WorldWideScience

Sample records for frequency helicopter noise

  1. Assessment of noise level and noise propagation generated by light-lift helicopters in mountain natural environments.

    Science.gov (United States)

    Grigolato, Stefano; Mologni, Omar; Proto, Andrea Rosario; Zimbalatti, Giuseppe; Cavalli, Raffaele

    2018-01-20

    The use of helicopter rises discussion about environmental noise propagation especially when it operates in proximity of environmentally sensitive areas (ESAs) for an extended period because of its potential implications in wildlife behaviours. In order to support decisions on helicopter logging operation management in proximity of ESAs, this study focused on (i) analysing the noise spectrum of a light-lift helicopter during logging operations and on (ii) assessing the noise propagation in the surrounding environments. This study investigated a helicopter logging operation for wood fuel extraction in the eastern part of the Italian Alps. The potential disturbance area covered for the entire helicopter logging operation was evaluated by a specific GIS application according to hearing sensitivity of the most sensitive wildlife species in the study area (different strigiform species). The noise level at the ground appeared to be affected by the location regardless both the use of equivalent continuous sound pressures level dB(A) (LAeq) and the single-event level (SEL) noise metrics. The lowest values were recorded when the helicopter was flown over the sound meter level located under the forest canopy, while the highest was recorded when the helicopter was unhooking the loads at the landing. The GIS application highlighted the consistent of the exceeded noise area (weighted to strigiform hearing range and sensitivity) for the lower frequency bands (0.016-0.250 kHz). A more restricted exceeded noise area concerned instead the most sensitive frequency bands" for the strigiform (1-2 kHz). Graphical abstract ᅟ.

  2. Helicopter Flight Procedures for Community Noise Reduction

    Science.gov (United States)

    Greenwood, Eric

    2017-01-01

    A computationally efficient, semiempirical noise model suitable for maneuvering flight noise prediction is used to evaluate the community noise impact of practical variations on several helicopter flight procedures typical of normal operations. Turns, "quick-stops," approaches, climbs, and combinations of these maneuvers are assessed. Relatively small variations in flight procedures are shown to cause significant changes to Sound Exposure Levels over a wide area. Guidelines are developed for helicopter pilots intended to provide effective strategies for reducing the negative effects of helicopter noise on the community. Finally, direct optimization of flight trajectories is conducted to identify low noise optimal flight procedures and quantify the magnitude of community noise reductions that can be obtained through tailored helicopter flight procedures. Physically realizable optimal turns and approaches are identified that achieve global noise reductions of as much as 10 dBA Sound Exposure Level.

  3. An examination of the spectral class low frequency limit for helicopters

    Science.gov (United States)

    2011-01-01

    Currently, INM and AEDT do not use spectral data below 50 Hz in their noise computations. However, helicopter rotor rotational noise is dominant below 50Hz, with a fundamental frequency at the blade-pass frequency (BPF) and harmonics at integer multi...

  4. Does modern helicopter construction reduce noise exposure in helicopter rescue operations?

    Science.gov (United States)

    Küpper, Thomas; Jansing, Paul; Schöffl, Volker; van Der Giet, Simone

    2013-01-01

    During helicopter rescue operations the medical personnel are at high risk for hearing damage by noise exposure. There are two important factors to be taken into account: first, the extreme variability, with some days involving no exposure but other days with extreme exposure; second, the extreme noise levels during work outside the helicopter, e.g. during winch operations. The benefit of modern, less noisier constructions and the consequences for noise protection are still unknown. We estimated the noise exposure of the personnel for different helicopter types used during rescue operations in the Alps and in other regions of the world with special regard to the advanced types like Eurocopter EC 135 to compare the benefit of modern constructions for noise protection with earlier ones. The rescue operations over 1 year of four rescue bases in the Alps (Raron and Zermatt in Switzerland; Landeck and Innsbruck in Austria, n = 2731) were analyzed for duration of rescue operations (noise exposure). Noise levels were measured during rescue operations at defined points inside and outside the different aircraft. The setting is according to the European standard (Richtlinie 2003/10/EG Amtsblatt) and to Class 1 DIN/IEC 651. With both data sets the equivalent noise level L(eq8h) was calculated. For comparison it was assumed that all rescue operations were performed with a specific type of helicopter. Then model calculations for noise exposure by different helicopter types, such as Alouette IIIb, Alouette II 'Lama', Ecureuil AS350, Bell UH1D, Eurocopter EC135, and others were performed. Depending on modern technologies the situation for the personnel has been improved significantly. Nevertheless noise prevention, which includes noise intermissions in spare time, is essential. Medical checks of the crews by occupational medicine (e.g. 'G20' in Germany) are still mandatory.

  5. The Effects of Ambient Conditions on Helicopter Harmonic Noise Radiation: Theory and Experiment

    Science.gov (United States)

    Greenwood, Eric; Sim, Ben W.; Boyd, D. Douglas, Jr.

    2016-01-01

    The effects of ambient atmospheric conditions, air temperature and density, on rotor harmonic noise radiation are characterized using theoretical models and experimental measurements of helicopter noise collected at three different test sites at elevations ranging from sea level to 7000 ft above sea level. Significant changes in the thickness, loading, and blade-vortex interaction noise levels and radiation directions are observed across the different test sites for an AS350 helicopter flying at the same indicated airspeed and gross weight. However, the radiated noise is shown to scale with ambient pressure when the flight condition of the helicopter is defined in nondimensional terms. Although the effective tip Mach number is identified as the primary governing parameter for thickness noise, the nondimensional weight coefficient also impacts lower harmonic loading noise levels, which contribute strongly to low frequency harmonic noise radiation both in and out of the plane of the horizon. Strategies for maintaining the same nondimensional rotor operating condition under different ambient conditions are developed using an analytical model of single main rotor helicopter trim and confirmed using a CAMRAD II model of the AS350 helicopter. The ability of the Fundamental Rotorcraft Acoustics Modeling from Experiments (FRAME) technique to generalize noise measurements made under one set of ambient conditions to make accurate noise predictions under other ambient conditions is also validated.

  6. Subjective assessment of simulated helicopter blade-slap noise

    Science.gov (United States)

    Lawton, B. W.

    1976-01-01

    The effects of several characteristics of helicopter blade slap upon human annoyance are examined. Blade slap noise was simulated by using continuous and impulsive noises characterized by five parameters: The number of sine waves in a single impulse; the frequency of the sine waves; the impulse repetition frequency; the sound pressure level (SPL) of the continuous noise; and the idealized crest factor of the impulses. Ten second samples of noise were synthesized with each of the five parameters at representative levels. The annoyance of each noise was judged by 40 human subjects. Analysis of the subjective data indicated that each of the five parameters had a statistically significant effect upon the annoyance judgments. The impulse crest factor and SPL of the continuous noise had very strong positive relationships with annoyance. The other parameters had smaller, but still significant, effects upon the annoyance judgments.

  7. Active structural acoustic control of helicopter interior multifrequency noise using input-output-based hybrid control

    Science.gov (United States)

    Ma, Xunjun; Lu, Yang; Wang, Fengjiao

    2017-09-01

    This paper presents the recent advances in reduction of multifrequency noise inside helicopter cabin using an active structural acoustic control system, which is based on active gearbox struts technical approach. To attenuate the multifrequency gearbox vibrations and resulting noise, a new scheme of discrete model predictive sliding mode control has been proposed based on controlled auto-regressive moving average model. Its implementation only needs input/output data, hence a broader frequency range of controlled system is modelled and the burden on the state observer design is released. Furthermore, a new iteration form of the algorithm is designed, improving the developing efficiency and run speed. To verify the algorithm's effectiveness and self-adaptability, experiments of real-time active control are performed on a newly developed helicopter model system. The helicopter model can generate gear meshing vibration/noise similar to a real helicopter with specially designed gearbox and active struts. The algorithm's control abilities are sufficiently checked by single-input single-output and multiple-input multiple-output experiments via different feedback strategies progressively: (1) control gear meshing noise through attenuating vibrations at the key points on the transmission path, (2) directly control the gear meshing noise in the cabin using the actuators. Results confirm that the active control system is practical for cancelling multifrequency helicopter interior noise, which also weakens the frequency-modulation of the tones. For many cases, the attenuations of the measured noise exceed the level of 15 dB, with maximum reduction reaching 31 dB. Also, the control process is demonstrated to be smoother and faster.

  8. Direct CFD Predictions of Low Frequency Sounds Generated by a Helicopter Main Rotor

    Science.gov (United States)

    Sim, Ben W.; Potsdam, Mark A.; Conner, Dave A.; Conner, Dave A.; Watts, Michael E.

    2010-01-01

    The use of CFD to directly predict helicopter main rotor noise is shown to be quite promising as an alternative mean for low frequency source noise evaluation. Results using existing state-of-the-art grid structures and finite-difference schemes demonstrated that small perturbation pressures, associated with acoustics radiation, can be extracted with some degree of fidelity. Accuracy of the predictions are demonstrated via comparing to predictions from conventional acoustic analogy-based models, and with measurements obtained from wind tunnel and flight tests for the MD-902 helicopter at several operating conditions. Findings show that the direct CFD approach is quite successfully in yielding low frequency results due to thickness and steady loading noise mechanisms. Mid-to-high frequency contents, due to blade-vortex interactions, are not predicted due to CFD modeling and grid constraints.

  9. The Effects of Ambient Conditions on Helicopter Rotor Source Noise Modeling

    Science.gov (United States)

    Schmitz, Frederic H.; Greenwood, Eric

    2011-01-01

    A new physics-based method called Fundamental Rotorcraft Acoustic Modeling from Experiments (FRAME) is used to demonstrate the change in rotor harmonic noise of a helicopter operating at different ambient conditions. FRAME is based upon a non-dimensional representation of the governing acoustic and performance equations of a single rotor helicopter. Measured external noise is used together with parameter identification techniques to develop a model of helicopter external noise that is a hybrid between theory and experiment. The FRAME method is used to evaluate the main rotor harmonic noise of a Bell 206B3 helicopter operating at different altitudes. The variation with altitude of Blade-Vortex Interaction (BVI) noise, known to be a strong function of the helicopter s advance ratio, is dependent upon which definition of airspeed is flown by the pilot. If normal flight procedures are followed and indicated airspeed (IAS) is held constant, the true airspeed (TAS) of the helicopter increases with altitude. This causes an increase in advance ratio and a decrease in the speed of sound which results in large changes to BVI noise levels. Results also show that thickness noise on this helicopter becomes more intense at high altitudes where advancing tip Mach number increases because the speed of sound is decreasing and advance ratio increasing for the same indicated airspeed. These results suggest that existing measurement-based empirically derived helicopter rotor noise source models may give incorrect noise estimates when they are used at conditions where data were not measured and may need to be corrected for mission land-use planning purposes.

  10. Towards a better understanding of helicopter external noise

    Science.gov (United States)

    Damongeot, A.; Dambra, F.; Masure, B.

    The problem of helicopter external noise generation is studied taking into consideration simultaneously the multiple noise sources: rotor rotational-, rotor broadband -, and engine noise. The main data are obtained during flight tests of the rather quiet AS 332 Super Puma. The flight procedures settled by ICAO for noise regulations are used: horizontal flyover at 90 percent of the maximum speed, approach at minimum power velocity, take-off at best rate of climb. Noise source levels are assessed through narrow band analysis of ground microphone recordings, ground measurements of engine noise and theoretical means. With the perceived noise level unit used throughout the study, relative magnitude of noise sources is shown to be different from that obtained with linear noise unit. A parametric study of the influence of some helicopter parameters on external noise has shown that thickness-tapered, chord-tapered, and swept-back blade tips are good means to reduce the overall noise level in flyover and approach.

  11. Application of an active device for helicopter noise reduction in JAXA

    International Nuclear Information System (INIS)

    Saito, Shigeru; Kobiki, Noboru; Tanabe, Yasutada

    2010-01-01

    Important issues in noise problems for current helicopters are described. An active tab (AT) was developed as a new active device for noise/vibration reduction under research cooperation between Japan Aerospace Exploration Agency (JAXA) and Kawada Industries, Inc. The wind tunnel test was conducted in order to investigate the effectiveness of the AT on the aeroacoustic characteristics of a helicopter. From the wind tunnel test, the capability of reducing blade vortex interaction (BVI) noise by an AT was verified. A new control law using instantaneous pressure change on a blade during BVI phenomena was introduced and applied to the wind tunnel testing. This new control law shows reasonable controllability for helicopter noise reduction. Furthermore, in order to analyze noise characteristics, the advanced computational fluid dynamics (CFD) code named JAXA o v3d was developed in JAXA and extended to include CFD-CSD (computational structure dynamics) coupling by using the beam theory for blade deformation. (invited paper)

  12. Helicopter noise footprint prediction in unsteady maneuvers

    NARCIS (Netherlands)

    Gennaretti, Massimo; Bernardini, Giovanni; Serafini, Jacopo; Anobile, A.; Hartjes, S.

    2017-01-01

    This paper investigates different methodologies for the evaluation of the acoustic disturbance emitted by helicopter’s main rotors during unsteady maneuvers. Nowadays, the simulation of noise emitted by helicopters is of great interest to designers, both for the assessment of the acoustic impact

  13. Helicopter Rotor Noise Prediction: Background, Current Status, and Future Direction

    Science.gov (United States)

    Brentner, Kenneth S.

    1997-01-01

    Helicopter noise prediction is increasingly important. The purpose of this viewgraph presentation is to: 1) Put into perspective the recent progress; 2) Outline current prediction capabilities; 3) Forecast direction of future prediction research; 4) Identify rotorcraft noise prediction needs. The presentation includes an historical perspective, a description of governing equations, and the current status of source noise prediction.

  14. Efficient prediction of ground noise from helicopters and parametric studies based on acoustic mapping

    Directory of Open Access Journals (Sweden)

    Fei WANG

    2018-02-01

    Full Text Available Based on the acoustic mapping, a prediction model for the ground noise radiated from an in-flight helicopter is established. For the enhancement of calculation efficiency, a high-efficiency second-level acoustic radiation model capable of taking the influence of atmosphere absorption on noise into account is first developed by the combination of the point-source idea and the rotor noise radiation characteristics. The comparison between the present model and the direct computation method of noise is done and the high efficiency of the model is validated. Rotor free-wake analysis method and Ffowcs Williams-Hawkings (FW-H equation are applied to the aerodynamics and noise prediction in the present model. Secondly, a database of noise spheres with the characteristic parameters of advance ratio and tip-path-plane angle is established by the helicopter trim model together with a parametric modeling approach. Furthermore, based on acoustic mapping, a method of rapid simulation for the ground noise radiated from an in-flight helicopter is developed. The noise footprint for AH-1 rotor is then calculated and the influence of some parameters including advance ratio and flight path angle on ground noise is deeply analyzed using the developed model. The results suggest that with the increase of advance ratio and flight path angle, the peak noise levels on the ground first increase and then decrease, in the meantime, the maximum Sound Exposure Level (SEL noise on the ground shifts toward the advancing side of rotor. Besides, through the analysis of the effects of longitudinal forces on miss-distance and rotor Blade-Vortex Interaction (BVI noise in descent flight, some meaningful results for reducing the BVI noise on the ground are obtained. Keywords: Acoustic mapping, Helicopter, Noise footprint, Rotor noise, Second-level acoustic radiation model

  15. A Maneuvering Flight Noise Model for Helicopter Mission Planning

    Science.gov (United States)

    Greenwood, Eric; Rau, Robert; May, Benjamin; Hobbs, Christopher

    2015-01-01

    A new model for estimating the noise radiation during maneuvering flight is developed in this paper. The model applies the Quasi-Static Acoustic Mapping (Q-SAM) method to a database of acoustic spheres generated using the Fundamental Rotorcraft Acoustics Modeling from Experiments (FRAME) technique. A method is developed to generate a realistic flight trajectory from a limited set of waypoints and is used to calculate the quasi-static operating condition and corresponding acoustic sphere for the vehicle throughout the maneuver. By using a previously computed database of acoustic spheres, the acoustic impact of proposed helicopter operations can be rapidly predicted for use in mission-planning. The resulting FRAME-QS model is applied to near-horizon noise measurements collected for the Bell 430 helicopter undergoing transient pitch up and roll maneuvers, with good agreement between the measured data and the FRAME-QS model.

  16. Reduced In-Plane, Low Frequency Helicopter Noise of an Active Flap Rotor

    Science.gov (United States)

    Sim, Ben W.; Janakiram, Ram D.; Barbely, Natasha L.; Solis, Eduardo

    2009-01-01

    Results from a recent joint DARPA/Boeing/NASA/Army wind tunnel test demonstrated the ability to reduce in-plane, low frequency noise of the full-scale Boeing-SMART rotor using active flaps. Test data reported in this paper illustrated that acoustic energy in the first six blade-passing harmonics could be reduced by up to 6 decibels at a moderate airspeed, level flight condition corresponding to advance ratio of 0.30. Reduced noise levels were attributed to selective active flap schedules that modified in-plane blade airloads on the advancing side of the rotor, in a manner, which generated counteracting acoustic pulses that partially offset the negative pressure peaks associated with in-plane, steady thickness noise. These favorable reduced-noise operating states are a strong function of the active flap actuation amplitude, frequency and phase. The associated noise reductions resulted in reduced aural detection distance by up to 18%, but incurred significant vibratory load penalties due to increased hub shear forces. Small reductions in rotor lift-to-drag ratios, of no more than 3%, were also measured

  17. Bearings fault detection in helicopters using frequency readjustment and cyclostationary analysis

    Science.gov (United States)

    Girondin, Victor; Pekpe, Komi Midzodzi; Morel, Herve; Cassar, Jean-Philippe

    2013-07-01

    The objective of this paper is to propose a vibration-based automated framework dealing with local faults occurring on bearings in the transmission of a helicopter. The knowledge of the shaft speed and kinematic computation provide theoretical frequencies that reveal deteriorations on the inner and outer races, on the rolling elements or on the cage. In practice, the theoretical frequencies of bearing faults may be shifted. They may also be masked by parasitical frequencies because the numerous noisy vibrations and the complexity of the transmission mechanics make the signal spectrum very profuse. Consequently, detection methods based on the monitoring of the theoretical frequencies may lead to wrong decisions. In order to deal with this drawback, we propose to readjust the fault frequencies from the theoretical frequencies using the redundancy introduced by the harmonics. The proposed method provides the confidence index of the readjusted frequency. Minor variations in shaft speed may induce random jitters. The change of the contact surface or of the transmission path brings also a random component in amplitude and phase. These random components in the signal destroy spectral localization of frequencies and thus hide the fault occurrence in the spectrum. Under the hypothesis that these random signals can be modeled as cyclostationary signals, the envelope spectrum can reveal that hidden patterns. In order to provide an indicator estimating fault severity, statistics are proposed. They make the hypothesis that the harmonics at the readjusted frequency are corrupted with an additive normally distributed noise. In this case, the statistics computed from the spectra are chi-square distributed and a signal-to-noise indicator is proposed. The algorithms are then tested with data from two test benches and from flight conditions. The bearing type and the radial load are the main differences between the experiences on the benches. The fault is mainly visible in the

  18. Active Vibration Control for Helicopter Interior Noise Reduction Using Power Minimization

    Science.gov (United States)

    Mendoza, J.; Chevva, K.; Sun, F.; Blanc, A.; Kim, S. B.

    2014-01-01

    This report describes work performed by United Technologies Research Center (UTRC) for NASA Langley Research Center (LaRC) under Contract NNL11AA06C. The objective of this program is to develop technology to reduce helicopter interior noise resulting from multiple gear meshing frequencies. A novel active vibration control approach called Minimum Actuation Power (MAP) is developed. MAP is an optimal control strategy that minimizes the total input power into a structure by monitoring and varying the input power of controlling sources. MAP control was implemented without explicit knowledge of the phasing and magnitude of the excitation sources by driving the real part of the input power from the controlling sources to zero. It is shown that this occurs when the total mechanical input power from the excitation and controlling sources is a minimum. MAP theory is developed for multiple excitation sources with arbitrary relative phasing for single or multiple discrete frequencies and controlled by a single or multiple controlling sources. Simulations and experimental results demonstrate the feasibility of MAP for structural vibration reduction of a realistic rotorcraft interior structure. MAP control resulted in significant average global vibration reduction of a single frequency and multiple frequency excitations with one controlling actuator. Simulations also demonstrate the potential effectiveness of the observed vibration reductions on interior radiated noise.

  19. Helicopter Non-Unique Trim Strategies for Blade-Vortex Interaction (BVI) Noise Reduction

    Science.gov (United States)

    Malpica, Carlos; Greenwood, Eric; Sim, Ben W.

    2016-01-01

    An acoustics parametric analysis of the effect of fuselage drag and pitching moment on the Blade-Vortex Interaction (BVI) noise radiated by a medium lift helicopter (S-70UH-60) in a descending flight condition was conducted. The comprehensive analysis CAMRAD II was used for the calculation of vehicle trim, wake geometry and integrated air loads on the blade. The acoustics prediction code PSU-WOPWOP was used for calculating acoustic pressure signatures for a hemispherical grid centered at the hub. This paper revisits the concept of the X-force controller for BVI noise reduction, and investigates its effectiveness on an S-70 helicopter. The analysis showed that further BVI noise reductions were achievable by controlling the fuselage pitching moment. Reductions in excess of 6 dB of the peak BVI noise radiated towards the ground were demonstrated by compounding the effect of airframe drag and pitching moment simultaneously.

  20. Finite element analysis using NASTRAN applied to helicopter transmission vibration/noise reduction

    Science.gov (United States)

    Howells, R. W.; Sciarra, J. J.

    1975-01-01

    A finite element NASTRAN model of the complete forward rotor transmission housing for the Boeing Vertol CH-47 helicopter was developed and applied to reduce transmission vibration/noise at its source. In addition to a description of the model, a technique for vibration/noise prediction and reduction is outlined. Also included are the dynamic response as predicted by NASTRAN, test data, the use of strain energy methods to optimize the housing for minimum vibration/noise, and determination of design modifications which will be manufactured and tested. The techniques presented are not restricted to helicopters but are applicable to any power transmission system. The transmission housing model developed can be used further to evaluate static and dynamic stresses, thermal distortions, deflections and load paths, fail-safety/vulnerability, and composite materials.

  1. Helicopter noise in hover: Computational modelling and experimental validation

    Science.gov (United States)

    Kopiev, V. F.; Zaytsev, M. Yu.; Vorontsov, V. I.; Karabasov, S. A.; Anikin, V. A.

    2017-11-01

    The aeroacoustic characteristics of a helicopter rotor are calculated by a new method, to assess its applicability in assessing rotor performance in hovering. Direct solution of the Euler equations in a noninertial coordinate system is used to calculate the near-field flow around the spinning rotor. The far-field noise field is calculated by the Ffowcs Williams-Hawkings (FW-H) method using permeable control surfaces that include the blade. For a multiblade rotor, the signal obtained is duplicated and shifted in phase for each successive blade. By that means, the spectral characteristics of the far-field noise may be obtained. To determine the integral aerodynamic characteristics of the rotor, software is written to calculate the thrust and torque characteristics from the near-field flow solution. The results of numerical simulation are compared with experimental acoustic and aerodynamic data for a large-scale model of a helicopter main rotor in an open test facility. Two- and four-blade configurations of the rotor are considered, in different hover conditions. The proposed method satisfactorily predicts the aerodynamic characteristics of the blades in such conditions and gives good estimates for the first harmonics of the noise. That permits the practical use of the proposed method, not only for hovering but also for forward flight.

  2. 14 CFR Appendix H to Part 36 - Noise Requirements For Helicopters Under Subpart H

    Science.gov (United States)

    2010-01-01

    ... Subpart H H Appendix H to Part 36 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Pt. 36, App. H Appendix H to Part 36—Noise Requirements For Helicopters Under Subpart H part a—reference conditions Sec. H36...

  3. Noise exposure during prehospital emergency physicians work on Mobile Emergency Care Units and Helicopter Emergency Medical Services

    DEFF Research Database (Denmark)

    Hansen, Mads Christian Tofte; Schmidt, Jesper Hvass; Brøchner, Anne C

    2017-01-01

    BACKGROUND: Prehospital personnel are at risk of occupational hearing loss due to high noise exposure. The aim of the study was to establish an overview of noise exposure during emergency responses in Mobile Emergency Care Units (MECU), ambulances and Helicopter Emergency Medical Services (HEMS)....... initiatives. Although no hearing loss was demonstrated in the personnel of the ground-based units, a reduced function of the outer sensory hair cells was found in the HEMS group following missions.......BACKGROUND: Prehospital personnel are at risk of occupational hearing loss due to high noise exposure. The aim of the study was to establish an overview of noise exposure during emergency responses in Mobile Emergency Care Units (MECU), ambulances and Helicopter Emergency Medical Services (HEMS......). A second objective was to identify any occupational hearing loss amongst prehospital personnel. METHODS: Noise exposure during work in the MECU and HEMS was measured using miniature microphones worn laterally to the auditory canals or within the earmuffs of the helmet. All recorded sounds were analysed...

  4. Hearing loss in civilian airline and helicopter pilots compared to air traffic control personnel.

    Science.gov (United States)

    Wagstaff, Anthony S; Arva, Per

    2009-10-01

    In order to investigate possible hearing loss as a consequence of aviation noise, a comparative analysis of audiometric data from Norwegian Air Traffic Control (ATC) personnel, airline (fixed-wing) pilots, and helicopter pilots was performed. The results may be of use in giving advice regarding preventive measures. Male ATC, airline, and helicopter pilots were selected randomly from the Civil Aviation Authority (CAA) medical files. There were 182 subjects included in the study: 50, 81, and 51 subjects for ATC, helicopter, and airline pilots, respectively. Two audiograms with a 2-3-yr interval were analyzed for each individual. Age correction was performed using data from ISO 7129. Threshold changes per year for the frequencies 3, 4, and 6 kHz were examined in particular after age correction. For all three groups, mean hearing threshold levels were above (worse than) ISO 7129 predictions for most frequencies. As expected, hearing thresholds increased with age in the group as a whole. Looking at the 3-, 4-, and 6-kHz frequencies in particular, all groups had small but highly significant increases in hearing thresholds at 4 kHz between the first and second audiogram. The mean hearing thresholds for this group of aviation personnel are higher than International Standard ISO-7129 would predict according to age. Highly significant changes in hearing threshold after age correction, indicating possible noise-induced hearing loss, were found in all groups at 4 kHz. The fact that helicopter pilots had similar hearing loss to their other aviation colleagues indicates that current hearing protection for these pilots is effective in counteracting the increased noise levels in helicopters.

  5. Annoyance of low frequency noise and traffic noise

    DEFF Research Database (Denmark)

    Mortensen, F.R.; Poulsen, Torben

    2001-01-01

    The annoyance of different low frequency noise sources was determined and compared to the annoyance from traffic noise. Twenty-two subjects participated in laboratory listening tests. The sounds were presented by loudspeakers in a listening room and the spectra of the low frequency noises were...

  6. Helicopter model rotor-blade vortex interaction impulsive noise: Scalability and parametric variations

    Science.gov (United States)

    Splettstoesser, W. R.; Schultz, K. J.; Boxwell, D. A.; Schmitz, F. H.

    1984-01-01

    Acoustic data taken in the anechoic Deutsch-Niederlaendischer Windkanal (DNW) have documented the blade vortex interaction (BVI) impulsive noise radiated from a 1/7-scale model main rotor of the AH-1 series helicopter. Averaged model scale data were compared with averaged full scale, inflight acoustic data under similar nondimensional test conditions. At low advance ratios (mu = 0.164 to 0.194), the data scale remarkable well in level and waveform shape, and also duplicate the directivity pattern of BVI impulsive noise. At moderate advance ratios (mu = 0.224 to 0.270), the scaling deteriorates, suggesting that the model scale rotor is not adequately simulating the full scale BVI noise; presently, no proved explanation of this discrepancy exists. Carefully performed parametric variations over a complete matrix of testing conditions have shown that all of the four governing nondimensional parameters - tip Mach number at hover, advance ratio, local inflow ratio, and thrust coefficient - are highly sensitive to BVI noise radiation.

  7. Low frequency noise study.

    Science.gov (United States)

    2007-04-01

    This report documents a study to investigate human response to the low-frequency : content of aviation noise, or low-frequency noise (LFN). The study comprised field : measurements and laboratory studies. The major findings were: : 1. Start-of-takeof...

  8. Direct CFD Predictions of Low Frequency Sounds Generated by Helicopter Main Rotors

    Science.gov (United States)

    Sim, Ben W.; Potsdam, Mark; Conner, Dave; Watts, Michael E.

    2010-01-01

    This proposed paper will highlight the application of a CSD/CFD methodology currently inuse by the US Army Aerfolightdynamics Directorate (AFDD) to assess the feasibility and fidelity of directly predicting low frequency sounds of helicopter rotors.

  9. Low-frequency-noise complaints

    DEFF Research Database (Denmark)

    Pedersen, Christian Sejer; Møller, Henrik; Persson-Waye, Kerstin

    2008-01-01

    From 203 cases of low-frequency complaints a random selection of twenty-one cases were investigated. The main aim of the investigation was to answer the question whether the annoyance is caused by an external physical sound or by a physically non-existing sound, i.e. low-frequency tinnitus. Noise...... of the complainants are annoyed by a physical sound (20-180 Hz), while others suffer from low-frequency tinnitus (perceived frequency 40-100 Hz). Physical sound at frequencies below 20 Hz (infrasound) is not responsible for the annoyance - or at all audible - in any of the investigated cases, and none...... of the complainants has extraordinary hearing sensitivity at low frequencies. For comparable cases of low-frequency noise complaints in general, it is anticipated that physical sound is responsible in a substantial part of the cases, while low-frequency tinnitus is responsible in another substantial part of the cases....

  10. Fiscal 2000 pioneering research report on the research on advanced safety helicopter; 2000 nendo advanced safety helicopter no chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A survey was conducted concerning helicopter operating environments and the trends of related technologies in Japan and abroad, and the needs and seeds were grasped. Research was made to study technical problems and measures to solve them for the development of a safe, low-noise, and low-cost next-generation advanced safety helicopter (ASH). A market research was conducted on traffic systems in the future, state of aviation-related infrastructures and their future, current state of people's daily life which centers about locomotion, and the effect that ASH would impose on society. A technical research was carried out relative to flight safety, which involved EVS (enhanced vision system), information display system for helicopters, collision avoidance advisory for pilots, air collision prevention system/surveillance system for helicopters, obstacle detection/warning system for helicopters, blade deicing system for helicopters, and so forth. Detailed investigations were also conducted for technologies for reduction in the manufacturing, maintenance, and development costs, and for reduction in noise. (NEDO)

  11. Frequency spectrum of Calder Hall reactor noise

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1960-01-01

    The frequency spectrum of the noise power of Calder Hall reactor No. 1 has been obtained by analysing a tape recording of the backed off power. The root mean square noise power due to all frequencies above 0.001 cycles per second was found to be 0.13%. The noise power for this reactor, is due mainly to modulations of the power level by reactivity variations caused in turn by gas temperature changes. These gas temperature changes are caused by a Cyclic variation in the feedwater regulator to the heat exchanger. The apparatus and method used to determine the noise power are described in this memorandum. It is shown that for frequencies in the range 0.001 to 0.030 cycles per second the noise spectrum falls at 60 decibels per decade of frequency. (author)

  12. Long Island north shore helicopter route environmental study

    Science.gov (United States)

    2012-02-21

    This report presents the results of the noise and emissions analysis of helicopter operations along the North Shore Helicopter Route of Long Island, New York performed by the Federal Aviation Administration, with the assistance of the Volpe Center...

  13. Frequency noise in frequency swept fiber laser

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2013-01-01

    This Letter presents a measurement of the spectral content of frequency shifted pulses generated by a lightwave synthesized frequency sweeper. We found that each pulse is shifted in frequency with very high accuracy. We also discovered that noise originating from light leaking through the acousto......- optical modulators and forward propagating Brillouin scattering appear in the spectrum. © 2013 Optical Society of America....

  14. Low-frequency noise from large wind turbines.

    Science.gov (United States)

    Møller, Henrik; Pedersen, Christian Sejer

    2011-06-01

    As wind turbines get larger, worries have emerged that the turbine noise would move down in frequency and that the low-frequency noise would cause annoyance for the neighbors. The noise emission from 48 wind turbines with nominal electric power up to 3.6 MW is analyzed and discussed. The relative amount of low-frequency noise is higher for large turbines (2.3-3.6 MW) than for small turbines (≤ 2 MW), and the difference is statistically significant. The difference can also be expressed as a downward shift of the spectrum of approximately one-third of an octave. A further shift of similar size is suggested for future turbines in the 10-MW range. Due to the air absorption, the higher low-frequency content becomes even more pronounced, when sound pressure levels in relevant neighbor distances are considered. Even when A-weighted levels are considered, a substantial part of the noise is at low frequencies, and for several of the investigated large turbines, the one-third-octave band with the highest level is at or below 250 Hz. It is thus beyond any doubt that the low-frequency part of the spectrum plays an important role in the noise at the neighbors. © 2011 Acoustical Society of America

  15. Low-frequency 1/f noise in graphene devices

    Science.gov (United States)

    Balandin, Alexander A.

    2013-08-01

    Low-frequency noise with a spectral density that depends inversely on frequency has been observed in a wide variety of systems including current fluctuations in resistors, intensity fluctuations in music and signals in human cognition. In electronics, the phenomenon, which is known as 1/f noise, flicker noise or excess noise, hampers the operation of numerous devices and circuits, and can be a significant impediment to the development of practical applications from new materials. Graphene offers unique opportunities for studying 1/f noise because of its two-dimensional structure and widely tunable two-dimensional carrier concentration. The creation of practical graphene-based devices will also depend on our ability to understand and control the low-frequency noise in this material system. Here, the characteristic features of 1/f noise in graphene and few-layer graphene are reviewed, and the implications of such noise for the development of graphene-based electronics including high-frequency devices and sensors are examined.

  16. Low-frequency noise from large wind turbines

    DEFF Research Database (Denmark)

    Møller, Henrik; Pedersen, Christian Sejer

    2011-01-01

    As wind turbines get larger, worries have emerged that the turbine noise would move down in frequency and that the low-frequency noise would cause annoyance for the neighbors. The noise emission from 48 wind turbines with nominal electric power up to 3.6 MW is analyzed and discussed. The relative...... amount of low-frequency noise is higher for large turbines (2.3–3.6 MW) than for small turbines (≤ 2 MW), and the difference is statistically significant. The difference can also be expressed as a downward shift of the spectrum of approximately one-third of an octave. A further shift of similar size...... is suggested for future turbines in the 10-MW range. Due to the air absorption, the higher low-frequency content becomes even more pronounced, when sound pressure levels in relevant neighbor distances are considered. Even when A-weighted levels are considered, a substantial part of the noise is at low...

  17. Distribution of Acoustic Power Spectra for an Isolated Helicopter Fuselage

    Directory of Open Access Journals (Sweden)

    Kusyumov A.N.

    2016-01-01

    Full Text Available The broadband aerodynamic noise can be studied, assuming isotropic flow, turbulence and decay. Proudman’s approach allows practical calculations of noise based on CFD solutions of RANS or URANS equations at the stage of post processing and analysis of the solution. Another aspect is the broadband acoustic spectrum and the distribution of acoustic power over a range of frequencies. The acoustic energy spectrum distribution in isotropic turbulence is non monotonic and has a maximum at a certain value of Strouhal number. In the present work the value of acoustic power peak frequency is determined using a prescribed form of acoustic energy spectrum distribution presented in papers by S. Sarkar and M. Y. Hussaini and by G. M. Lilley. CFD modelling of the flow around isolated helicopter fuselage model was considered using the HMB CFD code and the RANS equations.

  18. Active noise cancellation of low frequency noise propagating in a duct

    Directory of Open Access Journals (Sweden)

    Farhad Forouharmajd

    2012-01-01

    Conclusions: With regard to the wide range of frequencies of different noise sources, having optimized circumstances in the duct, microphone location on the duct body or even the distance of the speakers may be important in signal processing, noise sampling and anti noise production.

  19. Noise measurements during high-frequency oscillatory and conventional mechanical ventilation.

    Science.gov (United States)

    Berens, R J; Weigle, C G

    1995-10-01

    To evaluate the noise levels with high-frequency oscillatory ventilation and conventional mechanical ventilation. An observational, prospective study. Pediatric intensive care unit. The caretakers and environment of the pediatric intensive care unit. High-frequency oscillatory and conventional mechanical ventilation. Caretakers evaluated noise using a visual analog scale. Noise was measured with a decibel meter and an octave band frequency filter. There was twice as much noise perceived by the caretakers and as measured on the decibel A scale. All measures showed significantly greater noise, especially at low frequencies, with high-frequency oscillatory ventilation. High-frequency oscillatory ventilation exposes the patient to twice as much noise as does the use of conventional mechanical ventilation.

  20. Challenges and limitations in retrofitting facilities for low frequency noise

    Energy Technology Data Exchange (ETDEWEB)

    Wierzba, P. [ATCO Noise Management, Calgary, AB (Canada)

    2007-07-01

    The trend to revise and increase environmental regulations regarding low frequency noise emissions from oil and gas facilities was discussed. Noise related complaints can often be traced to low frequency noise, which is the unwanted sound with a frequency range falling within 31.5-Hz, 63-Hz, and 125-Hz octave bands. This paper also discussed the challenges and limitations of field retrofits of the facilities aimed at reducing low frequency noise. The main sources of low frequency noise associated with a compression facility are the radiator cooler, engine exhaust and the building envelope. Regulators are paying close attention not only to the overall noise exposure as measured by the A-weighted levels, but also to the quality of noise emitted by the particular frequency spectrum. The Alberta Energy and Utilities Board recently issued Noise Control Directive 38 and made it a requirement to perform low frequency noise impact assessment for permitting of all new energy facilities. Under Directive 38, the low frequency noise assessment is to be performed using the C-weighted scale as a measure in addition to the previously used A-weighted scale. Directive 38 recommends that in order to avoid low frequency noise problems the difference between the C-weighted and A-weighted levels at the residential locations should be lower than 20 dB. This implies that noise should be limited to 60 dBC for Category 1 residences of low dwelling density. Small upgrades and changes can be made to lower low frequency noise emissions. These may include upgrading building wall insulation, providing wall-to-skid isolation system, upgrading the fan blades, or reducing the rpm of the fans. It was concluded that these upgrades should be considered for facilities in close proximity to residential areas. 3 refs., 2 tabs., 7 figs.

  1. Low-frequency excess flux noise in superconducting devices

    Energy Technology Data Exchange (ETDEWEB)

    Kempf, Sebastian; Ferring, Anna; Fleischmann, Andreas; Enss, Christian [Kirchhoff-Institute for Physics, Heidelberg University (Germany)

    2016-07-01

    Low-frequency noise is a rather universal phenomenon and appears in physical, chemical, biological or even economical systems. However, there is often very little known about the underlying processes leading to its occurrence. In particular, the origin of low-frequency excess flux noise in superconducting devices has been an unresolved puzzle for many decades. Its existence limits, for example, the coherence time of superconducting quantum bits or makes high-precision measurements of low-frequency signals using SQUIDs rather challenging. Recent experiments suggest that low-frequency excess flux noise in Josephson junction based devices might be caused by the random reversal of interacting spins in surface layer oxides and in the superconductor-substrate interface. Even if it turns out to be generally correct, the underlying physical processes, i.e. the origin of these spins, their physical nature as well as the interaction mechanisms, have not been resolved so far. In this contribution we discuss recent measurements of low-frequency SQUID noise which we performed to investigate the origin of low-frequency excess flux noise in superconducting devices. Within this context we give an overview of our measurement techniques and link our data with present theoretical models and literature data.

  2. Low-frequency noise in single electron tunneling transistor

    DEFF Research Database (Denmark)

    Tavkhelidze, A.N.; Mygind, Jesper

    1998-01-01

    The noise in current biased aluminium single electron tunneling (SET) transistors has been investigated in the frequency range of 5 mHz ..., we find the same input charge noise, typically QN = 5 × 10–4 e/Hz1/2 at 10 Hz, with and without the HF shielding. At lower frequencies, the noise is due to charge trapping, and the voltage noise pattern superimposed on the V(Vg) curve (voltage across transistor versus gate voltage) strongly depends...... when ramping the junction voltage. Dynamic trapping may limit the high frequency applications of the SET transistor. Also reported on are the effects of rf irradiation and the dependence of the SET transistor noise on bias voltage. ©1998 American Institute of Physics....

  3. The prediction of rotor rotational noise using measured fluctuating blade loads

    Science.gov (United States)

    Hosier, R. N.; Pegg, R. J.; Ramakrishnan, R.

    1974-01-01

    In tests conducted at the NASA Langley Research Center Helicopter Rotor Test Facility, simultaneous measurements of the high-frequency fluctuating aerodynamic blade loads and far-field radiated noise were made on a full-scale, nontranslating rotor system. After their characteristics were determined, the measured blade loads were used in an existing theory to predict the far-field rotational noise. A comparison of the calculated and measured rotational noise is presented with specific attention given to the effect of blade loading coefficients, chordwise loading distributions, blade loading phases, and observer azimuthal position on the predictions.

  4. Noise performance of frequency modulation Kelvin force microscopy

    Directory of Open Access Journals (Sweden)

    Heinrich Diesinger

    2014-01-01

    Full Text Available Noise performance of a phase-locked loop (PLL based frequency modulation Kelvin force microscope (FM-KFM is assessed. Noise propagation is modeled step by step throughout the setup using both exact closed loop noise gains and an approximation known as “noise gain” from operational amplifier (OpAmp design that offers the advantage of decoupling the noise performance study from considerations of stability and ideal loop response. The bandwidth can be chosen depending on how much noise is acceptable and it is shown that stability is not an issue up to a limit that will be discussed. With thermal and detector noise as the only sources, both approaches yield PLL frequency noise expressions equal to the theoretical value for self-oscillating circuits and in agreement with measurement, demonstrating that the PLL components neither modify nor contribute noise. Kelvin output noise is then investigated by modeling the surrounding bias feedback loop. A design rule is proposed that allows choosing the AC modulation frequency for optimized sharing of the PLL bandwidth between Kelvin and topography loops. A crossover criterion determines as a function of bandwidth, temperature and probe parameters whether thermal or detector noise is the dominating noise source. Probe merit factors for both cases are then established, suggesting how to tackle noise performance by probe design. Typical merit factors of common probe types are compared. This comprehensive study is an encouraging step toward a more integral performance assessment and a remedy against focusing on single aspects and optimizing around randomly chosen key values.

  5. Frequency Noise Properties of Lasers for Interferometry in Nanometrology

    Directory of Open Access Journals (Sweden)

    Ondřej Číp

    2013-02-01

    Full Text Available In this contribution we focus on laser frequency noise properties and their influence on the interferometric displacement measurements. A setup for measurement of laser frequency noise is proposed and tested together with simultaneous measurement of fluctuations in displacement in the Michelson interferometer. Several laser sources, including traditional He-Ne and solid-state lasers, and their noise properties are evaluated and compared. The contribution of the laser frequency noise to the displacement measurement is discussed in the context of other sources of uncertainty associated with the interferometric setup, such as, mechanics, resolution of analog-to-digital conversion, frequency bandwidth of the detection chain, and variations of the refractive index of air.

  6. Phase noise and frequency stability in oscillators

    CERN Document Server

    Rubiola, Enrico

    2009-01-01

    Presenting a comprehensive account of oscillator phase noise and frequency stability, this practical text is both mathematically rigorous and accessible. An in-depth treatment of the noise mechanism is given, describing the oscillator as a physical system, and showing that simple general laws govern the stability of a large variety of oscillators differing in technology and frequency range. Inevitably, special attention is given to amplifiers, resonators, delay lines, feedback, and flicker (1/f) noise. The reverse engineering of oscillators based on phase-noise spectra is also covered, and end-of-chapter exercises are given. Uniquely, numerous practical examples are presented, including case studies taken from laboratory prototypes and commercial oscillators, which allow the oscillator internal design to be understood by analyzing its phase-noise spectrum. Based on tutorials given by the author at the Jet Propulsion Laboratory, international IEEE meetings, and in industry, this is a useful reference for acade...

  7. Helicopter Acoustic Flight Test with Altitude Variation and Maneuvers

    Science.gov (United States)

    Watts, Michael E.; Greenwood, Eric; Sim, Ben; Stephenson, James; Smith, Charles D.

    2016-01-01

    A cooperative flight test campaign between NASA and the U.S. Army was performed from September 2014 to February 2015. The purposes of the testing were to: investigate the effects of altitude variation on noise generation, investigate the effects of gross weight variation on noise generation, establish the statistical variability in acoustic flight testing of helicopters, and characterize the effects of transient maneuvers on radiated noise for a medium-lift utility helicopter. This test was performed at three test sites (0, 4000, and 7000 feet above mean sea level) with two aircraft (AS350 SD1 and EH-60L) tested at each site. This report provides an overview of the test, documents the data acquired and describes the formats of the stored data.

  8. Modulation of high frequency noise by engine tones of small boats.

    Science.gov (United States)

    Pollara, Alexander; Sutin, Alexander; Salloum, Hady

    2017-07-01

    The effect of modulation of high frequency ship noise by propeller rotation frequencies is well known. This modulation is observed with the Detection of Envelope Modulation on Noise (DEMON) algorithm. Analysis of the DEMON spectrum allows the revolutions per minute and number of blades of the propeller to be determined. This work shows that the high frequency noise of a small boat can also be modulated by engine frequencies. Prior studies have not reported high frequency noise amplitude modulated at engine frequencies. This modulation is likely produced by bubbles from the engine exhaust system.

  9. Low-frequency noise in planar Hall effect bridge sensors

    DEFF Research Database (Denmark)

    Persson, Anders; Bejhedb, R.S.; Bejhed, R.S.

    2011-01-01

    The low-frequency characteristics of planar Hall effect bridge sensors are investigated as function of the sensor bias current and the applied magnetic field. The noise spectra reveal a Johnson-like spectrum at high frequencies, and a 1/f-like excess noise spectrum at lower frequencies, with a kn...

  10. A comparison of helicopter-borne electromagnetics in frequency- and time-domain at the Cuxhaven valley in Northern Germany

    DEFF Research Database (Denmark)

    Steuner, Annika; Siemon, Bernhard; Auken, Esben

    2010-01-01

    Two different airborne electromagnetic methods were applied in the same area: the frequency-domain helicopter-borne electromagnetic (HEM)system operated by the Federal Institute for Geosciences and Natural Resources, Germany, and the time-domain SkyTEM system of theHydroGeophysics Group at the Un......Two different airborne electromagnetic methods were applied in the same area: the frequency-domain helicopter-borne electromagnetic (HEM)system operated by the Federal Institute for Geosciences and Natural Resources, Germany, and the time-domain SkyTEM system of theHydroGeophysics Group...... at the University of Aarhus, Denmark. For verification of and comparison with the airborne methods, ground-basedtransient electromagnetics and 2-D resistivity surveying were carried out. The target of investigation was the Cuxhaven valley in NorthernGermany, which is a significant local groundwater reservoir...

  11. Twenty-two cases of low-frequency noise complaints

    DEFF Research Database (Denmark)

    Pedersen, Christian Sejer; Møller, Henrik; Persson-Waye, Kerstin

    2006-01-01

    In Denmark and in other industrialized countries there are cases where people complain about annoying low-frequency or infrasonic noise in their homes. Besides noise annoyance people often report other adverse effects such as insomnia, headache, lack of concentration etc. In many cases the noise...

  12. Finite frequency current noise in the Holstein model

    Science.gov (United States)

    Stadler, P.; Rastelli, G.; Belzig, W.

    2018-05-01

    We investigate the effects of local vibrational excitations in the nonsymmetrized current noise S (ω ) of a nanojunction. For this purpose, we analyze a simple model—the Holstein model—in which the junction is described by a single electronic level that is coupled to two metallic leads and to a single vibrational mode. Using the Keldysh Green's function technique, we calculate the nonsymmetrized current noise to the leading order in the charge-vibration interaction. For the noise associated to the latter, we identify distinct terms corresponding to the mean-field noise and the vertex correction. The mean-field result can be further divided into an elastic correction to the noise and in an inelastic correction, the second one being related to energy exchange with the vibration. To illustrate the general behavior of the noise induced by the charge-vibration interaction, we consider two limit cases. In the first case, we assume a strong coupling of the dot to the leads with an energy-independent transmission, whereas in the second case we assume a weak tunneling coupling between the dot and the leads such that the transport occurs through a sharp resonant level. We find that the noise associated to the vibration-charge interaction shows a complex pattern as a function of the frequency ω and of the transmission function or of the dot's energy level. Several transitions from enhancement to suppression of the noise occurs in different regions, which are determined, in particular, by the vibrational frequency. Remarkably, in the regime of an energy-independent transmission, the zero-order elastic noise vanishes at perfect transmission and at positive frequency, whereas the noise related to the charge-vibration interaction remains finite, enabling the analysis of the pure vibrational-induced current noise.

  13. Effects on Performance and Work Quality due to Low Frequency Ventilation Noise

    Science.gov (United States)

    Persson Waye, K.; Rylander, R.; Benton, S.; Leventhall, H. G.

    1997-08-01

    A pilot study was carried out to assess method evaluating effects of low frequency noise on performance. Of special interest was to study objective and subjective effects over time. Two ventilation noises were used, one of a predominantly mid frequency character and the other of a predominantly low frequency character. Both had an NC value of 35. For the study, 50 students were recruited and 30 selected on the basis of subjective reports of pressure on the eardrum after exposure to a low frequency noise. Of these, 14 randomly selected subjects aged 21 and 34 took part. The subjects performed three computerized cognitive tests in the mid frequency or the low frequency noise condition alternatively. Tests I and II were performed together with a secondary task.Questionnaires were used to evaluate subjective symptoms, effects on mood and estimated interference with the test results due to temperature, light and noise. The results showed that the subjective estimations of noise interference with performance were higher for the low frequency noise (psocial orientation (pstudied. The results further indicate that the NC curves do not fully assess the negative effects of low frequency noise on work performance.

  14. Cross correlation measurement of low frequency conductivity noise

    Science.gov (United States)

    Jain, Aditya Kumar; Nigudkar, Himanshu; Chakraborti, Himadri; Udupa, Aditi; Gupta, Kantimay Das

    2018-04-01

    In order to study the low frequency noise(1/f noise)an experimental technique based on cross correlation of two channels is presented. In this method the device under test (DUT)is connected to the two independently powered preamplifiers in parallel. The amplified signals from the two preamplifiers are fed to two channels of a digitizer. Subsequent data processing largelyeliminates the uncorrelated noise of the two channels. This method is tested for various commercial carbon/metal film resistors by measuring equilibrium thermal noise (4kBTR). The method is then modified to study the non-equilibrium low frequency noise of heterostructure samples using fiveprobe configuration. Five contact probes allow two parts of the sample to become two arms of a balanced bridge. This configuration helps in suppressing the effect of power supply fluctuations, bath temperature fluctuations and contact resistances.

  15. High frequency microseismic noise as possible earthquake precursor

    OpenAIRE

    Ivica Sović; Kristina Šariri; Mladen Živčić

    2013-01-01

    Before an earthquake occurs, microseismic noise in high frequency (HF) range, i.e. 2-25 Hz, is being generated during preparation process. These signals change the microseismic noise and, consequently, the spectrum of microseismic noise. Time variation of spectra recorded at the same seismological station could imply the change of the state of noise source. We propose the image moment analysis approach to objectively compare microseismic noise spectra. The result could be used for earthquake ...

  16. Adaptation of the Neural Network Recognition System of the Helicopter on Its Acoustic Radiation to the Flight Speed

    Directory of Open Access Journals (Sweden)

    V. K. Hohlov

    2015-01-01

    Full Text Available The article concerns the adaptation of a neural tract that recognizes a helicopter from the aerodynamic and ground objects by its acoustic radiation to the helicopter flight speed. It uses non-centered informative signs-indications of estimating signal spectra, which correspond to the local extremes (maximums and minimums of the power spectrum of input signal and have the greatest information when differentiating the helicopter signals from those of tracked vehicles. The article gives justification to the principle of the neural network (NN adaptation and adaptation block structure, which solves problems of blade passage frequency estimation when capturing the object and track it when tracking a target, as well as forming a signal to control the resonant filter parameters of the selection block of informative signs. To create the discriminatory characteristics of the discriminator are used autoregressive statistical characteristics of the quadrature components of signal, obtained through the discrete Hilbert Converter (DGC that perforMathematical modeling of the tracking meter using the helicopter signals obtained in real conditions is performed. The article gives estimates of the tracking parameter when using a tracking meter with DGC by sequential records of realized acoustic noise of the helicopter. It also shows a block-diagram of the adaptive NN. The scientific novelty of the work is that providing the invariance of used informative sign, the counts of local extremes of power spectral density (PSD to changes in the helicopter flight speed is reached due to adding the NN structure and adaptation block, which is implemented as a meter to track the apparent passage frequency of the helicopter rotor blades using its relationship with a function of the autoregressive acoustic signal of the helicopter.Specialized literature proposes solutions based on the use of training classifiers with different parametric methods of spectral representations

  17. Frequency-dependent effects of background noise on subcortical response timing.

    Science.gov (United States)

    Tierney, A; Parbery-Clark, A; Skoe, E; Kraus, N

    2011-12-01

    The addition of background noise to an auditory signal delays brainstem response timing. This effect has been extensively documented using manual peak selection. Peak picking, however, is impractical for large-scale studies of spectrotemporally complex stimuli, and leaves open the question of whether noise-induced delays are frequency-dependent or occur across the frequency spectrum. Here we use an automated, objective method to examine phase shifts between auditory brainstem responses to a speech sound (/da/) presented with and without background noise. We predicted that shifts in neural response timing would also be reflected in frequency-specific phase shifts. Our results indicate that the addition of background noise causes phase shifts across the subcortical response spectrum (70-1000 Hz). However, this noise-induced delay is not uniform such that some frequency bands show greater shifts than others: low-frequency phase shifts (300-500 Hz) are largest during the response to the consonant-vowel formant transition (/d/), while high-frequency shifts (720-1000 Hz) predominate during the response to the steady-state vowel (/a/). Most importantly, phase shifts occurring in specific frequency bands correlate strongly with shifts in the latencies of the predominant peaks in the auditory brainstem response, while phase shifts in other frequency bands do not. This finding confirms the validity of phase shift detection as an objective measure of timing differences and reveals that this method detects noise-induced shifts in timing that may not be captured by traditional peak latency measurements. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Calibration of an audio frequency noise generator

    DEFF Research Database (Denmark)

    Diamond, Joseph M.

    1966-01-01

    a noise bandwidth Bn = π/2 × (3dB bandwidth). To apply this method to low audio frequencies, the noise bandwidth of the low Q parallel resonant circuit has been found, including the effects of both series and parallel damping. The method has been used to calibrate a General Radio 1390-B noise generator...... it is used for measurement purposes. The spectral density of a noise source may be found by measuring its rms output over a known noise bandwidth. Such a bandwidth may be provided by a passive filter using accurately known elements. For example, the parallel resonant circuit with purely parallel damping has...

  19. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise.

    Directory of Open Access Journals (Sweden)

    Wiebke Schubotz

    Full Text Available Vowel identification in noise using consonant-vowel-consonant (CVC logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4-8 kHz. CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception.

  20. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise.

    Science.gov (United States)

    Schubotz, Wiebke; Brand, Thomas; Kollmeier, Birger; Ewert, Stephan D

    2016-01-01

    Vowel identification in noise using consonant-vowel-consonant (CVC) logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4-8 kHz). CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz) and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception.

  1. Measurement of low-frequency noise in rooms

    DEFF Research Database (Denmark)

    Pedersen, Steffen; Møller, Henrik; Persson-Waye, Kerstin

    2006-01-01

    Measurement of low-frequency noise in rooms is problematic due to standing wave patterns. The spatial variation in the sound pressure level can typically be as much as 20-30 dB. For assessment of annoyance from low-frequency noise in dwellings, it is important to measure a level close...... rooms. The sound pressure level was measured 1) in three-dimensional corners and 2) according to current Swedish and Danish measurement methods. Furthermore, the entire sound pressure distributions were measured by scanning. The Swedish and Danish measurement methods include a corner measurement...... to the highest level present in a room, rather than a room average level. In order to ensure representative noise measurements, different positions were investigated based on theoretical considerations and observations from numerical room simulations. In addition measurements were performed in three different...

  2. Characterization and Impact of Low Frequency Wind Turbine Noise Emissions

    Science.gov (United States)

    Finch, James

    Wind turbine noise is a complex issue that requires due diligence to minimize any potential impact on quality of life. This study enhances existing knowledge of wind turbine noise through focused analyses of downwind sound propagation, directionality, and the low frequency component of the noise. Measurements were conducted at four wind speeds according to a design of experiments at incremental distances and angles. Wind turbine noise is shown to be highly directional, while downwind sound propagation is spherical with limited ground absorption. The noise is found to have a significant low frequency component that is largely independent of wind speed over the 20-250 Hz range. The generated low frequency noise is shown to be audible above 40 Hz at the MOE setback distance of 550 m. Infrasound levels exhibit higher dependency on wind speed, but remain below audible levels up to 15 m/s.

  3. An analysis of low frequency noise from large wind turbines

    DEFF Research Database (Denmark)

    Pedersen, Christian Sejer; Møller, Henrik

    2010-01-01

    As wind turbines get larger, worries have emerged, that the noise emitted by the turbines would move down in frequency, and that the contents of low-frequency noise would be enough to cause significant annoyance for the neighbors. The sound emission from 48 wind turbines with nominal electric power......-third-octave-band spectra shows that the relative noise emission is higher in the 63-250 Hz frequency range from turbines above 2 MW than from smaller turbines. The observations confirm a downward shift of the spectrum....

  4. Noise Measurement and Frequency Analysis of Commercially Available Noisy Toys

    Directory of Open Access Journals (Sweden)

    Shohreh Jalaie

    2005-06-01

    Full Text Available Objective: Noise measurement and frequency analysis of commercially available noisy toys were the main purposes of the study. Materials and Methods: 181 noisy toys commonly found in toy stores in different zones of Tehran were selected and categorized into 10 groups. Noise measurement were done at 2, 25, and 50 cm from toys in dBA. The noisiest toy of each group was frequency analyzed in octave bands. Results: The highest and the lowest intensity levels belonged to the gun (mean=112 dBA and range of 100-127 dBA and to the rattle-box (mean=84 dBA and range of 74-95 dBA, respectively. Noise intensity levels significantly decreased with increasing distance except for two toys. Noise frequency analysis indicated energy in effective hearing frequencies. Most of the toys energies were in the middle and high frequency region. Conclusion: As intensity level of the toys is considerable, mostly more than 90 dBA, and also their energy exist in the middle and high frequency region, toys should be considered as a cause of the hearing impairment.

  5. Helicopter parameter extraction using joint Time-Frequency and Tomographic Techniques

    CSIR Research Space (South Africa)

    Cilliers, A

    2008-09-01

    Full Text Available for an AS350B helicopter before velocity compensation. Time (s) Frequency (kHz ) 4.3 4.4 4.5 4.6 4.7 −15 −10 −5 0 5 10 15 Fig. 7. Spectrogram of recorded data for an AS350B after velocity compensation. from the spectrogram of the data...) RPM L (m) RPM Bell 206 JR 2 5.08 392 3 Outbound 2 5.07 389 0.2 % 0.77 % Bell 206 LR 2 5.64 394 3.5 Descent 2 5.52 393.5 2.12 % 0.12 % AS 350 B 3 5.35 390 11.4 Inbound 3 5.25 392 1.8 % 0.04 % 10 Outbound 3 5.16 391 3.5 % 0.51 % R22 2 3.85 491 1...

  6. Subjective annoyance caused by indoor low-level and low frequency noise and control method

    Institute of Scientific and Technical Information of China (English)

    DI Guo-qing; ZHANG Bang-jun; SHANG Qi

    2005-01-01

    The influence of low-level noise has not been widely noticed. This paper discovered that low-level and low frequency noise(Aweighted equivalent level Leq < 45 dB) causes higher probability of subjective annoyance. The fuzzy mathematic principle was applied to deal with the threshold level of subjective annoyance from noise in this study; there is preferable relationship between the indoor noise and noise annoyance at low frequency noise level. Study indicated at the same centered noise level, the change of annoyance probability is mainly caused by the change of the frequency spectrum characteristic of the indoor noise. Under low noise level environment, without change of the medium-low frequency noise, the slight increase of medium-high frequency noise level with the help of noise sheltering effect can significantly reduce the noise annoyance. This discovery brings a new resolution on how to improve the environmental quality of working or living places. A noise control model is given in this study according to the acoustic analysis.

  7. Perceptual effects of noise reduction by time-frequency masking of noisy speech.

    Science.gov (United States)

    Brons, Inge; Houben, Rolph; Dreschler, Wouter A

    2012-10-01

    Time-frequency masking is a method for noise reduction that is based on the time-frequency representation of a speech in noise signal. Depending on the estimated signal-to-noise ratio (SNR), each time-frequency unit is either attenuated or not. A special type of a time-frequency mask is the ideal binary mask (IBM), which has access to the real SNR (ideal). The IBM either retains or removes each time-frequency unit (binary mask). The IBM provides large improvements in speech intelligibility and is a valuable tool for investigating how different factors influence intelligibility. This study extends the standard outcome measure (speech intelligibility) with additional perceptual measures relevant for noise reduction: listening effort, noise annoyance, speech naturalness, and overall preference. Four types of time-frequency masking were evaluated: the original IBM, a tempered version of the IBM (called ITM) which applies limited and non-binary attenuation, and non-ideal masking (also tempered) with two different types of noise-estimation algorithms. The results from ideal masking imply that there is a trade-off between intelligibility and sound quality, which depends on the attenuation strength. Additionally, the results for non-ideal masking suggest that subjective measures can show effects of noise reduction even if noise reduction does not lead to differences in intelligibility.

  8. Identification of long-duration noise transients in LIGO and Virgo

    International Nuclear Information System (INIS)

    Coughlin, Michael W

    2011-01-01

    The LIGO and Virgo detectors are sensitive to a variety of noise sources, such as instrumental artifacts and environmental disturbances. The Stochastic Transient Analysis Multi-detector Pipeline has been developed to search for long-duration (t ≥ 1 s) gravitational-wave (GW) signals. This pipeline can also be used to identify environmental noise transients. Here, we present an algorithm to determine when long-duration noise sources couple into the interferometers, as well as identify what these noise sources are. We analyze the cross-power between a GW strain channel and an environmental sensor, using pattern recognition tools to identify statistically significant structure in cross-power time-frequency maps. We identify interferometer noise from airplanes, helicopters, thunderstorms and other sources. Examples from LIGO's sixth science run, S6, and Virgo's third scientific run, VSR3, are presented. (paper)

  9. Dolphins adjust species-specific frequency parameters to compensate for increasing background noise.

    Directory of Open Access Journals (Sweden)

    Elena Papale

    Full Text Available An increase in ocean noise levels could interfere with acoustic communication of marine mammals. In this study we explored the effects of anthropogenic and natural noise on the acoustic properties of a dolphin communication signal, the whistle. A towed array with four elements was used to record environmental background noise and whistles of short-beaked common-, Atlantic spotted- and striped-dolphins in the Canaries archipelago. Four frequency parameters were measured from each whistle, while Sound Pressure Levels (SPL of the background noise were measured at the central frequencies of seven one-third octave bands, from 5 to 20 kHz. Results show that dolphins increase the whistles' frequency parameters with lower variability in the presence of anthropogenic noise, and increase the end frequency of their whistles when confronted with increasing natural noise. This study provides the first evidence that the synergy among SPLs has a role in shaping the whistles' structure of these three species, with respect to both natural and anthropogenic noise.

  10. Dolphins adjust species-specific frequency parameters to compensate for increasing background noise.

    Science.gov (United States)

    Papale, Elena; Gamba, Marco; Perez-Gil, Monica; Martin, Vidal Martel; Giacoma, Cristina

    2015-01-01

    An increase in ocean noise levels could interfere with acoustic communication of marine mammals. In this study we explored the effects of anthropogenic and natural noise on the acoustic properties of a dolphin communication signal, the whistle. A towed array with four elements was used to record environmental background noise and whistles of short-beaked common-, Atlantic spotted- and striped-dolphins in the Canaries archipelago. Four frequency parameters were measured from each whistle, while Sound Pressure Levels (SPL) of the background noise were measured at the central frequencies of seven one-third octave bands, from 5 to 20 kHz. Results show that dolphins increase the whistles' frequency parameters with lower variability in the presence of anthropogenic noise, and increase the end frequency of their whistles when confronted with increasing natural noise. This study provides the first evidence that the synergy among SPLs has a role in shaping the whistles' structure of these three species, with respect to both natural and anthropogenic noise.

  11. Dolphins Adjust Species-Specific Frequency Parameters to Compensate for Increasing Background Noise

    Science.gov (United States)

    Papale, Elena; Gamba, Marco; Perez-Gil, Monica; Martin, Vidal Martel; Giacoma, Cristina

    2015-01-01

    An increase in ocean noise levels could interfere with acoustic communication of marine mammals. In this study we explored the effects of anthropogenic and natural noise on the acoustic properties of a dolphin communication signal, the whistle. A towed array with four elements was used to record environmental background noise and whistles of short-beaked common-, Atlantic spotted- and striped-dolphins in the Canaries archipelago. Four frequency parameters were measured from each whistle, while Sound Pressure Levels (SPL) of the background noise were measured at the central frequencies of seven one-third octave bands, from 5 to 20 kHz. Results show that dolphins increase the whistles’ frequency parameters with lower variability in the presence of anthropogenic noise, and increase the end frequency of their whistles when confronted with increasing natural noise. This study provides the first evidence that the synergy among SPLs has a role in shaping the whistles' structure of these three species, with respect to both natural and anthropogenic noise. PMID:25853825

  12. 14 CFR 36.801 - Noise measurement.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Noise measurement. 36.801 Section 36.801 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Helicopters § 36.801 Noise measurement. For primary, normal...

  13. Duration of works, flight hours, and blood pressure related to noise-induced hearing loss among Indonesian Air Force helicopter pilots

    Directory of Open Access Journals (Sweden)

    Kholidah Hanum

    2006-09-01

    Full Text Available Helicopter pilots exposed to high intensity noise and other risk factors had increased risk to be noise-induced hearing loss (NIHL. Therefore, it is beneficial to study several risk factors related to NIHL. This study was a nested case-control. Data was extracted from available medical records among helicopter pilots who performed routine aerophysiology training indoctrination (ILA during 1980 through March 2004 at Saryanto Institute for Aviation and Aerospace Medicine (Lakespra, Jakarta. Case was those who had audiogram with a notch of 40 dB or more and of 4000 Hertz on one site or bilateral ears. A case was matched by two controls who free from NIHL up to 2004. All risk factors for cases and controls were counted as of reference date of cases diagnosed. There were 187 medical records available for this study. A number of 32 cases and 64 controls were identified. The final model reveals that NIHL was related to total duration of works, flight hours, and blood pressure. Those who had 500 hours or more than less 500 hours had a moderate increased risk for 2.5 to be NIHL [Adjusted odds ratio (ORa= 2.50; 95% confidence intervals (CI = 0.66-9.29; p = 0.180]. Those who had total duration works 11-24 years had a moderate increased to be NIHL for 2.7 times (ORa = 2.71; 95% CI=0.90-8.10; p = 0.075. Furthermore, prehypertension and hypertension stage 1 subjects than normal blood pressure had moderate trend increased risk to be NIHL. In conclusion total flight hours for 500 hours or more, total duration works 11-24 years, or prehypertension and hypertension stage 1 increased risk NIHL. (Med J Indones 2006; 15:185-90 Keywords: noise induced hearing loss, flight hours, working duration, blood pressure

  14. Measuring low-frequency noise indoors

    DEFF Research Database (Denmark)

    Pedersen, Steffen; Møller, Henrik; Persson-Waye, Kerstin

    2008-01-01

    that is exceeded in 10% of the volume of a room (L10) is proposed as a rational and objective target for a measurement method. In Sweden and Denmark rules exist for measuring low-frequency noise indoors. The performance of these procedures was investigated in three rooms. The results from the Swedish method were...

  15. Quad-Rotor Helicopter Autonomous Navigation Based on Vanishing Point Algorithm

    Directory of Open Access Journals (Sweden)

    Jialiang Wang

    2014-01-01

    Full Text Available Quad-rotor helicopter is becoming popular increasingly as they can well implement many flight missions in more challenging environments, with lower risk of damaging itself and its surroundings. They are employed in many applications, from military operations to civilian tasks. Quad-rotor helicopter autonomous navigation based on the vanishing point fast estimation (VPFE algorithm using clustering principle is implemented in this paper. For images collected by the camera of quad-rotor helicopter, the system executes the process of preprocessing of image, deleting noise interference, edge extracting using Canny operator, and extracting straight lines by randomized hough transformation (RHT method. Then system obtains the position of vanishing point and regards it as destination point and finally controls the autonomous navigation of the quad-rotor helicopter by continuous modification according to the calculated navigation error. The experimental results show that the quad-rotor helicopter can implement the destination navigation well in the indoor environment.

  16. Final assessment of vibro-acoustic source strength descriptors of helicopter gearboxes

    DEFF Research Database (Denmark)

    Ohlrich, Mogens; Rasmussen, Ulrik Møller

    1996-01-01

    Two novel measurement techniques have been developed for quantifying the vibro-aqcoustic source strength of lightweight helicopter gearboxes. The accuracy, robustness and implementation of these methods have been examined by a comprehensive investigation, including theoretical studies of simple...... multi-modal beam systems and extensive experiments with more realistic small scale models and with large, detailed 3/4-scale test structures of a medium-size helicopter. In addition, partial verification tests have been conducted with the Eurocopter BK 117 helicopter and its main rotor gearbox....... The results of this work are essential as input for any prediction code of the internal noise in a helicopter cabin, because the prediction requires knowledge of the major sources, that is, the rotors, engines and gearboxes....

  17. Evaluation of Low-Noise, Improved-Bearing-Contact Spiral Bevel Gears

    National Research Council Canada - National Science Library

    Lewicki, Davide

    2003-01-01

    .... Experimental tests were performed on the OH-58D helicopter main-rotor transmission in the NASA Glenn 500-hp Helicopter Transmission Test Stand Low-noise, improved-bearing- contact spiral-bevel gears...

  18. Investigation and reduction of excess low-frequency noise in rf superconducting quantum interference devices

    International Nuclear Information System (INIS)

    Mueck, M.; Heiden, C.; Clarke, J.

    1994-01-01

    A detailed study has been made of the low-frequency excess noise of rf superconducting quantum interference devices (SQUIDs), fabricated from thin niobium films and operated at 4.2 K, with rf bias frequencies of 0.15, 1.7, and 3 GHz. When the SQUIDs were operated in an open-loop configuration in the absence of low-frequency flux modulation, the demodulated rf voltage exhibited a substantial level 1/f noise, which was essentially independent of the rf bias frequency. As the rf bias frequency was increased, the crossover frequency at which the 1/f noise power was equal to the white noise power moved to higher frequencies, because of the reduction in white noise. On the other hand, when the SQUID was flux modulated at 50 kHz and operated in a flux locked loop, no 1/f noise was observed at frequencies above 0.5 Hz. A detailed description of how the combination of rf bias and flux modulation removes 1/f noise due to critical current fluctuations is given. Thus, the results demonstrate that the 1/f noise observed in these SQUIDs is generated by critical current fluctuations, rather than by the hopping of flux vortices in the niobium films

  19. Examination of the low frequency limit for helicopter noise data in the Federal Aviation Administration's Aviation Environmental Design Tool and Integrated Noise Model

    Science.gov (United States)

    2010-04-19

    The Federal Aviation Administration (FAA) aircraft noise modeling tools Aviation Environmental Design Tool (AEDTc) and Integrated Noise Model (INM) do not currently consider noise below 50 Hz in their computations. This paper describes a preliminary ...

  20. Noise-Immune Cavity-Enhanced Optical Frequency Comb Spectroscopy

    Science.gov (United States)

    Rutkowski, Lucile; Khodabakhsh, Amir; Johanssson, Alexandra C.; Foltynowicz, Aleksandra

    2015-06-01

    We present noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS), a recently developed technique for sensitive, broadband, and high resolution spectroscopy. In NICE-OFCS an optical frequency comb (OFC) is locked to a high finesse cavity and phase-modulated at a frequency precisely equal to (a multiple of) the cavity free spectral range. Since each comb line and sideband is transmitted through a separate cavity mode in exactly the same way, any residual frequency noise on the OFC relative to the cavity affects each component in an identical manner. The transmitted intensity contains a beat signal at the modulation frequency that is immune to frequency-to-amplitude noise conversion by the cavity, in a way similar to continuous wave noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS). The light transmitted through the cavity is detected with a fast-scanning Fourier-transform spectrometer (FTS) and the NICE-OFCS signal is obtained by fast Fourier transform of the synchronously demodulated interferogram. Our NICE-OFCS system is based on an Er:fiber femtosecond laser locked to a cavity with a finesse of ˜9000 and a fast-scanning FTS equipped with a high-bandwidth commercial detector. We measured NICE-OFCS signals from the 3νb{1}+νb{3} overtone band of CO_2 around 1.57 μm and achieved absorption sensitivity 6.4×10-11cm-1 Hz-1/2 per spectral element, corresponding to a minimum detectable CO_2 concentration of 25 ppb after 330 s integration time. We will describe the principles of the technique and its technical implementation, and discuss the spectral lineshapes of the NICE-OFCS signals. A. Khodabakhsh, C. Abd Alrahman, and A. Foltynowicz, Opt. Lett. 39, 5034-5037 (2014). J. Ye, L. S. Ma, and J. L. Hall, J. Opt. Soc. Am. B 15, 6-15 (1998). A. Khodabakhsh, A. C. Johansson, and A. Foltynowicz, Appl. Phys. B (2015) doi:10.1007/s00340-015-6010-7.

  1. Mach number scaling of helicopter rotor blade/vortex interaction noise

    Science.gov (United States)

    Leighton, Kenneth P.; Harris, Wesley L.

    1985-01-01

    A parametric study of model helicopter rotor blade slap due to blade vortex interaction (BVI) was conducted in a 5 by 7.5-foot anechoic wind tunnel using model helicopter rotors with two, three, and four blades. The results were compared with a previously developed Mach number scaling theory. Three- and four-bladed rotor configurations were found to show very good agreement with the Mach number to the sixth power law for all conditions tested. A reduction of conditions for which BVI blade slap is detected was observed for three-bladed rotors when compared to the two-bladed baseline. The advance ratio boundaries of the four-bladed rotor exhibited an angular dependence not present for the two-bladed configuration. The upper limits for the advance ratio boundaries of the four-bladed rotors increased with increasing rotational speed.

  2. Noise-cancelled, cavity-enhanced saturation laser spectroscopy for laser frequency stabilisation

    International Nuclear Information System (INIS)

    Vine, Glenn de; McClelland, David E; Gray, Malcolm B

    2006-01-01

    We employ a relatively simple experimental technique enabling mechanical-noise free, cavityenhanced spectroscopic measurements of an atomic transition and its hyperfine structure. We demonstrate this technique with the 532 nm frequency doubled output from a Nd:YAG laser and an iodine vapour cell. The resulting cavity-enhanced, noise-cancelled, iodine hyperfine error signal is used as a frequency reference with which we stabilise the frequency of the 1064nm Nd:YAG laser. Preliminary frequency stabilisation results are then presented

  3. Low frequency noise and air vibration generated by a simple cycle gas turbine installation

    Energy Technology Data Exchange (ETDEWEB)

    Giesbrecht, C.; Hertil, S. [ATCO Noise Management, Calgary, AB (Canada)

    2005-07-01

    Low-frequency noise refers to infrasound whose frequency is lower than the minimum human audible frequency of about 20 Hz. Recently, there have been serious complaints on noise pollution in the frequency range of 1-100 Hz. This presentation outlined ASHRAE noise criteria regions and discussed human perceptions to vibration. It also presented methods that ATCO used for measuring noise at a simple gas turbine installation, inside the site at the administration buildings, at the paths of vibration and noise propagation, and at noise sensitive receptors. A 70 dBC at the closes noise-sensitive receptor was used as a noise limit to minimize annoyance. In addition, 96 dBC was measured at 400 feet. It was noted that reducing the C-weighted sound level depends on reducing the stack noise emissions in the 16 and 31.5 band levels. ATCO evaluated silencer designs and recommended reactive silencers to achieve a 10 dB reduction in noise emitted by the 3 exhaust stacks. 6 figs.

  4. On-line adaptive line frequency noise cancellation from a nuclear power measuring channel

    Directory of Open Access Journals (Sweden)

    Qadir Javed

    2011-01-01

    Full Text Available On-line software for adaptively canceling 50 Hz line frequency noise has been designed and tested at Pakistan Research Reactor 1. Line frequency noise causes much problem in weak signals acquisition. Sometimes this noise is so dominant that original signal is totally corrupted. Although notch filter can be used for eliminating this noise, but if signal of interest is in close vicinity of 50 Hz, then original signal is also attenuated and hence overall performance is degraded. Adaptive noise removal is a technique which could be employed for removing line frequency without degrading the desired signal. In this paper line frequency noise has been eliminated on-line from a nuclear power measuring channel. The adaptive LMS algorithm has been used to cancel 50 Hz noise. The algorithm has been implemented in labVIEW with NI 6024 data acquisition card. The quality of the acquired signal has been improved much as can be seen in experimental results.

  5. An investigation of twenty-one cases of low-frequency noise complaints

    DEFF Research Database (Denmark)

    Pedersen, Christian Sejer; Møller, Henrik; Persson-Waye, Kerstin

    2007-01-01

    Twenty-one cases of low-frequency noise complaints were thoroughly investigated with the aim of answering the question whether it is real physical sound or low-frequency tinnitus that causes the annoyance. Noise recordings were made in the homes of the complainants taking the spatial variation...

  6. Low frequency noise in resonant Josephson soliton oscillators

    DEFF Research Database (Denmark)

    Hansen, Jørn Bindslev; Holst, T.; Wellstood, Frederick C.

    1991-01-01

    The noise in the resonant soliton mode of long and narrow Josephson tunnel junctions (Josephson transmission lines or JTLs) have been measured in the frequency range from 0.1 Hz to 25 kHz by means of a DC SQUID. The measured white noise was found, to within a factor of two, to be equal...... to the Nyquist voltage noise in a resistance equal to the dynamic resistance RD of the current-voltage characteristic of the bias point. In contrast, measurements of the linewidth of the microwave radiation from the same JTL showed that the spectral density of the underlying noise voltage scaled as R D2/RS where...

  7. Active control of the noise

    International Nuclear Information System (INIS)

    Rodriguez V, Luis Alfonso; Lopez Q, Jose German

    2001-01-01

    The problems of acoustic noise are more and more preponderant in the measure in that the amount of equipment and industrial machinery is increased such as fans, transformers, compressors etc. the use of devices passive mechanics for the reduction of the noise is effective and very appreciated because its effects embrace a wide range of acoustic frequency. However, to low frequencies, such devices become too big and expensive besides that present a tendency to do not effective. The control of active noise, CAN, using the electronic generation anti-noise, constitutes an interesting solution to the problem because their operation principle allows achieving an appreciable reduction of the noise by means of the use of compact devices. The traditional techniques for the control of acoustic noise like barriers and silenced to attenuate it, are classified as passive and their works has been accepted as norm as for the treatment of problems of noise it refers. Such techniques are considered in general very effective in the attenuation of noise of wide band. However, for low frequency, the required passive structures are too big and expensive; also, their effectiveness diminishes flagrantly, that which makes them impractical in many applications. The active suppression is profiled like a practical alternative for the reduction of acoustic noise. The idea in the active treatment of the noise it contemplates the use of a device electro-acoustic, like a speaker for example that it cancels to the noise by the generation of sounds of Same width and of contrary phase (anti-noise). The cancellation phenomenon is carried out when the ant-noise combines acoustically with the noise, what is in the cancellation of both sounds. The effectiveness of the cancellation of the primary source of noise depends on the precision with which the width and the phase of the generated ant-noise are controlled. The active control of noise, ANC (activates noise control), it is being investigated for

  8. Simple programmable voltage reference for low frequency noise measurements

    Science.gov (United States)

    Ivanov, V. E.; Chye, En Un

    2018-05-01

    The paper presents a circuit design of a low-noise voltage reference based on an electric double-layer capacitor, a microcontroller and a general purpose DAC. A large capacitance value (1F and more) makes it possible to create low-pass filter with a large time constant, effectively reducing low-frequency noise beyond its bandwidth. Choosing the optimum value of the resistor in the RC filter, one can achieve the best ratio between the transient time, the deviation of the output voltage from the set point and the minimum noise cut-off frequency. As experiments have shown, the spectral density of the voltage at a frequency of 1 kHz does not exceed 1.2 nV/√Hz the maximum deviation of the output voltage from the predetermined does not exceed 1.4 % and depends on the holding time of the previous value. Subsequently, this error is reduced to a constant value and can be compensated.

  9. Low frequency noise peak near magnon emission energy in magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Liang; Xiang, Li; Guo, Huiqiang; Wei, Jian, E-mail: weijian6791@pku.edu.cn [International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China and Collaborative Innovation Center of Quantum Matter, Beijing (China); Li, D. L.; Yuan, Z. H.; Feng, J. F., E-mail: jiafengfeng@iphy.ac.cn; Han, X. F. [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Coey, J. M. D. [CRANN and School of Physics, Trinity College, Dublin 2 (Ireland)

    2014-12-15

    We report on the low frequency (LF) noise measurements in magnetic tunnel junctions (MTJs) below 4 K and at low bias, where the transport is strongly affected by scattering with magnons emitted by hot tunnelling electrons, as thermal activation of magnons from the environment is suppressed. For both CoFeB/MgO/CoFeB and CoFeB/AlO{sub x}/CoFeB MTJs, enhanced LF noise is observed at bias voltage around magnon emission energy, forming a peak in the bias dependence of noise power spectra density, independent of magnetic configurations. The noise peak is much higher and broader for unannealed AlO{sub x}-based MTJ, and besides Lorentzian shape noise spectra in the frequency domain, random telegraph noise (RTN) is visible in the time traces. During repeated measurements the noise peak reduces and the RTN becomes difficult to resolve, suggesting defects being annealed. The Lorentzian shape noise spectra can be fitted with bias-dependent activation of RTN, with the attempt frequency in the MHz range, consistent with magnon dynamics. These findings suggest magnon-assisted activation of defects as the origin of the enhanced LF noise.

  10. Low frequency noise peak near magnon emission energy in magnetic tunnel junctions

    Directory of Open Access Journals (Sweden)

    Liang Liu

    2014-12-01

    Full Text Available We report on the low frequency (LF noise measurements in magnetic tunnel junctions (MTJs below 4 K and at low bias, where the transport is strongly affected by scattering with magnons emitted by hot tunnelling electrons, as thermal activation of magnons from the environment is suppressed. For both CoFeB/MgO/CoFeB and CoFeB/AlOx/CoFeB MTJs, enhanced LF noise is observed at bias voltage around magnon emission energy, forming a peak in the bias dependence of noise power spectra density, independent of magnetic configurations. The noise peak is much higher and broader for unannealed AlOx-based MTJ, and besides Lorentzian shape noise spectra in the frequency domain, random telegraph noise (RTN is visible in the time traces. During repeated measurements the noise peak reduces and the RTN becomes difficult to resolve, suggesting defects being annealed. The Lorentzian shape noise spectra can be fitted with bias-dependent activation of RTN, with the attempt frequency in the MHz range, consistent with magnon dynamics. These findings suggest magnon-assisted activation of defects as the origin of the enhanced LF noise.

  11. 78 FR 18224 - Airworthiness Directives; Robinson Helicopter Company Helicopters

    Science.gov (United States)

    2013-03-26

    ... Airworthiness Directives; Robinson Helicopter Company Helicopters AGENCY: Federal Aviation Administration (FAA... Helicopter Company (Robinson) Model R44 and R44 II helicopters equipped with emergency floats. This AD..., contact Robinson Helicopter Company, 2901 Airport Drive, Torrance, CA 90505; telephone (310) 539-0508; fax...

  12. A LOW-PHASE NOISE FREQUENCY MULTIPLIER CHAIN ...

    African Journals Online (AJOL)

    operations which are influenced by the development of frequency syn ..... The phase noise of the Isolation amplifier is also measured by .... obtained from manual. T(sec). 100. 1000. 10 ... IEEE Transations on Instrumentation and. Measurement ...

  13. Low-frequency flux noise in YBCO dc SQUIDs cooled in static magnetic fields

    International Nuclear Information System (INIS)

    Sager, M.P.; Bindslev Hansen, J.; Petersen, P.R.E.; Holst, T.; Shen, Y.Q.

    1999-01-01

    The low-frequency flux noise in bicrystal and step-edge YBa 2 Cu 3 O x dc SQUIDs has been investigated. The width, w, of the superconducting strips forming the SQUID frame was varied from 4 to 42 μm. The SQUIDs were cooled in static magnetic fields up to 150 μT. Two types of low-frequency noise dominated, namely 1/f-like noise and random telegraph noise giving a Lorentzian frequency spectrum. The 1/f noise performance of the w = 4, 6 and 7 μm SQUIDs was almost identical, while the SQUIDs with w = 22 and 42 μm showed an order of magnitude higher noise level. Our analysis of the data suggests an exponential increase of the 1/f noise versus the cooling field, exhibiting a characteristic magnetic field around 40 μT. (author)

  14. Low-Frequency Noise Reduction by Earmuffs with Flax Fibre-Reinforced Polypropylene Ear Cups

    Directory of Open Access Journals (Sweden)

    Linus Yinn Leng Ang

    2018-01-01

    Full Text Available Soldiers and supporting engineers are frequently exposed to high low-frequency (<500 Hz cabin noise in military vehicles. Despite the use of commercial hearing protection devices, the risk of auditory damage is still imminent because the devices may not be optimally customised for such applications. This study considers flax fibre-reinforced polypropylene (Flax-PP as an alternative to the material selection for the ear cups of commercial earmuffs, which are typically made of acrylonitrile butadiene styrene (ABS. Different weaving configurations (woven and nonwoven and various noise environments (pink noise, cabin booming noise, and firing noise were considered to investigate the feasibility of the proposed composite earmuffs for low-frequency noise reduction. The remaining assembly components of the earmuff were kept consistent with those of a commercial earmuff, which served as a benchmark for results comparison. In contrast to the commercial earmuff, the composite earmuffs were shown to be better in mitigating low-frequency noise by up to 16.6 dB, while compromising midfrequency acoustical performance. Consequently, the proposed composite earmuffs may be an alternative for low-frequency noise reduction in vehicle cabins, at airports, and at construction sites involving heavy machineries.

  15. Influence of lasers with non-white frequency noise on the design of coherent optical links

    DEFF Research Database (Denmark)

    Kakkar, Aditya; Navarro, Jaime Rodrigo; Schatz, Richard

    2017-01-01

    We experimentally demonstrate for a 28 Gbaud 64-QAM metro link that the LO frequency noise causes timing impairment. Results show the existence of LO frequency noise spectrum regimes where different design criteria apply.......We experimentally demonstrate for a 28 Gbaud 64-QAM metro link that the LO frequency noise causes timing impairment. Results show the existence of LO frequency noise spectrum regimes where different design criteria apply....

  16. Continuous exposure to low-frequency noise and carbon disulfide: Combined effects on hearing.

    Science.gov (United States)

    Venet, Thomas; Carreres-Pons, Maria; Chalansonnet, Monique; Thomas, Aurélie; Merlen, Lise; Nunge, Hervé; Bonfanti, Elodie; Cosnier, Frédéric; Llorens, Jordi; Campo, Pierre

    2017-09-01

    Carbon disulfide (CS 2 ) is used in industry; it has been shown to have neurotoxic effects, causing central and distal axonopathies.However, it is not considered cochleotoxic as it does not affect hair cells in the organ of Corti, and the only auditory effects reported in the literature were confined to the low-frequency region. No reports on the effects of combined exposure to low-frequency noise and CS 2 have been published to date. This article focuses on the effects on rat hearing of combined exposure to noise with increasing concentrations of CS 2 (0, 63,250, and 500ppm, 6h per day, 5 days per week, for 4 weeks). The noise used was a low-frequency noise ranging from 0.5 to 2kHz at an intensity of 106dB SPL. Auditory function was tested using distortion product oto-acoustic emissions, which mainly reflects the cochlear performances. Exposure to noise alone caused an auditory deficit in a frequency area ranging from 3.6 to 6 kHz. The damaged area was approximately one octave (6kHz) above the highest frequency of the exposure noise (2.8kHz); it was a little wider than expected based on the noise spectrum.Consequently, since maximum hearing sensitivity is located around 8kHz in rats, low-frequency noise exposure can affect the cochlear regions detecting mid-range frequencies. Co-exposure to CS 2 (250-ppm and over) and noise increased the extent of the damaged frequency window since a significant auditory deficit was measured at 9.6kHz in these conditions.Moreover, the significance at 9.6kHz increased with the solvent concentrations. Histological data showed that neither hair cells nor ganglion cells were damaged by CS 2 . This discrepancy between functional and histological data is discussed. Like most aromatic solvents, carbon disulfide should be considered as a key parameter in hearing conservation régulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Noise-based frequency offset modulation in wideband frequency-selective fading channels

    NARCIS (Netherlands)

    Meijerink, Arjan; Cotton, S.L.; Bentum, Marinus Jan; Scanlon, W.G.

    2009-01-01

    A frequency offset modulation scheme using wideband noise carriers is considered. The main advantage of such a scheme is that it enables fast receiver synchronization without channel adaptation, while providing robustness to multipath fading and in-band interference. This is important for low-power

  18. Reduction of Discrete-Frequency Fan Noise Using Slitlike Expansion Chambers

    Directory of Open Access Journals (Sweden)

    Akira Sadamoto

    2003-01-01

    Full Text Available As is generally known, discrete-frequency noises are radiated from fans due to rotor-stator interaction. Their fundamental frequency is the blade-passage frequency, which is determined by the number of rotor blades and their rotating speeds. To reduce such noises, several types of silencers have been designed. Among them, the authors noted a slitlike expansion chamber (hereafter referred to as slit, for simplicity and have studied its performance. A slit is a simple expansion chamber with a very short axial length that is placed in a duct. A slit with a circular cross-section that is concentric with a circular duct may be studied using the same interpretation as is used for a side-branch resonator muffler (closed-end tube connected to a duct; that is, the resonant frequency of a slit depends on its depth (with an open-end correction. It is expected, hence, that a slit might be applicable as a simple and axially compact silencer that is effective on discrete-frequency noises. In this article, the properties of a slit are introduced, and the applicability of a slit to actual rotating machinery is described using experimental data.

  19. Design of a Stability Augmentation System for an Unmanned Helicopter Based on Adaptive Control Techniques

    Directory of Open Access Journals (Sweden)

    Shouzhao Sheng

    2015-09-01

    Full Text Available The task of control of unmanned helicopters is rather complicated in the presence of parametric uncertainties and measurement noises. This paper presents an adaptive model feedback control algorithm for an unmanned helicopter stability augmentation system. The proposed algorithm can achieve a guaranteed model reference tracking performance and speed up the convergence rates of adjustable parameters, even when the plant parameters vary rapidly. Moreover, the model feedback strategy in the algorithm further contributes to the improvement in the control quality of the stability augmentation system in the case of low signal to noise ratios, mainly because the model feedback path is noise free. The effectiveness and superiority of the proposed algorithm are demonstrated through a series of tests.

  20. Helicopter internal noise control: Three case histories

    Science.gov (United States)

    Edwards, B. D.; Cox, C. R.

    1978-01-01

    Case histories are described in which measurable improvements in the cabin noise environments of the Bell 214B, 206B, and 222 were realized. These case histories trace the noise control efforts followed in each vehicle. Among the design approaches considered, the addition of a fluid pulsation damper in a hydraulic system and the installation of elastomeric engine mounts are highlighted. It is concluded that substantial weight savings result when the major interior noise sources are controlled by design, both in altering the noise producing mechanism and interrupting the sound transmission paths.

  1. Maneuver Acoustic Flight Test of the Bell 430 Helicopter

    Science.gov (United States)

    Watts, Michael E.; Snider, Royce; Greenwood, Eric; Baden, Joel

    2012-01-01

    A cooperative flight test by NASA, Bell Helicopter and the U.S. Army to characterize the steady state acoustics and measure the maneuver noise of a Bell Helicopter 430 aircraft was accomplished. The test occurred during June/July, 2011 at Eglin Air Force Base, Florida. This test gathered a total of 410 data points over 10 test days and compiled an extensive data base of dynamic maneuver measurements. Three microphone configurations with up to 31 microphones in each configuration were used to acquire acoustic data. Aircraft data included DGPS, aircraft state and rotor state information. This paper provides an overview of the test.

  2. Blade-Mounted Flap Control for BVI Noise Reduction Proof-of-Concept Test

    Science.gov (United States)

    Dawson, Seth; Hassan, Ahmed; Straub, Friedrich; Tadghighi, Hormoz

    1995-01-01

    This report describes a wind tunnel test of the McDonnell Douglas Helicopter Systems (MDHS) Active Flap Model Rotor at the NASA Langley 14- by 22-Foot Subsonic Tunnel. The test demonstrated that BVI noise reductions and vibration reductions were possible with the use of an active flap. Aerodynamic results supported the acoustic data trends, showing a reduction in the strength of the tip vortex with the deflection of the flap. Acoustic results showed that the flap deployment, depending on the peak deflection angle and azimuthal shift in its deployment schedule, can produce BVI noise reductions as much as 6 dB on the advancing and retreating sides. The noise reduction was accompanied by an increase in low frequency harmonic noise and high frequency broadband noise. A brief assessment of the effect of the flap on vibration showed that significant reductions were possible. The greatest vibration reductions (as much as 76%) were found in the four per rev pitching moment at the hub. Performance improvement cam results were inconclusive, as the improvements were predicted to be smaller than the resolution of the rotor balance.

  3. The possible influence of noise frequency components on the health of exposed industrial workers - A review

    Directory of Open Access Journals (Sweden)

    K V Mahendra Prashanth

    2011-01-01

    Full Text Available Noise is a common occupational health hazard in most industrial settings. An assessment of noise and its adverse health effects based on noise intensity is inadequate. For an efficient evaluation of noise effects, frequency spectrum analysis should also be included. This paper aims to substantiate the importance of studying the contribution of noise frequencies in evaluating health effects and their association with physiological behavior within human body. Additionally, a review of studies published between 1988 and 2009 that investigate the impact of industrial/occupational noise on auditory and non-auditory effects and the probable association and contribution of noise frequency components to these effects is presented. The relevant studies in English were identified in Medknow, Medline, Wiley, Elsevier, and Springer publications. Data were extracted from the studies that fulfilled the following criteria: title and/or abstract of the given study that involved industrial/occupational noise exposure in relation to auditory and non-auditory effects or health effects. Significant data on the study characteristics, including noise frequency characteristics, for assessment were considered in the study. It is demonstrated that only a few studies have considered the frequency contributions in their investigations to study auditory effects and not non-auditory effects. The data suggest that significant adverse health effects due to industrial noise include auditory and heart-related problems. The study provides a strong evidence for the claims that noise with a major frequency characteristic of around 4 kHz has auditory effects and being deficient in data fails to show any influence of noise frequency components on non-auditory effects. Furthermore, specific noise levels and frequencies predicting the corresponding health impacts have not yet been validated. There is a need for advance research to clarify the importance of the dominant noise frequency

  4. Annoyance of Low Frequency Noise (LFN) in the laboratory assessed by LFN-sufferers and non-sufferers

    DEFF Research Database (Denmark)

    Poulsen, Torben

    2003-01-01

    In a series of listening tests, test subjects listened to eight different environmental low frequency noises to evaluate their loudness and annoyance. The noises were continuous noise with and without tones, intermittent noise, music, traffic noise and low frequency noises with an impulsive...

  5. The assessment and evaluation of low-frequency noise near the region of infrasound

    Directory of Open Access Journals (Sweden)

    Stanislav Ziaran

    2014-01-01

    Full Text Available The main aim of this paper is to present recent knowledge about the assessment and evaluation of low-frequency sounds (noise and infrasound, close to the threshold of hearing, and identify their potential effect on human health and annoyance. Low-frequency noise generated by air flowing over a moving car with an open window was chosen as a typical scenario which can be subjectively assessed by people traveling by automobile. The principle of noise generated within the interior of the car and its effects on the comfort of the driver and passengers are analyzed at different velocities. An open window of a car at high velocity behaves as a source of specifically strong tonal low-frequency noise which is generally perceived as annoying. The interior noise generated by an open window of a passenger car was measured under different conditions: Driving on a highway and driving on a typical roadway. First, an octave-band analysis was used to assess the noise level and its impact on the driver′s comfort. Second, a fast Fourier transform (FFT analysis and one-third octave-band analysis were used for the detection of tonal low-frequency noise. Comparison between two different car makers was also done. Finally, the paper suggests some possibilities for scientifically assessing and evaluating low-frequency sounds in general, and some recommendations are introduced for scientific discussion, since sounds with strong low-frequency content (but not only strong engender greater annoyance than is predicted by an A-weighted sound pressure level.

  6. Helicopter rotor blade frequency evolution with damage growth and signal processing

    Science.gov (United States)

    Roy, Niranjan; Ganguli, Ranjan

    2005-05-01

    Structural damage in materials evolves over time due to growth of fatigue cracks in homogenous materials and a complicated process of matrix cracking, delamination, fiber breakage and fiber matrix debonding in composite materials. In this study, a finite element model of the helicopter rotor blade is used to analyze the effect of damage growth on the modal frequencies in a qualitative manner. Phenomenological models of material degradation for homogenous and composite materials are used. Results show that damage can be detected by monitoring changes in lower as well as higher mode flap (out-of-plane bending), lag (in-plane bending) and torsion rotating frequencies, especially for composite materials where the onset of the last stage of damage of fiber breakage is most critical. Curve fits are also proposed for mathematical modeling of the relationship between rotating frequencies and cycles. Finally, since operational data are noisy and also contaminated with outliers, denoising algorithms based on recursive median filters and radial basis function neural networks and wavelets are studied and compared with a moving average filter using simulated data for improved health-monitoring application. A novel recursive median filter is designed using integer programming through genetic algorithm and is found to have comparable performance to neural networks with much less complexity and is better than wavelet denoising for outlier removal. This filter is proposed as a tool for denoising time series of damage indicators.

  7. 77 FR 63260 - Airworthiness Directives; Robinson Helicopter Company Helicopters

    Science.gov (United States)

    2012-10-16

    ... Helicopter Company Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: We propose to adopt a new airworthiness directive (AD) for Robinson Helicopter Company (Robinson) Model R44 and R44 II helicopters equipped with emergency floats, which would require...

  8. 77 FR 68055 - Airworthiness Directives; Bell Helicopter Textron Helicopters

    Science.gov (United States)

    2012-11-15

    ... Airworthiness Directives; Bell Helicopter Textron Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for Bell Helicopter Textron (BHT) Model 412, 412EP, and 412CF helicopters. This AD requires a repetitive inspection of the...

  9. Low Noise Frequency Comb Sources Based on Synchronously Pumped Doubly Resonant Optical Parametric Oscillators

    Science.gov (United States)

    Wan, Chenchen

    Optical frequency combs are coherent light sources consist of thousands of equally spaced frequency lines. Frequency combs have achieved success in applications of metrology, spectroscopy and precise pulse manipulation and control. The most common way to generate frequency combs is based on mode-locked lasers which has the output spectrum of comb structures. To generate stable frequency combs, the output from mode-locked lasers need to be phase stabilized. The whole comb lines will be stabilized if the pulse train repetition rate corresponding to comb spacing and the pulse carrier envelope offset (CEO) frequency are both stabilized. The output from a laser always has fluctuations in parameters known as noise. In laser applications, noise is an important factor to limit the performance and often need to be well controlled. For example in precision measurement such as frequency metrology and precise spectroscopy, low laser intensity and phase noise is required. In mode-locked lasers there are different types of noise like intensity noise, pulse temporal position noise also known as timing jitter, optical phase noise. In term for frequency combs, these noise dynamics is more complex and often related. Understanding the noise behavior is not only of great interest in practical applications but also help understand fundamental laser physics. In this dissertation, the noise of frequency combs and mode-locked lasers will be studied in two projects. First, the CEO frequency phase noise of a synchronously pumped doubly resonant optical parametric oscillators (OPO) will be explored. This is very important for applications of the OPO as a coherent frequency comb source. Another project will focus on the intensity noise coupling in a soliton fiber oscillator, the finding of different noise coupling in soliton pulses and the dispersive waves generated from soliton perturbation can provide very practical guidance for low noise soliton laser design. OPOs are used to generate

  10. Time-frequency peak filtering for random noise attenuation of magnetic resonance sounding signal

    Science.gov (United States)

    Lin, Tingting; Zhang, Yang; Yi, Xiaofeng; Fan, Tiehu; Wan, Ling

    2018-05-01

    When measuring in a geomagnetic field, the method of magnetic resonance sounding (MRS) is often limited because of the notably low signal-to-noise ratio (SNR). Most current studies focus on discarding spiky noise and power-line harmonic noise cancellation. However, the effects of random noise should not be underestimated. The common method for random noise attenuation is stacking, but collecting multiple recordings merely to suppress random noise is time-consuming. Moreover, stacking is insufficient to suppress high-level random noise. Here, we propose the use of time-frequency peak filtering for random noise attenuation, which is performed after the traditional de-spiking and power-line harmonic removal method. By encoding the noisy signal with frequency modulation and estimating the instantaneous frequency using the peak of the time-frequency representation of the encoded signal, the desired MRS signal can be acquired from only one stack. The performance of the proposed method is tested on synthetic envelope signals and field data from different surveys. Good estimations of the signal parameters are obtained at different SNRs. Moreover, an attempt to use the proposed method to handle a single recording provides better results compared to 16 stacks. Our results suggest that the number of stacks can be appropriately reduced to shorten the measurement time and improve the measurement efficiency.

  11. 77 FR 12991 - Airworthiness Directives; Robinson Helicopter Company Helicopters

    Science.gov (United States)

    2012-03-05

    ... Airworthiness Directives; Robinson Helicopter Company Helicopters AGENCY: Federal Aviation Administration (FAA...) that was published in the Federal Register. That AD applies to Robinson Helicopter Company (Robinson) Model R22, R22 Alpha, R22 Beta, R22 Mariner, R44, and R44 II helicopters. The paragraph reference in...

  12. A noise level prediction method based on electro-mechanical frequency response function for capacitors.

    Science.gov (United States)

    Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao

    2013-01-01

    The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective.

  13. Low frequency noise reduction using stiff light composite panels

    Institute of Scientific and Technical Information of China (English)

    DENG Yongchang; LIN Weizheng

    2003-01-01

    The experiment presented in this paper is to investigate and analyze the noise reduction at low frequency using stiff light composite panels. Since these composite panels are made of lightweight and stiff materials, this actuation strategy will enable the creation of composite panels for duct noise control without using traditional heavy structural mass. The results suggest that the mass-spring resonance absorption in the case of a comparatively stiff thick panel with a thin flexible plate is more efficient with minimum weight, when subjected to low-frequency (<500 Hz). The efficiency of the panel absorber depends on the mass of the thin flexible plate and the stiffness of the panel.

  14. A study of twenty-one cases of low-frequency noise complaints

    DEFF Research Database (Denmark)

    Pedersen, Christian Sejer; Møller, Henrik; Persson-Waye, Kerstin

    2008-01-01

    -frequency tinnitus. Noise recordings were made in the homes of the complainants, and the complainants were exposed to these in blind test listening experiments. Furthermore, the low-frequency hearing function of the complainants was investigated, and characteristics of the annoying sound was matched. The results...... showed that some of the complainants are annoyed by a physical sound (20-180 Hz), while others suffer from low-frequency tinnitus (perceived frequency 40-100 Hz). Physical sound at frequencies below 20 Hz (infrasound) is not responsible for the annoyance - or at all audible - in any of the investigated...... cases, and none of the complainants has extraordinary hearing sensitivity at low frequencies. For comparable cases of low-frequency noise complaints in general, it is anticipated that physical sound is responsible in a substantial part of the cases, while lowfrequency tinnitus is responsible in another...

  15. Analytical high frequency GaN HEMT model for noise simulations

    Science.gov (United States)

    Eshetu Muhea, Wondwosen; Mulugeta Yigletu, Fetene; Lazaro, Antonio; Iñiguez, Benjamin

    2017-12-01

    A compact high frequency model for AlGaN/GaN HEMT device valid for noise simulations is presented in this paper. The model is developed based on active transmission line approach and linear two port noise theory that makes it applicable for quasi static as well as non-quasi static device operation. The effects of channel length modulation and velocity saturation are discussed. Moreover, the effect of the gate leakage current on the noise performance of the device is investigated. It is shown that there is an apparent increase in noise generated in the device due to the gate current related shot noise. The common noise figures of merit for HFET are calculated and verified with experimental data.

  16. Dependence of the colored frequency noise in spin torque oscillators on current and magnetic field

    Science.gov (United States)

    Eklund, Anders; Bonetti, Stefano; Sani, Sohrab R.; Majid Mohseni, S.; Persson, Johan; Chung, Sunjae; Amir Hossein Banuazizi, S.; Iacocca, Ezio; Östling, Mikael; Åkerman, Johan; Gunnar Malm, B.

    2014-03-01

    The nano-scale spin torque oscillator (STO) is a compelling device for on-chip, highly tunable microwave frequency signal generation. Currently, one of the most important challenges for the STO is to increase its longer-time frequency stability by decreasing the 1/f frequency noise, but its high level makes even its measurement impossible using the phase noise mode of spectrum analyzers. Here, we present a custom made time-domain measurement system with 150 MHz measurement bandwidth making possible the investigation of the variation of the 1/f as well as the white frequency noise in a STO over a large set of operating points covering 18-25 GHz. The 1/f level is found to be highly dependent on the oscillation amplitude-frequency non-linearity and the vicinity of unexcited oscillation modes. These findings elucidate the need for a quantitative theoretical treatment of the low-frequency, colored frequency noise in STOs. Based on the results, we suggest that the 1/f frequency noise possibly can be decreased by improving the microstructural quality of the metallic thin films.

  17. Dependence of the colored frequency noise in spin torque oscillators on current and magnetic field

    International Nuclear Information System (INIS)

    Eklund, Anders; Sani, Sohrab R.; Chung, Sunjae; Amir Hossein Banuazizi, S.; Östling, Mikael; Gunnar Malm, B.; Bonetti, Stefano; Majid Mohseni, S.; Persson, Johan; Iacocca, Ezio; Åkerman, Johan

    2014-01-01

    The nano-scale spin torque oscillator (STO) is a compelling device for on-chip, highly tunable microwave frequency signal generation. Currently, one of the most important challenges for the STO is to increase its longer-time frequency stability by decreasing the 1/f frequency noise, but its high level makes even its measurement impossible using the phase noise mode of spectrum analyzers. Here, we present a custom made time-domain measurement system with 150 MHz measurement bandwidth making possible the investigation of the variation of the 1/f as well as the white frequency noise in a STO over a large set of operating points covering 18–25 GHz. The 1/f level is found to be highly dependent on the oscillation amplitude-frequency non-linearity and the vicinity of unexcited oscillation modes. These findings elucidate the need for a quantitative theoretical treatment of the low-frequency, colored frequency noise in STOs. Based on the results, we suggest that the 1/f frequency noise possibly can be decreased by improving the microstructural quality of the metallic thin films

  18. Design, manufacture and spin test of high contact ratio helicopter transmission utilizing Self-Aligning Bearingless Planetary (SABP)

    Science.gov (United States)

    Folenta, Dezi; Lebo, William

    1988-01-01

    A 450 hp high ratio Self-Aligning Bearingless Planetary (SABP) for a helicopter application was designed, manufactured, and spin tested under NASA contract NAS3-24539. The objective of the program was to conduct research and development work on a high contact ratio helical gear SABP to reduce weight and noise and to improve efficiency. The results accomplished include the design, manufacturing, and no-load spin testing of two prototype helicopter transmissions, rated at 450 hp with an input speed of 35,000 rpm and an output speed of 350 rpm. The weight power density ratio of these gear units is 0.33 lb hp. The measured airborne noise at 35,000 rpm input speed and light load is 94 dB at 5 ft. The high speed, high contact ratio SABP transmission appears to be significantly lighter and quieter than comtemporary helicopter transmissions. The concept of the SABP is applicable not only to high ratio helicopter type transmissions but also to other rotorcraft and aircraft propulsion systems.

  19. Exposure to loud noise, bilateral high-frequency hearing loss and coronary heart disease.

    Science.gov (United States)

    Gan, Wen Qi; Moline, Jacqueline; Kim, Hyun; Mannino, David M

    2016-01-01

    Bilateral high-frequency hearing loss is an indicator for chronic exposure to loud noise. This study aimed to examine the association between bilateral high-frequency hearing loss and the presence of coronary heart disease (CHD). This study included 5223 participants aged 20-69 years who participated in the audiometry examination of the National Health and Nutrition Examination Survey 1999-2004. Bilateral high-frequency hearing loss was defined as the average high-frequency (3, 4 and 6 kHz) hearing threshold ≥25 dB in both ears. CHD was defined as self-reported diagnoses by doctors or other health professionals. Compared with those with normal high-frequency hearing, participants with bilateral high-frequency hearing loss were more likely to have CHD (OR 1.91; 95% CI 1.28 to 2.85) after adjustment for various covariates. This association was particularly strong for currently employed workers who were exposed to loud occupational noise (OR 4.23; 95% CI 1.32 to 13.55). For this subgroup, there was no significant association of CHD with unilateral high-frequency hearing loss, and unilateral or bilateral low-frequency hearing loss. Furthermore, there was no significant association of CHD with any types of hearing loss for participants who were not exposed to loud noise. Stratified analyses for participants exposed to loud noise showed that the observed association was particularly strong for those who were less than 50 years of age, less educated and current smokers. On the basis of an objective indicator for personal chronic exposure to loud noise, this study confirmed that exposure to loud occupational noise is associated with the presence of CHD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. Measurements of Low Frequency Noise of Infrared Photo-Detectors with Transimpedance Detection System

    Directory of Open Access Journals (Sweden)

    Ciura Łukasz

    2014-08-01

    Full Text Available The paper presents the method and results of low-frequency noise measurements of modern mid-wavelength infrared photodetectors. A type-II InAs/GaSb superlattice based detector with nBn barrier architecture is compared with a high operating temperature (HOT heterojunction HgCdTe detector. All experiments were made in the range 1 Hz - 10 kHz at various temperatures by using a transimpedance detection system, which is examined in detail. The power spectral density of the nBn’s dark current noise includes Lorentzians with different time constants while the HgCdTe photodiode has more uniform 1/f - shaped spectra. For small bias, the low-frequency noise power spectra of both devices were found to scale linearly with bias voltage squared and were connected with the fluctuations of the leakage resistance. Leakage resistance noise defines the lower noise limit of a photodetector. Other dark current components give raise to the increase of low-frequency noise above this limit. For the same voltage biasing devices, the absolute noise power densities at 1 Hz in nBn are 1 to 2 orders of magnitude lower than in a MCT HgCdTe detector. In spite of this, low-frequency performance of the HgCdTe detector at ~ 230K is still better than that of InAs/GaSb superlattice nBn detector.

  1. Resonance-Based Time-Frequency Manifold for Feature Extraction of Ship-Radiated Noise

    Science.gov (United States)

    Yan, Jiaquan; Sun, Haixin; Chen, Hailan; Junejo, Naveed Ur Rehman; Cheng, En

    2018-01-01

    In this paper, a novel time-frequency signature using resonance-based sparse signal decomposition (RSSD), phase space reconstruction (PSR), time-frequency distribution (TFD) and manifold learning is proposed for feature extraction of ship-radiated noise, which is called resonance-based time-frequency manifold (RTFM). This is suitable for analyzing signals with oscillatory, non-stationary and non-linear characteristics in a situation of serious noise pollution. Unlike the traditional methods which are sensitive to noise and just consider one side of oscillatory, non-stationary and non-linear characteristics, the proposed RTFM can provide the intact feature signature of all these characteristics in the form of a time-frequency signature by the following steps: first, RSSD is employed on the raw signal to extract the high-oscillatory component and abandon the low-oscillatory component. Second, PSR is performed on the high-oscillatory component to map the one-dimensional signal to the high-dimensional phase space. Third, TFD is employed to reveal non-stationary information in the phase space. Finally, manifold learning is applied to the TFDs to fetch the intrinsic non-linear manifold. A proportional addition of the top two RTFMs is adopted to produce the improved RTFM signature. All of the case studies are validated on real audio recordings of ship-radiated noise. Case studies of ship-radiated noise on different datasets and various degrees of noise pollution manifest the effectiveness and robustness of the proposed method. PMID:29565288

  2. Low frequency noise from large wind turbines - updated 2011; Lavfrekvent stoej fra store vindmoeller - opdateret 2011

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, H.; Sejer Pedersen, C.; Pedersen, Steffen

    2011-07-01

    The study analyzed measurements of noise from 65 wind turbines, 25 large turbines (2.3 to 3.6 MW) and 40 small ones (up to 2 MW). The large mills (2.3 to 3.6 MW) emit relatively more low frequency noise than the small ones (up to 2 MW). The difference is statistically significant for the frequency range 63-250 Hz, regardless of whether calculations are performed on all the large mills or only on new wind turbines. There are no significant differences between prototype turbines and the new mills. Because of wind noise in the measurements of the small mills, it is not possible to determine whether the difference between small and large turbines continues further down in frequency. Looking at the A-weighted sound pressure in relevant neighbor distances, the lower frequencies constitute an essential part of the noise from the large mills, and there is no doubt that the low frequency noise is both audible and annoying. When the total A-weighted sound pressure level is the same, there will on average be about 3 dB more low frequency noise from large turbines than from small ones. At large distances the noise character becomes yet more low frequency because atmospheric absorption reduces the high frequencies more than the low frequencies. Depending on the sound insulation the low frequency noise can also be annoying indoors. If the total A-weighted sound pressure level outdoors is 44 dB, the low frequency noise can be heard indoors in all the houses and for all the large turbines. The sound pressure level will in many cases exceed the indoor limit for evening night at 20 dB. (ln)

  3. Measurement of the Low Frequency Noise of MOSFETs under Large Signal RF Excitation

    NARCIS (Netherlands)

    van der Wel, A.P.; Klumperink, Eric A.M.; Nauta, Bram

    2002-01-01

    A measurement technique [1] is presented that allows measurement of MOSFET low frequency (LF) noise under large signal RF (Radio Frequency) excitation. Measurements indicate that MOSFETS exhibit a reduction in LF noise when they are cycled from inversion to accummulation and that this reduction does

  4. Noise Depression of Parasitic Capacitance for Frequency Detection of Micromechanical Bulk Disk Resonator

    DEFF Research Database (Denmark)

    Tang, Meng; Cagliani, Alberto; Escouflaire, Marie

    2010-01-01

    the frequency noise of the system. A capacitor cancellation circuit is used to subtract the parasitic capacitor. Measurements are conducted before and after the cancellation, and results show that after cancellation, the anti resonance is suppressed and the frequency noise is decreased, thus decreasing...

  5. Application of a modified complementary filtering technique for increased aircraft control system frequency bandwidth in high vibration environment

    Science.gov (United States)

    Garren, J. F., Jr.; Niessen, F. R.; Abbott, T. S.; Yenni, K. R.

    1977-01-01

    A modified complementary filtering technique for estimating aircraft roll rate was developed and flown in a research helicopter to determine whether higher gains could be achieved. Use of this technique did, in fact, permit a substantial increase in system frequency bandwidth because, in comparison with first-order filtering, it reduced both noise amplification and control limit-cycle tendencies.

  6. High-frequency audiometry: A means for early diagnosis of noise-induced hearing loss

    Directory of Open Access Journals (Sweden)

    Amir H Mehrparvar

    2011-01-01

    Full Text Available Noise-induced hearing loss (NIHL, an irreversible disorder, is a common problem in industrial settings. Early diagnosis of NIHL can help prevent the progression of hearing loss, especially in speech frequencies. For early diagnosis of NIHL, audiometry is performed routinely in conventional frequencies. We designed this study to compare the effect of noise on high-frequency audiometry (HFA and conventional audiometry. In a historical cohort study, we compared hearing threshold and prevalence of hearing loss in conventional and high frequencies of audiometry among textile workers divided into two groups: With and without exposure to noise more than 85 dB. The highest hearing threshold was observed at 4000 Hz, 6000 Hz and 16000 Hz in conventional right ear audiometry, conventional left ear audiometry and HFA in each ear, respectively. The hearing threshold was significantly higher at 16000 Hz compared to 4000. Hearing loss was more common in HFA than conventional audiometry. HFA is more sensitive to detect NIHL than conventional audiometry. It can be useful for early diagnosis of hearing sensitivity to noise, and thus preventing hearing loss in lower frequencies especially speech frequencies.

  7. Frequency-domain method for separating signal and noise

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new method for separation of signal and noise (SSN) is put forward. Frequency is redefined according to the features of signal and its derivative in the sampl ing time interval, thus double orthogonal basis (DOB) is constructed so that a signal can be precisely signified with a linear combination of low-frequency DOB . Under joint consideration in time domain (TD) and frequency domain (FD), a method on SSN with high accuracy is derived and a matched algorithm is designed and analyzed. This method is applicable to SSN in multiple frequency bands, and convenient in applying signal characteristics in TD and FD synthetically with highe raccuracy.

  8. Frequency-domain method for separating signal and noise

    Institute of Scientific and Technical Information of China (English)

    王正明; 段晓君

    2000-01-01

    A new method for separation of signal and noise (SSN) is put forward. Frequency is redefined according to the features of signal and its derivative in the sampling time interval, thus double orthogonal basis (DOB) is constructed so that a signal can be precisely signified with a linear combination of low-frequency DOB. Under joint consideration in time domain (TD) and frequency domain (FD), a method on SSN with high accuracy is derived and a matched algorithm is designed and analyzed. This method is applicable to SSN in multiple frequency bands, and convenient in applying signal characteristics in TD and FD synthetically with higher accuracy.

  9. Evaluation of speech recognizers for use in advanced combat helicopter crew station research and development

    Science.gov (United States)

    Simpson, Carol A.

    1990-01-01

    The U.S. Army Crew Station Research and Development Facility uses vintage 1984 speech recognizers. An evaluation was performed of newer off-the-shelf speech recognition devices to determine whether newer technology performance and capabilities are substantially better than that of the Army's current speech recognizers. The Phonetic Discrimination (PD-100) Test was used to compare recognizer performance in two ambient noise conditions: quiet office and helicopter noise. Test tokens were spoken by males and females and in isolated-word and connected-work mode. Better overall recognition accuracy was obtained from the newer recognizers. Recognizer capabilities needed to support the development of human factors design requirements for speech command systems in advanced combat helicopters are listed.

  10. Influence of Gaussian white noise on the frequency-dependent linear polarizability of doped quantum dot

    International Nuclear Information System (INIS)

    Ganguly, Jayanta; Ghosh, Manas

    2014-01-01

    Highlights: • Linear polarizability of quantum dot has been studied. • Quantum dot is doped with a repulsive impurity. • The polarizabilities are frequency-dependent. • Influence of Gaussian white noise has been monitored. • Noise exploited is of additive and multiplicative nature. - Abstract: We investigate the profiles of diagonal components of frequency-dependent linear (α xx and α yy ) optical response of repulsive impurity doped quantum dots. The dopant impurity potential chosen assumes Gaussian form. The study principally puts emphasis on investigating the role of noise on the polarizability components. In view of this we have exploited Gaussian white noise containing additive and multiplicative characteristics (in Stratonovich sense). The frequency-dependent polarizabilities are studied by exposing the doped dot to a periodically oscillating external electric field of given intensity. The oscillation frequency, confinement potentials, dopant location, and above all, the noise characteristics tune the linear polarizability components in a subtle manner. Whereas the additive noise fails to have any impact on the polarizabilities, the multiplicative noise influences them delicately and gives rise to additional interesting features

  11. Characteristics of Helicopter-Generated and Volcano-Related Seismic Tremor Signals

    Science.gov (United States)

    Eibl, Eva P. S.; Lokmer, Ivan; Bean, Christopher J.; Akerlie, Eggert; Vogfjörd, Kristin S.

    2017-04-01

    In volcanic environments it is crucial to distinguish between man-made seismic signals and signals created by the volcano. We compare volcanic, seismic signals with helicopter generated, seismic signals recorded in the last 2.5 years in Iceland. In both cases a long-lasting, emergent seismic signal, that can be referred to as seismic tremor, was generated. In the case of a helicopter, the rotating blades generate pressure pulses that travel through the air and excite Rayleigh waves at up to 40 km distance depending on wind speed, wind direction and topographic features. The longest helicopter related seismic signal we recorded was at the order of 40 minutes long. The tremor usually has a fundamental frequency of more than 10 Hz and overtones at integers of the fundamental frequency. Changes in distance lead to either increases or decreases of the frequency due to the Doppler Effect and are strongest for small source-receiver distances. The volcanic tremor signal was recorded during the Bardarbunga eruption at Holuhraun in 2014/15. For volcano-related seismic signals it is usually more difficult to determine the source process that generated the tremor. The pre-eruptive tremor persists for 2 weeks, while the co-eruptive tremor lasted for 6 months. We observed no frequency changes, most energy between 1 and 2 Hz and no or very little energy above 5 Hz. We compare the different characteristics of helicopter-related and volcano-related seismic signals and discuss how they can be distinguished. In addition we discuss how we can determine if a frequency change is related to a moving source or change in repeat time or a change in the geometry of the resonating body.

  12. Literature review of voice recognition and generation technology for Army helicopter applications

    Science.gov (United States)

    Christ, K. A.

    1984-08-01

    This report is a literature review on the topics of voice recognition and generation. Areas covered are: manual versus vocal data input, vocabulary, stress and workload, noise, protective masks, feedback, and voice warning systems. Results of the studies presented in this report indicate that voice data entry has less of an impact on a pilot's flight performance, during low-level flying and other difficult missions, than manual data entry. However, the stress resulting from such missions may cause the pilot's voice to change, reducing the recognition accuracy of the system. The noise present in helicopter cockpits also causes the recognition accuracy to decrease. Noise-cancelling devices are being developed and improved upon to increase the recognition performance in noisy environments. Future research in the fields of voice recognition and generation should be conducted in the areas of stress and workload, vocabulary, and the types of voice generation best suited for the helicopter cockpit. Also, specific tasks should be studied to determine whether voice recognition and generation can be effectively applied.

  13. Simulation Analysis of Helicopter Ground Resonance Nonlinear Dynamics

    Science.gov (United States)

    Zhu, Yan; Lu, Yu-hui; Ling, Ai-min

    2017-07-01

    In order to accurately predict the dynamic instability of helicopter ground resonance, a modeling and simulation method of helicopter ground resonance considering nonlinear dynamic characteristics of components (rotor lead-lag damper, landing gear wheel and absorber) is presented. The numerical integral method is used to calculate the transient responses of the body and rotor, simulating some disturbance. To obtain quantitative instabilities, Fast Fourier Transform (FFT) is conducted to estimate the modal frequencies, and the mobile rectangular window method is employed in the predictions of the modal damping in terms of the response time history. Simulation results show that ground resonance simulation test can exactly lead up the blade lead-lag regressing mode frequency, and the modal damping obtained according to attenuation curves are close to the test results. The simulation test results are in accordance with the actual accident situation, and prove the correctness of the simulation method. This analysis method used for ground resonance simulation test can give out the results according with real helicopter engineering tests.

  14. Low-frequency noise behavior of polysilicon emitter bipolar junction transistors: a review

    Science.gov (United States)

    Deen, M. Jamal; Pascal, Fabien

    2003-05-01

    For many analog integrated circuit applications, the polysilicon emitter bipolar junction transistor (PE-BJT) is still the preferred choice because of its higher operational frequency and lower noise performance characteristics compared to MOS transistors of similar active areas and at similar biasing currents. In this paper, we begin by motivating the reader with reasons why bipolar transistors are still of great interest for analog integrated circuits. This motivation includes a comparison between BJT and the MOSFET using a simple small-signal equivalent circuit to derive important parameters that can be used to compare these two technologies. An extensive review of the popular theories used to explain low frequency noise results is presented. However, in almost all instances, these theories have not been fully tested. The effects of different processing technologies and conditions on the noise performance of PE-BJTs is reviewed and a summary of some of the key technological steps and device parameters and their effects on noise is discussed. The effects of temperature and emitter geometries scaling is reviewed. It is shown that dispersion of the low frequency noise in ultra-small geometries is a serious issue since the rate of increase of the noise dispersion is faster than the noise itself as the emitter geometry is scaled to smaller values. Finally, some ideas for future research on PE-BJTs, some of which are also applicable to SiGe heteorjunction bipolar transistors and MOSFETs, are presented after the conclusions.

  15. 77 FR 30232 - Airworthiness Directives; Bell Helicopter Textron Helicopters

    Science.gov (United States)

    2012-05-22

    ...-0530; Directorate Identifier 2011-SW-075-AD] RIN 2120-AA64 Airworthiness Directives; Bell Helicopter Textron Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: We propose to adopt a new airworthiness directive (AD) for Bell Helicopter...

  16. Passive coherent discriminator using phase diversity for the simultaneous measurement of frequency noise and intensity noise of a continuous-wave laser

    Science.gov (United States)

    Michaud-Belleau, V.; Bergeron, H.; Light, P. S.; Hébert, N. B.; Deschênes, J. D.; Luiten, A. N.; Genest, J.

    2016-10-01

    The frequency noise and intensity noise of a laser set the performance limits in many modern photonics applications and, consequently, must often be characterized. As lasers continue to improve, the measurement of these noises however becomes increasingly challenging. Current approaches for the characterization of very high-performance lasers often call for a second laser with equal or higher performance to the one that is to be measured, an incoherent interferometer having an extremely long delay-arm, or an interferometer that relies on an active device. These instrumental features can be impractical or problematic under certain experimental conditions. As an alternative, this paper presents an entirely passive coherent interferometer that employs an optical 90° hybrid coupler to perform in-phase and quadrature detection. We demonstrate the technique by measuring the frequency noise power spectral density of a highly-stable 192 THz (1560 nm) fiber laser over five frequency decades. Simultaneously, we are able to measure its relative intensity noise power spectral density and characterize the correlation between its amplitude noise and phase noise. We correct some common misconceptions through a detailed theoretical analysis and demonstrate the necessity to account for normal imperfections of the optical 90° hybrid coupler. We finally conclude that this passive coherent discriminator is suitable for reliable and simple noise characterization of highly-stable lasers, with bandwidth and dynamic range benefits but susceptibility to additive noise contamination.

  17. A new Monte Carlo method for neutron noise calculations in the frequency domain

    International Nuclear Information System (INIS)

    Rouchon, Amélie; Zoia, Andrea; Sanchez, Richard

    2017-01-01

    Neutron noise equations, which are obtained by assuming small perturbations of macroscopic cross sections around a steady-state neutron field and by subsequently taking the Fourier transform in the frequency domain, have been usually solved by analytical techniques or by resorting to diffusion theory. A stochastic approach has been recently proposed in the literature by using particles with complex-valued weights and by applying a weight cancellation technique. We develop a new Monte Carlo algorithm that solves the transport neutron noise equations in the frequency domain. The stochastic method presented here relies on a modified collision operator and does not need any weight cancellation technique. In this paper, both Monte Carlo methods are compared with deterministic methods (diffusion in a slab geometry and transport in a simplified rod model) for several noise frequencies and for isotropic and anisotropic noise sources. Our stochastic method shows better performances in the frequency region of interest and is easier to implement because it relies upon the conventional algorithm for fixed-source problems.

  18. Simultaneously Suppressing Low-Frequency and Relaxation Oscillation Intensity Noise in a DBR Single-Frequency Phosphate Fiber Laser

    International Nuclear Information System (INIS)

    Xiao Yu; Li Can; Xu Shan-Hui; Feng Zhou-Ming; Yang Chang-Sheng; Zhao Qi-Lai; Yang Zhong-Min

    2015-01-01

    Effective multiple optoelectronic feedback circuits for simultaneously suppressing low-frequency and relaxation oscillation intensity noise in a single-frequency phosphate fiber laser are demonstrated. The forward transfer function, which relates the laser output intensity to the pump modulations, is measured and analyzed. A custom two-path feedback system operating at different frequency bands is designed to adjust the pump current directly. The relative intensity noise is decreased by 20 dB from 0.2 to 5kHz and over 10 dB from 5 to 10 kHz. The relaxation oscillation peak is suppressed by 22 dB. In addition, a long term (24 h) laser instability of less than 0.05% is achieved. (paper)

  19. Band-gap tunable dielectric elastomer filter for low frequency noise

    Science.gov (United States)

    Jia, Kun; Wang, Mian; Lu, Tongqing; Zhang, Jinhua; Wang, Tiejun

    2016-05-01

    In the last decades, diverse materials and technologies for sound insulation have been widely applied in engineering. However, suppressing the noise radiation at low frequency still remains a challenge. In this work, a novel membrane-type smart filter, consisting of a pre-stretched dielectric elastomer membrane with two compliant electrodes coated on the both sides, is presented to control the low frequency noise. Since the stiffness of membrane dominates its acoustic properties, sound transmission band-gap of the membrane filter can be tuned by adjusting the voltage applied to the membrane. The impedance tube experiments have been carried out to measure the sound transmission loss (STL) of the filters with different electrodes, membrane thickness and pre-stretch conditions. The experimental results show that the center frequency of sound transmission band-gap mainly depends on the stress in the dielectric elastomer, and a large band-gap shift (more than 60 Hz) can be achieved by tuning the voltage applied to the 85 mm diameter VHB4910 specimen with pre-stretch {λ }0=3. Based on the experimental results and the assumption that applied electric field is independent of the membrane behavior, 3D finite element analysis has also been conducted to calculate the membrane stress variation. The sound filter proposed herein may provide a promising facility to control low frequency noise source with tonal characteristics.

  20. Analysis of in-band interference in noise-based frequency offset modulation

    NARCIS (Netherlands)

    Bilal, Ibrahim; Meijerink, Arjan; Bentum, Marinus Jan

    2014-01-01

    A noise-based frequency offset modulation (N-FOM) system is considered, employing a wideband noise carrier, transmit reference modulation and a self-correlation receiver. The performance of such a system in the presence of in-band interference is studied by modeling the interference as a Gaussian

  1. An acoustic vector based approach to locate low frequency noise sources in 3D

    NARCIS (Netherlands)

    Bree, H.-E. de; Ostendorf, C.; Basten, T.

    2009-01-01

    Although low frequency noise is an issue of huge societal importance, traditional acoustic testing methods have limitations in finding the low frequency source. It is hard to determine the direction of the noise using traditional microphones. Three dimensional sound probes capturing the particle

  2. Infrasound and low frequency noise from wind turbines: exposure and health effects

    Energy Technology Data Exchange (ETDEWEB)

    Bolin, Karl [Marcus Wallenberg Laboratory, Department of Aeronautical and Vehicle Engineering, Kungliga Tekniska Hoegskolan (Sweden); Bluhm, Goesta; Nilsson, Mats E [Institute of Environmental Medicine, Karolinska Institutet (Sweden); Eriksson, Gabriella, E-mail: kbolin@kth.se [Swedish National Road and Transport Research Institute and Linkoeping University (Sweden)

    2011-07-15

    Wind turbines emit low frequency noise (LFN) and large turbines generally generate more LFN than small turbines. The dominant source of LFN is the interaction between incoming turbulence and the blades. Measurements suggest that indoor levels of LFN in dwellings typically are within recommended guideline values, provided that the outdoor level does not exceed corresponding guidelines for facade exposure. Three cross-sectional questionnaire studies show that annoyance from wind turbine noise is related to the immission level, but several explanations other than low frequency noise are probable. A statistically significant association between noise levels and self-reported sleep disturbance was found in two of the three studies. It has been suggested that LFN from wind turbines causes other, and more serious, health problems, but empirical support for these claims is lacking.

  3. Development of a rating procedure for low frequency noise : Results of measurements near runways

    NARCIS (Netherlands)

    Buikema, E.; Vercammen, M.; Ploeg, F. van der; Granneman, J.; Vos, J.

    2010-01-01

    Recent issues concerning low frequency aircraft noise around airports (groundnoise) and a legal verdict about the application of low frequency noise criteria in the Netherlands have been the motivation to start a research commissioned by the Dutch Ministry of Housing, Spatial Planning and the

  4. Super fast physical-random number generation using laser diode frequency noises

    Science.gov (United States)

    Ushiki, Tetsuro; Doi, Kohei; Maehara, Shinya; Sato, Takashi; Ohkawa, Masashi; Ohdaira, Yasuo

    2011-02-01

    Random numbers can be classified as either pseudo- or physical-random in character. Pseudo-random numbers' periodicity renders them inappropriate for use in cryptographic applications, but naturally-generated physical-random numbers have no calculable periodicity, thereby making them ideally-suited to the task. The laser diode naturally produces a wideband "noise" signal that is believed to have tremendous capacity and great promise, for the rapid generation of physical-random numbers for use in cryptographic applications. We measured a laser diode's output, at a fast photo detector and generated physical-random numbers from frequency noises. We then identified and evaluated the binary-number-line's statistical properties. The result shows that physical-random number generation, at speeds as high as 40Gbps, is obtainable, using the laser diode's frequency noise characteristic.

  5. High frequency noise studies at the Hartousov mofette area (CZE)

    Science.gov (United States)

    Schmidt, Andreas; Flores-Estrella, Hortencia; Pommerencke, Julia; Umlauft, Josefine

    2014-05-01

    Ambient noise analysis has been used as a reliable tool to investigate sub-surface structures at seismological quiet regions with none or less specific seismic events. Here, we consider the acoustic signals from a single mofette at the Hartoušov area (CZE) as a noise-like high frequency source caused by multiple near surface degassing processes in a restricted location. From this assumption we have used different array geometries for recording at least one hour of continuous noise. We installed triangular arrays with 3 component geophones: the first deployment consisted on two co-centric triangles with side length of 30 and 50 m with the mofette in the center; the second deployment consisted on two triangular arrays, both with side length of 30 m, co-directional to the mofette. Furthermore, we also installed profiles with 24 channels and vertical geophones locating them in different positions with respect to the mofette. In this work, we present preliminary results from the data analysis dependent on the geometry, to show the characteristics of the noise wave-field referring to frequency content and propagation features, such as directionality and surface wave velocity. The spectral analysis shows that the energy is concentrated in a frequency band among 10 and 40 Hz. However, in this interval there is no evidence of any exclusive fundamental frequencies. From this, man-induced influences can be identified as intermittent signal peaks in narrow frequency bands and can be separated to receive the revised mofette wave-field record. The inversion of dispersive surface waves, that were detected by interferometric methods, provides a velocity model down to 12 m with an S-wave velocity between 160 and 180 m/s on the uppermost layer. Furthermore, the interferometric signal properties indicate that it is not possible to characterize the mofette as a punctual source, but rather as a conglomerate of multiple sources with time and location variations.

  6. Occupational Noise Exposure, Bilateral High-Frequency Hearing Loss, and Blood Pressure.

    Science.gov (United States)

    Gan, Wen Qi; Mannino, David M

    2017-11-13

    The aim of this study was to investigate the relationships between occupational noise exposure and blood pressure using self-reported occupational exposure and bilateral high-frequency hearing loss. This study included 4548 participants aged 20 to 69 years from the National Health and Nutrition Examination Survey 1999 to 2004. On the basis of self-reported exposure status, participants were divided into the current, former, or never exposed groups. Bilateral high-frequency hearing loss was defined as the average high-frequency hearing threshold at least 25 dB in both ears. The currently exposed participants had slightly increased diastolic blood pressure compared with those never exposed. Among previously exposed participants, those with bilateral high-frequency hearing loss had increased systolic blood pressure, heart rate, and the prevalence of hypertension compared with those with normal high-frequency hearing. Although there were some significant results, the evidence was not consistent to support the associations between occupational noise exposure and blood pressure.

  7. Investigation and optimization of low-frequency noise performance in readout electronics of dc superconducting quantum interference device

    International Nuclear Information System (INIS)

    Zhao, Jing; Zhang, Yi; Krause, Hans-Joachim; Lee, Yong-Ho

    2014-01-01

    We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mA to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 Ω whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs

  8. Investigation and optimization of low-frequency noise performance in readout electronics of dc superconducting quantum interference device

    Science.gov (United States)

    Zhao, Jing; Zhang, Yi; Lee, Yong-Ho; Krause, Hans-Joachim

    2014-05-01

    We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mA to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 Ω whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs.

  9. Stable Hovering Flight for a Small Unmanned Helicopter Using Fuzzy Control

    Directory of Open Access Journals (Sweden)

    Arbab Nighat Khizer

    2014-01-01

    Full Text Available Stable hover flight control for small unmanned helicopter under light air turbulent environment is presented. Intelligent fuzzy logic is chosen because it is a nonlinear control technique based on expert knowledge and is capable of handling sensor created noise and contradictory inputs commonly encountered in flight control. The fuzzy nonlinear control utilizes these distinct qualities for attitude, height, and position control. These multiple controls are developed using two-loop control structure by first designing an inner-loop controller for attitude angles and height and then by establishing outer-loop controller for helicopter position. The nonlinear small unmanned helicopter model used comes from X-Plane simulator. A simulation platform consisting of MATLAB/Simulink and X-Plane© flight simulator was introduced to implement the proposed controls. The main objective of this research is to design computationally intelligent control laws for hovering and to test and analyze this autopilot for small unmanned helicopter model on X-Plane under ideal and mild turbulent condition. Proposed fuzzy flight controls are validated using an X-Plane helicopter model before being embedded on actual helicopter. To show the effectiveness of the proposed fuzzy control method and its ability to cope with the external uncertainties, results are compared with a classical PD controller. Simulated results show that two-loop fuzzy controllers have a good ability to establish stable hovering for a class of unmanned rotorcraft in the presence of light turbulent environment.

  10. High-frequency signal and noise estimates of CSR GRACE RL04

    Science.gov (United States)

    Bonin, Jennifer A.; Bettadpur, Srinivas; Tapley, Byron D.

    2012-12-01

    A sliding window technique is used to create daily-sampled Gravity Recovery and Climate Experiment (GRACE) solutions with the same background processing as the official CSR RL04 monthly series. By estimating over shorter time spans, more frequent solutions are made using uncorrelated data, allowing for higher frequency resolution in addition to daily sampling. Using these data sets, high-frequency GRACE errors are computed using two different techniques: assuming the GRACE high-frequency signal in a quiet area of the ocean is the true error, and computing the variance of differences between multiple high-frequency GRACE series from different centers. While the signal-to-noise ratios prove to be sufficiently high for confidence at annual and lower frequencies, at frequencies above 3 cycles/year the signal-to-noise ratios in the large hydrological basins looked at here are near 1.0. Comparisons with the GLDAS hydrological model and high frequency GRACE series developed at other centers confirm CSR GRACE RL04's poor ability to accurately and reliably measure hydrological signal above 3-9 cycles/year, due to the low power of the large-scale hydrological signal typical at those frequencies compared to the GRACE errors.

  11. On low-frequency errors of uniformly modulated filtered white-noise models for ground motions

    Science.gov (United States)

    Safak, Erdal; Boore, David M.

    1988-01-01

    Low-frequency errors of a commonly used non-stationary stochastic model (uniformly modulated filtered white-noise model) for earthquake ground motions are investigated. It is shown both analytically and by numerical simulation that uniformly modulated filter white-noise-type models systematically overestimate the spectral response for periods longer than the effective duration of the earthquake, because of the built-in low-frequency errors in the model. The errors, which are significant for low-magnitude short-duration earthquakes, can be eliminated by using the filtered shot-noise-type models (i. e. white noise, modulated by the envelope first, and then filtered).

  12. Static and low frequency noise characterization of ultra-thin body InAs MOSFETs

    Science.gov (United States)

    Karatsori, T. A.; Pastorek, M.; Theodorou, C. G.; Fadjie, A.; Wichmann, N.; Desplanque, L.; Wallart, X.; Bollaert, S.; Dimitriadis, C. A.; Ghibaudo, G.

    2018-05-01

    A complete static and low frequency noise characterization of ultra-thin body InAs MOSFETs is presented. Characterization techniques, such as the well-known Y-function method established for Si MOSFETs, are applied in order to extract the electrical parameters and study the behavior of these research grade devices. Additionally, the Lambert-W function parameter extraction methodology valid from weak to strong inversion is also used in order to verify its applicability in these experimental level devices. Moreover, a low-frequency noise characterization of the UTB InAs MOSFETs is presented, revealing carrier trapping/detrapping in slow oxide traps and remote Coulomb scattering as origin of 1/f noise, which allowed for the extraction of the oxide trap areal density. Finally, Lorentzian-like noise is also observed in the sub-micron area devices and attributed to both Random Telegraph Noise from oxide individual traps and g-r noise from the semiconductor interface.

  13. BVI induced vibration and noise alleviation by active and passive approaches

    Science.gov (United States)

    Liu, Li

    This dissertation describes the development of a comprehensive aeroelastic/aeroacoustic simulation capability for the modeling of vibration and noise in rotorcraft induced by blade-vortex interaction (BVI). Subsequently this capability is applied to study vibration and noise reduction, using active and passive control approaches. The active approach employed is the actively controlled partial span trailing edge flaps (ACF), implemented in single and dual, servo and plain flap configurations. The passive approach is based on varying the sweep and anhedral on the tip of the rotor. Two different modern helicopters are chosen as the baseline for the implementation of ACF approach, one resembling a four-bladed MBB BO-105 hingeless rotor and the other similar to a five-bladed MD-900 bearingless rotor. The structural model is based on a finite element approach capable of simulating composite helicopter blades with swept tips, and representing multiple load paths at the blade root which is a characteristic of bearingless rotors. An unsteady compressible aerodynamic model based on a rational function approximation (RFA) approach is combined with a free wake analysis which has been enhanced by improving the wake analysis resolution and modeling a dual vortex structure. These enhancements are important for capturing BVI effects. A method for predicting compressible unsteady blade surface pressure distribution on rotor blades has been developed, which is required by the acoustic analysis. A modified version of helicopter noise code WOPWOP with provisions for blade flexibility has been combined with the aeroelastic analysis to predict the BVI noise. Several variants of the higher harmonic control (HHC) algorithm have been applied for the active noise control, as well as the simultaneous vibration and noise control. Active control of BVI noise is accomplished using feedback from an onboard microphone. The simulation has been extensively validated against experimental data and

  14. Maneuver Acoustic Flight Test of the Bell 430 Helicopter Data Report

    Science.gov (United States)

    Watts, Michael E.; Greenwood, Eric; Smith, Charles D.; Snider, Royce; Conner, David A.

    2014-01-01

    A cooperative ight test by NASA, Bell Helicopter and the U.S. Army to characterize the steady state acoustics and measure the maneuver noise of a Bell Helicopter 430 aircraft was accomplished. The test occurred during June/July 2011 at Eglin Air Force Base, Florida. This test gathered a total of 410 test points over 10 test days and compiled an extensive database of dynamic maneuver measurements. Three microphone arrays with up to 31 microphon. es in each were used to acquire acoustic data. Aircraft data included Differential Global Positioning System, aircraft state and rotor state information. This paper provides an overview of the test and documents the data acquired.

  15. Radio frequency interference noise reduction using a field programmable gate array for SQUID applications

    International Nuclear Information System (INIS)

    Sakuta, K; Narita, Y; Itozaki, H

    2007-01-01

    It is important to remove large environmental noise in superconducting quantum interference device (SQUID) measurement without magnetic shielding. Active noise control (ANC) is one of the effective methods to reduce environmental noise. Recently, SQUIDs have been used in various applications at high frequencies, such as nuclear quadrupole resonance (NQR). The NQR frequency from explosives is in the range 0.5-5 MHz. In this case, an NQR sensor is exposed to AM radio frequency interference (RFI). The feasibility of the ANC system for RFI that used digital signal processing was studied. Our investigation showed that this digital ANC system can be applied to SQUID measurements for RFI suppression

  16. Effect of low frequency noise on the evolution of the emittance and halo population

    CERN Document Server

    Fitterer, Miriam; Antoniou, Fanouria; Bravin, Enrico; Bruce, Roderik; Fartoukh, Stephane; Fuchsberger, Kajetan; Hofle, Wolfgang; Gasior, Marek; Jaussi, Michael; Jacquet, Delphine; Kotzian, Gerd; Olexa, Jakub; Papadopoulou, Parthena Stefania; Papotti, Giulia; Papaphilippou, Yannis; Redaelli, Stefano; Salvachua Ferrando, Belen Maria; Stancari, Giulio; Trad, Georges; Valuch, Daniel; Valentino, Gianluca; Wagner, Joschka; Wenninger, Jorg; CERN. Geneva. ATS Department

    2016-01-01

    For the High Luminosity upgrade the β* in IR1 and IR5 will be further reduced compared to the current LHC. As the β* decreases the β-functions in the inner triplet (IT) increase resulting in a higher sensitivity of the HL-LHC to ground motion in the IT region or to increases of the low frequency noise. Noise can in general lead to emittance growth and higher halo population and diffusion rate. However, it is usually assumed in the literature that only frequencies close to the betatron frequencies and sidebands have an effect on the emittance and tail population. To test this theory, an MD was carried out to observe if also low frequency noise can lead to emittance growth and stronger halo population and diffusion.

  17. Equilibrium finite-frequency noise of an interacting mesoscopic capacitor studied in time-dependent density functional theory

    Science.gov (United States)

    Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole

    2018-03-01

    We calculate the frequency-dependent equilibrium noise of a mesoscopic capacitor in time-dependent density functional theory (TDDFT). The capacitor is modeled as a single-level quantum dot with on-site Coulomb interaction and tunnel coupling to a nearby reservoir. The noise spectra are derived from linear-response conductances via the fluctuation-dissipation theorem. Thereby, we analyze the performance of a recently derived exchange-correlation potential with time-nonlocal density dependence in the finite-frequency linear-response regime. We compare our TDDFT noise spectra with real-time perturbation theory and find excellent agreement for noise frequencies below the reservoir temperature.

  18. An Application of Reassigned Time-Frequency Representations for Seismic Noise/Signal Decomposition

    Science.gov (United States)

    Mousavi, S. M.; Langston, C. A.

    2016-12-01

    Seismic data recorded by surface arrays are often strongly contaminated by unwanted noise. This background noise makes the detection of small magnitude events difficult. An automatic method for seismic noise/signal decomposition is presented based upon an enhanced time-frequency representation. Synchrosqueezing is a time-frequency reassignment method aimed at sharpening a time-frequency picture. Noise can be distinguished from the signal and suppressed more easily in this reassigned domain. The threshold level is estimated using a general cross validation approach that does not rely on any prior knowledge about the noise level. Efficiency of thresholding has been improved by adding a pre-processing step based on higher order statistics and a post-processing step based on adaptive hard-thresholding. In doing so, both accuracy and speed of the denoising have been improved compared to our previous algorithms (Mousavi and Langston, 2016a, 2016b; Mousavi et al., 2016). The proposed algorithm can either kill the noise (either white or colored) and keep the signal or kill the signal and keep the noise. Hence, It can be used in either normal denoising applications or in ambient noise studies. Application of the proposed method on synthetic and real seismic data shows the effectiveness of the method for denoising/designaling of local microseismic, and ocean bottom seismic data. References: Mousavi, S.M., C. A. Langston., and S. P. Horton (2016), Automatic Microseismic Denoising and Onset Detection Using the Synchrosqueezed-Continuous Wavelet Transform. Geophysics. 81, V341-V355, doi: 10.1190/GEO2015-0598.1. Mousavi, S.M., and C. A. Langston (2016a), Hybrid Seismic Denoising Using Higher-Order Statistics and Improved Wavelet Block Thresholding. Bull. Seismol. Soc. Am., 106, doi: 10.1785/0120150345. Mousavi, S.M., and C.A. Langston (2016b), Adaptive noise estimation and suppression for improving microseismic event detection, Journal of Applied Geophysics., doi: http

  19. Recent topics on aerodynamic noise; Kuriki soon ni kansuru saikin no wadai

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, M [Mitsubishi Heavy Industries Ltd., Tokyo (Japan)

    1995-04-20

    For measures to deal with aerodynamic noise, recent subjects were put in order and some examples of the studies were introduced in this paper. Aerodynamic noise can be classified into rotational aerodynamic noise such as jet engine fans or helicopter rotors and general aerodynamic noise such as high speed jet noise, high speed air flow inside piping, and external noise from vehicles, cars and aeroplanes. The aerodynamic noise of the air flow radiated from a wind tunnel exit was caused more or less by the pressure fluctuation of a boundary layer in a high frequency wave region. In checking the noise generated from a difference in level, projection, cavity, opening, etc., of a high speed vehicle in a wind tunnel test, the noise was louder in the case of a difference in level where the downstream side was raised. The finding was similar with projections. In the rear of a super sonic choke part, a strong flow was generated and became a violent noise source when a flow was overexpanded and a pressure was recovered with a sonic boom. However, the noise was greatly reduced by installing a porous material such as a porous metal immediately behind the choke part. An active control of noise was carried out by changing a sound field characteristic against aerodynamic self-excited noise with a speaker. 32 refs., 11 figs.

  20. A bulk-controlled ring-VCO with 1/f-noise reduction for frequency ΔΣ modulator

    DEFF Research Database (Denmark)

    Tuan Vu, CAO; Wisland, Dag T.; Lande, Tor Sverre

    The paper introduces a bulk-controlled ring-VCO with a tail transistor utilizing flicker-noise (1/f-noise) reduction techniques for a frequency-based DeltaSigma modulator (FDSM). This VCO converts an analog input voltage to phase information under various bias conditions ranging from sub-threshol......The paper introduces a bulk-controlled ring-VCO with a tail transistor utilizing flicker-noise (1/f-noise) reduction techniques for a frequency-based DeltaSigma modulator (FDSM). This VCO converts an analog input voltage to phase information under various bias conditions ranging from sub...

  1. Stochastic resonance in a single-mode laser driven by frequency modulated signal and coloured noises

    Institute of Scientific and Technical Information of China (English)

    Jin Guo-Xiang; Zhang Liang-Ying; Cao Li

    2009-01-01

    By adding frequency modulated signals to the intensity equation of gain-noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity. The results show that the SNR appears typical stochastic resonance with the variation of intensity of the pump noise and quantum noise. As the amplitude of a modulated signal has effects on the SNR, it shows suppression, monotone increasing, stochastic resonance, and multiple stochastic resonance with the variation of the frequency of a carrier signal and modulated signal.

  2. Influence of Gaussian white noise on the frequency-dependent first nonlinear polarizability of doped quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Jayanta [Department of Chemistry, Brahmankhanda Basapara High School, Basapara, Birbhum 731215, West Bengal (India); Ghosh, Manas, E-mail: pcmg77@rediffmail.com [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2014-05-07

    We investigate the profiles of diagonal components of frequency-dependent first nonlinear (β{sub xxx} and β{sub yyy}) optical response of repulsive impurity doped quantum dots. We have assumed a Gaussian function to represent the dopant impurity potential. This study primarily addresses the role of noise on the polarizability components. We have invoked Gaussian white noise consisting of additive and multiplicative characteristics (in Stratonovich sense). The doped system has been subjected to an oscillating electric field of given intensity, and the frequency-dependent first nonlinear polarizabilities are computed. The noise characteristics are manifested in an interesting way in the nonlinear polarizability components. In case of additive noise, the noise strength remains practically ineffective in influencing the optical responses. The situation completely changes with the replacement of additive noise by its multiplicative analog. The replacement enhances the nonlinear optical response dramatically and also causes their maximization at some typical value of noise strength that depends on oscillation frequency.

  3. The need for a dedicated public service helicopter design

    Science.gov (United States)

    Morrison, R.

    1984-01-01

    The need to provide the necessary funding to research, design and contract the building of an advanced technology rotorcraft that will meet the mission demands of public service (fire, police, paramedics and rescue) operators is discussed. Noise and cost factors, the greatest objections on the part of many police and public adminstrators are addressed. The growth of helicopter utilization in public service is documented.

  4. Laser line shape and spectral density of frequency noise

    International Nuclear Information System (INIS)

    Stephan, G.M.; Blin, S.; Besnard, P.; Tam, T.T.; Tetu, M.

    2005-01-01

    Published experimental results show that single-mode laser light is characterized in the microwave range by a frequency noise which essentially includes a white part and a 1/f (flicker) part. We theoretically show that the spectral density (the line shape) which is compatible with these results is a Voigt profile whose Lorentzian part or homogeneous component is linked to the white noise and the Gaussian part to the 1/f noise. We measure semiconductor laser line profiles and verify that they can be fit with Voigt functions. It is also verified that the width of the Lorentzian part varies like 1/P where P is the laser power while the width of the Gaussian part is more of a constant. Finally, we theoretically show from first principles that laser line shapes are also described by Voigt functions where the Lorentzian part is the laser Airy function and the Gaussian part originates from population noise

  5. Subjective evaluation of noise from neighbours with focus on low frequencies

    DEFF Research Database (Denmark)

    Mortensen, Frank Rysgaard

    1999-01-01

    There is a growing tendency to use lightweight constructions in the building industry. One unwanted side effect of this tendency is poor sound insulation at low frequencies. The purpose of this investigation has been to examine the subjective effects of the resulting increase of low frequency noise...

  6. Discrimination of fundamental frequency of synthesized vowel sounds in a noise background

    NARCIS (Netherlands)

    Scheffers, M.T.M.

    1984-01-01

    An experiment was carried out, investigating the relationship between the just noticeable difference of fundamental frequency (jndf0) of three stationary synthesized vowel sounds in noise and the signal-to-noise ratio. To this end the S/N ratios were measured at which listeners could just

  7. 77 FR 52264 - Airworthiness Directives; Hughes Helicopters, Inc., and McDonnell Douglas Helicopter Systems...

    Science.gov (United States)

    2012-08-29

    ... Airworthiness Directives; Hughes Helicopters, Inc., and McDonnell Douglas Helicopter Systems (Type Certificate... Airworthiness Directive (AD): Hughes Helicopters Inc., and McDonnel Douglas Helicopter Systems (Type Certificate...

  8. 78 FR 18226 - Airworthiness Directives; Hughes Helicopters, Inc., and McDonnell Douglas Helicopter Systems...

    Science.gov (United States)

    2013-03-26

    ... Airworthiness Directives; Hughes Helicopters, Inc., and McDonnell Douglas Helicopter Systems (Type Certificate... directive (AD): 2013-05-16 Hughes Helicopters, Inc., and McDonnell Douglas Helicopter Systems (Type...

  9. Low-frequency noise suppression of a fiber laser based on a round-trip EDFA power stabilizer

    International Nuclear Information System (INIS)

    Pan, Z Q; Zhou, J; Yang, F; Ye, Q; Cai, H W; Qu, R H; Fang, Z J

    2013-01-01

    We have designed a power stabilizer based on a round-trip erbium-doped fiber amplifier (EDFA) structure to suppress the low-frequency relative intensity noise (RIN) for a narrow linewidth fiber laser. The noise suppressor is analyzed theoretically and its feasibility is verified experimentally. For a short-cavity single-frequency fiber laser with this device, about 20 dB low-frequency RIN improvement is achieved (down to −120 dB Hz −1 at 10 Hz). The corresponding frequency noise is also reduced by a factor of 1.6. The proposed method is an effective solution to achieve a low-frequency low RIN laser source for highly coherent detection applications. (paper)

  10. The making of helicopters: its strategic implications for EMS helicopter operations.

    Science.gov (United States)

    Thomas, F

    1998-01-01

    The purpose of this article is to provide EMS helicopter personnel with an understanding of the civil helicopter manufacturing industry. Specifically, this article examines the current helicopter marketplace and how various manufactures are responding to the recent decline in new helicopter sales. This article further describes how helicopters are designed and manufactured and how global markets, international competition, and strategic considerations are influencing future helicopter design and production. Data for this paper were obtained from a literature search through the ABI-inform Telnet Services offered through the University of Utah Marriott Library. On a search of "helicopter" during the past 5 years, 566 abstracts were identified, all of which were reviewed for information related to the purpose of this article. Forty-seven articles were identified and read in detail for information that may have related to the purpose of this article. In addition, a library search to identify textbooks that describe helicopter production systems was undertaken but did not identify any written resources. Because of the lack of written resources available in writing this article, a direct interview survey of leading helicopter manufactures, associations, and industry writers was conducted. Only information that was considered "public knowledge" was available because of concerns by the various manufactures that publication of confidential information could be detrimental to their competitive advantage. Because helicopter-manufacturing plants were not located within easy travel range, no direct observation of the production facilities could be undertaken. Furthermore, information regarding production and operational management was not easily accessible because the data were not published or were considered confidential. Therefore industry analysis had to take place through direct survey interviewing technique and data obtained through an analysis of the available published

  11. A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-gravity and Rayleigh modes.

    Science.gov (United States)

    Ardhuin, Fabrice; Lavanant, Thibaut; Obrebski, Mathias; Marié, Louis; Royer, Jean-Yves; d'Eu, Jean-François; Howe, Bruce M; Lukas, Roger; Aucan, Jerome

    2013-10-01

    The generation of ultra-low frequency acoustic noise (0.1 to 1 Hz) by the nonlinear interaction of ocean surface gravity waves is well established. More controversial are the quantitative theories that attempt to predict the recorded noise levels and their variability. Here a single theoretical framework is used to predict the noise level associated with propagating pseudo-Rayleigh modes and evanescent acoustic-gravity modes. The latter are dominant only within 200 m from the sea surface, in shallow or deep water. At depths larger than 500 m, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and the Kerguelen islands reveal: (a) Deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, in which the presence of the ocean bottom amplifies the noise by 10 to 20 dB; (b) in agreement with previous results, the local maxima in the noise spectrum support the theoretical prediction for the vertical structure of acoustic modes; and (c) noise level and variability are well predicted for frequencies up to 0.4 Hz. Above 0.6 Hz, the model results are less accurate, probably due to the poor estimation of the directional properties of wind-waves with frequencies higher than 0.3 Hz.

  12. Low frequency noise in p-InAsSbP/n-InAs infrared photodiodes

    Science.gov (United States)

    Dyakonova, N.; Karandashev, S. A.; Levinshtein, M. E.; Matveev, B. A.; Remennyi, M. A.

    2018-06-01

    We report the first experimental study of low-frequency noise in p-InAsSbP/n-InAs infrared photodiodes. For forward bias, experiments have been carried out at 300 and 77 K, in the photovoltaic regime the measurements have been done at 300 K. At room temperature the current noise spectral density, SI , exhibits the ∼1/f frequency dependence. For low currents, I ≤ I 0 ∼ 4 × 10‑5 A, S I is proportional to I 2, at higher currents this dependence changes to S I ∼ I. At 77 K the noise spectral density is significantly higher than at 300 K, and Lorentzian contributions to noise are observed. The current dependences of spectral noise density can be approximately described as S I ∼ I 1.5 and show particularities suggesting the contribution of defects.

  13. Laser phase and frequency noise measurement by Michelson interferometer composed of a 3 × 3 optical fiber coupler.

    Science.gov (United States)

    Xu, Dan; Yang, Fei; Chen, Dijun; Wei, Fang; Cai, Haiwen; Fang, Zujie; Qu, Ronghui

    2015-08-24

    A laser phase and frequency noise measurement method by an unbalanced Michelson interferometer composed of a 3 × 3 optical fiber coupler is proposed. The relations and differences of the power spectral density (PSD) of differential phase and frequency fluctuation, PSD of instantaneous phase and frequency fluctuation, phase noise and linewidth are derived strictly and discussed carefully. The method obtains the noise features of a narrow linewidth laser conveniently without any specific assumptions or noise models. The technique is also used to characterize the noise features of a narrow linewidth external-cavity semiconductor laser, which confirms the correction and robustness of the method.

  14. Low-frequency noise characterization of single CuO nanowire gas sensor devices

    NARCIS (Netherlands)

    Steinhauer, S.; Köck, A.; Gspan, C.; Grogger, W.; Vandamme, L.K.J.; Pogany, D.

    2015-01-01

    Low-frequency noise properties of single CuO nanowire devices were investigated under gas sensor operation conditions in dry and humid synthetic air at 350¿°C. A 1/f noise spectrum was found with the normalized power spectral density of current fluctuations typically a factor of 2 higher for humid

  15. Low-frequency noise properties in Pt-indium gallium zinc oxide Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiawei; Zhang, Linqing; Ma, Xiaochen; Wilson, Joshua [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Jin, Jidong [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Du, Lulu; Xin, Qian [School of Physics, Shandong University, Jinan 250100 (China); Song, Aimin, E-mail: A.Song@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); School of Physics, Shandong University, Jinan 250100 (China)

    2015-08-31

    The low-frequency noise properties of Pt-indium gallium zinc oxide (IGZO) Schottky diodes at different forward biases are investigated. The IGZO layer and Pt contact were deposited by RF sputtering at room temperature. The diode showed an ideality factor of 1.2 and a barrier height of 0.94 eV. The current noise spectral density exhibited 1/f behavior at low frequencies. The analysis of the current dependency of the noise spectral density revealed that for the as-deposited diode, the noise followed Luo's mobility and diffusivity fluctuation model in the thermionic-emission-limited region and Hooge's empirical theory in the series-resistance-limited region. A low Hooge's constant of 1.4 × 10{sup −9} was found in the space-charge region. In the series-resistance-limited region, the Hooge's constant was 2.2 × 10{sup −5}. After annealing, the diode showed degradation in the electrical performance. The interface-trap-induced noise dominated the noise spectrum. By using the random walk model, the interface-trap density was obtained to be 3.6 × 10{sup 15 }eV{sup −1 }cm{sup −2}. This work provides a quantitative approach to analyze the properties of Pt-IGZO interfacial layers. These low noise properties are a prerequisite to the use of IGZO Schottky diodes in switch elements in memory devices, photosensors, and mixer diodes.

  16. Low-frequency noise in high-Tc superconducting thick films

    International Nuclear Information System (INIS)

    Aponte, J.M.; Gutierrez, G.; Octavio, M.

    1990-01-01

    In this paper experimental results on the resistance noise in thick films of YBa 2 Cu 3 O 7-δ in the vicinity of the superconducting transition are reported. The measurements were performed in samples with broad resistive transitions and in the frequency range from 1Hz to 100 Hz. The power spectral density S v /V 2 of the excess noise is obtained by subtracting the current-independent background noise from the total measured noise. The authors observed that at the transition, the magnitude of S v /V 2 rises above its level at room temperature exhibiting peaks at the same temperatures at which R -1 dR/dT has maxima. The authors performed measurements of S v /V 2 as a function of the current through the sample and the authors found that it diverges as the critical current is approached from above and that it is zero below the critical current. This transition is found to be described quite well by a percolation model

  17. The effect of extending high-frequency bandwidth on the acceptable noise level (ANL) of hearing-impaired listeners.

    Science.gov (United States)

    Johnson, Earl; Ricketts, Todd; Hornsby, Benjamin

    2009-01-01

    This study examined the effects of extending high-frequency bandwidth, for both a speech signal and a background noise, on the acceptable signal-to-noise ratio (SNR) of listeners with mild sensorineural hearing loss through utilization of the Acceptable Noise Level (ANL) procedure. In addition to extending high-frequency bandwidth, the effects of reverberation time and background noise type and shape were also examined. The study results showed a significant increase in the mean ANL (i.e. participants requested a better SNR for an acceptable listening situation) when high-frequency bandwidth was extended from 3 to 9 kHz and from 6 to 9 kHz. No change in the ANL of study participants was observed as a result of isolated modification to reverberation time or background noise stimulus. An interaction effect, however, of reverberation time and background noise stimulus was demonstrated. These findings may have implications for future design of hearing aid memory programs for listening to speech in the presence of broadband background noise.

  18. Radio-frequency shot-noise measurement in a magnetic tunnel junction with a MgO barrier

    International Nuclear Information System (INIS)

    Rehman, Mushtaq; Park, Junghwan; Song, Woon; Chong, Yonuk; Lee, Yeonsub; Min, Byoungchul; Shin, Kyungho; Ryu, Sangwan; Khim, Zheong

    2010-01-01

    We measured the noise power of a magnetic tunnel junction in the frequency range of 710 ∼ 1200 MHz. A low-noise cryogenic HEMT amplifier was used to measure the small noise signal at a high frequency with wide bandwidth. The MgO-barrier tunnel junction showed large tunnel magnetoresistance ratio of 215% at low temperature, which indicates electronic transport through the tunnel barrier without any significant spin-flip scattering. In the bias-dependent noise measurement, however, the zero-bias shot noise was enhanced compared to the value expected from a perfect tunnel barrier or the value observed from a good Al-AlO x -Al tunnel junction. We assume that this enhanced noise comes from inelastic tunneling processes through the barrier, which may be related to the observed zero-bias anomaly in the differential resistance of the tunnel junctions. We present a simple phenomenological model for how the inelastic scattering process can enhance the zero-bias noise in a tunnel junction.

  19. STATE OF THE ART TECHNIQUES USED FOR NOISE SOURCE IDENTIFICATION ON COMPLEX BODIES

    Directory of Open Access Journals (Sweden)

    Corneliu STOICA

    2010-03-01

    Full Text Available Over the last few decades, many approaches have been undertaken in order to asses detailed noise source identification on complex bodies, i.e. aircrafts, cars, machinery. Noise source identification implies to accurately obtain the position and frequency of the dominant noise sources. There are cases where traditional testing methods can not be applied at all or their use involves some limitations. Optical systems used for near field analysis require a line of sight that may not be available. The state-of-the-art technology for this purpose is the use of a large number of microphones whose signals are acquired simultaneously, i.e. microphone phased array. Due to the excessive cost of the instruments and the data acquisition system required, the implementation of this technology was restricted to governmental agencies (NASA, DLR and big companies such as Boeing and Airbus. During the past years, this technique was developed in wind tunnels and some universities to perform noise source identification on scale airframes, main landing gear models, and aerodynamic profiles (used on airplanes, helicopter rotors and wind mills.

  20. Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

    Science.gov (United States)

    Stephenson, James H.; Greenwood, Eric

    2015-01-01

    Blade-vortex interaction noise measurements are analyzed for an AS350B helicopter operated at 7000 ft elevation above sea level. Blade-vortex interaction (BVI) noise from four, 6 degree descent conditions are investigated with descents flown at 80 knot true and indicated airspeed, as well as 4400 and 3915 pound take-off weights. BVI noise is extracted from the acquired acoustic signals by way of a previously developed time-frequency analysis technique. The BVI extraction technique is shown to provide a better localization of BVI noise, compared to the standard Fourier transform integration method. Using this technique, it was discovered that large changes in BVI noise amplitude occurred due to changes in vehicle gross weight. Changes in BVI noise amplitude were too large to be due solely to changes in the vortex strength caused by varying vehicle weight. Instead, it is suggested that vehicle weight modifies the tip-path-plane angle of attack, as well as induced inflow, resulting in large variations of BVI noise. It was also shown that defining flight conditions by true airspeed, rather than indicated airspeed, provides more consistent BVI noise signals.

  1. Time domain system identification of longitudinal dynamics of single rotor model helicopter using sidpac

    International Nuclear Information System (INIS)

    Khaizer, A.N.; Hussain, I.

    2015-01-01

    This paper presents a time-domain approach for identification of longitudinal dynamics of single rotor model helicopter. A frequency sweep excitation input signal is applied for hover flying mode widely used for space state linearized model. A fully automated programmed flight test method provides high quality flight data for system identification using the computer controlled flight simulator X-plane. The flight test data were recorded, analyzed and reduced using the SIDPAC (System Identification Programs for Air Craft) toolbox for MATLAB, resulting in an aerodynamic model of single rotor helicopter. Finally, the identified model of single rotor helicopter is validated on Raptor 30-class model helicopter at hover showing the reliability of proposed approach. (author)

  2. Development of high frequency and wide bandwidth Johnson noise thermometry

    International Nuclear Information System (INIS)

    Crossno, Jesse; Liu, Xiaomeng; Kim, Philip; Ohki, Thomas A.; Fong, Kin Chung

    2015-01-01

    We develop a high frequency, wide bandwidth radiometer operating at room temperature, which augments the traditional technique of Johnson noise thermometry for nanoscale thermal transport studies. Employing low noise amplifiers and an analog multiplier operating at 2 GHz, auto- and cross-correlated Johnson noise measurements are performed in the temperature range of 3 to 300 K, achieving a sensitivity of 5.5 mK (110 ppm) in 1 s of integration time. This setup allows us to measure the thermal conductance of a boron nitride encapsulated monolayer graphene device over a wide temperature range. Our data show a high power law (T ∼ 4) deviation from the Wiedemann-Franz law above T ∼ 100 K

  3. Application of phased array technology for identification of low frequency noise sources

    Energy Technology Data Exchange (ETDEWEB)

    Hugo E. Camargo; Patricio A. Ravetta; Ricardo A. Burdisso; Adam K. Smith [NIOSH (United States)

    2009-12-15

    A study conducted by the National Institute for Occupational Safety and Health (NIOSH) revealed that 90% of coal miners have hearing impairment by age 50, compared to only 10% of those not exposed to occupational noise. According to the Mine Safety and Health Administration (MSHA), Continuous Mining Machine (CM) operators account for 30% of workers exposed to noise doses exceeding the Permissible Exposure Level (PEL). In this context, NIOSH is conducting research to identify and control dominant noise sources in CMs. Previous noise source identification was performed using a Bruel & Kjaer (B&K) 1.92-m diameter, 42-microphone phased array. These measurements revealed that the impacts from the conveyor chain onto the tail roller, and the impacts from the conveyor chain onto the upper deck are the dominant noise sources at the tail-section of the CM. The objectives of the work presented in this paper were: (1) To rank the noise radiated by the different sections of the conveyor, and (2) to determine the effect of a urethane-coated tail roller on the noise radiated by the tail-section. This test was conducted using an Acoustical and Vibrations Engineering Consultants (AVEC) 3.5-m diameter, 121-microphone phased array. The results from this new test show that a urethane-coated tail roller yields reductions in the tail-section of 2 to 8 dB in Sound Pressure Level in the frequency range of 1 kHz to 5 kHz. However, integration of the acoustic maps shows that the front-section and mid-section of the conveyor also contain dominant noise sources. Therefore, a urethane-coated tail roller in combination with a chain with urethane-coated flights that reduces the noise sources in the front and mid sections of the conveyor is required to yield a significant noise reduction on the CM operator's overall exposure. These results show the applicability of phased array technology for low frequency noise source identification.

  4. Absorption of cosmic radio noise at different frequencies at Sanae

    International Nuclear Information System (INIS)

    Steyn, T.F.J.

    1983-12-01

    Electron density profiles are simulated as a function of altitude for the D- and E-regions during disturbed ionospheric conditions using auroral absorption data from riometers recording cosmic radio noise at 20, 30 and 51 MHz at Sanae, Antarctica. An elliptical function was used to simulate, as a function of height, the electron density profiles. Using these profiles the measured absorption was calculated by utilizing the Appleton-Hartree treatment for radio waves crossing the ionosphere. The frequency dependence of the riometer absorption is represented by a power law of the frequency: A(f) = C.f -n , and values of n were determined from calculations of the absorptions from the simulated electron density profiles. This power law is a fairly accurate representation in the frequency range 20 to 51 MHz. It appears that the exponent of the power law and the height of maximum absorption are effective parameters to determine the hardness of the energy spectra of precipitating electrons. A method is discussed whereby interferences on the riometer recordings are filtered from the data. Quiet day curves are obtained by the superposition of successive riometer recordings with a period of one sidereal day. A Fourier series is fitted to the points of maximum density to represent the quiet day recordings. Absorption events on day 175 and day 178 (1982) are analized for each riometer frequency, and the hardness of the precipitating electrons is inferred from the n-values of power law presentation. It is shown that the absorption of cosmic radio noise increases by increasing the depth of ionization without increasing the ionization rate (number of electrons /m 3 ) in the upper D-region. This may mean that a hardening of a precipitation spectrum will increase the absorption of cosmic radio noise

  5. Physiological and behavioral reactions elicited by simulated and real-life visual and acoustic helicopter stimuli in dairy goats

    Science.gov (United States)

    2011-01-01

    Background Anecdotal reports and a few scientific publications suggest that flyovers of helicopters at low altitude may elicit fear- or anxiety-related behavioral reactions in grazing feral and farm animals. We investigated the behavioral and physiological stress reactions of five individually housed dairy goats to different acoustic and visual stimuli from helicopters and to combinations of these stimuli under controlled environmental (indoor) conditions. The visual stimuli were helicopter animations projected on a large screen in front of the enclosures of the goats. Acoustic and visual stimuli of a tractor were also presented. On the final day of the study the goats were exposed to two flyovers (altitude 50 m and 75 m) of a Chinook helicopter while grazing in a pasture. Salivary cortisol, behavior, and heart rate of the goats were registered before, during and after stimulus presentations. Results The goats reacted alert to the visual and/or acoustic stimuli that were presented in their room. They raised their heads and turned their ears forward in the direction of the stimuli. There was no statistically reliable rise of the average velocity of moving of the goats in their enclosure and no increase of the duration of moving during presentation of the stimuli. Also there was no increase in heart rate or salivary cortisol concentration during the indoor test sessions. Surprisingly, no physiological and behavioral stress responses were observed during the flyover of a Chinook at 50 m, which produced a peak noise of 110 dB. Conclusions We conclude that the behavior and physiology of goats are unaffected by brief episodes of intense, adverse visual and acoustic stimulation such as the sight and noise of overflying helicopters. The absence of a physiological stress response and of elevated emotional reactivity of goats subjected to helicopter stimuli is discussed in relation to the design and testing schedule of this study. PMID:21496239

  6. Circumvention of noise contributions in fiber laser based frequency combs.

    Science.gov (United States)

    Benkler, Erik; Telle, Harald; Zach, Armin; Tauser, Florian

    2005-07-25

    We investigate the performance of an Er:fiber laser based femtosecond frequency comb for precision metrological applications. Instead of an active stabilization of the comb, the fluctuations of the carrier-envelope offset phase, the repetition phase, and the phase of the beat from a comb line with an optical reference are synchronously detected. We show that these fluctuations can be effectively eliminated by exploiting their known correlation. In our experimental scheme, we utilize two identically constructed frequency combs for the measurement of the fluctuations, rejecting the influence of a shared optical reference. From measuring a white frequency noise level, we demonstrate that a fractional frequency instability better than 1.4 x 10(-14) for 1 s averaging time can be achieved in frequency metrology applications using the Er:fiber based frequency comb.

  7. Joseph F. Keithley Award For Advances in Measurement Science Talk: Precision Noise Measurements at Microwave and Optical Frequencies

    Science.gov (United States)

    Ivanov, Eugene

    2010-03-01

    The quest to detect Gravitational Waves resulted in a number of important developments in the fields of oscillator frequency stabilization and precision noise measurements. This was due to the realization of similarities between the principles of high sensitivity measurements of weak mechanical forces and phase/amplitude fluctuations of microwave signals. In both cases interferometric carrier suppression and low-noise amplification of the residual noise sidebands were the main factors behind significant improvements in the resolution of spectral measurements. In particular, microwave frequency discriminators with almost thermal noise limited sensitivity were constructed leading to microwave oscillators with more than 25dB lower phase noise than the previous state-of-the-art. High power solid-state microwave amplifiers offered further opportunity of oscillator phase noise reduction due to the increased energy stored in the high-Q resonator of the frequency discriminator. High power microwave oscillators with the phase noise spectral density close to -160dBc/Hz at 1kHz Fourier frequency have been recently demonstrated. The principles of interferometric signal processing have been applied to the study of noise phenomena in microwave components which were considered to be ``noise free''. This resulted in the first experimental evidence of phase fluctuations in microwave circulators. More efficient use of signal power enabled construction of the ``power recycled'' interferometers with spectral resolution of -200dBc/Hz at 1kHz Fourier frequency. This has been lately superseded by an order of magnitude with a waveguide interferometer due to its higher power recycling factor. A number of opto-electronic measurement systems were developed to characterize the fidelity of frequency transfer from the optical to the microwave domain. This included a new type of a phase detector capable of measuring phase fluctuations of the weak microwave signals extracted from the demodulated

  8. Filterless low-phase-noise frequency-quadrupled microwave generation based on a multimode optoelectronic oscillator

    Science.gov (United States)

    Teng, Yichao; Zhang, Pin; Zhang, Baofu; Chen, Yiwang

    2018-02-01

    A scheme to realize low-phase-noise frequency-quadrupled microwave generation without any filter is demonstrated. In this scheme, a multimode optoelectronic oscillator is mainly contributed by dual-parallel Mach-Zehnder modulators, fiber, photodetector, and microwave amplifier. The local source signal is modulated by a child MZM (MZMa), which is worked at maximum transmission point. Through properly adjusting the bias voltages of the other child MZM (MZMb) and the parent MZM (MZMc), optical carrier is effectively suppressed and second sidebands are retained, then the survived optical signal is fed back to the photodetector and MZMb to form an optoelectronic hybrid resonator and realize frequency-quadrupled signal generation. Due to the high Q-factor and mode selection effect of the optoelectronic hybrid resonator, compared with the source signal, the generated frequency-quadrupled signal has a lower phase noise. The approach has verified by experiments, and 18, 22, and 26 GHz frequency-quadrupled signal are generated by 4.5, 5.5, and 6.5 GHz local source signals. Compared with 4.5 GHz source signal, the phase noise of generated 18 GHz signal at 10 kHz frequency offset has 26.5 dB reduction.

  9. Design and Characterization of a 5.2 GHz/2.4 GHz Fractional- Frequency Synthesizer for Low-Phase Noise Performance

    Directory of Open Access Journals (Sweden)

    Dai Foster F

    2006-01-01

    Full Text Available This paper presents a complete noise analysis of a -based fractional- phase-locked loop (PLL based frequency synthesizer. Rigorous analytical and empirical formulas have been given to model various phase noise sources and spurious components and to predict their impact on the overall synthesizer noise performance. These formulas have been applied to an integrated multiband WLAN frequency synthesizer RFIC to demonstrate noise minimization through judicious choice of loop parameters. Finally, predicted and measured phase jitter showed good agreement. For an LO frequency of 4.3 GHz, predicted and measured phase noise was rms and rms, respectively.

  10. The Noisiness of Low Frequency Bands of Noise

    Science.gov (United States)

    Lawton, B. W.

    1975-01-01

    The relative noisiness of low frequency 1/3-octave bands of noise was examined. The frequency range investigated was bounded by the bands centered at 25 and 200 Hz, with intensities ranging from 50 to 95 db (SPL). Thirty-two subjects used a method of adjustment technique, producing comparison band intensities as noisy as 100 and 200 Hz standard bands at 60 and 72 db. The work resulted in contours of equal noisiness for 1/3-octave bands, ranging in intensity from approximately 58 to 86 db (SPL). These contours were compared with the standard equal noisiness contours; in the region of overlap, between 50 and 200 Hz, the agreement was good.

  11. Low-frequency noise from large wind turbines – additional data and assessment of new Danish regulations

    DEFF Research Database (Denmark)

    Pedersen, Christian Sejer; Møller, Henrik; Pedersen, Steffen

    2012-01-01

    turbines in Denmark. In this study, the data material has been increased to include more data on noise from modern production turbines up to 5 MW. In addition, the new Danish regulations are assessed. The previous result that the relative amount of low-frequency noise is higher for large turbines (> 2 MW...... frequencies, and for several of the investigated large turbines, the one-third-octave band with the highest level is at or below 250 Hz. It is thus beyond any doubt that the low-frequency part of the spectrum plays an important role in the noise at the neighbors. The new Danish regulation is based...

  12. Development of Lightweight, Compact, Structurally-Integrated Acoustic Liners for Broadband Low-Frequency Noise Mitigation

    Science.gov (United States)

    Chambers, Andrew T.

    Airborne noise with a low dominant frequency content (scope of conventional acoustic noise mitigation techniques using liners, foams or claddings owing to mass and volume considerations. Its low evanescence contributes significantly to environmental noise pollution, and unwanted structural vibrations causing diminished efficiency, comfort, payload integrity and mission capabilities. An alternative approach using liner configurations with realistic mass and volume constraints having innovative 'folded' core geometries is investigated to ascertain its low-frequency noise absorption characteristics. In contrast to mass-driven approaches, the folded core approach relies on tailoring interactions between acoustic resonances to tune the liner's impedance to suit the dominant low-frequency content of the source. This allows to keep non-structural mass-addition to a minimum, while retaining an overall thickness comparable to conventional liners for these low-frequency liner designs. The relative acoustic performance of various candidate folded core designs is evaluated by means of a new composite metric termed the Low-Frequency Performance (LFP) factor, which is educed from the absorption coefficient spectrum obtained using Zwikker-Kosten Transmission Line (ZKTL) theory-based numerical studies. An LFP-based software tool is developed to determine optimal 3D cavity packing for a prescribed liner volume and target frequency range. ZKTL-based parametric studies on core dimensions and face sheet porosity are utilized for detailed design of test articles. Experimental verification of absorption coefficient spectra conducted using 3D printed test articles in a normal incidence acoustic impedance tube yield good correlation with simulations. More than 100 Hz of continuous bandwidth with an absorption coefficient greater than 0.6 is shown to be possible in the 300 to 400 Hz range with a 38.1-mm (1.5-inch) thick liner. Further, the influence of face sheet type, Mach number, and

  13. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock

    Energy Technology Data Exchange (ETDEWEB)

    François, B.; Boudot, R. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l' Epitaphe, 25030 Besançon (France); Calosso, C. E. [INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Danet, J. M. [LNE-SYRTE, Observatoire de Paris, CNRS-UPMC, 61 avenue de l' Observatoire, 75014 Paris (France)

    2014-09-15

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be −42, −100, −117 dB rad{sup 2}/Hz and −129 dB rad{sup 2}/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10{sup −14} at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  14. Effects of large pressure amplitude low frequency noise in the parotid gland perivasculo-ductal connective tissue.

    Science.gov (United States)

    Oliveira, Pedro; Brito, José; Mendes, João; da Fonseca, Jorge; Águas, Artur; Martins dos Santos, José

    2013-01-01

    In tissues and organs exposed to large pressure amplitude low frequency noise fibrosis occurs in the absence of inflammatory signs, which is thought to be a protective response. In the parotid gland the perivasculo-ductal connective tissue surrounds arteries, veins and the ductal tree. Perivasculo-ductal connective tissue is believed to function as a mechanical stabilizer of the glandular tissue. In order to quantify the proliferation of perivasculo-ductal connective tissue in large pressure amplitude low frequency noise-exposed rats we used sixty Wistar rats which were equally divided into 6 groups. One group kept in silence, and the remaining five exposed to continuous large pressure amplitude low frequency noise: g1-168h (1 week); g2-504h (3 weeks); g3-840h (5 weeks); g4-1512h (9 weeks); and g5-2184h (13 weeks). After exposure, parotid glands were removed and the perivasculo-ductal connective tissue area was measured in all groups. We applied ANOVA statistical analysis, using SPSS 13.0. The global trend is an increase in the average perivasculo-ductal connective tissue areas, that develops linearly and significantly with large pressure amplitude low frequency noise exposure time (p connective tissue. Hence, these results show that in response to large pressure amplitude low frequency noise exposure, rat parotid glands increase their perivasculo-ductal connective tissue.

  15. 77 FR 729 - Airworthiness Directives; Enstrom Helicopter Corporation Helicopters

    Science.gov (United States)

    2012-01-06

    ... to the specified helicopters with a reversible trim motor, P/N 28-16621 (Ford Motor Company C1AZ... helicopters with a reversible trim motor, P/N 28-16621 (Ford Motor Company C1AZ- 14553A) or P/N AD1R-10...

  16. High-frequency Audiometry Hearing on Monitoring of Individuals Exposed to Occupational Noise: A Systematic Review.

    Science.gov (United States)

    Antonioli, Cleonice Aparecida Silva; Momensohn-Santos, Teresa Maria; Benaglia, Tatiana Aparecida Silva

    2016-07-01

    The literature reports on high-frequency audiometry as one of the exams used on hearing monitoring of individuals exposed to high sound pressure in their work environment, due to the method́s greater sensitivity in early identification of hearing loss caused by noise. The frequencies that compose the exam are generally between 9 KHz and 20KHz, depending on the equipment. This study aims to perform a retrospective and secondary systematic revision of publications on high-frequency audiometry on hearing monitoring of individuals exposed to occupational noise. This systematic revision followed the methodology proposed in the Cochrane Handbook, focusing on the question: "Is High-frequency Audiometry more sensitive than Conventional Audiometry in the screening of early hearing loss individuals exposed to occupational noise?" The search was based on PubMed data, Base, Web of Science (Capes), Biblioteca Virtual em Saúde (BVS), and in the references cited in identified and selected articles. The search resulted in 6059 articles in total. Of these, only six studies were compatible with the criteria proposed in this study. The performed meta-analysis does not definitively answer the study's proposed question. It indicates that the 16 KHz high frequency audiometry (HFA) frequency is sensitive in early identification of hearing loss in the control group (medium difference (MD = 8.33)), as well as the 4 KHz frequency (CA), this one being a little less expressive (MD = 5.72). Thus, others studies are necessary to confirm the HFA importance for the early screening of hearing loss on individuals exposed to noise at the workplace.

  17. Low frequency noise as a control test for spacial solar panels

    Science.gov (United States)

    Orsal, B.; Alabedra, R.; Ruas, R.

    1986-07-01

    The present study of low frequency noise in a forward-biased dark solar cell, in order to develop an NDE test method for solar panels, notes that a single cell with a given defect is thus detectable under dark conditions. The test subject was a space solar panel consisting of five cells in parallel and five in series; these cells are of the n(+)-p monocrystalline Si junction type. It is demonstrated that the noise associated with the defective cell is 10-15 times higher than that of a good cell. Replacement of a good cell by a defective one leads to a 30-percent increase in the noise level of the panel as a whole.

  18. Advanced Airfoils Boost Helicopter Performance

    Science.gov (United States)

    2007-01-01

    Carson Helicopters Inc. licensed the Langley RC4 series of airfoils in 1993 to develop a replacement main rotor blade for their Sikorsky S-61 helicopters. The company's fleet of S-61 helicopters has been rebuilt to include Langley's patented airfoil design, and the helicopters are now able to carry heavier loads and fly faster and farther, and the main rotor blades have twice the previous service life. In aerial firefighting, the performance-boosting airfoils have helped the U.S. Department of Agriculture's Forest Service control the spread of wildfires. In 2003, Carson Helicopters signed a contract with Ducommun AeroStructures Inc., to manufacture the composite blades for Carson Helicopters to sell

  19. Preceding weak noise sharpens the frequency tuning and elevates the response threshold of the mouse inferior collicular neurons through GABAergic inhibition.

    Science.gov (United States)

    Wang, Xin; Jen, Philip H-S; Wu, Fei-Jian; Chen, Qi-Cai

    2007-09-05

    In acoustic communication, animals must extract biologically relevant signals that are embedded in noisy environment. The present study examines how weak noise may affect the auditory sensitivity of neurons in the central nucleus of the mouse inferior colliculus (IC) which receives convergent excitatory and inhibitory inputs from both lower and higher auditory centers. Specifically, we studied the frequency sensitivity and minimum threshold of IC neurons using a pure tone probe and a weak white noise masker under forward masking paradigm. For most IC neurons, probe-elicited response was decreased by a weak white noise that was presented at a specific gap (i.e. time window). When presented within this time window, weak noise masking sharpened the frequency tuning curve and increased the minimum threshold of IC neurons. The degree of weak noise masking of these two measurements increased with noise duration. Sharpening of the frequency tuning curve and increasing of the minimum threshold of IC neurons during weak noise masking were mostly mediated through GABAergic inhibition. In addition, sharpening of frequency tuning curve by the weak noise masker was more effective at the high than at low frequency limb. These data indicate that in the real world the ambient noise may improve frequency sensitivity of IC neurons through GABAergic inhibition while inevitably decrease the frequency response range and sensitivity of IC neurons.

  20. Testing Time and Frequency Fiber-Optic Link Transfer by Hardware Emulation of Acoustic-Band Optical Noise

    Directory of Open Access Journals (Sweden)

    Lipiński Marcin

    2016-06-01

    Full Text Available The low-frequency optical-signal phase noise induced by mechanical vibration of the base occurs in field-deployed fibers. Typical telecommunication data transfer is insensitive to this type of noise but the phenomenon may influence links dedicated to precise Time and Frequency (T&F fiber-optic transfer that exploit the idea of stabilization of phase or propagation delay of the link. To measure effectiveness of suppression of acoustic noise in such a link, a dedicated measurement setup is necessary. The setup should enable to introduce a low-frequency phase corruption to the optical signal in a controllable way. In the paper, a concept of a setup in which the mechanically induced acoustic-band optical signal phase corruption is described and its own features and measured parameters are presented. Next, the experimental measurement results of the T&F transfer TFTS-2 system’s immunity as a function of the fibre-optic length vs. the acoustic-band noise are presented. Then, the dependency of the system immunity on the location of a noise source along the link is also pointed out.

  1. Periodic rotation noise induced by the crosstalk between two beat-frequency signals in multi-oscillator ring laser gyros

    International Nuclear Information System (INIS)

    Lu, Guangfeng; Wang, Zhiguo; Fan, Zhenfang; Luo, Hui

    2014-01-01

    Periodic rotation noise in the outputs of multi-oscillator ring laser gyros (MRLGs) is investigated in this paper for the first time. It is proved theoretically and experimentally that noise is induced by the crosstalk between two beat-frequency signals, which are combined from the left and right circularly polarized counter-propagating beams in MRLGs. Theoretical analysis and experimental results also indicate that the fundamental frequency of this noise is equal to the frequency difference between the two beat-frequency signals and the amplitude of the fundamental component is proportional to the crosstalk ratio between the two beat-frequency signals. Further, the amplitude of the nth-order component is proportional to the nth power of the crosstalk ratio. (paper)

  2. Multi-frequencies ECT algorithms to remove sodium noise in ISI of ferromagnetic SG tubes of FBR

    International Nuclear Information System (INIS)

    Mihalache, Ovidiu

    2012-01-01

    The paper presents developments and application of multi-frequency eddy current to be used during In-Service Inspection (ISI) of ferromagnetic steam generator (SG) tubes of Fast Breeder Reactors (FBR). Signal enhancement by means of multi-frequency ECT techniques are validated through 3D simulations of both signals and noise due to sodium forms around SG tube or SP. The purpose of such algorithms is to remove from ECT signal the electromagnetic noise resulting from sodium accumulated outside of SG tubes after SG vessel draining. Finite element method (FEM) simulations are used to analyse different sodium build-up scenarios observed experimentally, and to determine optimal multi-frequency ECT algorithms to suppress the most efficiently sodium noise. Also a new 'window multi-frequency' algorithm is applied and validated using 3-dimensional FEM simulations of SP and sodium forms. (author)

  3. First evaluation of low frequency noise measurements of in core detector signals in the measuring assembly Rheinsberg

    International Nuclear Information System (INIS)

    Collatz, S.

    1982-01-01

    Reactor noise spectra of in core neutron detectors are measured in the low frequency range (0.03 Hz to 1 Hz) and evaluated. The increase of the effective noise signal value is due to pressure oscillations or oscillations of special steam volume portions. Thus boiling monitoring of reactor cores in PWR type reactors may be possible, if the low frequency noise of the whole set of in core detectors is taken into account

  4. A comparison of high-frequency noise levels on Cascadia Initiative ocean-bottom seismometers

    Science.gov (United States)

    Hilmo, R.; Wilcock, W. S. D.; Roland, E. C.; Bodin, P.; Connolly, J.

    2017-12-01

    The Cascadia Initiative (CI) included a four-year deployment of 70 ocean bottom seismometers (OBSs) on the Cascadia subduction zone and the Juan de Fuca plate for the purposes of characterizing seismicity and imaging the Earth's interior. The Cascadia subduction zone megathrust exhibits very low rates of seismicity relative to most other subduction zones, and there is great motivation to understand deformation on the megathrust because of its potential to produce a catastrophic M9 earthquake. An understanding of earthquake detectability of the CI network, based on knowledge of noise levels, could contribute to the interpretation of earthquake catalogs derived from the experiment and aid in the design of future networks. This project is aimed at estimating these thresholds of local earthquake detectability and how they change across the array both geographically and temporally. We characterize background noise levels recorded from 0.1 to 20 Hz with an emphasis on the frequency band used to detect local seismicity ( 3-15 Hz) to understand how noise levels depend on instrument design and environmental parameters including seafloor depth, season and oceanographic conditions. Our initial analysis of 3 weeks of vertical channel data in September, January, and May 2012-2013 shows that noise increase significantly moving from the continental shelf to deeper water. Noise levels at a given depth vary with instrument type but further analysis is required to determine whether this reflects variations in instrumental noise and ground coupling noise or errors in the scaling of the instrument response. There is also a strong seasonality in recorded noise levels at some frequencies, with winter noise levels exceeding spring and fall noise levels by up to 10 decibels in both the microseism band and in the fin whale calling band (15-20 Hz). In contrast, the seasonal noise level in the local seismicity band for a given instrument type and location shows smaller noise variation

  5. High-frequency Audiometry Hearing on Monitoring of Individuals Exposed to Occupational Noise: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Antonioli, Cleonice Aparecida Silva

    2015-12-01

    Full Text Available Introduction The literature reports on high-frequency audiometry as one of the exams used on hearing monitoring of individuals exposed to high sound pressure in their work environment, due to the method́s greater sensitivity in early identification of hearing loss caused by noise. The frequencies that compose the exam are generally between 9 KHz and 20KHz, depending on the equipment. Objective This study aims to perform a retrospective and secondary systematic revision of publications on high-frequency audiometry on hearing monitoring of individuals exposed to occupational noise. Data Synthesis This systematic revision followed the methodology proposed in the Cochrane Handbook, focusing on the question: “Is High-frequency Audiometry more sensitive than Conventional Audiometry in the screening of early hearing loss individuals exposed to occupational noise?” The search was based on PubMed data, Base, Web of Science (Capes, Biblioteca Virtual em Saúde (BVS, and in the references cited in identified and selected articles. The search resulted in 6059 articles in total. Of these, only six studies were compatible with the criteria proposed in this study. Conclusion The performed meta-analysis does not definitively answer the study's proposed question. It indicates that the 16 KHz high frequency audiometry (HFA frequency is sensitive in early identification of hearing loss in the control group (medium difference (MD = 8.33, as well as the 4 KHz frequency (CA, this one being a little less expressive (MD = 5.72. Thus, others studies are necessary to confirm the HFA importance for the early screening of hearing loss on individuals exposed to noise at the workplace.

  6. The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program : Bell Helicopter Textron accomplishments

    Science.gov (United States)

    Cronkhite, James D.

    1993-01-01

    Accurate vibration prediction for helicopter airframes is needed to 'fly from the drawing board' without costly development testing to solve vibration problems. The principal analytical tool for vibration prediction within the U.S. helicopter industry is the NASTRAN finite element analysis. Under the NASA DAMVIBS research program, Bell conducted NASTRAN modeling, ground vibration testing, and correlations of both metallic (AH-1G) and composite (ACAP) airframes. The objectives of the program were to assess NASTRAN airframe vibration correlations, to investigate contributors to poor agreement, and to improve modeling techniques. In the past, there has been low confidence in higher frequency vibration prediction for helicopters that have multibladed rotors (three or more blades) with predominant excitation frequencies typically above 15 Hz. Bell's findings under the DAMVIBS program, discussed in this paper, included the following: (1) accuracy of finite element models (FEM) for composite and metallic airframes generally were found to be comparable; (2) more detail is needed in the FEM to improve higher frequency prediction; (3) secondary structure not normally included in the FEM can provide significant stiffening; (4) damping can significantly affect phase response at higher frequencies; and (5) future work is needed in the areas of determination of rotor-induced vibratory loads and optimization.

  7. CAA modeling of helicopter main rotor in hover

    Science.gov (United States)

    Kusyumov, Alexander N.; Mikhailov, Sergey A.; Batrakov, Andrey S.; Kusyumov, Sergey A.; Barakos, George

    In this work rotor aeroacoustics in hover is considered. Farfield observers are used and the nearfield flow parameters are obtained using the in house HMB and commercial Fluent CFD codes (identical hexa-grids are used for both solvers). Farfield noise at a remote observer position is calculated at post processing stage using FW-H solver implemented in Fluent and HMB. The main rotor of the UH-1H helicopter is considered as a test case for comparison to experimental data. The sound pressure level is estimated for different rotor blade collectives and observation angles.

  8. High frequency measurements of shot noise suppression in atomic-scale metal contacts

    Science.gov (United States)

    Wheeler, Patrick J.; Evans, Kenneth; Russom, Jeffrey; King, Nicholas; Natelson, Douglas

    2009-03-01

    Shot noise provides a means of assessing the number and transmission coefficients of transmitting channels in atomic- and molecular-scale junctions. Previous experiments at low temperatures in metal and semiconductor point contacts have demonstrated the expected suppression of shot noise when junction conductance is near an integer multiple of the conductance quantum, G0≡2e^2/h. Using high frequency techniques, we demonstrate the high speed acquisition of such data at room temperature in mechanical break junctions. In clean Au contacts conductance histograms with clear peaks at G0, 2G0, and 3G0 are acquired within hours, and histograms of simultaneous measurements of the shot noise show clear suppression at those conductance values. We describe the dependence of the noise on bias voltage and analyze the noise vs. conductance histograms in terms of a model that averages over transmission coefficients.

  9. MD1271: Effect of low frequency noise on the evolution of the emittance and halo population

    CERN Document Server

    Fitterer, Miriam; Valishev, Alexander; Bruce, Roderik; Hofle, Wolfgang; Hostettler, Michi; Papadopoulou, Parthena Stefania; Papotti, Giulia; Papaphilippou, Yannis; Pellegrini, Dario; Trad, Georges; Valuch, Daniel; Valentino, Gianluca; Wagner, Joschka; Cai, Xu; CERN. Geneva. ATS Department

    2018-01-01

    For the High Luminosity upgrade the β* in IR1 and IR5 will be further reduced compared to the current LHC. As the β* decreases the β-functions in the inner triplet (IT) increase resulting in a higher sensitivity of the HL-LHC to ground motion in the IT region or to increases of the low frequency noise. Noise can in general lead to emittance growth and higher halo population and diffusion rate. However, it is usually assumed in the literature that only frequencies close to the betatron frequencies and sidebands have an effect on the emittance and tail population. To test this theory, an MD was carried out to observe if also low frequency noise can lead to emittance growth and stronger halo population and diffusion. This MD conducted on 24.08.2016 follows a previous MD on 05.11.2015/06.11.2015

  10. Nanoscale MOS devices: device parameter fluctuations and low-frequency noise (Invited Paper)

    Science.gov (United States)

    Wong, Hei; Iwai, Hiroshi; Liou, J. J.

    2005-05-01

    It is well-known in conventional MOS transistors that the low-frequency noise or flicker noise is mainly contributed by the trapping-detrapping events in the gate oxide and the mobility fluctuation in the surface channel. In nanoscale MOS transistors, the number of trapping-detrapping events becomes less important because of the large direct tunneling current through the ultrathin gate dielectric which reduces the probability of trapping-detrapping and the level of leakage current fluctuation. Other noise sources become more significant in nanoscale devices. The source and drain resistance noises have greater impact on the drain current noise. Significant contribution of the parasitic bipolar transistor noise in ultra-short channel and channel mobility fluctuation to the channel noise are observed. The channel mobility fluctuation in nanoscale devices could be due to the local composition fluctuation of the gate dielectric material which gives rise to the permittivity fluctuation along the channel and results in gigantic channel potential fluctuation. On the other hand, the statistical variations of the device parameters across the wafer would cause the noise measurements less accurate which will be a challenge for the applicability of analytical flicker noise model as a process or device evaluation tool for nanoscale devices. Some measures for circumventing these difficulties are proposed.

  11. [Helicopters and medical first aid units. Role of Medical First Aid Unit 94].

    Science.gov (United States)

    Huguenard, P; Hanote, P; Metrot, J

    1975-10-01

    For the transport of injured and sick patients, the helicopter (even the mono-turbine type) offers greater advantages when compared to land vehicles: - more comfort (less vibrations, accelerations and decelerations); - a greater speed, that is to say a 61 p. 100 gain of time upon the distance and a gain from 29 up to 44 p. 100 upon the total amount of time taken up by each transport. This gain in time enables valuable specialised medical teams to be more available: - more precise time-tables than by land which namely makes it easier to receive the patients. The drawbacks are linked with the risks which are not nonexistent but rather less serious than by land. The drawbacks also depend upon the weather-conditions (although this factor does not matter much in our area), upon nuisances such as the noise (which is more important but far more transitory than by ambulance) and chiefly upon the cost of air-transport. In fact, the mean cost of a medical land transport amounts roughly to one thousand Francs, a quarter of which only does represent the actual cost of medical aid. For a similar transport, the helicopter comes to a 47 mns flight. There are several ways of making good use of a helicopter. Practical problems have been solved. The "SAMU 94" experience goes back to 1973 and includes over 500 transports by helicopter essentially with the help of the teams and the helicopters belonging to the Paris Base (Civil Protection and the Fire-Brigade). For flights over urban areas, it is to be desired in the future that only twin-turbine helicopters should be used.

  12. Spots of Seismic Danger Extracted by Properties of Low-Frequency Seismic Noise

    Science.gov (United States)

    Lyubushin, Alexey

    2013-04-01

    A new method of seismic danger estimate is presented which is based on using properties of low-frequency seismic noise from broadband networks. Two statistics of noise waveforms are considered: multi-fractal singularity spectrum support width D and minimum normalized entropy En of squared orthogonal wavelet coefficients. The maps of D and En are plotted in the moving time window. Let us call the regions extracted by low values of D and high values of En as "spots of seismic danger" - SSD. Mean values of D and En are strongly anti-correlated - that is why statistics D and En extract the same SSD. Nevertheless their mutual considering is expedient because these parameters are based on different approaches. The physical mechanism which underlies the method is consolidation of small blocks of the Earth's crust into the large one before the strong earthquake. This effect has a consequence that seismic noise does not include spikes which are connected with mutual movements of small blocks. The absence of irregular spikes in the noise follows the decreasing of D and increasing of entropy En. The stability in space and size of the SSD provides estimates of the place and energy of the probable future earthquake. The increasing or decreasing of SSD size and minimum or maximum values of D and En within SSD allows estimate the trend of seismic danger. The method is illustrating by the analysis of seismic noise from broadband seismic network F-net in Japan [1-5]. Statistically significant decreasing of D allowed a hypothesis about approaching Japan to a future seismic catastrophe to be formulated at the middle of 2008. The peculiarities of correlation coefficient estimate within 1 year time window between median values of D and generalized Hurst exponent allowed to make a decision that starting from July of 2010 Japan come to the state of waiting strong earthquake [3]. The method extracted a huge SSD near Japan which includes the region of future Tohoku mega-earthquake and the

  13. Decoherence of coupled Josephson charge qubits due to partially correlated low-frequency noise

    International Nuclear Information System (INIS)

    Hu, Yong; Zhou, Zheng-Wei; Cai, Jian-Ming; Guo, Guang-Can

    2007-01-01

    Josephson charge qubits are promising candidates for scalable quantum computing. However, their performances are strongly degraded by decoherence due to low-frequency background noise, typically with a 1/f spectrum. In this paper, we investigate the decoherence process of two Cooper pair boxes (CPBs) coupled via a capacitor. Going beyond the common and uncorrelated noise models and the Bloch-Redfield formalism of previous works, we study the coupled system's quadratic dephasing under the condition of partially correlated noise sources. Based on reported experiments and generally accepted noise mechanisms, we introduce a reasonable assumption for the noise correlation, with which the calculation of multiqubit decoherence can be simplified to a problem on the single-qubit level. For the conventional Gaussian 1/f noise case, our results demonstrate that the quadratic dephasing rates are not very sensitive to the spatial correlation of the noises. Furthermore, we discuss the feasibility and efficiency of dynamical decoupling in the coupled CPBs

  14. Maximizing noise energy for noise-masking studies.

    Science.gov (United States)

    Jules Étienne, Cédric; Arleo, Angelo; Allard, Rémy

    2017-08-01

    Noise-masking experiments are widely used to investigate visual functions. To be useful, noise generally needs to be strong enough to noticeably impair performance, but under some conditions, noise does not impair performance even when its contrast approaches the maximal displayable limit of 100 %. To extend the usefulness of noise-masking paradigms over a wider range of conditions, the present study developed a noise with great masking strength. There are two typical ways of increasing masking strength without exceeding the limited contrast range: use binary noise instead of Gaussian noise or filter out frequencies that are not relevant to the task (i.e., which can be removed without affecting performance). The present study combined these two approaches to further increase masking strength. We show that binarizing the noise after the filtering process substantially increases the energy at frequencies within the pass-band of the filter given equated total contrast ranges. A validation experiment showed that similar performances were obtained using binarized-filtered noise and filtered noise (given equated noise energy at the frequencies within the pass-band) suggesting that the binarization operation, which substantially reduced the contrast range, had no significant impact on performance. We conclude that binarized-filtered noise (and more generally, truncated-filtered noise) can substantially increase the energy of the noise at frequencies within the pass-band. Thus, given a limited contrast range, binarized-filtered noise can display higher energy levels than Gaussian noise and thereby widen the range of conditions over which noise-masking paradigms can be useful.

  15. Observations of a low-frequency cutoff in magnetospheric radio noise received on Imp 6

    International Nuclear Information System (INIS)

    Vesecky, J.F.; Frankel, M.S.

    1975-01-01

    Observations of magnetospheric radio noise by the Goddard Space Flight Center radio experiment on the Imp 6 spacecraft have revealed a quasi-continuous component at frequencies between 30 and 110 kHz. When the spacecraft is in the interplanetary medium or the magnetosheath, a low-frequency cutoff often characterizes the otherwise power law (f - /sup alpha/) spectrum of this noise. A positive correlation is observed between this cutoff frequency f) and the solar wind plasma frequency f), deduced from the Los Alamos plasma experiment on the same spacecraft; on the average, f)approx. =1.3f). If one pictures the magnetosheath as a homogeneous layer of plasma lying between the radio noise source (at Lapprox.4--7) and the spacecraft in the interplanetary medium and having an electron density 2--3 times that of the solar wind, then one will expect f)approximately-greater-than2 1 / 2 f)--3 1 / 2 f). Within the limits of experimental error this simple model correctly accounts for the observations. A rough calculation shows that radio wave scattering by electron density fluctuations in the magnetosheath plasma is likely to be important for frequencies below 200 kHz. However, the effects of such scattering cannot be detected in the Imp 6 observations considered here because neither concurrent measurements nor sufficiently accurate models of the necessar []magnetosheath plasma parameters are presently available

  16. Frequency response function of motors for switching noise energy with a new experimental approach

    International Nuclear Information System (INIS)

    Kim, Hyunsu; Yoon, Jong-Yun

    2017-01-01

    Switching energy in electrical vehicles can create serious noise from the motors. However, the characteristics of switching noise in vehicle motors are not clear due to the complexity of measuring them. This study proposes a new experimental method to investigate the switching noise energy of a vehicle motor based on frequency response functions. A function generator-amplifier system is used to gen- erate the switching energy instead of the complex battery-inverter system that has previously been used to examine the noise energy characteristics. Even though newly adapted experimental method is simple, the switching noise energy was explicitly investigated under various input signals. Thus, this simple new method can be used to investigate the dynamic characteristics of noise energy in a vehicle motor

  17. Frequency response function of motors for switching noise energy with a new experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunsu [Ensemble Center for Automotive Research, Seoul (Korea, Republic of); Yoon, Jong-Yun [Incheon National University, Incheon (Korea, Republic of)

    2017-06-15

    Switching energy in electrical vehicles can create serious noise from the motors. However, the characteristics of switching noise in vehicle motors are not clear due to the complexity of measuring them. This study proposes a new experimental method to investigate the switching noise energy of a vehicle motor based on frequency response functions. A function generator-amplifier system is used to gen- erate the switching energy instead of the complex battery-inverter system that has previously been used to examine the noise energy characteristics. Even though newly adapted experimental method is simple, the switching noise energy was explicitly investigated under various input signals. Thus, this simple new method can be used to investigate the dynamic characteristics of noise energy in a vehicle motor.

  18. Combat Rescue Helicopter (CRH)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-479 Combat Rescue Helicopter (CRH) As of FY 2017 President’s Budget Defense Acquisition...Name Combat Rescue Helicopter (CRH) DoD Component Air Force Responsible Office References SAR Baseline (Development Estimate) Defense Acquisition... Helicopter (CRH) system will provide Personnel Recovery (PR) forces with a vertical takeoff and landing aircraft that is quickly deployable and

  19. Low-Frequency Noise in High-T Superconductor Josephson Junctions, Squids, and Magnetometers.

    Science.gov (United States)

    Miklich, Andrew Hostetler

    The design and performance of high-T_ {rm c} dc superconducting quantum interference devices (SQUIDs), the junctions that comprise them, and magnetometers made from them are described, with special attention paid to sources of 1/f noise. Biepitaxial junctions are found to have large levels of critical current fluctuations which make them unsuitable for low-noise SQUIDs. This noise suggests a poorly connected interface at the grain boundary junction. SQUIDs from bicrystal junctions, in contrast, have levels of critical current noise that are controllable using bias current reversal techniques which leave the noise white down to frequencies of a few Hz. A SQUID with an energy resolution of 1.5times 10^{-30} J Hz^ {-1} at 1 Hz is reported. Magnetometers in which a (9 mm)^2 pickup loop is directly coupled to a SQUID body have achieved field resolutions of 93 fT Hz^{-1/2} down to frequencies below 1 Hz, improving to 39 fT Hz^{-1/2} at 1 Hz with the addition of a 50 mm-diameter single-turn flux transformer. Although the performance of these devices is sufficient for single -channel biomagnetometry or geophysical studies, their relatively poor coupling to the pickup loop makes it difficult to satisfy the competing goals of high field resolution and small detector size necessary for multichannel biomagnetic imaging. Improved coupling is demonstrated by the use of multiturn-input-coil flux transformers, and a resolution of 35 fT Hz^{-1/2} in the white noise region is reported with a (10 mm) ^2 pickup loop. However, additional 1/f noise from the processed multilayer structures in the transformer limits the resolution at 1 Hz to 114 fT Hz^ {-1/2}. High-T_{ rm c} SQUIDs are shown to exhibit additional 1/f noise when they are cooled in a nonzero static magnetic field because of the additional flux vortices trapped in the film, with the noise power at 1 Hz typically increasing by a factor of 10-20 in a field of 0.05 mT (0.5 G). Finally, a SQUID-based voltmeter with a resolution

  20. 46 CFR 108.653 - Helicopter facilities.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...

  1. Fabricating off-diagonal components of frequency-dependent linear and nonlinear polarizabilities of doped quantum dots by Gaussian white noise

    International Nuclear Information System (INIS)

    Saha, Surajit; Ganguly, Jayanta; Ghosh, Manas

    2015-01-01

    We make a rigorous exploration of the profiles of off-diagonal components of frequency-dependent linear (α xy , α yx ), first nonlinear (β xyy , β yxx ), and second nonlinear (γ xxyy , γ yyxx ) polarizabilities of quantum dots driven by Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been applied additively and multiplicatively to the system. An external oscillatory electric field has also been applied to the system. Gradual variations of external frequency, dopant location, and noise strength give rise to interesting features of polarizability components. The observations reveal intricate interplay between noise strength and dopant location which designs the polarizability profiles. Moreover, the mode of application of noise also modulates the polarizability components. Interestingly, in case of additive noise the noise strength has no role on polarizabilities whereas multiplicative noise invites greater delicacy in them. The said interplay provides a rather involved framework to attain stable, enhanced, and often maximized output of linear and nonlinear polarizabilities. - Highlights: • Linear and nonlinear polarizabilities of quantum dot are studied. • The polarizability components are off-diagonal and frequency-dependent. • Quantum dot is doped with a repulsive impurity. • Doped system is subject to Gaussian white noise. • Mode of noise application affects polarizabilities

  2. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks

    Energy Technology Data Exchange (ETDEWEB)

    François, B. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l’Epitaphe, 25030 Besançon (France); INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Calosso, C. E.; Micalizio, S. [INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Abdel Hafiz, M.; Boudot, R. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l’Epitaphe, 25030 Besançon (France)

    2015-09-15

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be −109 and −141 dB rad{sup 2}/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is −105 and −138 dB rad{sup 2}/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10{sup −14} for the Cs cell clock and 2 × 10{sup −14} for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10{sup −15} level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  3. Helicopters for the future

    Science.gov (United States)

    Ward, J. F.

    1984-01-01

    Technology needed to provide the basis for creating a widening rotary wing market include: well defined and proven design; reductions in noise, vibration, and fuel consumption; improvement of flying and ride quality; better safety; reliability; maintainability; and productivity. Unsteady transonic flow, yawed flow, dynamic stall, and blade vortex interaction are some of the problems faced by scientists and engineers in the helicopter industry with rotorcraft technology seen as an important development for future advanced high speed vehicle configurations. Such aircraft as the Boeing Vertol medium lift Model 360 composite aircraft, the Sikorsky Advancing Blade Concept (ABC) aircraft, the Bell Textron XV-15 Tilt Rotor Aircraft, and the X-wing rotor aircraft are discussed in detail. Even though rotorcraft technology has become an integral part of the military scene, the potential market for its civil applications has not been fully developed.

  4. 46 CFR 108.486 - Helicopter decks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter decks. 108.486 Section 108.486 Shipping COAST... Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.486 Helicopter decks. At least two of the accesses to the helicopter landing deck must each have a fire hydrant on the unit's...

  5. Low phase noise microwave extraction from femtosecond laser by frequency conversion pair and IF-domain processing.

    Science.gov (United States)

    Dai, Yitang; Cen, Qizhuang; Wang, Lei; Zhou, Yue; Yin, Feifei; Dai, Jian; Li, Jianqiang; Xu, Kun

    2015-12-14

    Extraction of a microwave component from a low-time-jitter femtosecond pulse train has been attractive for current generation of spectrally pure microwave. In order to avoid the transfer from the optical amplitude noise to microwave phase noise (AM-PM), we propose to down-convert the target component to intermediate frequency (IF) before the opto-electronic conversion. Due to the much lower carrier frequency, the AM-PM is greatly suppressed. The target is then recovered by up-conversion with the same microwave local oscillation (LO). As long as the time delay of the second LO matches that of the IF carrier, the phase noise of the LO shows no impact on the extraction process. The residual noise of the proposed extraction is analyzed in theory, which is also experimentally demonstrated as averagely around -155 dBc/Hz under offset frequency larger than 1 kHz when 10-GHz tone is extracted from a home-made femtosecond fiber laser. Large tunable extraction from 1 GHz to 10 GHz is also reported.

  6. Simulation of low frequency noise from a downwind wind turbine rotor

    DEFF Research Database (Denmark)

    Madsen Aagaard, Helge; Johansen, Jeppe; Sørensen, Niels N.

    2007-01-01

    in the period from around 1980 to 1990. One of the common characteristics of this low frequency noise, emerging from analysis of the phenomenon, was that the sound pressure level is strongly varying in time. We have investigated this phenomenon using a model package by which the low frequency noise...... to the aero acoustic model. The results for a 5 MW two-bladed turbine with a downwind rotor showed an increase in the sound pressure level of 5-20 dB due to the unsteadiness in the wake caused mainly by vortex shedding. However, in some periods the sound pressure level can increase additionally 0-10 dB when...... the blades directly pass through the discrete shed vortices behind the tower. The present numerical results strongly confirm the experiences with full scale turbines showing big variations of sound pressure level in time due to the wake unsteadiness, as well as a considerable increase in sound pressure level...

  7. Frequency tracking and variable bandwidth for line noise filtering without a reference.

    Science.gov (United States)

    Kelly, John W; Collinger, Jennifer L; Degenhart, Alan D; Siewiorek, Daniel P; Smailagic, Asim; Wang, Wei

    2011-01-01

    This paper presents a method for filtering line noise using an adaptive noise canceling (ANC) technique. This method effectively eliminates the sinusoidal contamination while achieving a narrower bandwidth than typical notch filters and without relying on the availability of a noise reference signal as ANC methods normally do. A sinusoidal reference is instead digitally generated and the filter efficiently tracks the power line frequency, which drifts around a known value. The filter's learning rate is also automatically adjusted to achieve faster and more accurate convergence and to control the filter's bandwidth. In this paper the focus of the discussion and the data will be electrocorticographic (ECoG) neural signals, but the presented technique is applicable to other recordings.

  8. The subjective effect of low frequency content in road traffic noise.

    Science.gov (United States)

    Torija, Antonio J; Flindell, Ian H

    2015-01-01

    Based on subjective listening trials, Torija and Flindell [J. Acoust. Soc. Am. 135, 1-4 (2014)] observed that low frequency content in typical urban main road traffic noise appeared to make a smaller contribution to reported annoyance than might be inferred from its objective or physical dominance. This paper reports a more detailed study which was aimed at (i) identifying the difference in sound levels at which low frequency content becomes subjectively dominant over mid and high frequency content and (ii) investigating the relationship between loudness and annoyance under conditions where low frequency content is relatively more dominant, such as indoors where mid and high frequency content is reduced. The results suggested that differences of at least +30 dB between the low frequency and the mid/high frequency content are needed for changes in low frequency content to have as much subjective effect as equivalent changes in mid and high frequency content. This suggests that common criticisms of the A-frequency weighting based on a hypothesized excessive downweighting of the low frequency content may be relatively unfounded in this application area.

  9. Helicopter electromagnetic and magnetic geophysical survey data, Hunton anticline, south-central Oklahoma

    Science.gov (United States)

    Smith, Bruce D.; Smith, David V.; Deszcz-Pan, Maryla; Blome, Charles D.; Hill, Patricia

    2011-01-01

    This report is a digital data release for multiple geophysical surveys conducted in the Hunton anticline area of south-central Oklahoma. The helicopter electromagnetic and magnetic surveys were flown on March 16–17, 2007, in four areas of the Hunton anticline in south-central Oklahoma. The objective of this project is to improve the understanding of the geohydrologic framework of the Arbuckle-Simpson aquifer. The electromagnetic sensor for the helicopter electromagnetic survey consisted of six different transmitter-receiver orientations that measured the earth's electrical response at six distinct frequencies from approximately 500 Hertz to approximately 115,000 Hertz. The electromagnetic measurements were converted to electrical resistivity values, which were gridded and plotted on georeferenced maps. The map from each frequency represents a different depth of investigation for each area. The range of subsurface investigation is comparable to the depth of shallow groundwater. The four areas selected for the helicopter electromagnetic study, blocks A–D, have different geologic and hydrologic settings. Geophysical and hydrologic information from U.S. Geological Survey studies are being used by modelers and resource managers to develop groundwater resource plans for the Arbuckle-Simpson aquifer.

  10. A hybrid SEA/modal technique for modeling structural-acoustic interior noise in rotorcraft.

    Science.gov (United States)

    Jayachandran, V; Bonilha, M W

    2003-03-01

    This paper describes a hybrid technique that combines Statistical Energy Analysis (SEA) predictions for structural vibration with acoustic modal summation techniques to predict interior noise levels in rotorcraft. The method was applied for predicting the sound field inside a mock-up of the interior panel system of the Sikorsky S-92 helicopter. The vibration amplitudes of the frame and panel systems were predicted using a detailed SEA model and these were used as inputs to the model of the interior acoustic space. The spatial distribution of the vibration field on individual panels, and their coupling to the acoustic space were modeled using stochastic techniques. Leakage and nonresonant transmission components were accounted for using space-averaged values obtained from a SEA model of the complete structural-acoustic system. Since the cabin geometry was quite simple, the modeling of the interior acoustic space was performed using a standard modal summation technique. Sound pressure levels predicted by this approach at specific microphone locations were compared with measured data. Agreement within 3 dB in one-third octave bands above 40 Hz was observed. A large discrepancy in the one-third octave band in which the first acoustic mode is resonant (31.5 Hz) was observed. Reasons for such a discrepancy are discussed in the paper. The developed technique provides a method for modeling helicopter cabin interior noise in the frequency mid-range where neither FEA nor SEA is individually effective or accurate.

  11. Low- and high-frequency cortical brain oscillations reflect dissociable mechanisms of concurrent speech segregation in noise.

    Science.gov (United States)

    Yellamsetty, Anusha; Bidelman, Gavin M

    2018-04-01

    Parsing simultaneous speech requires listeners use pitch-guided segregation which can be affected by the signal-to-noise ratio (SNR) in the auditory scene. The interaction of these two cues may occur at multiple levels within the cortex. The aims of the current study were to assess the correspondence between oscillatory brain rhythms and determine how listeners exploit pitch and SNR cues to successfully segregate concurrent speech. We recorded electrical brain activity while participants heard double-vowel stimuli whose fundamental frequencies (F0s) differed by zero or four semitones (STs) presented in either clean or noise-degraded (+5 dB SNR) conditions. We found that behavioral identification was more accurate for vowel mixtures with larger pitch separations but F0 benefit interacted with noise. Time-frequency analysis decomposed the EEG into different spectrotemporal frequency bands. Low-frequency (θ, β) responses were elevated when speech did not contain pitch cues (0ST > 4ST) or was noisy, suggesting a correlate of increased listening effort and/or memory demands. Contrastively, γ power increments were observed for changes in both pitch (0ST > 4ST) and SNR (clean > noise), suggesting high-frequency bands carry information related to acoustic features and the quality of speech representations. Brain-behavior associations corroborated these effects; modulations in low-frequency rhythms predicted the speed of listeners' perceptual decisions with higher bands predicting identification accuracy. Results are consistent with the notion that neural oscillations reflect both automatic (pre-perceptual) and controlled (post-perceptual) mechanisms of speech processing that are largely divisible into high- and low-frequency bands of human brain rhythms. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Modeling, Control and Coordination of Helicopter Systems

    CERN Document Server

    Ren, Beibei; Chen, Chang; Fua, Cheng-Heng; Lee, Tong Heng

    2012-01-01

    Modeling, Control and Coordination of Helicopter Systems provides a comprehensive treatment of helicopter systems, ranging from related nonlinear flight dynamic modeling and stability analysis to advanced control design for single helicopter systems, and also covers issues related to the coordination and formation control of multiple helicopter systems to achieve high performance tasks. Ensuring stability in helicopter flight is a challenging problem for nonlinear control design and development. This book is a valuable reference on modeling, control and coordination of helicopter systems,providing readers with practical solutions for the problems that still plague helicopter system design and implementation. Readers will gain a complete picture of helicopters at the systems level, as well as a better understanding of the technical intricacies involved. This book also: Presents a complete picture of modeling, control and coordination for helicopter systems Provides a modeling platform for a general class of ro...

  13. Helicopter TEM parameters analysis and system optimization based on time constant

    Science.gov (United States)

    Xiao, Pan; Wu, Xin; Shi, Zongyang; Li, Jutao; Liu, Lihua; Fang, Guangyou

    2018-03-01

    Helicopter transient electromagnetic (TEM) method is a kind of common geophysical prospecting method, widely used in mineral detection, underground water exploration and environment investigation. In order to develop an efficient helicopter TEM system, it is necessary to analyze and optimize the system parameters. In this paper, a simple and quantitative method is proposed to analyze the system parameters, such as waveform, power, base frequency, measured field and sampling time. A wire loop model is used to define a comprehensive 'time constant domain' that shows a range of time constant, analogous to a range of conductance, after which the characteristics of the system parameters in this domain is obtained. It is found that the distortion caused by the transmitting base frequency is less than 5% when the ratio of the transmitting period to the target time constant is greater than 6. When the sampling time window is less than the target time constant, the distortion caused by the sampling time window is less than 5%. According to this method, a helicopter TEM system, called CASHTEM, is designed, and flight test has been carried out in the known mining area. The test results show that the system has good detection performance, verifying the effectiveness of the method.

  14. 78 FR 1730 - Airworthiness Directives; Bell Helicopter Textron Inc. Helicopters

    Science.gov (United States)

    2013-01-09

    ... Helicopter Textron Inc. (BHTI) Model 205A, 205A-1, and 205B helicopters with certain starter/generator power... that may lead to a fire in the starter/generator, smoke in the cockpit that reduces visibility, and... Office, M-30, West Building Ground Floor, Room W12- 140, 1200 New Jersey Avenue SE., Washington, DC 20590...

  15. Health-based audible noise guidelines account for infrasound and low-frequency noise produced by wind turbines.

    Science.gov (United States)

    Berger, Robert G; Ashtiani, Payam; Ollson, Christopher A; Whitfield Aslund, Melissa; McCallum, Lindsay C; Leventhall, Geoff; Knopper, Loren D

    2015-01-01

    Setbacks for wind turbines have been established in many jurisdictions to address potential health concerns associated with audible noise. However, in recent years, it has been suggested that infrasound (IS) and low-frequency noise (LFN) could be responsible for the onset of adverse health effects self-reported by some individuals living in proximity to wind turbines, even when audible noise limits are met. The purpose of this paper was to investigate whether current audible noise-based guidelines for wind turbines account for the protection of human health, given the levels of IS and LFN typically produced by wind turbines. New field measurements of indoor IS and outdoor LFN at locations between 400 and 900 m from the nearest turbine, which were previously underrepresented in the scientific literature, are reported and put into context with existing published works. Our analysis showed that indoor IS levels were below auditory threshold levels while LFN levels at distances >500 m were similar to background LFN levels. A clear contribution to LFN due to wind turbine operation (i.e., measured with turbines on in comparison to with turbines off) was noted at a distance of 480 m. However, this corresponded to an increase in overall audible sound measures as reported in dB(A), supporting the hypothesis that controlling audible sound produced by normally operating wind turbines will also control for LFN. Overall, the available data from this and other studies suggest that health-based audible noise wind turbine siting guidelines provide an effective means to evaluate, monitor, and protect potential receptors from audible noise as well as IS and LFN.

  16. Health-Based Audible Noise Guidelines Account for Infrasound and Low-Frequency Noise Produced by Wind Turbines

    Science.gov (United States)

    Berger, Robert G.; Ashtiani, Payam; Ollson, Christopher A.; Whitfield Aslund, Melissa; McCallum, Lindsay C.; Leventhall, Geoff; Knopper, Loren D.

    2015-01-01

    Setbacks for wind turbines have been established in many jurisdictions to address potential health concerns associated with audible noise. However, in recent years, it has been suggested that infrasound (IS) and low-frequency noise (LFN) could be responsible for the onset of adverse health effects self-reported by some individuals living in proximity to wind turbines, even when audible noise limits are met. The purpose of this paper was to investigate whether current audible noise-based guidelines for wind turbines account for the protection of human health, given the levels of IS and LFN typically produced by wind turbines. New field measurements of indoor IS and outdoor LFN at locations between 400 and 900 m from the nearest turbine, which were previously underrepresented in the scientific literature, are reported and put into context with existing published works. Our analysis showed that indoor IS levels were below auditory threshold levels while LFN levels at distances >500 m were similar to background LFN levels. A clear contribution to LFN due to wind turbine operation (i.e., measured with turbines on in comparison to with turbines off) was noted at a distance of 480 m. However, this corresponded to an increase in overall audible sound measures as reported in dB(A), supporting the hypothesis that controlling audible sound produced by normally operating wind turbines will also control for LFN. Overall, the available data from this and other studies suggest that health-based audible noise wind turbine siting guidelines provide an effective means to evaluate, monitor, and protect potential receptors from audible noise as well as IS and LFN. PMID:25759808

  17. CAA modeling of helicopter main rotor in hover

    Directory of Open Access Journals (Sweden)

    Kusyumov Alexander N.

    2017-01-01

    Full Text Available In this work rotor aeroacoustics in hover is considered. Farfield observers are used and the nearfield flow parameters are obtained using the in house HMB and commercial Fluent CFD codes (identical hexa-grids are used for both solvers. Farfield noise at a remote observer position is calculated at post processing stage using FW–H solver implemented in Fluent and HMB. The main rotor of the UH-1H helicopter is considered as a test case for comparison to experimental data. The sound pressure level is estimated for different rotor blade collectives and observation angles.

  18. Low-frequency noise in high-(Tc) superconductor Josephson junctions, SQUIDs, and magnetometers

    Science.gov (United States)

    Miklich, A. H.

    1994-05-01

    Design and performance of high-T(sub c) dc superconducting quantum interference devices (SQUID's), junctions that comprise them, and magnetometers made from them are described, with attention to sources of 1/f noise. Biepitaxial junctions are found to have large levels of critical current fluctuations which make them unsuitable for low-noise SQUID's; this suggests a poorly connected interface at the grain boundary junction. SQUID's from bicrystal junctions have levels of critical current noise controllable using bias current reversal techniques which leave the noise white down to frequencies of a few Hz. A SQUID with an energy resolution of 1.5 x 10(exp -30) J Hz(exp -1) at 1 Hz is reported. Magnetometers in which a (9 mm)(exp 2) pickup loop is directly coupled to a SQUID body have achieved field resolutions of 93 fT Hz(exp -1/2) down to frequencies below 1 Hz, improving to 39 fT Hz(exp -1/2) at 1 Hz with the addition of a 50mm-diameter single-turn flux transformer. Poor coupling to pickup loop makes it difficult to satisfy competing goals of high field resolution and small detector size necessary for multichannel biomagnetic imaging. Improved coupling is demonstrated by the use of multiturn-input-coil flux transformers, and a resolution of 35 fT Hz(exp -1/2) in the white noise region is reported with a (10 mm)(exp 2) pickup loop. However, additional 1/f noise from processed multilayer structures in the transformer limits the resolution at 1 Hz to 114 fT Hz(exp -1/2). High-T(sub c) SQUID's exhibit additional 1/f noise when cooled in a nonzero static magnetic field because of additional flux vortices trapped in the film, with the noise power at 1 Hz typically increasing by a factor of 10-20 in a field of 0.05mT (0.5 G). Finally, a SQUID-based voltmeter with a resolution of 9.2 pV Hz(exp -1/2) at 10 Hz (24 pV Hz(exp -1/2) at 1 Hz) is described.

  19. Active Control Of Structure-Borne Noise

    Science.gov (United States)

    Elliott, S. J.

    1994-11-01

    The successful practical application of active noise control requires an understanding of both its acoustic limitations and the limitations of the electrical control strategy used. This paper is concerned with the active control of sound in enclosures. First, a review is presented of the fundamental physical limitations of using loudspeakers to achieve either global or local control. Both approaches are seen to have a high frequency limit, due to either the acoustic modal overlap, or the spatial correlation function of the pressure field. These physical performance limits could, in principle, be achieved with either a feedback or a feedforward control strategy. These strategies are reviewed and the use of adaptive digital filters is discussed for both approaches. The application of adaptive feedforward control in the control of engine and road noise in cars is described. Finally, an indirect approach to the active control of sound is discussed, in which the vibration is suppressed in the structural paths connecting the source of vibration to the enclosure. Two specific examples of this strategy are described, using an active automotive engine mount and the incorporation of actuators into helicopter struts to control gear-meshing tones. In both cases good passive design can minimize the complexity of the active controller.

  20. Noise frame duration, masking potency and whiteness of temporal noise.

    Science.gov (United States)

    Kukkonen, Heljä; Rovamo, Jyrki; Donner, Kristian; Tammikallio, Marja; Raninen, Antti

    2002-09-01

    Because of the limited contrast range, increasing the duration of the noise frame is often the only option for increasing the masking potency of external, white temporal noise. This, however, reduces the high-frequency cutoff beyond which noise is no longer white. This study was conducted to determine the longest noise frame duration that produces the strongest masking effect and still mimics white noise on the detection of sinusoidal flicker. Contrast energy thresholds (E(th)) were measured for flicker at 1.25 to 20 Hz in strong, purely temporal (spatially uniform), additive, external noise. The masking power of white external noise, characterized by its spectral density at zero frequency N0, increases with the duration of the noise frame. For short noise frame durations, E(th) increased in direct proportion to N0, keeping the nominal signal-to-noise ratio [SNR = (E(th)/N0)(0.5)] constant at threshold. The masking effect thus increased with the duration of the noise frame and the noise mimicked white noise. When noise frame duration and N0 increased further, the nominal SNR at threshold started to decrease, indicating that noise no longer mimicked white noise. The minimum number of noise frames per flicker cycle needed to mimic white noise decreased with increasing flicker frequency from 8.3 at 1.25 Hz to 1.6 at 20 Hz. The critical high-frequency cutoff of detection-limiting temporal noise in terms of noise frames per signal cycle depends on the temporal frequency of the signal. This is opposite to the situation in the spatial domain and must be taken into consideration when temporal signals are masked with temporal noise.

  1. Schottky barrier parameters and low frequency noise characteristics of graphene-germanium Schottky barrier diode

    Science.gov (United States)

    Khurelbaatar, Zagarzusem; Kil, Yeon-Ho; Shim, Kyu-Hwan; Cho, Hyunjin; Kim, Myung-Jong; Lee, Sung-Nam; Jeong, Jae-chan; Hong, Hyobong; Choi, Chel-Jong

    2016-03-01

    We investigated the electrical properties of chemical vapor deposition-grown monolayer graphene/n-type germanium (Ge) Schottky barrier diodes (SBD) using current-voltage (I-V) characteristics and low frequency noise measurements. The Schottky barrier parameters of graphene/n-type Ge SBDs, such as Schottky barrier height (VB), ideality factor (n), and series resistance (Rs), were extracted using the forward I-V and Cheung's methods. The VB and n extracted from the forward ln(I)-V plot were found to be 0.63 eV and 1.78, respectively. In contrast, from Cheung method, the VB and n were calculated to be 0.53 eV and 1.76, respectively. Such a discrepancy between the values of VB calculated from the forward I-V and Cheung's methods indicated a deviation from the ideal thermionic emission of graphene/n-type Ge SBD associated with the voltage drop across graphene. The low frequency noise measurements performed at the frequencies in the range of 10 Hz-1 kHz showed that the graphene/n-type Ge SBD had 1/f γ frequency dependence, with γ ranging from 1.09 to 1.12, regardless of applied forward biases. Similar to forward-biased SBDs operating in the thermionic emission mode, the current noise power spectral density of graphene/n-type Ge SBD was linearly proportional to the forward current.

  2. Research Plans for Improving Understanding of Effects of Very Low-Frequency Noise of Heavy Lift Rotorcraft

    Science.gov (United States)

    Fidell, Sanford; Horonieff, Richard D.; Schmitz, Fredric H.

    2010-01-01

    This report reviews the English-language technical literature on infrasonic and low-frequency noise effects; identifies the most salient effects of noise produced by a future large civil tiltrotor aircraft on crew, passengers, and communities near landing areas; and recommends research needed to improve understanding of the effects of such noise on passengers, crew, and residents of areas near landing pads.

  3. Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones

    Directory of Open Access Journals (Sweden)

    Qiulong Yang

    2018-01-01

    Full Text Available Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP and Volunteer Observation System (VOS were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line

  4. Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones

    Science.gov (United States)

    Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli

    2018-01-01

    Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near

  5. Ship noise extends to frequencies used for echolocation by endangered killer whales

    Directory of Open Access Journals (Sweden)

    Scott Veirs

    2016-02-01

    Full Text Available Combining calibrated hydrophone measurements with vessel location data from the Automatic Identification System, we estimate underwater sound pressure levels for 1,582 unique ships that transited the core critical habitat of the endangered Southern Resident killer whales during 28 months between March, 2011, and October, 2013. Median received spectrum levels of noise from 2,809 isolated transits are elevated relative to median background levels not only at low frequencies (20–30 dB re 1 µPa2/Hz from 100 to 1,000 Hz, but also at high frequencies (5–13 dB from 10,000 to 96,000 Hz. Thus, noise received from ships at ranges less than 3 km extends to frequencies used by odontocetes. Broadband received levels (11.5–40,000 Hz near the shoreline in Haro Strait (WA, USA for the entire ship population were 110 ± 7 dB re 1 µPa on average. Assuming near-spherical spreading based on a transmission loss experiment we compute mean broadband source levels for the ship population of 173 ± 7 dB re 1 µPa 1 m without accounting for frequency-dependent absorption. Mean ship speed was 7.3 ± 2.0 m/s (14.1 ± 3.9 knots. Most ship classes show a linear relationship between source level and speed with a slope near +2 dB per m/s (+1 dB/knot. Spectrum, 1/12-octave, and 1/3-octave source levels for the whole population have median values that are comparable to previous measurements and models at most frequencies, but for select studies may be relatively low below 200 Hz and high above 20,000 Hz. Median source spectrum levels peak near 50 Hz for all 12 ship classes, have a maximum of 159 dB re 1 µPa2/Hz @ 1 m for container ships, and vary between classes. Below 200 Hz, the class-specific median spectrum levels bifurcate with large commercial ships grouping as higher power noise sources. Within all ship classes spectrum levels vary more at low frequencies than at high frequencies, and the degree of variability is almost halved for classes that have smaller speed

  6. The Protective Effect of Conditioning on Noise-Induced Hearing Loss Is Frequency-Dependent

    Directory of Open Access Journals (Sweden)

    Akram Pourbakht

    2012-10-01

    Full Text Available We compared the extent of temporary threshold shift (TTS and hair cell loss following high level 4 kHz noise exposure with those preconditioned with moderate level 1 and 4 kHz octave band noise. Fifteen Male albino guinea pigs (300- 350 g in weight were randomly allocated into three groups: those exposed to 4 kHz octave band noise at 102 dB SPL (group 1, n=5; those conditioned with 1 kHz octave band noise at 85 dB SPL, 6 hours per day for 5 days, then exposed to noise (group 2, n=5; those conditioned with 4 kHz octave band noise at 85 dB SPL, then exposed to noise (group 3, n=5. An hour and one week after noise exposure, threshold shifts were evaluated by auditory-evoked brainstem response (ABR and then animals were euthanized for histological evaluation. We found that TTS and cochlear damage caused by noise exposure were significantly reduced by 1 kHz and 4 kHz conditioning (P<0.001. We also showed that 4 kHz protocol attenuates noise- induced TTS but no significant TTS reduction occurred by 1 kHz conditioning. Both protocol protected noise-induced cochlear damage. We concluded that lower tone conditioning could not protect against higher tone temporary noise-induced hearing loss, thus conditioning is a local acting and frequency-dependent phenomenon.

  7. THE EFFECT OF COMPRESSIBILITY FOR DISPLACEMENT NOISE FROM THE HELICOPTER ROTOR

    Directory of Open Access Journals (Sweden)

    B. S. Kritskiy

    2015-01-01

    Full Text Available The problem of noise generation of rotor due to the thickness of blades - displacement noise is considered. The method of calculating the displacement noise, which is based on linear acoustic theory for the changes in the effective thickness of the blade over time due to the compressibility of the flow are described.

  8. Extended high-frequency thresholds in college students: effects of music player use and other recreational noise.

    Science.gov (United States)

    Le Prell, Colleen G; Spankovich, Christopher; Lobariñas, Edward; Griffiths, Scott K

    2013-09-01

    Human hearing is sensitive to sounds from as low as 20 Hz to as high as 20,000 Hz in normal ears. However, clinical tests of human hearing rarely include extended high-frequency (EHF) threshold assessments, at frequencies extending beyond 8000 Hz. EHF thresholds have been suggested for use monitoring the earliest effects of noise on the inner ear, although the clinical usefulness of EHF threshold testing is not well established for this purpose. The primary objective of this study was to determine if EHF thresholds in healthy, young adult college students vary as a function of recreational noise exposure. A retrospective analysis of a laboratory database was conducted; all participants with both EHF threshold testing and noise history data were included. The potential for "preclinical" EHF deficits was assessed based on the measured thresholds, with the noise surveys used to estimate recreational noise exposure. EHF thresholds measured during participation in other ongoing studies were available from 87 participants (34 male and 53 female); all participants had hearing within normal clinical limits (≤25 HL) at conventional frequencies (0.25-8 kHz). EHF thresholds closely matched standard reference thresholds [ANSI S3.6 (1996) Annex C]. There were statistically reliable threshold differences in participants who used music players, with 3-6 dB worse thresholds at the highest test frequencies (10-16 kHz) in participants who reported long-term use of music player devices (>5 yr), or higher listening levels during music player use. It should be possible to detect small changes in high-frequency hearing for patients or participants who undergo repeated testing at periodic intervals. However, the increased population-level variability in thresholds at the highest frequencies will make it difficult to identify the presence of small but potentially important deficits in otherwise normal-hearing individuals who do not have previously established baseline data. American

  9. Low-Frequency Acoustic Noise Mitigation Characteristics of Metamaterials-Inspired Vibro-Impact Structures

    Science.gov (United States)

    Rekhy, Anuj

    Acoustic absorbers like foams, fiberglass or liners have been used commonly in structures for infrastructural, industrial, automotive and aerospace applications to mitigate noise. However, these conventional materials have limited effectiveness to mitigate low-frequency (LF) acoustic waves with frequency less than 400 Hz owing to the need for impractically large mass or volume. LF acoustic waves contribute significantly towards environmental noise pollution as well as unwanted structural responses. Therefore, there is a need to develop lightweight, compact, structurally-integrated solutions to mitigate LF noise in several applications. Inspired by metamaterials, which are man-made structural materials that derive their unique dynamic behavior not just from material constituents but more so from engineered configurations, tuned mass-loaded membranes as vibro-impact attachments on a baseline structure are investigated to determine their performance as a LF acoustic barrier. The hypothesis is that the LF incident waves are up-converted via impact to higher modes in the baseline structure which are far more evanescent and may then be effectively mitigated using conventional means. Such Metamaterials-Inspired Vibro-Impact Structures (MIVIS) could be tuned to match the dominant frequency content of LF acoustic sources in specific applications. Prototype MIVIS unit cells were designed and tested to study the energy transfer mechanism via impact-induced frequency up-conversion, and the consequent sound transmission loss. Structural acoustic simulations were done to predict responses using models based on normal incidence transmission loss tests. Experimental proof-of-concept was achieved and further correlations to simulations were utilized to optimize the energy up-conversion mechanism using parametric studies. Up to 36 dB of sound transmission loss increase is obtained at the anti-resonance frequency (326 Hz) within a tunable LF bandwidth of about 200 Hz while impact

  10. Design of helicopter rotor blades with actuators made of a piezomacrofiber composite

    Science.gov (United States)

    Glukhikh, S.; Barkanov, E.; Kovalev, A.; Masarati, P.; Morandini, M.; Riemenschneider, J.; Wierach, P.

    2008-01-01

    For reducing the vibration and noise of helicopter rotor blades, the method of their controlled twisting by using built-in deformation actuators is employed. In this paper, the influence of various design parameters of the blades, including the location of actuators made of a piezomacrofiber material, on the twist angle is evaluated. The results of a parametric analysis performed allowed us to refine the statement of an optimization problem for the rotor blades.

  11. Masking potency and whiteness of noise at various noise check sizes.

    Science.gov (United States)

    Kukkonen, H; Rovamo, J; Näsänen, R

    1995-02-01

    The masking effect of spatial noise can be increased by increasing either the rms contrast or check size of noise. In this study, the authors investigated the largest noise check size that still mimics the effect of white noise in grating detection and how it depends on the bandwidth and spatial frequency of a grating. The authors measured contrast energy thresholds, E, for vertical cosine gratings at various spatial frequencies and bandwidths. Gratings were embedded in two-dimensional spatial noise. The side length of the square noise checks was varied in the experiments. The spectral density, N(0,0), of white spatial noise at zero frequency was calculated by multiplying the noise check area by the rms contrast of noise squared. The physical signal-to-noise ratio at threshold [E/N(0,0)]0.5 was initially constant but then started to decrease. The largest noise check that still produced a constant physical signal-to-noise ratio at threshold was directly proportional to the spatial frequency. When expressed as a fraction of grating cycle, the largest noise check size depended only on stimulus bandwidth. The smallest number of noise checks per grating cycle needed to mimic the effect of white noise decreased from 4.2 to 2.6 when the number of grating cycles increased from 1 to 64. Spatial noise can be regarded as white in grating detection if there are at least four square noise checks per grating cycle at all spatial frequencies.

  12. 46 CFR 108.489 - Helicopter fueling facilities.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter fueling facilities. 108.489 Section 108.489... AND EQUIPMENT Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.489 Helicopter fueling facilities. (a) Each helicopter fueling facility must have a fire protection system that...

  13. Prediction and analysis of infra and low-frequency noise of upwind horizontal axis wind turbine using statistical wind speed model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gwang-Se; Cheong, Cheolung, E-mail: ccheong@pusan.ac.kr [School of Mechanical Engineering, Pusan National University, Busan, 609-745, Rep. of Korea (Korea, Republic of)

    2014-12-15

    Despite increasing concern about low-frequency noise of modern large horizontal-axis wind turbines (HAWTs), few studies have focused on its origin or its prediction methods. In this paper, infra- and low-frequency (the ILF) wind turbine noise are closely examined and an efficient method is developed for its prediction. Although most previous studies have assumed that the ILF noise consists primarily of blade passing frequency (BPF) noise components, these tonal noise components are seldom identified in the measured noise spectrum, except for the case of downwind wind turbines. In reality, since modern HAWTs are very large, during rotation, a single blade of the turbine experiences inflow with variation in wind speed in time as well as in space, breaking periodic perturbations of the BPF. Consequently, this transforms acoustic contributions at the BPF harmonics into broadband noise components. In this study, the ILF noise of wind turbines is predicted by combining Lowson’s acoustic analogy with the stochastic wind model, which is employed to reproduce realistic wind speed conditions. In order to predict the effects of these wind conditions on pressure variation on the blade surface, unsteadiness in the incident wind speed is incorporated into the XFOIL code by varying incident flow velocities on each blade section, which depend on the azimuthal locations of the rotating blade. The calculated surface pressure distribution is subsequently used to predict acoustic pressure at an observing location by using Lowson’s analogy. These predictions are compared with measured data, which ensures that the present method can reproduce the broadband characteristics of the measured low-frequency noise spectrum. Further investigations are carried out to characterize the IFL noise in terms of pressure loading on blade surface, narrow-band noise spectrum and noise maps around the turbine.

  14. Prediction and analysis of infra and low-frequency noise of upwind horizontal axis wind turbine using statistical wind speed model

    Directory of Open Access Journals (Sweden)

    Gwang-Se Lee

    2014-12-01

    Full Text Available Despite increasing concern about low-frequency noise of modern large horizontal-axis wind turbines (HAWTs, few studies have focused on its origin or its prediction methods. In this paper, infra- and low-frequency (the ILF wind turbine noise are closely examined and an efficient method is developed for its prediction. Although most previous studies have assumed that the ILF noise consists primarily of blade passing frequency (BPF noise components, these tonal noise components are seldom identified in the measured noise spectrum, except for the case of downwind wind turbines. In reality, since modern HAWTs are very large, during rotation, a single blade of the turbine experiences inflow with variation in wind speed in time as well as in space, breaking periodic perturbations of the BPF. Consequently, this transforms acoustic contributions at the BPF harmonics into broadband noise components. In this study, the ILF noise of wind turbines is predicted by combining Lowson’s acoustic analogy with the stochastic wind model, which is employed to reproduce realistic wind speed conditions. In order to predict the effects of these wind conditions on pressure variation on the blade surface, unsteadiness in the incident wind speed is incorporated into the XFOIL code by varying incident flow velocities on each blade section, which depend on the azimuthal locations of the rotating blade. The calculated surface pressure distribution is subsequently used to predict acoustic pressure at an observing location by using Lowson’s analogy. These predictions are compared with measured data, which ensures that the present method can reproduce the broadband characteristics of the measured low-frequency noise spectrum. Further investigations are carried out to characterize the IFL noise in terms of pressure loading on blade surface, narrow-band noise spectrum and noise maps around the turbine.

  15. Effect of dipole-quadrupole Robinson mode coupling upon the beam response to radio-frequency phase noise

    Directory of Open Access Journals (Sweden)

    R. A. Bosch

    2006-09-01

    Full Text Available In an electron storage ring, coupling between dipole and quadrupole Robinson oscillations modifies the spectrum of longitudinal beam oscillations driven by radio-frequency (rf generator phase noise. In addition to the main peak at the resonant frequency of the coupled dipole Robinson mode, another peak occurs at the resonant frequency of the coupled quadrupole mode. To describe these peaks analytically for a quadratic synchrotron potential, we include the dipole and quadrupole modes when calculating the beam response to generator noise. We thereby obtain the transfer function from generator-noise phase modulation to beam phase modulation with and without phase feedback. For Robinson-stable bunches confined in a synchrotron potential with a single minimum, the calculated transfer function agrees with measurements at the Aladdin 800-MeV electron storage ring. The transfer function is useful in evaluating phase feedback that suppresses Robinson oscillations in order to obtain quiet operation of an infrared beam line.

  16. Ocean dynamic noise energy flux directivity in the 400 Hz to 700 Hz frequency band

    Institute of Scientific and Technical Information of China (English)

    Vladimir A. Shchurov; Galina F. Ivanova; Marianna V. Kuyanova; Helen S. Tkachenko

    2007-01-01

    Results of field studies of underwater dynamic noise energy flux directivity at two wind speeds, 6 m/s and 12 m/s, in the 400 Hz to 700 Hz frequency band in the deep open ocean are presented. The measurements were made by a freely drifting telemetric combined system at 500 m depth. Statistical characteristics of the horizontal and vertical dynamic noise energy flux directivity are considered as functions of wind speed and direction. Correlation between the horizontal dynamic noise energy flux direction and that of the wind was determined; a mechanism of the horizontal dynamic noise energy flux generation is related to the initial noise field scattering on ocean surface waves.

  17. Potential health effects of standing waves generated by low frequency noise

    Directory of Open Access Journals (Sweden)

    Stanislav Ziaran

    2013-01-01

    Full Text Available The main aim is to present the available updated knowledge regarding the potential health effects of standing waves generated by low frequency noise (LFN from an open window in a moving car where the negative effects of LFN induced by heating components and/or heating, ventilation and air-conditioning are assessed. Furthermore, the assessment of noise in chosen enclosed spaces, such as rooms, offices, and classrooms, or other LFN sources and their effect on the human being were investigated. These types of noise are responsible for disturbance during relaxation, sleep, mental work, education, and concentration, which may reflect negatively on the comfort and health of the population and on the mental state of people such as scientific staff and students. The assessment points out the most exposed areas, and analyzes the conditions of standing wave generation in these rooms caused by outdoor and/or indoor sources. Measurements were made for three different enclosed spaces (office, flat, and passenger car and sources (traffic specific noise at intersections, noise induced by pipe vibration, and aerodynamic noise and their operating conditions. For the detection of LFN, the A-weighted sound pressure level and vibration were measured and a fast Fourier transform analysis was used. The LFN sources are specified and the direct effects on the human are reported. Finally, this paper suggests the possibilities for the assessment of LFN and some possible measures that can be taken to prevent or reduce them.

  18. Design and Characterization of a 5.2 GHz/2.4 GHz ΣΔ Fractional- N Frequency Synthesizer for Low-Phase Noise Performance

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available This paper presents a complete noise analysis of a ΣΔ -based fractional- N phase-locked loop (PLL based frequency synthesizer. Rigorous analytical and empirical formulas have been given to model various phase noise sources and spurious components and to predict their impact on the overall synthesizer noise performance. These formulas have been applied to an integrated multiband WLAN frequency synthesizer RFIC to demonstrate noise minimization through judicious choice of loop parameters. Finally, predicted and measured phase jitter showed good agreement. For an LO frequency of 4.3 GHz, predicted and measured phase noise was 0.50 ° rms and 0.535 ° rms, respectively.

  19. The influence of low frequencies on the assessment of noise from neighbours

    DEFF Research Database (Denmark)

    Rindel, Jens Holger; Rasmussen, Birgit; Nielsen, Jesper Rye

    1996-01-01

    Lightweight building constructions often suffer from insufficient sound insulation at low frequencies. In order to investigate the degree of the problems, a laboratory experiment has been carried out. Twenty test persons have been asked to evaluate series of typical noise from neighbours, ie, two...

  20. Low-frequency 1/f noise in MoS2 transistors: Relative contributions of the channel and contacts

    Science.gov (United States)

    Renteria, J.; Samnakay, R.; Rumyantsev, S. L.; Jiang, C.; Goli, P.; Shur, M. S.; Balandin, A. A.

    2014-04-01

    We report on the results of the low-frequency (1/f, where f is frequency) noise measurements in MoS2 field-effect transistors revealing the relative contributions of the MoS2 channel and Ti/Au contacts to the overall noise level. The investigation of the 1/f noise was performed for both as fabricated and aged transistors. It was established that the McWhorter model of the carrier number fluctuations describes well the 1/f noise in MoS2 transistors, in contrast to what is observed in graphene devices. The trap densities extracted from the 1/f noise data for MoS2 transistors, are 2 × 1019 eV-1cm-3 and 2.5 × 1020 eV-1cm-3 for the as fabricated and aged devices, respectively. It was found that the increase in the noise level of the aged MoS2 transistors is due to the channel rather than the contact degradation. The obtained results are important for the proposed electronic applications of MoS2 and other van der Waals materials.

  1. Optimizing an Actuator Array for the Control of Multi-Frequency Noise in Aircraft Interiors

    Science.gov (United States)

    Palumbo, D. L.; Padula, S. L.

    1997-01-01

    Techniques developed for selecting an optimized actuator array for interior noise reduction at a single frequency are extended to the multi-frequency case. Transfer functions for 64 actuators were obtained at 5 frequencies from ground testing the rear section of a fully trimmed DC-9 fuselage. A single loudspeaker facing the left side of the aircraft was the primary source. A combinatorial search procedure (tabu search) was employed to find optimum actuator subsets of from 2 to 16 actuators. Noise reduction predictions derived from the transfer functions were used as a basis for evaluating actuator subsets during optimization. Results indicate that it is necessary to constrain actuator forces during optimization. Unconstrained optimizations selected actuators which require unrealistically large forces. Two methods of constraint are evaluated. It is shown that a fast, but approximate, method yields results equivalent to an accurate, but computationally expensive, method.

  2. Comparison of objective methods for assessment of annoyance of low frequency noise with the results of a laboratory listening test

    DEFF Research Database (Denmark)

    Poulsen, Torben

    2003-01-01

    Subjective assessments made by test persons were compared to results from a number of objective measurement and calculation methods for the assessment of low frequency noise. Eighteen young persons with normal hearing listened to eight environmental low frequency noises and evaluated the annoyance...

  3. A mathematical model of extremely low frequency ocean induced electromagnetic noise

    International Nuclear Information System (INIS)

    Dautta, Manik; Faruque, Rumana Binte; Islam, Rakibul

    2016-01-01

    Magnetic Anomaly Detection (MAD) system uses the principle that ferromagnetic objects disturb the magnetic lines of force of the earth. These lines of force are able to pass through both water and air in similar manners. A MAD system, usually mounted on an aerial vehicle, is thus often employed to confirm the detection and accomplish localization of large ferromagnetic objects submerged in a sea-water environment. However, the total magnetic signal encountered by a MAD system includes contributions from a myriad of low to Extremely Low Frequency (ELF) sources. The goal of the MAD system is to detect small anomaly signals in the midst of these low-frequency interfering signals. Both the Range of Detection (R_d) and the Probability of Detection (P_d) are limited by the ratio of anomaly signal strength to the interfering magnetic noise. In this paper, we report a generic mathematical model to estimate the signal-to-noise ratio or SNR. Since time-variant electro-magnetic signals are affected by conduction losses due to sea-water conductivity and the presence of air-water interface, we employ the general formulation of dipole induced electromagnetic field propagation in stratified media [1]. As a first step we employ a volumetric distribution of isolated elementary magnetic dipoles, each having its own dipole strength and orientation, to estimate the magnetic noise observed by a MAD system. Numerical results are presented for a few realizations out of an ensemble of possible realizations of elementary dipole source distributions.

  4. Low frequency noise from wind turbines mechanisms of generation and its modelling

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge

    2010-01-01

    competitive designs compared with the upwind threebladed rotor. The simulation package comprises an aeroelastic time simulation code HAWC2 and an acoustic low frequency noise (LFN) prediction model. Computed time traces of rotor thrust and rotor torque from the aeroelastic model are input to the acoustic...

  5. Speech Intelligibility with Helicopter Noise: Tests of Three Helmet-Mounted Communication Systems

    National Research Council Canada - National Science Library

    Ribera, John

    2004-01-01

    ...) in background noise and reduce exposure to harmful levels of noise. Some aviators, over the course of their aviation career, develop noise-induced hearing loss that may affect their ability to perform required tasks...

  6. 46 CFR 109.577 - Helicopter fueling.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter fueling. 109.577 Section 109.577 Shipping... Miscellaneous § 109.577 Helicopter fueling. (a) The master or person in charge shall designate persons to conduct helicopter fueling operations. (b) Portable tanks are handled and stowed in accordance with...

  7. Sources of high frequency seismic noise: insights from a dense network of ~250 stations in northern Alsace (France)

    Science.gov (United States)

    Vergne, Jerome; Blachet, Antoine; Lehujeur, Maximilien

    2015-04-01

    Monitoring local or regional seismic activity requires stations having a low level of background seismic noise at frequencies higher than few tenths of Hertz. Network operators are well aware that the seismic quality of a site depends on several aspects, among them its geological setting and the proximity of roads, railways, industries or trees. Often, the impact of each noise source is only qualitatively known which precludes estimating the quality of potential future sites before they are tested or installed. Here, we want to take advantage of a very dense temporary network deployed in Northern Alsace (France) to assess the effect of various kinds of potential sources on the level of seismic noise observed in the frequency range 0.2-50 Hz. In September 2014, more than 250 seismic stations (FairfieldNodal@ Zland nodes with 10Hz vertical geophone) have been installed every 1.5 km over a ~25km diameter disc centred on the deep geothermal sites of Soultz-sous-Forêts and Rittershoffen. This region exhibits variable degrees of human imprints from quite remote areas to sectors with high traffic roads and big villages. It also encompasses both the deep sedimentary basin of the Rhine graben and the piedmont of the Vosges massif with exposed bedrock. For each site we processed the continuous data to estimate probability density functions of the power spectral densities. At frequencies higher than 1 Hz most sites show a clear temporal modulation of seismic noise related to human activity with the well-known variations between day and night and between weekdays and weekends. Moreover we observe a clear evolution of the spatial distribution of seismic noise levels with frequency. Basically, between 0.5 and 4 Hz the geological setting modulates the level of seismic noise. At higher frequencies, the amplitude of seismic noise appears mostly related to the distance to nearby roads. Based on road maps and traffic estimation, a forward approach is performed to model the induced

  8. Low frequency noise fiber delay stabilized laser with reduced sensitivity to acceleration

    Science.gov (United States)

    Argence, B.; Clivati, C.; Dournaux, J.-L.; Holleville, D.; Faure, B.; Lemonde, P.; Santarelli, G.

    2017-11-01

    Lasers with sub-hertz line-width and fractional frequency instability around 1×10-15 for 0.1 s to 10 s averaging time are currently realized by locking onto an ultra-stable Fabry-Perot cavity using the Pound-Drever-Hall method. This powerful method requires tight alignment of free space optical components, precise polarization adjustment and spatial mode matching. To circumvent these issues, we use an all-fiber Michelson interferometer with a long fiber spool as a frequency reference and a heterodyne detection technique with a fibered acousto optical modulator (AOM)1. At low Fourier frequencies, the frequency noise of our system is mainly limited by mechanical vibrations, an issue that has already been explored in the field of optoelectronic oscillators.2,3,4

  9. Helicopter Noise Reduction Design Trade-Off Study

    Science.gov (United States)

    1977-01-01

    teeth . f orces gene ratea duriffg geaIr mIteshijog exl’ U: shaft vi brit ion which is’ trarvImi tted struc- ,tjyr, iy to th~e (,tsri 5Oli,&t through...mroticns , IJse uclo d, Lui goner oted usingq separate rotor performance cal cula Lion Ilvethods. bef- rotor. Perfornancef- cal culationl methods used...rotor noise directionality, the existence of a well defined minimum near the rotor plane is universally accepted. This minimum can be very sharp with

  10. The Application of Helicopter Rotor Defect Detection Using Wavelet Analysis and Neural Network Technique

    Directory of Open Access Journals (Sweden)

    Jin-Li Sun

    2014-06-01

    Full Text Available When detect the helicopter rotor beam with ultrasonic testing, it is difficult to realize the noise removing and quantitative testing. This paper used the wavelet analysis technique to remove the noise among the ultrasonic detection signal and highlight the signal feature of defect, then drew the curve of defect size and signal amplitude. Based on the relationship of defect size and signal amplitude, a BP neural network was built up and the corresponding estimated value of the simulate defect was obtained by repeating training. It was confirmed that the wavelet analysis and neural network technique met the requirements of practical testing.

  11. 基于MUSIC功率谱估计的直升机空中信号分析%Analysis of helicopter radiated signal based on MUSIC spectrum estimation

    Institute of Scientific and Technical Information of China (English)

    李玲; 杜鹏

    2017-01-01

    针对直升机飞行的辐射噪声特征谱线进行分析,提出一种基于MUSIC算法的直升机声信号处理方法.首先阐述MUSIC谱估计方法,然后针对实测不同机型直升机的飞行辐射噪声数据,分别进行MUSIC算法和传统方法的频谱分析,对得到的结果进行分析比较,数据处理结果表明MUSIC算法能够抑制噪声,明显改善信噪比,并能够更为细致地体现直升机声信号的谐波特性.%A method based on multiple signal classification(MUSIC)algorithm is proposed to process the helicopter ra-diated acoustic signal with random noise under the condition of the assumption that is the signal and noise are mutually uncorrelated. This paper introduces the MUSIC spectrum estimation method, and then uses the traditional method and MUSIC algorithm to process the signals radiated by different types of helicopters. The results show that MUSIC spec-trum estimation can suppress the noise, extrude the peak of spectrum to improve signal to noise ratio obviously and re-flect the harmonic characteristics of helicopter acoustic signal accurately.

  12. Low-frequency 1/f noise in MoS2 transistors: Relative contributions of the channel and contacts

    International Nuclear Information System (INIS)

    Renteria, J.; Jiang, C.; Samnakay, R.; Rumyantsev, S. L.; Goli, P.; Balandin, A. A.; Shur, M. S.

    2014-01-01

    We report on the results of the low-frequency (1/f, where f is frequency) noise measurements in MoS 2 field-effect transistors revealing the relative contributions of the MoS 2 channel and Ti/Au contacts to the overall noise level. The investigation of the 1/f noise was performed for both as fabricated and aged transistors. It was established that the McWhorter model of the carrier number fluctuations describes well the 1/f noise in MoS 2 transistors, in contrast to what is observed in graphene devices. The trap densities extracted from the 1/f noise data for MoS 2 transistors, are 2 × 10 19  eV −1 cm −3 and 2.5 × 10 20  eV −1 cm −3 for the as fabricated and aged devices, respectively. It was found that the increase in the noise level of the aged MoS 2 transistors is due to the channel rather than the contact degradation. The obtained results are important for the proposed electronic applications of MoS 2 and other van der Waals materials

  13. Investigating Flight with a Toy Helicopter

    Science.gov (United States)

    Liebl, Michael

    2010-01-01

    Flight fascinates people of all ages. Recent advances in battery technology have extended the capabilities of model airplanes and toy helicopters. For those who have never outgrown a childhood enthusiasm for the wonders of flight, it is possible to buy inexpensive, remotely controlled planes and helicopters. A toy helicopter offers an opportunity…

  14. Wind Turbine Acoustic Investigation: Infrasound and Low-Frequency Noise--A Case Study

    Science.gov (United States)

    Ambrose, Stephen E.; Rand, Robert W.; Krogh, Carmen M. E.

    2012-01-01

    Wind turbines produce sound that is capable of disturbing local residents and is reported to cause annoyance, sleep disturbance, and other health-related impacts. An acoustical study was conducted to investigate the presence of infrasonic and low-frequency noise emissions from wind turbines located in Falmouth, Massachusetts, USA. During the…

  15. Noise and Spurious Tones Management Techniques for Multi-GHz RF-CMOS Frequency Synthesizers Operating in Large Mixed Analog-Digital SOCs

    Directory of Open Access Journals (Sweden)

    Maxim Adrian

    2006-01-01

    Full Text Available This paper presents circuit techniques and power supply partitioning, filtering, and regulation methods aimed at reducing the phase noise and spurious tones in frequency synthesizers operating in large mixed analog-digital system-on-chip (SOC. The different noise and spur coupling mechanisms are presented together with solutions to minimize their impact on the overall PLL phase noise performance. Challenges specific to deep-submicron CMOS integration of multi-GHz PLLs are revealed, while new architectures that address these issues are presented. Layout techniques that help reducing the parasitic noise and spur coupling between digital and analog blocks are described. Combining system-level and circuit-level low noise design methods, low phase noise frequency synthesizers were achieved which are compatible with the demanding nowadays wireless communication standards.

  16. Impact of self-assembled monolayer on low frequency noise of organic thin film transistors

    International Nuclear Information System (INIS)

    Ke Lin; Dolmanan, Surani Bin; Shen Lu; Vijila, Chellappan; Chua, Soo Jin; Png, R.-Q.; Chia, P.-J.; Chua, L.-L.; Ho, Peter K-H.

    2008-01-01

    Bottom-contact organic field-effect transistors (FETs) based on regioregular poly(3-hexylthiophene) were fabricated with different surface treatments and were evaluated using a low frequency noise (LFN) spectroscopy. The oxygen-plasma (OP) treated device shows the highest mobility with the lowest current fluctuation. Octadecyltrichlorosilane and perfluorodecyldimetylchlorosilane treated device gives a higher noise compared with the OP treated device. Hexamethyldisilazane treated devices show the highest noise but the lowest mobility. The LFN results are correlated with organic FET device mobility and stability, proved by channel material crystallinity and degree of dislocations analysis. LFN measurement provides a nondisruptive and direct methodology to characterize device performance

  17. A mathematical model of extremely low frequency ocean induced electromagnetic noise

    Energy Technology Data Exchange (ETDEWEB)

    Dautta, Manik, E-mail: manik.dautta@anyeshan.com; Faruque, Rumana Binte, E-mail: rumana.faruque@anyeshan.com; Islam, Rakibul, E-mail: rakibul.islam@anyeshan.com [Research & Development Engineer, Anyeshan Limited, Dhaka (Bangladesh)

    2016-07-12

    Magnetic Anomaly Detection (MAD) system uses the principle that ferromagnetic objects disturb the magnetic lines of force of the earth. These lines of force are able to pass through both water and air in similar manners. A MAD system, usually mounted on an aerial vehicle, is thus often employed to confirm the detection and accomplish localization of large ferromagnetic objects submerged in a sea-water environment. However, the total magnetic signal encountered by a MAD system includes contributions from a myriad of low to Extremely Low Frequency (ELF) sources. The goal of the MAD system is to detect small anomaly signals in the midst of these low-frequency interfering signals. Both the Range of Detection (R{sub d}) and the Probability of Detection (P{sub d}) are limited by the ratio of anomaly signal strength to the interfering magnetic noise. In this paper, we report a generic mathematical model to estimate the signal-to-noise ratio or SNR. Since time-variant electro-magnetic signals are affected by conduction losses due to sea-water conductivity and the presence of air-water interface, we employ the general formulation of dipole induced electromagnetic field propagation in stratified media [1]. As a first step we employ a volumetric distribution of isolated elementary magnetic dipoles, each having its own dipole strength and orientation, to estimate the magnetic noise observed by a MAD system. Numerical results are presented for a few realizations out of an ensemble of possible realizations of elementary dipole source distributions.

  18. STUDY ON SAFETY TECHNOLOGY SCHEME OF THE UNMANNED HELICOPTER

    Directory of Open Access Journals (Sweden)

    Z. Lin

    2013-08-01

    Full Text Available Nowadays the unmanned helicopter is widely used for its' unique strongpoint, however, the high failure rate of unmanned helicopter seriously limits its further application and development. For solving the above problems, in this paper, the reasons for the high failure rate of unmanned helicopter is analyzed and the corresponding solution schemes are proposed. The main problem of the failure cause of the unmanned helicopter is the aircraft engine fault, and the failure cause of the unmanned helicopter is analyzed particularly. In order to improving the safety performance of unmanned helicopter system, the scheme of adding the safety parachute system to the unmanned helicopter system is proposed and introduced. These schemes provide the safety redundancy of the unmanned helicopter system and lay on basis for the unmanned helicopter applying into residential areas.

  19. An anthropometric analysis of Korean male helicopter pilots for helicopter cockpit design.

    Science.gov (United States)

    Lee, Wonsup; Jung, Kihyo; Jeong, Jeongrim; Park, Jangwoon; Cho, Jayoung; Kim, Heeeun; Park, Seikwon; You, Heecheon

    2013-01-01

    This study measured 21 anthropometric dimensions (ADs) of 94 Korean male helicopter pilots in their 20s to 40s and compared them with corresponding measurements of Korean male civilians and the US Army male personnel. The ADs and the sample size of the anthropometric survey were determined by a four-step process: (1) selection of ADs related to helicopter cockpit design, (2) evaluation of the importance of each AD, (3) calculation of required sample sizes for selected precision levels and (4) determination of an appropriate sample size by considering both the AD importance evaluation results and the sample size requirements. The anthropometric comparison reveals that the Korean helicopter pilots are larger (ratio of means = 1.01-1.08) and less dispersed (ratio of standard deviations = 0.71-0.93) than the Korean male civilians and that they are shorter in stature (0.99), have shorter upper limbs (0.89-0.96) and lower limbs (0.93-0.97), but are taller on sitting height, sitting eye height and acromial height (1.01-1.03), and less dispersed (0.68-0.97) than the US Army personnel. The anthropometric characteristics of Korean male helicopter pilots were compared with those of Korean male civilians and US Army male personnel. The sample size determination process and the anthropometric comparison results presented in this study are useful to design an anthropometric survey and a helicopter cockpit layout, respectively.

  20. 46 CFR 108.487 - Helicopter deck fueling operations.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter deck fueling operations. 108.487 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.487 Helicopter deck fueling operations. (a) Each helicopter landing deck on which fueling operations are...

  1. Electrostatic noise bands associated with the electron gyrofrequency and plasma frequency in the outer magnetosphere

    International Nuclear Information System (INIS)

    Shaw, R.R.

    1975-01-01

    Naturally occurring noise bands near the electron plasma frequency are frequently detected by the University of Iowa plasma wave experiment on the IMP 6 satellite in the region from just inside the plasmapause to radial distances of about 10 earth radii in the outer magnetosphere. The electric field strength of these noise bands is usually small with electric field spectral densities near 10 -15 volts 2 meter -2 Hz -1 . A wave magnetic field has been detected only in a few unusually intense cases, and in these cases the magnetic field energy density is several orders of magnitude smaller than the electric field energy density. The bands are observed at all magnetic latitudes covered by the IMP 6 orbit (parallelγ/sub m/parallel less than or equal to 45 0 ) and appear to be a permanent feature of the outer magnetosphere. They are found at all local times and occur least frequently in the quadrant from 18 to 24 hours. The bands appear to consist of two distinct spectral types, diffuse and narrow. In both types the center frequency of the noise band is bounded by consecutive harmonics of the electron gyrofrequency, and the bands occur most often between harmonics that are near the local electron plasma frequency. These bands appear to merge continuously into two types of plasma wave emissions that are found in dissimilar regions of the magnetosphere (upper hybrid resonance noise, also called Region 3 noise, inside the plasmasphere and (n + 1/2)f/sub g/ harmonics in the outer magnetosphere). It is suggested that this smooth merging is caused by changes in the plasma wave dispersion relation that occur as the spacecraft moves from the cold plasma within the plasmasphere into the warm non-Maxwellian plasma found in the outer magnetosphere

  2. A Novel Partial Discharge Ultra-High Frequency Signal De-Noising Method Based on a Single-Channel Blind Source Separation Algorithm

    Directory of Open Access Journals (Sweden)

    Liangliang Wei

    2018-02-01

    Full Text Available To effectively de-noise the Gaussian white noise and periodic narrow-band interference in the background noise of partial discharge ultra-high frequency (PD UHF signals in field tests, a novel de-noising method, based on a single-channel blind source separation algorithm, is proposed. Compared with traditional methods, the proposed method can effectively de-noise the noise interference, and the distortion of the de-noising PD signal is smaller. Firstly, the PD UHF signal is time-frequency analyzed by S-transform to obtain the number of source signals. Then, the single-channel detected PD signal is converted into multi-channel signals by singular value decomposition (SVD, and background noise is separated from multi-channel PD UHF signals by the joint approximate diagonalization of eigen-matrix method. At last, the source PD signal is estimated and recovered by the l1-norm minimization method. The proposed de-noising method was applied on the simulation test and field test detected signals, and the de-noising performance of the different methods was compared. The simulation and field test results demonstrate the effectiveness and correctness of the proposed method.

  3. Influence of frequency spectra to annoyance caused by road traffic noise; Doro kotsu soon no urusasa ni oyobosu shuhasu supekutoru no eikyo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Ishiyama, T [Japan Automobile Research Institute Inc., Tsukuba (Japan); Hashimoto, T [Seikei University, Tokyo (Japan)

    1997-10-01

    This paper describes a study of annoyance to road traffic noise in laboratories. To measure the annoyance to road traffic noise, subjective evaluation test was carried out using 48 road traffic noise recorded at various points in the city. Among the frequency spectra of these noise, the differences on the SPL of high frequency component were significant. As a result, we found that: (1) annoyance was different while A-weighted SPLs were the same, (2) fluctuation strength had the highest correlation with annoyance, (3) besides A-weighted SPL, roughness and sharpness contributed to annoyance -simultaneously, (4) contribution of high frequency noise was significant to annoyance. 2 refs., 11 figs., 1 tab.

  4. 46 CFR 132.320 - Helicopter-landing decks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter-landing decks. 132.320 Section 132.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS FIRE-PROTECTION EQUIPMENT Miscellaneous § 132.320 Helicopter-landing decks. Each vessel with a helicopter-landing deck must...

  5. Interacting two-level defects as sources of fluctuating high-frequency noise in superconducting circuits

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Clemens [ARC Centre of Excellence for Engineered Quantum Systems, The University of Queensland, Brisbane (Australia); Lisenfeld, Juergen [Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe (Germany); Shnirman, Alexander [Institut fuer Theory der Kondensierten Materie, Karlsruhe Institute of Technology, Karlsruhe (Germany); LD Landau Institute for Theoretical Physics, Moscow (Russian Federation); Poletto, Stefano [IBM TJ Watson Research Centre, Yorktown Heights (United States)

    2016-07-01

    Since the very first experiments, superconducting circuits have suffered from strong coupling to environmental noise, destroying quantum coherence and degrading performance. In state-of-the-art experiments, it is found that the relaxation time of superconducting qubits fluctuates as a function of time. We present measurements of such fluctuations in a 3D-transmon circuit and develop a qualitative model based on interactions within a bath of background two-level systems (TLS) which emerge from defects in the device material. In our model, the time-dependent noise density acting on the qubit emerges from its near-resonant coupling to high-frequency TLS which experience energy fluctuations due to their interaction with thermally fluctuating TLS at low frequencies. We support the model by providing experimental evidence of such energy fluctuations observed in a single TLS in a phase qubit circuit.

  6. Examining explanations for fundamental frequency's contribution to speech intelligibility in noise

    Science.gov (United States)

    Schlauch, Robert S.; Miller, Sharon E.; Watson, Peter J.

    2005-09-01

    Laures and Weismer [JSLHR, 42, 1148 (1999)] reported that speech with natural variation in fundamental frequency (F0) is more intelligible in noise than speech with a flattened F0 contour. Cognitive-linguistic based explanations have been offered to account for this drop in intelligibility for the flattened condition, but a lower-level mechanism related to auditory streaming may be responsible. Numerous psychoacoustic studies have demonstrated that modulating a tone enables a listener to segregate it from background sounds. To test these rival hypotheses, speech recognition in noise was measured for sentences with six different F0 contours: unmodified, flattened at the mean, natural but exaggerated, reversed, and frequency modulated (rates of 2.5 and 5.0 Hz). The 180 stimulus sentences were produced by five talkers (30 sentences per condition). Speech recognition for fifteen listeners replicate earlier findings showing that flattening the F0 contour results in a roughly 10% reduction in recognition of key words compared with the natural condition. Although the exaggerated condition produced results comparable to those of the flattened condition, the other conditions with unnatural F0 contours all yielded significantly poorer performance than the flattened condition. These results support the cognitive, linguistic-based explanations for the reduction in performance.

  7. An injection-locked OEO based frequency doubler independent of electrical doubler phase noise deteriorating rule

    Science.gov (United States)

    Xie, Zhengyang; Zheng, Xiaoping; Li, Shangyuan; Yan, Haozhe; Xiao, Xuedi; Xue, Xiaoxiao

    2018-06-01

    We propose an injection-locked optoelectronic oscillator (OEO) based wide-band frequency doubler, which is free from phase noise deterioration in electrical doubler, by using a dual-parallel Mach-Zehnder modulator (DPMZM). Through adjusting the optical phase shifts in different arms of the DPMZM, the doubling signal oscillates in the OEO loop while the fundamental signal takes on phase modulation over the light and vanishes at photo-detector (PD) output. By controlling power of fundamental signal the restriction of phase-noise deterioration rule in electrical doubler is totally canceled. Experimental results show that the doubler output has a better phase noise value of, for example, -117 dBc/Hz @ 10 kHz at 6 GHz with an improvement more than 17 dB and 23 dB compared with that of fundamental input and electrical doubler, respectively. Besides, the stability of this doubler output can reach to 1 . 5 × 10-14 at 1000 s averaging time. The frequency range of doubling signal is limited by the bandwidth of electrical amplifier in OEO loop.

  8. Helicopter Operations and Personnel Safety (Helirescue Manual). Fourth Edition.

    Science.gov (United States)

    Dalle-Molle, John

    The illustrated manual includes information on various aspects of helicopter rescue missions, including mission management roles for key personnel, safety rules around helicopters, requests for helicopter support, sample military air support forms, selection of landing zones, helicopter evacuations, rescuer delivery, passenger unloading, crash…

  9. Low frequency noise in the unstable contact region of Au-to-Au microcontact for microelectromechanical system switches

    Science.gov (United States)

    Qiu, Haodong; Wang, Hong; Ke, Feixiang

    2014-06-01

    The noise behavior of Au-to-Au microcontact for microelectromechanical system switches has been experimentally studied in the unstable contact region. The results suggest that the electrical conduction remains nonmetallic at the initial stage during contact formation due to the existence of alien films, and traps in the alien layer located at the contact interface could play an important role in determining the conduction noise. The conduction fluctuation induced by electron trapping-detrapping associated with the hydrocarbon layer is found to be an intrinsic noise source contributing to the low frequency noise in the unstable contact region.

  10. Low frequency noise in the unstable contact region of Au-to-Au microcontact for microelectromechanical system switches

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Haodong; Wang, Hong, E-mail: ewanghong@ntu.edu.sg [NOVITAS, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Ke, Feixiang [Temasek Laboratories at Nanyang Technological University, Research Techno Plaza, Singapore 637553 (Singapore)

    2014-06-23

    The noise behavior of Au-to-Au microcontact for microelectromechanical system switches has been experimentally studied in the unstable contact region. The results suggest that the electrical conduction remains nonmetallic at the initial stage during contact formation due to the existence of alien films, and traps in the alien layer located at the contact interface could play an important role in determining the conduction noise. The conduction fluctuation induced by electron trapping-detrapping associated with the hydrocarbon layer is found to be an intrinsic noise source contributing to the low frequency noise in the unstable contact region.

  11. Low frequency noise in the unstable contact region of Au-to-Au microcontact for microelectromechanical system switches

    International Nuclear Information System (INIS)

    Qiu, Haodong; Wang, Hong; Ke, Feixiang

    2014-01-01

    The noise behavior of Au-to-Au microcontact for microelectromechanical system switches has been experimentally studied in the unstable contact region. The results suggest that the electrical conduction remains nonmetallic at the initial stage during contact formation due to the existence of alien films, and traps in the alien layer located at the contact interface could play an important role in determining the conduction noise. The conduction fluctuation induced by electron trapping-detrapping associated with the hydrocarbon layer is found to be an intrinsic noise source contributing to the low frequency noise in the unstable contact region.

  12. Fast random-number generation using a diode laser's frequency noise characteristic

    Science.gov (United States)

    Takamori, Hiroki; Doi, Kohei; Maehara, Shinya; Kawakami, Kohei; Sato, Takashi; Ohkawa, Masashi; Ohdaira, Yasuo

    2012-02-01

    Random numbers can be classified as either pseudo- or physical-random, in character. Pseudo-random numbers are generated by definite periodicity, so, their usefulness in cryptographic applications is somewhat limited. On the other hand, naturally-generated physical-random numbers have no calculable periodicity, thereby making them ideal for the task. Diode lasers' considerable wideband noise gives them tremendous capacity for generating physical-random numbers, at a high rate of speed. We measured a diode laser's output with a fast photo detector, and evaluated the binary-numbers from the diode laser's frequency noise characteristics. We then identified and evaluated the binary-number-line's statistical properties. We also investigate the possibility that much faster physical-random number parallel-generation is possible, using separate outputs of different optical-path length and character, which we refer to as "coherence collapse".

  13. Helicopter Control Energy Reduction Using Moving Horizontal Tail

    Science.gov (United States)

    Oktay, Tugrul; Sal, Firat

    2015-01-01

    Helicopter moving horizontal tail (i.e., MHT) strategy is applied in order to save helicopter flight control system (i.e., FCS) energy. For this intention complex, physics-based, control-oriented nonlinear helicopter models are used. Equations of MHT are integrated into these models and they are together linearized around straight level flight condition. A specific variance constrained control strategy, namely, output variance constrained Control (i.e., OVC) is utilized for helicopter FCS. Control energy savings due to this MHT idea with respect to a conventional helicopter are calculated. Parameters of helicopter FCS and dimensions of MHT are simultaneously optimized using a stochastic optimization method, namely, simultaneous perturbation stochastic approximation (i.e., SPSA). In order to observe improvement in behaviors of classical controls closed loop analyses are done. PMID:26180841

  14. Helicopter Control Energy Reduction Using Moving Horizontal Tail

    Directory of Open Access Journals (Sweden)

    Tugrul Oktay

    2015-01-01

    Full Text Available Helicopter moving horizontal tail (i.e., MHT strategy is applied in order to save helicopter flight control system (i.e., FCS energy. For this intention complex, physics-based, control-oriented nonlinear helicopter models are used. Equations of MHT are integrated into these models and they are together linearized around straight level flight condition. A specific variance constrained control strategy, namely, output variance constrained Control (i.e., OVC is utilized for helicopter FCS. Control energy savings due to this MHT idea with respect to a conventional helicopter are calculated. Parameters of helicopter FCS and dimensions of MHT are simultaneously optimized using a stochastic optimization method, namely, simultaneous perturbation stochastic approximation (i.e., SPSA. In order to observe improvement in behaviors of classical controls closed loop analyses are done.

  15. Selecting Informative Features of the Helicopter and Aircraft Acoustic Signals in the Adaptive Autonomous Information Systems for Recognition

    Directory of Open Access Journals (Sweden)

    V. K. Hohlov

    2017-01-01

    Full Text Available The article forms the rationale for selecting the informative features of the helicopter and aircraft acoustic signals to solve a problem of their recognition and shows that the most informative ones are the counts of extrema in the energy spectra of the input signals, which represent non-centered random variables. An apparatus of the multiple initial regression coefficients was selected as a mathematical tool of research. The application of digital re-circulators with positive and negative feedbacks, which have the comb-like frequency characteristics, solves the problem of selecting informative features. A distinguishing feature of such an approach is easy agility of the comb frequency characteristics just through the agility of a delay value of digital signal in the feedback circuit. Adding an adaptation block to the selection block of the informative features enables us to ensure the invariance of used informative feature and counts of local extrema of the spectral power density to the airspeed of a helicopter. The paper gives reasons for the principle of adaptation and the structure of the adaptation block. To form the discriminator characteristics are used the cross-correlation statistical characteristics of the quadrature components of acoustic signal realizations, obtained by Hilbert transform. The paper proposes to provide signal recognition using a regression algorithm that allows handling the non-centered informative features and using a priori information about coefficients of initial regression of signal and noise.The simulation in Matlab Simulink has shown that selected informative features of signals in regressive processing of signal realizations of 0.5 s duration have good separability, and based on a set of 100 acoustic signal realizations in each class in full-scale conditions, has proved ensuring a correct recognition probability of 0.975, at least. The considered principles of informative features selection and adaptation can

  16. Robust Navier-Stokes method for predicting unsteady flowfield and aerodynamic characteristics of helicopter rotor

    Directory of Open Access Journals (Sweden)

    Qijun ZHAO

    2018-02-01

    Full Text Available A robust unsteady rotor flowfield solver CLORNS code is established to predict the complex unsteady aerodynamic characteristics of rotor flowfield. In order to handle the difficult problem about grid generation around rotor with complex aerodynamic shape in this CFD code, a parameterized grid generated method is established, and the moving-embedded grids are constructed by several proposed universal methods. In this work, the unsteady Reynolds-Averaged Navier-Stokes (RANS equations with Spalart-Allmaras are selected as the governing equations to predict the unsteady flowfield of helicopter rotor. The discretization of convective fluxes is accomplished by employing the second-order central difference scheme, third-order MUSCL-Roe scheme, and fifth-order WENO-Roe scheme. Aimed at simulating the unsteady aerodynamic characteristics of helicopter rotor, the dual-time scheme with implicit LU-SGS scheme is employed to accomplish the temporal discretization. In order to improve the computational efficiency of hole-cells and donor elements searching of the moving-embedded grid technology, the “disturbance diffraction method” and “minimum distance scheme of donor elements method” are established in this work. To improve the computational efficiency, Message Passing Interface (MPI parallel method based on subdivision of grid, local preconditioning method and Full Approximation Storage (FAS multi-grid method are combined in this code. By comparison of the numerical results simulated by CLORNS code with test data, it is illustrated that the present code could simulate the aerodynamic loads and aerodynamic noise characteristics of helicopter rotor accurately. Keywords: Aerodynamic characteristics, Helicopter rotor, Moving-embedded grid, Navier-Stokes equations, Upwind schemes

  17. Constructive influence of noise flatness and friction on the resonant behavior of a harmonic oscillator with fluctuating frequency.

    Science.gov (United States)

    Laas, Katrin; Mankin, Romi; Rekker, Astrid

    2009-05-01

    The influences of noise flatness and friction coefficient on the long-time behavior of the first two moments and the correlation function for the output signal of a harmonic oscillator with fluctuating frequency subjected to an external periodic force are considered. The colored fluctuations of the oscillator frequency are modeled as a trichotomous noise. The study is a follow up of the previous investigation of a stochastic oscillator [Phys. Rev. E 78, 031120 (2008)], where the connection between the occurrence of energetic instability and stochastic multiresonance is established. Here we report some unexpected results not considered in the previous work. Notably, we have found a nonmonotonic dependence of several stochastic resonance characteristics such as spectral amplification, variance of the output signal, and signal-to-noise ratio on the friction coefficient and on the noise flatness. In particular, in certain parameter regions spectral amplification exhibits a resonancelike enhancement at intermediate values of the friction coefficient.

  18. A simulation study of active feedback supression of dynamic response in helicopter rotor blades

    Science.gov (United States)

    Kana, D. D.; Bessey, R. L.; Dodge, F. T.

    1975-01-01

    A parameter study is presented for active feedback control applied to a helicopter rotor blade during forward flight. The study was performed on an electromechanical apparatus which included a mechanical model rotor blade and electronic analog simulation of interaction between blade deflections and aerodynamic loading. Blade response parameters were obtained for simulated vortex impinging at the blade tip at one pulse per revolution, and for a pulse which traveled from the blade tip toward its root. Results show that the response in a 1 - 10-per-rev frequency band is diminished by the feedback action, but at the same time responses at frequencies above 10-per-rev become increasingly more prominent with increased feedback amplitude, and can even lead to instability at certain levels. It appears that the latter behavior results from limitations of the laboratory simulation apparatus, rather than genuine potential behavior for a prototype helicopter.

  19. Effects of exhaust temperature on helicopter infrared signature

    International Nuclear Information System (INIS)

    Cheng-xiong, Pan; Jing-zhou, Zhang; Yong, Shan

    2013-01-01

    The effects of exhaust temperature on infrared signature (in 3–5 μm band) for a helicopter equipped with integrative infrared suppressor were numerically investigated. The internal flow of exhaust gas and the external downwash flow, as well as the mixing between exhaust gas and downwash were simulated by CFD software to determine the temperature distributions on the helicopter skin and in the exhaust plume. Based on the skin and plume temperature distributions, a forward–backward ray-tracing method was used to calculate the infrared radiation intensity from the helicopter with a narrow-band model. The results show that for a helicopter with its integrative infrared suppressor embedded inside its rear airframe, the exhaust temperature has significant influence on the plume radiation characteristics, while the helicopter skin radiation intensity has little impact. When the exhaust temperature is raised from 900 K to 1200 K, the plume radiation intensity in 3–5 μm band is increased by about 100%, while the skin radiation intensity is increased by only about 5%. In general, the effects of exhaust temperature on helicopter infrared radiation intensity are mainly concentrated on plume, especially obvious for a lower skin emissivity case. -- Highlights: ► The effect of exhaust temperature on infrared signature for a helicopter is numerically investigated. ► The impact of exhaust temperature on helicopter skin temperature is revealed. ► The impact of exhaust temperature on plume radiation characteristics is revealed. ► The impact of exhaust temperature on helicopter skin radiation is revealed. ► The impact of exhaust temperature on helicopter's total infrared radiation intensity is revealed

  20. Prediction of helicopter rotor noise in hover

    Directory of Open Access Journals (Sweden)

    Kusyumov A.N.

    2015-01-01

    Full Text Available Two mathematical models are used in this work to estimate the acoustics of a hovering main rotor. The first model is based on the Ffowcs Williams-Howkings equations using the formulation of Farassat. An analytical approach is followed for this model, to determine the thickness and load noise contributions of the rotor blade in hover. The second approach allows using URANS and RANS CFD solutions and based on numerical solution of the Ffowcs Williams-Howkings equations. The employed test cases correspond to a model rotor available at the KNRTUKAI aerodynamics laboratory. The laboratory is equipped with a system of acoustic measurements, and comparisons between predictions and measurements are to be attempted as part of this work.

  1. Prediction of helicopter rotor noise in hover

    Science.gov (United States)

    Kusyumov, A. N.; Mikhailov, S. A.; Garipova, L. I.; Batrakov, A. S.; Barakos, G.

    2015-05-01

    Two mathematical models are used in this work to estimate the acoustics of a hovering main rotor. The first model is based on the Ffowcs Williams-Howkings equations using the formulation of Farassat. An analytical approach is followed for this model, to determine the thickness and load noise contributions of the rotor blade in hover. The second approach allows using URANS and RANS CFD solutions and based on numerical solution of the Ffowcs Williams-Howkings equations. The employed test cases correspond to a model rotor available at the KNRTUKAI aerodynamics laboratory. The laboratory is equipped with a system of acoustic measurements, and comparisons between predictions and measurements are to be attempted as part of this work.

  2. Helicopter fuel burn modeling in AEDT.

    Science.gov (United States)

    2011-08-01

    This report documents work done to enhance helicopter fuel consumption modeling in the Federal Aviation : Administrations Aviation Environmental Design Tool (AEDT). Fuel consumption and flight performance data : were collected from helicopter flig...

  3. A study on the contribution of body vibrations to the vibratory sensation induced by high-level, complex low-frequency noise

    Directory of Open Access Journals (Sweden)

    Yukio Takahashi

    2011-01-01

    Full Text Available To investigate the contribution of body vibrations to the vibratory sensation induced by high-level, complex low-frequency noise, we conducted two experiments. In Experiment 1, eight male subjects were exposed to seven types of low-frequency noise stimuli: two pure tones [a 31.5-Hz, 100-dB(SPL tone and a 50-Hz, 100-dB(SPL tone] and five complex noises composed of the pure tones. For the complex noise stimuli, the sound pressure level of one tonal component was 100 dB(SPL and that of another one was either 90, 95, or 100 dB(SPL. Vibration induced on the body surface was measured at five locations, and the correlation with the subjective rating of the vibratory sensation at each site of measurement was examined. In Experiment 2, the correlation between the body surface vibration and the vibratory sensation was similarly examined using seven types of noise stimuli composed of a 25-Hz tone and a 50-Hz tone. In both the experiments, we found that at the chest and the abdomen, the rating of the vibratory sensation was in close correlation with the vibration acceleration level (VAL of the body surface vibration measured at each corresponding location. This was consistent with our previous results and suggested that at the trunk of the body (the chest and the abdomen, the mechanoreception of body vibrations plays an important role in the experience of the vibratory sensation in persons exposed to high-level low-frequency noise. At the head, however, no close correlation was found between the rating of the vibratory sensation and the VAL of body surface vibration. This suggested that at the head, the perceptual mechanisms of vibration induced by high-level low-frequency noise were different from those in the trunk of the body.

  4. Characterization of a low frequency magnetic noise from a two stage pulse tube cryocooler

    International Nuclear Information System (INIS)

    Eshraghi, Mohamad Javad; Sasada, Ichiro; Kim, Jin Mok; Lee, Yong Ho

    2008-01-01

    Magnetic noise of a two stage pulse tube cryocooler(PT) has been measured by a fundamental mode orthogonal fluxgate magnetometer and by a LTS SQUID gradiometer. The magnetometer was installed in a Dewar made of aluminum at 12 cm apart from a section containing magnetic regenerative materials of the PT. The magnetic noise shows a clear peak at 1.8 Hz which is the fundamental frequency of the He gas pumping rate. The 1.8 Hz magnetic noise took a peak, during the cooling process, when the cold stage temperature was at (or close to) 12 K, which resembles the variation of the temperature of the second cold stage of 1.8 Hz. Hence we attributed the main source of this magnetic noise to the temperature dependency of magnetic susceptibility of magnetic regenerative materials such as Er3Ni and HoCu2 used at the second stage. We pointed out that the superconducting magnetic shield by lead sheets reduced the interfering magnetic noise generated from this part. With this scheme, the magnetic noise amplitude measured with the first order gradiometer DROS, mounted in the vicinity of the magnetic regenerator, when the noise amplitude is minimum, which could be found from the fluxgate measurement results, was less than 500 pT peak to peak. Whereas without lead shielding the noise level was higher than the dynamic range of SQUID instrumentations which is around ±10nT. (author)

  5. Low-frequency 1/f noise in MoS{sub 2} transistors: Relative contributions of the channel and contacts

    Energy Technology Data Exchange (ETDEWEB)

    Renteria, J.; Jiang, C. [Nano-Device Laboratory, Department of Electrical Engineering, Bourns College of Engineering, University of California – Riverside, Riverside, California 92521 (United States); Samnakay, R. [Materials Science and Engineering Program, Bourns College of Engineering, University of California – Riverside, Riverside, California 92521 (United States); Rumyantsev, S. L. [Department of Electrical, Computer, and Systems Engineering, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Goli, P.; Balandin, A. A., E-mail: balandin@ee.ucr.edu [Nano-Device Laboratory, Department of Electrical Engineering, Bourns College of Engineering, University of California – Riverside, Riverside, California 92521 (United States); Materials Science and Engineering Program, Bourns College of Engineering, University of California – Riverside, Riverside, California 92521 (United States); Shur, M. S. [Department of Electrical, Computer, and Systems Engineering, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2014-04-14

    We report on the results of the low-frequency (1/f, where f is frequency) noise measurements in MoS{sub 2} field-effect transistors revealing the relative contributions of the MoS{sub 2} channel and Ti/Au contacts to the overall noise level. The investigation of the 1/f noise was performed for both as fabricated and aged transistors. It was established that the McWhorter model of the carrier number fluctuations describes well the 1/f noise in MoS{sub 2} transistors, in contrast to what is observed in graphene devices. The trap densities extracted from the 1/f noise data for MoS{sub 2} transistors, are 2 × 10{sup 19} eV{sup −1}cm{sup −3} and 2.5 × 10{sup 20} eV{sup −1}cm{sup −3} for the as fabricated and aged devices, respectively. It was found that the increase in the noise level of the aged MoS{sub 2} transistors is due to the channel rather than the contact degradation. The obtained results are important for the proposed electronic applications of MoS{sub 2} and other van der Waals materials.

  6. Helicopter industry - early beginnings to now; an outlook on the helicopter market and its major players in the rotorcraft industry

    NARCIS (Netherlands)

    Spranger, L.

    2013-01-01

    The helicopter is probably the most flexible aircraft that we know today. Although its history dates back to around 1500, the first practical helicopter wasn’t manufactured until the 1940s, roughly three decades after the Wright brothers’ first powered human flight. Today, helicopters fulfil a wide

  7. Influence of laser frequency noise on scanning Fabry-Perot interferometer based laser Doppler velocimetry

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian

    2014-01-01

    n this work, we study the performance of a scanning Fabry-Perot interferometer based laser Doppler velocimeter (sFPILDV) and compare two candidate 1.5 um single-frequency laser sources for the system – a fiber laser (FL) and a semiconductor laser (SL). We describe a straightforward calibration...... procedure for the sFPI-LDV and investigate the effect of different degrees of laser frequency noise between the FL and the SL on the velocimeter’s performance...

  8. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network

    Science.gov (United States)

    Saotome, Rie; Hai, Tran Minh; Matsuda, Yasuto; Suzuki, Taisaku; Wada, Tomohisa

    2015-01-01

    In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles), AUV (autonomous underwater vehicle), divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20–28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20–30%. PMID:26351656

  9. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network.

    Science.gov (United States)

    Saotome, Rie; Hai, Tran Minh; Matsuda, Yasuto; Suzuki, Taisaku; Wada, Tomohisa

    2015-01-01

    In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles), AUV (autonomous underwater vehicle), divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20-28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20-30%.

  10. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network

    Directory of Open Access Journals (Sweden)

    Rie Saotome

    2015-01-01

    Full Text Available In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles, AUV (autonomous underwater vehicle, divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20–28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3 and 93.750 Hz (MODE2 OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20–30%.

  11. Practical Ranges of Loudness Levels of Various Types of Environmental Noise, Including Traffic Noise, Aircraft Noise, and Industrial Noise

    Directory of Open Access Journals (Sweden)

    Sabine A. Janssen

    2011-05-01

    Full Text Available In environmental noise control one commonly employs the A-weighted sound level as an approximate measure of the effect of noise on people. A measure that is more closely related to direct human perception of noise is the loudness level. At constant A-weighted sound level, the loudness level of a noise signal varies considerably with the shape of the frequency spectrum of the noise signal. In particular the bandwidth of the spectrum has a large effect on the loudness level, due to the effect of critical bands in the human hearing system. The low-frequency content of the spectrum also has an effect on the loudness level. In this note the relation between loudness level and A-weighted sound level is analyzed for various environmental noise spectra, including spectra of traffic noise, aircraft noise, and industrial noise. From loudness levels calculated for these environmental noise spectra, diagrams are constructed that show the relation between loudness level, A‑weighted sound level, and shape of the spectrum. The diagrams show that the upper limits of the loudness level for broadband environmental noise spectra are about 20 to 40 phon higher than the lower limits for narrowband spectra, which correspond to the loudness levels of pure tones. The diagrams are useful for assessing limitations and potential improvements of environmental noise control methods and policy based on A-weighted sound levels.

  12. The relationship between high-frequency pure-tone hearing loss, hearing in noise test (HINT) thresholds, and the articulation index.

    Science.gov (United States)

    Vermiglio, Andrew J; Soli, Sigfrid D; Freed, Daniel J; Fisher, Laurel M

    2012-01-01

    Speech recognition in noise testing has been conducted at least since the 1940s (Dickson et al, 1946). The ability to recognize speech in noise is a distinct function of the auditory system (Plomp, 1978). According to Kochkin (2002), difficulty recognizing speech in noise is the primary complaint of hearing aid users. However, speech recognition in noise testing has not found widespread use in the field of audiology (Mueller, 2003; Strom, 2003; Tannenbaum and Rosenfeld, 1996). The audiogram has been used as the "gold standard" for hearing ability. However, the audiogram is a poor indicator of speech recognition in noise ability. This study investigates the relationship between pure-tone thresholds, the articulation index, and the ability to recognize speech in quiet and in noise. Pure-tone thresholds were measured for audiometric frequencies 250-6000 Hz. Pure-tone threshold groups were created. These included a normal threshold group and slight, mild, severe, and profound high-frequency pure-tone threshold groups. Speech recognition thresholds in quiet and in noise were obtained using the Hearing in Noise Test (HINT) (Nilsson et al, 1994; Vermiglio, 2008). The articulation index was determined by using Pavlovic's method with pure-tone thresholds (Pavlovic, 1989, 1991). Two hundred seventy-eight participants were tested. All participants were native speakers of American English. Sixty-three of the original participants were removed in order to create groups of participants with normal low-frequency pure-tone thresholds and relatively symmetrical high-frequency pure-tone threshold groups. The final set of 215 participants had a mean age of 33 yr with a range of 17-59 yr. Pure-tone threshold data were collected using the Hughson-Weslake procedure. Speech recognition data were collected using a Windows-based HINT software system. Statistical analyses were conducted using descriptive, correlational, and multivariate analysis of covariance (MANCOVA) statistics. The

  13. Noise in strong laser-atom interactions: Phase telegraph noise

    International Nuclear Information System (INIS)

    Eberly, J.H.; Wodkiewicz, K.; Shore, B.W.

    1984-01-01

    We discuss strong laser-atom interactions that are subjected to jump-type (random telegraph) random-phase noise. Physically, the jumps may arise from laser fluctuations, from collisions of various kinds, or from other external forces. Our discussion is carried out in two stages. First, direct and partially heuristic calculations determine the laser spectrum and also give a third-order differential equation for the average inversion of a two-level atom on resonance. At this stage a number of general features of the interaction are able to be studied easily. The optical analog of motional narrowing, for example, is clearly predicted. Second, we show that the theory of generalized Poisson processes allows laser-atom interactions in the presence of random telegraph noise of all kinds (not only phase noise) to be treated systematically, by means of a master equation first used in the context of quantum optics by Burshtein. We use the Burshtein equation to obtain an exact expression for the two-level atom's steady-state resonance fluorescence spectrum, when the exciting laser exhibits phase telegraph noise. Some comparisons are made with results obtained from other noise models. Detailed treatments of the effects ofmly jumps, or as a model of finite laser bandwidth effects, in which the laser frequency exhibits random jumps. We show that these two types of frequency noise can be distinguished in light-scattering spectra. We also discuss examples which demonstrate both temporal and spectral motional narrowing, nonexponential correlations, and non-Lorentzian spectra. Its exact solubility in finite terms makes the frequency-telegraph noise model an attractive alternative to the white-noise Ornstein-Uhlenbeck frequency noise model which has been previously applied to laser-atom interactions

  14. 29 CFR 1926.551 - Helicopters.

    Science.gov (United States)

    2010-07-01

    ...) Loose gear and objects. Every practical precaution shall be taken to provide for the protection of the employees from flying objects in the rotor downwash. All loose gear within 100 feet of the place of lifting... manner in which loads are connected to the helicopter. If, for any reason, the helicopter operator...

  15. A procedure for the assessment of low frequency noise complaints.

    Science.gov (United States)

    Moorhouse, Andy T; Waddington, David C; Adams, Mags D

    2009-09-01

    The development and application of a procedure for the assessment of low frequency noise (LFN) complaints are described. The development of the assessment method included laboratory tests addressing low frequency hearing threshold and the effect on acceptability of fluctuation, and field measurements complemented with interview-based questionnaires. Environmental health departments then conducted a series of six trials with genuine "live" LFN complaints to test the workability and usefulness of the procedure. The procedure includes guidance notes and a pro-forma report with step-by-step instructions. It does not provide a prescriptive indicator of nuisance but rather gives a systematic procedure to help environmental health practitioners to form their own opinion. Examples of field measurements and application of the procedure are presented. The procedure and examples are likely to be of particular interest to environmental health practitioners involved in the assessment of LFN complaints.

  16. A Tunable Low Noise Active Bandpass Filter Using a Noise Canceling Technique

    OpenAIRE

    Soltani, N.

    2016-01-01

    A monolithic tunable low noise active bandpass filter is presented in this study. Biasing voltages can control the center frequency and quality factor. By keeping the gain constant, the center frequency shift is 300 MHz. The quality factor can range from 90 to 290 at the center frequency. By using a noise cancelling circuit, noise is kept lower than 2.8 dB. The proposed filter is designed using MMIC technology with a center frequency of 2.4 GHz and a power consumption of 180 mW. ED02AH techno...

  17. Helicopter transport: help or hindrance?

    Science.gov (United States)

    Plevin, Rebecca E; Evans, Heather L

    2011-12-01

    Traumatic injury continues to be a significant cause of morbidity and mortality in the year 2011. In addition, the healthcare expenditures and lost years of productivity represent significant economic cost to the affected individuals and their communities. Helicopters have been used to transport trauma patients for the past 40 years, but there are conflicting data on the benefits of helicopter emergency medical service (HEMS) in civilian trauma systems. Debate persists regarding the mortality benefit, cost-effectiveness, and safety of helicopter usage, largely because the studies to date vary widely in design and generalizability to trauma systems serving heterogeneous populations and geography. Strict criteria should be established to determine when HEMS transport is warranted and most likely to positively affect patient outcomes. Individual trauma systems should conduct an assessment of their resources and needs in order to most effectively incorporate helicopter transport into their triage model. Research suggests that HEMS improves mortality in certain subgroups of trauma patients, both after transport from the scene of injury and following interfacility transport. Studies examining the cost-effectiveness of HEMS had mixed results, but the majority found that it is a cost-effective tool. Safety remains an issue of contention with HEMS transport, as helicopters are associated with significant safety risk to the crew and patient. However, this risk may be justified provided there is a substantial mortality benefit to be gained. Recent studies suggest that strict criteria should be established to determine when helicopter transport is warranted and most likely to positively affect patient outcomes. Individual trauma systems should conduct an assessment of their resources and needs in order to most effectively incorporate HEMS into their triage model. This will enable regional hospitals to determine if the costs and safety risks associated with HEMS are worthwhile

  18. 78 FR 51123 - Airworthiness Directives; Bell Helicopter Textron

    Science.gov (United States)

    2013-08-20

    ...-0734; Directorate Identifier 2012-SW-080-AD] RIN 2120-AA64 Airworthiness Directives; Bell Helicopter...). SUMMARY: We propose to supersede an existing airworthiness directive (AD) for Bell Helicopter Textron (Bell) Model 222, 222B, 222U, 230, and 430 helicopters. The existing AD currently requires inspecting...

  19. Effects of Long-Term Speech-in-Noise Training in Air Traffic Controllers and High Frequency Suppression. A Control Group Study.

    Science.gov (United States)

    Pérez Zaballos, María Teresa; Ramos de Miguel, Ángel; Pérez Plasencia, Daniel; Zaballos González, María Luisa; Ramos Macías, Ángel

    2015-12-01

    To evaluate 1) if air traffic controllers (ATC) perform better than non-air traffic controllers in an open-set speech-in-noise test because of their experience with radio communications, and 2) if high-frequency information (>8000 Hz) substantially improves speech-in-noise perception across populations. The control group comprised 28 normal-hearing subjects, and the target group comprised 48 ATCs aged between 19 and 55 years who were native Spanish speakers. The hearing -in-noise abilities of the two groups were characterized under two signal conditions: 1) speech tokens and white noise sampled at 44.1 kHz (unfiltered condition) and 2) speech tokens plus white noise, each passed through a 4th order Butterworth filter with 70 and 8000 Hz low and high cutoffs (filtered condition). These tests were performed at signal-to-noise ratios of +5, 0, and -5-dB SNR. The ATCs outperformed the control group in all conditions. The differences were statistically significant in all cases, and the largest difference was observed under the most difficult conditions (-5 dB SNR). Overall, scores were higher when high-frequency components were not suppressed for both groups, although statistically significant differences were not observed for the control group at 0 dB SNR. The results indicate that ATCs are more capable of identifying speech in noise. This may be due to the effect of their training. On the other hand, performance seems to decrease when the high frequency components of speech are removed, regardless of training.

  20. Probing in-plane anisotropy in few-layer ReS2 using low frequency noise measurement

    Science.gov (United States)

    Mitra, Richa; Jariwala, Bhakti; Bhattacharya, Arnab; Das, Anindya

    2018-04-01

    ReS2, a layered two-dimensional material popular for its in-plane anisotropic properties, is emerging as one of the potential candidates for flexible electronics and ultrafast optical applications. It is an n-type semiconducting material having a layer independent bandgap of 1.55 eV. In this paper we have characterized the intrinsic electronic noise level of few-layer ReS2 for the first time. Few-layer ReS2 field effect transistor devices show a 1/f nature of noise for frequency ranging over three orders of magnitude. We have also observed that not only the electrical response of the material is anisotropic; the noise level is also dependent on direction. In fact the noise is found to be more sensitive towards the anisotropy. This fact has been explained by evoking the theory where the Hooge parameter is not a constant quantity, but has a distinct power law dependence on mobility along the two-axes direction. The anisotropy in 1/f noise measurement will pave the way to quantify the anisotropic nature of two-dimensional (2D) materials, which will be helpful for the design of low-noise transistors in future.

  1. Development of Active Noise Control System for Quieting Transformer Noise

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bok Kyu; Song, Seik Young; Choi, Huo Yul [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Yun, Dae Hea; Lee, Hyuk Jae [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    1997-12-31

    The passive noise control technique made use of sound-absorbing or soundproofing materials, so it required a large area and high cost for installation and had a drawback of poor performance at low frequency. Compared to this, the Active Noise Control attenuates noise sound pressure by using secondary source which has same performance ay low-frequency. Furthermore, it is able to save space and expenses. - research on adaptive algorithms - evaluation of global attenuation of the control - computer simulation - real-time Active Noise Control System Hardware Implementation - ANC system setting in the noisy area.

  2. Low frequency noise in semiconductor detectors

    International Nuclear Information System (INIS)

    Stojanovic, M.; Marjanovic, N.

    1998-01-01

    Noise characteristics of surface-barrier detectors based on Au contacts on n-Si were measured and analyzed. The metal layers were deposited by evaporation to 40-100 nm thickness. Standard surface-barrier detectors based on Au/Si structures are known to have favorable characteristics, but they tend to degrade with aging and under severe working conditions. Degradation is particularly related to the increase in noise level, leakage current and the reduction of detector efficiency and resolution. Therefore, practical applications of surface-barrier detectors demand their constant upgrading. Improvements of detector properties are concentrated mainly on the front surface and front (rectifying) contact. The aim was to improve the noise characteristics of the surface-barrier structures and retain the favorable detector properties of the Au/Si system. (authors)

  3. Investigation of noise in Lightwave Synthesized Frequency Sweeper seeded LIDAR anemometers from leakage through the Acousto Optic Modulators

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Lindelöw, Per Jonas Petter

    2009-01-01

    Train (FSPT) modulated lidars the leakage will give rise to rapidly growing noise in the bins which corresponds to the signal from low radial wind velocities. It is likely that noise canceling techniques similar to those used for RIN removal has to be deployed for measurements of low wind velocities.......Lightwave Synthesized Frequency Sweepers (LSFS) have potential use as lightsources in lidar anemometers. In this paper noise due to leakage in the acousto optic modulators in an LSFS is investigated. Theoretical expressions describing the build-up of noise in the LSFS due to leakage are derived...

  4. Aerodynamic noise characterization of a full-scale wind turbine through high-frequency surface pressure measurements

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Bak, Christian

    2015-01-01

    The aim of this work is to investigate and characterize the high-frequency surface pressure fluctuations on a full-scale wind turbine blade and in particular the influence of the atmospheric turbulence. As these fluctuations are highly correlated to the sources of both turbulent inflow noise...... and trailing edge noise, recognized to be the two main sources of noise from wind turbines, this work contributes to a more detailed insight into noise from wind turbines. The study comprises analysis and interpretation of measurement data that were acquired during an experimental campaign involving a 2 MW...... wind turbine with a 80 m diameter rotor as well as measurements of an airfoil section tested in a wind tunnel. The turbine was extensively equipped in order to monitor the local inflow onto the rotating blades. Further a section of the 38 m long blade was instrumented with 50 microphones flush...

  5. A Noise Reduction Method for Dual-Mass Micro-Electromechanical Gyroscopes Based on Sample Entropy Empirical Mode Decomposition and Time-Frequency Peak Filtering.

    Science.gov (United States)

    Shen, Chong; Li, Jie; Zhang, Xiaoming; Shi, Yunbo; Tang, Jun; Cao, Huiliang; Liu, Jun

    2016-05-31

    The different noise components in a dual-mass micro-electromechanical system (MEMS) gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN), electronic-thermal noise (ETN), flicker noise (FN) and Coriolis signal in-phase noise (IPN). The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD) and time-frequency peak filtering (TFPF). There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs) by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods.

  6. A Noise Reduction Method for Dual-Mass Micro-Electromechanical Gyroscopes Based on Sample Entropy Empirical Mode Decomposition and Time-Frequency Peak Filtering

    Directory of Open Access Journals (Sweden)

    Chong Shen

    2016-05-01

    Full Text Available The different noise components in a dual-mass micro-electromechanical system (MEMS gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN, electronic-thermal noise (ETN, flicker noise (FN and Coriolis signal in-phase noise (IPN. The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD and time-frequency peak filtering (TFPF. There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods.

  7. [Study the impacts of diagnosis on occupational noise-induced deafness after bring into the different high frequency hearing threshold weighted value].

    Science.gov (United States)

    Xue, L J; Yang, A C; Chen, H; Huang, W X; Guo, J J; Liang, X Y; Chen, Z Q; Zheng, Q L

    2017-11-20

    Objective: Study of the results and the degree on occupational noise-induced deafness in-to the different high frequency hearing threshold weighted value, in order to provide theoretical basis for the re-vision of diagnostic criteria on occupational noise-induced deafness. Methods: A retrospective study was con-ducted to investigate the cases on the diagnosis of occupational noise-induced deafness in Guangdong province hospital for occupational disease prevention and treatment from January 2016 to January 2017. Based on the re-sults of the 3 hearing test for each test interval greater than 3 days in the hospital, the best threshold of each frequency was obtained, and based on the diagnostic criteria of occupational noise deafness in 2007 edition, Chi square test, t test and variance analysis were used to measure SPSS21.0 data, their differences are tested among the means of speech frequency and the high frequency weighted value into different age group, noise ex-posure group, and diagnostic classification between different dimensions. Results: 1. There were totally 168 cases in accordance with the study plan, male 154 cases, female 14 cases, the average age was 41.18 ±6.07 years old. 2. The diagnosis rate was increased into the weighted value of different high frequency than the mean value of pure speech frequency, the weighted 4 kHz frequency increased by 13.69% (χ(2)=9.880, P =0.002) , 6 kHz increased by 15.47% (χ(2)=9.985, P =0.002) and 4 kHz+6 kHz increased by15.47% (χ(2)=9.985, P =0.002) , the difference was statistically significant. The diagnostic rate of different high threshold had no obvious differ-ence between the genders. 3. The age groups were divided into less than or equal to 40years old group (A group) and 40-50 years old group (group B) , there were higher the diagnostic rate between high frequency weighted 4 kHz (A group χ(2)=3.380, P =0.050; B group χ(2)=4.054, P =0.032) , weighted 6 kHz (A group χ(2)=6.362, P =0.012; B group χ(2

  8. Double-gated Si NW FET sensors: Low-frequency noise and photoelectric properties

    International Nuclear Information System (INIS)

    Gasparyan, F.; Khondkaryan, H.; Arakelyan, A.; Zadorozhnyi, I.; Pud, S.; Vitusevich, S.

    2016-01-01

    The transport, noise, and photosensitivity properties of an array of silicon nanowire (NW) p"+-p-p"+ field-effect transistors (FETs) are investigated. The peculiarities of photosensitivity and detectivity are analyzed over a wide spectrum range. The absorbance of p-Si NW shifts to the short wavelength region compared with bulk Si. The photocurrent and photosensitivity reach increased values in the UV range of the spectrum at 300 K. It is shown that sensitivity values can be tuned by the drain-source voltage and may reach record values of up to 2–4 A/W at a wavelength of 300 nm at room temperature. Low-frequency noise studies allow calculating the photodetectivity values, which increase with decreasing wavelength down to 300 nm. We show that the drain current of Si NW biochemical sensors substantially depends on pH value and the signal-to-noise ratio reaches the high value of 10"5. Increasing pH sensitivity with gate voltage is revealed for certain source-drain currents of pH-sensors based on Si NW FETs. The noise characteristic index decreases from 1.1 to 0.7 with the growth of the liquid gate voltage. Noise behavior is successfully explained in the framework of the correlated number-mobility unified fluctuation model. pH sensitivity increases as a result of the increase in liquid gate voltage, thus giving the opportunity to measure very low proton concentrations in the electrolyte medium at certain values of the liquid gate voltage.

  9. A 55 nm CMOS ΔΣ fractional-N frequency synthesizer for WLAN transceivers with low noise filters

    International Nuclear Information System (INIS)

    Chen Mingyi; Chu Xiaojie; Yu Peng; Yan Jun; Shi Yin

    2013-01-01

    A fully integrated ΔΣ fractional-N frequency synthesizer fabricated in a 55 nm CMOS technology is presented for the application of IEEE 802.11b/g wireless local area network (WLAN) transceivers. A low noise filter, occupying a small die area, whose power supply is given by a high PSRR and low noise LDO regulator, is integrated on chip. The proposed synthesizer needs no off-chip components and occupies an area of 0.72 mm 2 excluding PAD. Measurement results show that in all channels, the phase noise of the synthesizer achieves −99 dBc/Hz and −119 dBc/Hz in band and out of band respectively with a reference frequency of 40 MHz and a loop bandwidth of 200 kHz. The integrated RMS phase error is no more than 0.6°. The proposed synthesizer consumes a total power of 15.6 mW. (semiconductor integrated circuits)

  10. 78 FR 44043 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2013-07-23

    ... lead to failure of the swashplate and subsequent loss of helicopter control. DATES: We must receive..., which may cause failure of MRH parts and loss of control of the helicopter. The EASA AD requires..., Section 2.3 Flight Envelope, Item 2 Temperature Limits, of the helicopter's Rotorcraft Flight Manual (RFM...

  11. Internal noise sources limiting contrast sensitivity.

    Science.gov (United States)

    Silvestre, Daphné; Arleo, Angelo; Allard, Rémy

    2018-02-07

    Contrast sensitivity varies substantially as a function of spatial frequency and luminance intensity. The variation as a function of luminance intensity is well known and characterized by three laws that can be attributed to the impact of three internal noise sources: early spontaneous neural activity limiting contrast sensitivity at low luminance intensities (i.e. early noise responsible for the linear law), probabilistic photon absorption at intermediate luminance intensities (i.e. photon noise responsible for de Vries-Rose law) and late spontaneous neural activity at high luminance intensities (i.e. late noise responsible for Weber's law). The aim of this study was to characterize how the impact of these three internal noise sources vary with spatial frequency and determine which one is limiting contrast sensitivity as a function of luminance intensity and spatial frequency. To estimate the impact of the different internal noise sources, the current study used an external noise paradigm to factorize contrast sensitivity into equivalent input noise and calculation efficiency over a wide range of luminance intensities and spatial frequencies. The impact of early and late noise was found to drop linearly with spatial frequency, whereas the impact of photon noise rose with spatial frequency due to ocular factors.

  12. 14 CFR 29.71 - Helicopter angle of glide: Category B.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Helicopter angle of glide: Category B. 29... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.71 Helicopter angle of glide: Category B. For each category B helicopter, except multiengine helicopters meeting the...

  13. Performance and Vibration Analyses of Lift-Offset Helicopters

    Directory of Open Access Journals (Sweden)

    Jeong-In Go

    2017-01-01

    Full Text Available A validation study on the performance and vibration analyses of the XH-59A compound helicopter is conducted to establish techniques for the comprehensive analysis of lift-offset compound helicopters. This study considers the XH-59A lift-offset compound helicopter using a rigid coaxial rotor system as a verification model. CAMRAD II (Comprehensive Analytical Method of Rotorcraft Aerodynamics and Dynamics II, a comprehensive analysis code, is used as a tool for the performance, vibration, and loads analyses. A general free wake model, which is a more sophisticated wake model than other wake models, is used to obtain good results for the comprehensive analysis. Performance analyses of the XH-59A helicopter with and without auxiliary propulsion are conducted in various flight conditions. In addition, vibration analyses of the XH-59A compound helicopter configuration are conducted in the forward flight condition. The present comprehensive analysis results are in good agreement with the flight test and previous analyses. Therefore, techniques for the comprehensive analysis of lift-offset compound helicopters are appropriately established. Furthermore, the rotor lifts are calculated for the XH-59A lift-offset compound helicopter in the forward flight condition to investigate the airloads characteristics of the ABC™ (Advancing Blade Concept rotor.

  14. A Tunable Low Noise Active Bandpass Filter Using a Noise Canceling Technique

    Directory of Open Access Journals (Sweden)

    N. Soltani

    2016-12-01

    Full Text Available A monolithic tunable low noise active bandpass filter is presented in this study. Biasing voltages can control the center frequency and quality factor. By keeping the gain constant, the center frequency shift is 300 MHz. The quality factor can range from 90 to 290 at the center frequency. By using a noise cancelling circuit, noise is kept lower than 2.8 dB. The proposed filter is designed using MMIC technology with a center frequency of 2.4 GHz and a power consumption of 180 mW. ED02AH technology is used to simulate the circuit elements.

  15. Optimization of vehicle compartment low frequency noise based on Radial Basis Function Neuro-Network Approximation Model

    Directory of Open Access Journals (Sweden)

    HU Qi-guo

    2017-01-01

    Full Text Available For reducing the vehicle compartment low frequency noise, the Optimal Latin hypercube sampling method was applied to perform experimental design for sampling in the factorial design space. The thickness parameters of the panels with larger acoustic contribution was considered as factors, as well as the vehicle mass, seventh rank modal frequency of body, peak sound pressure of test point and sound pressure root-mean-square value as responses. By using the RBF(radial basis function neuro-network method, an approximation model of four responses about six factors was established. Further more, error analysis of established approximation model was performed in this paper. To optimize the panel’s thickness parameter, the adaptive simulated annealing algorithm was im-plemented. Optimization results show that the peak sound pressure of driver’s head was reduced by 4.45dB and 5.47dB at frequency 158HZ and 134Hz respec-tively. The test point pressure were significantly reduced at other frequency as well. The results indicate that through the optimization the vehicle interior cavity noise was reduced effectively, and the acoustical comfort of the vehicle was im-proved significantly.

  16. Characterisation of hole traps in GaAs Fets by DLTS, low frequency noise and g sub M dispersion methods

    International Nuclear Information System (INIS)

    Iqbal, M.A.; Kaya, L.; Jones, B.K.

    1997-01-01

    Deep level effects in GaAs MOSFET have been characterised in the ohmic channel using DLTS, low frequency excess noise and dispersion technique. An isothermal multi exponential curve fitting method has been devised and implanted into the DLTS system. Multi exponential curve fitting method used to decompose a multi exponential transient into its constituents so that the peak signature can be better characterised for the case whereas several peaks are closely spaced. Low frequency excess noise and dispersion techniques also confirm the trap in signature of the same traps observed in the DLTS measurements. (author)

  17. A Recording-Based Method for Auralization of Rotorcraft Flyover Noise

    Science.gov (United States)

    Pera, Nicholas M.; Rizzi, Stephen A.; Krishnamurthy, Siddhartha; Fuller, Christopher R.; Christian, Andrew

    2018-01-01

    Rotorcraft noise is an active field of study as the sound produced by these vehicles is often found to be annoying. A means to auralize rotorcraft flyover noise is sought to help understand the factors leading to annoyance. Previous work by the authors focused on auralization of rotorcraft fly-in noise, in which a simplification was made that enabled the source noise synthesis to be based on a single emission angle. Here, the goal is to auralize a complete flyover event, so the source noise synthesis must be capable of traversing a range of emission angles. The synthesis uses a source noise definition process that yields periodic and aperiodic (modulation) components at a set of discrete emission angles. In this work, only the periodic components are used for the source noise synthesis for the flyover; the inclusion of modulation components is the subject of ongoing research. Propagation of the synthesized source noise to a ground observer is performed using the NASA Auralization Framework. The method is demonstrated using ground recordings from a flight test of the AS350 helicopter for the source noise definition.

  18. Kinetic analysis of elastomeric lag damper for helicopter rotors

    Science.gov (United States)

    Liu, Yafang; Wang, Jidong; Tong, Yan

    2018-02-01

    The elastomeric lag dampers suppress the ground resonance and air resonance that play a significant role in the stability of the helicopter. In this paper, elastomeric lag damper which is made from silicone rubber is built. And a series of experiments are conducted on this elastomeric lag damper. The stress-strain curves of elastomeric lag dampers employed shear forces at different frequency are obtained. And a finite element model is established based on Burgers model. The result of simulation and tests shows that the simple, linear model will yield good predictions of damper energy dissipation and it is adequate for predicting the stress-strain hysteresis loop within the operating frequency and a small-amplitude oscillation.

  19. Helicopter emergency medical service patient transport safe at night?

    NARCIS (Netherlands)

    Peters, J.H.; Wageningen, B. van; Hoogerwerf, N.; Biert, J.

    2014-01-01

    OBJECTIVE: Dutch helicopter emergency medical services are available 24/7. Working without daylight brings additional challenges, both in patient care and in-flight operation. We retrospectively evaluated the safety of this nighttime helicopter transportation of patients. METHODS: Our helicopter

  20. Helicopter type and accident severity in Helicopter Emergency Medical Services missions.

    Science.gov (United States)

    Hinkelbein, Jochen; Schwalbe, Mandy; Wetsch, Wolfgang A; Spelten, Oliver; Neuhaus, Christopher

    2011-12-01

    Whereas accident rates and fatal accident rates for Helicopter Emergency Medical Services (HEMS) were investigated sufficiently, resulting consequences for the occupants remain largely unknown. The present study aimed to classify HEMS accidents in Germany to prognosticate accident severity with regard to the helicopter model used. German HEMS accidents (1 Sept. 1970-31 Dec. 2009) were gathered as previously reported. Accidents were categorized in relation to the most severe injury, i.e., (1) no; (2) slight; (3) severe; and (4) fatal injuries. Only helicopter models with at least five accidents were analyzed to retrieve representative data. Prognostication was estimated by the relative percentage of each injury type compared to the total number of accidents. The model BO105 was most often involved in accidents (38 of 99), followed by BK117 and UH-1D. OfN = 99 accidents analyzed, N = 63 were without any injuries (63.6%), N = 8 resulted in minor injuries of the occupants (8.1%), and N = 9 in major injuries (9.1%). Additionally, N = 19 fatal accidents (19.2%) were registered. EC135 and BK1 17 had the highest incidence of uninjured occupants (100% vs. 88.2%) and the lowest percentage of fatal injuries (0% vs. 5.9%; all P > 0.05). Most fatal accidents occurred with the models UH-1D, Bell 212, and Bell 412. Use of the helicopter models EC135 and BK117 resulted in a high percentage of uninjured occupants. In contrast, the fatality rate was highest for the models Bell UH-I D, Bell 222, and Bell 412. Data from the present study allow for estimating accident risk in HEMS missions and prognosticating resulting fatalities, respectively.

  1. Light emission and finite-frequency shot noise in molecular junctions: from tunneling to contact

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Christensen, Rasmus Bjerregaard; Brandbyge, Mads

    2013-01-01

    Scanning tunneling microscope induced light emission from an atomic or molecular junction has been probed from the tunneling to contact regime in recent experiments. There, the measured light emission yields suggest a strong correlation with the high-frequency current/charge fluctuations. We show...... that this is consistent with the established theory in the tunneling regime, by writing the finite-frequency shot noise as a sum of inelastic transitions between different electronic states. Based on this, we develop a practical scheme to perform calculations on realistic structures using nonequilibrium Green's functions...

  2. Laboratory evaluation of an optimised internet-based speech-in-noise test for occupational high-frequency hearing loss screening: Occupational Earcheck

    NARCIS (Netherlands)

    Sheikh Rashid, Marya; Leensen, Monique C. J.; de Laat, Jan A. P. M.; Dreschler, Wouter A.

    2017-01-01

    Objective: The "Occupational Earcheck'' (OEC) is a Dutch onlineself-screening speech-in-noise test developed for the detection of occupational high-frequency hearing loss (HFHL). This study evaluates an optimised version of the test and determines the most appropriate masking noise. Design: The

  3. Prehospital intraosseus access with the bone injection gun by a helicopter-transported emergency medical team.

    NARCIS (Netherlands)

    Gerritse, B.M.; Scheffer, G.J.; Draaisma, J.M.T.

    2009-01-01

    BACKGROUND: To evaluate the use of the bone injection gun to obtain vascular access in the prehospital setting by an Helicopter-Transported Emergency Medical Team. METHODS: Prospective descriptive study to assess the frequency and success rate of the use of the bone injection gun in prehospital care

  4. Audio-frequency noise emissions from high-voltage overhead power lines

    International Nuclear Information System (INIS)

    Semmler, M.; Straumann, U.; Roero, C.; Teich, T. H.

    2005-01-01

    This article discusses the noise-emissions caused by high-voltage overhead power lines that can occur under certain atmospheric conditions. These emissions, caused by electric discharges around the conductors, can achieve disturbing values, depending on the conditions prevailing at the time in question. The causes of the discharges are examined and the ionisation processes involved are looked at. The parameters influencing the discharges are discussed and measures that can be taken to reduce such audio-frequency emissions are looked at. The authors note that a reduction of peripheral field strengths can reduce emissions and that hydrophilic coatings can lead to faster reduction of such effects after rainfall

  5. ''1/f noise'' in music: Music from 1/f noise

    Energy Technology Data Exchange (ETDEWEB)

    Voss, R.F.; Clarke, J.

    1978-01-01

    The spectral density of fluctuations in the audio power of many musical selections and of English speech varies approximately as 1/f (f is the frequency) down to a frequency of 5 x 10/sup -4/ Hz. This result implies that the audio-power fluctuations are correlated over all times in the same manner as ''1/f noise'' in electronic components. The frequency fluctuations of music also have a 1/f spectral density at frequencies down to the inverse of the length of the piece of music. The frequency fluctuations of English speech have a quite different behavior, with a single characteristic time of about 0.1 s, the average length of a syllable. The observations on music suggest that 1/f noise is a good choice for stochastic composition. Compositions in which the frequency and duration of each note were determined by 1/f noise sources sounded pleasing. Those generated by white-noise sources sounded too random, while those generated by 1/f/sup 2/ noise sounded too correlated.

  6. The effects of low frequency noise on mental performance and annoyance.

    Science.gov (United States)

    Alimohammadi, Iraj; Sandrock, Stephan; Gohari, Mahmoud Reza

    2013-08-01

    Low frequency noise (LFN) as background noise in urban and work environments is emitted from many artificial sources such as road vehicles, aircraft, and air movement machinery including wind turbines, compressors, and ventilation or air conditioning units. In addition to objective effects, LFN could also cause noise annoyance and influence mental performance; however, there are no homogenous findings regarding this issue. The purpose of this research was to study the effects of LFN on mental performance and annoyance, as well as to consider the role of extraversion and neuroticism on the issue. This study was conducted on 90 students of Iran University of Medical Sciences (54 males and 36 females). The mean age of the students was 23.46 years (SD = 1.97). Personality traits and noise annoyance were measured by using Eysenck Personality Inventory and a 12-scale self-reported questionnaire, respectively. Stroop and Cognitrone computerized tests measured mental performance of participants each exposed to 50 and 70 dBA of LFN and silence. LFNs were produced by Cool Edit Pro 2.1 software. There was no significant difference between mental performance parameters under 50 and 70 dBA of LFN, whereas there were significant differences between most mental performance parameters in quiet and under LFN (50 and 70 dBA). This research showed that LFN, compared to silence, increased the accuracy and the test performance speed (p  0.01). Introverts conducted the tests faster than extraverts (p mental performance. It seems that LFN has increased arousal level of participants, and extraversion has a considerable impact on mental performance.

  7. Noise-induced annoyance from transportation noise: short-term responses to a single noise source in a laboratory.

    Science.gov (United States)

    Kim, Jaehwan; Lim, Changwoo; Hong, Jiyoung; Lee, Soogab

    2010-02-01

    An experimental study was performed to compare the annoyances from civil-aircraft noise, military-aircraft noise, railway noise, and road-traffic noise. Two-way within-subjects designs were applied in this research. Fifty-two subjects, who were naive listeners, were given various stimuli with varying levels through a headphone in an anechoic chamber. Regardless of the frequency weighting network, even under the same average energy level, civil-aircraft noise was the most annoying, followed by military-aircraft noise, railway noise, and road-traffic noise. In particular, penalties in the time-averaged, A-weighted sound level (TAL) of about 8, 5, and 5 dB, respectively, were found in the civil-aircraft, military-aircraft, and railway noises. The reason could be clarified through the high-frequency component and the variability in the level. When people were exposed to sounds with the same maximum A-weighted level, a railway bonus of about 3 dB was found. However, transportation noise has been evaluated by the time-averaged A-weighted level in most countries. Therefore, in the present situation, the railway bonus is not acceptable for railway vehicles with diesel-electric engines.

  8. Noise cancellation properties of displacement noise free interferometer

    International Nuclear Information System (INIS)

    Sato, Shuichi; Kawamura, Seiji; Nishizawa, Atsushi; Chen Yanbei

    2010-01-01

    We have demonstrated the practical feasibility of a displacement- and frequency-noise-free laser interferometer (DFI) by partially implementing a recently proposed optical configuration using bi-directional Mach-Zehnder interferometers (MZIs). The noise cancellation efficiency was evaluated by comparing the displacement noise spectrum of the MZIs and the DFI, demonstrating up to 50 dB of noise cancellation. In addition, the possible extension of DFI as QND device is explored.

  9. Analysis on frequency response of trans-impedance amplifier (TIA) for signal-to-noise ratio (SNR) enhancement in optical signal detection system using lock-in amplifier (LIA)

    Science.gov (United States)

    Kim, Ji-Hoon; Jeon, Su-Jin; Ji, Myung-Gi; Park, Jun-Hee; Choi, Young-Wan

    2017-02-01

    Lock-in amplifier (LIA) has been widely used in optical signal detection systems because it can measure small signal under high noise level. Generally, The LIA used in optical signal detection system is composed of transimpedance amplifier (TIA), phase sensitive detector (PSD) and low pass filter (LPF). But commercial LIA using LPF is affected by flicker noise. To avoid flicker noise, there is 2ω detection LIA using BPF. To improve the dynamic reserve (DR) of the 2ω LIA, the signal to noise ratio (SNR) of the TIA should be improved. According to the analysis of frequency response of the TIA, the noise gain can be minimized by proper choices of input capacitor (Ci) and feed-back network in the TIA in a specific frequency range. In this work, we have studied how the SNR of the TIA can be improved by a proper choice of frequency range. We have analyzed the way to control this frequency range through the change of passive component in the TIA. The result shows that the variance of the passive component in the TIA can change the specific frequency range where the noise gain is minimized in the uniform gain region of the TIA.

  10. Full State Estimation for Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    This paper presents the design of a state estimator system for a generic helicopter based slung load system. The estimator is designed to deliver full rigid body state information for both helicopter and load and is based on the unscented Kalman filter. Two different approaches are investigated......: One based on a parameter free kinematic model and one based on a full aerodynamic helicopter and slung load model. The kinematic model approach uses acceleration and rate information from two Inertial Measurement Units, one on the helicopter and one on the load, to drive a simple kinematic model....... A simple and effective virtual sensor method is developed to maintain the constraints imposed by the wires in the system. The full model based approach uses a complex aerodynamical model to describe the helicopter together with a generic rigid body model. This rigid body model is based on a redundant...

  11. Full State Estimation for Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2007-01-01

    This paper presents the design of a state estimator system for a generic helicopter based slung load system. The estimator is designed to deliver full rigid body state information for both helicopter and load and is based on the unscented Kalman filter. Two different approaches are investigated......: One based on a parameter free kinematic model and one based on a full aerodynamic helicopter and slung load model. The kinematic model approach uses acceleration and rate information from two Inertial Measurement Units, one on the helicopter and one on the load, to drive a simple kinematic model....... A simple and effective virtual sensor method is developed to maintain the constraints imposed by the wires in the system. The full model based approach uses a complex aerodynamical model to describe the helicopter together with a generic rigid body model. This rigid body model is based on a redundant...

  12. 14 CFR 135.207 - VFR: Helicopter surface reference requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false VFR: Helicopter surface reference... VFR/IFR Operating Limitations and Weather Requirements § 135.207 VFR: Helicopter surface reference requirements. No person may operate a helicopter under VFR unless that person has visual surface reference or...

  13. ECG De-noising

    DEFF Research Database (Denmark)

    Kærgaard, Kevin; Jensen, Søren Hjøllund; Puthusserypady, Sadasivan

    2015-01-01

    Electrocardiogram (ECG) is a widely used noninvasive method to study the rhythmic activity of the heart and thereby to detect the abnormalities. However, these signals are often obscured by artifacts from various sources and minimization of these artifacts are of paramount important. This paper...... proposes two adaptive techniques, namely the EEMD-BLMS (Ensemble Empirical Mode Decomposition in conjunction with the Block Least Mean Square algorithm) and DWT-NN (Discrete Wavelet Transform followed by Neural Network) methods in minimizing the artifacts from recorded ECG signals, and compares...... their performance. These methods were first compared on two types of simulated noise corrupted ECG signals: Type-I (desired ECG+noise frequencies outside the ECG frequency band) and Type-II (ECG+noise frequencies both inside and outside the ECG frequency band). Subsequently, they were tested on real ECG recordings...

  14. Noise suppression in duct

    International Nuclear Information System (INIS)

    Ahmed, A.; Barfeh, M.A.G.

    2001-01-01

    In air-conditioning system the noise generated by supply fan is carried by conditioned air through the ductwork. The noise created in ductwork run may be transmission, regenerative and ductborne. Transmission noise is fan noise, regenerative noise is due to turbulence in flow and ductborne noise is the noise radiating from duct to surroundings. Some noise is attenuated in ducts also but if noise level is high then it needs to be attenuated. A simple mitre bend can attenuate-noise. This principle is extended to V and M-shape ducts with inside lining of fibreglass, which gave maximum attenuation of 77 dB and 62 dB respectively corresponding to 8 kHz frequency as compared to mitre, bend giving maximum 18 dB attenuation. Sound level meter measured sound levels with octave band filter and tests were conducted in anechoic room. A V-shape attenuator can be used at fan outlet and high frequency noise can be minimized greatly. (author)

  15. Improvement of Frequency Locking Algorithm for Atomic Frequency Standards

    Science.gov (United States)

    Park, Young-Ho; Kang, Hoonsoo; Heyong Lee, Soo; Eon Park, Sang; Lee, Jong Koo; Lee, Ho Seong; Kwon, Taeg Yong

    2010-09-01

    The authors describe a novel method of frequency locking algorithm for atomic frequency standards. The new algorithm for locking the microwave frequency to the Ramsey resonance is compared with the old one that had been employed in the cesium atomic beam frequency standards such as NIST-7 and KRISS-1. Numerical simulations for testing the performance of the algorithm show that the new method has a noise filtering performance superior to the old one by a factor of 1.2 for the flicker signal noise and 1.4 for random-walk signal noise. The new algorithm can readily be used to enhance the frequency stability for a digital servo employing the slow square wave frequency modulation.

  16. Comparison among Wavelet filters and others in the frequency domain for reducing Poisson noise in head CT

    International Nuclear Information System (INIS)

    Perez Diaz, M.; Ruiz Gonzalez, Y.; Lorenzo Ginori, J. V.

    2015-01-01

    This paper describes a comparison among some wavelet filters and other most traditional filters in the frequency domain like Median, Wiener and Butter worth to reduce Poisson noise in Computed Tomography (CT) scans. Five slices of CT containing the posterior fossa from an anthropomorphic phantom and from patients were selected. As their original projections contain noise from the acquisition process, some simulated noise-free lesions were added on the images. After that, the whole images were artificially contaminated with Poisson noise over the sinogram-space. The configurations using wavelets drawn from four wavelet families, using various decomposition levels, and different thresholds, were tested in order to determine de-noising performance as well as the rest of the traditional filters. The quality of the resulting images was evaluated by using Contrast to Noise Ratio (CNR), HVS absolute norm (H1), and Structural Similarity Index (SSIM) as quantitative metrics. We have observed that Wavelet filtering is an alternative to be considered for Poisson noise reduction in image processing of posterior fossa images for head CT with similar behavior to Butter worth and better than Median or Wiener filters for the developed experiment. (Author)

  17. 14 CFR 136.13 - Helicopter performance plan and operations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Helicopter performance plan and operations... Helicopter performance plan and operations. (a) Each operator must complete a performance plan before each helicopter commercial air tour, or flight operated under 14 CFR 91.146 or 91.147. The pilot in command must...

  18. 14 CFR 136.11 - Helicopter floats for over water.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Helicopter floats for over water. 136.11... TOURS AND NATIONAL PARKS AIR TOUR MANAGEMENT National Air Tour Safety Standards § 136.11 Helicopter floats for over water. (a) A helicopter used in commercial air tours over water beyond the shoreline must...

  19. Noise suppression and crosstalk analysis of on-chip magnetic film-type noise suppressor

    Science.gov (United States)

    Ma, Jingyan; Muroga, Sho; Endo, Yasushi; Hashi, Shuichiro; Naoe, Masayuki; Yokoyama, Hiroo; Hayashi, Yoshiaki; Ishiyama, Kazushi

    2018-05-01

    This paper discusses near field, conduction and crosstalk noise suppression of magnetic films with uniaxial anisotropy on transmission lines for a film-type noise suppressor in the GHz frequency range. The electromagnetic noise suppressions of magnetic films with different permeability and resistivity were measured and simulated with simple microstrip lines. The experimental and simulated results of Co-Zr-Nb and CoPd-CaF2 films agreed with each other. The results indicate that the higher permeability leads to a better near field shielding, and in the frequency range of 2-7 GHz, a higher conduction noise suppression. It also suggests that the higher resistivity results in a better crosstalk suppression in the frequency range below 2 GHz. These results can support the design guidelines of the magnetic film-type noise suppressor used in the next generation IC chip.

  20. Conceptual Design and Performance Analysis for a Large Civil Compound Helicopter

    Science.gov (United States)

    Russell, Carl; Johnson, Wayne

    2012-01-01

    A conceptual design study of a large civil compound helicopter is presented. The objective is to determine how a compound helicopter performs when compared to both a conventional helicopter and a tiltrotor using a design mission that is shorter than optimal for a tiltrotor and longer than optimal for a helicopter. The designs are generated and analyzed using conceptual design software and are further evaluated with a comprehensive rotorcraft analysis code. Multiple metrics are used to determine the suitability of each design for the given mission. Plots of various trade studies and parameter sweeps as well as comprehensive analysis results are presented. The results suggest that the compound helicopter examined for this study would not be competitive with a tiltrotor or conventional helicopter, but multiple possibilities are identified for improving the performance of the compound helicopter in future research.

  1. Automatic guidance and control laws for helicopter obstacle avoidance

    Science.gov (United States)

    Cheng, Victor H. L.; Lam, T.

    1992-01-01

    The authors describe the implementation of a full-function guidance and control system for automatic obstacle avoidance in helicopter nap-of-the-earth (NOE) flight. The guidance function assumes that the helicopter is sufficiently responsive so that the flight path can be readily adjusted at NOE speeds. The controller, basically an autopilot for following the derived flight path, was implemented with parameter values to control a generic helicopter model used in the simulation. Evaluation of the guidance and control system with a 3-dimensional graphical helicopter simulation suggests that the guidance has the potential for providing good and meaningful flight trajectories.

  2. Spectropolarimetric Observations of Solar Noise Storms at Low Frequencies

    Science.gov (United States)

    Mugundhan, V.; Ramesh, R.; Kathiravan, C.; Gireesh, G. V. S.; Hegde, Aathira

    2018-03-01

    A new high-resolution radio spectropolarimeter instrument operating in the frequency range of 15 - 85 MHz has recently been commissioned at the Radio Astronomy Field Station of the Indian Institute of Astrophysics at Gauribidanur, 100 km north of Bangalore, India. We describe the design and construction of this instrument. We present observations of a solar radio noise storm associated with Active Region (AR) 12567 in the frequency range of {≈} 15 - 85 MHz during 18 and 19 July 2016, observed using this instrument in the meridian-transit mode. This is the first report that we are aware of in which both the burst and continuum properties are derived simultaneously. Spectral indices and degree of polarization of both the continuum radiation and bursts are estimated. It is found that i) Type I storm bursts have a spectral index of {≈} {+}3.5, ii) the spectral index of the background continuum is ≈+2.9, iii) the transition frequency between Type I and Type III storms occurs at ≈55 MHz, iv) Type III bursts have an average spectral index of ≈-2.7, v) the spectral index of the Type III continuum is ≈-1.6, and vi) the degree of circular polarization of all Type I (Type III) bursts is ≈90% (30%). The results obtained here indicate that the continuum emission is due to bursts occurring in rapid succession. We find that the derived parameters for Type I bursts are consistent with suprathermal electron acceleration theory and those of Type III favor fundamental plasma emission.

  3. Polyspectral signal analysis techniques for condition based maintenance of helicopter drive-train system

    Science.gov (United States)

    Hassan Mohammed, Mohammed Ahmed

    For an efficient maintenance of a diverse fleet of air- and rotorcraft, effective condition based maintenance (CBM) must be established based on rotating components monitored vibration signals. In this dissertation, we present theory and applications of polyspectral signal processing techniques for condition monitoring of critical components in the AH-64D helicopter tail rotor drive train system. Currently available vibration-monitoring tools are mostly built around auto- and cross-power spectral analysis which have limited performance in detecting frequency correlations higher than second order. Studying higher order correlations and their Fourier transforms, higher order spectra, provides more information about the vibration signals which helps in building more accurate diagnostic models of the mechanical system. Based on higher order spectral analysis, different signal processing techniques are developed to assess health conditions of different critical rotating-components in the AH-64D helicopter drive-train. Based on cross-bispectrum, quadratic nonlinear transfer function is presented to model second order nonlinearity in a drive-shaft running between the two hanger bearings. Then, quadratic-nonlinearity coupling coefficient between frequency harmonics of the rotating shaft is used as condition metric to study different seeded shaft faults compared to baseline case, namely: shaft misalignment, shaft imbalance, and combination of shaft misalignment and imbalance. The proposed quadratic-nonlinearity metric shows better capabilities in distinguishing the four studied shaft settings than the conventional linear coupling based on cross-power spectrum. We also develop a new concept of Quadratic-Nonlinearity Power-Index spectrum, QNLPI(f), that can be used in signal detection and classification, based on bicoherence spectrum. The proposed QNLPI(f) is derived as a projection of the three-dimensional bicoherence spectrum into two-dimensional spectrum that

  4. Square tracking sensor for autonomous helicopter hover stabilization

    Science.gov (United States)

    Oertel, Carl-Henrik

    1995-06-01

    Sensors for synthetic vision are needed to extend the mission profiles of helicopters. A special task for various applications is the autonomous position hold of a helicopter above a ground fixed or moving target. As a proof of concept for a general synthetic vision solution a restricted machine vision system, which is capable of locating and tracking a special target, was developed by the Institute of Flight Mechanics of Deutsche Forschungsanstalt fur Luft- und Raumfahrt e.V. (i.e., German Aerospace Research Establishment). This sensor, which is specialized to detect and track a square, was integrated in the fly-by-wire helicopter ATTHeS (i.e., Advanced Technology Testing Helicopter System). An existing model following controller for the forward flight condition was adapted for the hover and low speed requirements of the flight vehicle. The special target, a black square with a length of one meter, was mounted on top of a car. Flight tests demonstrated the automatic stabilization of the helicopter above the moving car by synthetic vision.

  5. Laboratory evaluation of an optimised internet-based speech-in-noise test for occupational high-frequency hearing loss screening: Occupational Earcheck.

    Science.gov (United States)

    Sheikh Rashid, Marya; Leensen, Monique C J; de Laat, Jan A P M; Dreschler, Wouter A

    2017-11-01

    The "Occupational Earcheck" (OEC) is a Dutch online self-screening speech-in-noise test developed for the detection of occupational high-frequency hearing loss (HFHL). This study evaluates an optimised version of the test and determines the most appropriate masking noise. The original OEC was improved by homogenisation of the speech material, and shortening the test. A laboratory-based cross-sectional study was performed in which the optimised OEC in five alternative masking noise conditions was evaluated. The study was conducted on 18 normal-hearing (NH) adults, and 15 middle-aged listeners with HFHL. The OEC in a low-pass (LP) filtered stationary background noise (test version LP 3: with a cut-off frequency of 1.6 kHz, and a noise floor of -12 dB) was the most accurate version tested. The test showed a reasonable sensitivity (93%), and specificity (94%) and test reliability (intra-class correlation coefficient: 0.84, mean within-subject standard deviation: 1.5 dB SNR, slope of psychometric function: 13.1%/dB SNR). The improved OEC, with homogenous word material in a LP filtered noise, appears to be suitable for the discrimination between younger NH listeners and older listeners with HFHL. The appropriateness of the OEC for screening purposes in an occupational setting will be studied further.

  6. Low frequency noise in asymmetric double barrier magnetic tunnel junctions with a top thin MgO layer

    International Nuclear Information System (INIS)

    Guo Hui-Qiang; Tang Wei-Yue; Liu Liang; Wei Jian; Li Da-Lai; Feng Jia-Feng; Han Xiu-Feng

    2015-01-01

    Low frequency noise has been investigated at room temperature for asymmetric double barrier magnetic tunnel junctions (DBMTJs), where the coupling between the top and middle CoFeB layers is antiferromagnetic with a 0.8-nm thin top MgO barrier of the CoFeB/MgO/CoFe/CoFeB/MgO/CoFeB DBMTJ. At enough large bias, 1/f noise dominates the voltage noise power spectra in the low frequency region, and is conventionally characterized by the Hooge parameter α mag . With increasing external field, the top and bottom ferromagnetic layers are aligned by the field, and then the middle free layer rotates from antiparallel state (antiferromagnetic coupling between top and middle ferromagnetic layers) to parallel state. In this rotation process α mag and magnetoresistance-sensitivity-product show a linear dependence, consistent with the fluctuation dissipation relation. With the magnetic field applied at different angles (θ) to the easy axis of the free layer, the linear dependence persists while the intercept of the linear fit satisfies a cos(θ) dependence, similar to that for the magnetoresistance, suggesting intrinsic relation between magnetic losses and magnetoresistance. (rapid communication)

  7. Low-frequency noise reduction of fans using the acoustically treated duct; Kyuon duct ni yoru fan soon no teishuhaiki teigen

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, K; Fujii, S [University of Osaka Prefecture, Osaka (Japan). Faculty of Engineering; Shirasaya, H [Kawasaki Heavy Industries, Ltd., Tokyo (Japan)

    1994-12-25

    Reducing noise in a low frequency region of 1 kHz or less has become an important problem as a result of emergence of an ultra-high bypass engine in aircraft engines. Therefore, an attempt was made of experimenting and analyzing noise absorption characteristics in low-frequency noises. In the experiment, a low-frequency flow with an air volume of about 3 m{sup 3}/minute was made at a stable operating point of a fan device consisting of moving blades and static blades, with a sound absorbing duct disposed in the forward section. The duct is a 500-mm long steel box with an oblong cross section, in which the top and the bottom parts can move vertically, and a variable air layer was formed between a sound absorbing material (a sheet material made of microfine spherical resin powders solidified to a thickness of 6 mm) and a rigid wall made of iron plate. Noise waves and sound absorption amount were measured on different air layer thicknesses, and analyzed theoretically. As a result, such findings were obtained as: the sound absorption amount is affected by the main stream direction mode of sound pressures in cavity; valleys are formed where the sound absorption amount decreases remarkably in a specific cycle; and peaks are built where the sound absorption amount increases in other regions. 7 refs., 12 figs.

  8. Amplifying the helicopter drift in a conformal HMD

    Science.gov (United States)

    Schmerwitz, Sven; Knabl, Patrizia M.; Lueken, Thomas; Doehler, Hans-Ullrich

    2016-05-01

    Helicopter operations require a well-controlled and minimal lateral drift shortly before ground contact. Any lateral speed exceeding this small threshold can cause a dangerous momentum around the roll axis, which may cause a total roll over of the helicopter. As long as pilots can observe visual cues from the ground, they are able to easily control the helicopter drift. But whenever natural vision is reduced or even obscured, e.g. due to night, fog, or dust, this controllability diminishes. Therefore helicopter operators could benefit from some type of "drift indication" that mitigates the influence of a degraded visual environment. Generally humans derive ego motion by the perceived environmental object flow. The visual cues perceived are located close to the helicopter, therefore even small movements can be recognized. This fact was used to investigate a modified drift indication. To enhance the perception of ego motion in a conformal HMD symbol set the measured movement was used to generate a pattern motion in the forward field of view close or on the landing pad. The paper will discuss the method of amplified ego motion drift indication. Aspects concerning impact factors like visualization type, location, gain and more will be addressed. Further conclusions from previous studies, a high fidelity experiment and a part task experiment, will be provided. A part task study will be presented that compared different amplified drift indications against a predictor. 24 participants, 15 holding a fixed wing license and 4 helicopter pilots, had to perform a dual task on a virtual reality headset. A simplified control model was used to steer a "helicopter" down to a landing pad while acknowledging randomly placed characters.

  9. Tracking of Nonstationary Noise Based on Data-Driven Recursive Noise Power Estimation

    NARCIS (Netherlands)

    Erkelens, J.S.; Heusdens, R.

    2008-01-01

    This paper considers estimation of the noise spectral variance from speech signals contaminated by highly nonstationary noise sources. The method can accurately track fast changes in noise power level (up to about 10 dB/s). In each time frame, for each frequency bin, the noise variance estimate is

  10. Nonlinear Microstructured Material to Reduce Noise and Vibrations at Low Frequencies

    International Nuclear Information System (INIS)

    Lavazec, Deborah; Cumunel, Gwendal; Duhamel, Denis; Soize, Christian; Batou, Anas

    2016-01-01

    At low frequencies, for which the wavelengths are wide, the acoustic waves and the mechanical vibrations cannot easily be reduced in the structures at macroscale by using dissipative materials, contrarily to the middle- and high-frequency ranges. The final objective of this work is to reduce the vibrations and the induced noise on a broad low-frequency band by using a microstructured material by inclusions that are randomly arranged in the material matrix. The dynamical regimes of the inclusions will be imposed in the nonlinear domain in order that the energy be effectively pumped over a broad frequency band around the resonance frequency, due to the nonlinearity. The first step of this work is to design and to analyze the efficiency of an inclusion, which is made up of a hollow frame including a point mass centered on a beam. This inclusion is designed in order to exhibit nonlinear geometric effects in the low-frequency band that is observed. For this first step, the objective is to develop the simplest mechanical model that has the capability to roughly predict the experimental results that are measured. The second step, which is not presented in the paper, will consist in developing a more sophisticated nonlinear dynamical model of the inclusion. In this paper, devoted to the first step, it is proved that the nonlinearity induces an attenuation on a broad frequency band around the resonance, contrarily to its linear behavior for which the attenuation is only active in a narrow frequency band around the resonance. We will present the design in terms of geometry, dimension and materials for the inclusion, the experimental manufacturing of this system realized with a 3D printing system, and the experimental measures that have been performed. We compare the prevision given by the stochastic computational model with the measurements. The results obtained exhibit the physical attenuation over a broad low-frequency band, which were expected. (paper)

  11. Comparison of two dose-response relationship of noise exposure evaluation results with high frequency hearing loss.

    Science.gov (United States)

    Zhang, Hua; Li, Nan; Yang, Qiu-Ling; Qiu, Wei; Zhu, Liang-Liang; Tao, Li-Yuan; Davis, Robert I; Heyer, Nicholas; Zhao, Yi-Ming

    2015-03-20

    Complex noise and its relation to hearing loss are difficult to measure and evaluate. In complex noise measurement, individual exposure results may not accurately represent lifetime noise exposure. Thus, the mean L Aeq,8 h values of individuals in the same workgroup were also used to represent L Aeq,8 h in our study. Our study aimed to explore whether the mean exposure levels of workers in the same workgroup represented real noise exposure better than individual exposure levels did. A cross-sectional study was conducted to establish a model for cumulative noise exposure (CNE) and hearing loss in 205 occupational noise-exposed workers who were recruited from two large automobile manufacturers in China. We used a personal noise dosimeter and a questionnaire to determine the workers' occupational noise exposure levels and exposure times, respectively. A qualified audiologist used standardized audiometric procedures to assess hearing acuity after at least 16 h of noise avoidance. We observed that 88.3% of workers were exposed to more than 85 dB(A) of occupational noise (mean: 89.3 ± 4.2 dB(A)). The personal CNE (CNEp) and workgroup CNE (CNEg) were 100.5 ± 4.7 dB(A) and 100.5 ± 2.9 dB(A), respectively. In the binary logistic regression analysis, we established a regression model with high-frequency hearing loss as the dependent variable and CNE as the independent variable. The Wald value was 5.014 with CNEp as the independent variable and 8.653 with CNEg as the independent variable. Furthermore, we found that the figure for CNEg was more similar to the stationary noise reference than CNEp was. The CNEg model was better than the CNEp model. In this circumstance, we can measure some subjects instead of the whole workgroup and save manpower. In a complex noise environment, the measurements of average noise exposure level of the workgroup can improve the accuracy and save manpower.

  12. Comparison of Two Dose-response Relationship of Noise Exposure Evaluation Results with High Frequency Hearing Loss

    Directory of Open Access Journals (Sweden)

    Hua Zhang

    2015-01-01

    Full Text Available Background: Complex noise and its relation to hearing loss are difficult to measure and evaluate. In complex noise measurement, individual exposure results may not accurately represent lifetime noise exposure. Thus, the mean L Aeq,8 h values of individuals in the same workgroup were also used to represent L Aeq,8 h in our study. Our study aimed to explore whether the mean exposure levels of workers in the same workgroup represented real noise exposure better than individual exposure levels did. Methods: A cross-sectional study was conducted to establish a model for cumulative noise exposure (CNE and hearing loss in 205 occupational noise-exposed workers who were recruited from two large automobile manufacturers in China. We used a personal noise dosimeter and a questionnaire to determine the workers′ occupational noise exposure levels and exposure times, respectively. A qualified audiologist used standardized audiometric procedures to assess hearing acuity after at least 16 h of noise avoidance. Results: We observed that 88.3% of workers were exposed to more than 85 dB(A of occupational noise (mean: 89.3 ± 4.2 dB(A. The personal CNE (CNEp and workgroup CNE (CNEg were 100.5 ± 4.7 dB(A and 100.5 ± 2.9 dB(A, respectively. In the binary logistic regression analysis, we established a regression model with high-frequency hearing loss as the dependent variable and CNE as the independent variable. The Wald value was 5.014 with CNEp as the independent variable and 8.653 with CNEg as the independent variable. Furthermore, we found that the figure for CNEg was more similar to the stationary noise reference than CNEp was. The CNEg model was better than the CNEp model. In this circumstance, we can measure some subjects instead of the whole workgroup and save manpower. Conclusions: In a complex noise environment, the measurements of average noise exposure level of the workgroup can improve the accuracy and save manpower.

  13. A Parameter Identification Method for Helicopter Noise Source Identification and Physics-Based Semi-Empirical Modeling

    Science.gov (United States)

    Greenwood, Eric, II; Schmitz, Fredric H.

    2010-01-01

    A new physics-based parameter identification method for rotor harmonic noise sources is developed using an acoustic inverse simulation technique. This new method allows for the identification of individual rotor harmonic noise sources and allows them to be characterized in terms of their individual non-dimensional governing parameters. This new method is applied to both wind tunnel measurements and ground noise measurements of two-bladed rotors. The method is shown to match the parametric trends of main rotor Blade-Vortex Interaction (BVI) noise, allowing accurate estimates of BVI noise to be made for operating conditions based on a small number of measurements taken at different operating conditions.

  14. 33 CFR 149.655 - What are the requirements for helicopter fueling facilities?

    Science.gov (United States)

    2010-07-01

    ... helicopter fueling facilities? 149.655 Section 149.655 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Design and Equipment Helicopter Fueling Facilities § 149.655 What are the requirements for helicopter fueling facilities? Helicopter fueling facilities must comply with 46 CFR 108.489 or an equivalent...

  15. Noise frame duration, masking potency and whiteness of temporal noise

    OpenAIRE

    Kukkonen, Helja; Rovamo, Jyrki; Donner, Kristian; Tammikallio, Marja; Raninen, Antii

    2002-01-01

    PURPOSE. Because of the limited contrast range, increasing the duration of the noise frame is often the only option for increasing the masking potency of external, white temporal noise. This, however, reduces the high-frequency cutoff beyond which noise is no longer white. This study was conducted to determine the longest noise frame duration that produces the strongest masking effect and still mimics white noise on the detection of sinusoidal flicker. \\ud \\ud METHODS. Contrast energy thresho...

  16. Attack Helicopter Operations: Art or Science

    Science.gov (United States)

    1991-05-13

    ATTACK HELICOPTER OPERATIONS: ART OR SCIENCE ? BY LIEUTENANT COLONEL JAN CALLEN United States Army DISTRIBUTION STATEMENT A: Approved for public release...TASK IWORK UNIT ELEMENT NO. NO. NO. ACCESSION NC 11. TITLE (Include Socurity Classification) Attack Helicopter Operations: Art or Science ? 12. PERSONAL...OPERATIONS: ART OR SCIENCE ? AN INDIVIDUAL STUDY PROJECT by Lieutenant Colonel Jan Callen United States Army Colonel Greg Snelgrove Project Adviser U.S

  17. Identification and Removal of High Frequency Temporal Noise in a Nd:YAG Macro-Pulse Laser Assisted with a Diagnostic Streak Camera

    International Nuclear Information System (INIS)

    Kent Marlett; Ke-Xun Sun

    2004-01-01

    This paper discusses the use of a reference streak camera (SC) to diagnose laser performance and guide modifications to remove high frequency noise from Bechtel Nevada's long-pulse laser. The upgraded laser exhibits less than 0.1% high frequency noise in cumulative spectra, exceeding National Ignition Facility (NIF) calibration specifications. Inertial Confinement Fusion (ICF) experiments require full characterization of streak cameras over a wide range of sweep speeds (10 ns to 480 ns). This paradigm of metrology poses stringent spectral requirements on the laser source for streak camera calibration. Recently, Bechtel Nevada worked with a laser vendor to develop a high performance, multi-wavelength Nd:YAG laser to meet NIF calibration requirements. For a typical NIF streak camera with a 4096 x 4096 pixel CCD, the flat field calibration at 30 ns requires a smooth laser spectrum over 33 MHz to 68 GHz. Streak cameras are the appropriate instrumentation for measuring laser amplitude noise at these very high frequencies since the upper end spectral content is beyond the frequency response of typical optoelectronic detectors for a single shot pulse. The SC was used to measure a similar laser at its second harmonic wavelength (532 nm), to establish baseline spectra for testing signal analysis algorithms. The SC was then used to measure the new custom calibration laser. In both spatial-temporal measurements and cumulative spectra, 6-8 GHz oscillations were identified. The oscillations were found to be caused by inter-surface reflections between amplifiers. Additional variations in the SC spectral data were found to result from temperature instabilities in the seeding laser. Based on these findings, laser upgrades were made to remove the high frequency noise from the laser output

  18. Measurement time and statistics for a noise thermometer with a synthetic-noise reference

    Science.gov (United States)

    White, D. R.; Benz, S. P.; Labenski, J. R.; Nam, S. W.; Qu, J. F.; Rogalla, H.; Tew, W. L.

    2008-08-01

    This paper describes methods for reducing the statistical uncertainty in measurements made by noise thermometers using digital cross-correlators and, in particular, for thermometers using pseudo-random noise for the reference signal. First, a discrete-frequency expression for the correlation bandwidth for conventional noise thermometers is derived. It is shown how an alternative frequency-domain computation can be used to eliminate the spectral response of the correlator and increase the correlation bandwidth. The corresponding expressions for the uncertainty in the measurement of pseudo-random noise in the presence of uncorrelated thermal noise are then derived. The measurement uncertainty in this case is less than that for true thermal-noise measurements. For pseudo-random sources generating a frequency comb, an additional small reduction in uncertainty is possible, but at the cost of increasing the thermometer's sensitivity to non-linearity errors. A procedure is described for allocating integration times to further reduce the total uncertainty in temperature measurements. Finally, an important systematic error arising from the calculation of ratios of statistical variables is described.

  19. High frequency green function for aerodynamic noise in moving media. I - General theory. II - Noise from a spreading jet

    Science.gov (United States)

    Durbin, P. A.

    1983-01-01

    It is shown how a high frequency analysis can be made for general problems involving flow-generated noise. In the parallel shear flow problem treated by Balsa (1976) and Goldstein (1982), the equation governing sound propagation in the moving medium could be transformed into a wave equation for a stationary medium with an inhomogeneous index of refraction. It is noted that the procedure of Avila and Keller (1963) was then used to construct a high frequency Green function. This procedure involves matching a solution valid in an inner region around the point source to an outer, ray-acoustics solution. This same procedure is used here to construct the Green function for a source in an arbitrary mean flow. In view of the fact that there is no restriction to parallel flow, the governing equations cannot be transformed into a wave equation; the analysis therefore proceeds from the equations of motion themselves.

  20. Non-invasive dynamic measurement of helicopter blades

    Science.gov (United States)

    Serafini, J.; Bernardini, G.; Mattioni, L.; Vezzari, V.; Ficuciello, C.

    2017-08-01

    This paper presents the development and the application on helicopter blades of a measurement system based on FBG strain gauges. Here, the main goal is the structural characterization of the main rotor blades, with the aim of showing the potentialities of such a system in blades quality check applications, as well as in the development of structural health monitoring and rotor state feedback devices. The device has been used in both non-rotating and rotating tests, and does not require the presence of slip rings or optical joint since it is completely allocated in the rotating system. It has been successfully applied to characterize the frequency response of blades lead-lag, flap and torsion deformations, up to 250 Hz.

  1. Type 2 solar radio burst with the reverse frequency drift on the background of a noise storm

    International Nuclear Information System (INIS)

    Korolev, O.S.; Fomichev, V.V.; Chertok, I.M.

    1979-01-01

    Discussed are the main peculiarities of solar radio burst of the 2nd type recorded on November, 19, 1975 in 11sup(h)02sup(m)-11sup(h)06sup(m)UT in the 45-90 MHz range. The burst considered occurred at the background of the developed noise storm with continuum radiation chearacteristic of it and narrow band. Short-term burst of the first type. The burst band drift was accompanied by the successive cessation of noise storm radiation at frequencies of 50-70 MHz. This phenomenon is interpreted as the result of the interaction between the shock wave spreading in the direction of increasing electron density, and the source of noise storm in coronal plasma. Estimated is the shock wave rate and the paremeters of coronal plasma in the direction of its spreading. A mechanism of interaction between the shock wave and the noise storm source is studied. The observed cessation of noise storm generation is explained by violation of conditions of development of instabilities, in particular, with the isotropization of electrons in the radiation source

  2. Genetic fuzzy system for online structural health monitoring of composite helicopter rotor blades

    Science.gov (United States)

    Pawar, Prashant M.; Ganguli, Ranjan

    2007-07-01

    A structural health monitoring (SHM) methodology is developed for composite rotor blades. An aeroelastic analysis of composite rotor blades based on the finite element method in space and time and with implanted matrix cracking and debonding/delamination damage is used to obtain measurable system parameters such as blade response, loads and strains. A rotor blade with a two-cell airfoil section and [0/±45/90]s family of laminates is used for numerical simulations. The model based measurements are contaminated with noise to simulate real data. Genetic fuzzy systems (GFS) are developed for global online damage detection using displacement and force-based measurement deviations between damaged and undamaged conditions and for local online damage detection using strains. It is observed that the success rate of the GFS depends on number of measurements, type of measurements and training and testing noise level. The GFS work quite well with noisy data and is recommended for online SHM of composite helicopter rotor blades.

  3. Noise upon the Sinusoids

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer

    2005-01-01

    Sinusoids are used for making harmonic and other sounds. In order to having life in the sounds and adding a wide variety of noises, irregularities are inserted in the frequency and amplitudes. A simple and intuitive noise model is presented, consisting of a low-pass filtered noise, and having...... control for strength and bandwidth. The noise is added on the frequency and amplitudes of the sinusoids, and the resulting irregularity’s (jitter and shimmer) bandwidth is derived. This, together with an overview of investigation methods of the jitter and shimmer results in an analysis of the necessary...

  4. A case study of interior low-frequency noise from box-shaped bridge girders induced by running trains: Its mechanism, prediction and countermeasures

    Science.gov (United States)

    Zhang, Xun; Li, Xiaozhen; Hao, Hong; Wang, Dangxiong; Li, Yadong

    2016-04-01

    A side effect of high-speed railway and urban rail transit systems is the associated vibration and noise. Since the use of concrete viaducts is predominant in railway construction due to scarce land resources, low-frequency (20-200 Hz) structure-radiated noise from concrete bridges is a principal concern. Although it is the most commonly used bridge type, the mechanism of noise emission from box-shaped bridge girders when subjected to impact forces from moving trains, which sounds like beating a drum, has not been well studied. In this study, a field measurement was first made on a simply-supported box-shaped bridge to record the acceleration of the slabs and the associated sound pressures induced by running trains. These data indicated that a significant beat-wave noise occurred in the box-shaped cavity when the train speed was around 340 km/h, which arose from the interference between two sound waves of 75.0 Hz and 78.8 Hz. The noise leakage from the bridge expansion joint was serious and resulted in obvious noise pollution near the bridge once the beat-wave noise was generated in the cavity. The dominant frequency of the interior noise at 75.0 Hz was confirmed from the spectrum of the data and the modal analysis results, and originated from the peak vibration of the top slab due to resonance and the first-order vertical acoustic mode, which led to cavity resonance, amplifying the corresponding noise. The three-dimensional acoustic modes and local vibration modes of the slab were calculated by using the finite element method. A simplified vehicle-track-bridge coupling vibration model was then developed to calculate the wheel-rail interaction force in a frequency range of 20-200 Hz. Numerical simulations using the boundary element method confirmed the cavity resonance effect and the numerical results agreed well with the data. Based on the calibrated numerical model, three noise reduction measures, i.e., adding a horizontal baffle in the interior cavity, narrowing

  5. The Helicopter Observation Platform for Marine and Continental Boundary Layer Studies

    Science.gov (United States)

    Avissar, R.; Broad, K.; Walko, R. L.; Drennan, W. M.; Williams, N. J.

    2016-02-01

    The University of Miami has acquired a commercial helicopter (Airbus H125) that was transformed into a one-of-a-kind Helicopter Observation Platform (HOP) that fills critical gaps in physical, chemical and biological observations of the environment. This new research facility is designed to carry sensors and instrument inlets in the undisturbed air in front of the helicopter nose at low airspeed and at various altitudes, from a few feet above the Earth's surface (where much of the climate and weather "action" takes place, and where we live) and up through the atmospheric boundary layer and the mid troposphere. The HOP, with its hovering capability, is also ideal for conducting various types of remote-sensing observations. It provides a unique and essential component of airborne measurement whose purpose, among others, is to quantify the exchanges of gases and energy at the Earth surface, as well as aerosol properties that affect the environment, the climate system, and human health. For its first scientific mission, an eddy-correlation system is being mounted in front of its nose to conduct high-frequency measurements of turbulence variables relevant to atmospheric boundary layer studies.Fully fueled and with both pilot and co-pilot on board, the HOP can carry a scientific payload of up to about 1,000 lbs internally (about 3,000 lbs externally) and fly for nearly 4 hours without refueling at an airspeed of 65 knots ( 30 m/s) that is ideal for in-situ observations. Its fast cruising speed is about 140 knots andits range, at that speed, is about 350 nautical miles. This specific helicopter was chosen because of its flat floor design, which is particularly convenient for installing scientific payload and also because of its high-altitude capability (it is the only commercial helicopter that ever landed at the top of Mt Everest).The HOP is available to the entire scientific community for any project that is feasible from a flight safety point of view and that fulfills

  6. CHANGES IN FLIGHT TRAINEE PERFORMANCE FOLLOWING SYNTHETIC HELICOPTER FLIGHT TRAINING.

    Science.gov (United States)

    CARO, PAUL W., JR.; ISLEY, ROBERT N.

    A STUDY WAS CONDUCTED AT THE U.S. ARMY PRIMARY HELICOPTER SCHOOL, FORT WOLTERS, TEXAS, TO DETERMINE WHETHER THE USE OF A HELICOPTER TRAINING DEVICE WOULD IMPROVE STUDENT PERFORMANCE DURING SUBSEQUENT HELICOPTER CONTACT FLIGHT TRAINING. SUBJECTS WERE TWO EXPERIMENTAL GROUPS AND TWO CONTROL GROUPS OF WARRANT OFFICER CANDIDATES ENROLLED FOR A…

  7. 46 CFR 109.575 - Accumulation of liquids on helicopter decks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Accumulation of liquids on helicopter decks. 109.575... DRILLING UNITS OPERATIONS Miscellaneous § 109.575 Accumulation of liquids on helicopter decks. The master or person in charge shall ensure that no liquids are allowed to accumulate on the helicopter decks. ...

  8. 78 FR 9793 - Airworthiness Directives; Bell Helicopter Textron Helicopters

    Science.gov (United States)

    2013-02-12

    ...-numbered main rotor hub inboard strap fittings (fittings). This AD requires magnetic particle inspecting... identified in this AD, contact Bell Helicopter Textron, Inc., P.O. Box 482, Fort Worth, TX 76101, telephone..., perform a magnetic particle inspection (MPI) of each fitting for a crack. If an MPI was already performed...

  9. Analysis of sharpness increase by image noise

    Science.gov (United States)

    Kurihara, Takehito; Aoki, Naokazu; Kobayashi, Hiroyuki

    2009-02-01

    Motivated by the reported increase in sharpness by image noise, we investigated how noise affects sharpness perception. We first used natural images of tree bark with different amounts of noise to see whether noise enhances sharpness. Although the result showed sharpness decreased as noise amount increased, some observers seemed to perceive more sharpness with increasing noise, while the others did not. We next used 1D and 2D uni-frequency patterns as stimuli in an attempt to reduce such variability in the judgment. The result showed, for higher frequency stimuli, sharpness decreased as the noise amount increased, while sharpness of the lower frequency stimuli increased at a certain noise level. From this result, we thought image noise might reduce sharpness at edges, but be able to improve sharpness of lower frequency component or texture in image. To prove this prediction, we experimented again with the natural image used in the first experiment. Stimuli were made by applying noise separately to edge or to texture part of the image. The result showed noise, when added to edge region, only decreased sharpness, whereas when added to texture, could improve sharpness. We think it is the interaction between noise and texture that sharpens image.

  10. Surveys of Students Challenge "Helicopter Parent" Stereotypes

    Science.gov (United States)

    Hoover, Eric

    2008-01-01

    Stories of "helicopter parents" abound. But several longtime student-affairs officials agree that while helicopter parents are real, their numbers--and behaviors--have been exaggerated. Parental involvement on campus, they say, is usually more of a help than a headache, for students and colleges alike. Some officials believe colleges must do even…

  11. Reduction of external noise of mobile energy facilities by using active noise control system in muffler

    Science.gov (United States)

    Polivaev, O. I.; Kuznetsov, A. N.; Larionov, A. N.; Beliansky, R. G.

    2018-03-01

    The paper describes a method for the reducing emission of low-frequency noise of modern automotive vehicles into the environment. The importance of reducing the external noise of modern mobile energy facilities made in Russia is substantiated. Standard methods for controlling external noise in technology are of low efficiency when low-frequency sound waves are reduced. In this case, it is in the low-frequency zone of the sound range that the main power of the noise emitted by the machinery lies. The most effective way to reduce such sound waves is to use active noise control systems. A design of a muffler using a similar system is presented. This muffler allowed one to reduce the emission of increased noise levels into the environment by 7-11 dB and to increase acoustic comfort at the operator's workplace by 3-5 dB.

  12. Coupling of relative intensity noise and pathlength noise to the length measurement in the optical metrology system of LISA Pathfinder

    Science.gov (United States)

    Wittchen, Andreas; the LPF Collaboration

    2017-05-01

    LISA Pathfinder is a technology demonstration mission for the space-based gravitational wave observatory, LISA. It demonstrated that the performance requirements for the interferometric measurement of two test masses in free fall can be met. An important part of the data analysis is to identify the limiting noise sources. [1] This measurement is performed with heterodyne interferometry. The performance of this optical metrology system (OMS) at high frequencies is limited by sensing noise. One such noise source is Relative Intensity Noise (RIN). RIN is a property of the laser, and the photodiode current generated by the interferometer signal contains frequency dependant RIN. From this electric signal the phasemeter calculates the phase change and laser power, and the coupling of RIN into the measurement signal depends on the noise frequency. RIN at DC, at the heterodyne frequency and at two times the heterodyne frequency couples into the phase. Another important noise at high frequencies is path length noise. To reduce the impact this noise is suppressed with a control loop. Path length noise not suppressed will couple directly into the length measurement. The subtraction techniques of both noise sources depend on the phase difference between the reference signal and the measurement signal, and thus on the test mass position. During normal operations we position the test mass at the interferometric zero, which is optimal for noise subtraction purposes. This paper will show results from an in-flight experiment where the test mass position was changed to make the position dependant noise visible.

  13. Input Shaping for Helicopter Slung Load Swing Reduction

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2008-01-01

    This chapter presents a feedforward swing reducing control system for augmenting already existing helicopter controllers and enables slung load flight with autonomous helicopters general cargo transport. The feedforward controller is designed to avoid excitation of the lightly damped modes...

  14. Statistics and vertical directionality of low-frequency ambient noise at the North Pacific Acoustics Laboratory site

    Science.gov (United States)

    Baggeroer, Arthur B.; NPAL Group; Colosi, J. A.; Cornuelle, B. D.; Dushaw, B. D.; Dzieciuch, M. A.; Howe, B. M.; Mercer, J. A.; Munk, W. H.; Spindel, R. C.; Worcester, P. F.

    2005-03-01

    We examine statistical and directional properties of the ambient noise in the 10-100 Hz frequency band from the NPAL array. Marginal probability densities are estimated as well as mean square levels, skewness and kurtoses in third octave bands. The kurotoses are markedly different from Gaussian except when only distant shipping is present. Extremal levels reached ~150 dB re 1 μ Pa, suggesting levels 60dB greater than the mean ambient were common in the NPAL data sets. Generally, these were passing ships. We select four examples: i) quiescent noise, ii) nearby shipping, iii) whale vocalizations and iv) a micro earthquake for the vertical directional properties of the NPAL noise since they are representative of the phenomena encountered. We find there is modest broadband coherence for most of these cases in their occupancy band across the NPAL aperture. Narrowband coherence analysis from VLA to VLA was not successful due to ambiguities. Examples of localizing sources based upon this coherence are included. kw diagrams allow us to use data above the vertical aliasing frequency. Ducted propagation for both the quiescent and micro earthquake (T phase) are identified and the arrival angles of nearby shipping and whale vocalizations. MFP localizations were modestly successful for nearby sources, but long range ones could not be identified, most likely because of signal mismatch in the MFP replica. .

  15. Effects of frequency and duration on psychometric functions for detection of increments and decrements in sinusoids in noise.

    Science.gov (United States)

    Moore, B C; Peters, R W; Glasberg, B R

    1999-12-01

    Psychometric functions for detecting increments or decrements in level of sinusoidal pedestals were measured for increment and decrement durations of 5, 10, 20, 50, 100, and 200 ms and for frequencies of 250, 1000, and 4000 Hz. The sinusoids were presented in background noise intended to mask spectral splatter. A three-interval, three-alternative procedure was used. The results indicated that, for increments, the detectability index d' was approximately proportional to delta I/I. For decrements, d' was approximately proportional to delta L. The slopes of the psychometric functions increased (indicating better performance) with increasing frequency for both increments and decrements. For increments, the slopes increased with increasing increment duration up to 200 ms at 250 and 1000 Hz, but at 4000 Hz they increased only up to 50 ms. For decrements, the slopes increased for durations up to 50 ms, and then remained roughly constant, for all frequencies. For a center frequency of 250 Hz, the slopes of the psychometric functions for increment detection increased with duration more rapidly than predicted by a "multiple-looks" hypothesis, i.e., more rapidly than the square root of duration, for durations up to 50 ms. For center frequencies of 1000 and 4000 Hz, the slopes increased less rapidly than predicted by a multiple-looks hypothesis, for durations greater than about 20 ms. The slopes of the psychometric functions for decrement detection increased with decrement duration at a rate slightly greater than the square root of duration, for durations up to 50 ms, at all three frequencies. For greater durations, the increase in slope was less than proportional to the square root of duration. The results were analyzed using a model incorporating a simulated auditory filter, a compressive nonlinearity, a sliding temporal integrator, and a decision device based on a template mechanism. The model took into account the effects of both the external noise and an assumed internal

  16. Comparison of Test Stand and Helicopter Oil Cooler Bearing Condition Indicators

    Science.gov (United States)

    Dempsey, Paula J.; Branning, Jeremy; Wade, Damiel R.; Bolander, Nathan

    2010-01-01

    The focus of this paper was to compare the performance of HUMS condition indicators (CI) when detecting a bearing fault in a test stand or on a helicopter. This study compared data from two sources: first, CI data collected from accelerometers installed on two UH-60 Black Hawk helicopters when oil cooler bearing faults occurred, along with data from helicopters with no bearing faults; and second, CI data that was collected from ten cooler bearings, healthy and faulted, that were removed from fielded helicopters and installed in a test stand. A method using Receiver Operating Characteristic (ROC) curves to compare CI performance was demonstrated. Results indicated the bearing energy CI responded differently for the helicopter and the test stand. Future research is required if test stand data is to be used validate condition indicator performance on a helicopter.

  17. U.S. Army Primary Helicopter School Training Program Performance Norms.

    Science.gov (United States)

    Barnes, John A.; Statham, Flavous D.

    The Helicopter Pilot Training Program of the Army differs from those of the other services in concept. It takes nonpilot servicemen and trains them to fly helicopters. The study provides normative performance data for a pilot trainee in an army light-observation helicopter as a first step toward establishing normative data for pilot performance in…

  18. Sleep and Alertness in North Sea Helicopter Operations

    NARCIS (Netherlands)

    Simons, M.; Wilschut, E.S.; Valk, P.J.L.

    2011-01-01

    Introduction : Dutch North Sea helicopter operations are characterized by multiple sector flights to offshore platforms under difficult environmental conditions. In the context of a Ministry of Transport program to improve safety levels of helicopter operations, we assessed effects of pre-duty

  19. Structure-borne low-frequency noise from multi-span bridges: A prediction method and spatial distribution

    Science.gov (United States)

    Song, X. D.; Wu, D. J.; Li, Q.; Botteldooren, D.

    2016-04-01

    Structure-borne noise from railway bridges at far-field points is an important indicator in environmental noise assessment. However, studies that predict structure-borne noise tend to model only single-span bridges, thus ignoring the sound pressure radiating from adjacent spans. To simulate the noise radiating from multi-span bridges induced by moving vehicles, the vibrations of a multi-span bridge are first obtained from a three-dimensional (3D) vehicle-track-bridge dynamic interaction simulation using the mode superposition method. A procedure based on the 2.5-dimensional (2.5D) boundary element method (BEM) is then presented to promote the efficiency of acoustical computation compared with the 3D BEM. The simulated results obtained from both the single-span and multi-span bridge models are compared with the measured results. The sound predictions calculated from the single-span model are accurate only for a minority of near-field points. In contrast, the sound pressures calculated from the multi-span bridge model match the measured results in both the time and frequency domains for all of the near-field and far-field points. The number of bridge spans required in the noise simulation is then recommended related to the distance between the track center and the field points of interest. The spatial distribution of multi-span structure-borne noise is also studied. The variation in sound pressure levels is insignificant along the length of the bridge, which validates the finding that the sound test section can be selected at an arbitrary plane perpendicular to the multi-span bridge.

  20. Minimum-complexity helicopter simulation math model

    Science.gov (United States)

    Heffley, Robert K.; Mnich, Marc A.

    1988-01-01

    An example of a minimal complexity simulation helicopter math model is presented. Motivating factors are the computational delays, cost, and inflexibility of the very sophisticated math models now in common use. A helicopter model form is given which addresses each of these factors and provides better engineering understanding of the specific handling qualities features which are apparent to the simulator pilot. The technical approach begins with specification of features which are to be modeled, followed by a build up of individual vehicle components and definition of equations. Model matching and estimation procedures are given which enable the modeling of specific helicopters from basic data sources such as flight manuals. Checkout procedures are given which provide for total model validation. A number of possible model extensions and refinement are discussed. Math model computer programs are defined and listed.

  1. Helicopter training simulators: Key market factors

    Science.gov (United States)

    Mcintosh, John

    1992-01-01

    Simulators will gain an increasingly important role in training helicopter pilots only if the simulators are of sufficient fidelity to provide positive transfer of skills to the aircraft. This must be done within an economic model of return on investment. Although rotor pilot demand is still only a small percentage of overall pilot requirements, it will grow in significance. This presentation described the salient factors influencing the use of helicopter training simulators.

  2. Automated Design of Noise-Minimal, Safe Rotorcraft Trajectories

    Science.gov (United States)

    Morris, Robert A.; Venable, K. Brent; Lindsay, James

    2012-01-01

    NASA and the international community are investing in the development of a commercial transportation infrastructure that includes the increased use of rotorcraft, specifically helicopters and aircraft such as a 40-passenger civil tilt rotors. Rotorcraft have a number of advantages over fixed wing aircraft, primarily in not requiring direct access to the primary fixed wing runways. As such they can operate at an airport without directly interfering with major air carrier and commuter aircraft operations. However, there is significant concern over the impact of noise on the communities surrounding the transportation facilities. In this paper we propose to address the rotorcraft noise problem by exploiting powerful search techniques coming from artificial intelligence, coupled with simulation and field tests, to design trajectories that are expected to improve on the amount of ground noise generated. This paper investigates the use of simulation based on predictive physical models to facilitate the search for low-noise trajectories using a class of automated search algorithms called local search. A novel feature of this approach is the ability to incorporate constraints into the problem formulation that addresses passenger safety and comfort.

  3. 78 FR 40055 - Airworthiness Directives; Agusta S.p.A. Helicopters

    Science.gov (United States)

    2013-07-03

    .... We also estimate that it would take about 3 work-hours per helicopter to rework the top cable cutter... helicopter to rework the top cable cutter assembly, $9,085 per helicopter to replace the top cable cutter... installing a WSPS upper installation, P/N 4G9540A00111, either: (i) Rework the top cable cutter assembly, P/N...

  4. 77 FR 52270 - Airworthiness Directives; Agusta S.p.A. Helicopters

    Science.gov (United States)

    2012-08-29

    ... would take about three work- hours per helicopter to rework the top cable-cutter assembly, one work... would be $255 per helicopter to rework the top cable-cutter assembly, $9,085 per helicopter to replace... 4G9540A00111, either: (i) Rework the top cable cutter assembly, P/N 423-83001-1, in accordance with the...

  5. Low noise buffer amplifiers and buffered phase comparators for precise time and frequency measurement and distribution

    Science.gov (United States)

    Eichinger, R. A.; Dachel, P.; Miller, W. H.; Ingold, J. S.

    1982-01-01

    Extremely low noise, high performance, wideband buffer amplifiers and buffered phase comparators were developed. These buffer amplifiers are designed to distribute reference frequencies from 30 KHz to 45 MHz from a hydrogen maser without degrading the hydrogen maser's performance. The buffered phase comparators are designed to intercompare the phase of state of the art hydrogen masers without adding any significant measurement system noise. These devices have a 27 femtosecond phase stability floor and are stable to better than one picosecond for long periods of time. Their temperature coefficient is less than one picosecond per degree C, and they have shown virtually no voltage coefficients.

  6. 14 CFR 135.271 - Helicopter hospital emergency medical evacuation service (HEMES).

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Helicopter hospital emergency medical....271 Helicopter hospital emergency medical evacuation service (HEMES). (a) No certificate holder may... certificate holder may assign a helicopter flight crewmember, and no flight crewmember may accept an...

  7. Helicopter Emergency Medical Services: effects, costs and benefits

    NARCIS (Netherlands)

    A.N. Ringburg (Akkie)

    2009-01-01

    textabstractAdvanced prehospital medical care with air transport was introduced in the Netherlands in May 1995. The fi rst helicopter Mobile Medical Team, also called Helicopter Emergency Medical Service (HEMS) was a joint venture initiative of the VU Medical Center in Amsterdam and the Algemene

  8. Reading Comprehension in Quiet and in Noise: Effects on Immediate and Delayed Recall in Relation to Tinnitus and High-Frequency Hearing Thresholds.

    Science.gov (United States)

    Brännström, K Jonas; Waechter, Sebastian

    2018-06-01

    A common complaint by people with tinnitus is that they experience that the tinnitus causes attention and concentration problems. Previous studies have examined how tinnitus influences cognitive performance on short and intensive cognitive tasks but without proper control of hearing status. To examine the impact tinnitus and high-frequency hearing thresholds have on reading comprehension in quiet and in background noise. A between-group design with matched control participants. One group of participants with tinnitus (n = 20) and an age and gender matched control group without tinnitus (n = 20) participated. Both groups had normal hearing thresholds (20 dB HL at frequencies 0.125 to 8 kHz). Measurements were made assessing hearing thresholds and immediate and delayed recall using a reading comprehension test in quiet and in noise. All participants completed the Swedish version of the Hospital Anxiety and Depression Scale, and participants with tinnitus also completed the Tinnitus Questionnaire. The groups did not differ in immediate nor delayed recall. Accounting for the effect of age, a significant positive correlation was found between best ear high-frequency pure tone average (HF-PTA; 10000, 12500, and 14000 Hz) and the difference score between immediate and delayed recall in noise. Tinnitus seems to have no effect on immediate and delayed recall in quiet or in background noise when hearing status is controlled for. The detrimental effect of background noise on the processes utilized for efficient encoding into long-term memory is larger in participants with better HF-PTA. More specifically, when reading in noise, participants with better HF-PTA seem to recall less information than participants with poorer HF-PTA. American Academy of Audiology.

  9. Preliminary Analysis of Helicopter Options to Support Tunisian Counterterrorism Operations

    Science.gov (United States)

    2016-04-27

    helicopters from Sikorsky to fulfill a number of roles in counterterrorism operations. Rising costs and delays in delivery raised the question of...whether other cost-effective options exist to meet Tunisia’s helicopter requirement. Approach Our team conducted a preliminary assessment of...alternative helicopters for counterterrorism air assault missions. Any decision to acquire an aircraft must consider many factors, including technical

  10. Measurement and control of occupational noise

    International Nuclear Information System (INIS)

    Elammari, Muftah Faraj

    2007-01-01

    High level of environmental and occupational noise remain a problem all over the world. As problems and complaints increased dramatically by the end of the 19th and beginning of the 20th centuries focusing on the problem was intensified. In this thesis occupational noise levels at different places were measured and compared with the international permissible levels using the integrating sound level meter (Quest 2800). The calibration of the instrument was carried out before and after each measurement using the acoustic calibrator (Quest CA-12B calibrator). The method which was followed was measuring the sound pressure level of the different noise sources over a broad frequency band covering the audible frequency range using the (octave band filter, model OB-100), disregrading variation with time. Since the human ear is most sensitive in the 2-5 khz range of frequencies and least sensitive at extremely high and low frequencies the instrument was adjusted on the A weighting net work which varies with frequencies in a very similar way as that of the human ear. From the obtained results, some noise levels which were recorded were within the permissible levels i.e. below 90 dba and some noise levels were higher than the permissible limit as in janzour textile factory (95 dba), The welding workshop (120 dba), Benghazi Macaroni factory (100 dba), and near the air blowers at Zletin cement factory, Benghazi cement factory (97-10-dba) in these cases suggestions were made to minimize the problem. Concerning the noise control, four methods of noise control were tested, these methods were: reducing noise by sound absorbing material at Sirt local broadcasting radio, reducing noise by keeping a distance from the noise source, at the Boilers hall at REWDC, reducing noise by enclosures, at the compressors room at Zletin cement factory, and finally reducing noise by performing regular maintenance at Garabolli photo development centre. The percentage of noise reduction was 21%, 12

  11. Clustering of noise-induced oscillations

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Fomin, A I; Postnov, D E

    2001-01-01

    The subject of our study is clustering in a population of excitable systems driven by Gaussian white noise and with randomly distributed coupling strength. The cluster state is frequency-locked state in which all functional units run at the same noise-induced frequency. Cooperative dynamics...

  12. Blade vortex interaction noise reduction techniques for a rotorcraft

    Science.gov (United States)

    Charles, Bruce D. (Inventor); Hassan, Ahmed A. (Inventor); Tadghighi, Hormoz (Inventor); JanakiRam, Ram D. (Inventor); Sankar, Lakshmi N. (Inventor)

    1996-01-01

    An active control device for reducing blade-vortex interactions (BVI) noise generated by a rotorcraft, such as a helicopter, comprises a trailing edge flap located near the tip of each of the rotorcraft's rotor blades. The flap may be actuated in any conventional way, and is scheduled to be actuated to a deflected position during rotation of the rotor blade through predetermined regions of the rotor azimuth, and is further scheduled to be actuated to a retracted position through the remaining regions of the rotor azimuth. Through the careful azimuth-dependent deployment and retraction of the flap over the rotor disk, blade tip vortices which are the primary source for BVI noise are (a) made weaker and (b) pushed farther away from the rotor disk (that is, larger blade-vortex separation distances are achieved).

  13. Compressive sensing for sparse time-frequency representation of nonstationary signals in the presence of impulsive noise

    Science.gov (United States)

    Orović, Irena; Stanković, Srdjan; Amin, Moeness

    2013-05-01

    A modified robust two-dimensional compressive sensing algorithm for reconstruction of sparse time-frequency representation (TFR) is proposed. The ambiguity function domain is assumed to be the domain of observations. The two-dimensional Fourier bases are used to linearly relate the observations to the sparse TFR, in lieu of the Wigner distribution. We assume that a set of available samples in the ambiguity domain is heavily corrupted by an impulsive type of noise. Consequently, the problem of sparse TFR reconstruction cannot be tackled using standard compressive sensing optimization algorithms. We introduce a two-dimensional L-statistics based modification into the transform domain representation. It provides suitable initial conditions that will produce efficient convergence of the reconstruction algorithm. This approach applies sorting and weighting operations to discard an expected amount of samples corrupted by noise. The remaining samples serve as observations used in sparse reconstruction of the time-frequency signal representation. The efficiency of the proposed approach is demonstrated on numerical examples that comprise both cases of monocomponent and multicomponent signals.

  14. Enhanced Core Noise Modeling for Turbofan Engines

    Science.gov (United States)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2011-01-01

    This report describes work performed by MTC Technologies (MTCT) for NASA Glenn Research Center (GRC) under Contract NAS3-00178, Task Order No. 15. MTCT previously developed a first-generation empirical model that correlates the core/combustion noise of four GE engines, the CF6, CF34, CFM56, and GE90 for General Electric (GE) under Contract No. 200-1X-14W53048, in support of GRC Contract NAS3-01135. MTCT has demonstrated in earlier noise modeling efforts that the improvement of predictive modeling is greatly enhanced by an iterative approach, so in support of NASA's Quiet Aircraft Technology Project, GRC sponsored this effort to improve the model. Since the noise data available for correlation are total engine noise spectra, it is total engine noise that must be predicted. Since the scope of this effort was not sufficient to explore fan and turbine noise, the most meaningful comparisons must be restricted to frequencies below the blade passage frequency. Below the blade passage frequency and at relatively high power settings jet noise is expected to be the dominant source, and comparisons are shown that demonstrate the accuracy of the jet noise model recently developed by MTCT for NASA under Contract NAS3-00178, Task Order No. 10. At lower power settings the core noise became most apparent, and these data corrected for the contribution of jet noise were then used to establish the characteristics of core noise. There is clearly more than one spectral range where core noise is evident, so the spectral approach developed by von Glahn and Krejsa in 1982 wherein four spectral regions overlap, was used in the GE effort. Further analysis indicates that the two higher frequency components, which are often somewhat masked by turbomachinery noise, can be treated as one component, and it is on that basis that the current model is formulated. The frequency scaling relationships are improved and are now based on combustor and core nozzle geometries. In conjunction with the Task

  15. Noise temperature of an NbN hot-electron bolometric mixer at frequencies from 0.7 THz to 5.2 THz

    International Nuclear Information System (INIS)

    Schubert, J.; Semenov, A.; Gol'tsman, G.; Huebers, H-W.; Voronov, B.; Gershenzon, E.; Schwaab, G.

    1999-01-01

    We report on noise temperature measurements of an NbN phonon-cooled hot-electron bolometric mixer in the terahertz frequency range. The devices were 3 nm thick films with in-plane dimensions 1.7x0.2μm 2 and 0.9x0.2μm 2 integrated in a complementary logarithmic-spiral antenna. Measurements were performed at seven frequencies ranging from 0.7 THz to 5.2 THz. The measured DSB noise temperatures are 1500 K (0.7 THz), 2200 K (1.4 THz), 2600 K (1.6 THz), 2900 K (2.5 THz), 4000 K (3.1 THz), 5600 K (4.3 THz) and 8800 K (5.2 THz). (author)

  16. Basic Helicopter Handbook, Revised. AC 61-13A.

    Science.gov (United States)

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    This technical manual was designed to assist applicants preparing for the private, commercial, and flight instructor pilot certificates with a helicopter rating. The chapters outline general aerodynamics, aerodynamics of flight, loads and load factors, function of controls, other helicopter components and their functions, introduction to the…

  17. 78 FR 15277 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2013-03-11

    ... the ASB as mandatory. Costs of Compliance We estimate that this AD affects three helicopters of U.S... of the helicopter's bottom structure. AD 2006- 0152 requires compliance with Eurocopter Alert Service... with France, EASA, its technical representative, has notified us of the unsafe condition described in...

  18. Radio Astronomy Explorer /RAE/. I - Observations of terrestrial radio noise.

    Science.gov (United States)

    Herman, J. R.; Caruso, J. A.; Stone, R. G.

    1973-01-01

    Radio Astronomy Explorer (RAE) I data are analyzed to establish characteristics of HF terrestrial radio noise at an altitude of about 6000 km. Time and frequency variations in amplitude of the observed noise well above cosmic noise background are explained on the basis of temporal and spatial variations in ionospheric critical frequency coupled with those in noise source distributions. It is shown that terrestrial radio noise regularly breaks through the ionosphere and reaches RAE with magnitudes 15 dB and more above cosmic noise background, on frequencies above the F-layer critical frequency.

  19. Differences in physical workload between military helicopter pilots and cabin crew

    NARCIS (Netherlands)

    van den Oord, Marieke H. A.; Sluiter, Judith K.; Frings-Dresen, Monique H. W.

    2014-01-01

    The 1-year prevalence of regular or continuous neck pain in military helicopter pilots of the Dutch Defense Helicopter Command (DHC) is 20%, and physical work exposures have been suggested as risk factors. Pilots and cabin crew perform different tasks when flying helicopters. The aims of the current

  20. Detection of Sensor Faults in Small Helicopter UAVs Using Observer/Kalman Filter Identification

    Directory of Open Access Journals (Sweden)

    Guillermo Heredia

    2011-01-01

    Full Text Available Reliability is a critical issue in navigation of unmanned aerial vehicles (UAVs since there is no human pilot that can react to any abnormal situation. Due to size and cost limitations, redundant sensor schemes and aeronautical-grade navigation sensors used in large aircrafts cannot be installed in small UAVs. Therefore, other approaches like analytical redundancy should be used to detect faults in navigation sensors and increase reliability. This paper presents a sensor fault detection and diagnosis system for small autonomous helicopters based on analytical redundancy. Fault detection is accomplished by evaluating any significant change in the behaviour of the vehicle with respect to the fault-free behaviour, which is estimated by using an observer. The observer is obtained from input-output experimental data with the Observer/Kalman Filter Identification (OKID method. The OKID method is able to identify the system and an observer with properties similar to a Kalman filter, directly from input-output experimental data. Results are similar to the Kalman filter, but, with the proposed method, there is no need to estimate neither system matrices nor sensor and process noise covariance matrices. The system has been tested with real helicopter flight data, and the results compared with other methods.

  1. Solar noise storms

    CERN Document Server

    Elgaroy, E O

    2013-01-01

    Solar Noise Storms examines the properties and features of solar noise storm phenomenon. The book also presents some theories that can be used to gain a better understanding of the phenomenon. The coverage of the text includes topics that cover the features and behavior of noise storms, such as the observable features of noise storms; the relationship between noise storms and the observable features on the sun; and ordered behavior of storm bursts in the time-frequency plane. The book also covers the spectrum, polarization, and directivity of noise storms. The text will be of great use to astr

  2. Wind noise under a pine tree canopy.

    Science.gov (United States)

    Raspet, Richard; Webster, Jeremy

    2015-02-01

    It is well known that infrasonic wind noise levels are lower for arrays placed in forests and under vegetation than for those in open areas. In this research, the wind noise levels, turbulence spectra, and wind velocity profiles are measured in a pine forest. A prediction of the wind noise spectra from the measured meteorological parameters is developed based on recent research on wind noise above a flat plane. The resulting wind noise spectrum is the sum of the low frequency wind noise generated by the turbulence-shear interaction near and above the tops of the trees and higher frequency wind noise generated by the turbulence-turbulence interaction near the ground within the tree layer. The convection velocity of the low frequency wind noise corresponds to the wind speed above the trees while the measurements showed that the wind noise generated by the turbulence-turbulence interaction is near stationary and is generated by the slow moving turbulence adjacent to the ground. Comparison of the predicted wind noise spectrum with the measured wind noise spectrum shows good agreement for four measurement sets. The prediction can be applied to meteorological estimates to predict the wind noise under other pine forests.

  3. 46 CFR 131.950 - Placard on lifesaving signals and helicopter recovery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Placard on lifesaving signals and helicopter recovery... SUPPLY VESSELS OPERATIONS Miscellaneous § 131.950 Placard on lifesaving signals and helicopter recovery..., Chapter V, of SOLAS 74/83; and (2) In helicopter recovery. (b) The signals must be employed by vessels or...

  4. Flying control of small-type helicopter by detecting its in-air natural features

    Directory of Open Access Journals (Sweden)

    Chinthaka Premachandra

    2015-05-01

    Full Text Available Control of a small type helicopter is an interesting research area in unmanned aerial vehicle development. This study aims to detect a more typical helicopter unequipped with markers as a means by which to resolve the various issues of the prior studies. Accordingly, we propose a method of detecting the helicopter location and pose through using an infrastructure camera to recognize its in-air natural features such as ellipse traced by the rotation of the helicopter's propellers. A single-rotor system helicopter was used as the controlled airframe in our experiments. Here, helicopter location is measured by detecting the main rotor ellipse center and pose is measured following relationship between the main rotor ellipse and the tail rotor ellipse. Following these detection results we confirmed the hovering control possibility of the helicopter through experiments.

  5. 78 FR 52407 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2013-08-23

    ... prevent failure of float and subsequent loss of control of the helicopter during an emergency water... requirements were intended to prevent failure of float and subsequent loss of control of the helicopter during... in the float becoming punctured, failure of the float to inflate, and subsequent loss of control of...

  6. Swing Damping for Helicopter Slung Load Systems using Delayed Feedback

    OpenAIRE

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2009-01-01

    This paper presents the design and verification of a swing reducing controller for helicopter slung load systems usingintentional delayed feedback. It is intended for augmenting a trajectory tracking helicopter controller and thereby improving the slung load handing capabilities for autonomous helicopters. The delayed feedback controller is added to actively reduce oscillations of the slung load by improving the damping of the slung load pendulum modes. Furthermore, it is intended for integra...

  7. Multicenter observational prehospital resuscitation on helicopter study.

    Science.gov (United States)

    Holcomb, John B; Swartz, Michael D; DeSantis, Stacia M; Greene, Thomas J; Fox, Erin E; Stein, Deborah M; Bulger, Eileen M; Kerby, Jeffrey D; Goodman, Michael; Schreiber, Martin A; Zielinski, Martin D; O'Keeffe, Terence; Inaba, Kenji; Tomasek, Jeffrey S; Podbielski, Jeanette M; Appana, Savitri N; Yi, Misung; Wade, Charles E

    2017-07-01

    Earlier use of in-hospital plasma, platelets, and red blood cells (RBCs) has improved survival in trauma patients with severe hemorrhage. Retrospective studies have associated improved early survival with prehospital blood product transfusion (PHT). We hypothesized that PHT of plasma and/or RBCs would result in improved survival after injury in patients transported by helicopter. Adult trauma patients transported by helicopter from the scene to nine Level 1 trauma centers were prospectively observed from January to November 2015. Five helicopter systems had plasma and/or RBCs, whereas the other four helicopter systems used only crystalloid resuscitation. All patients meeting predetermined high-risk criteria were analyzed. Patients receiving PHT were compared with patients not receiving PHT. Our primary analysis compared mortality at 3 hours, 24 hours, and 30 days, using logistic regression to adjust for confounders and site heterogeneity to model patients who were matched on propensity scores. Twenty-five thousand one hundred eighteen trauma patients were admitted, 2,341 (9%) were transported by helicopter, of which 1,058 (45%) met the highest-risk criteria. Five hundred eighty-five of 1,058 patients were flown on helicopters carrying blood products. In the systems with blood available, prehospital median systolic blood pressure (125 vs 128) and Glasgow Coma Scale (7 vs 14) was significantly lower, whereas median Injury Severity Score was significantly higher (21 vs 14). Unadjusted mortality was significantly higher in the systems with blood products available, at 3 hours (8.4% vs 3.6%), 24 hours (12.6% vs 8.9%), and 30 days (19.3% vs 13.3%). Twenty-four percent of eligible patients received a PHT. A median of 1 unit of RBCs and plasma were transfused prehospital. Of patients receiving PHT, 24% received only plasma, 7% received only RBCs, and 69% received both. In the propensity score matching analysis (n = 109), PHT was not significantly associated with mortality

  8. Localized, Non-Harmonic Active Flap Motions for Low Frequency In-Plane Rotor Noise Reduction

    Science.gov (United States)

    Sim, Ben W.; Potsdam, Mark; Kitaplioglu, Cahit; LeMasurier, Philip; Lorber, Peter; Andrews, Joseph

    2012-01-01

    A first-of-its-kind demonstration of the use of localized, non-harmonic active flap motions, for suppressing low frequency, in-plane rotor noise, is reported in this paper. Operational feasibility is verified via testing of the full-scale AATD/Sikorsky/UTRC active flap demonstration rotor in the NFAC's 40- by 80-Foot anechoic wind tunnel. Effectiveness of using localized, non-harmonic active flap motions are compared to conventional four-per-rev harmonic flap motions, and also active flap motions derived from closed-loop acoustics implementations. All three approaches resulted in approximately the same noise reductions over an in-plane three-by-three microphone array installed forward and near in-plane of the rotor in the nearfield. It is also reported that using an active flap in this localized, non-harmonic manner, resulted in no more that 2% rotor performance penalty, but had the tendency to incur higher hub vibration levels.

  9. Liquid-phase exfoliated graphene self-assembled films: Low-frequency noise and thermal-electric characterization

    International Nuclear Information System (INIS)

    Tubon Usca, G.; Hernandez-Ambato, J.; Pace, C.; Caputi, L.S.; Tavolaro, A.

    2016-01-01

    Highlights: • Graphene was exfoliated in liquid phase also in the presence of zeolite 4A. • Films were obtained by drop-casting. • SEM, Raman, low-frequency noise and thermal electric measurements show that the presence of zeolite improves the quality of the FLG films. - Abstract: In few years, graphene has become a revolutionary material, leading not only to applications in various fields such as electronics, medicine and environment, but also to the production of new types of 2D materials. In this work, Liquid Phase Exfoliation (LPE) was applied to natural graphite by brief sonication or mixer treatment in suitable solvents, in order to produce Few Layers Graphene (FLG) suspensions. Additionally, zeolite 4A (Z4A) was added during the production of FLG flakes-based inks, with the aim of aiding the exfoliation process. Conductive films were obtained by drop casting three types of suspensions over Al 2 O 3 substrates with interdigitated electrodes, with total channel surface of 1.39 mm 2 . The morphology characterization resulted in the verification of the presence of thin self-assembled flakes. Raman studies gave evidence of 4 to 10 layers graphene flakes. Electrical measurements were performed to state the Low-Frequency Noise and Thermal-Electric characteristics of the samples. We observe interesting relations between sample preparation procedures and electrical properties.

  10. Validation of an Aero-Acoustic Wind Turbine Noise Model Using Advanced Noise Source Measurements of a 500kW Turbine

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Fischer, Andreas

    2016-01-01

    rotor noise model is presented. It includes the main sources of aeroacoustic noise from wind turbines: turbulent inflow, trailing edge and stall noise. The noise measured by one microphone located directly downstream of the wind turbine is compared to the model predictions at the microphone location....... A good qualitative agreement is found. When wind speed increases, the rotor noise model shows that at high frequencies the stall noise becomes dominant. It also shows that turbulent inflow noise is dominant at low frequencies for all wind speeds and that trailing edge noise is dominant at low wind speeds...

  11. A study of the effect of flight density and background noise on V/STOL acceptability. [effective perceived noise level as measure of annoyance

    Science.gov (United States)

    Sternfeld, H., Jr.; Hinterkeuser, E. G.; Hackman, R. B.; Davis, J.

    1974-01-01

    A study was conducted in which test subjects evaluated the sounds of a helicopter, a turbofan STOL and a turbojet airplane while engaged in work and leisure activities. Exposure to a high repetitive density of the aircraft sounds did not make the individual sounds more annoying but did create an unacceptable environment. The application of a time duration term to db(A) resulted in a measure which compared favorably with EPNL as a predictor of annoyance. Temporal variations in background noise level had no significant effect on the rated annoyance.

  12. Carotid dual-energy CT angiography: Evaluation of low keV calculated monoenergetic datasets by means of a frequency-split approach for noise reduction at low keV levels.

    Science.gov (United States)

    Riffel, Philipp; Haubenreisser, Holger; Meyer, Mathias; Sudarski, Sonja; Morelli, John N; Schmidt, Bernhard; Schoenberg, Stefan O; Henzler, Thomas

    2016-04-01

    Calculated monoenergetic ultra-low keV datasets did not lead to improved contrast-to-noise ratio (CNR) due to the dramatic increase in image noise. The aim of the present study was to evaluate the objective image quality of ultra-low keV monoenergetic images (MEIs) calculated from carotid DECT angiography data with a new monoenergetic imaging algorithm using a frequency-split technique. 20 patients (12 male; mean age 53±17 years) were retrospectively analyzed. MEIs from 40 to 120 keV were reconstructed using the monoenergetic split frequency approach (MFSA). Additionally MEIs were reconstructed for 40 and 50 keV using a conventional monoenergetic (CM) software application. Signal intensity, noise, signal-to-noise ratio (SNR) and CNR were assessed in the basilar, common, internal carotid arteries. Ultra-low keV MEIs at 40 keV and 50 keV demonstrated highest vessel attenuation, significantly greater than those of the polyenergetic images (PEI) (all p-values 0.05). Thus MEIs with MFSA showed significantly higher SNR and CNR compared to MEIs with CM. Combining the lower spatial frequency stack for contrast at low keV levels with the high spatial frequency stack for noise at high keV levels (frequency-split technique) leads to improved image quality of ultra-low keV monoenergetic DECT datasets when compared to previous monoenergetic reconstruction techniques without the frequency-split technique. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Prehospital helicopter transport and survival of patients with traumatic brain injury.

    Science.gov (United States)

    Bekelis, Kimon; Missios, Symeon; Mackenzie, Todd A

    2015-03-01

    To investigate the association of helicopter transport with survival of patients with traumatic brain injury (TBI), in comparison with ground emergency medical services (EMS). Helicopter utilization and its effect on the outcomes of TBI remain controversial. We performed a retrospective cohort study involving patients with TBI who were registered in the National Trauma Data Bank between 2009 and 2011. Regression techniques with propensity score matching were used to investigate the association of helicopter transport with survival of patients with TBI, in comparison with ground EMS. During the study period, there were 209,529 patients with TBI who were registered in the National Trauma Data Bank and met the inclusion criteria. Of these patients, 35,334 were transported via helicopters and 174,195 via ground EMS. For patients transported to level I trauma centers, 2797 deaths (12%) were recorded after helicopter transport and 8161 (7.8%) after ground EMS. Multivariable logistic regression analysis demonstrated an association of helicopter transport with increased survival [OR (odds ratio), 1.95; 95% confidence interval (CI), 1.81-2.10; absolute risk reduction (ARR), 6.37%]. This persisted after propensity score matching (OR, 1.88; 95% CI, 1.74-2.03; ARR, 5.93%). For patients transported to level II trauma centers, 1282 deaths (10.6%) were recorded after helicopter transport and 5097 (7.3%) after ground EMS. Multivariable logistic regression analysis demonstrated an association of helicopter transport with increased survival (OR, 1.81; 95% CI, 1.64-2.00; ARR 5.17%). This again persisted after propensity score matching (OR, 1.73; 95% CI, 1.55-1.94; ARR, 4.69). Helicopter transport of patients with TBI to level I and II trauma centers was associated with improved survival, in comparison with ground EMS.

  14. 77 FR 56581 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-09-13

    ... Corporation Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Supplemental notice of... airworthiness directive (AD) for the Sikorsky Aircraft Corporation (Sikorsky) Model S-92A helicopter, which... proposed AD, contact Sikorsky Aircraft Corporation, Attn: Manager, Commercial Technical Support, mailstop...

  15. 77 FR 41889 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-07-17

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... airworthiness directive (AD) for Sikorsky Aircraft Corporation (Sikorsky) Model S-92A helicopters. This AD... identified in this AD, contact Sikorsky Aircraft Corporation, Attn: Manager, Commercial Technical Support...

  16. 77 FR 49710 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-08-17

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... Aircraft Corporation (Sikorsky) Model S-76A helicopters to require modifying the electric rotor brake (ERB... service information identified in this AD, contact Sikorsky Aircraft Corporation, Attn: Manager...

  17. Diode laser pumped solid state laser. Part IV. ; Noise analysis. Handotai laser reiki kotai laser. 4. ; Noise kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, H.; Seno, T.; Tanabe, Y. (Asahi Glass Co. Ltd., Tokyo (Japan))

    1991-06-10

    Concerning the second harmonic generation(SHG) of diode laser pumped solid state laser using a nonlinear optical material, the researches are carried out to pracitically apply to the optical pickup. Therefore, the reduction of output optical noise has become the important researching subject. The theoretical and experimental analyses of noise generating mechanism were carried out for the system in which Nd;YAG as the laser diode and KTP (KTiOPO {sub 4}) as the nonlinear optical crystal were used. The following findings for the noise generating mechanism could be obtained: The competitive interaction between the polarization modes was dominant noise mechanism in the high frequency range from 1 to 20MHz and the noise could be removed sufficiently by using the QWP(quarter wave plate). On the other hand, the noise observed in the low frequency range from 100 to 200kHz depended on the resonance length, agreed qualitatively with the theoretical analysis of the noise to the competitive longitudinal modes and agreed quantitatively with the noise generating frequency range. 10 refs., 13 figs., 1 tab.

  18. Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Basu, B.

    2013-01-01

    The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for

  19. 77 FR 68057 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-11-15

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... Sikorsky Aircraft Corporation (Sikorsky) Model S-76C helicopters. This AD requires installing an improved... Corporation, Attn: Manager, Commercial Technical Support, mailstop s581a, 6900 Main Street, Stratford, CT...

  20. 78 FR 60656 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2013-10-02

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... Aircraft Corporation (Sikorsky) Model S-92A helicopters to require modifying the No. 1 engine forward... Sikorsky Aircraft Corporation, Attn: Manager, Commercial Technical Support, mailstop s581a, 6900 Main...

  1. 77 FR 23382 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-04-19

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... Aircraft Corporation (Sikorsky) Model S-92A helicopters. This AD was prompted by the manufacturer's..., contact Sikorsky Aircraft Corporation, Attn: Manager, Commercial Technical Support, Mailstop s581a, 6900...

  2. 77 FR 21402 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-04-10

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... Aircraft Corporation (Sikorsky) Model S-92A helicopters. This AD was prompted by the discovery of tail... identified in this AD, contact Sikorsky Aircraft Corporation, Attn: Manager, Commercial Technical Support...

  3. The different physical origins of 1/f noise and superimposed RTS noise in light-emitting quantum dot diodes

    NARCIS (Netherlands)

    Belyakov, A.V.; Vandamme, L.K.J.; Perov, M.Y.; Yakimov, A.V.

    2003-01-01

    Low frequency noise characteristics of light-emitting diodes with InAs quantum dots in GaInAs layer are investigated. Two noise components were found in experimental noise records: RTS, caused by burst noise, and 1/f Gaussian noise. Extraction of burst noise component from Gaussian noise background

  4. Development of Fuzzy Logic Controller for Quanser Bench-Top Helicopter

    Science.gov (United States)

    Jafri, M. H.; Mansor, H.; Gunawan, T. S.

    2017-11-01

    Bench-top helicopter is a laboratory scale helicopter that usually used as a testing bench of the real helicopter behavior. This helicopter is a 3 Degree of Freedom (DOF) helicopter which works by three different axes wshich are elevation, pitch and travel. Thus, fuzzy logic controller has been proposed to be implemented into Quanser bench-top helicopter because of its ability to work with non-linear system. The objective for this project is to design and apply fuzzy logic controller for Quanser bench-top helicopter. Other than that, fuzzy logic controller performance system has been simulated to analyze and verify its behavior over existing PID controller by using Matlab & Simulink software. In this research, fuzzy logic controller has been designed to control the elevation angle. After simulation has been performed, it can be seen that simulation result shows that fuzzy logic elevation control is working for 4°, 5° and 6°. These three angles produce zero steady state error and has a fast response. Other than that, performance comparisons have been performed between fuzzy logic controller and PID controller. Fuzzy logic elevation control has a better performance compared to PID controller where lower percentage overshoot and faster settling time have been achieved in 4°, 5° and 6° step response test. Both controller are have zero steady state error but fuzzy logic controller is managed to produce a better performance in term of settling time and percentage overshoot which make the proposed controller is reliable compared to the existing PID controller.

  5. Symmetric airfoil geometry effects on leading edge noise.

    Science.gov (United States)

    Gill, James; Zhang, X; Joseph, P

    2013-10-01

    Computational aeroacoustic methods are applied to the modeling of noise due to interactions between gusts and the leading edge of real symmetric airfoils. Single frequency harmonic gusts are interacted with various airfoil geometries at zero angle of attack. The effects of airfoil thickness and leading edge radius on noise are investigated systematically and independently for the first time, at higher frequencies than previously used in computational methods. Increases in both leading edge radius and thickness are found to reduce the predicted noise. This noise reduction effect becomes greater with increasing frequency and Mach number. The dominant noise reduction mechanism for airfoils with real geometry is found to be related to the leading edge stagnation region. It is shown that accurate leading edge noise predictions can be made when assuming an inviscid meanflow, but that it is not valid to assume a uniform meanflow. Analytic flat plate predictions are found to over-predict the noise due to a NACA 0002 airfoil by up to 3 dB at high frequencies. The accuracy of analytic flat plate solutions can be expected to decrease with increasing airfoil thickness, leading edge radius, gust frequency, and Mach number.

  6. Noise mapping inside a car cabin

    DEFF Research Database (Denmark)

    Knudsen, Kim; Sjøj, Sidsel Marie Nørholm; Jacobsen, Finn

    The mapping of noise is of considerable interest in the car industry where a good noise mapping can make it much easier to identify the sources that generate the noise and eventually reduce the individual contributions to the noise. The methods used for this purpose include delay-and-sum beamform......The mapping of noise is of considerable interest in the car industry where a good noise mapping can make it much easier to identify the sources that generate the noise and eventually reduce the individual contributions to the noise. The methods used for this purpose include delay......-and-sum beamforming and spherical harmonics beamforming. These methods have a poor spatial esolution at low frequencies, and since much noise generated in cars is dominated by low frequencies the methods are not optimal. In the present paper the mapping is done by solving an inverse problem with a transfer matrix...

  7. Observation of modulation speed enhancement, frequency modulation suppression, and phase noise reduction by detuned loading in a coupled-cavity semiconductor laser

    OpenAIRE

    Vahala, Kerry; Paslaski, Joel; Yariv, Amnon

    1985-01-01

    Simultaneous direct modulation response enhancement, phase noise (linewidth) reduction, and frequency modulation suppression are produced in a coupled-cavity semiconductor laser by the detuned loading mechanism.

  8. Analysing Blast and Fragment Penetration Effects on Composite Helicopter Structures

    National Research Council Canada - National Science Library

    van't Hof, C; Herlaar, K; Luyten, J. M; van der Jagt, M. J

    2005-01-01

    .... The last decades the threat of helicopters has increased in military circumstances. Consequently the helicopters will be exposed to weapon effects like high blast loads and fragment impact more frequently...

  9. 78 FR 23698 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2013-04-22

    ... Corporation Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Corporation (Sikorsky) Model S-92A helicopters to require modifying the No. 1 engine forward firewall center... Aircraft Corporation, Attn: Manager, Commercial Technical Support, mailstop s581a, 6900 Main Street...

  10. 77 FR 68061 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-11-15

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... Aircraft Corporation (Sikorsky) Model S-92A helicopters. This AD requires inspecting the tail rotor (T/R... Corporation, Attn: Manager, Commercial Technical Support, mailstop s581a, 6900 Main Street, Stratford, CT...

  11. 77 FR 18969 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-03-29

    ... Corporation Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Aircraft Corporation (Sikorsky) Model S-76C helicopters. This proposed AD is prompted by a bird-strike to.... For service information identified in this proposed AD, contact Sikorsky Aircraft Corporation, Attn...

  12. 77 FR 28328 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-05-14

    ... Corporation Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Corporation (Sikorsky) Model S-92A helicopters, which requires inspecting the tail rotor (T/R) pylon for a... service information identified in this proposed AD, contact Sikorsky Aircraft Corporation, Attn: Manager...

  13. Model/data comparison of typhoon-generated noise

    International Nuclear Information System (INIS)

    Wang Jing-Yan; Li Feng-Hua

    2016-01-01

    Ocean noise recorded during a typhoon can be used to monitor the typhoon and investigate the mechanism of the wind-generated noise. An analytical expression for the typhoon-generated noise intensity is derived as a function of wind speed. A “bi-peak” structure was observed in an experiment during which typhoon-generated noise was recorded. Wind speed dependence and frequency dependence were also observed in the frequency range of 100 Hz–1000 Hz. The model/data comparison shows that results of the present model of 500 Hz and 1000 Hz are in reasonable agreement with the experimental data, and the typhoon-generated noise intensity has a dependence on frequency and a power-law dependence on wind speed. (special topic)

  14. White-crowned sparrow males show immediate flexibility in song amplitude but not in song minimum frequency in response to changes in noise levels in the field.

    Science.gov (United States)

    Derryberry, Elizabeth P; Gentry, Katherine; Derryberry, Graham E; Phillips, Jennifer N; Danner, Raymond M; Danner, Julie E; Luther, David A

    2017-07-01

    The soundscape acts as a selective agent on organisms that use acoustic signals to communicate. A number of studies document variation in structure, amplitude, or timing of signal production in correspondence with environmental noise levels thus supporting the hypothesis that organisms are changing their signaling behaviors to avoid masking. The time scale at which organisms respond is of particular interest. Signal structure may evolve across generations through processes such as cultural or genetic transmission. Individuals may also change their behavior during development (ontogenetic change) or in real time (i.e., immediate flexibility). These are not mutually exclusive mechanisms, and all must be investigated to understand how organisms respond to selection pressures from the soundscape. Previous work on white-crowned sparrows ( Zonotrichia leucophrys ) found that males holding territories in louder areas tend to sing higher frequency songs and that both noise levels and song frequency have increased over time (30 years) in urban areas. These previous findings suggest that songs are changing across generations; however, it is not known if this species also exhibits immediate flexibility. Here, we conducted an exploratory, observational study to ask whether males change the minimum frequency of their song in response to immediate changes in noise levels. We also ask whether males sing louder, as increased minimum frequency may be physiologically linked to producing sound at higher amplitudes, in response to immediate changes in environmental noise. We found that territorial males adjust song amplitude but not minimum frequency in response to changes in environmental noise levels. Our results suggest that males do not show immediate flexibility in song minimum frequency, although experimental manipulations are needed to test this hypothesis further. Our work highlights the need to investigate multiple mechanisms of adaptive response to soundscapes.

  15. Molecular Electronic Angular Motion Transducer Broad Band Self-Noise

    Science.gov (United States)

    Zaitsev, Dmitry; Agafonov, Vadim; Egorov, Egor; Antonov, Alexander; Shabalina, Anna

    2015-01-01

    Modern molecular electronic transfer (MET) angular motion sensors combine high technical characteristics with low cost. Self-noise is one of the key characteristics which determine applications for MET sensors. However, until the present there has not been a model describing the sensor noise in the complete operating frequency range. The present work reports the results of an experimental study of the self-noise level of such sensors in the frequency range of 0.01–200 Hz. Based on the experimental data, a theoretical model is developed. According to the model, self-noise is conditioned by thermal hydrodynamic fluctuations of the operating fluid flow in the frequency range of 0.01–2 Hz. At the frequency range of 2–100 Hz, the noise power spectral density has a specific inversely proportional dependence of the power spectral density on the frequency that could be attributed to convective processes. In the high frequency range of 100–200 Hz, the noise is conditioned by the voltage noise of the electronics module input stage operational amplifiers and is heavily reliant to the sensor electrical impedance. The presented results allow a deeper understanding of the molecular electronic sensor noise nature to suggest the ways to reduce it. PMID:26610502

  16. Laser Frequency Noise in Coherent Optical Systems: Spectral Regimes and Impairments.

    Science.gov (United States)

    Kakkar, Aditya; Rodrigo Navarro, Jaime; Schatz, Richard; Pang, Xiaodan; Ozolins, Oskars; Udalcovs, Aleksejs; Louchet, Hadrien; Popov, Sergei; Jacobsen, Gunnar

    2017-04-12

    Coherent communication networks are based on the ability to use multiple dimensions of the lightwave together with electrical domain compensation of transmission impairments. Electrical-domain dispersion compensation (EDC) provides many advantages such as network flexibility and enhanced fiber nonlinearity tolerance, but makes the system more susceptible to laser frequency noise (FN), e.g. to the local oscillator FN in systems with post-reception EDC. Although this problem has been extensively studied, statistically, for links assuming lasers with white-FN, many questions remain unanswered. Particularly, the influence of a realistic non-white FN-spectrum due to e.g., the presence of 1/f-flicker and carrier induced noise remains elusive and a statistical analysis becomes insufficient. Here we provide an experimentally validated theory for coherent optical links with lasers having general non-white FN-spectrum and EDC. The fundamental reason of the increased susceptibility is shown to be FN-induced symbol displacement that causes timing jitter and/or inter/intra symbol interference. We establish that different regimes of the laser FN-spectrum cause a different set of impairments. The influence of the impairments due to some regimes can be reduced by optimizing the corresponding mitigation algorithms, while other regimes cause irretrievable impairments. Theoretical boundaries of these regimes and corresponding criteria applicable to system/laser design are provided.

  17. Natural Frequencies and Mode Shapes of a Nonlinear, Uniform Cantilevered Beam

    National Research Council Canada - National Science Library

    Marquez-Chisolm, Daniel J

    2006-01-01

    A series of experiments in 1975, referred to as the Princeton Beam Experiments, were performed to measure natural frequencies and create a nonlinear elastic deformation model to improve helicopter main beam designs...

  18. White noise excitation in a hot plasma

    International Nuclear Information System (INIS)

    Ito, Masataka

    1977-01-01

    In a low frequency range, a property of white noise in a hot plasma is studied experimentally. A frequency component of white noise is observed to propagate with a phase velocity which is equal to the ion accoustic wave velocity. The white noise, which is launched in a plasma, is considered as the sum of ion acoustic waves. (auth.)

  19. Modeling, Estimation, and Control of Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten

    and simulating different slung load suspension types. It further includes detection and response to wire slacking and tightening, it models the aerodynamic coupling between the helicopter and the load, and can be used for multilift systems with any combination of multiple helicopters and multiple loads...

  20. Total annoyance from an industrial noise source with a main spectral component combined with a background noise.

    Science.gov (United States)

    Alayrac, M; Marquis-Favre, C; Viollon, S

    2011-07-01

    When living close to an industrial plant, people are exposed to a combination of industrial noise sources and a background noise composed of all the other noise sources in the environment. As a first step, noise annoyance indicators in laboratory conditions are proposed for a single exposure to an industrial noise source. The second step detailed in this paper involves determining total annoyance indicators in laboratory conditions for ambient noises composed of an industrial noise source and a background noise. Two types of steady and permanent industrial noise sources are studied: low frequency noises with a main spectral component at 100 Hz, and noises with a main spectral component in middle frequencies. Five background noises are assessed so as to take into account different sound environments which can usually be heard by people living around an industrial plant. One main conclusion of this study is that two different analyses are necessary to determine total annoyance indicators for this type of ambient noise, depending on the industrial noise source composing it. Therefore, two total annoyance indicators adapted to the ambient noises studied are proposed. © 2011 Acoustical Society of America

  1. Simulating effectiveness of helicopter evasive manoeuvres to RPG attack

    Science.gov (United States)

    Anderson, D.; Thomson, D. G.

    2010-04-01

    The survivability of helicopters under attack by ground troops using rocket propelled grenades has been amply illustrated over the past decade. Given that an RPG is unguided and it is infeasible to cover helicopters in thick armour, existing optical countermeasures are ineffective - the solution is to compute an evasive manoeuvre. In this paper, an RPG/helicopter engagement model is presented. Manoeuvre profiles are defined in the missile approach warning sensor camera image plane using a local maximum acceleration vector. Required control inputs are then computed using inverse simulation techniques. Assessments of platform survivability to several engagement scenarios are presented.

  2. Adaptive Control System for Autonomous Helicopter Slung Load Operations

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2010-01-01

    system on the helicopter that measures the position of the slung load. The controller is a combined feedforward and feedback scheme for simultaneous avoidance of swing excitation and active swing damping. Simulations and laboratory flight tests show the effectiveness of the combined control system......This paper presents design and verification of an estimation and control system for a helicopter slung load system. The estimator provides position and velocity estimates of the slung load and is designed to augment existing navigation in autonomous helicopters. Sensor input is provided by a vision......, yielding significant load swing reduction compared to the baseline controller....

  3. Relationship Between Psychomotor Efficiency and Sensation Seeking of People Exposed to Noise and Low Frequency Vibration Stimuli

    Science.gov (United States)

    Korchut, Aleksander; Kowalska-Koczwara, Alicja; Romanska – Zapała, Anna; Stypula, Krzysztof

    2017-10-01

    At the workplace of the machine operator, low frequency whole body and hand- arm vibrations are observed. They occur together with noise. Whole body vibration in the range of 3-25 Hz are detrimental to the human body due to the location of the resonant frequency of large organs of the human body in this range. It can be assumed that for this reason people working every day in such conditions can have reduced working efficiency. The influence of low frequency vibration and noise on the human body leads to both physiological and functional changes. The result of the impact of noise and vibration stimuli depends largely on the specific characteristics of the objects, which include among other personality traits, temperament and emotional factor. The pilot study conducted in the laboratory was attended by 30 young men. The aim of the study was to look for correlations between the need for stimulation of the objects and their psychomotor efficiency in case of vibration exposure and vibration together with noise exposure in variable conditions task. The need for stimulation of the objects as defined in the study is based on theoretical assumptions of one dimensional model of temperament developed by Marvin Zuckerman. This theory defines the need for stimulation as the search for different, new, complex and intense sensations, as well as the willingness to take risks. The aim of research was to verify if from four factors such as: the search for adventure and horror, sensation seeking, disinhibition and susceptibility to boredom, we can choose the ones that in conjunction with varying operating conditions, may significantly determine the efficiency of the task situation. The objects performed the test evaluation of their motor skills which consisted in keeping the cursor controlled by a joystick through the path. The number of exceeds of the cursor beyond the path and its maximum deviation was recorded. The collected data were used to determine the correlation between the

  4. Multiple testing issues in discriminating compound-related peaks and chromatograms from high frequency noise, spikes and solvent-based nois in LC-MS data sets

    NARCIS (Netherlands)

    Nyangoma, S.O.; Van Kampen, A.A.; Reijmers, T.H.; Govorukhina, N.I; van der Zee, A.G.; Billingham, I.J; Bischoff, Rainer; Jansen, R.C.

    2007-01-01

    Multiple testing issues in discriminating compound-related peaks and chromatograms from high frequency noise, spikes and solvent-based noise in LC-MS data sets.Nyangoma SO, van Kampen AA, Reijmers TH, Govorukhina NI, van der Zee AG, Billingham LJ, Bischoff R, Jansen RC. University of Birmingham.

  5. Jet Noise Scaling in Dual Stream Nozzles

    Science.gov (United States)

    Khavaran, Abbas; Bridges, James

    2010-01-01

    Power spectral laws in dual stream jets are studied by considering such flows a superposition of appropriate single-stream coaxial jets. Noise generation in each mixing region is modeled using spectral power laws developed earlier for single stream jets as a function of jet temperature and observer angle. Similarity arguments indicate that jet noise in dual stream nozzles may be considered as a composite of four single stream jets representing primary/secondary, secondary/ambient, transition, and fully mixed zones. Frequency filter are designed to highlight spectral contribution from each jet. Predictions are provided at an area ratio of 2.0--bypass ratio from 0.80 to 3.40, and are compared with measurements within a wide range of velocity and temperature ratios. These models suggest that the low frequency noise in unheated jets is dominated by the fully mixed region at all velocity ratios, while the high frequency noise is dominated by the secondary when the velocity ratio is larger than 0.80. Transition and fully mixed jets equally dominate the low frequency noise in heated jets. At velocity ratios less than 0.50, the high frequency noise from primary/bypass becomes a significant contributing factor similar to that in the secondary/ambient jet.

  6. NASA/FAA helicopter simulator workshop

    Science.gov (United States)

    Larsen, William E. (Editor); Randle, Robert J., Jr. (Editor); Bray, Richard S. (Editor); Zuk, John (Editor)

    1992-01-01

    A workshop was convened by the FAA and NASA for the purpose of providing a forum at which leading designers, manufacturers, and users of helicopter simulators could initiate and participate in a development process that would facilitate the formulation of qualification standards by the regulatory agency. Formal papers were presented, special topics were discussed in breakout sessions, and a draft FAA advisory circular defining specifications for helicopter simulators was presented and discussed. A working group of volunteers was formed to work with the National Simulator Program Office to develop a final version of the circular. The workshop attracted 90 individuals from a constituency of simulator manufacturers, training organizations, the military, civil regulators, research scientists, and five foreign countries.

  7. Phase noise characterization of a QD-based diode laser frequency comb.

    Science.gov (United States)

    Vedala, Govind; Al-Qadi, Mustafa; O'Sullivan, Maurice; Cartledge, John; Hui, Rongqing

    2017-07-10

    We measure, simultaneously, the phases of a large set of comb lines from a passively mode locked, InAs/InP, quantum dot laser frequency comb (QDLFC) by comparing the lines to a stable comb reference using multi-heterodyne coherent detection. Simultaneity permits the separation of differential and common mode phase noise and a straightforward determination of the wavelength corresponding to the minimum width of the comb line. We find that the common mode and differential phases are uncorrelated, and measure for the first time for a QDLFC that the intrinsic differential-mode phase (IDMP) between adjacent subcarriers is substantially the same for all subcarrier pairs. The latter observation supports an interpretation of 4.4ps as the standard deviation of IDMP on a 200µs time interval for this laser.

  8. Exercise training as treatment of neck pain among military helicopter pilots and crew members

    DEFF Research Database (Denmark)

    Murray, Mike; Lange, Britt; Nørnberg, Bo Riebeling

    ) and Pressure-Pain-Threshold (PPT) in the trapezius m. and upper neck extensors. Secondary outcome: Maximal-Voluntary-Contraction (MVC) for cervical flexion/extension and shoulder-elevation. Results: Neck-pain for ETG was (mean±SD) 1.9±1.7 at baseline and 1.8±2.1 at follow-up, and correspondingly for REF 2.......4±2.0 and 1.7±1.7. Preliminary intention-to-treat analysis, revealed no significant effect on change in pain or PPT between groups. Further analysis, controlling for training frequency, intensity and volume are pending. Baseline MVC for ETG cervical flexion/extension was 184.4±59.8N and 247.2±63.8N......Introduction: Neck pain is frequent among helicopter pilots and crew (1). The aim of this study was to investigate if an exercise intervention could reduce the prevalence of neck-pain among helicopter pilots and crew. Methods: Thirty-one pilots and thirty-eight crew members were randomized...

  9. Acoustics of fish shelters: background noise and signal-to-noise ratio.

    Science.gov (United States)

    Lugli, Marco

    2014-12-01

    Fish shelters (flat stones, shells, artificial covers, etc., with a hollow beneath) increase the sound pressure levels of low frequency sounds (noise ratio (SNR) in the nest. Background noise amplification by the shelter was examined under both laboratory (stones and shells) and field (stones) conditions, and the SNR of tones inside the nest cavity was measured by performing acoustic tests on stones in the stream. Stone and shell shelters amplify the background noise pressure levels inside the cavity with comparable gains and at similar frequencies of an active sound source. Inside the cavity of stream stones, the mean SNR of tones increased significantly below 125 Hz and peaked at 65 Hz (+10 dB). Implications for fish acoustic communication inside nest enclosures are discussed.

  10. Reduction of environmental MHz noise for SQUID application

    Energy Technology Data Exchange (ETDEWEB)

    Araya, T. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)]. E-mail: araya@sup.ee.es.osaka-u.ac.jp; Kitamura, Y. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Kamishiro, M. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Sakuta, K. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Itozaki, H. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)]. E-mail: itozaki@ee.es.osaka-u.ac.jp

    2006-10-01

    It is important to remove large environmental noise in measurement using SQUIDs without magnetic shielding. Active noise control (ANC) is an effective method to remove the environmental noise. The environmental noise has been reduced by the ANC system in the radio frequency region around MHz. The anti-phase waves of the environmental noise should be generated by this system. The ANC system including the phase and amplitude control circuit was developed to make the anti-phase waves in the MHz region. In this paper, sinusoidal waves with a MHz frequency were used as the environmental noise. When a coil antenna was used for a receiver antenna, this ANC system suppressed these sinusoidal waves to the white noise level about 40 dB. When we used a SQUID as a receiver antenna, we also cancelled sinusoidal waves to the white noise level by this system. This shows that the ANC system is useful to reduce an environmental noise when this ANC system is developed to cancel multi-frequency noise.

  11. Reduction of environmental MHz noise for SQUID application

    International Nuclear Information System (INIS)

    Araya, T.; Kitamura, Y.; Kamishiro, M.; Sakuta, K.; Itozaki, H.

    2006-01-01

    It is important to remove large environmental noise in measurement using SQUIDs without magnetic shielding. Active noise control (ANC) is an effective method to remove the environmental noise. The environmental noise has been reduced by the ANC system in the radio frequency region around MHz. The anti-phase waves of the environmental noise should be generated by this system. The ANC system including the phase and amplitude control circuit was developed to make the anti-phase waves in the MHz region. In this paper, sinusoidal waves with a MHz frequency were used as the environmental noise. When a coil antenna was used for a receiver antenna, this ANC system suppressed these sinusoidal waves to the white noise level about 40 dB. When we used a SQUID as a receiver antenna, we also cancelled sinusoidal waves to the white noise level by this system. This shows that the ANC system is useful to reduce an environmental noise when this ANC system is developed to cancel multi-frequency noise

  12. Small-Scale Helicopter Automatic Autorotation : Modeling, Guidance, and Control

    NARCIS (Netherlands)

    Taamallah, S.

    2015-01-01

    Our research objective consists in developing a, model-based, automatic safety recovery system, for a small-scale helicopter Unmanned Aerial Vehicle (UAV) in autorotation, i.e. an engine OFF flight condition, that safely flies and lands the helicopter to a pre-specified ground location. In pursuit

  13. The Helicopter Parent (Part 2): International Arrivals and Departures

    Science.gov (United States)

    Somers, Patricia; Settle, Jim

    2010-01-01

    The phenomenon of helicopter parenting has been widely reported, yet the research literature is anemic on the topic. Based on interviews and focus groups involving 190 academic and student services professionals, this article continues by discussing the social, psychological, economic, and cultural factors that influence helicoptering; exploring…

  14. Design of a SiGe BiCMOS canceller for low frequency noise reduction in direct conversion receivers

    DEFF Research Database (Denmark)

    Squartecchia, Michele; Johansen, Tom Keinicke; Michaelsen, Rasmus Schandorph

    of the local oscillator (LO) toward the RF port of the mixer (Figure 1(a)). This causes the LO self-mixing phenomenon, which is responsible of a significant DC offset at the output of the receiver (Figure 1(b)). In turn, this DC offset gives rise to a high level of low frequency noise affecting the signal...

  15. Helicopter Approach Capability Using the Differential Global Positioning System

    Science.gov (United States)

    Kaufmann, David N.

    1994-01-01

    The results of flight tests to determine the feasibility of using the Global Positioning System (GPS) in the Differential mode (DGPS) to provide high accuracy, precision navigation and guidance for helicopter approaches to landing are presented. The airborne DGPS receiver and associated equipment is installed in a NASA UH-60 Black Hawk helicopter. The ground-based DGPS reference receiver is located at a surveyed test site and is equipped with a real-time VHF data link to transmit correction information to the airborne DGPS receiver. The corrected airborne DGPS information, together with the preset approach geometry, is used to calculate guidance commands which are sent to the aircraft's approach guidance instruments. The use of DGPS derived guidance for helicopter approaches to landing is evaluated by comparing the DGPS data with the laser tracker truth data. The errors indicate that the helicopter position based on DGPS guidance satisfies the International Civil Aviation Organization (ICAO) Category 1 (CAT 1) lateral and vertical navigational accuracy requirements.

  16. Impact of interface manipulation of oxide on electrical transport properties and low-frequency noise in MgO/NiFe/MgO heterojunctions

    OpenAIRE

    Jian-wei Li; Chong-jun Zhao; Chun Feng; Zhongfu Zhou; Guang-hua Yu

    2015-01-01

    Low-frequency noise and magnetoresistance in sputtered-deposited Ta(5 nm)/MgO (3 nm)/NiFe(10 nm)/MgO(3 nm)/Ta(3 nm) films have been measured as a function of different annealing times at 400°C. These measurements did not change synchronously with annealing time. A significant increase in magnetoresistance is observed for short annealing times (of the order of minutes) and is correlated with a relatively small reduction in 1/f noise. In contrast, a significant reduction in 1/f noise is observe...

  17. Swing Damping for Helicopter Slung Load Systems using Delayed Feedback

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2009-01-01

    of swing. The design of the delayed feedback controller is presented as an optimization problem which gives the possibility of an automated design process. Simulations and flight test verifications of the control system on two different autonomous helicopters are presented and it is shown how a significant......This paper presents the design and verification of a swing reducing controller for helicopter slung load systems using intentional delayed feedback. It is intended for augmenting a trajectory tracking helicopter controller and thereby improving the slung load handing capabilities for autonomous...... helicopters. The delayed feedback controller is added to actively reduce oscillations of the slung load by improving the damping of the slung load pendulum modes. Furthermore, it is intended for integration with a feedforward control scheme based on input shaping for concurrent avoidance and dampening...

  18. 77 FR 64439 - Airworthiness Directives; Bell Helicopter Textron Canada (Bell) Model Helicopters

    Science.gov (United States)

    2012-10-22

    ... unsafe condition for the Bell Model 430 helicopters. Discrepancies in the processing and display of air... pilot and copilot electronic attitude direction indicators airspeed indicators; [cir] Leak testing the... and responsibilities among the various levels of government. For the reasons discussed, I certify this...

  19. Reliability model for helicopter main gearbox lubrication system using influence diagrams

    International Nuclear Information System (INIS)

    Rashid, H.S.J.; Place, C.S.; Mba, D.; Keong, R.L.C.; Healey, A.; Kleine-Beek, W.; Romano, M.

    2015-01-01

    The loss of oil from a helicopter main gearbox (MGB) leads to increased friction between components, a rise in component surface temperatures, and subsequent mechanical failure of gearbox components. A number of significant helicopter accidents have been caused due to such loss of lubrication. This paper presents a model to assess the reliability of helicopter MGB lubricating systems. Safety risk modeling was conducted for MGB oil system related accidents in order to analyse key failure mechanisms and the contributory factors. Thus, the dominant failure modes for lubrication systems and key contributing components were identified. The Influence Diagram (ID) approach was then employed to investigate reliability issues of the MGB lubrication systems at the level of primary causal factors, thus systematically investigating a complex context of events, conditions, and influences that are direct triggers of the helicopter MGB lubrication system failures. The interrelationships between MGB lubrication system failure types were thus identified, and the influence of each of these factors on the overall MGB lubrication system reliability was assessed. This paper highlights parts of the HELMGOP project, sponsored by the European Aviation Safety Agency to improve helicopter main gearbox reliability. - Highlights: • We investigated methods to optimize helicopter MGB oil system run-dry capability. • Used Influence Diagram to assess design and maintenance factors of MGB oil system. • Factors influencing overall MGB lubrication system reliability were identified. • This globally influences current and future helicopter MGB designs

  20. Chronic exposure to low frequency noise at moderate levels causes impaired balance in mice.

    Directory of Open Access Journals (Sweden)

    Haruka Tamura

    Full Text Available We are routinely exposed to low frequency noise (LFN; below 0.5 kHz at moderate levels of 60-70 dB sound pressure level (SPL generated from various sources in occupational and daily environments. LFN has been reported to affect balance in humans. However, there is limited information about the influence of chronic exposure to LFN at moderate levels for balance. In this study, we investigated whether chronic exposure to LFN at a moderate level of 70 dB SPL affects the vestibule, which is one of the organs responsible for balance in mice. Wild-type ICR mice were exposed for 1 month to LFN (0.1 kHz and high frequency noise (HFN; 16 kHz at 70 dB SPL at a distance of approximately 10-20 cm. Behavior analyses including rotarod, beam-crossing and footprint analyses showed impairments of balance in LFN-exposed mice but not in non-exposed mice or HFN-exposed mice. Immunohistochemical analysis showed a decreased number of vestibular hair cells and increased levels of oxidative stress in LFN-exposed mice compared to those in non-exposed mice. Our results suggest that chronic exposure to LFN at moderate levels causes impaired balance involving morphological impairments of the vestibule with enhanced levels of oxidative stress. Thus, the results of this study indicate the importance of considering the risk of chronic exposure to LFN at a moderate level for imbalance.

  1. 14 CFR 61.161 - Aeronautical experience: Rotorcraft category and helicopter class rating.

    Science.gov (United States)

    2010-01-01

    ... category and helicopter class rating. 61.161 Section 61.161 Aeronautics and Space FEDERAL AVIATION... helicopter class rating. (a) A person who is applying for an airline transport pilot certificate with a rotorcraft category and helicopter class rating, must have at least 1,200 hours of total time as a pilot that...

  2. Aircrafts' taxi noise. Sound power level and directivity frequency band results

    NARCIS (Netherlands)

    Asensio, C.; Pavón, I.; Ruiz, M.; Pagan Munoz, Raul; Recuero, M.

    2009-01-01

    When noise mapping airports, the main noise sources are take offs and landings. But aircrafts' taxi noise can also be important, and should be considered, for instance when there are residential buildings near the airport's terminal. Main prediction tools, like Integrated Noise Model (INM), do not

  3. Power harvesting using piezoelectric materials: applications in helicopter rotors

    NARCIS (Netherlands)

    de Jong, Pieter

    2013-01-01

    The blades of helicopters are heavily loaded and are critical components. Failure of any one blade will lead to loss of the aircraft. Currently, the technical lifespan of helicopter blades is calculated using a worst-case operation scenario. The consequence is that a blade that may be suitable for,

  4. Frequency-specific modulation of population-level frequency tuning in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Roberts Larry E

    2009-01-01

    Full Text Available Abstract Background Under natural circumstances, attention plays an important role in extracting relevant auditory signals from simultaneously present, irrelevant noises. Excitatory and inhibitory neural activity, enhanced by attentional processes, seems to sharpen frequency tuning, contributing to improved auditory performance especially in noisy environments. In the present study, we investigated auditory magnetic fields in humans that were evoked by pure tones embedded in band-eliminated noises during two different stimulus sequencing conditions (constant vs. random under auditory focused attention by means of magnetoencephalography (MEG. Results In total, we used identical auditory stimuli between conditions, but presented them in a different order, thereby manipulating the neural processing and the auditory performance of the listeners. Constant stimulus sequencing blocks were characterized by the simultaneous presentation of pure tones of identical frequency with band-eliminated noises, whereas random sequencing blocks were characterized by the simultaneous presentation of pure tones of random frequencies and band-eliminated noises. We demonstrated that auditory evoked neural responses were larger in the constant sequencing compared to the random sequencing condition, particularly when the simultaneously presented noises contained narrow stop-bands. Conclusion The present study confirmed that population-level frequency tuning in human auditory cortex can be sharpened in a frequency-specific manner. This frequency-specific sharpening may contribute to improved auditory performance during detection and processing of relevant sound inputs characterized by specific frequency distributions in noisy environments.

  5. High-frequency noise modeling of Si(Ge) bipolar transistors

    NARCIS (Netherlands)

    Vitale, F.

    2014-01-01

    The design and the optimization of electronic systems often requires a detailed knowledge of the inherent noise generated within semiconductor active devices, constituting the core of such systems. Examples of applications in which noise is a key issue include receiver front-ends in radiofrequency

  6. Influence of Internal and External Noise on Spontaneous Visuomotor Synchronization.

    Science.gov (United States)

    Varlet, Manuel; Schmidt, R C; Richardson, Michael J

    2016-01-01

    Historically, movement noise or variability is considered to be an undesirable property of biological motor systems. In particular, noise is typically assumed to degrade the emergence and stability of rhythmic motor synchronization. Recently, however, it has been suggested that small levels of noise might actually improve the functioning of motor systems and facilitate their adaptation to environmental events. Here, the authors investigated whether noise can facilitate spontaneous rhythmic visuomotor synchronization. They examined the influence of internal noise in the rhythmic limb movements of participants and external noise in the movement of an oscillating visual stimulus on the occurrence of spontaneous synchronization. By indexing the natural frequency variability of participants and manipulating the frequency variability of the visual stimulus, the authors demonstrated that both internal and external noise degrade synchronization when the participants' and stimulus movement frequencies are similar, but can actually facilitate synchronization when the frequencies are different. Furthermore, the two kinds of noise interact with each other. Internal noise facilitates synchronization only when external noise is minimal and vice versa. Too much internal and external noise together degrades synchronization. These findings open new perspectives for better understanding the role of noise in human rhythmic coordination.

  7. Noise in the passenger cars of high-speed trains.

    Science.gov (United States)

    Hong, Joo Young; Cha, Yongwon; Jeon, Jin Yong

    2015-12-01

    The aim of this study is to investigate the effects of both room acoustic conditions and spectral characteristics of noises on acoustic discomfort in a high-speed train's passenger car. Measurement of interior noises in a high-speed train was performed when the train was operating at speeds of 100 km/h and 300 km/h. Acoustic discomfort caused by interior noises was evaluated by paired comparison methods based on the variation of reverberation time (RT) in a passenger car and the spectral differences in interior noises. The effect of RT on acoustic discomfort was not significant, whereas acoustic discomfort significantly varied depending on spectral differences in noise. Acoustic discomfort increased with increment of the sound pressure level (SPL) ratio at high frequencies, and variation in high-frequency noise components were described using sharpness. Just noticeable differences of SPL with low- and high-frequency components were determined to be 3.7 and 2.9 dB, respectively. This indicates that subjects were more sensitive to differences in SPLs at the high-frequency range than differences at the low-frequency range. These results support that, for interior noises, reduction in SPLs at high frequencies would significantly contribute to improved acoustic quality in passenger cars of high-speed trains.

  8. Robust frequency diversity based algorithm for clutter noise reduction of ultrasonic signals using multiple sub-spectrum phase coherence

    Energy Technology Data Exchange (ETDEWEB)

    Gongzhang, R.; Xiao, B.; Lardner, T.; Gachagan, A. [Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Li, M. [School of Engineering, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)

    2014-02-18

    This paper presents a robust frequency diversity based algorithm for clutter reduction in ultrasonic A-scan waveforms. The performance of conventional spectral-temporal techniques like Split Spectrum Processing (SSP) is highly dependent on the parameter selection, especially when the signal to noise ratio (SNR) is low. Although spatial beamforming offers noise reduction with less sensitivity to parameter variation, phased array techniques are not always available. The proposed algorithm first selects an ascending series of frequency bands. A signal is reconstructed for each selected band in which a defect is present when all frequency components are in uniform sign. Combining all reconstructed signals through averaging gives a probability profile of potential defect position. To facilitate data collection and validate the proposed algorithm, Full Matrix Capture is applied on the austenitic steel and high nickel alloy (HNA) samples with 5MHz transducer arrays. When processing A-scan signals with unrefined parameters, the proposed algorithm enhances SNR by 20dB for both samples and consequently, defects are more visible in B-scan images created from the large amount of A-scan traces. Importantly, the proposed algorithm is considered robust, while SSP is shown to fail on the austenitic steel data and achieves less SNR enhancement on the HNA data.

  9. Vision Aided State Estimation for Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten; Bendtsen, Jan Dimon; la Cour-Harbo, Anders

    2007-01-01

    This paper presents the design and verification of a state estimator for a helicopter based slung load system. The estimator is designed to augment the IMU driven estimator found in many helicopter UAV s and uses vision based updates only. The process model used for the estimator is a simple 4...

  10. Development of adaptive helicopter seat systems for aircrew vibration mitigation

    Science.gov (United States)

    Chen, Yong; Wickramasinghe, Viresh; Zimcik, David G.

    2008-03-01

    Helicopter aircrews are exposed to high levels of whole body vibration during flight. This paper presents the results of an investigation of adaptive seat mount approaches to reduce helicopter aircrew whole body vibration levels. A flight test was conducted on a four-blade helicopter and showed that the currently used passive seat systems were not able to provide satisfactory protection to the helicopter aircrew in both front-back and vertical directions. Long-term exposure to the measured whole body vibration environment may cause occupational health issues such as spine and neck strain injuries for aircrew. In order to address this issue, a novel adaptive seat mount concept was developed to mitigate the vibration levels transmitted to the aircrew body. For proof-of-concept demonstration, a miniature modal shaker was properly aligned between the cabin floor and the seat frame to provide adaptive actuation authority. Adaptive control laws were developed to reduce the vibration transmitted to the aircrew body, especially the helmet location in order to minimize neck and spine injuries. Closed-loop control test have been conducted on a full-scale helicopter seat with a mannequin configuration and a large mechanical shaker was used to provide representative helicopter vibration profiles to the seat frame. Significant vibration reductions to the vertical and front-back vibration modes have been achieved simultaneously, which verified the technical readiness of the adaptive mount approach for full-scale flight test on the vehicle.

  11. Low frequency seismic noise acquisition and analysis in the Homestake Mine with tunable monolithic horizontal sensors

    Science.gov (United States)

    Acernese, Fausto; De Rosa, Rosario; DeSalvo, Riccardo; Giordano, Gerardo; Harms, Jan; Mandic, Vuk; Sajeva, Angelo; Trancynger, Thomas; Barone, Fabrizio

    2010-04-01

    In this paper we describe the scientific data recorded along one month of data taking of two mechanical monolithic horizontal sensor prototypes located in a blind-ended (side) tunnel 2000 ft deep in the Homestake (South Dakota, USA) mine chosen to host the Deep Underground Science and Engineering Laboratory (DUSEL). The two mechanical monolithic sensors, developed at the University of Salerno, are placed, in thermally insulating enclosures, onto concrete slabs connected to the bedrock, and behind a sound-proofing wall. The main goal of this experiment is to characterize the Homestake site in the frequency band 10-4 - 30Hz and to estimate the level of Newtonian noise in a deep underegropund laboratory. The horizontal semidiurnal Earth tide and the Peterson's New Low Noise Model have been measured.

  12. Structural Integrity and Aging-Related Issues of Helicopters

    Science.gov (United States)

    2000-10-01

    inherently damage lolerant , any damage- inspection in critical locations where tests have indicated tolerant features in airframe design only enhances...required, so European Rotorcraft Forum. Marseilles, France, 15- that helicopters are equipped with such features as fly- 17 September 1998 . by-wire and...fatigue Evaluation of structural integrity issues of aging helicopters. The Structure," 29 April, 1998 . extended safe-life approach encompasses the best

  13. Mode-hopping mechanism generating colored noise in a magnetic tunnel junction based spin torque oscillator

    International Nuclear Information System (INIS)

    Sharma, Raghav; Dürrenfeld, P.; Iacocca, E.; Heinonen, O. G.; Åkerman, J.; Muduli, P. K.

    2014-01-01

    The frequency noise spectrum of a magnetic tunnel junction based spin torque oscillator is examined where multiple modes and mode-hopping events are observed. The frequency noise spectrum is found to consist of both white noise and 1/f frequency noise. We find a systematic and similar dependence of both white noise and 1/f frequency noise on bias current and the relative angle between the reference and free layers, which changes the effective damping and hence the mode-hopping behavior in this system. The frequency at which the 1/f frequency noise changes to white noise increases as the free layer is aligned away from the anti-parallel orientation w.r.t the reference layer. These results indicate that the origin of 1/f frequency noise is related to mode-hopping, which produces both white noise as well as 1/f frequency noise similar to the case of ring lasers.

  14. A kinesthetic-tactual display concept for helicopter-pilot workload reduction

    Science.gov (United States)

    Gilson, R. D.; Dunn, R. S.; Sun, P.

    1977-01-01

    A kinesthetic-tactual (K-T) display concept is now under research and development (R & D) at the Ohio State University. It appears to offer considerable promise for useful application in helicopters by conveying control information via the sense of touch. This is a review of the overall R & D program including the original K-T display design, initial studies in automobile and fixed-wing vehicles, and feasibility experiments in a helicopter simulator. In addition to investigations of control and potential workload reduction, present efforts are directed toward establishing optimal design requirements for K-T helicopter displays. Potential applications, modes of usage, and the kinds of information that may be displayed in helicopter applications are discussed along with a brief forecast of future R & D. A brief description of the latest multi-axis laboratory prototype K-T display is also provided.

  15. Research on the Method of Noise Error Estimation of Atomic Clocks

    Science.gov (United States)

    Song, H. J.; Dong, S. W.; Li, W.; Zhang, J. H.; Jing, Y. J.

    2017-05-01

    The simulation methods of different noises of atomic clocks are given. The frequency flicker noise of atomic clock is studied by using the Markov process theory. The method for estimating the maximum interval error of the frequency white noise is studied by using the Wiener process theory. Based on the operation of 9 cesium atomic clocks in the time frequency reference laboratory of NTSC (National Time Service Center), the noise coefficients of the power-law spectrum model are estimated, and the simulations are carried out according to the noise models. Finally, the maximum interval error estimates of the frequency white noises generated by the 9 cesium atomic clocks have been acquired.

  16. Study on electromagnetic noise reduction in building spaces. Propagation of electromagnetic noise generated by an elevator and its countermeasurement; Kenchiku kukan no denjiha noise hogyo no kenkyu. Elevator kara hasseisuru denjiha noise no denpa jokyo to taisaku ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Y.; Yoshida, K.; Zama, A. [Obayashi Corp., Tokyo (Japan)

    1995-08-10

    With the progress of power-electronics, a inverter has been generally applied to building facility equipment. This equipment go by chapping a current in high frequency, so secondarily generates electromagnetic noise. The characteristics and propagation of electromagnetic noise generated by an elevator machine were measured. From this, it was recognized that high-level spectrum was included in the frequencies under 100kHz, and electromagnetic noise was scattered a wide area on the roof and the highest floor of the building. By intercepting the conductive noise on the motor main distribution line, the area influenced by the noise was restricted to only a small area around the elevator machine room. 4 refs., 8 figs., 2 tabs.

  17. Development of a Field-Deployable Psychomotor Vigilance Test to Monitor Helicopter Pilot Performance.

    Science.gov (United States)

    McMahon, Terry W; Newman, David G

    2016-04-01

    Flying a helicopter is a complex psychomotor skill. Fatigue is a serious threat to operational safety, particularly for sustained helicopter operations involving high levels of cognitive information processing and sustained time on task. As part of ongoing research into this issue, the object of this study was to develop a field-deployable helicopter-specific psychomotor vigilance test (PVT) for the purpose of daily performance monitoring of pilots. The PVT consists of a laptop computer, a hand-operated joystick, and a set of rudder pedals. Screen-based compensatory tracking task software includes a tracking ball (operated by the joystick) which moves randomly in all directions, and a second tracking ball which moves horizontally (operated by the rudder pedals). The 5-min test requires the pilot to keep both tracking balls centered. This helicopter-specific PVT's portability and integrated data acquisition and storage system enables daily field monitoring of the performance of individual helicopter pilots. The inclusion of a simultaneous foot-operated tracking task ensures divided attention for helicopter pilots as the movement of both tracking balls requires simultaneous inputs. This PVT is quick, economical, easy to use, and specific to the operational flying task. It can be used for performance monitoring purposes, and as a general research tool for investigating the psychomotor demands of helicopter operations. While reliability and validity testing is warranted, data acquired from this test could help further our understanding of the effect of various factors (such as fatigue) on helicopter pilot performance, with the potential of contributing to helicopter operational safety.

  18. Nonlinear Feedforward Control for Wind Disturbance Rejection on Autonomous Helicopter

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; A. Danapalasingam, Kumeresan

    2010-01-01

    for the purpose. The model is inverted for the calculation of rotor collective and cyclic pitch angles given the wind disturbance. The control strategy is then applied on a small helicopter in a controlled wind environment and flight tests demonstrates the effectiveness and advantage of the feedforward controller.......This paper presents the design and verification of a model based nonlinear feedforward controller for wind disturbance rejection on autonomous helicopters. The feedforward control is based on a helicopter model that is derived using a number of carefully chosen simplifications to make it suitable...

  19. Simulation of Flow around Isolated Helicopter Fuselage

    Directory of Open Access Journals (Sweden)

    Garipov A.O.

    2013-04-01

    Full Text Available Low fuselage drag has always been a key target of helicopter manufacturers. Therefore, this paper focuses on CFD predictions of the drag of several components of a typical helicopter fuselage. In the first section of the paper, validation of the obtained CFD predictions is carried out using wind tunnel measurements. The measurements were carried out at the Kazan National Research Technical University n.a. A. Tupolev. The second section of the paper is devoted to the analysis of drag contributions of several components of the ANSAT helicopter prototype fuselage using the RANS approach. For this purpose, several configurations of fuselages are considered with different levels of complexity including exhausts and skids. Depending on the complexity of the considered configuration and CFD mesh both the multi-block structured HMB solver and the unstructured commercial tool Fluent are used. Finally, the effect of an actuator disk on the predicted drag is addressed.

  20. Scheme for efficient extraction of low-frequency signal beyond the quantum limit by frequency-shift detection.

    Science.gov (United States)

    Yang, R G; Zhang, J; Zhai, Z H; Zhai, S Q; Liu, K; Gao, J R

    2015-08-10

    Low-frequency (Hz~kHz) squeezing is very important in many schemes of quantum precision measurement. But it is more difficult than that at megahertz-frequency because of the introduction of laser low-frequency technical noise. In this paper, we propose a scheme to obtain a low-frequency signal beyond the quantum limit from the frequency comb in a non-degenerate frequency and degenerate polarization optical parametric amplifier (NOPA) operating below threshold with type I phase matching by frequency-shift detection. Low-frequency squeezing immune to laser technical noise is obtained by a detection system with a local beam of two-frequency intense laser. Furthermore, the low-frequency squeezing can be used for phase measurement in Mach-Zehnder interferometer, and the signal-to-noise ratio (SNR) can be enhanced greatly.