WorldWideScience

Sample records for frequency electrical stimulation

  1. High-Frequency Neuromuscular Electrical Stimulation Increases Anabolic Signaling.

    Science.gov (United States)

    Mettler, Joni A; Magee, Dillon M; Doucet, Barbara M

    2018-03-16

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation settings to increase muscle mass and strength. However, the effects of NMES on muscle growth are not clear and no human studies have compared anabolic signaling between low-frequency (LF-) and high-frequency (HF-) NMES. The purpose of this study was to determine the skeletal muscle anabolic signaling response to an acute bout of LF- and HF-NMES. Eleven young healthy volunteers (6 men; 5 women) received an acute bout of LF- (20 Hz) and HF- (60 Hz) NMES. Muscle biopsies were obtained from the vastus lateralis muscle prior to the first NMES treatment and 30-mins following each NMES treatment. Phosphorylation of the following key anabolic signaling proteins was measured by Western blot and proteins are expressed as a ratio of phosphorylated to total: mammalian target of rapamycin (mTOR), p70-S6 kinase 1 (S6K1), and eukaryotic initiation factor 4E binding protein 1 (4E-BP1). Compared to Pre-NMES, phosphorylation of mTOR was upregulated 40.2% for LF-NMES (P = 0.018) and 68.4% for HF-NMES (P 0.05). There were no differences between treatment conditions for 4E-BP1 phosphorylation (P > 0.05). An acute bout of LF- and HF-NMES upregulated anabolic signaling with HF-NMES producing a greater anabolic response compared to LF-NMES, suggesting that HF-stimulation may provide a stronger stimulus for processes that initiate muscle hypertrophy. Additionally, the stimulation frequency parameter should be considered by clinicians in the design of optimal NMES treatment protocols.

  2. Investigation of the Relationship Between Electrical Stimulation Frequency and Muscle Frequency Response Under Submaximal Contractions.

    Science.gov (United States)

    Papcke, Caluê; Krueger, Eddy; Olandoski, Marcia; Nogueira-Neto, Guilherme Nunes; Nohama, Percy; Scheeren, Eduardo Mendonça

    2018-03-25

    Neuromuscular electrical stimulation (NMES) is a common tool that is used in clinical and laboratory experiments and can be combined with mechanomyography (MMG) for biofeedback in neuroprostheses. However, it is not clear if the electrical current applied to neuromuscular tissues influences the MMG signal in submaximal contractions. The objective of this study is to investigate whether the electrical stimulation frequency influences the mechanomyographic frequency response of the rectus femoris muscle during submaximal contractions. Thirteen male participants performed three maximal voluntary isometric contractions (MVIC) recorded in isometric conditions to determine the maximal force of knee extensors. This was followed by the application of nine modulated NMES frequencies (20, 25, 30, 35, 40, 45, 50, 75, and 100 Hz) to evoke 5% MVIC. Muscle behavior was monitored by the analysis of MMG signals, which were decomposed into frequency bands by using a Cauchy wavelet transform. For each applied electrical stimulus frequency, the mean MMG spectral/frequency response was estimated for each axis (X, Y, and Z axes) of the MMG sensor with the values of the frequency bands used as weights (weighted mean). Only with respect to the Z (perpendicular) axis of the MMG signal, the stimulus frequency of 20 Hz did not exhibit any difference with the weighted mean (P = 0.666). For the frequencies of 20 and 25 Hz, the MMG signal displayed the bands between 12 and 16 Hz in the three axes (P frequencies from 30 to 100 Hz, the muscle presented a higher concentration of the MMG signal between the 22 and 29 Hz bands for the X and Z axes, and between 16 and 34 Hz bands for the Y axis (P frequency, because their frequency contents tend to mainly remain between the 20- and 25-Hz bands. Hence, NMES does not interfere with the use of MMG in neuroprosthesis. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  3. Effects of contraction mode and stimulation frequency on electrical stimulation-induced skeletal muscle hypertrophy.

    Science.gov (United States)

    Ashida, Yuki; Himori, Koichi; Tatebayashi, Daisuke; Yamada, Ryotaro; Ogasawara, Riki; Yamada, Takashi

    2018-02-01

    We compared the skeletal muscle hypertrophy resulting from isometric (Iso) or eccentric (Ecc) electrical stimulation (ES) training with different stimulation frequencies. Male Wistar rats were assigned to the Iso and Ecc groups. These were divided into three further subgroups that were stimulated at 10 Hz (Iso-10 and Ecc-10), 30 Hz (Iso-30 and Ecc-30), or 100 Hz (Iso-100 and Ecc-100). In experiment 1, the left plantarflexor muscles were stimulated every other day for 3 wk. In experiment 2, mammalian target of rapamycin complex 1 (mTORC1) signaling was investigated 6 h after one bout of ES. The contralateral right muscle served as a control (non-ES). Ecc contractions comprised forced dorsiflexion combined with ES. The peak torque and torque-time integral during ES were higher in the Ecc group than that in the Iso group in all stimulation frequencies examined. The gastrocnemius muscle weight normalized to body weight in ES side was increased compared with the non-ES side by 6, 7, and 17% in the Ecc-30, Iso-100, and Ecc-100 groups, respectively, with a greater gain in Ecc-100 than the Ecc-30 and Iso-100 groups. The p70S6K (Thr389) phosphorylation level was higher in the Ecc-30 and -100 than in the Iso-30 and -100 groups, respectively. The peak torque and torque-time integral were highly correlated with the magnitude of increase in muscle mass and the phosphorylation of p70S6K. These data suggest that ES-induced muscle hypertrophy and mTORC1 activity are determined by loading intensity and volume during muscle contraction independent of the contraction mode. NEW & NOTEWORTHY Eccentric contraction and high-frequency stimulation (HFS) are regarded as an effective way to increase muscle mass by electrical stimulation (ES) training. However, little is known about whether muscle hypertrophy is affected by contraction mode and stimulation frequency in ES training. Here, we provide the evidence that muscle hypertrophy and mammalian target of rapamycin complex 1 activity are

  4. Gender effect on discrimination of location and frequency in surface electrical stimulation.

    Science.gov (United States)

    Geng, Bo; Paramanathan, Senthoopiya A; Pedersen, Karina F; Lauridsen, Mette V; Gade, Julie; Lontis, Romulus; Jensen, Winnie

    2015-01-01

    This work investigated the gender effect on discrimination of surface electrical stimulation applied on the human forearm. Three experiments were conducted to examine the abilty of discriminating stimulation frequency, location, or both parameters in 14 healthy subjects. The results indicated a statistically significant impact of gender on the discrimination performance in all the three experiments (p gender difference in perceiving and interpreting electrical stimulation. Considering the gender difference may improve the efficacy of electrically evoked sensory feedback in applications such as prosthetic use and pain relief.

  5. Physiological recruitment of motor units by high-frequency electrical stimulation of afferent pathways.

    Science.gov (United States)

    Dideriksen, Jakob L; Muceli, Silvia; Dosen, Strahinja; Laine, Christopher M; Farina, Dario

    2015-02-01

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation, but electrically evoked muscle activation is in several ways different from voluntary muscle contractions. These differences lead to challenges in the use of NMES for restoring muscle function. We investigated the use of low-current, high-frequency nerve stimulation to activate the muscle via the spinal motoneuron (MN) pool to achieve more natural activation patterns. Using a novel stimulation protocol, the H-reflex responses to individual stimuli in a train of stimulation pulses at 100 Hz were reliably estimated with surface EMG during low-level contractions. Furthermore, single motor unit recruitment by afferent stimulation was analyzed with intramuscular EMG. The results showed that substantially elevated H-reflex responses were obtained during 100-Hz stimulation with respect to a lower stimulation frequency. Furthermore, motor unit recruitment using 100-Hz stimulation was not fully synchronized, as it occurs in classic NMES, and the discharge rates differed among motor units because each unit was activated only after a specific number of stimuli. The most likely mechanism behind these observations is the temporal summation of subthreshold excitatory postsynaptic potentials from Ia fibers to the MNs. These findings and their interpretation were also verified by a realistic simulation model of afferent stimulation of a MN population. These results suggest that the proposed stimulation strategy may allow generation of considerable levels of muscle activation by motor unit recruitment that resembles the physiological conditions. Copyright © 2015 the American Physiological Society.

  6. Fixed-site high-frequency transcutaneous electrical nerve stimulation for treatment of chronic low back and lower extremity pain

    OpenAIRE

    Gozani, Shai

    2016-01-01

    Shai N Gozani NeuroMetrix, Inc., Waltham, MA, USA Objective: The objective of this study was to determine if fixed-site high-frequency transcutaneous electrical nerve stimulation (FS-TENS) is effective in treating chronic low back and lower extremity pain. Background: Transcutaneous electrical nerve stimulation is widely used for treatment of chronic pain. General-purpose transcutaneous electrical nerve stimulation devices are designed for stimulation anywhere on the body and often cannot be ...

  7. Comparison of skin sensory thresholds using pre-programmed or single-frequency transcutaneous electrical nerve stimulation.

    Science.gov (United States)

    Kang, Jong Ho

    2015-12-01

    [Purpose] The purpose of the present study was to compare the sensory thresholds of healthy subjects using pre-programmed or single-frequency transcutaneous electrical nerve stimulation. [Subjects] Ninety healthy adult subjects were randomly assigned to pre-programmed or single-frequency stimulation groups, each consisting of 45 participants. [Methods] Sensory thresholds were measured in the participants' forearms using von Frey filaments before and after pre-programmed or single-frequency transcutaneous electrical nerve stimulation, and the result in values were analyzed. [Results] Significant increases in sensory threshold after stimulation were observed in both groups. However, there were no significant differences between the two groups in sensory thresholds after stimulation or in the magnitude of threshold increases following stimulation. [Conclusion] Our results show that there are no differences between sensory threshold increases induced by pre-programmed and single-frequency transcutaneous electrical nerve stimulation.

  8. Effects of different frequencies of transcutaneous electrical nerve stimulation on venous vascular reactivity

    International Nuclear Information System (INIS)

    Franco, O.S.; Paulitsch, F.S.; Pereira, A.P.C.; Teixeira, A.O.; Martins, C.N.; Silva, A.M.V.; Plentz, R.D.M.; Irigoyen, M.C.; Signori, L.U.

    2014-01-01

    Transcutaneous electrical nerve stimulation (TENS) is a type of therapy used primarily for analgesia, but also presents changes in the cardiovascular system responses; its effects are dependent upon application parameters. Alterations to the cardiovascular system suggest that TENS may modify venous vascular response. The objective of this study was to evaluate the effects of TENS at different frequencies (10 and 100 Hz) on venous vascular reactivity in healthy subjects. Twenty-nine healthy male volunteers were randomized into three groups: placebo (n=10), low-frequency TENS (10 Hz, n=9) and high-frequency TENS (100 Hz, n=10). TENS was applied for 30 min in the nervous plexus trajectory from the superior member (from cervical to dorsal region of the fist) at low (10 Hz/200 μs) and high frequency (100 Hz/200 μs) with its intensity adjusted below the motor threshold and intensified every 5 min, intending to avoid accommodation. Venous vascular reactivity in response to phenylephrine, acetylcholine (endothelium-dependent) and sodium nitroprusside (endothelium-independent) was assessed by the dorsal hand vein technique. The phenylephrine effective dose to achieve 70% vasoconstriction was reduced 53% (P<0.01) using low-frequency TENS (10 Hz), while in high-frequency stimulation (100 Hz), a 47% increased dose was needed (P<0.01). The endothelium-dependent (acetylcholine) and independent (sodium nitroprusside) responses were not modified by TENS, which modifies venous responsiveness, and increases the low-frequency sensitivity of α1-adrenergic receptors and shows high-frequency opposite effects. These changes represent an important vascular effect caused by TENS with implications for hemodynamics, inflammation and analgesia

  9. Effects of different frequencies of transcutaneous electrical nerve stimulation on venous vascular reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Franco, O.S.; Paulitsch, F.S.; Pereira, A.P.C.; Teixeira, A.O. [Universidade Federal do Rio Grande, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Rio Grande, RS, Brasil, Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS (Brazil); Martins, C.N. [Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Fisiologia Animal Comparada, Rio Grande, RS, Brasil, Programa de Pós-Graduação em Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS (Brazil); Silva, A.M.V. [Universidade Federal de Santa Maria, Departamento de Fisioterapia e Reabilitação, Santa Maria, RS, Brasil, Departamento de Fisioterapia e Reabilitação, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Plentz, R.D.M. [Universidade Federal de Ciências da Saúde de Porto Alegre, Programa de Pós-Graduação em Ciências da Reabilitação, Programa de Pós-Graduação em Ciências da Saúde, Porto Alegre, RS, Brasil, Programa de Pós-Graduação em Ciências da Saúde, Programa de Pós-Graduação em Ciências da Reabilitação, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Irigoyen, M.C. [Faculdade de Medicina, Universidade de São Paulo, Instituto do Coração, Unidade de Hipertensão, São Paulo, SP, Brasil, Unidade de Hipertensão, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Signori, L.U. [Universidade Federal do Rio Grande, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Rio Grande, RS, Brasil, Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS (Brazil); Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Fisiologia Animal Comparada, Rio Grande, RS, Brasil, Programa de Pós-Graduação em Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS (Brazil); Universidade Federal de Santa Maria, Departamento de Fisioterapia e Reabilitação, Santa Maria, RS, Brasil, Departamento de Fisioterapia e Reabilitação, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)

    2014-04-04

    Transcutaneous electrical nerve stimulation (TENS) is a type of therapy used primarily for analgesia, but also presents changes in the cardiovascular system responses; its effects are dependent upon application parameters. Alterations to the cardiovascular system suggest that TENS may modify venous vascular response. The objective of this study was to evaluate the effects of TENS at different frequencies (10 and 100 Hz) on venous vascular reactivity in healthy subjects. Twenty-nine healthy male volunteers were randomized into three groups: placebo (n=10), low-frequency TENS (10 Hz, n=9) and high-frequency TENS (100 Hz, n=10). TENS was applied for 30 min in the nervous plexus trajectory from the superior member (from cervical to dorsal region of the fist) at low (10 Hz/200 μs) and high frequency (100 Hz/200 μs) with its intensity adjusted below the motor threshold and intensified every 5 min, intending to avoid accommodation. Venous vascular reactivity in response to phenylephrine, acetylcholine (endothelium-dependent) and sodium nitroprusside (endothelium-independent) was assessed by the dorsal hand vein technique. The phenylephrine effective dose to achieve 70% vasoconstriction was reduced 53% (P<0.01) using low-frequency TENS (10 Hz), while in high-frequency stimulation (100 Hz), a 47% increased dose was needed (P<0.01). The endothelium-dependent (acetylcholine) and independent (sodium nitroprusside) responses were not modified by TENS, which modifies venous responsiveness, and increases the low-frequency sensitivity of α1-adrenergic receptors and shows high-frequency opposite effects. These changes represent an important vascular effect caused by TENS with implications for hemodynamics, inflammation and analgesia.

  10. [Clinical research of post-stroke insomnia treated with low-frequency electric stimulation at acupoints in the patients].

    Science.gov (United States)

    Tang, Lei; You, Fei; Ma, Chao-Yang

    2014-08-01

    To compare the difference in the clinical efficacy on post-stroke insomnia between the low-frequency electric stimulation at the acupoints and the conventional western medication. One hundred and twenty patients of post-stroke insomnia were randomized into a low-frequency electric stimulation group, a medication group and a placebo group, 40 cases in each one. In the low-frequency electric stimulation group, the low-frequency electric-pulsing apparatus was used at Dazhui (GV 14) and Shenshu (BL 23), once a day; the treatment of 15 days made one session and 2 sessions were required. In the medication group, estazolam was taken orally, 1 mg each time. In the placebo group, starch capsules were taken orally, 1 capsule each time. All the drugs were taken before sleep every night, continuously for 15 days as one session, and 2 sessions were required. PSQI changes and clinical efficacy were observed before and after treatment in each group. Pitlsburgh sleep quality index (PSQI) score was reduced in every group after treatment (all P low-frequency electric stimulation group and medication group, the score was reduced much more significantly as compared with the placebo group (both P low-frequency electric stimulation group, medication group and placebo group separately. The efficacy in the low-frequency electric stimulation group and medication group was better apparently than that in the placebo group (both P low-frequency electric stimulation at the acupoints effectively and safely treats post-stroke insomnia and the efficacy of it is similar to that of estazolam.

  11. Electrical Stimulation Frequency and Skeletal Muscle Characteristics: Effects on Force and Fatigue

    Directory of Open Access Journals (Sweden)

    Maria Vromans

    2017-12-01

    Full Text Available This investigation aimed to determine the force and muscle surface electromyography (EMG responses to different frequencies of electrical stimulation (ES in two groups of muscles with different size and fiber composition (fast- and slow-twitch fiber proportions during a fatigue-inducing protocol. Progression towards fatigue was evaluated in the abductor pollicis brevis (APB and vastus lateralis (VL when activated by ES at three frequencies (10, 35, and 50Hz. Ten healthy adults (mean age: 23.2 ± 3.0 years were recruited; participants signed an IRB approved consent form prior to participation. Protocols were developed to 1 identify initial ES current intensity required to generate the 25% maximal voluntary contraction (MVC at each ES frequency and 2 evaluate changes in force and EMG activity during ES-induced contraction at each frequency while progressing towards fatigue. For both muscles, stimulation at 10Hz required higher current intensity of ES to generate the initial force. There was a significant decline in force in response to ES-induced fatigue for all frequencies and for both muscles (p<0.05. However, the EMG response was not consistent between muscles. During the progression towards fatigue, the APB displayed an initial drop in force followed by an increase in EMG activity and the VL displayed a decrease in EMG activity for all frequencies. Overall, it appeared that there were some significant interactions between muscle size and fiber composition during progression towards fatigue for different ES frequencies. It could be postulated that muscle characteristics (size and fiber composition should be considered when evaluating progression towards fatigue as EMG and force responses are not consistent between muscles.

  12. Simultaneous masking between electric and acoustic stimulation in cochlear implant users with residual low-frequency hearing.

    Science.gov (United States)

    Krüger, Benjamin; Büchner, Andreas; Nogueira, Waldo

    2017-09-01

    Ipsilateral electric-acoustic stimulation (EAS) is becoming increasingly important in cochlear implant (CI) treatment. Improvements in electrode designs and surgical techniques have contributed to improved hearing preservation during implantation. Consequently, CI implantation criteria have been expanded toward people with significant residual low-frequency hearing, who may benefit from the combined use of both the electric and acoustic stimulation in the same ear. However, only few studies have investigated the mutual interaction between electric and acoustic stimulation modalities. This work characterizes the interaction between both stimulation modalities using psychophysical masking experiments and cone beam computer tomography (CBCT). Two psychophysical experiments for electric and acoustic masking were performed to measure the hearing threshold elevation of a probe stimulus in the presence of a masker stimulus. For electric masking, the probe stimulus was an acoustic tone while the masker stimulus was an electric pulse train. For acoustic masking, the probe stimulus was an electric pulse train and the masker stimulus was an acoustic tone. Five EAS users, implanted with a CI and ipsilateral residual low-frequency hearing, participated in the study. Masking was determined at different electrodes and different acoustic frequencies. CBCT scans were used to determine the individual place-pitch frequencies of the intracochlear electrode contacts by using the Stakhovskaya place-to-frequency transformation. This allows the characterization of masking as a function of the difference between electric and acoustic stimulation sites, which we term the electric-acoustic frequency difference (EAFD). The results demonstrate a significant elevation of detection thresholds for both experiments. In electric masking, acoustic-tone thresholds increased exponentially with decreasing EAFD. In contrast, for the acoustic masking experiment, threshold elevations were present

  13. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.

    Science.gov (United States)

    Auinger, Alice Barbara; Riss, Dominik; Liepins, Rudolfs; Rader, Tobias; Keck, Tilman; Keintzel, Thomas; Kaider, Alexandra; Baumgartner, Wolf-Dieter; Gstoettner, Wolfgang; Arnoldner, Christoph

    2017-07-01

    It has been shown that patients with electric acoustic stimulation (EAS) perform better in noisy environments than patients with a cochlear implant (CI). One reason for this could be the preserved access to acoustic low-frequency cues including the fundamental frequency (F0). Therefore, our primary aim was to investigate whether users of EAS experience a release from masking with increasing F0 difference between target talker and masking talker. The study comprised 29 patients and consisted of three groups of subjects: EAS users, CI users and normal-hearing listeners (NH). All CI and EAS users were implanted with a MED-EL cochlear implant and had at least 12 months of experience with the implant. Speech perception was assessed with the Oldenburg sentence test (OlSa) using one sentence from the test corpus as speech masker. The F0 in this masking sentence was shifted upwards by 4, 8, or 12 semitones. For each of these masker conditions the speech reception threshold (SRT) was assessed by adaptively varying the masker level while presenting the target sentences at a fixed level. A statistically significant improvement in speech perception was found for increasing difference in F0 between target sentence and masker sentence in EAS users (p = 0.038) and in NH listeners (p = 0.003). In CI users (classic CI or EAS users with electrical stimulation only) speech perception was independent from differences in F0 between target and masker. A release from masking with increasing difference in F0 between target and masking speech was only observed in listeners and configurations in which the low-frequency region was presented acoustically. Thus, the speech information contained in the low frequencies seems to be crucial for allowing listeners to separate multiple sources. By combining acoustic and electric information, EAS users even manage tasks as complicated as segregating the audio streams from multiple talkers. Preserving the natural code, like fine-structure cues in

  14. Effects of cervical low-frequency electrical stimulation with various waveforms and densities on body mass, liver and kidney function, and death rate in ischemic stroke rats

    Institute of Scientific and Technical Information of China (English)

    Yonghong Yang; Chengqi He; Lin Yang; Qiang Gao; Shasha Li; Jing He

    2011-01-01

    Low-frequency electrical stimulation has resulted in favorable effects in the treatment of post-stroke dysphagia. However, the safety of cervical low-frequency electrical stimulation remains unclear because of numerous nerves and blood vessels in the neck. In the present study, rats with ischemic stroke underwent low-frequency electrical stimulation, and systemic and local effects of electrical stimulation at different densities and waveforms were investigated. Electrical stimulation resulted in no significant effects on body mass, liver or kidney function, or mortality rate. In addition, no significant adverse reaction was observed, despite overly high intensity of low-frequency electrical stimulation, which induced laryngismus, results from the present study suggested that it is safe to stimulate the neck with a low-frequency electricity under certain intensities.

  15. Low-frequency electrical stimulation induces the proliferation and differentiation of peripheral blood stem cells into Schwann cells.

    Science.gov (United States)

    Gu, Xudong; Fu, Jianming; Bai, Jing; Zhang, Chengwen; Wang, Jing; Pan, Wenping

    2015-02-01

    Functional recovery after peripheral nerve injury remains a tough problem at present. Specifically, a type of glial cell exists in peripheral nerves that promotes axonal growth and myelin formation and secretes various active substances, such as neurotrophic factors, extracellular matrix and adherence factors. These substances have important significance for the survival, growth and regeneration of nerve fibers. Numerous recent studies have shown that electrical stimulation can increase the number of myelinated nerve fibers. However, whether electrical stimulation acts on neurons or Schwann cells has not been verified in vivo. This study investigates low-frequency electrical stimulation-induced proliferation and differentiation of peripheral blood stem cells into Schwann cells and explores possible mechanisms. Peripheral blood stem cells from Sprague-Dawley rats were primarily cultured. Cells in passage 3 were divided into 4 groups: a low-frequency electrical stimulation group (20 Hz, 100 μs, 3 V), a low-frequency electrical stimulation+PD98059 (blocking the extracellular signal-regulated kinase [ERK] signaling pathway) group, a PD98059 group and a control group (no treatment). After induction, the cells were characterized. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazoliumbromide assay was employed to measure the absorbance values at 570 nm in the 4 groups. A Western blot assay was used to detect the expression of cyclin D1 and cyclin-dependent kinase 4 (CDK4) in each group. No significant difference in cell viability was detected before induction. Peripheral blood stem cells from the 4 groups differentiated into Schwann cells. Phosphorylated ERK 1/2, cyclin D1 and CDK4 protein levels were highest in the low-frequency electrical stimulation group and lowest in the ERK blockage group. Phosphorylated ERK 1/2, cyclin D1 and CDK4 protein levels in the low-frequency electrical stimulation+ERK blockage group were lower than those in the low-frequency electrical

  16. High frequency electrical stimulation concurrently induces central sensitization and ipsilateral inhibitory pain modulation.

    Science.gov (United States)

    Vo, L; Drummond, P D

    2013-03-01

    In healthy humans, analgesia to blunt pressure develops in the ipsilateral forehead during various forms of limb pain. The aim of the current study was to determine whether this analgesic response is induced by ultraviolet B radiation (UVB), which evokes signs of peripheral sensitization, or by high-frequency electrical stimulation (HFS), which triggers signs of central sensitization. Before and after HFS and UVB conditioning, sensitivity to heat and to blunt and sharp stimuli was assessed at and adjacent to the treated site in the forearm. In addition, sensitivity to blunt pressure was measured bilaterally in the forehead. The effect of ipsilateral versus contralateral temple cooling on electrically evoked pain in the forearm was then examined, to determine whether HFS or UVB conditioning altered inhibitory pain modulation. UVB conditioning triggered signs of peripheral sensitization, whereas HFS conditioning triggered signs of central sensitization. Importantly, ipsilateral forehead analgesia developed after HFS but not UVB conditioning. In addition, decreases in electrically evoked pain at the HFS-treated site were greater during ipsilateral than contralateral temple cooling, whereas decreases at the UVB-treated site were similar during both procedures. HFS conditioning induced signs of central sensitization in the forearm and analgesia both in the ipsilateral forehead and the HFS-treated site. This ipsilateral analgesia was not due to peripheral sensitization or other non-specific effects, as it failed to develop after UVB conditioning. Thus, the supra-spinal mechanisms that evoke central sensitization might also trigger a hemilateral inhibitory pain modulation process. This inhibitory process could sharpen the boundaries of central sensitization or limit its spread. © 2012 European Federation of International Association for the Study of Pain Chapters.

  17. Changes in the frequency of swallowing during electrical stimulation of superior laryngeal nerve in rats.

    Science.gov (United States)

    Tsuji, Kojun; Tsujimura, Takanori; Magara, Jin; Sakai, Shogo; Nakamura, Yuki; Inoue, Makoto

    2015-02-01

    The aim of the present study was to investigate the adaptation of the swallowing reflex in terms of reduced swallowing reflex initiation following continuous superior laryngeal nerve stimulation. Forty-four male Sprague Dawley rats were anesthetized with urethane. To identify swallowing, electromyographic activity of the left mylohyoid and thyrohyoid muscles was recorded. To evoke the swallowing response, the superior laryngeal nerve (SLN), recurrent laryngeal nerve, or cortical swallowing area was electrically stimulated. Repetitive swallowing evoked by continuous SLN stimulation was gradually reduced, and this reduction was dependent on the resting time duration between stimulations. Prior SLN stimulation also suppressed subsequent swallowing initiation. The reduction in evoked swallows induced by recurrent laryngeal nerve or cortical swallowing area stimulation was less than that following superior laryngeal nerve stimulation. Decerebration had no effect on the reduction in evoked swallows. Prior subthreshold stimulation reduced subsequent initiation of swallowing, suggesting that there was no relationship between swallowing movement evoked by prior stimulation and the subsequent reduction in swallowing initiation. Overall, these data suggest that reduced sensory afferent nerve firing and/or trans-synaptic responses, as well as part of the brainstem central pattern generator, are involved in adaptation of the swallowing reflex following continuous stimulation of swallow-inducing peripheral nerves and cortical areas. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Antihypertensive effect of low-frequency transcutaneous electrical nerve stimulation (TENS) in comparison with drug treatment.

    Science.gov (United States)

    Silverdal, Jonas; Mourtzinis, Georgios; Stener-Victorin, Elisabet; Mannheimer, Clas; Manhem, Karin

    2012-10-01

    Hypertension is a major risk factor for vascular disease, yet blood pressure (BP) control is unsatisfactory low, partly due to side-effects. Transcutaneous electrical nerve stimulation (TENS) is well tolerated and studies have demonstrated BP reduction. In this study, we compared the BP lowering effect of 2.5 mg felodipin once daily with 30 min of bidaily low-frequency TENS in 32 adult hypertensive subjects (mean office BP 152.7/90.0 mmHg) in a randomized, crossover design. Office BP and 24-h ambulatory BP monitoring (ABPM) were performed at baseline and at the end of each 4-week treatment and washout period. Felodipin reduced office BP by 10/6 mmHg (p TENS reduced office BP by 5/1.5 mmHg (p TENS washout, BP was further reduced and significantly lower than at baseline, but at levels similar to BP after felodipin washout and therefore reasonably caused by factors other than the treatment per se. ABPM revealed a significant systolic reduction of 3 mmHg by felodipin, but no significant changes were noted after TENS. We conclude that our study does not present any solid evidence of BP reduction of TENS.

  19. Effects of Constant and Doublet Frequency Electrical Stimulation Patterns on Force Production of Knee Extensor Muscles.

    Directory of Open Access Journals (Sweden)

    Carole Cometti

    Full Text Available This study compared knee extensors' neuromuscular fatigue in response to two 30-minute stimulation patterns: constant frequency train (CFT and doublet frequency train (DFT. Fifteen men underwent two separate sessions corresponding to each pattern. Measurements included torque evoked by each contraction and maximal voluntary contractions (MVC measured before and immediately after the stimulation sessions. In addition, activation level and torque evoked during doublets (Pd and tetanic contractions at 80-Hz (P80 and 20-Hz (P20 were determined in six subjects. Results indicated greater mean torque during the DFT stimulation session as compared with CFT. But, no difference was obtained between the two stimulation patterns for MVC and evoked torque decreases. Measurements conducted in the subgroup depicted a significant reduction of Pd, P20 and P80. Statistical analyses also revealed bigger P20 immediate reductions after CFT than after DFT. We concluded that DFT could be a useful stimulation pattern to produce and maintain greater force with quite similar fatigue than CFT.

  20. Metabolic costs of force generation for constant-frequency and catchlike-inducing electrical stimulation in human tibialis anterior muscle

    DEFF Research Database (Denmark)

    Ratkevicius, Aivaras; Quistorff, Bjørn

    2002-01-01

    -frequency trains, catchlike-inducing trains produced a faster force generation and were more effective in maintaining the force--time integral as well as peak force. However, ATP costs of force generation were similar for the catchlike-inducing and constant-frequency stimulation (6.7 plus/minus 1.1 and 6.6 plus......Metabolic costs of force generation were compared for constant-frequency and catchlike-inducing electrical stimulation. Repetitive catchlike-inducing trains consisted of 2 interpulse intervals (IPIs) at 12.5 ms, 1 IPI at 25 ms, and 5 IPIs at 50 ms. Constant-frequency trains consisted of 8 IPIs...... at 37.5 ms. One train was delivered to the peroneal nerve every 2.5 s for 36 times under ischemic conditions. Anaerobic adenosine triphosphate (ATP) turnover was determined using 31-phosphorus magnetic resonance spectroscopy (P-MRS) of the human tibialis anterior muscle. Compared with constant...

  1. Retinal ganglion cells: mechanisms underlying depolarization block and differential responses to high frequency electrical stimulation of ON and OFF cells

    Science.gov (United States)

    Kameneva, T.; Maturana, M. I.; Hadjinicolaou, A. E.; Cloherty, S. L.; Ibbotson, M. R.; Grayden, D. B.; Burkitt, A. N.; Meffin, H.

    2016-02-01

    Objective. ON and OFF retinal ganglion cells (RGCs) are known to have non-monotonic responses to increasing amplitudes of high frequency (2 kHz) biphasic electrical stimulation. That is, an increase in stimulation amplitude causes an increase in the cell’s spike rate up to a peak value above which further increases in stimulation amplitude cause the cell to decrease its activity. The peak response for ON and OFF cells occurs at different stimulation amplitudes, which allows differential stimulation of these functional cell types. In this study, we investigate the mechanisms underlying the non-monotonic responses of ON and OFF brisk-transient RGCs and the mechanisms underlying their differential responses. Approach. Using in vitro patch-clamp recordings from rat RGCs, together with simulations of single and multiple compartment Hodgkin-Huxley models, we show that the non-monotonic response to increasing amplitudes of stimulation is due to depolarization block, a change in the membrane potential that prevents the cell from generating action potentials. Main results. We show that the onset for depolarization block depends on the amplitude and frequency of stimulation and reveal the biophysical mechanisms that lead to depolarization block during high frequency stimulation. Our results indicate that differences in transmembrane potassium conductance lead to shifts of the stimulus currents that generate peak spike rates, suggesting that the differential responses of ON and OFF cells may be due to differences in the expression of this current type. We also show that the length of the axon’s high sodium channel band (SOCB) affects non-monotonic responses and the stimulation amplitude that leads to the peak spike rate, suggesting that the length of the SOCB is shorter in ON cells. Significance. This may have important implications for stimulation strategies in visual prostheses.

  2. High- and low-frequency transcutaneous electrical nerve stimulation does not reduce experimental pain in elderly individuals

    OpenAIRE

    Bergeron-V?zina, Kayla; Corriveau, H?l?ne; Martel, Marylie; Harvey, Marie-Philippe; L?onard, Guillaume

    2015-01-01

    Abstract Despite its widespread clinical use, the efficacy of transcutaneous electrical nerve stimulation (TENS) remains poorly documented in elderly individuals. In this randomized, double-blind crossover study, we compared the efficacy of high-frequency (HF), low-frequency (LF), and placebo (P) TENS in a group of 15 elderly adults (mean age: 67 ? 5 years). The effect of HF-, LF-, and P-TENS was also evaluated in a group of 15 young individuals (26 ? 5 years; same study design) to validate t...

  3. Electrical stimulation in exercise training

    Science.gov (United States)

    Kroll, Walter

    1994-01-01

    muscle strength for over a century. Bigelow reported in 1894, for example, the use of electrical stimulation on a young man for the purpose of increasing muscle strength. Employing a rapidly alternating sinusoidal induced current and a dynamometer for strength testing, Bigelow reported that the total lifting capacity of a patient increased from 4328 pounds to 4639 pounds after only 25 minutes of stimulation. In 1965, Massey et al. reported on the use of an Isotron electrical stimulator that emitted a high frequency current. Interestingly enough, the frequencies used by Massey et al. and the frequencies used by Bigelow in 1894 were in the same range of frequencies reported by Kots as being the most effective in strength development. It would seem the Russian secret of high frequency electrical stimulation for strength development, then, is not a modern development at all.

  4. The effects of low frequency electrical stimulation on satellite cell activity in rat skeletal muscle during hindlimb suspension

    Directory of Open Access Journals (Sweden)

    Zhang Hong-Yu

    2010-11-01

    Full Text Available Abstract Background The ability of skeletal muscle to grow and regenerate is dependent on resident stem cells called satellite cells. It has been shown that chronic hindlimb unloading downregulates the satellite cell activity. This study investigated the role of low-frequency electrical stimulation on satellite cell activity during a 28 d hindlimb suspension in rats. Results Mechanical unloading resulted in a 44% reduction in the myofiber cross-sectional area as well as a 29% and 34% reduction in the number of myonuclei and myonuclear domains, respectively, in the soleus muscles (P vs the weight-bearing control. The number of quiescent (M-cadherin+, proliferating (BrdU+ and myoD+, and differentiated (myogenin+ satellite cells was also reduced by 48-57% compared to the weight-bearing animals (P P Conclusion This study shows that electrical stimulation partially attenuated the decrease in muscle size and satellite cells during hindlimb unloading. The causal relationship between satellite cell activation and electrical stimulation remain to be established.

  5. Effect of Low Frequency Neuromuscular Electrical Stimulation on Glucose Profile of Persons with Type 2 Diabetes: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Georges Jabbour

    2015-06-01

    Full Text Available The purpose of this study was to examine the effect of low-frequency neuromuscular electrical stimulation (NMES on glucose profile in persons with type 2 diabetes mellitus (T2DM. Eight persons with T2DM (41 to 65 years completed a glucose tolerance test with and without NMES delivered to the knee extensors for a 1-hour period at 8 Hz. Three blood samples were collected: at rest, and then 60 and 120 minutes after consumption of a glucose load on the NMES and control days. In NMES groups glucose concentrations were significantly lower (P<0.01 than in the control conditions. Moreover, a significant positive correlation (r=0.9, P<0.01 was obtained between the intensity of stimulation and changes in blood glucose. Our results suggest that low-frequency stimulation seem suitable to induce enhance glucose uptake in persons with T2DM. Moreover, the intensity of stimulation reflecting the motor contraction should be considered during NMES procedure.

  6. Electrical high frequency stimulation in the dorsal striatum: Effects on response learning and on GABA levels in rats.

    Science.gov (United States)

    Schumacher, Anett; de Vasconcelos, Anne Pereira; Lecourtier, Lucas; Moser, Andreas; Cassel, Jean-Christophe

    2011-09-23

    Electrical high frequency stimulation (HFS) has been used to treat various neurological and psychiatric diseases. The striatal area contributes to response learning and procedural memory. Therefore, we investigated the effect of striatal HFS application on procedural/declarative-like memory in rats. All rats were trained in a flooded Double-H maze for three days (4 trials/day) to swim to an escape platform hidden at a constant location. The starting place was the same for all trials. After each training session, HFS of the left dorsal striatum was performed over 4h in alternating 20 min periods (during rest time, 10a.m. to 3p.m.). Nineteen hours after the last HFS and right after a probe trial assessing the rats' strategy (procedural vs. declarative-like memory-based choice), animals were sacrificed and the dorsal striatum was quickly removed. Neurotransmitter levels were measured by HPLC. Stimulated rats did not differ from sham-operated and control rats in acquisition performance, but exhibited altered behavior during the probe trial (procedural memory responses being less frequent than in controls). In stimulated rats, GABA levels were significantly increased in the dorsal striatum on both sides. We suggest that HFS of the dorsal striatum does not alter learning behavior in rats but influences the strategy by which the rats solve the task. Given that the HFS-induced increase of GABA levels was found 19 h after stimulation, it can be assumed that HFS has consequences lasting for several hours and which are functionally significant at a behavioral level, at least under our stimulation (frequency, timing, location, side and strength of stimulation) and testing conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Fixed-site high-frequency transcutaneous electrical nerve stimulation for treatment of chronic low back and lower extremity pain

    Directory of Open Access Journals (Sweden)

    Gozani SN

    2016-06-01

    Full Text Available Shai N Gozani NeuroMetrix, Inc., Waltham, MA, USA Objective: The objective of this study was to determine if fixed-site high-frequency transcutaneous electrical nerve stimulation (FS-TENS is effective in treating chronic low back and lower extremity pain. Background: Transcutaneous electrical nerve stimulation is widely used for treatment of chronic pain. General-purpose transcutaneous electrical nerve stimulation devices are designed for stimulation anywhere on the body and often cannot be used while the user is active or sleeping. FS-TENS devices are designed for placement at a pre-determined location, which enables development of a wearable device for use over extended time periods. Methods: Study participants with chronic low back and/or lower extremity pain self-administered an FS-TENS device for 60 days. Baseline, 30-, and 60-day follow-up data were obtained through an online questionnaire. The primary outcome measure was the patient global impression of change. Pain intensity and interference were assessed using the Brief Pain Inventory. Changes in use of concomitant pain medications were evaluated with a single-item global self-rating. Results: One hundred and thirty participants were enrolled, with 88 completing the 60-day follow-up questionnaire. Most participants (73.9% were 50 years of age or older. At baseline, low back pain was identified by 85.3%, lower extremity pain by 71.6%, and upper extremity pain by 62.5%. Participants reported widespread pain, at baseline, with a mean of 3.4 (standard deviation 1.1 pain sites. At the 60-day follow-up, 80.7% of participants reported that their chronic pain had improved and they were classified as responders. Baseline characteristics did not differentiate non-responders from responders. There were numerical trends toward reduced pain interference with walking ability and sleep, and greater pain relief in responders. There was a large difference in use of concomitant pain medications, with 80

  8. High-frequency electrical stimulation can be a complementary therapy to promote nerve regeneration in diabetic rats.

    Directory of Open Access Journals (Sweden)

    Chia-Hong Kao

    Full Text Available The purpose of this study was to evaluate whether 1 mA of percutaneous electrical stimulation (ES at 0, 2, 20, or 200 Hz augments regeneration between the proximal and distal nerve stumps in streptozotocin diabetic rats. A10-mm gap was made in the diabetic rat sciatic nerve by suturing the stumps into silicone rubber tubes. Normal animals were used as the controls. Starting 1 week after transection, ES was applied between the cathode placed at the distal stump and the anode at the proximal stump every other day for 3 weeks. At 4 weeks after surgery, the normal controls and the groups receiving ES at 20, and 200 Hz had a higher success percentage of regeneration compared to the ES groups at 0 and 2 Hz. In addition, quantitative histology of the successfully regenerated nerves revealed that the groups receiving ES at a higher frequency, especially at 200 Hz, had a more mature structure with more myelinated fibers compared to those in the lower-frequency ES groups. Similarly, electrophysiology in the ES group at 200 Hz showed significantly shorter latency, larger amplitude, larger area of evoked muscle action potentials and faster conduction velocity compared to other groups. Immunohistochemical staining showed that ES at a higher frequency could significantly promote calcitonin gene-related peptide expression in lamina I-II regions in the dorsal horn and recruit a higher number of macrophages in the diabetic distal sciatic nerve. The macrophages were found that they could stimulate the secretion of nerve growth factor, platelet-derived growth factor, and transforming growth factor-β in dissected sciatic nerve segments. The ES at a higher frequency could also increase cutaneous blood flow in the ipsilateral hindpaw to the injury. These results indicated that a high-frequency ES could be necessary to heal severed diabetic peripheral nerve with a long gap to be repaired.

  9. [Impacts of the low-frequency electric stimulation at the acupoints on the content of plasma 5-HT and NE in the patients with post-stroke insomnia].

    Science.gov (United States)

    Tang, Lei; Ma, Chaoyan; You, Fei; Ding, Lin

    2015-08-01

    To compare the clinical efficacy on post-stroke insomnia between the low-frequency electric stimulation at the acupoints and the conventional western medication in the patients so as to explore the effect mechanism. One hundred and twenty patients of post-stroke insomnia were randomized into a low-frequency electric stimulation group, a medication group and a placebo group, 40 cases in each one. In the low-frequency electric stimulation group, the low-frequency pulse electric apparatus was applied to stimulate Dazhui (GV 14) and Shenshu (BL 23), once every day. The treatment for 15 days made one session and 2 sessions were required. In the medication group, estazolam was taken orally, 1 mg each time; and in the placebo group, the starch capsules were taken, one capsule each time; in the two groups the treatment was adopted before sleep every night, continuously for 15 days as one session, and 2 sessions were required. The levels of plasma 5-hydroxytryptamine (5-HT) and norepinephrine (NE) were compared before and after treatment in the patients of the three groups and: the efficacy was compared. In the placebo group, 1 case was dropped out. The total effective rate was 95. 0% (38/40), 92. 5% (37/40) and 17. 9% (7/39) in the low-frequency electric stimulation group, the medication group and the placebo group respectively. The effects in the low-frequency electric stimulation group and the medication group were better apparently than that in the placebo group (both Plow-frequency electric stimulation group and the medication group (P>0. 05). The levels of plasma 5-HT and NE were not different significantly between before and after treatment in the placebo group. The level of plasma 5-HT was increased (both Plow-frequency electric stimulation group and the medication group. But the differences were not significant between the two groups (P>0. 05). The low-frequency electric stimlaton a the acupoints is safe and effective in the treatment of post-stroke insomnia, which

  10. Fixed-site high-frequency transcutaneous electrical nerve stimulation for treatment of chronic low back and lower extremity pain

    Science.gov (United States)

    Gozani, Shai N

    2016-01-01

    Objective The objective of this study was to determine if fixed-site high-frequency transcutaneous electrical nerve stimulation (FS-TENS) is effective in treating chronic low back and lower extremity pain. Background Transcutaneous electrical nerve stimulation is widely used for treatment of chronic pain. General-purpose transcutaneous electrical nerve stimulation devices are designed for stimulation anywhere on the body and often cannot be used while the user is active or sleeping. FS-TENS devices are designed for placement at a pre-determined location, which enables development of a wearable device for use over extended time periods. Methods Study participants with chronic low back and/or lower extremity pain self-administered an FS-TENS device for 60 days. Baseline, 30-, and 60-day follow-up data were obtained through an online questionnaire. The primary outcome measure was the patient global impression of change. Pain intensity and interference were assessed using the Brief Pain Inventory. Changes in use of concomitant pain medications were evaluated with a single-item global self-rating. Results One hundred and thirty participants were enrolled, with 88 completing the 60-day follow-up questionnaire. Most participants (73.9%) were 50 years of age or older. At baseline, low back pain was identified by 85.3%, lower extremity pain by 71.6%, and upper extremity pain by 62.5%. Participants reported widespread pain, at baseline, with a mean of 3.4 (standard deviation 1.1) pain sites. At the 60-day follow-up, 80.7% of participants reported that their chronic pain had improved and they were classified as responders. Baseline characteristics did not differentiate non-responders from responders. There were numerical trends toward reduced pain interference with walking ability and sleep, and greater pain relief in responders. There was a large difference in use of concomitant pain medications, with 80.3% of responders reporting a reduction compared to 11.8% of non

  11. Fixed-site high-frequency transcutaneous electrical nerve stimulation for treatment of chronic low back and lower extremity pain.

    Science.gov (United States)

    Gozani, Shai N

    2016-01-01

    The objective of this study was to determine if fixed-site high-frequency transcutaneous electrical nerve stimulation (FS-TENS) is effective in treating chronic low back and lower extremity pain. Transcutaneous electrical nerve stimulation is widely used for treatment of chronic pain. General-purpose transcutaneous electrical nerve stimulation devices are designed for stimulation anywhere on the body and often cannot be used while the user is active or sleeping. FS-TENS devices are designed for placement at a pre-determined location, which enables development of a wearable device for use over extended time periods. Study participants with chronic low back and/or lower extremity pain self-administered an FS-TENS device for 60 days. Baseline, 30-, and 60-day follow-up data were obtained through an online questionnaire. The primary outcome measure was the patient global impression of change. Pain intensity and interference were assessed using the Brief Pain Inventory. Changes in use of concomitant pain medications were evaluated with a single-item global self-rating. One hundred and thirty participants were enrolled, with 88 completing the 60-day follow-up questionnaire. Most participants (73.9%) were 50 years of age or older. At baseline, low back pain was identified by 85.3%, lower extremity pain by 71.6%, and upper extremity pain by 62.5%. Participants reported widespread pain, at baseline, with a mean of 3.4 (standard deviation 1.1) pain sites. At the 60-day follow-up, 80.7% of participants reported that their chronic pain had improved and they were classified as responders. Baseline characteristics did not differentiate non-responders from responders. There were numerical trends toward reduced pain interference with walking ability and sleep, and greater pain relief in responders. There was a large difference in use of concomitant pain medications, with 80.3% of responders reporting a reduction compared to 11.8% of non-responders. FS-TENS is a safe and effective

  12. Low-frequency electrical stimulation enhances the effectiveness of phenobarbital on GABAergic currents in hippocampal slices of kindled rats.

    Science.gov (United States)

    Asgari, Azam; Semnanian, Saeed; Atapour, Nafiseh; Shojaei, Amir; Moradi-Chameh, Homeira; Ghafouri, Samireh; Sheibani, Vahid; Mirnajafi-Zadeh, Javad

    2016-08-25

    Low frequency stimulation (LFS) has been proposed as a new approach in the treatment of epilepsy. The anticonvulsant mechanism of LFS may be through its effect on GABAA receptors, which are the main target of phenobarbital anticonvulsant action. We supposed that co-application of LFS and phenobarbital may increase the efficacy of phenobarbital. Therefore, the interaction of LFS and phenobarbital on GABAergic inhibitory post-synaptic currents (IPSCs) in kindled and control rats was investigated. Animals were kindled by electrical stimulation of basolateral amygdala in a semi rapid manner (12 stimulations/day). The effect of phenobarbital, LFS and phenobarbital+LFS was investigated on GABAA-mediated evoked and miniature IPSCs in the hippocampal brain slices in control and fully kindled animals. Phenobarbital and LFS had positive interaction on GABAergic currents. In vitro co-application of an ineffective pattern of LFS (100 pulses at afterdischarge threshold intensity) and a sub-threshold dose of phenobarbital (100μM) which had no significant effect on GABAergic currents alone, increased the amplitude and area under curve of GABAergic currents in CA1 pyramidal neurons of hippocampal slices significantly. Interestingly, the sub-threshold dose of phenobarbital potentiated the GABAergic currents when applied on the hippocampal slices of kindled animals which received LFS in vivo. Post-synaptic mechanisms may be involved in observed interactions. Obtained results implied a positive interaction between LFS and phenobarbital through GABAA currents. It may be suggested that a combined therapy of phenobarbital and LFS may be a useful manner for reinforcing the anticonvulsant action of phenobarbital. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Effectiveness of high-frequency transcutaneous electrical nerve stimulation at tender points as adjuvant therapy for patients with fibromyalgia.

    Science.gov (United States)

    Carbonario, F; Matsutani, L A; Yuan, S L K; Marques, A P

    2013-04-01

    Fibromyalgia is a chronic pain syndrome associated with sleep disorders, fatigue and psychological symptoms. Combinations therapies, such as electrotherapy and therapeutic exercises have been used in the clinical practice. To assess the efficacy of high-frequency transcutaneous electrical nerve stimulation (TENS) as an adjuvant therapy to aerobic and stretching exercises, for the treatment of fibromyalgia. Controlled clinical trial. Unit of rehabilitation of a public hospital. Twenty-eight women aged 52.4±7.5 years, with fibromyalgia. A visual analogue scale measured pain intensity; tender points pain threshold, by dolorimetry; and quality of life, by the Fibromyalgia Impact Questionnaire. All subjects participated in an eight-week program consisting of aerobic exercises, followed by static stretching of muscle chains. In TENS group, high-frequency (150 Hz) was applied on bilateral tender points of trapezium and supraspinatus. TENS group had a greater pain reduction (mean change score=-2.0±2.9 cm) compared to Without TENS group (-0.7±3.7 cm). There was a difference between mean change scores of each group for pain threshold (right trapezium: 0.2±1 kg/cm² in TENS group and -0.2±1.2 kg/cm² in Without TENS group). In the evaluation of clinically important changes, patients receiving TENS had relevant improvement of pain, work performance, fatigue, stiffness, anxiety and depression compared to those not receiving TENS. It has suggested that high-frequency TENS as an adjuvant therapy is effective in relieving pain, anxiety, fatigue, stiffness, and in improving ability to work of patients with fibromyalgia. High-frequency TENS may be used as a short-term complementary treatment of fibromyalgia.

  14. Acupuncture plus Low-Frequency Electrical Stimulation (Acu-LFES Attenuates Diabetic Myopathy by Enhancing Muscle Regeneration.

    Directory of Open Access Journals (Sweden)

    Zhen Su

    Full Text Available Mortality and morbidity are increased in patients with muscle atrophy resulting from catabolic diseases such as diabetes. At present there is no pharmacological treatment that successfully reverses muscle wasting from catabolic conditions. We hypothesized that acupuncture plus low frequency electric stimulation (Acu-LFES would mimic the impact of exercise and prevent diabetes-induced muscle loss. Streptozotocin (STZ was used to induce diabetes in mice. The mice were then treated with Acu-LFES for 15 minutes daily for 14 days. Acupuncture points were selected according to the WHO Standard Acupuncture Nomenclature guide. The needles were connected to an SDZ-II electronic acupuncture device delivering pulses at 20Hz and 1mA. Acu-LFES prevented soleus and EDL muscle weight loss and increased hind-limb muscle grip function in diabetic mice. Muscle regeneration capacity was significantly increased by Acu-LFES. The expression of Pax7, MyoD, myogenin and embryo myosin heavy chain (eMyHC was significantly decreased in diabetic muscle vs. control muscle. The suppressed levels in diabetic muscle were reversed by Acu-LFES. The IGF-1 signaling pathway was also upregulated by Acu-LFES. Phosphorylation of Akt, mTOR and p70S6K were downregulated by diabetes leading to a decline in muscle mass, however, Acu-LFES countered the diabetes-induced decline. In addition, microRNA-1 and -206 were increased by Acu-LFES after 24 days of treatment. We conclude that Acu-LFES is effective in counteracting diabetes-induced skeletal muscle atrophy by increasing IGF-1 and its stimulation of muscle regeneration.

  15. An increase in alpha band frequency in resting state EEG after electrical stimulation of the ear in tinnitus patients - a pilot study

    Directory of Open Access Journals (Sweden)

    Marzena Mielczarek

    2016-10-01

    Full Text Available In our clinic invasive transtympanal promontory positive DC stimulations were first used, with a success rate of 42%. However, non-invasive hydrotransmissive negative DC stimulations are now favoured, with improvement being obtained in 37.8% directly after the treatment, and 51.3% in a follow up one month after treatment. The further improvement after one month may be due to neuroplastic changes at central level as a result of altered peripheral input. The aim of the study was to determine how a single electrical stimulation of the ear influences cortical activity, and whether changes observed in tinnitus after electrical stimulation are associated with any changes in cortical activity recorded in EEG.The study included 12 tinnitus patients(F–6, M-6 divided into two groups. Group I comprised six patients with unilateral tinnitus - unilateral, ipsilateral ES was performed. Group II comprised six patients with bilateral tinnitus - bilateral ES was performed.Electrical stimulation was performed using a custom-made apparatus.The active, silver probe – was immersed inside the external ear canal filled with saline. The passive electrode was placed on the forehead. The stimulating frequency was 250Hz, the intensity ranged from 0.14 to 1.08 mA. The voltage was kept constant at 3V. The duration of stimulation was four minutes. The EEG recording (Deymed QEST 32 was performed before and after electrical stimulation. We assessed the intensity of tinnitus on the visual analogue scale (1-10. Results.In both groups an improvement in VAS was observed– in group I - in five ears (83.3%, in group II - in seven ears (58.3%. In Group I,a significant increase in the upper and lower limits of the alpha frequency range was observed in the left central temporal and left frontal regions following electrical stimulation. These changes, however, were not correlated with improvement in tinnitus. No significant changes were observed in the beta and theta bands and in

  16. Neuropathic pain: transcranial electric motor cortex stimulation using high frequency random noise. Case report of a novel treatment

    Directory of Open Access Journals (Sweden)

    Alm PA

    2013-06-01

    Full Text Available Per A Alm, Karolina DreimanisDepartment of Neuroscience, Uppsala University, Uppsala, SwedenObjectives: Electric motor cortex stimulation has been reported to be effective for many cases of neuropathic pain, in the form of epidural stimulation or transcranial direct current stimulation (tDCS. A novel technique is transcranial random noise stimulation (tRNS, which increases the cortical excitability irrespective of the orientation of the current. The aim of this study was to investigate the effect of tRNS on neuropathic pain in a small number of subjects, and in a case study explore the effects of different stimulation parameters and the long-term stability of treatment effects.Methods: The study was divided into three phases: (1 a double-blind 100–600 Hz, varying from 0.5 to 10 minutes and from 50 to 1500 µA, at intervals ranging from daily to fortnightly.crossover study, with four subjects; (2 a double-blind extended case study with one responder; and (3 open continued treatment. The motor cortex stimulation consisted of alternating current random noise (100–600 Hz, varying from 0.5 to 10 minutes and from 50 to 1500 μA, at intervals ranging from daily to fortnightly.Results: One out of four participants showed a strong positive effect (also compared with direct-current-sham, P = 0.006. Unexpectedly, this effect was shown to occur also for very weak (100 µA, P = 0.048 and brief (0.5 minutes, P = 0.028 stimulation. The effect was largest during the first month, but remained at a highly motivating level for the patient after 6 months.Discussion: The study suggests that tRNS may be an effective treatment for some cases of neuropathic pain. An important result was the indication that even low levels of stimulation may have substantial effects.Keywords: neuropathic pain, central pain, transcranial direct current stimulation, motor cortex stimulation, random noise stimulation

  17. Transcutaneous electrical nerve stimulator of 5000 Hz frequency provides better analgesia than that of 100 Hz frequency in mice muscle pain model

    Directory of Open Access Journals (Sweden)

    Hung-Tsung Hsiao

    2017-04-01

    Full Text Available Transcutaneous electrical nerve stimulators (TENSs have been proved to be effective in muscle pain management for several decades. However, there is no consensus for the optimal TENS program. Previous research demonstrated that a 100 Hz TENS (L-TENS provided better analgesia than a conventional TENS ( 100 Hz TENS with a 100 Hz TENS. We used a 5000 Hz (5 kHz frequency TENS (M-TENS and an L-TENS to compare analgesic effect on a mice skin/muscle incision retraction model. Three groups of mice were used (sham, L-TENS, and M-TENS and applied with different TENS programs on Day 4 after the mice skin/muscle incision retraction model; TENS therapy was continued as 20 min/d for 3 days. Mice analgesic effects were measured via Von Frey microfilaments with the up–down method. After therapy, mice spinal cord dorsal horn and dorsal root ganglion (DRG were harvested for cytokine evaluation (tumor necrosis factor-α and interleukin-1β with the Western blotting method. Our data demonstrated that the M-TENS produced better analgesia than the L-TENS. Cytokine in the spinal cord or DRG all expressed lower than that of the sham group. However, there is no difference in both cytokine levels between TENSs of different frequencies in the spinal cord and DRG. We concluded that the M-TENS produced faster and better mechanical analgesia than the L-TENS in the mice skin/muscle incision retraction model. Those behavior differences were not in accordance with cytokine changes in the spinal cord or DRG.

  18. An investigation into the effects of frequency-modulated transcutaneous electrical nerve stimulation (TENS) on experimentally-induced pressure pain in healthy human participants.

    Science.gov (United States)

    Chen, Chih-Chung; Johnson, Mark I

    2009-10-01

    Frequency-modulated transcutaneous electrical nerve stimulation (TENS) delivers currents that fluctuate between preset boundaries over a fixed period of time. This study compared the effects of constant-frequency TENS and frequency-modulated TENS on blunt pressure pain in healthy human volunteers. Thirty-six participants received constant-frequency TENS (80 pps), frequency-modulated TENS (20 to 100 pps), and placebo (no current) TENS at a strong nonpainful intensity in a randomized cross-over manner. Pain threshold was taken from the forearm using pressure algometry. There were no statistical differences between constant-frequency TENS and frequency-modulated TENS after 20 minutes (OR = 1.54; CI, 0.29, 8.23, P = 1.0). Both constant-frequency TENS and frequency-modulated TENS were superior to placebo TENS (OR = 59.5, P TENS does not influence hypoalgesia to any greater extent than constant-frequency TENS when currents generate a strong nonpainful paraesthesia at the site of pain. The finding that frequency-modulated TENS and constant-frequency TENS were superior to placebo TENS provides further evidence that a strong yet nonpainful TENS intensity is a prerequisite for hypoalgesia. This study provides evidence that TENS, delivered at a strong nonpainful intensity, increases pain threshold to pressure algometry in healthy participants over and above that seen with placebo (no current) TENS. Frequency-modulated TENS does not increase hypoalgesia to any appreciable extent to that seen with constant-frequency TENS.

  19. A frequency and pulse-width co-modulation strategy for transcutaneous neuromuscular electrical stimulation based on sEMG time-domain features

    Science.gov (United States)

    Zhou, Yu-Xuan; Wang, Hai-Peng; Bao, Xue-Liang; Lü, Xiao-Ying; Wang, Zhi-Gong

    2016-02-01

    Objective. Surface electromyography (sEMG) is often used as a control signal in neuromuscular electrical stimulation (NMES) systems to enhance the voluntary control and proprioceptive sensory feedback of paralyzed patients. Most sEMG-controlled NMES systems use the envelope of the sEMG signal to modulate the stimulation intensity (current amplitude or pulse width) with a constant frequency. The aims of this study were to develop a strategy that co-modulates frequency and pulse width based on features of the sEMG signal and to investigate the torque-reproduction performance and the level of fatigue resistance achieved with our strategy. Approach. We examined the relationships between wrist torque and two stimulation parameters (frequency and pulse width) and between wrist torque and two sEMG time-domain features (mean absolute value (MAV) and number of slope sign changes (NSS)) in eight healthy volunteers. By using wrist torque as an intermediate variable, customized and generalized transfer functions were constructed to convert the two features of the sEMG signal into the two stimulation parameters, thereby establishing a MAV/NSS dual-coding (MNDC) algorithm. Wrist torque reproduction performance was assessed by comparing the torque generated by the algorithms with that originally recorded during voluntary contractions. Muscle fatigue was assessed by measuring the decline percentage of the peak torque and by comparing the torque time integral of the response to test stimulation trains before and after fatigue sessions. Main Results. The MNDC approach could produce a wrist torque that closely matched the voluntary wrist torque. In addition, a smaller decay in the wrist torque was observed after the MNDC-coded fatigue stimulation was applied than after stimulation using pulse-width modulation alone. Significance. Compared with pulse-width modulation stimulation strategies that are based on sEMG detection, the MNDC strategy is more effective for both voluntary muscle

  20. Dysregulation of the descending pain system in temporomandibular disorders revealed by low-frequency sensory transcutaneous electrical nerve stimulation: a pupillometric study.

    Directory of Open Access Journals (Sweden)

    Annalisa Monaco

    Full Text Available Using computerized pupillometry, our previous research established that the autonomic nervous system (ANS is dysregulated in patients suffering from temporomandibular disorders (TMDs, suggesting a potential role for ANS dysfunction in pain modulation and the etiology of TMD. However, pain modulation hypotheses for TMD are still lacking. The periaqueductal gray (PAG is involved in the descending modulation of defensive behavior and pain through μ, κ, and δ opioid receptors. Transcutaneous electrical nerve stimulation (TENS has been extensively used for pain relief, as low-frequency stimulation can activate µ receptors. Our aim was to use pupillometry to evaluate the effect of low-frequency TENS stimulation of μ receptors on opioid descending pathways in TMD patients. In accordance with the Research Diagnostic Criteria for TMD, 18 females with myogenous TMD and 18 matched-controls were enrolled. All subjects underwent subsequent pupillometric evaluations under dark and light conditions before, soon after (end of stimulation and long after (recovery period sensorial TENS. The overall statistics derived from the darkness condition revealed no significant differences in pupil size between cases and controls; indeed, TENS stimulation significantly reduced pupil size in both groups. Controls, but not TMD patients, displayed significant differences in pupil size before compared with after TENS. Under light conditions, TMD patients presented a smaller pupil size compared with controls; the pupil size was reduced only in the controls. Pupil size differences were found before and during TENS and before and after TENS in the controls only. Pupillometry revealed that stimulating the descending opioid pathway with low-frequency sensory TENS of the fifth and seventh pairs of cranial nerves affects the peripheral target. The TMD patients exhibited a different pattern of response to TENS stimulation compared with the controls, suggesting that impaired

  1. Mimicking muscle activity with electrical stimulation

    Science.gov (United States)

    Johnson, Lise A.; Fuglevand, Andrew J.

    2011-02-01

    Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.

  2. Low intensity transcranial electric stimulation

    DEFF Research Database (Denmark)

    Antal, Andrea; Alekseichuk, I; Bikson, M

    2017-01-01

    Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears...

  3. [Electrical acupoint stimulation increases athletes' rapid strength].

    Science.gov (United States)

    Yang, Hua-yuan; Liu, Tang-yi; Kuai, Le; Gao, Ming

    2006-05-01

    To search for a stimulation method for increasing athletes' performance. One hundred and fifty athletes were randomly divided into a trial group and a control group, 75 athletes in each group. Acupoints were stimulated with audio frequency pulse modulated wave and multi-blind method were used to investigate effects of the electric stimulation of acupoints on 30-meter running, standing long jumping and Cybex isokinetic testing index. The acupoint electric stimulation method could significantly increase athlete's performance (P < 0.05), and the biomechanical indexes, maximal peak moment of force (P < 0.05), force moment accelerating energy (P < 0.05) and average power (P < 0.05). Electrical acupoint stimulation can enhance athlete's rapid strength.

  4. Effect of low frequency electrical stimulation on seizure-induced short- and long-term impairments in learning and memory in rats.

    Science.gov (United States)

    Esmaeilpour, Khadijeh; Sheibani, Vahid; Shabani, Mohammad; Mirnajafi-Zadeh, Javad

    2017-01-01

    Kindled seizures can impair learning and memory. In the present study the effect of low-frequency electrical stimulation (LFS) on kindled seizure-induced impairment in spatial learning and memory was investigated and followed up to one month. Animals were kindled by electrical stimulation of hippocampal CA1 area in a semi-rapid manner (12 stimulations per day). One group of animals received four trials of LFS at 30s, 6h, 24h, and 30h following the last kindling stimulation. Each LFS trial was consisted of 4 packages at 5min intervals. Each package contained 200 monophasic square wave pulses of 0.1ms duration at 1Hz. The Open field, Morris water maze, and novel object recognition tests were done 48h, 1week, 2weeks, and one month after the last kindling stimulation respectively. Kindled animals showed a significant impairment in learning and memory compared to control rats. LFS decreased the kindling-induced learning and memory impairments at 24h and one week following its application, but not at 2week or 1month after kindling. In the group of animals that received the same 4 trials of LFS again one week following the last kindling stimulation, the improving effect of LFS was observed even after one month. Obtained results showed that application of LFS in fully kindled animals has a long-term improving effect on spatial learning and memory. This effect can remain for a long duration (one month in this study) by increasing the number of applied LFS. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Kilohertz and Low-Frequency Electrical Stimulation With the Same Pulse Duration Have Similar Efficiency for Inducing Isometric Knee Extension Torque and Discomfort.

    Science.gov (United States)

    Medeiros, Flávia Vanessa; Bottaro, Martim; Vieira, Amilton; Lucas, Tiago Pires; Modesto, Karenina Arrais; Bo, Antonio Padilha L; Cipriano, Gerson; Babault, Nicolas; Durigan, João Luiz Quagliotti

    2017-06-01

    To test the hypotheses that, as compared with pulsed current with the same pulse duration, kilohertz frequency alternating current would not differ in terms of evoked-torque production and perceived discomfort, and as a result, it would show the same current efficiency. A repeated-measures design with 4 stimuli presented in random order was used to test 25 women: (1) 500-microsecond pulse duration, (2) 250-microsecond pulse duration, (3) 500-microsecond pulse duration and low carrier frequency (1 kHz), (4) 250-microsecond pulse duration and high carrier frequency (4 kHz). Isometric peak torque of quadriceps muscle was measured using an isokinetic dynamometer. Discomfort was measured using a visual analog scale. Currents with long pulse durations induced approximately 21% higher evoked torque than short pulse durations. In addition, currents with 500 microseconds delivered greater amounts of charge than stimulation patterns using 250-microsecond pulse durations (P torque and discomfort. However, neuromuscular electrical stimulation (NMES) with longer pulse duration induces higher NMES-evoked torque, regardless of the carrier frequency. Pulse duration is an important variable that should receive more attention for an optimal application of NMES in clinical settings.

  6. Electric current - frequency converter

    International Nuclear Information System (INIS)

    Kumahara, Tadashi; Kinbana, Setsuro.

    1967-01-01

    Herein disclosed is an improved simple electric current-frequency converter, the input current and output frequency linearity of which is widened to a range of four to five figures while compensating, for temperature. The converter may be used for computor processing and for telemetering the output signals from a nuclear reactor. The converter is an astable multivibrator which includes charging circuits comprising emitter-voltage compensated NPN transistors, a charged voltage detecting circuit of temperature compensated field effect transistors, and a transistor switching circuit for generating switching pulses independent of temperature. The converter exhibited a 0.7% frequency change within a range of 5 - 45 0 C and less than a 0.1% frequency drift after six hours of operation when the input current was maintained constant. (Yamaguchi, T.)

  7. Ipsilateral masking between acoustic and electric stimulations.

    Science.gov (United States)

    Lin, Payton; Turner, Christopher W; Gantz, Bruce J; Djalilian, Hamid R; Zeng, Fan-Gang

    2011-08-01

    Residual acoustic hearing can be preserved in the same ear following cochlear implantation with minimally traumatic surgical techniques and short-electrode arrays. The combined electric-acoustic stimulation significantly improves cochlear implant performance, particularly speech recognition in noise. The present study measures simultaneous masking by electric pulses on acoustic pure tones, or vice versa, to investigate electric-acoustic interactions and their underlying psychophysical mechanisms. Six subjects, with acoustic hearing preserved at low frequencies in their implanted ear, participated in the study. One subject had a fully inserted 24 mm Nucleus Freedom array and five subjects had Iowa/Nucleus hybrid implants that were only 10 mm in length. Electric masking data of the long-electrode subject showed that stimulation from the most apical electrodes produced threshold elevations over 10 dB for 500, 625, and 750 Hz probe tones, but no elevation for 125 and 250 Hz tones. On the contrary, electric stimulation did not produce any electric masking in the short-electrode subjects. In the acoustic masking experiment, 125-750 Hz pure tones were used to acoustically mask electric stimulation. The acoustic masking results showed that, independent of pure tone frequency, both long- and short-electrode subjects showed threshold elevations at apical and basal electrodes. The present results can be interpreted in terms of underlying physiological mechanisms related to either place-dependent peripheral masking or place-independent central masking.

  8. Enhanced brain responses to C-fiber input in the area of secondary hyperalgesia induced by high-frequency electrical stimulation of the skin.

    Science.gov (United States)

    van den Broeke, Emanuel N; Mouraux, André

    2014-11-01

    High-frequency electrical stimulation (HFS) of the human skin induces an increase in both mechanical and heat pain sensitivity in the surrounding unconditioned skin. The aim of this study was to investigate the effect of HFS on the intensity of perception and brain responses elicited by the selective activation of C fibers. HFS was applied to the ventral forearm of 15 healthy volunteers. Temperature-controlled CO2 laser stimulation was used to activate selectively low-threshold C-fiber afferents without concomitantly activating Aδ-fiber afferents. These stimuli were detected with reaction times compatible with the conduction velocity of C fibers. The intensity of perception and event-related brain potentials (ERPs) elicited by thermal stimuli delivered to the surrounding unconditioned skin were recorded before (T0) and after HFS (T1: 20 min after HFS; T2: 45 min after HFS). The contralateral forearm served as a control. Mechanical hyperalgesia following HFS was confirmed by measuring the change in the intensity of perception elicited by mechanical punctate stimuli. HFS resulted in increased intensity of perception to mechanical punctate stimulation and selective C-fiber thermal stimulation at both time points. In contrast, the N2 wave of the ERP elicited by C-fiber stimulation (679 ± 88 ms; means ± SD) was enhanced at T1 but not at T2. The P2 wave (808 ± 105 ms) was unaffected by HFS. Our results suggest that HFS enhances the sensitivity to thermal C-fiber input in the area of secondary hyperalgesia. However, there was no significant enhancement of the magnitude of the C-fiber ERPs at T2, suggesting that quickly adapting C fibers do not contribute to this enhancement. Copyright © 2014 the American Physiological Society.

  9. Effects of hippocampal high-frequency electrical stimulation in memory formation and their association with amino acid tissue content and release in normal rats.

    Science.gov (United States)

    Luna-Munguía, Hiram; Meneses, Alfredo; Peña-Ortega, Fernando; Gaona, Andres; Rocha, Luisa

    2012-01-01

    Hippocampal high frequency electrical stimulation (HFS) at 130 Hz has been proposed as a therapeutical strategy to control neurological disorders such as intractable temporal lobe epilepsy (TLE). This study was carried out to determine the effects of hippocampal HFS on the memory process and the probable involvement of amino acids. Using the autoshaping task, we found that animals receiving hippocampal HFS showed augmented short-term, but not long-term memory formation, an effect blocked by bicuculline pretreatment and associated with enhanced tissue levels of amino acids in hippocampus. In addition, microdialysis experiments revealed high extracellular levels of glutamate, aspartate, glycine, taurine, and alanine during the application of hippocampal HFS. In contrast, GABA release augmented during HFS and remained elevated for more than 1 h after the stimulation was ended. HFS had minimal effects on glutamine release. The present results suggest that HFS has an activating effect on specific amino acids in normal hippocampus that may be involved in the enhanced short-term memory formation. These data further provide experimental support for the concept that hippocampus may be a promising target for focal stimulation to treat intractable seizures in humans. Copyright © 2010 Wiley Periodicals, Inc., Inc.

  10. Lean and Obese Zucker Rat Extensor Digitorum Longus Muscle high-frequency electrical stimulation (HFES Data: Regulation of p70S6kinase Associated Proteins

    Directory of Open Access Journals (Sweden)

    Kevin M. Rice

    2018-02-01

    Full Text Available Anaerobic exercise has been advocated as a prescribed treatment for the management of diabetes: however, alterations in exercise-induced signaling remain largely unexplored in the diabetic muscle. Here, we compare the basal and the in situ contraction-induced phosphorylation of the AKT, GSK3beta, mTor, p70s6K, Pten, and Shp2 in the lean and obese (fa/fa Zucker rat Extensor Digitorum Longus (EDL muscle following a single bout of contractile stimuli. This article represents data associated with prior publications from our lab (Katta et al., 2009a, 2009b; Tullgren et al., 1991 [1–3] and concurrent Data in Brief articles (Ginjupalli et al., 2017a, 2017b; Rice et al., 2017a, 2017b [4–7]. Keywords: Diabetes, Skeletal muscle, High-frequency electrical stimulation (HFES, Zucker rat, Extensor Digitorum Longus, p70s6k

  11. Evoked Electromyographically Controlled Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Hayashibe

    2016-07-01

    Full Text Available Time-variant muscle responses under electrical stimulation (ES are often problematic for all the applications of neuroprosthetic muscle control. This situation limits the range of ES usage in relevant areas, mainly due to muscle fatigue and also to changes in stimulation electrode contact conditions, especially in transcutaneous ES. Surface electrodes are still the most widely used in noninvasive applications.Electrical field variations caused by changes in the stimulation contact condition markedly affect the resulting total muscle activation levels. Fatigue phenomena under functional electrical stimulation (FES are also well known source of time-varying characteristics coming from muscle response under ES. Therefore it is essential to monitor the actual muscle state and assess the expected muscle response by ES so as to improve the current ES system in favour of adaptive muscle-response-aware FES control. To deal with this issue, we have been studying a novel control technique using evoked electromyography (eEMG signals to compensate for these muscle time-variances under ES for stable neuroprosthetic muscle control. In this perspective article, I overview the background of this topic and highlight important points to be aware of when using ES to induce the desired muscle activation regardless of the time-variance. I also demonstrate how to deal with the common critical problem of ES to move toward robust neuroprosthetic muscle control with the Evoked Electromyographically Controlled Electrical Stimulation paradigm.

  12. Electrical stimulation of mechanoreceptors

    International Nuclear Information System (INIS)

    Echenique, A M; Graffigna, J P

    2011-01-01

    Within the field of Rehabilitation Engineering, this work is aimed at identifying the optimal parameters of electric current stimulus which activate the nervous axons of mecanoreceptors found in the fingertip, allowing, this way, to resemble tactile senses. These sensorial feelings can be used by aiding technological means, namely, the sensorial substitution technology, in an attempt to render information to blind people through the tactile sense. The physical pressure on sensorial areas (fingertips) used for reading activities through the Braille System is the main effect that is imitated and studied in this research work. An experimental aiding prototype for Braille reading research has been developed and tested with blinds and reduced vision people, with highly satisfactory results.

  13. Electrical stimulation of mechanoreceptors

    Science.gov (United States)

    Echenique, A. M.; Graffigna, J. P.

    2011-12-01

    Within the field of Rehabilitation Engineering, this work is aimed at identifying the optimal parameters of electric current stimulus which activate the nervous axons of mecanoreceptors found in the fingertip, allowing, this way, to resemble tactile senses. These sensorial feelings can be used by aiding technological means, namely, the sensorial substitution technology, in an attempt to render information to blind people through the tactile sense. The physical pressure on sensorial areas (fingertips) used for reading activities through the Braille System is the main effect that is imitated and studied in this research work. An experimental aiding prototype for Braille reading research has been developed and tested with blinds and reduced vision people, with highly satisfactory results.

  14. Frequency shifts in stimulated Raman scattering

    International Nuclear Information System (INIS)

    Zinth, W.; Kaiser, W.

    1980-01-01

    The nonresonant contributions to the nonlinear susceptibility chisup(()3) produce a frequency chirp during stimulated Raman scattering. In the case of transient stimulated Raman scattering, the spectrum of the generated Stokes pulse is found at higher frequencies than expected from spontaneous Raman data. The frequency difference can be calculated from the theory of stimulated Raman scattering. (orig.)

  15. Optimal duration of ultra low frequency-transcutaneous electrical nerve stimulation (ULF-TENS) therapy for muscular relaxation in neuromuscular occlusion: A preliminary clinical study.

    Science.gov (United States)

    Esclassan, Rémi; Rumerio, Anaïs; Monsarrat, Paul; Combadazou, Jean Claude; Champion, Jean; Destruhaut, Florent; Ghrenassia, Christophe

    2017-05-01

    The primary aim of this work was to determine the duration of ultra-low-frequency transcutaneous electrical nerve stimulation (ULF-TENS) application necessary to achieve sufficient relaxation of the masticatory muscles. A secondary aim was to analyze the influence of stimulation on muscle relaxation in pathological subjects and determine whether ULF-TENS has a noteworthy impact on muscle relaxation. Sixteen adult subjects with temporomandibular disorders (TMD) and muscle pain and a group of four control subjects were included in this study. ULF-TENS was applied, and muscular activities of the masseter, temporal, and sternocleidomastoid muscles (SCM) were recorded for 60 min. Significant relaxation was achieved in the TMD group from 20, 40, and 60 min for the temporal, masseter, and SCM muscles (p TENS application would last 40 min to obtain sufficient muscle relaxation both in patients with masticatory system disorders and healthy subjects, a time constraint that is consistent with everyday clinical practice.

  16. Combined Electric and Acoustic Stimulation With Hearing Preservation: Effect of Cochlear Implant Low-Frequency Cutoff on Speech Understanding and Perceived Listening Difficulty.

    Science.gov (United States)

    Gifford, René H; Davis, Timothy J; Sunderhaus, Linsey W; Menapace, Christine; Buck, Barbara; Crosson, Jillian; O'Neill, Lori; Beiter, Anne; Segel, Phil

    The primary objective of this study was to assess the effect of electric and acoustic overlap for speech understanding in typical listening conditions using semidiffuse noise. This study used a within-subjects, repeated measures design including 11 experienced adult implant recipients (13 ears) with functional residual hearing in the implanted and nonimplanted ear. The aided acoustic bandwidth was fixed and the low-frequency cutoff for the cochlear implant (CI) was varied systematically. Assessments were completed in the R-SPACE sound-simulation system which includes a semidiffuse restaurant noise originating from eight loudspeakers placed circumferentially about the subject's head. AzBio sentences were presented at 67 dBA with signal to noise ratio varying between +10 and 0 dB determined individually to yield approximately 50 to 60% correct for the CI-alone condition with full CI bandwidth. Listening conditions for all subjects included CI alone, bimodal (CI + contralateral hearing aid), and bilateral-aided electric and acoustic stimulation (EAS; CI + bilateral hearing aid). Low-frequency cutoffs both below and above the original "clinical software recommendation" frequency were tested for all patients, in all conditions. Subjects estimated listening difficulty for all conditions using listener ratings based on a visual analog scale. Three primary findings were that (1) there was statistically significant benefit of preserved acoustic hearing in the implanted ear for most overlap conditions, (2) the default clinical software recommendation rarely yielded the highest level of speech recognition (1 of 13 ears), and (3) greater EAS overlap than that provided by the clinical recommendation yielded significant improvements in speech understanding. For standard-electrode CI recipients with preserved hearing, spectral overlap of acoustic and electric stimuli yielded significantly better speech understanding and less listening effort in a laboratory-based, restaurant

  17. A wireless wearable surface functional electrical stimulator

    Science.gov (United States)

    Wang, Hai-Peng; Guo, Ai-Wen; Zhou, Yu-Xuan; Xia, Yang; Huang, Jia; Xu, Chong-Yao; Huang, Zong-Hao; Lü, Xiao-Ying; Wang, Zhi-Gong

    2017-09-01

    In this paper, a wireless wearable functional electrical stimulator controlled by Android phone with real-time-varying stimulation parameters for multichannel surface functional electrical stimulation application has been developed. It can help post-stroke patients using more conveniently. This study focuses on the prototype design, including the specific wristband concept, circuits and stimulation pulse-generation algorithm. A novel stimulator circuit with a driving stage using a complementary current source technique is proposed to achieve a high-voltage compliance, a large output impedance and an accurate linear voltage-to-current conversion. The size of the prototype has been significantly decreased to 17 × 7.5 × 1 cm3. The performance of the prototype has been tested with a loaded resistor and wrist extension/flexion movement of three hemiplegic patients. According to the experiments, the stimulator can generate four-channel charge-balanced biphasic stimulation with a voltage amplitude up to 60 V, and the pulse frequency and width can be adjusted in real time with a range of 100-600 μs and 20-80 Hz, respectively.

  18. High frequency oscillations evoked by peripheral magnetic stimulation.

    Science.gov (United States)

    Biller, S; Simon, L; Fiedler, P; Strohmeier, D; Haueisen, J

    2011-01-01

    The analysis of somatosensory evoked potentials (SEP) and / or fields (SEF) is a well-established and important tool for investigating the functioning of the peripheral and central human nervous system. A standard technique to evoke SEPs / SEFs is the stimulation of the median nerve by using a bipolar electrical stimulus. We aim at an alternative stimulation technique enabling stimulation of deep nerve structures while reducing patient stress and error susceptibility. In the current study, we apply a commercial transcranial magnetic stimulation system for peripheral magnetic stimulation of the median nerve. We compare the results of simultaneously recorded EEG signals to prove applicability of our technique to evoke SEPs including low frequency components (LFC) as well as high frequency oscillations (HFO). Therefore, we compare amplitude, latency and time-frequency characteristics of the SEP of 14 healthy volunteers after electric and magnetic stimulation. Both low frequency components and high frequency oscillations were detected. The HFOs were superimposed onto the primary cortical response N20. Statistical analysis revealed significantly lower amplitudes and increased latencies for LFC and HFO components after magnetic stimulation. The differences indicate the inability of magnetic stimulation to elicit supramaximal responses. A psycho-perceptual evaluation showed that magnetic stimulation was less unpleasant for 12 out of the 14 volunteers. In conclusion, we showed that LFC and HFO components related to median nerve stimulation can be evoked by peripheral magnetic stimulation.

  19. The roles of interleukin-1 and RhoA signaling pathway in rat epilepsy model treated with low-frequency electrical stimulation.

    Science.gov (United States)

    Liu, Ai-Hua; Wu, Ya-Ting; Li, Li-Ping; Wang, Yu-Ping

    2018-03-01

    This study aims to explore the correlation between interleukin-1 (IL-1) and epilepsy in rats when treated with low-frequency electrical stimulation via the RhoA/ROCK signaling pathway. Twenty-four SD rats were elected for this study, among which six rats were assigned as the normal group. And 16 rat models with epilepsy were successfully established and assigned into the model group, the ES group and the ES + IL-8 group, with each group comprising of six rats. The seizure frequency and duration was recorded. Electroencephalogram (EEG) power was detected at α1, α2, β, θ, and δ. The mRNA expressions of IL-1β and IL-1R1 were detected using reverse transcription quantitative polymerase chain reaction (RT-qPCR), and the protein expressions of RhoA, ROCK I and ROCK II were detected by western blotting. In comparison with the model group, the seizure frequency duration, the power of δ, θ, α1, α2, and β, the mRNA and protein expressions of IL-1β and IL-1R1, the expressions of RhoA and ROCK I proteins, and the ratio of RhoA protein between membrane and cytosol decreased in the ES group, while the expression of ROCK II increased (all P  0.05). These findings signified that IL-1 might inhibit the efficacy of low-frequency ES for epilepsy via the RhoA/ROCK signaling pathway, which may provide a theoretical basis for clinical treatment of epilepsy. © 2017 Wiley Periodicals, Inc.

  20. Electrical stimulation and motor recovery.

    Science.gov (United States)

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical

  1. An investigation into the magnitude of the current window and perception of transcutaneous electrical nerve stimulation (TENS) sensation at various frequencies and body sites in healthy human participants.

    Science.gov (United States)

    Hughes, Nicola; Bennett, Michael I; Johnson, Mark I

    2013-02-01

    Strong nonpainful transcutaneous electrical nerve stimulation (TENS) is prerequisite to a successful analgesic outcome although the ease with which this sensation is achieved is likely to depend on the magnitude of current amplitude (mA) between sensory detection threshold (SDT) and pain threshold, that is, the current window. To measure the current window and participant's perception of the comfort of the TENS sensation at different body sites. A repeated measure cross-over study was conducted using 30 healthy adult volunteers. Current amplitudes (mA) of TENS [2 pulses per second (pps); 30 pps; 80 pps] at SDT, pain threshold, and strong nonpainful intensities were measured at the tibia (bone), knee joint (connective tissue), lower back [paraspinal (skeletal) muscle], volar surface of forearm (nerve) and waist (fat). The amplitude to achieve a strong nonpainful intensity was represented as a percentage of the current window. Data were analyzed using repeated measures analysis of variance. Effects were detected for body site and frequency for SDT (PTENS as a percentage of the current window (P=0.002, PTENS as most comfortable at the lower back (PTENS is most comfortable and easiest to titrate to a strong nonpainful intensity when applied over areas of muscle and soft tissue.

  2. Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields.

    Science.gov (United States)

    Grossman, Nir; Bono, David; Dedic, Nina; Kodandaramaiah, Suhasa B; Rudenko, Andrii; Suk, Ho-Jun; Cassara, Antonino M; Neufeld, Esra; Kuster, Niels; Tsai, Li-Huei; Pascual-Leone, Alvaro; Boyden, Edward S

    2017-06-01

    We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) concept via modeling and physics experiments, and verified that neurons in the living mouse brain could follow the electric field envelope. We demonstrate the utility of TI stimulation by stimulating neurons in the hippocampus of living mice without recruiting neurons of the overlying cortex. Finally, we show that by altering the currents delivered to a set of immobile electrodes, we can steerably evoke different motor patterns in living mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Effectiveness of fixed-site high-frequency transcutaneous electrical nerve stimulation in chronic pain: a large-scale, observational study

    Directory of Open Access Journals (Sweden)

    Kong X

    2018-04-01

    Full Text Available Xuan Kong, Shai N Gozani NeuroMetrix, Inc., Waltham, MA, USA Objective: The objective of this study was to assess the effectiveness of fixed-site high-frequency transcutaneous electrical nerve stimulation (FS-TENS in a real-world chronic pain sample. Background: There is a need for nonpharmacological treatment options for chronic pain. FS-TENS improved multisite chronic pain in a previous interventional study. Large observational studies are needed to further characterize its effectiveness. Methods: This retrospective observational cohort study examined changes in chronic pain measures following 60 days of FS-TENS use. The study data were obtained from FS-TENS users who uploaded their device utilization and clinical data to an online database. The primary outcome measures were changes in pain intensity and pain interference with sleep, activity, and mood on an 11-point numerical rating scale. Dose–response associations were evaluated by stratifying subjects into low (≤30 days, intermediate (31–56 days, and high (≥57 days utilization subgroups. FS-TENS effectiveness was quantified by baseline to follow-up group differences and a responder analysis (≥30% improvement in pain intensity or ≥2-point improvement in pain interference domains. Results: Utilization and clinical data were collected from 11,900 people using FS-TENS for chronic pain, with 713 device users meeting the inclusion and exclusion criteria. Study subjects were generally older, overweight adults. Subjects reported multisite pain with a mean of 4.8 (standard deviation [SD] 2.5 pain sites. A total of 97.2% of subjects identified low back and/or lower extremity pain, and 72.9% of subjects reported upper body pain. All pain measures exhibited statistically significant group differences from baseline to 60-day follow-up. The largest changes were pain interference with activity (−0.99±2.69 points and mood (−1.02±2.78 points. A total of 48.7% of subjects exhibited a

  4. Electrical stimulation of the midbrain excites the auditory cortex asymmetrically.

    Science.gov (United States)

    Quass, Gunnar Lennart; Kurt, Simone; Hildebrandt, Jannis; Kral, Andrej

    2018-05-17

    Auditory midbrain implant users cannot achieve open speech perception and have limited frequency resolution. It remains unclear whether the spread of excitation contributes to this issue and how much it can be compensated by current-focusing, which is an effective approach in cochlear implants. The present study examined the spread of excitation in the cortex elicited by electric midbrain stimulation. We further tested whether current-focusing via bipolar and tripolar stimulation is effective with electric midbrain stimulation and whether these modes hold any advantage over monopolar stimulation also in conditions when the stimulation electrodes are in direct contact with the target tissue. Using penetrating multielectrode arrays, we recorded cortical population responses to single pulse electric midbrain stimulation in 10 ketamine/xylazine anesthetized mice. We compared monopolar, bipolar, and tripolar stimulation configurations with regard to the spread of excitation and the characteristic frequency difference between the stimulation/recording electrodes. The cortical responses were distributed asymmetrically around the characteristic frequency of the stimulated midbrain region with a strong activation in regions tuned up to one octave higher. We found no significant differences between monopolar, bipolar, and tripolar stimulation in threshold, evoked firing rate, or dynamic range. The cortical responses to electric midbrain stimulation are biased towards higher tonotopic frequencies. Current-focusing is not effective in direct contact electrical stimulation. Electrode maps should account for the asymmetrical spread of excitation when fitting auditory midbrain implants by shifting the frequency-bands downward and stimulating as dorsally as possible. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Prolonged high frequency electrical stimulation is lethal to motor axons of mice heterozygously deficient for the myelin protein P0 gene

    DEFF Research Database (Denmark)

    Alvarez, Susana; Moldovan, Mihai; Krarup, Christian

    2013-01-01

    demyelinating neuropathy reminiscent of CMT Type 1b. Accumulating evidence suggests that impulse conduction can become lethal to acutely demyelinated central and peripheral axons. Here we investigated the vulnerability of motor axons to long-lasting, high-frequency repetitive stimulation (RS) in P₀+/- mice...... as compared to WT littermates at 7, 12, and 20 months of age. RS was carried out in interrupted trains of 200 Hz trains for 3h. Tibial nerves were stimulated at the ankle while the evoked compound muscle action potentials (CMAPs) and the ascending compound nerve action potentials (CNAPs) were recorded from...... aging and the dysmyelinating disease process may contribute to the susceptibility to activity-induced axonal degeneration. It is possible that in aging mice and in P₀+/- there is inadequate energy-dependent Na(+)/K(+) pumping, as indicated by the reduced post-stimulation hyperpolarization, which may...

  6. Braille line using electrical stimulation

    International Nuclear Information System (INIS)

    Puertas, A; Pures, P; Echenique, A M; Ensinck, J P Graffigna y G

    2007-01-01

    Conceived within the field of Rehabilitation Technologies for visually impaired persons, the present work aims at enabling the blind user to read written material by means of a tactile display. Once he is familiarized to operate this system, the user will be able to achieve greater performance in study, academic and job activities, thus achieving a rapid and easier social inclusion. The devise accepts any kind of text that is computer-loadable (documents, books, Internet information, and the like) which, through digital means, can be read as Braille text on the pad. This tactile display is composed of an electrodes platform that simulate, through stimulation the writing/reading Braille characters. In order to perceive said characters in similar way to the tactile feeling from paper material, the skin receptor of fingers are stimulated electrically so as to simulate the same pressure and depressions as those of the paper-based counterpart information. Once designed and developed, the display was tested with blind subjects, with relatively satisfactory results. As a continuing project, this prototype is currently being improved as regards

  7. Braille line using electrical stimulation

    Science.gov (United States)

    Puertas, A.; Purés, P.; Echenique, A. M.; Ensinck, J. P. Graffigna y. G.

    2007-11-01

    Conceived within the field of Rehabilitation Technologies for visually impaired persons, the present work aims at enabling the blind user to read written material by means of a tactile display. Once he is familiarized to operate this system, the user will be able to achieve greater performance in study, academic and job activities, thus achieving a rapid and easier social inclusion. The devise accepts any kind of text that is computer-loadable (documents, books, Internet information, and the like) which, through digital means, can be read as Braille text on the pad. This tactile display is composed of an electrodes platform that simulate, through stimulation the writing/reading Braille characters. In order to perceive said characters in similar way to the tactile feeling from paper material, the skin receptor of fingers are stimulated electrically so as to simulate the same pressure and depressions as those of the paper-based counterpart information. Once designed and developed, the display was tested with blind subjects, with relatively satisfactory results. As a continuing project, this prototype is currently being improved as regards.

  8. Braille line using electrical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Puertas, A; Pures, P; Echenique, A M; Ensinck, J P Graffigna y G [Gabinete de TecnologIa Medica. Universidad N. de San Juan (Argentina)

    2007-11-15

    Conceived within the field of Rehabilitation Technologies for visually impaired persons, the present work aims at enabling the blind user to read written material by means of a tactile display. Once he is familiarized to operate this system, the user will be able to achieve greater performance in study, academic and job activities, thus achieving a rapid and easier social inclusion. The devise accepts any kind of text that is computer-loadable (documents, books, Internet information, and the like) which, through digital means, can be read as Braille text on the pad. This tactile display is composed of an electrodes platform that simulate, through stimulation the writing/reading Braille characters. In order to perceive said characters in similar way to the tactile feeling from paper material, the skin receptor of fingers are stimulated electrically so as to simulate the same pressure and depressions as those of the paper-based counterpart information. Once designed and developed, the display was tested with blind subjects, with relatively satisfactory results. As a continuing project, this prototype is currently being improved as regards.

  9. Effectiveness of fixed-site high-frequency transcutaneous electrical nerve stimulation in chronic pain: a large-scale, observational study

    Science.gov (United States)

    Kong, Xuan; Gozani, Shai N

    2018-01-01

    Objective The objective of this study was to assess the effectiveness of fixed-site high-frequency transcutaneous electrical nerve stimulation (FS-TENS) in a real-world chronic pain sample. Background There is a need for nonpharmacological treatment options for chronic pain. FS-TENS improved multisite chronic pain in a previous interventional study. Large observational studies are needed to further characterize its effectiveness. Methods This retrospective observational cohort study examined changes in chronic pain measures following 60 days of FS-TENS use. The study data were obtained from FS-TENS users who uploaded their device utilization and clinical data to an online database. The primary outcome measures were changes in pain intensity and pain interference with sleep, activity, and mood on an 11-point numerical rating scale. Dose–response associations were evaluated by stratifying subjects into low (≤30 days), intermediate (31–56 days), and high (≥57 days) utilization subgroups. FS-TENS effectiveness was quantified by baseline to follow-up group differences and a responder analysis (≥30% improvement in pain intensity or ≥2-point improvement in pain interference domains). Results Utilization and clinical data were collected from 11,900 people using FS-TENS for chronic pain, with 713 device users meeting the inclusion and exclusion criteria. Study subjects were generally older, overweight adults. Subjects reported multisite pain with a mean of 4.8 (standard deviation [SD] 2.5) pain sites. A total of 97.2% of subjects identified low back and/or lower extremity pain, and 72.9% of subjects reported upper body pain. All pain measures exhibited statistically significant group differences from baseline to 60-day follow-up. The largest changes were pain interference with activity (−0.99±2.69 points) and mood (−1.02±2.78 points). A total of 48.7% of subjects exhibited a clinically meaningful reduction in pain interference with activity or mood. This

  10. Effect of Electrical Current Stimulation on Pseudomonas Aeruginosa Growth

    Science.gov (United States)

    Alneami, Auns Q.; Khalil, Eman G.; Mohsien, Rana A.; Albeldawi, Ali F.

    2018-05-01

    The present study evaluates the effect of electrical current with different frequencies stimulation to kill pathogenic Pseudomonas aeruginosa (PA) bacteria in vitro using human safe level of electricity controlled by function generator. A wide range of frequencies has been used from 0.5 Hz-1.2 MHz to stimulate the bacteria at a voltage of 20 p-p volt for different periods of time (5 to 30) minutes. The culture of bacteria used Nickel, Nichrome, or Titanium electrode using agarose in phosphate buffer saline (PBS) and mixed with bacterial stock activated by trypticase soy broth (TSB). The results of frequencies between 0.5-1 KHz show the inhibition zone diameter of 20 mm in average at 30 minutes of stimulation. At frequencies between 3-60 KHz the inhibition zone diameter was only 10mm for 30 minutes of stimulation. While the average of inhibition zone diameter increased to more than 30mm for 30 minutes of stimulation at frequencies between 80-120 KHz. From this study we conclude that at specific frequency (resonance frequency) (frequencies between 0.5-1 KHz) there was relatively large inhibition zone because the inductive reactance effect is equal to the value of capacitive reactance effect (XC = XL). At frequencies over than 60 KHz, maximum inhibition zone noticed because the capacitance impedance becomes negligible (only the small resistivity of the bacterial internal organs).

  11. Deep Brain Electrical Stimulation in Epilepsy

    Science.gov (United States)

    Rocha, Luisa L.

    2008-11-01

    The deep brain electrical stimulation has been used for the treatment of neurological disorders such as Parkinson's disease, chronic pain, depression and epilepsy. Studies carried out in human brain indicate that the application of high frequency electrical stimulation (HFS) at 130 Hz in limbic structures of patients with intractable temporal lobe epilepsy abolished clinical seizures and significantly decreased the number of interictal spikes at focus. The anticonvulsant effects of HFS seem to be more effective in patients with less severe epilepsy, an effect associated with a high GABA tissue content and a low rate of cell loss. In addition, experiments using models of epilepsy indicate that HFS (pulses of 60 μs width at 130 Hz at subthreshold current intensity) of specific brain areas avoids the acquisition of generalized seizures and enhances the postictal seizure suppression. HFS is also able to modify the status epilepticus. It is concluded that the effects of HFS may be a good strategy to reduce or avoid the epileptic activity.

  12. Transcranial electrical stimulation accelerates human sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Davide Reato

    Full Text Available The sleeping brain exhibits characteristic slow-wave activity which decays over the course of the night. This decay is thought to result from homeostatic synaptic downscaling. Transcranial electrical stimulation can entrain slow-wave oscillations (SWO in the human electro-encephalogram (EEG. A computational model of the underlying mechanism predicts that firing rates are predominantly increased during stimulation. Assuming that synaptic homeostasis is driven by average firing rates, we expected an acceleration of synaptic downscaling during stimulation, which is compensated by a reduced drive after stimulation. We show that 25 minutes of transcranial electrical stimulation, as predicted, reduced the decay of SWO in the remainder of the night. Anatomically accurate simulations of the field intensities on human cortex precisely matched the effect size in different EEG electrodes. Together these results suggest a mechanistic link between electrical stimulation and accelerated synaptic homeostasis in human sleep.

  13. Higher-order power harmonics of pulsed electrical stimulation modulates corticospinal contribution of peripheral nerve stimulation.

    Science.gov (United States)

    Chen, Chiun-Fan; Bikson, Marom; Chou, Li-Wei; Shan, Chunlei; Khadka, Niranjan; Chen, Wen-Shiang; Fregni, Felipe

    2017-03-03

    It is well established that electrical-stimulation frequency is crucial to determining the scale of induced neuromodulation, particularly when attempting to modulate corticospinal excitability. However, the modulatory effects of stimulation frequency are not only determined by its absolute value but also by other parameters such as power at harmonics. The stimulus pulse shape further influences parameters such as excitation threshold and fiber selectivity. The explicit role of the power in these harmonics in determining the outcome of stimulation has not previously been analyzed. In this study, we adopted an animal model of peripheral electrical stimulation that includes an amplitude-adapted pulse train which induces force enhancements with a corticospinal contribution. We report that the electrical-stimulation-induced force enhancements were correlated with the amplitude of stimulation power harmonics during the amplitude-adapted pulse train. In an exploratory analysis, different levels of correlation were observed between force enhancement and power harmonics of 20-80 Hz (r = 0.4247, p = 0.0243), 100-180 Hz (r = 0.5894, p = 0.0001), 200-280 Hz (r = 0.7002, p harmonics. This is a pilot, but important first demonstration that power at high order harmonics in the frequency spectrum of electrical stimulation pulses may contribute to neuromodulation, thus warrant explicit attention in therapy design and analysis.

  14. Neural adaptations to electrical stimulation strength training

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Maffiuletti, Nicola A.

    2011-01-01

    This review provides evidence for the hypothesis that electrostimulation strength training (EST) increases the force of a maximal voluntary contraction (MVC) through neural adaptations in healthy skeletal muscle. Although electrical stimulation and voluntary effort activate muscle differently, there

  15. [Functional electric stimulation (FES) in cerebral palsy].

    Science.gov (United States)

    Miyazaki, M H; Lourenção, M I; Ribeiro Sobrinho, J B; Battistella, L R

    1992-01-01

    Our study concerns a patient with cerebral palsy, submitted to conventional occupational therapy and functional electrical stimulation. The results as to manual ability, spasticity, sensibility and synkinesis were satisfactory.

  16. Effects of Electrical and Optogenetic Deep Brain Stimulation on Synchronized Oscillatory Activity in Parkinsonian Basal Ganglia.

    Science.gov (United States)

    Ratnadurai-Giridharan, Shivakeshavan; Cheung, Chung C; Rubchinsky, Leonid L

    2017-11-01

    Conventional deep brain stimulation of basal ganglia uses high-frequency regular electrical pulses to treat Parkinsonian motor symptoms but has a series of limitations. Relatively new and not yet clinically tested, optogenetic stimulation is an effective experimental stimulation technique to affect pathological network dynamics. We compared the effects of electrical and optogenetic stimulation of the basal gangliaon the pathologicalParkinsonian rhythmic neural activity. We studied the network response to electrical stimulation and excitatory and inhibitory optogenetic stimulations. Different stimulations exhibit different interactions with pathological activity in the network. We studied these interactions for different network and stimulation parameter values. Optogenetic stimulation was found to be more efficient than electrical stimulation in suppressing pathological rhythmicity. Our findings indicate that optogenetic control of neural synchrony may be more efficacious than electrical control because of the different ways of how stimulations interact with network dynamics.

  17. Gastric applications of electrical field stimulation.

    LENUS (Irish Health Repository)

    Hogan, Aisling M

    2012-02-01

    Advances in clinical applications of electricity have been vast since the launch of Hayman\\'s first cardiac pacemaker more than 70 years ago. Gastric electrical stimulation devices have been recently licensed for treatment of gastroparesis and preliminary studies examining their potential for use in refractory obesity yield promising results.

  18. Adjunct High Frequency Transcutaneous Electric Stimulation (TENS) for Postoperative Pain Management during Weaning from Epidural Analgesia Following Colon Surgery: Results from a Controlled Pilot Study.

    Science.gov (United States)

    Bjerså, Kristofer; Jildenstaal, Pether; Jakobsson, Jan; Egardt, Madelene; Fagevik Olsén, Monika

    2015-12-01

    The potential benefit of nonpharmacological adjunctive therapy is not well-studied following major abdominal surgery. The aim of the present study was to investigate transcutaneous electrical nerve stimulation (TENS) as a complementary nonpharmacological analgesia intervention during weaning from epidural analgesia (EDA) after open lower abdominal surgery. Patients were randomized to TENS and sham TENS during weaning from EDA. The effects on pain at rest, following short walk, and after deep breath were assessed by visual analog scale (VAS) grading. Number of patients assessed was lower than calculated because of change in clinical routine. Pain scores overall were low. A trend of lower pain scores was observed in the active TENS group of patients; a statistical significance between the groups was found for the pain lying prone in bed (p TENS use in postoperative pain management during weaning from EDA after open colon surgery. Further studies are warranted in order to verify the potential beneficial effects from TENS during weaning from EDA after open, lower abdominal surgery. Copyright © 2015 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  19. Binaural hearing with electrical stimulation.

    Science.gov (United States)

    Kan, Alan; Litovsky, Ruth Y

    2015-04-01

    Bilateral cochlear implantation is becoming a standard of care in many clinics. While much benefit has been shown through bilateral implantation, patients who have bilateral cochlear implants (CIs) still do not perform as well as normal hearing listeners in sound localization and understanding speech in noisy environments. This difference in performance can arise from a number of different factors, including the areas of hardware and engineering, surgical precision and pathology of the auditory system in deaf persons. While surgical precision and individual pathology are factors that are beyond careful control, improvements can be made in the areas of clinical practice and the engineering of binaural speech processors. These improvements should be grounded in a good understanding of the sensitivities of bilateral CI patients to the acoustic binaural cues that are important to normal hearing listeners for sound localization and speech in noise understanding. To this end, we review the current state-of-the-art in the understanding of the sensitivities of bilateral CI patients to binaural cues in electric hearing, and highlight the important issues and challenges as they relate to clinical practice and the development of new binaural processing strategies. This article is part of a Special Issue entitled . Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Binaural hearing with electrical stimulation

    Science.gov (United States)

    Kan, Alan; Litovsky, Ruth Y.

    2014-01-01

    Bilateral cochlear implantation is becoming a standard of care in many clinics. While much benefit has been shown through bilateral implantation, patients who have bilateral cochlear implants (CIs) still do not perform as well as normal hearing listeners in sound localization and understanding speech in noisy environments. This difference in performance can arise from a number of different factors, including the areas of hardware and engineering, surgical precision and pathology of the auditory system in deaf persons. While surgical precision and individual pathology are factors that are beyond careful control, improvements can be made in the areas of clinical practice and the engineering of binaural speech processors. These improvements should be grounded in a good understanding of the sensitivities of bilateral CI patients to the acoustic binaural cues that are important to normal hearing listeners for sound localization and speech in noise understanding. To this end, we review the current state-of-the-art in the understanding of the sensitivities of bilateral CI patients to binaural cues in electric hearing, and highlight the important issues and challenges as they relate to clinical practice and the development of new binaural processing strategies. PMID:25193553

  1. Electrical stimulation induces propagated colonic contractions in an experimental model.

    Science.gov (United States)

    Aellen, S; Wiesel, P H; Gardaz, J-P; Schlageter, V; Bertschi, M; Virag, N; Givel, J-C

    2009-02-01

    Direct colonic electrical stimulation may prove to be a treatment option for specific motility disorders such as chronic constipation. The aim of this study was to provoke colonic contractions using electrical stimulation delivered from a battery-operated device. Electrodes were inserted into the caecal seromuscular layer of eight anaesthetized pigs. Contractions were induced by a neurostimulator (Medtronic 3625). Caecal motility was measured simultaneously by video image analysis, manometry and a technique assessing colonic transit. Caecal contractions were generated using 8-10 V amplitude, 1000 micros pulse width, 120 Hz frequency for 10-30 s, with an intensity of 7-15 mA. The maximal contraction strength was observed after 20-25 s. Electrical stimulation was followed by a relaxation phase of 1.5-2 min during which contractions propagated orally and aborally over at least 10 cm. Spontaneous and stimulated caecal motility values were significantly different for both intraluminal pressure (mean(s.d.) 332(124) and 463(187) mmHg respectively; P < 0.001, 42 experiments) and movement of contents (1.6(0.9) and 3.9(2.8) mm; P < 0.001, 40 experiments). Electrical stimulation modulated caecal motility, and provoked localized and propagated colonic contractions.

  2. Anal sphincter responses after perianal electrical stimulation

    DEFF Research Database (Denmark)

    Pedersen, Ejnar; Klemar, B; Schrøder, H D

    1982-01-01

    By perianal electrical stimulation and EMG recording from the external anal sphincter three responses were found with latencies of 2-8, 13-18 and 30-60 ms, respectively. The two first responses were recorded in most cases. They were characterised by constant latency and uniform pattern, were...... not fatigued by repeated stimulation, were most dependent on placement of stimulating and recording electrodes, and always had a higher threshold than the third response. The third response was constantly present in normal subjects. It had the longest EMG response and the latency decreased with increasing...... stimulation to a minimum of 30-60 ms. This response represented the clinical observable spinal reflex, "the classical anal reflex". The latencies of the two first responses were so short that they probably do not represent spinal reflexes. This was further supported by the effect of epidural anaesthesia which...

  3. Metallic taste from electrical and chemical stimulation.

    Science.gov (United States)

    Lawless, Harry T; Stevens, David A; Chapman, Kathryn W; Kurtz, Anne

    2005-03-01

    A series of three experiments investigated the nature of metallic taste reports after stimulation with solutions of metal salts and after stimulation with metals and electric currents. To stimulate with electricity, a device was fabricated consisting of a small battery affixed to a plastic handle with the anode side exposed for placement on the tongue or oral tissues. Intensity of taste from metals and batteries was dependent upon the voltage and was more robust in areas dense in fungiform papillae. Metallic taste was reported from stimulation with ferrous sulfate solutions, from metals and from electric stimuli. However, reports of metallic taste were more frequent when the word 'metallic' was presented embedded in a list of choices, as opposed to simple free-choice labeling. Intensity decreased for ferrous sulfate when the nose was occluded, consistent with a decrease in retronasal smell, as previously reported. Intensity of taste evoked by copper metal, bimetallic stimuli (zinc/copper) or small batteries (1.5-3 V) was not affected by nasal occlusion. This difference suggests two distinct mechanisms for evocation of metallic taste reports, one dependent upon retronasal smell and a second mediated by oral chemoreceptors.

  4. Electrical stimulation of transplanted motoneurons improves motor unit formation

    Science.gov (United States)

    Liu, Yang; Grumbles, Robert M.

    2014-01-01

    Motoneurons die following spinal cord trauma and with neurological disease. Intact axons reinnervate nearby muscle fibers to compensate for the death of motoneurons, but when an entire motoneuron pool dies, there is complete denervation. To reduce denervation atrophy, we have reinnervated muscles in Fisher rats from local transplants of embryonic motoneurons in peripheral nerve. Since growth of axons from embryonic neurons is activity dependent, our aim was to test whether brief electrical stimulation of the neurons immediately after transplantation altered motor unit numbers and muscle properties 10 wk later. All surgical procedures and recordings were done in anesthetized animals. The muscle consequences of motoneuron death were mimicked by unilateral sciatic nerve section. One week later, 200,000 embryonic day 14 and 15 ventral spinal cord cells, purified for motoneurons, were injected into the tibial nerve 10–15 mm from the gastrocnemii muscles as the only neuron source for muscle reinnervation. The cells were stimulated immediately after transplantation for up to 1 h using protocols designed to examine differential effects due to pulse number, stimulation frequency, pattern, and duration. Electrical stimulation that included short rests and lasted for 1 h resulted in higher motor unit counts. Muscles with higher motor unit counts had more reinnervated fibers and were stronger. Denervated muscles had to be stimulated directly to evoke contractions. These results show that brief electrical stimulation of embryonic neurons, in vivo, has long-term effects on motor unit formation and muscle force. This muscle reinnervation provides the opportunity to use patterned electrical stimulation to produce functional movements. PMID:24848463

  5. Evaluation of the noradrenergic pathway and alpha-2 and beta-receptors in the modulation of the analgesia induced by transcutaneous electric nerve stimulation of high and low frequencies

    OpenAIRE

    Vasconcellos, Thiago Henrique Ferreira; Pantaleão, Patricia de Fátima; Teixeira, Dulcinéa Gonçalves; Santos, Ana Paula; Ferreira, Célio Marcos dos Reis

    2014-01-01

    Transcutaneous electric nerve stimulation is a noninvasive method used in clinical Physiotherapy to control acute or chronic pain. Different theories have been proposed to explain the mechanism of the analgesic action of transcutaneous electric nerve stimulation, as the participation of central and peripheral neurotransmitters. The aim of this study was to evaluate the involvement of noradrenergic pathway and of the receptors alfa-2 and beta in the modulation of analgesia produced by transcut...

  6. Electrical stimulation in dysphagia treatment: a justified controversy?

    NARCIS (Netherlands)

    Bogaardt, H. C. A.

    2008-01-01

    Electrical stimulation in dysphagia treatment: a justified controversy? Neuromuscular electrostimulation (LAMES) is a method for stimulating muscles with short electrical pulses. Neuromuscular electrostimulation is frequently used in physiotherapy to strengthen healthy muscles (as in sports

  7. Electrical stimulation vs thermal effects in a complex electromagnetic environment.

    Science.gov (United States)

    Paniagua, Jesús M; Rufo, Montaña; Jiménez, Antonio; Antolín, Alicia; Sánchez, Miguel

    2009-08-01

    Studies linking exposure to low levels of radiofrequencies with adverse health effects, notwithstanding their present apparent inconsistency, have contributed to a steady improvement in the quality of evaluating that exposure. In complex electromagnetic environments, with a multitude of emissions of different frequencies acting simultaneously, knowledge of the spectral content is fundamental to evaluating human exposure to non-ionizing radiation. In the present work, we quantify the most significant spectral components in the frequency band 0.5-2200 MHz in an urban area. The measurements were made with a spectrum analyzer and monopole, biconical, and log-periodic antennas. Power density levels were calculated separately for the medium wave, short wave, and frequency modulation radio broadcasting bands, and for the television and GSM, DCS, and UMTS mobile telephony bands. The measured levels were compared with the ICNIRP reference levels for exposure to multiple frequency sources for thermal effects and electrical stimulation. The results showed the criterion limiting exposure on the basis of preventing electrical stimulation of peripheral nerves and muscles to be stricter (exposure quotient 24.7 10(-4)) than that based on thermal considerations (exposure quotient 0.16 10(-4)). The bands that contribute most to the latter are short wave, with 46.2%, and mobile telephony with 32.6% of the total exposure. In a complex electromagnetic environment, knowledge of the radiofrequency spectrum is essential in order to quantify the contribution of each type of emission to the public's exposure. It is also necessary to evaluate the electrical effects as well as the thermal effects because the criterion to limit exposure on the basis of the effect of the electrical stimulation of tissues is stricter than that based on thermal effects.

  8. Electrical stimulation vs thermal effects in a complex electromagnetic environment

    International Nuclear Information System (INIS)

    Paniagua, Jesus M.; Rufo, Montana; Jimenez, Antonio; Antolin, Alicia; Sanchez, Miguel

    2009-01-01

    Studies linking exposure to low levels of radiofrequencies with adverse health effects, notwithstanding their present apparent inconsistency, have contributed to a steady improvement in the quality of evaluating that exposure. In complex electromagnetic environments, with a multitude of emissions of different frequencies acting simultaneously, knowledge of the spectral content is fundamental to evaluating human exposure to non-ionizing radiation. In the present work, we quantify the most significant spectral components in the frequency band 0.5-2200 MHz in an urban area. The measurements were made with a spectrum analyzer and monopole, biconical, and log-periodic antennas. Power density levels were calculated separately for the medium wave, short wave, and frequency modulation radio broadcasting bands, and for the television and GSM, DCS, and UMTS mobile telephony bands. The measured levels were compared with the ICNIRP reference levels for exposure to multiple frequency sources for thermal effects and electrical stimulation. The results showed the criterion limiting exposure on the basis of preventing electrical stimulation of peripheral nerves and muscles to be stricter (exposure quotient 24.7 10 -4 ) than that based on thermal considerations (exposure quotient 0.16 10 -4 ). The bands that contribute most to the latter are short wave, with 46.2%, and mobile telephony with 32.6% of the total exposure. In a complex electromagnetic environment, knowledge of the radiofrequency spectrum is essential in order to quantify the contribution of each type of emission to the public's exposure. It is also necessary to evaluate the electrical effects as well as the thermal effects because the criterion to limit exposure on the basis of the effect of the electrical stimulation of tissues is stricter than that based on thermal effects.

  9. Medical back belt with integrated neuromuscular electrical stimulation

    NARCIS (Netherlands)

    Bottenberg, E. (Eliza); Brinks, G.J. (Ger); Hesse, J. (Jenny)

    2014-01-01

    The medical back belt with integrated neuromuscular electrical stimulation is anorthopedic device, which has two main functions. The first function is to stimulate the backmuscles by using a neuromuscular electrical stimulation device that releases regular,electrical impulses. The second function of

  10. Functional Electrical Stimulation in Children and Adolescents with Cerebral Palsy

    Science.gov (United States)

    van der Linden, Marietta

    2012-01-01

    In this article, the author talks about functional electrical stimulation in children and adolescents with cerebral palsy. Functional electrical stimulation (FES) is defined as the electrical stimulation of muscles that have impaired motor control, in order to produce a contraction to obtain functionally useful movement. It was first proposed in…

  11. Effect of electrical stimulation on consumer acceptance of mutton ...

    African Journals Online (AJOL)

    MarianaD

    -voltage electrical stimulation, HVES – high-voltage electrical stimulation, ... Electrical stimulation varied between 21 V – 1100 V. The drop in pH was significantly faster in the .... Table 2 Gender and age distribution of consumer panel (n=229).

  12. Electrical stimulation superimposed onto voluntary muscular contraction.

    Science.gov (United States)

    Paillard, Thierry; Noé, Frédéric; Passelergue, Philippe; Dupui, Philippe

    2005-01-01

    Electrical stimulation (ES) reverses the order of recruitment of motor units (MU) observed with voluntary muscular contraction (VOL) since under ES, large MU are recruited before small MU. The superimposition of ES onto VOL (superimposed technique: application of an electrical stimulus during a voluntary muscle action) can theoretically activate more motor units than VOL performed alone, which can engender an increase of the contraction force. Two superimposed techniques can be used: (i) the twitch interpolation technique (ITT), which consists of interjecting an electrical stimulus onto the muscle nerve; and (ii) the percutaneous superimposed electrical stimulation technique (PST), where the stimulation is applied to the muscle belly. These two superimposed techniques can be used to evaluate the ability to fully activate a muscle. They can thus be employed to distinguish the central or peripheral nature of fatigue after exhausting exercise. In general, whatever the technique employed, the superimposition of ES onto volitional exercise does not recruit more MU than VOL, except with eccentric actions. Nevertheless, the neuromuscular response associated with the use of the superimposed technique (ITT and PST) depends on the parameter of the superimposed current. The sex and the training level of the subjects can also modify the physiological impact of the superimposed technique. Although the motor control differs drastically between training with ES and VOL, the integration of the superimposed technique in training programmes with healthy subjects does not reveal significant benefits compared with programmes performed only with voluntary exercises. Nevertheless, in a therapeutic context, training programmes using ES superimposition compensate volume and muscle strength deficit with more efficiency than programmes using VOL or ES separately.

  13. Electrical stimulation in treatment of pharyngolaryngeal dysfunctions.

    Science.gov (United States)

    Miller, Simone; Jungheim, Michael; Kühn, Daniela; Ptok, Martin

    2013-01-01

    Neuromuscular electrical stimulation (NMES) has been proposed in the treatment of laryngopharyngeal dysfunctions (dysphonia, dyspnoea, dysphagia) for more than 40 years. Several studies have investigated possible therapeutic effects. Some researchers described favourable results, whereas others did not find relevant benefits. This article aims to review available studies to give an overview regarding the current state of knowledge. We conducted a selective literature search using PubMed. In total, 356 papers were identified: 6 case reports, 11 reviews, 43 prospective clinical trials and 3 retrospective trials were found. Due to different stimulation protocols, electrode positioning and various underlying pathological conditions, summarizing the present studies appears to be difficult. However, there is evidence that NMES is a valuable adjunct in patients with dysphagia and in patients with vocal fold paresis. Nevertheless, more empirical data is needed to fully understand the benefits provided by NMES. Further research suggestions are put forward. © 2013 S. Karger AG, Basel.

  14. Low and High Frequency Hippocampal Stimulation for Drug-Resistant Mesial Temporal Lobe Epilepsy.

    Science.gov (United States)

    Lim, Siew-Na; Lee, Ching-Yi; Lee, Shih-Tseng; Tu, Po-Hsun; Chang, Bao-Luen; Lee, Chih-Hong; Cheng, Mei-Yun; Chang, Chun-Wei; Tseng, Wei-En Johnny; Hsieh, Hsiang-Yao; Chiang, Hsing-I; Wu, Tony

    2016-06-01

    Electrical stimulation of the hippocampus offers the possibility to treat patients with mesial temporal lobe epilepsy (MTLE) who are not surgical candidates. We report long-term follow-up results in five patients receiving low or high frequency hippocampal stimulation for drug-resistant MTLE. The patients underwent stereotactic implantation of quadripolar stimulating electrodes in the hippocampus. Two of the patients received unilateral electrode implantation, while the other three received bilateral implantation. Stimulation of the hippocampal electrodes was turned ON immediately after the implantation of an implantable pulse generator, with initial stimulation parameters: 1 V, 90-150 μs, 5 or 145 Hz. The frequency of seizures was monitored and compared with preimplantation baseline data. Two men and three women, aged 27-61 years were studied, with a mean follow-up period of 38.4 months (range, 30-42 months). The baseline seizure frequency was 2.0-15.3/month. The five patients had an average 45% (range 22-72%) reduction in the frequency of seizures after hippocampal stimulation over the study period. Low frequency hippocampal stimulation decreased the frequency of seizures in two patients (by 54% and 72%, respectively). No implantation- or stimulation-related side effects were reported. Electrical stimulation of the hippocampus is a minimally invasive and reversible method that can improve seizure outcomes in patients with drug-resistant MTLE. The optimal frequency of stimulation varied from patient to patient and therefore required individual setting. These experimental results warrant further controlled studies with a large patient population to evaluate the long-term effect of hippocampal stimulation with different stimulation parameters. © 2016 The Authors. Neuromodulation: Technology at the Neural Interface published by Wiley Periodicals, Inc. on behalf of International Neuromodulation Society.

  15. Psychophysical Evaluation of Subdermal Electrical Stimulation in Relation to Prosthesis Sensory Feedback.

    Science.gov (United States)

    Geng, Bo; Dong, Jian; Jensen, Winnie; Dosen, Strahinja; Farina, Dario; Kamavuako, Ernest Nlandu

    2018-03-01

    This paper evaluated the psychophysical properties of subdermal electrical stimulation to investigate its feasibility in providing sensory feedback for limb prostheses. The detection threshold (DT), pain threshold (PT), just noticeable difference (JND), as well as the elicited sensation quality, comfort, intensity, and location were assessed in 16 healthy volunteers during stimulation of the ventral and dorsal forearm with subdermal electrodes. Moreover, the results were compared with those obtained from transcutaneous electrical stimulation. Despite a lower DT and PT, subdermal stimulation attained a greater relative dynamic range (i.e., PT/DT) and significantly smaller JNDs for stimulation amplitude. Muscle twitches and movements were more commonly elicited by surface stimulation, especially at the higher stimulation frequencies, whereas the pinprick sensation was more often reported with subdermal stimulation. Less comfort was perceived in subdermal stimulation of the ventral forearm at the highest tested stimulation frequency of 100 Hz. In summary, subdermal electrical stimulation was demonstrated to be able to produce similar sensation quality as transcutaneous stimulation and outperformed the latter in terms of energy efficiency and sensitivity. These results suggest that stimulation through implantable subdermal electrodes may lead to an efficient and compact sensory feedback system for substituting the lost sense in amputees.

  16. The Effect of Electrical Stimulation in Improving Muscle Tone (Clinical)

    Science.gov (United States)

    Azman, M. F.; Azman, A. W.

    2017-11-01

    Electrical stimulation (ES) and also known as neuromuscular electrical stimulation (NMES) and transcutaneous electrical stimulation (TES) involves the use of electrical current to stimulate the nerves or nerve endings that innervate muscle beneath the skin. Electrical stimulation may be applied superficially on the skin (transcutaneously) or directly into a muscle or muscles (intramuscularly) for the primary purpose of enhancing muscle function. The basic theoretical premise is that if the peripheral nerve can be stimulated, the resulting excitation impulse will be transmitted along the nerve to the motor endplates in the muscle, producing a muscle contraction. In this work, the effect of mere electrical stimulation to the muscle bulk and strength are tested. This paper explains how electrical stimulation can affect the muscle bulk, muscle size, muscle tone, muscle atrophy and muscle strength. The experiment and data collection are performed on 5 subjects and the results obtained are analyzed. This research aims to understand the full potential of electrical stimulation and identifying its possible benefits or disadvantages to the muscle properties. The results indicated that electrical stimulation alone able to improve muscle properties but with certain limits and precautions which might be useful in rehabilitation programme.

  17. Immediate effect of laryngeal surface electrical stimulation on swallowing performance.

    Science.gov (United States)

    Takahashi, Keizo; Hori, Kazuhiro; Hayashi, Hirokazu; Fujiu-Kurachi, Masako; Ono, Takahiro; Tsujimura, Takanori; Magara, Jin; Inoue, Makoto

    2018-01-01

    Surface electrical stimulation of the laryngeal region is used to improve swallowing in dysphagic patients. However, little is known about how electrical stimulation affects tongue movements and related functions. We investigated the effect of electrical stimulation on tongue pressure and hyoid movement, as well as suprahyoid and infrahyoid muscle activity, in 18 healthy young participants. Electrical stimulation (0.2-ms duration, 80 Hz, 80% of each participant's maximal tolerance) of the laryngeal region was applied. Each subject swallowed 5 ml of barium sulfate liquid 36 times at 10-s intervals. During the middle 2 min, electrical stimulation was delivered. Tongue pressure, electromyographic activity of the suprahyoid and infrahyoid muscles, and videofluorographic images were simultaneously recorded. Tongue pressure during stimulation was significantly lower than before or after stimulation and was significantly greater after stimulation than at baseline. Suprahyoid activity after stimulation was larger than at baseline, while infrahyoid muscle activity did not change. During stimulation, the position of the hyoid at rest was descended, the highest hyoid position was significantly inferior, and the vertical movement was greater than before or after stimulation. After stimulation, the positions of the hyoid at rest and at the maximum elevation were more superior than before stimulation. The deviation of the highest positions of the hyoid before and after stimulation corresponded to the differences in tongue pressures at those times. These results suggest that surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. NEW & NOTEWORTHY Surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. Tongue muscles may contribute to overshot recovery

  18. Surface electrical stimulation to evoke referred sensation.

    Science.gov (United States)

    Forst, Johanna C; Blok, Derek C; Slopsema, Julia P; Boss, John M; Heyboer, Lane A; Tobias, Carson M; Polasek, Katharine H

    2015-01-01

    Surface electrical stimulation (SES) is being investigated as a noninvasive method to evoke natural sensations distal to electrode location. This may improve treatment for phantom limb pain as well as provide an alternative method to deliver sensory feedback. The median and/or ulnar nerves of 35 subjects were stimulated at the elbow using surface electrodes. Strength-duration curves of hand sensation were found for each subject. All subjects experienced sensation in their hand, which was mostly described as a paresthesia-like sensation. The rheobase and chronaxie values were found to be lower for the median nerve than the ulnar nerve, with no significant difference between sexes. Repeated sessions with the same subject resulted in sufficient variability to suggest that recalculating the strength-duration curve for each electrode placement is necessary. Most of the recruitment curves in this study were generated with 28 to 36 data points. To quickly reproduce these curves with limited increase in error, we recommend 10 data points. Future studies will focus on obtaining different sensations using SES with the strength-duration curve defining the threshold of the effective parameter space.

  19. [Mechanisms and applications of transcutaneous electrical nerve stimulation in analgesia].

    Science.gov (United States)

    Tang, Zheng-Yu; Wang, Hui-Quan; Xia, Xiao-Lei; Tang, Yi; Peng, Wei-Wei; Hu, Li

    2017-06-25

    Transcutaneous electrical nerve stimulation (TENS), as a non-pharmacological and non-invasive analgesic therapy with low-cost, has been widely used to relieve pain in various clinical applications, by delivering current pulses to the skin area to activate the peripheral nerve fibers. Nevertheless, analgesia induced by TENS varied in the clinical practice, which could be caused by the fact that TENS with different stimulus parameters has different biological mechanisms in relieving pain. Therefore, to advance our understanding of TENS in various basic and clinical studies, we discussed (1) neurophysiological and biochemical mechanisms of TENS-induced analgesia; (2) relevant factors that may influence analgesic effects of TENS from the perspectives of stimulus parameters, including stimulated position, pulse parameters (current intensity, frequency, and pulse width), stimulus duration and used times in each day; and (3) applications of TENS in relieving clinical pain, including post-operative pain, chronic low back pain and labor pain. Finally, we propose that TENS may involve multiple and complex psychological neurophysiological mechanisms, and suggest that different analgesic effects of TENS with different stimulus parameters should be taken into consideration in clinical applications. In addition, to optimize analgesic effect, we recommend that individual-based TENS stimulation parameters should be designed by considering individual differences among patients, e.g., adaptively adjusting the stimulation parameters based on the dynamic ratings of patients' pain.

  20. Wireless distributed functional electrical stimulation system

    Directory of Open Access Journals (Sweden)

    Jovičić Nenad S

    2012-08-01

    Full Text Available Abstract Background The control of movement in humans is hierarchical and distributed and uses feedback. An assistive system could be best integrated into the therapy of a human with a central nervous system lesion if the system is controlled in a similar manner. Here, we present a novel wireless architecture and routing protocol for a distributed functional electrical stimulation system that enables control of movement. Methods The new system comprises a set of miniature battery-powered devices with stimulating and sensing functionality mounted on the body of the subject. The devices communicate wirelessly with one coordinator device, which is connected to a host computer. The control algorithm runs on the computer in open- or closed-loop form. A prototype of the system was designed using commercial, off-the-shelf components. The propagation characteristics of electromagnetic waves and the distributed nature of the system were considered during the development of a two-hop routing protocol, which was implemented in the prototype’s software. Results The outcomes of this research include a novel system architecture and routing protocol and a functional prototype based on commercial, off-the-shelf components. A proof-of-concept study was performed on a hemiplegic subject with paresis of the right arm. The subject was tasked with generating a fully functional palmar grasp (closing of the fingers. One node was used to provide this movement, while a second node controlled the activation of extensor muscles to eliminate undesired wrist flexion. The system was tested with the open- and closed-loop control algorithms. Conclusions The system fulfilled technical and application requirements. The novel communication protocol enabled reliable real-time use of the system in both closed- and open-loop forms. The testing on a patient showed that the multi-node system could operate effectively to generate functional movement.

  1. Wireless distributed functional electrical stimulation system.

    Science.gov (United States)

    Jovičić, Nenad S; Saranovac, Lazar V; Popović, Dejan B

    2012-08-09

    The control of movement in humans is hierarchical and distributed and uses feedback. An assistive system could be best integrated into the therapy of a human with a central nervous system lesion if the system is controlled in a similar manner. Here, we present a novel wireless architecture and routing protocol for a distributed functional electrical stimulation system that enables control of movement. The new system comprises a set of miniature battery-powered devices with stimulating and sensing functionality mounted on the body of the subject. The devices communicate wirelessly with one coordinator device, which is connected to a host computer. The control algorithm runs on the computer in open- or closed-loop form. A prototype of the system was designed using commercial, off-the-shelf components. The propagation characteristics of electromagnetic waves and the distributed nature of the system were considered during the development of a two-hop routing protocol, which was implemented in the prototype's software. The outcomes of this research include a novel system architecture and routing protocol and a functional prototype based on commercial, off-the-shelf components. A proof-of-concept study was performed on a hemiplegic subject with paresis of the right arm. The subject was tasked with generating a fully functional palmar grasp (closing of the fingers). One node was used to provide this movement, while a second node controlled the activation of extensor muscles to eliminate undesired wrist flexion. The system was tested with the open- and closed-loop control algorithms. The system fulfilled technical and application requirements. The novel communication protocol enabled reliable real-time use of the system in both closed- and open-loop forms. The testing on a patient showed that the multi-node system could operate effectively to generate functional movement.

  2. Electric and magnetic fields at extremely low frequencies

    International Nuclear Information System (INIS)

    Anderson, L.E.; Kaune, W.T.

    1989-01-01

    Whole-body exposure to extremely low frequency (ELF, 30-300 Hz) electric fields may involve effects related to stimulation of the sensory apparatus at the body surface (hair vibration, possible direct neural stimulation) and effects within the body caused by the flow of current. Magnetic fields may interact predominantly by the induction of internal current flow. Biological effects observed in a living organism may depend on the electric fields induced inside the body, possibly on the magnetic fields penetrating into the body, and on the fields acting at the surface of the body. Areas in which effects have been observed often appear to be associated with the nervous system, including altered neuronal excitability and neurochemical changes, altered hormone levels, changes in behavioural responses, and changes in biological rhythms. No studies unequivocably demonstrate deleterious effects of ELF electric or magnetic field exposure on mammalian reproduction and development, but several suggest such effects. Exposure to ELF electric and magnetic fields does produce biological effects. However, except for fields strong enough to induce current densities above the threshold for the stimulation of nerve tissues, there is no consensus as to whether these effects constitute a hazard to human health. Human data from epidemiological studies, including reported effects on cancer promotion, congenital malformations, reproductive performance and general health, though somewhat suggestive of adverse health effects, are not conclusive. 274 refs, 13 figs, 6 tabs

  3. Perceptual embodiment of prosthetic limbs by transcutaneous electrical nerve stimulation.

    Science.gov (United States)

    Mulvey, Matthew R; Fawkner, Helen J; Radford, Helen E; Johnson, Mark I

    2012-01-01

      In able-bodied participants, it is possible to induce a sense of perceptual embodiment in an artificial hand using a visual-tactile illusion. In amputee patients, electrical stimulation of sensory afferents using transcutaneous electrical nerve stimulation (TENS) has been shown to generate somatic sensations in an amputee's phantom limb(s). However, the effects of TENS on the perceptual embodiment of an artificial limb are not known. Our objective was to investigate the effects of TENS on the perceptual embodiment of an artificial limb in fully intact able-bodied participants.   We used a modified version of the rubber hand illusion presented to 30 able-bodied participants (16 women, 14 men) to convey TENS paresthesia to an artificial hand. TENS electrodes were located over superficial radial nerve on the lateral aspect of the right forearm (1 cm proximal to the wrist), which was hidden from view. TENS intensity was increased to a strong non-painful TENS sensation (electrical paresthesia) was felt beneath the electrodes and projecting into the fingers of the hand. The electrical characteristics of TENS were asymmetric biphasic electrical pulsed waves, continuous pulse pattern, 120 Hz pulse frequency (rate), and 80 µs pulse duration (width).   Participants reported significantly higher intensities of the rubber hand illusion during the two TENS conditions (mean = 5.8, standard deviation = 1.9) compared with the two non-TENS conditions (mean = 4.9, standard deviation = 1.7), p embodiment of an artificial hand. Further exploratory studies involving an amputee population are warranted. © 2011 International Neuromodulation Society.

  4. Influence of electrical stimulation on carcass and meat quality of ...

    African Journals Online (AJOL)

    In a previous study regarding the effects of Kosher and conventional slaughter techniques on carcass and meat quality of cattle, it was speculated that electrical stimulation may have affected some of the meat qualities. Therefore, the objective of this study was to investigate the effects of electrical stimulation (ES) and ...

  5. Augmenting nerve regeneration with electrical stimulation.

    Science.gov (United States)

    Gordon, T; Brushart, T M; Chan, K M

    2008-12-01

    Poor functional recovery after peripheral nerve injury is generally attributed to irreversible target atrophy. In rats, we addressed the functional outcomes of prolonged neuronal separation from targets (chronic axotomy for up to 1 year) and atrophy of Schwann cells (SCs) in distal nerve stumps, and whether electrical stimulation (ES) accelerates axon regeneration. In carpal tunnel syndrome (CTS) patients with severe axon degeneration and release surgery, we asked whether ES accelerates muscle reinnervation. Reinnervated motor unit (MUs) and regenerating neuron numbers were counted electrophysiologically and with dye-labeling after chronic axotomy, chronic SC denervation and after immediate nerve repair with and without trains of 20 Hz ES for 1 hour to 2 weeks in rats and in CTS patients. Chronic axotomy reduced regenerative capacity to 67% and was alleviated by exogenous growth factors. Reduced regeneration to approximately 10% by SC denervation atrophy was ameliorated by forskolin and transforming growth factor-beta SC reactivation. ES (1 h) accelerated axon outgrowth across the suture site in association with elevated neuronal neurotrophic factor and receptors and in patients, promoted the full reinnervation of thenar muscles in contrast to a non-significant increase in MU numbers in the control group. The rate limiting process of axon outgrowth, progressive deterioration of both neuronal growth capacity and SC support, but not irreversible target atrophy, account for observed poor functional recovery after nerve injury. Brief ES accelerates axon outgrowth and target muscle reinnervation in animals and humans, opening the way to future clinical application to promote functional recovery.

  6. Intracochlear electrical stimulation suppresses apoptotic signaling in rat spiral ganglion neurons after deafening in vivo.

    Science.gov (United States)

    Kopelovich, Jonathan C; Cagaanan, Alain P; Miller, Charles A; Abbas, Paul J; Green, Steven H

    2013-11-01

    To establish the intracellular consequences of electrical stimulation to spiral ganglion neurons after deafferentation. Here we use a rat model to determine the effect of both low and high pulse rate acute electrical stimulation on activation of the proapoptotic transcription factor Jun in deafferented spiral ganglion neurons in vivo. Experimental animal study. Hearing research laboratories of the University of Iowa Departments of Biology and Otolaryngology. A single electrode was implanted through the round window of kanamycin-deafened rats at either postnatal day 32 (P32, n = 24) or P60 (n = 22) for 4 hours of stimulation (monopolar, biphasic pulses, amplitude twice electrically evoked auditory brainstem response [eABR] threshold) at either 100 or 5000 Hz. Jun phosphorylation was assayed by immunofluorescence to quantitatively assess the effect of electrical stimulation on proapoptotic signaling. Jun phosphorylation was reliably suppressed by 100 Hz stimuli in deafened cochleae of P32 but not P60 rats. This effect was not significant in the basal cochlear turns. Stimulation frequency may be consequential: 100 Hz was significantly more effective than was 5 kHz stimulation in suppressing phospho-Jun. Suppression of Jun phosphorylation occurs in deafferented spiral ganglion neurons after only 4 hours of electrical stimulation. This finding is consistent with the hypothesis that electrical stimulation can decrease spiral ganglion neuron death after deafferentation.

  7. Outcomes of electrically stimulated gracilis neosphincter surgery.

    Science.gov (United States)

    Tillin, T; Chambers, M; Feldman, R

    2005-07-01

    To examine patient quality of life (QoL) and long-term costs of electrically stimulated gracilis neosphincter surgery (ESGNS). Independently conducted prospective case-comparison study of patients at the Royal London Hospital (RLH), plus a cross-sectional study of outcomes of ESGNS performed at three other UK centres. Cases were patients who underwent ESGNS at the participating hospitals during a 5-year period from 1977. Comparisons were made with two groups of people with similar bowel disorders who did not undergo ESGNS. ESGNS is a procedure designed to improve bowel function for people living with severe faecal incontinence or stomas. It involves transposition of the gracilis muscle to form a neo-anal sphincter. The transposed muscle is electrically stimulated via an electronic pulse generator implanted beneath the skin of the abdomen. Clinical success and symptomatic outcomes of surgery. Generic, domain and condition specific measures of QoL. Comparative costs to the NHS of ESGNS and conventional alternatives. At 3 years after surgery approximately three-quarters of patients still had functioning neosphincters. At this stage, bowel-related QoL and continence improved by more than 20% for nearly two-thirds of RLH patients. However, ongoing bowel evacuation difficulties occurred in half of those with good continence outcomes. QoL improvements were maintained in the smaller group of RLH patients who had reached 4 and 5 years of follow-up, although at this stage the proportion with failed neosphincters had increased. The RLH findings were supported by those from the three other UK centres. No significant changes in QoL were observed in the comparison groups during the follow-up period. The mean cost of patient care at RLH, was 23,253 pounds. In the other three centres, the estimated mean cost of the intervention per patient was 11,731 pounds, reflecting fewer planned operations and repeat admissions. Costs of patient care for those with stomas who did not undergo

  8. Functional electrical stimulation on paraplegic patients

    Directory of Open Access Journals (Sweden)

    Helmut Kern

    2014-07-01

    Full Text Available We report on clinical and physiological effects of 8 months Functional Electrical Stimulation (FES of quadriceps femoris muscle on 16 paraplegic patients. Each patient had muscle biopsies, CT-muscle diameter measurements, knee extension strength testing carried out before and after 8 months FES training. Skin perfusion was documented through infrared telethermography and xenon clearance, muscle perfusion was recorded through thallium scintigraphy. After 8 months FES training baseline skin perfusion showed 86 % increase, muscle perfusion was augmented by 87 %. Muscle fiber diameters showed an average increase of 59 % after 8 months FES training. Muscles in patients with spastic paresis as well as in patients with denervation showed an increase in aerob and anaerob muscle enzymes up to the normal range. Even without axonal neurotropic substances FES was able to demonstrate fiberhypertrophy, enzyme adaptation and intracellular structural benefits in denervated muscles. The increment in muscle area as visible on CT-scans of quadriceps femoris was 30 % in spastic paraplegia and 10 % in denervated patients respectively. FES induced changes were less in areas not directly underneath the surface electrodes. We strongly recommend the use of Kern`s current for FES in denervated muscles to induce tetanic muscle contractions as we formed a very critical opinion of conventional exponential current. In patients with conus-cauda-lesions FES must be integrated into modern rehabilitation to prevent extreme muscle degeneration and decubital ulcers. Using FES we are able to improve metabolism and induce positive trophic changes in our patients lower extremities. In spastic paraplegics the functions „rising and walking“ achieved through FES are much better training than FES ergometers. Larger muscle masses are activated and an increased heart rate is measured, therefore the impact on cardiovascular fitness and metabolism is much greater. This effectively

  9. Low frequency electric and magnetic fields

    Science.gov (United States)

    Spaniol, Craig

    1989-01-01

    Following preliminary investigations of the low frequency electric and magnetic fields that may exists in the Earth-ionospheric cavity, measurements were taken with state-of-the art spectrum analyzers. As a follow up to this activity, an investigation was initiated to determine sources and values for possible low frequency signal that would appear in the cavity. The lowest cavity resonance is estimated at about 8 Hz, but lower frequencies may be an important component of our electromagnetic environment. The potential field frequencies produced by the electron were investigated by a classical model that included possible cross coupling of the electric and gravitation fields. During this work, an interesting relationship was found that related the high frequency charge field with the extremely low frequency of the gravitation field. The results of numerical calculations were surprisingly accurate and this area of investigation is continuing. The work toward continued development of a standardized monitoring facility is continuing with the potential of installing the prototype at West Virginia State College early in 1990. This installation would be capable of real time monitoring of ELF signals in the Earth-ionoshpere cavity and would provide some directional information. A high gain, low noise, 1/f frequency corrected preamplifier was designed and tested for the ferrite core magnetic sensor. The potential application of a super conducting sensor for the ELF magnetic field detection is under investigation. It is hoped that a fully operational monitoring network could pinpoint the location of ELF signal sources and provide new information on where these signals originate and what causes them, assuming that they are natural in origin.

  10. Electrical Stimulation for Pressure Injuries: A Health Technology Assessment

    Science.gov (United States)

    Lambrinos, Anna; Falk, Lindsey; Ali, Arshia; Holubowich, Corinne; Walter, Melissa

    2017-01-01

    Background Pressure injuries (bedsores) are common and reduce quality of life. They are also costly and difficult to treat. This health technology assessment evaluates the effectiveness, cost-effectiveness, budget impact, and lived experience of adding electrical stimulation to standard wound care for pressure injuries. Methods We conducted a systematic search for studies published to December 7, 2016, limited to randomized and non–randomized controlled trials examining the effectiveness of electrical stimulation plus standard wound care versus standard wound care alone for patients with pressure injuries. We assessed the quality of evidence through Grading of Recommendations Assessment, Development, and Evaluation (GRADE). In addition, we conducted an economic literature review and a budget impact analysis to assess the cost-effectiveness and affordability of electrical stimulation for treatment of pressure ulcers in Ontario. Given uncertainties in clinical evidence and resource use, we did not conduct a primary economic evaluation. Finally, we conducted qualitative interviews with patients and caregivers about their experiences with pressure injuries, currently available treatments, and (if applicable) electrical stimulation. Results Nine randomized controlled trials and two non–randomized controlled trials were found from the systematic search. There was no significant difference in complete pressure injury healing between adjunct electrical stimulation and standard wound care. There was a significant difference in wound surface area reduction favouring electrical stimulation compared with standard wound care. The only study on cost-effectiveness of electrical stimulation was partially applicable to the patient population of interest. Therefore, the cost-effectiveness of electrical stimulation cannot be determined. We estimate that the cost of publicly funding electrical stimulation for pressure injuries would be $0.77 to $3.85 million yearly for the next 5

  11. Electrical Stimulation for Pressure Injuries: A Health Technology Assessment.

    Science.gov (United States)

    2017-01-01

    Pressure injuries (bedsores) are common and reduce quality of life. They are also costly and difficult to treat. This health technology assessment evaluates the effectiveness, cost-effectiveness, budget impact, and lived experience of adding electrical stimulation to standard wound care for pressure injuries. We conducted a systematic search for studies published to December 7, 2016, limited to randomized and non-randomized controlled trials examining the effectiveness of electrical stimulation plus standard wound care versus standard wound care alone for patients with pressure injuries. We assessed the quality of evidence through Grading of Recommendations Assessment, Development, and Evaluation (GRADE). In addition, we conducted an economic literature review and a budget impact analysis to assess the cost-effectiveness and affordability of electrical stimulation for treatment of pressure ulcers in Ontario. Given uncertainties in clinical evidence and resource use, we did not conduct a primary economic evaluation. Finally, we conducted qualitative interviews with patients and caregivers about their experiences with pressure injuries, currently available treatments, and (if applicable) electrical stimulation. Nine randomized controlled trials and two non-randomized controlled trials were found from the systematic search. There was no significant difference in complete pressure injury healing between adjunct electrical stimulation and standard wound care. There was a significant difference in wound surface area reduction favouring electrical stimulation compared with standard wound care.The only study on cost-effectiveness of electrical stimulation was partially applicable to the patient population of interest. Therefore, the cost-effectiveness of electrical stimulation cannot be determined. We estimate that the cost of publicly funding electrical stimulation for pressure injuries would be $0.77 to $3.85 million yearly for the next 5 years.Patients and caregivers

  12. Diferentes tempos de eletroestimulação neuromuscular (eenm de média frequência (kotz em cães Different times of neuromuscular electrical stimulation medium frequency (kotz in dogs

    Directory of Open Access Journals (Sweden)

    Charles Pelizzari

    2011-09-01

    Full Text Available O objetivo desta pesquisa foi empregar a estimulação elétrica neuromuscular (EENM de média frequência no músculo quadríceps femoral de cães com atrofia muscular induzida, avaliar o ganho de massa muscular e comparar a EENM sob diferentes tempos de tratamento. Foram utilizados oito cães, pesando entre 15 e 25kg e distribuídos aleatoriamente em dois grupos denominados de GI (30minutos e GII (60minutos. Para a indução da atrofia muscular, a articulação do joelho direito foi imobilizada por 30 dias por transfixação percutânea tipo II. Após a retirada do aparelho de imobilização, foi realizada a EENM nos cães dos grupos GI e GII três vezes por semana, com intervalo mínimo de 48 horas entre cada sessão, pelo período de 60 dias. Foram mensuradas a perimetria da coxa, goniometria dos joelhos, atividade da enzima creatina-quinase (CK e morfometria das fibras musculares do vasto lateral em cortes transversais colhido mediante a biópsia muscular. Não houve diferença quanto aos valores da perimetria da coxa e atividade da enzima CK. A goniometria revelou significância (PThe aim of this study was to use medium frequency Neuromuscular Electrical Stimulation (NMES in femoral quadriceps muscle of dogs with induced muscular atrophy to evaluate the occurrence of mass gain in these muscles and to compare NMES in different periods of treatment. Eight dogs, weighing between 15 and 25kg, were randomly placed in two groups: GI (NMES for 30min, GII, (NMES for 60min. For the muscular atrophy induction, the right knee was immobilized for 30 days by the percutaneous transfixation type II method. NMES was carried out in the dogs of which groups, three times a week, in between 48h each session, in a period of 60 days. The parameters measured were: thigh perimetry, knee goniometry, creatine kinase (CK enzyme activity and morphometry of the muscular fibers in transversal cuts of the vastus lateralis muscle, collected through a muscular biopsy

  13. Comparação do índice de desconforto sensorial durante a estimulação elétrica neuromuscular com correntes excitomotoras de baixa e média frequência em mulheres saudáveis Comparison of the sensory discomfort index during neuromuscular electrical stimulation with low and medium excitomotor frequencies in healthy women

    Directory of Open Access Journals (Sweden)

    Richard Eloin Liebano

    2009-02-01

    Full Text Available INTRODUÇÃO: A estimulação elétrica neuromuscular é uma estratégia clínica para aumento da performance muscular. Sabe-se que um dos principais fatores limitantes da estimulação elétrica para aumento de força é o desconforto causado pelas correntes utilizadas. OBJETIVO: O objetivo deste estudo foi comparar o nível de desconforto sensorial causado por correntes de baixa e média freqüência na estimulação elétrica neuromuscular do músculo quadríceps femoral. MÉTODOS: Participaram do estudo 45 voluntárias saudáveis com idade entre 18 e 30 anos. Todas as voluntárias foram submetidas à estimulação elétrica com correntes de baixa e média freqüência. A análise do desconforto sensorial foi feita por meio de uma escala visual analógica (EVA. RESULTADOS: Os resultados revelaram um valor médio de 6,1 para o desconforto sensorial na estimulação de baixa freqüência (BF e de 6,4 para a estimulação de média freqüência (MF, não havendo diferença estatisticamente significante entre elas (p = 0,61. Em relação às intensidades utilizadas, a média foi de 45,64mA para a estimulação de BF e 121,67mA na estimulação com a MF, sendo essa diferença estatisticamente significante (p INTRODUCTION: Neuromuscular electrical stimulation is a clinical strategy for increasing of muscular performance. It is known that one of the main limiting factors of the electrical stimulation for strength increase is the discomfort caused by the currents used in the process. OBJECTIVE: The objective of this study was to compare the level of sensory discomfort caused by low and medium frequency currents in the neuromuscular electrical stimulation of the quadriceps femoris muscle. METHODS: Forty-five female healthy volunteers with age between 18 and 30 years participated in the study. All the volunteers were submitted to electrical stimulation with low and medium frequency. Sensory discomfort was measured using the Visual Analogue Scale (VAS

  14. Interferential electrical stimulation improves peripheral vasodilatation in healthy individuals

    Directory of Open Access Journals (Sweden)

    Francisco V. Santos

    2013-06-01

    Full Text Available BACKGROUND: Interferential electrical stimulation (IES, which may be linked to greater penetration of deep tissue, may restore blood flow by sympathetic nervous modulation; however, studies have found no association between the frequency and duration of the application and blood flow. We hypothesized that 30 min of IES applied to the ganglion stellate region might improve blood flow redistribution. OBJECTIVES: The purpose of this study was to determine the effect of IES on metaboreflex activation in healthy individuals. METHOD: Interferential electrical stimulation or a placebo stimulus (same protocol without electrical output was applied to the stellate ganglion region in eleven healthy subjects (age 25±1.3 years prior to exercise. Mean blood pressure (MBP, heart rate (HR, calf blood flow (CBF and calf vascular resistance (CVR were measured throughout exercise protocols (submaximal static handgrip exercise and with recovery periods with or without postexercise circulatory occlusion (PECO+ and PECO -, respectively. Muscle metaboreflex control of calf vascular resistance was estimated by subtracting the area under the curve when circulation was occluded from the area under the curve from the AUC without circulatory occlusion. RESULTS: At peak exercise, increases in mean blood pressure were attenuated by IES (p<0.05, and the effect persisted under both the PECO+ and PECO- treatments. IES promoted higher CBF and lower CVR during exercise and recovery. Likewise, IES induced a reduction in the estimated muscle metaboreflex control (placebo, 21±5 units vs. IES, 6±3, p<0.01. CONCLUSION: Acute application of IES prior to exercise attenuates the increase in blood pressure and vasoconstriction during exercise and metaboreflex activation in healthy subjects.

  15. Sulfonated polyaniline-based organic electrodes for controlled electrical stimulation of human osteosarcoma cells.

    Science.gov (United States)

    Min, Yong; Yang, Yanyin; Poojari, Yadagiri; Liu, Yidong; Wu, Jen-Chieh; Hansford, Derek J; Epstein, Arthur J

    2013-06-10

    Electrically conducting polymers (CPs) were found to stimulate various cell types such as neurons, osteoblasts, and fibroblasts in both in vitro and in vivo studies. However, to our knowledge, no studies have been reported on the utility of CPs in stimulation of cancer or tumor cells in the literature. Here we report a facile fabrication method of self-doped sulfonated polyaniline (SPAN)-based interdigitated electrodes (IDEs) for controlled electrical stimulation of human osteosarcoma (HOS) cells. Increased degree of sulfonation was found to increase the SPAN conductivity, which in turn improved the cell attachment and cell growth without electrical stimulation. However, an enhanced cell growth was observed under controlled electrical (AC) stimulation at low applied voltage and frequency (≤800 mV and ≤1 kHz). The cell growth reached a maximum threshold at an applied voltage or frequency and beyond which pronounced cell death was observed. We believe that these organic electrodes may find utility in electrical stimulation of cancer or tumor cells for therapy and research and may also provide an alternative to the conventional metal-based electrodes.

  16. Modulation of Illusory Auditory Perception by Transcranial Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Giulia Prete

    2017-06-01

    Full Text Available The aim of the present study was to test whether transcranial electrical stimulation can modulate illusory perception in the auditory domain. In two separate experiments we applied transcranial Direct Current Stimulation (anodal/cathodal tDCS, 2 mA; N = 60 and high-frequency transcranial Random Noise Stimulation (hf-tRNS, 1.5 mA, offset 0; N = 45 on the temporal cortex during the presentation of the stimuli eliciting the Deutsch's illusion. The illusion arises when two sine tones spaced one octave apart (400 and 800 Hz are presented dichotically in alternation, one in the left and the other in the right ear, so that when the right ear receives the high tone, the left ear receives the low tone, and vice versa. The majority of the population perceives one high-pitched tone in one ear alternating with one low-pitched tone in the other ear. The results revealed that neither anodal nor cathodal tDCS applied over the left/right temporal cortex modulated the perception of the illusion, whereas hf-tRNS applied bilaterally on the temporal cortex reduced the number of times the sequence of sounds is perceived as the Deutsch's illusion with respect to the sham control condition. The stimulation time before the beginning of the task (5 or 15 min did not influence the perceptual outcome. In accordance with previous findings, we conclude that hf-tRNS can modulate auditory perception more efficiently than tDCS.

  17. Effects of Neuromuscular Electrical Stimulation During Hemodialysis on Peripheral Muscle Strength and Exercise Capacity: A Randomized Clinical Trial.

    Science.gov (United States)

    Brüggemann, Ana Karla; Mello, Carolina Luana; Dal Pont, Tarcila; Hizume Kunzler, Deborah; Martins, Daniel Fernandes; Bobinski, Franciane; Pereira Yamaguti, Wellington; Paulin, Elaine

    2017-05-01

    To evaluate the effects of neuromuscular electrical stimulation of high and low frequency and intensity, performed during hemodialysis, on physical function and inflammation markers in patients with chronic kidney disease (CKD). Randomized clinical trial. Hemodialysis clinic. Patients with CKD (N=51) were randomized into blocks of 4 using opaque sealed envelopes. They were divided into a group of high frequency and intensity neuromuscular electrical stimulation and a group of low frequency and intensity neuromuscular electrical stimulation. The high frequency and intensity neuromuscular electrical stimulation group was submitted to neuromuscular electrical stimulation at a frequency of 50Hz and a medium intensity of 72.90mA, and the low frequency and intensity neuromuscular electrical stimulation group used a frequency of 5Hz and a medium intensity of 13.85mA, 3 times per week for 1 hour, during 12 sessions. Peripheral muscle strength, exercise capacity, levels of muscle trophism marker (insulin growth factor 1) and levels of proinflammatory (tumor necrosis factor α) and anti-inflammatory (interleukin 10) cytokines. The high frequency and intensity neuromuscular electrical stimulation group showed a significant increase in right peripheral muscle strength (155.35±65.32Nm initial vs 161.60±68.73Nm final; P=.01) and left peripheral muscle strength (156.60±66.51Nm initial vs 164.10±69.76Nm final; P=.02) after the training, which did not occur in the low frequency and intensity neuromuscular electrical stimulation group for both right muscle strength (109.40±32.08Nm initial vs 112.65±38.44Nm final; P=.50) and left muscle strength (113.65±37.79Nm initial vs 116.15±43.01Nm final; P=.61). The 6-minute walk test distance (6MWTD) increased in both groups: high frequency and intensity neuromuscular electrical stimulation group (435.55±95.81m initial vs 457.25±90.64m final; P=.02) and low frequency and intensity neuromuscular electrical stimulation group (403.80

  18. Study of Driving Fatigue Alleviation by Transcutaneous Acupoints Electrical Stimulations

    Directory of Open Access Journals (Sweden)

    Fuwang Wang

    2014-01-01

    Full Text Available Driving fatigue is more likely to bring serious safety trouble to traffic. Therefore, accurately and rapidly detecting driving fatigue state and alleviating fatigue are particularly important. In the present work, the electrical stimulation method stimulating the Láogóng point (劳宫PC8 of human body is proposed, which is used to alleviate the mental fatigue of drivers. The wavelet packet decomposition (WPD is used to extract θ, α, and β subbands of drivers’ electroencephalogram (EEG signals. Performances of the two algorithms (θ+α/(α+β and θ/β are also assessed as possible indicators for fatigue detection. Finally, the differences between the drivers with electrical stimulation and normal driving are discussed. It is shown that stimulating the Láogóng point (劳宫PC8 using electrical stimulation method can alleviate driver fatigue effectively during longtime driving.

  19. Neurocontrol of the inverse dynamics in functional electrical stimulation

    NARCIS (Netherlands)

    Spaanenburg, L; Nijhuis, JAG; Ypma, A; Silva, FL; Principe, JC; Almeida, LB

    1997-01-01

    The rehabilitation of paraplegia can be pursued by functional electrical stimulation (FES) combined with biofeedback This requires control by surface electromyographical (EMG) signals to predict the muscle stimulation patterns while compensating the inherent phase lag. This can be realized by a

  20. Determinants of the electric field during transcranial direct current stimulation

    DEFF Research Database (Denmark)

    Opitz, Alexander; Paulus, Walter; Will, Susanne

    2015-01-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field...... over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect...... fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant...

  1. Direct electrical stimulation of human cortex evokes high gamma activity that predicts conscious somatosensory perception

    Science.gov (United States)

    Muller, Leah; Rolston, John D.; Fox, Neal P.; Knowlton, Robert; Rao, Vikram R.; Chang, Edward F.

    2018-04-01

    Objective. Direct electrical stimulation (DES) is a clinical gold standard for human brain mapping and readily evokes conscious percepts, yet the neurophysiological changes underlying these percepts are not well understood. Approach. To determine the neural correlates of DES, we stimulated the somatosensory cortex of ten human participants at frequency-amplitude combinations that both elicited and failed to elicit conscious percepts, meanwhile recording neural activity directly surrounding the stimulation site. We then compared the neural activity of perceived trials to that of non-perceived trials. Main results. We found that stimulation evokes distributed high gamma activity, which correlates with conscious perception better than stimulation parameters themselves. Significance. Our findings suggest that high gamma activity is a reliable biomarker for perception evoked by both natural and electrical stimuli.

  2. Frequency-time behavior of artificially stimulated vlf emissions

    International Nuclear Information System (INIS)

    Stiles, G.S.; Helliwell, R.A.

    1975-01-01

    Artificially stimulated VLF emissions (ASE's) are emissions triggered in the magnetosphere by the whistler mode signals from VLF transmitters. These emissions may be separated into two classes, rising and falling, depending on whether the final value of df/dt is positive or negative. Several hundred ASE's triggered by three transmitters have been analyzed using the fast Fourier transform with a filter spacing of 25 Hz and an effective filter width of about 45 Hz. The study was limited to the initial frequency-time behavior of ASE's. Averages taken over many events reveal that both rising and falling tones show the same initial behavior. The emissions begin at the frequency of the triggering signal. Both tones initially rise in frequency, falling tones reversing slope at a point 25--300 Hz above the triggering signal. The slope of rising tones, particularly those triggered by NAA, often abruptly levels off in this same frequency range; as a result, a short (approximately 40 ms) plateau is formed that precedes the final rising phase. The initial frequency offset commonly observed in individual events appears to result from the frequent coincidence with this plateau of a peak in amplitude. Emissions stimulated by all three transmitters show essentially the same features; this finding indicates that their frequency behavior does not depend strongly on transmitter power. The process appears to be asymmetric in frequency; no evidence of initial growth below the triggering frequency has been found. (U.S.)

  3. Neuromuscular electrical stimulation improves exercise tolerance in chronic obstructive pulmonary disease patients with better preserved fat-free mass

    Directory of Open Access Journals (Sweden)

    Lara Maris Nápolis

    2011-01-01

    Full Text Available BACKGROUND: High-frequency neuromuscular electrical stimulation increases exercise tolerance in patients with advanced chronic obstructive pulmonary disease (COPD patients. However, it is conceivable that its benefits are more prominent in patients with better-preserved peripheral muscle function and structure. OBJECTIVE: To investigate the effects of high-frequency neuromuscular electrical stimulation in COPD patients with better-preserved peripheral muscle function. Design: Prospective and cross-over study. METHODS: Thirty COPD patients were randomly assigned to either home-based, high-frequency neuromuscular electrical stimulation or sham stimulation for six weeks. The training intensity was adjusted according to each subject's tolerance. Fat-free mass, isometric strength, six-minute walking distance and time to exercise intolerance (Tlim were assessed. RESULTS: Thirteen (46.4% patients responded to high-frequency neuromuscular electrical stimulation; that is, they had a post/pre Δ Tlim >10% after stimulation (unimproved after sham stimulation. Responders had a higher baseline fat-free mass and six-minute walking distance than their seventeen (53.6% non-responding counterparts. Responders trained at higher stimulation intensities; their mean amplitude of stimulation during training was significantly related to their fat-free mass (r = 0.65; p<0.01. Logistic regression revealed that fat-free mass was the single independent predictor of Tlim improvement (odds ratio [95% CI] = 1.15 [1.04-1.26]; p<0.05. CONCLUSIONS: We conclude that high-frequency neuromuscular electrical stimulation improved the exercise capacity of COPD patients with better-preserved fat-free mass because they tolerated higher training stimulus levels. These data suggest that early training with high-frequency neuromuscular electrical stimulation before tissue wasting begins might enhance exercise tolerance in patients with less advanced COPD.

  4. Biceps brachii muscle oxygenation in electrical muscle stimulation.

    Science.gov (United States)

    Muthalib, Makii; Jubeau, Marc; Millet, Guillaume Y; Maffiuletti, Nicola A; Ferrari, Marco; Nosaka, Kazunori

    2010-09-01

    The purpose of this study was to compare between electrical muscle stimulation (EMS) and maximal voluntary (VOL) isometric contractions of the elbow flexors for changes in biceps brachii muscle oxygenation (tissue oxygenation index, TOI) and haemodynamics (total haemoglobin volume, tHb = oxygenated-Hb + deoxygenated-Hb) determined by near-infrared spectroscopy (NIRS). The biceps brachii muscle of 10 healthy men (23-39 years) was electrically stimulated at high frequency (75 Hz) via surface electrodes to evoke 50 intermittent (4-s contraction, 15-s relaxation) isometric contractions at maximum tolerated current level (EMS session). The contralateral arm performed 50 intermittent (4-s contraction, 15-s relaxation) maximal voluntary isometric contractions (VOL session) in a counterbalanced order separated by 2-3 weeks. Results indicated that although the torque produced during EMS was approximately 50% of VOL (P<0.05), there was no significant difference in the changes in TOI amplitude or TOI slope between EMS and VOL over the 50 contractions. However, the TOI amplitude divided by peak torque was approximately 50% lower for EMS than VOL (P<0.05), which indicates EMS was less efficient than VOL. This seems likely because of the difference in the muscles involved in the force production between conditions. Mean decrease in tHb amplitude during the contraction phases was significantly (P<0.05) greater for EMS than VOL from the 10th contraction onwards, suggesting that the muscle blood volume was lower in EMS than VOL. It is concluded that local oxygen demand of the biceps brachii sampled by NIRS is similar between VOL and EMS.

  5. Wanding Through Space: Interactive Calibration for Electric Muscle Stimulation

    DEFF Research Database (Denmark)

    Pohl, Henning; Hornbæk, Kasper; Knibbe, Jarrod

    2018-01-01

    Electric Muscle Stimulation (EMS) has emerged as an interaction paradigm for HCI. It has been used to confer object affordance, provide walking directions, and assist with sketching. However, the electrical signals used for EMS are multi-dimensional and require expert calibration before use...

  6. Approximating transcranial magnetic stimulation with electric stimulation in mouse: a simulation study.

    Science.gov (United States)

    Barnes, Walter L; Lee, Won Hee; Peterchev, Angel V

    2014-01-01

    Rodent models are valuable for preclinical examination of novel therapeutic techniques, including transcranial magnetic stimulation (TMS). However, comparison of TMS effects in rodents and humans is confounded by inaccurate scaling of the spatial extent of the induced electric field in rodents. The electric field is substantially less focal in rodent models of TMS due to the technical restrictions of making very small coils that can handle the currents required for TMS. We examine the electric field distributions generated by various electrode configurations of electric stimulation in an inhomogeneous high-resolution finite element mouse model, and show that the electric field distributions produced by human TMS can be approximated by electric stimulation in mouse. Based on these results and the limits of magnetic stimulation in mice, we argue that the most practical and accurate way to model focal TMS in mice is electric stimulation through either cortical surface electrodes or electrodes implanted halfway through the mouse cranium. This approach could allow much more accurate approximation of the human TMS electric field focality and strength than that offered by TMS in mouse, enabling, for example, focal targeting of specific cortical regions, which is common in human TMS paradigms.

  7. The value of electrical stimulation as an exercise training modality

    Science.gov (United States)

    Currier, Dean P.; Ray, J. Michael; Nyland, John; Noteboom, Tim

    1994-01-01

    Voluntary exercise is the traditional way of improving performance of the human body in both the healthy and unhealthy states. Physiological responses to voluntary exercise are well documented. It benefits the functions of bone, joints, connective tissue, and muscle. In recent years, research has shown that neuromuscular electrical stimulation (NMES) simulates voluntary exercise in many ways. Generically, NMES can perform three major functions: suppression of pain, improve healing of soft tissues, and produce muscle contractions. Low frequency NMES may gate or disrupt the sensory input to the central nervous system which results in masking or control of pain. At the same time NMES may contribute to the activation of endorphins, serotonin, vasoactive intestinal polypeptides, and ACTH which control pain and may even cause improved athletic performances. Soft tissue conditions such as wounds and inflammations have responded very favorably to NMES. NMES of various amplitudes can induce muscle contractions ranging from weak to intense levels. NMES seems to have made its greatest gains in rehabilitation where directed muscle contractions may improve joint ranges of motion correct joint contractures that result from shortening muscles; control abnormal movements through facilitating recruitment or excitation into the alpha motoneuron in orthopedically, neurologically, or healthy subjects with intense sensory, kinesthetic, and proprioceptive information; provide a conservative approach to management of spasticity in neurological patients; by stimulation of the antagonist muscle to a spastic muscle stimulation of the agonist muscle, and sensory habituation; serve as an orthotic substitute to conventional bracing used with stroke patients in lieu of dorsiflexor muscles in preventing step page gait and for shoulder muscles to maintain glenohumeral alignment to prevent subluxation; and of course NMES is used in maintaining or improving the performance or torque producing

  8. Sensory adaptation to electrical stimulation of the somatosensory nerves.

    Science.gov (United States)

    Graczyk, Emily Lauren; Delhaye, Benoit; Schiefer, Matthew A; Bensmaia, Sliman J; Tyler, Dustin J

    2018-03-19

    Sensory systems adapt their sensitivity to ambient stimulation levels to improve their responsiveness to changes in stimulation. The sense of touch is also subject to adaptation, as evidenced by the desensitization produced by prolonged vibratory stimulation of the skin. Electrical stimulation of nerves elicits tactile sensations that can convey feedback for bionic limbs. In this study, we investigate whether artificial touch is also subject to adaptation, despite the fact that the peripheral mechanotransducers are bypassed. Approach: Using well-established psychophysical paradigms, we characterize the time course and magnitude of sensory adaptation caused by extended electrical stimulation of the residual somatosensory nerves in three human amputees implanted with cuff electrodes. Main results: We find that electrical stimulation of the nerve also induces perceptual adaptation that recovers after cessation of the stimulus. The time course and magnitude of electrically-induced adaptation are equivalent to their mechanically-induced counterparts. Significance: We conclude that, in natural touch, the process of mechanotransduction is not required for adaptation, and artificial touch naturally experiences adaptation-induced adjustments of the dynamic range of sensations. Further, as it does for native hands, adaptation confers to bionic hands enhanced sensitivity to changes in stimulation and thus a more natural sensory experience. . Creative Commons Attribution license.

  9. Electrical stimulation promotes regeneration of injured oculomotor nerves in dogs

    Directory of Open Access Journals (Sweden)

    Lei Du

    2016-01-01

    Full Text Available Functional recovery after oculomotor nerve injury is very poor. Electrical stimulation has been shown to promote regeneration of injured nerves. We hypothesized that electrical stimulation would improve the functional recovery of injured oculomotor nerves. Oculomotor nerve injury models were created by crushing the right oculomotor nerves of adult dogs. Stimulating electrodes were positioned in both proximal and distal locations of the lesion, and non-continuous rectangular, biphasic current pulses (0.7 V, 5 Hz were administered 1 hour daily for 2 consecutive weeks. Analysis of the results showed that electrophysiological and morphological recovery of the injured oculomotor nerve was enhanced, indicating that electrical stimulation improved neural regeneration. Thus, this therapy has the potential to promote the recovery of oculomotor nerve dysfunction.

  10. Comparative Evaluation of Tactile Sensation by Electrical and Mechanical Stimulation.

    Science.gov (United States)

    Yem, Vibol; Kajimoto, Hiroyuki

    2017-01-01

    An electrotactile display is a tactile interface that provides tactile perception by passing electrical current through the surface of the skin. It is actively used instead of mechanical tactile displays for tactile feedback because of several advantages such as its small and thin size, light weight, and high responsiveness. However, the similarities and differences between these sensations is still not clear. This study directly compares the intensity sensation of electrotactile stimulation to that of mechanical stimulation, and investigates the characteristic sensation of anodic and cathodic stimulation. In the experiment, participants underwent a 30 pps electrotactile stimulus every one second to their middle finger, and were asked to match this intensity by adjusting the intensity of a mechanical tactile stimulus to an index finger. The results showed that anodic stimulation mainly produced vibration sensation, whereas cathodic sensation produced both vibration and pressure sensations. Relatively low pressure sensation was also observed for anodic stimulation but it remains low, regardless of the increasing of electrical intensity.

  11. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2015-07-01

    Full Text Available Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes.

  12. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation

    Science.gov (United States)

    Zhou, Hui; Lu, Yi; Chen, Wanzhen; Wu, Zhen; Zou, Haiqing; Krundel, Ludovic; Li, Guanglin

    2015-01-01

    Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes. PMID:26193273

  13. Dobutamine use for arrhythmia induction during electrical programmed heart stimulation

    International Nuclear Information System (INIS)

    Vanegas, Diego I; Perez, Climaco de J; Montenegro, Juan de J; Orjuela, Alejandro

    2006-01-01

    isoproterenol is the traditionally used drug for incrementing arrhythmia induction when this induction is not achieved during electric programmed heart stimulation under basal conditions. Dobutamine is an adrenergic agent, chemical precursor of isoproterenol, which can be an alternative for inducing arrhythmia during electrical programmed heart stimulation (PES). Patients and methods: a retrospective comparative study of the experience with dobutamine for inducing arrhythmia during electrical programmed heart stimulation was performed. The following data were collected: number of studies, data about the patient (medical record, age, gender, and study indication) protocol of programmed electrical stimulation, basal and under dobutamine or isoproterenol, and result of the study. Isoproterenol was used in doses of 1 to 3 micrograms per minute until the basal heart rate was incremented at least in 25%. Dobutamine was used in doses of 10 to 40 micrograms per kg of body weight, until obtaining the same increment in the basal heart rate. Results: 1054 electrophysiological studies were evaluated. In 144 patients (group A) isoproterenol was used and in 140, dobutamine (group B). In A group the mean age was 39.2 ± 16.2 and 58.3% were females. In-group B, mean age was 41.9 ± 18.6 and 51% were females. The most frequent symptom was palpitation and the most commonly induced arrhythmia was AV nodal reentry tachycardia in both groups. The induction of arrhythmia during the electrical programmed heat stimulation under drugs was similar in-group A (isoproterenol) respect to group B (dobutamine). Conclusions: There were no statistical significant differences in the induction of arrhythmia during electrical programmed heart stimulation using dobutamine or isoproterenol. Dobutamine may be safe and may be successfully used as an alternative to isoproterenol for arrhythmia induction during electrical programmed stimulation

  14. High frequency repetitive sensory stimulation improves temporal discrimination in healthy subjects.

    Science.gov (United States)

    Erro, Roberto; Rocchi, Lorenzo; Antelmi, Elena; Palladino, Raffaele; Tinazzi, Michele; Rothwell, John; Bhatia, Kailash P

    2016-01-01

    High frequency electrical stimulation of an area of skin on a finger improves two-point spatial discrimination in the stimulated area, likely depending on plastic changes in the somatosensory cortex. However, it is unknown whether improvement also applies to temporal discrimination. Twelve young and ten elderly volunteers underwent the stimulation protocol onto the palmar skin of the right index finger. Somatosensory temporal discrimination threshold (STDT) was evaluated before and immediately after stimulation as well as 2.5h and 24h later. There was a significant reduction in somatosensory temporal threshold only on the stimulated finger. The effect was reversible, with STDT returning to the baseline values within 24h, and was smaller in the elderly than in the young participants. High frequency stimulation of the skin focally improves temporal discrimination in the area of stimulation. Given previous suggestions that the perceptual effects rely on plastic changes in the somatosensory cortex, our results are consistent with the idea that the timing of sensory stimuli is, at least partially, encoded in the primary somatosensory cortex. Such a protocol could potentially be used as a therapeutic intervention to ameliorate physiological decline in the elderly or in other disorders of sensorimotor integration. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Relay protection features of frequency-adjustable electric drive

    Science.gov (United States)

    Kuprienko, V. V.

    2018-03-01

    The features of relay protection of high-voltage electric motors in composition of the frequency-adjustable electric drive are considered in the article. The influence of frequency converters on the stability of the operation of various types of relay protection used on electric motors is noted. Variants of circuits for connecting relay protection devices are suggested. The need to develop special relay protection devices for a frequency-adjustable electric drive is substantiated.

  16. Electric field stimulated growth of Zn whiskers

    Science.gov (United States)

    Niraula, D.; McCulloch, J.; Warrell, G. R.; Irving, R.; Karpov, V. G.; Shvydka, Diana

    2016-07-01

    We have investigated the impact of strong (˜104 V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  17. Electric field stimulated growth of Zn whiskers

    Energy Technology Data Exchange (ETDEWEB)

    Niraula, D.; McCulloch, J.; Irving, R.; Karpov, V. G. [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Warrell, G. R.; Shvydka, Diana, E-mail: diana.shvydka@utoledo.edu [Department of Radiation Oncology, University of Toledo Health Science Campus, Toledo, Ohio 43614 (United States)

    2016-07-15

    We have investigated the impact of strong (∼10{sup 4} V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  18. Time and frequency-dependent modulation of local field potential synchronization by deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Clinton B McCracken

    Full Text Available High-frequency electrical stimulation of specific brain structures, known as deep brain stimulation (DBS, is an effective treatment for movement disorders, but mechanisms of action remain unclear. We examined the time-dependent effects of DBS applied to the entopeduncular nucleus (EP, the rat homolog of the internal globus pallidus, a target used for treatment of both dystonia and Parkinson's disease (PD. We performed simultaneous multi-site local field potential (LFP recordings in urethane-anesthetized rats to assess the effects of high-frequency (HF, 130 Hz; clinically effective, low-frequency (LF, 15 Hz; ineffective and sham DBS delivered to EP. LFP activity was recorded from dorsal striatum (STR, ventroanterior thalamus (VA, primary motor cortex (M1, and the stimulation site in EP. Spontaneous and acute stimulation-induced LFP oscillation power and functional connectivity were assessed at baseline, and after 30, 60, and 90 minutes of stimulation. HF EP DBS produced widespread alterations in spontaneous and stimulus-induced LFP oscillations, with some effects similar across regions and others occurring in a region- and frequency band-specific manner. Many of these changes evolved over time. HF EP DBS produced an initial transient reduction in power in the low beta band in M1 and STR; however, phase synchronization between these regions in the low beta band was markedly suppressed at all time points. DBS also enhanced low gamma synchronization throughout the circuit. With sustained stimulation, there were significant reductions in low beta synchronization between M1-VA and STR-VA, and increases in power within regions in the faster frequency bands. HF DBS also suppressed the ability of acute EP stimulation to induce beta oscillations in all regions along the circuit. This dynamic pattern of synchronizing and desynchronizing effects of EP DBS suggests a complex modulation of activity along cortico-BG-thalamic circuits underlying the therapeutic

  19. Short-term low-frequency electrical stimulation enhanced remyelination of injured peripheral nerves by inducing the promyelination effect of brain-derived neurotrophic factor on Schwann cell polarization.

    Science.gov (United States)

    Wan, Lidan; Xia, Rong; Ding, Wenlong

    2010-09-01

    Electrical stimulation (ES) has been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. However, the effect of ES on peripheral remyelination after nerve damage has been investigated less well, and the mechanism underlying its action remains unclear. In the present study, the crush-injured sciatic nerves in rats were subjected to 1 hr of continuous ES (20 Hz, 100 microsec, 3 V). Electron microscopy and nerve morphometry were performed to investigate the extent of regenerated nerve myelination. The expression profiles of P0, Par-3, and brain-derived neurotrophic factor (BDNF) in the injuried sciatic nerves and in the dorsal root ganglion neuron/Schwann cell cocultures were examined by Western blotting. Par-3 localization in the sciatic nerves was determined by immunohistochemistry to demonstrate Schwann cell polarization during myelination. We reported that 20-Hz ES increased the number of myelinated fibers and the thickness myelin sheath at 4 and 8 weeks postinjury. P0 level in the ES-treated groups, both in vitro and in vivo, was enhanced compared with the controls. The earlier peak of Par-3 in the ES-treated groups indicated an earlier initiation of Schwann cell myelination. Additionally, ES significantly elevated BDNF expression in nerve tissues and in cocultures. ES on the site of nerve injury potentiates axonal regrowth and myelin maturation during peripheral nerve regeneration. Furthermore, the therapeutic actions of ES on myelination are mediated via enhanced BDNF signals, which drive the promyelination effect on Schwann cells at the onset of myelination.

  20. Modeling auditory-nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    2014-01-01

    μs, which is large enough to affect the temporal coding of sounds and hence, potentially, the communication abilities of the CI listener. In the present study, two recently proposed models of electric stimulation of the AN [1,2] were considered in terms of their efficacy to predict the spike timing...... for anodic and cathodic stimulation of the AN of cat [3]. The models’ responses to the electrical pulses of various shapes [4,5,6] were also analyzed. It was found that, while the models can account for the firing rates in response to various biphasic pulse shapes, they fail to correctly describe the timing......Cochlear implants (CI) directly stimulate the auditory nerve (AN), bypassing the mechano-electrical transduction in the inner ear. Trains of biphasic, charge balanced pulses (anodic and cathodic) are used as stimuli to avoid damage of the tissue. The pulses of either polarity are capable...

  1. Electrical stimulation counteracts muscle atrophy associated with aging in humans

    Directory of Open Access Journals (Sweden)

    Helmut Kern

    2013-07-01

    Full Text Available Functional and structural muscle decline is a major problem during aging. Our goal was to improve in old subjects quadriceps m. force and mobility functional performances (stair test, chair rise test, timed up and go test with neuromuscular electrical stimulation (9 weeks, 2-3times/week, 20-30 minutes per session. Furthermore we performed histological and biological molecular analyses of vastus lateralis m. biopsies. Our findings demonstrate that electrical stimulation significantly improved mobility functional performancies and muscle histological characteristics and molecular markers.

  2. Challenges associated with nerve conduction block using kilohertz electrical stimulation

    Science.gov (United States)

    Patel, Yogi A.; Butera, Robert J.

    2018-06-01

    Neuromodulation therapies, which electrically stimulate parts of the nervous system, have traditionally attempted to activate neurons or axons to restore function or alleviate disease symptoms. In stark contrast to this approach is inhibiting neural activity to relieve disease symptoms and/or restore homeostasis. One potential approach is kilohertz electrical stimulation (KES) of peripheral nerves—which enables a rapid, reversible, and localized block of conduction. This review highlights the existing scientific and clinical utility of KES and discusses the technical and physiological challenges that must be addressed for successful translation of KES nerve conduction block therapies.

  3. Enhancing vestibular function in the elderly with imperceptible electrical stimulation.

    Science.gov (United States)

    Serrador, Jorge M; Deegan, Brian M; Geraghty, Maria C; Wood, Scott J

    2018-01-10

    Age-related loss of vestibular function can result in decrements in gaze stabilization and increased fall risk in the elderly. This study was designed to see if low levels of electrical stochastic noise applied transcutaneously to the vestibular system can improve a gaze stabilization reflex in young and elderly subject groups. Ocular counter-rolling (OCR) using a video-based technique was obtained in 16 subjects during low frequency passive roll tilts. Consistent with previous studies, there was a significant reduction in OCR gains in the elderly compared to the young group. Imperceptible stochastic noise significantly increased OCR in the elderly (Mean 23%, CI: 17-35%). Increases in OCR gain were greatest for those with lowest baseline gain and were negligible in those with normal gain. Since stimulation was effective at low levels undetectable to subjects, stochastic noise may provide a new treatment alternative to enhance vestibular function, specifically otolith-ocular reflexes, in the elderly or patient populations with reduced otolith-ocular function.

  4. Feedback controlled electrical nerve stimulation: a computer simulation.

    Science.gov (United States)

    Doruk, R Ozgur

    2010-07-01

    The role of repetitive firing in neurophysiologic or neuropsychiatric disorders, such as Parkinson, epilepsy and bipolar type disorders, has always been a topic of medical research as therapies target either the cease of firing or a decrease in its frequency. In electrotherapy, one of the mechanisms to achieve the purpose in point is to apply a low density electric current to the nervous system. In this study, a computer simulation is provided of a treatment in which the stimulation current is computed by nerve fiber cell membrane potential feedback so that the level of the current is automatically instead of manually adjusted. The behavior of the nerve cell is represented by the Hodgkin-Huxley (HH) model, which is slightly modified into a linear model with state dependent coefficients. Due to this modification, the algebraic and differential Riccati equations can be applied, which allows an optimal controller minimizing a quadratic performance index given by the user. Using a controlled current injection can decrease unnecessarily long current injection times that may be harmful to the neuronal network. This study introduces a prototype for a possible future application to a network of neurons as it is more realistic than a single neuron. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Communication calls produced by electrical stimulation of four structures in the guinea pig brain

    Science.gov (United States)

    Green, David B.; Shackleton, Trevor M.; Grimsley, Jasmine M. S.; Zobay, Oliver; Palmer, Alan R.

    2018-01-01

    One of the main central processes affecting the cortical representation of conspecific vocalizations is the collateral output from the extended motor system for call generation. Before starting to study this interaction we sought to compare the characteristics of calls produced by stimulating four different parts of the brain in guinea pigs (Cavia porcellus). By using anaesthetised animals we were able to reposition electrodes without distressing the animals. Trains of 100 electrical pulses were used to stimulate the midbrain periaqueductal grey (PAG), hypothalamus, amygdala, and anterior cingulate cortex (ACC). Each structure produced a similar range of calls, but in significantly different proportions. Two of the spontaneous calls (chirrup and purr) were never produced by electrical stimulation and although we identified versions of chutter, durr and tooth chatter, they differed significantly from our natural call templates. However, we were routinely able to elicit seven other identifiable calls. All seven calls were produced both during the 1.6 s period of stimulation and subsequently in a period which could last for more than a minute. A single stimulation site could produce four or five different calls, but the amygdala was much less likely to produce a scream, whistle or rising whistle than any of the other structures. These three high-frequency calls were more likely to be produced by females than males. There were also differences in the timing of the call production with the amygdala primarily producing calls during the electrical stimulation and the hypothalamus mainly producing calls after the electrical stimulation. For all four structures a significantly higher stimulation current was required in males than females. We conclude that all four structures can be stimulated to produce fictive vocalizations that should be useful in studying the relationship between the vocal motor system and cortical sensory representation. PMID:29584746

  6. Communication calls produced by electrical stimulation of four structures in the guinea pig brain.

    Directory of Open Access Journals (Sweden)

    David B Green

    Full Text Available One of the main central processes affecting the cortical representation of conspecific vocalizations is the collateral output from the extended motor system for call generation. Before starting to study this interaction we sought to compare the characteristics of calls produced by stimulating four different parts of the brain in guinea pigs (Cavia porcellus. By using anaesthetised animals we were able to reposition electrodes without distressing the animals. Trains of 100 electrical pulses were used to stimulate the midbrain periaqueductal grey (PAG, hypothalamus, amygdala, and anterior cingulate cortex (ACC. Each structure produced a similar range of calls, but in significantly different proportions. Two of the spontaneous calls (chirrup and purr were never produced by electrical stimulation and although we identified versions of chutter, durr and tooth chatter, they differed significantly from our natural call templates. However, we were routinely able to elicit seven other identifiable calls. All seven calls were produced both during the 1.6 s period of stimulation and subsequently in a period which could last for more than a minute. A single stimulation site could produce four or five different calls, but the amygdala was much less likely to produce a scream, whistle or rising whistle than any of the other structures. These three high-frequency calls were more likely to be produced by females than males. There were also differences in the timing of the call production with the amygdala primarily producing calls during the electrical stimulation and the hypothalamus mainly producing calls after the electrical stimulation. For all four structures a significantly higher stimulation current was required in males than females. We conclude that all four structures can be stimulated to produce fictive vocalizations that should be useful in studying the relationship between the vocal motor system and cortical sensory representation.

  7. Communication calls produced by electrical stimulation of four structures in the guinea pig brain.

    Science.gov (United States)

    Green, David B; Shackleton, Trevor M; Grimsley, Jasmine M S; Zobay, Oliver; Palmer, Alan R; Wallace, Mark N

    2018-01-01

    One of the main central processes affecting the cortical representation of conspecific vocalizations is the collateral output from the extended motor system for call generation. Before starting to study this interaction we sought to compare the characteristics of calls produced by stimulating four different parts of the brain in guinea pigs (Cavia porcellus). By using anaesthetised animals we were able to reposition electrodes without distressing the animals. Trains of 100 electrical pulses were used to stimulate the midbrain periaqueductal grey (PAG), hypothalamus, amygdala, and anterior cingulate cortex (ACC). Each structure produced a similar range of calls, but in significantly different proportions. Two of the spontaneous calls (chirrup and purr) were never produced by electrical stimulation and although we identified versions of chutter, durr and tooth chatter, they differed significantly from our natural call templates. However, we were routinely able to elicit seven other identifiable calls. All seven calls were produced both during the 1.6 s period of stimulation and subsequently in a period which could last for more than a minute. A single stimulation site could produce four or five different calls, but the amygdala was much less likely to produce a scream, whistle or rising whistle than any of the other structures. These three high-frequency calls were more likely to be produced by females than males. There were also differences in the timing of the call production with the amygdala primarily producing calls during the electrical stimulation and the hypothalamus mainly producing calls after the electrical stimulation. For all four structures a significantly higher stimulation current was required in males than females. We conclude that all four structures can be stimulated to produce fictive vocalizations that should be useful in studying the relationship between the vocal motor system and cortical sensory representation.

  8. Sensory electrical stimulation for suppression of postural tremor in patients with essential tremor.

    Science.gov (United States)

    Heo, Jae-Hoon; Kim, Ji-Won; Kwon, Yuri; Lee, Sang-Ki; Eom, Gwang-Moon; Kwon, Do-Young; Lee, Chan-Nyeong; Park, Kun-Woo; Manto, Mario

    2015-01-01

    Essential tremor is an involuntary trembling of body limbs in people without tremor-related disease. In previous study, suppression of tremor by sensory electrical stimulation was confirmed on the index finger. This study investigates the effect of sensory stimulation on multiple segments and joints of the upper limb. It denotes the observation regarding the effect's continuity after halting the stimulation. 18 patients with essential tremor (8 men and 10 women) participated in this study. The task, "arms stretched forward", was performed and sensory electrical stimulation was applied on four muscles of the upper limb (Flexor Carpi Radialis, Extensor Carpi Radialis, Biceps Brachii, and Triceps Brachii) for 15 seconds. Three 3-D gyro sensors were used to measure the angular velocities of segments (finger, hand, and forearm) and joints (metacarpophalangeal and wrist joints) for three phases of pre-stimulation (Pre), during-stimulation (On), and 5 minute post-stimulation (P5). Three characteristic variables of root-mean-squared angular velocity, peak power, and peak power frequency were derived from the vector sum of the sensor signals. At On phase, RMS velocity was reduced from Pre in all segments and joints while peak power was reduced from Pre in all segments and joints except for forearm segment. Sensory stimulation showed no effect on peak power frequency. All variables at P5 were similar to those at On at all segments and joints. The decrease of peak power of the index finger was noted by 90% during stimulation from that of On phase, which was maintained even after 5 min. The results indicate that sensory stimulation may be an effective clinical method to treat the essential tremor.

  9. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal.

    Science.gov (United States)

    Bickel, C Scott; Gregory, Chris M; Dean, Jesse C

    2011-10-01

    Neuromuscular electrical stimulation (NMES) is commonly used in clinical settings to activate skeletal muscle in an effort to mimic voluntary contractions and enhance the rehabilitation of human skeletal muscles. It is also used as a tool in research to assess muscle performance and/or neuromuscular activation levels. However, there are fundamental differences between voluntary- and artificial-activation of motor units that need to be appreciated before NMES protocol design can be most effective. The unique effects of NMES have been attributed to several mechanisms, most notably, a reversal of the voluntary recruitment pattern that is known to occur during voluntary muscle contractions. This review outlines the assertion that electrical stimulation recruits motor units in a nonselective, spatially fixed, and temporally synchronous pattern. Additionally, it synthesizes the evidence that supports the contention that this recruitment pattern contributes to increased muscle fatigue when compared with voluntary actions and provides some commentary on the parameters of electrical stimulation as well as emerging technologies being developed to facilitate NMES implementation. A greater understanding of how electrical stimulation recruits motor units, as well as the benefits and limitations of its use, is highly relevant when using this tool for testing and training in rehabilitation, exercise, and/or research.

  10. Bio mathematical aspects of chronic cardiac electric stimulation

    International Nuclear Information System (INIS)

    Suarez Antola, R

    1984-01-01

    In the framework a mathematical model of the electrode-tissue system new several concepts are introduced(global versus local threshold variables,critical region for electric stimulation,mechanical hysteresis amongst others) several well known facts are explained,and some guidelines for electrode design are derived

  11. Electrical field stimulation-induced excitatory responses of ...

    African Journals Online (AJOL)

    effect of the endothelium on electrical field stimulation (EFS)-induced excitatory responses of pulmonary artery segments from pulmonary hypertensive rats. Methods: Pulmonary hypertension was induced in rats with a single dose of monocrotaline (60 mg/kg) and 21 days later, arterial rings were set up for isometric tension ...

  12. Effect of electrical stimulation of carcasses from Dorper sheep with ...

    African Journals Online (AJOL)

    Three consumer sensory tests, namely the hedonic rating of the acceptability of each sensory attribute, a preference test and a food action rating test, were conducted in sequence. The acceptability of the juiciness, tenderness, flavour and overall acceptability were not significantly influenced by the electrical stimulation of ...

  13. Pharyngeal Electrical Stimulation for Treatment of Dysphagia in Subacute Stroke

    DEFF Research Database (Denmark)

    Bath, Philip M W; Scutt, Polly; Love, Jo

    2016-01-01

    BACKGROUND AND PURPOSE: Dysphagia is common after stroke, associated with increased death and dependency, and treatment options are limited. Pharyngeal electric stimulation (PES) is a novel treatment for poststroke dysphagia that has shown promise in 3 pilot randomized controlled trials. METHODS...

  14. Comparison of the Effect of Neuromuscular Electrical Stimulation ...

    African Journals Online (AJOL)

    Children with cerebral palsy (CP) often demonstrate poor hand function due to spasticity. Thus spasticity in the wrist and finger flexors poses a great deal of functional limitations. This study was therefore designed to compare the effectiveness of Cryotherapy and Neuromuscular Electrical Stimulation (NMES) on spasticity ...

  15. Electric stimulation with sinusoids and white noise for neural prostheses

    Directory of Open Access Journals (Sweden)

    Daniel K Freeman

    2010-02-01

    Full Text Available We are investigating the use of novel stimulus waveforms in neural prostheses to determine whether they can provide more precise control over the temporal and spatial pattern of elicited activity as compared to conventional pulsatile stimulation. To study this, we measured the response of retinal ganglion cells to both sinusoidal and white noise waveforms. The use of cell-attached and whole cell patch clamp recordings allowed the responses to be observed without significant obstruction from the stimulus artifact. Electric stimulation with sinusoids elicited robust responses. White noise analysis was used to derive the linear kernel for the ganglion cell’s spiking response as well as for the underlying excitatory currents. These results suggest that in response to electric stimulation, presynaptic retinal neurons exhibit bandpass filtering characteristics with peak response that occur 25ms after onset. The experimental approach demonstrated here may be useful for studying the temporal response properties of other neurons in the CNS.

  16. Real-time CARS imaging reveals a calpain-dependent pathway for paranodal myelin retraction during high-frequency stimulation.

    Directory of Open Access Journals (Sweden)

    Terry B Huff

    2011-03-01

    Full Text Available High-frequency electrical stimulation is becoming a promising therapy for neurological disorders, however the response of the central nervous system to stimulation remains poorly understood. The current work investigates the response of myelin to electrical stimulation by laser-scanning coherent anti-Stokes Raman scattering (CARS imaging of myelin in live spinal tissues in real time. Paranodal myelin retraction at the nodes of Ranvier was observed during 200 Hz electrical stimulation. Retraction was seen to begin minutes after the onset of stimulation and continue for up to 10 min after stimulation was ceased, but was found to reverse after a 2 h recovery period. The myelin retraction resulted in exposure of Kv 1.2 potassium channels visualized by immunofluorescence. Accordingly, treating the stimulated tissue with a potassium channel blocker, 4-aminopyridine, led to the appearance of a shoulder peak in the compound action potential curve. Label-free CARS imaging of myelin coupled with multiphoton fluorescence imaging of immuno-labeled proteins at the nodes of Ranvier revealed that high-frequency stimulation induced paranodal myelin retraction via pathologic calcium influx into axons, calpain activation, and cytoskeleton degradation through spectrin break-down.

  17. Power amplifier circuits for functional electrical stimulation systems

    Directory of Open Access Journals (Sweden)

    Delmar Carvalho de Souza

    Full Text Available Abstract Introduction: Functional electrical stimulation (FES is a technique that has been successfully employed in rehabilitation treatment to mitigate problems after spinal cord injury (SCI. One of the most relevant modules in a typical FES system is the power or output amplifier stage, which is responsible for the application of voltage or current pulses of proper intensity to the biological tissue, applied noninvasively via electrodes, placed on the skin surface or inside the muscular tissue, closer to the nervous fibers. The goals of this paper are to describe and discuss about the main power output designs usually employed in transcutaneous functional electrical stimulators as well as safety precautions taken to protect patients. Methods A systematic review investigated the circuits of papers published in IEEE Xplore and ScienceDirect databases from 2000 to 2016. The query terms were “((FES or Functional electric stimulator and (circuit or design” with 274 papers retrieved from IEEE Xplore and 29 from ScienceDirect. After the application of exclusion criteria the amount of papers decreased to 9 and 2 from IEEE Xplore and ScienceDirect, respectively. One paper was inserted in the results as a technological contribution to the field. Therefore, 12 papers presented power stage circuits suitable to stimulate great muscles. Discussion The retrieved results presented relevant circuits with different electronic strategies and circuit components. Some of them considered patient safety strategies or aimed to preserve muscle homeostasis such as biphasic current application, which prevents charge accumulation in stimulated tissues as well as circuits that dealt with electrical impedance variation to keep the electrode-tissue interface within an electrochemical safe regime. The investigation revealed a predominance of design strategies using operational amplifiers in power circuits, current outputs, and safety methods to reduce risks of electrical

  18. Electric field calculations in brain stimulation based on finite elements

    DEFF Research Database (Denmark)

    Windhoff, Mirko; Opitz, Alexander; Thielscher, Axel

    2013-01-01

    The need for realistic electric field calculations in human noninvasive brain stimulation is undisputed to more accurately determine the affected brain areas. However, using numerical techniques such as the finite element method (FEM) is methodologically complex, starting with the creation...... of accurate head models to the integration of the models in the numerical calculations. These problems substantially limit a more widespread application of numerical methods in brain stimulation up to now. We introduce an optimized processing pipeline allowing for the automatic generation of individualized...... the successful usage of the pipeline in six subjects, including field calculations for transcranial magnetic stimulation and transcranial direct current stimulation. The quality of the head volume meshes is validated both in terms of capturing the underlying anatomy and of the well-shapedness of the mesh...

  19. Electrical Stimulation of Coleopteran Muscle for Initiating Flight.

    Science.gov (United States)

    Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka

    2016-01-01

    Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (cyborg insects or biobots.

  20. Effects of Electrical Stimulation in Sympathetic Neuron-Cardiomyocyte Co-cultures

    Science.gov (United States)

    Takeuchi, Akimasa; Tani, Hiromasa; Mori, Masahide; Moriguchi, Hiroyuki; Kotani, Kiyoshi; Lee, Jong-Kook; Noshiro, Makoto; Jimbo, Yasuhiko

    The sympathetic nervous system is one of the principal sources for regulating cardiovascular functions. Little is known, however, about the network-level interactions between sympathetic neurons and cardiomyocytes. In this study, a semi-separated co-culture system of superior cervical ganglion (SCG) neurons and ventricular myocytes (VMs) was developed by using a polydimethylsyloxane (PDMS) chamber placed on a microelectrode-array (MEA) substrate. Neurites of SCG neurons passed through a conduit of the chamber and reached VMs. Evoked activities of SCG neurons were observed from several electrodes immediately after applying constant-voltage stimulation (1 V, 1 ms, biphasic square pulses) to SCG neurons by using 32 electrodes. Furthermore, this stimulation was applied to SCG neurons at the frequency of 1, 5 and 10 Hz. After applying these three kinds of stimulations, mean minute contraction rate of VMs increased with an increase in the frequency of stimulation. These results suggest that changes in contraction rate of VMs after applying electrical stimulations to SCG neurons depend on frequencies of these stimulations and that the heart-regulating mechanisms as well as that in the body were formed in this co-culture system.

  1. Electrical Stimulation of Coleopteran Muscle for Initiating Flight.

    Directory of Open Access Journals (Sweden)

    Hao Yu Choo

    Full Text Available Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera. A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs, flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%, rapid response time (< 1.0 s, and small variation (< 0.33 s; indicating little habituation. Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots.

  2. Electrical stimulation of the dorsolateral prefrontal cortex improves memory monitoring.

    Science.gov (United States)

    Chua, Elizabeth F; Ahmed, Rifat

    2016-05-01

    The ability to accurately monitor one's own memory is an important feature of normal memory function. Converging evidence from neuroimaging and lesion studies have implicated the dorsolateral prefrontal cortex (DLPFC) in memory monitoring. Here we used high definition transcranial direct stimulation (HD-tDCS), a non-invasive form of brain stimulation, to test whether the DLPFC has a causal role in memory monitoring, and the nature of that role. We used a metamemory monitoring task, in which participants first attempted to recall the answer to a general knowledge question, then gave a feeling-of-knowing (FOK) judgment, followed by a forced choice recognition task. When participants received DLPFC stimulation, their feeling-of-knowing judgments were better predictors of memory performance, i.e., they had better memory monitoring accuracy, compared to stimulation of a control site, the anterior temporal lobe (ATL). Effects of DLPFC stimulation were specific to monitoring accuracy, as there was no significant increase in memory performance, and if anything, there was poorer memory performance with DLPFC stimulation. Thus we have demonstrated a causal role for the DLPFC in memory monitoring, and showed that electrically stimulating the left DLPFC led people to more accurately monitor and judge their own memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates

    DEFF Research Database (Denmark)

    Opitz, Alexander; Falchier, Arnaud; Yan, Chao-Gan

    2016-01-01

    Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reac...

  4. Effect of bilateral subthalamic electrical stimulation in Parkinson's disease.

    Science.gov (United States)

    Broggi, G; Franzini, A; Ferroli, P; Servello, D; D'Incerti, L; Genitrini, S; Soliveri, P; Girotti, F; Caraceni, T

    2001-08-01

    Bilateral high frequency subthalamic stimulation has been reported to be effective in the treatment of Parkinson's disease and levodopa-induced dyskinesias. To analyze the results of this surgical procedure we critically reviewed 17 parkinsonian patients with advanced disease complicated by motor fluctuations and dyskinesias. Between January 1998 and June 1999 these 17 consecutive patients (age 48-68 years; illness duration 8-27 years) underwent bilateral stereotactically guided implantation of electrodes into the subthalamic nucleus in the Department of Neurosurgery of the Istituto Nazionale Neurologico "C. Besta." Parameters used for continuous high-frequency stimulation were: frequency 160 Hz, pulse width 90 microsec, mean amplitude 2.05 +/- 0.45 V. Parts II and III of the UPDRS were used to assess motor performance before and after operation by the neurologic team. The follow-up ranged between 6 and 18 months. At latest examination, mean UPDRS II and III scores had improved by 30% (on stimulation, off therapy) with mean 50% reduction in daily off time. Peak dyskinesias and early morning dystonias also improved in relation to therapy reduction. Side effects were persistent postoperative supranuclear oculomotor palsy and postural instability in one case, worsened off-medication hypophonia in three, and temporary nocturnal confusion episodes in three. Postoperative MRI revealed a clinically silent intracerebral haematoma in one case. One electrode required repositioning. Continuous high frequency STN stimulation is an effective treatment for advanced PD. A functionally useful and safe electrode placement can be performed without microrecording.

  5. Emerging modalities in dysphagia rehabilitation: neuromuscular electrical stimulation.

    Science.gov (United States)

    Huckabee, Maggie-Lee; Doeltgen, Sebastian

    2007-10-12

    The aim of this review article is to advise the New Zealand medical community about the application of neuromuscular electrical stimulation (NMES) as a treatment for pharyngeal swallowing impairment (dysphagia). NMES in this field of rehabilitation medicine has quickly emerged as a widely used method overseas but has been accompanied by significant controversy. Basic information is provided about the physiologic background of electrical stimulation. The literature reviewed in this manuscript was derived through a computer-assisted search using the biomedical database Medline to identify all relevant articles published until from the initiation of the databases up to January 2007. The reviewers used the following search strategy: [(deglutition disorders OR dysphagia) AND (neuromuscular electrical stimulation OR NMES)]. In addition, the technique of reference tracing was used and very recently published studies known to the authors but not yet included in the database systems were included. This review elucidates not only the substantive potential benefit of this treatment, but also potential key concerns for patient safety and long term outcome. The discussion within the clinical and research communities, especially around the commercially available VitalStim stimulator, is objectively explained.

  6. ELECTRICAL MUSCLE STIMULATION (EMS IMPLEMENTATION IN EXPLOSIVE STRENGTH DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Zoran Đokić

    2013-07-01

    Full Text Available Electrical muscle stimulation (EMS, is also known as neuromuscular electrical stimulation (NMES may be used for therapeutic purposes and training. EMS is causing muscle contractions via electrical impulses. The survey was conducted as a case study. The study was conducted on subject of 3 male of different ages. The study lasted 4 weeks, and the respondents have not used any type of training or activity, which would affect the development of explosive strength of the lower extremities. Electrical stimulation was performed in the evening, every other day, with COMPEX mi sport apparatus (Medical SA - All rights reserved - 07/06 - Art. 885,616 - V.2 model. In 4 week period, a total of 13 treatments were performed on selected muscle groups - quadriceps femoris and gastrocnemius. Program of plyometric training (Plyometric (28 min per treatment, for each muscle group were applied. The main objective of this study was to quantify and compare explosive leg strength, using different vertical jump protocols, before and after the EMS program. The initial and final testing was conducted in the laboratory of the Faculty of Sport and Tourism in Novi Sad, on the contact plate AXON JUMP (Bioingeniería Deportiva, VACUMED, 4538 Westinghouse Street Ventura, CA 93 003 under identical conditions. In all three of the respondents indicated an increase in vertical jump in all applied protocols.

  7. Electrical stimulation of dog pudendal nerve regulates the excitatory pudendal-to-bladder reflex

    Directory of Open Access Journals (Sweden)

    Yan-he Ju

    2016-01-01

    Full Text Available Pudendal nerve plays an important role in urine storage and voiding. Our hypothesis is that a neuroprosthetic device placed in the pudendal nerve trunk can modulate bladder function after suprasacral spinal cord injury. We had confirmed the inhibitory pudendal-to-bladder reflex by stimulating either the branch or the trunk of the pudendal nerve. This study explored the excitatory pudendal-to-bladder reflex in beagle dogs, with intact or injured spinal cord, by electrical stimulation of the pudendal nerve trunk. The optimal stimulation frequency was approximately 15-25 Hz. This excitatory effect was dependent to some extent on the bladder volume. We conclude that stimulation of the pudendal nerve trunk is a promising method to modulate bladder function.

  8. Alternating current electrical stimulation enhanced chemotherapy: a novel strategy to bypass multidrug resistance in tumor cells

    International Nuclear Information System (INIS)

    Janigro, Damir; Perju, Catalin; Fazio, Vincent; Hallene, Kerri; Dini, Gabriele; Agarwal, Mukesh K; Cucullo, Luca

    2006-01-01

    Tumor burden can be pharmacologically controlled by inhibiting cell division and by direct, specific toxicity to the cancerous tissue. Unfortunately, tumors often develop intrinsic pharmacoresistance mediated by specialized drug extrusion mechanisms such as P-glycoprotein. As a consequence, malignant cells may become insensitive to various anti-cancer drugs. Recent studies have shown that low intensity very low frequency electrical stimulation by alternating current (AC) reduces the proliferation of different tumor cell lines by a mechanism affecting potassium channels while at intermediate frequencies interfere with cytoskeletal mechanisms of cell division. The aim of the present study is to test the hypothesis that permeability of several MDR1 over-expressing tumor cell lines to the chemotherapic agent doxorubicin is enhanced by low frequency, low intensity AC stimulation. We grew human and rodent cells (C6, HT-1080, H-1299, SKOV-3 and PC-3) which over-expressed MDR1 in 24-well Petri dishes equipped with an array of stainless steel electrodes connected to a computer via a programmable I/O board. We used a dedicated program to generate and monitor the electrical stimulation protocol. Parallel cultures were exposed for 3 hours to increasing concentrations (1, 2, 4, and 8 μM) of doxorubicin following stimulation to 50 Hz AC (7.5 μA) or MDR1 inhibitor XR9576. Cell viability was assessed by determination of adenylate kinase (AK) release. The relationship between MDR1 expression and the intracellular accumulation of doxorubicin as well as the cellular distribution of MDR1 was investigated by computerized image analysis immunohistochemistry and Western blot techniques. By the use of a variety of tumor cell lines, we show that low frequency, low intensity AC stimulation enhances chemotherapeutic efficacy. This effect was due to an altered expression of intrinsic cellular drug resistance mechanisms. Immunohistochemical, Western blot and fluorescence analysis revealed

  9. Transcutaneous electrical nerve stimulation (TENS) for pain management in labour

    Science.gov (United States)

    Dowswell, Therese; Bedwell, Carol; Lavender, Tina; Neilson, James P

    2014-01-01

    Background Transcutaneous nerve stimulation (TENS) has been proposed as a means of reducing pain in labour. The TENS unit emits low-voltage electrical impulses which vary in frequency and intensity. During labour, TENS electrodes are generally placed on the lower back, although TENS may be used to stimulate acupuncture points or other parts of the body. The physiological mechanisms whereby TENS relieves pain are uncertain. TENS machines are frequently operated by women, which may increase a sense of control in labour. Objectives To assess the effects of TENS on pain in labour. Search methods We searched the Cochrane Pregnancy and Childbirth Group’s Trials Register (30 April 2011) and reference lists of retrieved papers. Selection criteria Randomised controlled trials comparing women receiving TENS for pain management in labour versus routine care, alternative non-pharmacological methods of pain relief, or placebo devices. We included all types of TENS machines. Data collection and analysis Two review authors assessed for inclusion all trials identified by the search strategy, carried out data extraction and assessed risk of bias. We have recorded reasons for excluding studies. Main results Seventeen trials with 1466 women contribute data to the review. Thirteen examined TENS applied to the back, two to acupuncture points, and two to the cranium. Overall, there was little difference in pain ratings between TENS and control groups, although women receiving TENS to acupuncture points were less likely to report severe pain (average risk ratio 0.41, 95% confidence interval 0.31 to 0.54; measured in two studies). The majority of women using TENS said they would be willing to use it again in a future labour. Where TENS was used as an adjunct to epidural analgesia there was no evidence that it reduced pain. There was no consistent evidence that TENS had any impact on interventions and outcomes in labour. There was little information on outcomes for mothers and babies. No

  10. Transcutaneous electrical nerve stimulation (TENS) for pain relief in labour.

    Science.gov (United States)

    Dowswell, Therese; Bedwell, Carol; Lavender, Tina; Neilson, James P

    2009-04-15

    Transcutaneous nerve stimulation (TENS) has been proposed as a means of reducing pain in labour. The TENS unit emits low-voltage electrical impulses which vary in frequency and intensity. During labour, TENS electrodes are generally placed on the lower back, although TENS may be used to stimulate acupuncture points or other parts of the body. The physiological mechanisms whereby TENS relieves pain are uncertain. The TENS unit is frequently operated by women, which may increase sense of control in labour. To assess the effects of TENS on pain in labour. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (November 2008). Randomised controlled trials comparing women receiving TENS for pain relief in labour versus routine care, alternative pharmacological methods of pain relief, or placebo devices. We included all types of TENS machines. Two review authors assessed for inclusion all trials identified by the search strategy, carried out data extraction and assessed risk of bias. We have recorded reasons for excluding studies. The search identified 25 studies; we excluded six and included 19 studies including 1671 women. Fifteen examined TENS applied to the back, two to acupuncture points and two to the cranium. Overall, there was little difference in pain ratings between TENS and control groups, although women receiving TENS to acupuncture points were less likely to report severe pain (risk ratio 0.41, 95% confidence interval 0.32 to 0.55). The majority of women using TENS said they would be willing to use it again in a future labour. Where TENS was used as an adjunct to epidural analgesia there was no evidence that it reduced pain. There was no consistent evidence that TENS had any impact on interventions and outcomes in labour. There was little information on outcomes for mothers and babies. No adverse events were reported. There is only limited evidence that TENS reduces pain in labour and it does not seem to have any impact (either positive or

  11. Auditory steady-state responses in cochlear implant users: Effect of modulation frequency and stimulation artifacts.

    Science.gov (United States)

    Gransier, Robin; Deprez, Hanne; Hofmann, Michael; Moonen, Marc; van Wieringen, Astrid; Wouters, Jan

    2016-05-01

    Previous studies have shown that objective measures based on stimulation with low-rate pulse trains fail to predict the threshold levels of cochlear implant (CI) users for high-rate pulse trains, as used in clinical devices. Electrically evoked auditory steady-state responses (EASSRs) can be elicited by modulated high-rate pulse trains, and can potentially be used to objectively determine threshold levels of CI users. The responsiveness of the auditory pathway of profoundly hearing-impaired CI users to modulation frequencies is, however, not known. In the present study we investigated the responsiveness of the auditory pathway of CI users to a monopolar 500 pulses per second (pps) pulse train modulated between 1 and 100 Hz. EASSRs to forty-three modulation frequencies, elicited at the subject's maximum comfort level, were recorded by means of electroencephalography. Stimulation artifacts were removed by a linear interpolation between a pre- and post-stimulus sample (i.e., blanking). The phase delay across modulation frequencies was used to differentiate between the neural response and a possible residual stimulation artifact after blanking. Stimulation artifacts were longer than the inter-pulse interval of the 500pps pulse train for recording electrodes ipsilateral to the CI. As a result the stimulation artifacts could not be removed by artifact removal on the bases of linear interpolation for recording electrodes ipsilateral to the CI. However, artifact-free responses could be obtained in all subjects from recording electrodes contralateral to the CI, when subject specific reference electrodes (Cz or Fpz) were used. EASSRs to modulation frequencies within the 30-50 Hz range resulted in significant responses in all subjects. Only a small number of significant responses could be obtained, during a measurement period of 5 min, that originate from the brain stem (i.e., modulation frequencies in the 80-100 Hz range). This reduced synchronized activity of brain stem

  12. Interaction of transcranial magnetic stimulation and electrical transmastoid stimulation in human subjects

    DEFF Research Database (Denmark)

    Taylor, Janet L; Petersen, Nicolas Caesar; Butler, Jane E

    2002-01-01

    Transcranial magnetic stimulation activates corticospinal neurones directly and transsynaptically and hence, activates motoneurones and results in a response in the muscle. Transmastoid stimulation results in a similar muscle response through activation of axons in the spinal cord. This study...... was designed to determine whether the two stimuli activate the same descending axons. Responses to transcranial magnetic stimuli paired with electrical transmastoid stimuli were examined in biceps brachii in human subjects. Twelve interstimulus intervals (ISIs) from -6 ms (magnet before transmastoid) to 5 ms......-wave, facilitation still occurred at ISIs of -6 and -5 ms and depression of the paired response at ISIs of 0, 1, 4 and 5 ms. The interaction of the response to transmastoid stimulation with the multiple descending volleys elicited by magnetic stimulation of the cortex is complex. However, depression of the response...

  13. Electrically responsive microstructured polypyrrole-polyurethane composites for stimulated osteogenesis

    Science.gov (United States)

    Luculescu, Catalin Romeo; Acasandrei, Adriana Maria; Mustaciosu, Cosmin Catalin; Zamfirescu, Marian; Dinescu, Maria; Calin, Bogdan Stefanita; Popescu, Andrei; Chioibasu, Diana; Cristian, Dan; Paun, Irina Alexandra

    2018-03-01

    In this work, we demonstrate the efficiency of substrate-mediated electrical stimulation of micropatterned polypyrrole/polyurethane (PPy/PU) composites for enhancing the osteogenesis in osteoblast-like cells. The PPy/PU substrates were obtained by dispersing electrically conductive PPy nanograins within a mechanically resistant PU matrix. Spin-coated PPy/PU layers were micropatterned with predefined 3D geometries by ultrashort laser ablation. Then they were conformally coated by Matrix Assisted Pulsed Laser Evaporation, in order to restore their chemical and electrical integrity. The chemical structure of the laser-processed PPy/PU substrates was investigated by 2D and 3D mapping of the laser-processed areas, via Raman microspectroscopy. In vitro studies revealed that the micropatterned PPy/PU substrates facilitated the topological and electrical communication of the seeded osteoblasts. Specifically, we demonstrated the cells attachment on the predefined 3D micropatterns. More importantly, we found evidence about the cells mineralization inside the 3D micropatterns by investigating the calcium deposits by Energy-Dispersive X-Ray Spectroscopy (EDS) and Alizarin Red staining. We found that the substrate-mediated electrical stimulation of the PPy/PU substrates induced a twofold increase of the Ca deposits in the cultured cells.

  14. Neuromuscular Electrical Stimulation for Mobility Support of Elderly.

    Science.gov (United States)

    Mayr, Winfried

    2015-08-24

    The stimulator for neuromuscular electrical stimulation for mobility support of elderly is not very complicated, but for application within "MOBIL" we have some additional demands to fulfill. First we have specific safety issues for this user group. A powerful compliance management system is crucial not only to guide daily application, but for creating hard data for the scientific outcome. We also need to assure easy handling of the stimulator, because the subjects are generally not able to cope with too difficult and complex motor skills. So, we developed five generations of stimulators and optimizing solutions after field tests. We are already planning the sixth generation with wireless control of the stimulation units by the central main handheld control unit. In a prototype, we have implemented a newly available high capacity memory, a breakthrough in "compliance data storage" as they offer the necessary high storage capacity and fast data handling for an affordable prize. The circuit also contains a 3D accelerometer sensor which acts as a further important safety features: if the control unit drops, this event is detected automatically by the sensor and activates an emergency switch-off that disables the stimulation to avoid associated risks. Further, we have implemented a hardware emergence shutdown and other safety measures. Finally, in the last example muscle torque measurements are referenced with compliance data. In the study normalized maximum voluntary contraction (MVC) and maximum stimulation induced contraction (MSC) were assessed in regular check-ups along the training period. With additional consideration of adjusted stimulation intensity for training out of the compliance data records we are able to estimate the induced contraction strength, which turned out to amount in average 11% of MVC. This value may seem on a first sight rather low, and ought to be considered in relation to the results at the end of the training period. Therefore the

  15. Neuromuscular electrical stimulation for mobility support of elderly

    Directory of Open Access Journals (Sweden)

    Winfried Mayr

    2015-10-01

    Full Text Available The stimulator for neuromuscular electrical stimulation for mobility support of elderly is not very complicated, but for application within "MOBIL" we have some additional demands to fulfill. First we have specific safety issues for this user group. A powerful compliance management system is crucial not only to guide daily application, but for creating hard data for the scientific outcome. We also need to assure easy handling of the stimulator, because the subjects are generally not able to cope with too difficult and complex motor skills. So, we developed five generations of stimulators and optimizing solutions after field tests. We are already planning the sixth generation with wireless control of the stimulation units by the central main handheld control unit. In a prototype, we have implemented a newly available high capacity memory, a breakthrough in “compliance data storage” as they offer the necessary high storage capacity and fast data handling for an affordable prize. The circuit also contains a 3D accelerometer sensor which acts as a further important safety features: if the control unit drops, this event is detected automatically by the sensor and activates an emergency switch-off that disables the stimulation to avoid associated risks. Further, we have implemented a hardware emergence shutdown and other safety measures. Finally, in the last example muscle torque measurements are referenced with compliance data. In the study normalized maximum voluntary contraction (MVC and maximum stimulation induced contraction (MSC were assessed in regular check-ups along the training period. With additional consideration of adjusted stimulation intensity for training out of the compliance data records we are able to estimate the induced contraction strength, which turned out to amount in average 11% of MVC. This value may seem on a first sight rather low, and ought to be considered in relation to the results at the end of the training period

  16. Subthalamic nucleus high-frequency stimulation restores altered electrophysiological properties of cortical neurons in parkinsonian rat.

    Directory of Open Access Journals (Sweden)

    Bertrand Degos

    Full Text Available Electrophysiological recordings performed in parkinsonian patients and animal models have confirmed the occurrence of alterations in firing rate and pattern of basal ganglia neurons, but the outcome of these changes in thalamo-cortical networks remains unclear. Using rats rendered parkinsonian, we investigated, at a cellular level in vivo, the electrophysiological changes induced in the pyramidal cells of the motor cortex by the dopaminergic transmission interruption and further characterized the impact of high-frequency electrical stimulation of the subthalamic nucleus, a procedure alleviating parkinsonian symptoms. We provided evidence that a lesion restricted to the substantia nigra pars compacta resulted in a marked increase in the mean firing rate and bursting pattern of pyramidal neurons of the motor cortex. These alterations were underlain by changes of the electrical membranes properties of pyramidal cells including depolarized resting membrane potential and increased input resistance. The modifications induced by the dopaminergic loss were more pronounced in cortico-striatal than in cortico-subthalamic neurons. Furthermore, subthalamic nucleus high-frequency stimulation applied at parameters alleviating parkinsonian signs regularized the firing pattern of pyramidal cells and restored their electrical membrane properties.

  17. Automatic Calibration of High Density Electric Muscle Stimulation

    DEFF Research Database (Denmark)

    Knibbe, Jarrod; Strohmeier, Paul; Boring, Sebastian

    2017-01-01

    . (2) EMS requires time consuming, expert calibration -- confining these interaction techniques to the lab. EMS arrays have been shown to increase stimulation resolution, but as calibration complexity increases exponentially as more electrodes are used, we require heuristics or automated procedures......Electric muscle stimulation (EMS) can enable mobile force feedback, support pedestrian navigation, or confer object affordances. To date, however, EMS is limited by two interlinked problems. (1) EMS is low resolution -- achieving only coarse movements and constraining opportunities for exploration...... for successful calibration. We explore the feasibility of using electromyography (EMG) to auto-calibrate high density EMS arrays. We determine regions of muscle activity during human-performed gestures, to inform stimulation patterns for EMS-performed gestures. We report on a study which shows that auto...

  18. 3D stroke rehabilitation using electrical stimulation and robotics

    OpenAIRE

    Tong, Daisy; Cai, Zhonglun; Meadmore, Katie; Hughes, Anne-Marie; Freeman, Christopher; Burridge, Jane; Rogers, E

    2011-01-01

    Stroke is the third leading cause of death and foremost cause of adult disability in the UK. A third of the surviving patients suffer from some degree of motor disability and depend on others to undertake daily activities. Conventional rehabilitation can mitigate this disability, but only 5% of the severely paralysed patients regain full upper limb function. Past studies have shown evidence of more effective technologies such as rehabilitation robotics and functional electrical stimulation (F...

  19. The effect of surface electrical stimulation on vocal fold position.

    Science.gov (United States)

    Humbert, Ianessa A; Poletto, Christopher J; Saxon, Keith G; Kearney, Pamela R; Ludlow, Christy L

    2008-01-01

    Closure of the true and false vocal folds is a normal part of airway protection during swallowing. Individuals with reduced or delayed true vocal fold closure can be at risk for aspiration and may benefit from intervention to ameliorate the problem. Surface electrical stimulation is currently used during therapy for dysphagia, despite limited knowledge of its physiological effects. Prospective single effects study. The immediate physiological effect of surface stimulation on true vocal fold angle was examined at rest in 27 healthy adults using 10 different electrode placements on the submental and neck regions. Fiberoptic nasolaryngoscopic recordings during passive inspiration were used to measure change in true vocal fold angle with stimulation. Vocal fold angles changed only to a small extent during two electrode placements (P vocal fold abduction was 2.4 degrees; while horizontal placements of electrodes in the submental region produced a mean adduction of 2.8 degrees (P = .03). Surface electrical stimulation to the submental and neck regions does not produce immediate true vocal fold adduction adequate for airway protection during swallowing, and one position may produce a slight increase in true vocal fold opening.

  20. Direct Electrical Stimulation in the Human Brain Disrupts Melody Processing.

    Science.gov (United States)

    Garcea, Frank E; Chernoff, Benjamin L; Diamond, Bram; Lewis, Wesley; Sims, Maxwell H; Tomlinson, Samuel B; Teghipco, Alexander; Belkhir, Raouf; Gannon, Sarah B; Erickson, Steve; Smith, Susan O; Stone, Jonathan; Liu, Lynn; Tollefson, Trenton; Langfitt, John; Marvin, Elizabeth; Pilcher, Webster H; Mahon, Bradford Z

    2017-09-11

    Prior research using functional magnetic resonance imaging (fMRI) [1-4] and behavioral studies of patients with acquired or congenital amusia [5-8] suggest that the right posterior superior temporal gyrus (STG) in the human brain is specialized for aspects of music processing (for review, see [9-12]). Intracranial electrical brain stimulation in awake neurosurgery patients is a powerful means to determine the computations supported by specific brain regions and networks [13-21] because it provides reversible causal evidence with high spatial resolution (for review, see [22, 23]). Prior intracranial stimulation or cortical cooling studies have investigated musical abilities related to reading music scores [13, 14] and singing familiar songs [24, 25]. However, individuals with amusia (congenitally, or from a brain injury) have difficulty humming melodies but can be spared for singing familiar songs with familiar lyrics [26]. Here we report a detailed study of a musician with a low-grade tumor in the right temporal lobe. Functional MRI was used pre-operatively to localize music processing to the right STG, and the patient subsequently underwent awake intraoperative mapping using direct electrical stimulation during a melody repetition task. Stimulation of the right STG induced "music arrest" and errors in pitch but did not affect language processing. These findings provide causal evidence for the functional segregation of music and language processing in the human brain and confirm a specific role of the right STG in melody processing. VIDEO ABSTRACT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effectiveness of functional electrical stimulation (fes) versus conventional electrical stimulation in gait rehabilitation of patients with stroke

    International Nuclear Information System (INIS)

    Sharif, F.; Ghulam, S.; Malik, A.N.

    2017-01-01

    To compare the effectiveness of functional electrical stimulation (FES) versus conventional electrical stimulation in gait rehabilitation of patients with stroke for finding the most appropriate problem-oriented treatment for foot drop patients in a shorter time period. Study Design: Randomized controlled trial. Place and Duration of Study:Armed Forces Institute of Rehabilitation Medicine, Rawalpindi, from July to December 2016. Methodology: Subjects with foot drop due to stroke were allotted randomly into 1 of 2 groups receiving standard rehabilitation with Functional Electrical Stimulation (FES) or Electrical Muscle Stimulation (EMS). FES was applied on tibialis anterior 30 minutes/day, five days/week for six weeks. EMS was also applied on the tibialis anterior five days/week for six weeks. Outcome measures included Fugl-Meyer Assessment Scale, Modified Ashworth Scale, Berg Balance Scale (BBS), Time Up and Go Test (TUG) and Gait Dynamic Index (GDI). They were recorded at baseline, after 3 and 6 weeks. Pre- and post-treatment scores were analyzed between two groups on SPSS-20. Results: After six weeks of intervention, significant improvement was recorded in Fugl-Meyer Assessment score (p<0.001), modified Ashworth Scale score (p=0.027), Berg Balance Scale score (p<0.001), Time Up and Go Test (p<0.001) and Gait Dynamic Index (p=0.012) of the group subjected to FES. Conclusion: Gait training with FES is more effective than EMS in improving mobility, balance, gait performance and reducing spasticity in stroke patients. The research will help clinicians to select appropriate treatment of foot drop in stroke patients. (author)

  2. Giovanni Aldini: from animal electricity to human brain stimulation.

    Science.gov (United States)

    Parent, André

    2004-11-01

    Two hundred years ago, Giovanni Aldini published a highly influential book that reported experiments in which the principles of Luigi Galvani (animal electricity) and Alessandro Volta (bimetallic electricity) were used together for the first time. Aldini was born in Bologna in 1762 and graduated in physics at the University of his native town in 1782. As nephew and assistant of Galvani, he actively participated in a series of crucial experiments with frog's muscles that led to the idea that electricity was the long-sought vital force coursing from brain to muscles. Aldini became professor of experimental physics at the University of Bologna in 1798. He traveled extensively throughout Europe, spending much time defending the concept of his discreet uncle against the incessant attacks of Volta, who did not believe in animal electricity. Aldini used Volta's bimetallic pile to apply electric current to dismembered bodies of animals and humans; these spectacular galvanic reanimation experiments made a strong and enduring impression on his contemporaries. Aldini also treated patients with personality disorders and reported complete rehabilitation following transcranial administration of electric current. Aldini's work laid the ground for the development of various forms of electrotherapy that were heavily used later in the 19th century. Even today, deep brain stimulation, a procedure currently employed to relieve patients with motor or behavioral disorders, owes much to Aldini and galvanism. In recognition of his merits, Aldini was made a knight of the Iron Crown and a councillor of state at Milan, where he died in 1834.

  3. Gender differences in current received during transcranial electrical stimulation

    Directory of Open Access Journals (Sweden)

    Michael eRussell

    2014-08-01

    Full Text Available Low current transcranial electrical stimulation is an effective but somewhat inconsistent tool for augmenting neuromodulation. In this study, we used 3D MRI guided electrical transcranial stimulation (GETS modeling to estimate the range of current intensities received at cortical brain tissues. Combined T1, T2, Proton Density MRIs from 24 adult subjects (12 male and 12 female were modeled with virtual electrodes placed at F3, F4, C3 and C4. Two sizes of electrodes 20 mm round and 50 x 45 mm square were examined at 0.5, 1 and 2 mA input currents. The intensity of current received was sampled in a one centimeter sphere placed at the cortex directly under each scalp electrode. There was a tenfold range in the current received by individuals. A large gender difference was observed with female subjects receiving significantly less current at targeted parietal cortex than male subjects when stimulated at identical current levels (P <0.05. Larger electrodes delivered somewhat larger amounts of current then the smaller ones (P <0.01. Electrodes in the frontal regions delivered less current than those in the parietal region (P<0.05. There were large individual differences in current levels the subjects received. Analysis of the cranial bone showed that the gender difference and the frontal parietal differences are due to differences in cranial bone. Males have more cancellous parietal bone and females more dense parietal bone (p<0.01. These differences should be considered when planning transcranial electrical stimulation studies and call into question earlier reports of gender differences due to hormonal influences.

  4. Novel Stimulation Paradigms with Temporally-Varying Parameters to Reduce Synchronous Activity at the Onset of High Frequency Stimulation in Rat Hippocampus

    Directory of Open Access Journals (Sweden)

    Ziyan Cai

    2017-10-01

    Full Text Available Deep brain stimulation (DBS has shown wide applications for treating various disorders in the central nervous system by using high frequency stimulation (HFS sequences of electrical pulses. However, upon the onset of HFS sequences, the narrow pulses could induce synchronous firing of action potentials among large populations of neurons and cause a transient phase of “onset response” that is different from the subsequent steady state. To investigate the transient onset phase, the antidromically-evoked population spikes (APS were used as an electrophysiological marker to evaluate the synchronous neuronal reactions to axonal HFS in the hippocampal CA1 region of anesthetized rats. New stimulation paradigms with time-varying intensity and frequency were developed to suppress the “onset responses”. Results show that HFS paradigms with ramp-up intensity at the onset phase could suppress large APS potentials. In addition, an intensity ramp with a slower ramp-up rate or with a higher pulse frequency had greater suppression on APS amplitudes. Therefore, to reach a desired pulse intensity rapidly, a stimulation paradigm combining elevated frequency and ramp-up intensity was used to shorten the transition phase of initial HFS without evoking large APS potentials. The results of the study provide important clues for certain transient side effects of DBS and for development of new adaptive stimulation paradigms.

  5. Nonpainful remote electrical stimulation alleviates episodic migraine pain.

    Science.gov (United States)

    Yarnitsky, David; Volokh, Lana; Ironi, Alon; Weller, Boaz; Shor, Merav; Shifrin, Alla; Granovsky, Yelena

    2017-03-28

    To evaluate the efficacy of remote nonpainful electrical upper arm skin stimulation in reducing migraine attack pain. This is a prospective, double-blinded, randomized, crossover, sham-controlled trial. Migraineurs applied skin electrodes to the upper arm soon after attack onset for 20 minutes, at various pulse widths, and refrained from medications for 2 hours. Patients were asked to use the device for up to 20 attacks. In 71 patients (299 treatments) with evaluable data, 50% pain reduction was obtained for 64% of participants based on best of 200-μs, 150-μs, and 100-μs pulse width stimuli per individual vs 26% for sham stimuli. Greater pain reduction was found for active stimulation vs placebo; for those starting at severe or moderate pain, reduction (1) to mild or no pain occurred in 58% (25/43) of participants (66/134 treatments) for the 200-μs stimulation protocol and 24% (4/17; 8/29 treatments) for placebo ( p = 0.02), and (2) to no pain occurred in 30% (13/43) of participants (37/134 treatments) and 6% (1/17; 5/29 treatments), respectively ( p = 0.004). Earlier application of the treatment, within 20 minutes of attack onset, yielded better results: 46.7% pain reduction as opposed to 24.9% reduction when started later ( p = 0.02). Nonpainful remote skin stimulation can significantly reduce migraine pain, especially when applied early in an attack. This is presumably by activating descending inhibition pathways via the conditioned pain modulation effect. This treatment may be proposed as an attractive nonpharmacologic, easy to use, adverse event free, and inexpensive tool to reduce migraine pain. NCT02453399. This study provides Class III evidence that for patients with an acute migraine headache, remote nonpainful electrical stimulation on the upper arm skin reduces migraine pain. © 2017 American Academy of Neurology.

  6. Therapeutic efficacy of neuromuscular electrical stimulation and electromyographic biofeedback on Alzheimer's disease patients with dysphagia.

    Science.gov (United States)

    Tang, Yi; Lin, Xiang; Lin, Xiao-Juan; Zheng, Wei; Zheng, Zhi-Kai; Lin, Zhao-Min; Chen, Jian-Hao

    2017-09-01

    To study the therapeutic effect of neuromuscular electrical stimulation and electromyographic biofeedback (EMG-biofeedback) therapy in improving swallowing function of Alzheimer's disease patients with dysphagia.A series of 103 Alzheimer's disease patients with dysphagia were divided into 2 groups, among which the control group (n = 50) received swallowing function training and the treatment group (n = 53) received neuromuscular electrical stimulation plus EMG-biofeedback therapy. The mini-mental state scale score was performed in all patients along the treatment period. Twelve weeks after the treatment, the swallowing function was assessed by the water swallow test. The nutritional status was evaluated by Mini Nutritional Assessment (MNA) as well as the levels of hemoglobin and serum albumin. The frequency and course of aspiration pneumonia were also recorded.No significant difference on mini-mental state scale score was noted between 2 groups. More improvement of swallowing function, better nutritional status, and less frequency and shorter course of aspiration pneumonia were presented in treatment group when compared with the control group.Neuromuscular electrical stimulation and EMG-biofeedback treatment can improve swallowing function in patients with Alzheimer's disease and significantly reduce the incidence of adverse outcomes. Thus, they should be promoted in clinical practice.

  7. EFFECTS OF FUNCTIONAL ELECTRICAL STIMULATION IN REHABILITATION WITH HEMIPARESIS PATIENTS

    Science.gov (United States)

    Tanović, Edina

    2009-01-01

    Cerebrovascular accident is a focal neurological deficiency occurring suddenly and lasting for more than 24 hours. The purpose of our work is to determine the role of the functional electrical simulation (FES) in the rehabilitation of patients with hemiparesis, which occurred as a consequence of a cerebrovascular accident. This study includes the analysis of two groups of 40 patients with hemiparesis (20 patients with deep hemiparesis and 20 patients with light hemi- paresis), a control group which was only treated with kinesiotherapy and a tested group which was treated with kinesiotherapy and functional electrical stimulation. Both groups of patients were analyzed in respect to their sex and age. Additional analysis of the walking function was completed in accordance with the BI and RAP index. The analysis of the basic demographical data demonstrated that there is no significant difference between the control and tested group. The patients of both groups are equal in respect of age and sex. After 4 weeks of rehabilitation of patients with deep and light hemiparesis there were no statistically significant differences between the groups after evaluation by the BI index. However, a statistically significant difference was noted between the groups by the RAP index among patients with deep hemiparesis. After 8 weeks of rehabilitation the group of patients who were treated with kinesiotherapy and functional electrical stimulation showed better statistically significant results of rehabilitation in respect to the control group with both the BI index and the RAP index (p<0,001). In conclusion, we can state that the patients in rehabilitation after a cerebrovascular accident require rehabilitation longer than 4 weeks. Walking rehabilitation after stroke is faster and more successful if we used functional electrical stimulation, in combination with kinesiotherapy, in patients with disabled extremities. PMID:19284395

  8. Repetitive low-frequency stimulation reduces epileptiform synchronization in limbic neuronal networks.

    Science.gov (United States)

    D'Arcangelo, G; Panuccio, G; Tancredi, V; Avoli, M

    2005-01-01

    Deep-brain electrical or transcranial magnetic stimulation may represent a therapeutic tool for controlling seizures in patients presenting with epileptic disorders resistant to antiepileptic drugs. In keeping with this clinical evidence, we have reported that repetitive electrical stimuli delivered at approximately 1 Hz in mouse hippocampus-entorhinal cortex (EC) slices depress the EC ability to generate ictal activity induced by the application of 4-aminopyridine (4AP) or Mg(2+)-free medium (Barbarosie, M., Avoli, M., 1997. CA3-driven hippocampal-entorhinal loop controls rather than sustains in vitro limbic seizures. J. Neurosci. 17, 9308-9314.). Here, we confirmed a similar control mechanism in rat brain slices analyzed with field potential recordings during 4AP (50 microM) treatment. In addition, we used intrinsic optical signal (IOS) recordings to quantify the intensity and spatial characteristics of this inhibitory influence. IOSs reflect the changes in light transmittance throughout the entire extent of the slice, and are thus reliable markers of limbic network epileptiform synchronization. First, we found that in the presence of 4AP, the IOS increases, induced by a train of electrical stimuli (10 Hz for 1 s) or by recurrent, single-shock stimulation delivered at 0.05 Hz in the deep EC layers, are reduced in intensity and area size by low-frequency (1 Hz), repetitive stimulation of the subiculum; these effects were observed in all limbic areas contained in the slice. Second, by testing the effects induced by repetitive subicular stimulation at 0.2-10 Hz, we identified maximal efficacy when repetitive stimuli are delivered at 1 Hz. Finally, we discovered that similar, but slightly less pronounced, inhibitory effects occur when repetitive stimuli at 1 Hz are delivered in the EC, suggesting that the reduction of IOSs seen during repetitive stimulation is pathway dependent as well as activity dependent. Thus, the activation of limbic networks at low frequency

  9. Hyperexcitability to electrical stimulation and accelerated muscle fatiguability of taut bands in rats.

    Science.gov (United States)

    Wang, Yong-Hui; Yin, Ming-Jing; Fan, Zhen-Zhen; Arendt-Nielsen, Lars; Ge, Hong-You; Yue, Shou-Wei

    2014-04-01

    Myofascial trigger points contribute significantly to musculoskeletal pain and motor dysfunction and may be associated with accelerated muscle fatiguability. The aim of this study was to investigate the electrically induced force and fatigue characteristics of muscle taut bands in rats. Muscle taut bands were dissected out and subjected to trains of electrical stimulation. The electrical threshold intensity for muscle contraction and maximum contraction force (MCF), electrical intensity dependent fatigue and electrical frequency dependent fatigue characteristics were assessed in three different sessions (n=10 each) and compared with non-taut bands in the biceps femoris muscle. The threshold intensity for muscle contraction and MCF at the 10th, 15th and 20th intensity dependent fatigue stimuli of taut bands were significantly lower than those of non-taut bands (all pbands were significantly lower than those at the 1st and 5th stimuli (all pbands than for non-taut bands (both pband itself was more excitable to electrical stimulation and significantly less fatigue resistant than normal muscle fibres.

  10. Electrical characteristics for capacitively coupled radio frequency ...

    Indian Academy of Sciences (India)

    MURAT TANISLI

    2017-08-16

    Aug 16, 2017 ... b; 52.80.Pi. 1. Introduction. It is interesting to study the behaviour of plasma. There are many ... and then the model is described in §3. Graphs and ... inductor (Lbp) occur in the bulk plasma circuit. The ... the parallel plate, the electron density, the mass of the ... The electron neutral collision frequency may be.

  11. Static and low frequency electric and magnetic fields

    International Nuclear Information System (INIS)

    Thommesen, G.; Tynes, T.

    1994-01-01

    The biological effects of exposure to low frequency electric and magnetic fields are reviewed with the objective of summarizing effects directly relevant to considerations of the health and safety of exposed people. Static and low frequency electric and magnetic fields may elicit biological reactions. Whether exposure to such fields may affect human health at field strengths present in everyday or occupational life is still unsettled. There is unsufficient knowledge to establish any dose concept relevant to health risk. 196 refs., 6 tabs

  12. Transcutaneous electrical nerve stimulation (TENS) for chronic low back pain.

    Science.gov (United States)

    Milne, S; Welch, V; Brosseau, L; Saginur, M; Shea, B; Tugwell, P; Wells, G

    2001-01-01

    Low back pain (LBP) affects a large proportion of the population. Transcutaneous electrical nerve stimulation (TENS) was introduced more than 30 years ago as an alternative therapy to pharmacological treatments for chronic pain. However, despite its widespread use, the effectiveness of TENS is still controversial. The aim of this systematic review was to determine the efficacy of TENS in the treatment of chronic LBP. We searched MEDLINE, EMBASE, PEDro and the Cochrane Controlled Trials Register up to June 1, 2000. Only randomized controlled clinical trials of TENS for the treatment of patients with a clinical diagnosis of chronic LBP were included. Abstracts were excluded unless further data could be obtained from the authors. Two reviewers independently selected trials and extracted data using predetermined forms. Heterogeneity was tested with Cochran's Q test. A fixed effects model was used throughout for continuous variables, except where heterogeneity existed, in which case, a random effects model was used. Results are presented as weighted mean differences (WMD) with 95% confidence intervals (95% CI), where the difference between the treated and control groups was weighted by the inverse of the variance. Standardized mean differences (SMD) were calculated by dividing the difference between the treated and control by the baseline variance. SMD were used when different scales were used to measure the same concept. Dichotomous outcomes were analyzed with odds ratios. Five trials were included, with 170 subjects randomized to the placebo group receiving sham-TENS and 251 subjects receiving active TENS (153 for conventional mode, 98 for acupuncture-like TENS). The schedule of treatments varied greatly between studies ranging from one treatment/day for two consecutive days, to three treatments/day for four weeks. There were no statistically significant differences between the active TENS group when compared to the placebo TENS group for any outcome measures

  13. Transcranial Electric Stimulation for Precision Medicine: A Spatiomechanistic Framework

    Science.gov (United States)

    Yavari, Fatemeh; Nitsche, Michael A.; Ekhtiari, Hamed

    2017-01-01

    During recent years, non-invasive brain stimulation, including transcranial electrical stimulation (tES) in general, and transcranial direct current stimulation (tDCS) in particular, have created new hopes for treatment of neurological and psychiatric diseases. Despite promising primary results in some brain disorders, a more widespread application of tES is hindered by the unsolved question of determining optimum stimulation protocols to receive meaningful therapeutic effects. tES has a large parameter space including various montages and stimulation parameters. Moreover, inter- and intra-individual differences in responding to stimulation protocols have to be taken into account. These factors contribute to the complexity of selecting potentially effective protocols for each disorder, different clusters of each disorder, and even each single patient. Expanding knowledge in different dimensions of basic and clinical neuroscience could help researchers and clinicians to select potentially effective protocols based on tES modulatory mechanisms for future clinical studies. In this article, we propose a heuristic spatiomechanistic framework which contains nine levels to address tES effects on brain functions. Three levels refer to the spatial resolution (local, small-scale networks and large-scale networks) and three levels of tES modulatory effects based on its mechanisms of action (neurochemical, neuroelectrical and oscillatory modulations). At the group level, this framework could be helpful to enable an informed and systematic exploration of various possible protocols for targeting a brain disorder or its neuroscience-based clusters. Considering recent advances in exploration of neurodiversity at the individual level with different brain mapping technologies, the proposed framework might also be used in combination with personal data to design individualized protocols for tES in the context of precision medicine in the future. PMID:28450832

  14. A microcontroller system for investigating the catch effect: functional electrical stimulation of the common peroneal nerve.

    Science.gov (United States)

    Hart, D J; Taylor, P N; Chappell, P H; Wood, D E

    2006-06-01

    Correction of drop foot in hemiplegic gait is achieved by electrical stimulation of the common peroneal nerve with a series of pulses at a fixed frequency. However, during normal gait, the electromyographic signals from the tibialis anterior muscle indicate that muscle force is not constant but varies during the swing phase. The application of double pulses for the correction of drop foot may enhance the gait by generating greater torque at the ankle and thereby increase the efficiency of the stimulation with reduced fatigue. A flexible controller has been designed around the Odstock Drop Foot Stimulator to deliver different profiles of pulses implementing doublets and optimum series. A peripheral interface controller (PIC) microcontroller with some external circuits has been designed and tested to accommodate six profiles. Preliminary results of the measurements from a normal subject seated in a multi-moment chair (an isometric torque measurement device) indicate that profiles containing doublets and optimum spaced pulses look favourable for clinical use.

  15. Schwann cell response on polypyrrole substrates upon electrical stimulation.

    Science.gov (United States)

    Forciniti, Leandro; Ybarra, Jose; Zaman, Muhammad H; Schmidt, Christine E

    2014-06-01

    Current injury models suggest that Schwann cell (SC) migration and guidance are necessary for successful regeneration and synaptic reconnection after peripheral nerve injury. The ability of conducting polymers such as polypyrrole (PPy) to exhibit chemical, contact and electrical stimuli for cells has led to much interest in their use for neural conduits. Despite this interest, there has been very little research on the effect that electrical stimulation (ES) using PPy has on SC behavior. Here we investigate the mechanism by which SCs interact with PPy in the presence of an electric field. Additionally, we explored the effect that the adsorption of different serum proteins on PPy upon the application of an electric field has on SC migration. The results indicate an increase in average displacement of the SC with ES, resulting in a net anodic migration. Moreover, indirect effects of protein adsorption due to the oxidation of the film upon the application of ES were shown to have a larger effect on migration speed than on migration directionality. These results suggest that SC migration speed is governed by an integrin- or receptor-mediated mechanism, whereas SC migration directionality is governed by electrically mediated phenomena. These data will prove invaluable in optimizing conducting polymers for their different biomedical applications such as nerve repair. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. A Fast EEG Forecasting Algorithm for Phase-Locked Transcranial Electrical Stimulation of the Human Brain

    Directory of Open Access Journals (Sweden)

    Farrokh Mansouri

    2017-07-01

    Full Text Available A growing body of research suggests that non-invasive electrical brain stimulation can more effectively modulate neural activity when phase-locked to the underlying brain rhythms. Transcranial alternating current stimulation (tACS can potentially stimulate the brain in-phase to its natural oscillations as recorded by electroencephalography (EEG, but matching these oscillations is a challenging problem due to the complex and time-varying nature of the EEG signals. Here we address this challenge by developing and testing a novel approach intended to deliver tACS phase-locked to the activity of the underlying brain region in real-time. This novel approach extracts phase and frequency from a segment of EEG, then forecasts the signal to control the stimulation. A careful tuning of the EEG segment length and prediction horizon is required and has been investigated here for different EEG frequency bands. The algorithm was tested on EEG data from 5 healthy volunteers. Algorithm performance was quantified in terms of phase-locking values across a variety of EEG frequency bands. Phase-locking performance was found to be consistent across individuals and recording locations. With current parameters, the algorithm performs best when tracking oscillations in the alpha band (8–13 Hz, with a phase-locking value of 0.77 ± 0.08. Performance was maximized when the frequency band of interest had a dominant frequency that was stable over time. The algorithm performs faster, and provides better phase-locked stimulation, compared to other recently published algorithms devised for this purpose. The algorithm is suitable for use in future studies of phase-locked tACS in preclinical and clinical applications.

  17. Home electrical stimulation for women with fecal incontinence: a preliminary randomized controlled trial.

    Science.gov (United States)

    Cohen-Zubary, Nira; Gingold-Belfer, Rachel; Lambort, Inna; Wasserberg, Nir; Krissi, Haim; Levy, Sigal; Niv, Yaron; Dickman, Ram

    2015-04-01

    The purpose of this study is to compare the effectiveness and cost of home electrical stimulation and standardized biofeedback training in females with fecal incontinence Thirty-six females suffering from fecal incontinence were randomized into two groups, matched for mean age (67.45 ± 7.2 years), mean body mass index (kg/m2) (26.2 ± 3.9), mean disease duration (4.1 ± 0.8 years), mean number of births (2.7 ± 1.3), and reports of obstetric trauma (25%). Questionnaires were used to evaluate their demographics, medical, and childbearing history. Subjects were randomized to home electrical stimulation or standardized biofeedback training for a period of 6 weeks. Subjective outcome measures included the frequency of fecal, urine, and gas incontinence by visual analog scale, Vaizey incontinence score, and subjects' levels of fecal incontinence related anxiety. Objective outcome measures included pelvic floor muscle strength assessed by surface electromyography. We also compared the cost of each treatment modality. Only females who received home electrical stimulation (HES) reported a significant improvement in Vaizey incontinence score (p = 0.001), anxiety (p = 0.046), and in frequency of leaked solid stool (p = 0.013). A significant improvement in pelvic floor muscle strength was achieved by both groups. HES was much cheaper compared to the cost of standardized biofeedback training (SBT) (US $100 vs. US $220, respectively). Our study comprised a small female population, and the study endpoints did not include objective measures of anorectal function test, such as anorectal manometry, before and after treatment. Home electrical stimulation may offer an alternative to standardized biofeedback training as it is effective and generally well-tolerated therapy for females with fecal incontinence.

  18. A distributed transducer system for functional electrical stimulation

    DEFF Research Database (Denmark)

    Gudnason, Gunnar; Nielsen, Jannik Hammel; Bruun, Erik

    2001-01-01

    to be affected by the inductive link. Neural stimulators are affected to a lesser degree, but still benefit from the partitioning. As a test case, we have designed a transceiver and a sensor chip which implement this partitioning policy. The transceiver is designed to operate in the 6.78 MHz ISM band......Implanted transducers for functional electrical stimulation (FES) powered by inductive links are subject to conflicting requirements arising from low link efficiency, a low power budget and the need for protection of the weak signals against strong RF electromagnetic fields. We propose a solution...... to these problems by partitioning the RF transceiver and sensor/actuator functions onto separate integrated circuits. By amplifying measured neural signals directly at the measurements site and converting them into the digital domain before passing them to the transceiver the signal integrity is less likely...

  19. Designing electrical stimulated bioreactors for nerve tissue engineering

    Science.gov (United States)

    Sagita, Ignasius Dwi; Whulanza, Yudan; Dhelika, Radon; Nurhadi, Ibrahim

    2018-02-01

    Bioreactor provides a biomimetic ecosystem that is able to culture cells in a physically controlled system. In general, the controlled-parameters are temperature, pH, fluid flow, nutrition flow, etc. In this study, we develop a bioreactor that specifically targeted to culture neural stem cells. This bioreactor could overcome some limitations of conventional culture technology, such as petri dish, by providing specific range of observation area and a uniform treatment. Moreover, the microfluidic bioreactor, which is a small-controlled environment, is able to observe as small number of cells as possible. A perfusion flow is applied to mimic the physiological environment in human body. Additionally, this bioreactor also provides an electrical stimulation which is needed by neural stem cells. In conclusion, we found the correlation between the induced shear stress with geometric parameters of the bioreactor. Ultimately, this system shall be used to observe the interaction between stimulation and cell growth.

  20. Electromyographic control of functional electrical stimulation in selected patients.

    Science.gov (United States)

    Graupe, D; Kohn, K H; Basseas, S; Naccarato, E

    1984-07-01

    The paper describes initial results of above-lesion electromyographic (EMG) controlled functional electrical stimulation (FES) of paraplegics. Such controlled stimulation is to provide upper-motor-neuron paraplegics (T5 to T12) with self-controlled standing and some walking without braces and with only the help of walkers or crutches. The above-lesion EMG signal employed serves to map the posture of the patient's upper trunk via a computerized mapping of the temporal patterns of that EMG. Such control also has an inherent safety feature in that it prevents the patient from performing a lower-limb movement via FES unless his trunk posture is adequate. Copyright 2013, SLACK Incorporated.

  1. Bio-robots automatic navigation with electrical reward stimulation.

    Science.gov (United States)

    Sun, Chao; Zhang, Xinlu; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang

    2012-01-01

    Bio-robots that controlled by outer stimulation through brain computer interface (BCI) suffer from the dependence on realtime guidance of human operators. Current automatic navigation methods for bio-robots focus on the controlling rules to force animals to obey man-made commands, with animals' intelligence ignored. This paper proposes a new method to realize the automatic navigation for bio-robots with electrical micro-stimulation as real-time rewards. Due to the reward-seeking instinct and trial-and-error capability, bio-robot can be steered to keep walking along the right route with rewards and correct its direction spontaneously when rewards are deprived. In navigation experiments, rat-robots learn the controlling methods in short time. The results show that our method simplifies the controlling logic and realizes the automatic navigation for rat-robots successfully. Our work might have significant implication for the further development of bio-robots with hybrid intelligence.

  2. Preventing Ischial Pressure Ulcers: I. Review of Neuromuscular Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Hilton M. Kaplan

    2011-01-01

    Full Text Available Objective: Pressure ulcers (PUs are common and debilitating wounds that arise when immobilized patients cannot shift their weight. Treatment is expensive and recurrence rates are high. Pathophysiological mechanisms include reduced bulk and perfusion of chronically atrophic muscles as well as prolonged occlusion of blood flow to soft tissues from lack of voluntary postural shifting of body weight. This has suggested that PUs might be prevented by reanimating the paralyzed muscles using neuromuscular electrical stimulation (NMES. A review of the published literature over the past 2 decades is detailed.

  3. Low-frequency electrical properties of peat

    Science.gov (United States)

    Comas, Xavier; Slater, Lee

    2004-12-01

    Electrical resistivity/induced polarization (0.1-1000 Hz) and vertical hydraulic conductivity (Kv) measurements of peat samples extracted from different depths (0-11 m) in a peatland in Maine were obtained as a function of pore fluid conductivity (σw) between 0.001 and 2 S/m. Hydraulic conductivity increased with σw (Kv ∝ σw0.3 between 0.001 and 2 S/m), indicating that pore dilation occurs due to the reaction of NaCl with organic functional groups as postulated by previous workers. Electrical measurements were modeled by assuming that "bulk" electrolytic conduction through the interconnected pore space and surface conduction in the electrical double layer (EDL) at the organic sediment-fluid interface act in parallel. This analysis suggests that pore space dilation causes a nonlinear relationship between the "bulk" electrolytic conductivity (σel) and σw (σel ∝ σw1.3). The Archie equation predicts a linear dependence of σel on σw and thus appears inappropriate for organic sediments. Induced polarization (IP) measurements of the imaginary part (σ″surf) of the surface conductivity (σ*surf) show that σ″surf is greater and more strongly σw-dependent (σ″surf ∝ σw0.5 between 0.001 and 2 S/m) than observed for inorganic sediments. By assuming a linear relationship between the real (σ'surf) and the imaginary part (σ″surf) of the surface conductivity, we develop an empirical model relating the resistivity and induced polarization measurements to σw in peat. We demonstrate the use of this model to predict (a) σw and (b) the change in Kv due to an incremental change in σw from resistivity and induced polarization measurements on organic sediments. Our study has implications for noninvasive geophysical characterization of σw and Kv with potential to benefit studies of carbon cycling and greenhouse gas fluxes as well as nutrient supply dynamics in peatlands.

  4. Transcutaneous electric nerve stimulation (TENS) in dentistry- A review.

    Science.gov (United States)

    Kasat, Vikrant; Gupta, Aditi; Ladda, Ruchi; Kathariya, Mitesh; Saluja, Harish; Farooqui, Anjum-Ara

    2014-12-01

    Transcutaneous electric nerve stimulation (TENS) is a non-pharmacological method which is widely used by medical and paramedical professionals for the management of acute and chronic pain in a variety of conditions. Similarly, it can be utilized for the management of pain during various dental procedures as well as pain due to various conditions affecting maxillofacial region. This review aims to provide an insight into clinical research evidence available for the analgesic and non analgesic uses of TENS in pediatric as well as adult patients related to the field of dentistry. Also, an attempt is made to briefly discuss history of therapeutic electricity, mechanism of action of TENS, components of TENs equipment, types, techniques of administration, advantages and contradictions of TENS. With this we hope to raise awareness among dental fraternity regarding its dental applications thereby increasing its use in dentistry. Key words:Dentistry, pain, TENS.

  5. Gastric electrical stimulation: a report of two cases.

    LENUS (Irish Health Repository)

    Sibartie, V

    2012-02-03

    Gastroparesis refractory to prokinetic agents poses a major challenge to the physician and patient, alike. In the past 5 years, electrical methods to treat gastroparesis have emerged from animal and human experiments to a potentially valuable tool in clinical gastroenterology. One of these methods, known as gastric electrical stimulation (GES), is being increasingly used in specialized centres worldwide, but had never been tried in Ireland. We describe here our experience with the first two implantations of gastric neurostimulators performed in Ireland and the outcome with these 2 patients. Our results at 6 months show reduction in symptoms and improvement in quality of life, which is encouraging and should prompt further evaluation of GES for patients with gastroparesis refractory to medical therapy.

  6. Gastric stimulation: influence of electrical parameters on gastric emptying in control and diabetic rats

    Directory of Open Access Journals (Sweden)

    Songné Badjona

    2002-07-01

    Full Text Available Summary Background The aim of this study was to test the effect of different pulse frequencies and amplitudes during gastric stimulation (GS on gastric emptying in the rat. Methods GS was performed in 2 groups of laparotomized rats: healthy control animals, and rats with acute diabetes. The effects of four pulse frequencies (0.5, 1, 10, 20 Hz and three pulse amplitudes (5, 20, 40 mA were tested. The volumes emptied from the stomach after the oro-gastric instillation of a nutrient solution were compared to those obtained in animals without GS. Intragastric pH values were assessed under basal conditions and after GS. Results In both groups, GS increased emptied volumes compared to conditions without stimulation (p Conclusions Although both pulse frequency and amplitude should be considered during GS, frequency appears to be the most critical point. The possibility of increasing gastric emptying by electrical stimulation in diabetic rats suggests potential clinical applications for this method.

  7. A Biological Micro Actuator: Graded and Closed-Loop Control of Insect Leg Motion by Electrical Stimulation of Muscles

    Science.gov (United States)

    Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Aziz, Mohamed Fareez Bin; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M.; Sato, Hirotaka

    2014-01-01

    In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle) and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect–machine hybrid legged robot). PMID:25140875

  8. A biological micro actuator: graded and closed-loop control of insect leg motion by electrical stimulation of muscles.

    Directory of Open Access Journals (Sweden)

    Feng Cao

    Full Text Available In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect-machine hybrid legged robot.

  9. Fetal exposure to low frequency electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Cech, R; Leitgeb, N; Pediaditis, M [Institute of Clinical Engineering, Graz University of Technology, Inffeldgasse 18, 8010 Graz (Austria)

    2007-02-21

    To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary.

  10. Fetal exposure to low frequency electric and magnetic fields

    International Nuclear Information System (INIS)

    Cech, R; Leitgeb, N; Pediaditis, M

    2007-01-01

    To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary

  11. WITHDRAWN: Transcutaneous electrical nerve stimulation and acupuncture-like transcutaneous electrical nerve stimulation for chronic low back pain.

    Science.gov (United States)

    Gadsby, J G; Flowerdew, M W

    2007-07-18

    In view of the claims and counter-claims of the effectiveness of transcutaneous electrical nerve stimulation, it would seem appropriate to systematically review the literature. To determine the effectiveness of transcutaneous electrical nerve stimulation in reducing pain and improving range of movement in patients with chronic low back pain. Electronic searches of EMBASE, MEDLINE, CISCOM, AMED for all studies of TENS in the English language, identifying those treating chronic low back pain and hand searching their references. The inclusion criterion for studies included in this review, 6 of 68 identified, was comparisons of TENS/ALTENS versus placebo in patients with chronic low back pain. Outcome data on pain reduction, range of movement, functional status and work was extracted by two independent reviewers together with trial design qualities to construct a Quality Index. The ratio of odds of improvement in pain for each comparison was calculated: TENS vs. placebo at 1.62 (95% CI 0.90, 2.68); ALTENS vs. placebo at 7.22 (95% CI 2.60, 20.01) and TENS/ALTENS vs. placebo at 2.11 (95% CI 1.32, 3.38) times that of placebo. An improvement in pain reduction was seen in 45.80% (CI 37.00%, 55.00%) of TENS; 86.70% (CI 80.00%, 93.00%) of ALTENS; 54.00% (CI 46.20%, 61.80%) of TENS/ ALTENS and 36.40% (95%CI 28.40%, 44.40%) of placebo subjects. The odds of improvement in range of movement on ALTENS vs. placebo was 6.61 times (95% CI 2.36, 18.55) that of placebo. Transcutaneous electrical nerve stimulation appears to reduce pain and improve the range of movement in chronic low back pain subjects. A definitive randomised controlled study of ALTENS, TENS, placebo/no treatment controls, of sufficient power, is needed to confirm these findings.

  12. Sex and Electrode Configuration in Transcranial Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Michael J. Russell

    2017-08-01

    Full Text Available Transcranial electrical stimulation (tES can be an effective non-invasive neuromodulation procedure. Unfortunately, the considerable variation in reported treatment outcomes, both within and between studies, has made the procedure unreliable for many applications. To determine if individual differences in cranium morphology and tissue conductivity can account for some of this variation, the electrical density at two cortical locations (temporal and frontal directly under scalp electrodes was modeled using a validated MRI modeling procedure in 23 subjects (12 males and 11 females. Three different electrode configurations (non-cephalic, bi-cranial, and ring commonly used in tES were modeled at three current intensities (0.5, 1.0, and 2.0 mA. The aims were to assess the effects of configuration and current intensity on relative current received at a cortical brain target directly under the stimulating electrode and to characterize individual variation. The different electrode configurations resulted in up to a ninefold difference in mean current densities delivered to the brains. The ring configuration delivered the least current and the non-cephalic the most. Female subjects showed much less current to the brain than male subjects. Individual differences in the current received and differences in electrode configurations may account for significant variability in current delivered and, thus, potentially a significant portion of reported variation in clinical outcomes at two commonly targeted regions of the brain.

  13. Models of the electrically stimulated binaural system: A review.

    Science.gov (United States)

    Dietz, Mathias

    2016-01-01

    In an increasing number of countries, the standard treatment for deaf individuals is moving toward the implantation of two cochlear implants. Today's device technology and fitting procedure, however, appears as if the two implants would serve two independent ears and brains. Many experimental studies have demonstrated that after careful matching and balancing of left and right stimulation in controlled laboratory studies most patients have almost normal sensitivity to interaural level differences and some sensitivity to interaural time differences (ITDs). Mechanisms underlying the limited ITD sensitivity are still poorly understood and many different aspects may contribute. Recent pioneering computational approaches identified some of the functional implications the electric input imposes on the neural brainstem circuits. Simultaneously these studies have raised new questions and certainly demonstrated that further refinement of the model stages is necessary. They join the experimental study's conclusions that binaural device technology, binaural fitting, specific speech coding strategies, and binaural signal processing algorithms are obviously missing components to maximize the benefit of bilateral implantation. Within this review, the existing models of the electrically stimulated binaural system are explained, compared, and discussed from a viewpoint of a "CI device with auditory system" and from that of neurophysiological research.

  14. The use of transcutaneous electrical nerve stimulation (tens in the treatment of the spasticity - a review

    Directory of Open Access Journals (Sweden)

    Dahyan Wagner da Silva Silveira

    2008-01-01

    Full Text Available This study it has as objective to argue the job of TENS in the spasticity, observing the main parameters, form of application and the mechanism for which TENS it acts in the spasticity. One is about a bibliographical revision based in the literature specialized selected scientific articles through search in the data base of scielo and of bireme, from the sources Medline and Lilacs. The studies found on the job of TENS in the spasticity, had pointed mainly that this chain reduces the spasticity significantly, in lower degrees. The stimulation electrical parameters had disclosed that TENS it (about 100Hz of raised frequency provides one better effect in the reduction of the spasticity. The types of TENS more used had been the conventional and the soon-intense one, however some studies had not presented the used duration of pulse, limit the determination of one better modality of TENS. Few studies had explained the mechanism of performance of the current related one. The ones that had made it, had pointed the release of opioid endogenous (Dynorphins for the central nervous system as main mechanism of performance, however this contrasts with the neurophysiologic bases of the high-frequency stimulation, that demonstrated better resulted in the joined studies. Still it is necessary more studies on the job of this modality of stimulation electrical in the spasticity, since important parameters as duration of pulse, time of application, numbers of attendance and performance mechanism remains without scientific evidence.

  15. Electrical stimulation (ES) in the management of sexual pain disorders.

    Science.gov (United States)

    Nappi, Rossella E; Ferdeghini, Francesea; Abbiati, Ileana; Vercesi, Claudia; Farina, Claudio; Polatti, Franco

    2003-01-01

    We performed an open study to investigate the use of electrical stimulation (ES) on the vestibular area and vaginal introitus in women with sexual pain disorders. We recruited 29 women (age range 20-45 years) from among the patients at our Reproductive Psychobiology Unit to participate in the present study. They each experienced vestibular pain, inducing dyspareunia and vaginism. We performed ES with an ECL43400 apparatus (Elite, EssediEsse srl, Milan, Italy) once a week for 10 weeks. To evaluate the muscular activity of the perineal floor and sexual function, we employed the same apparatus with a vaginal probe for recording myoelectrical activity (muV), we employed a VAS scale for evaluating pain, and we administered the Female Sexual Function Index (FSFI; Rosen et al., 2000) before and after the study protocol. We analyzed data by parametric and nonparametric comparisons and correlations, as appropriate. Our major findings were as follows: (a) the contractile ability of pelvic floor muscles (p vaginism went back to coital activity; (d) FSFI pain score and the current intensity tolerated, both before (R = .59; p < 0.006) and at the end (R = .53; p < 0.02) of the stimulation protocol, positively correlated. ES may be effective in the management of sexual pain disorders. Further controlled studies are necessary to standardize stimulation protocols according to the severity of pain and to better clarify the long-term clinical effects of ES.

  16. Anatomically based lower limb nerve model for electrical stimulation

    Directory of Open Access Journals (Sweden)

    Soboleva Tanya K

    2007-12-01

    Full Text Available Abstract Background Functional Electrical Stimulation (FES is a technique that aims to rehabilitate or restore functionality of skeletal muscles using external electrical stimulation. Despite the success achieved within the field of FES, there are still a number of questions that remain unanswered. One way of providing input to the answers is through the use of computational models. Methods This paper describes the development of an anatomically based computer model of the motor neurons in the lower limb of the human leg and shows how it can be used to simulate electrical signal propagation from the beginning of the sciatic nerve to a skeletal muscle. One-dimensional cubic Hermite finite elements were used to represent the major portions of the lower limb nerves. These elements were fit to data that had been digitised using images from the Visible Man project. Nerves smaller than approximately 1 mm could not be seen in the images, and thus a tree-branching algorithm was used to connect the ends of the fitted nerve model to the respective skeletal muscle. To simulate electrical propagation, a previously published mammalian nerve model was implemented and solved on the anatomically based nerve mesh using a finite difference method. The grid points for the finite difference method were derived from the fitted finite element mesh. By adjusting the tree-branching algorithm, it is possible to represent different levels of motor-unit recruitment. Results To illustrate the process of a propagating nerve stimulus to a muscle in detail, the above method was applied to the nerve tree that connects to the human semitendinosus muscle. A conduction velocity of 89.8 m/s was obtained for a 15 μm diameter nerve fibre. This signal was successfully propagated down the motor neurons to a selected group of motor units in the muscle. Conclusion An anatomically and physiologically based model of the posterior motor neurons in the human lower limb was developed. This

  17. Electrical stimulation of the isolated rat intestine in the presence of nutrient stimulus enhances glucagon-like peptide-1 release

    International Nuclear Information System (INIS)

    Schwartz, Ann; Ort, Tatiana; Kajekar, Radhika; Hornby, Pamela J; Wade, Paul R

    2010-01-01

    The release of small intestinal hormones by constituents of ingested food, such as fatty acids, is integral to post-prandial responses that reduce food intake. Recent evidence suggests that small intestinal electrical stimulation reduces food intake, although the mechanism of action is debated. To test the hypothesis that intestinal stimulation directly alters hormone release locally we used isolated rat distal ileum and measured glucagon-like peptide-1 (GLP-1) released in the presence or absence of linoleic acid (LA) and electrical field stimulation (EFS). Intact segments were oriented longitudinally between bipolar stimulating electrodes in organ bath chambers containing modified Krebs–Ringers bicarbonate (KRB) buffer including protease inhibitors. Incubation in LA (3 mg ml −1 ) for 45 min increased GLP-1 concentration (21.9 ± 2.6 pM versus KRB buffer alone 3.6 ± 0.1 pM). Eleven electrical stimulation conditions were tested. In the presence of LA none of the stimulation conditions inhibited LA-evoked GLP-1 release, whereas two high frequency short pulse widths (14 V, 20 Hz, 5 ms and 14 V, 40 Hz, 5 ms) and one low frequency long pulse width (14 V, 0.4 Hz, 300 ms) EFS conditions enhanced LA-evoked GLP-1 release by >250%. These results are consistent with a local effect of intestinal electrical stimulation to enhance GLP-1 release in response to luminal nutrients in the intestines. Enhancing hormone release could improve the efficacy of intestinal electrical stimulation and provide a potential treatment for obesity and metabolic conditions

  18. Molybdenum coated SU-8 microneedle electrodes for transcutaneous electrical nerve stimulation.

    Science.gov (United States)

    Soltanzadeh, Ramin; Afsharipour, Elnaz; Shafai, Cyrus; Anssari, Neda; Mansouri, Behzad; Moussavi, Zahra

    2017-11-21

    Electrophysiological devices are connected to the body through electrodes. In some applications, such as nerve stimulation, it is needed to minimally pierce the skin and reach the underneath layers to bypass the impedance of the first layer called stratum corneum. In this study, we have designed and fabricated surface microneedle electrodes for applications such as electrical peripheral nerve stimulation. We used molybdenum for microneedle fabrication, which is a biocompatible metal; it was used for the conductive layer of the needle array. To evaluate the performance of the fabricated electrodes, they were compared with the conventional surface electrodes in nerve conduction velocity experiment. The recorded signals showed a much lower contact resistance and higher bandwidth in low frequencies for the fabricated microneedle electrodes compared to those of the conventional electrodes. These results indicate the electrode-tissue interface capacitance and charge transfer resistance have been increased in our designed electrodes, while the contact resistance decreased. These changes will lead to less harmful Faradaic current passing through the tissue during stimulation in different frequencies. We also compared the designed microneedle electrodes with conventional ones by a 3-dimensional finite element simulation. The results demonstrated that the current density in the deep layers of the skin and the directivity toward a target nerve for microneedle electrodes were much more than those for the conventional ones. Therefore, the designed electrodes are much more efficient than the conventional electrodes for superficial transcutaneous nerve stimulation purposes.

  19. Avoiding neuromuscular stimulation in liver irreversible electroporation using radiofrequency electric fields

    Science.gov (United States)

    Castellví, Quim; Mercadal, Borja; Moll, Xavier; Fondevila, Dolors; Andaluz, Anna; Ivorra, Antoni

    2018-02-01

    Electroporation-based treatments typically consist of the application of high-voltage dc pulses. As an undesired side effect, these dc pulses cause electrical stimulation of excitable tissues such as motor nerves. The present in vivo study explores the use of bursts of sinusoidal voltage in a frequency range from 50 kHz to 2 MHz, to induce irreversible electroporation (IRE) whilst avoiding neuromuscular stimulation. A series of 100 dc pulses or sinusoidal bursts, both with an individual duration of 100 µs, were delivered to rabbit liver through thin needles in a monopolar electrode configuration, and thoracic movements were recorded with an accelerometer. Tissue samples were harvested three hours after treatment and later post-processed to determine the dimensions of the IRE lesions. Thermal damage due to Joule heating was ruled out via computer simulations. Sinusoidal bursts with a frequency equal to or above 100 kHz did not cause thoracic movements and induced lesions equivalent to those obtained with conventional dc pulses when the applied voltage amplitude was sufficiently high. IRE efficacy dropped with increasing frequency. For 100 kHz bursts, it was estimated that the electric field threshold for IRE is about 1.4 kV cm-1 whereas that of dc pulses is about 0.5 kV cm-1.

  20. Effects of electrical stimulation on meat quality of lamb and goat meat.

    Science.gov (United States)

    Cetin, Omer; Bingol, Enver Baris; Colak, Hilal; Hampikyan, Hamparsun

    2012-01-01

    Effect of various voltage of electrical stimulation (ES) on meat quality of lamb and goat was investigated by using a total of 36 animals at 3-5 years old. Constant 50 Hz frequency and 50, 100, and 250 V, 90 sec of ES were administered to 1/2 carcasses and were examined according their textural, physicochemical, and sensorial characteristics. ES decreased the pH values of lamb and goat meat, and accelerated the rigor mortis (P goat meat, and tenderness was improved depending on voltage range used (P goat meat compared with the control groups (P meat quality of lamb and goat, in contrast to undesirable consumer preferences.

  1. Stuttering in Parkinson's disease after deep brain stimulation: A note on dystonia and low-frequency stimulation.

    Science.gov (United States)

    Mendonça, Marcelo D; Barbosa, Raquel; Seromenho-Santos, Alexandra; Reizinho, Carla; Bugalho, Paulo

    2018-04-01

    Stuttering, a speech fluency disorder, is a rare complication of Deep Brain Stimulation (DBS) in Parkinson's Disease (PD). We report a 61 years-old patient with PD, afflicted by severe On and Off dystonia, treated with Subthalamic Nucleus DBS that developed post-DBS stuttering while on 130 Hz stimulation. Stuttering reduction was noted when frequency was changed to 80 Hz, but the previously observed dystonia improvement was lost. There are no reports in literature on patients developing stuttering with low-frequency stimulation. We question if low-frequency stimulation could have a role for managing PD's post-DBS stuttering, and notice that stuttering improvement was associated with dystonia worsening suggesting that they are distinct phenomena. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Science.gov (United States)

    2010-04-01

    ... pain relief. 882.5890 Section 882.5890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to...

  3. Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration.

    Science.gov (United States)

    Zhang, Ze; Rouabhia, Mahmoud; Wang, Zhaoxu; Roberge, Christophe; Shi, Guixin; Roche, Phillippe; Li, Jiangming; Dao, Lê H

    2007-01-01

    Normal and electrically stimulated PC12 cell cultures and the implantation of nerve guidance channels were performed to evaluate newly developed electrically conductive biodegradable polymer composites. Polypyrrole (PPy) doped by butane sulfonic acid showed a significantly higher number of viable cells compared with PPy doped by polystyrenesulfonate after a 6-day culture. The PC12 cells were left to proliferate for 6 days, and the PPy-coated membranes, showing less initial cell adherence, recorded the same proliferation rate as did the noncoated membranes. Direct current electricity at various intensities was applied to the PC12 cell-cultured conductive membranes. After 7 days, the greatest number of neurites appeared on the membranes with a current intensity approximating 1.7-8.4 microA/cm. Nerve guidance channels made of conductive biodegradable composite were implanted into rats to replace 8 mm of sciatic nerve. The implants were harvested after 2 months and analyzed with immunohistochemistry and transmission electron microscopy. The regenerated nerve tissue displayed myelinated axons and Schwann cells that were similar to those in the native nerve. Electrical stimulation applied through the electrically conductive biodegradable polymers therefore enhanced neurite outgrowth in a current-dependent fashion. The conductive polymers also supported sciatic nerve regeneration in rats.

  4. Electrical vs manual acupuncture stimulation in a rat model of polycystic ovary syndrome: different effects on muscle and fat tissue insulin signaling.

    Directory of Open Access Journals (Sweden)

    Julia Johansson

    Full Text Available In rats with dihydrotestosterone (DHT-induced polycystic ovary syndrome (PCOS, repeated low-frequency electrical stimulation of acupuncture needles restores whole-body insulin sensitivity measured by euglycemic hyperinsulinemic clamp. We hypothesized that electrical stimulation causing muscle contractions and manual stimulation causing needle sensation have different effects on insulin sensitivity and related signaling pathways in skeletal muscle and adipose tissue, with electrical stimulation being more effective in DHT-induced PCOS rats. From age 70 days, rats received manual or low-frequency electrical stimulation of needles in abdominal and hind limb muscle five times/wk for 4-5 wks; controls were handled but untreated rats. Low-frequency electrical stimulation modified gene expression (decreased Tbc1d1 in soleus, increased Nr4a3 in mesenteric fat and protein expression (increased pAS160/AS160, Nr4a3 and decreased GLUT4 by western blot and increased GLUT4 expression by immunohistochemistry in soleus muscle; glucose clearance during oral glucose tolerance tests was unaffected. Manual stimulation led to faster glucose clearance and modified mainly gene expression in mesenteric adipose tissue (increased Nr4a3, Mapk3/Erk, Adcy3, Gsk3b, but not protein expression to the same extent; however, Nr4a3 was reduced in soleus muscle. The novel finding is that electrical and manual muscle stimulation affect glucose homeostasis in DHT-induced PCOS rats through different mechanisms. Repeated electrical stimulation regulated key functional molecular pathways important for insulin sensitivity in soleus muscle and mesenteric adipose tissue to a larger extent than manual stimulation. Manual stimulation improved whole-body glucose tolerance, an effect not observed after electrical stimulation, but did not affect molecular signaling pathways to the same extent as electrical stimulation. Although more functional signaling pathways related to insulin sensitivity

  5. A testbed to explore the optimal electrical stimulation parameters for suppressing inter-ictal spikes in human hippocampal slices.

    Science.gov (United States)

    Min-Chi Hsiao; Pen-Ning Yu; Dong Song; Liu, Charles Y; Heck, Christi N; Millett, David; Berger, Theodore W

    2014-01-01

    New interventions using neuromodulatory devices such as vagus nerve stimulation, deep brain stimulation and responsive neurostimulation are available or under study for the treatment of refractory epilepsy. Since the actual mechanisms of the onset and termination of the seizure are still unclear, most researchers or clinicians determine the optimal stimulation parameters through trial-and-error procedures. It is necessary to further explore what types of electrical stimulation parameters (these may include stimulation frequency, amplitude, duration, interval pattern, and location) constitute a set of optimal stimulation paradigms to suppress seizures. In a previous study, we developed an in vitro epilepsy model using hippocampal slices from patients suffering from mesial temporal lobe epilepsy. Using a planar multi-electrode array system, inter-ictal activity from human hippocampal slices was consistently recorded. In this study, we have further transferred this in vitro seizure model to a testbed for exploring the possible neurostimulation paradigms to inhibit inter-ictal spikes. The methodology used to collect the electrophysiological data, the approach to apply different electrical stimulation parameters to the slices are provided in this paper. The results show that this experimental testbed will provide a platform for testing the optimal stimulation parameters of seizure cessation. We expect this testbed will expedite the process for identifying the most effective parameters, and may ultimately be used to guide programming of new stimulating paradigms for neuromodulatory devices.

  6. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    Science.gov (United States)

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.

  7. Human perception of electrical stimulation on the surface of somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Shivayogi V Hiremath

    Full Text Available Recent advancement in electrocorticography (ECoG-based brain-computer interface technology has sparked a new interest in providing somatosensory feedback using ECoG electrodes, i.e., cortical surface electrodes. We conducted a 28-day study of cortical surface stimulation in an individual with arm paralysis due to brachial plexus injury to examine the sensation produced by electrical stimulation of the somatosensory cortex. A high-density ECoG grid was implanted over the somatosensory and motor cortices. Stimulation through cortical surface electrodes over the somatosensory cortex successfully elicited arm and hand sensations in our participant with chronic paralysis. There were three key findings. First, the intensity of perceived sensation increased monotonically with both pulse amplitude and pulse frequency. Second, changing pulse width changed the type of sensation based on qualitative description provided by the human participant. Third, the participant could distinguish between stimulation applied to two neighboring cortical surface electrodes, 4.5 mm center-to-center distance, for three out of seven electrode pairs tested. Taken together, we found that it was possible to modulate sensation intensity, sensation type, and evoke sensations across a range of locations from the fingers to the upper arm using different stimulation electrodes even in an individual with chronic impairment of somatosensory function. These three features are essential to provide effective somatosensory feedback for neuroprosthetic applications.

  8. Development of Functional Electrical Stimulation Rowing: The Rowstim Series.

    Science.gov (United States)

    Andrews, Brian; Gibbons, Robin; Wheeler, Garry

    2017-11-01

    Potentially, functional electrical stimulation (FES)-assisted exercise may have an important therapeutic role in reducing comorbidities associated with spinal cord injury (SCI). Here, we present an overview of these secondary life-threatening conditions, discuss the rationale behind the development of a hybrid exercise called FES rowing, and describe our experience in developing FES rowing technology. FES rowing and sculling are unique forms of adaptive rowing for those with SCI. The paralyzed leg musculature is activated by multiple channels of electrical pulses delivered via self-adhesive electrodes attached to the skin. The stimulated muscle contractions are synchronized with voluntary rowing movements of the upper limbs. A range of steady-state FES rowing exercise intensities have been demonstrated from 15.2 ± 1.8 mL/kg/min in tetraplegia to 22.9 ±7.1 mL/kg/min in paraplegia. We expect that such high levels may help some to achieve significant reductions in the risks to their health, particularly where a dose-response relationship exists as is the case for cardiovascular disease and Type II diabetes. Furthermore, preliminary results suggest that cyclical forces more than 1.5 times body weight are imposed on the leg long bones which may help to reduce the risk of fragility fractures. We have demonstrated the feasibility of FES rowing on land and water using adapted rowing technology that includes; a fixed stretcher indoor ergometer (adapted Concept 2, Model E), a floating stretcher indoor ergometer (adapted Concept 2 Dynamic), a turbine powered water rowing tank, a custom hydraulic sculling simulator and a single scull (adapted Alden 16). This has involved volunteers with paraplegia and tetraplegia with SCI ranging from C4 to T12 AIS A using at least 4-channels of surface electrical stimulation. FES rowers, with SCI, have competed alongside non-SCI rowers over the Olympic distance of 2000 m at the British Indoor Rowing Championships in 2004, 2005, and 2006

  9. Effect of low frequency transcutaneous magnetic stimulation on sensory and motor transmission.

    Science.gov (United States)

    Leung, Albert; Shukla, Shivshil; Lee, Jacquelyn; Metzger-Smith, Valerie; He, Yifan; Chen, Jeffrey; Golshan, Shahrokh

    2015-09-01

    Peripheral nerve injury diminishes fast conducting large myelinated afferent fibers transmission but enhances smaller pain transmitting fibers firing. This aberrant afferent neuronal behavior contributes to development of chronic post-traumatic peripheral neuropathic pain (PTP-NP). Non-invasive dynamic magnetic flux stimulation has been implicated in treating PTP-NP, a condition currently not adequately addressed by other therapies including transcutaneous electrical nerve stimulation (TENS). The current study assessed the effect of low frequency transcutaneous magnetic stimulation (LFTMS) on peripheral sensory thresholds, nerve conduction properties, and TENS induced fast afferent slowing effect as measured by motor and sensory conduction studies in the ulnar nerve. Results indicated sham LFTMS with TENS (Sham + TENS) significantly (P = 0.02 and 0.007, respectively) reduces sensory conduction velocity (CV) and increases sensory onset latency (OL), and motor peak latency (PL) whereas, real LFTMS with TENS (Real + TENS) reverses effects of TENS on sensory CV and OL, and significantly (P = 0.036) increases the sensory PL. LFTMS alone significantly (P sensory PL and onset-to-peak latency. LFTMS appears to reverse TENS slowing effect on fast conducting fibers and casts a selective peripheral modulatory effect on slow conducting pain afferent fibers. © 2015 Wiley Periodicals, Inc.

  10. Electrical stimulation of the vagus nerve protects against cerebral ischemic injury through an anti-infammatory mechanism

    Directory of Open Access Journals (Sweden)

    Yao-xian Xiang

    2015-01-01

    Full Text Available Vagus nerve stimulation exerts protective effects against ischemic brain injury; however, the underlying mechanisms remain unclear. In this study, a rat model of focal cerebral ischemia was established using the occlusion method, and the right vagus nerve was given electrical stimulation (constant current of 0.5 mA; pulse width, 0.5 ms; frequency, 20 Hz; duration, 30 seconds; every 5 minutes for a total of 60 minutes 30 minutes, 12 hours, and 1, 2, 3, 7 and 14 days after surgery. Electrical stimulation of the vagus nerve substantially reduced infarct volume, improved neurological function, and decreased the expression levels of tumor necrosis factor-and interleukin- 6 in rats with focal cerebral ischemia. The experimental findings indicate that the neuroprotective effect of vagus nerve stimulation following cerebral ischemia may be associated with the inhibition of tumor necrosis factor- and interleukin-6 expression.

  11. Low frequency electric and magnetic fields - the topic of cancer

    International Nuclear Information System (INIS)

    Thommesen, G.

    1988-01-01

    A review is made of the literature about the biological effects of low frequency electric and magnetic fields. It is still an unsettled question whether extremely low frequency magnetic fields may increase the incidence of cancer. Experimental data arise mainly from exposure to field strengths or frequencies seldom or never encountered by people. The results give no clear explanation to the increase in cancer incidence reported in epidemiological works. The spectre of possible mechanisms imply that no simple dose/effect relationship should be expected, as conflicting mechanisms may dominate at different exposure levels. There is therefore no basis at present for giving numerical value to cancer risk from exposure to low frequency electric or magnetic fields

  12. Recovery of supraspinal control of leg movement in a chronic complete flaccid paraplegic man after continuous low-frequency pelvic nerve stimulation and FES-assisted training

    DEFF Research Database (Denmark)

    Possover, Marc; Forman, Axel

    2017-01-01

    INTRODUCTION: More than 30 years ago, functional electrical stimulation (FES) was developed as an orthotic system to be used for rehabilitation for SCI patients. In the present case report, FES-assisted training was combined with continuous low-frequency stimulation of the pelvic somatic nerves...... in a SCI patient. CASE PRESENTATION: We report on unexpected findings in a 41-year-old man with chronic complete flaccid paraplegia, since he was 18 years old, who underwent spinal stem cell therapy and a laparoscopic implantation of neuroprosthesis (LION procedure) in the pelvic lumbosacral nerves....... The patient had complete flaccid sensomotoric paraplegia T12 as a result of a motor vehicle accident in 1998. In June 2011, he underwent a laparoscopic implantation of stimulation electrodes to the sciatic and femoral nerves for continuous low-frequency electrical stimulation and functional electrical...

  13. Effect of transcutaneous electrical nerve stimulation induced parotid stimulation on salivary flow

    Directory of Open Access Journals (Sweden)

    Sreenivasulu Pattipati

    2013-01-01

    Full Text Available Aims and Objectives: The main objective of this study was to evaluate the duration of stimulation over the parotid salivary flow following the use of transcutaneous electric nerve stimulation (TENS in different age groups. Materials and Methods: The study was carried out in three different age groups. Under group A individuals from 21 to 35 years of age, group B 36-50 years and group C above 51 years were considered. In each group 30 subjects were taken of whom 15 were males and 15 were females. The placement of pads was approximated bilaterally over the parotid glands. The working parameters of TENS unit were fixed at 50 Hz and the unit was in normal mode. Results: Subjects belonging to group B were showing statistically significant increases in the duration of stimulated parotid salivary flow following the use of TENS. Conclusion: TENS can be considered as a non-pharmacological alternative to improve salivation for longer period in xerostomia patients.

  14. Selective detrusor activation by electrical sacral nerve root stimulation in spinal cord injury

    NARCIS (Netherlands)

    Rijkhoff, N. J.; Wijkstra, H.; van Kerrebroeck, P. E.; Debruyne, F. M.

    1997-01-01

    Electrical sacral nerve root stimulation can be used in spinal cord injury patients to induce urinary bladder contraction. However, existing stimulation methods activate simultaneously both the detrusor muscle and the urethral sphincter. Urine evacuation is therefore only possible using poststimulus

  15. Iterative learning control for electrical stimulation and stroke rehabilitation

    CERN Document Server

    Freeman, Chris T; Burridge, Jane H; Hughes, Ann-Marie; Meadmore, Katie L

    2015-01-01

    Iterative learning control (ILC) has its origins in the control of processes that perform a task repetitively with a view to improving accuracy from trial to trial by using information from previous executions of the task. This brief shows how a classic application of this technique – trajectory following in robots – can be extended to neurological rehabilitation after stroke. Regaining upper limb movement is an important step in a return to independence after stroke, but the prognosis for such recovery has remained poor. Rehabilitation robotics provides the opportunity for repetitive task-oriented movement practice reflecting the importance of such intense practice demonstrated by conventional therapeutic research and motor learning theory. Until now this technique has not allowed feedback from one practice repetition to influence the next, also implicated as an important factor in therapy. The authors demonstrate how ILC can be used to adjust external functional electrical stimulation of patients’ mus...

  16. The vestibular implant: Frequency-dependency of the electrically evoked Vestibulo-Ocular Reflex in humans

    Directory of Open Access Journals (Sweden)

    Raymond eVan De Berg

    2015-01-01

    Full Text Available The Vestibulo-Ocular Reflex (VOR shows frequency-dependent behavior. This study investigated whether the characteristics of the electrically evoked VOR (eVOR elicited by a vestibular implant, showed the same frequency-dependency.Twelve vestibular electrodes implanted in 7 patients with bilateral vestibular hypofunction were tested. Stimuli consisted of amplitude-modulated electrical stimulation with a sinusoidal profile at frequencies of 0.5Hz, 1Hz, and 2Hz. The main characteristics of the eVOR were evaluated and compared to the natural VOR characteristics measured in a group of age-matched healthy volunteers who were subjected to horizontal whole body rotations with equivalent sinusoidal velocity profiles at the same frequencies.A strong and significant effect of frequency was observed in the total peak eye velocity of the eVOR. This effect was similar to that observed in the natural VOR. Other characteristics of the (eVOR (angle, habituation-index, and asymmetry showed no significant frequency-dependent effect. In conclusion, this study demonstrates that, at least at the specific (limited frequency range tested, responses elicited by a vestibular implant closely mimic the frequency-dependency of the normal vestibular system.

  17. Subthalamic nucleus electrical stimulation modulates calcium activity of nigral astrocytes.

    Directory of Open Access Journals (Sweden)

    Elodie Barat

    Full Text Available The substantia nigra pars reticulata (SNr is a major output nucleus of the basal ganglia, delivering inhibitory efferents to the relay nuclei of the thalamus. Pathological hyperactivity of SNr neurons is known to be responsible for some motor disorders e.g. in Parkinson's disease. One way to restore this pathological activity is to electrically stimulate one of the SNr input, the excitatory subthalamic nucleus (STN, which has emerged as an effective treatment for parkinsonian patients. The neuronal network and signal processing of the basal ganglia are well known but, paradoxically, the role of astrocytes in the regulation of SNr activity has never been studied.In this work, we developed a rat brain slice model to study the influence of spontaneous and induced excitability of afferent nuclei on SNr astrocytes calcium activity. Astrocytes represent the main cellular population in the SNr and display spontaneous calcium activities in basal conditions. Half of this activity is autonomous (i.e. independent of synaptic activity while the other half is dependent on spontaneous glutamate and GABA release, probably controlled by the pace-maker activity of the pallido-nigral and subthalamo-nigral loops. Modification of the activity of the loops by STN electrical stimulation disrupted this astrocytic calcium excitability through an increase of glutamate and GABA releases. Astrocytic AMPA, mGlu and GABA(A receptors were involved in this effect.Astrocytes are now viewed as active components of neural networks but their role depends on the brain structure concerned. In the SNr, evoked activity prevails and autonomous calcium activity is lower than in the cortex or hippocampus. Our data therefore reflect a specific role of SNr astrocytes in sensing the STN-GPe-SNr loops activity and suggest that SNr astrocytes could potentially feedback on SNr neuronal activity. These findings have major implications given the position of SNr in the basal ganglia network.

  18. Subthalamic nucleus electrical stimulation modulates calcium activity of nigral astrocytes.

    Science.gov (United States)

    Barat, Elodie; Boisseau, Sylvie; Bouyssières, Céline; Appaix, Florence; Savasta, Marc; Albrieux, Mireille

    2012-01-01

    The substantia nigra pars reticulata (SNr) is a major output nucleus of the basal ganglia, delivering inhibitory efferents to the relay nuclei of the thalamus. Pathological hyperactivity of SNr neurons is known to be responsible for some motor disorders e.g. in Parkinson's disease. One way to restore this pathological activity is to electrically stimulate one of the SNr input, the excitatory subthalamic nucleus (STN), which has emerged as an effective treatment for parkinsonian patients. The neuronal network and signal processing of the basal ganglia are well known but, paradoxically, the role of astrocytes in the regulation of SNr activity has never been studied. In this work, we developed a rat brain slice model to study the influence of spontaneous and induced excitability of afferent nuclei on SNr astrocytes calcium activity. Astrocytes represent the main cellular population in the SNr and display spontaneous calcium activities in basal conditions. Half of this activity is autonomous (i.e. independent of synaptic activity) while the other half is dependent on spontaneous glutamate and GABA release, probably controlled by the pace-maker activity of the pallido-nigral and subthalamo-nigral loops. Modification of the activity of the loops by STN electrical stimulation disrupted this astrocytic calcium excitability through an increase of glutamate and GABA releases. Astrocytic AMPA, mGlu and GABA(A) receptors were involved in this effect. Astrocytes are now viewed as active components of neural networks but their role depends on the brain structure concerned. In the SNr, evoked activity prevails and autonomous calcium activity is lower than in the cortex or hippocampus. Our data therefore reflect a specific role of SNr astrocytes in sensing the STN-GPe-SNr loops activity and suggest that SNr astrocytes could potentially feedback on SNr neuronal activity. These findings have major implications given the position of SNr in the basal ganglia network.

  19. Electrical stimulation enhances sensory recovery: a randomized controlled trial.

    Science.gov (United States)

    Wong, Joshua N; Olson, Jaret L; Morhart, Michael J; Chan, K Ming

    2015-06-01

    Brief postsurgical electrical stimulation (ES) has been shown to enhance peripheral nerve regeneration in animal models following axotomy and crush injury. However, whether this treatment is beneficial in humans with sensory nerve injury has not been tested. The goal of this study was to test the hypothesis that ES would enhance sensory nerve regeneration following digital nerve transection compared to surgery alone. Patients with complete digital nerve transection underwent epineurial nerve repair. After coaptation of the severed nerve ends, fine wire electrodes were implanted before skin closure. Postoperatively, patients were randomized to receiving either 1 hour of 20Hz continuous ES or sham stimulation in a double-blinded manner. Patients were followed monthly for 6 months by a blinded evaluator to monitor physiological recovery of spatial discrimination, pressure threshold, and quantitative small fiber sensory testing. Functional disability was measured using the Disability of Arm, Shoulder, and Hand questionnaire. A total of 36 patients were recruited, with 18 in each group. Those in the ES group showed consistently greater improvements in all sensory modalities by 5 to 6 months postoperatively compared to the controls. Although there was a trend of greater functional improvements in the ES group, it was not statistically significant (p > 0.01). Postsurgical ES enhanced sensory reinnervation in patients who sustained complete digital nerve transection. The conferred benefits apply to a wide range of sensory functions. © 2015 American Neurological Association.

  20. Necessity of electrically conductive pili for methanogenesis with magnetite stimulation

    Directory of Open Access Journals (Sweden)

    Oumei Wang

    2018-03-01

    Full Text Available Background Magnetite-mediated direct interspecies electron transfer (DIET between Geobacter and Methanosarcina species is increasingly being invoked to explain magnetite stimulation of methane production in anaerobic soils and sediments. Although magnetite-mediated DIET has been documented in defined co-cultures reducing fumarate or nitrate as the electron acceptor, the effects of magnetite have only been inferred in methanogenic systems. Methods Concentrations of methane and organic acid were analysed with a gas chromatograph and high-performance liquid chromatography, respectively. The concentration of HCl-extractable Fe(II was determined by the ferrozine method. The association of the defined co-cultures of G. metallireducens and M. barkeri with magnetite was observed with transmission electron micrographs. Results Magnetite stimulated ethanol metabolism and methane production in defined co-cultures of G. metallireducens and M. barkeri; however, magnetite did not promote methane production in co-cultures initiated with a culture of G. metallireducens that could not produce electrically conductive pili (e-pili, unlike the conductive carbon materials that facilitate DIET in the absence of e-pili. Transmission electron microscopy revealed that G. metallireducens and M. barkeri were closely associated when magnetite was present, as previously observed in G. metallireducens/G. sulfurreducens co-cultures. These results show that magnetite can promote DIET between Geobacter and Methanosarcina species, but not as a substitute for e-pili, and probably functions to facilitate electron transfer from the e-pili to Methanosarcina. Conclusion In summary, the e-pili are necessary for the stimulation of not only G. metallireducens/G. sulfurreducens, but also methanogenic G. metallireducens/M. barkeri co-cultures with magnetite.

  1. High frequency switched-mode stimulation can evoke postsynaptic responses in cerebellar principal neurons

    Directory of Open Access Journals (Sweden)

    Marijn Van Dongen

    2015-03-01

    Full Text Available This paper investigates the efficacy of high frequency switched-mode neural stimulation. Instead of using a constant stimulation amplitude, the stimulus is switched on and off repeatedly with a high frequency (up to 100kHz duty cycled signal. By means of tissue modeling that includes the dynamic properties of both the tissue material as well as the axon membrane, it is first shown that switched-mode stimulation depolarizes the cell membrane in a similar way as classical constant amplitude stimulation.These findings are subsequently verified using in vitro experiments in which the response of a Purkinje cell is measured due to a stimulation signal in the molecular layer of the cerebellum of a mouse. For this purpose a stimulator circuit is developed that is able to produce a monophasic high frequency switched-mode stimulation signal. The results confirm the modeling by showing that switched-mode stimulation is able to induce similar responses in the Purkinje cell as classical stimulation using a constant current source. This conclusion opens up possibilities for novel stimulation designs that can improve the performance of the stimulator circuitry. Care has to be taken to avoid losses in the system due to the higher operating frequency.

  2. Transcutaneous electrical nerve stimulation and acupuncture-like transcutaneous electrical nerve stimulation for chronic low back pain.

    Science.gov (United States)

    Gadsby, J G; Flowerdew, M W

    2000-01-01

    Transcutaneous electrical nerve stimulation (TENS), originally based on the gate-control theory of pain, is widely used for the treatment of chronic low back pain. Despite its wide use and theoretical rationale, there appears at first glance little scientific evidence to support its use. This Cochrane review examines the available evidence on TENS for the treatment of chronic back pain through an exhaustive search of the literature. Transcutaneous electrical nerve stimulation (TENS) and acupuncture-like transcutaneous electrical nerve stimulation (ALTENS) for chronic low back pain management have experienced a tremendous growth over the past 25 years. The objective of this review was to assess the effects of TENS and ALTENS for reducing pain and improving function in patients with chronic back pain. We searched MEDLINE up to November 1997, EMBASE from 1985 to September 1995, Amed and Ciscom to January 1995, reference lists of the retrieved articles, proceedings of conferences and contacted investigators in the field. Randomised trials comparing TENS or ALTENS therapy to placebo in patients with chronic low back pain. Two reviewers independently assessed trial quality and extracted data on pain reduction, range of movement, functional and work status. Six trials were included. The trials included 288 participants with an average age range of 45 to 50 years and approximately equal numbers of women and men. The overall odds ratio for improvement in pain for each comparison was: TENS/ALTENS versus placebo 2.11 (95% confidence interval 1.32 to 3. 38), ALTENS versus placebo 7.22 (95% confidence interval 2.60 to 20.01) and TENS versus placebo 1.52 (95% confidence interval 0.90 to 2.58). The odds ration for improvement in range of motion on ALTENS versus placebo was 6.61 (95% confidence interval 2.36 to 18.55). There is evidence from the limited data available that TENS/ALTENS reduces pain and improves range of motion in chronic back pain patients, at least in the short

  3. Electrical and magnetic repetitive transcranial stimulation of the primary motor cortex in healthy subjects.

    Science.gov (United States)

    Gilio, Francesca; Iacovelli, Elisa; Frasca, Vittorio; Gabriele, Maria; Giacomelli, Elena; De Lena, Carlo; Cipriani, Anna Maria; Inghilleri, Maurizio

    2009-05-08

    Repetitive transcranial magnetic stimulation (rTMS) delivered in short trains at 5Hz frequency and suprathreshold intensity over the primary motor cortex (M1) in healthy subjects facilitates the motor-evoked potential (MEP) amplitude by increasing cortical excitability through mechanisms resembling short-term synaptic plasticity. In this study, to investigate whether rTES acts through similar mechanisms we compared the effects of rTMS and repetitive transcranial electrical stimulation (rTES) (10 stimuli-trains, 5Hz frequency, suprathreshold intensity) delivered over the M1 on the MEP amplitude. Four healthy subjects were studied in two separate sessions in a relaxed condition. rTMS and anodal rTES were delivered in trains to the left M1 over the motor area for evoking a MEP in the right first dorsal interosseous muscle. Changes in MEP size and latency during the course of the rTMS and rTES trains were compared. The possible effects of muscle activation on MEP amplitude were evaluated, and the possible effects of cutaneous trigeminal fibre activation on corticospinal excitability were excluded in a control experiment testing the MEP amplitude before and after supraorbital nerve repetitive electrical stimulation. Repeated measures analysis of variance (ANOVA) showed that rTES and rTMS trains elicited similar amplitude first MEPs and a similar magnitude MEP amplitude facilitation during the trains. rTES elicited a first MEP with a shorter latency than rTMS, without significant changes during the course of the train of stimuli. The MEP elicited by single-pulse TES delivered during muscle contraction had a smaller amplitude than the last MEP in the rTES trains. Repetitive supraorbital nerve stimulation left the conditioned MEP unchanged. Our results suggest that 5 Hz-rTES delivered in short trains increases cortical excitability and does so by acting on the excitatory interneurones probably through mechanisms similar to those underlying the rTMS-induced MEP facilitation.

  4. Charge-balanced biphasic electrical stimulation inhibits neurite extension of spiral ganglion neurons.

    Science.gov (United States)

    Shen, Na; Liang, Qiong; Liu, Yuehong; Lai, Bin; Li, Wen; Wang, Zhengmin; Li, Shufeng

    2016-06-15

    Intracochlear application of exogenous or transgenic neurotrophins, such as neurotrophin-3 (NT-3) and brain derived neurotrophic factor (BDNF), could promote the resprouting of spiral ganglion neuron (SGN) neurites in deafened animals. These resprouting neurites might reduce the gap between cochlear implant electrodes and their targeting SGNs, allowing for an improvement of spatial resolution of electrical stimulation. This study is to investigate the impact of electrical stimulation employed in CI on the extension of resprouting SGN neurites. We established an in vitro model including the devices delivering charge-balanced biphasic electrical stimulation, and spiral ganglion (SG) dissociated culture treated with BDNF and NT-3. After electrical stimulation with varying durations and intensities, we quantified neurite lengths and Schwann cell densities in SG cultures. Stimulations that were greater than 50μA or longer than 8h significantly decreased SG neurite length. Schwann cell density under 100μA electrical stimulation for 48h was significantly lower compared to that in non-stimulated group. These electrical stimulation-induced decreases of neurite extension and Schwann cell density were attenuated by various types of voltage-dependent calcium channel (VDCC) blockers, or completely prevented by their combination, cadmium or calcium-free medium. Our study suggested that charge-balanced biphasic electrical stimulation inhibited the extension of resprouting SGN neurites and decreased Schwann cell density in vitro. Calcium influx through multiple types of VDCCs was involved in the electrical stimulation-induced inhibition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Systematic Review of Three Electrical Stimulation Techniques for Rehabilitation After Total Knee Arthroplasty.

    Science.gov (United States)

    Yue, Chen; Zhang, Xue; Zhu, Yingjie; Jia, Yudong; Wang, Huichao; Liu, Youwen

    2018-07-01

    The comparative effectiveness of neuromuscular electrical stimulation (NMES), transcutaneous electrical nerve stimulation (TENS), and electroacupuncture (EA) for improving patient rehabilitation following total knee arthroplasty (TKA) is controversial. Therefore we conducted this systematic review to assess the available evidence. The PubMed, OVID, and ScienceDirect databases were comprehensively searched and studies were selected and analyzed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations. Data were extracted and qualitatively synthesized for several outcomes. Data were analyzed from 17 randomized controlled trials involving 1285 procedures: 8 NMES studies (608 procedures), 7 TENS studies (560 procedures), and 2 EA studies (117 procedures). Qualitative analysis suggested that NMES was associated with higher quadriceps strength and functional recovery after TKA. Recovery benefits were maximal when the stimulation was performed once or twice a day for 4-6 weeks at an intensity of 100-120 mA and frequency of 30-100 Hz. The electrode should be sufficiently large (100-200 cm 2 ) to reduce discomfort. TENS at an intensity of 15-40 mA and frequency of 70-150 Hz provided effective analgesia after TKA. EA at an intensity of 2 mA and frequency of 2 Hz may also provide postoperative analgesia of TKA. As adjunct modalities, NMES and TENS can effectively improve rehabilitation after TKA without triggering significant intolerance, and maximal benefits depend on optimized parameters and intervention protocols. EA may be an effective adjunct modality for analgesia after TKA. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Anomalous Capacitive Sheath with Deep Radio Frequency Electric Field Penetration

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.

    2002-01-01

    A novel nonlinear effect of anomalously deep penetration of an external radio-frequency electric field into a plasma is described. A self-consistent kinetic treatment reveals a transition region between the sheath and the plasma. Because of the electron velocity modulation in the sheath, bunches in the energetic electron density are formed in the transition region adjusted to the sheath. The width of the region is of order V(subscript T)/omega, where V(subscript T) is the electron thermal velocity, and w is frequency of the electric field. The presence of the electric field in the transition region results in a cooling of the energetic electrons and an additional heating of the cold electrons in comparison with the case when the transition region is neglected

  7. Mandarin speech perception in combined electric and acoustic stimulation.

    Directory of Open Access Journals (Sweden)

    Yongxin Li

    Full Text Available For deaf individuals with residual low-frequency acoustic hearing, combined use of a cochlear implant (CI and hearing aid (HA typically provides better speech understanding than with either device alone. Because of coarse spectral resolution, CIs do not provide fundamental frequency (F0 information that contributes to understanding of tonal languages such as Mandarin Chinese. The HA can provide good representation of F0 and, depending on the range of aided acoustic hearing, first and second formant (F1 and F2 information. In this study, Mandarin tone, vowel, and consonant recognition in quiet and noise was measured in 12 adult Mandarin-speaking bimodal listeners with the CI-only and with the CI+HA. Tone recognition was significantly better with the CI+HA in noise, but not in quiet. Vowel recognition was significantly better with the CI+HA in quiet, but not in noise. There was no significant difference in consonant recognition between the CI-only and the CI+HA in quiet or in noise. There was a wide range in bimodal benefit, with improvements often greater than 20 percentage points in some tests and conditions. The bimodal benefit was compared to CI subjects' HA-aided pure-tone average (PTA thresholds between 250 and 2000 Hz; subjects were divided into two groups: "better" PTA (50 dB HL. The bimodal benefit differed significantly between groups only for consonant recognition. The bimodal benefit for tone recognition in quiet was significantly correlated with CI experience, suggesting that bimodal CI users learn to better combine low-frequency spectro-temporal information from acoustic hearing with temporal envelope information from electric hearing. Given the small number of subjects in this study (n = 12, further research with Chinese bimodal listeners may provide more information regarding the contribution of acoustic and electric hearing to tonal language perception.

  8. Neuronal Activation in the Periaqueductal Gray Matter Upon Electrical Stimulation of the Bladder

    Directory of Open Access Journals (Sweden)

    Céline Meriaux

    2018-05-01

    Full Text Available Reflexes, that involve the spinobulbospinal pathway control both storage and voiding of urine. The periaqueductal gray matter (PAG, a pontine structure is part of the micturition pathway. Alteration in this pathway could lead to micturition disorders and urinary incontinence, such as the overactive bladder symptom complex (OABS. Although different therapeutic options exist for the management of OABS, these are either not effective in all patients. Part of the pathology of OABS is faulty sensory signaling about the filling status of the urinary bladder, which results in aberrant efferent signaling leading to overt detrusor contractions and the sensation of urgency and frequent voiding. In order to identify novel targets for therapy (i.e., structures in the central nervous system and explore novel treatment modalities such as neuromodulation, we aimed at investigating which areas in the central nervous system are functionally activated upon sensory afferent stimulation of the bladder. Hence, we designed a robust protocol with multiple readout parameters including immunohistological and behavioral parameters during electrical stimulation of the rat urinary bladder. Bladder stimulation induced by electrical stimulation, below the voiding threshold, influences neural activity in: (1 the caudal ventrolateral PAG, close to the aqueduct; (2 the pontine micturition center and locus coeruleus; and (3 the superficial layers of the dorsal horn, sacral parasympathetic nucleus and central canal region of the spinal cord. In stimulated animals, a higher voiding frequency was observed but was not accompanied by increase in anxiety level and locomotor deficits. Taken together, this work establishes a critical role for the vlPAG in the processing of sensory information from the urinary bladder and urges future studies to investigate the potential of neuromodulatory approaches for urological diseases.

  9. Probing phase- and frequency-dependent characteristics of cortical interneurons using combined transcranial alternating current stimulation and transcranial magnetic stimulation.

    Science.gov (United States)

    Hussain, Sara J; Thirugnanasambandam, Nivethida

    2017-06-01

    Paired-pulse transcranial magnetic stimulation (TMS) and peripheral stimulation combined with TMS can be used to study cortical interneuronal circuitry. By combining these procedures with concurrent transcranial alternating current stimulation (tACS), Guerra and colleagues recently showed that different cortical interneuronal populations are differentially modulated by the phase and frequency of tACS-imposed oscillations (Guerra A, Pogosyan A, Nowak M, Tan H, Ferreri F, Di Lazzaro V, Brown P. Cerebral Cortex 26: 3977-2990, 2016). This work suggests that different cortical interneuronal populations can be characterized by their phase and frequency dependency. Here we discuss how combining TMS and tACS can reveal the frequency at which cortical interneuronal populations oscillate, the neuronal origins of behaviorally relevant cortical oscillations, and how entraining cortical oscillations could potentially treat brain disorders. Copyright © 2017 the American Physiological Society.

  10. Influence of electroencephalograph bionic electrical stimulation on neuronal activities in patients with Alzheimer's disease: A functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Liling Jiang

    2018-03-01

    Full Text Available Purpose: To investigate the influence of electroencephalograph bionic electrical stimulation on neuronal activity in patients with Alzheimer's disease (AD using resting-state blood oxygen level dependent functional MRI (BOLD-fMRI and amplitude of low-frequency fluctuation (ALFF and fraction ALFF (fALFF analysis. Methods: 42 AD patients were divided into two groups in accordance with the randomized double blind principle, every group was 21. Treatment group received electroencephalograph bionic electrical stimulation. Both groups received resting-state BOLD-fMRI scanning before and after treatment and comparing differences in ALFF and fALFF in each group by statistical methods. Correlation analysis was performed between ALFF or fALFF images and neuropsychological tests scale after treatment. Results: Post-therapy brain regions with higher ALFF included left cerebellum posterior lobe, right cerebellum posterior lobe, left hippocampus/parahippocampus, left posterior cingulated cortex, left dorsolateral prefrontal cortex, right inferior parietal lobule in treatment group. Higher fALFF was observed in the right inferior parietal lobule. In the placebo group lower ALFF was observed in bilateral cerebellum posterior lobe and left posterior cingulated cortex. Alzheimer's Disease Assessment Scale-Cognitive section was closely correlated with ALFF in left cerebellum posterior lobe and right cerebellum posterior lobe. Conclusion: These results indicated improved neuronal activity in some brain areas could be achieved in AD after treatment of electroencephalograph bionic electrical stimulation. The change of BOLD-fMRI signal might provide a potential imaging strategy for studying neural mechanisms of electroencephalograph bionic electrical stimulation for AD. Keywords: Electroencephalograph bionic electrical stimulation, Alzheimer's disease, Low-frequency fluctuation, Fraction low-frequency fluctuation

  11. Thermal acclimation and thyroxine treatment modify the electric organ discharge frequency in an electric fish, Apteronotus leptorhynchus.

    Science.gov (United States)

    Dunlap, K D; Ragazzi, M A

    2015-11-01

    In ectotherms, the rate of many neural processes is determined externally, by the influence of the thermal environment on body temperature, and internally, by hormones secreted from the thyroid gland. Through thermal acclimation, animals can buffer the influence of the thermal environment by adjusting their physiology to stabilize certain processes in the face of environmental temperature change. The electric organ discharge (EOD) used by weak electric fish for electrocommunication and electrolocation is highly temperature sensitive. In some temperate species that naturally experience large seasonal fluctuations in environmental temperature, the thermal sensitivity (Q10) of the EOD shifts after long-term temperature change. We examined thermal acclimation of EOD frequency in a tropical electric fish, Apteronotus leptorhynchus that naturally experiences much less temperature change. We transferred fish between thermal environments (25.3 and 27.8 °C) and measured EOD frequency and its thermal sensitivity (Q10) over 11 d. After 6d, fish exhibited thermal acclimation to both warming and cooling, adjusting the thermal dependence of EOD frequency to partially compensate for the small change (2.5 °C) in water temperature. In addition, we evaluated the thyroid influence on EOD frequency by treating fish with thyroxine or the anti-thyroid compound propylthiouricil (PTU) to stimulate or inhibit thyroid activity, respectively. Thyroxine treatment significantly increased EOD frequency, but PTU had no effect. Neither thyroxine nor PTU treatment influenced the thermal sensitivity (Q10) of EOD frequency during acute temperature change. Thus, the EOD of Apteronotus shows significant thermal acclimation and responds to elevated thyroxine. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Different Mode of Afferents Determines the Frequency Range of High Frequency Activities in the Human Brain: Direct Electrocorticographic Comparison between Peripheral Nerve and Direct Cortical Stimulation.

    Directory of Open Access Journals (Sweden)

    Katsuya Kobayashi

    Full Text Available Physiological high frequency activities (HFA are related to various brain functions. Factors, however, regulating its frequency have not been well elucidated in humans. To validate the hypothesis that different propagation modes (thalamo-cortical vs. cortico-coritcal projections, or different terminal layers (layer IV vs. layer II/III affect its frequency, we, in the primary somatosensory cortex (SI, compared HFAs induced by median nerve stimulation with those induced by electrical stimulation of the cortex connecting to SI. We employed 6 patients who underwent chronic subdural electrode implantation for presurgical evaluation. We evaluated the HFA power values in reference to the baseline overriding N20 (earliest cortical response and N80 (late response of somatosensory evoked potentials (HFA(SEP(N20 and HFA(SEP(N80 and compared those overriding N1 and N2 (first and second responses of cortico-cortical evoked potentials (HFA(CCEP(N1 and HFA(CCEP(N2. HFA(SEP(N20 showed the power peak in the frequency above 200 Hz, while HFA(CCEP(N1 had its power peak in the frequency below 200 Hz. Different propagation modes and/or different terminal layers seemed to determine HFA frequency. Since HFA(CCEP(N1 and HFA induced during various brain functions share a similar broadband profile of the power spectrum, cortico-coritcal horizontal propagation seems to represent common mode of neural transmission for processing these functions.

  13. Validating computationally predicted TMS stimulation areas using direct electrical stimulation in patients with brain tumors near precentral regions.

    Science.gov (United States)

    Opitz, Alexander; Zafar, Noman; Bockermann, Volker; Rohde, Veit; Paulus, Walter

    2014-01-01

    The spatial extent of transcranial magnetic stimulation (TMS) is of paramount interest for all studies employing this method. It is generally assumed that the induced electric field is the crucial parameter to determine which cortical regions are excited. While it is difficult to directly measure the electric field, one usually relies on computational models to estimate the electric field distribution. Direct electrical stimulation (DES) is a local brain stimulation method generally considered the gold standard to map structure-function relationships in the brain. Its application is typically limited to patients undergoing brain surgery. In this study we compare the computationally predicted stimulation area in TMS with the DES area in six patients with tumors near precentral regions. We combine a motor evoked potential (MEP) mapping experiment for both TMS and DES with realistic individual finite element method (FEM) simulations of the electric field distribution during TMS and DES. On average, stimulation areas in TMS and DES show an overlap of up to 80%, thus validating our computational physiology approach to estimate TMS excitation volumes. Our results can help in understanding the spatial spread of TMS effects and in optimizing stimulation protocols to more specifically target certain cortical regions based on computational modeling.

  14. Pharyngeal Electrical Stimulation for Treatment of Dysphagia in Subacute Stroke

    Science.gov (United States)

    Scutt, Polly; Love, Jo; Clavé, Pere; Cohen, David; Dziewas, Rainer; Iversen, Helle K.; Ledl, Christian; Ragab, Suzanne; Soda, Hassan; Warusevitane, Anushka; Woisard, Virginie; Hamdy, Shaheen

    2016-01-01

    Background and Purpose— Dysphagia is common after stroke, associated with increased death and dependency, and treatment options are limited. Pharyngeal electric stimulation (PES) is a novel treatment for poststroke dysphagia that has shown promise in 3 pilot randomized controlled trials. Methods— We randomly assigned 162 patients with a recent ischemic or hemorrhagic stroke and dysphagia, defined as a penetration aspiration score (PAS) of ≥3 on video fluoroscopy, to PES or sham treatment given on 3 consecutive days. The primary outcome was swallowing safety, assessed using the PAS, at 2 weeks. Secondary outcomes included dysphagia severity, function, quality of life, and serious adverse events at 6 and 12 weeks. Results— In randomized patients, the mean age was 74 years, male 58%, ischemic stroke 89%, and PAS 4.8. The mean treatment current was 14.8 (7.9) mA and duration 9.9 (1.2) minutes per session. On the basis of previous data, 45 patients (58.4%) randomized to PES seemed to receive suboptimal stimulation. The PAS at 2 weeks, adjusted for baseline, did not differ between the randomized groups: PES 3.7 (2.0) versus sham 3.6 (1.9), P=0.60. Similarly, the secondary outcomes did not differ, including clinical swallowing and functional outcome. No serious adverse device-related events occurred. Conclusions— In patients with subacute stroke and dysphagia, PES was safe but did not improve dysphagia. Undertreatment of patients receiving PES may have contributed to the neutral result. Clinical Trial Registration— URL: http://www.controlled-trials.com. Unique identifier: ISRCTN25681641. PMID:27165955

  15. Development of a neuromuscular electrical stimulation protocol for sprint training.

    Science.gov (United States)

    Russ, David W; Clark, Brian C; Krause, Jodi; Hagerman, Fredrick C

    2012-09-01

    Sprint training is associated with several beneficial adaptations in skeletal muscle, including an enhancement of sarcoplasmic reticulum (SR) Ca(2+) release. Unfortunately, several patient populations (e.g., the elderly, those with cardiac dysfunction) that might derive great benefit from sprint exercise are unlikely to tolerate it. The purpose of this report was to describe the development of a tolerable neuromuscular electrical stimulation (NMES) protocol that induces skeletal muscle adaptations similar to those observed with sprint training. Our NMES protocol was modeled after a published sprint exercise protocol and used a novel electrode configuration and stimulation sequence to provide adequate training stimulus while maintaining subject tolerance. Nine young, healthy subjects (four men) began and completed the training protocol of the knee extensor muscles. All subjects completed the protocol, with ratings of discomfort far less than those reported in studies of traditional NMES. Training induced significant increases in SR Ca(2+) release and citrate synthase activity (~16% and 32%, respectively), but SR Ca(2+) uptake did not change. The percentage of myosin heavy chain IIx isoform was decreased significantly after training. At the whole muscle level, neither central activation nor maximum voluntary isometric contraction force were significantly altered, although isometric force did exhibit a trend toward an increase (~3%, P = 0.055). Surprisingly, the NMES training produced a significant increase in muscle cross-sectional area (~3%, P = 0.04). It seems that an appropriately designed NMES protocol can mimic many of the benefits of sprint exercise training, with a low overall time commitment and training volume. These findings suggest that NMES has the potential to bring the benefits of sprint exercise to individuals who are unable to tolerate traditional sprint training.

  16. Electrical stimulation of gut motility guided by an in silico model

    Science.gov (United States)

    Barth, Bradley B.; Henriquez, Craig S.; Grill, Warren M.; Shen, Xiling

    2017-12-01

    Objective. Neuromodulation of the central and peripheral nervous systems is becoming increasingly important for treating a diverse set of diseases—ranging from Parkinson’s Disease and epilepsy to chronic pain. However, neuromodulation of the gastrointestinal (GI) tract has achieved relatively limited success in treating functional GI disorders, which affect a significant population, because the effects of stimulation on the enteric nervous system (ENS) and gut motility are not well understood. Here we develop an integrated neuromechanical model of the ENS and assess neurostimulation strategies for enhancing gut motility, validated by in vivo experiments. Approach. The computational model included a network of enteric neurons, smooth muscle fibers, and interstitial cells of Cajal, which regulated propulsion of a virtual pellet in a model of gut motility. Main results. Simulated extracellular stimulation of ENS-mediated motility revealed that sinusoidal current at 0.5 Hz was more effective at increasing intrinsic peristalsis and reducing colon transit time than conventional higher frequency rectangular current pulses, as commonly used for neuromodulation therapy. Further analysis of the model revealed that the 0.5 Hz sinusoidal currents were more effective at modulating the pacemaker frequency of interstitial cells of Cajal. To test the predictions of the model, we conducted in vivo electrical stimulation of the distal colon while measuring bead propulsion in awake rats. Experimental results confirmed that 0.5 Hz sinusoidal currents were more effective than higher frequency pulses at enhancing gut motility. Significance. This work demonstrates an in silico GI neuromuscular model to enable GI neuromodulation parameter optimization and suggests that low frequency sinusoidal currents may improve the efficacy of GI pacing.

  17. Transcutaneous periorbital electrical stimulation in the treatment of dry eye.

    Science.gov (United States)

    Pedrotti, Emilio; Bosello, Francesca; Fasolo, Adriano; Frigo, Anna C; Marchesoni, Ivan; Ruggeri, Alfredo; Marchini, Giorgio

    2017-06-01

    To evaluate efficacy and safety of transcutaneous application of electrical current on symptoms and clinical signs of dry eye (DE). 27 patients with DE underwent transcutaneous electrostimulation with electrodes placed onto the periorbital region of both eyes and manual stimulation with a hand-piece conductor moved by the operator. Each patient underwent 12 sessions of 22 min spread over 2 months, two sessions per week in the first month and one session per week in the second month. Ocular Surface Disease Index (OSDI) questionnaire, tear break-up time (TBUT), fluorescein staining of the cornea, Schirmer I test and adverse events were evaluated at baseline, at end of treatment and at 6 and 12 months. OSDI improved from 43.0±19.2 at baseline to 25.3±22.1 at end of treatment (mean±SD, p=0.001). These effects were substantially maintained at 6-month and 12-month follow-up evaluations. Improvement of the values of TBUT was recorded for the right eye at the end of treatment (p=0.003) and found in the left eye after 12 months (p=0.02). The Oxford scores changed in both eyes at the end of treatment and at the 6-month evaluation (peye at the 12-month evaluation (p=0.035). Schirmer I improved significantly at the end of treatment in the left eye (p=0.001) and in both eyes at the 12-month evaluation (p=0.004 and p=0.039 for the left and right eye, respectively). A significant reduction of the use of tear substitutes was found at the end of treatment (p=0.003), and was maintained during the follow-up (ptreatment satisfying. Transcutaneous electrical stimulation was shown to improve DE, both subjectively and objectively, without any adverse effects and has the potential to enlarge the armamentarium for treating DE. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. High gamma power in ECoG reflects cortical electrical stimulation effects on unit activity in layers V/VI

    Science.gov (United States)

    Yazdan-Shahmorad, Azadeh; Kipke, Daryl R.; Lehmkuhle, Mark J.

    2013-12-01

    Objective. Cortical electrical stimulation (CES) has been used extensively in experimental neuroscience to modulate neuronal or behavioral activity, which has led this technique to be considered in neurorehabilitation. Because the cortex and the surrounding anatomy have irregular geometries as well as inhomogeneous and anisotropic electrical properties, the mechanism by which CES has therapeutic effects is poorly understood. Therapeutic effects of CES can be improved by optimizing the stimulation parameters based on the effects of various stimulation parameters on target brain regions. Approach. In this study we have compared the effects of CES pulse polarity, frequency, and amplitude on unit activity recorded from rat primary motor cortex with the effects on the corresponding local field potentials (LFP), and electrocorticograms (ECoG). CES was applied at the surface of the cortex and the unit activity and LFPs were recorded using a penetrating electrode array, which was implanted below the stimulation site. ECoGs were recorded from the vicinity of the stimulation site. Main results. Time-frequency analysis of LFPs following CES showed correlation of gamma frequencies with unit activity response in all layers. More importantly, high gamma power of ECoG signals only correlated with the unit activity in lower layers (V-VI) following CES. Time-frequency correlations, which were found between LFPs, ECoGs and unit activity, were frequency- and amplitude-dependent. Significance. The signature of the neural activity observed in LFP and ECoG signals provides a better understanding of the effects of stimulation on network activity, representative of large numbers of neurons responding to stimulation. These results demonstrate that the neurorehabilitation and neuroprosthetic applications of CES targeting layered cortex can be further improved by using field potential recordings as surrogates to unit activity aimed at optimizing stimulation efficacy. Likewise, the signatures

  19. Electrical vestibular stimulation after vestibular deafferentation and in vestibular schwannoma.

    Directory of Open Access Journals (Sweden)

    Swee Tin Aw

    Full Text Available BACKGROUND: Vestibular reflexes, evoked by human electrical (galvanic vestibular stimulation (EVS, are utilized to assess vestibular function and investigate its pathways. Our study aimed to investigate the electrically-evoked vestibulo-ocular reflex (eVOR output after bilateral and unilateral vestibular deafferentations to determine the characteristics for interpreting unilateral lesions such as vestibular schwannomas. METHODS: EVOR was recorded with dual-search coils as binocular three-dimensional eye movements evoked by bipolar 100 ms-step at EVS intensities of [0.9, 2.5, 5.0, 7.5, 10.0] mA and unipolar 100 ms-step at 5 mA EVS intensity. Five bilateral vestibular deafferented (BVD, 12 unilateral vestibular deafferented (UVD, four unilateral vestibular schwannoma (UVS patients and 17 healthy subjects were tested with bipolar EVS, and five UVDs with unipolar EVS. RESULTS: After BVD, bipolar EVS elicited no eVOR. After UVD, bipolar EVS of one functioning ear elicited bidirectional, excitatory eVOR to cathodal EVS with 9 ms latency and inhibitory eVOR to anodal EVS, opposite in direction, at half the amplitude with 12 ms latency, exhibiting an excitatory-inhibitory asymmetry. The eVOR patterns from UVS were consistent with responses from UVD confirming the vestibular loss on the lesion side. Unexpectedly, unipolar EVS of the UVD ear, instead of absent response, evoked one-third the bipolar eVOR while unipolar EVS of the functioning ear evoked half the bipolar response. CONCLUSIONS: The bidirectional eVOR evoked by bipolar EVS from UVD with an excitatory-inhibitory asymmetry and the 3 ms latency difference between normal and lesion side may be useful for detecting vestibular lesions such as UVS. We suggest that current spread could account for the small eVOR to 5 mA unipolar EVS of the UVD ear.

  20. Electrical field stimulation promotes anastomotic healing in poorly perfused rat colon.

    LENUS (Irish Health Repository)

    Kennelly, Rory

    2011-03-01

    Hypoperfusion of the bowel is a risk factor for anastomotic failure. Electrical field stimulation has been shown to improve repair in ischemic tissue, but its influence in hypoperfused colon has not been investigated. The hypothesis of this experimental animal study was that electrical field stimulation improves anastomotic healing in ischemic bowel.

  1. Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Damián Hernández

    2016-01-01

    Full Text Available Background. Human induced pluripotent stem cells (iPSCs are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes. Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days. Results. In iPS(Foreskin-2 cell line, brief electrical stimulation at 65 mV/mm or 200 mV/mm for 5 min significantly increased the percentage of beating EBs present by day 14 after plating. Acute electrical stimulation also significantly increased the cardiac gene expression of ACTC1, TNNT2, MYH7, and MYL7. However, the cardiogenic effect of electrical stimulation was not reproducible in another iPS cell line, CERA007c6. Beating EBs from control and electrically stimulated groups expressed various cardiac-specific transcription factors and contractile muscle markers. Beating EBs were also shown to cycle calcium and were responsive to the chronotropic agents, isoproterenol and carbamylcholine, in a concentration-dependent manner. Conclusions. Our results demonstrate that brief electrical stimulation can promote cardiac differentiation of human iPS cells. The cardiogenic effect of brief electrical stimulation is dependent on the cell line used.

  2. Characteristics of retinal reflectance changes induced by transcorneal electrical stimulation in cat eyes.

    Directory of Open Access Journals (Sweden)

    Takeshi Morimoto

    Full Text Available Transcorneal electrical stimulation (TES activates retinal neurons leading to visual sensations. How the retinal cells are activated by TES has not been definitively determined. Investigating the reflectance changes of the retina is an established technique and has been used to determine the mechanism of retinal activation. The purpose of this study was to evaluate the reflectance changes elicited by TES in cat eyes. Eight eyes of Eight cats were studied under general anesthesia. Biphasic electrical pulses were delivered transcornealy. The fundus images observed with near-infrared light (800-880 nm were recorded every 25 ms for 26 s. To improve the signal-to-noise ratio, the images of 10 consecutive recordings were averaged. Two-dimensional topographic maps of the reflective changes were constructed by subtracting images before from those after the TES. The effects of different stimulus parameters, e.g., current intensity, pulse duration, frequency, and stimulus duration, on the reflective changes were studied. Our results showed that after TES, the reflective changes appeared on the retinal vessels and optic disc. The intensity of reflectance changes increased as the current intensity, pulse duration, and stimulation duration increased (P<0.05 for all. The maximum intensity of the reflective change was obtained when the stimulus frequency was 20 Hz. The time course of the reflectance changes was also altered by the stimulation parameters. The response started earlier and returned to the baseline later with higher current intensities, longer pulse durations, but the time of the peak of the response was not changed. These results showed that the reflective changes were due to the activation of retinal neurons by TES and might involve the vascular changes induced by an activation of the retinal neurons.

  3. Interleaved neuromuscular electrical stimulation: Motor unit recruitment overlap.

    Science.gov (United States)

    Wiest, Matheus J; Bergquist, Austin J; Schimidt, Helen L; Jones, Kelvin E; Collins, David F

    2017-04-01

    In this study, we quantified the "overlap" between motor units recruited by single pulses of neuromuscular electrical stimulation (NMES) delivered over the tibialis anterior muscle (mNMES) and the common peroneal nerve (nNMES). We then quantified the torque produced when pulses were alternated between the mNMES and nNMES sites at 40 Hz ("interleaved" NMES; iNMES). Overlap was assessed by comparing torque produced by twitches evoked by mNMES, nNMES, and both delivered together, over a range of stimulus intensities. Trains of iNMES were delivered at the intensity that produced the lowest overlap. Overlap was lowest (5%) when twitches evoked by both mNMES and nNMES produced 10% peak twitch torque. iNMES delivered at this intensity generated 25% of maximal voluntary dorsiflexion torque (11 Nm). Low intensity iNMES leads to low overlap and produces torque that is functionally relevant to evoke dorsiflexion during walking. Muscle Nerve 55: 490-499, 2017. © 2016 Wiley Periodicals, Inc.

  4. Colon electrical stimulation: potential use for treatment of obesity.

    Science.gov (United States)

    Sallam, Hanaa S; Chen, Jiande D Z

    2011-09-01

    Obesity is one of the most prevalent health problems in the United States. Current therapeutic strategies for the treatment of obesity are unsatisfactory. We hypothesized the use of colon electrical stimulation (CES) to treat obesity by inhibiting upper gastrointestinal motility. In this preliminary study, we aimed at studying the effects of CES on gastric emptying of solid, intestinal motility, and food intake in dogs. Six dogs, equipped with serosal colon electrodes and a jejunal cannula, were randomly assigned to receive sham-CES or CES during the assessment of: (i) gastric emptying of solids, (ii) postprandial intestinal motility, (iii) autonomic functions, and (iv) food intake. We found that (i) CES delayed gastric emptying of solids by 77%. Guanethidine partially blocked the inhibitory effect of CES on solid gastric emptying; (ii) CES significantly reduced intestinal contractility and the effect lasted throughout the recovery period; (iii) CES decreased vagal activity in both fasting and fed states, increased the sympathovagal balance and marginally increased sympathetic activity in the fasting state; (iv) CES resulted in a reduction of 61% in food intake. CES reduces food intake in healthy dogs and the anorexigenic effect may be attributed to its inhibitory effects on gastric emptying and intestinal motility, mediated via the autonomic mechanisms. Further studies are warranted to investigate the therapeutic potential of CES for obesity.

  5. Transcutaneous electrical nerve stimulation therapy in reduction of orofacial pain

    Directory of Open Access Journals (Sweden)

    Đorđević Igor

    2014-01-01

    Full Text Available Introduction. Patients with craniomandibular disorders suffer from hypertonic, fatigued and painful masticatory muscles. This condition can lead to limitation of mandibular jaw movements. All of these symptoms and signs are included in myofascial pain dysfunction syndrome. Transcutaneous electrical nerve stimulation (TENS has been used for treatment of these patients. Objective. The aim of this study was to assess the effect of TENS therapy on chronic pain reduction in patients with the muscular dysfunction symptom. Methods. In order to evaluate the effect of TENS therapy before and after the treatment, Craniomandibular Index (Helkimo was used. Pain intensity was measured by VAS. Patients had TENS treatment over two-week period. BURST TENS modality was used. Current intensity was individually adjusted. Results. Two patients did not respond to TENS therapy. Complete pain reduction was recorded in 8 patients, while pain reduction was not significantly different after TENS therapy in 10 patients. Conclusion. TENS therapy was confirmed as therapeutic procedure in orofacial muscle relaxation and pain reduction.

  6. Effects of pharyngeal electrical stimulation on swallowing performance.

    Science.gov (United States)

    Takeishi, Ryosuke; Magara, Jin; Watanabe, Masahiro; Tsujimura, Takanori; Hayashi, Hirokazu; Hori, Kazuhiro; Inoue, Makoto

    2018-01-01

    Pharyngeal electrical stimulation (PEStim) has been found to facilitate voluntary swallowing. This study investigated how PEStim contributed to modulation of swallowing function in 15 healthy humans. In the involuntary swallowing test, water was injected onto the pharynx at 0.05 ml/s and the onset latency of the first swallow was measured. In the voluntary swallowing test, subjects swallowed their own saliva as quickly as possible for 30 s and the number of swallows was counted. Voluntary and involuntary swallowing was evaluated before (baseline), immediately after, and every 10 min after 10-min PEStim for 60 min. A voluntary swallowing test with simultaneous 30-s PEStim was also conducted before and 60 min after 10-min PEStim. The number of voluntary swallows with simultaneous PEStim significantly increased over 60 min after 10-min PEStim compared with the baseline. The onset latency of the first swallow in the involuntary swallowing test was not affected by 10-min PEStim. The results suggest that PEStim may have a long-term facilitatory effect on the initiation of voluntary swallowing in healthy humans, but not on peripherally-evoked swallowing. The physiological implications of this modulation are discussed.

  7. Transcutaneous electrical nerve stimulation improves low back pain during pregnancy.

    Science.gov (United States)

    Keskin, E A; Onur, O; Keskin, H L; Gumus, I I; Kafali, H; Turhan, N

    2012-01-01

    To compare the efficiency of transcutaneous electrical nerve stimulation (TENS) with those of exercise and acetaminophen for the treatment of pregnancy-related low back pain (LBP) during the third trimester of pregnancy. This prospective study included 79 subjects (≥32 gestational weeks) with visual analog scale (VAS) pain scores ≥5. Participants were divided randomly into a control group (n = 21) and three treatment groups [exercise (n = 19); acetaminophen (n = 19); TENS (n = 20)]. The VAS and the Roland-Morris disability questionnaire (RMDQ) were completed before and 3 weeks after treatment to assess the impact of pain on daily activities. During the study period, pain intensity increased in 57% of participants in the control group, whereas pain decreased in 95% of participants in the exercise group and in all participants in the acetaminophen and TENS groups. Post-treatment VAS and RMDQ values were significantly lower in the treatment groups (p pain relief in the TENS group than in the exercise and acetaminophen groups (p TENS application on pregnant women was observed during the study. TENS is an effective and safe treatment modality for LBP during pregnancy. TENS improved LBP more effectively than did exercise and acetaminophen. Copyright © 2012 S. Karger AG, Basel.

  8. Effects of electrical stimulation on cell proliferation and apoptosis.

    Science.gov (United States)

    Love, Maria R; Palee, Siripong; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2018-03-01

    The application of exogenous electrical stimulation (ES) to cells in order to manipulate cell apoptosis and proliferation has been widely investigated as a possible method of treatment in a number of diseases. Alteration of the transmembrane potential of cells via ES can affect various intracellular signaling pathways which are involved in the regulation of cellular function. Controversially, several types of ES have proved to be effective in both inhibiting or inducing apoptosis, as well as increasing proliferation. However, the mechanisms through which ES achieves this remain fairly unclear. The aim of this review was to comprehensively summarize current findings from in vitro and in vivo studies on the effects of different types of ES on cell apoptosis and proliferation, highlighting the possible mechanisms through which ES induced these effects and define the optimum parameters at which ES can be used. Through this we hope to provide a greater insight into how future studies can most effectively use ES at the clinical trial stage. © 2017 Wiley Periodicals, Inc.

  9. Videoradiography at submental electrical stimulation during apnea in obstructive sleep apnea syndrome

    International Nuclear Information System (INIS)

    Hillarp, B.; Rosen, I.; Wickstroem, O.; Malmoe Allmaenna Sjukhus

    1991-01-01

    Percutaneous submental electrical stimulation during sleep may be a new therapeutic method for patients with obstructive sleep apnea syndrome (OSAS). Electrical stimulation to the submental region during obstructive apnea is reported to break the apnea without arousal and to diminish apneic index, time spent in apnea, and oxygen desaturation. The mode of breaking the apnea by electrical stimulation has not yet been shown. However, genioglossus is supposed to be the muscle responsible for breaking the apnea by forward movement of the tongue. To visualize the effect of submental electrical stimulation, one patient with severe OSAS has been examined with videoradiography. Submental electrical stimulation evoked an immediate complex muscle activity in the tongue, palate, and hyoid bone. This was followed by a forward movement of the tongue which consistently broke obstructive apnea without apparent arousal. Time spent in apnea was diminished but intervals between apnea were not affected. (orig.)

  10. Electrical Stimulation to Enhance Axon Regeneration After Peripheral Nerve Injuries in Animal Models and Humans.

    Science.gov (United States)

    Gordon, Tessa

    2016-04-01

    Injured peripheral nerves regenerate their lost axons but functional recovery in humans is frequently disappointing. This is so particularly when injuries require regeneration over long distances and/or over long time periods. Fat replacement of chronically denervated muscles, a commonly accepted explanation, does not account for poor functional recovery. Rather, the basis for the poor nerve regeneration is the transient expression of growth-associated genes that accounts for declining regenerative capacity of neurons and the regenerative support of Schwann cells over time. Brief low-frequency electrical stimulation accelerates motor and sensory axon outgrowth across injury sites that, even after delayed surgical repair of injured nerves in animal models and patients, enhances nerve regeneration and target reinnervation. The stimulation elevates neuronal cyclic adenosine monophosphate and, in turn, the expression of neurotrophic factors and other growth-associated genes, including cytoskeletal proteins. Electrical stimulation of denervated muscles immediately after nerve transection and surgical repair also accelerates muscle reinnervation but, at this time, how the daily requirement of long-duration electrical pulses can be delivered to muscles remains a practical issue prior to translation to patients. Finally, the technique of inserting autologous nerve grafts that bridge between a donor nerve and an adjacent recipient denervated nerve stump significantly improves nerve regeneration after delayed nerve repair, the donor nerves sustaining the capacity of the denervated Schwann cells to support nerve regeneration. These reviewed methods to promote nerve regeneration and, in turn, to enhance functional recovery after nerve injury and surgical repair are sufficiently promising for early translation to the clinic.

  11. [Development of an Analgesia Therapy System for Delivery Based on Bio-feedback Transcuataneous Electrical Nerve Stimulation].

    Science.gov (United States)

    Deng Songbo; Lu Yaosheng; Fang, Kun; Qin, Ruyi; Lin, Zhan

    2015-06-01

    Transcuataneous electrical nerve stimulation (TENS) analgesia as a non-drug method has received people's more and more attention recently. Considering problems of existing products, such as unstable performance and unsatisfied effectiveness, we developed a new analgesia therapy system for delivery based on bio-feedback TENS in our laboratory. We proposed a new idea for stimulation signal design, that is, we modulated a middle frequency signal by a traditional low frequency TENS wave in the new system. We designed different prescription waves for pain relief during a uterine contraction or massage between contractions. In the end, a bio-feedback TENS method was proposed, in which the waveforms of stimulation signals were selected and their parameters were modified automatically based on feedback from uterine pressure, etc. It was proved through quality tests and clinical trials that the system had good performance and satisfied analgesia effectiveness.

  12. [A physiological investigation of chronic electrical stimulation with scala tympani electrodes in kittens].

    Science.gov (United States)

    Ni, D

    1992-12-01

    A physiological investigation of cochlear electrical stimulation was undertaken in six two-month-old kittens. The scala tympani electrodes were implanted and electrically stimulated using biphasic balanced electrical pulses for periods of 1000-1500h in four ears. Four ears received implants for same period but without electrical stimulation. The other two ears served as normal control. The results indicated: 1) Chronic electrical stimulation of the cochlea within electrochemically safe limits did not influence the hearing of kittens and the normal delivery of impulses evoked by acoustic and electrical signals on the auditory brainstem pathway. 2) The wave shapes of EABRs were similar to those of ABRs. The amplitudes of EABRs showed a significant increase following chronic electrical stimulation, resulting in a leftward shift in the input/output function. The absolute latencies and interwave latencies of waves II-III, III-IV and II-IV were significantly shorter than those of ABRs. These results imply that there was no adverse effect of chronic electrical stimulation on the maturing auditory systems of kittens using these electrical parameters and the mechanism of electrical hearing should be further studied.

  13. Treatment of Chronic Refractory Neuropathic Pelvic Pain with High-Frequency 10-kilohertz Spinal Cord Stimulation.

    Science.gov (United States)

    Simopoulos, Thomas; Yong, Robert J; Gill, Jatinder S

    2017-11-06

    Chronic neuropathic pelvic pain remains a recalcitrant problem in the field of pain management. Case series on application of 10 kHz spinal cord stimulation is presented. High frequency stimulation can improve chronic neuropathic pain states that are known to be mediated at the conus medullaris and offers another avenue for the treatment of these patients. © 2017 World Institute of Pain.

  14. Higher success rate with transcranial electrical stimulation of motor-evoked potentials using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery.

    Science.gov (United States)

    Shigematsu, Hideki; Kawaguchi, Masahiko; Hayashi, Hironobu; Takatani, Tsunenori; Iwata, Eiichiro; Tanaka, Masato; Okuda, Akinori; Morimoto, Yasuhiko; Masuda, Keisuke; Tanaka, Yuu; Tanaka, Yasuhito

    2017-10-01

    During spine surgery, the spinal cord is electrophysiologically monitored via transcranial electrical stimulation of motor-evoked potentials (TES-MEPs) to prevent injury. Transcranial electrical stimulation of motor-evoked potential involves the use of either constant-current or constant-voltage stimulation; however, there are few comparative data available regarding their ability to adequately elicit compound motor action potentials. We hypothesized that the success rates of TES-MEP recordings would be similar between constant-current and constant-voltage stimulations in patients undergoing spine surgery. The objective of this study was to compare the success rates of TES-MEP recordings between constant-current and constant-voltage stimulation. This is a prospective, within-subject study. Data from 100 patients undergoing spinal surgery at the cervical, thoracic, or lumbar level were analyzed. The success rates of the TES-MEP recordings from each muscle were examined. Transcranial electrical stimulation with constant-current and constant-voltage stimulations at the C3 and C4 electrode positions (international "10-20" system) was applied to each patient. Compound muscle action potentials were bilaterally recorded from the abductor pollicis brevis (APB), deltoid (Del), abductor hallucis (AH), tibialis anterior (TA), gastrocnemius (GC), and quadriceps (Quad) muscles. The success rates of the TES-MEP recordings from the right Del, right APB, bilateral Quad, right TA, right GC, and bilateral AH muscles were significantly higher using constant-voltage stimulation than those using constant-current stimulation. The overall success rates with constant-voltage and constant-current stimulations were 86.3% and 68.8%, respectively (risk ratio 1.25 [95% confidence interval: 1.20-1.31]). The success rates of TES-MEP recordings were higher using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery. Copyright © 2017

  15. Electrical and optical co-stimulation in the deaf white cat

    Science.gov (United States)

    Cao, Zhiping; Xu, Yingyue; Tan, Xiaodong; Suematsu, Naofumi; Robinson, Alan; Richter, Claus-Peter

    2018-02-01

    Spatial selectivity of neural stimulation with photons, such as infrared neural stimulation (INS) is higher than the selectivity obtained with electrical stimulation. To obtain more independent channels for stimulation in neural prostheses, INS may be implemented to better restore the fidelity of the damaged neural system. However, irradiation with infrared light also bares the risk of heat accumulation in the target tissue with subsequent neural damage. Lowering the threshold for stimulation could reduce the amount of heat delivered to the tissue and the risk for subsequent tissue damage. It has been shown in the rat sciatic nerve that simultaneous irradiation with infrared light and the delivery of biphasic sub-threshold electrical pulses can reduce the threshold for INS [1]. In this study, deaf white cats have been used to test whether opto-electrical co-stimulation can reduce the stimulation threshold for INS in the auditory system too. The cochleae of the deaf white cats have largely reduced spiral ganglion neuron counts and significant degeneration of the organ of Corti and do not respond to acoustic stimuli. Combined electrical and optical stimulation was used to demonstrate that simultaneous stimulation with infrared light and biphasic electrical pulses can reduce the threshold for stimulation.

  16. A Novel In Vitro System for Comparative Analyses of Bone Cells and Bacteria under Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Thomas Josef Dauben

    2016-01-01

    Full Text Available Electrical stimulation is a promising approach to enhance bone regeneration while having potential to inhibit bacterial growth. To investigate effects of alternating electric field stimulation on both human osteoblasts and bacteria, a novel in vitro system was designed. Electric field distribution was simulated numerically and proved by experimental validation. Cells were stimulated on Ti6Al4V electrodes and in short distance to electrodes. Bacterial growth was enumerated in supernatant and on the electrode surface and biofilm formation was quantified. Electrical stimulation modulated gene expression of osteoblastic differentiation markers in a voltage-dependent manner, resulting in significantly enhanced osteocalcin mRNA synthesis rate on electrodes after stimulation with 1.4VRMS. While collagen type I synthesis increased when stimulated with 0.2VRMS, it decreased after stimulation with 1.4VRMS. Only slight and infrequent influence on bacterial growth was observed following stimulations with 0.2VRMS and 1.4VRMS after 48 and 72 h, respectively. In summary this novel test system is applicable for extended in vitro studies concerning definition of appropriate stimulation parameters for bone cell growth and differentiation, bacterial growth suppression, and investigation of general effects of electrical stimulation.

  17. Assessment of multiple frequency ELF electric and magnetic field exposure

    International Nuclear Information System (INIS)

    Leitgeb, N

    2008-01-01

    Electromagnetic fields both in daily life and at workplaces exhibit increasingly complex frequency spectra. Present spectral assessment rules proved to be too conservative for health risk assessment. This is because they are based on the assumption that cells would react like linear systems in terms of responding to a sum of frequencies by a sum of independent responses to each individual frequency. Based on numerical investigations with the Hodgkin-Huxley and the Frankenhaeuser-Huxley nerve cell models, it could be shown that accounting for the nonlinear behaviour of cellular excitation processes avoids considerable overestimation of simultaneous exposures to multiple frequency ELF electric and magnetic fields. Besides this, it could be shown that the role of phase relationships is less important than that assumed so far. The present assessment rules lead to non-compliances of marketed electric appliances. For general application, a nonlinear biology-based assessment (NBBA) rule has been proposed, validated and proven advantageous compared with ICNIRP's rule. While staying conservative it avoids unnecessary overestimation and demonstrates compliance even in cases of suspected non-conformities. It is up to responsible bodies to decide upon the adoption of this proposal and the potential need for implementing additional or reducing the already incorporated safety factors

  18. Gastric electrical stimulation for treatment of clinically severe gastroparesis

    Directory of Open Access Journals (Sweden)

    Naga Venkatesh G Jayanthi

    2013-01-01

    Full Text Available Background: Severe, drug-resistant gastroparesis is a debilitating condition. Several, but not all, patients can get significant relief from nausea and vomiting by gastric electrical stimulation (GES. A trial of temporary, endoscopically delivered GES may be of predictive value to select patients for laparoscopic-implantation of a permanent GES device. Materials and Methods: We conducted a clinical audit of consecutive gastroparesis patients, who had been selected for GES, from May 2008 to January 2012. Delayed gastric emptying was diagnosed by scintigraphy of ≥50% global improvement in symptom-severity and well-being was a good response. Results: There were 71 patients (51 women, 72% with a median age of 42 years (range: 14-69. The aetiology of gastroparesis was idiopathic (43 patients, 61%, diabetes (15, 21%, or post-surgical (anti-reflux surgery, 6 patients; Roux-en-Y gastric bypass, 3; subtotal gastrectomy, 1; cardiomyotomy, 1; other gastric surgery, 2 (18%. At presentation, oral nutrition was supplemented by naso-jejunal tube feeding in 7 patients, surgical jejunostomy in 8, or parenterally in 1 (total 16 patients; 22%. Previous intervention included endoscopic injection of botulinum toxin (botox into the pylorus in 16 patients (22%, pyloroplasty in 2, distal gastrectomy in 1, and gastrojejunostomy in 1. It was decided to directly proceed with permanent GES in 4 patients. Of the remaining, 51 patients have currently completed a trial of temporary stimulation and 39 (77% had a good response and were selected for permanent GES, which has been completed in 35 patients. Outcome data are currently available for 31 patients (idiopathic, 21 patients; diabetes, 3; post-surgical, 7 with a median follow-up period of 10 months (1-28; 22 patients (71% had a good response to permanent GES, these included 14 (68% with idiopathic, 5 (71% with post-surgical, and remaining 3 with diabetic gastroparesis. Conclusions: Overall, 71% of well-selected patients

  19. LTP in Hippocampal Area CA1 Is Induced by Burst Stimulation over a Broad Frequency Range Centered around Delta

    Science.gov (United States)

    Grover, Lawrence M.; Kim, Eunyoung; Cooke, Jennifer D.; Holmes, William R.

    2009-01-01

    Long-term potentiation (LTP) is typically studied using either continuous high-frequency stimulation or theta burst stimulation. Previous studies emphasized the physiological relevance of theta frequency; however, synchronized hippocampal activity occurs over a broader frequency range. We therefore tested burst stimulation at intervals from 100…

  20. Tolerance and physiological correlates of neuromuscular electrical stimulation in COPD: a pilot study.

    Directory of Open Access Journals (Sweden)

    Isabelle Vivodtzev

    Full Text Available Neuromuscular electrical stimulation (NMES of the lower limbs is an emerging training strategy in patients with COPD. The efficacy of this technique is related to the intensity of the stimulation that is applied during the training sessions. However, little is known about tolerance to stimulation current intensity and physiological factors that could determine it. Our goal was to find potential physiological predictors of the tolerance to increasing NMES stimulation intensity in patients with mild to severe COPD.20 patients with COPD (FEV1 = 54±14% pred. completed 2 supervised NMES sessions followed by 5 self-directed sessions at home and one final supervised session. NMES was applied simultaneously to both quadriceps for 45 minutes, at a stimulation frequency of 50 Hz. Spirometry, body composition, muscle function and aerobic capacity were assessed at baseline. Cardiorespiratory responses, leg discomfort, muscle fatigue and markers of systemic inflammation were assessed during or after the last NMES session. Tolerance to NMES was quantified as the increase in current intensity from the initial to the final NMES session (ΔInt.Mean ΔInt was 12±10 mA. FEV1, fat-free-mass, quadriceps strength, aerobic capacity and leg discomfort during the last NMES session positively correlated with ΔInt (r = 0.42 to 0.64, all p≤0.06 while post/pre NMES IL-6 ratio negatively correlated with ΔInt (r = -0.57, p = 0.001. FEV1, leg discomfort during last NMES session and post/pre IL-6 ratio to NMES were independent factors of variance in ΔInt (r2 = 0.72, p = 0.001.Lower tolerance to NMES was associated with increasing airflow obstruction, low tolerance to leg discomfort during NMES and the magnitude of the IL-6 response after NMES.ClinicalTrials.gov NCT00809120.

  1. Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes.

    Science.gov (United States)

    Parkins, C W; Colombo, J

    1987-12-31

    Single auditory-nerve neuron thresholds were studied in sensory-deafened squirrel monkeys to determine the effects of electrical stimulus shape and frequency on single-neuron thresholds. Frequency was separated into its components, pulse width and pulse rate, which were analyzed separately. Square and sinusoidal pulse shapes were compared. There were no or questionably significant threshold differences in charge per phase between sinusoidal and square pulses of the same pulse width. There was a small (less than 0.5 dB) but significant threshold advantage for 200 microseconds/phase pulses delivered at low pulse rates (156 pps) compared to higher pulse rates (625 pps and 2500 pps). Pulse width was demonstrated to be the prime determinant of single-neuron threshold, resulting in strength-duration curves similar to other mammalian myelinated neurons, but with longer chronaxies. The most efficient electrical stimulus pulse width to use for cochlear implant stimulation was determined to be 100 microseconds/phase. This pulse width delivers the lowest charge/phase at threshold. The single-neuron strength-duration curves were compared to strength-duration curves of a computer model based on the specific anatomy of auditory-nerve neurons. The membrane capacitance and resulting chronaxie of the model can be varied by altering the length of the unmyelinated termination of the neuron, representing the unmyelinated portion of the neuron between the habenula perforata and the hair cell. This unmyelinated segment of the auditory-nerve neuron may be subject to aminoglycoside damage. Simulating a 10 micron unmyelinated termination for this model neuron produces a strength-duration curve that closely fits the single-neuron data obtained from aminoglycoside deafened animals. Both the model and the single-neuron strength-duration curves differ significantly from behavioral threshold data obtained from monkeys and humans with cochlear implants. This discrepancy can best be explained by

  2. Registration and Analysis of Bioelectric Activity of Sensory-Motor Cortex During the Electrical Stimulation of Nucleus Caudate in Rats

    Directory of Open Access Journals (Sweden)

    Snežana Medenica-Milanović

    2007-05-01

    Full Text Available Background and purposeThe caudate circuit takes part in cognitive control of motor activity The purpose of the present work was registration and analysis of basic bioelectrical activity of ventral and dorsal sensory-motor cortex and nucleus caudate, study of the changes in EEG after nucleus caudate electrical stimulation and to identify of threshold level of electrical stimuli responsible for changes of electrical activity in registered brain area.Materials and methodsWe used 28 albino Wistar rat of both genders. After the animal fixation on stereotaxic apparatus to dry bone, the places for electrode fixation were marked. Two days after the electrodes had been implanted an EEG was registered so that the animals would adjust to the conditions and so they would repair the tissue reactions. EEG was registered with bipolar electrodes with ten-channeled apparatus. For first half an hour spontaneous activity of the brain was registered, and after that the head of nucleus caudate was stimulated with altered impulses of various voltages, frequency and duration.Results and conclusionsThreshold values of electric stimulus intensity from 3 to 5 V, frequency from 3 to 5 Hz, duration from 3 to 5 ms, by stimulation the head of nucleus caudate of rat, lead to the change of basal bioelectric activity of cerebrum. The change of bioelectric activity is firstly recorded in equilateral cortex, and with the higher intensity of the stimulus the changes overtake the contra lateral cortex.

  3. Compact, Energy-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge Balancing.

    Science.gov (United States)

    Hsu, Wen-Yang; Schmid, Alexandre

    2017-08-01

    Safety and energy efficiency are two major concerns for implantable neural stimulators. This paper presents a novel high-frequency, switched capacitor (HFSC) stimulation and active charge balancing scheme, which achieves high energy efficiency and well-controlled stimulation charge in the presence of large electrode impedance variations. Furthermore, the HFSC can be implemented in a compact size without any external component to simultaneously enable multichannel stimulation by deploying multiple stimulators. The theoretical analysis shows significant benefits over the constant-current and voltage-mode stimulation methods. The proposed solution was fabricated using a 0.18 μm high-voltage technology, and occupies only 0.035 mm 2 for a single stimulator. The measurement result shows 50% peak energy efficiency and confirms the effectiveness of active charge balancing to prevent the electrode dissolution.

  4. Inhibition of Parkinsonian tremor with cutaneous afferent evoked by transcutaneous electrical nerve stimulation.

    Science.gov (United States)

    Hao, Man-Zhao; Xu, Shao-Qin; Hu, Zi-Xiang; Xu, Fu-Liang; Niu, Chuan-Xin M; Xiao, Qin; Lan, Ning

    2017-07-14

    Recent study suggests that tremor signals are transmitted by way of multi-synaptic corticospinal pathway. Neurophysiological studies have also demonstrated that cutaneous afferents exert potent inhibition to descending motor commands by way of spinal interneurons. We hypothesize in this study that cutaneous afferents could also affect the transmission of tremor signals, thus, inhibit tremor in patients with PD. We tested this hypothesis by activating cutaneous afferents in the dorsal hand skin innervated by superficial radial nerve using transcutaneous electrical nerve stimulation (TENS). Eight patients with PD having tremor dominant symptom were recruited to participate in this study using a consistent experimental protocol for tremor inhibition. Resting tremor and electromyogram (EMG) of muscles in the upper extremity of these subjects with PD were recorded, while surface stimulation was applied to the dorsal skin of the hand. Fifteen seconds of data were recorded for 5 s prior to, during and post stimulation. Power spectrum densities (PSDs) of tremor and EMG signals were computed for each data segment. The peak values of PSDs in three data segments were compared to detect evidence of tremor inhibition. At stimulation intensity from 1.5 to 1.75 times of radiating sensation threshold, apparent suppressions of tremor at wrist, forearm and upper arm and in the EMGs were observed immediately at the onset of stimulation. After termination of stimulation, tremor and rhythmic EMG bursts reemerged gradually. Statistical analysis of peak spectral amplitudes showed a significant difference in joint tremors and EMGs during and prior to stimulation in all 8 subjects with PD. The average percentage of suppression was 61.56% in tremor across all joints of all subjects, and 47.97% in EMG of all muscles. The suppression appeared to occur mainly in distal joints and muscles. There was a slight, but inconsistent effect on tremor frequency in the 8 patients with PD tested. Our

  5. Comparison of the shock artifacts induced by tripolar and bipolar electrical stimulation techniques.

    Science.gov (United States)

    Wee, A S; Jiles, K; Brennan, R

    2001-01-01

    Tripolar and bipolar electrical stimulation procedures were performed on the upper limbs of eight subjects. The mid-forearm was stimulated electrically (tripolar or bipolar) by surface electrodes, and the induced stimulus shock artifacts were recorded simultaneously from the wrist and elbow. During tripolar stimulation, two types of stimulating configurations were utilized: with the center electrode designated as the cathode and the two outermost electrodes connected to a common anode, and vice versa. During bipolar stimulation, the center electrode served as one pole of the stimulator, and one of the two outermost electrodes of the tripolar stimulator was disconnected. The stimulus intensity was kept constant in all stimulating procedures. Artifacts were reduced significantly during tripolar compared to bipolar stimulation, if the outermost electrodes of the tripolar stimulator (which were facing the recording electrodes) were also oriented toward the recording sites during bipolar stimulation and had the same stimulus polarity. Artifacts were slightly reduced in amplitude from tripolar stimulation, if the center electrode were oriented toward the recording sites during bipolar stimulation and had the same stimulus polarity as previously used during tripolar stimulation.

  6. Sensory threshold neuromuscular electrical stimulation fosters motor imagery performance.

    Science.gov (United States)

    Corbet, Tiffany; Iturrate, Iñaki; Pereira, Michael; Perdikis, Serafeim; Millán, José Del R

    2018-04-21

    Motor imagery (MI) has been largely studied as a way to enhance motor learning and to restore motor functions. Although it is agreed that users should emphasize kinesthetic imagery during MI, recordings of MI brain patterns are not sufficiently reliable for many subjects. It has been suggested that the usage of somatosensory feedback would be more suitable than standardly used visual feedback to enhance MI brain patterns. However, somatosensory feed-back should not interfere with the recorded MI brain pattern. In this study we propose a novel feedback modality to guide subjects during MI based on sensory threshold neuromuscular electrical stimulation (St-NMES). St-NMES depolarizes sensory and motor axons without eliciting any muscular contraction. We hypothesize that St-NMES does not induce detectable ERD brain patterns and fosters MI performance. Twelve novice subjects were included in a cross-over design study. We recorded their EEG, comparing St-NMES with visual feed-back during MI or resting tasks. We found that St-NMES not only induced significantly larger desynchronization over sensorimotor areas (p<0.05) but also significantly enhanced MI brain connectivity patterns. Moreover, classification accuracy and stability were significantly higher with St-NMES. Importantly, St-NMES alone did not induce detectable artifacts, but rather the changes in the detected patterns were due to an increased MI performance. Our findings indicate that St-NMES is a promising feedback in order to foster MI performance and cold be used for BMI online applications. Copyright © 2018. Published by Elsevier Inc.

  7. A multi-channel stimulator and electrode array providing a rotating current whirlpool for electrical stimulation of wounds.

    Science.gov (United States)

    Petrofsky, J; Suh, H J; Fish, A; Hernandez, V; Abdo, A; Collins, K; Mendoza, E; Yang, T-N

    2008-01-01

    When electrical stimulation is used on wounds, the electrical current has difficulty penetrating areas where there is necrotic tissue. Further, for an irregularly shaped wound, current distribution is poor in some areas of the wound since conventional two-electrode delivery systems provide the greatest current in a line directly between the electrodes. A new stimulator and electrode system is described which uses three electrodes spaced around a wound to disperse current more evenly. The stimulator senses tissue impedance and then redirects current by altering its Thevenin's output impedance for each electrode; each of the three electrodes becomes the active one in sequence while the remaining are the sink electrodes. Eight subjects were examined to test the stimulator. Electrical stimulation was applied to the skin above the quadriceps muscle at currents of 15 mA in six subjects without wounds and in two subjects with wounds. The relationship between electrode position and current dispersion on the skin was examined with a two-electrode vs. a three-electrode system to set stimulation parameters for the computer. The results showed that the three-electrode system could (1) detect areas of the skin with high impedance; (2) compensate by altering the Thevenin's output impedance at each of the three electrodes to shift current to high impedance areas; (3) provide uniform current across the skin as assessed by skin current and blood flow measurements with a laser Doppler flow imager.

  8. Transcutaneous electrical nerve stimulation (TENS) for neuropathic pain in adults.

    Science.gov (United States)

    Gibson, William; Wand, Benedict M; O'Connell, Neil E

    2017-09-14

    Neuropathic pain, which is due to nerve disease or damage, represents a significant burden on people and society. It can be particularly unpleasant and achieving adequate symptom control can be difficult. Non-pharmacological methods of treatment are often employed by people with neuropathic pain and may include transcutaneous electrical nerve stimulation (TENS). This review supersedes one Cochrane Review 'Transcutaneous electrical nerve stimulation (TENS) for chronic pain' (Nnoaham 2014) and one withdrawn protocol 'Transcutaneous electrical nerve stimulation (TENS) for neuropathic pain in adults' (Claydon 2014). This review replaces the original protocol for neuropathic pain that was withdrawn. To determine the analgesic effectiveness of TENS versus placebo (sham) TENS, TENS versus usual care, TENS versus no treatment and TENS in addition to usual care versus usual care alone in the management of neuropathic pain in adults. We searched CENTRAL, MEDLINE, Embase, PsycINFO, AMED, CINAHL, Web of Science, PEDro, LILACS (up to September 2016) and various clinical trials registries. We also searched bibliographies of included studies for further relevant studies. We included randomised controlled trials where TENS was evaluated in the treatment of central or peripheral neuropathic pain. We included studies if they investigated the following: TENS versus placebo (sham) TENS, TENS versus usual care, TENS versus no treatment and TENS in addition to usual care versus usual care alone in the management of neuropathic pain in adults. Two review authors independently screened all database search results and identified papers requiring full-text assessment. Subsequently, two review authors independently applied inclusion/exclusion criteria to these studies. The same review authors then independently extracted data, assessed for risk of bias using the Cochrane standard tool and rated the quality of evidence using GRADE. We included 15 studies with 724 participants. We found a

  9. Comparison electrical stimulation and passive stretching for blood glucose control type 2 diabetes mellitus patients

    Science.gov (United States)

    Arsianti, Rika Wahyuni; Parman, Dewy Haryanti; Lesmana, Hendy

    2018-04-01

    Physical exercise is one of the cornerstones for management and treatment type 2 diabetes mellitus. But not all people are able to perform physical exercise because of their physical limitation condition. The strategy for those people in this study is electrical stimulation and passive stretching. The aim of this study is to find out the effect of electrical stimulation and passive stretching to lowering blood glucose level. 20 subjects is divided into electrical stimulation and passive stretching group. The provision of electrical stimulation on lower extremities muscles for 30 minutes for electrical stimulation group (N=10). And other underwent passive stretching for 30 minutes (N=10). The result shows that blood glucose level is decrease from 192.9 ± 10.7087 mg/dL to 165.3 ± 10.527 mg/dL for electrical stimulation intervention group while for the passive stretching group the blood glucose decrease from 153 ± 12.468 mg/dL to 136.1 ± 12.346 mg/dL. Both electrical stimulation and passive stretching are effective to lowering blood glucose level and can be proposed for those people restricted to perform exercise.

  10. Tracking electric field exposure levels through radio frequency dosimetry

    International Nuclear Information System (INIS)

    Ewing, P.D.; Moore, M.R.; Rochelle, R.W.; Thomas, R.S.; Hess, R.A.; Hoffheins, B.S.

    1991-01-01

    The radio-frequency (rf) dosimeter developed by the Oak Ridge National Laboratory is a portable, pocket-sized cumulative-dose recording device designed to detect and record the strengths and durations of electric fields present in the work areas of naval vessels. The device measures an integrated dose and records the electric fields that exceed the permissible levels set by the American National Standards Institute. Features of the rf dosimeter include a frequency range of 30 MHz to 10 GHz and a three-dimensional sensor. Data obtained with the rf dosimeter will be used to determine the ambient field-strength profile for shipboard personnel over an extended time. Readings are acquired and averaged over a 6-min period corresponding to the rise time of the core body temperature. These values are stored for up to 6 months, after which the data are transferred to a computer via the dosimeter's serial port. The rf dosimeter should increase knowledge of the levels of electric fields to which individuals are exposed. 5 refs., 4 figs

  11. The difference between electrical microstimulation and direct electrical stimulation - towards new opportunities for innovative functional brain mapping?

    Science.gov (United States)

    Vincent, Marion; Rossel, Olivier; Hayashibe, Mitsuhiro; Herbet, Guillaume; Duffau, Hugues; Guiraud, David; Bonnetblanc, François

    2016-04-01

    Both electrical microstimulation (EMS) and direct electrical stimulation (DES) of the brain are used to perform functional brain mapping. EMS is applied to animal fundamental neuroscience experiments, whereas DES is performed in the operating theatre on neurosurgery patients. The objective of the present review was to shed new light on electrical stimulation techniques in brain mapping by comparing EMS and DES. There is much controversy as to whether the use of DES during wide-awake surgery is the 'gold standard' for studying the brain function. As part of this debate, it is sometimes wrongly assumed that EMS and DES induce similar effects in the nervous tissues and have comparable behavioural consequences. In fact, the respective stimulation parameters in EMS and DES are clearly different. More surprisingly, there is no solid biophysical rationale for setting the stimulation parameters in EMS and DES; this may be due to historical, methodological and technical constraints that have limited the experimental protocols and prompted the use of empirical methods. In contrast, the gap between EMS and DES highlights the potential for new experimental paradigms in electrical stimulation for functional brain mapping. In view of this gap and recent technical developments in stimulator design, it may now be time to move towards alternative, innovative protocols based on the functional stimulation of peripheral nerves (for which a more solid theoretical grounding exists).

  12. A Power-Frequency Electric Field Sensor for Portable Measurement.

    Science.gov (United States)

    Xiao, Dongping; Ma, Qichao; Xie, Yutong; Zheng, Qi; Zhang, Zhanlong

    2018-03-31

    In this paper, a new type of electric field sensor is proposed for the health and safety protection of inspection staff in high-voltage environments. Compared with the traditional power frequency electric field measurement instruments, the portable instrument has some special performance requirements and, thus, a new kind of double spherical shell sensor is presented. First, the mathematical relationships between the induced voltage of the sensor, the output voltage of the measurement circuit, and the original electric field in free space are deduced theoretically. These equations show the principle of the proposed sensor to measure the electric field and the effect factors of the measurement. Next, the characteristics of the sensor are analyzed through simulation. The simulation results are in good agreement with the theoretical analysis. The influencing rules of the size and material of the sensor on the measurement results are summarized. Then, the proposed sensor and the matching measurement system are used in a physical experiment. After calibration, the error of the measurement system is discussed. Lastly, the directional characteristic of the proposed sensor is experimentally tested.

  13. Speech Perception With Combined Electric-Acoustic Stimulation: A Simulation and Model Comparison.

    Science.gov (United States)

    Rader, Tobias; Adel, Youssef; Fastl, Hugo; Baumann, Uwe

    2015-01-01

    The aim of this study is to simulate speech perception with combined electric-acoustic stimulation (EAS), verify the advantage of combined stimulation in normal-hearing (NH) subjects, and then compare it with cochlear implant (CI) and EAS user results from the authors' previous study. Furthermore, an automatic speech recognition (ASR) system was built to examine the impact of low-frequency information and is proposed as an applied model to study different hypotheses of the combined-stimulation advantage. Signal-detection-theory (SDT) models were applied to assess predictions of subject performance without the need to assume any synergistic effects. Speech perception was tested using a closed-set matrix test (Oldenburg sentence test), and its speech material was processed to simulate CI and EAS hearing. A total of 43 NH subjects and a customized ASR system were tested. CI hearing was simulated by an aurally adequate signal spectrum analysis and representation, the part-tone-time-pattern, which was vocoded at 12 center frequencies according to the MED-EL DUET speech processor. Residual acoustic hearing was simulated by low-pass (LP)-filtered speech with cutoff frequencies 200 and 500 Hz for NH subjects and in the range from 100 to 500 Hz for the ASR system. Speech reception thresholds were determined in amplitude-modulated noise and in pseudocontinuous noise. Previously proposed SDT models were lastly applied to predict NH subject performance with EAS simulations. NH subjects tested with EAS simulations demonstrated the combined-stimulation advantage. Increasing the LP cutoff frequency from 200 to 500 Hz significantly improved speech reception thresholds in both noise conditions. In continuous noise, CI and EAS users showed generally better performance than NH subjects tested with simulations. In modulated noise, performance was comparable except for the EAS at cutoff frequency 500 Hz where NH subject performance was superior. The ASR system showed similar behavior

  14. Functional electrical stimulation of the ankle dorsiflexors during walking in spastic cerebral palsy: a systematic review.

    Science.gov (United States)

    Moll, Irene; Vles, Johannes S H; Soudant, Dan L H M; Witlox, Adhiambo M A; Staal, Heleen M; Speth, Lucianne A W M; Janssen-Potten, Yvonne J M; Coenen, Marcel; Koudijs, Suzanne M; Vermeulen, R Jeroen

    2017-12-01

    To assess the effect of functional electrical stimulation (FES) of ankle dorsiflexors in children and adolescents with spastic cerebral palsy (CP) during walking. A systematic review was performed using the American Academy of Cerebral Palsy and Developmental Medicine methodology and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Six databases were searched for studies applying interventions to patients aged younger than 20 years. Outcomes were classified according to the International Classification of Functioning, Disability and Health (ICF). Seven hundred and eighty abstracts were found, 35 articles were fully screened, and 14 articles were used for analysis. Only five articles (three studies) were of level I to III evidence. At ICF participation and activity level, there is limited evidence for a decrease in self-reported frequency of toe-drag and falls. At ICF body structure and function level, there is clear evidence (I-III) that FES increased (active) ankle dorsiflexion angle, strength, and improved selective motor control, balance, and gait kinematics, but decreased walking speed. Adverse events include skin irritation, toleration, and acceptation issues. There are insufficient data supporting functional gain by FES on activity and participation level. However, evidence points towards a role for FES as an alternative to orthoses in children with spastic CP. Effects of functional electrical stimulation (FES) point towards a potential role as an alternative to orthoses for patients with spastic cerebral palsy (CP). Some evidence for a decrease in self-reported frequency of toe-drag and falls with the use of FES in spastic CP. Limited evidence for improvements in activity and participation in patients with spastic CP using FES. © 2017 Mac Keith Press.

  15. Estimulação elétrica neuromuscular de média freqüência (russa em cães com atrofia muscular induzida Medium frequency neuromuscular electrical stimulation (russian in dogs with induced muscle atrophy

    Directory of Open Access Journals (Sweden)

    Charles Pelizzari

    2008-06-01

    Full Text Available A estimulação elétrica neuromuscular (EENM de média freqüência (Russa ou de Kotz pode ser empregada para a recuperação de massa muscular em animais apresentando atrofia muscular por desuso. Assim, o objetivo deste trabalho foi empregar a EENM de média freqüência no quadríceps femoral de cães com atrofia muscular induzida, avaliando-se a ocorrência de ganho de massa. Foram utilizados oito cães em dois grupos denominados de GI ou controle e de GII ou tratado. Para a indução da atrofia muscular, a articulação fêmoro-tíbio-patelar esquerda foi imobilizada por 30 dias. Após 48 horas da remoção, foi realizada a EENM nos cães do grupo II, três vezes por semana, com intervalo de 48 horas cada sessão, pelo período de 60 dias. Foram avaliadas a mensuração da perimetria da coxa, da goniometria do joelho, as enzimas creatina-quinase (CK e morfometria das fibras musculares em cortes transversais do músculo vasto lateral, colhido mediante a biópsia muscular. A EENM foi empregada no músculo quadríceps femoral numa freqüência de 2.500Hz, largura de pulso de 50% e relação de tempo on/off de 1:2. Não houve diferença significativa quanto aos valores de perimetria da coxa e a atividade da enzima CK entre os grupos I e II. Na goniometria, houve diminuição significativa (PThe medium frequency neuromuscular electrical stimulation (NMES (Russa or Kotz is designed for recuperation of muscle mass in dogs with muscular atrophy in disuse. This study aims to utilize medium frequency NMES on the femoral quadriceps of dogs with induced muscular atrophy and evaluate the occurrence of gain in mass. Eight dogs in two groups denominated GI, or control, and GII, or treated were used. For the induction of muscular atrophy, the left femoral-tibial-patellar joint was immobilized for 30 days. NMES treatment began 48 hours after the removal of the immobilization device on dogs from group II and was carried out three times per week, with an

  16. High-frequency stimulation of the globus pallidus interna nucleus modulates GFRα1 gene expression in the basal ganglia.

    Science.gov (United States)

    Ho, Duncun Xun Kiat; Tan, Yong Chee; Tan, Jiayi; Too, Heng Phon; Ng, Wai Hoe

    2014-04-01

    Deep brain stimulation (DBS) is an established therapy for movement disorders such as Parkinson's disease (PD). Although the efficacy of DBS is clear, its precise molecular mechanism remains unknown. The glial cell line derived factor (GDNF) family of ligands has been shown to confer neuroprotective effects on dopaminergic neurons, and putaminal infusion of GDNF have been investigated in PD patients with promising results. Despite the potential therapeutic role of GDNF in alleviating motor symptoms, there is no data on the effects of electrical stimulation on GDNF-family receptor (GFR) expression in the basal ganglia structures. Here, we report the effects of electrical stimulation on GFRα1 isoforms, particularly GFRα1a and GFRα1b. Wistar rats underwent 2 hours of high frequency stimulation (HFS) at the globus pallidus interna nucleus. A control group was subjected to a similar procedure but without stimulation. The HFS group, sacrificed 24 hours after treatment, had a threefold decrease in mRNA expression level of GFRα1b (p=0.037), but the expression level reverted to normal 72 hours after stimulation. Our preliminary data reveal the acute effects of HFS on splice isoforms of GFRα1, and suggest that HFS may modulate the splice isoforms of GFRα1a and GFRα1b to varying degrees. Going forward, elucidating the interactions between HFS and GFR may shed new insights into the complexity of GDNF signaling in the nervous system and lead to better design of clinical trials using these signaling pathways to halt disease progression in PD and other neurodegenerative diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Combined sub-threshold dosages of phenobarbital and low-frequency stimulation effectively reduce seizures in amygdala-kindled rats.

    Science.gov (United States)

    Asgari, Azam; Semnanian, Saeed; Atapour, Nafiseh; Shojaei, Amir; Moradi, Homeira; Mirnajafi-Zadeh, Javad

    2014-08-01

    Low-frequency stimulation (LFS) is a potential therapy utilized in patients who do not achieve satisfactory control of seizures with pharmacological treatments. Here, we investigated the interaction between anticonvulsant effects of LFS and phenobarbital (a commonly used medicine) on amygdala-kindled seizures in rats. Animals were kindled by electrical stimulation of basolateral amygdala in a rapid manner (12 stimulations/day). Fully kindled animals randomly received one of the three treatment choices: phenobarbital (1, 2, 3, 4 and 8 mg/kg; i.p.; 30 min before kindling stimulation), LFS (one or 4 packages contained 100 or 200 monophasic square wave pulses, 0.1-ms pulse duration at 1 Hz, immediately before kindling stimulation) or a combination of both (phenobarbital at 3 mg/kg and LFS). Phenobarbital alone at the doses of 1, 2 and 3 mg/kg had no significant effect on the main seizure parameters. LFS application always produced anticonvulsant effects unless applied with the pattern of one package of 100 pulses, which is considered as non-effective. All the seizure parameters were significantly reduced when phenobarbital (3 mg/kg) was administered prior to the application of the non-effective pattern of LFS. Phenobarbital (3 mg/kg) also increased the anticonvulsant actions of the effective LFS pattern. Our results provide an evidence of a positive cumulative anticonvulsant effect of LFS and phenobarbital, suggesting a potential combination therapy at sub-threshold dosages of phenobarbital and LFS to achieve a satisfactory clinical effect.

  18. Tissue heterogeneity as a mechanism for localized neural stimulation by applied electric fields

    International Nuclear Information System (INIS)

    Miranda, P C; Correia, L; Salvador, R; Basser, P J

    2007-01-01

    We investigate the heterogeneity of electrical conductivity as a new mechanism to stimulate excitable tissues via applied electric fields. In particular, we show that stimulation of axons crossing internal boundaries can occur at boundaries where the electric conductivity of the volume conductor changes abruptly. The effectiveness of this and other stimulation mechanisms was compared by means of models and computer simulations in the context of transcranial magnetic stimulation. While, for a given stimulation intensity, the largest membrane depolarization occurred where an axon terminates or bends sharply in a high electric field region, a slightly smaller membrane depolarization, still sufficient to generate action potentials, also occurred at an internal boundary where the conductivity jumped from 0.143 S m -1 to 0.333 S m -1 , simulating a white-matter-grey-matter interface. Tissue heterogeneity can also give rise to local electric field gradients that are considerably stronger and more focal than those impressed by the stimulation coil and that can affect the membrane potential, albeit to a lesser extent than the two mechanisms mentioned above. Tissue heterogeneity may play an important role in electric and magnetic 'far-field' stimulation

  19. Tissue heterogeneity as a mechanism for localized neural stimulation by applied electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, P C [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Correia, L [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Salvador, R [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Basser, P J [Section on Tissue Biophysics and Biomimetics, NICHD, National Institutes of Health, Bethesda, MD 20892-1428 (United States)

    2007-09-21

    We investigate the heterogeneity of electrical conductivity as a new mechanism to stimulate excitable tissues via applied electric fields. In particular, we show that stimulation of axons crossing internal boundaries can occur at boundaries where the electric conductivity of the volume conductor changes abruptly. The effectiveness of this and other stimulation mechanisms was compared by means of models and computer simulations in the context of transcranial magnetic stimulation. While, for a given stimulation intensity, the largest membrane depolarization occurred where an axon terminates or bends sharply in a high electric field region, a slightly smaller membrane depolarization, still sufficient to generate action potentials, also occurred at an internal boundary where the conductivity jumped from 0.143 S m{sup -1} to 0.333 S m{sup -1}, simulating a white-matter-grey-matter interface. Tissue heterogeneity can also give rise to local electric field gradients that are considerably stronger and more focal than those impressed by the stimulation coil and that can affect the membrane potential, albeit to a lesser extent than the two mechanisms mentioned above. Tissue heterogeneity may play an important role in electric and magnetic 'far-field' stimulation.

  20. Hypoalgesia in response to transcutaneous electrical nerve stimulation (TENS) depends on stimulation intensity.

    Science.gov (United States)

    Moran, Fidelma; Leonard, Tracey; Hawthorne, Stephanie; Hughes, Ciara M; McCrum-Gardner, Evie; Johnson, Mark I; Rakel, Barbara A; Sluka, Kathleen A; Walsh, Deirdre M

    2011-08-01

    Transcutaneous electrical nerve stimulation (TENS) is an electrophysical modality used for pain management. This study investigated the dose response of different TENS intensities on experimentally induced pressure pain. One hundred and thirty TENS naïve healthy individuals (18-64 years old; 65 males, 65 females) were randomly allocated to 5 groups (n = 26 per group): Strong Non Painful TENS; Sensory Threshold TENS; Below Sensory Threshold TENS; No Current Placebo TENS; and Transient Placebo TENS. Active TENS (80 Hz) was applied to the forearm for 30 minutes. Transient Placebo TENS was applied for 42 seconds after which the current amplitude automatically reset to 0 mA. Pressure pain thresholds (PPT) were recorded from 2 points on the hand and forearm before and after TENS to measure hypoalgesia. There were significant differences between groups at both the hand and forearm (ANOVA; P = .005 and .002). At 30 minutes, there was a significant hypoalgesic effect in the Strong Non Painful TENS group compared to: Below Sensory Threshold TENS, No Current Placebo TENS and Transient Placebo TENS groups (P TENS and No Current Placebo TENS groups at the hand (P = .001). There was no significant difference between Strong Non Painful TENS and Sensory Threshold TENS groups. The area under the curve for the changes in PPT significantly correlated with the current amplitude (r(2) = .33, P = .003). These data therefore show that there is a dose-response effect of TENS with the largest effect occurring with the highest current amplitudes. This study shows a dose response for the intensity of TENS for pain relief with the strongest intensities showing the greatest effect; thus, we suggest that TENS intensity should be titrated to achieve the strongest possible intensity to achieve maximum pain relief. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  1. Mild electrical stimulation with heat stimulation increase heat shock protein 70 in articular chondrocyte.

    Science.gov (United States)

    Hiraoka, Nobuyuki; Arai, Yuji; Takahashi, Kenji A; Mazda, Osam; Kishida, Tsunao; Honjo, Kuniaki; Tsuchida, Shinji; Inoue, Hiroaki; Morino, Saori; Suico, Mary Ann; Kai, Hirofumi; Kubo, Toshikazu

    2013-06-01

    The objective of this study is to investigate the effects of mild electrical stimulation (MES) and heat stress (HS) on heat shock protein 70 (HSP70), that protects chondrocytes and enhances cartilage matrix metabolism, in chondrocyte and articular cartilage. Rabbit articular chondrocytes were treated with MES and/or HS. The safeness was assessed by LDH assay and morphology. HSP70 protein, ubiquitinated proteins and HSP70 mRNA were examined by Western blotting and real-time PCR. Rat knee joints were treated with MES and/or HS. HSP70 protein, ubiquitinated proteins, HSP70 mRNA and proteoglycan core protein (PG) mRNA in articular cartilage were investigated. In vitro, HS increased HSP70 mRNA and HSP70 protein. MES augmented ubiquitinated protein and HSP70 protein, but not HSP70 mRNA. MES + HS raised HSP70 mRNA and ubiquitinated protein, and significantly increased HSP70 protein. In vivo, HS and MES + HS treatment augmented HSP70 mRNA. HS modestly augmented HSP70 protein. MES + HS significantly increased HSP70 protein and ubiquitinated proteins. PG mRNA was markedly raised by MES + HS. This study demonstrated that MES, in combination with HS, increases HSP70 protein in chondrocytes and articular cartilage, and promotes cartilage matrix metabolism in articular cartilage. MES in combination with HS can be a novel physical therapy for osteoarthritis by inducing HSP70 in articular cartilage. Copyright © 2013 Orthopaedic Research Society.

  2. [Efficacy observation of dysphagia after acute stroke treated with acupuncture and functional electric stimulation].

    Science.gov (United States)

    Chang, Ling; He, Peng-Lan; Zhou, Zhen-Zhong; Li, Yan-Hua

    2014-08-01

    To observe the impacts on the recovery of swallowing function in patients of dysphagia after acute stroke treated with acupuncture and functional electric stimulation. Seventy-four patients were randomized into an acupuncture plus electric stimulation group (38 cases) and an electric stimulation group (36 cases). The functional electric stimulator was used in the two groups. The electric pads were placed on the hyoid bone, the upper part of thyroid cartilage, the masseter muscle and the mandibular joint. The treatment lasted for 30 mm each time. In the acupuncture plus electric stimulation group, acupuncture was supplemented at motor area of Jiao's scalp acupuncture, lower 2/5 of sensory area, Baihui (CV 20), Lianquan (CV 23), Jinjin (EX-HN 12) and Yuye (EX-HN 13), 30 mm each time. The treatment was given once a day, 6 treatments for one session and there was 1 day at interval between the sessions, 4 sessions were required totally in the two groups. The dysphagia scale was adopted for efficacy evaluation before treatment and after 4 sessions of treatment in the two groups. The removal rate of nasal feeding tube was observed after treatment. The dysphagia score was increased apparently after treatment compared with that before treatment in the two groups (both P vs 6.73 +/- 1.36, P stroke and promotes the early removal of nasal feeding tube. The efficacy is better than that of the simple electric stimulation therapy.

  3. Effects of low-frequency repetitive transcranial magnetic stimulation on event-related potential P300

    Science.gov (United States)

    Torii, Tetsuya; Sato, Aya; Iwahashi, Masakuni; Iramina, Keiji

    2012-04-01

    The present study analyzed the effects of repetitive transcranial magnetic stimulation (rTMS) on brain activity. P300 latency of event-related potential (ERP) was used to evaluate the effects of low-frequency and short-term rTMS by stimulating the supramarginal gyrus (SMG), which is considered to be the related area of P300 origin. In addition, the prolonged stimulation effects on P300 latency were analyzed after applying rTMS. A figure-eight coil was used to stimulate left-right SMG, and intensity of magnetic stimulation was 80% of motor threshold. A total of 100 magnetic pulses were applied for rTMS. The effects of stimulus frequency at 0.5 or 1 Hz were determined. Following rTMS, an odd-ball task was performed and P300 latency of ERP was measured. The odd-ball task was performed at 5, 10, and 15 min post-rTMS. ERP was measured prior to magnetic stimulation as a control. Electroencephalograph (EEG) was measured at Fz, Cz, and Pz that were indicated by the international 10-20 electrode system. Results demonstrated that different effects on P300 latency occurred between 0.5-1 Hz rTMS. With 1 Hz low-frequency magnetic stimulation to the left SMG, P300 latency decreased. Compared to the control, the latency time difference was approximately 15 ms at Cz. This decrease continued for approximately 10 min post-rTMS. In contrast, 0.5 Hz rTMS resulted in delayed P300 latency. Compared to the control, the latency time difference was approximately 20 ms at Fz, and this delayed effect continued for approximately 15 min post-rTMS. Results demonstrated that P300 latency varied according to rTMS frequency. Furthermore, the duration of the effect was not similar for stimulus frequency of low-frequency rTMS.

  4. High-Frequency Stimulation of Dorsal Column Axons: Potential Underlying Mechanism of Paresthesia-Free Neuropathic Pain Relief.

    Science.gov (United States)

    Arle, Jeffrey E; Mei, Longzhi; Carlson, Kristen W; Shils, Jay L

    2016-06-01

    Spinal cord stimulation (SCS) treats neuropathic pain through retrograde stimulation of dorsal column axons and their inhibitory effects on wide dynamic range (WDR) neurons. Typical SCS uses frequencies from 50-100 Hz. Newer stimulation paradigms use high-frequency stimulation (HFS) up to 10 kHz and produce pain relief but without paresthesia. Our hypothesis is that HFS preferentially blocks larger diameter axons (12-15 µm) based on dynamics of ion channel gates and the electric potential gradient seen along the axon, resulting in inhibition of WDR cells without paresthesia. We input field potential values from a finite element model of SCS into an active axon model with ion channel subcomponents for fiber diameters 1-20 µm and simulated dynamics on a 0.001 msec time scale. Assuming some degree of wave rectification seen at the axon, action potential (AP) blockade occurs as hypothesized, preferentially in larger over smaller diameters with blockade in most medium and large diameters occurring between 4.5 and 10 kHz. Simulations show both ion channel gate and virtual anode dynamics are necessary. At clinical HFS frequencies and pulse widths, HFS preferentially blocks larger-diameter fibers and concomitantly recruits medium and smaller fibers. These effects are a result of interaction between ion gate dynamics and the "activating function" (AF) deriving from current distribution over the axon. The larger fibers that cause paresthesia in low-frequency simulation are blocked, while medium and smaller fibers are recruited, leading to paresthesia-free neuropathic pain relief by inhibiting WDR cells. © 2016 International Neuromodulation Society.

  5. Electrical nerve stimulation as an aid to the placement of a brachial plexus block : clinical communication

    Directory of Open Access Journals (Sweden)

    K.E. Joubert

    2002-07-01

    Full Text Available Most local anaesthetic blocks are placed blindly, based on a sound knowledge of anatomy. Very often the relationship between the site of deposition of local anaesthetic and the nerve to be blocked is unknown. Large motor neurons may be stimulated with the aid of an electrical current. By observing for muscle twitches, through electrical stimulation of the nerve, a needle can be positioned extremely close to the nerve. The accuracy of local anaesthetic blocks can be improved by this technique. By using the lowest possible current a needle could be positioned within 2-5mm of a nerve. The correct duration of stimulation ensures that stimulation of sensory nerves does not occur. The use of electrical nerve stimulation in veterinary medicine is a novel technique that requires further evaluation.

  6. Biophysical Stimuli: A Review of Electrical and Mechanical Stimulation in Hyaline Cartilage.

    Science.gov (United States)

    Vaca-González, Juan J; Guevara, Johana M; Moncayo, Miguel A; Castro-Abril, Hector; Hata, Yoshie; Garzón-Alvarado, Diego A

    2017-09-01

    Objective Hyaline cartilage degenerative pathologies induce morphologic and biomechanical changes resulting in cartilage tissue damage. In pursuit of therapeutic options, electrical and mechanical stimulation have been proposed for improving tissue engineering approaches for cartilage repair. The purpose of this review was to highlight the effect of electrical stimulation and mechanical stimuli in chondrocyte behavior. Design Different information sources and the MEDLINE database were systematically revised to summarize the different contributions for the past 40 years. Results It has been shown that electric stimulation may increase cell proliferation and stimulate the synthesis of molecules associated with the extracellular matrix of the articular cartilage, such as collagen type II, aggrecan and glycosaminoglycans, while mechanical loads trigger anabolic and catabolic responses in chondrocytes. Conclusion The biophysical stimuli can increase cell proliferation and stimulate molecules associated with hyaline cartilage extracellular matrix maintenance.

  7. Time-frequency analysis of stimulus frequency otoacoustic emissions and their changes with efferent stimulation in guinea pigs

    Science.gov (United States)

    Berezina-Greene, Maria A.; Guinan, John J.

    2015-12-01

    To aid in understanding their origin, stimulus frequency otoacoustic emissions (SFOAEs) were measured at a series of tone frequencies using the suppression method, both with and without stimulation of medial olivocochlear (MOC) efferents, in anesthetized guinea pigs. Time-frequency analysis showed SFOAE energy peaks in 1-3 delay components throughout the measured frequency range (0.5-12 kHz). One component's delay usually coincided with the phase-gradient delay. When multiple delay components were present, they were usually near SFOAE dips. Below 2 kHz, SFOAE delays were shorter than predicted from mechanical measurements. With MOC stimulation, SFOAE amplitude was decreased at most frequencies, but was sometimes enhanced, and all SFOAE delay components were affected. The MOC effects and an analysis of model data suggest that the multiple SFOAE delay components arise at the edges of the traveling-wave peak, not far basal of the peak. Comparisons with published guinea-pig neural data suggest that the short latencies of low-frequency SFOAEs may arise from coherent reflection from an organ-of-Corti motion that has a shorter group delay than the traveling wave.

  8. EEG-Triggered Functional Electrical Stimulation Therapy for Restoring Upper Limb Function in Chronic Stroke with Severe Hemiplegia

    Directory of Open Access Journals (Sweden)

    Cesar Marquez-Chin

    2016-01-01

    Full Text Available We report the therapeutic effects of integrating brain-computer interfacing technology and functional electrical stimulation therapy to restore upper limb reaching movements in a 64-year-old man with severe left hemiplegia following a hemorrhagic stroke he sustained six years prior to this study. He completed 40 90-minute sessions of functional electrical stimulation therapy using a custom-made neuroprosthesis that facilitated 5 different reaching movements. During each session, the participant attempted to reach with his paralyzed arm repeatedly. Stimulation for each of the movement phases (e.g., extending and retrieving the arm was triggered when the power in the 18 Hz–28 Hz range (beta frequency range of the participant’s EEG activity, recorded with a single electrode, decreased below a predefined threshold. The function of the participant’s arm showed a clinically significant improvement in the Fugl-Meyer Assessment Upper Extremity (FMA-UE subscore (6 points as well as moderate improvement in Functional Independence Measure Self-Care subscore (7 points. The changes in arm’s function suggest that the combination of BCI technology and functional electrical stimulation therapy may restore voluntary motor function in individuals with chronic hemiplegia which results in severe upper limb deficit (FMA-UE ≤ 15, a population that does not benefit from current best-practice rehabilitation interventions.

  9. Passive reach and grasp with functional electrical stimulation and robotic arm support

    NARCIS (Netherlands)

    Westerveld, Ard J.; Schouten, Alfred C.; Veltink, Peter H.; van der Kooij, Herman

    2014-01-01

    Rehabilitation of arm and hand function is crucial to increase functional independence of stroke subjects. Here, we investigate the technical feasibility of an integrated training system combining robotics and functional electrical stimulation (FES) to support reach and grasp during functional

  10. Referred pain and cutaneous responses from deep tissue electrical pain stimulation in the groin

    DEFF Research Database (Denmark)

    Aasvang, E K; Werner, M U; Kehlet, H

    2015-01-01

    , supporting individual differences in anatomy and sensory processing. Future studies investigating the responses to deep tissue electrical stimulation in persistent postherniotomy pain patients may advance our understanding of underlying pathophysiological mechanisms and strategies for treatment...

  11. Effect of transcutaneous electrical muscle stimulation on muscle volume in patients with septic shock

    DEFF Research Database (Denmark)

    Poulsen, Jesper Brøndum; Møller, Kirsten; Jensen, Claus V

    2011-01-01

    Objective: Intensive care unit admission is associated with muscle wasting and impaired physical function. We investigated the effect of early transcutaneous electrical muscle stimulation on quadriceps muscle volume in patients with septic shock. Design: Randomized interventional study using...

  12. The effect of low frequency stimulation of the pedunculopontine tegmental nucleus on basal ganglia in a rat model of Parkinson's disease.

    Science.gov (United States)

    Park, Eunkyoung; Song, Inho; Jang, Dong Pyo; Kim, In Young

    2014-08-08

    The pedunculopontine nucleus (PPN) has recently been introduced as an alternative target to the subthalamic nucleus (STN) or globus pallidus internus (GPi) for the treatment of advanced Parkinson's disease with severe and medically intractable axial symptoms such as gait and postural impairment. However, it is little known about how electrical stimulation of the PPN affects control of neuronal activities between the PPN and basal ganglia. We examined how low frequency stimulation of the pedunculopontine tegmental nucleus (PPTg) affects control of neuronal activities between the PPN and basal ganglia in 6-OHDA lesioned rats. In order to identify the effect of low frequency stimulation on the PPTg, neuronal activity in both the STN and substantia nigra par reticulata (SNr) were recorded and subjected to quantitative analysis, including analysis of firing rates and firing patterns. In this study, we found that the firing rates of the STN and SNr were suppressed during low frequency stimulation of the PPTg. However, the firing pattern, in contrast to the firing rate, did not exhibit significant changes in either the STN or SNr of 6-OHDA lesioned rats during low frequency stimulation of the PPTg. In addition, we also found that the firing rate of STN and SNr neurons displaying burst and random pattern were decreased by low frequency stimulation of PPTg, while the neurons displaying regular pattern were not affected. These results indicate that low frequency stimulation of the PPTg affects neuronal activity in both the STN and SNr, and may represent electrophysiological efficacy of low frequency PPN stimulation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. A model of auditory nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    Cochlear implants (CI) stimulate the auditory nerve (AN) with a train of symmetric biphasic current pulses comprising of a cathodic and an anodic phase. The cathodic phase is intended to depolarize the membrane of the neuron and to initiate an action potential (AP) and the anodic phase to neutral......Cochlear implants (CI) stimulate the auditory nerve (AN) with a train of symmetric biphasic current pulses comprising of a cathodic and an anodic phase. The cathodic phase is intended to depolarize the membrane of the neuron and to initiate an action potential (AP) and the anodic phase......-and-fire neuron with two partitions responding individually to anodic and cathodic stimulation. Membrane noise was parameterized based on reported relative spread of AN neurons. Firing efficiency curves and spike-latency distributions were simulated for monophasic and symmetric biphasic stimulation...

  14. Experimental electrical stimulation of the bladder using a new device

    DEFF Research Database (Denmark)

    Petersen, T.; Christiansen, P.; Nielsen, B.

    1986-01-01

    Repeated bladder contractions were evoked during a six month period in three unanaesthetized female minipigs by using unipolar carbon fiber electrodes embedded in the bladder wall adjacent to the ureterovesical junction. In contrast to bipolar and direct bladder muscle stimulation unipolar...... electrodes at each ureterovesical junction evoked bladder pressure increase similar to those produced in previous investigations in dogs. Sacral nerve stimulation of S2 evoked bladder contraction at a minimal current. Microscopic examination revealed no cellular reactions to the carbon fibers...

  15. Electrical stimulation of superior colliculus affects strabismus angle in monkey models for strabismus

    Science.gov (United States)

    Upadhyaya, Suraj; Meng, Hui

    2017-01-01

    Disruption of binocular vision during the critical period for development leads to eye misalignment in humans and in monkey models. We have previously suggested that disruption within a vergence circuit could be the neural basis for strabismus. Electrical stimulation in the rostral superior colliculus (rSC) leads to vergence eye movements in normal monkeys. Therefore, the purpose of this study was to investigate the effect of SC stimulation on eye misalignment in strabismic monkeys. Electrical stimulation was delivered to 51 sites in the intermediate and deep layers of the SC (400 Hz, 0.5-s duration, 10–40 μA) in 3 adult optical prism-reared strabismic monkeys. Scleral search coils were used to measure movements of both eyes during a fixation task. Staircase saccades with horizontal and vertical components were elicited by stimulation as predicted from the SC topographic map. Electrical stimulation also resulted in significant changes in horizontal strabismus angle, i.e., a shift toward exotropia/esotropia depending on stimulation site. Electrically evoked saccade vector amplitude in the two eyes was not significantly different (P > 0.05; paired t-test) but saccade direction differed. However, saccade disconjugacy accounted for only ~50% of the change in horizontal misalignment while disconjugate postsaccadic movements accounted for the other ~50% of the change in misalignment due to electrical stimulation. In summary, our data suggest that electrical stimulation of the SC of strabismic monkeys produces a change in horizontal eye alignment that is due to a combination of disconjugate saccadic eye movements and disconjugate postsaccadic movements. NEW & NOTEWORTHY Electrical stimulation of the superior colliculus in strabismic monkeys results in a change in eye misalignment. These data support the notion of developmental disruption of vergence circuits leading to maintenance of eye misalignment in strabismus. PMID:28031397

  16. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    International Nuclear Information System (INIS)

    Crew, Jennifer R.; Falzari, Kanakeshwari; DiMario, Joseph X.

    2010-01-01

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed to differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-γ co-activator-1 (PGC-1α) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.

  17. Improving NASICON Sinterability through Crystallization under High Frequency Electrical Fields

    Directory of Open Access Journals (Sweden)

    Ilya eLisenker

    2016-03-01

    Full Text Available The effect of high frequency (HF electric fields on the crystallization and sintering rates of a lithium aluminum germanium phosphate (LAGP ion conducting ceramic was investigated. LAGP with the nominal composition Li1.5Al0.5Ge1.5(PO43 was crystallized and sintered, both conventionally and under effect of electrical field. Electrical field application, of 300V/cm at 1MHz, produced up to a 40% improvement in sintering rate of LAGP that was crystallized and sintered under the HF field. Heat sink effect of the electrodes appears to arrest thermal runaway and subsequent flash behavior. Sintered pellets were characterized using XRD, SEM, TEM and EIS to compare conventionally and field sintered processes. The as-sintered structure appears largely unaffected by the field as the sintering curves tend to converge beyond initial stages of sintering. Differences in densities and microstructure after 1 hour of sintering were minor with measured sintering strains of 31% vs. 26% with and without field, respectively . Ionic conductivity of the sintered pellets was evaluated and no deterioration due to the use of HF field was noted, though capacitance of grain boundaries due to secondary phases was significantly increased.

  18. Medical devices; neurological devices; classification of the transcutaneous electrical nerve stimulator to treat headache. Final order.

    Science.gov (United States)

    2014-07-03

    The Food and Drug Administration (FDA) is classifying the transcutaneous electrical nerve stimulator to treat headache into class II (special controls). The special controls that will apply to the device are identified in this order, and will be part of the codified language for the transcutaneous electrical nerve stimulator to treat headache classification. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device.

  19. The relief of microtherm inhibition for p-fluoronitrobenzene mineralization using electrical stimulation at low temperatures.

    Science.gov (United States)

    Zhang, Xueqin; Feng, Huajun; Liang, Yuxiang; Zhao, Zhiqing; Long, Yuyang; Fang, Yuan; Wang, Meizhen; Yin, Jun; Shen, Dongsheng

    2015-05-01

    Low temperature aggravates biological treatment of refractory p-fluoronitrobenzene (p-FNB) because of microtherm inhibition of microbial activity. Considering the potential characterization of energy supply for microbial metabolism and spurring microbial activity by electrical stimulation, a bioelectrochemical system (BES) was established to provide sustaining electrical stimulation for p-FNB mineralization at a low temperature. Electrical stimulation facilitated p-FNB treatment and bioelectrochemical reaction rate constants for the removal and defluorination of p-FNB at 10 °C were 0.0931 and 0.0054 h(-1), which were higher than the sums of the rates found using a biological system and an electrocatalytic system by 62.8 and 64.8%, respectively. At a low temperature, microbial activity in terms of dehydrogenase and ATPase was found to be higher with electrical stimulation, being 121.1 and 100.1% more active than that in the biological system. Moreover, stronger antioxidant ability was observed in the BES, which implied a better cold-resistance and relief of microtherm inhibition by electrical stimulation. Bacterial diversity analysis revealed a significant evolution of microbial community by electrical stimulation, and Clostridia was uniquely enriched. One bacterial sequence close to Pseudomonas became uniquely predominant, which appeared to be crucial for excellent p-FNB treatment performance in the BES at a low temperature. Economic evaluation revealed that the energy required to mineralize an extra mole of p-FNB was found to be 247 times higher by heating the system than by application of electrical stimulation. These results indicated that application of electrical stimulation is extremely promising for treating refractory waste at low temperatures.

  20. Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-14-2-0190 TITLE: Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone PRINCIPAL...including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing...29 Sep 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone 5b

  1. Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-14-1-0591 TITLE: Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage PRINCIPAL...response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing...2016 – 29 Sep 2017 4. TITLE AND SUBTITLE Cartilage 5a. CONTRACT NUMBER Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic

  2. An electrical bio-chip to transfer and detect electromagnetic stimulation on the cells based on vertically aligned carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rafizadeh-Tafti, Saeed [Nanoelectronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran (Iran, Islamic Republic of); Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran (Iran, Islamic Republic of); Haqiqatkhah, Mohammad Hossein [Center of Excellence on Applied Electromagnetic Systems, School of Electrical & Computer Engineering, University of Tehran, P.O. Box 14395-515, North Kargar Avenue, Tehran (Iran, Islamic Republic of); Saviz, Mehrdad [Antenna Laboratory, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395-515, North Kargar Avenue, Tehran (Iran, Islamic Republic of); Janmaleki, Mohsen [Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box 1985717443, Tehran (Iran, Islamic Republic of); Faraji Dana, Reza [Center of Excellence on Applied Electromagnetic Systems, School of Electrical & Computer Engineering, University of Tehran, P.O. Box 14395-515, North Kargar Avenue, Tehran (Iran, Islamic Republic of); Zanganeh, Somayeh [Nanoelectronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran (Iran, Islamic Republic of); Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran (Iran, Islamic Republic of); Abdolahad, Mohammad, E-mail: m.abdolahad@ut.ac.ir [Nanoelectronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran (Iran, Islamic Republic of); Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran (Iran, Islamic Republic of)

    2017-01-01

    A highly sensitive impedimetric bio-chip based on vertically aligned multiwall carbon nanotubes (VAMWCNTs), was applied in direct interaction with lung cancer cells. Our tool provided both inducing and monitoring the bioelectrical changes in the cells initiated by electromagnetic (EM) wave stimulation. EM wave of 940 MHz frequency with different intensities was used. Here, wave ablation might accumulate electrical charge on the tips of nanotubes penetrated into cell's membrane. The charge might induce ionic exchanges into the cell and cause alterations in electrical states of the membrane. Transmembrane electrostatic/dynamic states would be strongly affected due to such exchanges. Our novel modality was that, the cells' vitality changes caused by charge inductions were electrically detected with the same nanotubes in the architecture of electrodes for impedance measurement. The responses of the sensor were confirmed by electron and florescent microscopy images as well as biological assays. In summation, our method provided an effective biochip for enhancing and detecting external EM stimulation on the cells useful for future diagnostic and therapeutic applications, such as wave-guided drug-resistance breakage. - Highlights: • A CNT-chip is fabricated to stimulate cancer cells by electromagnetic wave. • Wave induced charges accumulation on the tip of CNTs penetrated into cells. • Transmembrane electrostatic states would be strongly affected due to such exchanges. • The cells' vitality changes could be happened and electrically detected with the same chip.

  3. Cycle-to-cycle control of swing phase of paraplegic gait induced by surface electrical stimulation

    NARCIS (Netherlands)

    Franken, H.M.; Franken, H.M.; Veltink, Petrus H.; Baardman, G.; Redmeijer, R.A.; Boom, H.B.K.

    1995-01-01

    Parameterised swing phase of gait in paraplegics was obtained using surface electrical stimulation of the hip flexors, hamstrings and quadriceps; the hip flexors were stimulated to obtain a desired hip angle range, the hamstrings to provide foot clearance in the forward swing, and the quadriceps to

  4. Exacerbation of electrical storm subsequent to implantation of a right vagal stimulator.

    Science.gov (United States)

    Shalaby, Alaa A; El-Saed, Aiman; Nemec, Jan; Moossy, John J; Balzer, Jeffrey R

    2007-12-01

    A patient with advanced ischemic cardiomyopathy underwent implantation of a vagal stimulator in an attempt to control recurrent drug refractory ventricular arrhythmia. Electrical storm was exacerbated after the implant and continued after neurostimulation was discontinued. The report aims to provide a cautionary note to application of vagal stimulation for control of cardiac arrhythmia.

  5. Neocortical electrical stimulation for epilepsy : Closed-loop versus open-loop

    NARCIS (Netherlands)

    Vassileva, Albena; van Blooijs, Dorien; Leijten, Frans; Huiskamp, Geertjan

    2018-01-01

    The aim of this review is to evaluate whether open-loop or closed-loop neocortical electrical stimulation should be the preferred approach to manage seizures in intractable epilepsy. Twenty cases of open-loop neocortical stimulation with an implanted device have been reported, in 5 case studies.

  6. Concepts and methods in neuromodulation and functional electrical stimulation: an introduction.

    Science.gov (United States)

    Holsheimer, J

    1998-04-01

    This article introduces two clinical fields in which stimulation is applied to the nervous system: neuromodulation and functional electrical stimulation. The concepts underlying these fields and their main clinical applications, as well as the methods and techniques used in each field, are described. Concepts and techniques common in one field that might be beneficial to the other are discussed. 1998 Blackwell Science, Inc.

  7. 42 CFR 414.232 - Special payment rules for transcutaneous electrical nerve stimulators (TENS).

    Science.gov (United States)

    2010-10-01

    ... nerve stimulators (TENS). 414.232 Section 414.232 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... Special payment rules for transcutaneous electrical nerve stimulators (TENS). (a) General payment rule. Except as provided in paragraph (b) of this section, payment for TENS is made on a purchase basis with...

  8. Effectiveness of transcutaneous electrical nerve stimulation on saliva production in post-radiated oral cancer patients

    OpenAIRE

    Sakshi Ojha; Thimmarasa V Bhovi; Prashant P Jaju; Manas Gupta; Neha Singh; Kriti Shrivastava

    2016-01-01

    Aims and Objectives: To determine the effectiveness of transcutaneous electrical nerve stimulation (TENS) in stimulating salivary flow in post-radiated oral cancer patients, and to compare the salivary flow rate between unstimulated saliva and saliva stimulated with TENS in post-radiated oral cancer patients. Materials and Methods: In 30 patients who underwent radiotherapy for oral cancer, unstimulated saliva was collected every minute for 5 min in a graduated test tube. The TENS unit was act...

  9. The Spatial Extent of Epiretinal Electrical Stimulation in the Healthy Mouse Retina

    Directory of Open Access Journals (Sweden)

    Zohreh Hosseinazdeh

    2017-07-01

    Full Text Available Background/Aims: Retinal prostheses use electrical stimulation to restore functional vision to patients blinded by retinitis pigmentosa. A key detail is the spatial pattern of ganglion cells activated by stimulation. Therefore, we characterized the spatial extent of network-mediated electrical activation of retinal ganglion cells (RGCs in the epiretinal monopolar electrode configuration. Methods: Healthy mouse RGC activities were recorded with a micro-electrode array (MEA. The stimuli consisted of monophasic rectangular cathodic voltage pulses and cycling full-field light flashes. Results: Voltage tuning curves exhibited significant hysteresis, reflecting adaptation to electrical stimulation on the time scale of seconds. Responses decreased from 0 to 300 µm, and were also dependent on the strength of stimulation. Applying the Rayleigh criterion to the half-width at half-maximum of the electrical point spread function suggests a visual acuity limit of no better than 20/946. Threshold voltage showed only a modest increase across these distances. Conclusion: The existence of significant hysteresis requires that future investigations of electrical retinal stimulation control for such long-memory adaptation. The spread of electrical activation beyond 200 µm suggests that neighbouring electrodes in epiretinal implants based on indirect stimulation of RGCs may be indiscriminable at interelectrode spacings as large as 400 µm.

  10. Basic Restriction and Reference Level in Anatomically-based Japanese Models for Low-Frequency Electric and Magnetic Field Exposures

    Science.gov (United States)

    Takano, Yukinori; Hirata, Akimasa; Fujiwara, Osamu

    Human exposed to electric and/or magnetic fields at low frequencies may cause direct effect such as nerve stimulation and excitation. Therefore, basic restriction is regulated in terms of induced current density in the ICNIRP guidelines and in-situ electric field in the IEEE standard. External electric or magnetic field which does not produce induced quantities exceeding the basic restriction is used as a reference level. The relationship between the basic restriction and reference level for low-frequency electric and magnetic fields has been investigated using European anatomic models, while limited for Japanese model, especially for electric field exposures. In addition, that relationship has not well been discussed. In the present study, we calculated the induced quantities in anatomic Japanese male and female models exposed to electric and magnetic fields at reference level. A quasi static finite-difference time-domain (FDTD) method was applied to analyze this problem. As a result, spatially averaged induced current density was found to be more sensitive to averaging algorithms than that of in-situ electric field. For electric and magnetic field exposure at the ICNIRP reference level, the maximum values of the induced current density for different averaging algorithm were smaller than the basic restriction for most cases. For exposures at the reference level in the IEEE standard, the maximum electric fields in the brain were larger than the basic restriction in the brain while smaller for the spinal cord and heart.

  11. Electrical stimulation of human lower extremities enhances energy consumption, carbohydrate oxidation, and whole body glucose uptake.

    Science.gov (United States)

    Hamada, Taku; Hayashi, Tatsuya; Kimura, Tetsuya; Nakao, Kazuwa; Moritani, Toshio

    2004-03-01

    Our laboratory has recently demonstrated that low-frequency electrical stimulation (ES) of quadriceps muscles alone significantly enhanced glucose disposal rate (GDR) during euglycemic clamp (Hamada T, Sasaki H, Hayashi T, Moritani T, and Nakao K. J Appl Physiol 94: 2107-2112, 2003). The present study is further follow-up to examine the acute metabolic effects of ES to lower extremities compared with voluntary cycle exercise (VE) at identical intensity. In eight male subjects lying in the supine position, both lower leg (tibialis anterior and triceps surae) and thigh (quadriceps and hamstrings) muscles were sequentially stimulated to cocontract in an isometric manner at 20 Hz with a 1-s on-off duty cycle for 20 min. Despite small elevation of oxygen uptake by 7.3 +/- 0.3 ml x kg(-1) x min(-1) during ES, the blood lactate concentration was significantly increased by 3.2 +/- 0.3 mmol/l in initial period (5 min) after the onset of the ES (P increased anaerobic glycolysis by ES. Furthermore, whole body glucose uptake determined by GDR during euglycemic clamp demonstrated a significant increase during and after the cessation of ES for at least 90 min (P energy consumption, carbohydrate oxidation, and whole body glucose uptake at low intensity of exercise. Percutaneous ES may become a therapeutic utility to enhance glucose metabolism in humans.

  12. Adjusting Pulse Amplitude During Transcutaneous Electrical Nerve Stimulation Does Not Provide Greater Hypoalgesia.

    Science.gov (United States)

    Bergeron-Vézina, Kayla; Filion, Camille; Couture, Chantal; Vallée, Élisabeth; Laroche, Sarah; Léonard, Guillaume

    2018-03-01

    Transcutaneous electrical nerve stimulation (TENS) is an electrotherapeutic modality commonly used in rehabilitation to relieve pain. Adjusting pulse amplitude (intensity) during TENS treatment has been suggested to overcome nerve habituation. However, it is still unclear if this procedure leads to greater hypoalgesia. The aim of this study was to determine if the hypoalgesic effect of TENS is greater when pulse amplitude is adjusted throughout the TENS treatment session in chronic low-back pain patients. Randomized double-blind crossover study. Recruitment and assessment were conducted at the Clinique universitaire de réadaptation de l'Estrie (CURE) of the Faculty of Medicine and Health Sciences of the Université de Sherbrooke. Twenty-one volunteers with chronic low-back pain were enrolled and completed this investigation. Each patient received two high-frequency TENS treatments on two separate sessions: (1) with adjustment of pulse amplitude and (2) without pulse amplitude adjustment. Pain intensity and unpleasantness were assessed before, during, and after TENS application with a 10 cm visual analog scale. Both TENS conditions (with and without adjustment of intensity) decreased pain intensity and unpleasantness when compared with baseline. No difference was observed between the two stimulation conditions for both pain intensity and unpleasantness. The current results suggest that adjustment of pulse amplitude during TENS application does not provide greater hypoalgesia in individuals with chronic low-back pain. Future studies are needed to confirm these findings in other pain populations.

  13. Transcutaneous electric nerve stimulation (TENS) for cancer pain in adults.

    Science.gov (United States)

    Hurlow, Adam; Bennett, Michael I; Robb, Karen A; Johnson, Mark I; Simpson, Karen H; Oxberry, Stephen G

    2012-03-14

    Cancer-related pain is complex and multi-dimensional but the mainstay of cancer pain management has predominantly used a biomedical approach. There is a need for non-pharmacological and innovative approaches. Transcutaneous Electric Nerve Stimulation (TENS) may have a role in pain management but the effectiveness of TENS is currently unknown. This is an update of the original review published in Issue 3, 2008. The aim of this systematic review was to determine the effectiveness of TENS for cancer-related pain in adults. The initial review searched The Cochrane Library, MEDLINE, EMBASE, CINAHL, PsychINFO, AMED and PEDRO databases in April 2008. We performed an updated search of CENTRAL, MEDLINE, EMBASE, CINAHL and PEDRO databases in November 2011. We included only randomised controlled trials (RCTS) investigating the use of TENS for the management of cancer-related pain in adults. The search strategy identified a further two studies for possible inclusion. One of the review authors screened each abstract using a study eligibility tool. Where eligibility could not be determined, a second author assessed the full paper. One author used a standardised data extraction sheet to collect information on the studies and independently assess the quality of the studies using the validated five-point Oxford Quality Scale. The small sample sizes and differences in patient study populations of the three included studies (two from the original review and a third included in this update) prevented meta-analysis. For the original review the search strategy identified 37 possible published studies; we divided these between two pairs of review authors who decided on study selection; all four review authors discussed and agreed final scores. Only one additional RCT met the eligibility criteria (24 participants) for this updated review. Although this was a feasibility study, not designed to investigate intervention effect, it suggested that TENS may improve bone pain on movement in a

  14. Electrical Stimulation of the Upper Limb in Stroke: Stimulation of the Extensors of the Hand vs. Alternate Stimulation of Flexors and Extensors

    NARCIS (Netherlands)

    de Kroon, J.R.; IJzerman, Maarten Joost; Lankhorst, G.J.; Zilvold, G.

    2004-01-01

    Objective: To investigate whether there is a difference in functional improvement in the affected arm of chronic stroke patients when comparing two methods of electrical stimulation. Design: Explanatory trial in which 30 chronic stroke patients with impaired arm function were randomly allocated to

  15. Very-low-frequency and low-frequency electric and magnetic fields associated with electric shuttle bus wireless charging

    International Nuclear Information System (INIS)

    Tell, R. A.; Kavet, R.; Bailey, J. R.; Halliwell, J.

    2014-01-01

    Tests conducted to date at the University of Tennessee at Chattanooga (UTC) indicate that wireless charging of the Chattanooga Area Regional Transportation Authority's (CARTA) downtown shuttle bus, currently operating with off-board battery charging technology, offers significant improvements in performance and cost. The system operates at a frequency of 20 kHz and a peak power of 60 kW. Because the system's wireless charging is expected to occur during a nominal 3-min charging period with passengers on-board, the magnetic and electric fields associated with charging were characterised at UTC's Advanced Vehicle Test Facility and compared with established human exposure limits. The two most prominent exposure limits are those published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute for Electrical and Electronic Engineers (IEEE). Both organisations include limits for groups who are trained (workers in specific industries) to be aware of electromagnetic environments and their potential hazards, as well as a lower set of limits for the general public, who are assumed to lack such awareness. None of the magnetic or electric fields measured either within or outside the bus during charging exceeded either the ICNIRP or the IEEE exposure limits for the general public. (authors)

  16. High-Frequency Repetitive Sensory Stimulation as Intervention to Improve Sensory Loss in Patients with Complex Regional Pain Syndrome I.

    Science.gov (United States)

    David, Marianne; Dinse, Hubert R; Mainka, Tina; Tegenthoff, Martin; Maier, Christoph

    2015-01-01

    Achieving perceptual gains in healthy individuals or facilitating rehabilitation in patients is generally considered to require intense training to engage neuronal plasticity mechanisms. Recent work, however, suggested that beneficial outcome similar to training can be effectively acquired by a complementary approach in which the learning occurs in response to mere exposure to repetitive sensory stimulation (rSS). For example, high-frequency repetitive sensory stimulation (HF-rSS) enhances tactile performance and induces cortical reorganization in healthy subjects and patients after stroke. Patients with complex regional pain syndrome (CRPS) show impaired tactile performance associated with shrinkage of cortical maps. We here investigated the feasibility and efficacy of HF-rSS, and low-frequency rSS (LF-rSS) to enhance tactile performance and reduce pain intensity in 20 patients with CRPS type I. Intermittent high- or low-frequency electrical stimuli were applied for 45 min/day to all fingertips of the affected hand for 5 days. Main outcome measures were spatial two-point-discrimination thresholds and mechanical detection thresholds measured on the tip of the index finger bilaterally. Secondary endpoint was current pain intensity. All measures were assessed before and on day 5 after the last stimulation session. HF-rSS applied in 16 patients improved tactile discrimination on the affected hand significantly without changes contralaterally. Current pain intensity remained unchanged on average, but decreased in four patients by ≥30%. This limited pain relief might be due to the short stimulation period of 5 days only. In contrast, after LF-rSS, tactile discrimination was impaired in all four patients, while detection thresholds and pain were not affected. Our data suggest that HF-rSS could be used as a novel approach in CRPS treatment to improve sensory loss. Longer treatment periods might be required to induce consistent pain relief.

  17. High frequency repetitive sensory stimulation as intervention to improve sensory loss in patients with complex regional pain syndrome (CRPS I

    Directory of Open Access Journals (Sweden)

    Marianne eDavid

    2015-11-01

    Full Text Available Achieving perceptual gains in healthy individuals, or facilitating rehabilitation in patients is generally considered to require intense training to engage neuronal plasticity mechanisms. Recent work, however, suggested that beneficial outcome similar to training can be effectively acquired by a complementary approach in which the learning occurs in response to mere exposure to repetitive sensory stimulation (rSS. For example, high-frequency repetitive sensory stimulation (HF-rSS enhances tactile performance and induces cortical reorganization in healthy subjects and patients after stroke. Patients with complex regional pain syndrome (CRPS show impaired tactile performance associated with shrinkage of cortical maps. We here investigated the feasibility and efficacy of HF-rSS, and low-frequency rSS (LF-rSS to enhance tactile performance and reduce pain intensity in 20 patients with CRPS type I. Intermittent high or low frequency electrical stimuli were applied for 45min/day to all fingertips of the affected hand for 5 days. Main outcome measures were spatial 2-point-discrimination thresholds and mechanical detection thresholds measured on the tip of the index finger bilaterally. Secondary endpoint was current pain intensity. All measures were assessed before and on day 5 after the last stimulation session. HF-rSS applied in 16 patients improved tactile discrimination on the affected hand significantly without changes contralaterally. Current pain intensity remained unchanged on average, but decreased in 4 patients by 30%. This limited pain relief might be due to the short stimulation period of 5 days only. In contrast, after LF-rSS, tactile discrimination was impaired in all 4 patients, while detection thresholds and pain were not affected. Our data suggest that HF-rSS could be used as a novel approach in CRPS treatment to improve sensory loss. Longer treatment periods might be required to induce consistent pain relief.

  18. Direct electrical stimulation using a battery-operated device for induction and modulation of colonic contractions in pigs.

    Science.gov (United States)

    Bertschi, Mattia; Schlageter, Vincent; Vesin, Jean-Marc; Aellen, Steve; Peloponissios, Nicolas; D'Ambrogio, Aris; Wiesel, Paul Herman; Givel, Jean-Claude; Kucera, Pavel; Virag, Nathalie

    2010-07-01

    Direct electrical stimulation of the colon offers a promising approach for the induction of propulsive colonic contractions by using an implantable device. The objective of this study was to assess the feasibility to induce colonic contractions using a commercially available battery-operated stimulator (maximum pulse width of 1 ms and maximum amplitude of 10 V). Three pairs of pacing electrodes were inserted into the cecal seromuscular layer of anesthetized pigs. During a first set of in vivo experiments conducted on six animals, a pacing protocol leading to cecum contractions was determined: stimulation bursts with 1 ms pulse width, 10 V amplitude (7-15 mA), 120 Hz frequency, and 30-s burst duration, repeated every 2-5 min. In a second testing phase, an evaluation of the pacing protocol was performed in four animals (120 stimulation bursts in total). By using the battery-operated stimulator, contractions of the cecum and movement of contents could be induced in 92% of all stimulations. A cecal shortening of about 30% and an average intraluminal pressure increase of 10.0 +/- 6.0 mmHg were observed.

  19. Brief electrical stimulation improves nerve regeneration after delayed repair in Sprague Dawley rats.

    Science.gov (United States)

    Elzinga, Kate; Tyreman, Neil; Ladak, Adil; Savaryn, Bohdan; Olson, Jaret; Gordon, Tessa

    2015-07-01

    Functional recovery after peripheral nerve injury and surgical repair declines with time and distance because the injured neurons without target contacts (chronic axotomy) progressively lose their regenerative capacity and chronically denervated Schwann cells (SCs) atrophy and fail to support axon regeneration. Findings that brief low frequency electrical stimulation (ES) accelerates axon outgrowth and muscle reinnervation after immediate nerve surgery in rats and human patients suggest that ES might improve regeneration after delayed nerve repair. To test this hypothesis, common peroneal (CP) neurons were chronically axotomized and/or tibial (TIB) SCs and ankle extensor muscles were chronically denervated by transection and ligation in rats. The CP and TIB nerves were cross-sutured after three months and subjected to either sham or one hour 20Hz ES. Using retrograde tracing, we found that ES significantly increased the numbers of both motor and sensory neurons that regenerated their axons after a three month period of chronic CP axotomy and/or chronic TIB SC denervation. Muscle and motor unit forces recorded to determine the numbers of neurons that reinnervated gastrocnemius muscle demonstrated that ES significantly increased the numbers of motoneurons that reinnervated chronically denervated muscles. We conclude that electrical stimulation of chronically axotomized motor and sensory neurons is effective in accelerating axon outgrowth into chronically denervated nerve stumps and improving target reinnervation after delayed nerve repair. Possible mechanisms for the efficacy of ES in promoting axon regeneration and target reinnervation after delayed nerve repair include the upregulation of neurotrophic factors. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Effects of somatosensory electrical stimulation on motor function and cortical oscillations.

    Science.gov (United States)

    Tu-Chan, Adelyn P; Natraj, Nikhilesh; Godlove, Jason; Abrams, Gary; Ganguly, Karunesh

    2017-11-13

    Few patients recover full hand dexterity after an acquired brain injury such as stroke. Repetitive somatosensory electrical stimulation (SES) is a promising method to promote recovery of hand function. However, studies using SES have largely focused on gross motor function; it remains unclear if it can modulate distal hand functions such as finger individuation. The specific goal of this study was to monitor the effects of SES on individuation as well as on cortical oscillations measured using EEG, with the additional goal of identifying neurophysiological biomarkers. Eight participants with a history of acquired brain injury and distal upper limb motor impairments received a single two-hour session of SES using transcutaneous electrical nerve stimulation. Pre- and post-intervention assessments consisted of the Action Research Arm Test (ARAT), finger fractionation, pinch force, and the modified Ashworth scale (MAS), along with resting-state EEG monitoring. SES was associated with significant improvements in ARAT, MAS and finger fractionation. Moreover, SES was associated with a decrease in low frequency (0.9-4 Hz delta) ipsilesional parietomotor EEG power. Interestingly, changes in ipsilesional motor theta (4.8-7.9 Hz) and alpha (8.8-11.7 Hz) power were significantly correlated with finger fractionation improvements when using a multivariate model. We show the positive effects of SES on finger individuation and identify cortical oscillations that may be important electrophysiological biomarkers of individual responsiveness to SES. These biomarkers can be potential targets when customizing SES parameters to individuals with hand dexterity deficits. NCT03176550; retrospectively registered.

  1. WHO's health risk assessment of extremely low frequency electric fields

    International Nuclear Information System (INIS)

    Repacholi, M.H.

    2003-01-01

    The World Health Organization (WHO), the International Commission on Non-Ionizing Radiation Protection (ICNIRP), WHOs scientific collaborating centres (including the UKs National Radiological Protection Board (NRPB) and over 50 participating Member States are participants of WHOs International EMF Project. As part of WHOs health risk assessment process for extremely low frequency fields (ELFs), this workshop was convened by NRPB to assist WHO in evaluating potential health impacts of electrical currents and fields induced by ELF in molecules, cells, tissues and organs of the body. This paper describes the process by which WHO will conduct its health risk assessment. WHO is also trying to provide information on why exposure to ELF magnetic fields seems to be associated with an increased incidence of childhood leukaemia. Are there mechanisms that could lead to this health outcome or does the epidemiological evidence incorporate biases or other factors that need to be further explored? (author)

  2. Comparison of fMRI BOLD response patterns by electrical stimulation of the ventroposterior complex and medial thalamus of the rat.

    Directory of Open Access Journals (Sweden)

    Pai-Feng Yang

    Full Text Available The objective of this study was to compare the functional connectivity of the lateral and medial thalamocortical pain pathways by investigating the blood oxygen level-dependent (BOLD activation patterns in the forebrain elicited by direct electrical stimulation of the ventroposterior (VP and medial (MT thalamus. An MRI-compatible stimulation electrode was implanted in the VP or MT of α-chloralose-anesthetized rats. Electrical stimulation was applied to the VP or MT at various intensities (50 µA to 300 µA and frequencies (1 Hz to 12 Hz. BOLD responses were analyzed in the ipsilateral forelimb region of the primary somatosensory cortex (iS1FL after VP stimulation and in the ipsilateral cingulate cortex (iCC after MT stimulation. When stimulating the VP, the strongest activation occurred at 3 Hz. The stimulation intensity threshold was 50 µA and the response rapidly peaked at 100 µA. When stimulating the MT, The optimal frequency for stimulation was 9 Hz or 12 Hz, the stimulation intensity threshold was 100 µA and we observed a graded increase in the BOLD response following the application of higher intensity stimuli. We also evaluated c-Fos expression following the application of a 200-µA stimulus. Ventroposterior thalamic stimulation elicited c-Fos-positivity in few cells in the iS1FL and caudate putamen (iCPu. Medial thalamic stimulation, however, produced numerous c-Fos-positive cells in the iCC and iCPu. The differential BOLD responses and c-Fos expressions elicited by VP and MT stimulation indicate differences in stimulus-response properties of the medial and lateral thalamic pain pathways.

  3. TRANSCUTANEOUS ELECTRICAL NERVE-STIMULATION (TENS) IN RAYNAUDS-PHENOMENON

    NARCIS (Netherlands)

    MULDER, P; DOMPELING, EC; VANSLOCHTERENVANDERBOOR, JC; KUIPERS, WD; SMIT, AJ

    Transcutaneous nerve stimulation (TENS) has been described as resulting in vasodilatation. The effect of 2 Hz TENS of the right hand during forty-five minutes on skin temperature and plethysmography of the third digit of both hands and feet and on transcutaneous oxygen tension (TcpO2) of the right

  4. ERAASR: an algorithm for removing electrical stimulation artifacts from multielectrode array recordings

    Science.gov (United States)

    O'Shea, Daniel J.; Shenoy, Krishna V.

    2018-04-01

    Objective. Electrical stimulation is a widely used and effective tool in systems neuroscience, neural prosthetics, and clinical neurostimulation. However, electrical artifacts evoked by stimulation prevent the detection of spiking activity on nearby recording electrodes, which obscures the neural population response evoked by stimulation. We sought to develop a method to clean artifact-corrupted electrode signals recorded on multielectrode arrays in order to recover the underlying neural spiking activity. Approach. We created an algorithm, which performs estimation and removal of array artifacts via sequential principal components regression (ERAASR). This approach leverages the similar structure of artifact transients, but not spiking activity, across simultaneously recorded channels on the array, across pulses within a train, and across trials. The ERAASR algorithm requires no special hardware, imposes no requirements on the shape of the artifact or the multielectrode array geometry, and comprises sequential application of straightforward linear methods with intuitive parameters. The approach should be readily applicable to most datasets where stimulation does not saturate the recording amplifier. Main results. The effectiveness of the algorithm is demonstrated in macaque dorsal premotor cortex using acute linear multielectrode array recordings and single electrode stimulation. Large electrical artifacts appeared on all channels during stimulation. After application of ERAASR, the cleaned signals were quiescent on channels with no spontaneous spiking activity, whereas spontaneously active channels exhibited evoked spikes which closely resembled spontaneously occurring spiking waveforms. Significance. We hope that enabling simultaneous electrical stimulation and multielectrode array recording will help elucidate the causal links between neural activity and cognition and facilitate naturalistic sensory protheses.

  5. Electrical foot stimulation and implications for the prevention of venous thromboembolic disease.

    Science.gov (United States)

    Kaplan, Robert E; Czyrny, James J; Fung, Tat S; Unsworth, John D; Hirsh, Jack

    2002-08-01

    Venous stasis caused by immobility is an important risk factor for deep vein thrombosis following surgery and lower limb trauma, in bed-ridden medical patients, and in high-risk long distance air travelers. A safe and convenient method for reducing venous stasis would be useful in patients while in hospital and after discharge during their rehabilitation. 49 healthy subjects aged 51-76 were seated for 4 hours during which they received mild electrical stimulation of the calf, or sole of the foot (plantar muscles). Popliteal and femoral venous blood flow velocities were measured via doppler ultrasound. The non-stimulated lower extremity served as the simultaneous control. Subjects completed a questionnaire regarding their acceptance and tolerance of the electrical stimulation. There was a significant increase in venous femoral and popliteal blood flow for both calf (p < 0.035, p < 0.003), and plantar muscles (p < 0.0001, p < 0.009) on the stimulated side compared to the unstimulated side. The magnitude of the effect was similar for calf and plantar muscle stimulation. Subjects did not find the experience uncomfortable, and would use an electrical stimulator if told by their physician that they were at risk for developing blood clots. Mild electrical stimulation of the feet, as well as the calf, is a safe effective and convenient method for counteracting venous stasis and therefore has the potential to reduce the risk of deep vein thrombosis and pulmonary embolism for subjects who are immobilized.

  6. Modifications of baropodograms after transcutaneous electric stimulation of the abductor hallucis muscle in humans standing erect.

    Science.gov (United States)

    Gaillet, Jean-Claude; Biraud, Jean-Claude; Bessou, Monique; Bessou, Paul

    2004-12-01

    Objective data on abductor hallucis muscle biomechanical function in the loaded foot (subject standing erect on both legs) are unavailable. To evaluate the effects of electrical stimulation of the abductor hallucis muscle in the loaded foot on the change of plantar pressures, as measured by digital baropodograms. Six indices were defined to compare baropodograms. The abductor hallucis muscle in 1 foot was subjected to transcutaneous electrical stimulation (20 min) while the subject was standing erect on the floor. Baropodograms were recorded before, immediately thereafter, then 15 days and 2 months later. Differences between baropodogram indices were subjected to one-way anova. Electrical abductor hallucis muscle stimulation induced, on the stimulation side, a post-contraction state easily detected on baropodograms as the increased plantar pressure on the anterior-medial part of the sole, and lateral displacements of the anterior maximal pressure point and the foot thrust center. These mechanical signs, consistent with foot inversion, induce external rotation of the leg and pelvic rotation on the stimulated side, leading to contralateral plantar-pressure changes: decreased maximal pressure point and thrust in the posterior part of the footprint and lateral displacement of the foot thrust center. Electrical stimulation of the abductor hallucis muscle in the loaded foot induces immediate specific changes in baropodogram indices, some of which persist 2 months later. The mechanical effect of abductor hallucis muscle stimulation (foot inversion) and its post-contraction state could be useful in podiatric and postural rehabilitation.

  7. Treatment of refractory chest angina with spinal electrical stimulator: literature review

    International Nuclear Information System (INIS)

    Gomezese, Omar F; Paola, Aranda; Echeverria, Luis E; Saibi, Jose F; Calderon, Jaime; Barrera, Juan G

    2008-01-01

    There is a group of patients with chronic refractory chest angina, who are not ideal candidates for surgical or percutaneous revascularization and who although having a good medical handling continues to experience severe episodes of angina. The spinal electrical stimulator is a neuromodulators used as an alternative to treat these patients. The objective is to realize a review of scientific literature regarding the spinal electric stimulation in the treatment of chest angina, its mechanism of action, benefits and its cost effectiveness. Materials and methods: using the Cochrane methodology, a search of articles published from January 1980 to January 2007 in Medline using the terms spinal cord stimulation, was realized. The papers considered most pertinent were selected. Conclusions: the anti-ischemic effect of the electrical spinal stimulator reduces the episodes of chest angina, improves the quality of life and the tolerance to exercise, diminishes the hospital stay and delays the appearance of ischemic signs

  8. Dose-specific effects of transcutaneous electrical nerve stimulation (TENS) on experimental pain: a systematic review.

    Science.gov (United States)

    Claydon, Leica S; Chesterton, Linda S; Barlas, Panos; Sim, Julius

    2011-09-01

    To determine the hypoalgesic effects of transcutaneous electrical nerve stimulation (TENS) parameter combinations on experimental models in healthy humans. Searches were performed using the electronic databases Ovid MEDLINE, CINAHL, AMED, and Web of Science (from inception to December 2009). Manual searches of journals and reference lists of retrieved trials were also performed. Randomized controlled trials (RCTs) were included in the review if they compared the hypoalgesic effect of TENS relative with placebo and control, using an experimental pain model in healthy human participants. Two reviewers independently selected the trials, assessed their methodologic quality and extracted data. Forty-three RCTs were eligible for inclusion. A best evidence synthesis revealed: Overall "conflicting" (inconsistent findings in multiple RCTs) evidence of TENS efficacy on experimental pain irrespective of TENS parameters used. Overall intense TENS has "moderate" evidence of efficacy (1 high-quality and 2 low-quality trials). Conventional TENS has overall conflicting evidence of efficacy, this is derived from "strong" evidence of efficacy (generally consistent findings in multiple high-quality RCTs) on pressure pain but strong evidence of inefficacy on other pain models. "Limited" evidence (positive findings from 1 RCT) of hypoalgesia exists for some novel parameters. Low-intensity, low-frequency, local TENS has strong evidence of inefficacy. Inappropriate TENS (using "barely perceptible" intensities) has moderate evidence of inefficacy. The level of hypoalgesic efficacy of TENS is clearly dependent on TENS parameter combination selection (defined in terms of intensity, frequency, and stimulation site) and experimental pain model. Future clinical RCTs may consider these TENS dose responses.

  9. Servo-controlled hind-limb electrical stimulation for short-term arterial pressure control.

    Science.gov (United States)

    Kawada, Toru; Shimizu, Shuji; Yamamoto, Hiromi; Shishido, Toshiaki; Kamiya, Atsunori; Miyamoto, Tadayoshi; Sunagawa, Kenji; Sugimachi, Masaru

    2009-05-01

    Autonomic neural intervention is a promising tool for modulating the circulatory system thereby treating some cardiovascular diseases. In 8 pentobarbital-anesthetized cats, it was examined whether the arterial pressure (AP) could be controlled by acupuncture-like hind-limb electrical stimulation (HES). With a 0.5-ms pulse width, HES monotonically reduced AP as the stimulus current increased from 1 to 5 mA, suggesting that the stimulus current could be a primary control variable. In contrast, the depressor effect of HES showed a nadir approximately 10 Hz in the frequency range between 1 and 100 Hz. Dynamic characteristics of the AP response to HES approximated a second-order low-pass filter with dead time (gain: -10.2 +/- 1.6 mmHg/mA, natural frequency: 0.040 +/- 0.004 Hz, damping ratio 1.80 +/- 0.24, dead time: 1.38 +/- 0.13 s, mean +/- SE). Based on these dynamic characteristics, a servo-controlled HES system was developed. When a target AP value was set at 20 mmHg below the baseline AP, the time required for the AP response to reach 90% of the target level was 38 +/- 10 s. The steady-state error between the measured and target AP values was 1.3 +/- 0.1 mmHg. Autonomic neural intervention by acupuncture-like HES might provide an additional modality to quantitatively control the circulatory system.

  10. A simulation study of harmonics regeneration in noise reduction for electric and acoustic stimulation.

    Science.gov (United States)

    Hu, Yi

    2010-05-01

    Recent research results show that combined electric and acoustic stimulation (EAS) significantly improves speech recognition in noise, and it is generally established that access to the improved F0 representation of target speech, along with the glimpse cues, provide the EAS benefits. Under noisy listening conditions, noise signals degrade these important cues by introducing undesired temporal-frequency components and corrupting harmonics structure. In this study, the potential of combining noise reduction and harmonics regeneration techniques was investigated to further improve speech intelligibility in noise by providing improved beneficial cues for EAS. Three hypotheses were tested: (1) noise reduction methods can improve speech intelligibility in noise for EAS; (2) harmonics regeneration after noise reduction can further improve speech intelligibility in noise for EAS; and (3) harmonics sideband constraints in frequency domain (or equivalently, amplitude modulation in temporal domain), even deterministic ones, can provide additional benefits. Test results demonstrate that combining noise reduction and harmonics regeneration can significantly improve speech recognition in noise for EAS, and it is also beneficial to preserve the harmonics sidebands under adverse listening conditions. This finding warrants further work into the development of algorithms that regenerate harmonics and the related sidebands for EAS processing under noisy conditions.

  11. Developmental effects of extremely low frequency electric and magnetic fields

    International Nuclear Information System (INIS)

    Juutilainen, J.

    2003-01-01

    Developmental effects of extremely low frequency (ELF) electric and magnetic fields are briefly reviewed in this paper. The results of animal studies on ELF electric fields are rather consistent, and do not suggest adverse effects on development. The results of studies on ELF magnetic fields suggest effects on bird embryo development, but not consistently in all studies. Results from experiments with other non-mammalian species have also suggested effects on developmental stability. In mammals, pre-natal exposure to ELF magnetic fields does not result in strong adverse effects on development. The only finding that shows some consistency is increase of minor skeleton alterations. Epidemiological studies do not establish an association between human adverse pregnancy outcomes and maternal exposure to ELF fields, although a few studies have reported increased risks associated with some characteristics of magnetic field exposure. Taken as a whole, the results do not show strong adverse effects on development. However, additional studies on the suggested subtle effects on developmental stability might increase our understanding of the sensitivity of organisms to weak ELF fields. (author)

  12. Frequency domain methods applied to forecasting electricity markets

    International Nuclear Information System (INIS)

    Trapero, Juan R.; Pedregal, Diego J.

    2009-01-01

    The changes taking place in electricity markets during the last two decades have produced an increased interest in the problem of forecasting, either load demand or prices. Many forecasting methodologies are available in the literature nowadays with mixed conclusions about which method is most convenient. This paper focuses on the modeling of electricity market time series sampled hourly in order to produce short-term (1 to 24 h ahead) forecasts. The main features of the system are that (1) models are of an Unobserved Component class that allow for signal extraction of trend, diurnal, weekly and irregular components; (2) its application is automatic, in the sense that there is no need for human intervention via any sort of identification stage; (3) the models are estimated in the frequency domain; and (4) the robustness of the method makes possible its direct use on both load demand and price time series. The approach is thoroughly tested on the PJM interconnection market and the results improve on classical ARIMA models. (author)

  13. Dynamic impedance model of the skin-electrode interface for transcutaneous electrical stimulation.

    Directory of Open Access Journals (Sweden)

    José Luis Vargas Luna

    Full Text Available Transcutaneous electrical stimulation can depolarize nerve or muscle cells applying impulses through electrodes attached on the skin. For these applications, the electrode-skin impedance is an important factor which influences effectiveness. Various models describe the interface using constant or current-depending resistive-capacitive equivalent circuit. Here, we develop a dynamic impedance model valid for a wide range stimulation intensities. The model considers electroporation and charge-dependent effects to describe the impedance variation, which allows to describe high-charge pulses. The parameters were adjusted based on rectangular, biphasic stimulation pulses generated by a stimulator, providing optionally current or voltage-controlled impulses, and applied through electrodes of different sizes. Both control methods deliver a different electrical field to the tissue, which is constant throughout the impulse duration for current-controlled mode or have a very current peak for voltage-controlled. The results show a predominant dependence in the current intensity in the case of both stimulation techniques that allows to keep a simple model. A verification simulation using the proposed dynamic model shows coefficient of determination of around 0.99 in both stimulation types. The presented method for fitting electrode-skin impedance can be simple extended to other stimulation waveforms and electrode configuration. Therefore, it can be embedded in optimization algorithms for designing electrical stimulation applications even for pulses with high charges and high current spikes.

  14. Chronic intravitreous infusion of ciliary neurotrophic factor modulates electrical retinal stimulation thresholds in the RCS rat.

    Science.gov (United States)

    Kent, Tiffany L; Glybina, Inna V; Abrams, Gary W; Iezzi, Raymond

    2008-01-01

    To determine whether the sustained intravitreous delivery of CNTF modulates cortical response thresholds to electrical retinal stimulation in the RCS rat model of retinal degeneration. Animals were assigned to four groups: untreated, nonsurgical control and infusion groups of 10 ng/d CNTF, 1 ng/d CNTF, and PBS vehicle control. Thresholds for electrically evoked cortical potentials (EECPs) were recorded in response to transcorneal electrical stimulation of the retina at p30 and again at p60, after a three-week infusion. As the retina degenerated over time, EECP thresholds in response to electrical retinal stimulation increased. Eyes treated with 10 ng/d CNTF demonstrated significantly greater retinal sensitivity to electrical stimulation when compared with all other groups. In addition, eyes treated with 1 ng/d CNTF demonstrated significantly greater retinal sensitivity than both PBS-treated and untreated control groups. Retinal sensitivity to electrical stimulation was preserved in animals treated with chronic intravitreous infusion of CNTF. These data suggest that CNTF-mediated retinal neuroprotection may be a novel therapy that can lower stimulus thresholds in patients about to undergo retinal prosthesis implantation. Furthermore, it may maintain the long-term efficacy of these devices in patients.

  15. Can preoperative electrical nociceptive stimulation predict acute pain after groin herniotomy?

    DEFF Research Database (Denmark)

    Aasvang, Eske Kvanner; Hansen, J.B.; Kehlet, H.

    2008-01-01

    Preoperative identification of patients at risk for high-intensity postoperative pain may be used to predict patients at risk for development of a persistent pain state and allocate patients to more intensive specific pain therapy. Preoperative pain threshold to electrocutaneus stimulation has...... repair. The correlation between the pain data for electrical stimulation was compared with the postoperative pain during the first week in 165 patients, whereof 3 were excluded. Preoperative electrical pain detection threshold and electrical pain tolerance threshold did not correlate to postoperative...... pain (rho = -0.13, P = .09, and rho = -1.2, P = .4, respectively. PERSPECTIVE: Although preoperative electrical nociceptive stimulation may predict patients at risk of high-intensity acute pain after other surgical procedures, this was not the case in groin hernia repair patients receiving concomitant...

  16. Electrical stimulation in white oyster mushroom (Pleurotus florida) production

    Science.gov (United States)

    Roshita, I.; Nurfazira, K. M. P.; Fern, C. Shi; Ain, M. S. Nur

    2017-09-01

    White oyster mushroom (Pleurotus florida) is an edible mushroom that gained popularity due to its nutritional values, low production cost and ease of cultivation. There are several research reported on the mushroom fruiting bodies which were actively developed when applying electrical shock treatment. This study was aimed to investigate the effects of different electrical voltages on the growth and yield of white oyster mushroom (Pleurotus florida). Five different electrical voltages had been applied during spawning period which were 6V, 9V, 12V, 15V and mushroom bags without any treatment served as control. Treatment at 6V showed the highest rate for mycelium growth while 15V took the shortest time for fruiting body formation. However, no significant different (P>0.05) among all the treatments was observed for the time taken for the mycelium to fill-up the bag and pinhead emergence. The total fresh weight and percentage of biological efficiency for treatment at 9V showed higher values compared to control. Treatment at 9V also showed the largest pileus diameter and the most firm in the pileus texture. Meanwhile, treatment at 6V showed the highest a* value (redness). In addition, different electrical voltage treatments applied did not show any significant effect on substrate utilization efficiency, colour L* and b* values. In conclusion, among all the electrical treatments applied, 9V could be considered as the best treatment to enhance the yield of white oyster mushroom.

  17. Health effects of low frequency electric and magnetic fields

    International Nuclear Information System (INIS)

    1992-06-01

    The US Department of Labor and the President's Office of Science and Technology Policy (STP) requested that the Committee on interagency Radiation Research and Policy Coordination (CIRRPC) conduct an independent evaluation of the reported health effects from exposure to low-frequency electric and magnetic fields (ELF-EMF), especially reports of carcinogenesis and reproductive and neurophysiological effects focusing on frequencies which appeared to be of greatest public concern. Oak Ridge Associated Universities (ORAU) was tasked by the CIRRPC to oversee the review by a panel of independent, non-Federal, scientists. Following their review of over 1000 journal articles, the ORAU Panel concluded ''... that there is no convincing evidence ... to support the contention that exposure to ELF-EMF generated by sources such as household appliances, video display terminals (10 to 30 KHz), and local power lines (15 to 180 Hz) are demonstrable health hazards.'' Although the Panel noted that some biological effects produced by these fields may be of scientific interest and warrant consideration for future research, it concluded that ''... in the broad scope of research needs in basic science and health research, any health concerns over exposures to these fields should not receive a high priority.'' This executive summary outlines the panel's investigation

  18. Applied electric field enhances DRG neurite growth: influence of stimulation media, surface coating and growth supplements

    Science.gov (United States)

    Wood, Matthew D.; Willits, Rebecca Kuntz

    2009-08-01

    Electrical therapies have been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. This enhanced neural growth existed even after the electric field (EF) or stimulation was removed, but the factors that may influence the enhanced growth, such as stimulation media or surface coating, have not been fully investigated. This study characterized neurite outgrowth and branching under various conditions: EF magnitude and application time, ECM surface coating, medium during EF application and growth supplements. A uniform, low-magnitude EF (24 or 44 V m-1) was applied to dissociated chick embryo dorsal root ganglia seeded on collagen or laminin-coated surfaces. During the growth period, cells were either exposed to NGF or N2, and during stimulation cells were exposed to either unsupplemented media (Ca2+) or PBS (no Ca2+). Parallel controls for each experiment included cells exposed to the chamber with no stimulation and cells remaining outside the chamber. After brief electrical stimulation (10 min), neurite length significantly increased 24 h after application for all conditions studied. Of particular interest, increased stimulation time (10-100 min) further enhanced neurite length on laminin but not on collagen surfaces. Neurite branching was not affected by stimulation on any surface, and no preferential growth of neurites was noted after stimulation. Overall, the results of this report suggest that short-duration electric stimulation is sufficient to enhance neurite length under a variety of conditions. While further data are needed to fully elucidate a mechanism for this increased growth, these data suggest that one focus of those investigations should be the interaction between the growth cone and the substrata.

  19. MAGNETIC VERSUS ELECTRICAL STIMULATION IN THE INTERPOLATION TWITCH TECHNIQUE OF ELBOW FLEXORS

    Directory of Open Access Journals (Sweden)

    Sofia I. Lampropoulou

    2012-12-01

    Full Text Available The study compared peripheral magnetic with electrical stimulation of the biceps brachii m. (BB in the single pulse Interpolation Twitch Technique (ITT. 14 healthy participants (31±7 years participated in a within-subjects repeated-measures design study. Single, constant-current electrical and magnetic stimuli were delivered over the motor point of BB with supramaximal intensity (20% above maximum at rest and at various levels of voluntary contraction. Force measurements from right elbow isometric flexion and muscle electromyograms (EMG from the BB, the triceps brachii m. (TB and the abductor pollicis brevis m. (APB were obtained. The twitch forces at rest and maximal contractions, the twitch force-voluntary force relationship, the M-waves and the voluntary activation (VA of BB between magnetic and electrical stimulation were compared. The mean amplitude of the twitches evoked at MVC was not significantly different between electrical (0.62 ± 0.49 N and magnetic (0.81 ± 0.49 N stimulation (p > 0.05, and the maximum VA of BB was comparable between electrical (95% and magnetic (93% stimulation (p > 0. 05. No differences (p >0.05 were revealed in the BB M-waves between electrical (13.47 ± 0.49 mV.ms and magnetic (12.61 ± 0.58 mV.ms stimulation. The TB M-waves were also similar (p > 0.05 but electrically evoked APB M-waves were significantly larger than those evoked by magnetic stimulation (p < 0.05. The twitch-voluntary force relationship over the range of MVCs was best described by non-linear functions for both electrical and magnetic stimulation. The electrically evoked resting twitches were consistently larger in amplitude than the magnetically evoked ones (mean difference 3.1 ± 3.34 N, p < 0.05. Reduction of the inter-electrodes distance reduced the twitch amplitude by 6.5 ± 6.2 N (p < 0.05. The fundamental similarities in voluntary activation assessment of BB with peripheral electrical and magnetic stimulation point towards a promising

  20. Bilateral high frequency subthalamic stimulation in Parkinson's disease: long-term neurological follow-up

    NARCIS (Netherlands)

    Romito, L. M.; Scerrati, M.; Contarino, M. F.; Iacoangeli, M.; Bentivoglio, A. R.; Albanese, A.

    2003-01-01

    AIM: High frequency stimulation of the subthalamic nucleus (STN) is gaining recognition as a new symptomatic treatment for Parkinson's disease (PD). The first available long-term observations show the stability of the efficacy of this procedure in time. METHODS: Quadripolar leads were implanted

  1. Frequency-specific masking effect by vibrotactile stimulation to the forearm

    NARCIS (Netherlands)

    Tanaka, Y.; Matsuoka, S.; Bergmann Tiest, W.M.; Kappers, A.M.L.; Minamizawa, K.; Sano, A.; Bello, F.; Kajimoto, H.; Visell, Y.

    2016-01-01

    This paper demonstrates frequency-specific masking of tactile sensations on the index finger by remote vibrotactile stimulation. A vibration of 50 Hz was presented to the index finger. In three experimental conditions, the detection threshold for this vibration was determined with a masking

  2. Accelerated high-frequency repetitive transcranial magnetic stimulation enhances motor activity in rats

    NARCIS (Netherlands)

    El Arfani, Anissa; Parthoens, Joke; Demuyser, Thomas; Servaes, Stijn; De Coninck, Mattias; De Deyn, Peter Paul; Van Dam, Debby; Wyckhuys, Tine; Baeken, Chris; Smolders, Ilse; Staelens, Steven

    2017-01-01

    High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) is currently accepted as an evidence-based treatment option for treatment-resistant depression (TRD). Additionally, HF-rTMS showed beneficial effects on psychomotor retardation in patients. The classical HF-rTMS paradigms however

  3. Magnetic resonance imaging of morphological and functional changes of the uterus induced by sacral surface electrical stimulation

    International Nuclear Information System (INIS)

    Ogura, Takahide; Murakami, Takashi; Ozawa, Yuka; Seki, Kazunori; Handa, Yasunobu

    2006-01-01

    The purpose of this study is to examine the morphological and kinematical changes of the uterus induced by electrical stimulation applied to the skin just above the second and fourth posterior sacral foramens (sacral surface electrical stimulation [ssES]) in 26 healthy subjects. Out of them, eight subjects who had severe pain subjectively during every menstruation received ssES just in menstruation. Morphological and functional changes of the uterus were examined by using T2-weighted magnetic resonance (MR) imaging and T1-weighted MR cinematography, respectively. Cyclic electrical stimulation for 15 min with 5 sec ON and 5 sec OFF was applied just before MR scanning. A decrease in thickness of the muscular layer of the uterus was observed in every subject after ssES for 15 min and was significant as compared with the thickness before ssES. Periodic uterine movement during menstruation was observed in the subjects with severe menstrual pain in MR cine and the power spectrum analysis of the movement showed a marked decrease in peak power and frequency after ssES treatment. We conclude that ssES causes a reduction of static muscle tension of the uterus in all menstrual cycle periods and suppression of uterine peristalsis during menstruation in the subjects with severe menstrual pain. Possible neural mechanisms for these static and dynamic effects of ssES on the uterus at spinal level are discussed. (author)

  4. Epilepsia partialis continua responsive to neocortical electrical stimulation.

    Science.gov (United States)

    Valentin, Antonio; Ughratdar, Ismail; Cheserem, Beverly; Morris, Robert; Selway, Richard; Alarcon, Gonzalo

    2015-08-01

    Epilepsia partialis continua (EPC), defined as a syndrome of continuous focal jerking, is a rare form of focal status epilepticus that usually affects a distal limb, and when prolonged, can produce long-lasting deficits in limb function. Substantial electrophysiologic evidence links the origin of EPC to the motor cortex; thus surgical resection carries the risk of significant handicap. We present two patients with focal, drug-resistant EPC, who were admitted for intracranial video-electroencephalography monitoring to elucidate the location of the epileptogenic focus and identification of eloquent motor cortex with functional mapping. In both cases, the focus resided at or near eloquent motor cortex and therefore precluded resective surgery. Chronic cortical stimulation delivered through subdural strips at the seizure focus (continuous stimulation at 60-130 Hz, 2-3 mA) resulted in >90% reduction in seizures and abolition of the EPC after a follow-up of 22 months in both patients. Following permanent implantation of cortical stimulators, no adverse effects were noted. EPC restarted when intensity was reduced or batteries depleted. Battery replacement restored previous improvement. This two-case report opens up avenues for the treatment of this debilitating condition. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  5. Electrical stimulation site influences the spatial distribution of motor units recruited in tibialis anterior.

    Science.gov (United States)

    Okuma, Yoshino; Bergquist, Austin J; Hong, Mandy; Chan, K Ming; Collins, David F

    2013-11-01

    To compare the spatial distribution of motor units recruited in tibialis anterior (TA) when electrical stimulation is applied over the TA muscle belly versus the common peroneal nerve trunk. Electromyography (EMG) was recorded from the surface and from fine wires in superficial and deep regions of TA. Separate M-wave recruitment curves were constructed for muscle belly and nerve trunk stimulation. During muscle belly stimulation, significantly more current was required to generate M-waves that were 5% of the maximal M-wave (M max; M5%max), 50% M max (M 50%max) and 95% M max (M 95%max) at the deep versus the superficial recording site. In contrast, during nerve trunk stimulation, there were no differences in the current required to reach M5%max, M 50%max or M 95%max between deep and superficial recording sites. Surface EMG reflected activity in both superficial and deep muscle regions. Stimulation over the muscle belly recruited motor units from superficial to deep with increasing stimulation amplitude. Stimulation over the nerve trunk recruited superficial and deep motor units equally, regardless of stimulation amplitude. These results support the idea that where electrical stimulation is applied markedly affects how contractions are produced and have implications for the interpretation of surface EMG data. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Modulation of Somatosensory Alpha Rhythm by Transcranial Alternating Current Stimulation at Mu-Frequency

    Directory of Open Access Journals (Sweden)

    Christopher Gundlach

    2017-08-01

    Full Text Available Introduction: Transcranial alternating current stimulation (tACS is emerging as an interventional tool to modulate different functions of the brain, potentially by interacting with intrinsic ongoing neuronal oscillations. Functionally different intrinsic alpha oscillations are found throughout the cortex. Yet it remains unclear whether tACS is capable of specifically modulating the somatosensory mu-rhythm in amplitude.Objectives: We used tACS to modulate mu-alpha oscillations in amplitude. When compared to sham stimulation we expected a modulation of mu-alpha oscillations but not visual alpha oscillations by tACS.Methods: Individual mu-alpha frequencies were determined in 25 participants. Subsequently, blocks of tACS with individual mu-alpha frequency and sham stimulation were applied over primary somatosensory cortex (SI. Electroencephalogram (EEG was recorded before and after either stimulation or sham. Modulations of mu-alpha and, for control, visual alpha amplitudes were then compared between tACS and sham.Results: Somatosensory mu-alpha oscillations decreased in amplitude after tACS was applied at participants’ individual mu-alpha frequency. No changes in amplitude were observed for sham stimulation. Furthermore, visual alpha oscillations were not affected by tACS or sham, respectively.Conclusion: Our results demonstrate the capability of tACS to specifically modulate the targeted somatosensory mu-rhythm when the tACS frequency is tuned to the individual endogenous rhythm and applied over somatosensory areas. Our results are in contrast to previously reported amplitude increases of visual alpha oscillations induced by tACS applied over visual cortex. Our results may point to a specific interaction between our stimulation protocol and the functional architecture of the somatosensory system.

  7. Chronic electrical stimulation with a suprachoroidal retinal prosthesis: a preclinical safety and efficacy study.

    Directory of Open Access Journals (Sweden)

    David A X Nayagam

    Full Text Available To assess the safety and efficacy of chronic electrical stimulation of the retina with a suprachoroidal visual prosthesis.Seven normally-sighted feline subjects were implanted for 96-143 days with a suprachoroidal electrode array and six were chronically stimulated for 70-105 days at levels that activated the visual cortex. Charge balanced, biphasic, current pulses were delivered to platinum electrodes in a monopolar stimulation mode. Retinal integrity/function and the mechanical stability of the implant were assessed monthly using electroretinography (ERG, optical coherence tomography (OCT and fundus photography. Electrode impedances were measured weekly and electrically-evoked visual cortex potentials (eEVCPs were measured monthly to verify that chronic stimuli were suprathreshold. At the end of the chronic stimulation period, thresholds were confirmed with multi-unit recordings from the visual cortex. Randomized, blinded histological assessments were performed by two pathologists to compare the stimulated and non-stimulated retina and adjacent tissue.All subjects tolerated the surgical and stimulation procedure with no evidence of discomfort or unexpected adverse outcomes. After an initial post-operative settling period, electrode arrays were mechanically stable. Mean electrode impedances were stable between 11-15 kΩ during the implantation period. Visually-evoked ERGs & OCT were normal, and mean eEVCP thresholds did not substantially differ over time. In 81 of 84 electrode-adjacent tissue samples examined, there were no discernible histopathological differences between stimulated and unstimulated tissue. In the remaining three tissue samples there were minor focal fibroblastic and acute inflammatory responses.Chronic suprathreshold electrical stimulation of the retina using a suprachoroidal electrode array evoked a minimal tissue response and no adverse clinical or histological findings. Moreover, thresholds and electrode impedance remained

  8. Dependences of the geometrical parameters of cell community on stimulation voltage and frequency in chick embryonic cardiomyocytes

    Science.gov (United States)

    Fujii, Koki; Nomura, Fumimasa; Kaneko, Tomoyuki

    2018-03-01

    To investigate the optimal conditions for electrical stimulation, communities of lined-up chick embryonic cardiomyocytes were evaluated in terms of their threshold voltage for pacing (PVMin) and the half-maximum paced frequency (PF50), with a focus on the following factors: (1) the orientation of the major axis of cell communities to the electric field (EF) direction as the external factor; (2) the number of cells in a cell community, the length of the cell community, and the mean length of cells comprising the community as the internal factors. Firstly, PVMin decreased with increasing length of the cell network oriented parallel to the EF. PVMin was approximately 0.041 ± 0.025 V/mm when the community was sufficiently long. On the other hand, PVMin in the orthogonal orientation was constant at 1.7 ± 0.047 V/mm with no dependence on the length of the cell network. Secondly, we found that PF50 increased with increasing length of the cell network or the number of cells in the network; the PF50 values were 2.03 ± 0.05 and 3.39 ± 0.05 Hz when the respective cell network lengths were 100 µm (n = 43) and more than 300 µm (n = 6) and the cells were oriented parallel to the EF. These findings indicate that it is important to suppress ventricular fibrillation with minimal efficient stimulation by considering the EF direction with respect to the orientation of cardiomyocytes. Furthermore, expanded cells showed the loss of ability to respond to stimulation at higher frequencies. Cardiomyocytes combined with seeded fibroblasts as a cell network at a low density are a possible model of a ventricular remodeling heart.

  9. The Effect of Variation in Permittivity of Different Tissues on Induced Electric Field in the Brain during Transcranial Magnetic Stimulation

    Science.gov (United States)

    Hadimani, Ravi; Porzig, Konstantin; Crowther, Lawrence; Brauer, Hartmut; Toepfer, Hannes; Jiles, David; Department of Electrical and Computer Engineering, Iowa State University Team; Department of Advanced Electromagnetics, Ilmenau University of Technology Team

    2013-03-01

    Estimation of electric field in the brain during Transcranial Magnetic Stimulation (TMS) requires knowledge of the electric property of brain tissue. Grey and white matters have unusually high relative permittivities of ~ 106 at low frequencies. However, relative permittivity of cerebrospinal fluid is ~ 102. With such a variation it is necessary to consider the effect of boundaries. A model consisting of 2 hemispheres was used in the model with the properties of one hemisphere kept constant at σ1 = 0.1Sm-1 and ɛr 1 = 10 while the properties of the second hemisphere were changed kept at σ2 = 0.1Sm-1 to 2Sm-1 and ɛr 2 = 102 to 105. A 70 mm diameter double coil was used as the source of the magnetic field. The amplitude of the current in the coil was 5488 A at a frequency of 2.9 kHz. The results show that the electric field, E induced during magnetic stimulation is independent of the relative permittivity, ɛr and varies with the conductivity. Thus the variation in E, calculated with homogeneous and heterogeneous head models was due to variation in conductivity of the tissues and not due to variation in permittivities.

  10. Effective deep brain stimulation suppresses low frequency network oscillations in the basal ganglia by regularizing neural firing patterns

    Science.gov (United States)

    McConnell, George C.; So, Rosa Q.; Hilliard, Justin D; Lopomo, Paola; Grill, Warren M.

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for the motor symptoms of Parkinson’s disease (PD). The effects of DBS depend strongly on stimulation frequency: high frequencies (>90Hz) improve motor symptoms, while low frequencies (basal ganglia were studied in the unilateral 6-hydroxydopamine lesioned rat model of PD. Only high frequency DBS reversed motor symptoms and the effectiveness of DBS depended strongly on stimulation frequency in a manner reminiscent of its clinical effects in persons with PD. Quantification of single-unit activity in the globus pallidus externa (GPe) and substantia nigra reticulata (SNr) revealed that high frequency DBS, but not low frequency DBS, reduced pathological low frequency oscillations (~9Hz) and entrained neurons to fire at the stimulation frequency. Similarly, the coherence between simultaneously recorded pairs of neurons within and across GPe and SNr shifted from the pathological low frequency band to the stimulation frequency during high frequency DBS, but not during low frequency DBS. The changes in firing patterns in basal ganglia neurons were not correlated with changes in firing rate. These results indicate that high frequency DBS is more effective than low frequency DBS, not as a result of changes in firing rate, but rather due to its ability to replace pathological low frequency network oscillations with a regularized pattern of neuronal firing. PMID:23136407

  11. Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns.

    Science.gov (United States)

    McConnell, George C; So, Rosa Q; Hilliard, Justin D; Lopomo, Paola; Grill, Warren M

    2012-11-07

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for the motor symptoms of Parkinson's disease (PD). The effects of DBS depend strongly on stimulation frequency: high frequencies (>90 Hz) improve motor symptoms, while low frequencies (basal ganglia were studied in the unilateral 6-hydroxydopamine lesioned rat model of PD. Only high-frequency DBS reversed motor symptoms, and the effectiveness of DBS depended strongly on stimulation frequency in a manner reminiscent of its clinical effects in persons with PD. Quantification of single-unit activity in the globus pallidus externa (GPe) and substantia nigra reticulata (SNr) revealed that high-frequency DBS, but not low-frequency DBS, reduced pathological low-frequency oscillations (∼9 Hz) and entrained neurons to fire at the stimulation frequency. Similarly, the coherence between simultaneously recorded pairs of neurons within and across GPe and SNr shifted from the pathological low-frequency band to the stimulation frequency during high-frequency DBS, but not during low-frequency DBS. The changes in firing patterns in basal ganglia neurons were not correlated with changes in firing rate. These results indicate that high-frequency DBS is more effective than low-frequency DBS, not as a result of changes in firing rate, but rather due to its ability to replace pathological low-frequency network oscillations with a regularized pattern of neuronal firing.

  12. Effects of repetition and temperature on Contingent Electrical Stimulation

    DEFF Research Database (Denmark)

    Castrillon, Eduardo E.; Zhou, Xinwen; Svensson, Peter

    ) activity associated with bruxism. Repetition of the electrical stimulus and skin surface temperature (ST) may affect the perception of CES and possibly also the inhibitory EMG effects.Objectives: To determine the effects of stimulus repetition and skin ST on the perception of CES.  Methods: Healthy...

  13. Studies of Electrically Stimulated Rat Limb and Peripheral Nerve Regeneration.

    Science.gov (United States)

    1983-08-25

    Simple Neurorraphy 0 Lt. Two main theories have evolved as to the mechanism of the effect of electricity on re- The area under the curve representing...Pt bimetallic electrode is placed distal to the The right leg was imp!i.nted with an electrode neurorraphy site, and a comparable reduction in

  14. FUNCTIONAL ELECTRICAL STIMULATION FOR CONTROL OF EPILEPTIC SEIZURES

    DEFF Research Database (Denmark)

    Jiao, Jianhang

    Nearly 50 million people worldwide have epilepsy and one-third of them do not respond well to any antiepileptic drugs. Given the large population of patients experiencing drug resistant epilepsy, increased attention has been paid over the last two decades to the development of electrical stimulat...

  15. Effects of Low-frequency Current Sacral Dermatome Stimulation on Idiopathic Slow Transit Constipation.

    Science.gov (United States)

    Kim, Jin-Seop; Yi, Seung-Ju

    2014-06-01

    [Purpose] This study aimed to determine whether low-frequency current therapy can be used to reduce the symptoms of idiopathic slow transit constipation (ISTC). [Subjects] Fifteen patients (ten male and five female) with idiopathic slow transit constipation were enrolled in the present study. [Results] Bowel movements per day, bowel movements per week, and constipation assessment scale scores significantly improved after low-frequency current simulation of S2-S3. [Conclusion] Our results show that stimulation with low-frequency current of the sacral dermatomes may offer therapeutic benefits for a subject of patients with ISTC.

  16. The effect of surface electrical stimulation on swallowing in dysphagic Parkinson patients.

    Science.gov (United States)

    Baijens, Laura W J; Speyer, Renée; Passos, Valeria Lima; Pilz, Walmari; Roodenburg, Nel; Clavé, Père

    2012-12-01

    Surface electrical stimulation has been applied on a large scale to treat oropharyngeal dysphagia. Patients suffering from oropharyngeal dysphagia in the presence of Parkinson's disease have been treated with surface electrical stimulation. Because of controversial reports on this treatment, a pilot study was set up. This study describes the effects of a single session of surface electrical stimulation using different electrode positions in ten patients with idiopathic Parkinson's disease (median Hoehn and Yahr score: II) and oropharyngeal dysphagia compared to ten age- and gender-matched healthy control subjects during videofluoroscopy of swallowing. Three different electrode positions were applied in random order per subject. For each electrode position, the electrical current was respectively turned "on" and "off" in random order. Temporal, spatial, and visuoperceptual variables were scored by experienced raters who were blinded to the group, electrode position, and status (on/off) of the electrical current. Interrater and interrater reliabilities were calculated. Only a few significant effects of a single session of surface electrical stimulation using different electrode positions in dysphagic Parkinson patients could be observed in this study. Furthermore, significant results for temporal and spatial variables were found regardless of the status of the electrical current in both groups suggesting placebo effects. Following adjustment for electrical current status as well as electrode positions (both not significant, P > 0.05) in the statistical model, significant group differences between Parkinson patients and healthy control subjects emerged. Further studies are necessary to evaluate the potential therapeutic effect and mechanism of electrical stimulation in dysphagic patients with Parkinson's disease.

  17. Modification of electrical pain threshold by voluntary breathing-controlled electrical stimulation (BreEStim in healthy subjects.

    Directory of Open Access Journals (Sweden)

    Shengai Li

    Full Text Available BACKGROUND: Pain has a distinct sensory and affective (i.e., unpleasantness component. BreEStim, during which electrical stimulation is delivered during voluntary breathing, has been shown to selectively reduce the affective component of post-amputation phantom pain. The objective was to examine whether BreEStim increases pain threshold such that subjects could have improved tolerance of sensation of painful stimuli. METHODS: Eleven pain-free healthy subjects (7 males, 4 females participated in the study. All subjects received BreEStim (100 stimuli and conventional electrical stimulation (EStim, 100 stimuli to two acupuncture points (Neiguan and Weiguan of the dominant hand in a random order. The two different treatments were provided at least three days apart. Painful, but tolerable electrical stimuli were delivered randomly during EStim, but were triggered by effortful inhalation during BreEStim. Measurements of tactile sensation threshold, electrical sensation and electrical pain thresholds, thermal (cold sensation, warm sensation, cold pain and heat pain thresholds were recorded from the thenar eminence of both hands. These measurements were taken pre-intervention and 10-min post-intervention. RESULTS: There was no difference in the pre-intervention baseline measurement of all thresholds between BreEStim and EStim. The electrical pain threshold significantly increased after BreEStim (27.5±6.7% for the dominant hand and 28.5±10.8% for the non-dominant hand, respectively. The electrical pain threshold significantly decreased after EStim (9.1±2.8% for the dominant hand and 10.2±4.6% for the non-dominant hand, respectively (F[1, 10] = 30.992, p = .00024. There was no statistically significant change in other thresholds after BreEStim and EStim. The intensity of electrical stimuli was progressively increased, but no difference was found between BreEStim and EStim. CONCLUSION: Voluntary breathing controlled electrical stimulation

  18. Increased electrical nerve stimulation threshold of the sciatic nerve in patients with diabetic foot gangrene: a prospective parallel cohort study.

    Science.gov (United States)

    Keyl, Cornelius; Held, Tanja; Albiez, Georg; Schmack, Astrid; Wiesenack, Christoph

    2013-07-01

    Peripheral neuropathy may affect nerve conduction in patients with diabetes mellitus. This study was designed to test the hypothesis that the electrical stimulation threshold for a motor response of the sciatic nerve is increased in patients suffering from diabetic foot gangrene compared to non-diabetic patients. Prospective non-randomised trial with two parallel groups. Two university-affiliated hospitals. Patients scheduled for surgical treatment of diabetic foot gangrene (n = 30) and non-diabetic patients (n = 30) displaying no risk factors for neuropathy undergoing orthopaedic foot or ankle surgery. The minimum current intensity required to elicit a typical motor response (dorsiflexion or eversion of the foot) at a pulse width of 0.1 ms and a stimulation frequency of 1 Hz when the needle tip was positioned under ultrasound control directly adjacent to the peroneal component of the sciatic nerve. The non-diabetic patients were younger [64 (SD 12) vs. 74 (SD 7) years] and predominantly female (23 vs. 8). The geometric mean of the motor stimulation threshold was 0.26 [95% confidence interval (95% CI) 0.24 to 0.28] mA in non-diabetic and 1.9 (95% CI 1.6 to 2.2) mA in diabetic patients. The geometric mean of the electrical stimulation threshold was significantly (P diabetic compared to non-diabetic patients. The electrical stimulation threshold for a motor response of the sciatic nerve is increased by a factor of 7.2 in patients with diabetic foot gangrene, which might hamper nerve identification.

  19. Asymmetric wavefront aberrations and pupillary shapes induced by electrical stimulation of ciliary nerve in cats measured with compact wavefront aberrometer.

    Directory of Open Access Journals (Sweden)

    Suguru Miyagawa

    Full Text Available To investigate the changes in the wavefront aberrations and pupillary shape in response to electrical stimulation of the branches of the ciliary nerves in cats. Seven eyes of seven cats were studied under general anesthesia. Trains of monophasic pulses (current, 0.1 to 1.0 mA; duration, 0.5 ms/phase; frequency, 5 to 40 Hz were applied to the lateral or medial branch of the short ciliary nerve near the posterior pole of the eye. A pair of electrodes was hooked onto one or both branch of the short ciliary nerve. The electrodes were placed about 5 mm from the scleral surface. The wavefront aberrations were recorded continuously for 2 seconds before, 8 seconds during, and for 20 seconds after the electrical stimulation. The pupillary images were simultaneously recorded during the stimulation period. Both the wavefront aberrations and the pupillary images were obtained 10 times/sec with a custom-built wavefront aberrometer. The maximum accommodative amplitude was 1.19 diopters (D produced by electrical stimulation of the short ciliary nerves. The latency of the accommodative changes was very short, and the accommodative level gradually increased up to 4 seconds and reached a plateau. When only one branch of the ciliary nerve was stimulated, the pupil dilated asymmetrically, and the oblique astigmatism and one of the asymmetrical wavefront terms was also altered. Our results showed that the wavefront aberrations and pupillary dilations can be measured simultaneously and serially with a compact wavefront aberrometer. The asymmetric pupil dilation and asymmetric changes of the wavefront aberrations suggest that each branch of the ciliary nerve innervates specific segments of the ciliary muscle and dilator muscle of the pupil.

  20. Electrical stimulation of acupoint combinations against deep venous thrombosis in elderly bedridden patients after major surgery.

    Science.gov (United States)

    Hou, Lili; Chen, Cuiping; Xu, Lei; Yin, Peihao; Peng, Wen

    2013-04-01

    To compare the effects of electrical stimulation of different acupoint combinations among postoperative bedridden elderly patients on hemorheology and deep venous blood flow velocity and investigate the.role of electrical stimulation against deep vein thrombosis (DVT). From November 2010 to October 2011, a total of 160 elderly bedridden patients after major surgery were divided into the conventional care group, invigorating and promoting Qi group, blood-activating and damp-eliminating group, and acupoint-combination stimulation group. Whole blood viscosity, plasma viscosity, D-dimer levels, lower limb skin temperature, lower limb circumference, and flow velocities of the external iliac vein, femoral vein, popliteal vein, and deep calf veins in all patients were documented and compared among the four groups. Whole blood viscosity, plasma viscosity, D-dimer levels, and lower limb circumference were significantly reduced in the blood-activating and damp-eliminating group compared with the conventional care group (P 0.05). Lower limb venous flow velocities were accelerated in the invigorating and promoting Qi group compared with the other groups, excluding the acupoint-combination stimulation group (P bedridden elderly patients were improved after combined electrical stimulation at Yinlingquan (SP 9) and Sanyinjiao (SP 6). Combined electrical stimulation at Zusanli (ST 36) and Taichong (LR 3), on the other hand, accelerated lower limb venous flow.

  1. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ganji, Yasaman [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran (Iran, Islamic Republic of); Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Li, Qian [Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Quabius, Elgar Susanne [Dept. of Otorhinolaryngology, Head and Neck Surgery, University of Kiel, Arnold-Heller-Str. 3, Building 27, D-24105 Kiel (Germany); Institute of Immunology, University of Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel (Germany); Böttner, Martina [Department of Anatomy, University of Kiel, Otto-Hahn-Platz 8, 24118 Kiel (Germany); Selhuber-Unkel, Christine, E-mail: cse@tf.uni-kiel.de [Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Kasra, Mehran [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran (Iran, Islamic Republic of)

    2016-02-01

    Following a myocardial infarction (MI), cardiomyocytes are replaced by scar tissue, which decreases ventricular contractile function. Tissue engineering is a promising approach to regenerate such damaged cardiomyocyte tissue. Engineered cardiac patches can be fabricated by seeding a high density of cardiac cells onto a synthetic or natural porous polymer. In this study, nanocomposite scaffolds made of gold nanotubes/nanowires incorporated into biodegradable castor oil-based polyurethane were employed to make micro-porous scaffolds. H9C2 cardiomyocyte cells were cultured on the scaffolds for one day, and electrical stimulation was applied to improve cell communication and interaction in neighboring pores. Cells on scaffolds were examined by fluorescence microscopy and scanning electron microscopy, revealing that the combination of scaffold design and electrical stimulation significantly increased cell confluency of H9C2 cells on the scaffolds. Furthermore, we showed that the gene expression levels of Nkx2.5, atrial natriuretic peptide (ANF) and natriuretic peptide precursor B (NPPB), which are functional genes of the myocardium, were up-regulated by the incorporation of gold nanotubes/nanowires into the polyurethane scaffolds, in particular after electrical stimulation. - Highlights: • Biodegradable polyurethane/gold nanocomposites for cardiomyocyte adhesion are proposed. • The nanocomposite scaffolds are porous and electrical stimulation enhances cell adhesion. • Expression levels of functional myocardium genes were upregulated after electrical stimulation.

  2. One year double blind study of high vs low frequency subcallosal cingulate stimulation for depression.

    Science.gov (United States)

    Eitan, Renana; Fontaine, Denys; Benoît, Michel; Giordana, Caroline; Darmon, Nelly; Israel, Zvi; Linesky, Eduard; Arkadir, David; Ben-Naim, Shiri; Iserlles, Moshe; Bergman, Hagai; Hulse, Natasha; Abdelghani, Mohamed; McGuffin, Peter; Farmer, Anne; DeLea, Peichel; Ashkan, Keyoumars; Lerer, Bernard

    2018-01-01

    Subcallosal Brodmann's Area 25 (Cg25) Deep Brain Stimulation (DBS) is a new promising therapy for treatment resistant major depressive disorder (TR-MDD). While different DBS stimulating parameters may have an impact on the efficacy and safety of the therapy, there is no data to support a protocol for optimal stimulation parameters for depression. Here we present a prospective multi-center double-blind randomized crossed-over 13-month study that evaluated the effects of High (130 Hz) vs Low (20 Hz) frequency Cg25 stimulation for nine patients with TR-MDD. Four out of nine patients achieved response criteria (≥40% reduction of symptom score) compared to mean baseline values at the end of the study. The mean percent change of MADRS score showed a similar improvement in the high and low frequency stimulation groups after 6 months of stimulation (-15.4 ± 21.1 and -14.7 ± 21.1 respectively). The mean effect at the end of the second period (6 months after cross-over) was higher than the first period (first 6 months of stimulation) in all patients (-23.4 ± 19.9 (n = 6 periods) and -13.0 ± 22 (n = 9 periods) respectively). At the end of the second period, the mean percent change of the MADRS scores improved more in the high than low frequency groups (-31.3 ± 19.3 (n = 4 patients) and -7.7 ± 10.9 (n = 2 patients) respectively). Given the small numbers, detailed statistical analysis is challenging. Nonetheless the results of this study suggest that long term high frequency stimulation might confer the best results. Larger scale, randomized double blind trials are needed in order to evaluate the most effective stimulation parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Electrical stimulation of schwann cells promotes sustained increases in neurite outgrowth.

    Science.gov (United States)

    Koppes, Abigail N; Nordberg, Andrea L; Paolillo, Gina M; Goodsell, Nicole M; Darwish, Haley A; Zhang, Linxia; Thompson, Deanna M

    2014-02-01

    Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite outgrowth and a more pronounced effect was observed if both peripheral glia (Schwann cells) and neurons were co-stimulated. If electrical stimulation is delivered to an injury site, both the neurons and all resident non-neuronal cells [e.g., Schwann cells, endothelial cells, fibroblasts] will be treated and this biophysical stimuli can influence axonal growth directly or indirectly via changes to the resident, non-neuronal cells. In this work, non-neuronal cells were electrically stimulated, and changes in morphology and neuro-supportive cells were evaluated. Schwann cell response (morphology and orientation) was examined after an 8 h stimulation over a range of DC fields (0-200 mV/mm, DC 1 mA), and changes in orientation were observed. Electrically prestimulating Schwann cells (50 mV/mm) promoted 30% more neurite outgrowth relative to co-stimulating both Schwann cells with neurons, suggesting that electrical stimulation modifies Schwann cell phenotype. Conditioned medium from the electrically prestimulated Schwann cells promoted a 20% increase in total neurite outgrowth and was sustained for 72 h poststimulation. An 11-fold increase in nerve growth factor but not brain-derived neurotrophic factor or glial-derived growth factor was found in the electrically prestimulated Schwann cell-conditioned medium. No significant changes in fibroblast or endothelial morphology and neuro-supportive behavior were observed poststimulation. Electrical stimulation is widely used in

  4. Charge and energy minimization in electrical/magnetic stimulation of nervous tissue.

    Science.gov (United States)

    Jezernik, Saso; Sinkjaer, Thomas; Morari, Manfred

    2010-08-01

    In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.

  5. Ex Vivo Assay of Electrical Stimulation to Rat Sciatic Nerves: Cell Behaviors and Growth Factor Expression.

    Science.gov (United States)

    Du, Zhiyong; Bondarenko, Olexandr; Wang, Dingkun; Rouabhia, Mahmoud; Zhang, Ze

    2016-06-01

    Neurite outgrowth and axon regeneration are known to benefit from electrical stimulation. However, how neuritis and their surroundings react to electrical field is difficult to replicate by monolayer cell culture. In this work freshly harvested rat sciatic nerves were cultured and exposed to two types of electrical field, after which time the nerve tissues were immunohistologically stained and the expression of neurotrophic factors and cytokines were evaluated. ELISA assay was used to confirm the production of specific proteins. All cell populations survived the 48 h culture with little necrosis. Electrical stimulation was found to accelerate Wallerian degeneration and help Schwann cells to switch into migratory phenotype. Inductive electrical stimulation was shown to upregulate the secretion of multiple neurotrophic factors. Cellular distribution in nerve tissue was altered upon the application of an electrical field. This work thus presents an ex vivo model to study denervated axon in well controlled electrical field, bridging monolayer cell culture and animal experiment. It also demonstrated the critical role of electrical field distribution in regulating cellular activities. © 2015 Wiley Periodicals, Inc.

  6. Temporal lobe cortical electrical stimulation during the encoding and retrieval phase reduces false memories.

    Directory of Open Access Journals (Sweden)

    Paulo S Boggio

    Full Text Available A recent study found that false memories were reduced by 36% when low frequency repetitive transcranial magnetic stimulation (rTMS was applied to the left anterior temporal lobe after the encoding (study phase. Here we were interested in the consequences on a false memory task of brain stimulation throughout the encoding and retrieval task phases. We used transcranial direct current stimulation (tDCS because it has been shown to be a useful tool to enhance cognition. Specifically, we examined whether tDCS can induce changes in a task assessing false memories. Based on our preliminary results, three conditions of stimulation were chosen: anodal left/cathodal right anterior temporal lobe (ATL stimulation ("bilateral stimulation"; anodal left ATL stimulation (with a large contralateral cathodal electrode--referred as "unilateral stimulation" and sham stimulation. Our results showed that false memories were reduced significantly after the two active conditions (unilateral and bilateral stimulation as compared with sham stimulation. There were no significant changes in veridical memories. Our findings show that false memories are reduced by 73% when anodal tDCS is applied to the anterior temporal lobes throughout the encoding and retrieval stages, suggesting a possible strategy for improving certain aspects of learning.

  7. Electric field stimulation setup for photoemission electron microscopes.

    Science.gov (United States)

    Buzzi, M; Vaz, C A F; Raabe, J; Nolting, F

    2015-08-01

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg(0.66)Nb(0.33))O3-PbTiO3 and La(0.7)Sr(0.3)MnO3/PMN-PT artificial multiferroic nanostructures.

  8. Transcutaneous electrical nerve stimulation (TENS) improves the diabetic cytopathy (DCP) via up-regulation of CGRP and cAMP.

    Science.gov (United States)

    Ding, Liucheng; Song, Tao; Yi, Chaoran; Huang, Yi; Yu, Wen; Ling, Lin; Dai, Yutian; Wei, Zhongqing

    2013-01-01

    The objective of this study was to investigate the effects and mechanism of Transcutaneous Electrical Nerve Stimulation (TENS) on the diabetic cytopathy (DCP) in the diabetic bladder. A total of 45 rats were randomly divided into diabetes mellitus (DM)/TENS group (n=15), DM group (n=15) and control group (n=15). The rats in the DM/TENS and TENS groups were electronically stimulated (stimulating parameters: intensity-31 V, frequency-31 Hz, and duration of stimulation of 15 min) for three weeks. Bladder histology, urodynamics and contractile responses to field stimulation and carbachol were determined. The expression of calcitonin gene-related peptide (CGRP) was analyzed by RT-PCR and Western blotting. The results showed that contractile responses of the DM rats were ameliorated after 3 weeks of TENS. Furthermore, TENS significantly increased bladder wet weight, volume threshold for micturition and reduced PVR, V% and cAMP content of the bladder. The mRNA and protein levels of CGRP in dorsal root ganglion (DRG) in the DM/TENS group were higher than those in the DM group. TENS also significantly up-regulated the cAMP content in the bladder body and base compared with diabetic rats. We conclude that TENS can significantly improve the urine contractility and ameliorate the feeling of bladder fullness in DM rats possibly via up-regulation of cAMP and CGRP in DRG.

  9. Signal processing methods for reducing artifacts in microelectrode brain recordings caused by functional electrical stimulation

    Science.gov (United States)

    Young, D.; Willett, F.; Memberg, W. D.; Murphy, B.; Walter, B.; Sweet, J.; Miller, J.; Hochberg, L. R.; Kirsch, R. F.; Ajiboye, A. B.

    2018-04-01

    Objective. Functional electrical stimulation (FES) is a promising technology for restoring movement to paralyzed limbs. Intracortical brain-computer interfaces (iBCIs) have enabled intuitive control over virtual and robotic movements, and more recently over upper extremity FES neuroprostheses. However, electrical stimulation of muscles creates artifacts in intracortical microelectrode recordings that could degrade iBCI performance. Here, we investigate methods for reducing the cortically recorded artifacts that result from peripheral electrical stimulation. Approach. One participant in the BrainGate2 pilot clinical trial had two intracortical microelectrode arrays placed in the motor cortex, and thirty-six stimulating intramuscular electrodes placed in the muscles of the contralateral limb. We characterized intracortically recorded electrical artifacts during both intramuscular and surface stimulation. We compared the performance of three artifact reduction methods: blanking, common average reference (CAR) and linear regression reference (LRR), which creates channel-specific reference signals, composed of weighted sums of other channels. Main results. Electrical artifacts resulting from surface stimulation were 175  ×  larger than baseline neural recordings (which were 110 µV peak-to-peak), while intramuscular stimulation artifacts were only 4  ×  larger. The artifact waveforms were highly consistent across electrodes within each array. Application of LRR reduced artifact magnitudes to less than 10 µV and largely preserved the original neural feature values used for decoding. Unmitigated stimulation artifacts decreased iBCI decoding performance, but performance was almost completely recovered using LRR, which outperformed CAR and blanking and extracted useful neural information during stimulation artifact periods. Significance. The LRR method was effective at reducing electrical artifacts resulting from both intramuscular and surface FES, and

  10. Differential effects of subcutaneous electrical stimulation (SQS) and transcutaneous electrical nerve stimulation (TENS) in rodent models of chronic neuropathic or inflammatory pain.

    Science.gov (United States)

    Vera-Portocarrero, Louis P; Cordero, Toni; Billstrom, Tina; Swearingen, Kim; Wacnik, Paul W; Johanek, Lisa M

    2013-01-01

    Electrical stimulation has been used for many years for the treatment of pain. Present-day research demonstrates that stimulation targets and parameters impact the induction of specific pain-modulating mechanisms. New targets are increasingly being investigated clinically, but the scientific rationale for a particular target is often not well established. This present study compares the behavioral effects of targeting peripheral axons by electrode placement in the subcutaneous space vs. electrode placement on the surface of the skin in a rodent model. Rodent models of inflammatory and neuropathic pain were used to investigate subcutaneous electrical stimulation (SQS) vs. transcutaneous electrical nerve stimulation (TENS). Electrical parameters and relative location of the leads were held constant under each condition. SQS had cumulative antihypersensitivity effects in both inflammatory and neuropathic pain rodent models, with significant inhibition of mechanical hypersensitivity observed on days 3-4 of treatment. In contrast, reduction of thermal hyperalgesia in the inflammatory model was observed during the first four days of treatment with SQS, and reduction of cold allodynia in the neuropathic pain model was seen only on the first day with SQS. TENS was effective in the inflammation model, and in agreement with previous studies, tolerance developed to the antihypersensitivity effects of TENS. With the exception of a reversal of cold hypersensitivity on day 1 of testing, TENS did not reveal significant analgesic effects in the neuropathic pain rodent model. The results presented show that TENS and SQS have different effects that could point to unique biologic mechanisms underlying the analgesic effect of each therapy. Furthermore, this study is the first to demonstrate in an animal model that SQS attenuates neuropathic and inflammatory-induced pain behaviors. © 2013 Medtronic, Inc.

  11. Electrical stimulation of the primate lateral habenula suppresses saccadic eye movement through a learning mechanism.

    Directory of Open Access Journals (Sweden)

    Masayuki Matsumoto

    Full Text Available The lateral habenula (LHb is a brain structure which represents negative motivational value. Neurons in the LHb are excited by unpleasant events such as reward omission and aversive stimuli, and transmit these signals to midbrain dopamine neurons which are involved in learning and motivation. However, it remains unclear whether these phasic changes in LHb neuronal activity actually influence animal behavior. To answer this question, we artificially activated the LHb by electrical stimulation while monkeys were performing a visually guided saccade task. In one block of trials, saccades to one fixed direction (e.g., right direction were followed by electrical stimulation of the LHb while saccades to the other direction (e.g., left direction were not. The direction-stimulation contingency was reversed in the next block. We found that the post-saccadic stimulation of the LHb increased the latencies of saccades in subsequent trials. Notably, the increase of the latency occurred gradually as the saccade was repeatedly followed by the stimulation, suggesting that the effect of the post-saccadic stimulation was accumulated across trials. LHb stimulation starting before saccades, on the other hand, had no effect on saccade latency. Together with previous studies showing LHb activation by reward omission and aversive stimuli, the present stimulation experiment suggests that LHb activity contributes to learning to suppress actions which lead to unpleasant events.

  12. The role of timing in the induction of neuromodulation in perceptual learning by transcranial electric stimulation.

    Science.gov (United States)

    Pirulli, Cornelia; Fertonani, Anna; Miniussi, Carlo

    2013-07-01

    Transcranial electric stimulation (tES) protocols are able to induce neuromodulation, offering important insights to focus and constrain theories of the relationship between brain and behavior. Previous studies have shown that different types of tES (i.e., direct current stimulation - tDCS, and random noise stimulation - tRNS) induce different facilitatory behavioral effects. However to date is not clear which is the optimal timing to apply tES in relation to the induction of robust facilitatory effects. The goal of this work was to investigate how different types of tES (tDCS and tRNS) can modulate behavioral performance in the healthy adult brain in relation to their timing of application. We applied tES protocols before (offline) or during (online) the execution of a visual perceptual learning (PL) task. PL is a form of implicit memory that is characterized by an improvement in sensory discrimination after repeated exposure to a particular type of stimulus and is considered a manifestation of neural plasticity. Our aim was to understand if the timing of tES is critical for the induction of differential neuromodulatory effects in the primary visual cortex (V1). We applied high-frequency tRNS, anodal tDCS and sham tDCS on V1 before or during the execution of an orientation discrimination task. The experimental design was between subjects and performance was measured in terms of d' values. The ideal timing of application varied depending on the stimulation type. tRNS facilitated task performance only when it was applied during task execution, whereas anodal tDCS induced a larger facilitation if it was applied before task execution. The main result of this study is the finding that the timing of identical tES protocols yields opposite effects on performance. These results provide important guidelines for designing neuromodulation induction protocols and highlight the different optimal timing of the two excitatory techniques. Copyright © 2013 Elsevier Inc. All

  13. Imaging in electrically conductive porous media without frequency encoding.

    Science.gov (United States)

    Lehmann-Horn, J A; Walbrecker, J O

    2012-07-01

    Understanding multi-phase fluid flow and transport processes under various pressure, temperature, and salinity conditions is a key feature in many remote monitoring applications, such as long-term storage of carbon dioxide (CO(2)) or nuclear waste in geological formations. We propose a low-field NMR tomographic method to non-invasively image the water-content distribution in electrically conductive formations in relatively large-scale experiments (∼1 m(3) sample volumes). Operating in the weak magnetic field of Earth entails low Larmor frequencies at which electromagnetic fields can penetrate electrically conductive material. The low signal strengths associated with NMR in Earth's field are enhanced by pre-polarization before signal recording. To localize the origin of the NMR signal in the sample region we do not employ magnetic field gradients, as is done in conventional NMR imaging, because they can be difficult to control in the large sample volumes that we are concerned with, and may be biased by magnetic materials in the sample. Instead, we utilize the spatially dependent inhomogeneity of fields generated by surface coils that are installed around the sample volume. This relatively simple setup makes the instrument inexpensive and mobile (it can be potentially installed in remote locations outside of a laboratory), while allowing spatial resolution of the order of 10 cm. We demonstrate the general feasibility of our approach in a simulated CO(2) injection experiment, where we locate and quantify the drop in water content following gas injection into a water-saturated cylindrical sample of 0.45 m radius and 0.9 m height. Our setup comprises four surface coils and an array consisting of three volume coils surrounding the sample. The proposed tomographic NMR methodology provides a more direct estimate of fluid content and properties than can be achieved with acoustic or electromagnetic methods alone. Therefore, we expect that our proposed method is relevant

  14. Comparison of percutaneous electrical nerve stimulation with transcutaneous electrical nerve stimulation for long-term pain relief in patients with chronic low back pain.

    Science.gov (United States)

    Yokoyama, Masataka; Sun, Xiaohui; Oku, Satoru; Taga, Naoyuki; Sato, Kenji; Mizobuchi, Satoshi; Takahashi, Toru; Morita, Kiyoshi

    2004-06-01

    The long-term effect of percutaneous electrical nerve stimulation (PENS) on chronic low back pain (LBP) is unclear. We evaluated the number of sessions for which PENS should be performed to alleviate chronic LBP and how long analgesia is sustained. Patients underwent treatment on a twice-weekly schedule for 8 wk. Group A (n = 18) received PENS for 8 wk, group B (n = 17) received PENS for the first 4 wk and transcutaneous electrical nerve stimulation (TENS) for the second 4 wk, and group C (n = 18) received TENS for 8 wk. Pain level, degree of physical impairment, and the daily intake of nonsteroidal antiinflammatory drugs (NSAIDs) were assessed before the first treatment, 3 days after Week 2, Week 4, and Week 8 treatments, and at 1 and 2 mo after the sessions. During PENS therapy, the pain level decreased significantly from Week 2 in Groups A and B (P pain level decreased significantly only at Week 8 (P TENS for chronic LBP but must be continued to sustain the analgesic effect. A cumulative analgesic effect was observed in patients with chronic low back pain (LBP) after repeated percutaneous electrical nerve stimulation (PENS), but this effect gradually faded after the treatment was terminated. Results indicate that although PENS is effective for chronic LBP, treatments need to be continued to sustain analgesia.

  15. Direct Electrical Stimulation of the Human Entorhinal Region and Hippocampus Impairs Memory.

    Science.gov (United States)

    Jacobs, Joshua; Miller, Jonathan; Lee, Sang Ah; Coffey, Tom; Watrous, Andrew J; Sperling, Michael R; Sharan, Ashwini; Worrell, Gregory; Berry, Brent; Lega, Bradley; Jobst, Barbara C; Davis, Kathryn; Gross, Robert E; Sheth, Sameer A; Ezzyat, Youssef; Das, Sandhitsu R; Stein, Joel; Gorniak, Richard; Kahana, Michael J; Rizzuto, Daniel S

    2016-12-07

    Deep brain stimulation (DBS) has shown promise for treating a range of brain disorders and neurological conditions. One recent study showed that DBS in the entorhinal region improved the accuracy of human spatial memory. Based on this line of work, we performed a series of experiments to more fully characterize the effects of DBS in the medial temporal lobe on human memory. Neurosurgical patients with implanted electrodes performed spatial and verbal-episodic memory tasks. During the encoding periods of both tasks, subjects received electrical stimulation at 50 Hz. In contrast to earlier work, electrical stimulation impaired memory performance significantly in both spatial and verbal tasks. Stimulation in both the entorhinal region and hippocampus caused decreased memory performance. These findings indicate that the entorhinal region and hippocampus are causally involved in human memory and suggest that refined methods are needed to use DBS in these regions to improve memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The double-resonance enhancement of stimulated low-frequency Raman scattering in silver-capped nanodiamonds

    Science.gov (United States)

    Baranov, A. N.; Butsen, A. V.; Ionin, A. A.; Ivanova, A. K.; Kuchmizhak, A. A.; Kudryashov, S. I.; Kudryavtseva, A. D.; Levchenko, A. O.; Rudenko, A. A.; Saraeva, I. N.; Strokov, M. A.; Tcherniega, N. V.; Zayarny, D. A.

    2017-09-01

    Hybrid plasmonic-dielectric nano- and (sub)microparticles exhibit magnetic and electrical dipolar Mie-resonances, which makes them useful as efficient basic elements in surface-enhanced spectroscopy, non-linear light conversion and nanoscale light control. We report the stimulated low-frequency Raman scattering (SLFRS) of a nanosecond ruby laser radiation (central wavelength λ = 694.3 nm (full-width at half-maximum ≈ 0.015 cm-1), gaussian 1/e-intensity pulsewidth τ ≈ 20 ns, TEM00-mode pulse energy Emax ≈ 0.3 J) in nanodiamond (R ≈ 120 nm) hydrosols, induced via optomechanical coherent excitation of fundamental breathing eigen-modes, and the two-fold enhancement of SLFRS in Ag-decorated nanodiamonds, characterized by hybrid dipolar resonances of electrical (silver) and magnetic (diamond) nature. Hybrid metal-dielectric particles were prepared by means of nanosecond IR-laser ablation of solid silver target in diamond hydrosols with consecutive Ag-capping of diamonds, and were characterized by scanning electron microscopy, UV-vis, photoluminescence and energy-dispersive X-ray spectroscopy. Intensities of the SLFR-scattered components and their size-dependent spectral shifts were measured in the highly sensitive stimulated scattering regime, indicating the high (≈ 30%) SLFRS conversion efficiency and the resonant character of the scattering species.

  17. Muscle reflexes during gait elicited by electrical stimulation of the posterior cruciate ligament in humans

    DEFF Research Database (Denmark)

    Fischer-Rasmussen, T; Krogsgaard, M R; Jensen, D B

    2002-01-01

    over the vastus medialis, rectus femoris, vastus lateralis, biceps femoris caput longum, and semitendinosus muscles. The stimuli consisted of four pulses delivered at 200 Hz; the stimulus amplitude was two to three times the sensory threshold. The electrical stimulation of the PCL inhibited the ongoing......We investigated the influence of electrical stimulation of the posterior cruciate ligament (PCL) on the motoneuron pool of the thigh and calf muscle during gait. The study group comprised eight young men without any history of injury to the knee joints. Multistranded teflon-insulated stainless...... steel wires were inserted into the PCL guided by sonography and in four subjects also into the fat pad of the knee. The PCL was electrically stimulated during gait on a treadmill at heel strike and 100 ms after heel strike. Electromyographic signals were recorded with bipolar surface electrodes placed...

  18. Electrical stimulation treatment for facial palsy after revision pleomorphic adenoma surgery.

    Science.gov (United States)

    Goldie, Simon; Sandeman, Jack; Cole, Richard; Dennis, Simon; Swain, Ian

    2016-04-22

    Surgery for pleomorphic adenoma recurrence presents a significant risk of facial nerve damage that can result in facial weakness effecting patients' ability to communicate, mental health and self-image. We report two case studies that had marked facial weakness after resection of recurrent pleomorphic adenoma and their progress with electrical stimulation. Subjects received electrical stimulation twice daily for 24 weeks during which photographs of expressions, facial measurements and Sunnybrook scores were recorded. Both subjects recovered good facial function demonstrating Sunnybrook scores of 54 and 64 that improved to 88 and 96, respectively. Neither subjects demonstrated adverse effects of treatment. We conclude that electrical stimulation is a safe treatment and may improve facial palsy in patients after resection of recurrent pleomorphic adenoma. Larger studies would be difficult to pursue due to the low incidence of cases. Published by Oxford University Press and JSCR Publishing Ltd. All rights reserved. © The Author 2016.

  19. Low-frequency stimulation of the external globus palladium produces anti-epileptogenic and anti-ictogenic actions in rats.

    Science.gov (United States)

    Cheng, Hui; Kuang, Yi-fang; Liu, Yang; Wang, Yi; Xu, Zheng-hao; Gao, Feng; Zhang, Shi-hong; Ding, Mei-ping; Chen, Zhong

    2015-08-01

    To investigate the anti-epileptic effects of deep brain stimulation targeting the external globus palladium (GPe) in rats. For inducing amygdala kindling and deep brain stimulation, bipolar stainless-steel electrodes were implanted in SD rats into right basolateral amygdala and right GPe, respectively. The effects of deep brain stimulation were evaluated in the amygdala kindling model, maximal electroshock model (MES) and pentylenetetrazole (PTZ) model. Moreover, the background EEGs in the amygdala and GPe were recorded. Low-frequency stimulation (0.1 ms, 1 Hz, 15 min) at the GPe slowed the progression of seizure stages and shortened the after-discharge duration (ADD) during kindling acquisition. Furthermore, low-frequency stimulation significantly decreased the incidence of generalized seizures, suppressed the average stage, and shortened the cumulative ADD and generalized seizure duration in fully kindled rats. In addition, low-frequency stimulation significantly suppressed the average stage of MES-induced seizures and increased the latency to generalized seizures in the PTZ model. High-frequency stimulation (0.1 ms, 130 Hz, 5 min) at the GPe had no anti-epileptic effect and even aggravated epileptogenesis induced by amygdala kindling. EEG analysis showed that low-frequency stimulation at the GPe reversed the increase in delta power, whereas high-frequency stimulation at the GPe had no such effect. Low-frequency stimulation, but not high-frequency stimulation, at the GPe exerts therapeutic effect on temporal lobe epilepsy and tonic-colonic generalized seizures, which may be due to interference with delta rhythms. The results suggest that modulation of GPe activity using low-frequency stimulation or drugs may be a promising epilepsy treatment.

  20. TENS (transcutaneous electrical nerve stimulation) for labour pain.

    Science.gov (United States)

    Francis, Richard

    2012-05-01

    Because TENS is applied inconsistently and not always in line with optimal TENS application theory, this may explain why TENS for labour pain appears to be effective in some individuals and not in others. This article reviews TENS theory, advises upon optimal TENS application for labour pain and discusses some of the limitations of TENS research on labour pain. TENS application for labour pain may include TENS applied to either side of the lower spine, set to 200 mus pulse duration and 100 pulses per second. As pain increases, TENS intensity should be increased and as pain decreases, TENS intensity should be reduced to maintain a strong but pain free intensity of stimulation. This application may particularly reduce back pain during labour.

  1. Cellular processes involved in human epidermal cells exposed to extremely low frequency electric fields.

    Science.gov (United States)

    Collard, J-F; Hinsenkamp, M

    2015-05-01

    We observed on different tissues and organisms a biological response after exposure to pulsed low frequency and low amplitude electric or electromagnetic fields but the precise mechanism of cell response remains unknown. The aim of this publication is to understand, using bioinformatics, the biological relevance of processes involved in the modification of gene expression. The list of genes analyzed was obtained after microarray protocol realized on cultures of human epidermal explants growing on deepidermized human skin exposed to a pulsed low frequency electric field. The directed acyclic graph on a WebGestalt Gene Ontology module shows six categories under the biological process root: "biological regulation", "cellular process", "cell proliferation", "death", "metabolic process" and "response to stimulus". Enriched derived categories are coherent with the type of in vitro culture, the stimulation protocol or with the previous results showing a decrease of cell proliferation and an increase of differentiation. The Kegg module on WebGestalt has highlighted "cell cycle" and "p53 signaling pathway" as significantly involved. The Kegg website brings out interactions between FoxO, MAPK, JNK, p53, p38, PI3K/Akt, Wnt, mTor or NF-KappaB. Some genes expressed by the stimulation are known to have an exclusive function on these pathways. Analyses performed with Pathway Studio linked cell proliferation, cell differentiation, apoptosis, cell cycle, mitosis, cell death etc. with our microarrays results. Medline citation generated by the software and the fold change variation confirms a diminution of the proliferation, activation of the differentiation and a less well-defined role of apoptosis or wound healing. Wnt and DKK functional classes, DKK1, MACF1, ATF3, MME, TXNRD1, and BMP-2 genes proposed in previous publications after a manual analysis are also highlighted with other genes after Pathway Studio automatic procedure. Finally, an analysis conducted on a list of genes

  2. A reliable method for intracranial electrode implantation and chronic electrical stimulation in the mouse brain.

    Science.gov (United States)

    Jeffrey, Melanie; Lang, Min; Gane, Jonathan; Wu, Chiping; Burnham, W McIntyre; Zhang, Liang

    2013-08-06

    Electrical stimulation of brain structures has been widely used in rodent models for kindling or modeling deep brain stimulation used clinically. This requires surgical implantation of intracranial electrodes and subsequent chronic stimulation in individual animals for several weeks. Anchoring screws and dental acrylic have long been used to secure implanted intracranial electrodes in rats. However, such an approach is limited when carried out in mouse models as the thin mouse skull may not be strong enough to accommodate the anchoring screws. We describe here a screw-free, glue-based method for implanting bipolar stimulating electrodes in the mouse brain and validate this method in a mouse model of hippocampal electrical kindling. Male C57 black mice (initial ages of 6-8 months) were used in the present experiments. Bipolar electrodes were implanted bilaterally in the hippocampal CA3 area for electrical stimulation and electroencephalographic recordings. The electrodes were secured onto the skull via glue and dental acrylic but without anchoring screws. A daily stimulation protocol was used to induce electrographic discharges and motor seizures. The locations of implanted electrodes were verified by hippocampal electrographic activities and later histological assessments. Using the glue-based implantation method, we implanted bilateral bipolar electrodes in 25 mice. Electrographic discharges and motor seizures were successfully induced via hippocampal electrical kindling. Importantly, no animal encountered infection in the implanted area or a loss of implanted electrodes after 4-6 months of repetitive stimulation/recording. We suggest that the glue-based, screw-free method is reliable for chronic brain stimulation and high-quality electroencephalographic recordings in mice. The technical aspects described this study may help future studies in mouse models.

  3. Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation

    International Nuclear Information System (INIS)

    Truong, Tien Van; Byun, Doyoung; Lavine, Laura Corley; Emlen, Douglas J; Park, Hoon Cheol; Kim, Min Jun

    2012-01-01

    Neuronal stimulation is an intricate part of understanding insect flight behavior and control insect itself. In this study, we investigated the effects of electrical pulses applied to the brain and basalar muscle of the rhinoceros beetle (Trypoxylus dichotomus). To understand specific neuronal stimulation mechanisms, responses and flight behavior of the beetle, four electrodes were implanted into the two optic lobes, the brain's central complex and the ventral nerve cord in the posterior pronotum. We demonstrated flight initiation, turning and cessation by stimulating the brain. The change undergone by the wing flapping in response to the electrical signal was analyzed from a sequence of images captured by a high-speed camera. Here, we provide evidence to distinguish the important differences between neuronal and muscular flight stimulations in beetles. We found that in the neural potential stimulation, both the hind wing and the elytron were suppressed. Interestingly, the beetle stopped flying whenever a stimulus potential was applied between the pronotum and one side of the optic lobe, or between the ventral nerve cord in the posterior pronotum and the central complex. In-depth experimentation demonstrated the effective of neural stimulation over muscle stimulation for flight control. During electrical stimulation of the optic lobes, the beetle performed unstable flight, resulting in alternating left and right turns. By applying the electrical signal into both the optic lobes and the central complex of the brain, we could precisely control the direction of the beetle flight. This work provides an insight into insect flight behavior for future development of insect-micro air vehicle. (paper)

  4. Wearable Neural Prostheses - Restoration of Sensory-Motor Function by Transcutaneous Electrical Stimulation

    OpenAIRE

    Micera, Silvestro; Keller, Thierry; Lawrence, Marc; Morari, Manfred; Popovic, Dejan B.

    2010-01-01

    In this article, we focus on the least invasive interface: transcutaneous ES (TES), i.e., the use of surface electrodes as an interface between the stimulator and sensory-motor systems. TES is delivered by a burst of short electrical charge pulses applied between pairs of electrodes positioned on the skin. Monophasic or charge-balanced biphasic (symmetric or asymmetric) stimulation pulses can be delivered. The latter ones have the advantage to provide contraction force while minimizing tissue...

  5. Wearable neural prostheses. Restoration of sensory-motor function by transcutaneous electrical stimulation.

    Science.gov (United States)

    Micera, Silvestro; Keller, Thierry; Lawrence, Marc; Morari, Manfred; Popović, Dejan B

    2010-01-01

    In this article, we focus on the least invasive interface: transcutaneous ES (TES), i.e., the use of surface electrodes as an interface between the stimulator and sensory-motor systems. TES is delivered by a burst of short electrical charge pulses applied between pairs of electrodes positioned on the skin. Monophasic or charge-balanced biphasic (symmetric or asymmetric) stimulation pulses can be delivered. The latter ones have the advantage to provide contraction force while minimizing tissue damage.

  6. Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation.

    Science.gov (United States)

    Van Truong, Tien; Byun, Doyoung; Lavine, Laura Corley; Emlen, Douglas J; Park, Hoon Cheol; Kim, Min Jun

    2012-09-01

    Neuronal stimulation is an intricate part of understanding insect flight behavior and control insect itself. In this study, we investigated the effects of electrical pulses applied to the brain and basalar muscle of the rhinoceros beetle (Trypoxylus dichotomus). To understand specific neuronal stimulation mechanisms, responses and flight behavior of the beetle, four electrodes were implanted into the two optic lobes, the brain's central complex and the ventral nerve cord in the posterior pronotum. We demonstrated flight initiation, turning and cessation by stimulating the brain. The change undergone by the wing flapping in response to the electrical signal was analyzed from a sequence of images captured by a high-speed camera. Here, we provide evidence to distinguish the important differences between neuronal and muscular flight stimulations in beetles. We found that in the neural potential stimulation, both the hind wing and the elytron were suppressed. Interestingly, the beetle stopped flying whenever a stimulus potential was applied between the pronotum and one side of the optic lobe, or between the ventral nerve cord in the posterior pronotum and the central complex. In-depth experimentation demonstrated the effective of neural stimulation over muscle stimulation for flight control. During electrical stimulation of the optic lobes, the beetle performed unstable flight, resulting in alternating left and right turns. By applying the electrical signal into both the optic lobes and the central complex of the brain, we could precisely control the direction of the beetle flight. This work provides an insight into insect flight behavior for future development of insect-micro air vehicle.

  7. Modulation of EEG spectral edge frequency during patterned pneumatic oral stimulation in preterm infants

    Science.gov (United States)

    Song, Dongli; Jegatheesan, Priya; Weiss, Sunshine; Govindaswami, Balaji; Wang, Jingyan; Lee, Jaehoon; Oder, Austin; Barlow, Steven M

    2014-01-01

    Background Stimulation of the nervous system plays a central role in brain development and neurodevelopmental outcome. Thalamocortical and corticocortical development is diminished in premature infants and correlated to electroencephalography (EEG) progression. The purpose of this study was to determine the effects of orocutaneous stimulation on the modulation of spectral edge frequency, fc=90% (SEF-90) derived from EEG recordings in preterm infants. Methods Twenty two preterm infants were randomized to experimental and control conditions. Pulsed orocutaneous stimulation was presented during gavage feedings begun at around 32 weeks postmenstrual age (PMA). The SEF-90 was derived from 2-channel EEG recordings. Results Compared to the control condition, the pulsed orocutaneous stimulation produced a significant reorganization of SEF-90 in the left (p = 0.005) and right (p stimulation also produced a significant pattern of short term cortical adaptation and a long term neural adaptation manifest as a 0.5 Hz elevation in SEF-90 after repeated stimulation sessions. Conclusion This is the first study to demonstrate the modulating effects of a servo-controlled oral somatosensory input on the spectral features of EEG activity in preterm infants. PMID:24129553

  8. Electrical stimulation accelerates axonal and functional peripheral nerve regeneration across long gaps.

    Science.gov (United States)

    Haastert-Talini, Kirsten; Schmitte, Ruth; Korte, Nele; Klode, Dorothee; Ratzka, Andreas; Grothe, Claudia

    2011-04-01

    Short-term low-frequency electrical stimulation (ESTIM) of proximal peripheral nerve stumps prior to end-to-end coaptation or tubular bridging of small distances has been reported to increase preferential motor reinnervation and functional motor recovery in animal models and human patients undergoing carpal tunnel release surgery. We investigated the effects of ESTIM on regeneration across rat sciatic nerve gaps, which exceed distances that allow spontaneous regeneration. Three different reconstruction approaches were combined with ESTIM in the experimental groups. Nerve gaps (13 mm) were bridged using (I) nerve autotransplantation, (II) transplantation of differentially filled silicone tubes, or (III) transplantation of tubular grafts containing fibroblast growth factor-2 overexpressing Schwann cells (SCs) for gene therapy. The regeneration outcome was followed for up to 8 weeks, and functionally as well as histomorphometrically analyzed in comparison to non-stimulated control groups. Combining ESTIM with nerve autotransplantation significantly increased the nerve fiber density in the regenerated nerve, and the grade of functional recovery as detected by electrodiagnostic recordings from the gastrocnemius muscle. The combination of ESTIM with transplantation of naïve SCs increased the regeneration of gap-bridging nerve tissue. Although macroscopic tissue regeneration was not further improved after combining ESTIM with FGF-2(21/23-kD) gene therapy, the latter resulted in a high rate of regenerated nerves that functionally reconnected to the target muscle. Based on our results, brief ESTIM shows high potential to accelerate axonal as well as functional (motor and sensory) outcomes in the clinical setting of peripheral nerve gap reconstruction in human patients.

  9. Effects of electrical stimulation on House-Brackmann scores in early Bell's palsy.

    Science.gov (United States)

    Alakram, Prisha; Puckree, Threethambal

    2010-04-22

    ABSTRACT Limited evidence may support the application of electrical stimulation in the subacute and chronic stages of facial palsy, yet some physiotherapists in South Africa have been applying this modality in the acute stage in the absence of published evidence of clinical efficacy. This preliminary study's aim was to determine the safety and potential efficacy of applying electrical stimulation to the facial muscles during the early phase of Bells palsy. A pretest posttest control vs. experimental groups design composed of 16 patients with Bell's palsy of less than 30 days' duration. Adult patients with clinical diagnosis of Bell's palsy were systematically (every second patient) allocated to the control and experimental groups. Each group (n = 8) was pretested and posttested using the House-Brackmann index. Both groups were treated with heat, massage, exercises, and a home program. The experimental group also received electrical stimulation. The House-Brackmann Scale of the control group improved between 17% and 50% with a mean of 30%. The scores of the experimental group ranged between 17% and 75% with a mean of 37%. The difference between the groups was not statistically significant (two-tailed p = 0.36). Electrical stimulation as used in this study during the acute phase of Bell's palsy is safe but may not have added value over spontaneous recovery and multimodal physiotherapy. A larger sample size or longer stimulation time or both should be investigated.

  10. Rats with decreased brain cholecystokinin levels show increased responsiveness to peripheral electrical stimulation-induced analgesia.

    Science.gov (United States)

    Zhang, L X; Li, X L; Wang, L; Han, J S

    1997-01-16

    Using the P77PMC strain of rat, which is genetically prone to audiogenic seizures, and also has decreased levels of cholecystokinin (CCK), we examined the analgesic response to peripheral electrical stimulation, which is, in part, opiate-mediated. A number of studies have suggested that CCK may function as an antagonist to endogenous opiate effects. Therefore, we hypothesized that the P77PMC animals would show an enhanced analgesic response based on their decreased CCK levels producing a diminished endogenous opiate antagonism. We found that the analgesic effect on tail flick latency produced by 100 Hz peripheral electrical stimulation was more potent and longer lasting in P77PMC rats than in control rats. Moreover, the potency of the stimulation-produced analgesia correlated with the vulnerability to audiogenic seizures in these rats. We were able to block the peripheral electrical stimulation-induced analgesia (PSIA) using a cholecystokinin octapeptide (CCK-8) administered parenterally. Radioimmunoassay showed that the content of CCK-8 in cerebral cortex, hippocampus and periaqueductal gray was much lower in P77PMC rat than in controls. These results suggest that low CCK-8 content in the central nervous system of the P77PMC rats may be related to the high analgesic response to peripheral electrical stimulation, and further support the notion that CCK may be endogenous opiate antagonist.

  11. Electrical Stimulation of the Ventral Tegmental Area Induces Reanimation from General Anesthesia

    Science.gov (United States)

    Solt, Ken; Van Dort, Christa J.; Chemali, Jessica J.; Taylor, Norman E.; Kenny, Jonathan D.; Brown, Emery N.

    2014-01-01

    BACKGROUND Methylphenidate or a D1 dopamine receptor agonist induce reanimation (active emergence) from general anesthesia. We tested whether electrical stimulation of dopaminergic nuclei also induces reanimation from general anesthesia. METHODS In adult rats, a bipolar insulated stainless steel electrode was placed in the ventral tegmental area (VTA, n = 5) or substantia nigra (SN, n = 5). After a minimum 7-day recovery period, the isoflurane dose sufficient to maintain loss of righting was established. Electrical stimulation was initiated and increased in intensity every 3 min to a maximum of 120μA. If stimulation restored the righting reflex, an additional experiment was performed at least 3 days later during continuous propofol anesthesia. Histological analysis was conducted to identify the location of the electrode tip. In separate experiments, stimulation was performed in the prone position during general anesthesia with isoflurane or propofol, and the electroencephalogram was recorded. RESULTS To maintain loss of righting, the dose of isoflurane was 0.9% ± 0.1 vol%, and the target plasma dose of propofol was 4.4 μg/ml ± 1.1 μg/ml (mean ± SD). In all rats with VTA electrodes, electrical stimulation induced a graded arousal response including righting that increased with current intensity. VTA stimulation induced a shift in electroencephalogram peak power from δ (anesthesia with isoflurane or propofol. These results are consistent with the hypothesis that dopamine release by VTA, but not SN, neurons induces reanimation from general anesthesia. PMID:24398816

  12. Local electric stimulation causes conducted calcium response in rat interlobular arteries

    DEFF Research Database (Denmark)

    Salomonsson, Max; Gustafsson, Finn; Andreasen, Ditte

    2002-01-01

    microscope. Local electrical pulse stimulation (200 ms, 100 V) was administered by means of an NaCl-filled microelectrode (0.7-1 M(Omega)) juxtaposed to one end of the vessel. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured with an image system at a site approximately 500 microm from......The purpose of the present study was to investigate the conducted Ca(2+) response to local electrical stimulation in isolated rat interlobular arteries. Interlobular arteries were isolated from young Sprague-Dawley rats, loaded with fura 2, and attached to pipettes in a chamber on an inverted...

  13. Emerging subspecialties in neurology: deep brain stimulation and electrical neuro-network modulation.

    Science.gov (United States)

    Hassan, Anhar; Okun, Michael S

    2013-01-29

    Deep brain stimulation (DBS) is a surgical therapy that involves the delivery of an electrical current to one or more brain targets. This technology has been rapidly expanding to address movement, neuropsychiatric, and other disorders. The evolution of DBS has created a niche for neurologists, both in the operating room and in the clinic. Since DBS is not always deep, not always brain, and not always simply stimulation, a more accurate term for this field may be electrical neuro-network modulation (ENM). Fellowships will likely in future years evolve their scope to include other technologies, and other nervous system regions beyond typical DBS therapy.

  14. Synchronization of FitzHugh-Nagumo neurons in external electrical stimulation via nonlinear control

    International Nuclear Information System (INIS)

    Wang Jiang; Zhang Ting; Deng Bin

    2007-01-01

    Synchronization of FitzHugh-Nagumo neural system under external electrical stimulation via the nonlinear control is investigated in this paper. Firstly, the different dynamical behavior of the nonlinear cable model based on the FitzHugh-Nagumo model responding to various external electrical stimulations is studied. Next, using the result of the analysis, a nonlinear feedback linearization control scheme and an adaptive control strategy are designed to synchronization two neurons. Computer simulations are provided to verify the efficiency of the designed synchronization schemes

  15. Synchronizing two coupled chaotic neurons in external electrical stimulation using backstepping control

    International Nuclear Information System (INIS)

    Deng Bin; Wang Jiang; Fei Xiangyang

    2006-01-01

    Backstepping design is a recursive procedure that combines the choice of a Lyapunov function with the design of a controller. In this paper, the backstepping control is used to synchronize two coupled chaotic neurons in external electrical stimulation. The coupled model is based on the nonlinear cable model and only one state variable can be controlled in practice. The backstepping design needs only one controller to synchronize two chaotic systems and it can be applied to a variety of chaotic systems whether they contain external excitation or not, so the two coupled chaotic neurons in external electrical stimulation can be synchronized perfectly by backstepping control. Numerical simulations demonstrate the effectiveness of this design

  16. An investigation into the induced electric fields from transcranial magnetic stimulation

    Science.gov (United States)

    Hadimani, Ravi; Lee, Erik; Duffy, Walter; Waris, Mohammed; Siddiqui, Waquar; Islam, Faisal; Rajamani, Mahesh; Nathan, Ryan; Jiles, David; David C Jiles Team; Walter Duffy Collaboration

    Transcranial magnetic stimulation (TMS) is a promising tool for noninvasive brain stimulation that has been approved by the FDA for the treatment of major depressive disorder. To stimulate the brain, TMS uses large, transient pulses of magnetic field to induce an electric field in the head. This transient magnetic field is large enough to cause the depolarization of cortical neurons and initiate a synaptic signal transmission. For this study, 50 unique head models were created from MRI images. Previous simulation studies have primarily used a single head model, and thus give a limited image of the induced electric field from TMS. This study uses finite element analysis simulations on 50 unique, heterogeneous head models to better investigate the relationship between TMS and the electric field induced in brain tissues. Results showed a significant variation in the strength of the induced electric field in the brain, which can be reasonably predicted by the distance from the TMS coil to the stimulated brain. Further, it was seen that some models had high electric field intensities in over five times as much brain volume as other models.

  17. Electrical stimulation enhances cell migration and integrative repair in the meniscus

    Science.gov (United States)

    Yuan, Xiaoning; Arkonac, Derya E.; Chao, Pen-hsiu Grace; Vunjak-Novakovic, Gordana

    2014-01-01

    Electrical signals have been applied towards the repair of articular tissues in the laboratory and clinical settings for over seventy years. We focus on healing of the meniscus, a tissue essential to knee function with limited innate repair potential, which has been largely unexplored in the context of electrical stimulation. Here we demonstrate for the first time that electrical stimulation enhances meniscus cell migration and integrative tissue repair. We optimize pulsatile direct current electrical stimulation parameters on cells at the micro-scale, and apply these to healing of full-thickness defects in explants at the macro-scale. We report increased expression of the adenosine A2b receptor in meniscus cells after stimulation at the micro- and macro-scale, and propose a role for A2bR in meniscus electrotransduction. Taken together, these findings advance our understanding of the effects of electrical signals and their mechanisms of action, and contribute to developing electrotherapeutic strategies for meniscus repair. PMID:24419206

  18. Effectiveness of transcutaneous electrical nerve stimulation on saliva production in post-radiated oral cancer patients

    Directory of Open Access Journals (Sweden)

    Sakshi Ojha

    2016-01-01

    Full Text Available Aims and Objectives: To determine the effectiveness of transcutaneous electrical nerve stimulation (TENS in stimulating salivary flow in post-radiated oral cancer patients, and to compare the salivary flow rate between unstimulated saliva and saliva stimulated with TENS in post-radiated oral cancer patients. Materials and Methods: In 30 patients who underwent radiotherapy for oral cancer, unstimulated saliva was collected every minute for 5 min in a graduated test tube. The TENS unit was activated and stimulated saliva was collected for 5 min in a separate graduated test tube, and the flow rate was compared with the unstimulated salivary flow rate. Results: A statistically significant improvement was seen in saliva production during stimulation (P < 0.001. In addition, statistically significant increase in TENS stimulated saliva was observed in patients aged ≥50 years compared to that in patients aged <50 years (P < 0.05. There was no significant difference in salivary flow rate between the two genders in both stimulated and unstimulated conditions, however, statistically significant increase in salivary flow rate was observed in males under stimulated condition (P < 0.01. Conclusion: TENS was highly effective in stimulating the whole salivary flow rate in post-radiated oral cancer patients. It is an effective supportive treatment modality in xerostomia patients caused by radiotherapy in oral cancer patients.

  19. Chapter 24: Electrical stimulation for improving nerve regeneration: where do we stand?

    Science.gov (United States)

    Gordon, Tessa; Sulaiman, Olewale A R; Ladak, Adil

    2009-01-01

    While injured neurons regenerate their axons in the peripheral nervous system, it is well recognized that functional recovery is frequently poor. Animal experiments in which injured motoneurons remain without peripheral targets (chronic axotomy) and Schwann cells in distal nerve stumps remain without innervation (chronic denervation) revealed that it is the duration of chronic axotomy and Schwann cell denervation that accounts for this poor functional recovery and not irreversible muscle atrophy that has been so commonly thought to be the reason. More recently, we demonstrated that axon outgrowth across lesion sites is a major contributing factor to the long delays incurred between the injury and the reinnervation of denervated targets. In the rat, a period of 1 month transpires before all motoneurons regenerate their axons across a lesion site. We have developed a technique of 1 h low-frequency electrical stimulation (ES) of the proximal nerve stump just after surgical repair of a transected peripheral nerve that greatly accelerates axon outgrowth. This technique has been applied in patients after carpal tunnel release surgery where the ES promoted the regeneration of all median nerves to reinnervate thenar muscles within 6-8 months, which contrasted with failure of any injured nerves to reinnervate muscles in the same time frame without ES. These findings are very promising such that the ES method could become a clinically viable tool for accelerating axon regeneration and muscle reinnervation.

  20. Electrical stimulation therapy for dysphagia: a follow-up survey of USA dysphagia practitioners.

    Science.gov (United States)

    Barikroo, Ali; Carnaby, Giselle; Crary, Michael

    2017-12-01

    The aim of this study was to compare current application, practice patterns, clinical outcomes, and professional attitudes of dysphagia practitioners regarding electrical stimulation (e-stim) therapy with similar data obtained in 2005. A web-based survey was posted on the American Speech-Language-Hearing Association Special Interest Group 13 webpage for 1 month. A total of 271 survey responses were analyzed and descriptively compared with the archived responses from the 2005 survey. Results suggested that e-stim application increased by 47% among dysphagia practitioners over the last 10 years. The frequency of weekly e-stim therapy sessions decreased while the reported total number of treatment sessions increased between the two surveys. Advancement in oral diet was the most commonly reported improvement in both surveys. Overall, reported satisfaction levels of clinicians and patients regarding e-stim therapy decreased. Still, the majority of e-stim practitioners continue to recommend this treatment modality to other dysphagia practitioners. Results from the novel items in the current survey suggested that motor level e-stim (e.g. higher amplitude) is most commonly used during dysphagia therapy with no preferred electrode placement. Furthermore, the majority of clinicians reported high levels of self-confidence regarding their ability to perform e-stim. The results of this survey highlight ongoing changes in application, practice patterns, clinical outcomes, and professional attitudes associated with e-stim therapy among dysphagia practitioners.

  1. Effects of Electrical Stimulation on Meat Quality of Lamb and Goat Meat

    Directory of Open Access Journals (Sweden)

    Omer Cetin

    2012-01-01

    Full Text Available Effect of various voltage of electrical stimulation (ES on meat quality of lamb and goat was investigated by using a total of 36 animals at 3–5 years old. Constant 50 Hz frequency and 50, 100, and 250 V, 90 sec of ES were administered to 1/2 carcasses and were examined according their textural, physicochemical, and sensorial characteristics. ES decreased the pH values of lamb and goat meat, and accelerated the rigor mortis (<0.05. Additionally, ES enhanced the water activity, water-holding capacity, and drip loss of both animals. Shear force varied between lamb and goat meat, and tenderness was improved depending on voltage range used (<0.001. ES caused difference in instrumental colour (CIE ∗, ∗, ∗ values of lamb and goat meat compared with the control groups (<0.05 during aging period at 4°C. Sensorial characteristics were also improved with various levels of ES treatments. In conclusion, ES had positive effects on meat quality of lamb and goat, in contrast to undesirable consumer preferences.

  2. Video game-based neuromuscular electrical stimulation system for calf muscle training: a case study.

    Science.gov (United States)

    Sayenko, D G; Masani, K; Milosevic, M; Robinson, M F; Vette, A H; McConville, K M V; Popovic, M R

    2011-03-01

    A video game-based training system was designed to integrate neuromuscular electrical stimulation (NMES) and visual feedback as a means to improve strength and endurance of the lower leg muscles, and to increase the range of motion (ROM) of the ankle joints. The system allowed the participants to perform isotonic concentric and isometric contractions in both the plantarflexors and dorsiflexors using NMES. In the proposed system, the contractions were performed against exterior resistance, and the angle of the ankle joints was used as the control input to the video game. To test the practicality of the proposed system, an individual with chronic complete spinal cord injury (SCI) participated in the study. The system provided a progressive overload for the trained muscles, which is a prerequisite for successful muscle training. The participant indicated that he enjoyed the video game-based training and that he would like to continue the treatment. The results show that the training resulted in a significant improvement of the strength and endurance of the paralyzed lower leg muscles, and in an increased ROM of the ankle joints. Video game-based training programs might be effective in motivating participants to train more frequently and adhere to otherwise tedious training protocols. It is expected that such training will not only improve the properties of their muscles but also decrease the severity and frequency of secondary complications that result from SCI. Copyright © 2010 IPEM. All rights reserved.

  3. Neural correlates of mirth and laughter: a direct electrical cortical stimulation study.

    Science.gov (United States)

    Yamao, Yukihiro; Matsumoto, Riki; Kunieda, Takeharu; Shibata, Sumiya; Shimotake, Akihiro; Kikuchi, Takayuki; Satow, Takeshi; Mikuni, Nobuhiro; Fukuyama, Hidenao; Ikeda, Akio; Miyamoto, Susumu

    2015-05-01

    Laughter consists of both motor and emotional aspects. The emotional component, known as mirth, is usually associated with the motor component, namely, bilateral facial movements. Previous electrical cortical stimulation (ES) studies revealed that mirth was associated with the basal temporal cortex, inferior frontal cortex, and medial frontal cortex. Functional neuroimaging implicated a role for the left inferior frontal and bilateral temporal cortices in humor processing. However, the neural origins and pathways linking mirth with facial movements are still unclear. We hereby report two cases with temporal lobe epilepsy undergoing subdural electrode implantation in whom ES of the left basal temporal cortex elicited both mirth and laughter-related facial muscle movements. In one case with normal hippocampus, high-frequency ES consistently caused contralateral facial movement, followed by bilateral facial movements with mirth. In contrast, in another case with hippocampal sclerosis (HS), ES elicited only mirth at low intensity and short duration, and eventually laughter at higher intensity and longer duration. In both cases, the basal temporal language area (BTLA) was located within or adjacent to the cortex where ES produced mirth. In conclusion, the present direct ES study demonstrated that 1) mirth had a close relationship with language function, 2) intact mesial temporal structures were actively engaged in the beginning of facial movements associated with mirth, and 3) these emotion-related facial movements had contralateral dominance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The threshold of cortical electrical stimulation for mapping sensory and motor functional areas.

    Science.gov (United States)

    Guojun, Zhang; Duanyu, Ni; Fu, Paul; Lixin, Cai; Tao, Yu; Wei, Du; Liang, Qiao; Zhiwei, Ren

    2014-02-01

    This study aimed to investigate the threshold of cortical electrical stimulation (CES) for functional brain mapping during surgery for the treatment of rolandic epilepsy. A total of 21 patients with rolandic epilepsy who underwent surgical treatment at the Beijing Institute of Functional Neurosurgery between October 2006 and March 2008 were included in this study. Their clinical data were retrospectively collected and analyzed. The thresholds of CES for motor response, sensory response, and after discharge production along with other threshold-related factors were investigated. The thresholds (mean ± standard deviation) for motor response, sensory response, and after discharge production were 3.48 ± 0.87, 3.86 ± 1.31, and 4.84 ± 1.38 mA, respectively. The threshold for after discharge production was significantly higher than those of both the motor and sensory response (both pstimulation frequency of 50 Hz and a pulse width of 0.2 ms, the threshold of sensory and motor responses were similar, and the threshold of after discharge production was higher than that of sensory and motor response. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Fatigue-induced changes in group IV muscle afferent activity: differences between high- and low-frequency electrically induced fatigues.

    Science.gov (United States)

    Darques, J L; Jammes, Y

    1997-03-07

    Recordings of group IV afferent activity of tibialis anterior muscle were performed in paralysed rabbits during runs of electrically induced fatigue produced by direct muscle stimulation at a high (100 Hz, high-frequency fatigue HFF) or a low rate (10 Hz, low-frequency fatigue LFF). In addition to analysis of afferent nerve action potentials, muscle force and compound muscle action potentials (M waves) elicited by direct muscle stimulation with single shocks were recorded. Changes in M wave configuration were used as an index of the altered propagation of membrane potentials and the associated efflux of potassium from muscle fibers. The data show that increased group IV afferent activity occurred during LFF as well as HFF trials and developed parallel with force failure. Enhanced afferent activity was significantly higher during LFF (maximal delta f(impulses) = 249 +/- 35%) than HFF (147 +/- 45%). No correlation was obtained between the responses of group IV afferents to LFF or to pressure exerted on tibialis anterior muscle. On the other hand, decreased M wave amplitude was minimal with LFF while it was pronounced with HFF. Close correlations were found between fatigue-induced activation of group IV afferents and decreases in force or M wave amplitude, but their strength was significantly higher with LFF compared to HFF. Thus, electrically induced fatigue activates group IV muscle afferents with a prominent effect of low-frequency stimulation. The mechanism of muscle afferent stimulation does not seem to be due to the sole increase in extracellular potassium concentration, but also by the efflux of muscle metabolites, present during fatiguing contractions at low rate of stimulation.

  6. Optical parametric amplification and oscillation assisted by low-frequency stimulated emission.

    Science.gov (United States)

    Longhi, Stefano

    2016-04-15

    Optical parametric amplification and oscillation provide powerful tools for coherent light generation in spectral regions inaccessible to lasers. Parametric gain is based on a frequency down-conversion process and, thus, it cannot be realized for signal waves at a frequency ω3 higher than the frequency of the pump wave ω1. In this Letter, we suggest a route toward the realization of upconversion optical parametric amplification and oscillation, i.e., amplification of the signal wave by a coherent pump wave of lower frequency, assisted by stimulated emission of the auxiliary idler wave. When the signal field is resonated in an optical cavity, parametric oscillation is obtained. Design parameters for the observation of upconversion optical parametric oscillation at λ3=465 nm are given for a periodically poled lithium-niobate (PPLN) crystal doped with Nd(3+) ions.

  7. Spiking irregularity and frequency modulate the behavioral report of single-neuron stimulation.

    Science.gov (United States)

    Doron, Guy; von Heimendahl, Moritz; Schlattmann, Peter; Houweling, Arthur R; Brecht, Michael

    2014-02-05

    The action potential activity of single cortical neurons can evoke measurable sensory effects, but it is not known how spiking parameters and neuronal subtypes affect the evoked sensations. Here, we examined the effects of spike train irregularity, spike frequency, and spike number on the detectability of single-neuron stimulation in rat somatosensory cortex. For regular-spiking, putative excitatory neurons, detectability increased with spike train irregularity and decreasing spike frequencies but was not affected by spike number. Stimulation of single, fast-spiking, putative inhibitory neurons led to a larger sensory effect compared to regular-spiking neurons, and the effect size depended only on spike irregularity. An ideal-observer analysis suggests that, under our experimental conditions, rats were using integration windows of a few hundred milliseconds or more. Our data imply that the behaving animal is sensitive to single neurons' spikes and even to their temporal patterning. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Contributions to muscle force and EMG by combined neural excitation and electrical stimulation

    Science.gov (United States)

    Crago, Patrick E.; Makowski, Nathaniel S.; Cole, Natalie M.

    2014-10-01

    Objective. Stimulation of muscle for research or clinical interventions is often superimposed on ongoing physiological activity without a quantitative understanding of the impact of the stimulation on the net muscle activity and the physiological response. Experimental studies show that total force during stimulation is less than the sum of the isolated voluntary and stimulated forces, but the occlusion mechanism is not understood. Approach. We develop a model of efferent motor activity elicited by superimposing stimulation during a physiologically activated contraction. The model combines action potential interactions due to collision block, source resetting, and refractory periods with previously published models of physiological motor unit recruitment, rate modulation, force production, and EMG generation in human first dorsal interosseous muscle to investigate the mechanisms and effectiveness of stimulation on the net muscle force and EMG. Main results. Stimulation during a physiological contraction demonstrates partial occlusion of force and the neural component of the EMG, due to action potential interactions in motor units activated by both sources. Depending on neural and stimulation firing rates as well as on force-frequency properties, individual motor unit forces can be greater, smaller, or unchanged by the stimulation. In contrast, voluntary motor unit EMG potentials in simultaneously stimulated motor units show progressive occlusion with increasing stimulus rate. The simulations predict that occlusion would be decreased by a reverse stimulation recruitment order. Significance. The results are consistent with and provide a mechanistic interpretation of previously published experimental evidence of force occlusion. The models also predict two effects that have not been reported previously—voluntary EMG occlusion and the advantages of a proximal stimulation site. This study provides a basis for the rational design of both future experiments and clinical

  9. Effect of low-frequency deep brain stimulation on sensory thresholds in Parkinson's disease.

    Science.gov (United States)

    Belasen, Abigail; Rizvi, Khizer; Gee, Lucy E; Yeung, Philip; Prusik, Julia; Ramirez-Zamora, Adolfo; Hanspal, Era; Paiva, Priscilla; Durphy, Jennifer; Argoff, Charles E; Pilitsis, Julie G

    2017-02-01

    OBJECTIVE Chronic pain is a major distressing symptom of Parkinson's disease (PD) that is often undertreated. Subthalamic nucleus (STN) deep brain stimulation (DBS) delivers high-frequency stimulation (HFS) to patients with PD and has been effective in pain relief in a subset of these patients. However, up to 74% of patients develop new pain concerns while receiving STN DBS. Here the authors explore whether altering the frequency of STN DBS changes pain perception as measured through quantitative sensory testing (QST). METHODS Using QST, the authors measured thermal and mechanical detection and pain thresholds in 19 patients undergoing DBS via HFS, low-frequency stimulation (LFS), and off conditions in a randomized order. Testing was performed in the region of the body with the most pain and in the lower back in patients without chronic pain. RESULTS In the patients with chronic pain, LFS significantly reduced heat detection thresholds as compared with thresholds following HFS (p = 0.029) and in the off state (p = 0.010). Moreover, LFS resulted in increased detection thresholds for mechanical pressure (p = 0.020) and vibration (p = 0.040) compared with these thresholds following HFS. Neither LFS nor HFS led to changes in other mechanical thresholds. In patients without chronic pain, LFS significantly increased mechanical pain thresholds in response to the 40-g pinprick compared with thresholds following HFS (p = 0.032). CONCLUSIONS Recent literature has suggested that STN LFS can be useful in treating nonmotor symptoms of PD. Here the authors demonstrated that LFS modulates thermal and mechanical detection to a greater extent than HFS. Low-frequency stimulation is an innovative means of modulating chronic pain in PD patients receiving STN DBS. The authors suggest that STN LFS may be a future option to consider when treating Parkinson's patients in whom pain remains the predominant complaint.

  10. Bilateral Changes of Spontaneous Activity Within the Central Auditory Pathway Upon Chronic Unilateral Intracochlear Electrical Stimulation.

    Science.gov (United States)

    Basta, Dietmar; Götze, Romy; Gröschel, Moritz; Jansen, Sebastian; Janke, Oliver; Tzschentke, Barbara; Boyle, Patrick; Ernst, Arne

    2015-12-01

    In recent years, cochlear implants have been applied successfully for the treatment of unilateral hearing loss with quite surprising benefit. One reason for this successful treatment, including the relief from tinnitus, could be the normalization of spontaneous activity in the central auditory pathway because of the electrical stimulation. The present study, therefore, investigated at a cellular level, the effect of a unilateral chronic intracochlear stimulation on key structures of the central auditory pathway. Normal-hearing guinea pigs were mechanically single-sided deafened through a standard HiFocus1j electrode array (on a HiRes 90k cochlear implant) being inserted into the first turn of the cochlea. Four to five electrode contacts could be used for the stimulation. Six weeks after surgery, the speech processor (Auria) was fitted, based on tNRI values and mounted on the animal's back. The two experimental groups were stimulated 16 hours per day for 90 days, using a HiRes strategy based on different stimulation rates (low rate (275 pps/ch), high rate (5000 pps/ch)). The results were compared with those of unilateral deafened controls (implanted but not stimulated), as well as between the treatment groups. All animals experienced a standardized free field auditory environment. The low-rate group showed a significantly lower average spontaneous activity bilaterally in the dorsal cochlear nucleus and the medial geniculate body than the controls. However, there was no difference in the inferior colliculus and the primary auditory cortex. Spontaneous activity of the high-rate group was also reduced bilaterally in the dorsal cochlear nucleus and in the primary auditory cortex. No differences could be observed between the high-rate group and the controls in the contra-lateral inferior colliculus and medial geniculate body. The high-rate group showed bilaterally a higher activity in the CN and the MGB compared with the low-rate group, whereas in the IC and in the

  11. Fast multigrid-based computation of the induced electric field for transcranial magnetic stimulation

    Science.gov (United States)

    Laakso, Ilkka; Hirata, Akimasa

    2012-12-01

    In transcranial magnetic stimulation (TMS), the distribution of the induced electric field, and the affected brain areas, depends on the position of the stimulation coil and the individual geometry of the head and brain. The distribution of the induced electric field in realistic anatomies can be modelled using computational methods. However, existing computational methods for accurately determining the induced electric field in realistic anatomical models have suffered from long computation times, typically in the range of tens of minutes or longer. This paper presents a matrix-free implementation of the finite-element method with a geometric multigrid method that can potentially reduce the computation time to several seconds or less even when using an ordinary computer. The performance of the method is studied by computing the induced electric field in two anatomically realistic models. An idealized two-loop coil is used as the stimulating coil. Multiple computational grid resolutions ranging from 2 to 0.25 mm are used. The results show that, for macroscopic modelling of the electric field in an anatomically realistic model, computational grid resolutions of 1 mm or 2 mm appear to provide good numerical accuracy compared to higher resolutions. The multigrid iteration typically converges in less than ten iterations independent of the grid resolution. Even without parallelization, each iteration takes about 1.0 s or 0.1 s for the 1 and 2 mm resolutions, respectively. This suggests that calculating the electric field with sufficient accuracy in real time is feasible.

  12. Implantable power generation system utilizing muscle contractions excited by electrical stimulation.

    Science.gov (United States)

    Sahara, Genta; Hijikata, Wataru; Tomioka, Kota; Shinshi, Tadahiko

    2016-06-01

    An implantable power generation system driven by muscle contractions for supplying power to active implantable medical devices, such as pacemakers and neurostimulators, is proposed. In this system, a muscle is intentionally contracted by an electrical stimulation in accordance with the demands of the active implantable medical device for electrical power. The proposed system, which comprises a small electromagnetic induction generator, electrodes with an electrical circuit for stimulation and a transmission device to convert the linear motion of the muscle contractions into rotational motion for the magneto rotor, generates electrical energy. In an ex vivo demonstration using the gastrocnemius muscle of a toad, which was 28 mm in length and weighed 1.3 g, the electrical energy generated by the prototype exceeded the energy consumed for electrical stimulation, with the net power being 111 µW. It was demonstrated that the proposed implantable power generation system has the potential to replace implantable batteries for active implantable medical devices. © IMechE 2016.

  13. Transcutaneous Electrical Nerve Stimulation (TENS) and Laryngeal Manual Therapy (LMT): Immediate Effects in Women With Dysphonia.

    Science.gov (United States)

    Conde, Mariana de Cásisa Macedo; Siqueira, Larissa Thaís Donalonso; Vendramini, José Eduardo; Brasolotto, Alcione Ghedini; Guirro, Rinaldo Roberto de Jesus; Silverio, Kelly Cristina Alves

    2018-05-01

    This study aimed to verify the immediate effect of low-frequency transcutaneous electrical nerve stimulation (TENS) and laryngeal manual therapy (LMT) in musculoskeletal pain, voice quality, and self-reported signs in women with dysphonia. Thirty women with behavioral dysphonia were randomly divided into the TENS group and the LMT group. All participants fulfilled the pain survey and had their voices recorded to posterior perceptual and acoustic analysis before and after intervention. The TENS group received a unique low-frequency TENS session (20 minutes). The LMT group received LMT (20 minutes) with soft and superficial massage in the sternocleidomastoid muscle, suprahyoid muscles, and larynx. Afterward, the volunteers reported their voice, larynx, breathing, and articulatory signs. Pre and post data were compared by parametric and nonparametric tests. After TENS, a decrease in pain intensity in the posterior or anterior region of the neck, shoulders, upper or lower back, and masseter was observed. After LMT, a decrease in pain intensity in the neck anterior region, shoulders, lower back, and temporal region was observed. Also, after TENS, there was an improvement in vowel /a/ instability; after LMT, there was a general improvement in voice quality, decrease in tension, and decrease in breathiness in speech. Positive voice and laryngeal signs were reported after TENS, and positive laryngeal signs and articulation were reported after LMT. TENS and LMT may be used in voice treatment of women with behavioral dysphonia, and both may be considered important therapy resources that reduce musculoskeletal pain and cause positive laryngeal signs. Both TENS and LMT are able to partially improve voice quality, but TENS presented better results. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  14. Enhanced Working Memory Binding by Direct Electrical Stimulation of the Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Agustina Birba

    2017-06-01

    Full Text Available Recent works evince the critical role of visual short-term memory (STM binding deficits as a clinical and preclinical marker of Alzheimer’s disease (AD. These studies suggest a potential role of posterior brain regions in both the neurocognitive deficits of Alzheimer’s patients and STM binding in general. Thereupon, we surmised that stimulation of the posterior parietal cortex (PPC might be a successful approach to tackle working memory deficits in this condition, especially at early stages. To date, no causal evidence exists of the role of the parietal cortex in STM binding. A unique approach to assess this issue is afforded by single-subject direct intracranial electrical stimulation of specific brain regions during a relevant cognitive task. Electrical stimulation has been used both for clinical purposes and to causally probe brain mechanisms. Previous evidence of electrical currents spreading through white matter along well defined functional circuits indicates that visual working memory mechanisms are subserved by a specific widely distributed network. Here, we stimulated the parietal cortex of a subject with intracranial electrodes as he performed the visual STM task. We compared the ensuing results to those from a non-stimulated condition and to the performance of a matched control group. In brief, direct stimulation of the parietal cortex induced a selective improvement in STM. These results, together with previous studies, provide very preliminary but promising ground to examine behavioral changes upon parietal stimulation in AD. We discuss our results regarding: (a the usefulness of the task to target prodromal stages of AD; (b the role of a posterior network in STM binding and in AD; and (c the potential opportunity to improve STM binding through brain stimulation.

  15. The Effect of High-Frequency Stimulation on Sensory Thresholds in Chronic Pain Patients.

    Science.gov (United States)

    Youn, Youngwon; Smith, Heather; Morris, Brian; Argoff, Charles; Pilitsis, Julie G

    2015-01-01

    High-frequency stimulation (HFS) has recently gained attention as an alternative to parameters used in traditional spinal cord stimulation (SCS). Because HFS is paresthesia free, the gate theory of pain control as a basis of SCS has been called into question. The mechanism of action of HFS remains unclear. We compare the effects of HFS and traditional SCS on quantitative sensory testing parameters to provide insight into how HFS modulates the nervous system. Using quantitative sensory testing, we measured thermal detection and pain thresholds and mechanical detection and pressure pain thresholds, as well as vibratory detection, in 20 SCS patients off stimulation (OFF), on traditional stimulation (ON) and on HFS in a randomized order. HFS significantly increased the mechanical detection threshold compared to OFF stimulation (p < 0.001) and traditional SCS (p = 0.01). Pressure pain detection and vibratory detection thresholds also significantly increased with HFS compared to ON states (p = 0.04 and p = 0.01, respectively). In addition, HFS significantly decreased 10- and 40-gram pinprick detection compared to OFF states (both p = 0.01). No significant differences between OFF, ON and HFS states were seen in thermal and thermal pain detection. HFS is a new means of modulating chronic pain. The mechanism by which HFS works seems to differ from that of traditional SCS, offering a new platform for innovative advancements in treatment and a greater potential to treat patients by customizing waveforms. © 2015 S. Karger AG, Basel.

  16. An electrical bio-chip to transfer and detect electromagnetic stimulation on the cells based on vertically aligned carbon nanotubes.

    Science.gov (United States)

    Rafizadeh-Tafti, Saeed; Haqiqatkhah, Mohammad Hossein; Saviz, Mehrdad; Janmaleki, Mohsen; Faraji Dana, Reza; Zanganeh, Somayeh; Abdolahad, Mohammad

    2017-01-01

    A highly sensitive impedimetric bio-chip based on vertically aligned multiwall carbon nanotubes (VAMWCNTs), was applied in direct interaction with lung cancer cells. Our tool provided both inducing and monitoring the bioelectrical changes in the cells initiated by electromagnetic (EM) wave stimulation. EM wave of 940MHz frequency with different intensities was used. Here, wave ablation might accumulate electrical charge on the tips of nanotubes penetrated into cell's membrane. The charge might induce ionic exchanges into the cell and cause alterations in electrical states of the membrane. Transmembrane electrostatic/dynamic states would be strongly affected due to such exchanges. Our novel modality was that, the cells' vitality changes caused by charge inductions were electrically detected with the same nanotubes in the architecture of electrodes for impedance measurement. The responses of the sensor were confirmed by electron and florescent microscopy images as well as biological assays. In summation, our method provided an effective biochip for enhancing and detecting external EM stimulation on the cells useful for future diagnostic and therapeutic applications, such as wave-guided drug-resistance breakage. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Implementation fidelity of self-administered transcutaneous electrical nerve stimulation (TENS) in patients with chronic back pain: an observational study.

    Science.gov (United States)

    Pallett, Edward J; Rentowl, Patricia; Johnson, Mark I; Watson, Paul J

    2014-03-01

    The efficacy of transcutaneous electrical nerve stimulation (TENS) for pain relief has not been reliably established. Inconclusive findings could be due to inadequate TENS delivery and inappropriate outcome assessment. Electronic monitoring devices were used to determine patient compliance with a TENS intervention and outcome assessment protocol, to record pain scores before, during, and after TENS, and measure electrical output settings. Patients with chronic back pain consented to use TENS daily for 2 weeks and to report pain scores before, during, and after 1-hour treatments. A ≥ 30% reduction in pain scores was used to classify participants as TENS responders. Electronic monitoring devices "TLOG" and "TSCORE" recorded time and duration of TENS use, electrical settings, and pain scores. Forty-two patients consented to participate. One of 35 (3%) patients adhered completely to the TENS use and pain score reporting protocol. Fourteen of 33 (42%) were TENS responders according to electronic pain score data. Analgesia onset occurred within 30 to 60 minutes for 13/14 (93%) responders. It was not possible to correlate TENS amplitude, frequency, or pulse width measurements with therapeutic response. Findings from TENS research studies depend on the timing of outcome assessment; pain should be recorded during stimulation. TENS device sophistication might be an issue and parameter restriction should be considered. Careful protocol design is required to improve adherence and monitoring is necessary to evaluate the validity of findings. This observational study provides objective evidence to support concerns about poor implementation fidelity in TENS research.

  18. Recording of the Neural Activity Induced by the Electrical Subthalamic Stimulation Using Ca2+ Imaging

    Science.gov (United States)

    Tamura, Atsushi; Yagi, Tetsuya; Osanai, Makoto

    The basal ganglia (BG) have important roles in some kind of motor control and learning. Parkinson's disease is one of the motor impairment disease. Recently, to recover a motor severity in patients of Parkinsonism, the stimulus electrode is implanted to the subthalamic nucleus, which is a part of the basal ganglia, and the deep brain stimulation (DBS) is often conducted. However, the effects of the DBS on the subthalamic neurons have not been elucidated. Thus, to analyze the effects of the electrical stimulation on the subthalamic neurons, we conducted the calcium imaging at the mouse subthalamic nucleus. When the single stimulus was applied to the subthalamic nucleus, the intracellular calcium ([Ca2+]i) transients were observed. In the case of application of the single electrical stimulation, the [Ca2+]i arose near the stimulus position. When 100 Hz 10-100 times tetanic stimulations were applied, the responded area and the amplitudes of [Ca2+]i transients were increased. The [Ca2+]i transients were disappeared almost completely on the action potential blockade, but blockade of the excitatory and the inhibitory synaptic transmission had little effects on the responded area and the amplitudes of the [Ca2+]i transients. These results suggested that the electrical stimulation to the subthalamic neurons led to activate the subthalamic neurons directly but not via synaptic transmissions. Thus, DBS may change the activity of the subthalamic neurons, hence, may alter the input-output relationship of the subthalamic neurons

  19. Bias-Flip Technique for Frequency Tuning of Piezo-Electric Energy Harvesting Devices

    Directory of Open Access Journals (Sweden)

    Jianguo Ma

    2013-06-01

    Full Text Available Devices that harvest electrical energy from mechanical vibrations have the problem that the frequency of the source vibration is often not matched to the resonant frequency of the energy harvesting device. Manufacturing tolerances make it difficult to match the Energy Harvesting Device (EHD resonant frequency to the source vibration frequency, and the source vibration frequency may vary with time. Previous work has recognized that it is possible to tune the resonant frequency of an EHD using a tunable, reactive impedance at the output of the device. The present paper develops the theory of electrical tuning, and proposes the Bias-Flip (BF technique, to implement this tunable, reactive impedance.

  20. Effects of Dual-Channel Functional Electrical Stimulation on Gait Performance in Patients with Hemiparesis

    Science.gov (United States)

    Springer, Shmuel; Vatine, Jean-Jacques; Lipson, Ronit; Wolf, Alon; Laufer, Yocheved

    2012-01-01

    The study objective was to assess the effect of functional electrical stimulation (FES) applied to the peroneal nerve and thigh muscles on gait performance in subjects with hemiparesis. Participants were 45 subjects (age 57.8 ± 14.8 years) with hemiparesis (5.37 ± 5.43 years since diagnosis) demonstrating a foot-drop and impaired knee control. Thigh stimulation was applied either to the quadriceps or hamstrings muscles, depending on the dysfunction most affecting gait. Gait was assessed during a two-minute walk test with/without stimulation and with peroneal stimulation alone. A second assessment was conducted after six weeks of daily use. The addition of thigh muscles stimulation to peroneal stimulation significantly enhanced gait velocity measures at the initial and second evaluation. Gait symmetry was enhanced by the dual-channel stimulation only at the initial evaluation, and single-limb stance percentage only at the second assessment. For example, after six weeks, the two-minute gait speed with peroneal stimulation and with the dual channel was 0.66 ± 0.30 m/sec and 0.70 ± 0.31 m/sec, respectively (P hemiparesis more than peroneal FES alone. PMID:23097635

  1. Effects of Dual-Channel Functional Electrical Stimulation on Gait Performance in Patients with Hemiparesis

    Directory of Open Access Journals (Sweden)

    Shmuel Springer

    2012-01-01

    Full Text Available The study objective was to assess the effect of functional electrical stimulation (FES applied to the peroneal nerve and thigh muscles on gait performance in subjects with hemiparesis. Participants were 45 subjects (age 57.8 ± 14.8 years with hemiparesis (5.37 ± 5.43 years since diagnosis demonstrating a foot-drop and impaired knee control. Thigh stimulation was applied either to the quadriceps or hamstrings muscles, depending on the dysfunction most affecting gait. Gait was assessed during a two-minute walk test with/without stimulation and with peroneal stimulation alone. A second assessment was conducted after six weeks of daily use. The addition of thigh muscles stimulation to peroneal stimulation significantly enhanced g