. The full PLL functionality was experimentally verified, confirming a very low and frequency scalable power consumption (0.7 mW at 1 GHz)

  8. A wide range ultra-low power Phase-Locked Loop with automatic frequency setting in 130 nm CMOS technology for data serialisation

    Science.gov (United States)

    Firlej, M.; Fiutowski, T.; Idzik, M.; Moroń, J.; Świentek, K.

    2015-12-01

    The design and measurements results of a wide frequency range ultra-low power Phase-Locked Loop (PLL) for applications in readout systems of particle physics detectors are presented. The PLL was fabricated in a 130 nm CMOS technology. To allow the implementation of different data serialisation schemes multiple division factors (6, 8, 10, 16) were implemented in the PLL feedback loop. The main PLL block—VCO works in 16 frequency ranges/modes, switched either manually or automatically. A dedicated automatic frequency mode switching circuit was developed to allow simple frequency tuning. Although the PLL was designed and simulated for a frequency range of 30 MHz-3 GHz, due to the SLVS interface limits, the measurements were done only up to 1.3 GHz. The full PLL functionality was experimentally verified, confirming a very low and frequency scalable power consumption (0.7 mW at 1 GHz).

  9. AN EMPIRICAL STUDY FOR RADIO FREQUENCY IDENTIFICATION (RFID ADOPTION BY SMEs IN THE TAIWANESE INFORMATION TECHNOLOGY (IT INDUSTRY

    Directory of Open Access Journals (Sweden)

    Hsin Chen

    2012-07-01

    Full Text Available Radio Frequency Identification (RFID technology represents a common standard for data storage and retrieval that could improve collaboration and data sharing between non-competing organisations. With the advent of RFID, organisations have the opportunity to rethink how their organisation will operate and integrate in the supply chain. Especially for Small to Medium Sized Enterprises (SMEs, that they have limited resources adopting such an innovative technology (i.e. RFID the adoption decision can be daunting. Literature indicates that SMEs that decide to go on with implementation have so far only a few guidelines from either private companies or public authorities regarding awareness on specific opportunities and risks. This research is therefore trying to explore in detail the factors that affect SMEs' RFID adoption in the Taiwan Information Technology (IT manufacturing industry. We are employing Exploratory Factor Analysis (EFA techniques and utilising a questionnaire survey in order to collect and analyse our data. After classifying the responding SMEs into three different adopters categories named ready adopter, initiator adopter and unprepared adopter using EFA technique our results show that each category has some specific adoption factors related to their unique situation. These are for ready adopters: cost and management, for initiator adopters: competitiveness and process efficiency and unprepared adopters: IT management difficulties, IT implementation difficulties and cost of implementation. A SMEs RFID adoption model is then proposed. It is anticipated that the findings of this research will not only enhance the research in RFID adoption in SMEs, but can also act as a reference for practitioners in the industry and researchers in the academic field.

  10. Issues Related to the Frequency of Exploratory Analyses by Evidence Review Groups in the NICE Single Technology Appraisal Process.

    Science.gov (United States)

    Kaltenthaler, Eva; Carroll, Christopher; Hill-McManus, Daniel; Scope, Alison; Holmes, Michael; Rice, Stephen; Rose, Micah; Tappenden, Paul; Woolacott, Nerys

    2017-06-01

    Evidence Review Groups (ERGs) critically appraise company submissions as part of the National Institute for Health and Care Excellence (NICE) Single Technology Appraisal (STA) process. As part of their critique of the evidence submitted by companies, the ERGs undertake exploratory analyses to explore uncertainties in the company's model. The aim of this study was to explore pre-defined factors that might influence or predict the extent of ERG exploratory analyses. The aim of this study was to explore predefined factors that might influence or predict the extent of ERG exploratory analyses. We undertook content analysis of over 400 documents, including ERG reports and related documentation for the 100 most recent STAs (2009-2014) for which guidance has been published. Relevant data were extracted from the documents and narrative synthesis was used to summarise the extracted data. All data were extracted and checked by two researchers. Forty different companies submitted documents as part of the NICE STA process. The most common disease area covered by the STAs was cancer (44%), and most ERG reports (n = 93) contained at least one exploratory analysis. The incidence and frequency of ERG exploratory analyses does not appear to be related to any developments in the appraisal process, the disease area covered by the STA, or the company's base-case incremental cost-effectiveness ratio (ICER). However, there does appear to be a pattern in the mean number of analyses conducted by particular ERGs, but the reasons for this are unclear and potentially complex. No clear patterns were identified regarding the presence or frequency of exploratory analyses, apart from the mean number conducted by individual ERGs. More research is needed to understand this relationship.

  11. A system utilizing radio frequency identification (RFID) technology to monitor individual rodent behavior in complex social settings.

    Science.gov (United States)

    Howerton, Christopher L; Garner, Joseph P; Mench, Joy A

    2012-07-30

    Pre-clinical investigation of human CNS disorders relies heavily on mouse models. However these show low predictive validity for translational success to humans, partly due to the extensive use of rapid, high-throughput behavioral assays. Improved assays to monitor rodent behavior over longer time scales in a variety of contexts while still maintaining the efficiency of data collection associated with high-throughput assays are needed. We developed an apparatus that uses radio frequency identification device (RFID) technology to facilitate long-term automated monitoring of the behavior of mice in socially or structurally complex cage environments. Mice that were individually marked and implanted with transponders were placed in pairs in the apparatus, and their locations continuously tracked for 24 h. Video observation was used to validate the RFID readings. The apparatus and its associated software accurately tracked the locations of all mice, yielding information about each mouse's location over time, its diel activity patterns, and the amount of time it was in the same location as the other mouse in the pair. The information that can be efficiently collected in this apparatus has a variety of applications for pre-clinical research on human CNS disorders, for example major depressive disorder and autism spectrum disorder, in that it can be used to quantify validated endophenotypes or biomarkers of these disorders using rodent models. While the specific configuration of the apparatus described here was designed to answer particular experimental questions, it can be modified in various ways to accommodate different experimental designs. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. The multipurpose application of radio frequency identification (RFID) in the Tourism industry: On a requirement analysis for employing RFID technology in the hotel sector

    OpenAIRE

    Hassannia, Raheleh

    2014-01-01

    ABSTRACT: This study tried to evaluate the effects of Radio Frequency Identification ( RFID) as the new and latest technological advancement towards the implementation of profit chain model (Heskett et al, 1997) on international tourists (inbound) in the case of North Cyprus. North Cyprus is blessed with natural endowments and proximity to tourist market, especially the European countries. It has numerous regional and geographical advantages for a full-blown tourism industry. The study has fo...

  13. A Study on Effect of Technological Change on the Frequency of Child Labour in the Indian Match Industry

    Science.gov (United States)

    Velayutham, C. Muthu; Palanivel, R. V.; Anbarasan, R.; Sinthuja, M.

    2012-08-01

    The Indian match industry in the southern state of Tamil Nadu has been characterized by child labour and a stagnant technology for over half a century. We investigate the technological changes and industrial restructuring, catalyzed by the changing duty structure that has moved the match industry towards greater mechanization. Our examination indicates that increased mechanization in the production processes has implied greater demand for skilled labour and a decline in child labour.

  14. Efficacy analysis of LDPC coded APSK modulated differential space-time-frequency coded for wireless body area network using MB-pulsed OFDM UWB technology.

    Science.gov (United States)

    Manimegalai, C T; Gauni, Sabitha; Kalimuthu, K

    2017-12-04

    Wireless body area network (WBAN) is a breakthrough technology in healthcare areas such as hospital and telemedicine. The human body has a complex mixture of different tissues. It is expected that the nature of propagation of electromagnetic signals is distinct in each of these tissues. This forms the base for the WBAN, which is different from other environments. In this paper, the knowledge of Ultra Wide Band (UWB) channel is explored in the WBAN (IEEE 802.15.6) system. The measurements of parameters in frequency range from 3.1-10.6 GHz are taken. The proposed system, transmits data up to 480 Mbps by using LDPC coded APSK Modulated Differential Space-Time-Frequency Coded MB-OFDM to increase the throughput and power efficiency.

  15. Glaucoma progression detection with frequency doubling technology (FDT) compared to standard automated perimetry (SAP) in the Groningen Longitudinal Glaucoma Study.

    Science.gov (United States)

    Wesselink, Christiaan; Jansonius, Nomdo M

    2017-09-01

    To determine the usefulness of frequency doubling perimetry (FDT) for progression detection in glaucoma, compared to standard automated perimetry (SAP). Data were used from 150 eyes of 150 glaucoma patients from the Groningen Longitudinal Glaucoma Study. After baseline, SAP was performed approximately yearly; FDT every other year. First and last visit had to contain both tests. Using linear regression, progression velocities were calculated for SAP (Humphrey Field Analyzer) mean deviation (MD) and FDT MD and the number of test locations with a total deviation probability below p glaucoma progression in patients who cannot perform SAP reliably. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  16. ICRF [ion cyclotron range of frequencies] coupling on DIII-D and the implications on ICRF technology development

    International Nuclear Information System (INIS)

    Hoffman, D.J.; Baity, F.W.; Mayberry, M.J.; Swain, D.W.

    1987-01-01

    Low-power coupling tests have been carried out with a prototype ion cyclotron range of frequencies (ICRF) compact loop antenna on the DIII-D tokamak. Plasma load resistance values higher than originally calculated are measured in ohmic and L-mode, beam-heated plasmas. Load resistance decreases by a factor of ∼2 in H-mode operation. When edge localized modes (ELMs) occur, the antenna loading increases transiently to several ohms. Results indicate that fast-wave ICRF antenna coupling characteristics are highly sensitive to changes in the edge plasma profiles associated with the H-mode regime

  17. Design, development and operational experience of radio frequency (RF) power systems/technologies for LEHIPA and 400 keV RFQ

    International Nuclear Information System (INIS)

    Pande, Manjiri; Shrotriya, Sandip; Patel, Niranjan

    2015-01-01

    The important technology development for ion accelerators of 'accelerator driven sub critical reactor system (ADS) is being done under the program of Department of Atomic Energy (DAE). In BARC (BARC) of DAE, technology development of 400 keV radio frequency quadrupole (RFQ) accelerator is done and a 20 MeV - low energy high intensity proton accelerator (LEHIPA) is under development. A 400 KeV deuteron RFQ accelerator is already developed at BARC and its 60 kW radio frequency (RF) power system required for beam acceleration has been designed, developed and tested both in CW mode and in pulse mode for full power of 60 leW. It has been successfully integrated with RFQ via 6-1/8'', 50 ohm RF transmission line, to accelerate proton beam up to 200 KeV energy and deuteron beam to 400 KeV energy. LEHIPA requires about 3 MW of RF power for its operation. So, three 1 MW, 352 MHz RF systems based on klystron will be developed for RFQ and two DTLs. The klystron based RF system for 3 MeV RFQ is under commissioning. Its various subsystems like energy less and insulated gate bipolar transistor (IGBT) based high voltage and low voltage bias supplies, a critical and fast protection and control system - handling various types of field signals, fast acting hard wired instrumentation circuits for critical signals, 100 kV crowbar with its circuits, pulsing circuits and RF circuits have been successfully designed, developed and integrated with klystron. Latest technology development of solid state RF amplifiers at 325 MHz and 350 MHz for normal and super conducting accelerators has attained a certain power level. This paper will discuss all these high power RF systems in detail. (author)

  18. Electrical properties of radio-frequency sputtered HfO{sub 2} thin films for advanced CMOS technology

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Pranab Kumar; Roy, Asim, E-mail: 28.asim@gmail.com [Department of Physics, National Institute of Technology Silchar, Silchar-788010, Assam, India Phone: +91-3842-224879 (India)

    2015-08-28

    The Hafnium oxide (HfO{sub 2}) high-k thin films have been deposited by radio frequency (rf) sputtering technique on p-type Si (100) substrate. The thickness, composition and phases of films in relation to annealing temperatures have been investigated by using cross sectional FE-SEM (Field Emission Scanning Electron Microscope) and grazing incidence x-ray diffraction (GI-XRD), respectively. GI-XRD analysis revealed that at annealing temperatures of 350°C, films phases change to crystalline from amorphous. The capacitance-voltage (C-V) and current-voltage (I-V) characteristics of the annealed HfO{sub 2} film have been studied employing Al/HfO{sub 2}/p-Si metal–oxide–semiconductor (MOS) structures. The electrical properties such as dielectric constant, interface trap density and leakage current density have been also extracted from C-V and I-V Measurements. The value of dielectric constant, interface trap density and leakage current density of annealed HfO{sub 2} film is obtained as 23,7.57×1011eV{sup −1} cm{sup −2} and 2.7×10{sup −5} Acm{sup −2}, respectively. In this work we also reported the influence of post deposition annealing onto the trapping properties of hafnium oxide and optimized conditions under which no charge trapping is observed into the dielectric stack.

  19. Comparison of visual field test results obtained through Humphrey matrix frequency doubling technology perimetry versus standard automated perimetry in healthy children.

    Science.gov (United States)

    Kocabeyoglu, Sibel; Uzun, Salih; Mocan, Mehmet Cem; Bozkurt, Banu; Irkec, Murat; Orhan, Mehmet

    2013-10-01

    The aim of this study was to compare the visual field test results in healthy children obtained via the Humphrey matrix 24-2 threshold program and standard automated perimetry (SAP) using the Swedish interactive threshold algorithm (SITA)-Standard 24-2 test. This prospective study included 55 healthy children without ocular or systemic disorders who underwent both SAP and frequency doubling technology (FDT) perimetry visual field testing. Visual field test reliability indices, test duration, global indices (mean deviation [MD], and pattern standard deviation [PSD]) were compared between the 2 tests using the Wilcoxon signed-rank test and paired t-test. The performance of the Humphrey field analyzer (HFA) 24-2 SITA-standard and frequency-doubling technology Matrix 24-2 tests between genders were compared with Mann-Whitney U-test. Fifty-five healthy children with a mean age of 12.2 ± 1.9 years (range from 8 years to 16 years) were included in this prospective study. The test durations of SAP and FDT were similar (5.2 ± 0.5 and 5.1 ± 0.2 min, respectively, P = 0.651). MD and the PSD values obtained via FDT Matrix were significantly higher than those obtained via SAP (P tests in terms of MD (r = 0.352, P = 0.008) and PSD (r = 0.329, P = 0.014) was observed. Children were able to complete both the visual test algorithms successfully within 6 min. However, SAP testing appears to be associated with less depression of the visual field indices of healthy children. FDT Matrix and SAP should not be used interchangeably in the follow-up of children.

  20. Comparison of visual field test results obtained through Humphrey matrix frequency doubling technology perimetry versus standard automated perimetry in healthy children

    Directory of Open Access Journals (Sweden)

    Sibel Kocabeyoglu

    2013-01-01

    Full Text Available Aims : The aim of this study was to compare the visual field test results in healthy children obtained via the Humphrey matrix 24-2 threshold program and standard automated perimetry (SAP using the Swedish interactive threshold algorithm (SITA-Standard 24-2 test. Materials and Methods: This prospective study included 55 healthy children without ocular or systemic disorders who underwent both SAP and frequency doubling technology (FDT perimetry visual field testing. Visual field test reliability indices, test duration, global indices (mean deviation [MD], and pattern standard deviation [PSD] were compared between the 2 tests using the Wilcoxon signed-rank test and paired t-test. The performance of the Humphrey field analyzer (HFA 24-2 SITA-standard and frequency-doubling technology Matrix 24-2 tests between genders were compared with Mann-Whitney U-test. Results: Fifty-five healthy children with a mean age of 12.2 ± 1.9 years (range from 8 years to 16 years were included in this prospective study. The test durations of SAP and FDT were similar (5.2 ± 0.5 and 5.1 ± 0.2 min, respectively, P = 0.651. MD and the PSD values obtained via FDT Matrix were significantly higher than those obtained via SAP (P < 0.001, and fixation losses and false negative errors were significantly less with SAP (P < 0.05. A weak positive correlation between the two tests in terms of MD (r = 0.352, P = 0.008 and PSD (r = 0.329, P = 0.014 was observed. Conclusion: Children were able to complete both the visual test algorithms successfully within 6 min. However, SAP testing appears to be associated with less depression of the visual field indices of healthy children. FDT Matrix and SAP should not be used interchangeably in the follow-up of children.

  1. The in-line measurement of plant cell biomass using radio frequency impedance spectroscopy as a component of process analytical technology.

    Science.gov (United States)

    Holland, Tanja; Blessing, Daniel; Hellwig, Stephan; Sack, Markus

    2013-10-01

    Radio frequency impedance spectroscopy (RFIS) is a robust method for the determination of cell biomass during fermentation. RFIS allows non-invasive in-line monitoring of the passive electrical properties of cells in suspension and can distinguish between living and dead cells based on their distinct behavior in an applied radio frequency field. We used continuous in situ RFIS to monitor batch-cultivated plant suspension cell cultures in stirred-tank bioreactors and compared the in-line data to conventional off-line measurements. RFIS-based analysis was more rapid and more accurate than conventional biomass determination, and was sensitive to changes in cell viability. The higher resolution of the in-line measurement revealed subtle changes in cell growth which were not accessible using conventional methods. Thus, RFIS is well suited for correlating such changes with intracellular states and product accumulation, providing unique opportunities for employing systems biotechnology and process analytical technology approaches to increase product yield and quality. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Prediction of Safety Stock Using Fuzzy Time Series (FTS and Technology of Radio Frequency Identification (RFID for Stock Control at Vendor Managed Inventory (VMI

    Directory of Open Access Journals (Sweden)

    Mashuri Chamdan

    2018-01-01

    Full Text Available This research was conducted by prediction of safety stock using Fuzzy Time Series (FTS and technology of Radio Frequency Identification (RFID for stock control at Vendor Managed Inventory (VMI. Well-controlled stock influenced company revenue and minimized cost. It discussed about information system of safety stock prediction developed through programming language of PHP. Input data consisted of demand got from automatic, online and real time acquisition using technology of RFID, then, sent to server and stored at online database. Furthermore, data of acquisition result was predicted by using algorithm of FTS applying universe of discourse defining and fuzzy sets determination. Fuzzy set result was continued to division process of universe of discourse in order to be to final step. Prediction result was displayed at information system dashboard developed. By using 60 data from demand data, prediction score was 450.331 and safety stock was 135.535. Prediction result was done by error deviation validation using Mean Square Percent Error of 15%. It proved that FTS was good enough in predicting demand and safety stock for stock control. For deeper analysis, researchers used data of demand and universe of discourse U varying at FTS to get various result based on test data used.

  3. Prediction of Safety Stock Using Fuzzy Time Series (FTS) and Technology of Radio Frequency Identification (RFID) for Stock Control at Vendor Managed Inventory (VMI)

    Science.gov (United States)

    Mashuri, Chamdan; Suryono; Suseno, Jatmiko Endro

    2018-02-01

    This research was conducted by prediction of safety stock using Fuzzy Time Series (FTS) and technology of Radio Frequency Identification (RFID) for stock control at Vendor Managed Inventory (VMI). Well-controlled stock influenced company revenue and minimized cost. It discussed about information system of safety stock prediction developed through programming language of PHP. Input data consisted of demand got from automatic, online and real time acquisition using technology of RFID, then, sent to server and stored at online database. Furthermore, data of acquisition result was predicted by using algorithm of FTS applying universe of discourse defining and fuzzy sets determination. Fuzzy set result was continued to division process of universe of discourse in order to be to final step. Prediction result was displayed at information system dashboard developed. By using 60 data from demand data, prediction score was 450.331 and safety stock was 135.535. Prediction result was done by error deviation validation using Mean Square Percent Error of 15%. It proved that FTS was good enough in predicting demand and safety stock for stock control. For deeper analysis, researchers used data of demand and universe of discourse U varying at FTS to get various result based on test data used.

  4. A review of radio frequency identification technology for the anatomic pathology or biorepository laboratory: Much promise, some progress, and more work needed.

    Science.gov (United States)

    Lou, Jerry J; Andrechak, Gary; Riben, Michael; Yong, William H

    2011-01-01

    Patient safety initiatives throughout the anatomic laboratory and in biorepository laboratories have mandated increasing emphasis on the need for accurately identifying and tracking biospecimen assets throughout their production lifecycle and for archiving/retrieval purposes. However, increasing production volume along with complex workflow characteristics, reliance on manual production processes, and required asset movement to disparate destinations throughout asset lifecycles continue to challenge laboratory efforts. Radio Frequency Identification (RFID) technology, use of radio waves to communicate data between electronic tags attached to objects and a reader, shows significant potential to facilitate and overcome these hurdles. Advantages over traditional barcode labeling include readability without direct line-of-sight alignment to the reader, ability to read multiple tags simultaneously, higher data storage capacity, faster data transmission rate, and capacity to perform multiple read-writes of data to the tag. Most importantly, use of radio waves decreases the need to manually scan each asset, and at each step, identification or tracking event is needed. Temperature monitoring by on-board sensors and three-dimensional position tracking are additional potential benefits of using RFID technology. To date, barriers to implementation of RFID systems in the anatomic laboratory include increased associated costs of tags and readers, system software, data security concerns, lack of specific data standards for stored information, and potential for technological obsolescence during decades of specimen storage. Novel RFID production techniques and increased production capacity are projected to lower costs of some tags to a few cents each. Potentially, information security concerns can be addressed by techniques such as shielding, data encryption, and tag pseudonyms. Commitment by stakeholder groups to develop RFID tag data standards for anatomic pathology and

  5. A review of radio frequency identification technology for the anatomic pathology or biorepository laboratory: Much promise, some progress, and more work needed

    Directory of Open Access Journals (Sweden)

    Jerry J Lou

    2011-01-01

    Full Text Available Patient safety initiatives throughout the anatomic laboratory and in biorepository laboratories have mandated increasing emphasis on the need for accurately identifying and tracking biospecimen assets throughout their production lifecycle and for archiving/retrieval purposes. However, increasing production volume along with complex workflow characteristics, reliance on manual production processes, and required asset movement to disparate destinations throughout asset lifecycles continue to challenge laboratory efforts. Radio Frequency Identification (RFID technology, use of radio waves to communicate data between electronic tags attached to objects and a reader, shows significant potential to facilitate and overcome these hurdles. Advantages over traditional barcode labeling include readability without direct line-of-sight alignment to the reader, ability to read multiple tags simultaneously, higher data storage capacity, faster data transmission rate, and capacity to perform multiple read-writes of data to the tag. Most importantly, use of radio waves decreases the need to manually scan each asset, and at each step, identification or tracking event is needed. Temperature monitoring by on-board sensors and three-dimensional position tracking are additional potential benefits of using RFID technology. To date, barriers to implementation of RFID systems in the anatomic laboratory include increased associated costs of tags and readers, system software, data security concerns, lack of specific data standards for stored information, and potential for technological obsolescence during decades of specimen storage. Novel RFID production techniques and increased production capacity are projected to lower costs of some tags to a few cents each. Potentially, information security concerns can be addressed by techniques such as shielding, data encryption, and tag pseudonyms. Commitment by stakeholder groups to develop RFID tag data standards for anatomic

  6. Single frequency semiconductor lasers

    CERN Document Server

    Fang, Zujie; Chen, Gaoting; Qu, Ronghui

    2017-01-01

    This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.

  7. Technology.

    Science.gov (United States)

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  8. Comparison of a fractional microplasma radio frequency technology and carbon dioxide fractional laser for the treatment of atrophic acne scars: a randomized split-face clinical study.

    Science.gov (United States)

    Zhang, Zhen; Fei, Ye; Chen, Xiangdong; Lu, Wenli; Chen, Jinan

    2013-04-01

    No studies have compared fractional microplasma radio frequency (RF) technology with the carbon dioxide fractional laser system (CO2 FS) in the treatment of atrophic acne scars in the same patient. To compare the efficacy and safety of fractional microplasma RF with CO2 FS in the treatment of atrophic acne scars. Thirty-three Asian patients received three sessions of a randomized split-face treatment of fractional microplasma RF or CO2 FS. Both modalities had a roughly equivalent effect. Échelle d'Évaluation Clinique Des Cicatrices d'Acné scores were significantly lower after fractional microplasma RF (from 51.1 ± 14.2 to 22.3 ± 8.6, 56.4% improvement) and CO2 FS (from 48.8 ± 15.1 to 19.9 ± 7.9, 59.2% improvement) treatments. There was no statistically significant difference between the two therapies. Twelve subjects (36.4%) experienced postinflammatory hyperpigmentation (PIH) after 30 of 99 treatment sessions (30.3%) on the CO2 FS side and no PIH was observed on the fractional microplasma RF sides. Both modalities have good effects on treating atrophic scars. PIH was not seen with the fractional microplasma RF, which might make it a better choice for patients with darker skin. © 2013 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  9. Comparison of Matrix Frequency-Doubling Technology (FDT) Perimetry with the SWEDISH Interactive Thresholding Algorithm (SITA) Standard Automated Perimetry (SAP) in Mild Glaucoma.

    Science.gov (United States)

    Doozandeh, Azadeh; Irandoost, Farnoosh; Mirzajani, Ali; Yazdani, Shahin; Pakravan, Mohammad; Esfandiari, Hamed

    2017-01-01

    This study aimed to compare second-generation frequency-doubling technology (FDT) perimetry with standard automated perimetry (SAP) in mild glaucoma. Forty-seven eyes of 47 participants who had mild visual field defect by SAP were included in this study. All participants were examined using SITA 24-2 (SITA-SAP) and matrix 24-2 (Matrix-FDT). The correlations of global indices and the number of defects on pattern deviation (PD) plots were determined. Agreement between two sets regarding the stage of visual field damage was assessed. Pearson's correlation, intra-cluster comparison, paired t-test, and 95% limit of agreement were calculated. Although there was no significant difference between global indices, the agreement between the two devices regarding the global indices was weak (the limit of agreement for mean deviation was -6.08 to 6.08 and that for pattern standard deviation was -4.42 to 3.42). The agreement between SITA-SAP and Matrix-FDT regarding the Glaucoma Hemifield Test (GHT) and the number of defective points in each quadrant and staging of the visual field damage was also weak. Because the correlation between SITA-SAP and Matrix-FDT regarding global indices, GHT, number of defective points, and stage of the visual field damage in mild glaucoma is weak, Matrix-FDT cannot be used interchangeably with SITA-SAP in the early stages of glaucoma.

  10. Technology

    Directory of Open Access Journals (Sweden)

    Xu Jing

    2016-01-01

    Full Text Available The traditional answer card reading method using OMR (Optical Mark Reader, most commonly, OMR special card special use, less versatile, high cost, aiming at the existing problems proposed a method based on pattern recognition of the answer card identification method. Using the method based on Line Segment Detector to detect the tilt of the image, the existence of tilt image rotation correction, and eventually achieve positioning and detection of answers to the answer sheet .Pattern recognition technology for automatic reading, high accuracy, detect faster

  11. Real-time monitoring for detection of retained surgical sponges and team motion in the surgical operation room using radio-frequency-identification (RFID) technology: a preclinical evaluation.

    Science.gov (United States)

    Kranzfelder, Michael; Zywitza, Dorit; Jell, Thomas; Schneider, Armin; Gillen, Sonja; Friess, Helmut; Feussner, Hubertus

    2012-06-15

    Technical progress in the surgical operating room (OR) increases constantly, facilitating the development of intelligent OR systems functioning as "safety backup" in the background of surgery. Precondition is comprehensive data retrieval to identify imminent risky situations and inaugurate adequate security mechanisms. Radio-frequency-identification (RFID) technology may have the potential to meet these demands. We set up a pilot study investigating feasibility and appliance reliability of a stationary RFID system for real-time surgical sponge monitoring (passive tagged sponges, position monitoring: mayo-stand/abdominal situs/waste bucket) and OR team tracking (active transponders, position monitoring: right/left side of OR table). In vitro: 20/20 sponges (100%) were detected on the mayo-stand and within the OR-phantom, however, real-time detection accuracy declined to 7/20 (33%) when the tags were moved simultaneously. All retained sponges were detected correctly. In vivo (animal): 7-10/10 sterilized sponges (70%-100%) were detected correctly within the abdominal cavity. OR-team: detection accuracy within the OR (surveillance antenna) and on both sides of the OR table (sector antenna) was 100%. Mean detection time for position change (left to right side and contrariwise) was 30-60 s. No transponder failure was noted. This is the first combined RFID system that has been developed for stationary use in the surgical OR. Preclinical evaluation revealed a reliable sponge tracking and correct detection of retained textiles (passive RFID) but also demonstrated feasibility of comprehensive data acquisition of team motion (active RFID). However, detection accuracy needs to be further improved before implementation into the surgical OR. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Relationships between range access as monitored by radio frequency identification technology, fearfulness, and plumage damage in free-range laying hens.

    Science.gov (United States)

    Hartcher, K M; Hickey, K A; Hemsworth, P H; Cronin, G M; Wilkinson, S J; Singh, M

    2016-05-01

    Severe feather-pecking (SFP), a particularly injurious behaviour in laying hens (Gallus gallus domesticus), is thought to be negatively correlated with range use in free-range systems. In turn, range use is thought to be inversely associated with fearfulness, where fearful birds may be less likely to venture outside. However, very few experiments have investigated the proposed association between range use and fearfulness. This experiment investigated associations between range use (time spent outside), fearfulness, plumage damage, and BW. Two pens of 50 ISA Brown laying hens (n=100) were fitted with radio frequency identification (RFID) transponders (contained within silicone leg rings) at 26 weeks of age. Data were then collected over 13 days. A total of 95% of birds accessed the outdoor run more than once per day. Birds spent an average duration of 6.1 h outside each day over 11 visits per bird per day (51.5 min per visit). The top 15 and bottom 15 range users (n=30), as determined by the total time spent on the range over 13 days, were selected for study. These birds were tonic immobility (TI) tested at the end of the trial and were feather-scored and weighed after TI testing. Birds with longer TI durations spent less time outside (P=0.01). Plumage damage was not associated with range use (P=0.68). The small group sizes used in this experiment may have been conducive to the high numbers of birds utilising the outdoor range area. The RFID technology collected a large amount of data on range access in the tagged birds, and provides a potential means for quantitatively assessing range access in laying hens. The present findings indicate a negative association between fearfulness and range use. However, the proposed negative association between plumage damage and range use was not supported. The relationships between range use, fearfulness, and SFP warrant further research.

  13. Chandrayaan-2 dual-frequency SAR: Further investigation into lunar water and regolith

    Science.gov (United States)

    Putrevu, Deepak; Das, Anup; Vachhani, J. G.; Trivedi, Sanjay; Misra, Tapan

    2016-01-01

    The Space Applications Centre (SAC), one of the major centers of the Indian Space Research Organization (ISRO), is developing a high resolution, dual-frequency Synthetic Aperture Radar as a science payload on Chandrayaan-2, ISRO's second moon mission. With this instrument, ISRO aims to further the ongoing studies of the data from S-band MiniSAR onboard Chandrayaan-1 (India) and the MiniRF of Lunar Reconnaissance Orbiter (USA). The SAR instrument has been configured to operate with both L- and S-bands, sharing a common antenna. The S-band SAR will provide continuity to the MiniSAR data, whereas L-band is expected to provide deeper penetration of the lunar regolith. The system will have a selectable slant-range resolution from 2 m to 75 m, along with standalone (L or S) and simultaneous (L and S) modes of imaging. Various features of the instrument like hybrid and full-polarimetry, a wide range of imaging incidence angles (∼10° to ∼35°) and the high spatial resolution will greatly enhance our understanding of surface properties especially in the polar regions of the Moon. The system will also help in resolving some of the ambiguities in interpreting high values of Circular Polarization Ratio (CPR) observed in MiniSAR data. The added information from full-polarimetric data will allow greater confidence in the results derived particularly in detecting the presence (and estimating the quantity) of water-ice in the polar craters. Being a planetary mission, the L&S-band SAR for Chandrayaan-2 faced stringent limits on mass, power and data rate (15 kg, 100 W and 160 Mbps respectively), irrespective of any of the planned modes of operation. This necessitated large-scale miniaturization, extensive use of on-board processing, and devices and techniques to conserve power. This paper discusses the scientific objectives which drive the requirement of a lunar SAR mission and presents the configuration of the instrument, along with a description of a number of features of the

  14. Ahşap Kurutmada Çevre Dostu bir Teknoloji : Yüksek Frekans / High-Frequency-Vacuum Wood Drying Technology

    Directory of Open Access Journals (Sweden)

    Cengiz Güler

    2012-12-01

    Full Text Available Katma değerli olmasına karşın kurutulması güç ağaç türlerine ait kalın kerestelerin, klasik kurutma metoduyla çok uzun sürelerde kurutulabilmesi ve istenen kalite düzeylerinin tam olarak elde edilememesi nedeniyle günümüzde Yüksek Frekans-Vakum kombinasyonlu kurutma metodu (YFV kendini göstermiş durumdadır. Geçmişte özellikle yatırım maliyetleri ve teknolojik altyapı zorlukları nedeniyle yaygınlaşamayan bu yöntem tekrar güncel hale gelmiştir. Bu kurutma metodunda prensip; ısı kaynağının, elektrik enerjisi olmasıdır. Dolayısı ile katı ve sıvı yakıta göre çevre dostu olduğu kabul edilebilir. Bu metot ile ağaç malzemeye gönderilen elektromanyetik dalgaların meydana getirdiği ısıdan yararlanmak suretiyle, kalın ve güç kuruyan, başlangıç nemi yüksek olan ağaç türlerinin %10 un altındaki sonuç nemlerine kadar çok kısa sürelerde kurutulması amaçlanmaktadır. Bu çalışmada öncelikle kurutma teknoloji hakkında genel bilgi verilmiştir. Daha sonra ise, günümüze kadar yapılan orijinal çalışmalar özetlenerek klasik yöntemle kurutulmasında önemli zorluklar olan, kurutma süresi çok uzun olan veya hiç kurutulamayan Meşe, Ceviz, Kayın, İroko, Kestane gibi ağaç türlerinin kalın kerestelerinin kurutulması denemelerinden elde edilen sonuçlar ortaya konulmuştur. Son bölümde ise elde edilen bu sonuçlar özellikle metodun donanım ve işletme giderleri, ortaya çıkan kurutma süreleri ve kalite düzeyleri, çevreye uyumlu teknoloji ekseninde ele alınmıştır. Ayrıca, bu metodun kereste kurutma dışında diğer tarımsal ürün ve atıkların kurutulmasında kullanılabilir olması nedeniyle çevreye uyumlu üretim ve geri dönüşüme sağladığı katkı da bu kapsamda irdelenmiştir. High-Frequency-Vacuum Wood Drying Technology High density wood species dried very long period’s and very low quality levels with method in conventional drying. So High

  15. Frequency standards

    CERN Document Server

    Riehle, Fritz

    2006-01-01

    Of all measurement units, frequency is the one that may be determined with the highest degree of accuracy. It equally allows precise measurements of other physical and technical quantities, whenever they can be measured in terms of frequency.This volume covers the central methods and techniques relevant for frequency standards developed in physics, electronics, quantum electronics, and statistics. After a review of the basic principles, the book looks at the realisation of commonly used components. It then continues with the description and characterisation of important frequency standards

  16. Frequency Synthesiser

    NARCIS (Netherlands)

    Drago, Salvatore; Sebastiano, Fabio; Leenaerts, Dominicus M.W.; Breems, Lucien J.; Nauta, Bram

    2016-01-01

    A low power frequency synthesiser circuit (30) for a radio transceiver, the synthesiser circuit comprising: a digital controlled oscillator configured to generate an output signal having a frequency controlled by an input digital control word (DCW); a feedback loop connected between an output and an

  17. Frequency synthesiser

    NARCIS (Netherlands)

    Drago, S.; Sebastiano, Fabio; Leenaerts, Dominicus Martinus Wilhelmus; Breems, Lucien Johannes; Nauta, Bram

    2010-01-01

    A low power frequency synthesiser circuit (30) for a radio transceiver, the synthesiser circuit comprising: a digital controlled oscillator configured to generate an output signal having a frequency controlled by an input digital control word (DCW); a feedback loop connected between an output and an

  18. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  19. Design Method for the Coil-System and the Soft Switching Technology for High-Frequency and High-Efficiency Wireless Power Transfer Systems

    Directory of Open Access Journals (Sweden)

    Xu Liu

    2017-12-01

    Full Text Available Increasing the resonant frequency of a wireless power transfer (WPT system effectively improves the power transfer efficiency between the transmit and the receive coils but significantly limits the power transfer capacity with the same coils. Therefore, this paper proposes a coil design method for a series-series (SS compensated WPT system which can power up the same load with the same DC input voltage & current but with increased resonant frequency. For WPT systems with higher resonant frequencies, a new method of realizing soft-switching by tuning driving frequency is proposed which does not need to change any hardware in the WPT system and can effectively reduce switching losses generated in the inverter. Eighty-five kHz, 200 kHz and 500 kHz WPT systems are built up to validate the proposed methods. Experimental results show that all these three WPT systems can deliver around 3.3 kW power to the same load (15 Ω with 200 V input voltage and 20 A input current as expected and achieve more than 85% coil-system efficiency and 79% system overall efficiency. With the soft-switching technique, inverter efficiency can be improved from 81.91% to 98.60% in the 500 kHz WPT system.

  20. Poème Numérique: Technology-Mediated Audience Participation (TMAP) using Smartphones and High-Frequency Sound IDs

    DEFF Research Database (Denmark)

    Kayali, Fares; Bartmann, Christoph; Hödl, Oliver

    2016-01-01

    . In this setup the audience needs to install a smartphone app. Using high-frequency sound IDs music samples and colors can be triggered on the audience’s smartphones without the need to have an internet connection. The resulting soundscape is determined by the samples and parameters selected by the artist...

  1. Frequency spirals

    International Nuclear Information System (INIS)

    Ottino-Löffler, Bertrand; Strogatz, Steven H.

    2016-01-01

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call “frequency spirals.” These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.

  2. Frequency spirals

    Energy Technology Data Exchange (ETDEWEB)

    Ottino-Löffler, Bertrand; Strogatz, Steven H., E-mail: strogatz@cornell.edu [Center for Applied Mathematics, Cornell University, Ithaca, New York 14853 (United States)

    2016-09-15

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call “frequency spirals.” These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.

  3. A novel research approach on the dynamic properties of photogenerated charge carriers at Ag{sub 2}S quantum-dots-sensitized TiO{sub 2} films by a frequency-modulated surface photovoltage technology

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Zhang, Wei [Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036 (China); Xie, Tengfeng; Wang, Dejun [College of Chemistry, Jilin University, Changchun 130012 (China); Song, Xi-Ming, E-mail: songlab@lnu.edu.cn [Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036 (China)

    2013-09-01

    Graphical abstract: The changed SPV with chopping frequencies indicate the separation speeds of photogenerated charge carriers in different films. - Highlights: • Ag{sub 2}S-sensitized TiO{sub 2} films show good photoelectric responses in visible-light region. • Frequency-modulated SPV give dynamic information and evidence of Ag{sub 2}S QDSSCs’ performance. • Frequency-modulated SPV can supply complementary information in the study of Ag{sub 2}S ODSSCs. - Abstract: Ag{sub 2}S quantum-dots-sensitized TiO{sub 2} films with different amount of Ag{sub 2}S were fabricated by a successive ionic layer adsorption and reaction (SILAR) method. The separation and transport of photogenerated charge carriers at different spectral regions were studied by the frequency-modulated surface photovoltage technology. Some novel dynamic information of photogenerated charge carriers in a wide spectral range is found. The results indicate that the rate and direction of separation (diffusion) for photogenerated charge carriers are closely related to the performance of quantum-dots-sensitized solar cells (QDSSCs) based on the Ag{sub 2}S/TiO{sub 2} nano-structure.

  4. Plasma ion sources and ion beam technology in microfabrications

    International Nuclear Information System (INIS)

    Ji, Lili

    2007-01-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 (micro)m-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance

  5. Tecnologia de identificação por radiofreqüência: fundamentos e aplicações em automação de bibliotecasRadio frequency identification technology: fundaments and applications in libraries automation

    Directory of Open Access Journals (Sweden)

    Angel Freddy Godoy Viera

    2007-01-01

    Full Text Available A tecnologia de identificação por radiofreqüência (RFID é a mais nova tecnologia que, de forma acelerada, está sendo introduzida nas principais bibliotecas do mundo para a gestão eletrônica do acervo e implementação de serviços de auto-atendimento, entre outros serviços. Este artigo tem por objetivo apresentar os princípios de funcionamento da tecnologia RFID, seus componentes, as barreiras na adoção desta tecnologia e exemplos de iniciativas de implementação em bibliotecas. A metodologia utilizada foi a pesquisa bibliográfica e documental sobre a tecnologia RFID com aplicação em bibliotecas. Os resultados do trabalho mostram que esta tecnologia está se expandindo cada vez mais em nível mundial, no âmbito das bibliotecas. Conclui-se que a tecnologia RFID é uma das tecnologias de automação de bibliotecas que deve ser considerada na gestão eletrônica do acervo, tendo em vista às grandes vantagens que oferece.The Radio Frequency Identification Technology (RFID is the newest technology that is being introduced with force in the libraries, for electronic management of the collection, implementation of automated check-in and check-out services, among others. The objective of this is to presents the principles of operations of the RFID technology, their components, the barriers for the adoption of the RFID technology and examples of implementation in libraries. The methodology used in this article was an extensive bibliographical and documental research about RFID technology. The results shows thatthe RFID technology are expanding more and more, at world level, in the extent of the libraries, for the facilities that the technology supplies. It conclude that the RFID technology is one of the technologies for libraries automation that they should beconsidered in the hour of updating the technological infrastructure for electronic management of the collection in libraries, considering his crescent adoption at world level due

  6. EVALUATION OF THE FREQUENCY OF DIAGNOSTICS OF COMPONENTS AND ASSEMBLIES FOR TRANSPORT AND TECHNOLOGICAL MACHINES ON THE BASIS OF HIDDEN MARKOV CHAINS

    Directory of Open Access Journals (Sweden)

    Andrey Borisovich Nikolaev

    2017-05-01

    Full Text Available In this article a statistical analysis of supply volumes of spare parts, components and accessories was carried out, with some persistent patterns and laws of distribution of failures of major components revealed. There are suggested evaluation models of components and assemblies reliability for the formation of order management procedures of spare parts, components and accessories for the maintenance and repair of transport and technological machines. For the purpose of identification of components operational condition there is proposed a model of hidden Markov chain which allows to classify the condition by indirect evidence, based on the collected statistics.

  7. Demand as frequency controlled reserve

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Togeby, M.; OEstergaard, J.

    2008-09-15

    Using demand as frequency controlled reserve (DFR) is an emerging technology which allow demand to participate actively in maintaining the system operation without reducing the energy service delivered to the customer and without need of user interaction. The basic premise is that traditional frequency controlled reserves from power plants and interconnections with neighbouring systems can be costly, slow and not fulfil the need for future power grids with a high share of wind power and fewer central power plants, and an intention to perform flexible operation such as is landing. Electricity demands, on the other hand, have advantages as frequency reserve including fast activation speed, smooth linear activation, low expected costs, and well-dispersed in the distribution grid. The main challenge of DFR is new methods for monitoring the available capacity. This project has investigated the technology of using electricity demands for providing frequency reserve to power systems. Within the project the potential and economy of DFR compatible loads in Denmark has been investigated, control logic has been designed, power system impact has been investigated, potential business models has been evaluated and an implementation strategy has been suggested. The tasks and goals of the project have been successfully accomplished based on which the conclusion and future recommendation are made. This project has developed the DFR technology that enables electricity demands to autonomously disconnect or reconnect to the grid in response to system frequency variations. The developed DFR technology is proved to be a promising technology from several perspectives. Technically, using DFR is feasible to provide reserves and enhance power system frequency control, while fulfilling technical requirements such as linear activation (or reconnection) according to frequency (or time). Environmentally, the DFR technology is pollution free in contrast to traditional reserves from generation

  8. Medium-Sized Mammals around a Radioactive Liquid Waste Lagoon at Los Alamos National Laboratory: Uptake of Contaminants and Evaluation of Radio-Frequency Identification Technology

    Energy Technology Data Exchange (ETDEWEB)

    Leslie A. Hansen; Phil R. Fresquez; Rhonda J. Robinson; John D. Huchton; Teralene S. Foxx

    1999-11-01

    Use of a radioactive liquid waste lagoon by medium-sized mammals and levels of tritium, other selected radionuclides, and metals in biological tissues of the animals were documented at Technical Area 53 (TA-53) of Los Alamos National Laboratory during 1997 and 1998. Rock squirrel (Spermophilus variegates), raccoon (Procyon lotor), striped skunk (Mephitis mephitis), and bobcat (Lynx rufus) were captured at TA-53 and at a control site on the Santa Fe National Forest. Captured animals were anesthetized and marked with radio-frequency identification (RFD) tags and/or ear tags. We collected urine and hair samples for tritium and metals (aluminum, antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, and thallium) analyses, respectively. In addition, muscle and bone samples from two rock squirrels collected from each of TA-53, perimeter, and regional background sites were tested for tritium, {sup 137}Cs, {sup 90}Sr, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, and total uranium. Animals at TA-53 were monitored entering and leaving the lagoon area using a RFID monitor to read identification numbers from the RFID tags of marked animals and a separate camera system to photograph all animals passing through the monitor. Cottontail rabbit (Sylvilagus spp.), rock squirrel, and raccoon were the species most frequently photographed going through the RFID monitor. Less than half of all marked animals in the lagoon area were detected using the lagoon. Male and female rock squirrels from the lagoon area had significantly higher tritium concentrations compared to rock squirrels from the control area. Metals tested were not significantly higher in rock squirrels from TA-53, although there was a trend toward increased levels of lead in some individuals at TA-53. Muscle and bone samples from squirrels in the lagoon area appeared to have higher levels of tritium, total uranium, and {sup 137}Cs than samples collected from perimeter and

  9. Frequency selective bolometers

    DEFF Research Database (Denmark)

    Kowitt, M.S.; Fixsen, D.J.; Goldin, A.

    1996-01-01

    We propose a concept for radiometry in the millimeter, the submillimeter, and the far-IR spectral regions, the frequency selective bolometer (FSB). This system uses a bolometer as a coupled element of a tuned quasi-optical interference filter in which the absorption, the transmission......-dimensional transmission-line model. Instruments based on FSB technology should have several advantages over current multiband bolometric radiometers including smaller and more compact cryogenic optics; reduced demands on cryostat size and weight, high coupling efficiency, minimum constraints on the geometry in the focal...

  10. Fast frequency divider circuit using combinational logic

    Science.gov (United States)

    Helinski, Ryan

    2017-05-30

    The various technologies presented herein relate to performing on-chip frequency division of an operating frequency of a ring oscillator (RO). Per the various embodiments herein, a conflict between RO size versus operational frequency can be addressed by dividing the output frequency of the RO to a frequency that can be measured on-chip. A frequency divider circuit (comprising NOR gates and latches, for example) can be utilized in conjunction with the RO on the chip. In an embodiment, the frequency divider circuit can include a pair of latches coupled to the RO to facilitate dividing the oscillating frequency of the RO by 2. In another embodiment, the frequency divider circuit can include four latches (operating in pairs) coupled to the RO to facilitate dividing the oscillating frequency of the RO by 4. A plurality of ROs can be MUXed to the plurality of ROs by a single oscillation-counting circuit.

  11. Determination of the exposure to electromagnetic fields arising from radiofrequency identification technology (RFID) application. Final report; Bestimmung der Exposition gegenueber elektromagnetischen Feldern, die durch den Einsatz von Radio Frequency Identification (RFID) Technologien entstehen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Gernot; Ueberbacher, Richard; Cecil, Stefan; Escorihuela-Navarro, Ana; Sainitzer, David; Weinfurter, Andreas [Seibersdorf Labor GmbH, Seibersdorf (Austria). Fachbereich EMV, Geschaeftsfeld EMC and Optics

    2012-08-15

    antennas closer than 20 cm. Regarding UHF (868 MHz) and microwave (2,45 GHz) reader devices it was demonstrated that exposure above the basic restriction is not to be expected as long as a minimum distance to the antennas of 10 cm - 20 cm is maintained. Concerning exposure from currently widest deployed Electronic Article Surveillance (EAS) technology also differences between technologies become obvious. While the numerous measurements and computations carried out did not give indications that radio frequency (RF)-EAS devices (operating frequency range typically 7,5-8,9 MHz) cause exposure above the basic restrictions defined in ICNIRP 1998, it could be demonstrated that for acoustomagnetic (AM)-EAS systems (operating frequency 58 kHz) exposure above the ICNIRP 1998 basic restrictions is possible, when approaching the antenna very closely, i.e., at unusual short distances of less than a few centimeters between the trunk and/or the head and the antenna. With respect to the assessment of the exposure caused by the RFID- and EAS devices with operating frequencies less than 10 MHz (particularly close to and below 100 kHz), it must be noted that the assessment summarized above was carried out based on the ICNIRP guidelines published in 1998, i.e., that the basic restriction in terms of current density was applied only to central nervous (CNS) tissue. It must be expected that the application of the new assessment concept recently published by ICNIRP 2010, which is based of induced electric field strength inside the tissue and which provides now also limits for all body tissues and not only for CNS tissue, may lead to significant different assessment results and conclusions for the mentioned device categories. Regarding possible electromagnetic interference with cardiac pacemakers, again RFID- and EAS-devices with working frequencies 58 kHz and 120 kHz and large (e.g., floor standing) antennas showed up to have the highest potential for interference compared to the other

  12. Fiscal 2000 technology trend survey. Survey and study report on the development of high-frequency devices to support IT revolution leading to energy use rationalization; 2000 nendo gijutsu doko to chosa. Energy shiyo gorika ni kakawaru IT kakumei wo support suru koshuha device no kaihatsu ni kansuru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Surveys and studies were conducted for the development of technologies basic to the construction of an ultrahigh-speed huge-capacity high-frequency radio access and communication network, especially the network infrastructure, in the several 10 to several 100 GHz band. Some surveys covered the positioning of high-frequency high-output device modules as the key component, needs for their use in radio communication equipment, devices to be needed for their construction, technologies for their manufacture, process technologies for their embodiment, basic technologies for their materials, and so forth. Some others covered research on the marketability of high-frequency devices in the future, development of relevant technologies abroad, and so forth. The mainstream of high-frequency devices these days rests on the secondary electron gas system based on GaAs and InP, and therefore it is intrinsically difficult for them to yield high outputs. It is deemed to be important to develop technologies based on novel semiconductor materials, such as nitride semiconductors which have excellent properties as materials, toward the construction of a network infrastructure for the next generation. (NEDO)

  13. Low-frequency characteristics extension for vibration sensors

    Institute of Scientific and Technical Information of China (English)

    杨学山; 高峰; 候兴民

    2004-01-01

    Traditional magneto-electric vibration sensors and servo accelerometers have severe shortcomings when used to measure vibration where low frequency components predominate. A low frequency characteristic extension for velocity vibration sensors is presented in this paper. The passive circuit technology, active compensation technology and the closedcycle pole compensation technology are used to extend the measurable range and to improve low frequency characteristics of sensors. Thses three types of low frequency velocity vibration sensors have been developed and widely adopted in China.

  14. Frequency conversion of structured light.

    Science.gov (United States)

    Steinlechner, Fabian; Hermosa, Nathaniel; Pruneri, Valerio; Torres, Juan P

    2016-02-15

    Coherent frequency conversion of structured light, i.e. the ability to manipulate the carrier frequency of a wave front without distorting its spatial phase and intensity profile, provides the opportunity for numerous novel applications in photonic technology and fundamental science. In particular, frequency conversion of spatial modes carrying orbital angular momentum can be exploited in sub-wavelength resolution nano-optics and coherent imaging at a wavelength different from that used to illuminate an object. Moreover, coherent frequency conversion will be crucial for interfacing information stored in the high-dimensional spatial structure of single and entangled photons with various constituents of quantum networks. In this work, we demonstrate frequency conversion of structured light from the near infrared (803 nm) to the visible (527 nm). The conversion scheme is based on sum-frequency generation in a periodically poled lithium niobate crystal pumped with a 1540-nm Gaussian beam. We observe frequency-converted fields that exhibit a high degree of similarity with the input field and verify the coherence of the frequency-conversion process via mode projection measurements with a phase mask and a single-mode fiber. Our results demonstrate the suitability of exploiting the technique for applications in quantum information processing and coherent imaging.

  15. Demand as Frequency Controlled Reserve

    DEFF Research Database (Denmark)

    Xu, Zhao; Togeby, Mikael; Østergaard, Jacob

    This report summaries the research outcomes of the project ‘Demand as Frequency Controlled Reserve (DFR)’, which has received the support from Energinet.dk’s PSO program, Grant no. 2005-2-6380. The objective of this project is to investigate the technology of using electricity demands for providing...

  16. Frequency noise in frequency swept fiber laser

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2013-01-01

    This Letter presents a measurement of the spectral content of frequency shifted pulses generated by a lightwave synthesized frequency sweeper. We found that each pulse is shifted in frequency with very high accuracy. We also discovered that noise originating from light leaking through the acousto......- optical modulators and forward propagating Brillouin scattering appear in the spectrum. © 2013 Optical Society of America....

  17. Overview of the Advanced High Frequency Branch

    Science.gov (United States)

    Miranda, Felix A.

    2015-01-01

    This presentation provides an overview of the competencies, selected areas of research and technology development activities, and current external collaborative efforts of the NASA Glenn Research Center's Advanced High Frequency Branch.

  18. Thermal-Diffusivity-Based Frequency References in Standard CMOS

    NARCIS (Netherlands)

    Kashmiri, S.M.

    2012-01-01

    In recent years, a lot of research has been devoted to the realization of accurate integrated frequency references. A thermal-diffusivity-based (TD) frequency reference provides an alternative method of on-chip frequency generation in standard CMOS technology. A frequency-locked loop locks the

  19. Multi-frequency excitation

    KAUST Repository

    Younis, Mohammad I.

    2016-01-01

    Embodiments of multi-frequency excitation are described. In various embodiments, a natural frequency of a device may be determined. In turn, a first voltage amplitude and first fixed frequency of a first source of excitation can be selected

  20. Newnes communications technology handbook

    CERN Document Server

    Lewis, Geoff

    1994-01-01

    Newnes Communications Technology Handbook provides a discussion on different topics relevant to communications technology. The book is comprised of 39 chapters that tackle a wide variety of concern in communications technology. The coverage of the text includes technologies, such as analog digital communications systems, radio frequency receiver, and satellite systems. The book also discusses some methods and techniques used in communications technology, including mixer signal processing, modulation and demodulation, and spread spectrum techniques. The text will be of great use to engineers, t

  1. Time and Frequency Activities at the NASA Jet Propulsion Laboratory

    National Research Council Canada - National Science Library

    Tjoelker, R. L

    2007-01-01

    ...). When implemented into the DSN Frequency and Timing Subsystem (FTS), these technologies provide precise and stable phase, frequency, and time references for NASA's deep space communication, tracking, navigation, and radio science activities...

  2. Superconducting Radio-Frequency Cavities

    Science.gov (United States)

    Padamsee, Hasan S.

    2014-10-01

    Superconducting cavities have been operating routinely in a variety of accelerators with a range of demanding applications. With the success of completed projects, niobium cavities have become an enabling technology, offering upgrade paths for existing facilities and pushing frontier accelerators for nuclear physics, high-energy physics, materials science, and the life sciences. With continued progress in basic understanding of radio-frequency superconductivity, the performance of cavities has steadily improved to approach theoretical capabilities.

  3. Nanometer frequency synthesis beyond the phase-locked loop

    CERN Document Server

    Xiu, Liming

    2012-01-01

    This text presents a latest technology in frequency synthesis. The technology includes three key components: Time-Average-Frequency, Flying-Adder architecture, and Digital-to-Frequency converter. The coverage presents the case, through real application examples, that this Flying-Adder technology creates a new frontier for modern IC design. In so doing, it also discusses the weaknesses of current frequency synthesis techniques in dealing with certain problems in modern IC design. The result is a complete picture of this technology for professional design engineers, researchers, and advanced students.

  4. Enhanced UXO Discrimination Using Frequency-Domain Electromagnetic Induction

    National Research Council Canada - National Science Library

    Nelson, H. H; Steinhurst, D. A; Barrow, B; Bell, T; Khadar, N; SanFilipo, B; Won, I. J

    2007-01-01

    .... With support from the Environmental Security Technology Certification Program, we have developed a frequency-domain electromagnetic induction sensor array to extend the discrimination capabilities of the MTADS...

  5. Multi-frequency excitation

    KAUST Repository

    Younis, Mohammad I.

    2016-03-10

    Embodiments of multi-frequency excitation are described. In various embodiments, a natural frequency of a device may be determined. In turn, a first voltage amplitude and first fixed frequency of a first source of excitation can be selected for the device based on the natural frequency. Additionally, a second voltage amplitude of a second source of excitation can be selected for the device, and the first and second sources of excitation can be applied to the device. After applying the first and second sources of excitation, a frequency of the second source of excitation can be swept. Using the methods of multi- frequency excitation described herein, new operating frequencies, operating frequency ranges, resonance frequencies, resonance frequency ranges, and/or resonance responses can be achieved for devices and systems.

  6. Frequency selectivity at very low centre frequencies

    DEFF Research Database (Denmark)

    Orellana, Carlos Andrés Jurado; Pedersen, Christian Sejer; Marquardt, Torsten

    2010-01-01

    measurements based on OAE suppression techniques and notched-noise masking data psychophysically measured for centre frequencies in the range 50-125 Hz, this study examines how individual differences in frequency selectivity, as well as in masking, may occur at very low CFs due to individual differences...

  7. [The 8-year follow-up study for clinical diagnostic potentials of frequency-doubling technology perimetry for perimetrically normal eyes of open-angle glaucoma patients with unilateral visual field loss].

    Science.gov (United States)

    Fan, X; Wu, L L; Xiao, G G; Ma, Z Z; Liu, F

    2018-03-11

    Objective: To analyze potentials of frequency-doubling technology perimetry (FDP) for diagnosing open-angle glaucoma (OAG) in perimetrically normal eyes of OAG patients diagnosed with standard automated perimetry (SAP) and relating factors from abnormalities on FDP to visual field loss on SAP. Methods: A prospective cohort study. Sixty-eight eyes of 68 OAG patients visiting the ophthalmic clinic of Peking University Third Hospital during November 2003 and October 2007 [32 primary open-angle glaucoma patients and 36 normal tension glaucoma patients, 32 males and 36 females, with an average age of (59±13) years] with unilateral field loss detected by SAP (Octopus101 tG2 program) were examined with the FDP N-30 threshold program (Humphrey Instruments) at baseline. Two groups, FDP positive group and FDP negative group, were divided based on the FDP results, and visual field examinations were followed by a series of SAP examinations for the perimetrically normal eyes over 8 years. During the follow-up, the difference of the converting rate of SAP tests between the two groups was analyzed. Differences between "convertors" and "non-convertors" of SAP tests in the FDP positive group, such as the cup-to-disk ratio and glaucomatous optic neuropathy rate, were also compared with the independent-sample t test or Wilcoxon two-sample test for continuous variable data and the χ(2) test or Fisher exact test for classified variable data and rates. Results: Forty-eight perimetrically normal eyes of 48 participants had complete data and a qualifying follow-up. Baseline FDP results were positive in 33 eyes and negative in 15 eyes. Of the eyes with positive FDP results, 22 eyes developed abnormal SAP results after 4.0 to 90.0 months (median 14.5 months) , whereas none of the eyes with negative FDP results developed abnormal SAP results. For perimetrically normal eyes in the FDP positive group, "converters" showed a greater cup-to-disk ratio (0.73±0.09 vs . 0.63±0.14, Wilcoxon two

  8. Lightweight, high-frequency transformers

    Science.gov (United States)

    Schwarze, G. E.

    1983-01-01

    The 25-kVA space transformer was developed under contract by Thermal Technology Laboratory, Buffalo, N. Y. The NASA Lewis transformer technology program attempted to develop the baseline technology. For the 25-kVA transformer the input voltage was chosen as 200 V, the output voltage as 1500 V, the input voltage waveform as square wave, the duty cycle as continuous, the frequency range (within certain constraints) as 10 to 40 kHz, the operating temperatures as 85 deg. and 130 C, the baseplate temperature as 50 C, the equivalent leakage inductance as less than 10 micro-h, the operating environment as space, and the life expectancy as 10 years. Such a transformer can also be used for aircraft, ship and terrestrial applications.

  9. AUTOMATIC FREQUENCY CONTROL SYSTEM

    Science.gov (United States)

    Hansen, C.F.; Salisbury, J.D.

    1961-01-10

    A control is described for automatically matching the frequency of a resonant cavity to that of a driving oscillator. The driving oscillator is disconnected from the cavity and a secondary oscillator is actuated in which the cavity is the frequency determining element. A low frequency is mixed with the output of the driving oscillator and the resultant lower and upper sidebands are separately derived. The frequencies of the sidebands are compared with the secondary oscillator frequency. deriving a servo control signal to adjust a tuning element in the cavity and matching the cavity frequency to that of the driving oscillator. The driving oscillator may then be connected to the cavity.

  10. Ultrasonic Technology in Duress Alarms.

    Science.gov (United States)

    Lee, Martha A.

    2000-01-01

    Provides the pros and cons of the most commonly used technologies in personal duress alarm systems in the school environment. Discussed are radio frequency devices, infrared systems, and ultrasonic technology. (GR)

  11. Frequency Control Performance Measurement and Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Illian, Howard F.

    2010-12-20

    Frequency control is an essential requirement of reliable electric power system operations. Determination of frequency control depends on frequency measurement and the practices based on these measurements that dictate acceptable frequency management. This report chronicles the evolution of these measurements and practices. As technology progresses from analog to digital for calculation, communication, and control, the technical basis for frequency control measurement and practices to determine acceptable performance continues to improve. Before the introduction of digital computing, practices were determined largely by prior experience. In anticipation of mandatory reliability rules, practices evolved from a focus primarily on commercial and equity issues to an increased focus on reliability. This evolution is expected to continue and place increased requirements for more precise measurements and a stronger scientific basis for future frequency management practices in support of reliability.

  12. Demonstration of the frequency modulation of optical signals with a high frequency deviation parameter

    International Nuclear Information System (INIS)

    Shamray, A V; Kozlov, A S; Il'ichev, I V; Petrov, M P

    2008-01-01

    A new type of an integrated optical modulator for the frequency coding of optical signals is developed and fabricated. The modulator operation is based on the original technology of the electric control of a Bragg grating. The frequency modulation of an optical signal with the frequency deviation of 25 GHz is demonstrated experimentally. The modular was used to transfer the ASCII code through an optical fibre. (optical communication)

  13. Static electromagnetic frequency changers

    CERN Document Server

    Rozhanskii, L L

    1963-01-01

    Static Electromagnetic Frequency Changers is about the theory, design, construction, and applications of static electromagnetic frequency changers, devices that used for multiplication or division of alternating current frequency. It is originally published in the Russian language. This book is organized into five chapters. The first three chapters introduce the readers to the principles of operation, the construction, and the potential applications of static electromagnetic frequency changers and to the principles of their design. The two concluding chapters use some hitherto unpublished work

  14. Eastern Frequency Response Study

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N.W.; Shao, M.; Pajic, S.; D' Aquila, R.

    2013-05-01

    This study was specifically designed to investigate the frequency response of the Eastern Interconnection that results from large loss-of-generation events of the type targeted by the North American Electric Reliability Corp. Standard BAL-003 Frequency Response and Frequency Bias Setting (NERC 2012a), under possible future system conditions with high levels of wind generation.

  15. DDC Descriptor Frequencies.

    Science.gov (United States)

    Klingbiel, Paul H.; Jacobs, Charles R.

    This report summarizes the frequency of use of the 7144 descriptors used for indexing technical reports in the Defense Documentation Center (DDC) collection. The descriptors are arranged alphabetically in the first section and by frequency in the second section. The frequency data cover about 427,000 AD documents spanning the interval from March…

  16. Cooking Appliances Using High-Frequency Heating

    OpenAIRE

    木村, 秀行; Hideyuki, KIMURA; (株)日立製作所機械研究所

    2007-01-01

    We have produced a guide suitable for people with no technical knowledge of cooking appliances that use high-frequency heating. In general, cooking appliances that use an electric heat source are popular since, they are simple to use because the offer easy heat control, are safe because they do not have naked flames, and do not make kitchens dirty because there is no exhaust. In recent years, high-efficiency cooking appliances using high-frequency heating technology have surged in popularity....

  17. Radio-frequency integrated-circuit engineering

    CERN Document Server

    Nguyen, Cam

    2015-01-01

    Radio-Frequency Integrated-Circuit Engineering addresses the theory, analysis and design of passive and active RFIC's using Si-based CMOS and Bi-CMOS technologies, and other non-silicon based technologies. The materials covered are self-contained and presented in such detail that allows readers with only undergraduate electrical engineering knowledge in EM, RF, and circuits to understand and design RFICs. Organized into sixteen chapters, blending analog and microwave engineering, Radio-Frequency Integrated-Circuit Engineering emphasizes the microwave engineering approach for RFICs. Provide

  18. Radio Frequency Energy Harvesting Sources

    Directory of Open Access Journals (Sweden)

    Action NECHIBVUTE

    2017-12-01

    Full Text Available This radio frequency (RF energy harvesting is an emerging technology and research area that promises to produce energy to run low-power wireless devices. The great interest that has recently been paid to RF harvesting is predominantly driven by the great progress in both wireless communication systems and broadcasting technologies that have availed a lot of freely propagating ambient RF energy. The principle aim of an RF energy harvesting system is to convert the received ambient RF energy into usable DC power. This paper presents a state of the art concise review of RF energy harvesting sources for low power applications, and also discusses open research questions and future research directions on ambient RF energy harvesting.

  19. Breakfast frequency among adolescents

    DEFF Research Database (Denmark)

    Pedersen, Trine Pagh; Holstein, Bjørn E; Damsgaard, Mogens Trab

    2016-01-01

    OBJECTIVE: To investigate (i) associations between adolescents' frequency of breakfast and family functioning (close relations to parents, quality of family communication and family support) and (ii) if any observed associations between breakfast frequency and family functioning vary...... (n 3054) from a random sample of forty-one schools. RESULTS: Nearly one-quarter of the adolescents had low breakfast frequency. Low breakfast frequency was associated with low family functioning measured by three dimensions. The OR (95 % CI) of low breakfast frequency was 1·81 (1·40, 2......·33) for adolescents who reported no close relations to parents, 2·28 (1·61, 3·22) for adolescents who reported low level of quality of family communication and 2·09 (1·39, 3·15) for adolescents who reported low level of family support. Joint effect analyses suggested that the odds of low breakfast frequency among...

  20. LOW FREQUENCY DAMPER

    Directory of Open Access Journals (Sweden)

    Radu BOGATEANU

    2009-09-01

    Full Text Available The low frequency damper is an autonomous equipment for damping vibrations with the 1-20Hz range.Its autonomy enables the equipment to be located in various mechanical systems, without requiring special hydraulic installations.The low frequency damper was designed for damping the low frequency oscillations occurring in the circuit controls of the upgraded IAR-99 Aircraft.The low frequency damper is a novelty in the aerospace field ,with applicability in several areas as it can be built up in an appropriate range of dimensions meeting the requirements of different beneficiaries. On this line an equipment able to damp an extended frequency range was performed for damping oscillations in the pipes of the nuclear power plants.This damper, tested in INCAS laboratories matched the requirements of the beneficiary.The low frequency damper is patented – the patent no. 114583C1/2000 is held by INCAS.

  1. Frequency Hopping Transceiver Multiplexer

    Science.gov (United States)

    1983-03-01

    ATC 17 ULR IHQ OCLI CPCTR ULTRA HIGH "OQS" UP TO 4X HIGHER THAN BEST INDUS- TRY STANDARD (ATC 100). MICROWAVE POWER, CURRENT. AND 0 RATINGS5...Q"W were assigned to element (FigC-2); which will be modelled into the transformer previously ment td . The center frequencies, "Q", frequency range...of the TD 1288 system. Temperature stability, change with time or storage. Flexure Frequency, or non-linear change over bandwidth. * Humidity

  2. Frequency Response Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    Etingov, Pavel V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kosterev, Dmitry [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dai, T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    Frequency response has received a lot of attention in recent years at the national level, which culminated in the development and approval of North American Electricity Reliability Corporation (NERC) BAL-003-1 Frequency Response and Frequency Bias Setting Reliability Standard. This report is prepared to describe the details of the work conducted by Pacific Northwest National Laboratory (PNNL) in collaboration with the Bonneville Power Administration and Western Electricity Coordinating Council (WECC) Joint Synchronized Information Subcommittee (JSIS) to develop a frequency response analysis tool (FRAT). The document provides the details on the methodology and main features of the FRAT. The tool manages the database of under-frequency events and calculates the frequency response baseline. Frequency response calculations are consistent with frequency response measure (FRM) in NERC BAL-003-1 for an interconnection and balancing authority. The FRAT can use both phasor measurement unit (PMU) data, where available, and supervisory control and data acquisition (SCADA) data. The tool is also capable of automatically generating NERC Frequency Response Survey (FRS) forms required by BAL-003-1 Standard.

  3. Electrothermal frequency reference

    NARCIS (Netherlands)

    Makinwa, K.A.A.; Kashmiri, S.M.

    2011-01-01

    An electrothermal frequency-locked loop (EFLL) circuit is described. This EFLL circuit includes an oscillator in a feedback loop. A drive circuit in the EFLL circuit generates a first signal having a fundamental frequency, and an electrothermal filter (ETF) in the EFLL circuit provides a second

  4. Low frequency noise study.

    Science.gov (United States)

    2007-04-01

    This report documents a study to investigate human response to the low-frequency : content of aviation noise, or low-frequency noise (LFN). The study comprised field : measurements and laboratory studies. The major findings were: : 1. Start-of-takeof...

  5. Single frequency intracavity SRO

    DEFF Research Database (Denmark)

    Abitan, Haim; Buchhave, Preben

    2000-01-01

    Summary form only given. A single resonance optical parametric oscillator (SRO) is inserted intracavity to a CW high power, single frequency, and ring Nd:YVO4 laser. We obtain a stable single frequency CW SRO with output at 1.7-1.9 μm (idler) and a resonating signal at 2.3-2.6 μm. The behavior...

  6. Fast fundamental frequency estimation

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær; Jensen, Tobias Lindstrøm; Jensen, Jesper Rindom

    2017-01-01

    Modelling signals as being periodic is common in many applications. Such periodic signals can be represented by a weighted sum of sinusoids with frequencies being an integer multiple of the fundamental frequency. Due to its widespread use, numerous methods have been proposed to estimate the funda...

  7. Frequency control modelling - basics

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Sørensen, Poul Ejnar; Zeni, Lorenzo

    2016-01-01

    The purpose of this report is to provide an introduction on how the system balance in an island system can be maintained by controlling the frequency. The power balance differential equation, which is fundamental in understanding the effect on the system frequency of the unbalance between...

  8. Low Frequency Space Array

    International Nuclear Information System (INIS)

    Dennison, B.; Weiler, K.W.; Johnston, K.J.

    1987-01-01

    The Low Frequency Space Array (LFSA) is a conceptual mission to survey the entire sky and to image individual sources at frequencies between 1.5 and 26 MHz, a frequency range over which the earth's ionosphere transmits poorly or not at all. With high resolution, high sensitivity observations, a new window will be opened in the electromagnetic spectrum for astronomical investigation. Also, extending observations down to such low frequencies will bring astronomy to the fundamental limit below which the galaxy becomes optically thick due to free-free absorption. A number of major scientific goals can be pursued with such a mission, including mapping galactic emission and absorption, studies of individual source spectra in a frequency range where a number of important processes may play a role, high resolution imaging of extended sources, localization of the impulsive emission from Jupiter, and a search for coherent emission processes. 19 references

  9. Fast Hopping Frequency Generation in Digital CMOS

    CERN Document Server

    Farazian, Mohammad; Gudem, Prasad S

    2013-01-01

    Overcoming the agility limitations of conventional frequency synthesizers in multi-band OFDM ultra wideband is a key research goal in digital technology. This volume outlines a frequency plan that can generate all the required frequencies from a single fixed frequency, able to implement center frequencies with no more than two levels of SSB mixing. It recognizes the need for future synthesizers to bypass on-chip inductors and operate at low voltages to enable the increased integration and efficiency of networked appliances. The author examines in depth the architecture of the dividers that generate the necessary frequencies from a single base frequency and are capable of establishing a fractional division ratio.   Presenting the first CMOS inductorless single PLL 14-band frequency synthesizer for MB-OFDMUWB makes this volume a key addition to the literature, and with the synthesizer capable of arbitrary band-hopping in less than two nanoseconds, it operates well within the desired range on a 1.2-volt power s...

  10. Time and Frequency Activities at NICT, Japan

    Science.gov (United States)

    2009-11-01

    The NITE (National Institute of Technology and Evaluation) provided an accreditation of ISO / IEC 17025 to NICT on 31 January 2003, and also provided...an accreditation of ISO / IEC 17025 for the frequency remote calibration system to NICT on 2 May 2006; the BMC of the system is 5 × 10 -14 since

  11. 47 CFR 101.147 - Frequency assignments.

    Science.gov (United States)

    2010-10-01

    ..., will be secondary to use of the band for emerging technology services. (22) Frequencies in these bands... video entertainment material. 932.00625/941.00625 MHz to 932.24375/941.24375 MHz is licensed by Economic... transmission of the licensee's products and information services, excluding video entertainment material to the...

  12. Time and frequency applications.

    Science.gov (United States)

    Hellwig, H

    1993-01-01

    An overview is given of the capabilities of atomic clocks and quartz crystal oscillators in terms of available precision of time and frequency signals. The generation, comparison, and dissemination of time and frequency is then discussed. The principal focus is to survey uses of time and frequency in navigation, communication, and science. The examples given include the Global Positioning System, a satellite-based global navigation system, and general and dedicated communication networks, as well as experiments in general relativity and radioastronomy. The number of atomic clocks and crystal oscillators that are in actual use worldwide is estimated.

  13. Electric current - frequency converter

    International Nuclear Information System (INIS)

    Kumahara, Tadashi; Kinbana, Setsuro.

    1967-01-01

    Herein disclosed is an improved simple electric current-frequency converter, the input current and output frequency linearity of which is widened to a range of four to five figures while compensating, for temperature. The converter may be used for computor processing and for telemetering the output signals from a nuclear reactor. The converter is an astable multivibrator which includes charging circuits comprising emitter-voltage compensated NPN transistors, a charged voltage detecting circuit of temperature compensated field effect transistors, and a transistor switching circuit for generating switching pulses independent of temperature. The converter exhibited a 0.7% frequency change within a range of 5 - 45 0 C and less than a 0.1% frequency drift after six hours of operation when the input current was maintained constant. (Yamaguchi, T.)

  14. High frequency breakdown voltage

    International Nuclear Information System (INIS)

    Chu, Thanh Duy.

    1992-03-01

    This report contains information about the effect of frequency on the breakdown voltage of an air gap at standard pressure and temperature, 76 mm Hg and O degrees C, respectively. The frequencies of interest are 47 MHz and 60 MHz. Additionally, the breakdown in vacuum is briefly considered. The breakdown mechanism is explained on the basis of collision and ionization. The presence of the positive ions produced by ionization enhances the field in the gap, and thus determines the breakdown. When a low-frequency voltage is applied across the gap, the breakdown mechanism is the same as that caused by the DC or static voltage. However, when the frequency exceeds the first critical value f c , the positive ions are trapped in the gap, increasing the field considerably. This makes the breakdown occur earlier; in other words, the breakdown voltage is lowered. As the frequency increases two decades or more, the second critical frequency, f ce , is reached. This time the electrons start being trapped in the gap. Those electrons that travel multiple times across the gap before reaching the positive electrode result in an enormous number of electrons and positive ions being present in the gap. The result is a further decrease of the breakdown voltage. However, increasing the frequency does not decrease the breakdown voltage correspondingly. In fact, the associated breakdown field intensity is almost constant (about 29 kV/cm).The reason is that the recombination rate increases and counterbalances the production rate, thus reducing the effect of the positive ions' concentration in the gap. The theory of collision and ionization does not apply to the breakdown in vacuum. It seems that the breakdown in vacuum is primarily determined by the irregularities on the surfaces of the electrodes. Therefore, the effect of frequency on the breakdown, if any, is of secondary importance

  15. Direct Load Control by AC Frequency Modulation

    DEFF Research Database (Denmark)

    Douglass, Philip James; You, Shi

    2012-01-01

    Fine-grained under frequency load shedding called “demand as a frequency controlled reserve“ (DFCR) has been shown to be a promising method of providingfrequency regulation service from distributed loads [1]. Micro-grids with a large portion of intermittent renewable generation will benefit greatly...... from this technology because their low inertia. The paper proposes a operating procedure for utilizing DFCR loads for energy balancing, expanding DFCR’s well known role as a power balancing resource. The system operator can use DFCR for energy balancing by adjusting the frequency controller...... of generators to schedule off-nominal system frequency values. The feasibility of the proposed system is evaluated on an existing small island power system....

  16. ALMA High Frequency Techniques

    Science.gov (United States)

    Meyer, J. D.; Mason, B.; Impellizzeri, V.; Kameno, S.; Fomalont, E.; Chibueze, J.; Takahashi, S.; Remijan, A.; Wilson, C.; ALMA Science Team

    2015-12-01

    The purpose of the ALMA High Frequency Campaign is to improve the quality and efficiency of science observing in Bands 8, 9, and 10 (385-950 GHz), the highest frequencies available to the ALMA project. To this end, we outline observing modes which we have demonstrated to improve high frequency calibration for the 12m array and the ACA, and we present the calibration of the total power antennas at these frequencies. Band-to-band (B2B) transfer and bandwidth switching (BWSW), techniques which improve the speed and accuracy of calibration at the highest frequencies, are most necessary in Bands 8, 9, and 10 due to the rarity of strong calibrators. These techniques successfully enable increased signal-to-noise on the calibrator sources (and better calibration solutions) by measuring the calibrators at lower frequencies (B2B) or in wider bandwidths (BWSW) compared to the science target. We have also demonstrated the stability of the bandpass shape to better than 2.4% for 1 hour, hidden behind random noise, in Band 9. Finally, total power observing using the dual sideband receivers in Bands 9 and 10 requires the separation of the two sidebands; this procedure has been demonstrated in Band 9 and is undergoing further testing in Band 10.

  17. Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation

    International Nuclear Information System (INIS)

    Gu, Lei; Livermore, Carol

    2011-01-01

    This paper presents experiments and models of an energy harvesting device in which a low frequency resonator impacts a high frequency energy harvesting resonator, resulting in energy harvesting predominantly at the system's coupled vibration frequency. Analysis shows that a reduced mechanical damping ratio during coupled vibration enables increased electrical power generation as compared with conventional technology. Experiments demonstrate that the efficiency of electrical power transfer is significantly improved with the coupled vibration approach. An average power output of 0.43 mW is achieved under 0.4g acceleration at 8.2 Hz, corresponding to a power density of 25.5 µW cm −3 . The measured power and power density at the resonant frequency are respectively 4.8 times and 13 times the measured peak values for a conventional harvester created from a low frequency beam alone

  18. An inkjet vision measurement technique for high-frequency jetting

    International Nuclear Information System (INIS)

    Kwon, Kye-Si; Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-01-01

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance

  19. An inkjet vision measurement technique for high-frequency jetting

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kye-Si, E-mail: kskwon@sch.ac.kr; Jang, Min-Hyuck; Park, Ha Yeong [Department of Mechanical Engineering, Soonchunhyang University 22, Soonchunhyang-Ro, Shinchang, Asan Chungnam 336-745 (Korea, Republic of); Ko, Hyun-Seok [Department of Electrical and Robot Engineering, Soonchunhyang University, 22, Soonchunhyang-Ro, Shinchang, Asan Chungnam 336-745 (Korea, Republic of)

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  20. Radio frequency heating of fusion plasms

    International Nuclear Information System (INIS)

    Swanson, D.G.

    1983-01-01

    The electron cyclotron range of frequencies has been used successfully for plasma heating perhaps longer than any other RF plasma heating scheme and is generally well understood. The problem has always been that the strong magnetic field required for fusion devices puts the electron cyclotron frequency so high that it is at or above the high power technology limit. The development of high power gyrotrons (> 200 kW) in recent years with steadily rising frequency limits, however, has brought about a renaissance of interest in ECRH as relativistic electron energies well in excess of those required for fusion have been obtained. The relativistic electron ring stabilization of the Elmo Bumpy Torus (EBT), which was achieved with ECRF, only at one point made the EBT the most promising new fusion concept of the last decade. The results also made clear that the physical understanding of the heating processes in this frequency range, so long neglected because of the technology limitation, are not fully understood so that more basic physics is necessary before ECRF can reach the potential that technology now seems to allow

  1. High Energy Single Frequency Resonant Amplifier, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

  2. intensity, duration and frequency of rainstorms in lokoja

    African Journals Online (AJOL)

    Shuaibu et al.

    This study analyzed the Intensity, duration and frequency (IDF) of rainstorms in Lokoja. ... INTRODUCTION. Rainfall worldwide has certain characteristics where it occurs. ..... State University of Science and Technology, Port. Harcourt, Nigeria.

  3. High Temperature, High Frequency Fuel Metering Valve, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Active Signal Technologies and its subcontractor Moog propose to develop a high-frequency actuator driven valve intended to achieve TRL 6 by the end of Phase II....

  4. Frequency Standards and Metrology

    Science.gov (United States)

    Maleki, Lute

    2009-04-01

    Preface / Lute Maleki -- Symposium history / Jacques Vanier -- Symposium photos -- pt. I. Fundamental physics. Variation of fundamental constants from the big bang to atomic clocks: theory and observations (Invited) / V. V. Flambaum and J. C. Berengut. Alpha-dot or not: comparison of two single atom optical clocks (Invited) / T. Rosenband ... [et al.]. Variation of the fine-structure constant and laser cooling of atomic dysprosium (Invited) / N. A. Leefer ... [et al.]. Measurement of short range forces using cold atoms (Invited) / F. Pereira Dos Santos ... [et al.]. Atom interferometry experiments in fundamental physics (Invited) / S. W. Chiow ... [et al.]. Space science applications of frequency standards and metrology (Invited) / M. Tinto -- pt. II. Frequency & metrology. Quantum metrology with lattice-confined ultracold Sr atoms (Invited) / A. D. Ludlow ... [et al.]. LNE-SYRTE clock ensemble: new [symbol]Rb hyperfine frequency measurement - spectroscopy of [symbol]Hg optical clock transition (Invited) / M. Petersen ... [et al.]. Precise measurements of S-wave scattering phase shifts with a juggling atomic clock (Invited) / S. Gensemer ... [et al.]. Absolute frequency measurement of the [symbol] clock transition (Invited) / M. Chwalla ... [et al.]. The semiclassical stochastic-field/atom interaction problem (Invited) / J. Camparo. Phase and frequency noise metrology (Invited) / E. Rubiola ... [et al.]. Optical spectroscopy of atomic hydrogen for an improved determination of the Rydberg constant / J. L. Flowers ... [et al.] -- pt. III. Clock applications in space. Recent progress on the ACES mission (Invited) / L. Cacciapuoti and C. Salomon. The SAGAS mission (Invited) / P. Wolf. Small mercury microwave ion clock for navigation and radioScience (Invited) / J. D. Prestage ... [et al.]. Astro-comb: revolutionizing precision spectroscopy in astrophysics (Invited) / C. E. Kramer ... [et al.]. High frequency very long baseline interferometry: frequency standards and

  5. High frequency energy measurements

    International Nuclear Information System (INIS)

    Stotlar, S.C.

    1981-01-01

    High-frequency (> 100 MHz) energy measurements present special problems to the experimenter. Environment or available electronics often limit the applicability of a given detector type. The physical properties of many detectors are frequency dependent and in some cases, the physical effect employed can be frequency dependent. State-of-the-art measurements generally involve a detection scheme in association with high-speed electronics and a method of data recording. Events can be single or repetitive shot requiring real time, sampling, or digitizing data recording. Potential modification of the pulse by the detector and the associated electronics should not be overlooked. This presentation will review typical applications, methods of choosing a detector, and high-speed detectors. Special considerations and limitations of some applications and devices will be described

  6. Initiating events frequency determination

    International Nuclear Information System (INIS)

    Simic, Z.; Mikulicic, V.; Vukovic, I.

    2004-01-01

    The paper describes work performed for the Nuclear Power Station (NPS). Work is related to the periodic initiating events frequency update for the Probabilistic Safety Assessment (PSA). Data for all relevant NPS initiating events (IE) were reviewed. The main focus was on events occurring during most recent operating history (i.e., last four years). The final IE frequencies were estimated by incorporating both NPS experience and nuclear industry experience. Each event was categorized according to NPS individual plant examination (IPE) initiating events grouping approach. For the majority of the IE groups, few, or no events have occurred at the NPS. For those IE groups with few or no NPS events, the final estimate was made by means of a Bayesian update with general nuclear industry values. Exceptions are rare loss-of-coolant-accidents (LOCA) events, where evaluation of engineering aspects is used in order to determine frequency.(author)

  7. From frequency to time-average-frequency a paradigm shift in the design of electronic system

    CERN Document Server

    Xiu, Liming

    2015-01-01

    Written in a simple, easy to understand style, this book will teach PLL users how to use new clock technology in their work in order to create innovative applications.       Investigates the clock frequency concept from a different perspective--at an application level       Teaches engineers to use this new clocking technology to create innovations in chip/system level, through real examples extracted from commercial products  

  8. Hg(+) Frequency Standards

    Science.gov (United States)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    2000-01-01

    In this paper we review the development of Hg(+) microwave frequency standards for use in high reliability and continuous operation applications. In recent work we have demonstrated short-term frequency stability of 3 x 10(exp -14)/nu(sub tau) when a cryogenic oscillator of stability 2-3 x 10(exp 15) was used a the local oscillator. The trapped ion frequency standard employs a Hg-202 discharge lamp to optically pump the trapped Hg(+)-199 clock ions and a helium buffer gas to cool the ions to near room temperature. We describe a small Hg(+) ion trap based frequency standard with an extended linear ion trap (LITE) architecture which separates the optical state selection region from the clock resonance region. This separation allows the use of novel trap configurations in the resonance region since no optical pumping is carried out there. A method for measuring the size of an ion cloud inside a linear trap with a 12-rod trap is currently being investigated. At approx. 10(exp -12), the 2nd order Doppler shift for trapped mercury ion frequency standards is one of the largest frequency offsets and its measurement to the 1% level would represent an advance in insuring the very long-term stability of these standards to the 10(exp -14) or better level. Finally, we describe atomic clock comparison experiments that can probe for a time variation of the fine structure constant, alpha = e(exp 2)/2(pi)hc, at the level of 10(exp -20)/year as predicted in some Grand Unified String Theories.

  9. LOFAR - low frequency array

    NARCIS (Netherlands)

    Bentum, Marinus Jan; Gunst, André

    Nog een paar maanden en dan wordt de grootste radiotelescoop ter wereld officieel geopend: LOFAR, de ‘Low Frequency Arraÿ'.LOFAR is een nieuwe radiotelescoop die in Nederland gebouwd wordt door ASTRON, de Stichting Astronomisch Onderzoek in Nederland. Met LOFAR heeft Nederland er straks een uniek

  10. Frequency and turmoil

    African Journals Online (AJOL)

    level of popular unrest focused on 'service delivery protests', but in recent years the broader conception of ... Drawing on the Centre for Social Change's archive of media reports, the largest database of its kind, and by comparing its data with .... impact on frequencies. The variation evident in the table is not accidental but is ...

  11. Lunch frequency among adolescents

    DEFF Research Database (Denmark)

    Pedersen, Trine Pagh; Holstein, Bjørn E; Krølner, Rikke

    2016-01-01

    frequency was most common among students who were boys, 13- and 15-year-olds, from medium and low family social class, descendants of immigrants, living in a single-parent family and in a reconstructed family. School-level analyses suggested that having access to a canteen at school was associated with low...

  12. Low frequency radioastronomy

    International Nuclear Information System (INIS)

    Zarka, Philippe; Cecconi, Baptiste; Tagger, Michel; Torchinsky, Steve; Picard, Philippe; Pezzani, Jacques; Cognard, Ismael; Boone, Frederic; Woan, Graham; Weber, Rodolphe; Gousset, Thierry; Lautridou, Pascal; Dallier, Richard

    2011-07-01

    Low frequency radioastronomy deals with the direct detection (below 100 MHz) and heterodyne detection (up to few GHz) of electromagnetic waves (phase and amplitude) followed by a time or spectral analysis. The 30. Goutelas school covered several aspects of radioastronomy involving various aspects of physics: non-thermal phenomena in plasmas and physics of magnetized plasmas, atomic and molecular physics, and particle physics. These proceedings comprise 17 lectures dealing with: 1 - Low-Frequency Radioastronomy Basics (P. Zarka); 2 - Radioastronomy Historical Highlights (S. A. Torchinsky); 3 - Antennas (P. Picard, J. Pezzani); 4 - Receptors (P. Picard, J. Pezzani); 5 - Pulsars chronometry: metrology in radioastronomy (I. Cognard); 6 - Interferometry as imaging technique (F. Boone); 7 - Radio propagation and scintillation (G. Woan); 8 - Square Kilometer Array (S. A. Torchinsky); 9 - Techniques against radio-electrical interferences in low-frequency radioastronomy (R. Weber); 10 - Introduction to poly-phase filtering (R. Weber); 11 - Three decades of Jupiter's radio-emission studies: from the Nancay deca-meter network to LOFAR (P. Zarka); 12 - Atmospheric showers and their radio counterpart (T. Gousset); 13 - From cosmic rays radio-detection to pulse radioastronomy (P. Lautridou, R. Dallier); 14 - The CODALEMA project (R. Dallier, P. Lautridou); 15 - Space-based radio measurements: Gonio-polarimetry (B. Cecconi); 16 - Radio astronomy from space (G. Woan); 17 - LOFAR: the Low Frequency Array and the French FLOW consortium (M. Tagger, P. Zarka)

  13. Radio Frequency Identification

    Indian Academy of Sciences (India)

    Radio Frequency Identification (RFID) has been around sinceearly 2000. Its use has currently become commonplace as thecost of RFID tags has rapidly decreased. RFID tags have alsobecome more 'intelligent' with the incorporation of processorsand sensors in them. They are widely used now in manyinnovative ways.

  14. Food frequency questionnaires.

    Science.gov (United States)

    Pérez Rodrigo, Carmen; Aranceta, Javier; Salvador, Gemma; Varela-Moreiras, Gregorio

    2015-02-26

    Food Frequency Questionnaires are dietary assessment tools widely used in epidemiological studies investigating the relationship between dietary intake and disease or risk factors since the early '90s. The three main components of these questionnaires are the list of foods, frequency of consumption and the portion size consumed. The food list should reflect the food habits of the study population at the time the data is collected. The frequency of consumption may be asked by open ended questions or by presenting frequency categories. Qualitative Food Frequency Questionnaires do not ask about the consumed portions; semi-quantitative include standard portions and quantitative questionnaires ask respondents to estimate the portion size consumed either in household measures or grams. The latter implies a greater participant burden. Some versions include only close-ended questions in a standardized format, while others add an open section with questions about some specific food habits and practices and admit additions to the food list for foods and beverages consumed which are not included. The method can be self-administered, on paper or web-based, or interview administered either face-to-face or by telephone. Due to the standard format, especially closed-ended versions, and method of administration, FFQs are highly cost-effective thus encouraging its widespread use in large scale epidemiological cohort studies and also in other study designs. Coding and processing data collected is also less costly and requires less nutrition expertise compared to other dietary intake assessment methods. However, the main limitations are systematic errors and biases in estimates. Important efforts are being developed to improve the quality of the information. It has been recommended the use of FFQs with other methods thus enabling the adjustments required. Copyright AULA MEDICA EDICIONES 2015. Published by AULA MEDICA. All rights reserved.

  15. Microwave Frequency Multiplier

    Science.gov (United States)

    Velazco, J. E.

    2017-02-01

    High-power microwave radiation is used in the Deep Space Network (DSN) and Goldstone Solar System Radar (GSSR) for uplink communications with spacecraft and for monitoring asteroids and space debris, respectively. Intense X-band (7.1 to 8.6 GHz) microwave signals are produced for these applications via klystron and traveling-wave microwave vacuum tubes. In order to achieve higher data rate communications with spacecraft, the DSN is planning to gradually furnish several of its deep space stations with uplink systems that employ Ka-band (34-GHz) radiation. Also, the next generation of planetary radar, such as Ka-Band Objects Observation and Monitoring (KaBOOM), is considering frequencies in the Ka-band range (34 to 36 GHz) in order to achieve higher target resolution. Current commercial Ka-band sources are limited to power levels that range from hundreds of watts up to a kilowatt and, at the high-power end, tend to suffer from poor reliability. In either case, there is a clear need for stable Ka-band sources that can produce kilowatts of power with high reliability. In this article, we present a new concept for high-power, high-frequency generation (including Ka-band) that we refer to as the microwave frequency multiplier (MFM). The MFM is a two-cavity vacuum tube concept where low-frequency (2 to 8 GHz) power is fed into the input cavity to modulate and accelerate an electron beam. In the second cavity, the modulated electron beam excites and amplifies high-power microwaves at a frequency that is a multiple integer of the input cavity's frequency. Frequency multiplication factors in the 4 to 10 range are being considered for the current application, although higher multiplication factors are feasible. This novel beam-wave interaction allows the MFM to produce high-power, high-frequency radiation with high efficiency. A key feature of the MFM is that it uses significantly larger cavities than its klystron counterparts, thus greatly reducing power density and arcing

  16. Radio Frequency Microelectromechanical Systems [Book Chapter Manuscript

    Energy Technology Data Exchange (ETDEWEB)

    Nordquist, Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Olsson, Roy H. [Defense Advanced Research Projects Agency (DARPA), Albuquerque, NM (United States)

    2014-12-15

    Radio frequency microelectromechanical system (RF MEMS) devices are microscale devices that achieve superior performance relative to other technologies by taking advantage of the accuracy, precision, materials, and miniaturization available through microfabrication. To do this, these devices use their mechanical and electrical properties to perform a specific RF electrical function such as switching, transmission, or filtering. RF MEMS has been a popular area of research since the early 1990s, and within the last several years, the technology has matured sufficiently for commercialization and use in commercial market systems.

  17. Laser Technology.

    Science.gov (United States)

    Gauger, Robert

    1993-01-01

    Describes lasers and indicates that learning about laser technology and creating laser technology activities are among the teacher enhancement processes needed to strengthen technology education. (JOW)

  18. Low frequency phase signal measurement with high frequency squeezing

    OpenAIRE

    Zhai, Zehui; Gao, Jiangrui

    2011-01-01

    We calculate the utility of high-frequency squeezed-state enhanced two-frequency interferometry for low-frequency phase measurement. To use the high-frequency sidebands of the squeezed light, a two-frequency intense laser is used in the interferometry instead of a single-frequency laser as usual. We find that the readout signal can be contaminated by the high-frequency phase vibration, but this is easy to check and avoid. A proof-of-principle experiment is in the reach of modern quantum optic...

  19. Evolution of Very High Frequency Power Supplies

    DEFF Research Database (Denmark)

    Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter

    2013-01-01

    The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits used...... in radio frequency transmission equipment helps to overcome those. However those circuits were not designed to meet the same requirements as power converters. This paper summarizes the contributions in recent years in application of very high frequency (VHF) technologies in power electronics, shows results...... of the recent advances and describes the remaining challenges. The presented results include a self-oscillating gate-drive, air core inductor optimizations, an offline LED driver with a power density of 8.9 W/cm3 and a 120 MHz, 9 W DC powered LED driver with 89 % efficiency as well as a bidirectional VHF...

  20. Laser semiconductor diode integrated with frequency doubler

    International Nuclear Information System (INIS)

    Tighineanu, I.; Dorogan, V.; Suruceanu, G.

    2003-01-01

    The invention relates to the technology of optoelectronic semiconductor devices and may be used in the production of laser semiconductor diodes integrated with optical nonlinear elements. The laser semiconductor diode integrated with frequency doubler includes a semiconductor substrate, a laser structure with waveguide. metal contacts in the waveguide of the laser structure it is formed a nanostructured field so that the nanostructure provides for the fulfillment of the phase synchronism conditions

  1. Coping with Radio Frequency Interference

    Science.gov (United States)

    Lewis, B. M.

    2009-01-01

    The radio spectrum is a finite resource, on which humanity makes many demands. And pressure on it is ever increasing with the development of new technology and ideas for radio services. After all, we all benefit from wifi and cell phones. Radio astronomers have a small percentage of the spectrum allocated to them at octave intervals in the metre-centimetre bands, and at important frequencies, such as that of the 21cm line of HI. Signals from other services, as well as from our own poorly-engineered equipment, sometimes contaminate our bands: these signals constitute RFI. These may totally obliterate the astronomical signal, or, in the case of CLOUDSAT, may be capable of completely destroying a receiver, which introduces us to the new possibility of 'destructive interference'. A geo-stationary satellite can block access to a piece of sky from one site. Good equipment design eliminates self-inflicted interference, while physical separation often provides adequate practical mitigation at many frequencies. However, new observatories end up being located in the West Australian desert or Antarctica. In future they may be on the back side of the Moon. But there is no Earth-bound protection via physical separation against satellite signals. Some mitigation can be achieved by frequent data dumps and the excision of RFI, or by real-time detection and blanking of the receiver, or by more sophisticated algoriths. Astronomers of necessity aim to achieve mitigation via coordination, at the local level, and by participating in spectrum management at the national and international levels. This involves them spending a lot of time in Geneva at the International Telegraphic Union protecting their access to spectrum, and access to clean spectrum from the L3 point and the far side of the Moon.

  2. Resonance frequency analysis

    Directory of Open Access Journals (Sweden)

    Rajiv K Gupta

    2011-01-01

    Full Text Available Initial stability at the placement and development of osseointegration are two major issues for implant survival. Implant stability is a mechanical phenomenon which is related to the local bone quality and quantity, type of implant, and placement technique used. The application of a simple, clinically applicable, non-invasive test to assess implant stability and osseointegration is considered highly desirable. Resonance frequency analysis (RFA is one of such techniques which is most frequently used now days. The aim of this paper was to review and analyze critically the current available literature in the field of RFA, and to also discuss based on scientific evidence, the prognostic value of RFA to detect implants at risk of failure. A search was made using the PubMed database to find all the literature published on "Resonance frequency analysis for implant stability" till date. Articles discussed in vivo or in vitro studies comparing RFA with other methods of implant stability measurement and articles discussing its reliability were thoroughly reviewed and discussed. A limited number of clinical reports were found. Various studies have demonstrated the feasibility and predictability of the technique. However, most of these articles are based on retrospective data or uncontrolled cases. Randomized, prospective, parallel-armed longitudinal human trials are based on short-term results and long-term follow up are still scarce in this field. Nonetheless, from available literature, it may be concluded that RFA technique evaluates implant stability as a function of stiffness of the implant bone interface and is influenced by factors such as bone type, exposed implant height above the alveolar crest. Resonance frequency analysis could serve as a non-invasive diagnostic tool for detecting the implant stability of dental implants during the healing stages and in subsequent routine follow up care after treatment. Future studies, preferably randomized

  3. High frequency asymptotic methods

    International Nuclear Information System (INIS)

    Bouche, D.; Dessarce, R.; Gay, J.; Vermersch, S.

    1991-01-01

    The asymptotic methods allow us to compute the interaction of high frequency electromagnetic waves with structures. After an outline of their foundations with emphasis on the geometrical theory of diffraction, it is shown how to use these methods to evaluate the radar cross section (RCS) of complex tri-dimensional objects of great size compared to the wave-length. The different stages in simulating phenomena which contribute to the RCS are reviewed: physical theory of diffraction, multiple interactions computed by shooting rays, research for creeping rays. (author). 7 refs., 6 figs., 3 insets

  4. Firewater system inadvertent actuation frequencies

    International Nuclear Information System (INIS)

    Schroeder, J.A.; Eide, S.A.

    1993-01-01

    This paper presents some recommended generic values for fire protection system inadvertent actuation frequencies. The frequencies are based on actual data from Department of Energy and commercial reactor plant facilities

  5. High Frequency Oscillatory Ventilation

    Directory of Open Access Journals (Sweden)

    AC Bryan

    1996-01-01

    Full Text Available High frequency oscillatory (HFO ventilation using low tidal volume and peak airway pressures is extremely efficient at eliminating carbon dioxide and raising pH in the newborn infant with acute respiratory failure. Improvement in oxygenation requires a strategy of sustained or repetitive inflations to 25 to 30 cm H2O in order to place the lung on the deflation limb of the pressure-volume curve. This strategy has also been shown to decrease the amount of secondary lung injury in animal models. Experience of the use of HFO ventilation as a rescue therapy as well as several published controlled trials have shown improved outcomes and a decrease in the use of extracorporeal membrane oxygenation when it has been used in newborns.

  6. Frequency agile solar radiotelescope

    Science.gov (United States)

    Bastian, Tim S.

    2003-02-01

    The Frequency Agile Solar Radiotelescope (FASR) is a solar-dedicated, ground based, interferometric array optimized to perform broadband imaging spectroscopy from ~ 0.1-30+ GHz. It will do so with the angular, spectral, and temporal resolution required to exploit radio emission from the Sun as a diagnostic of the wide variety of astrophysical processes that occur there. FASR represents a major advance over existing radioheliographs, and is expected to remain the world's premier solar radio instrument for two decades or more after completion. FASR will be a versatile and powerful instrument, providing unique data to a broad users community. Solar, solar-terrestrial, and space physicists will exploit FASR to attack a broad science program, including problems of fundamental interest: coronal magnetography, solar flares and particle acceleration, drivers of space weather, and the thermal structure and dynamics of the solar atmosphere. A design study and implementation planning are underway. Recent progress is reviewed here.

  7. Frequency scanning microstrip antennas

    DEFF Research Database (Denmark)

    Danielsen, Magnus; Jørgensen, Rolf

    1979-01-01

    The principles of using radiating microstrip resonators as elements in a frequency scanning antenna array are described. The resonators are cascade-coupled. This gives a scan of the main lobe due to the phase-shift in the resonator in addition to that created by the transmission line phase......-shift. Experimental results inX-band, in good agreement with the theory, show that it is possible to scan the main lobe an angle ofpm30degby a variation of the frequencypm300MHz, and where the 3 dB beamwidth is less than10deg. The directivity was 14.7 dB, while the gain was 8.1 dB. The efficiency might be improved...

  8. Radio frequency picosecond phototube

    International Nuclear Information System (INIS)

    Margaryan, A.; Carlini, R.; Ent, R.; Grigoryan, N.; Gyunashyan, K.; Hashimoto, O.; Hovater, K.; Ispiryan, M.; Knyazyan, S.; Kross, B.; Majewski, S.; Marikyan, G.; Mkrtchyan, M.; Parlakyan, L.; Popov, V.; Tang, L.; Vardanyan, H.; Yan, C.; Zhamkochyan, S.; Zorn, C.

    2006-01-01

    We propose a photon detector for recording low-level and ultra-fast optical signals, based on radio frequency (RF) analysis of low-energy photoelectrons (PEs). By using currently developed 500 MHz RF deflector, it is possible to scan circularly and detect single PEs, amplified in multi-channel plates (MCPs). The operation of the tube is investigated by means of thermionic electron source. It is demonstrated that the signals generated in the MCP can be processed event by event; by using available nanosecond electronics and that time resolution better than 20 ps can be achieved. Timing characteristics of the Cherenkov detector with RF phototube in a 'head-on' geometry is investigated by means of Monte Carlo simulation

  9. Radio frequency picosecond phototube

    Energy Technology Data Exchange (ETDEWEB)

    Margaryan, A. [Yerevan Physics Institute, 2 Alikhanian Brothers Street, Yerevan 375036 (Armenia)]. E-mail: mat@mail.yerphi.am; Carlini, R. [Thomas Jefferson National Accelerator Facility, Newport News VA 23606 (United States); Ent, R. [Thomas Jefferson National Accelerator Facility, Newport News VA 23606 (United States); Grigoryan, N. [Yerevan Physics Institute, 2 Alikhanian Brothers Street, Yerevan 375036 (Armenia); Gyunashyan, K. [Yerevan State University of Architecture and Construction, Yerevan (Armenia); Hashimoto, O. [Tohoku University, Sendai 98-77 (Japan); Hovater, K. [Thomas Jefferson National Accelerator Facility, Newport News VA 23606 (United States); Ispiryan, M. [University of Houston, 4800 Calhoun Rd, Houston TX 77204 (United States); Knyazyan, S. [Yerevan Physics Institute, 2 Alikhanian Brothers Street, Yerevan 375036 (Armenia); Kross, B. [Thomas Jefferson National Accelerator Facility, Newport News VA 23606 (United States); Majewski, S. [Thomas Jefferson National Accelerator Facility, Newport News VA 23606 (United States); Marikyan, G. [Yerevan Physics Institute, 2 Alikhanian Brothers Street, Yerevan 375036 (Armenia); Mkrtchyan, M. [Yerevan Physics Institute, 2 Alikhanian Brothers Street, Yerevan 375036 (Armenia); Parlakyan, L. [Yerevan Physics Institute, 2 Alikhanian Brothers Street, Yerevan 375036 (Armenia); Popov, V. [Thomas Jefferson National Accelerator Facility, Newport News VA 23606 (United States); Tang, L. [Thomas Jefferson National Accelerator Facility, Newport News VA 23606 (United States); Vardanyan, H. [Yerevan Physics Institute, 2 Alikhanian Brothers Street, Yerevan 375036 (Armenia); Yan, C. [Thomas Jefferson National Accelerator Facility, Newport News VA 23606 (United States); Zhamkochyan, S. [Yerevan Physics Institute, 2 Alikhanian Brothers Street, Yerevan 375036 (Armenia); Zorn, C. [Thomas Jefferson National Accelerator Facility, Newport News VA 23606 (United States)

    2006-10-15

    We propose a photon detector for recording low-level and ultra-fast optical signals, based on radio frequency (RF) analysis of low-energy photoelectrons (PEs). By using currently developed 500 MHz RF deflector, it is possible to scan circularly and detect single PEs, amplified in multi-channel plates (MCPs). The operation of the tube is investigated by means of thermionic electron source. It is demonstrated that the signals generated in the MCP can be processed event by event; by using available nanosecond electronics and that time resolution better than 20 ps can be achieved. Timing characteristics of the Cherenkov detector with RF phototube in a 'head-on' geometry is investigated by means of Monte Carlo simulation.

  10. Radio Frequency Interference Mitigation

    Science.gov (United States)

    An, T.; Chen, X.; Mohan, P.; Lao, B. Q.

    2017-09-01

    The observational facilities of radio astronomy keep constant upgrades and developments to achieve better capabilities including increasing the time of the data recording and frequency resolutions, and increasing the receiving and recording bandwidth. However in contrast, only a limited spectrum resource has been allocated to radio astronomy by the International Telecommunication Union, resulting in that the radio observational instrumentations are inevitably exposed to undesirable radio frequency interference (RFI) signals which originate mainly from the terrestrial human activity and are becoming stronger with time. RFIs degrade the quality of data and even lead to invalid data. The impact of RFIs on scientific outcome becomes more and more serious. In this article, the requirement for RFI mitigation is motivated, and the RFI characteristics, mitigation techniques, and strategies are reviewed. The mitigation strategies adopted at some representative observatories, telescopes, and arrays are also introduced. The advantages and shortcomings of the four classes of RFI mitigation strategies are discussed and presented, applicable at the connected causal stages: preventive, pre-detection, pre-correlation, and post-correlation. The proper identification and flagging of RFI is the key to the reduction of data loss and improvement in data quality, and is also the ultimate goal of developing RFI mitigation technique. This can be achieved through a strategy involving a combination of the discussed techniques in stages. The recent advances in the high speed digital signal processing and high performance computing allow for performing RFI excision of the large data volumes generated from large telescopes or arrays in both real time and offline modes, aiding the proposed strategy.

  11. Robust power system frequency control

    CERN Document Server

    Bevrani, Hassan

    2014-01-01

    This updated edition of the industry standard reference on power system frequency control provides practical, systematic and flexible algorithms for regulating load frequency, offering new solutions to the technical challenges introduced by the escalating role of distributed generation and renewable energy sources in smart electric grids. The author emphasizes the physical constraints and practical engineering issues related to frequency in a deregulated environment, while fostering a conceptual understanding of frequency regulation and robust control techniques. The resulting control strategi

  12. Sport Technology

    CSIR Research Space (South Africa)

    Kirkbride, T

    2007-11-01

    Full Text Available Technology is transforming the games themselves and at times with dire consequences. Tony Kirkbride, Head: CSIR Technology Centre said there are a variety of sports technologies and there have been advances in material sciences and advances...

  13. Assistive Technology

    Science.gov (United States)

    ... Page Resize Text Printer Friendly Online Chat Assistive Technology Assistive technology (AT) is any service or tool that helps ... be difficult or impossible. For older adults, such technology may be a walker to improve mobility or ...

  14. Nanoscale Imaging Technology for THz Frequency Transmission Microscopy

    Science.gov (United States)

    2014-12-16

    knowledge, this is the first time they have been achieved in large area graphene. (A well publicized study of large area graphene by Samsung [3] was not...Super Market for comparison) The transferred graphene still had a large Dirac point (~ 100 V), regardless of whether it was graphene grown in our lab

  15. Ohmic Contacts for Technology for Frequency Agile Digitally Synthesized Transmitters

    National Research Council Canada - National Science Library

    Mohney, Suzanne E

    2007-01-01

    ... bipolar transistors to smaller sizes. For p-type InAs, the combination of modest contact resistance and good thermal stability at 250 0 C was achieved with metallizations that had thin Pd layers deposited first, fol lowed by W or Ti/Pt...

  16. High frequency and microwave technology in the food industry

    International Nuclear Information System (INIS)

    Rochas, J.F.

    1990-01-01

    After a brief description of the dielectric theory, the author explains why the dielectric behaviour of food materials depends mainly on the properties of the water associated with the biological material. The practical consequences of this behaviour on the progress of a drying operation and on the quality of the final product are also discussed

  17. Nano technology

    International Nuclear Information System (INIS)

    Lee, In Sik

    2002-03-01

    This book is introduction of nano technology, which describes what nano technology is, alpha and omega of nano technology, the future of Korean nano technology and human being's future and nano technology. The contents of this book are nano period is coming, a engine of creation, what is molecular engineering, a huge nano technology, technique on making small things, nano materials with exorbitant possibility, the key of nano world the most desirable nano technology in bio industry, nano development plan of government, the direction of development for nano technology and children of heart.

  18. Rover Technologies

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop and mature rover technologies supporting robotic exploration including rover design, controlling rovers over time delay and for exploring . Technology...

  19. Frequency scaling of linear super-colliders

    International Nuclear Information System (INIS)

    Mondelli, A.; Chernin, D.; Drobot, A.; Reiser, M.; Granatstein, V.

    1986-06-01

    The development of electron-positron linear colliders in the TeV energy range will be facilitated by the development of high-power rf sources at frequencies above 2856 MHz. Present S-band technology, represented by the SLC, would require a length in excess of 50 km per linac to accelerate particles to energies above 1 TeV. By raising the rf driving frequency, the rf breakdown limit is increased, thereby allowing the length of the accelerators to be reduced. Currently available rf power sources set the realizable gradient limit in an rf linac at frequencies above S-band. This paper presents a model for the frequency scaling of linear colliders, with luminosity scaled in proportion to the square of the center-of-mass energy. Since wakefield effects are the dominant deleterious effect, a separate single-bunch simulation model is described which calculates the evolution of the beam bunch with specified wakefields, including the effects of using programmed phase positioning and Landau damping. The results presented here have been obtained for a SLAC structure, scaled in proportion to wavelength

  20. Influence of modulation frequency in rubidium cell frequency standards

    Science.gov (United States)

    Audoin, C.; Viennet, J.; Cyr, N.; Vanier, J.

    1983-01-01

    The error signal which is used to control the frequency of the quartz crystal oscillator of a passive rubidium cell frequency standard is considered. The value of the slope of this signal, for an interrogation frequency close to the atomic transition frequency is calculated and measured for various phase (or frequency) modulation waveforms, and for several values of the modulation frequency. A theoretical analysis is made using a model which applies to a system in which the optical pumping rate, the relaxation rates and the RF field are homogeneous. Results are given for sine-wave phase modulation, square-wave frequency modulation and square-wave phase modulation. The influence of the modulation frequency on the slope of the error signal is specified. It is shown that the modulation frequency can be chosen as large as twice the non-saturated full-width at half-maximum without a drastic loss of the sensitivity to an offset of the interrogation frequency from center line, provided that the power saturation factor and the amplitude of modulation are properly adjusted.

  1. Phase noise and frequency stability in oscillators

    CERN Document Server

    Rubiola, Enrico

    2009-01-01

    Presenting a comprehensive account of oscillator phase noise and frequency stability, this practical text is both mathematically rigorous and accessible. An in-depth treatment of the noise mechanism is given, describing the oscillator as a physical system, and showing that simple general laws govern the stability of a large variety of oscillators differing in technology and frequency range. Inevitably, special attention is given to amplifiers, resonators, delay lines, feedback, and flicker (1/f) noise. The reverse engineering of oscillators based on phase-noise spectra is also covered, and end-of-chapter exercises are given. Uniquely, numerous practical examples are presented, including case studies taken from laboratory prototypes and commercial oscillators, which allow the oscillator internal design to be understood by analyzing its phase-noise spectrum. Based on tutorials given by the author at the Jet Propulsion Laboratory, international IEEE meetings, and in industry, this is a useful reference for acade...

  2. Graphene radio frequency receiver integrated circuit.

    Science.gov (United States)

    Han, Shu-Jen; Garcia, Alberto Valdes; Oida, Satoshi; Jenkins, Keith A; Haensch, Wilfried

    2014-01-01

    Graphene has attracted much interest as a future channel material in radio frequency electronics because of its superior electrical properties. Fabrication of a graphene integrated circuit without significantly degrading transistor performance has proven to be challenging, posing one of the major bottlenecks to compete with existing technologies. Here we present a fabrication method fully preserving graphene transistor quality, demonstrated with the implementation of a high-performance three-stage graphene integrated circuit. The circuit operates as a radio frequency receiver performing signal amplification, filtering and downconversion mixing. All circuit components are integrated into 0.6 mm(2) area and fabricated on 200 mm silicon wafers, showing the unprecedented graphene circuit complexity and silicon complementary metal-oxide-semiconductor process compatibility. The demonstrated circuit performance allow us to use graphene integrated circuit to perform practical wireless communication functions, receiving and restoring digital text transmitted on a 4.3-GHz carrier signal.

  3. Parametric nanomechanical amplification at very high frequency.

    Science.gov (United States)

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  4. Second harmonic generation and sum frequency generation

    International Nuclear Information System (INIS)

    Pellin, M.J.; Biwer, B.M.; Schauer, M.W.; Frye, J.M.; Gruen, D.M.

    1990-01-01

    Second harmonic generation and sum frequency generation are increasingly being used as in situ surface probes. These techniques are coherent and inherently surface sensitive by the nature of the mediums response to intense laser light. Here we will review these two techniques using aqueous corrosion as an example problem. Aqueous corrosion of technologically important materials such as Fe, Ni and Cr proceeds from a reduced metal surface with layer by layer growth of oxide films mitigated by compositional changes in the chemical makeup of the growing film. Passivation of the metal surface is achieved after growth of only a few tens of atomic layers of metal oxide. Surface Second Harmonic Generation and a related nonlinear laser technique, Sum Frequency Generation have demonstrated an ability to probe the surface composition of growing films even in the presence of aqueous solutions. 96 refs., 4 figs

  5. Very High Frequency Switch-Mode Power Supplies

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre

    The importance of technology and electronics in our daily life is constantly increasing. At the same time portability and energy efficiency are currently some of the hottest topics. This creates a huge need for power converters in a compact form factor and with high efficiency, which can supply...... these electronic devices. This calls for new technologies in order to miniaturize the power electronics of today. One way to do this is by increasing the switching frequency dramatically and develop very high frequency switch mode power supplies. If these converters can be designed to operate efficiently, a huge...... size, weight and cost reduction can be achieved due to the smaller energy storing elements needed at these frequencies. The research presented in this thesis focuses on exactly this. First various technologies for miniaturization of power supplies are studied, e.g. piezo electric transformers, wide...

  6. Improvement of Frequency Locking Algorithm for Atomic Frequency Standards

    Science.gov (United States)

    Park, Young-Ho; Kang, Hoonsoo; Heyong Lee, Soo; Eon Park, Sang; Lee, Jong Koo; Lee, Ho Seong; Kwon, Taeg Yong

    2010-09-01

    The authors describe a novel method of frequency locking algorithm for atomic frequency standards. The new algorithm for locking the microwave frequency to the Ramsey resonance is compared with the old one that had been employed in the cesium atomic beam frequency standards such as NIST-7 and KRISS-1. Numerical simulations for testing the performance of the algorithm show that the new method has a noise filtering performance superior to the old one by a factor of 1.2 for the flicker signal noise and 1.4 for random-walk signal noise. The new algorithm can readily be used to enhance the frequency stability for a digital servo employing the slow square wave frequency modulation.

  7. Stable radio frequency dissemination by simple hybrid frequency modulation scheme.

    Science.gov (United States)

    Yu, Longqiang; Wang, Rong; Lu, Lin; Zhu, Yong; Wu, Chuanxin; Zhang, Baofu; Wang, Peizhang

    2014-09-15

    In this Letter, we propose a fiber-based stable radio frequency transfer system by a hybrid frequency modulation scheme. Creatively, two radio frequency signals are combined and simultaneously transferred by only one laser diode. One frequency component is used to detect the phase fluctuation, and the other one is the derivative compensated signal providing a stable frequency for the remote end. A proper ratio of the frequencies of the components is well maintained by parameter m to avoid interference between them. Experimentally, a stable 200 MHz signal is transferred over 100 km optical fiber with the help of a 1 GHz detecting signal, and fractional instability of 2×10(-17) at 10(5) s is achieved.

  8. Contributions to time-frequency synchronization in wireless systems

    OpenAIRE

    Koivisto, Tommi

    2015-01-01

    Time and frequency synchronization is an indispensable task for all wireless transceivers and systems. In modern wireless systems, such as 4G and future 5G systems, new wireless technologies set new challenges also to synchronization. In particular, new solutions for time and frequency synchronization are needed in multiantenna and cooperative systems. New research areas arise also in context of interference cancellation and cognitive radio systems where the transmission parameters of the sig...

  9. Demand as Frequency-controlled Reserve

    DEFF Research Database (Denmark)

    Bang, Christian; Rasmussen, Christian Brandt; Østergaard, Jacob

    with great enthusiasm from all DFR project members who have shown a memorable dedication to their work. Active control of electricity demand is a key technology when creating a more dynamic, wind power friendly energy system. In this demonstration project, we have developed and tested devices, which use...... electric loads to provide frequency controlled primary reserves. The devices collected data from domestic households and industrial loads covering i.e. circulation pumps, electrical domestic heating, bottle coolers, a wastewater treatment plant etc., that have been analysed and used for the papers...

  10. Cultures of High-frequency Trading

    DEFF Research Database (Denmark)

    Lange, Ann-Christina; Lenglet, Marc; Seyfert, Robert

    2016-01-01

    As part of ongoing work to lay a foundation for social studies of high-frequency trading (HFT), this paper introduces the culture(s) of HFT as a sociological problem relating to knowledge and practice. HFT is often discussed as a purely technological development, where all that matters is the speed...... of allocating, processing and transmitting data. Indeed, the speed at which trades are executed and data transmitted is accelerating, and it is fair to say that algorithms are now the primary interacting agents operating in the financial markets. However, we contend that HFT is first and foremost a cultural...

  11. Frequency-agile antennas for wireless communications

    CERN Document Server

    Petosa, Aldo

    2013-01-01

    Mobile data subscriptions are expected to more than double and mobile wireless traffic to increase by more than tenfold over the next few years. Proliferation of smart phones, tablets, and other portable devices are placing greater demands for services such as web browsing, global positioning, video streaming, and video telephony. Many of the proposed solutions to deal with these demands will have a significant impact on antenna designs. Antennas with frequency agility are considered a promising technology to help implement these new solutions.This book provides readers with a sense of the cap

  12. Radio frequency identification applications in hospital environments.

    Science.gov (United States)

    Wicks, Angela M; Visich, John K; Li, Suhong

    2006-01-01

    Radio frequency identification (RFID) technology has recently begun to receive increased interest from practitioners and academicians. This interest is driven by mandates from major retailers such as Wal-Mart, Target and Metro Group, and the United States Department of Defense, in order to increase the efficiency and visibility of material and information flows in the supply chain. However, supply chain managers do not have a monopoly on the deployment of RFID. In this article, the authors discuss the potential benefits, the areas of applications, the implementation challenges, and the corresponding strategies of RFID in hospital environments.

  13. Minimization of nanosatellite low frequency magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Belyayev, S. M., E-mail: belyayev@isr.lviv.ua [Lviv Centre of Institute for Space Research, Lviv 79060 (Ukraine); Royal Institute of Technology, Stockholm 11428 (Sweden); Dudkin, F. L. [Lviv Centre of Institute for Space Research, Lviv 79060 (Ukraine)

    2016-03-15

    Small weight and dimensions of the micro- and nanosatellites constrain researchers to place electromagnetic sensors on short booms or on the satellite body. Therefore the electromagnetic cleanliness of such satellites becomes a central question. This paper describes the theoretical base and practical techniques for determining the parameters of DC and very low frequency magnetic interference sources. One of such sources is satellite magnetization, the reduction of which improves the accuracy and stability of the attitude control system. We present design solutions for magnetically clean spacecraft, testing equipment, and technology for magnetic moment measurements, which are more convenient, efficient, and accurate than the conventional ones.

  14. Electronic technology

    International Nuclear Information System (INIS)

    Kim, Jin Su

    2010-07-01

    This book is composed of five chapters, which introduces electronic technology about understanding of electronic, electronic component, radio, electronic application, communication technology, semiconductor on its basic, free electron and hole, intrinsic semiconductor and semiconductor element, Diode such as PN junction diode, characteristic of junction diode, rectifier circuit and smoothing circuit, transistor on structure of transistor, characteristic of transistor and common emitter circuit, electronic application about electronic equipment, communication technology and education, robot technology and high electronic technology.

  15. Time-frequency analysis of pediatric murmurs

    Science.gov (United States)

    Lombardo, Joseph S.; Blodgett, Lisa A.; Rosen, Ron S.; Najmi, Amir-Homayoon; Thompson, W. Reid

    1998-05-01

    Technology has provided many new tools to assist in the diagnosis of pathologic conditions of the heart. Echocardiography, Ultrafast CT, and MRI are just a few. While these tools are a valuable resource, they are typically too expensive, large and complex in operation for use in rural, homecare, and physician's office settings. Recent advances in computer performance, miniaturization, and acoustic signal processing, have yielded new technologies that when applied to heart sounds can provide low cost screening for pathologic conditions. The short duration and transient nature of these signals requires processing techniques that provide high resolution in both time and frequency. Short-time Fourier transforms, Wigner distributions, and wavelet transforms have been applied to signals form hearts with various pathologic conditions. While no single technique provides the ideal solution, the combination of tools provides a good representation of the acoustic features of the pathologies selected.

  16. Energy and technology review

    International Nuclear Information System (INIS)

    1982-08-01

    Three areas of research are discussed: microcomputer technology applied to inspecting machined parts to determine roundness in ultraprecision measurements; development of an electrolytic technique for preparing dinitrogen pentoxide as a potentially less expensive step in the large-scale synthesis of the explosive HMX; and the application of frequency conversion to short wavelengths in the Novette and Nova lasers to improve the performance of inertial-confinement fusion targets

  17. On the Ongoing Evolution of Very High Frequency Power Supplies

    DEFF Research Database (Denmark)

    Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter

    2013-01-01

    The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits used...... in radio frequency transmission equipment helps to overcome those. However those circuits were not designed to meet the same requirements as power converters. This paper summarizes the contributions in recent years in application of very high frequency (VHF) technologies in power electronics, describes...

  18. The potential for very high-frequency gravitational wave detection

    International Nuclear Information System (INIS)

    Cruise, A M

    2012-01-01

    The science case for observing gravitational waves at frequencies in the millihertz-kilohertz range using LIGO, VIRGO, GEO600 or LISA is very strong and the first results are expected at these frequencies. However, as gravitational wave astronomy progresses beyond the first detections, other frequency bands may be worth exploring. Early predictions of gravitational wave emission from discrete sources at very much higher frequencies (megahertz and above) have been published and more recent studies of cosmological signals from inflation, Kaluza-Klein modes from gravitational interactions in brane worlds and plasma instabilities surrounding violent astrophysical events, are all possible sources. This communication examines current observational possibilities and the detector technology required to make meaningful observations at these frequencies. (paper)

  19. Counting Word Frequencies with Python

    Directory of Open Access Journals (Sweden)

    William J. Turkel

    2012-07-01

    Full Text Available Your list is now clean enough that you can begin analyzing its contents in meaningful ways. Counting the frequency of specific words in the list can provide illustrative data. Python has an easy way to count frequencies, but it requires the use of a new type of variable: the dictionary. Before you begin working with a dictionary, consider the processes used to calculate frequencies in a list.

  20. Effective switching frequency multiplier inverter

    Science.gov (United States)

    Su, Gui-Jia [Oak Ridge, TN; Peng, Fang Z [Okemos, MI

    2007-08-07

    A switching frequency multiplier inverter for low inductance machines that uses parallel connection of switches and each switch is independently controlled according to a pulse width modulation scheme. The effective switching frequency is multiplied by the number of switches connected in parallel while each individual switch operates within its limit of switching frequency. This technique can also be used for other power converters such as DC/DC, AC/DC converters.

  1. Automatic oscillator frequency control system

    Science.gov (United States)

    Smith, S. F. (Inventor)

    1985-01-01

    A frequency control system makes an initial correction of the frequency of its own timing circuit after comparison against a frequency of known accuracy and then sequentially checks and corrects the frequencies of several voltage controlled local oscillator circuits. The timing circuit initiates the machine cycles of a central processing unit which applies a frequency index to an input register in a modulo-sum frequency divider stage and enables a multiplexer to clock an accumulator register in the divider stage with a cyclical signal derived from the oscillator circuit being checked. Upon expiration of the interval, the processing unit compares the remainder held as the contents of the accumulator against a stored zero error constant and applies an appropriate correction word to a correction stage to shift the frequency of the oscillator being checked. A signal from the accumulator register may be used to drive a phase plane ROM and, with periodic shifts in the applied frequency index, to provide frequency shift keying of the resultant output signal. Interposition of a phase adder between the accumulator register and phase plane ROM permits phase shift keying of the output signal by periodic variation in the value of a phase index applied to one input of the phase adder.

  2. Radio Frequency Anechoic Chamber Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the design, manufacture, and test of antenna systems. The facility is also used as an electromagnetic compatibility/radio frequency interference...

  3. Numeracy, frequency, and Bayesian reasoning

    Directory of Open Access Journals (Sweden)

    Gretchen B. Chapman

    2009-02-01

    Full Text Available Previous research has demonstrated that Bayesian reasoning performance is improved if uncertainty information is presented as natural frequencies rather than single-event probabilities. A questionnaire study of 342 college students replicated this effect but also found that the performance-boosting benefits of the natural frequency presentation occurred primarily for participants who scored high in numeracy. This finding suggests that even comprehension and manipulation of natural frequencies requires a certain threshold of numeracy abilities, and that the beneficial effects of natural frequency presentation may not be as general as previously believed.

  4. Binaural beats at high frequencies.

    Science.gov (United States)

    McFadden, D; Pasanen, E G

    1975-10-24

    Binaural beats have long been believed to be audible only at low frequencies, but an interaction reminiscent of a binaural beat can sometimes be heard when different two-tone complexes of high frequency are presented to the two ears. The primary requirement is that the frequency separation in the complex at one ear be slightly different from that in the other--that is, that there be a small interaural difference in the envelope periodicities. This finding is in accord with other recent demonstrations that the auditory system is not deaf to interaural time differences at high frequencies.

  5. Radio frequency identification and its application in e-commerce

    OpenAIRE

    Bahr, Witold; Price, Brian J

    2016-01-01

    This chapter presents Radio Frequency Identification (RFID), which is one of the Automatic Identification and Data Capture (AIDC) technologies (Wamba and Boeck, 2008) and discusses the application of RFID in E-Commerce. Firstly RFID is defined and the tag and reader components of the RFID system are explained. Then historical context of RFID is briefly discussed. Next, RFID is contrasted with other AIDC technologies, especially the use of barcodes which are commonly applied in E-Commerce. Las...

  6. Low-frequency wideband vibration energy harvesting by using frequency up-conversion and quin-stable nonlinearity

    Science.gov (United States)

    Wang, Chen; Zhang, Qichang; Wang, Wei

    2017-07-01

    This work presents models and experiments of an impact-driven and frequency up-converted wideband piezoelectric-based vibration energy harvester with a quintuple-well potential induced by the combination effect of magnetic nonlinearity and mechanical piecewise-linearity. Analysis shows that the interwell motions during coupled vibration period enable to increase electrical power output in comparison to conventional frequency up-conversion technology. Besides, the quintuple-well potential with shallower potential wells could extend the harvester's operating bandwidth to lower frequencies. Experiments demonstrate our proposed approach can dramatically boost the measured power of the energy harvester as much as 35 times while its lower cut-off frequency is two times lower than that of a conventional counterpart. These results reveal our proposed approach shows promise for powering portable wireless smart devices from low-intensity, low-frequency vibration sources.

  7. Gaming Frequency and Academic Performance

    Science.gov (United States)

    Ip, Barry; Jacobs, Gabriel; Watkins, Alan

    2008-01-01

    There are numerous claims that playing computer and video games may be educationally beneficial, but there has been little formal investigation into whether or not the frequency of exposure to such games actually affects academic performance. This paper explores the issue by analysing the relationships between gaming frequency--measured as the…

  8. Micronuclei Frequency in Radiation Worker

    International Nuclear Information System (INIS)

    Sudprasert, Wanwisa; Jungtanasombut, Amornrat; Pakkong, Pannee

    2009-07-01

    Full text: The purpose of this study is to determine the micronuclei (MN) frequency in peripheral blood lymphocytes of 31 individuals occupationally exposed to radiation compared to 24 controls. The effect of donor gender, age, alcoholic consumption, tea/coffee consumption and radiation burden on MN frequency was studied. The results showed that MN frequencies observed for exposed employees were significantly higher than in controls (p = 0.000). The average MN frequency in control was 39.1 ± 3.7 MN/1000 BN while those of exposed group were 60.9 ± 12.3, 61.6 ± 13.0 and 62.6 ± 11.8 MN/1000 BN for the range of accumulative doses at 0.01-3.00, 3.01-6.00 and 6.01-9.00 mSv, respectively. Moreover, MN frequency showed a positive trend with increased accumulative doses as a linear-quadratic relation (R 2 = 0.4754). No correlation of MN frequency with gender, age and alcoholic consumption could be observed in both exposed and control groups. However, the effect of tea/coffee consumption on MN frequency was clearly observed in the exposed individuals (t-test = -2.018, sig. (2-tailed) = 0.030). These results indicate that the increased MN frequency, an indicator of chromosomal aberration, is associated with occupational exposure to low doses of ionizing radiation

  9. Low frequency electromagnetic field sensor

    International Nuclear Information System (INIS)

    Zhu Min; Zhou Yan; He Yicheng; Zheng Zhenxing; Liu Sunkun

    2000-01-01

    The measurement technique of low frequency electromagnetic field is reported. According to this principle, the authors have designed a sensor, which is used to measure the natural electromagnetic field, SLEMP and electromagnetic signals generated by some explosions. The frequency band of this sensor is from 0.08 Hz to 2 MHz

  10. Low-frequency-noise complaints

    DEFF Research Database (Denmark)

    Pedersen, Christian Sejer; Møller, Henrik; Persson-Waye, Kerstin

    2008-01-01

    From 203 cases of low-frequency complaints a random selection of twenty-one cases were investigated. The main aim of the investigation was to answer the question whether the annoyance is caused by an external physical sound or by a physically non-existing sound, i.e. low-frequency tinnitus. Noise...... of the complainants are annoyed by a physical sound (20-180 Hz), while others suffer from low-frequency tinnitus (perceived frequency 40-100 Hz). Physical sound at frequencies below 20 Hz (infrasound) is not responsible for the annoyance - or at all audible - in any of the investigated cases, and none...... of the complainants has extraordinary hearing sensitivity at low frequencies. For comparable cases of low-frequency noise complaints in general, it is anticipated that physical sound is responsible in a substantial part of the cases, while low-frequency tinnitus is responsible in another substantial part of the cases....

  11. Laser Spectroscopy and Frequency Combs

    International Nuclear Information System (INIS)

    Hänsch, Theodor W; Picqué, Nathalie

    2013-01-01

    The spectrum of a frequency comb, commonly generated by a mode-locked femtosecond laser consists of several hundred thousand precisely evenly spaced spectral lines. Such laser frequency combs have revolutionized the art measuring the frequency of light, and they provide the long-missing clockwork for optical atomic clocks. The invention of the frequency comb technique has been motivated by precision laser spectroscopy of the simple hydrogen atom. The availability of commercial instruments is facilitating the evolution of new applications far beyond the original purpose. Laser combs are becoming powerful instruments for broadband molecular spectroscopy by dramatically improving the resolution and recording speed of Fourier spectrometers and by creating new opportunities for highly multiplexed nonlinear spectroscopy, such as two-photon spectroscopy or coherent Raman spectroscopy. Other emerging applications of frequency combs range from fundamental research in astronomy, chemistry, or attosecond science to telecommunications and satellite navigation

  12. Casting Technology.

    Science.gov (United States)

    Wright, Michael D.; And Others

    1992-01-01

    Three articles discuss (1) casting technology as it relates to industry, with comparisons of shell casting, shell molding, and die casting; (2) evaporative pattern casting for metals; and (3) high technological casting with silicone rubber. (JOW)

  13. Living Technology

    DEFF Research Database (Denmark)

    2010-01-01

    This book is aimed at anyone who is interested in learning more about living technology, whether coming from business, the government, policy centers, academia, or anywhere else. Its purpose is to help people to learn what living technology is, what it might develop into, and how it might impact...... our lives. The phrase 'living technology' was coined to refer to technology that is alive as well as technology that is useful because it shares the fundamental properties of living systems. In particular, the invention of this phrase was called for to describe the trend of our technology becoming...... increasingly life-like or literally alive. Still, the phrase has different interpretations depending on how one views what life is. This book presents nineteen perspectives on living technology. Taken together, the interviews convey the collective wisdom on living technology's power and promise, as well as its...

  14. Technology transfer

    International Nuclear Information System (INIS)

    1998-01-01

    On the base of technological opportunities and of the environmental target of the various sectors of energy system this paper intend to conjugate the opportunity/objective with economic and social development through technology transfer and information dissemination [it

  15. Frequency stabilized lasers for space applications

    Science.gov (United States)

    Lieber, Mike; Adkins, Mike; Pierce, Robert; Warden, Robert; Wallace, Cynthia; Weimer, Carl

    2014-09-01

    metrology, spectroscopy, atomic clocks and geodesy. This technology will be a key enabler to several proposed NASA science missions. Although lasers such as Q-switched Nd-YAG are now commonly used in space, other types of lasers - especially those with narrow linewidth - are still few in number and more development is required to advance their technology readiness. In this paper we discuss a reconfigurable laser frequency stabilization testbed, and end-to-end modeling to support system development. Two important features enabling testbed flexibility are that the controller, signal processing and interfaces are hosted on a field programmable gate array (FPGA) which has spacequalified equivalent parts, and secondly, fiber optic relay of the beam paths. Given the nonlinear behavior of lasers, FPGA implementation is a key system reliability aspect allowing on-orbit retuning of the control system and initial frequency acquisition. The testbed features a dual sensor system, one based upon a high finesse resonator cavity which provides relative stability through Pound-Drever-Hall (PDH) modulation and secondly an absolute frequency reference by dither locking to an acetylene gas cell (GC). To provide for differences between ground and space implementation, we have developed an end-to-end Simulink/ Matlab®-based control system model of the testbed components including the important noise sources. This model is in the process of being correlated to the testbed data which then can be used for trade studies, and estimation of space-based performance and sensitivities. A 1530 nm wavelength semiconductor laser is used for this initial work.

  16. Earthing Technology

    NARCIS (Netherlands)

    Blok, Vincent

    2017-01-01

    In this article, we reflect on the conditions under which new technologies emerge in the Anthropocene and raise the question of how to conceptualize sustainable technologies therein. To this end, we explore an eco-centric approach to technology development, called biomimicry. We discuss opposing

  17. Technology Tiers

    DEFF Research Database (Denmark)

    Karlsson, Christer

    2015-01-01

    A technology tier is a level in a product system: final product, system, subsystem, component, or part. As a concept, it contrasts traditional “vertical” special technologies (for example, mechanics and electronics) and focuses “horizontal” feature technologies such as product characteristics...

  18. Charge domain filter operating up to 20 MHz clock frequency

    NARCIS (Netherlands)

    Gal, R.A.J.; Wallinga, Hans

    1983-01-01

    An analog sampled data low pass third order Butterworth filter has been realised in a buried channel CCD technology. This Charge Domain Filter, composed of transversal and recursive CCD filter sections, has been tested at clock frequencies up to 20 MHz.

  19. A simulation tool for radio frequency identification construction supply chains

    NARCIS (Netherlands)

    Gassel, van F.J.M.; Jansen, G.; Zavadskas, E.K.; Kaklauskas, A.; Skibniewski, M.J.

    2008-01-01

    Radio Frequency IDentification (RFID) technology is being used more and more in the construction industry. RFID tags and peripheral equipment are becoming cheaper and more suitable for application in the supply chain. However, it is difficult for contractors to estimate the costs and benefits of

  20. Authentication of Radio Frequency Identification Devices Using Electronic Characteristics

    Science.gov (United States)

    Chinnappa Gounder Periaswamy, Senthilkumar

    2010-01-01

    Radio frequency identification (RFID) tags are low-cost devices that are used to uniquely identify the objects to which they are attached. Due to the low cost and size that is driving the technology, a tag has limited computational capabilities and resources. This limitation makes the implementation of conventional security protocols to prevent…

  1. Radio-frequency energy in fusion power generation

    International Nuclear Information System (INIS)

    Lawson, J.Q.; Becraft, W.R.; Hoffman, D.J.

    1983-01-01

    The history of radio-frequency (rf) energy in fusion experiments is reviewed, and the status of current efforts is described. Potential applications to tasks other than plasma heating are described, as are the research and development needs of rf energy technology

  2. radio frequency based radio frequency based water level monitor

    African Journals Online (AJOL)

    eobe

    ABSTRACT. This paper elucidates a radio frequency (RF) based transmission and reception system used to remotely monitor and .... range the wireless can cover but in this prototype, it ... power supply to the system, the sensed water level is.

  3. Progress of Digital Communication Technology

    Science.gov (United States)

    Yamazaki, Satoshi; Asano, David K.

    In wireless communications, since transmitted signals are scattered from many objects, many propagation paths with different time delays are formed. When transmitting and receiving while moving in such an environment, received signals will be affected by intricate selective fading in both the frequency and time domains. In this technical note, first, the mechanism of fading phenomena is clarified, changes in previous phase compensation technology are surveyed, and a foundation for digital wireless-communications technology is provided.

  4. Radio Frequency Identification (RFID) in healthcare: a literature review.

    Science.gov (United States)

    Kolokathi, Aikaterini; Rallis, Panagiotis

    2013-01-01

    Creating and maintaining a safe and high-quality health care environment is of great importance for global community. New technologies and their applications can help us achieve this goal. Radio-Frequency Identification (RIFD) technology is considered one of those technologies and even today there are some interesting deployments in the health industry. As a result, this work aims to present the basic idea behind RFID solutions, problems that can be addressed with the adoption of RFID and the benefits of relative applications.

  5. GHz band frequency hopping PLL-based frequency synthesizers

    Institute of Scientific and Technical Information of China (English)

    XU Yong; WANG Zhi-gong; GUAN Yu; XU Zhi-jun; QIAO Lu-feng

    2005-01-01

    In this paper we describe a full-integrated circuit containing all building blocks of a completed PLL-based synthesizer except for low pass filter(LPF).The frequency synthesizer is designed for a frequency hopping (FH) transceiver operating up to 1.5 GHz as a local oscillator. The architecture of Voltage Controlled Oscillator (VCO) is optimized to get better performance, and a phase noise of -111.85-dBc/Hz @ 1 MHz and a tuning range of 250 MHz are gained at a centre frequency of 1.35 GHz.A novel Dual-Modulus Prescaler(DMP) is designed to achieve a very low jitter and a lower power.The settling time of PLL is 80 μs while the reference frequency is 400 KHz.This monolithic frequency synthesizer is to integrate all main building blocks of PLL except for the low pass filter,with a maximum VCO output frequency of 1.5 GHz,and is fabricated with a 0.18 μm mixed signal CMOS process. Low power dissipation, low phase noise, large tuning range and fast settling time are gained in this design.

  6. Radiofrequency identification technology and sea turtles

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study investigated the compatibility of various PIT tag scanner technologies and available PIT tag frequencies, as well as testing the read depth potential of...

  7. Sensemaking technologies

    DEFF Research Database (Denmark)

    Madsen, Charlotte Øland

    Research scope: The scope of the project is to study technological implementation processes by using Weick's sensemaking concept (Weick, 1995). The purpose of using a social constructivist approach to investigate technological implementation processes is to find out how new technologies transform......, Orlikowski 2000). Viewing the use of technology as a process of enactment opens up for investigating the social processes of interpreting new technology into the organisation (Orlikowski 2000). The scope of the PhD project will therefore be to gain a deeper understanding of how the enactment of new...... & Brass, 1990; Kling 1991; Orlikowski 2000). It also demonstrates that technology is a flexible variable adapted to the organisation's needs, culture, climate and management philosophy, thus leading to different uses and outcomes of the same technology in different organisations (Barley 1986; 1990...

  8. Technology roadmaps

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, B. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2003-07-01

    The purpose of a technology road map is to define the state of a current technology, relevant market issues, and future market needs; to develop a plan that industry can follow to provide these new products and services; and to map technology pathways and performance goals for bringing these products and services to market. The three stages (planning, implementation, and reviewing and updating), benefits, and status of the Clean Coal Technology Roadmap are outlined. Action Plan 2000, a $1.7 million 2000 Climate Change Technology and Innovation Program, which uses the technology roadmapping process, is described. The members of the management steering committee for the Clean Coal Technology Roadmap are listed. A flowsheet showing activities until November 2004, when the final clean coal road map is due, is included.

  9. Appropriate Technology as Indian Technology.

    Science.gov (United States)

    Barry, Tom

    1979-01-01

    Describes the mounting enthusiasm of Indian communities for appropriate technology as an inexpensive means of providing much needed energy and job opportunities. Describes the development of several appropriate technology projects, and the goals and activities of groups involved in utilizing low scale solar technology for economic development on…

  10. Geographies of High Frequency Trading

    DEFF Research Database (Denmark)

    Grindsted, Thomas Skou

    2016-01-01

    This paper investigates the geographies of high frequency trading. Today shares shift hands within micro seconds, giving rise to a form of financial geographies termed algorithmic capitalism. This notion refers to the different spatio-temporalities produced by high frequency trading, under...... the valuation of time. As high frequency trading accelerates financial markets, the paper examines the spatio-temporalities of automated trading by the ways in which the speed of knowledge exploitation in financial markets is not only of interest, but also the expansion between different temporalities....... The paper demonstrates how the intensification of time-space compression produces radical new dynamics in the financial market and develops information rent in HFT as convertible to a time rent and a spatio-temporal rent. The final section discusses whether high frequency trading only responds to crises...

  11. Frequency-Modulation Correlation Spectrometer

    Science.gov (United States)

    Margolis, J. S.; Martonchik, J. V.

    1985-01-01

    New type of correlation spectrometer eliminates need to shift between two cells, one empty and one containing reference gas. Electrooptical phase modulator sinusoidally shift frequencies of sample transmission spectrum.

  12. Technology '90

    International Nuclear Information System (INIS)

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report

  13. Gaming frequency and academic performance

    OpenAIRE

    Ip, Barry; Jacobs, Gabriel; Watkins, Alan

    2008-01-01

    There are numerous claims that playing computer and video games may be educationally beneficial, but there has been little formal investigation into whether or not the frequency of exposure to such games actually affects academic performance. This paper explores the issue by analysing the relationships between gaming frequency –measured as the amount of time undergraduate students spend playing games in their free time – and their academic performance as measured by their examination marks. U...

  14. Parametric effects of word frequency effect in memory for mixed frequency lists

    OpenAIRE

    Lohnas, Lynn J.; Kahana, Michael J.

    2013-01-01

    The word frequency paradox refers to the finding that low frequency words are better recognized than high frequency words yet high frequency words are better recalled than low frequency words. Rather than comparing separate groups of low and high frequency words, we sought to quantify the functional relation between word frequency and memory performance across the broad range of frequencies typically used in episodic memory experiments. Here we report that both low frequency and high frequenc...

  15. High frequency conductivity of hot electrons in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Amekpewu, M., E-mail: mamek219@gmail.com [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, S.Y. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Musah, R. [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, N.G. [Department of Mathematics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Abukari, S.S.; Dompreh, K.A. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana)

    2016-05-01

    High frequency conductivity of hot electrons in undoped single walled achiral Carbon Nanotubes (CNTs) under the influence of ac–dc driven fields was considered. We investigated semi-classically Boltzmann's transport equation with and without the presence of the hot electrons’ source by deriving the current densities in CNTs. Plots of the normalized current density versus frequency of ac-field revealed an increase in both the minimum and maximum peaks of normalized current density at lower frequencies as a result of a strong injection of hot electrons. The applied ac-field plays a twofold role of suppressing the space-charge instability in CNTs and simultaneously pumping an energy for lower frequency generation and amplification of THz radiations. These have enormous promising applications in very different areas of science and technology.

  16. Photovoltaic (PV) contribution to the primary frequency control

    International Nuclear Information System (INIS)

    Rafa, Adel Hamad

    2012-01-01

    Photovoltaic (PV) technology is among the most efficient and cost effective renewable energy kinds currently available on the market. The connection of a large number of PVs to the grid may influence the frequency and voltage stability of the power system. This paper proposes load-frequency control technique for system with high penetration of photovoltaic (PV). The proposed controller has been successfully implemented and tested using PSCAD/EMTDC. In this study, the impact of photovoltaic (PV) on frequency stability of the system is studies in detail. This study shows that large penetration of photovoltaic (PV) with load and frequency control has a significant impact on the stability and security level of electrical network.(author)

  17. Iodine frequency references for space

    International Nuclear Information System (INIS)

    Schuldt, Thilo; Braxmaier, Claus; Döringshoff, Klaus; Peters, Achim; Oswald, Markus; Johann, Ulrich

    2017-01-01

    Optical frequency references are a key element for the realization of future space missions. They are needed for missions related to tests of fundamental physics, gravitational wave detection, Earth observation and navigation and ranging. In missions such as GRACE follow-on or LISA the optical frequency reference is used as light source for high-sensitivity inter-satellite distance metrology. While cavity-based systems are current baseline e.g. for LISA, frequency stabilization on a hyperfine transition in molecular iodine near 532 nm is a promising alternative. Due to its absolute frequency, iodine standards crucially simplify the initial spacecraft acquisition procedures. Current setups fulfill the GRACE-FO and LISA frequency stability requirements and are realized near Engineering Model level. We present the current status of our developments on Elegant Breadboard (EBB) and Engineering Model (EM) level taking into account specific design criteria for space compatibility such as compactness (size iodine spectroscopy EM: 38 × 18 × 10 cm 3 ) and robustness. Both setups achieved similar frequency stabilities of ∼ 1 · 10 −14 at an integration time of 1 s and below 5 · 10 −15 at integration times between 10 s and 1000 s. Furthermore, we present an even more compact design currently developed for a sounding rocket mission with launch in 2017. (paper)

  18. Calibration of High Frequency MEMS Microphones

    Science.gov (United States)

    Shams, Qamar A.; Humphreys, William M.; Bartram, Scott M.; Zuckewar, Allan J.

    2007-01-01

    Understanding and controlling aircraft noise is one of the major research topics of the NASA Fundamental Aeronautics Program. One of the measurement technologies used to acquire noise data is the microphone directional array (DA). Traditional direction array hardware, consisting of commercially available condenser microphones and preamplifiers can be too expensive and their installation in hard-walled wind tunnel test sections too complicated. An emerging micro-machining technology coupled with the latest cutting edge technologies for smaller and faster systems have opened the way for development of MEMS microphones. The MEMS microphone devices are available in the market but suffer from certain important shortcomings. Based on early experiments with array prototypes, it has been found that both the bandwidth and the sound pressure level dynamic range of the microphones should be increased significantly to improve the performance and flexibility of the overall array. Thus, in collaboration with an outside MEMS design vendor, NASA Langley modified commercially available MEMS microphone as shown in Figure 1 to meet the new requirements. Coupled with the design of the enhanced MEMS microphones was the development of a new calibration method for simultaneously obtaining the sensitivity and phase response of the devices over their entire broadband frequency range. Over the years, several methods have been used for microphone calibration. Some of the common methods of microphone calibration are Coupler (Reciprocity, Substitution, and Simultaneous), Pistonphone, Electrostatic actuator, and Free-field calibration (Reciprocity, Substitution, and Simultaneous). Traditionally, electrostatic actuators (EA) have been used to characterize air-condenser microphones for wideband frequency ranges; however, MEMS microphones are not adaptable to the EA method due to their construction and very small diaphragm size. Hence a substitution-based, free-field method was developed to

  19. Soulful Technologies

    DEFF Research Database (Denmark)

    Fausing, Bent

    2010-01-01

    Samsung introduced in 2008 a mobile phone called "Soul" made with a human touch and including itself a "magic touch". Through the analysis of a Nokia mobile phone TV-commercials I want to examine the function and form of digital technology in everyday images. The mobile phone and its digital camera...... and other devices are depicted by everyday aesthetics as capable of producing a unique human presence and interaction. The medium, the technology is a necessary helper of this very special and lost humanity. Without the technology, no special humanity, no soul - such is the prophecy. This personification...... or anthropomorphism is important for the branding of new technology. Technology is seen as creating a techno-transcendence towards a more qualified humanity which is in contact with fundamental human values like intuition, vision, and sensing; all the qualities that technology, industrialization, and rationalization...

  20. Globalization & technology

    DEFF Research Database (Denmark)

    Narula, Rajneesh

    Technology and globalization are interdependent processes. Globalization has a fundamental influence on the creation and diffusion of technology, which, in turn, affects the interdependence of firms and locations. This volume examines the international aspect of this interdependence at two levels...... of innovation" understanding of learning. Narula and Smith reconcile an important paradox. On the one hand, locations and firms are increasingly interdependent through supranational organisations, regional integration, strategic alliances, and the flow of investments, technologies, ideas and people...

  1. Army Technology

    Science.gov (United States)

    2015-02-01

    that allows them to perform applied research under the Institute for Biotechnology research team 1 2 3 20 | ARMY TECHNOLOGY MAGAZINE ...DASA(R&T) Deputy Assistant Secretary of the Army for Research and Technology Download the magazine , view online or read each individual story with...Army photo by Conrad Johnson) Front and back cover designs by Joe Stephens EXECUTIVE DEPUTY TO THE COMMANDING GENERAL Army Technology Magazine is an

  2. Technology alliances

    International Nuclear Information System (INIS)

    Torgerson, D.F.; Boczar, P.G.; Kugler, G.

    1991-10-01

    In the field of nuclear technology, Canada and Korea developed a highly successful relationship that could serve as a model for other high-technology industries. This is particularly significant when one considers the complexity and technical depth required to design, build and operate a nuclear reactor. This paper will outline the overall framework for technology transfer and cooperation between Canada and Korea, and will focus on cooperation in nuclear R and D between the two countries

  3. Technological risks

    International Nuclear Information System (INIS)

    Klinke, A.; Renn, O.

    1998-01-01

    The empirical part about the technological risks deals with different technologies: nuclear energy, early warning systems of nuclear weapons and NBC-weapons, and electromagnetic fields. The potential of damage, the contemporary management strategies and the relevant characteristics will be described for each technology: risks of nuclear energy; risks of early warning systems of nuclear weapons and NBC-weapons; risks of electromagnetic fields. (authors)

  4. Technological risks

    Energy Technology Data Exchange (ETDEWEB)

    Klinke, A.; Renn, O. [Center of Technology Assessment in Baden-Wuerttemberg, Stuttgart (Germany)

    1998-07-01

    The empirical part about the technological risks deals with different technologies: nuclear energy, early warning systems of nuclear weapons and NBC-weapons, and electromagnetic fields. The potential of damage, the contemporary management strategies and the relevant characteristics will be described for each technology: risks of nuclear energy; risks of early warning systems of nuclear weapons and NBC-weapons; risks of electromagnetic fields. (authors)

  5. Superconductivity in technology

    International Nuclear Information System (INIS)

    Komarek, P.

    1976-01-01

    Physics, especially high energy physics and solid state physics was the first area in which superconducting magnets were used but in the long run, the most extensive application of superconductivity will probably be in energy technology. Superconducting power transmission cables, magnets for energy conversion in superconducting electrical machines, MHD-generators and fusion reactors and magnets for energy storage are being investigated. Magnets for fusion reactors will have particularly large physical dimensions, which means that much development effort is still needed, for there is no economic alternative. Superconducting surfaces in radio frequency cavities can give Q-values up to a factor of 10 6 higher than those of conventional resonators. Particle accelerators are the important application. And for telecommunication, simple coaxial superconducting radio frequency cables seem promising. The tunnel effect in superconducting junctions is now being developed commercially for sensitive magnetometers and may soon possibly feature in the memory cells of computer devices. Hence superconductivity can play an important role in the technological world, solving physical and technological problems and showing economic advantages as compared with possible conventional techniques, bearing also in mind the importance of reliability and safety. (author)

  6. PIGMI linear-accelerator technology

    International Nuclear Information System (INIS)

    Boyd, T.J.; Crandall, K.R.; Hamm, R.W.

    1981-01-01

    A new linear-accelerator technology has been developed that makes pi-meson (pion) generation possible for cancer therapy in the setting of a major hospital center. This technology uses several new major inventions in particle accelerator science-such as a new accelerator system called the radio-frequency quadrupole (RFQ), and permanent-magnet drift-tube focusing-to substantially reduce the size, cost, and complexity of a meson factory for this use. This paper describes this technology, discusses other possible uses for these new developments, and finally discusses possible costs for such installations

  7. Chemistry Technology

    Data.gov (United States)

    Federal Laboratory Consortium — Chemistry technology experts at NCATS engage in a variety of innovative translational research activities, including:Design of bioactive small molecules.Development...

  8. Capacitance-Based Frequency Adjustment of Micro Piezoelectric Vibration Generator

    Directory of Open Access Journals (Sweden)

    Xinhua Mao

    2014-01-01

    Full Text Available Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  9. Resonance Frequency Readout Circuit for a 900 MHz SAW Device.

    Science.gov (United States)

    Liu, Heng; Zhang, Chun; Weng, Zhaoyang; Guo, Yanshu; Wang, Zhihua

    2017-09-15

    A monolithic resonance frequency readout circuit with high resolution and short measurement time is presented for a 900 MHz RF surface acoustic wave (SAW) sensor. The readout circuit is composed of a fractional-N phase-locked loop (PLL) as the stimulus source to the SAW device and a phase-based resonance frequency detecting circuit using successive approximation (SAR). A new resonance frequency searching strategy has been proposed based on the fact that the SAW device phase-frequency response crosses zero monotonically around the resonance frequency. A dedicated instant phase difference detecting circuit is adopted to facilitate the fast SAR operation for resonance frequency searching. The readout circuit has been implemented in 180 nm CMOS technology with a core area of 3.24 mm². In the experiment, it works with a 900 MHz SAW resonator with a quality factor of Q = 130. Experimental results show that the readout circuit consumes 7 mW power from 1.6 V supply. The frequency resolution is 733 Hz, and the relative accuracy is 0.82 ppm, and it takes 0.48 ms to complete one measurement. Compared to the previous results in the literature, this work has achieved the shortest measurement time with a trade-off between measurement accuracy and measurement time.

  10. Capacitance-based frequency adjustment of micro piezoelectric vibration generator.

    Science.gov (United States)

    Mao, Xinhua; He, Qing; Li, Hong; Chu, Dongliang

    2014-01-01

    Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  11. Internet of things and radio frequency identification in care taking, facts and privacy challenges.

    OpenAIRE

    Frederix, Ines

    2009-01-01

    Internet of Things technologies such as radio frequency identification are about to be able to help aging and sick people and even compensate for some disabilities. The use of these technologies in health care represents a promising development in information technology, but also raises important ethical, legal and social issues. This paper explores the use of these technologies in health care environments and formulates recommendations for further research that can ensure that the pati...

  12. Advanced Communication Technology Satellite (ACTS) multibeam antenna technology verification experiments

    Science.gov (United States)

    Acosta, Roberto J.; Larko, Jeffrey M.; Lagin, Alan R.

    1992-01-01

    The Advanced Communication Technology Satellite (ACTS) is a key to reaching NASA's goal of developing high-risk, advanced communications technology using multiple frequency bands to support the nation's future communication needs. Using the multiple, dynamic hopping spot beams, and advanced on board switching and processing systems, ACTS will open a new era in communications satellite technology. One of the key technologies to be validated as part of the ACTS program is the multibeam antenna with rapidly reconfigurable hopping and fixed spot beam to serve users equipped with small-aperature terminals within the coverage areas. The proposed antenna technology experiments are designed to evaluate in-orbit ACTS multibeam antenna performance (radiation pattern, gain, cross pol levels, etc.).

  13. Technology Catalogue

    International Nuclear Information System (INIS)

    1994-02-01

    The Department of Energy's Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM's Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM's Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department's clean-up and waste management programs, as well as to industry, other federal and state agencies, and the academic community. OTD's applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina)

  14. Day-Ahead Scheduling Considering Demand Response as a Frequency Control Resource

    Directory of Open Access Journals (Sweden)

    Yu-Qing Bao

    2017-01-01

    Full Text Available The development of advanced metering technologies makes demand response (DR able to provide fast response services, e.g., primary frequency control. It is recognized that DR can contribute to the primary frequency control like thermal generators. This paper proposes a day-ahead scheduling method that considers DR as a frequency control resource, so that the DR resources can be dispatched properly with other resources. In the proposed method, the objective of frequency control is realized by defining a frequency limit equation under a supposed contingency. The frequency response model is used to model the dynamics of system frequency. The nonlinear frequency limit equation is transformed to a linear arithmetic equation by piecewise linearization, so that the problem can be solved by mixed integer linear programming (MILP. Finally, the proposed method is verified on numerical examples.

  15. Nova frequency conversion and focusing system

    International Nuclear Information System (INIS)

    Summers, M.A.; Seppala, L.G.; Williams, J.D.

    1985-01-01

    New developments in crystal array technology provided significant improvements in the mechanical design and optical performance of the Nova 2 omega/3 omega array hardware. The final Nova array configuration was tested on the Novette laser and on the first arm of Nova. Ten Nova 2 omega/3 omega crystal arrays were assembled and tested for crystal alignment and wave front distortion before installation on the Nova target chamber. Ten Nova focus lens positioners were assembled and tested last year. The positioning accuracy and repeatability of each assembly were evaluated before installation on the target chamber. A cylindrical focusing system was also developed for installation in the Nova lens positioner assembly. Finally, 10 completed frequency conversion and focusing systems were activated

  16. Nb3Sn for Radio Frequency Cavities

    International Nuclear Information System (INIS)

    Godeke, A.

    2006-01-01

    In this article, the suitability of Nb3Sn to improve the performance of superconducting Radio-Frequency (RF) cavities is discussed. The use of Nb3Sn in RF cavities is recognized as an enabling technology to retain a very high cavity quality factor (Q0) at 4.2 K and to significantly improve the cavity accelerating efficiency per unit length (Eacc). This potential arises through the fundamental properties of Nb3Sn. The properties that are extensively characterized in the literature are, however, mainly related to improvements in current carrying capacity (Jc) in the vortex state. Much less is available for the Meissner state, which is of key importance to cavities. Relevant data, available for the Meissner state is summarized, and it is shown how this already validates the use of Nb3Sn. In addition, missing knowledge is highlighted and suggestions are given for further Meissner state specific research

  17. Floating Gate CMOS Dosimeter With Frequency Output

    Science.gov (United States)

    Garcia-Moreno, E.; Isern, E.; Roca, M.; Picos, R.; Font, J.; Cesari, J.; Pineda, A.

    2012-04-01

    This paper presents a gamma radiation dosimeter based on a floating gate sensor. The sensor is coupled with a signal processing circuitry, which furnishes a square wave output signal, the frequency of which depends on the total dose. Like any other floating gate dosimeter, it exhibits zero bias operation and reprogramming capabilities. The dosimeter has been designed in a standard 0.6 m CMOS technology. The whole dosimeter occupies a silicon area of 450 m250 m. The initial sensitivity to a radiation dose is Hz/rad, and to temperature and supply voltage is kHz/°C and 0.067 kHz/mV, respectively. The lowest detectable dose is less than 1 rad.

  18. Active Faraday optical frequency standard.

    Science.gov (United States)

    Zhuang, Wei; Chen, Jingbiao

    2014-11-01

    We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks.

  19. Thermally activated technologies: Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  20. Technology Exhibition

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1979-09-15

    Linked to the 25th Anniversary celebrations, an exhibition of some of CERN's technological achievements was opened on 22 June. Set up in a new 600 m{sup 2} Exhibition Hall on the CERN site, the exhibition is divided into eight technology areas — magnets, vacuum, computers and data handling, survey and alignment, radiation protection, beam monitoring and handling, detectors, and workshop techniques.

  1. Radiation Technology

    International Nuclear Information System (INIS)

    1990-01-01

    The conference was organized to evaluate the application directions of radiation technology in Vietnam and to utilize the Irradiation Centre in Hanoi with the Co-60 source of 110 kCi. The investigation and study of technico-economic feasibility for technology development to various items of food and non-food objects was reported. (N.H.A)

  2. Technology Transformation

    Science.gov (United States)

    Scott, Heather; McGilll, Toria

    2011-01-01

    Social networking and other technologies, if used judiciously, present the means to integrate 21st century skills into the classroom curriculum. But they also introduce challenges that educators must overcome. Increased concerns about plagiarism and access to technology can test educators' creativity and school resources. Air Academy High School,…

  3. Maritime Technology

    DEFF Research Database (Denmark)

    Sørensen, Herman

    1997-01-01

    Elementary introduction to the subject "Maritime Technology".The contents include drawings, sketches and references in English without any supplementary text.......Elementary introduction to the subject "Maritime Technology".The contents include drawings, sketches and references in English without any supplementary text....

  4. Electromagnetic interference from radio frequency identification inducing potentially hazardous incidents in critical care medical equipment

    NARCIS (Netherlands)

    Togt, R. van der; Lieshout, E.J. van; Hensbroek, R.; Beinat, E.; Binnekade, J.M.; Bakker, P.J.M.

    2008-01-01

    Context: Health care applications of autoidentification technologies, such as radio frequency identification (RFID), have been proposed to improve patient safety and also the tracking and tracing of medical equipment. However, electromagnetic interference (EMI) by RFID on medical devices has never

  5. Robust Frequency Combs and Lasers for Optical Clocks and Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical frequency combs are the key enabling technology that enabled the immense fractional stability of highly-stabilized lasers in the optical regime to be...

  6. Carbon nanotube transistor based high-frequency electronics

    Science.gov (United States)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  7. Sensemaking technology

    DEFF Research Database (Denmark)

    Madsen, Charlotte Øland

    Research objective: The object of the LOK research project is to gain a better understanding of the technological strategic processes in organisations by using the concept/metaphor of sensemaking. The project will investigate the technological strategies in organisations in order to gain a deeper...... understanding of the cognitive competencies and barriers towards implementing new technology in organisations. The research will therefore concentrate on researching the development process in the organisation's perception of the external environmental elements of customers, suppliers, competitors, internal...... and external technology and legislation and the internal environmental elements of structure, power relations and political arenas. All of these variables have influence on which/how technologies are implemented thus creating different outcomes all depending on the social dynamics that are triggered by changes...

  8. Frequency dependent polarization in blazars

    International Nuclear Information System (INIS)

    Bjoernsson, C.I.

    1984-10-01

    It is argued that the intrinsic frequency dependent polarization in blazars finds its most straightforward explanations in terms of a single rather than a multicomponent sourcemodel. In order to reproduce the observations, under the assumption that the emission mechanism is optically thin synchrotron radiation, both a well ordered magnetic field and an electron distribution with a sharp break or cuttoff are necessary. Non-uniform pitch angle distribution and/or environments where synchrotron losses are important are both conducive to producing strong frequency dependent polarization. Reasons are put forth as to why such conditions ar expected to occur in blazars. Two specific models are discussed in detail and it is shown that they are both able to produce strong frequency dependent polarization, even when the spectral index changes by a small amount only. (orig.)

  9. Variable frequency microwave heating apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Bible, D.W.; Lauf, R.J.; Johnson, A.C.; Thigpen, L.T.

    1999-10-05

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  10. The instantaneous frequency rate spectrogram

    Science.gov (United States)

    Czarnecki, Krzysztof

    2016-01-01

    An accelerogram of the instantaneous phase of signal components referred to as an instantaneous frequency rate spectrogram (IFRS) is presented as a joint time-frequency distribution. The distribution is directly obtained by processing the short-time Fourier transform (STFT) locally. A novel approach to amplitude demodulation based upon the reassignment method is introduced as a useful by-product. Additionally, an estimator of energy density versus the instantaneous frequency rate (IFR) is proposed and referred to as the IFR profile. The energy density is estimated based upon both the classical energy spectrogram and the IFRS smoothened by the median filter. Moreover, the impact of an analyzing window width, additive white Gaussian noise and observation time is tested. Finally, the introduced method is used for the analysis of the acoustic emission of an automotive engine. The recording of the engine of a Lamborghini Gallardo is analyzed as an example.

  11. The JET high frequency pellet injector project

    International Nuclear Information System (INIS)

    Geraud, Alain; Dentan, M.; Whitehead, A.; Butcher, P.; Communal, D.; Faisse, F.; Gedney, J.; Gros, G.; Guillaume, D.; Hackett, L.; Hennion, V.; Homfray, D.; Lucock, R.; McKivitt, J.; Sibbald, M.; Portafaix, C.; Perin, J.P.; Reade, M.; Sands, D.; Saille, A.

    2007-01-01

    A new deuterium ice pellet injector is in preparation for JET. It is designed to inject both small pellets (variable volume within 1-2 mm 3 ) at high frequency (up to 60 Hz) for ELM mitigation experiments and large pellets (volume within 35-70 mm 3 ) at moderate frequency (up to 15 Hz) for plasma fuelling. It is based on the screw extruder technology developed by PELIN and pneumatic acceleration. An injection line will connect the injector to the flight tubes already in place to convey the pellets toward the plasma either from the low field side or from the high field side of the torus. This injection line enables: (i) the pumping of the propellant gas, (ii) the provision of the vacuum interface with the torus and (iii) the selection of the flight tube to be used via a fast selector. All the interfaces have been designed and a prototype injector is being built, to demonstrate that the required performance is achievable

  12. Accelerator Technology Division annual report, FY 1989

    International Nuclear Information System (INIS)

    1990-06-01

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects

  13. Frequency stabilization of a He-Ne gas laser by controlling refractive index of laser plasma

    International Nuclear Information System (INIS)

    Xie Yi; Wu Yizun

    1991-01-01

    A new way to stabilize the frequency of a Zeeman He-Ne gas laser is described. The laser frequency is stabilized by controlling the refractive index of the laser plasma. It does not need a gas laser tube with a piezoelectric ceramic (PZT) made by special technology. As the phase-locking technology is used in the laser servo system, the self-beat frequency is a constant and the frequency stability is better than 2.2 x 10 -11 (averaging time = 10 sec.). The long term frequency fluctuation never exceeded 2 x 10 -8 during two months. The frequency of the locked point can be adjusted continuously in the range of over 200 MHz

  14. Relations between the technological standards and technological appropriation

    Directory of Open Access Journals (Sweden)

    Carlos Alberto PRADO GUERRERO

    2010-06-01

    Full Text Available The objective of this study is to analyze the educational practices of using Blackboard in blended learning environments with students of higher education to understand the relationship between technological appropriation and standards of educational technology. To achieve that goal, the following research question was raised: ¿To what extent are the standards of education technology with the appropriation of technology in blended learning environments in higher educa­tion related? The contextual framework of this work includes the following topics: the institution, teaching, teachers and students. The design methodology that was used is of a correlation type. Correlations were carried out to determine the frequency and level in the technological standards as well as the appropriation of technology. In the comparison of the results obtained by the students, the teachers and the platform; we found that students in the school study showed a high degree of technology ownership and this was the same for the performance shown on the technological standards. It was established that teachers play a key role in developing the techno­logical appropriation of students and performance in technology standards.

  15. High-frequency Trader Subjectivity

    DEFF Research Database (Denmark)

    Borch, Christian; Lange, Ann-Christina

    2017-01-01

    In this article, we examine the recent shift in financial markets toward high-frequency trading (HFT). This turn is being legitimized with reference to how algorithms are allegedly more rational and efficient than human traders, and less prone to emotionally motivated decisions. We argue......-techniques of the ideal high-frequency trader. We demonstrate that these traders face the challenge of avoiding emotional interference in their algorithms and that they deploy a set of disciplinary self-techniques to curb the importance of emotional attachment....

  16. Buildings for advanced technology

    CERN Document Server

    Teague, E; Murday, James

    2015-01-01

    This book deals with the design and construction of buildings for nanoscale science and engineering research. The information provided in this book is useful for designing and constructing buildings for such advanced technologies as nanotechnology, nanoelectronics and biotechnology. The book outlines the technology challenges unique to each of the building environmental challenges outlined below and provides best practices and examples of engineering approaches to address them: • Establishing and maintaining critical environments: temperature, humidity, and pressure • Structural vibration isolation • Airborne vibration isolation (acoustic noise) • Isolation of mechanical equipment-generated vibration/acoustic noise • Cost-effective power conditioning • Grounding facilities for low electrical interference • Electromagnetic interference (EMI)/Radio frequency interference (RFI) isolation • Airborne particulate contamination • Airborne organic and chemical contamination • Environment, safety a...

  17. Suppressing Two-Plasmon Decay with Laser Frequency Detuning

    Science.gov (United States)

    Follett, R. K.; Shaw, J. G.; Myatt, J. F.; Palastro, J. P.; Short, R. W.; Froula, D. H.

    2018-03-01

    Three-dimensional laser-plasma interaction simulations show that laser frequency detuning by an amount achievable with current laser technology can be used to suppress the two-plasmon decay (TPD) instability and the corresponding hot-electron generation. For the plasma conditions and laser configuration in a direct-drive inertial confinement fusion implosion on the OMEGA laser, the simulations show that ˜0.7 % laser frequency detuning is sufficient to eliminate TPD-driven hot-electron generation in current experiments. This allows for higher ablation pressures in future implosion designs by using higher laser intensities.

  18. Simultaneous multi-band channel sounding at mm-Wave frequencies

    DEFF Research Database (Denmark)

    Müller, Robert; Häfner, Stephan; Dupleich, Diego

    2016-01-01

    The vision of multi Gbit/s data rates in future mobile networks requires the change to millimeter wave (mm-Wave) frequencies for increasing bandwidth. As a consequence, new technologies have to be deployed to tackle the drawbacks of higher frequency bands, e.g. increased path loss. Development an...

  19. Ergonomics technology

    Science.gov (United States)

    Jones, W. L.

    1977-01-01

    Major areas of research and development in ergonomics technology for space environments are discussed. Attention is given to possible applications of the technology developed by NASA in industrial settings. A group of mass spectrometers for gas analysis capable of fully automatic operation has been developed for atmosphere control on spacecraft; a version for industrial use has been constructed. Advances have been made in personal cooling technology, remote monitoring of medical information, and aerosol particle control. Experience gained by NASA during the design and development of portable life support units has recently been applied to improve breathing equipment used by fire fighters.

  20. Radio Frequency Plasma Applications for Space Propulsion

    International Nuclear Information System (INIS)

    Baity, F.W. Jr.; Barber, G.C.; Carter, M.D.; Chang-Diaz, F.R.; Goulding, R.H.; Ilin, A.V.; Jaeger, E.F.; Sparks, D.O.; Squire, J.P.

    1999-01-01

    Recent developments in solid-state radio frequency (RF) power technologies allow for the practical consideration of RF heated plasmas for space propulsion. These technologies permit the use of any electrical power source, de-couple the power and propellant sources, and allow for the efficient use of both the propellant mass and power. Efficient use of the propellant is obtained by expelling the rocket exhaust at the highest possible velocity, which can be orders of magnitude higher than those achieved in chemical rockets. Handling the hot plasma exhaust requires the use of magnetic nozzles, and the basic physics of ion detachment from the magnetic eld is discussed. The plasma can be generated by RF using helicon waves to heat electrons. Further direct heating of the ions helps to reduce the line radiation losses, and the magnetic geometry is tailored to allow ion cyclotron resonance heating. RF eld and ion trajectory calculations are presented to give a reasonably self-consistent picture of the ion acceleration process

  1. Frequency Selective Surface for Structural Health Monitoring

    Science.gov (United States)

    Norlyana Azemi, Saidatul; Mustaffa, Farzana Hazira Wan; Faizal Jamlos, Mohd; Abdullah Al-Hadi, Azremi; Soh, Ping Jack

    2018-03-01

    Structural health monitoring (SHM) technologies have attained attention to monitor civil structures. SHM sensor systems have been used in various civil structures such as bridges, buildings, tunnels and so on. However the previous sensor for SHM is wired and encounter with problem to cover large areas. Therefore, wireless sensor was introduced for SHM to reduce network connecting problem. Wireless sensors for Structural Health monitoring are new technology and have many advantages to overcome the drawback of conventional and wired sensor. This project proposed passive wireless SHM sensor using frequency selective surface (FSS) as an alternative to conventional sensors. The electromagnetic wave characteristic of FSS will change by geometrical changes of FSS due to mechanical strain or structural failure. The changes feature is used as a sensing function without any connecting wires. Two type of design which are circular ring and square loop along with the transmission and reflection characteristics of SHM using FSS were discussed in this project. A simulation process has shown that incident angle characteristics can be use as a data for SHM application.

  2. Current-to-frequency converter

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, S W [Institute of Nuclear Research, Warsaw (Poland)

    1981-07-15

    A current-to-frequency converter covering the range from 3 x 10/sup -10/ A up to 3 x 10/sup -5/ A of the input current is described. The circuit operates with nuclear detectors featuring a high internal resistance.

  3. Radio frequency modulation made easy

    CERN Document Server

    Faruque, Saleh

    2017-01-01

    This book introduces Radio Frequency Modulation to a broad audience. The author blends theory and practice to bring readers up-to-date in key concepts, underlying principles and practical applications of wireless communications. The presentation is designed to be easily accessible, minimizing mathematics and maximizing visuals.

  4. Frequency chirpings in Alfven continuum

    Science.gov (United States)

    Wang, Ge; Berk, Herb; Breizman, Boris; Zheng, Linjin

    2017-10-01

    We have used a self-consistent mapping technique to describe both the nonlinear wave-energetic particle resonant interaction and its spatial mode structure that depends upon the resonant energetic particle pressure. At the threshold for the onset of the energetic particle mode (EPM), strong chirping emerges in the lower continuum close to the TAE gap and then, driven by strong continuum damping, chirps rapidly to lower frequencies in the Alfven continuum. An adiabatic theory was developed that accurately replicated the results from the simulation where the nonlinearity was only due to the EPM resonant particles. The results show that the EPM-trapped particles have their action conserved during the time of rapid chirping. This adiabaticity enabled wave trapped particles to be confined within their separatrix, and produce even larger resonant structures, that can produce a large amplitude mode far from linearly predicted frequencies. In the present work we describe the effect of additional MHD nonlinearity to this calculation. We studied how the zonal flow component and its nonlinear feedback to the fundamental frequency and found that the MHD nonlinearity doesn't significantly alter the frequency chirping response that is predicted by the calculation that neglects the MHD nonlinearity.

  5. Binaural frequency selectivity in humans.

    Science.gov (United States)

    Verhey, Jesko L; van de Par, Steven

    2018-01-23

    Several behavioural studies in humans have shown that listening to sounds with two ears that is binaural hearing, provides the human auditory system with extra information on the sound source that is not available when sounds are only perceived through one ear that is monaurally. Binaural processing involves the analysis of phase and level differences between the two ear signals. As monaural cochlea processing (in each ear) precedes the neural stages responsible for binaural processing properties it is reasonable to assume that properties of the cochlea may also be observed in binaural processing. A main characteristic of cochlea processing is its frequency selectivity. In psychoacoustics, there is an ongoing discussion on the frequency selectivity of the binaural auditory system. While some psychoacoustic experiments seem to indicate poorer frequency selectivity of the binaural system than that of the monaural processing others seem to indicate the same frequency selectivity for monaural and binaural processing. This study provides an overview of these seemingly controversial results and the different explanations that were provided to account for the different results. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Low-frequency noise complaints

    DEFF Research Database (Denmark)

    Pedersen, Christian Sejer; Møller, Henrik; Persson-Waye, Kerstin

    2006-01-01

    is only heard by a single person in the household. This raises the fundamental question whether the complainants are annoyed by an external physical sound, or if other explanations such as low-frequency tinnitus must be sought. The main aim of this study is to answer this fundamental question...

  7. USING OF RFID TECHNOLOGY IN MAINTENANCE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Michal Balog

    2015-06-01

    Full Text Available Automated data collection helps to improve the precision of decision-making processes. Currently, the radio frequency identification technology belongs to the most common application in the field of identification technology. In the world, the implementation of RFID technology is used in almost all areas of industry. RFID tags allow to use of the different products and materials applications. The article provides an overview of using this technology to record and register maintenance intervals of railway wagons. The application of RFID technology helps to avoid huge disasters and accidents caused by lack of information about the technical state of rail freight wagons.

  8. Long range ultra-high frequency (UHF) radio frequency identification (RFID) antenna design

    Science.gov (United States)

    Reynolds, Nathan D.

    There is an ever-increasing demand for radio frequency identification (RFID) tags that are passive, long range, and mountable on multiple surfaces. Currently, RFID technology is utilized in numerous applications such as supply chain management, access control, and public transportation. With the combination of sensory systems in recent years, the applications of RFID technology have been extended beyond tracking and identifying. This extension includes applications such as environmental monitoring and healthcare applications. The available sensory systems usually operate in the medium or high frequency bands and have a low read range. However, the range limitations of these systems are being overcome by the development of RFID sensors focused on utilizing tags in the ultra-high frequency (UHF) band. Generally, RFID tags have to be mounted to the object that is being identified. Often the objects requiring identification are metallic. The inherent properties of metallic objects have substantial effects on nearby electromagnetic radiation; therefore, the operation of the tag antenna is affected when mounted on a metallic surface. This outlines one of the most challenging problems for RFID systems today: the optimization of tag antenna performance in a complex environment. In this research, a novel UHF RFID tag antenna, which has a low profile, long range, and is mountable on metallic surfaces, is designed analytically and simulated using a 3-D electromagnetic simulator, ANSYS HFSS. A microstrip patch antenna is selected as the antenna structure, as patch antennas are low profile and suitable for mounting on metallic surfaces. Matching and theoretical models of the microstrip patch antenna are investigated. Once matching and theory of a microstrip patch antenna is thoroughly understood, a unique design technique using electromagnetic band gap (EBG) structures is explored. This research shows that the utilization of an EBG structure in the patch antenna design yields

  9. Technology Innovation

    Science.gov (United States)

    EPA produces innovative technologies and facilitates their creation in line with the Agency mission to create products such as the stormwater calculator, remote sensing, innovation clusters, and low-cost air sensors.

  10. Technology | FNLCR

    Science.gov (United States)

    The Frederick National Laboratory develops and applies advanced, next-generation technologies to solve basic and applied problems in the biomedical sciences, and serves as a national resource of shared high-tech facilities.

  11. Plasma technology

    International Nuclear Information System (INIS)

    Drouet, M.G.

    1984-03-01

    IREQ was contracted by the Canadian Electrical Association to review plasma technology and assess the potential for application of this technology in Canada. A team of experts in the various aspects of this technology was assembled and each team member was asked to contribute to this report on the applications of plasma pertinent to his or her particular field of expertise. The following areas were examined in detail: iron, steel and strategic-metals production; surface treatment by spraying; welding and cutting; chemical processing; drying; and low-temperature treatment. A large market for the penetration of electricity has been identified. To build up confidence in the technology, support should be provided for selected R and D projects, plasma torch demonstrations at full power, and large-scale plasma process testing

  12. Exploration technology

    Energy Technology Data Exchange (ETDEWEB)

    Roennevik, H.C. [Saga Petroleum A/S, Forus (Norway)

    1996-12-31

    The paper evaluates exploration technology. Topics discussed are: Visions; the subsurface challenge; the creative tension; the exploration process; seismic; geology; organic geochemistry; seismic resolution; integration; drilling; value creation. 4 refs., 22 figs.

  13. Experiments on quantum frequency conversion of photons

    International Nuclear Information System (INIS)

    Ramelow, S.

    2011-01-01

    Coherently converting photons between different states offers intriguing new possibilities and applications in quantum optical experiments. In this thesis three experiments on this theme are presented. The first experiment demonstrates the quantum frequency conversion of polarization entangled photons. Coherent frequency conversion of single photons offers an elegant solution for the often difficult trade-off of choosing the optimal photon wavelength, e.g. regarding optimal transmission and storage of photons in quantum memory based quantum networks. In our experiments, we verify the successful entanglement conversion by violating a Clauser-Horne-Shimony-Holt (CHSH) Bell inequality and fully characterised our close to unity fidelity entanglement transfer using quantum state- and process tomography. Our implementation is robust and flexible, making it a practical building block for future quantum technologies.The second part of the thesis introduces a deterministic scheme for photonic quantum information processing. While single photons offer many advantages for quantum information technologies, key unresolved challenges are scalable on-demand single photon sources; deterministic two-photon interactions; and near 100%-efficient detection. All these can be solved with a single versatile process - a novel four-wave mixing process that we introduce here as a special case of the more general scheme of coherent photon conversion (CPC). It can provide valuable photonic quantum processing tools, from scalably creating single- and multi-photon states to implementing deterministic entangling gates and high-efficiency detection. Notably, this would enable scalable photonic quantum computing. Using photonic crystal fibres, we experimentally demonstrate a nonlinear process suited for coherent photon conversion. We observe correlated photon-pair production at the predicted wavelengths and experimentally characterise the enhancement of the interaction strength by varying the pump

  14. Technological risk

    Energy Technology Data Exchange (ETDEWEB)

    Dierkes, M; Coppock, R; Edwards, S

    1980-01-01

    The book begins with brief statements from representatives of political organizations. Part II presents an overview of the discussion about the control and management of technological progress. Parts III and IV discuss important elements in citizens' perception of technological risks and the development of consensus on how to deal with them. In Part V practical problems in the application of risk assessment and management, and in Part VI additional points are summarized.

  15. Lasers technology

    International Nuclear Information System (INIS)

    2014-01-01

    The Laser Technology Program of IPEN is developed by the Center for Lasers and Applications (CLA) and is committed to the development of new lasers based on the research of new optical materials and new resonator technologies. Laser applications and research occur within several areas such as Nuclear, Medicine, Dentistry, Industry, Environment and Advanced Research. Additional goals of the Program are human resource development and innovation, in association with Brazilian Universities and commercial partners

  16. Technological risk

    International Nuclear Information System (INIS)

    Dierkes, M.; Coppock, R.; Edwards, S.

    1980-01-01

    The book begins with brief statements from representatives of political organizations. Part II presents an overview of the discussion about the control and management of technological progress. Parts III and IV discuss important elements in citizens' perception of technological risks and the development of consensus on how to deal with them. In Part V practical problems in the application of risk assessment and management, and in Part VI additional points are summarized. (DG)

  17. Cognitive technologies

    CERN Document Server

    Mello, Alan; Figueiredo, Fabrício; Figueiredo, Rafael

    2017-01-01

    This book focuses on the next generation optical networks as well as mobile communication technologies. The reader will find chapters on Cognitive Optical Network, 5G Cognitive Wireless, LTE, Data Analysis and Natural Language Processing. It also presents a comprehensive view of the enhancements and requirements foreseen for Machine Type Communication. Moreover, some data analysis techniques and Brazilian Portuguese natural language processing technologies are also described here. .

  18. Exposure to radio frequencies and child health

    International Nuclear Information System (INIS)

    Dore, Jean-Francois; Hours, Martine; Lelong, Joel; Letertre, Thierry; Moati, Frederique; Nadi, Mustapha; Ndagijimana, Fabien; Pereira De Vasconcelos, Anne; Yardin, Catherine; Behar-Cohen, Francine; Ducimetiere, Pierre; Bertho, Jean-Marc; Cesarini, Jean-Pierre; Couturier, Frederic; El Khatib, Aicha; Feltin, Nicolas; Bounouh, Alexandre; Flahaut, Emmanuel; Gaffet, Eric; Muzet, Alain; Lafaye, Murielle; Lepoutre, Philippe; Martinsons, Christophe; Mouneyrac, Catherine; Sicard, Yves; Soyez, Alain; Toppila, Esko; Beugnet, Laurent; Douki, Thierry; Roth-Delgado, Olivia Anses; Fite, Johanna; Merckel, Olivier; Saddoki, Sophia; Debuire, Brigitte

    2016-06-01

    Following a request by the Ministries of Health, Ecology and Consumer Affairs, ANSES conducted an expert assessment on the specific impact of radiofrequency waves on children. The conclusions of this assessment were published in July 2016. In its conclusions, the Agency emphasises that children can be more exposed than adults because of their morphological and anatomical features, in particular their small size, as well as the characteristics of some of their tissues. It is issuing a series of recommendations aimed at adapting the regulatory limit values in order to reduce the exposure of children to electromagnetic fields, which starts from a very early age due to the expansion of the use of new technologies. In this context, ANSES recommends moderate and supervised use of wireless communication technologies by children. Specifically concerning mobile telephones, ANSES reiterates the recommendation it had already formulated, calling for a reduction in exposure of children, by advocating moderate use and favouring the use of hands-free kits. Lastly, the expert appraisal identified several studies highlighting an association between intensive and inadequate use of mobile telephones by young people and mental health problems (risk behaviour, depression, suicidal thoughts, etc.). However, it was not possible to use these studies to explore the causality of the observed associations. ANSES recommends that additional studies assess the health and psychosocial impact (school learning, social and family relationships, etc.) in children associated with the use of mobile communication technologies, especially because of addictive phenomena, circadian rhythm disorders, etc. Pending these results, the Agency recommends that parents encourage their children to adopt reasonable use of mobile telephones, avoiding night-time communications and limiting the frequency and duration of calls

  19. Variation in female morph frequencies and mating frequencies : random, frequency-dependent harassment or male mimicry?

    NARCIS (Netherlands)

    Hammers, Martijn; Van Gossum, Hans

    2008-01-01

    Female-limited colour polymorphisms occur in a variety of species, where often one female morph (androchrome) resembles the body coloration of the conspecific male, whereas the other (gynochrome) does not. We tested predictions of two frequency-dependent hypotheses that are commonly invoked to

  20. Microwave mixer technology and applications

    CERN Document Server

    Henderson, Bert

    2013-01-01

    Although microwave mixers play a critical role in wireless communication and other microwave applications employing frequency conversion circuits, engineers find that most books on this subject emphasize theoretical aspects, rather than practical applications. That's about to change with the forthcoming release of Microwave Mixer Technology and Applications. Based on a review of over one thousand patents on mixers and frequency conversion, authors Bert Henderson and Edmar Camargo have written a comprehensive book for mixer designers who want solid ideas for solving their own design challenges.

  1. Next wave EM technology : Electromagnetic communication technology continues to progress

    International Nuclear Information System (INIS)

    Ludwick, J.

    1998-01-01

    Alpine Oil Services Corp. and Ryan Energy Technologies Inc., have made technological advances in the use of real time electromagnetic (EM) data transmission, using low frequency radio waves to transmit well commands or geological information. The development of the telemetry activated tool was done in two steps. The first technology was real time EM data transmission from the subsurface which used the wellbore to transfer information. The second step was constructing a memory pack which involved an electronic instrument installed in the wellbore which was programmed to perform certain tasks at certain times by transmitting signals back and forth. The use of EM communication allows the geological steering information to come back faster. The EM signal is much faster compared to MWD systems for deeper directional wells. The EM technology also has immediate applications in underbalanced drilling. 1 fig

  2. Practical system for the generation of pulsed quantum frequency combs.

    Science.gov (United States)

    Roztocki, Piotr; Kues, Michael; Reimer, Christian; Wetzel, Benjamin; Sciara, Stefania; Zhang, Yanbing; Cino, Alfonso; Little, Brent E; Chu, Sai T; Moss, David J; Morandotti, Roberto

    2017-08-07

    The on-chip generation of large and complex optical quantum states will enable low-cost and accessible advances for quantum technologies, such as secure communications and quantum computation. Integrated frequency combs are on-chip light sources with a broad spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has provided a solution for scalable and multi-mode quantum light sources. Pulsed quantum frequency combs are of particular interest, since they allow the generation of single-frequency-mode photons, required for scaling state complexity towards, e.g., multi-photon states, and for quantum information applications. However, generation schemes for such pulsed combs have, to date, relied on micro-cavity excitation via lasers external to the sources, being neither versatile nor power-efficient, and impractical for scalable realizations of quantum technologies. Here, we introduce an actively-modulated, nested-cavity configuration that exploits the resonance pass-band characteristic of the micro-cavity to enable a mode-locked and energy-efficient excitation. We demonstrate that the scheme allows the generation of high-purity photons at large coincidence-to-accidental ratios (CAR). Furthermore, by increasing the repetition rate of the excitation field via harmonic mode-locking (i.e. driving the cavity modulation at harmonics of the fundamental repetition rate), we managed to increase the pair production rates (i.e. source efficiency), while maintaining a high CAR and photon purity. Our approach represents a significant step towards the realization of fully on-chip, stable, and versatile sources of pulsed quantum frequency combs, crucial for the development of accessible quantum technologies.

  3. Generation of Mid-Infrared Frequency Combs for Spectroscopic Applications

    Science.gov (United States)

    Maser, Daniel L.

    Mid-infrared laser sources prove to be a valuable tool in exploring a vast array of phenomena, finding their way into applications ranging from trace gas detection to X-ray generation and carbon dating. Mid-infrared frequency combs, in particular, are well-suited for many of these applications, owing to their inherent low-noise and broadband nature. Frequency comb technology is well-developed in the near-infrared as a result of immense technological development by the telecommunication industry in silica fiber and the existence of readily-available glass dopants such as ytterbium and erbium that enable oscillators at 1 and 1.5 ?m. However, options become substantially more limited at longer wavelengths, as silica is no longer transparent and the components required in a mid-infrared frequency comb system (oscillators, fibers, and both fiber and free-space components) are far less technologically mature. This thesis explores several different approaches to generating frequency comb sources in the mid-infrared region, and the development of sources used in the nonlinear processes implemented to reach these wavelengths. An optical parametric oscillator, two approaches to difference frequency generation, and nonlinear spectral broadening in chip-scale waveguides are developed, characterized, and spectroscopic potential for these techniques is demonstrated. The source used for these nonlinear processes, the erbium-doped fiber amplifier, is also studied and discussed throughout the design and optimization process. The nonlinear optical processes critical to this work are numerically modeled and used to confirm and predict experimental behavior.

  4. Frequency of Testing for Dyslipidemia: An Evidence-Based Analysis

    Science.gov (United States)

    2014-01-01

    Background Dyslipidemias include high levels of total cholesterol, low-density lipoprotein (LDL) cholesterol, and triglycerides and low levels of high-density lipoprotein (HDL) cholesterol. Dyslipidemia is a risk factor for cardiovascular disease, which is a major contributor to mortality in Canada. Approximately 23% of the 2009/11 Canadian Health Measures Survey (CHMS) participants had a high level of LDL cholesterol, with prevalence increasing with age, and approximately 15% had a total cholesterol to HDL ratio above the threshold. Objectives To evaluate the frequency of lipid testing in adults not diagnosed with dyslipidemia and in adults on treatment for dyslipidemia. Research Methods A systematic review of the literature set out to identify randomized controlled trials (RCTs), systematic reviews, health technology assessments (HTAs), and observational studies published between January 1, 2000, and November 29, 2012, that evaluated the frequency of testing for dyslipidemia in the 2 populations. Results Two observational studies assessed the frequency of lipid testing, 1 in individuals not on lipid-lowering medications and 1 in treated individuals. Both studies were based on previously collected data intended for a different objective and, therefore, no conclusions could be reached about the frequency of testing at intervals other than the ones used in the original studies. Given this limitation and generalizability issues, the quality of evidence was considered very low. No evidence for the frequency of lipid testing was identified in the 2 HTAs included. Canadian and international guidelines recommend testing for dyslipidemia in individuals at an increased risk for cardiovascular disease. The frequency of testing recommended is based on expert consensus. Conclusions Conclusions on the frequency of lipid testing could not be made based on the 2 observational studies. Current guidelines recommend lipid testing in adults with increased cardiovascular risk, with

  5. An InGaAs/InP 40 GHz CML static frequency divider

    International Nuclear Information System (INIS)

    Su Yongbo; Jin Zhi; Cheng Wei; Ge Ji; Wang Xiantai; Chen Gaopeng; Liu Xinyu; Xu Anhuai; Qi Ming

    2011-01-01

    Static frequency dividers are widely used as a circuit performance benchmark or figure-of-merit indicator to gauge a particular device technology's ability to implement high speed digital and integrated high performance mixed-signal circuits. We report a 2 : 1 static frequency divider in InGaAs/InP heterojunction bipolar transistor technology. This is the first InP based digital integrated circuit ever reported on the mainland of China. The divider is implemented in differential current mode logic (CML) with 30 transistors. The circuit operated at a peak clock frequency of 40 GHz and dissipated 650 mW from a single -5 V supply. (semiconductor integrated circuits)

  6. Technology cycles and technology revolutions

    Energy Technology Data Exchange (ETDEWEB)

    Paganetto, Luigi; Scandizzo, Pasquale Lucio

    2010-09-15

    Technological cycles have been characterized as the basis of long and continuous periods economic growth through sustained changes in total factor productivity. While this hypothesis is in part consistent with several theories of growth, the sheer magnitude and length of the economic revolutions experienced by humankind seems to indicate surmise that more attention should be given to the origin of major technological and economic changes, with reference to one crucial question: role of production and use of energy in economic development.

  7. Frequency scaling for angle gathers

    KAUST Repository

    Zuberi, M. A H; Alkhalifah, Tariq Ali

    2014-01-01

    Angle gathers provide an extra dimension to analyze the velocity after migration. Space-shift and time shift-imaging conditions are two methods used to obtain angle gathers, but both are reasonably expensive. By scaling the time-lag axis of the time-shifted images, the computational cost of the time shift imaging condition can be considerably reduced. In imaging and more so Full waveform inversion, frequencydomain Helmholtz solvers are used more often to solve for the wavefields than conventional time domain extrapolators. In such cases, we do not need to extend the image, instead we scale the frequency axis of the frequency domain image to obtain the angle gathers more efficiently. Application on synthetic data demonstrate such features.

  8. Frequency response of electrochemical cells

    Science.gov (United States)

    Thomas, Daniel L.

    1990-01-01

    The main objective was to examine the feasibility of using frequency response techniques (1) as a tool in destructive physical analysis of batteries, particularly for estimating electrode structural parameters such as specific area, porosity, and tortuosity and (2) as a non-destructive testing technique for obtaining information such as state of charge and acceptability for space flight. The phenomena that contribute to the frequency response of an electrode include: (1) double layer capacitance; (2) Faradaic reaction resistance; (3) mass transfer of Warburg impedance; and (4) ohmic solution resistance. Nickel cadmium cells were investigated in solutions of KOH. A significant amount of data was acquired. Quantitative data analysis, using the developed software, is planned for the future.

  9. Special energies and special frequencies

    International Nuclear Information System (INIS)

    Endrullis, M.; Englisch, H.

    1987-01-01

    ''Special frequencies'' have been asserted to be zeros of the density of frequencies corresponding to a random chain of coupled oscillators. Our investigation includes both this model and the random one-dimensional Schroedinger operator describing an alloy or its discrete analogue. Using the phase method we exactly determine a bilateral Lifsic asymptotic of the integrated density of states k(E) at special energies G s , which is not only of the classical type exp(-c/vertical strokeE-E s vertical stroke 1/2 ) but also exp(-c'/vertical strokeE-E s vertical stroke) is a typical behaviour. In addition, other asymptotics occur, e.g. vertical strokeE-E c vertical stroke c '', which show that k(E) need not be C ∞ . (orig.)

  10. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  11. Orthogonal frequency division multiple access fundamentals and applications

    CERN Document Server

    Jiang, Tao; Zhang, Yan

    2010-01-01

    Supported by the expert-level advice of pioneering researchers, Orthogonal Frequency Division Multiple Access Fundamentals and Applications provides a comprehensive and accessible introduction to the foundations and applications of one of the most promising access technologies for current and future wireless networks. It includes authoritative coverage of the history, fundamental principles, key techniques, and critical design issues of OFDM systems. Covering various techniques of effective resource management for OFDM/OFDMA-based wireless communication systems, this cutting-edge reference:Add

  12. Radio Frequency Identification (RFID): its usage and libraries

    OpenAIRE

    Rafiq, Muhammad

    2004-01-01

    Radio Frequency Identification (RFID) is one of the most exciting technologies that revolutionize the working practices by increasing efficiencies, and improving profitability. The article provides details about RFID, its components, how it works, and its usage in different sectors i.e. retail sales and supply chains, livestock industry, courier services, military and prisons, automobiles and logistics, entertainment industry, publishing industry, wireless transaction, and, especially, in...

  13. Meal frequency and childhood obesity.

    Science.gov (United States)

    Toschke, André M; Küchenhoff, Helmut; Koletzko, Berthold; von Kries, Rüdiger

    2005-11-01

    Previous studies have demonstrated an inverse association between meal frequency and the prevalence of obesity in adulthood. The aim of this study was to assess the relationship between meal frequency and childhood obesity. Stature and weight of 4,370 German children ages 5 to 6 years were determined in six Bavarian (Germany) public health offices during the obligatory school entry health examination in 2001/2002. An extensive questionnaire on risk factors for obesity was answered by their parents. Obesity was defined according to sex- and age-specific BMI cut-off points proposed by the International Obesity Task Force. The main exposure was daily meal frequency. The prevalence of obesity decreased by number of daily meals: three or fewer meals, 4.2% [95% confidence interval (CI), 2.8 to 6.1]; four meals, 2.8% (95% CI, 2.1 to 3.7); and 5 or more meals, 1.7% (95% CI, 1.2 to 2.4). These effects could not be explained by confounding due to a wide range of constitutional, sociodemographic, and lifestyle factors. The adjusted odds ratios for obesity were 0.73 (95% CI, 0.44 to 1.21) for four meals and 0.51 (95% CI, 0.29 to 0.89) for five or more meals. Additional analyses pointed to a higher energy intake in nibblers compared with gorgers. A protective effect of an increased daily meal frequency on obesity in children was observed and appeared to be independent of other risk factors for childhood obesity. A modulation of the response of hormones such as insulin might be instrumental.

  14. LEP Radio Frequency Copper Cavity

    CERN Multimedia

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  15. Tracking frequency laser distance gauge

    International Nuclear Information System (INIS)

    Phillips, J.D.; Reasenberg, R.D.

    2005-01-01

    Advanced astronomical missions with greatly enhanced resolution and physics missions of unprecedented accuracy will require laser distance gauges of substantially improved performance. We describe a laser gauge, based on Pound-Drever-Hall locking, in which the optical frequency is adjusted to maintain an interferometer's null condition. This technique has been demonstrated with pm performance. Automatic fringe hopping allows it to track arbitrary distance changes. The instrument is intrinsically free of the nm-scale cyclic bias present in traditional (heterodyne) high-precision laser gauges. The output is a radio frequency, readily measured to sufficient accuracy. The laser gauge has operated in a resonant cavity, which improves precision, can suppress the effects of misalignments, and makes possible precise automatic alignment. The measurement of absolute distance requires little or no additional hardware, and has also been demonstrated. The proof-of-concept version, based on a stabilized HeNe laser and operating on a 0.5 m path, has achieved 10 pm precision with 0.1 s integration time, and 0.1 mm absolute distance accuracy. This version has also followed substantial distance changes as fast as 16 mm/s. We show that, if the precision in optical frequency is a fixed fraction of the linewidth, both incremental and absolute distance precision are independent of the distance measured. We discuss systematic error sources, and present plans for a new version of the gauge based on semiconductor lasers and fiber-coupled components

  16. Hyperbolic equations and frequency interactions

    CERN Document Server

    Caffarelli, Luis

    1998-01-01

    The research topic for this IAS/PCMI Summer Session was nonlinear wave phenomena. Mathematicians from the more theoretical areas of PDEs were brought together with those involved in applications. The goal was to share ideas, knowledge, and perspectives. How waves, or "frequencies", interact in nonlinear phenomena has been a central issue in many of the recent developments in pure and applied analysis. It is believed that wavelet theory-with its simultaneous localization in both physical and frequency space and its lacunarity-is and will be a fundamental new tool in the treatment of the phenomena. Included in this volume are write-ups of the "general methods and tools" courses held by Jeff Rauch and Ingrid Daubechies. Rauch's article discusses geometric optics as an asymptotic limit of high-frequency phenomena. He shows how nonlinear effects are reflected in the asymptotic theory. In the article "Harmonic Analysis, Wavelets and Applications" by Daubechies and Gilbert the main structure of the wavelet theory is...

  17. LOFAR, the low frequency array

    Science.gov (United States)

    Vermeulen, R. C.

    2012-09-01

    LOFAR, the Low Frequency Array, is a next-generation radio telescope designed by ASTRON, with antenna stations concentrated in the north of the Netherlands and currently spread into Germany, France, Sweden and the United Kingdom; plans for more LOFAR stations exist in several other countries. Utilizing a novel, phased-array design, LOFAR is optimized for the largely unexplored low frequency range between 30 and 240 MHz. Digital beam-forming techniques make the LOFAR system agile and allow for rapid re-pointing of the telescopes as well as the potential for multiple simultaneous observations. Processing (e.g. cross-correlation) takes place in the LOFAR BlueGene/P supercomputer, and associated post-processing facilities. With its dense core (inner few km) array and long (more than 1000 km) interferometric baselines, LOFAR reaches unparalleled sensitivity and resolution in the low frequency radio regime. The International LOFAR Telescope (ILT) is now issuing its first call for observing projects that will be peer reviewed and selected for observing starting in December. Part of the allocations will be made on the basis of a fully Open Skies policy; there are also reserved fractions assigned by national consortia in return for contributions from their country to the ILT. In this invited talk, the gradually expanding complement of operationally verified observing modes and capabilities are reviewed, and some of the exciting first astronomical results are presented.

  18. Transfer Efficiency Analysis of Wireless Power Transfer System under Frequency Drift

    DEFF Research Database (Denmark)

    Huang, Shoudao; Li, Zhongqi; Lu, Kaiyuan

    2015-01-01

    Magnetic resonant wireless power transfer (WPT) is an emerging technology that may create new applications for wireless power charging. However, low efficiency resulting from resonant frequency drift is a main obstructing factor for promoting this technology. In this paper, the system efficiency...

  19. The Diffusion and Impact of Radio Frequency Identification in Supply Chains: A Multi-Method Approach

    Science.gov (United States)

    Wu, Xiaoran

    2012-01-01

    As a promising and emerging technology for supply chain management, Radio Frequency Identification (RFID) is a new alternative to existing tracking technologies and also allows a range of internal control and supply chain coordination. RFID has generated a significant amount of interest and activities from both practitioners and researchers in…

  20. Advances in high frequency ultrasound separation of particulates from biomass.

    Science.gov (United States)

    Juliano, Pablo; Augustin, Mary Ann; Xu, Xin-Qing; Mawson, Raymond; Knoerzer, Kai

    2017-03-01

    In recent years the use of high frequency ultrasound standing waves (megasonics) for droplet or cell separation from biomass has emerged beyond the microfluidics scale into the litre to industrial scale applications. The principle for this separation technology relies on the differential positioning of individual droplets or particles across an ultrasonic standing wave field within the reactor and subsequent biomass material predisposition for separation via rapid droplet agglomeration or coalescence into larger entities. Large scale transducers have been characterised with sonochemiluminescence and hydrophones to enable better reactor designs. High frequency enhanced separation technology has been demonstrated at industrial scale for oil recovery in the palm oil industry and at litre scale to assist olive oil, coconut oil and milk fat separation. Other applications include algal cell dewatering and milk fat globule fractionation. Frequency selection depends on the material properties and structure in the biomass mixture. Higher frequencies (1 and 2MHz) have proven preferable for better separation of materials with smaller sized droplets such as milk fat globules. For palm oil and olive oil, separation has been demonstrated within the 400-600kHz region, which has high radical production, without detectable impact on product quality. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  1. 47 CFR 95.1113 - Frequency coordinator.

    Science.gov (United States)

    2010-10-01

    ... SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1113 Frequency coordinator. (a) The Commission will designate a frequency coordinator(s) to manage the usage of the frequency bands for the operation of medical telemetry devices. (b) The frequency coordinator shall (1) Review and...

  2. Time versus frequency domain measurements: layered model ...

    African Journals Online (AJOL)

    ... their high frequency content while among TEM data sets with low frequency content, the averaging times for the FEM ellipticity were shorter than the TEM quality. Keywords: ellipticity, frequency domain, frequency electromagnetic method, model parameter, orientation error, time domain, transient electromagnetic method

  3. Soviet precision timekeeping research and technology

    Energy Technology Data Exchange (ETDEWEB)

    Vessot, R.F.C.; Allan, D.W.; Crampton, S.J.B.; Cutler, L.S.; Kern, R.H.; McCoubrey, A.O.; White, J.D.

    1991-08-01

    This report is the result of a study of Soviet progress in precision timekeeping research and timekeeping capability during the last two decades. The study was conducted by a panel of seven US scientists who have expertise in timekeeping, frequency control, time dissemination, and the direct applications of these disciplines to scientific investigation. The following topics are addressed in this report: generation of time by atomic clocks at the present level of their technology, new and emerging technologies related to atomic clocks, time and frequency transfer technology, statistical processes involving metrological applications of time and frequency, applications of precise time and frequency to scientific investigations, supporting timekeeping technology, and a comparison of Soviet research efforts with those of the United States and the West. The number of Soviet professionals working in this field is roughly 10 times that in the United States. The Soviet Union has facilities for large-scale production of frequency standards and has concentrated its efforts on developing and producing rubidium gas cell devices (relatively compact, low-cost frequency standards of modest accuracy and stability) and atomic hydrogen masers (relatively large, high-cost standards of modest accuracy and high stability). 203 refs., 45 figs., 9 tabs.

  4. Soviet precision timekeeping research and technology

    International Nuclear Information System (INIS)

    Vessot, R.F.C.; Allan, D.W.; Crampton, S.J.B.; Cutler, L.S.; Kern, R.H.; McCoubrey, A.O.; White, J.D.

    1991-08-01

    This report is the result of a study of Soviet progress in precision timekeeping research and timekeeping capability during the last two decades. The study was conducted by a panel of seven US scientists who have expertise in timekeeping, frequency control, time dissemination, and the direct applications of these disciplines to scientific investigation. The following topics are addressed in this report: generation of time by atomic clocks at the present level of their technology, new and emerging technologies related to atomic clocks, time and frequency transfer technology, statistical processes involving metrological applications of time and frequency, applications of precise time and frequency to scientific investigations, supporting timekeeping technology, and a comparison of Soviet research efforts with those of the United States and the West. The number of Soviet professionals working in this field is roughly 10 times that in the United States. The Soviet Union has facilities for large-scale production of frequency standards and has concentrated its efforts on developing and producing rubidium gas cell devices (relatively compact, low-cost frequency standards of modest accuracy and stability) and atomic hydrogen masers (relatively large, high-cost standards of modest accuracy and high stability). 203 refs., 45 figs., 9 tabs

  5. Smart technology

    International Nuclear Information System (INIS)

    Bruckner, D.G.

    1991-01-01

    The success of smart technology in the pursuit of the Gulf War has accentuated the awareness of how the Safeguards and Security disciplines are changing in response to new weaponry. Throughout the Department of Energy Integrated Complex (IC) Safeguards and Security efforts such as: Protection Programs Operations; Materials, Controls and Accountability; Information Security; Computer Security; Operational Security; Personnel Security, Safeguards and/or Security (S and S) surveys, and Inspections and Evaluations are undergoing a reassessment and refocusing. Some of this is in response to such things as the DOE initiated Freeze Report and the Drell Report. An important aspect is also technological, adjusting the way business is done in light of the weapons, tools and processes/procedures becoming available. This paper addresses the S and S issues with the promise of using smart technology to develop new approaches and equipment across the IC

  6. Seafood Technology

    DEFF Research Database (Denmark)

    Børresen, Torger

    This presentation will fill the total picture of this conference between fisheries and aquaculture, blue biotech and bioconservation, by considering the optimal processing technology of marine resources from the raw material until the seafood reaches the plate of the consumer. The situation today...... must be performed such that total traceability and authenticity of the final products can be presented on demand. The most important aspects to be considered within seafood technology today are safety, healthy products and high eating quality. Safety can be divided into microbiological safety...... and not presenting any safety risk per se. Seafood is healthy due to the omega-3 fatty acids and the nutritional value of vitamins, peptides and proteins. The processing technology must however be performed such that these valuable features are not lost during production. The same applies to the eating quality. Any...

  7. Persuasive Technology

    DEFF Research Database (Denmark)

    This book constitutes the proceedings of the 5th International Conference on Persuasive Technology, PERSUASIVE 2010, held in Copenhagen Denmark in June 2010. The 25 papers presented were carefully reviewed and selected from 80 submissions. In addition three keynote papers are included in this vol......This book constitutes the proceedings of the 5th International Conference on Persuasive Technology, PERSUASIVE 2010, held in Copenhagen Denmark in June 2010. The 25 papers presented were carefully reviewed and selected from 80 submissions. In addition three keynote papers are included...... in this volume. The topics covered are emotions and user experience, ambient persuasive systems, persuasive design, persuasion profiles, designing for health, psychology of persuasion, embodied and conversational agents, economic incentives, and future directions for persuasive technology....

  8. Technology Management

    DEFF Research Database (Denmark)

    Pilkington, Alan

    2014-01-01

    This paper reports a bibliometric analysis (co-citation network analysis) of 10 journals in the management of technology (MOT) field. As well as introducing various bibliometric ideas, network analysis tools identify and explore the concepts covered by the field and their inter-relationships. Spe......This paper reports a bibliometric analysis (co-citation network analysis) of 10 journals in the management of technology (MOT) field. As well as introducing various bibliometric ideas, network analysis tools identify and explore the concepts covered by the field and their inter......-relationships. Specific results from different levels of analysis show the different dimensions of technology management: • Co-word terms identify themes • Journal co-citation network: linking to other disciplines • Co-citation network show concentrations of themes The analysis shows that MOT has a bridging role...

  9. Superconducting technology

    International Nuclear Information System (INIS)

    2010-01-01

    Superconductivity has a long history of about 100 years. Over the past 50 years, progress in superconducting materials has been mainly in metallic superconductors, such as Nb, Nb-Ti and Nb 3 Sn, resulting in the creation of various application fields based on the superconducting technologies. High-T c superconductors, the first of which was discovered in 1986, have been changing the future vision of superconducting technology through the development of new application fields such as power cables. On basis of these trends, future prospects of superconductor technology up to 2040 are discussed. In this article from the viewpoints of material development and the applications of superconducting wires and electronic devices. (author)

  10. Technology Transfer

    Science.gov (United States)

    Smith, Nanette R.

    1995-01-01

    The objective of this summer's work was to attempt to enhance Technology Application Group (TAG) ability to measure the outcomes of its efforts to transfer NASA technology. By reviewing existing literature, by explaining the economic principles involved in evaluating the economic impact of technology transfer, and by investigating the LaRC processes our William & Mary team has been able to lead this important discussion. In reviewing the existing literature, we identified many of the metrics that are currently being used in the area of technology transfer. Learning about the LaRC technology transfer processes and the metrics currently used to track the transfer process enabled us to compare other R&D facilities to LaRC. We discuss and diagram impacts of technology transfer in the short run and the long run. Significantly, it serves as the basis for analysis and provides guidance in thinking about what the measurement objectives ought to be. By focusing on the SBIR Program, valuable information regarding the strengths and weaknesses of this LaRC program are to be gained. A survey was developed to ask probing questions regarding SBIR contractors' experience with the program. Specifically we are interested in finding out whether the SBIR Program is accomplishing its mission, if the SBIR companies are providing the needed innovations specified by NASA and to what extent those innovations have led to commercial success. We also developed a survey to ask COTR's, who are NASA employees acting as technical advisors to the SBIR contractors, the same type of questions, evaluating the successes and problems with the SBIR Program as they see it. This survey was developed to be implemented interactively on computer. It is our hope that the statistical and econometric studies that can be done on the data collected from all of these sources will provide insight regarding the direction to take in developing systematic evaluations of programs like the SBIR Program so that they can

  11. Technological Inovattion

    Directory of Open Access Journals (Sweden)

    Alexandra Bostan

    2009-06-01

    Full Text Available The spectacular development of technology within the field of informatics and telecommunicationfor the last decade, associated with a postindustrial revolution, has solidly contributed to the globalization ofthe contemporary international economic life. A very important factor in promoting the globalization ofproduction and the financial globalization is the recent progress from the technology of information andcommunication which has a strong impact on the economic, social and cultural life. The postindustrialrevolution marks the transfer from an industrial based culture to a culture based on information,communication and experience.

  12. Architectural technology

    DEFF Research Database (Denmark)

    2005-01-01

    The booklet offers an overall introduction to the Institute of Architectural Technology and its projects and activities, and an invitation to the reader to contact the institute or the individual researcher for further information. The research, which takes place at the Institute of Architectural...... Technology at the Roayl Danish Academy of Fine Arts, School of Architecture, reflects a spread between strategic, goal-oriented pilot projects, commissioned by a ministry, a fund or a private company, and on the other hand projects which originate from strong personal interests and enthusiasm of individual...

  13. Playful Technology

    DEFF Research Database (Denmark)

    Johansen, Stine Liv; Eriksson, Eva

    2013-01-01

    In this paper, the design of future services for children in Danish public libraries is discussed, in the light of new challenges and opportunities in relation to new media and technologies. The Danish government has over the last few years initiated and described a range of initiatives regarding...... in the library, the changing role of the librarians and the library space. We argue that intertwining traditional library services with new media forms and engaging play is the core challenge for future design in physical public libraries, but also that it is through new media and technology that new...

  14. CAMAC programmable-control frequency synthesizer

    International Nuclear Information System (INIS)

    Yumaguzin, T.Kh.; Vyazovkin, D.E.; Nazirov, Eh.P.; Tuktarov, R.F.

    1989-01-01

    Synthesizer allows to set frequency with 0.015% accuracy and to scan it with variable step. Frequency controlled divider with further summing-up of divided frequency with fundamental one is used in synthesizer, and it has allowed to use digit of the input code and to obtain 3-4 MHz frequency range. Variation of operation flowsheet in the other frequency range is possible. K-155 and K-531 series microcircuits were used during development

  15. Swiss and Turkish Pre-Service Science Teachers' Anxiety Levels for Educational Technology

    Science.gov (United States)

    Efe, Hulya Aslan; Efe, Rifat

    2016-01-01

    This study aims to culturally explain pre-service science teachers' instructional technology-related anxiety levels by analyzing the variables of their instructional technology using experiences, frequency of using instructional technologies, access to instructional technologies, instructional technology-related attitude and their instructional…

  16. Loads as a Resource: Frequency Responsive Demand

    Energy Technology Data Exchange (ETDEWEB)

    Kalsi, Karanjit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hansen, Jacob [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fuller, Jason C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Marinovici, Laurentiu D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elizondo, Marcelo A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Tess L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lian, Jianming [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sun, Yannan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Current power grid operation predominantly relies on scheduling and regulating generation resources to supply loads and balance load changes. Due to the inherent intermittency of renewable energy, more flexible and fast ramping capacity is required to compensate for the uncertainty and variability introduced by renewable energy resources. With the advancement of information technologies, power system end-use loads are becoming more agile and can participate in provision of balancing energy and other grid services. The use of demand response can greatly reduce the required generation reserve in a clean and environmentally friendly way. In this report, a new frequency responsive load (FRL) controller was proposed based on the GFA controller, which can respond to both over and under-frequency events. A supervisory control was introduced to coordinate the autonomous response from FRLs in order to overcome the issues of excessive system response due to high penetration of FRLs. The effectiveness of the proposed FRL controller was demonstrated by large-scale simulation studies on the WECC system. Specifically, the FRLs were deployed in the WECC system at different penetration levels to analyze the performance of the proposed strategy both with and without supervisory level control. While both methods have their own advantages, the case without supervisory control could lead to system-wide instability depending on the size of the contingency and the number of FRLs deployed in the system. In addition, the voltage impacts of this controller on distribution system were also carefully investigated. Finally, a preliminary measurement and verification approach was also developed.

  17. Technology Transfer: Marketing Tomorrow's Technology

    Science.gov (United States)

    Tcheng, Erene

    1995-01-01

    The globalization of the economy and the end of the Cold War have triggered many changes in the traditional practices of U.S. industry. To effectively apply the resources available to the United States, the federal government has firmly advocated a policy of technology transfer between private industry and government labs, in this case the National Aeronautics and Space Administration (NASA). NASA Administrator Daniel Goldin is a strong proponent of this policy and has organized technology transfer or commercialization programs at each of the NASA field centers. Here at Langley Research Center, the Technology Applications Group (TAG) is responsible for facilitating the transfer of Langley developed research and technology to U.S. industry. Entering the program, I had many objectives for my summer research with TAG. Certainly, I wanted to gain a more thorough understanding of the concept of technology transfer and Langley's implementation of a system to promote it to both the Langley community and the community at large. Also, I hoped to become more familiar with Langley's research capabilities and technology inventory available to the public. More specifically, I wanted to learn about the technology transfer process at Langley. Because my mentor is a member of Materials and Manufacturing marketing sector of the Technology Transfer Team, another overriding objective for my research was to take advantage of his work and experience in materials research to learn about the Advanced Materials Research agency wide and help market these developments to private industry. Through the various projects I have been assigned to work on in TAG, I have successfully satisfied the majority of these objectives. Work on the Problem Statement Process for TAG as well as the development of the Advanced Materials Research Brochure have provided me with the opportunity to learn about the technology transfer process from the outside looking in and the inside looking out. Because TAG covers

  18. Accessibility and Usage of Technology by North Carolina Agriculture Teachers

    Science.gov (United States)

    Williams, Maegen R.; Warner, Wendy J.; Flowers, James L.; Croom, D. Barry

    2014-01-01

    This study examined the integration of technology into the instructional process in North Carolina agricultural education classrooms. The study used survey research methodology to collect information on the availability of instructional technology and the frequency of instructional technology use by North Carolina agriculture teachers. The study…

  19. Frequency locking of compact laser-diode modules at 633 nm

    Science.gov (United States)

    Nölleke, Christian; Leisching, Patrick; Blume, Gunnar; Jedrzejczyk, Daniel; Pohl, Johannes; Feise, David; Sahm, Alexander; Paschke, Katrin

    2018-02-01

    This work reports on a compact diode-laser module emitting at 633 nm. The emission frequency can be tuned with temperature and current, while optical feedback of an internal DBR grating ensures single-mode operation. The laser diode is integrated into a micro-fabricated package, which includes optics for beam shaping, a miniaturized optical isolator, and a vapor cell as frequency reference. The achieved absolute frequency stability is below 10-8 , while the output power can be more than 10 mW. This compact absolute frequency-stabilized laser system can replace gas lasers and may be integrated in future quantum technology devices.

  20. The operation cutoff frequency of high electron mobility transistor measured by terahertz method

    International Nuclear Information System (INIS)

    Zhu, Y. M.; Zhuang, S. L.

    2014-01-01

    Commonly, the cutoff frequency of high electron mobility transistor (HEMT) can be measured by vector network analyzer (VNA), which can only measure the sample exactly in low frequency region. In this paper, we propose a method to evaluate the cutoff frequency of HEMT by terahertz (THz) technique. One example shows the cutoff frequency of our HEMT is measured at ∼95.30 GHz, which is reasonable agreement with that estimated by VNA. It is proved THz technology a potential candidate for the substitution of VNA for the measurement of high-speed devices even up to several THz.

  1. Frequency dependence and frequency control of microbubble streaming flows

    Science.gov (United States)

    Wang, Cheng; Rallabandi, Bhargav; Hilgenfeldt, Sascha

    2013-02-01

    Steady streaming from oscillating microbubbles is a powerful actuating mechanism in microfluidics, enjoying increased use due to its simplicity of manufacture, ease of integration, low heat generation, and unprecedented control over the flow field and particle transport. As the streaming flow patterns are caused by oscillations of microbubbles in contact with walls of the set-up, an understanding of the bubble dynamics is crucial. Here we experimentally characterize the oscillation modes and the frequency response spectrum of such cylindrical bubbles, driven by a pressure variation resulting from ultrasound in the range of 1 kHz raisebox {-.9ex{stackrel{textstyle <}{˜ }} }f raisebox {-.9ex{stackrel{textstyle <}{˜ }} } 100 kHz. We find that (i) the appearance of 2D streaming flow patterns is governed by the relative amplitudes of bubble azimuthal surface modes (normalized by the volume response), (ii) distinct, robust resonance patterns occur independent of details of the set-up, and (iii) the position and width of the resonance peaks can be understood using an asymptotic theory approach. This theory describes, for the first time, the shape oscillations of a pinned cylindrical bubble at a wall and gives insight into necessary mode couplings that shape the response spectrum. Having thus correlated relative mode strengths and observed flow patterns, we demonstrate that the performance of a bubble micromixer can be optimized by making use of such flow variations when modulating the driving frequency.

  2. Health technology

    International Nuclear Information System (INIS)

    Nicolas, Delphine; Dangleant, Caroline; Ganier, Aude; Kaczmarek, Delphine

    2008-01-01

    The CEA is an organization with a primarily technological focus, and one of the key areas in which it carries out research is Health Technology. This field of research was recognized and approved by the French Atomic Energy Committee on July 20, 2004. The expectations of both the public and health care professionals relate to demands for the highest standards of health care, at minimum risk. This implies a need to diagnose illness and disease as accurately and as at early a stage as possible, to target surgery precisely to deal only with damaged organs or tissues, to minimize the risk of side effects, allergies and hospital-acquired infections, to follow-up and, as far as possible, tailor the health delivery system to each individual's needs and his or her lifestyle. The health care sector is subject to rapid changes and embraces a vast range of scientific fields. It now requires technological developments that will serve to gather increasing quantities of useful information, analyze and integrate it to obtain a full understanding of highly complex processes and to be able to treat the human body as un-invasively as possible. All the technologies developed require assessment, especially in the hospital environment. (authors)

  3. Technology transfer

    International Nuclear Information System (INIS)

    Boury, C.

    1986-01-01

    This paper emphasizes in the specific areas of design, engineering and component production. This paper presents what Framatome has to offer in these areas and its export oriented philosophy. Then, a typical example of this technology transfer philosophy is the collaboration with the South Korean firm, Korea Heavy Industries Corporation (KHIC) for the supply of KNU 9 and KNU 10 power stations

  4. Manufacturing technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  5. Energy Technology.

    Science.gov (United States)

    Eaton, William W.

    Reviewed are technological problems faced in energy production including locating, recovering, developing, storing, and distributing energy in clean, convenient, economical, and environmentally satisfactory manners. The energy resources of coal, oil, natural gas, hydroelectric power, nuclear energy, solar energy, geothermal energy, winds, tides,…

  6. (Environmental technology)

    Energy Technology Data Exchange (ETDEWEB)

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  7. Experimental Limits on Gravitational Waves in the MHz frequency Range

    Energy Technology Data Exchange (ETDEWEB)

    Lanza, Robert Jr. [Univ. of Chicago, IL (United States)

    2015-03-01

    This thesis presents the results of a search for gravitational waves in the 1-11MHz frequency range using dual power-recycled Michelson laser interferometers at Fermi National Accelerator Laboratory. An unprecedented level of sensitivity to gravitational waves in this frequency range has been achieved by cross-correlating the output fluctuations of two identical and colocated 40m long interferometers. This technique produces sensitivities better than two orders of magnitude below the quantum shot-noise limit, within integration times of less than 1 hour. 95% confidence level upper limits are placed on the strain amplitude of MHz frequency gravitational waves at the 10-21 Hz-1/2 level, constituting the best direct limits to date at these frequencies. For gravitational wave power distributed over this frequency range, a broadband upper limit of 2.4 x 10-21Hz-1/2 at 95% confidence level is also obtained. This thesis covers the detector technology, the commissioning and calibration of the instrument, the statistical data analysis, and the gravitational wave limit results. Particular attention is paid to the end-to-end calibration of the instrument’s sensitivity to differential arm length motion, and so to gravitational wave strain. A detailed statistical analysis of the data is presented as well.

  8. Autoantibody frequency in celiac disease

    Directory of Open Access Journals (Sweden)

    Erkan Caglar

    2009-01-01

    Full Text Available AIM: In our study, we investigated the levels of glutamic acid decarboxylase antibody (anti-GAD, islet cell antibody (ICA, thyroperoxidase antibody (anti-TPO, thyroglobulin antibody (anti-TG, antinuclear antibodies (FANA, antibodies to double-stranded DNA (anti-ds DNA, antibody to Sjögren syndrome A antigen (anti-SSA, antibody to Sjögren syndrome B antigen (anti-SSB, Smith antibody (anti-Sm, smooth muscle antibodies (ASMA, and antimitochondrial antibody liver-kidney microsome (AMA-LKM in patients with celiac disease as compared to healthy controls and autoimmune hypothyroid patients. MATERIALS AND METHODS: A total of 31 patients with celiac disease, 34 patients with autoimmune hypothyroidism and 29 healthy subjects were included in this study. Anti-SSA, anti-SSB, anti-Sm, anti-ds DNA, anti-GAD, anti-TPO and anti-TG were studied by Enzyme-Linked Immunosorbent Assay (ELISA, and AMA-LKM, ASMA, ANA and ICA were studied by immunofluorescence. Clinical data and the results of free thyroxine-thyroid stimulating hormone (FT4-TSH were collected from the patients' files by retrospective analysis. SPSS ver 13.0 was used for data analysis, and the χ2 method was used for comparisons within groups. RESULTS: The frequency of anti-SSA, anti-SSB, anti-GAD, anti-Sm, anti-ds DNA, AMA-LKM, ASMA, ANA and ICA were not significantly different between the groups. Levels of anti-TPO and anti-TG antibodies were found to be significantly higher (<0.001 in autoimmune hypothyroid patients when compared with other groups. CONCLUSION: In previous studies, an increased frequency of autoimmune diseases of other systems has been reported in patients with celiac disease. We found that the frequency of autoimmune antibodies specific for other autoimmune diseases was not higher in celiac disease.

  9. Photovoltaic technologies

    International Nuclear Information System (INIS)

    Bagnall, Darren M.; Boreland, Matt

    2008-01-01

    Photovoltaics is already a billion dollar industry. It is experiencing rapid growth as concerns over fuel supplies and carbon emissions mean that governments and individuals are increasingly prepared to ignore its current high costs. It will become truly mainstream when its costs are comparable to other energy sources. At the moment, it is around four times too expensive for competitive commercial production. Three generations of photovoltaics have been envisaged that will take solar power into the mainstream. Currently, photovoltaic production is 90% first-generation and is based on silicon wafers. These devices are reliable and durable, but half of the cost is the silicon wafer and efficiencies are limited to around 20%. A second generation of solar cells would use cheap semiconductor thin films deposited on low-cost substrates to produce devices of slightly lower efficiency. A number of thin-film device technologies account for around 5-6% of the current market. As second-generation technology reduces the cost of active material, the substrate will eventually be the cost limit and higher efficiency will be needed to maintain the cost-reduction trend. Third-generation devices will use new technologies to produce high-efficiency devices. Advances in nanotechnology, photonics, optical metamaterials, plasmonics and semiconducting polymer sciences offer the prospect of cost-competitive photovoltaics. It is reasonable to expect that cost reductions, a move to second-generation technologies and the implementation of new technologies and third-generation concepts can lead to fully cost-competitive solar energy in 10-15 years. (author)

  10. Vacuum Technology

    Energy Technology Data Exchange (ETDEWEB)

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  11. Demand as Frequency Controlled Reserve

    DEFF Research Database (Denmark)

    Xu, Zhao; Østergaard, Jacob; Togeby, Mikael

    2011-01-01

    Relying on generation side alone is deemed insufficient to fulfill the system balancing needs for future Danish power system, where a 50% wind penetration is outlined by the government for year 2025. This paper investigates using the electricity demand as frequency controlled reserve (DFR) as a new...... balancing measure, which has a high potential and can provide many advantages. Firstly, the background of the research is reviewed, including conventional power system reserves and the electricity demand side potentials. Subsequently, the control logics and corresponding design considerations for the DFR...

  12. High-frequency magnetic components

    CERN Document Server

    Kazimierczuk, Marian K

    2013-01-01

    A unique text on the theory and design fundaments of inductors and transformers, updated with more coverage on the optimization of magnetic devices and many new design examples The first edition is popular among a very broad audience of readers in different areas of engineering and science. This book covers the theory and design techniques of the major types of high-frequency power inductors and transformers for a variety of applications, including switching-mode power supplies (SMPS) and resonant dc-to-ac power inverters and dc-to-dc power converters. It describes eddy-current phenomena (su

  13. Frequency Based Real-time Pricing for Residential Prosumers

    Science.gov (United States)

    Hambridge, Sarah Mabel

    stability in a free, competitive, market. Frequency based pricing is applied to secondary frequency control in this work, providing support at one to five minute time intervals. In Chapter 2, a frequency based pricing curve is designed as a preliminary study and the response of the prosumer is optimized for economic dispatch. In Chapter 3, a day-ahead schedule and real-time adjustment energy management framework is presented for the prosumer, creating a market structure similar to the existing energy market supervised by Independent System Operators (ISOs). Enabling technology, such as the solid state transformer (SST) is described for prosumer energy transactions, controlling power flow from the prosumer's energy cell to the grid or neighboring prosumer as an energy router. Experimental results are shown to demonstrate this capability. Additionally, the SST is capable of measuring the grid frequency. Lastly, a frequency based real-time hybrid electricity rate is presented in Chapter 4 and Chapter 5. Chapter 4 specializes in a single direction rate while Chapter 5 presents a bi-directional rate. A Time-of-use (TOU) rate is combined with the real-time frequency based price to lower energy bills for a residential prosumer with ESS, in agreement with the proposed day-ahead and real-time energy management framework. The cost to the ESS is also considered in this section. Linear programming and strategic rule based methods are utilized to find the lowest energy bill. As a result, prosumers can use ESS to balance the grid, reducing their bill as much per kWh as PV or DG under a TOU net-metering price scheme, while providing distributed frequency support to the grid authority. The variability of the frequency based rate is similar to variability in the stock market, which gives a sense of how prosumers will interact with variable prices in a system supported by The Energy Internet.

  14. Nonlinear frequency compression: effects on sound quality ratings of speech and music.

    Science.gov (United States)

    Parsa, Vijay; Scollie, Susan; Glista, Danielle; Seelisch, Andreas

    2013-03-01

    Frequency lowering technologies offer an alternative amplification solution for severe to profound high frequency hearing losses. While frequency lowering technologies may improve audibility of high frequency sounds, the very nature of this processing can affect the perceived sound quality. This article reports the results from two studies that investigated the impact of a nonlinear frequency compression (NFC) algorithm on perceived sound quality. In the first study, the cutoff frequency and compression ratio parameters of the NFC algorithm were varied, and their effect on the speech quality was measured subjectively with 12 normal hearing adults, 12 normal hearing children, 13 hearing impaired adults, and 9 hearing impaired children. In the second study, 12 normal hearing and 8 hearing impaired adult listeners rated the quality of speech in quiet, speech in noise, and music after processing with a different set of NFC parameters. Results showed that the cutoff frequency parameter had more impact on sound quality ratings than the compression ratio, and that the hearing impaired adults were more tolerant to increased frequency compression than normal hearing adults. No statistically significant differences were found in the sound quality ratings of speech-in-noise and music stimuli processed through various NFC settings by hearing impaired listeners. These findings suggest that there may be an acceptable range of NFC settings for hearing impaired individuals where sound quality is not adversely affected. These results may assist an Audiologist in clinical NFC hearing aid fittings for achieving a balance between high frequency audibility and sound quality.

  15. Frequency selective surfaces based high performance microstrip antenna

    CERN Document Server

    Narayan, Shiv; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on performance enhancement of printed antennas using frequency selective surfaces (FSS) technology. The growing demand of stealth technology in strategic areas requires high-performance low-RCS (radar cross section) antennas. Such requirements may be accomplished by incorporating FSS into the antenna structure either in its ground plane or as the superstrate, due to the filter characteristics of FSS structure. In view of this, a novel approach based on FSS technology is presented in this book to enhance the performance of printed antennas including out-of-band structural RCS reduction. In this endeavor, the EM design of microstrip patch antennas (MPA) loaded with FSS-based (i) high impedance surface (HIS) ground plane, and (ii) the superstrates are discussed in detail. The EM analysis of proposed FSS-based antenna structures have been carried out using transmission line analogy, in combination with the reciprocity theorem. Further, various types of novel FSS structures are considered in desi...

  16. Patient safety and technology-driven medication

    DEFF Research Database (Denmark)

    Orbæk, Janne; Gaard, Mette; Keinicke Fabricius, Pia

    2015-01-01

    ways of educating nursing students in today's medication administration. AIM: To explore nursing students' experiences and competences with the technology-driven medication administration process. METHODS: 16 pre-graduate nursing students were included in two focus group interviews which were recorded...... for the technology-driven medication process, nursing students face difficulties in identifying and adopting best practices. The impact of using technology on the frequency, type and severity of medication errors; the technologies implications on nursing professionalism and the nurses ability to secure patient...

  17. Technology Programme

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo [ed.

    2005-07-01

    The technology activities carried out by the Euratom-ENEA Association in the framework of the European Fusion Development Agreement concern the Next Step (International Thermonuclear Experimental Reactor - ITER), the Long-Term Programme (breeder blanket, materials, International Fusion Materials Irradiation Facility - IFMIF), Power Plant Conceptual Studies and Socio-Economic Studies. The Underlying Technology Programme was set up to complement the fusion activities as well to develop technologies with a wider range of interest. The Technology Programme mainly involves staff from the Frascati laboratories of the Fusion Technical and Scientific Unit and from the Brasimone laboratories of the Advanced Physics Technologies Unit. Other ENEA units also provide valuable contributions to the programme. ENEA is heavily engaged in component development/testing and in design and safety activities for the European Fusion Technology Programme. Although the work documented in the following covers a large range of topics that differ considerably because they concern the development of extremely complex systems, the high level of integration and coordination ensures the capability to cover the fusion system as a whole. In 2004 the most significant testing activities concerned the ITER primary beryllium-coated first wall. In the field of high-heat-flux components, an important achievement was the qualification of the process for depositing a copper liner on carbon fibre composite (CFC) hollow tiles. This new process, pre-brazed casting (PBC), allows the hot radial pressing (HRP) joining procedure to be used also for CFC-based armour monoblock divertor components. The PBC and HRP processes are candidates for the construction of the ITER divertor. In the materials field an important milestone was the commissioning of a new facility for chemical vapour infiltration/deposition, used for optimising silicon carbide composite (SiCf/SiC) components. Eight patents were deposited during 2004

  18. Technology Programme

    International Nuclear Information System (INIS)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo

    2005-01-01

    The technology activities carried out by the Euratom-ENEA Association in the framework of the European Fusion Development Agreement concern the Next Step (International Thermonuclear Experimental Reactor - ITER), the Long-Term Programme (breeder blanket, materials, International Fusion Materials Irradiation Facility - IFMIF), Power Plant Conceptual Studies and Socio-Economic Studies. The Underlying Technology Programme was set up to complement the fusion activities as well to develop technologies with a wider range of interest. The Technology Programme mainly involves staff from the Frascati laboratories of the Fusion Technical and Scientific Unit and from the Brasimone laboratories of the Advanced Physics Technologies Unit. Other ENEA units also provide valuable contributions to the programme. ENEA is heavily engaged in component development/testing and in design and safety activities for the European Fusion Technology Programme. Although the work documented in the following covers a large range of topics that differ considerably because they concern the development of extremely complex systems, the high level of integration and coordination ensures the capability to cover the fusion system as a whole. In 2004 the most significant testing activities concerned the ITER primary beryllium-coated first wall. In the field of high-heat-flux components, an important achievement was the qualification of the process for depositing a copper liner on carbon fibre composite (CFC) hollow tiles. This new process, pre-brazed casting (PBC), allows the hot radial pressing (HRP) joining procedure to be used also for CFC-based armour monoblock divertor components. The PBC and HRP processes are candidates for the construction of the ITER divertor. In the materials field an important milestone was the commissioning of a new facility for chemical vapour infiltration/deposition, used for optimising silicon carbide composite (SiCf/SiC) components. Eight patents were deposited during 2004

  19. A Novel Frequency Measurement Method Suitable for a Large Frequency Ratio Condition

    Institute of Scientific and Technical Information of China (English)

    ZHOU Wei; XUAN Zong-Qiang; YU Jian-Guo; WANG Hai; ZHOU Hui; LI Zhi-Qi

    2004-01-01

    @@ As for the obstacles to direct comparison between superhigh and lower frequencies, we accomplish the accurate comparison between low and microwave frequencies with the 105 ratios of the operating frequencies on the basis of phase comparison between the signals whose frequencies are related by an arbitrary integer. This method is simple and accurate, and will be widely used as a special frequency comparison approach.

  20. Low-frequency electromagnetic iirradiation treatment of grain in harvester

    Directory of Open Access Journals (Sweden)

    E. V. Zhalnin

    2016-01-01

    Full Text Available Treatment of crop seeds by low-frequency electromagnetic field contributes to obtaining high and stable yields. After this treatment in a laboratory environment crop production can increase from 15 to 40 percent. To research an effect of magnetic field on a seed material in the field we developed technological design for a seeds treatment in a combine harvester «Enisey-1200 NМ». Three modules of low frequency electromagnetic waves source were mounted in the design of transporting working elements from the threshing apparatus to the grain tank for the impact they have on the moving of freshly threshed grain portion. Conditions of magnetization of seeds vere varied. Influence of modes of grain treatment at threshing of spring wheat in a harvester on the effectiveness of the stimulation vere researched. A comparative laboratory analysis of quality of grain, magnetic directly in the harvester, and 3 months after thrashing showed that the new technology allows to increase sowing qualities of grain. Electromagnetic irradiation of grain in a harvester increases the germination of seeds from 6 to 20 percent, germination energy about 30 percent, also raises the weight of the plant parts and more qualitatively clears seeds of a peel that promotes best storage. Regime of magnetization determines a germination ability and readiness og seeds. The most pronounced effect of the grain magnetization is observed under irradiation becomes apparent for more than 9 minutes. Irradiation of grain placed in the hopper of the combine is more effective. The optimum parameters of electromagnetic radiation is a frequency equaled to 16 Hz, the value of magnetic induction of 6 mT. We proposed to extend the technology field stimulation of seeds with low-frequency magnetic field in order to increase germination and yield of different crops. An application of the proposed design of the electromagnetic module for any model and size of modern types of grain and rice harvesters

  1. Innovative Technology in Automotive Technology

    Science.gov (United States)

    Gardner, John

    2007-01-01

    Automotive Technology combines hands-on training along with a fully integrated, interactive, computerized multistationed facility. Our program is a competency based, true open-entry/open-exit program that utilizes flexible self-paced course outlines. It is designed around an industry partnership that promotes community and economic development,…

  2. Technological elixir

    Energy Technology Data Exchange (ETDEWEB)

    Snieckus, Darius

    2000-07-01

    In a short article, the aim of Pilot (formerly the Oil and Gas Industry Task Force) is discussed with respect to extending the productive life of the North Sea. The head of Pilot is the Industry Facilitator MD David Ellix and he believes that the new technology will restore the North Sea to its former level of productivity. The problems, and how they are to be addressed, are discussed.

  3. Technology transfer

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Illustrated by the example of the FRG's nuclear energy exports, it is shown that the nuclear technology transfer leads to new dimensions of intergovernmental relations, which hold within themselves on account of multiple state-to-state, scientific, industrial and - last but not least - personal contacts the chance of far-reaching friendships between countries and people. If the chance is taken, this can also be seen as an important contribution towards maintaining the peace. (orig.) [de

  4. Nuclear technology

    International Nuclear Information System (INIS)

    1983-03-01

    This report examines nuclear technology in Canada, with emphasis on Quebec, as a means of revitilizing industry. The historical, present day, and future states of Atomic Energy of Canada Limited are examined. Future research programs are discussed in greatest detail. These range from disposal of porcine wastes to new applications for electricity to nuclear medical techniques (to cite only a few examples). The executive summary is written in English. (23 fig., 16 tab.)

  5. Group technology

    International Nuclear Information System (INIS)

    Rome, C.P.

    1976-01-01

    Group Technology has been conceptually applied to the manufacture of batch-lots of 554 machined electromechanical parts which now require 79 different types of metal-removal tools. The products have been grouped into 7 distinct families which require from 8 to 22 machines in each machine-cell. Throughput time can be significantly reduced and savings can be realized from tooling, direct-labor, and indirect-labor costs

  6. Metagenome Fragment Classification Using -Mer Frequency Profiles

    Directory of Open Access Journals (Sweden)

    Gail Rosen

    2008-01-01

    Full Text Available A vast amount of microbial sequencing data is being generated through large-scale projects in ecology, agriculture, and human health. Efficient high-throughput methods are needed to analyze the mass amounts of metagenomic data, all DNA present in an environmental sample. A major obstacle in metagenomics is the inability to obtain accuracy using technology that yields short reads. We construct the unique -mer frequency profiles of 635 microbial genomes publicly available as of February 2008. These profiles are used to train a naive Bayes classifier (NBC that can be used to identify the genome of any fragment. We show that our method is comparable to BLAST for small 25 bp fragments but does not have the ambiguity of BLAST's tied top scores. We demonstrate that this approach is scalable to identify any fragment from hundreds of genomes. It also performs quite well at the strain, species, and genera levels and achieves strain resolution despite classifying ubiquitous genomic fragments (gene and nongene regions. Cross-validation analysis demonstrates that species-accuracy achieves 90% for highly-represented species containing an average of 8 strains. We demonstrate that such a tool can be used on the Sargasso Sea dataset, and our analysis shows that NBC can be further enhanced.

  7. MEMS Logic Using Mixed-Frequency Excitation

    KAUST Repository

    Ilyas, Saad

    2017-06-22

    We present multi-function microelectromechanical systems (MEMS) logic device that can perform the fundamental logic gate AND, OR, universal logic gates NAND, NOR, and a tristate logic gate using mixed-frequency excitation. The concept is based on exciting combination resonances due to the mixing of two or more input signals. The device vibrates at two steady states: a high state when the combination resonance is activated and a low state when no resonance is activated. These vibration states are assigned to logical value 1 or 0 to realize the logic gates. Using ac signals to drive the resonator and to execute the logic inputs unifies the input and output wave forms of the logic device, thereby opening the possibility for cascading among logic devices. We found that the energy consumption per cycle of the proposed logic resonator is higher than those of existing technologies. Hence, integration of such logic devices to build complex computational system needs to take into consideration lowering the total energy consumption. [2017-0041

  8. Inter-technology knowledge spillovers for energy technologies

    International Nuclear Information System (INIS)

    Nemet, Gregory F.

    2012-01-01

    Both anecdotal evidence and the innovation literature indicate that important advances in energy technology have made use of knowledge originating in other technological areas. This study uses the set of U.S. patents granted from 1976 to 2006 to assess the role of knowledge acquired from outside each energy patent's technological classification. It identifies the effect of external knowledge on the forward citation frequency of energy patents. The results support the claim above. Regression coefficients on citations to external prior art are positive and significant. Further, the effect of external citations is significantly larger than that of other types of citations. Conversely, citations to prior art that is technologically near have a negative effect on forward citation frequency. These results are robust across several alternative specifications and definitions of whether each flow of knowledge is external. Important energy patents have drawn heavily from external prior art categorized as chemical, electronics, and electrical; they cite very little prior art from computers, communications, and medical inventions.

  9. Biohydrometallurgical technologies

    International Nuclear Information System (INIS)

    Torma, A.E.; Wey, J.E.; Lakshmanan, V.I.

    1993-01-01

    The theme of the International Biohydrometallurgy Symposium held in Jackson Hole, Wyoming, August 22-25, 1993, is ''Biohydrometallurgy: An Industry Matures.'' This is a developing technology which made important contributions to the minerals industry. Biohydrometallurgical technology was first introduced into the copper industry and subsequently to the uranium industry for the production of metal values from low-grade mineral resources. Currently, biotechnology has advanced a step further. It is now commercially applied for the treatment of high-grade refractory gold ores in aerated stirred reactors to liberate precious metals for cyanidation. In addition, the industrial applications of biotechnology involve bioenhanced tertiary oil recovery processes, which contribute to an increase in oil production from previously exhausted wells. Furthermore, many bioremediation technologies are being developed for the removal of toxic heavy metals and radionuclides from contaminated soils and aqueous mining and industrial effluents. This volume contains papers selected for publication which are predominantly dealing with subjects related to laboratory and industrial scale bioleaching of base and precious metals, biocorrosion phenomena, diverse bioreduction processes and electrochemical reactions. Individual papers have been processed separately for inclusion in the appropriate data bases

  10. Frequency-shaped and observer-based discrete-time sliding mode control

    CERN Document Server

    Mehta, Axaykumar

    2015-01-01

    It is well established that the sliding mode control strategy provides an effective and robust method of controlling the deterministic system due to its well-known invariance property to a class of bounded disturbance and parameter variations. Advances in microcomputer technologies have made digital control increasingly popular among the researchers worldwide. And that led to the study of discrete-time sliding mode control design and its implementation. This brief presents, a method for multi-rate frequency shaped sliding mode controller design based on switching and non-switching type of reaching law. In this approach, the frequency dependent compensator dynamics are introduced through a frequency-shaped sliding surface by assigning frequency dependent weighing matrices in a linear quadratic regulator (LQR) design procedure. In this way, the undesired high frequency dynamics or certain frequency disturbance can be eliminated. The states are implicitly obtained by measuring the output at a faster rate than th...

  11. Anticounterfeit packaging technologies

    Directory of Open Access Journals (Sweden)

    Ruchir Y Shah

    2010-01-01

    Full Text Available Packaging is the coordinated system that encloses and protects the dosage form. Counterfeit drugs are the major cause of morbidity, mortality, and failure of public interest in the healthcare system. High price and well-known brands make the pharma market most vulnerable, which accounts for top priority cardiovascular, obesity, and antihyperlipidemic drugs and drugs like sildenafil. Packaging includes overt and covert technologies like barcodes, holograms, sealing tapes, and radio frequency identification devices to preserve the integrity of the pharmaceutical product. But till date all the available techniques are synthetic and although provide considerable protection against counterfeiting, have certain limitations which can be overcome by the application of natural approaches and utilization of the principles of nanotechnology.

  12. HF heating of a plasma column at frequencies below the electron cyclotron frequency

    International Nuclear Information System (INIS)

    Datlov, J.; Kopecky, V.; Musil, J.; Zacek, F.; Novik, K.

    1978-02-01

    The dispersion of waves, excited by the helical structure in a plasma column and the heating of a tail of the electron distribution function is studied at frequencies below the electron plasma frequency and the electron cyclotron frequency. (author)

  13. Broadcast Communication by System Frequency Modulation

    DEFF Research Database (Denmark)

    Douglass, Philip James; You, Shi; Heussen, Kai

    2012-01-01

    Load controllers available today can measure AC system frequency and react to frequency deviations. A system operator can communicate to frequency sensitive loads by changing the set-points of the system’s dispatchable frequency regulation resources. Explicitly signaling system state by generating...... off-nominal system frequency values is a novel narrowband broadcast communications channel between system operators and frequency sensitive distributed energy resources (FS-DER). The feasibility of the proposed system is evaluated on an existing island power system in Denmark. This study shows...... that within standard frequency quality constraints, 4 distinct symbols are feasible on the island. However, the overarching imperative of system stability prevents the symbols from having arbitrary meanings. Higher frequency values must translate into greater consumption from loads, and vice versa. Within...

  14. Laser frequency modulation with electron plasma

    Science.gov (United States)

    Burgess, T. J.; Latorre, V. R.

    1972-01-01

    When laser beam passes through electron plasma its frequency shifts by amount proportional to plasma density. This density varies with modulating signal resulting in corresponding modulation of laser beam frequency. Necessary apparatus is relatively inexpensive since crystals are not required.

  15. Econometrics of financial high-frequency data

    CERN Document Server

    Hautsch, Nikolaus

    2011-01-01

    This book covers major approaches in high-frequency econometrics. It discusses implementation details, provides insights into properties of high-frequency data as well as institutional settings and presents applications.

  16. Binaural beats and frequency-coding.

    Science.gov (United States)

    Fritze, W; Köhler, W

    1986-01-01

    Binaural beats were studied before and during a situation of temporary threshold shift, and no frequency shift could be found. In contrast, subjective binaural frequency comparison revealed a distinct shift. These findings demonstrate the two known modes of perception.

  17. High-frequency plasma oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Akhiezer, A I; Fainberg, Y B; Sitenko, A G; Stepanov, K; Kurilko, V; Gorbatenko, M; Kirochkin, U [Academy of Sciences of the Ukrainian SSR (USSR)

    1958-07-01

    It is well known that the electrical conductivity of a plasma, the ion-electron equilibration time, and the time required to heat the electron component of the plasma all increase greatly with increasing temperature. Consequently, the usual method of Joule heating a plasma may be difficult to apply in the region of high temperatures (> 10{sup 6}K), especially if the plasma current alone, without any additional measures, is used to generate magnetic fields for the confinement of the plasma. Therefore, it is of interest to study methods of plasma heating that do not directly use Joule heat, especially methods by which energy is directly supplied to the ion component during the time between collisions. Some of these methods make use of ionic resonance as well as other resonance phenomena which can occur in plasma in an external magnetic field. This paper deals with certain aspects of the theory of high-frequency plasma oscillations.

  18. Multikilowatt variable frequency microwave furnace

    International Nuclear Information System (INIS)

    Bible, D.W.; Lauf, R.J.; Everleigh, C.A.

    1992-01-01

    In this paper, the authors describe a new type of microwave processing furnace in which the frequency can be varied continuously from 4 to 8 GHz and the power level varied from zero up to 2.5 kW. The extraordinary bandwidth of this furnace is achieved by using a traveling wave tube (TWT) amplifier originally developed for electronic warfare applications. The TWT is a linear beam device characterized by a traveling electromagnetic wave that continuously extracts energy longitudinally along the path of an electron beam. The TWT, unlike other microwave tubes such as the magnetron, klystron, gyrotron, and others, does not depend upon resonant RF fields and is therefore capable of wide bandwidth operation.operation

  19. Frequency-agile dual-comb spectroscopy

    OpenAIRE

    Millot, Guy; Pitois, Stéphane; Yan, Ming; Hovannysyan, Tatevik; Bendahmane, Abdelkrim; Hänsch, Theodor W.; Picqué, Nathalie

    2015-01-01

    We propose a new approach to near-infrared molecular spectroscopy, harnessing advanced concepts of optical telecommunications and supercontinuum photonics. We generate, without mode-locked lasers, two frequency combs of slightly different repetition frequencies and moderate, but rapidly tunable, spectral span. The output of a frequency-agile continuous wave laser is split and sent into two electro-optic intensity modulators. Flat-top low-noise frequency combs are produced by wave-breaking in ...

  20. Advances on Frequency Diverse Array Radar and Its Applications

    Directory of Open Access Journals (Sweden)

    Wang Wenqin

    2018-04-01

    Full Text Available Unlike the conventional phased array that provides only angle-dependent transmit beampattern, Frequency Diverse Array (FDA employs a small frequency increment across its array elements to produce automatic beam scanning without requiring phase shifters or mechanical steering. FDA can produce both rangedependent and time-variant transmit beampatterns, which overcomes the disadvantages of conventional phased arrays that produce only angle-dependent beampattern. Thus, FDA has many promising applications. Based on a previous study conducted by the author, “Frequency Diverse Array Radar: Concept, Principle and Application” (Journal of Electronics & Information Technology, 2016, 38(4: 1000–1011, the current study introduces basic FDA radar concepts, principles, and application characteristics and reviews recent advances on FDA radar and its applications. In addition, several new promising applications of FDA technology are discussed, such as radar electronic warfare and radar-communications, as well as open technical challenges such as beampattern variance, effective receiver design, adaptive signal detection and estimation, and the implementation of practical FDA radar demos.

  1. Radio Frequency Power in Plasmas: 12th Topical Conference. Proceedings

    International Nuclear Information System (INIS)

    Ryan, P.M.; Intrator, T.

    1997-01-01

    The twelfth Topical Conference on Radio Frequency Power in Plasmas was held in April, 1997, in Georgia, USA under the sponsorship of Oak Ridge National Laboratory of the US Department of Energy, the University of Wisconsin, and the American Physical Society. A large part of the conference was devoted to the ion cyclotron range of frequencies. Radio frequency contributions to the creation and maintenance of transport barriers to both particle and heat flux received a lot of attention. In addition to plasma heating, the use of RF as a versatile tool to drive current, shape profiles and stabilize plasmas was also discussed. The RF systems designs for ITER, ICRF heating advances on helical devices were among the topics of interest, so were progress in ion cyclotron codes, advanced launchers and technology, RF startup, general wave theory and the application of RF plasmas to material processing. A total of 103 papers were presented and are included in these proceedings. Out of these, 54 have been abstracted for the Energy Science and Technology database

  2. Radio frequency system for nuclear fusion

    International Nuclear Information System (INIS)

    Kozeki, Shoichiro; Sagawa, Norimoto; Takizawa, Teruhiro

    1987-01-01

    The importance of radio frequency waves has been increasing in the area of nuclear fusion since they are indispensable for heating of plasma, etc. This report outlines radio frequency techniques used for nuclear fusion and describes the development of radio frequency systems (radio frequency plasma heating system and current drive system). Presently, in-depth studies are underway at various research institutes to achieve plasma heating by injection of radio frequency electric power. Three ranges of frequencies, ICRF (ion cyclotron range of frequency), LHRF (lower hybrid range of frequency) and ECRF (electron cyclotron range of frequency), are considered promissing for radio frequency heating. Candidate waves for plasma current driving include ECW (electron cyclotron wave), LHW (lower hybrid wave), MSW (magnetic sound wave), ICW (ion cyclotron wave) with minority component, and FW (fast wave). FW is the greatest in terms of current drive efficiency. In general, a radio frequency system for nuclear fusion consists of a radio frequency power source, transmission/matching circuit component and plasma connection component. (Nogami, K.)

  3. Frequency shifts in stimulated Raman scattering

    International Nuclear Information System (INIS)

    Zinth, W.; Kaiser, W.

    1980-01-01

    The nonresonant contributions to the nonlinear susceptibility chisup(()3) produce a frequency chirp during stimulated Raman scattering. In the case of transient stimulated Raman scattering, the spectrum of the generated Stokes pulse is found at higher frequencies than expected from spontaneous Raman data. The frequency difference can be calculated from the theory of stimulated Raman scattering. (orig.)

  4. 47 CFR 87.475 - Frequencies.

    Science.gov (United States)

    2010-10-01

    ... with simultaneous radiotelephone channels and their associated glide path station frequency from the...) VHF omni-range (VOR) stations are to be assigned frequencies in the 112.050-117.950 MHz band (50 kHz channel spacing) and the following frequencies in the 108-112 MHz band: 108.200 108.250 108.400 108.450...

  5. PIGMI technology

    International Nuclear Information System (INIS)

    Swenson, D.A.

    1980-01-01

    The accelerator technologies relevant to the design of a medically practical pion generator for medical irradiations (PIGMI) have been identified and developed. A base-case design for PIGMI is presented here. The accelerator portion of the PIGMI facility consists of an injector, an rf quadrupole linac structure, a drift-tube linac structure, a coupled-cavity linac structure, 1 440-MHz rf system, six 1320-MHz rf systems, and a control and instrumentation system. Each of these components is described in some detail. A 100-μA, 650-MeV proton beam is anticipated. 24 figures, 2 tables

  6. Research on Key Technology and Applications for Internet of Things

    Science.gov (United States)

    Chen, Xian-Yi; Jin, Zhi-Gang

    The Internet of Things (IOT) has been paid more and more attention by the academe, industry, and government all over the world. The concept of IOT and the architecture of IOT are discussed. The key technologies of IOT, including Radio Frequency Identification technology, Electronic Product Code technology, and ZigBee technology are analyzed. The framework of digital agriculture application based on IOT is proposed.

  7. On Frequency Combs in Monolithic Resonators

    Directory of Open Access Journals (Sweden)

    Savchenkov A. A.

    2016-06-01

    Full Text Available Optical frequency combs have become indispensable in astronomical measurements, biological fingerprinting, optical metrology, and radio frequency photonic signal generation. Recently demonstrated microring resonator-based Kerr frequency combs point the way towards chip scale optical frequency comb generator retaining major properties of the lab scale devices. This technique is promising for integrated miniature radiofrequency and microwave sources, atomic clocks, optical references and femtosecond pulse generators. Here we present Kerr frequency comb development in a historical perspective emphasizing its similarities and differences with other physical phenomena. We elucidate fundamental principles and describe practical implementations of Kerr comb oscillators, highlighting associated solved and unsolved problems.

  8. Low-frequency oscillations in Hall thrusters

    International Nuclear Information System (INIS)

    Wei Li-Qiu; Han Liang; Yu Da-Ren; Guo Ning

    2015-01-01

    In this paper, we summarize the research development of low-frequency oscillations in the last few decades. The findings of physical mechanism, characteristics and stabilizing methods of low-frequency oscillations are discussed. It shows that it is unreasonable and incomplete to model an ionization region separately to analyze the physical mechanism of low-frequency oscillations. Electro-dynamics as well as the formation conditions of ionization distribution play an important role in characteristics and stabilizing of low-frequency oscillations. Understanding the physical mechanism and characteristics of low- frequency oscillations thoroughly and developing a feasible method stabilizing this instability are still important research subjects. (review)

  9. Amplitude modulation detection with concurrent frequency modulation.

    Science.gov (United States)

    Nagaraj, Naveen K

    2016-09-01

    Human speech consists of concomitant temporal modulations in amplitude and frequency that are crucial for speech perception. In this study, amplitude modulation (AM) detection thresholds were measured for 550 and 5000 Hz carriers with and without concurrent frequency modulation (FM), at AM rates crucial for speech perception. Results indicate that adding 40 Hz FM interferes with AM detection, more so for 5000 Hz carrier and for frequency deviations exceeding the critical bandwidth of the carrier frequency. These findings suggest that future cochlear implant processors, encoding speech fine-structures may consider limiting the FM to narrow bandwidth and to low frequencies.

  10. Auditory filters at low-frequencies

    DEFF Research Database (Denmark)

    Orellana, Carlos Andrés Jurado; Pedersen, Christian Sejer; Møller, Henrik

    2009-01-01

    -ear transfer function), the asymmetry of the auditory filter changed from steeper high-frequency slopes at 1000 Hz to steeper low-frequency slopes below 100 Hz. Increasing steepness at low-frequencies of the middle-ear high-pass filter is thought to cause this effect. The dynamic range of the auditory filter...... was found to steadily decrease with decreasing center frequency. Although the observed decrease in filter bandwidth with decreasing center frequency was only approximately monotonic, the preliminary data indicates the filter bandwidth does not stabilize around 100 Hz, e.g. it still decreases below...

  11. Exponential Frequency Spectrum in Magnetized Plasmas

    International Nuclear Information System (INIS)

    Pace, D. C.; Shi, M.; Maggs, J. E.; Morales, G. J.; Carter, T. A.

    2008-01-01

    Measurements of a magnetized plasma with a controlled electron temperature gradient show the development of a broadband spectrum of density and temperature fluctuations having an exponential frequency dependence at frequencies below the ion cyclotron frequency. The origin of the exponential frequency behavior is traced to temporal pulses of Lorentzian shape. Similar exponential frequency spectra are also found in limiter-edge plasma turbulence associated with blob transport. This finding suggests a universal feature of magnetized plasma turbulence leading to nondiffusive, cross-field transport, namely, the presence of Lorentzian shaped pulses

  12. On Frequency Combs in Monolithic Resonators

    Science.gov (United States)

    Savchenkov, A. A.; Matsko, A. B.; Maleki, L.

    2016-06-01

    Optical frequency combs have become indispensable in astronomical measurements, biological fingerprinting, optical metrology, and radio frequency photonic signal generation. Recently demonstrated microring resonator-based Kerr frequency combs point the way towards chip scale optical frequency comb generator retaining major properties of the lab scale devices. This technique is promising for integrated miniature radiofrequency and microwave sources, atomic clocks, optical references and femtosecond pulse generators. Here we present Kerr frequency comb development in a historical perspective emphasizing its similarities and differences with other physical phenomena. We elucidate fundamental principles and describe practical implementations of Kerr comb oscillators, highlighting associated solved and unsolved problems.

  13. Wearable Technology

    Science.gov (United States)

    Watson, Amanda

    2013-01-01

    Wearable technology projects, to be useful, in the future, must be seamlessly integrated with the Flight Deck of the Future (F.F). The lab contains mockups of space vehicle cockpits, habitat living quarters, and workstations equipped with novel user interfaces. The Flight Deck of the Future is one element of the Integrated Power, Avionics, and Software (IPAS) facility, which, to a large extent, manages the F.F network and data systems. To date, integration with the Flight Deck of the Future has been limited by a lack of tools and understanding of the Flight Deck of the Future data handling systems. To remedy this problem it will be necessary to learn how data is managed in the Flight Deck of the Future and to develop tools or interfaces that enable easy integration of WEAR Lab and EV3 products into the Flight Deck of the Future mockups. This capability is critical to future prototype integration, evaluation, and demonstration. This will provide the ability for WEAR Lab products, EV3 human interface prototypes, and technologies from other JSC organizations to be evaluated and tested while in the Flight Deck of the Future. All WEAR Lab products must be integrated with the interface that will connect them to the Flight Deck of the Future. The WEAR Lab products will primarily be programmed in Arduino. Arduino will be used for the development of wearable controls and a tactile communication garment. Arduino will also be used in creating wearable methane detection and warning system.

  14. Understanding Technology?

    Directory of Open Access Journals (Sweden)

    Erik Bendtsen

    2016-11-01

    Full Text Available We are facing radical changes in our ways of living in the nearest future. Not necessarily of our own choice, but because tchnological development is moving so fast, that it will have still greater impact on many aspects of our lives. We have seen the beginnings of that change within the latest 35 years or so, but according to newest research that change will speed up immensely in the nearest years to come. The impact of that change or these changes will affect our working life immensely as a consequence of automation. How these changes are brought about and which are their consequences in a broad sense is being attempted to be understood and guessed by researchers. No one knows for sure, but specific patterns are visible. This paper will not try to guess, what will come, but will rather try to understand the deepest ”nature” of technology in order to understand the driving factors in this development: the genesis of technology in a broad sense in order to contibute to the understanding of the basis for the expected development.

  15. Nuclear technologies

    International Nuclear Information System (INIS)

    Toyama, Makoto; Hamasaki, Manabu; Kobayashi, Masahiko; Hoshide, Akihiko; Katayama, Kimio; Nozawa, H.; Karigome, Satoshi

    2010-01-01

    In recent days, energy security is becoming a major global concern and it has been recognized that a major reduction in greenhouse-gas emissions is required to combat climate change. Considerable expansion and new introduction of nuclear power generation are currently being planned and considered for the further in various parts of the world. Nuclear technologies of the latest 10 years in Japan were reviewed with their characteristics, advancement and future perspective. Steady efforts have been made to construct new nuclear power stations with computer-aided engineering system and modular and prefabricated structures, extend the interval of periodic inspections under the new inspection system that should improve both safety and reliability, implement advanced measures against aging and develop the next-generation light water reactors including a medium small reactor. Export of nuclear power plants has been promoted with international business alliance or cooperation. Activities to close nuclear fuel cycle to ensure sustainable nuclear energy utilization have been promoted. Decommissioning technologies for Tokai power station have been developed and accumulated know-how will be utilized in light water reactors. (T. Tanaka)

  16. The Effect of Adaptive Nonlinear Frequency Compression on Phoneme Perception.

    Science.gov (United States)

    Glista, Danielle; Hawkins, Marianne; Bohnert, Andrea; Rehmann, Julia; Wolfe, Jace; Scollie, Susan

    2017-12-12

    This study implemented a fitting method, developed for use with frequency lowering hearing aids, across multiple testing sites, participants, and hearing aid conditions to evaluate speech perception with a novel type of frequency lowering. A total of 8 participants, including children and young adults, participated in real-world hearing aid trials. A blinded crossover design, including posttrial withdrawal testing, was used to assess aided phoneme perception. The hearing aid conditions included adaptive nonlinear frequency compression (NFC), static NFC, and conventional processing. Enabling either adaptive NFC or static NFC improved group-level detection and recognition results for some high-frequency phonemes, when compared with conventional processing. Mean results for the distinction component of the Phoneme Perception Test (Schmitt, Winkler, Boretzki, & Holube, 2016) were similar to those obtained with conventional processing. Findings suggest that both types of NFC tested in this study provided a similar amount of speech perception benefit, when compared with group-level performance with conventional hearing aid technology. Individual-level results are presented with discussion around patterns of results that differ from the group average.

  17. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  18. Primary Frequency Response with Aggregated DERs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guggilam, Swaroop S.; Dhople, Sairaj V.; Zhao, Changhong; Dall' Anese, Emiliano; Chen, Yu Christine

    2017-03-03

    Power networks have to withstand a variety of disturbances that affect system frequency, and the problem is compounded with the increasing integration of intermittent renewable generation. Following a large-signal generation or load disturbance, system frequency is arrested leveraging primary frequency control provided by governor action in synchronous generators. In this work, we propose a framework for distributed energy resources (DERs) deployed in distribution networks to provide (supplemental) primary frequency response. Particularly, we demonstrate how power-frequency droop slopes for individual DERs can be designed so that the distribution feeder presents a guaranteed frequency-regulation characteristic at the feeder head. Furthermore, the droop slopes are engineered such that injections of individual DERs conform to a well-defined fairness objective that does not penalize them for their location on the distribution feeder. Time-domain simulations for an illustrative network composed of a combined transmission network and distribution network with frequency-responsive DERs are provided to validate the approach.

  19. Assisted reproductive technology treatment in women with severe eating disorders

    DEFF Research Database (Denmark)

    Assens, Maria; Ebdrup, Ninna H; Pinborg, Anja

    2015-01-01

    INTRODUCTION: This national retrospective cohort study investigates the prevalence of women with severe eating disorders in assisted reproductive technology (ART) treatment compared with an age-matched background population without ART treatment. It assesses the frequency distribution of the firs...

  20. Enhanced surrogate models for statistical design exploiting space mapping technology

    DEFF Research Database (Denmark)

    Koziel, Slawek; Bandler, John W.; Mohamed, Achmed S.

    2005-01-01

    We present advances in microwave and RF device modeling exploiting Space Mapping (SM) technology. We propose new SM modeling formulations utilizing input mappings, output mappings, frequency scaling and quadratic approximations. Our aim is to enhance circuit models for statistical analysis...

  1. Robust microfabricated interconnect technologies: DC to THz, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In recent years, Nuvotronics has developed state-of-the art antenna array and SSPA technologies at microwave and mmW frequencies with NASA funding through the SBIR...

  2. High Temperature Radio Frequency Loads

    CERN Document Server

    Federmann, S; Grudiev, A; Montesinos, E; Syratchev, I

    2011-01-01

    In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet withmore than 150 ◦C and high pressure has a higher value than water with 50 ◦C under low pressure. Conventional RF power loads containing dielectric and magnetic materials as well as sensitive ceramic windows usually do not permit going much higher than 90 ◦C. Here we present and discuss several design concepts for "metal only" RF high power loads. One concept is the application of magnetic steel corrugated waveguides near cutoff – this concept could find practical use above several GHz. Another solution are resonant structures made of steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage of the rather high losses of normal steel may also be used in coaxial line geometries with large di...

  3. Voltage-to-frequency converters CMOS design and implementation

    CERN Document Server

    Azcona Murillo, Cristina; Pueyo, Santiago Celma

    2013-01-01

    This book develops voltage-to-frequency converter (VFC) solutions integrated in standard CMOS technology to be used as a part of a microcontroller-based, multisensor interface in the environment of portable applications, particularly within a WSN node.  Coverage includes the total design flow of monolithic VFCs, according to the target application, as well as the analysis, design and implementation of the main VFC blocks, revealing the main challenges and solutions encountered during the design of such high performance cells. Four complete VFCs, each temperature compensated, are fully designed and evaluated: a programmable VFC that includes an offset frequency and a sleep/mode enable terminal; a low power rail-to-rail VFC; and two rail-to-rail differential VFCs.

  4. Biometric identification based on novel frequency domain facial asymmetry measures

    Science.gov (United States)

    Mitra, Sinjini; Savvides, Marios; Vijaya Kumar, B. V. K.

    2005-03-01

    In the modern world, the ever-growing need to ensure a system's security has spurred the growth of the newly emerging technology of biometric identification. The present paper introduces a novel set of facial biometrics based on quantified facial asymmetry measures in the frequency domain. In particular, we show that these biometrics work well for face images showing expression variations and have the potential to do so in presence of illumination variations as well. A comparison of the recognition rates with those obtained from spatial domain asymmetry measures based on raw intensity values suggests that the frequency domain representation is more robust to intra-personal distortions and is a novel approach for performing biometric identification. In addition, some feature analysis based on statistical methods comparing the asymmetry measures across different individuals and across different expressions is presented.

  5. Stochastic scalar mixing models accounting for turbulent frequency multiscale fluctuations

    International Nuclear Information System (INIS)

    Soulard, Olivier; Sabel'nikov, Vladimir; Gorokhovski, Michael

    2004-01-01

    Two new scalar micromixing models accounting for a turbulent frequency scale distribution are investigated. These models were derived by Sabel'nikov and Gorokhovski [Second International Symposium on Turbulence and Shear FLow Phenomena, Royal Institute of technology (KTH), Stockholm, Sweden, June 27-29, 2001] using a multiscale extension of the classical interaction by exchange with the mean (IEM) and Langevin models. They are, respectively, called Extended IEM (EIEM) and Extended Langevin (ELM) models. The EIEM and ELM models are tested against DNS results in the case of the decay of a homogeneous scalar field in homogeneous turbulence. This comparison leads to a reformulation of the law governing the mixing frequency distribution. Finally, the asymptotic behaviour of the modeled PDF is discussed

  6. Technology round and management of technology

    International Nuclear Information System (INIS)

    Park, Yong Tae

    1994-04-01

    This book deals with beginning of technology round with background of it, change of scientific technique paradigm with economy, management and policy, change of international political environment globalization of technical and economic environment, formation of strategic alliance, intensifying regionalism, new GATT system, UR and technology round, new international technique regulation and technology round of OECD, feature and meaning of technology round, assignment and scientific technique of Korea, past and present of scientific technology in Korea, correspondence for technology round.

  7. Contraceptive technology.

    Science.gov (United States)

    Potts, M; Atkinson, L

    1984-06-01

    A question of the 1980s is how will contraceptive technology contribute to improving family planning services to meet the goal of making available a simple, safe, effective, and widely acceptable contraceptive method. Significant changes in existing technology in the 1970s resulted in safer and more effective contraceptive methods. Voluntary sterilization emerged as the primary method in developed and developing countries, as important modifications simplified the procedure for women. The tolerance and effectiveness of the IUD were improved by reducing its size, adding copper to its surface, or encapsulating progesterone within it. The steroid content of the birth control pill was reduced 10-fold, leading to fewer side effects, and the pill was found to be an effective postcoital contraceptive when taken at specific intervals. Vacuum aspiration for the termination of 1st trimester pregnancy proved to be 1 of the safest surgical techniques practiced. Belated attention is now being focused on adapting existing contraceptive methods for use during the postpartum period and breast feeding. The insertion of an IUD immediately following childbirth is a particularly useful option in the developing world as an increasing number of women have their babies in urban hospitals. A method of enhancing the contraceptive effect of breast feeding should neither change milk production nor transfer the drug to the nursing infant. Fortunately, progestin-only pills have been found to have no effect on breast milk and an attempt is being made to expand the use of this approved method. More simplification of female sterilization is needed. Current techniques require back-up facilities in case of complications and are unlikely to meet the developing world's enormous demand. 2 methods not widely used -- spermicides and periodic abstinence -- are coming under new scrutiny. In mid-1983 the US Food and Drug Administration approved a spermicide-impregnanated disposable sponge for over

  8. Biohydrometallurgical technologies

    International Nuclear Information System (INIS)

    Torma, A.E.; Apel, M.L.; Brierley, C.L.

    1993-01-01

    The theme of the International Biohydrometallurgy Symposium (IBS) held in Jackson Hole, Wyoming, August 22--25, 1993, is ''Biohydrometallurgy: An Industry Matures''. This is a developing technology which made important contributions to the minerals industry. The IBS-93 is focused on recent advances achieved in fundamental and applied aspects of research and development of biotechnologies applied to mineral domains. The papers presented at the Symposium are grouped together in two volumes, which are the following: this volume contains papers selected for publication which are predominantly dealing with subjects related to laboratory and industrial scale bioleaching of base and precious metals, biocorrosion phenomena, diverse bioreduction processes and electrochemical reactions. Individual papers have been processed separately for inclusion in the appropriate data bases

  9. Robot technology

    International Nuclear Information System (INIS)

    Vertut, Jean; Coiffet, Philippe.

    1985-01-01

    Teleoperation is concerned with the exploration and exploitation of of spaces which do not allow, because of their inaccessibility or hostility, direct access to man. This volume (Parts 2, 3 and 4) covers the contribution of computer science and automatic control to this technology. Part 2 includes a description of teleoperation systems followed by chapters on the operator substitution function by computer feedback to the operator. Part 3 has chapters on performance evaluation of teleoperation systems and the human operator in the teleoperation system. Part 4 is about applications of teleoperation in the nuclear industry, underwater, in space, in medicine, in industry and in security and civil protection. The nuclear applications include research and pilot facilities, reactor operation and maintenance, reactor decommissioning and dismantling and in emergencies, for example following a reactor accident. (U.K.)

  10. Emerging technologies

    Energy Technology Data Exchange (ETDEWEB)

    Mogensen, A.C. [Demand Data Services Inc., Calgary, AB (Canada)

    2001-06-01

    This paper addressed the issue of how the petroleum industry can prepare itself with regards to the imminent changes in communication mechanisms as the Internet and World-Wide-Web are being accepted as the norm for all technical and scientific information services. In particular, the paper focused on new technologies for data acquisition, well site monitoring and data analysis where information is gathered from a remote site to the office. The paper also reviewed modeling concepts which show that secure and dependable data communications can disseminate information to personnel within an organization to make informed decisions and reduce response time. The topic is particularly relevant to the petroleum industry as fluctuations in oil and gas pricing, global competition, environmental policy, and government monetary and fiscal policy have forced companies to change the way they conduct business. Security issues associated with data communication were also addressed. 3 refs., 6 figs.

  11. Incineration technologies

    CERN Document Server

    Buekens, Alfons

    2013-01-01

    Waste incineration is the art of completely combusting waste, while maintaining or reducing emission levels below current emission standards. Where possible, objectives include the recovering of energy as well as the  combustion residues.  Successful waste incineration makes it possible to achieve a deep reduction in waste volume, obtain a compact and sterile residue, and eliminate a wide array of pollutants. This book places waste incineration within the wider context of waste management, and demonstrates that, in contrast to landfills and composting, waste incineration can eliminate objectionable and hazardous properties such as flammability and toxicity, result in a significant reduction in volume, and destroy gaseous and liquid waste streams leaving little or no residues beyond those linked to flue gas neutralization and treatment. Moreover, waste incineration sterilizes and destroys putrescible matter, and produces usable heat.  Incineration Technologies first appeared as a peer-reviewed contribution ...

  12. Plasma processing of superconducting radio frequency cavities

    Science.gov (United States)

    Upadhyay, Janardan

    The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb SRF cavities. In the process of developing plasma etching technology, an apparatus was built and a method was developed to plasma etch a single cell Pill Box cavity. The plasma characterization was done with the help of optical emission spectroscopy. The Nb etch rate at various points of this cavity was measured before processing the SRF cavity. Cylindrical ring-type samples of Nb placed on the inner surface of the outer wall were used to measure the dependence of the process parameters on plasma etching. The measured etch rate dependence on the pressure, rf power, dc bias, temperature, Cl2 concentration and diameter of the inner electrode was determined. The etch rate mechanism was studied by varying the temperature of the outer wall, the dc bias on the inner electrode and gas conditions. In a coaxial plasma reactor, uniform plasma etching along the cylindrical structure is a challenging task due to depletion of the active radicals along the gas flow direction. The dependence of etch rate uniformity along the cylindrical axis was determined as a function of process parameters. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the

  13. 47 CFR 25.202 - Frequencies, frequency tolerance and emission limitations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Frequencies, frequency tolerance and emission limitations. 25.202 Section 25.202 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.202 Frequencies, frequency tolerance...

  14. Historical overview of Ramsey spectroscopy and its relevance on Time and Frequency Metrology

    International Nuclear Information System (INIS)

    Amaral, M M; Tarelho, L V G; De Souza, M A; Baratto, A C; Garcia, G A; Muller, S T; De Martin, J Jr; Rodriguez, A S; Bebeachibuli, A; Magalhães, D V

    2016-01-01

    A brief overview of the historical evolution of the method of successive oscillatory fields developed by Norman Ramsey, and some different implementations of the decurrent methodology are presented. We use time and frequency standards, from Cs atomic beams to optical standards, as examples. The scientific progress and the technological implementation achieved through a partnership between USP-SC and INMETRO are shown on the characterization of each time and frequency standard. (paper)

  15. Design and Modelling of Thermostatically Controlled Loads as Frequency Controlled Reserve

    DEFF Research Database (Denmark)

    Xu, Zhao; Østergaard, Jacob; Togeby, Mikael

    2007-01-01

    Using demand as frequency controlled reserve (DFR) is beneficial to power systems in many aspects. To study the impacts of this technology on power system operation, control logics and simulation models of relevant loads should be carefully developed. Two advanced control logics for using demand...... frequency, is developed. The developed simulation model is able to represent a variety of aggregated thermostatically controlled loads, such as heaters or refrigerators. Uncertainties including customer behaviours and ambient temperature variation are also modelled. Preliminary simulation results...

  16. Frequency domain based LS channel estimation in OFDM based Power line communications

    OpenAIRE

    Bogdanović, Mario

    2015-01-01

    This paper is focused on low voltage power line communication (PLC) realization with an emphasis on channel estimation techniques. The Orthogonal Frequency Division Multiplexing (OFDM) scheme is preferred technology in PLC systems because of its effective combat with frequency selective fading properties of PLC channel. As the channel estimation is one of the crucial problems in OFDM based PLC system because of a problematic area of PLC signal attenuation and interference, the improved LS est...

  17. MODELLING AND SIMULATION OF HIGH FREQUENCY INVERTER FOR INDUCTION HEATING APPLICATION

    OpenAIRE

    SACHIN S. BANKAR; Dr. PRASAD M. JOSHI

    2016-01-01

    This paper presents modelling and simulation of high frequency inverter for induction heating applications. Induction heating has advantages like higher efficiency, controlled heating, safety and pollution free therefore this technology is used in industrial, domestic and medical applications. The high frequency full bridge inverter is used for induction heating, also MOSFET is used as a switching device for inverter and the control strategy used for inverter is Bipolar PWM control. The size ...

  18. Powder technology

    International Nuclear Information System (INIS)

    Agueda, Horacio

    1989-01-01

    Powder technology is experiencing nowadays a great development and has broad application in different fields: nuclear energy, medicine, new energy sources, industrial and home artifacts, etc. Ceramic materials are of daily use as tableware and also in the building industry (bricks, tiles, etc.). However, in machine construction its utilization is not so common. The same happens with metals: powder metallurgy is employed less than traditional metal forming techniques. Both cases deal with powder technology and the forming techniques as far as the final consolidation through sintering processes are very similar. There are many different methods and techniques in the forming stage: cold-pressing, slip casting, injection molding, extrusion molding, isostatic pressing, hot-pressing (which involves also the final consolidation step), etc. This variety allows to obtain almost any desired form no matter how complex it could be. Some applications are very specific as in the case of UO 2 pellets (used as nuclear fuels) but with the same technique and other materials, it is possible to manufacture a great number of different products. This work shows the characteristics and behaviour of two magnetic ceramic materials (ferrites) fabricated in the laboratory of the Applied Research Division of the Bariloche Atomic Center for different purposes. Other materials and products made with the same method are also mentioned. Likewise, densities and shrinkage obtained by different methods of forming (cold-pressing, injection molding, slip casting and extrusion molding) using high-purity alumina (99.5% Al 2 O 3 ). Finally, different applications of such methods are given. (Author) [es

  19. Lander Technologies

    Science.gov (United States)

    Chavers, Greg

    2015-01-01

    Since 2006 NASA has been formulating robotic missions to the lunar surface through programs and projects like the Robotic Lunar Exploration Program, Lunar Precursor Robotic Program, and International Lunar Network. All of these were led by NASA Marshall Space Flight Center (MSFC). Due to funding shortfalls, the lunar missions associated with these efforts, the designs, were not completed. From 2010 to 2013, the Robotic Lunar Lander Development Activity was funded by the Science Mission Directorate (SMD) to develop technologies that would enable and enhance robotic lunar surface missions at lower costs. In 2013, a requirements-driven, low-cost robotic lunar lander concept was developed for the Resource Prospector Mission. Beginning in 2014, The Advanced Exploration Systems funded the lander team and established the MSFC, Johnson Space Center, Applied Physics Laboratory, and the Jet Propulsion Laboratory team with MSFC leading the project. The lander concept to place a 300-kg rover on the lunar surface has been described in the New Technology Report Case Number MFS-33238-1. A low-cost lander concept for placing a robotic payload on the lunar surface is shown in figures 1 and 2. The NASA lander team has developed several lander concepts using common hardware and software to allow the lander to be configured for a specific mission need. In addition, the team began to transition lander expertise to United States (U.S.) industry to encourage the commercialization of space, specifically the lunar surface. The Lunar Cargo Transportation and Landing by Soft Touchdown (CATALYST) initiative was started and the NASA lander team listed above is partnering with three competitively selected U.S. companies (Astrobotic, Masten Space Systems, and Moon Express) to develop, test, and operate their lunar landers.

  20. Prediction of scour depth in gravel bed rivers using radio frequency IDs : application to the Skagit River.

    Science.gov (United States)

    2013-10-01

    The overarching goal of the proposed research was to develop, test and verify a robust system based on the Low Frequency (134.2 : kHz), passive Radio Frequency Identification (RFID) technology to be ultimately used for determining the maximum scour d...

  1. Effect of high-frequency excitation on natural frequencies of spinning discs

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2000-01-01

    The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural frequenc......The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural...

  2. Memory Processes in Frequency Judgment: The impact of pre-experimental frequencies and co-occurrences on frequency estimates.

    OpenAIRE

    Renkewitz, Frank

    2004-01-01

    Contemporary theories on frequency processing have been developed in different sub-disciplines of psychology and have shown remarkable discrepancies. Thus, in judgment and decision making, frequency estimates on serially encoded events are mostly traced back to the availability heuristic (Tversky & Kahneman, 1973). Evidence for the use of this heuristic comes from several popular demonstrations of biased frequency estimates. In the area of decision making, these demonstrations led to the ...

  3. Rf probe technology for the next generation of technological plasmas

    International Nuclear Information System (INIS)

    Law, V.J.; Kenyon, A.J.; Thornhill, N.F.; Seeds, A.J.; Batty, I.

    2001-01-01

    We describe radio frequency (rf) analysis of technological plasmas at the 13.56 MHz fundamental drive frequency and integer narrow-band harmonics up to n = 9. In particular, we demonstrate the use of harmonic amplitude information as a process end-point diagnostic. Using very high frequency (vhf) techniques, we construct non-invasive ex situ remote-coupled probes: a diplexer, an equal-ratio-arm bridge, and a dual directional coupler used as a single directional device. These probes bolt into the plasma-tool 50 Ω transmission-line between the rf generator and matching network, and hence do not require modification of the plasma tool. The 50 Ω probe environment produces repeatable measurements of the chamber capacitance and narrow-band harmonic amplitude with an end-point detection sensitivity corresponding to a 2 dB change in the harmonic amplitude with the removal of 1 cm 2 of photoresist. The methodology and design of an instrument for the measurement of the plasma-tool frequency response, and the plasma harmonic amplitude and phase response are examined. The instrument allows the monitoring of the plasma phase delay, plasma-tool short- and long-term ageing, and process end-point prediction. (author)

  4. High frequency CARM driver for rf linacs

    International Nuclear Information System (INIS)

    Danly, B.G.

    1993-01-01

    This CARM program has successfully demonstrated the first ever long-pulse CARM oscillator operation; these results demonstrate the potential of CARMs as an alternative source of millimeter waves to the gyrotron for ECRH plasma heating. The result of 1.8 MW at 27.8 GHz and 0.5 μs pulse width in the TE 11 mode represent a clear demonstration of the capabilities of the CARM oscillator for the production of high powers with large frequency upshift. It is hoped that this successful proof-of-principle demonstration.will lead to further development of the CARM as an ECRH source by the DOE Office of Fusion Energy, Development and Technology Division. This success is a direct outcome of this support of the Advanced Energy Projects Office of DOE in the form of this program. The CARM amplifier component of the program, although unsuccessful at obtaining CARM amplifier operation at 17 GHz, has succeeded by furthering the understanding of the limitations and difficulties that lie ahead for continued CARM amplifier development. The amplifier component of the program has successfully demonstrated a high power second and third harmonic gyro-TWT amplifier. Up to 5 MW of power at 17.1 GHz and >50dB gain have been obtained. These results should be viewed as an important contribution of this program to the development of viable microwave sources for powering the next linear collider. Indeed, the present gyro-amplifier, which resulted from this program, is presently being used in ongoing high-gradient accelerator research at MIT under a DOE High Energy Physics grant. As a result of both the oscillator and amplifier advances made during this program, the CARM and harmonic gyro-TWT have reached a significantly more mature level; their future role in specific applications of benefit to DOEs OFE and HEP offices may now be pursued

  5. Near diffraction limited mid-IR spectromicroscopy using frequency upconversion

    DEFF Research Database (Denmark)

    Sanders, Nicolai Højer; Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter

    2014-01-01

    morphological and spectral imaging. Recent developments in nonlinear frequency upconversion, have demonstrated the potential to perform both imaging and spectroscopy in the mid-IR range at unparalleled low levels of illumination, the low upconversion detector noise being orders of magnitude below competing...... technologies. With these applications in mind, we have incorporated microscopy optics into an image upconversion system, achieving near diffraction limited spatial resolution in the 3 μm range. Spectroscopic information is further acquired by appropriate control of the phase match condition of the upconversion...

  6. Electromagnetic Modelling of MMIC CPWs for High Frequency Applications

    Science.gov (United States)

    Sinulingga, E. P.; Kyabaggu, P. B. K.; Rezazadeh, A. A.

    2018-02-01

    Realising the theoretical electrical characteristics of components through modelling can be carried out using computer-aided design (CAD) simulation tools. If the simulation model provides the expected characteristics, the fabrication process of Monolithic Microwave Integrated Circuit (MMIC) can be performed for experimental verification purposes. Therefore improvements can be suggested before mass fabrication takes place. This research concentrates on development of MMIC technology by providing accurate predictions of the characteristics of MMIC components using an improved Electromagnetic (EM) modelling technique. The knowledge acquired from the modelling and characterisation process in this work can be adopted by circuit designers for various high frequency applications.

  7. The driving frequency effects on the atmospheric pressure corona jet plasmas from low frequency to radio frequency

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Jung, H.; Gweon, B.; Rhee, J. K.; Choe, W.; Moon, S. Y.

    2011-01-01

    Lately, the atmospheric pressure jet type corona plasma, which has been typically driven by dc to low frequency (LF: several tens of kHz), is often generated by using radio frequency of 13.56 MHz. Yet, the relationship between the plasma and its driving frequency has seldom been investigated. Hence, in this study, dependence of the atmospheric pressure corona plasma characteristics on the driving frequency was explored experimentally from LF to rf (5 kHz-13.56 MHz). The plasmas generated by the driving frequency under 2 MHz were cylindrical shape of several tens of millimeters long while the 13.56 MHz plasma is spherical and a few millimeters long. As the driving frequency was increased, the plasma length became shortened. At the lower driving frequencies (below 2 MHz), the plasmas existed as positive streamer and negative glow for each half period of the applied voltage, but the discharge was more continuous in time for the 13.56 MHz plasma. It was inferred from the measured I-V curves that the higher driving frequency induced higher discharge currents, and the gas temperature was increased as the driving frequency was increased.

  8. Electron heating mode transition induced by mixing radio frequency and ultrahigh frequency dual frequency powers in capacitive discharges

    International Nuclear Information System (INIS)

    Sahu, B. B.; Han, Jeon G.

    2016-01-01

    Electron heating mode transitions induced by mixing the low- and high-frequency power in dual-frequency nitrogen discharges at 400 mTorr pressure are presented. As the low-frequency (13.56 MHz) power decreases and high-frequency (320 MHz) power increases for the fixed power of 200 W, there is a transition of electron energy distribution function (EEDF) from Druyvesteyn to bi-Maxwellian type characterized by a distinguished warm electron population. It is shown that this EEDF evolution is attributed to the transition from collisional to collisionless stochastic heating of the low-energy electrons.

  9. Infrared MUSIC from Z technology focal planes

    International Nuclear Information System (INIS)

    Waters, C.R.; Sommese, A.; Johnston, D.; Landau, H.

    1989-01-01

    Presented is the Multiple Signal Classification (MUSIC) algorithm which uses the high frequency differences in sensed time signals to discriminate, count, and accurately locate closely spaced targets. Z technology focal planes allow the implementation of this algorithm and the trade-off between finer spatial resolution systems and systems with coarser resolution but higher sampling rates

  10. Teacher Readiness to Integrate Information Technology into ...

    African Journals Online (AJOL)

    ... of simple percentage and frequency calculation. The results revealed that majority of the teachers have low level of knowledge about IT. In the same vein, majority of teachers in the schools in this study did not have adequate IT skills. However, the teachers have positive attitude toward the use of information technology.

  11. Awarensss and utilization of information technology among ...

    African Journals Online (AJOL)

    The paper examines the awareness and utilization of Information Technologies among Agricultural scientists in Nigeria. Data were collected from 170 respondents with the aid of structured questionnaire and analysed using frequency, percentage, mean and Ordinary Least Square multiple regression. This study found that ...

  12. Space Technology and Earth System Science

    Science.gov (United States)

    Habib, Shahid

    2011-01-01

    Science must continue to drive the technology development. Partnering and Data Sharing among nations is very important to maximize the cost benefits of such investments Climate changes and adaptability will be a big challenge for the next several decades (1) Natural disasters frequency and locations (2) Economic and social impact can be global and (3) Water resources and management.

  13. Cluster analysis of word frequency dynamics

    Science.gov (United States)

    Maslennikova, Yu S.; Bochkarev, V. V.; Belashova, I. A.

    2015-01-01

    This paper describes the analysis and modelling of word usage frequency time series. During one of previous studies, an assumption was put forward that all word usage frequencies have uniform dynamics approaching the shape of a Gaussian function. This assumption can be checked using the frequency dictionaries of the Google Books Ngram database. This database includes 5.2 million books published between 1500 and 2008. The corpus contains over 500 billion words in American English, British English, French, German, Spanish, Russian, Hebrew, and Chinese. We clustered time series of word usage frequencies using a Kohonen neural network. The similarity between input vectors was estimated using several algorithms. As a result of the neural network training procedure, more than ten different forms of time series were found. They describe the dynamics of word usage frequencies from birth to death of individual words. Different groups of word forms were found to have different dynamics of word usage frequency variations.

  14. Harmonic generation with a dual frequency pulse.

    Science.gov (United States)

    Keravnou, Christina P; Averkiou, Michalakis A

    2014-05-01

    Nonlinear imaging was implemented in commercial ultrasound systems over the last 15 years offering major advantages in many clinical applications. In this work, pulsing schemes coupled with a dual frequency pulse are presented. The pulsing schemes considered were pulse inversion, power modulation, and power modulated pulse inversion. The pulse contains a fundamental frequency f and a specified amount of its second harmonic 2f. The advantages and limitations of this method were evaluated with both acoustic measurements of harmonic generation and theoretical simulations based on the KZK equation. The use of two frequencies in a pulse results in the generation of the sum and difference frequency components in addition to the other harmonic components. While with single frequency pulses, only power modulation and power modulated pulse inversion contained odd harmonic components, with the dual frequency pulse, pulse inversion now also contains odd harmonic components.

  15. Cluster analysis of word frequency dynamics

    International Nuclear Information System (INIS)

    Maslennikova, Yu S; Bochkarev, V V; Belashova, I A

    2015-01-01

    This paper describes the analysis and modelling of word usage frequency time series. During one of previous studies, an assumption was put forward that all word usage frequencies have uniform dynamics approaching the shape of a Gaussian function. This assumption can be checked using the frequency dictionaries of the Google Books Ngram database. This database includes 5.2 million books published between 1500 and 2008. The corpus contains over 500 billion words in American English, British English, French, German, Spanish, Russian, Hebrew, and Chinese. We clustered time series of word usage frequencies using a Kohonen neural network. The similarity between input vectors was estimated using several algorithms. As a result of the neural network training procedure, more than ten different forms of time series were found. They describe the dynamics of word usage frequencies from birth to death of individual words. Different groups of word forms were found to have different dynamics of word usage frequency variations

  16. Complex Signal Kurtosis and Independent Component Analysis for Wideband Radio Frequency Interference Detection

    Science.gov (United States)

    Schoenwald, Adam; Mohammed, Priscilla; Bradley, Damon; Piepmeier, Jeffrey; Wong, Englin; Gholian, Armen

    2016-01-01

    Radio-frequency interference (RFI) has negatively implicated scientific measurements across a wide variation passive remote sensing satellites. This has been observed in the L-band radiometers SMOS, Aquarius and more recently, SMAP [1, 2]. RFI has also been observed at higher frequencies such as K band [3]. Improvements in technology have allowed wider bandwidth digital back ends for passive microwave radiometry. A complex signal kurtosis radio frequency interference detector was developed to help identify corrupted measurements [4]. This work explores the use of ICA (Independent Component Analysis) as a blind source separation technique to pre-process radiometric signals for use with the previously developed real and complex signal kurtosis detectors.

  17. Contamination issues in superconducting cavity technology

    International Nuclear Information System (INIS)

    Kneisel, Peter

    1997-01-01

    The application of radio-frequency superconductivity technology in particle accelerator projects has become increasingly evident in recent years. Several large scale projects around the world are either completed or close to completion, such as CEBAF, HERA, TRISTAN and LEP. And superconducting cavity technology is seriously being considered for future applications in linear colliders (TESLA), high current proton accelerators (APT, spallation neutron sources), muon colliders and free electron lasers for industrial application. The reason for this multitude of activities are matured technology based on a better understanding of the phenomena encountered in superconducting cavities and the influence of improved material properties and contamination and quality control measures

  18. JOKARUS - design of a compact optical iodine frequency reference for a sounding rocket mission

    Energy Technology Data Exchange (ETDEWEB)

    Schkolnik, Vladimir; Doeringshoff, Klaus; Gutsch, Franz Balthasar; Krutzik, Markus [Humboldt-Universitaet zu Berlin, Berlin (Germany); Oswald, Markus [Universitaet Bremen, Zentrum fuer angewandte Raumfahrttechnologie und Mikrogravitation (ZARM), Bremen (Germany); Schuldt, Thilo [Institut fuer Raumfahrtsysteme, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Bremen (Germany); Braxmaier, Claus [Universitaet Bremen, Zentrum fuer angewandte Raumfahrttechnologie und Mikrogravitation (ZARM), Bremen (Germany); Institut fuer Raumfahrtsysteme, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Bremen (Germany); Lezius, Matthias; Holzwarth, Ronald [Menlo Systems GmbH, Martinsried (Germany); Kuerbis, Christian; Bawamia, Ahmad [Leibniz-Institut fuer Hoechstfrequenztechnik, Ferdinand-Braun-Institut, Berlin (Germany); Peters, Achim [Humboldt-Universitaet zu Berlin, Berlin (Germany); Leibniz-Institut fuer Hoechstfrequenztechnik, Ferdinand-Braun-Institut, Berlin (Germany)

    2017-12-15

    We present the design of a compact absolute optical frequency reference for space applications based on hyperfine transitions in molecular iodine with a targeted fractional frequency instability of better than 3 x 10{sup -14} after 1 s. It is based on a micro-integrated extended cavity diode laser with integrated optical amplifier, fiber pigtailed second harmonic generation wave-guide modules, and a quasi-monolithic spectroscopy setup with operating electronics. The instrument described here is scheduled for launch end of 2017 aboard the TEXUS 54 sounding rocket as an important qualification step towards space application of iodine frequency references and related technologies. The payload will operate autonomously and its optical frequency will be compared to an optical frequency comb during its space flight. (orig.)

  19. How Technology Teachers Understand Technological Knowledge

    Science.gov (United States)

    Norström, Per

    2014-01-01

    Swedish technology teachers' views of technological knowledge are examined through a written survey and a series of interviews. The study indicates that technology teachers' understandings of what constitutes technological knowledge and how it is justified vary considerably. The philosophical discussions on the topic are unknown to them. This lack…

  20. International technology transfer

    International Nuclear Information System (INIS)

    Kwon, Won Gi

    1991-11-01

    This book introduces technology progress and economic growth, theoretical consideration of technology transfer, policy and mechanism on technology transfer of a developed country and a developing country, reality of international technology transfer technology transfer and industrial structure in Asia and the pacific region, technology transfer in Russia, China and Eastern Europe, cooperation of science and technology for development of Northeast Asia and strategy of technology transfer of Korea.

  1. High Frequency Components Recovery in Music Signals

    Directory of Open Access Journals (Sweden)

    V. Sebesta

    1999-04-01

    Full Text Available A new technique is presented which improves the subjective quality of band-limited music by recovery of high frequency components. Sequences of harmonics are found in the band-limited signal and these sequences are expanded to the high frequency band to estimate the lost part of spectrum. High frequency signal is generated to match this estimation and is added to the band-limited signal.

  2. String Stretching, Frequency Modulation, and Banjo Clang

    OpenAIRE

    Politzer, David

    2014-01-01

    The banjo’s floating bridge, string break angle, and flexible drumhead all contribute to substantial audio range frequency modulation. From the world of electronic music synthesis, it is known that modulating higher frequency sounds with lower acoustic frequencies leads to metallic and bell-like tone. The mechanics of the banjo does just that quite naturally, modulating fundamentals and harmonics with the motion of the bridge. In technical terms, with a floating bridge, string stretching is f...

  3. Frequency modulation drive for a piezoelectric motor

    Science.gov (United States)

    Mittas, Anthony

    2001-01-01

    A piezoelectric motor has peak performance at a specific frequency f.sub.1 that may vary over a range of frequencies. A drive system is disclosed for operating such a motor at peak performance without feedback. The drive system consists of the motor and an ac source connected to power the motor, the ac source repeatedly generating a frequency over a range from f.sub.1 -.DELTA.x to f.sub.1 +.DELTA.y.

  4. On the frequency scalings of RF guns

    International Nuclear Information System (INIS)

    Lin, L.C.; Chen, S.C.; Wurtele, J.S.

    1995-01-01

    A frequency scaling law for RF guns is derived from the normalized Vlasov-Maxwell equations. It shows that higher frequency RF guns can generate higher brightness beams under the assumption that the accelerating gradient and all beam and structure parameters are scaled with the RF frequency. Numerical simulation results using MAGIC confirm the scaling law. A discussion of the range of applicability of the law is presented. copyright 1995 American Institute of Physics

  5. Cooperative Frequency Control for Autonomous AC Microgrids

    DEFF Research Database (Denmark)

    Shafiee, Qobad; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2015-01-01

    Distributed secondary control strategies have been recently studied for frequency regulation in droop-based AC Microgrids. Unlike centralized secondary control, the distributed one might fail to provide frequency synchronization and proportional active power sharing simultaneously, due to having...... not require measuring the system frequency as compared to the other presented methods. An ac Microgrid with four sources is used to verify the performance of the proposed control methodology....

  6. Very-low-frequency magnetic plasma

    International Nuclear Information System (INIS)

    Pendry, J.B.; O'Brien, S.

    2002-01-01

    We show that a set of current-carrying wires can exhibit an effective magnetic permeability at very low frequencies of a few hertz. The resonant permeability, which is negative above the resonance frequency, arises from the oscillations of the wires driven by the applied magnetic field. We show that a large, frequency-specific and tunable effective permeability can be realized for a wide range of strengths of the applied field. (author)

  7. Low-Frequency Beacon Signal Strength Determination.

    Science.gov (United States)

    1980-01-01

    Radio Frequency List , RIS AF-6050-12 [141. Using this value and assum- ing performance for these facilities as indicatcd in FAA Handbook 6050.10, ERP...FAA Handbook 6050. 10 for facilities of appropriate transmitter power, determined from FAA Master Radio Frequency List 6050-12, April 1979...these facilities has not been directly measured and, therefore, values corresponding to transmitter powers given in FAA Master Radio Frequency List , RIS

  8. Frequency-Weighted Balancing Related Controller Reduction

    OpenAIRE

    Varga, Andras; Anderson, Brian D.O.

    2002-01-01

    The efficient solution of a class of controller approximation problems by using frequency-weighted balancing related model reduction approaches is considered. It is shown that for certain standard performance and stability enforcing frequency-weights, the computation of the frequency-weighted controllability and observability grammians can be done by solving reduced order Lyapunov equations regardless the controller itself is stable or unstable. The new approach can be used in conjunction wit...

  9. EDITORIAL: Photonic terahertz technology

    Science.gov (United States)

    Lisauskas, Alvydas; Löffler, Torsten; Roskos, Hartmut G.

    2005-07-01

    In recent years, when reading newspapers and journals or watching TV, one has been able to find feature presentations dealing with the prospects of terahertz (THz) technology and its potential impact on market applications. THz technology aims to fill the THz gap in the electro-magnetic spectrum in order to make the THz frequency regime, which spans the two orders of magnitude from 100 GHz to 10 THz, accessible for applications. From the lower-frequency side, electronics keeps pushing upwards, while photonic approaches gradually improve our technological options at higher frequencies. The popular interest reflects the considerable advances in research in the THz field, and it is mainly advances in the photonic branch, with the highlight being the development of the THz quantum cascade laser, which in recent years have caught the imagination of the public, and of potential users and investors. This special issue of Semiconductor Science and Technology provides an overview of key scientific developments which currently represent the cutting edge of THz photonic technology. In order to be clear about the implications, we should define exactly what we mean by 'THz photonic technology', or synonymously 'THz photonics'. It is characterized by the way in which THz radiation (or a guided THz wave) is generated, namely by the use of lasers. This may be done in one of two fundamentally different schemes: (i) by laser action in the terahertz frequency range itself (THz lasers), or (ii) by down-conversion processes (photomixing) involving the radiation of lasers which operate in the visible, near-infrared or infrared spectral ranges, either in pulsed or continuous-wave mode. The field of THz photonics has grown so considerably that it is out of the question to cover all its aspects in a single special issue of a journal. We have elected, instead, to focus our attention on two types of development with a potentially strong impact on the THz field: first, on significant advances

  10. Technology programme

    International Nuclear Information System (INIS)

    2007-01-01

    The technology activities carried out by the EURATOM-ENEA Association concern the continuation of the European Fusion Development Agreement (EFDA) as well as the ITER activities coordinated by the ITER International Office and Fusion for Energy. Also included in the activities are design and RD under the Broader Approach Agreement between the EU and Japan. In order to better contribute to the programme a number of consortium agreements among the Associations are being signed. Collaboration with industries in view of their participation in the construction of ITER was further strengthened, mainly in the field of magnet and divertor components. The new European Test Blanket Facility at ENEA Brasimone was completed; the design of the ITER radial neutron camera was optimised and the performance achievable with the in-vessel viewing system was further assessed by experimental trials. Design activities for the JT-60SA magnet and power supply system as well as the design and experimental activities related to the target of the International Fusion Materials Irradiation Facility were continued. Significant work was done to define quality assurance for neutronics analyses. Mockups of the ITER pre-compression ring made in glass fibre epoxy were tested. The activities and results documented in the following illustrate ENEA's efforts to support fusion development

  11. Nonmonotonic low frequency losses in HTSCs

    International Nuclear Information System (INIS)

    Castro, H; Gerber, A; Milner, A

    2007-01-01

    A calorimetric technique has been used in order to study ac-field dissipation in ceramic BSCCO samples at low frequencies between 0.05 and 250 Hz, at temperatures from 65 to 90 K. In contrast to previous studies, where ac losses have been reported with a linear dependence on magnetic field frequency, we find a nonmonotonic function presenting various maxima. Frequencies corresponding to local maxima of dissipation depend on the temperature and the amplitude of the ac magnetic field. Flux creep is argued to be responsible for this behaviour. A simple model connecting the characteristic vortex relaxation times (flux creep) and the location of dissipation maxima versus frequency is proposed

  12. HIGH FREQUENCY ELECTROSTATIC INSTABILITIES IN A PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M W; Auer, P L

    1963-06-15

    The dispersion relation is examined for a collisionless infinite plasma in the presence of an anisotropic Maxwellian velocity distribution and a uniform external magnetic field. Unstable solutions exist below the muitiples of the electron cyclotron frequency provided the temperature anisotropy is sufficiently large. The dependence of the growth rate upon harmonic number, density, angle of propagation with respect to the magnetic field, and frequency is discussed for zero as well as non-zero parallel temperatures. In the latter case, the waves are strongly damped as their frequency approaches a multiple of the gyro- frequency. (auth)

  13. Frequency-Diversity Reception for Phase Modulation

    Science.gov (United States)

    Brockman, M. H.

    1984-01-01

    Signal-to-noise ratio improved. System receives phase modulation transmitted simultaneously on different carrier frequencies. Used for carriers received through different antennas or through same antenna.

  14. Odd-frequency pairing in superconducting heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Golubov, A A [Faculty of Science and Technology and MESA Institute for Nanotechnology, University of Twente, 7500 AE Enschede (Netherlands); Tanaka, Y [Department of Applied Physics, Nagoya University, Nagoya, 464-8603 (Japan); Asano, Y [Department of Applied Physics, Hokkaido University, Sapporo 060-8628 (Japan); Tanuma, Y [Institute of Physics, Kanagawa University, 3-7-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686 (Japan)], E-mail: a.golubov@utwente.nl

    2009-04-22

    We review the theory of odd-frequency pairing in superconducting heterostructures, where an odd-frequency pairing component is induced near interfaces. A general description of the superconducting proximity effect in a normal metal or a ferromagnet attached to an unconventional superconductor (S) is given within quasiclassical kinetic theory for various types of symmetry state in S. Various possible symmetry classes in a superconductor are considered which are consistent with the Pauli principle: even-frequency spin-singlet even-parity (ESE) state, even-frequency spin-triplet odd-parity (ETO) state, odd-frequency spin-triplet even-parity (OTE) state and odd-frequency spin-singlet odd-parity (OSO) state. As an example, we consider a junction between a diffusive normal metal (DN) and a p-wave superconductor (even-frequency spin-triplet odd-parity symmetry), where the pairing amplitude in DN belongs to an odd-frequency spin-triplet even-parity symmetry class. We also discuss the manifestation of odd-frequency pairing in conventional superconductor/normal (S/N) proximity systems and its relation to the classical McMillan-Rowell oscillations.

  15. Loads as a Resource: Frequency Responsive Demand

    Energy Technology Data Exchange (ETDEWEB)

    Kalsi, Karanjit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lian, Jianming [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Marinovici, Laurentiu D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elizondo, Marcelo A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moya, Christian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-10-08

    Frequency control plays an important role in preserving the power balance of a multi-machine power system. Generators modify their power output when a non-zero frequency deviation is presented in order to restore power balance across the network. However, with plans for large-scale penetration of renewable energy resources, performing primary frequency control using only supply-side resources becomes not only prohibitively expensive, but also technically difficult. Frequency control from the demand side or load control presents a novel and viable way for providing the desired frequency response. Loads can measure frequency locally and change their power consumption after a non-zero frequency deviation is presented in order to achieve power balance between generation and consumption. The specific objectives of this project are to: •Provide a framework to facilitate large-scale deployment of frequency responsive end-use devices •Systematically design decentralized frequency-based load control strategies for enhanced stability performance •Ensure applicability over wide range of operating conditions while accounting for unpredictable end-use behavior and physical device constraints •Test and validate control strategy using large-scale simulations and field demonstrations •Create a level-playing field for smart grid assets with conventional generators

  16. Nanoelectromechanical systems: Nanodevice motion at microwave frequencies

    Science.gov (United States)

    Henry Huang, Xue Ming; Zorman, Christian A.; Mehregany, Mehran; Roukes, Michael L.

    2003-01-01

    It has been almost forgotten that the first computers envisaged by Charles Babbage in the early 1800s were mechanical and not electronic, but the development of high-frequency nanoelectromechanical systems is now promising a range of new applications, including sensitive mechanical charge detectors and mechanical devices for high-frequency signal processing, biological imaging and quantum measurement. Here we describe the construction of nanodevices that will operate with fundamental frequencies in the previously inaccessible microwave range (greater than 1 gigahertz). This achievement represents a significant advance in the quest for extremely high-frequency nanoelectromechanical systems.

  17. Is probability of frequency too narrow?

    International Nuclear Information System (INIS)

    Martz, H.F.

    1993-01-01

    Modern methods of statistical data analysis, such as empirical and hierarchical Bayesian methods, should find increasing use in future Probabilistic Risk Assessment (PRA) applications. In addition, there will be a more formalized use of expert judgment in future PRAs. These methods require an extension of the probabilistic framework of PRA, in particular, the popular notion of probability of frequency, to consideration of frequency of frequency, frequency of probability, and probability of probability. The genesis, interpretation, and examples of these three extended notions are discussed

  18. Electronic tunneling currents at optical frequencies

    Science.gov (United States)

    Faris, S. M.; Fan, B.; Gustafson, T. K.

    1975-01-01

    Rectification characteristics of nonsuperconducting metal-barrier-metal junctions as deduced from electronic tunneling theory have been observed experimentally for optical frequency irradiation of the junction.

  19. Mutual Information in Frequency and Its Application to Measure Cross-Frequency Coupling in Epilepsy

    Science.gov (United States)

    Malladi, Rakesh; Johnson, Don H.; Kalamangalam, Giridhar P.; Tandon, Nitin; Aazhang, Behnaam

    2018-06-01

    We define a metric, mutual information in frequency (MI-in-frequency), to detect and quantify the statistical dependence between different frequency components in the data, referred to as cross-frequency coupling and apply it to electrophysiological recordings from the brain to infer cross-frequency coupling. The current metrics used to quantify the cross-frequency coupling in neuroscience cannot detect if two frequency components in non-Gaussian brain recordings are statistically independent or not. Our MI-in-frequency metric, based on Shannon's mutual information between the Cramer's representation of stochastic processes, overcomes this shortcoming and can detect statistical dependence in frequency between non-Gaussian signals. We then describe two data-driven estimators of MI-in-frequency: one based on kernel density estimation and the other based on the nearest neighbor algorithm and validate their performance on simulated data. We then use MI-in-frequency to estimate mutual information between two data streams that are dependent across time, without making any parametric model assumptions. Finally, we use the MI-in- frequency metric to investigate the cross-frequency coupling in seizure onset zone from electrocorticographic recordings during seizures. The inferred cross-frequency coupling characteristics are essential to optimize the spatial and spectral parameters of electrical stimulation based treatments of epilepsy.

  20. Current measurement in high-performance frequency converters; Strommessung in Hochleistungsumrichtern

    Energy Technology Data Exchange (ETDEWEB)

    Marien, Jan; Hetzler, Ullrich [Isabellenhuette Heusler GmbH und Co. KG, Dillenburg (Germany); Hornung, Hans-Georg; Zwinger, Stefan [Sensor-Technik Wiedemann GmbH, Kaufbeuren (Germany)

    2011-04-15

    The load cycles (raising, lowering, accelerating, braking) of cranes, lift trucks and other off-road vehicles are ideally suited for the efficient deployment of hybrid or full electrical drive technology. Current measurement is a key technology for advancing electrification. Sensor Technik Wiedemann places by her frequency converters on a shunt-based current measurement module from Isabellenhuette Heusler which permits highly accurate measurements. (orig.)