Weakly disordered two-dimensional Frenkel excitons
Boukahil, A.; Zettili, Nouredine
2004-03-01
We report the results of studies of the optical properties of weakly disordered two- dimensional Frenkel excitons in the Coherent Potential Approximation (CPA). An approximate complex Green's function for a square lattice with nearest neighbor interactions is used in the self-consistent equation to determine the coherent potential. It is shown that the Density of States is very much affected by the logarithmic singularities in the Green's function. Our CPA results are in excellent agreement with previous investigations by Schreiber and Toyozawa using the Monte Carlo simulation.
Soda, Kazuo; Itoh, Noriaki (Nagoya Univ. (Japan). Faculty of Engineering)
1981-12-01
Measurements were made of the absorption change at the F band and of the singlet luminescence in NaCl, induced by photoexcitation of the lowest state of the triplet self-trapped excitons into excited states higher than the lowest state by 1.7 eV -- 2.8 eV. It is found that excitation with photons below 2.5 eV causes both the F-center creation and the sigma-luminescence, while excitation with photons above 2.5 eV causes only the sigma-luminescence. These results indicate that non-radiative transition from the higher excited states to the lowest state of the self-trapped exciton is selective. The cause of the selectiveness is discussed. The yield of the F center creation at the higher excited state of the self-trapped exciton was found to be about 10/sup -2/. The stability of the created F centers in NaCl is found to be lower than in other alkali chlorides.
Effects of disorder on the optical properties of Frenkel excitons
Boukahil, Abdelkrim; Zettili, Nouredine
2002-03-01
The Coherent Potential Approximation (CPA) is used to study the effects of disorder on the absorption line shapes of Frenkel excitons in one, two, and three dimensions. A Gaussian distribution of transition frequencies with rms width σ was used. The average oscillator strength per state (AOSPS) introduced by Schreiber and Toyozawa is calculated for several values of the disorder parameter σ. The CPA results show that short tails on the high-energy side of the peaks are σ dependent, and long tails on the low-energy side of the peaks do not depend on the disorder parameter σ.
Density of states of Frenkel excitons in weakly disordered systems
Boukahil, Abdelkrim; Zettili, Nouredine
2002-04-01
We present the calculation of the density of states of Frenkel excitons in weakly disordered one , two , and three-dimensional systems. A random distribution of transition frequencies with variance s2 characterizes the disorder. The Coherent Potential Approximation (CPA) calculations show that the density of states (DOS) is very sensitive to any variations in the disorder parameter s. Our calculations are in good agreement with previous work based on the Monte Carlo simulation. One of us (AB) acknowldges the support of the University of Wisconsin--Whitewater for this work through a university research grant.
Effects of disorder on the optical properties of Frenkel excitons
Boukahil, Abdelkrim; Siemann, Robert
2014-03-01
The Coherent Potential Approximation (CPA) is used to study the effects of disorder on the absorption line shapes of Frenkel excitons in one-, two-, and three-dimensional systems. A Gaussian distribution of transition frequencies with rms width σ was used. Several values of the disorder parameter σ. The CPA results show that short tails on the high-energy side of the peaks are σ dependent, and long tails on the low-energy side of the peaks are independent of the disorder parameter σ.
Malyukin, Yu. V.; Sorokin, A. V.; Semynozhenko, V. P.
2016-06-01
We present thoroughly analyzed experimental results that demonstrate the anomalous manifestation of the exciton self-trapping effect, which is already well-known in bulk crystals, in ordered molecular nanoclusters called J-aggregates. Weakly-coupled one-dimensional (1D) molecular chains are the main structural feature of J-aggregates, wherein the electron excitations are manifested as 1D Frenkel excitons. According to the continuum theory of Rashba-Toyozawa, J-aggregates can have only self-trapped excitons, because 1D excitons must adhere to barrier-free self-trapping at any exciton-phonon coupling constant g = ɛLR/2β, wherein ɛLR is the lattice relaxation energy, and 2β is the half-width of the exciton band. In contrast, very often only the luminescence of free, mobile excitons would manifest in experiments involving J-aggregates. Using the Urbach rule in order to analyze the low-frequency region of the low-temperature exciton absorption spectra has shown that J-aggregates can have both a weak (g 1) exciton-phonon coupling. Moreover, it is experimentally demonstrated that under certain conditions, the J-aggregate excited state can have both free and self-trapped excitons, i.e., we establish the existence of a self-trapping barrier for 1D Frenkel excitons. We demonstrate and analyze the reasons behind the anomalous existence of both free and self-trapped excitons in J-aggregates, and demonstrate how exciton-self trapping efficiency can be managed in J-aggregates by varying the values of g, which is fundamentally impossible in bulk crystals. We discuss how the exciton-self trapping phenomenon can be used as an alternate interpretation of the wide band emission of some J-aggregates, which has thus far been explained by the strongly localized exciton model.
Density of states of Frenkel excitons in strongly disordered two-dimensional systems
Siemann, Robert; Boukahil, Abdelkrim
2014-03-01
We present the calculation of the density of states of Frenkel excitons in strongly disordered two-dimensional systems. A random distribution of transition frequencies with variance σ2 characterizes the disorder. The Coherent Potential Approximation (CPA) calculations show a strong dependence of the density of states (DOS) on the disorder parameter σ.
Electronic absorption of Frenkel excitons in topologically disordered systems
Schweizer, Kenneth S.
1986-10-01
A self-consistent effective medium theory of the electronic absorption spectra of tightly bound dipolar excitons in simple fluids is developed within the adiabatic picture. The theoretical approach is based on the isomorphism between the path-integral formulation of quantum theory and classical statistical mechanics and is an extension of previous work [D. Chandler, K. S. Schweizer, and P. G. Wolynes, Phys. Rev. Lett. 49, 1100 (1982)]. The consequences of fluid structural disorder on resonant excitation transfer and the statistical fluctuations of single molecule energy levels are simultaneously treated. Detailed numerical calculations are performed to establish the dependence of the absorption spectrum on fluid density, short range order, and the relative magnitude of the resonant transfer vs the single site disorder. The density dependence of the spectral features are found to be a sensitive function of fluid structure and the relative strength of the localizing vs the delocalizing interactions. By comparing the liquid state results with the corresponding crystalline solid behavior, the consequences of topological disorder on the exciton spectrum are identified. The relevance of the theoretical predictions to spectroscopic probes of exciton delocalization in molecular liquids and glasses is discussed.
Density of States of Weakly Disordered Two-Dimensional Frenkel Excitons
Zettili, Nouredine; Boukahil, A.
2005-03-01
The Coherent Potential Approximation (CPA) is used to study the optical properties of weakly disordered two-dimensional Frenkel exciton systems with nearest neighbor interactions. The transition frequencies are assumed to have Gaussian distribution. An approximate complex logarithmic Green's function for a square lattice with nearest neighbor interactions is used in the CPA self-consistent equation to determine the coherent potential. We show that the CPA results are in excellent agreement with previous numerical investigations.
Optical linewidths of Frenkel excitons in weakly disordered three-dimensional systems
Boukahil, A.; Huber, D. L.
1991-10-01
A calculation of the optical linewidth of a Frenkel exciton in a weakly disordered, three-dimensional array is presented. The disorder is reflected in a random distribution of transition frequencies with variance σ 2. An analysis based on the coherent potential approximation leads to a linewidth proportional to σ 3. The predictions of the theory are in quantitative agreement with the numerical simulation data of Schreiber and Toyozawa.
External pumping of hybrid nanostructures in microcavity with Frenkel and Wannier-Mott excitons
Dubovskiy, O. A.; Agranovich, V. M.
2016-09-01
The exciton-exciton interaction in hybrid nanostructures with resonating Frenkel and Wannier-Mott excitons was investigated in many publications. In microcavity the hybrid nanostructures can be exposed to different types of optical pumping, the most common one being pumping through one of the microcavity side. However, not investigated and thus never been discussed the hybrid excitons generation by pumping of confined quantum wells from the side of empty microcavity without nanostructures in a wave guided configuration. Here, we consider the hybrid excitations in cavity with organic and inorganic quantum wells and with different types of pumping from external source. The frequency dependence for intensity of excitations in hybrid structure is also investigated. The results may be used for search of most effective fluorescence and relaxation processes. The same approach may be used when both quantum wells are organic or inorganic.
Impurity modes in Frenkel exciton systems with dipolar interactions and cubic symmetry.
Avgin, I; Huber, D L
2013-04-28
We introduce a continuum model for impurity modes of Frenkel excitons in fully occupied face-centered and body-centered cubic lattices with dipole-dipole interactions and parallel moments. In the absence of impurities, the model reproduces the small-k behavior found in numerical calculations of dipolar lattice sums. The exciton densities of states near the upper and lower band edges are calculated and compared with the corresponding results for a random array of dipoles. The Green function obtained with the continuum model, together with a spherical approximation to the Brillouin zone, is used to determine the conditions for the formation of a localized exciton mode associated with a shift in the transition energy of a single chromophore. The dependence of the local mode energy on the magnitude of the shift is ascertained. The formation of impurity bands at high concentrations of perturbed sites is investigated using the coherent potential approximation. The contribution of the impurity bands to the optical absorption is calculated in the coherent potential approximation. The locations of the optical absorption peaks of the dipolar system are shown to depend on the direction of propagation of the light relative to the dipolar axis, a property that is maintained in the presence of short-range interactions.
A New Efficient Method for Calculation of Frenkel Exciton Parameters in Molecular Aggregates
Plötz, Per-Arno; Kühn, Oliver
2013-01-01
The Frenkel exciton Hamiltonian is at the heart of many simulations of excitation energy transfer in molecular aggregates. It separates the aggregate into Coulomb-coupled monomers. Here it is shown that the respective parameters, i.e. monomeric excitation energies and Coulomb couplings between transition densities, can be efficiently calculated using time-dependent tight-binding-based density functional theory (TD-DFTB). Specifically, Coulomb couplings are expressed in terms of self-consistently determined Mulliken transition charges. The determination of the sign of the coupling requires an additional super-molecule calculation. The approach is applied to two dimer systems. First, formaldehyde oxime for which a detailed comparison with standard DFT using the B3LYP and the PBE functionals is provided. Second, the Coulomb coupling is explored in dependence on the intermolecular coordinates for a perylene bisimide dimer. This provides structural evidence for the previously observed biphasic aggregation behavior...
Lee, C.C.; Ku, W.; Hsueh, H.C.
2010-08-30
Within the framework of time-dependent density-functional theory (TDDFT), we derive the dynamical linear response of local-density approximation plus U functional and benchmark it on NiO, a prototypical Mott insulator. Formulated using real-space Wannier functions, our computationally inexpensive framework gives detailed insights into the formation of tightly bound Frenkel excitons with reasonable accuracy. Specifically, a strong hybridization of multiple excitons is found to significantly modify the exciton properties. Furthermore, our study exposes a significant generic limitation of adiabatic approximation in TDDFT with hybrid functionals and in existing Bethe-Salpeter-equation approaches, advocating the necessity of strongly energy-dependent kernels in future development.
Boukahil, A.; Huber, D. L.
2014-12-01
We investigate the optical absorption and the density of states of a Frenkel exciton system on a square lattice with nearest-neighbor interactions and a Gaussian distribution of transition frequencies (i.e. Gaussian diagonal disorder). Results are presented for the absorption and the density of states of direct and indirect edge systems for a range of variances. There is reasonable agreement with the corresponding finite array calculations of Schreiber and Toyozawa. The existence of an Urbach tail is also investigated.
Ultracold Gas of Excitons in Traps
2012-06-08
Thomas,, G. Grosso,, M. Remeika,, A. T. Hammack,, A. D. Meyertholen,, M. M. Fogler ,, L.V. Butov,, M. Hanson,, A. C. Gossard. Trapping Indirect...M. Fogler , L. V. Butov, A. V. Kavokin, K. L. Campman, A. A. High, A. C. Gossard. Spontaneous coherence in a cold exciton gas, Nature, (03 2012...56:19 7 A. High, A. Thomas, G. Grosso, M. Remeika, A. Hammack, A. Meyertholen, M. Fogler , L. Butov, M. Hanson, A. Gossard. Trapping Indirect
Boukahil, Abdelkrim; Siemann, Robert; Huber, David
2013-03-01
We report the results of studies of the low energy side of the Average Oscillator Strength Per State f (E) = F (E) / ρ (E) , where F (E) is the line shape function and ρ (E) is the density of states function of one dimensional Frenkel excitons in the Coherent Potential Approximation (CPA). A Gaussian distribution of the transition frequencies with rms width σ (0 . 07 <= σ <= 0 . 4) is used. Our CPA theory predicts that on the low energy side of the peak the tails are short and independent of the disorder parameter σ implying a behavior consistent with the Urbach rule. Our CPA results are in excellent agreement with previous investigations. AB acknowledge support from the college of L&S.
Fujita, Takatoshi; Sawaya, Nicolas P D; Aspuru-Guzik, Alan
2016-01-01
Charge transfer states in organic semiconductors play crucial roles in processes such as singlet fission and exciton dissociation at donor/acceptor interfaces. Recently, a time-resolved spectroscopy study of dinaphtho[2,3-b:2'3'-f]thieno[3,2-b]-thiophene (DNTT) thin films provided evidence for the formation of mixed Frenkel and charge-transfer excitons after the photoexcitation. Here we investigate optical properties and excitation dynamics of the DNTT thin films by combining ab initio calculations and a stochastic Schrodinger equation. Our theory predicts that the low-energy Frenkel exciton band consists of 8 to 47% CT character. The quantum dynamics simulations show coherent dynamics of Frenkel and CT states in 50 fs after the optical excitation. We demonstrate the role of charge delocalization and localization in the mixing of CT states with Frenkel excitons as well as the role of their decoherence.
Schröter, M
2013-01-01
The quantum dynamics of linear molecular aggregates in the presence of S0-S1 and S0-S2 transitions is investigated putting emphasis on the interplay between local non-adiabatic S2 to S1 deactivation and Frenkel exciton transfer. The theoretical approach combines aspects of the linear vibronic coupling and Frenkel exciton models. Dynamics calculations are performed for the absorption spectrum and the electronic state populations using the multiconfiguration time-dependent Hartree approach. As an application perylene bisimde J-type dimer and trimer aggregates are considered, including four tuning and one coupling mode per monomer. This leads to a dynamical model comprising up to 7 electronic states and 15 vibrational modes. The unknown non-adiabatic coupling strength is treated as a parameter that is chosen in accordance with available absorption spectra. This leaves some flexibility that can be limited by the clearly distinguishable population dynamics.
Avgin, I.; Boukahil, A.; Huber, D. L.
2015-11-01
Using the coherent potential approximation, we investigate the optical absorption and the density of states of Frenkel exciton systems on simple, body centered, and face centered cubic lattices with nearest-neighbor interactions and a Gaussian distribution of transition frequencies (i.e. Gaussian diagonal disorder). The analysis is based on an elliptic integral approach with a variety of variances. The results for the simple cubic lattice are in good agreement with the finite array calculations of Schreiber and Toyozawa. Our findings suggest that the coherent potential approximation can be useful in interpreting the optical properties of cubic crystals where the optically excited states are Frenkel excitons with the dominant interactions limited to nearest-neighbors.
Avgin, I. [Department of Electrical and Electronics Engineering, Ege University, Bornova 35100, Izmir (Turkey); Boukahil, A. [Physics Department, University of Wisconsin-Whitewater, Whitewater, WI 53190 (United States); Huber, D.L., E-mail: dhuber@src.wisc.edu [Physics Department, University of Wisconsin-Madison, Madison, WI 53706 (United States)
2015-11-15
Using the coherent potential approximation, we investigate the optical absorption and the density of states of Frenkel exciton systems on simple, body centered, and face centered cubic lattices with nearest-neighbor interactions and a Gaussian distribution of transition frequencies (i.e. Gaussian diagonal disorder). The analysis is based on an elliptic integral approach with a variety of variances. The results for the simple cubic lattice are in good agreement with the finite array calculations of Schreiber and Toyozawa. Our findings suggest that the coherent potential approximation can be useful in interpreting the optical properties of cubic crystals where the optically excited states are Frenkel excitons with the dominant interactions limited to nearest-neighbors.
Impurity trapped excitons under high hydrostatic pressure
Grinberg, Marek
2013-09-01
Paper summarizes the results on pressure effect on energies of the 4fn → 4fn and 4fn-15d1 → 4fn transitions as well as influence of pressure on anomalous luminescence in Lnα+ doped oxides and fluorides. A model of impurity trapped exciton (ITE) was developed. Two types of ITE were considered. The first where a hole is localized at the Lnα+ ion (creation of Ln(α+1)+) and an electron is attracted by Coulomb potential at Rydberg-like states and the second where an electron captured at the Lnα+ ion (creation of Ln(α-1)+) and a hole is attracted by Coulomb potential at Rydberg-like states. Paper presents detailed analysis of nonlinear changes of energy of anomalous luminescence of BaxSr1-xF2:Eu2+ (x > 0.3) and LiBaF3:Eu2+, and relate them to ITE-4f65d1 states mixing.
Confocal shift interferometry of coherent emission from trapped dipolar excitons
Repp, J. [Walter Schottky Institut and Physik-Department, Am Coulombwall 4a, Technische Universität München, D-85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 München (Germany); Center for NanoScience and Fakultät für Physik, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München (Germany); Schinner, G. J.; Schubert, E. [Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 München (Germany); Center for NanoScience and Fakultät für Physik, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München (Germany); Rai, A. K.; Wieck, A. D. [Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum (Germany); Reuter, D. [Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum (Germany); Department Physik, Universität Paderborn, 33098 Paderborn (Germany); Wurstbauer, U.; Holleitner, A. W. [Walter Schottky Institut and Physik-Department, Am Coulombwall 4a, Technische Universität München, D-85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 München (Germany); and others
2014-12-15
We introduce a confocal shift-interferometer based on optical fibers. The presented spectroscopy allows measuring coherence maps of luminescent samples with a high spatial resolution even at cryogenic temperatures. We apply the spectroscopy onto electrostatically trapped, dipolar excitons in a semiconductor double quantum well. We find that the measured spatial coherence length of the excitonic emission coincides with the point spread function of the confocal setup. The results are consistent with a temporal coherence of the excitonic emission down to temperatures of 250 mK.
Charged Frenkel biexcitons in organic molecular crystals
Agranovich, V M; Kamchatnov, A M
2001-01-01
It is known that the energy of the lowest electronic transition in neutral molecules of anthracene, tetracene and other polyacenes is blue shifted in comparison with the corresponding transition energy in mono-valent molecular ions. This effect in molecular crystal may be responsible for the attraction between molecular (Frenkel) exciton and charge carrier. Due to this attraction the bound state of Frenkel exciton and free charge (charged Frenkel exciton) may be formed. The same mechanism can be responsible for formation of charged biexcitons (bound state of two Frenkel excitons and a charge carrier). Calculations are performed for molecular crystals like tetracene by means of one-dimensional lattice model
Giant Poole-Frenkel effect for the shallow dislocation-related hole traps in silicon
Trushin, M; Kittler, M [Joint Lab IHP/BTU, Konrad-Wachsmann-Allee 1, 03046 Cottbus (Germany); Vyvenko, O; Vdovin, V, E-mail: vyvenko@gmail.com [V.A. Fok Institute of Physics, St. Petersburg State University, Ulyanovskaya 1, 198504 St. Petersburg (Russian Federation)
2011-02-01
The results of a theoretical calculation of the Pool-Frenkel effect due to the strain field of screw and 60{sup 0} dislocations upon the valence band in silicon, and of a detailed DLTS study of the electrical field impact on carrier emission from the dislocation-related states of two types of bonded samples are presented and discussed. A good agreement between the theory and experiment was established. It is concluded that the large Pool-Frenkel coefficient value that significantly exceeds the value for a Coulomb-like potential is a new distinguishing feature of the hole thermo-emission from dislocation-related levels in silicon.
Avgin, I.; Boukahil, A.; Huber, D. L.
2010-07-01
We investigate the accuracy of the coherent potential approximation (CPA) for a one-dimensional Frenkel exciton system with nearest-neighbor interactions and a Gaussian distribution of fluctuations in the optical transition frequency. The CPA values of the integrated density of states and the inverse localization length are shown to be in excellent agreement with the results of mode-counting studies carried out on arrays of 10 7-10 8 sites. We also consider the asymptotic behavior of the inverse localization length and show that it can be approximated by the reciprocal of the decay length of an eigenstate localized about a single, strongly perturbed site in an otherwise perfect lattice.
Exciton-polariton trapping and potential landscape engineering
Schneider, C.; Winkler, K.; Fraser, M. D.; Kamp, M.; Yamamoto, Y.; Ostrovskaya, E. A.; Höfling, S.
2017-01-01
Exciton-polaritons in semiconductor microcavities have become a model system for the studies of dynamical Bose-Einstein condensation, macroscopic coherence, many-body effects, nonclassical states of light and matter, and possibly quantum phase transitions in a solid state. These low-mass bosonic quasiparticles can condense at comparatively high temperatures up to 300 K, and preserve the fundamental properties of the condensate, such as coherence in space and time domain, even when they are out of equilibrium with the environment. Although the presence of a confining potential is not strictly necessary in order to observe Bose-Einstein condensation, engineering of the polariton confinement is a key to controlling, shaping, and directing the flow of polaritons. Prototype polariton-based optoelectronic devices rely on ultrafast photon-like velocities and strong nonlinearities exhibited by polaritons, as well as on their tailored confinement. Nanotechnology provides several pathways to achieving polariton confinement, and the specific features and advantages of different methods are discussed in this review. Being hybrid exciton-photon quasiparticles, polaritons can be trapped via their excitonic as well as photonic component, which leads to a wide choice of highly complementary trapping techniques. Here, we highlight the almost free choice of the confinement strengths and trapping geometries that provide powerful means for control and manipulation of the polariton systems both in the semi-classical and quantum regimes. Furthermore, the possibilities to observe effects of the polariton blockade, Mott insulator physics, and population of higher-order energy bands in sophisticated lattice potentials are discussed. Observation of such effects could lead to realization of novel polaritonic non-classical light sources and quantum simulators.
Tunable Magnetic Alignment between Trapped Exciton-Polariton Condensates
Ohadi, H.; del Valle-Inclan Redondo, Y.; Dreismann, A.; Rubo, Y. G.; Pinsker, F.; Tsintzos, S. I.; Hatzopoulos, Z.; Savvidis, P. G.; Baumberg, J. J.
2016-03-01
Tunable spin correlations are found to arise between two neighboring trapped exciton-polariton condensates which spin polarize spontaneously. We observe a crossover from an antiferromagnetic to a ferromagnetic pair state by reducing the coupling barrier in real time using control of the imprinted pattern of pump light. Fast optical switching of both condensates is then achieved by resonantly but weakly triggering only a single condensate. These effects can be explained as the competition between spin bifurcations and spin-preserving Josephson coupling between the two condensates, and open the way to polariton Bose-Hubbard ladders.
El-Atab, Nazek; Nayfeh, Ammar [Department of Electrical Engineering and Computer Science (EECS), Institute Center for Microsystems–iMicro, Masdar Institute of Science and Technology, Abu Dhabi (United Arab Emirates); Ozcan, Ayse; Alkis, Sabri [UNAM-National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Okyay, Ali K. [UNAM-National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara (Turkey)
2014-01-06
A low power zinc-oxide (ZnO) charge trapping memory with embedded silicon (Si) nanoparticles is demonstrated. The charge trapping layer is formed by spin coating 2 nm silicon nanoparticles between Atomic Layer Deposited ZnO steps. The threshold voltage shift (ΔV{sub t}) vs. programming voltage is studied with and without the silicon nanoparticles. Applying −1 V for 5 s at the gate of the memory with nanoparticles results in a ΔV{sub t} of 3.4 V, and the memory window can be up to 8 V with an excellent retention characteristic (>10 yr). Without nanoparticles, at −1 V programming voltage, the ΔV{sub t} is negligible. In order to get ΔV{sub t} of 3.4 V without nanoparticles, programming voltage in excess of 10 V is required. The negative voltage on the gate programs the memory indicating that holes are being trapped in the charge trapping layer. In addition, at 1 V the electric field across the 3.6 nm tunnel oxide is calculated to be 0.36 MV/cm, which is too small for significant tunneling. Moreover, the ΔV{sub t} vs. electric field across the tunnel oxide shows square root dependence at low fields (E < 1 MV/cm) and a square dependence at higher fields (E > 2.7 MV/cm). This indicates that Poole-Frenkel Effect is the main mechanism for holes emission at low fields and Phonon Assisted Tunneling at higher fields.
Nenov, Artur; Rivalta, Ivan; Cerullo, Giulio; Mukamel, Shaul; Garavelli, Marco
2014-02-20
Two-dimensional (2D) optical spectroscopy techniques based on ultrashort laser pulses have been recently extended to the optical domain in the ultraviolet (UV) spectral region. UV-active aromatic side chains can thus be used as local highly specific markers for tracking dynamics and structural rearrangements of proteins. Here we demonstrate that 2D electronic spectra of a model proteic system, a tetrapeptide with two aromatic side chains, contain enough structural information to distinguish between two different configurations with distant and vicinal side chains. For accurate simulations of the 2DUV spectra in solution, we combine a quantum mechanics/molecular mechanics approach based on wave function methods, accounting for interchromophores coupling and environmental effects, with nonlinear response theory. The proposed methodology reveals effects, such as charge transfer between vicinal aromatic residues that remain concealed in conventional exciton Hamiltonian approaches. Possible experimental setups are discussed, including multicolor experiments and signal manipulation techniques for limiting undesired background contributions and enhancing 2DUV signatures of specific electronic couplings.
Zaikowski, Lori; Mauro, Gina; Bird, Matthew; Karten, Brianne; Asaoka, Sadayuki; Wu, Qin; Cook, Andrew R; Miller, John R
2015-06-18
Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17-127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence, and DFT descriptions. Quantum yields of CT fluorescence are as large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps, the trap depths are 0.06 (p-xylene), 0.13 (THF), and 0.19 eV (CHCl3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization, and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ∼50% of the excitons, and that the exciton diffusion length is LD = 34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. The efficiency of exciton capture depends on chain length but not on trap depth, solvent polarity, or which trap group is present.
Nonlinear diffusion of indirect excitons in an ideal bilayer with an in-plane harmonic trap
Wang, Li; Wang, Qinglu
2009-06-01
The nonlinear diffusion of the spatially indirect excitons in an ideal bilayer with an in-plane harmonic trap is investigated based on the theories developed by Ivanov [A.L. Ivanov, Europhys. Lett. 59 (2002) 586; A.L. Ivanov, J. Phys.: Condens. Matter 16 (2004) S3629] and Rapaport et al. [R. Rapaport, G. Chen, S. Simon, O. Mitrofanov, L. Pfeiffer, P.M. Platzman, Phys. Rev. B 72 (2005) 075428]. A nonlinear equation for the diffusion of the indirect excitons in this structure is established. The two-dimensional density of the indirect excitons in this structure is calculated. The calculations show that the density adjacent to the trap center for different exciton temperatures can remain very high even long after the photo-excitation because of the confinement of the in-plane harmonic trap, and that the indirect excitons gather several tens of μm away from the trap center. The calculations are in good agreement qualitatively with the experimental results of Voros et al. [Z. Voros, D.W. Snoke, L. Pfeiffer, K. West, Phys. Rev. Lett. 97 (2006) 016803] and prove that an in-plane harmonic trap can indeed keep an exciton gas dense near its center.
Nonlinear diffusion of indirect excitons in an ideal bilayer with an in-plane harmonic trap
Wang Li [Physics Department of Tangshan Teachers College, Tangshan 063000, Hebei (China)], E-mail: wangli@mail.semi.ac.cn; Wang Qinglu [Physics Department of Tangshan Teachers College, Tangshan 063000, Hebei (China)
2009-06-01
The nonlinear diffusion of the spatially indirect excitons in an ideal bilayer with an in-plane harmonic trap is investigated based on the theories developed by Ivanov [A.L. Ivanov, Europhys. Lett. 59 (2002) 586; A.L. Ivanov, J. Phys.: Condens. Matter 16 (2004) S3629] and Rapaport et al. [R. Rapaport, G. Chen, S. Simon, O. Mitrofanov, L. Pfeiffer, P.M. Platzman, Phys. Rev. B 72 (2005) 075428]. A nonlinear equation for the diffusion of the indirect excitons in this structure is established. The two-dimensional density of the indirect excitons in this structure is calculated. The calculations show that the density adjacent to the trap center for different exciton temperatures can remain very high even long after the photo-excitation because of the confinement of the in-plane harmonic trap, and that the indirect excitons gather several tens of {mu}m away from the trap center. The calculations are in good agreement qualitatively with the experimental results of Voros et al. [Z. Voros, D.W. Snoke, L. Pfeiffer, K. West, Phys. Rev. Lett. 97 (2006) 016803] and prove that an in-plane harmonic trap can indeed keep an exciton gas dense near its center.
Models of electronic defects and self-trapped excitons in Li sub 2 O
Shluger, Alexander; Itoh, Noriaki (Nagoya Univ. (Japan). Dept. of Physics)
1990-05-01
The semi-empirical INDO method and the embedded-molecular-cluster model have been applied to calculate the atomic structures and electronic transition energies of the F{sup +}, F and F{sub 2} centres in Li{sub 2}O and to simulate the self-trapping process of a triplet exciton. Using the parameters of the Slater-type floating orbitals adjusted to the experimental transition energy (4.13 eV) and hyperfine splitting parameters of the F{sup +} centre, the transition energies of the F and F{sub 2} centres were obtained to be 4.82 eV and 3.31 eV, respectively. The lattice relaxation accompanied by formation of a triplet exciton and by two neighbouring triplet excitons are also simulated. The results indicate that a triplet exciton is self-trapped by a shift of an oxygen ion by 0.34 A along a <100> direction, while defect formation as a consequence of the relaxation of a triplet exciton is very improbable. We found that two excitons at the nearest neighbour relax into a more stable relaxed state including an O{sub 2}{sup -} bond, and further to a vacancy-interstitial pair. The results of the simulation were compared with experimental observation of the effects of neutron irradiation and of heavy-ion irradiation of Li{sub 2}O. (author).
Boukahil, A.; Avgin, I.; Huber, D. L.
2015-01-01
We investigate the accuracy of the coherent potential approximation (CPA) for the optical absorption spectra of a one-dimensional Frenkel exciton system with nearest-neighbor interactions and a Gaussian distribution of fluctuations in the optical transition frequency (diagonal Gaussian disorder). Our earlier studies have established that the CPA gives highly accurate results for the integral of the density of states of this system. In this paper we compare the CPA results for the normalized optical absorption with the finite-array calculations of Schreiber and Toyozawa and Schreiber for the same model. It is found that the CPA results for the absorption are in good agreement with their findings. It is pointed out that an expansion of the density of states in terms of the eigenstates of the ideal (no disorder) array contains a term proportional to the normalized absorption. Since the density of states is accurately approximated by the CPA, the presence of this term explains the success of the CPA in reproducing the absorption spectra. Our findings support the use of the Gaussian disorder model to interpret the absorption spectra of one and quasi-one dimensional exciton systems.
Exciton optical transitions in a hexagonal boron nitride single crystal
Museur, L. [Laboratoire de Physique des Lasers - LPL, CNRS UMR 7538, Institut Galilee, Universite Paris 13, 93430 Villetaneuse (France); Brasse, G.; Maine, S.; Ducastelle, F.; Loiseau, A. [ONERA - Laboratoire d' Etude des Microstructures - LEM, ONERA-CNRS, UMR 104, BP 72, 92322 Chatillon Cedex (France); Pierret, A. [ONERA - Laboratoire d' Etude des Microstructures - LEM, ONERA-CNRS, UMR 104, BP 72, 92322 Chatillon Cedex (France); CEA-CNRS, Institut Neel/CNRS, Universite J. Fourier, CEA/INAC/SP2M, 17 rue des Martyrs, 38 054 Grenoble Cedex 9 (France); Attal-Tretout, B. [ONERA - Departement Mesures Physiques - DMPh, 27 Chemin de la Huniere, 91761 Palaiseau Cedex (France); Barjon, J. [GEMaC, Universite de Versailles St Quentin, CNRS Bellevue, 1 Place Aristide Briand, 92195 Meudon Cedex (France); Watanabe, K.; Taniguchi, T. [National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan); Kanaev, A. [Laboratoire des Sciences des Procedes et des Materiaux - LSPM, CNRS UPR 3407, Universite Paris 13, 93430 Villetaneuse (France)
2011-06-15
Near band gap photoluminescence (PL) of a hexagonal boron nitride single crystal has been studied at cryogenic temperatures with synchrotron radiation excitation. The PL signal is dominated by trapped-exciton optical transitions, while the photoluminescence excitation (PLE) spectra show features assigned to free excitons. Complementary photoconductivity and PLE measurements set the band gap transition energy to 6.4 eV and the Frenkel exciton binding energy larger than 380 meV. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Optical studies of self-trapped excitons in SiO/sub 2/
Itoh, Chihiro; Tanimura, Katsumi; Itoh, Noriaki
1988-09-20
Linear polarisation, with respect to the z axis, and the effect of the subsequent laser-induced excitation on the luminescence and transient optical absorption induced by irradiation of crystalline SiO/sub 2/ with an electron pulse have been studied. It is found that the luminescence spectrum consists of two bands peaked at 2.8 eV and at 2.5 eV and that the transition dipole moment of the former, which has been shown to be intrinsic, is nearly parallel to the z axis, while that of the latter is parallel to the x axis. In addition to the 5.2 eV transient optical absorption band, a satellite band at 4.2 eV is found to be induced by irradiation with an electron pulse. For both of these bands, the transition dipoles are found not to be parallel to any of the crystalline axes. Subsequent irradiation with a 4.0 or 5.6 eV laser pulse of a specimen irradiated with an electron pulse is found to eliminate both of these transient optical absorption bands and the 2.8 eV luminescence band. In view of previous work on optically detected magnetic resonance and volume changes induced by electron pulse irradiation, it is concluded that the 5.2 and 4.2 eV transient optical absorption bands and the 2.8 eV luminescence band are associated with self-trapped excitons. The existing models of self-trapped excitons are discussed on the basis of the present experimental results.
ZHAO ZhenYu; LIN Jian; JIA TianQin; SUN ZhenRong; WANG ZuGeng
2009-01-01
Nioblc tellurite glass doped by silver chloride nanocrystal was prepared with the melting-quenching and heat treatment method, and the self-trapped exciton absorption band of the silver chloride nanocrystal was observed at 532 nm in the UV-visible absorption spectrum. The glass structure chara-cteristics were investigated by Raman spectroscopy, and the mechanism of self-trapped exciton was analyzed by Jahn-Teller model. Its optical limiting was measured with 532 nm picosecond laser pulses, and the corresponding nonlinear absorption coefficient was measured with open-aperture Z-scan. The experimental results showed that optical limiting at 532 nm was attributed to free carrier absorption between the self-trapped state and the continuum band.
Anomalous trapped exciton and d-f emission in Sr4Al14O25:Eu2+.
Dutczak, Danuta; Ronda, Cees; Jüstel, Thomas; Meijerink, Andries
2014-03-06
The photoluminescence and time-resolved emission for Eu(2+) in Sr4Al14O25 has been investigated in the temperature range 4 to 500 K. The Eu(2+) emission changes in a peculiar way with temperature. At low temperature two emission bands are observed at 490 and 425 nm, which are attributed to emission from Eu(2+) on the 7- and 10-coordinated sites. Upon raising the temperature, an unexpectedly large blue shift to 400 nm is observed for the 425 nm emission band. To explain these observations, the 400 and 425 nm emission bands are assigned to d-f and trapped exciton emission, for Eu(2+) on the 10-coordinated site. The trapped exciton emission is characterized by a short (0.5 μs) decay time. The temperature dependence of the emission is explained by a configurational coordinate diagram in which the Eu(2+) trapped exciton state is at a slightly lower energy than the lowest energy 4f(6)5d state. Upon raising the temperature, the 4f(6)5d state is thermally populated and emission from this state is observed, and because of the smaller lattice relaxation (smaller Stokes shift), a large blue shift from 425 to 400 nm is observed.
Hughes, Stephen; Agarwal, Girish S
2017-02-10
We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate how the dipole-dipole coupling can control the radiative decay rate of excitons and form pure entangled states in the long time limit. We investigate both field-free entanglement evolution and coherently pumped exciton regimes, and show how a double-field pumping scenario can completely eliminate the decay of coherent Rabi oscillations and lead to population trapping. In the Mollow triplet regime, we explore the emitted spectra from the driven dipoles and show how a nonpumped dipole can take on the form of a spectral triplet, quintuplet, or a singlet, which has applications for producing subnatural linewidth single photons and more easily accessing regimes of high-field quantum optics and cavity-QED.
Ultrafast exciton migration in an HJ-aggregate: Potential surfaces and quantum dynamics
Binder, Robert; Polkehn, Matthias; Ma, Tianji; Burghardt, Irene
2017-01-01
Quantum dynamical and electronic structure calculations are combined to investigate the mechanism of exciton migration in an oligothiophene HJ aggregate, i.e., a combination of oligomer chains (J-type aggregates) and stacked aggregates of such chains (H-type aggregates). To this end, a Frenkel exciton model is parametrized by a recently introduced procedure [Binder et al., J. Chem. Phys. 141, 014101 (2014)] which uses oligomer excited-state calculations to perform an exact, point-wise mapping of coupled potential energy surfaces to an effective Frenkel model. Based upon this parametrization, the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method is employed to investigate ultrafast dynamics of exciton transfer in a small, asymmetric HJ aggregate model composed of 30 sites and 30 active modes. For a partially delocalized initial condition, it is shown that a torsional defect confines the trapped initial exciton, and planarization induces an ultrafast resonant transition between an HJ-aggregated segment and a covalently bound "dangling chain" end. This model is a minimal realization of experimentally investigated mixed systems exhibiting ultrafast exciton transfer between aggregated, highly planarized chains and neighboring disordered segments.
Editorial on indirect excitons: Physics and applications
2017-08-01
This special issue contains 9 original review papers, research papers and discussion papers on indirect excitons. An exciton is a Coulomb-correlated electron-hole pair. Frenkel excitons dominate optical properties of organic semiconductors, while Wannier-Mott excitons are responsible for the hydrogen-like absorption spectra of inorganic semiconductors at low temperatures. The interest to the physics of excitons has strongly increased in the new century. This interest is motivated by unique bosonic properties of excitons that lead to the phenomena of exciton-polariton lasing and stimulated scattering, build-up of the spontaneous coherence and polarisation in cold exciton gases. In addition to the rich fundamental physics, excitons offer the perspective of applications in opto-electronic devices such as exciton transistors, switches, optical integrated circuits, etc.
Jaimy, Kanakkanmavudi B.; Baiju, K. V.; Ghosh, Swapankumar; Warrier, K. G. K.
2012-02-01
Titanium dioxide doped with iron oxide (0-10 mol%) has been synthesized by an aqueous sol-gel method. The extent of phase transformation is higher in presence of up to 1 mol% of Fe3+ ions in doped titania. A further increase in Fe3+ content was found to decrease the phase transformation. A composition which contains ∼90% rutile and the remaining anatase phase shows the highest photocatalytic activity. Even though surface area values are dramatically decreased by the modification of TiO2 by Fe3+ doping, crystallinity plays a major role in photocatalytic activity enhancement. UV-vis reflectance spectra indicate a red-shift in band gap energy and thus an enhanced photoactivity in visible light, suitable for application in photodegradation of toxic industrial effluents as well as other organic contaminants, is achieved. Low concentrations of Fe3+ ions act as excitons trapping centers, while higher concentrations act as recombination centers. The synergy between the rutile-anatase ratios and optimum amount of Fe3+ ions improve the interfacial charge transfer and trapping which enhanced the photochemical degradation of MB dye. The Fe3+ doped TiO2 composition has the highest photoactivity, having an apparent rate constant of 11.1×10-3 min-1, which is much higher than that of commercial P25 Degussa titania (6.03×10-3 min-1).
Femtosecond study of self-trapped vibrational excitons in crystalline acetanilide
Edler, J.; Hamm, Peter; Scott, Alwyn C.
2002-01-01
Femtosecond IR spectroscopy of delocalized NH excitations of crystalline acetanilide confirms that self-trapping in hydrogen-bonded peptide units exists and does stabilize the excitation. Two phonons with frequencies of 48 and 76 cm(-1) are identified as the major degrees of freedom that mediate ...
Skryshevski, Yu. A.
2014-03-01
The effect of uniaxial pressure (1 × 108 Pa) on the photoluminescence spectra and thermally stimulated luminescence curves of poly(9-vinylcarbazole) has been investigated in the temperature range of 5-295 K. The thermally stimulated luminescence curve of crystalline carbazole has been measured for comparison. The high-temperature wings of the thermally stimulated luminescence curves are approximated by a Gaussian function, the half-width of which characterizes the disorder of energy states of deep structural traps. It is concluded that the pressure inhibits conformational changes of polymer chains of poly(9-vinylcarbazole), which leads to the formation of sandwich-like excimers as well as to an ordering of the spatial arrangement of the side carbazolyl groups. As a result, the concentration of "excimer-forming" centers increases, whereas the degree of disorder of energy states of deep structural traps of charge carriers is reduced by almost half and remains unchanged after the depressurization.
Hernandez, R A Vargas
2015-01-01
We show that Zeeman excitations in an ensemble of highly magnetic atoms trapped in an optical lattice lead to interacting Frenkel excitons described by a tunable $t$-$V$ model. The dispersion of the excitons and the interactions between excitons can be tuned in a wide range by transferring atoms to different Zeeman states. We show that these parameters are insensitive to an external magnetic field, which leads to an interesting possibility of engineering lattice models with significant particle-non-conserving terms. We consider the coupling of the Zeeman excitations to the translational motion of atoms in the lattice and show that the resulting Hamiltonian is equivalent to a polaron Hamiltonian, where the mathematical form of the particle - phonon interaction can be tuned by transferring atoms to different Zeeman states. We calculate the model parameters for the specific system of Dy atoms on an optical lattice with the lattice site separation 266 nm and show that the exciton interaction parameters can be tun...
Plasmon-Exciton-Polariton Lasing
Ramezani, Mohammad; Fernández-Domínguez, Antonio I; Feist, Johannes; Rodriguez, Said Rahimzadeh-Kalaleh; Garcia-Vidal, Francisco J; Gómez-Rivas, Jaime
2016-01-01
Strong coupling of Frenkel excitons with surface plasmons leads to the formation of bosonic quasi-particles known as plasmon-exciton-polaritons (PEPs).Localized surface plasmons in nanoparticles are lossy due to radiative and nonradiative decays, which has hampered the realization of polariton lasing in a plasmonic system, i.e., PEP lasing. These losses can be reduced in collective plasmonic resonances supported by arrays of nanoparticles. Here we demonstrate PEP lasing in arrays of silver nanoparticles by showing the emergence of a threshold in the photoluminescence accompanied by both a superlinear increase of the emission and spectral narrowing. We also observe a reduction of the threshold by increasing the coupling between the molecular excitons and the resonances supported by the array despite the reduction of the quantum efficiency of the emitters. The coexistence of bright and dark collective modes in this plasmonic system allows for a 90?-change of polarization in the emission beyond the threshold.
Excitonic nonlinearities in single-wall carbon nanotubes
Nguyen, D.T.; Voisin, C.; Roussignol, P. [Laboratoire Pierre Aigrain, Ecole Normale Superieure, UPMC, Universite Paris Diderot, CNRS UMR8551, Paris (France); Roquelet, C.; Lauret, J.S. [Laboratoire de Photonique Quantique et Moleculaire de l' Ecole Normale Superieure de Cachan (France); Cassabois, G. [Laboratoire Pierre Aigrain, Ecole Normale Superieure, UPMC, Universite Paris Diderot, CNRS UMR8551, Paris (France); Laboratoire Charles Coulomb, UMR5221, Universite Montpellier 2, Montpellier (France); CNRS, Laboratoire Charles Coulomb, UMR5221, Montpellier (France)
2012-05-15
Excitons are composite bosons that allow a fair description of the optical properties in solid state systems. The quantum confinement in nanostructures enhances the excitonic effects and impacts the exciton-exciton interactions, which tailor the performances of classical and quantum optoelectronic devices, such as lasers or single-photon emitters. The excitonic nonlinearities exhibit significant differences between organic and inorganic compounds. Tightly bound Frenkel excitons in molecular crystals are for instance affected by an efficient exciton-exciton annihilation (EEA). This Auger process also governs the population relaxation dynamics in carbon nanotubes that share many physical properties with organic materials. Here, we show that this similarity breaks down for the excitonic decoherence in carbon nanotubes. Original nonlinear spectral-hole burning experiments bring evidence of pure dephasing induced by exciton-exciton scattering (EES) in the k-space. This mechanism controls the exciton collision-induced broadening, as for Wannier excitons in inorganic semiconductors. We demonstrate that this singular behavior originates from the intrinsic one-dimensionality of excitons in carbon nanotubes, which display unique hybrid features of organic and inorganic systems. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Excitonic energy transfer in light-harvesting complexes in purple bacteria
Ye, Jun; Zhao, Yang; Yu, Yunjin; Lee, Chee Kong; Cao, Jianshu
2012-01-01
Two distinct approaches, the Frenkel-Dirac time-dependent variation and the Haken-Strobl model, are adopted to study energy transfer dynamics in single-ring and double-ring light-harvesting systems in purple bacteria. It is found that inclusion of long-range dipolar interactions in the two methods results in significant increases in intra- or inter-ring exciton transfer efficiency. The dependence of exciton transfer efficiency on trapping positions on single rings of LH2 (B850) and LH1 is similar to that in toy models with nearest-neighbor coupling only. However, owing to the symmetry breaking caused by the dimerization of BChls and dipolar couplings, such dependence has been largely suppressed. In the studies of coupled-ring systems, both methods reveal interesting role of dipolar interaction in increasing energy transfer efficiency by introducing multiple intra/inter-ring transfer paths. Importantly, the time scale (~4ps) of inter-ring exciton transfer obtained from polaron dynamics is in good agreement wit...
NaV2O5 : An exotic exciton system
Mostovoy, MV; Khomskii, DI; Knoester, J; Cho, K; Matsui, A
2001-01-01
We show that the phase transition which sodium vanadate undergoes at T-c = 34 K is driven by a charge ordering. The relevant effective Hamiltonian is of the Frenkel exciton type, with a very large bandwidth to molecular energy ratio. This causes strong non-Heitler-London effects and a temperature de
NaV2O5 : An Exotic Exciton System
Mostovoy, Maxim V.; Khomskii, Daniel I.; Knoester, Jasper
2001-01-01
We show that the phase transition which sodium vanadate undergoes at Tc = 34 K is driven by a charge ordering. The relevant effective Hamiltonian is of the Frenkel exciton type, with a very large bandwidth to molecular energy ratio. This causes strong non-Heitler-London effects and a temperature dep
Poole-frenkel piezoconductive element and sensor
Habermehl, Scott D.
2004-08-03
A new class of highly sensitive piezoconductive strain sensor elements and sensors has been invented. The new elements function under conditions such that electrical conductivity is dominated by Poole-Frenkel transport. A substantial piezoconductive effect appears in this regime, allowing the new sensors to exhibit sensitivity to applied strain as much as two orders of magnitude in excess of prior art sensors based on doped silicon.
The nature of singlet excitons in oligoacene molecular crystals
Yamagata, H.
2011-01-01
A theory for polarized absorption in crystalline oligoacenes is presented, which includes Frenkel exciton coupling, the coupling between Frenkel and charge-transfer (CT) excitons, and the coupling of all neutral and ionic excited states to the dominant ring-breathing vibrational mode. For tetracene, spectra calculated using all Frenkel couplings among the five lowest energy molecular singlet states predict a Davydov splitting (DS) of the lowest energy (0-0) vibronic band of only -32cm-1, far smaller than the measured value of 631cm-1 and of the wrong sign-a negative sign indicating that the polarizations of the lower and upper Davydov components are reversed from experiment. Inclusion of Frenkel-CT coupling dramatically improves the agreement with experiment, yielding a 0-0 DS of 601cm-1 and a nearly quantitative reproduction of the relative spectral intensities of the 0-n vibronic components. Our analysis also shows that CT mixing increases with the size of the oligoacenes. We discuss the implications of these results on exciton dissociation and transport. © 2011 American Institute of Physics.
Optical nutation in the exciton range of spectrum
Khadzhi, P. I. [Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of); Vasiliev, V. V., E-mail: vasscorp@mail.ru [Taras Shevchenko Transnistria State University (Moldova, Republic of)
2013-08-15
Optical nutation in the exciton range of spectrum is studied in the mean field approximation taking into account exciton-photon and elastic exciton-exciton interactions. It is shown that the features of nutation development are determined by the initial exciton and photon densities, the resonance detuning, the nonlinearity parameter, and the initial phase difference. For nonzero initial exciton and photon concentrations, three regimes of temporal evolution of excitons and photons exist: periodic conversion of excitons to photons and vice versa, aperiodic conversion of photons to excitons, and the rest regime. In the rest regime, the initial exciton and photon densities are nonzero and do not change with time. The oscillation amplitudes and periods of particle densities determined by the system parameters are found. The exciton self-trapping and photon trapping appearing in the system at threshold values of the nonlinearity parameter were predicted. As this parameter increases, the oscillation amplitudes of the exciton and photon densities sharply change at the critical value of the nonlinearity parameter. These two phenomena are shown to be caused by the elastic exciton-exciton interaction, resulting in the dynamic concentration shift of the exciton level.
Excitonic energy transfer in light-harvesting complexes in purple bacteria
Ye Jun; Sun Kewei; Zhao Yang; Lee, Chee Kong [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Yu Yunjin [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); College of Physics Science and Technology, Shenzhen University, Guangdong 518060 (China); Cao Jianshu [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2012-06-28
Two distinct approaches, the Frenkel-Dirac time-dependent variation and the Haken-Strobl model, are adopted to study energy transfer dynamics in single-ring and double-ring light-harvesting (LH) systems in purple bacteria. It is found that the inclusion of long-range dipolar interactions in the two methods results in significant increase in intra- or inter-ring exciton transfer efficiency. The dependence of exciton transfer efficiency on trapping positions on single rings of LH2 (B850) and LH1 is similar to that in toy models with nearest-neighbor coupling only. However, owing to the symmetry breaking caused by the dimerization of BChls and dipolar couplings, such dependence has been largely suppressed. In the studies of coupled-ring systems, both methods reveal an interesting role of dipolar interactions in increasing energy transfer efficiency by introducing multiple intra/inter-ring transfer paths. Importantly, the time scale (4 ps) of inter-ring exciton transfer obtained from polaron dynamics is in good agreement with previous studies. In a double-ring LH2 system, non-nearest neighbor interactions can induce symmetry breaking, which leads to global and local minima of the average trapping time in the presence of a non-zero dephasing rate, suggesting that environment dephasing helps preserve quantum coherent energy transfer when the perfect circular symmetry in the hypothetic system is broken. This study reveals that dipolar coupling between chromophores may play an important role in the high energy transfer efficiency in the LH systems of purple bacteria and many other natural photosynthetic systems.
Poole-Frenkel effect in sputter-deposited CuAlO(2+x) nanocrystals.
Banerjee, Arghya Narayan; Joo, Sang Woo
2013-04-26
Field-assisted thermionic emission within a sputter-deposited, nanocrystalline thin film of CuAlO2.06 is observed for the first time, and explained in terms of the Poole-Frenkel model. The presence of adsorbed oxygen ions as trap-states at the grain boundary regions of the nanostructured thin film is considered to manifest this phenomenon. Under an applied field, the barrier of the trap potential is lowered and thermal emission of charge carriers takes place at different sample temperatures to induce nonlinearity in the current (I)-voltage (V) characteristics of the nanomaterial. Fitting of the Poole-Frenkel model with the I-V data shows that the nonlinearity is effective above 50 V under the operating conditions. Calculations of the energy of the trap level, acceptor level and Fermi level reveal the existence of deep level trap-states and a shallow acceptor level with acceptor concentration considerably higher than the trap-states. Hall measurements confirm the p-type semiconductivity of the film, with a hole concentration around 10(18) cm(-3). Thermopower measurements give a room-temperature Seebeck coefficient around 130 μV K(-1). This temperature-dependent conductivity enhancement within CuAlO2 nanomaterial may find interesting applications in transparent electronics and high-voltage applications for power supply networks.
Baumeier, Björn; Andrienko, Denis; Rohlfing, Michael
2012-08-14
Excited states of donor-acceptor dimers are studied using many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation. For a series of prototypical small-molecule based pairs, this method predicts energies of local Frenkel and intermolecular charge-transfer excitations with the accuracy of tens of meV. Application to larger systems is possible and allowed us to analyze energy levels and binding energies of excitons in representative dimers of dicyanovinyl-substituted quarterthiophene and fullerene, a donor-acceptor pair used in state of the art organic solar cells. In these dimers, the transition from Frenkel to charge transfer excitons is endothermic and the binding energy of charge transfer excitons is still of the order of 1.5-2 eV. Hence, even such an accurate dimer-based description does not yield internal energetics favorable for the generation of free charges either by thermal energy or an external electric field. These results confirm that, for qualitative predictions of solar cell functionality, accounting for the explicit molecular environment is as important as the accurate knowledge of internal dimer energies.
Compensation of Dipolar-Exciton Spin Splitting in Magnetic Field
Gorbunov, A. V.; Timofeev, V. B.
2012-01-01
Magnetoluminescence of spatially indirect dipolar excitons collected in 25 nm GaAs/AlGaAs single quantum well within a lateral potential trap has been studied in perpendicular magnetic field in Faraday geometry. The paramagnetic spin splitting of the luminescence line of the heavy-hole excitons in the trap centre is completely compensated at magnetic fields below critical value, around 2 Tesla. The effect of spin-splitting compensation is caused by the exchange interaction in dense exciton Bo...
Communication: Strong excitonic and vibronic effects determine the optical properties of Li₂O₂
García Lastra, Juan Maria; Bass, J. D.; Thygesen, Kristian Sommer
2011-01-01
The band structure and optical absorption spectrum of lithium peroxide (Li2O2) is calculated from first-principles using the G0W0 approximation and the Bethe-Salpeter equation, respectively. A strongly localized (Frenkel type) exciton corresponding to the π*→σ* transition on the O2 −2 peroxide io...
Modeling the optical properties of excitons in linear and tubular J-aggregates
Knoester, Jasper
2006-01-01
The theory of the optical properties of linear and tubular molecular J-aggregates is reviewed. The primary optical excitations in these systems are Frenkel excitons, which may be delocalized over many molecules. The collective nature of these excitations gives rise to special optical properties and
Theory of exciton transfer and diffusion in conjugated polymers
Barford, William, E-mail: william.barford@chem.ox.ac.uk [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ (United Kingdom); Tozer, Oliver Robert [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ (United Kingdom); University College, University of Oxford, Oxford OX1 4BH (United Kingdom)
2014-10-28
We describe a theory of Förster-type exciton transfer between conjugated polymers. The theory is built on three assumptions. First, we assume that the low-lying excited states of conjugated polymers are Frenkel excitons coupled to local normal modes, and described by the Frenkel-Holstein model. Second, we assume that the relevant parameter regime is ℏω < J, i.e., the adiabatic regime, and thus the Born-Oppenheimer factorization of the electronic and nuclear degrees of freedom is generally applicable. Finally, we assume that the Condon approximation is valid, i.e., the exciton-polaron wavefunction is essentially independent of the normal modes. The resulting expression for the exciton transfer rate has a familiar form, being a function of the exciton transfer integral and the effective Franck-Condon factors. The effective Franck-Condon factors are functions of the effective Huang-Rhys parameters, which are inversely proportional to the chromophore size. The Born-Oppenheimer expressions were checked against DMRG calculations, and are found to be within 10% of the exact value for a tiny fraction of the computational cost. This theory of exciton transfer is then applied to model exciton migration in conformationally disordered poly(p-phenylene vinylene). Key to this modeling is the assumption that the donor and acceptor chromophores are defined by local exciton ground states (LEGSs). Since LEGSs are readily determined by the exciton center-of-mass wavefunction, this theory provides a quantitative link between polymer conformation and exciton migration. Our Monte Carlo simulations indicate that the exciton diffusion length depends weakly on the conformation of the polymer, with the diffusion length increasing slightly as the chromophores became straighter and longer. This is largely a geometrical effect: longer and straighter chromophores extend over larger distances. The calculated diffusion lengths of ∼10 nm are in good agreement with experiment. The spectral
Control of Exciton Photon Coupling in Nano-structures
Liu, Xiaoze
In this thesis, we study the interaction of excitons with photons and plasmons and methods to control and enhance this interaction. This study is categorized in three parts: light-matter interaction in microcavity structures, direct dipole-dipole interactions, and plasmon-exciton interaction in metal-semiconductor systems. In the microcavity structures, the light-matter interactions become significant when the excitonic energy is in resonance with microcavity photons. New hybrid quantum states named polariton states will be formed if the strong coupling regime is achieved, where the interaction rate is faster than the average decay rate of the excitons and photons. Polaritons have been investigated in zinc oxide (ZnO) nanoparticles based microcavity at room temperature and stimulated emission of the polaritons has also been observed with a low optical pump threshold. Exictons in organic semiconductors (modeled as Frenkel excitons) are tightly bound to molecular sites, and differ considerably from loosely bound hydrogen atom-like inorganic excitons (modeled as Wannier-Mott excitons). This fundamental difference results in distinct optoelectronic properties. Not only strongly coupled to Wannier-Mott excitons in ZnO, the microcavity photons have also been observed to be simultaneously coupled to Frenkel excitons in 3,4,7,8-naphthalene tetracarboxylic dianhydride (NTCDA). The photons here act like a glue combining Wannier-Mott and Frenkel excitons into new hybrid polaritons taking the best from both constituents. Two-dimensional (2D) excitons in monolayer transition metal dichalcogenides (TMDs) have emerged as a new and fascinating type of Wannier-Mott-like excitons due to direct bandgap transition, huge oscillator strength and large binding energy. Monolayer molybdenum disulfide (MoS2) has been incorporated into the microcavity structure and 2D exciton-polaritons have been observed for the first time with directional emission in the strong coupling regime. Valley
Frenkel electron on an arbitrary electromagnetic background and magnetic Zitterbewegung
Deriglazov, Alexei A
2014-01-01
We present Lagrangian which implies both necessary constraints and dynamical equations for position and spin of relativistic spin one-half particle. The model is consistent for any value of magnetic moment $\\mu$ and for arbitrary electromagnetic background. Our equations coincide with those of Frenkel in the approximation in which the latter have been obtained by Frenkel. Transition from approximate to exact equations yields two structural modifications of the theory. First, Frenkel condition on spin-tensor turns into the Pirani condition. Second, canonical momentum is no more proportional to velocity. Due to this, even when $\\mu=1$ (Frenkel case), the complete and approximate equations predict different behavior of spinning particle. The difference of momentum from velocity means extra contribution into spin-orbit interaction. To estimate the contribution, we found exact solution to complete equations for the case of uniform magnetic field. While BMT electron moves around the circle, our particle experiences...
McCall, Kyle M.; Stoumpos, Constantinos C.; Kostina, Svetlana S.; Kanatzidis, Mercouri G.; Wessels, Bruce W.
2017-04-26
The optical and electronic properties of Bridgman grown single crystals of the wide-bandgap semiconducting defect halide perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb) have been investigated. Intense Raman scattering was observed at room temperature for each compound, indicating high polarizability and strong electron–phonon coupling. Both low-temperature and room-temperature photoluminescence (PL) were measured for each compound. Cs3Sb2I9 and Rb3Sb2I9 have broad PL emission bands between 1.75 and 2.05 eV with peaks at 1.96 and 1.92 eV, respectively. The Cs3Bi2I9 PL spectra showed broad emission consisting of several overlapping bands in the 1.65–2.2 eV range. Evidence of strong electron–phonon coupling comparable to that of the alkali halides was observed in phonon broadening of the PL emission. Effective phonon energies obtained from temperature-dependent PL measurements were in agreement with the Raman peak energies. A model is proposed whereby electron–phonon interactions in Cs3Sb2I9, Rb3Sb2I9, and Cs3Bi2I9 induce small polarons, resulting in trapping of excitons by the lattice. The recombination of these self-trapped excitons is responsible for the broad PL emission. Rb3Bi2I9, Rb3Sb2I9, and Cs3Bi2I9 exhibit high resistivity and photoconductivity response under laser photoexcitation, indicating that these compounds possess potential as semiconductor hard radiation detector materials.
Exciton in type-II quantum dot
Sierra-Ortega, J; Escorcia, R A [Universidad del Magdalena, A. A. 731, Santa Marta (Colombia); Mikhailov, I D, E-mail: jsierraortega@gmail.co [Universidad Industrial de Santander, A. A. 678, Bucaramanga (Colombia)
2009-05-01
We study the quantum-size effect and the influence of the external magnetic field on the exciton ground state energy in the type-II InP quantum disk, lens and pyramid deposited on a wetting layer and embedded in a GaInP matrix. We show that the charge distribution over and below quantum dot and wetting layer induced by trapped exciton strongly depends on the quantum dot morphology and the strength of the magnetic field.
Bose-Einstein condensation of dipolar excitons in quantum wells
Timofeev, V B; Gorbunov, A V, E-mail: timofeev@issp.ac.r [Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region (Russian Federation)
2009-02-01
The experiments on Bose-Einstein condensation (BEC) of dipolar (spatially-indirect) excitons in the lateral traps in GaAs/AlGaAs Schottky-diode heterostructures with double and single quantum wells are presented. The condensed part of dipolar excitons under detection in the far zone is placed in k-space in the range which is almost two orders of magnitude less than thermal exciton wave vector. BEC occurs spontaneously in a reservoir of thermalized excitons. Luminescence images of Bose-condensate of dipolar excitons exhibit along perimeter of circular trap axially symmetrical spatial structures of equidistant bright spots which strongly depend on excitation power and temperature. By means of two-beam interference experiments with the use of cw and pulsed photoexcitation it was found that the state of dipolar exciton Bose-condensate is spatially coherent and the whole patterned luminescence configuration in real space is described by a common wave function.
Sanjeev K Gupta; A Azam; J Akhtar
2010-02-01
Electrical properties of SiO2 grown on the Si-face of the epitaxial 4H-SiC substrate by wet thermal oxidation technique have been experimentally investigated in metal oxide–silicon carbide (MOSiC) structure with varying oxide thicknesses employing Poole–Frenkel (P–F) conduction mechanism. The quality of SiO2 with increasing thickness in MOSiC structure has been analysed on the basis of variation in multiple oxide traps due to effective P–F conduction range. Validity of Poole–Frenkel conduction is established quantitatively employing electric field and the oxide thickness using forward – characteristics across MOSiC structures. From P–F conduction plot (ln(/) vs. 1/2), it is revealed that Poole–Frenkel conduction retains its validation after a fixed electric field range. The experimental methodology adopted is useful for the characterization of oxide films grown on 4H-SiC substrate.
Localized Excitons in Carbon Nanotubes.
Adamska, Lyudmyla; Doorn, Stephen K.; Tretiak, Sergei
2015-03-01
It has been historically known that unintentional defects in carbon nanotubes (CNTs) may fully quench the fluorescence. However, some dopants may enhance the fluorescence by one order of magnitude thus turning the CNTs, which are excellent light absorbers, in good emitters. We have correlated the experimentally observed photoluminescence spectra to the electronic structure simulations. Our experiment reveals multiple sharp asymmetric emission peaks at energies 50-300 meV red-shifted from that of the lowest bright exciton peak. Our simulations suggest an association of these peaks with deep trap states tied to different specific chemical adducts. While the wave functions of excitons in undoped CNTs are delocalized, those of the deep-trap states are strongly localized and pinned to the dopants. These findings are consistent with the experimental observation of asymmetric broadening of the deep trap emission peaks, which can result from scattering of acoustic phonons on localized excitons. Our work lays the foundation to utilize doping as a generalized route for wave function engineering and direct control of carrier dynamics in SWCNTs toward enhanced light emission properties for photonic applications.
Bose-Einstein condensation and indirect excitons: a review.
Combescot, Monique; Combescot, Roland; Dubin, François
2017-06-01
We review recent progress on Bose-Einstein condensation (BEC) of semiconductor excitons. The first part deals with theory, the second part with experiments. This Review is written at a time where the problem of exciton Bose-Einstein condensation has just been revived by the understanding that the exciton condensate must be dark because the exciton ground state is not coupled to light. Here, we theoretically discuss this missed understanding before providing its experimental support through experiments that scrutinize indirect excitons made of spatially separated electrons and holes. The theoretical part first discusses condensation of elementary bosons. In particular, the necessary inhibition of condensate fragmentation by exchange interaction is stressed, before extending the discussion to interacting bosons with spin degrees of freedom. The theoretical part then considers composite bosons made of two fermions like semiconductor excitons. The spin structure of the excitons is detailed, with emphasis on the crucial fact that ground-state excitons are dark: indeed, this imposes the exciton Bose-Einstein condensate to be not coupled to light in the dilute regime. Condensate fragmentations are then reconsidered. In particular, it is shown that while at low density, the exciton condensate is fully dark, it acquires a bright component, coherent with the dark one, beyond a density threshold: in this regime, the exciton condensate is 'gray'. The experimental part first discusses optical creation of indirect excitons in quantum wells, and the detection of their photoluminescence. Exciton thermalisation is also addressed, as well as available approaches to estimate the exciton density. We then switch to specific experiments where indirect excitons form a macroscopic fragmented ring. We show that such ring provides efficient electrostatic trapping in the region of the fragments where an essentially-dark exciton Bose-Einstein condensate is formed at sub-Kelvin bath
Bose-Einstein condensation and indirect excitons: a review
Combescot, Monique; Combescot, Roland; Dubin, François
2017-06-01
We review recent progress on Bose-Einstein condensation (BEC) of semiconductor excitons. The first part deals with theory, the second part with experiments. This Review is written at a time where the problem of exciton Bose-Einstein condensation has just been revived by the understanding that the exciton condensate must be dark because the exciton ground state is not coupled to light. Here, we theoretically discuss this missed understanding before providing its experimental support through experiments that scrutinize indirect excitons made of spatially separated electrons and holes. The theoretical part first discusses condensation of elementary bosons. In particular, the necessary inhibition of condensate fragmentation by exchange interaction is stressed, before extending the discussion to interacting bosons with spin degrees of freedom. The theoretical part then considers composite bosons made of two fermions like semiconductor excitons. The spin structure of the excitons is detailed, with emphasis on the crucial fact that ground-state excitons are dark: indeed, this imposes the exciton Bose-Einstein condensate to be not coupled to light in the dilute regime. Condensate fragmentations are then reconsidered. In particular, it is shown that while at low density, the exciton condensate is fully dark, it acquires a bright component, coherent with the dark one, beyond a density threshold: in this regime, the exciton condensate is ‘gray’. The experimental part first discusses optical creation of indirect excitons in quantum wells, and the detection of their photoluminescence. Exciton thermalisation is also addressed, as well as available approaches to estimate the exciton density. We then switch to specific experiments where indirect excitons form a macroscopic fragmented ring. We show that such ring provides efficient electrostatic trapping in the region of the fragments where an essentially-dark exciton Bose-Einstein condensate is formed at sub-Kelvin bath
Poole-Frenkel behavior in amorphous oxide thin-film transistors prepared on SiOC
Oh, Teresa
2014-05-01
The electron behavior in amorphous indium-gallium-zinc-oxide thin film transistors (a-IGZO TFTs) depends on the polar characteristics of SiOC, which is used as a gate dielectric. The properties of the interface between the semiconductor and SiOC were defined by using a Schottky contact with a low potential barrier and Poole-Frenkel contacts with a high potential barrier. The leakage current of SiOC, which was used as a gate insulator, decreased at the Poole-Frenkel contacts because of the high potential barrier. The ambipolar properties in the field effect transistor were observed to depend on the various characteristics of SiOC, which ranged from its behaving as an ideal insulator or as a material with a high dielectric constant. The resistance of the a-IGZO channel changed from positive to negative at SiOC, which had the lowest polarity. As to the conduction due to the diffusion current, the mobility increased with increasing carrier concentrations. However, the drift carrier conduction was related to the reduced mobility at higher carrier concentrations. The performance of the transistors was enhanced by the tunneling and the diffusion currents Rather than by the drift current caused by trapping. The Schottky contact and the Poole-Frenkel (PF) contacts at an interface between the IGZO channel and the SiOC were defined according to the heights of potential barriers caused by the depletion layer. The leakage current was very low about 10-12 A at SiOC with PF contacts because of the height of potential barrier was double that with a Schottky contact because the tunneling conductance due to the diffusion current originated from the PF contacts of non-polar SiOC.
Poole-Frenkel behavior in amorphous oxide thin-film transistors prepared on SiOC
Oh, Teresa [Cheongju University, Cheongju (Korea, Republic of)
2014-05-15
The electron behavior in amorphous indium-gallium-zinc-oxide thin film transistors (a-IGZO TFTs) depends on the polar characteristics of SiOC, which is used as a gate dielectric. The properties of the interface between the semiconductor and SiOC were defined by using a Schottky contact with a low potential barrier and Poole-Frenkel contacts with a high potential barrier. The leakage current of SiOC, which was used as a gate insulator, decreased at the Poole-Frenkel contacts because of the high potential barrier. The ambipolar properties in the field effect transistor were observed to depend on the various characteristics of SiOC, which ranged from its behaving as an ideal insulator or as a material with a high dielectric constant. The resistance of the a-IGZO channel changed from positive to negative at SiOC, which had the lowest polarity. As to the conduction due to the diffusion current, the mobility increased with increasing carrier concentrations. However, the drift carrier conduction was related to the reduced mobility at higher carrier concentrations. The performance of the transistors was enhanced by the tunneling and the diffusion currents Rather than by the drift current caused by trapping. The Schottky contact and the Poole-Frenkel (PF) contacts at an interface between the IGZO channel and the SiOC were defined according to the heights of potential barriers caused by the depletion layer. The leakage current was very low about 10{sup -12} A at SiOC with PF contacts because of the height of potential barrier was double that with a Schottky contact because the tunneling conductance due to the diffusion current originated from the PF contacts of non-polar SiOC.
Frenkel electron and a spinning body in a curved background
Ramírez, Walberto Guzmán; Pupasov-Maksimov, Andrey M
2014-01-01
We develop variational formulation of a particle with spin in a curved space-time background. The model is based on a singular Lagrangian which provides equations of motion, fixed value of spin and Frenkel condition on spin-tensor. Comparing our equations with those of Papapetrou, we conclude that the Frenkel electron in gravitational field has the same behavior as a rotating body in pole-dipole and leading-spin approximation. Due to constraints presented in the formulation, position space is endowed with noncommutative structure induced by spin of the particle. Therefore the model provides physically interesting example of noncommutative particle in a curved background.
Contribution of Frenkel's theory to the development of materials science
Pavlović V.B.
2006-01-01
Full Text Available The original and comprehensive research of Yakov Ilich Frenkel in physics and physical chemistry of condensed states, nuclear physics, electrodynamics, science of sintering has significantly contributed to the development of modern scientific knowledge and his scientific ideas are still an inspiration to many scientists. Having in mind the wealth of scientific ideas he had in the research of electroconductivity in metals, crystal structure imperfections and phase transitions and in founding the science of sintering, the contribution of individual theories of Frenkel of significance to materials science are presented in this paper.
Schröter, M.; Ivanov, S.D.; Schulze, J. [Institut für Physik, Universität Rostock, D-18051 Rostock (Germany); Polyutov, S.P. [Institut für Physik, Universität Rostock, D-18051 Rostock (Germany); Laboratory for Nonlinear Optics and Spectroscopy, Siberian Federal University, Svobodniy, 79, 660041 Krasnoyarsk (Russian Federation); Yan, Y. [Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Normal College, Guizhou 550018 (China); Pullerits, T. [Department of Chemical Physics, Lund University, P.O. Box 124, S-22100 Lund (Sweden); Kühn, O., E-mail: oliver.kuehn@uni-rostock.de [Institut für Physik, Universität Rostock, D-18051 Rostock (Germany)
2015-03-18
The influence of exciton–vibrational coupling on the optical and transport properties of molecular aggregates is an old problem that gained renewed interest in recent years. On the experimental side, various nonlinear spectroscopic techniques gave insight into the dynamics of systems as complex as photosynthetic antennae. Striking evidence was gathered that in these protein–pigment complexes quantum coherence is operative even at room temperature conditions. Investigations were triggered to understand the role of vibrational degrees of freedom, beyond that of a heat bath characterized by thermal fluctuations. This development was paralleled by theory, where efficient methods emerged, which could provide the proper frame to perform non-Markovian and non-perturbative simulations of exciton–vibrational dynamics and spectroscopy. This review summarizes the state of affairs of the theory of exciton–vibrational interaction in molecular aggregates and photosynthetic antenna complexes. The focus is put on the discussion of basic effects of exciton–vibrational interaction from the stationary and dynamics points of view. Here, the molecular dimer plays a prominent role as it permits a systematic investigation of absorption and emission spectra by numerical diagonalization of the exciton–vibrational Hamiltonian in a truncated Hilbert space. An extension to larger aggregates, having many coupled nuclear degrees of freedom, becomes possible with the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method for wave packet propagation. In fact it will be shown that this method allows one to approach the limit of almost continuous spectral densities, which is usually the realm of density matrix theory. Real system–bath situations are introduced for two models, which differ in the way strongly coupled nuclear coordinates are treated, as a part of the relevant system or the bath. A rather detailed exposition of the Hierarchy Equations Of Motion (HEOM) method will be given in terms of a stochastic decoupling ansatz. This method has become the standard in exciton–vibrational theory and illustrative examples will be presented as well as a comparison with ML-MCTDH. Applications will be shown for generic model systems as well as for small aggregates mimicking those formed by perylene bisimide dyes. Further, photosynthetic antenna complexes will be discussed, including spectral densities and the role of exciton–vibrational coupling in two-dimensional electronic spectroscopy.
Zig-zag version of the Frenkel-Kontorova model
Christiansen, Peter Leth; Savin, A.V.; Zolotaryuk, Alexander
1996-01-01
We study a generalization of the Frenkel-Kontorova model which describes a zig-zag chain of particles coupled by both the first- and second-neighbor harmonic forces and subjected to a planar substrate with a commensurate potential relief. The particles are supposed to have two degrees of freedom:...
Poole-Frenkel (PF) effect high field saturation
1989-01-01
An improved Poole Frenkel (PF) effect, based upon a rigorous methodological approach, is proposed. The chosen model is stated precisely, emphasis being made explicitly on the subtending hypotheses. A systematic reference to Fermi-Dirac function, allows to establish quantitatively the concept of PF saturation. The resulting general theory integrates, as particular applications, the previous one-dimensional PF theories.
Long-range coherence of interacting Bose gas of dipolar excitons
Timofeev, V B; Gorbunov, A V; Larionov, A V [Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka (Russian Federation)
2007-07-25
Experiments connected with dipolar exciton Bose condensation in lateral traps are reviewed. Observations of long-range coherence of condensate in ring electrostatic traps in Schottky-diode heterostructures with double and single quantum wells are presented and discussed.
Quantized Vortices and Four-Component Superfluidity of Semiconductor Excitons.
Anankine, Romain; Beian, Mussie; Dang, Suzanne; Alloing, Mathieu; Cambril, Edmond; Merghem, Kamel; Carbonell, Carmen Gomez; Lemaître, Aristide; Dubin, François
2017-03-24
We study spatially indirect excitons of GaAs quantum wells, confined in a 10 μm electrostatic trap. Below a critical temperature of about 1 K, we detect macroscopic spatial coherence and quantized vortices in the weak photoluminescence emitted from the trap. These quantum signatures are restricted to a narrow range of density, in a dilute regime. They manifest the formation of a four-component superfluid, made by a low population of optically bright excitons coherently coupled to a dominant fraction of optically dark excitons.
Poole-Frenkel effect and phonon-assisted tunneling in GaAs nanowires.
Katzenmeyer, Aaron M; Léonard, François; Talin, A Alec; Wong, Ping-Show; Huffaker, Diana L
2010-12-08
We present electronic transport measurements of GaAs nanowires grown by catalyst-free metal-organic chemical vapor deposition. Despite the nanowires being doped with a relatively high concentration of substitutional impurities, we find them inordinately resistive. By measuring sufficiently high aspect ratio nanowires individually in situ, we decouple the role of the contacts and show that this semi-insulating electrical behavior is the result of trap-mediated carrier transport. We observe Poole-Frenkel transport that crosses over to phonon-assisted tunneling at higher fields, with a tunneling time found to depend predominantly on fundamental physical constants as predicted by theory. By using in situ electron beam irradiation of individual nanowires, we probe the nanowire electronic transport when free carriers are made available, thus revealing the nature of the contacts.
Thermodynamic properties of supercritical carbon dioxide: Widom and Frenkel lines
Fomin, Yu. D.; Ryzhov, V. N.; Tsiok, E. N.; Brazhkin, V. V.
2015-02-01
Supercritical fluids are widely used in a number of important technological applications, yet the theoretical progress in the field has been rather moderate. Fairly recently, a new understanding of the liquidlike and gaslike properties of supercritical fluids has come to the fore, particularly with the advent of the Widom and Frenkel lines that aim to demarcate different physical properties on the phase diagram. Here, we report the results of a computational study of supercritical carbon dioxide, one of the most important fluids in the chemical industry. We study the response functions of CO2 in the supercritical state and calculate the locations of their maxima (Widom lines). We also report the preliminary calculations of the Frenkel line, the line of crossover of microscopic dynamics of particles. Our insights are relevant to physical processes in the atmosphere of Venus and its evolution.
Travelling waves for a Frenkel-Kontorova chain
Buffoni, Boris; Schwetlick, Hartmut; Zimmer, Johannes
2017-08-01
In this article, the Frenkel-Kontorova model for dislocation dynamics is considered, where the on-site potential consists of quadratic wells joined by small arcs, which can be spinodal (concave) as commonly assumed in physics. The existence of heteroclinic waves-making a transition from one well of the on-site potential to another-is proved by means of a Schauder fixed point argument. The setting developed here is general enough to treat such a Frenkel-Kontorova chain with smooth (C2) on-site potential. It is shown that the method can also establish the existence of two-transition waves for a piecewise quadratic on-site potential.
Frenkel electron and a spinning body in a curved background
Ramírez, Walberto Guzmán [Depto. de Matemática, ICE,Universidade Federal de Juiz de Fora, São Pedro, MG (Brazil); Deriglazov, Alexei A. [Depto. de Matemática, ICE,Universidade Federal de Juiz de Fora, São Pedro, MG (Brazil); Laboratory of Mathematical Physics, Tomsk Polytechnic University,634050 Tomsk, Lenin Ave. 30 (Russian Federation); Pupasov-Maksimov, Andrey M. [Depto. de Matemática, ICE,Universidade Federal de Juiz de Fora, São Pedro, MG (Brazil)
2014-03-24
We develop a variational formulation of a particle with spin in a curved space-time background. The model is based on a singular Lagrangian which provides equations of motion, a fixed value of spin and Frenkel condition on spin-tensor. Comparing our equations with those of Papapetrou we conclude that the Frenkel electron in a gravitational field has the same behavior as a rotating body in the pole-dipole and leading-spin approximation. Due to constraints presented in the formulation, position space is endowed with a noncommutative structure induced by the spin of the particle. Therefore, the model provides a physically interesting example of a noncommutative particle in a curved background.
Exciton and multi-exciton dynamics in CdSe/Cd1-xZnxS quantum dots
Righetto, Marcello; Minotto, Alessandro; Bozio, Renato
2016-04-01
The outstanding optical properties of Semiconductor Quantum Dots (QDs) have attracted much interest for over two decades. The development of synthetic methods for the production of core-shell QDs has opened the way to attaining almost ideal emitting properties. Their implementation in opto-electronic devices, such as light emitting diodes (LEDs) and lasers, requires a full understanding of the fine details of their photophysics. The exciton dynamics of core and coreshell QDs was extensively studied by means of pump and probe (P and P) and transient photoluminescence (TRPL) spectroscopies. Nevertheless, the wealth of possible exciton and multi-exciton decay mechanisms, operating on comparable time-scales, results in complex signals. In this work, the exciton dynamics of a complete CdSe/Cd1-xZnxS series is investigated, with a focus on exciton trapping processes. Insights into the energy distribution of exciton traps are unveiled by wavelength resolve QY measurements. Multicolor P and P measurements give a deeper insight into the dynamics of exciton trapping and Auger recombinations. An inversion method is proposed as a powerful tool for separating different contribution in complex P and P transients. The outcomes of this work clarify the role of core/shell interfaces and surfaces in modulating the optical properties and suggest possible routes for their improvement.
Diamagnetic excitons and exciton magnetopolaritons in semiconductors
Seisyan, R. P.
2012-05-01
Interband magneto-absorption in semiconductors is reviewed in the light of the diamagnetic exciton (DE) concept. Beginning with a proof of the exciton nature of oscillating-magnetoabsorption (the DE discovery), development of the DE concept is discussed, including definition of observation conditions, quasi-cubic approximation for hexagonal crystals, quantum-well effects in artificial structures, and comprehension of an important role of the DE polariton. The successful use of the concept application to a broad range of substances is reviewed, namely quasi-Landau magnetic spectroscopy of the ‘Rydberg’ exciton states in cubic semiconductors such as InP and GaAs and in hexagonal ones such as CdSe, the proof of exciton participation in the formation of optical spectra in narrow-gap semiconductors such as InSb, InAs, and, especially, PbTe, observation of DE spectra in semiconductor solid solutions like InGaAs. The most fundamental findings of the DE spectroscopy for various quantum systems are brought together, including the ‘Coulomb-well’ effect, fine structure of discrete oscillatory states in the InGaAs/GaAs multiple quantum wells, the magneto-optical observation of above-barrier exciton. Prospects of the DE physics in ultrahigh magnetic field are discussed, including technological creation of controllable low-dimensional objects with extreme oscillator strengths, formation of magneto-quantum exciton polymer, and even modelling of the hydrogen behaviour in the atmosphere of a neutron star.
Poole-Frenkel Effect in Terahertz Electromagnetic Fields
1995-01-01
The ionisation of deep impurity centres in germanium has been observed with radiation in the terahertz range where the photon energy is much less than the binding energy of the impurities. It is shown that for not too high radiation intensities the ionisation is caused by the Poole-Frenkel effect. As in the well-known case of d.c. fields, the electric field of the high-frequency radiation lowers the Coulomb potential barrier and enhances the thermal emission of carriers.
Garkavenko A. S.
2011-08-01
Full Text Available The rate equations of the exciton laser in the system of interacting excitons have been obtained and the inverted population conditions and generation have been derived. The possibility of creating radically new gamma-ray laser has been shown.
Kinetic theory of exciton-exciton annihilation.
May, Volkhard
2014-02-07
Weakly excited states of dye aggregates and supramolecular complexes can be characterized by single or two exciton states. Stronger excitation results in the presence of multiple excited molecules, and complex processes of internal energy transfer dynamics take place. The direct consideration of all excited states is limited to systems with a few molecules only. Therefore, an approach is used based on transition operators among the molecular states of interest and resulting in a dynamic theory for excitation energy transfer in strongly excited molecular systems. As a first application of this theory a detailed description of exciton-exciton annihilation is given. The obtained novel nonlinear theory is related to the standard description. Possible further approximation schemes in the offered theoretical framework are discussed.
Boukahil, A.; Huber, D. L.
1993-12-01
A study is made of the decay of the resonance fluorescence following pulsed excitation of a weakly disordered system whose optical excitations are Frenkel excitons. The disorder is characterized by a Gaussian distribution of optical transition frequencies with no correlation between different sites. The duration of the resonant pulse is taken to be short in comparison with the reciprocal of the optical linewidth, and the wavelength of the light is assumed to be large in comparison with either the size of the array or the exciton mean free path associated with the disorder. In the limit where σ, the standard deviation of the Gaussian distribution, is much less than the exciton bandwidth, the integrated intensity of the fluorescence decays non-exponentially and is characterized by universal functions of σ xt, where x= 4/3, 2, and 4 in one, two, and three dimensions, respectively. Analytic approximations to the scaling functions in two and three dimensions are presented.
An exciton-polariton laser based on biologically produced fluorescent protein.
Dietrich, Christof P; Steude, Anja; Tropf, Laura; Schubert, Marcel; Kronenberg, Nils M; Ostermann, Kai; Höfling, Sven; Gather, Malte C
2016-08-01
Under adequate conditions, cavity polaritons form a macroscopic coherent quantum state, known as polariton condensate. Compared to Wannier-Mott excitons in inorganic semiconductors, the localized Frenkel excitons in organic emitter materials show weaker interaction with each other but stronger coupling to light, which recently enabled the first realization of a polariton condensate at room temperature. However, this required ultrafast optical pumping, which limits the applications of organic polariton condensates. We demonstrate room temperature polariton condensates of cavity polaritons in simple laminated microcavities filled with biologically produced enhanced green fluorescent protein (eGFP). The unique molecular structure of eGFP prevents exciton annihilation even at high excitation densities, thus facilitating polariton condensation under conventional nanosecond pumping. Condensation is clearly evidenced by a distinct threshold, an interaction-induced blueshift of the condensate, long-range coherence, and the presence of a second threshold at higher excitation density that is associated with the onset of photon lasing.
An exciton-polariton laser based on biologically produced fluorescent protein
Dietrich, Christof P.; Steude, Anja; Tropf, Laura; Schubert, Marcel; Kronenberg, Nils M.; Ostermann, Kai; Höfling, Sven; Gather, Malte C.
2016-01-01
Under adequate conditions, cavity polaritons form a macroscopic coherent quantum state, known as polariton condensate. Compared to Wannier-Mott excitons in inorganic semiconductors, the localized Frenkel excitons in organic emitter materials show weaker interaction with each other but stronger coupling to light, which recently enabled the first realization of a polariton condensate at room temperature. However, this required ultrafast optical pumping, which limits the applications of organic polariton condensates. We demonstrate room temperature polariton condensates of cavity polaritons in simple laminated microcavities filled with biologically produced enhanced green fluorescent protein (eGFP). The unique molecular structure of eGFP prevents exciton annihilation even at high excitation densities, thus facilitating polariton condensation under conventional nanosecond pumping. Condensation is clearly evidenced by a distinct threshold, an interaction-induced blueshift of the condensate, long-range coherence, and the presence of a second threshold at higher excitation density that is associated with the onset of photon lasing. PMID:27551686
Excitons and Cooper pairs two composite bosons in many-body physics
Combescot, Monique
2015-01-01
This book bridges a gap between two major communities of Condensed Matter Physics, Semiconductors and Superconductors, that have thrived independently. Through an original perspective that their key particles, excitons and Cooper pairs, are composite bosons, the authors raise fundamental questions of current interest: how does the Pauli exclusion principle wield its power on the fermionic components of bosonic particles at a microscopic level and how this affects the macroscopic physics? What can we learn from Wannier and Frenkel excitons and from Cooper pairs that helps us understand "bosonic condensation" of composite bosons and its difference from Bose-Einstein condensation of elementary bosons? The authors start from solid mathematical and physical foundation to derive excitons and Cooper pairs. They further introduce Shiva diagrams as a graphic support to grasp the many-body physics induced by fermion exchange - a novel mechanism not visualized by standard Feynman diagrams. Advanced undergraduate or grad...
Poole-Frenkel-effect as dominating current mechanism in thin oxide films—An illusion?!
Schroeder, Herbert [Electronic Materials, PGI-7, Research Center Jülich, 52425 Jülich (Germany)
2015-06-07
In many of the publications, over 50 per year for the last five years, the Poole-Frenkel-effect (PFE) is identified or suggested as dominating current mechanism to explain measured current–electric field dependencies in metal-insulator-metal (MIM) thin film stacks. Very often, the insulating thin film is a metal oxide as this class of materials has many important applications, especially in information technology. In the overwhelming majority of the papers, the identification of the PFE as dominating current mechanism is made by the slope of the current–electric field curve in the so-called Poole-Frenkel plot, i.e., logarithm of current density, j, divided by the applied electric field, F, versus the square root of that field. This plot is suggested by the simplest current equation for the PFE, which comprises this proportionality (ln(j/F) vs. F{sup 1/2}) leading to a straight line in this plot. Only one other parameter (except natural constants) may influence this slope: the optical dielectric constant of the insulating film. In order to identify the importance of the PFE simulation studies of the current through MIM stacks with thin insulating films were performed and the current–electric field curves without and with implementation of the PFE were compared. For the simulation, an advanced current model has been used combining electronic carrier injection/ejection currents at the interfaces, described by thermionic emission, with the carrier transport in the dielectric, described by drift and diffusion of electrons and holes in a wide band gap semiconductor. Besides the applied electric field (or voltage), many other important parameters have been varied: the density of the traps (with donor- and acceptor-like behavior); the zero-field energy level of the traps within the energy gap, this energy level is changed by the PFE (also called internal Schottky effect); the thickness of the dielectric film; the permittivity of the dielectric film simulating
Poole-Frenkel-effect as dominating current mechanism in thin oxide films—An illusion?!
Schroeder, Herbert
2015-06-01
In many of the publications, over 50 per year for the last five years, the Poole-Frenkel-effect (PFE) is identified or suggested as dominating current mechanism to explain measured current-electric field dependencies in metal-insulator-metal (MIM) thin film stacks. Very often, the insulating thin film is a metal oxide as this class of materials has many important applications, especially in information technology. In the overwhelming majority of the papers, the identification of the PFE as dominating current mechanism is made by the slope of the current-electric field curve in the so-called Poole-Frenkel plot, i.e., logarithm of current density, j, divided by the applied electric field, F, versus the square root of that field. This plot is suggested by the simplest current equation for the PFE, which comprises this proportionality (ln(j/F) vs. F1/2) leading to a straight line in this plot. Only one other parameter (except natural constants) may influence this slope: the optical dielectric constant of the insulating film. In order to identify the importance of the PFE simulation studies of the current through MIM stacks with thin insulating films were performed and the current-electric field curves without and with implementation of the PFE were compared. For the simulation, an advanced current model has been used combining electronic carrier injection/ejection currents at the interfaces, described by thermionic emission, with the carrier transport in the dielectric, described by drift and diffusion of electrons and holes in a wide band gap semiconductor. Besides the applied electric field (or voltage), many other important parameters have been varied: the density of the traps (with donor- and acceptor-like behavior); the zero-field energy level of the traps within the energy gap, this energy level is changed by the PFE (also called internal Schottky effect); the thickness of the dielectric film; the permittivity of the dielectric film simulating different oxide
Nature of the narrow optical band in H*-aggregates: Dozy-chaos-exciton coupling
Egorov, Vladimir V.
2014-07-01
Dozy chaos emerges as a combined effect of the collective chaotic motion of electrons and nuclei, and their chaotic electromagnetic interactions in the transient state of molecules experiencing quantum transitions. Following earlier discussions of the well-known Brönsted relations for proton-transfer reactions; the temperature-dependent electron transfer in Langmuir-Blodgett films; the shape of the optical bands of polymethine dye monomers, their dimers, and J-aggregates, this paper reports one more application of the dozy-chaos theory of molecular quantum transitions. The qualitative and quantitative explanations for shape of a narrow and blue-shifted optical absorption band in H*-aggregates is given on the basis of the dozy-chaos theory by taking into account the dozy-chaos-exciton coupling effect. It is emphasized that in the H*-aggregate chromophore (dimer of cyclic bis-thiacarbocyanines) there is a competition between two Frenkel exciton transitions through the chaotic reorganization motion of nuclear environment. As a result, the highly organized quantum transition to the upper exciton state becomes an exciton-induced source of dozy chaos for the low organized transition to the lower exciton state. This manifests itself in appearing the narrow peak and broad wing in the optical spectrum pattern of H*-aggregates. A similar enhancement in the H*-effect caused by the strengthening of the exciton coupling in H*-dimers, which could be achieved by synthesizing tertiary and quarternary thiacarbocyanine monomers, is predicted.
Nature of the narrow optical band in H*-aggregates: Dozy-chaos–exciton coupling
Vladimir V. Egorov
2014-07-01
Full Text Available Dozy chaos emerges as a combined effect of the collective chaotic motion of electrons and nuclei, and their chaotic electromagnetic interactions in the transient state of molecules experiencing quantum transitions. Following earlier discussions of the well-known Brönsted relations for proton-transfer reactions; the temperature-dependent electron transfer in Langmuir–Blodgett films; the shape of the optical bands of polymethine dye monomers, their dimers, and J-aggregates, this paper reports one more application of the dozy-chaos theory of molecular quantum transitions. The qualitative and quantitative explanations for shape of a narrow and blue-shifted optical absorption band in H*-aggregates is given on the basis of the dozy-chaos theory by taking into account the dozy-chaos–exciton coupling effect. It is emphasized that in the H*-aggregate chromophore (dimer of cyclic bis-thiacarbocyanines there is a competition between two Frenkel exciton transitions through the chaotic reorganization motion of nuclear environment. As a result, the highly organized quantum transition to the upper exciton state becomes an exciton-induced source of dozy chaos for the low organized transition to the lower exciton state. This manifests itself in appearing the narrow peak and broad wing in the optical spectrum pattern of H*-aggregates. A similar enhancement in the H*-effect caused by the strengthening of the exciton coupling in H*-dimers, which could be achieved by synthesizing tertiary and quarternary thiacarbocyanine monomers, is predicted.
Molecular dynamics simulations of oxygen Frenkel pairs in cerium dioxide
Shiiyama, Kenichi, E-mail: shiiyama@nucl.kyushu-u.ac.j [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395 (Japan); Yamamoto, Tomokazu; Takahashi, Tatsuro [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395 (Japan); Guglielmetti, Aurore; Chartier, Alain [CEA-Saclay, DEN/DPC/SCP, 91191 Gif-sur-Yvette (France); Yasuda, Kazuhiro; Matsumura, Syo; Yasunaga, Kazufumi [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395 (Japan); Meis, Constantin [CEA-Saclay, INSTN, 91191 Gif-sur-Yvette (France)
2010-10-01
Molecular dynamics simulations of oxygen Frenkel pairs (FPs) in cerium dioxide (CeO{sub 2}) were carried out in order to understand their kinetic behavior. The results show that an oxygen FP recombine with the vacancy and the interstitial after the vacancy jump preferentially along the <1 0 0> direction. When multiple oxygen FPs are introduced, the interstitials aggregate into a (1 1 1) plate-like cluster at relatively lower temperature lower than 600 K, while they recombine with vacancies at elevated temperatures higher than 900 K within 10 ps. Molecular mechanics calculations of oxygen FPs on a (1 1 1) plane show that the formation energy per a FP decreases with increase of the number of FPs. The theoretical results are consistent with the transmission electron microscopy observations of formation of 1/9<1 1 1>{l_brace}1 1 1{r_brace} oxygen interstitial platelets in CeO{sub 2} under electron irradiation.
Excitonic optical nonlinearities and transport in the layered compound semiconductor GaSe
Mizeikis, V.; Vadim, Lyssenko; Østergaard, John Erland;
1995-01-01
Dephasing and transient grating experiments in the direct excitonic absorption region of GaSe at low temperatures show that a fast relaxation within the one-dimensionally disordered excitonic band results in band filling being the dominant mechanism of the optical nonlinearity. Correspondingly, we...... observe a blueshift of the nonlinear signal with excitation density. The temperature dependence of the exciton diffusion constant measured in directions parallel to the GaSe layer planes indicates that temperature-independent scattering (trapping) and scattering by acoustic phonons determine the exciton...
Interwell excitons in GaAs superlattices
Birkedal, Dan; Sayed, Karim El; Sanders, G.;
1996-01-01
The formation of spatially indirect excitons in superlattices with narrow minibands is theoretically and experimentally investigated. We identify the experimental conditions for the observation of interwell excitons and find a distinct excitonic state energetically located between the Is exciton ...
The mechanism of long-range exciton diffusion in a nematically organized porphyrin layer.
Huijser, Annemarie; Savenije, Tom J; Meskers, Stefan C J; Vermeulen, Martien J W; Siebbeles, Laurens D A
2008-09-17
The exciton diffusion length in a nematically organized meso-tetra(4-n-butylphenyl)porphyrin (TnBuPP) layer was found to exceed 40 nm at a temperature of 90 K and to be equal to 22 +/- 3 nm at 300 K. The exciton diffusion coefficient decreases from > or = 3.1 x 10(-6) m(2)/s at 90 K to (2.5 +/- 0.5) x 10(-7) m(2)/s at 300 K. This thermal deactivation is attributed to exciton motion via a band mechanism. The motion of an exciton is not limited by polaronic effects; that is, the deformation of the atomic lattice around the exciton. The absence of polaronic self-trapping implies that the exciton diffusion coefficient can be enhanced by improvement of structural order and rigidity of the material.
Machine Learning Exciton Dynamics
Häse, Florian; Pyzer-Knapp, Edward; Aspuru-Guzik, Alán
2015-01-01
Obtaining the exciton dynamics of large photosynthetic complexes by using mixed quantum mechanics/molecular mechanics (QM/MM) is computationally demanding. We propose a machine learning technique, multi-layer perceptrons, as a tool to reduce the time required to compute excited state energies. With this approach we predict time-dependent density functional theory (TDDFT) excited state energies of bacteriochlorophylls in the Fenna-Matthews-Olson (FMO) complex. Additionally we compute spectral densities and exciton populations from the predictions. Different methods to determine multi-layer perceptron training sets are introduced, leading to several initial data selections. In addition, we compute spectral densities and exciton populations. Once multi-layer perceptrons are trained, predicting excited state energies was found to be significantly faster than the corresponding QM/MM calculations. We showed that multi-layer perceptrons can successfully reproduce the energies of QM/MM calculations to a high degree o...
Multiscale photosynthetic exciton transfer
Ringsmuth, A K; Stace, T M; 10.1038/nphys2332
2012-01-01
Photosynthetic light harvesting provides a natural blueprint for bioengineered and biomimetic solar energy and light detection technologies. Recent evidence suggests some individual light harvesting protein complexes (LHCs) and LHC subunits efficiently transfer excitons towards chemical reaction centers (RCs) via an interplay between excitonic quantum coherence, resonant protein vibrations, and thermal decoherence. The role of coherence in vivo is unclear however, where excitons are transferred through multi-LHC/RC aggregates over distances typically large compared with intra-LHC scales. Here we assess the possibility of long-range coherent transfer in a simple chromophore network with disordered site and transfer coupling energies. Through renormalization we find that, surprisingly, decoherence is diminished at larger scales, and long-range coherence is facilitated by chromophoric clustering. Conversely, static disorder in the site energies grows with length scale, forcing localization. Our results suggest s...
Norman, Patrick; Linares, Mathieu
2014-09-01
The chirality of stacked weakly interacting π-systems was interpreted in terms of Frenkel exciton states and the formation of excitonic circular dichroism (CD) bands was monitored for ethylene stacks of varying sizes. Convergence of CD bands with respect to the system size was observed for stacks involving around 10 molecules. By means of rotation around the C-C double bond in ethylene, chirality was induced in the monomeric system and which was shown to dominate the spectral responses, even for polymer aggregates. In helical assemblies of chiral entities, there will always be a mix of excitonic and monomeric contributions to the CD signal and it is demonstrated that the complex polarization propagator approach in combination with Density Functional Theory is a suitable method to address this situation.
Exciton center-of-mass localization and dielectric environment effect in monolayer WS2
Hichri, Aïda; Ben Amara, Imen; Ayari, Sabrine; Jaziri, Sihem
2017-06-01
The ultrathin transition metal dichalcogenides (TMDs) have emerged as promising materials for various applications using two dimensional semiconductors. They have attracted increasing attention due to their unique optical properties originate from neutral and charged excitons. In this paper, we study the strong localization of exciton center-of-mass motion within random potential fluctuations caused by the monolayer defects. Here, we report negatively charged exciton formation in monolayer TMDs, notably tungsten disulfide WS2. Our theory is based on an effective mass model of neutral and charged excitons, parameterized by ab-initio calculations. Taking into the account the strong correlation between the monolayer WS2 and the surrounding dielectric environment, our theoretical results are in good agreement with one-photon photoluminescence (PL) and reflectivity measurements. We also show that the exciton state with p-symmetry, experimentally observed by two-photon PL emission, is energetically below the 2s-state. We use the equilibrium mass action law, to quantify the relative weight of exciton and trion PL. We show that exciton and trion emission can be tuned and controlled by external parameters like temperature, pumping, and injection electrons. Finally, in comparison with experimental measurements, we show that exciton emission in monolayer tungsten dichalcogenides is substantially reduced. This feature suggests that free exciton can be trapped in disordered potential wells to form a localized exciton and therefore offers a route toward novel optical properties.
Frenkel, Daan; Louët, Sabine
2016-06-01
Daan Frenkel has been awarded the most important prize in the field of statistical mechanics, the 2016 Boltzmann Medal, named after the Austrian physicist and philosopher Ludwig Boltzmann. The award recognises Frenkel's seminal contributions to the statistical-mechanical understanding of the kinetics, self-assembly and phase behaviour of soft matter. The honour recognises Frenkel's highly creative large-scale simulations of soft matter capable of explaining the self-assembly of complex macromolecular systems, colloidal and biomolecular systems. Frenkel is Professor of Theoretical Chemistry at the University of Cambridge, UK and has been Editor in Chief of EPJE between 2010 and 2014. The award will be given to both Frenkel and his French colleague Yves Pomeau, during the StatPhys Conference on 20th July 2016 in Lyon, France. In this interview with Sabine Louët, Frenkel gives his views on statistical physics, which has become more relevant than ever for interdisciplinary research. He also offers some pearls of wisdom for the next generation Statistical Mechanics experts.
Quasienergy Spectroscopy of Excitons
Johnsen, Kristinn; Jauho, Antti-Pekka
1999-01-01
We theoretically study nonlinear optics of excitons under intense THz irradiation. In particular, the linear near-infrared absorption and resonantly enhanced nonlinear sideband generation are described. We predict a rich structure in the spectra which an be interpreted in terms of the quasienergy...
Bäppler, Stefanie A.; Plasser, Felix; Wormit, Michael; Dreuw, Andreas
2014-11-01
Exciton sizes and electron-hole binding energies, which are central properties of excited states in extended systems and crucial to the design of modern electronic devices, are readily defined within a quasiparticle framework but are quite challenging to understand in the molecular-orbital picture. The intent of this work is to bridge this gap by providing a general way of extracting the exciton wave function out of a many-body wave function obtained by a quantum chemical excited-state computation. This methodology, which is based on the one-particle transition density matrix, is implemented within the ab initio algebraic diagrammatic construction scheme for the polarization propagator and specifically the evaluation of exciton sizes, i.e., dynamic charge separation distances, is considered. A number of examples are presented. For stacked dimers it is shown that the exciton size for charge separated states corresponds to the intermolecular separation, while it only depends on the monomer size for locally excited states or Frenkel excitons. In the case of conjugated organic polymers, the tool is applied to analyze exciton structure and dynamic charge separation. Furthermore, it is discussed how the methodology may be used for the construction of a charge-transfer diagnostic for time-dependent density-functional theory.
Microcavity controlled coupling of excitonic qubits.
Albert, F; Sivalertporn, K; Kasprzak, J; Strauß, M; Schneider, C; Höfling, S; Kamp, M; Forchel, A; Reitzenstein, S; Muljarov, E A; Langbein, W
2013-01-01
Controlled non-local energy and coherence transfer enables light harvesting in photosynthesis and non-local logical operations in quantum computing. This process is intuitively pictured by a pair of mechanical oscillators, coupled by a spring, allowing for a reversible exchange of excitation. On a microscopic level, the most relevant mechanism of coherent coupling of distant quantum bits--like trapped ions, superconducting qubits or excitons confined in semiconductor quantum dots--is coupling via the electromagnetic field. Here we demonstrate the controlled coherent coupling of spatially separated quantum dots via the photon mode of a solid state microresonator using the strong exciton-photon coupling regime. This is enabled by two-dimensional spectroscopy of the sample's coherent response, a sensitive probe of the coherent coupling. The results are quantitatively understood in a rigorous description of the cavity-mediated coupling of the quantum dot excitons. This mechanism can be used, for instance in photonic crystal cavity networks, to enable a long-range, non-local coherent coupling.
Poole-Frenkel effect and variable-range hopping conduction in metal/YBCO resistive switching devices
Schulman, A.; Lanosa, L. F.; Acha, C.
2015-07-01
Current-voltage (IV) characteristics and the temperature dependence of the contact resistance [R(T)] of Au/YBa2Cu3O7-δ (optimally doped YBCO) interfaces have been studied at different resistance states. These states were produced by resistive switching after accumulating cyclic electrical pulses of increasing number and voltage amplitude. The IV characteristics and the R(T) dependence of the different states are consistent with a Poole-Frenkel (P-F) emission mechanism with trapping-energy levels Et in the 0.06-0.11 eV range. Et remains constant up to a number-of-pulses-dependent critical voltage and increases linearly with a further increase in the voltage amplitude of the pulses. The observation of a P-F mechanism reveals the existence of an oxygen-depleted layer of YBCO near the interface. A simple electrical transport scenario is discussed, where the degree of disorder, the trap energy level, and the temperature range determine an electrical conduction dominated by non-linear effects, either in a P-F emission or in a variable-range hopping regime.
Triplet exciton dissociation in singlet exciton fission photovoltaics
Jadhav, Priya J.; Mohanty, Aseema; Bulovic, Vladimir; Baldo, Marc A. [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA (United States); Brown, Patrick R. [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA (United States); Thompson, Nicholas [Department of Materials Science, Massachusetts Institute of Technology, Cambridge, MA (United States); Wunsch, Benjamin [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA (United States); Yost, Shane R.; Hontz, Eric; Van Voorhis, Troy; Bawendi, Moungi G. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA (United States)
2012-12-04
Triplet exciton dissociation in singlet exciton fission devices with three classes of acceptors are characterized: fullerenes, perylene diimides, and PbS and PbSe colloidal nanocrystals. Using photocurrent spectroscopy and a magnetic field probe it is found that colloidal PbSe nanocrystals are the most promising acceptors, capable of efficient triplet exciton dissociation and long wavelength absorption. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Negative Trions Trapped by a Spherical Parabolic Quantum Dot
无
2006-01-01
In this paper, a negatively charged exciton trapped by a spherical parabolic quantum dot has been investigated. The energy spectra of low-lying states are calculated by means of matrix diagonalization. The important feature of the low-lying states of the negatively charged excitons in a spherical quantum dot is obtained via an analysis of the energy spectra.
Excitons in asymmetric quantum wells
Grigoryev, P. S.; Kurdyubov, A. S.; Kuznetsova, M. S.; Ignatiev, I. V.; Efimov, Yu. P.; Eliseev, S. A.; Petrov, V. V.; Lovtcius, V. A.; Shapochkin, P. Yu.
2016-09-01
Resonance dielectric response of excitons is studied for the high-quality InGaAs/GaAs heterostructures with wide asymmetric quantum wells (QWs). To highlight effects of the QW asymmetry, we have grown and studied several heterostructures with nominally square QWs as well as with triangle-like QWs. Several quantum confined exciton states are experimentally observed as narrow exciton resonances. A standard approach for the phenomenological analysis of the profiles is generalized by introducing different phase shifts for the light waves reflected from the QWs at different exciton resonances. Good agreement of the phenomenological fit to the experimentally observed exciton spectra for high-quality structures allowed us to reliably obtain parameters of the exciton resonances: the exciton transition energies, the radiative broadenings, and the phase shifts. A direct numerical solution of the Schrödinger equation for the heavy-hole excitons in asymmetric QWs is used for microscopic modeling of the exciton resonances. Remarkable agreement with the experiment is achieved when the effect of indium segregation is taken into account. The segregation results in a modification of the potential profile, in particular, in an asymmetry of the nominally square QWs.
Kambhampati, Patanjali, E-mail: pat.kambhampati@mcgill.ca
2015-01-13
Highlights: • The surface of semiconductor nanocrystals is one of their defining features. • The kinetics of surface trapping can be monitored by pump/probe spectroscopy. • The thermodynamics of surface trapping is revealed by photoluminescence spectroscopy. • We produce the first microscopic picture of how excitons are coupled to the surface. • We discuss the possibility of surface excitons in nanocrystals. - Abstract: The surface of semiconductor nanocrystals is one of their defining features by virtue of their nanometer size. Yet the surface is presently among the most poorly understood aspects of nanocrystal science. This perspective provides an overview of spectroscopic work that has revealed the first insights into the nature of the surface, focusing upon CdSe nanocrystals. We focus on two aspects of surface processes in nanocrystals: the kinetics of surface trapping and the thermodynamics of core/surface equilibria. We describe femtosecond pump/probe spectroscopic experiments which reveal the signatures of carrier trapping at the surface. We also describe temperature dependent steady-state photoluminescence experiments which reveal new aspects of the surface. This work suggest that the surface emission is largely driven by homogeneous broadening via phonon progressions. The implications are that the surface electronic state bears similarity to the quantized excitonic core of the nanocrystal.
Nature of the narrow optical band in H*-aggregates: Dozy-chaos–exciton coupling
Egorov, Vladimir V., E-mail: egorov@photonics.ru [Photochemistry Center, Russian Academy of Sciences, Moscow, 119421 (Russian Federation)
2014-07-15
Dozy chaos emerges as a combined effect of the collective chaotic motion of electrons and nuclei, and their chaotic electromagnetic interactions in the transient state of molecules experiencing quantum transitions. Following earlier discussions of the well-known Brönsted relations for proton-transfer reactions; the temperature-dependent electron transfer in Langmuir–Blodgett films; the shape of the optical bands of polymethine dye monomers, their dimers, and J-aggregates, this paper reports one more application of the dozy-chaos theory of molecular quantum transitions. The qualitative and quantitative explanations for shape of a narrow and blue-shifted optical absorption band in H{sup *}-aggregates is given on the basis of the dozy-chaos theory by taking into account the dozy-chaos–exciton coupling effect. It is emphasized that in the H{sup *}-aggregate chromophore (dimer of cyclic bis-thiacarbocyanines) there is a competition between two Frenkel exciton transitions through the chaotic reorganization motion of nuclear environment. As a result, the highly organized quantum transition to the upper exciton state becomes an exciton-induced source of dozy chaos for the low organized transition to the lower exciton state. This manifests itself in appearing the narrow peak and broad wing in the optical spectrum pattern of H{sup *}-aggregates. A similar enhancement in the H{sup *}-effect caused by the strengthening of the exciton coupling in H{sup *}-dimers, which could be achieved by synthesizing tertiary and quarternary thiacarbocyanine monomers, is predicted.
Simulated behaviour of field-assisted ionisation in the theory of Synthetic Poole Frenkel effect
1991-01-01
A simulation is made of the behaviour of dc-current versus electric field when use is made of a new approach of Poole and Poole-Frenkel (PF) theories, we designated as Synthetic Poole Frenkel (SPF) effect (Ongaro and Pillonnet, in IEE Proc. PtA 138, 127-37). Quantitative illustration shows that our SPF approach succeeds fairly well in joining in a unique formulation the early Poole and PF approaches, which appear then as limiting cases. However, it is stressed that difficulties can be expecte...
Exciton Transport in Organic Semiconductors
Menke, Stephen Matthew
Photovoltaic cells based on organic semiconductors are attractive for their use as a renewable energy source owing to their abundant feedstock and compatibility with low-cost coating techniques on flexible substrates. In contrast to photovoltaic cells based traditional inorganic semiconductors, photon absorption in an organic semiconductor results in the formation of a coulombically bound electron-hole pair, or exciton. The transport of excitons, consequently, is of critical importance as excitons mediate the interaction between charge and light in organic photovoltaic cells (OPVs). In this dissertation, a strong connection between the fundamental photophysical parameters that control nanoscopic exciton energy transfer and the mesoscopic exciton transport is established. With this connection in place, strategies for enhancing the typically short length scale for exciton diffusion (L D) can be developed. Dilution of the organic semiconductor boron subphthalocyanine chloride (SubPc) is found to increase the LD for SubPc by 50%. In turn, OPVs based on dilute layers of SubPc exhibit a 30% enhancement in power conversion efficiency. The enhancement in power conversion efficiency is realized via enhancements in LD, optimized optical spacing, and directed exciton transport at an exciton permeable interface. The role of spin, energetic disorder, and thermal activation on L D are also addressed. Organic semiconductors that exhibit thermally activated delayed fluorescence and efficient intersystem and reverse intersystem crossing highlight the balance between singlet and triplet exciton energy transfer and diffusion. Temperature dependent measurements for LD provide insight into the inhomogeneously broadened exciton density of states and the thermal nature of exciton energy transfer. Additional topics include energy-cascade OPV architectures and broadband, spectrally tunable photodetectors based on organic semiconductors.
Numerical simulation of exciton dynamics in cuprous oxide at ultra low temperatures
Som, Sunipa
2015-06-29
This thesis is a theoretical investigation of the relaxation behaviour of excitons in Cuprous Oxide at ultra low temperatures when the excitons are confined within a potential trap and also in a homogeneous system. Under the action of deformation potential phonon scattering only, Bose Einstein Condensation (BEC) occurs for all temperatures in the investigated range. In the case of Auger decay, we do not find at any temperature a BEC due to the heating of the exciton gas. In the case of elastic and phonon-scattering together BEC occurs in this case of 0.1 K.
Exciton Formation in Disordered Semiconductors
Klochikhin, A.; Reznitsky, A.; Permogorov, S.
1999-01-01
Stationary luminescence spectra of disordered solid solutions can be accounted by the model of localized excitons. Detailed analysis of the long time decay kinetics of luminescence shows that exciton formation in these systems is in great extent due to the bimolecular reaction of separated carrie...
Exciton Formation in Disordered Semiconductors
Klochikhin, A.; Reznitsky, A.; Permogorov, S.
1999-01-01
Stationary luminescence spectra of disordered solid solutions can be accounted by the model of localized excitons. Detailed analysis of the long time decay kinetics of luminescence shows that exciton formation in these systems is in great extent due to the bimolecular reaction of separated carrier...
Frenkel-Kontorova Model of the Dimerized Overlayer System with Vacancies
XU Hai-Bo; WANG Guang-Rui; CHEN Shi-Gang
2000-01-01
The reconstruction of the dimerized overlayer system with vacancies is studied via a diatomic chain Frenkel Kontorova model. We present the details of the exactly solvable model and the analytical solution of the atomic displacements in the ground state. Our calculations explain the 2 × N reconstruction observed in Ge/Si(100) and Ga/Si(112).
Study of the Effect of Ellipsoidal Shape on the Kern and Frenkel Patch Model
Nguyen, Thienbao; Gunton, James; Rickman, Jeffrey
In their work on the self-assembly of complex structures, Glotzer and Solomon (Nature Materials 6, 557 - 562 (2007)) identified both interaction and shape anisotropy as two of several means to build complex structures. Advances in fabricating materials and new insights into protein biology have revealed the importance of these types of interactions. The Kern and Frenkel (J. Chem. Phys. 118, 9882 (2003) model of hard spheres carrying interaction patches of various sizes has been used extensively to describe interaction anisotropies important in protein phase transitions. However their model did not also account for shape anisotropy. We studied the role of both shape and interaction anisotropy by applying N=2 and N=4 attractive Kern and Frenkel patches with an interaction range to hard ellipsoids with various aspect ratios and patch coverages. Following Kern and Frenkel, we studied the liquid-liquid phase separation of our particles using a Monte Carlo simulation. We found the critical temperatures for our model using the approximate law of rectilinear diameter and compared them with the original results of Kern and Frenkel. We found that the critical temperatures increased both with aspect ratio and percent coverage. G Harold and Leila Y Mathers Foundation.
Lagrangian for Frenkel electron and position's non-commutativity due to spin
Deriglazov, Alexei A. [Universidade Federal de Juiz de Fora, Depto. de Matematica, ICE, Juiz de Fora, MG (Brazil); Tomsk Polytechnic University, Laboratory of Mathematical Physics, Tomsk (Russian Federation); Pupasov-Maksimov, Andrey M. [Universidade Federal de Juiz de Fora, Depto. de Matematica, ICE, Juiz de Fora, MG (Brazil)
2014-10-15
We construct a relativistic spinning-particle Lagrangian where spin is considered as a composite quantity constructed on the base of a non-Grassmann vector-like variable. The variational problem guarantees both a fixed value of the spin and the Frenkel condition on the spin-tensor. The Frenkel condition inevitably leads to relativistic corrections of the Poisson algebra of the position variables: their classical brackets became noncommutative. We construct the relativistic quantum mechanics in the canonical formalism (in the physical-time parametrization) and in the covariant formalism (in an arbitrary parametrization). We show how state vectors and operators of the covariant formulation can be used to compute the mean values of physical operators in the canonical formalism, thus proving its relativistic covariance. We establish relations between the Frenkel electron and positive-energy sector of the Dirac equation. Various candidates for the position and spin operators of an electron acquire clear meaning and interpretation in the Lagrangian model of the Frenkel electron. Our results argue in favor of Pryce's (d)-type operators as the spin and position operators of Dirac theory. This implies that the effects of non-commutativity could be expected already at the Compton wavelength. We also present the manifestly covariant form of the spin and position operators of the Dirac equation. (orig.)
Analysis and Control of Two-Layer Frenkel-Kontorova Model
TANG Wen-Yan; QU Zhi-Hua; GUO Yi
2011-01-01
A one-dimensional two-layer Frenkel-Kontorova model is studied.Firstly,a feedback tracking control law is given.Then,the boundedness result for the error states of single particles of the model is derived using the Lyapunov Method.Especially,the motion of single particles can be approximated analytically for the case of sufficiently large targeted velocity.Simulations illustrate the accuracy of the derived results.Recently,the Frenkel-Kontorova (FK) model,which describes a chain of classical particles interacting with its nearest neighbors and subjected to a periodic one-site potential,has become a useful tool to study nanotribology.[1-6] There are several generalizations of the FK model that have been introduced with the hope of understanding friction dynamics at nanoscale.These models include a manylayer model with harmonic interactions,the FrenkelKontorova-Tomlinson model (FKT) and the singlelayer model with harmonic interactions.%A one-dimensional two-layer Frenkel-Kontorova model is studied. Firstly, a feedback tracking control law is given. Then, the boundedness result for the error states of single particles of the model is derived using the Lyapunov Method. Especially, the motion of single particles can be approximated analytically for the case of sufficiently large targeted velocity. Simulations illustrate the accuracy of the derived results.
Van der Waals Interactions and Exciton Condensation
Handel, P. H.; Kittel, C.
1971-01-01
It is shown that the van der Waals interaction can lead at low temperatures to a condensed state of excitons with properties in qualitative agreement with the observations of exciton droplets. Our calculation gives a binding energy of the correct sign and magnitude for the exciton condensate. In a diclectric medium, the strong enhancement of the exciton polarizability leads to a giant van der Waals interaction, and this interaction appears to make possible a condensed exciton phase. PMID:16591958
Hyperspherical theory of anisotropic exciton
Muljarov, E A; Tikhodeev, S G; Bulatov, A E; Birman, Joseph L; 10.1063/1.1286772
2012-01-01
A new approach to the theory of anisotropic exciton based on Fock transformation, i.e., on a stereographic projection of the momentum to the unit 4-dimensional (4D) sphere, is developed. Hyperspherical functions are used as a basis of the perturbation theory. The binding energies, wave functions and oscillator strengths of elongated as well as flattened excitons are obtained numerically. It is shown that with an increase of the anisotropy degree the oscillator strengths are markedly redistributed between optically active and formerly inactive states, making the latter optically active. An approximate analytical solution of the anisotropic exciton problem taking into account the angular momentum conserving terms is obtained. This solution gives the binding energies of moderately anisotropic exciton with a good accuracy and provides a useful qualitative description of the energy level evolution.
Meier, Christoph; Teutloff, Christian; Behrends, Jan; Bittl, Robert; Astakhov, Oleksandr; Lips, Klaus
2016-07-01
Electrically detected magnetic resonance (EDMR) spectroscopy is employed to study the influence of triplet excitons on the photocurrent in state-of-the-art microcrystalline silicon thin-film solar cells. These triplet excitons are used as sensitive spin probes for the investigation of their electronic and nuclear environment in this mixed-phase material. According to low-temperature EDMR results obtained from solar cells with different
Exciton Localization in Extended {\\pi}-electron Systems: Comparison of Linear and Cyclic Structures
Thiessen, Alexander; Jester, Stefan-S; Aggarwal, A Vikas; Idelson, Alissa; Bange, Sebastian; Vogelsang, Jan; Höger, Sigurd; Lupton, John M
2015-01-01
We employ five {\\pi}-conjugated model materials of different molecular shape --- oligomers and cyclic structures --- to investigate the extent of exciton self-trapping and torsional motion of the molecular framework following optical excitation. Our studies combine steady-state and transient fluorescence spectroscopy in the ensemble with measurements of polarization anisotropy on single molecules, supported by Monte Carlo simulations. The dimer exhibits a significant spectral red-shift within $\\sim$ 100 ps after photoexcitation which is attributed to torsional relaxation. This relaxation mechanism is inhibited in the structurally rigid macrocyclic analogue. However, both systems show a high degree of exciton localization but with very different consequences: while in the macrocycle the exciton localizes randomly on different parts of the ring, scrambling polarization memory, in the dimer, localization leads to a deterministic exciton position with luminescence characteristics of a dipole. Monte Carlo simulati...
Poole-Frenkel mobility field dependence in molecularly doped polymers revisited
Tyutnev, A. P.; Saenko, V. S.
2017-02-01
We have examined the Poole-Frenkel mobility field dependence in a molecularly doped polymer (MDP) both experimentally and theoretically trying to separate two physically different contributions to this phenomenon, one constituting a real physical effect and the other arising from the fact that the charge carrier transport in MDP is not fully equilibrated. The former is ascribed to the influence of an electric field on the transport process itself affecting at least one of the model parameters. The latter should be associated with the mobility field effect under conditions when neither model parameter is field sensitive. Numerical calculations have been used to achieve their deconvolution. On the experimental front, we relied on the time of flight technique specifically modified to suit this task. Both approaches show that the contribution of the second (operational) field effect in the investigated MDP is quite appreciable. This result is compared with the traditional interpretation of the Poole-Frenkel effect in molecularly doped polymers.
Lagrangian for Frenkel electron and position's non-commutativity due to spin
Deriglazov, Alexei A
2014-01-01
We construct relativistic-invariant spinning-particle Lagrangian without auxiliary variables. Spin is considered as a composed quantity constructed on the base of non-Grassmann vector-like variable. The variational problem guarantees both fixed value of spin and Frenkel condition on spin-tensor. Taking into account the Frenkel condition, we obtain, inevitably, relativistic corrections to the algebra of position variables: their classical brackets became noncommutative, with the "parameter of non-commutativity" proportional to the spin-tensor. This leads to a number of interesting consequences in quantum theory. We construct the relativistic quantum mechanics in canonical formalism (in physical-time parametrization) and in covariant formalism (in arbitrary parametrization). We show how state-vectors and operators of covariant formulation can be used to compute mean values of physical operators of position and spin. This proves relativistic covariance of canonical formalism. Various candidates for position and ...
Poole-Frenkel Conduction in Cu/Nano-SnO2/Cu Arrangement
Hossein Mahmoudi Chenari
2011-01-01
Full Text Available It is well known that metal/Tin-dioxide/metal sandwich structures exhibit a field-assisted lowering of the potential barrier between donor-like center and the conduction band edge, known as the Poole-Frenkel effect. This behavior is indicated by a linear dependence of Iog on 1/2, where is the current density, and is the applied voltage. In this study, the electrical properties of Cu/nano-SnO2/Cu sandwich structures were investigated through current-voltage measurements at room temperature. Also, an attempt to explore the governing current flow mechanism was tried. Our results indicate that noticeable feature appearing clearly in the current-voltage characterization is the Poole-Frenkel and space-charge-limited conduction mechanisms.
Scaling laws of Rydberg excitons
Heckötter, J.; Freitag, M.; Fröhlich, D.; Aßmann, M.; Bayer, M.; Semina, M. A.; Glazov, M. M.
2017-09-01
Rydberg atoms have attracted considerable interest due to their huge interaction among each other and with external fields. They demonstrate characteristic scaling laws in dependence on the principal quantum number n for features such as the magnetic field for level crossing or the electric field of dissociation. Recently, the observation of excitons in highly excited states has allowed studying Rydberg physics in cuprous oxide crystals. Fundamentally different insights may be expected for Rydberg excitons, as the crystal environment and associated symmetry reduction compared to vacuum give not only optical access to many more states within an exciton multiplet but also extend the Hamiltonian for describing the exciton beyond the hydrogen model. Here we study experimentally and theoretically the scaling of several parameters of Rydberg excitons with n , for some of which we indeed find laws different from those of atoms. For others we find identical scaling laws with n , even though their origin may be distinctly different from the atomic case. At zero field the energy splitting of a particular multiplet n scales as n-3 due to crystal-specific terms in the Hamiltonian, e.g., from the valence band structure. From absorption spectra in magnetic field we find for the first crossing of levels with adjacent principal quantum numbers a Br∝n-4 dependence of the resonance field strength, Br, due to the dominant paramagnetic term unlike for atoms for which the diamagnetic contribution is decisive, resulting in a Br∝n-6 dependence. By contrast, the resonance electric field strength shows a scaling as Er∝n-5 as for Rydberg atoms. Also similar to atoms with the exception of hydrogen we observe anticrossings between states belonging to multiplets with different principal quantum numbers at these resonances. The energy splittings at the avoided crossings scale roughly as n-4, again due to crystal specific features in the exciton Hamiltonian. The data also allow us to
Coherence of Bose-Einstein condensates of dipolar excitons in GaAs/AlGaAs heterostructures
Gorbunov, A. V.; Timofeev, V. B.
2016-05-01
Experiments relating to studies of the coherence of Bose condensates of dipolar excitons in GaAs/AlGaAs heterostructures with a wide, single quantum well and a Schottky gate are analyzed. Dipolar excitons were excited by light in an annular trap formed along the perimeter of a window in a metal gate with an applied electric voltage. A dual-beam interference technique involving interference combination of the amplitudes of the luminescence light field, together with subsequent analysis of first order correlators, is used to study the temporal (longitudinal) and spatial (transverse) coherence of the exciton condensates. It is found that the transverse coherence length of an exciton condensate is considerably longer than its thermal De Broglie wavelength. Experimental studies of the luminescence intensity correlator also confirm the coherence of the exciton Bose condensate.
Trap states in lead iodide perovskites.
Wu, Xiaoxi; Trinh, M Tuan; Niesner, Daniel; Zhu, Haiming; Norman, Zachariah; Owen, Jonathan S; Yaffe, Omer; Kudisch, Bryan J; Zhu, X-Y
2015-02-11
Recent discoveries of highly efficient solar cells based on lead iodide perovskites have led to a surge in research activity on understanding photo carrier generation in these materials, but little is known about trap states that may be detrimental to solar cell performance. Here we provide direct evidence for hole traps on the surfaces of three-dimensional (3D) CH3NH3PbI3 perovskite thin films and excitonic traps below the optical gaps in these materials. The excitonic traps possess weak optical transition strengths, can be populated from the relaxation of above gap excitations, and become more significant as dimensionality decreases from 3D CH3NH3PbI3 to two-dimensional (2D) (C4H9NH3I)2(CH3NH3I)(n-1)(PbI2)(n) (n = 1, 2, 3) perovskites and, within the 2D family, as n decreases from 3 to 1. We also show that the density of excitonic traps in CH3NH3PbI3 perovskite thin films grown in the presence of chloride is at least one-order of magnitude lower than that grown in the absence of chloride, thus explaining a widely known mystery on the much better solar cell performance of the former. The trap states are likely caused by electron-phonon coupling and are enhanced at surfaces/interfaces where the perovskite crystal structure is most susceptible to deformation.
Time-resolved photoluminescence study of excitonic relaxation in one-dimensional systems
Tanino, H.; Rühle, W. W.; Takahashi, K.
1988-12-01
Self-trapped exciton luminescence of quasi-one-dimensional (1D) halogen-bridged mixed-valence platinum complexes [Pt(II) (EA)4][Pt(IV)Cl2(EA)4] Cl4.4H2O (EA=ethylamine) and [Pt(II)(en)2] [Pt(IV)Cl2(en)2](ClO4)4 (en=1,2-diaminoethane) are studied by time-resolved photoluminescence experiments. The lifetimes of the luminescence of self-trapped exciton are exceptionally short, of the order of 100 psec. We interpret the short lifetime by a ``giant oscillator strength'' caused by a strong coupling between the electron and hole of the 1D charge transfer exciton and an extended polaronlike character of the 1D state. The lifetimes of the broad luminescence and of the resonant Raman lines during the barrier-free relaxation process are both faster than 7 psec.
Exponential Tails Near the Band Edges of a One-Dimensional Exciton System
Avgin, I.; Boukahil, A.; Zettili, N.; Huber, D. L.
2003-03-01
We report the results of studies of the tails near the band edges of a one-dimensional Frenkel exciton system in the Coherent Potential Approximation (CPA). A Gaussian distribution of the transition frequencies with rms width σ (0.1 <= σ <= 2.0) is used. We found that the tails obey two different exponential power laws depending on the value of σ. In the weak disorder limit 0.1 <= σ <= 0.5, the tails of the density of states and the absorption line shape behave like expk|E|^3/2/σ^2 and in the strong disorder limit 0.5 <= σ <= 2.0 the tails behave like exp|E|^2/2σ^2\\. Our CPA results are in excellent agreement with our simulation data for the density of states over the entire range 0.1 <= σ <= 2.0, and with previous investigations for weak disorder.
Nobuya Hiroshiba
2014-06-01
Full Text Available To elucidate the exciton dynamics at the heteromolecular interface, the temperature dependence of time-resolved photoluminescence (TRPL spectra of neat-N,N′-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8 and PTCDI-C8/Quaterrylene (QT heteromolecular thin films was investigated. The lifetimes of excitons were evaluated to identify the Frenkel (FE, high energy charge-transfer (CTEhigh, low energy charge-transfer (CTElow, and excimer exciton states. The thermal activation energy (Δact of CTElow in PTCDI-C8 thin film was evaluated as 25 meV, which is 1/5 of that of FE, indicating that CTElow is more thermally sensitive than FE in PTCDI-C8 thin film. We investigated the exciton transport length (l along the vertical direction against the substrate surface in PTCDI-C8/QT thin film at 30 K, and demonstrated that lFE = 9.9 nm, lCTElow = 4.2 nm, lCTEhigh = 4.3 nm, and lexcimer = 11.9 nm. To elucidate the difference in l among these excitons, the activation energies (Ea for quenching at the heteromolecular interface were investigated. Ea values were estimated to be 13.1 meV for CTElow and 18.6 meV for CTEhigh. These values agree with the thermal sensitivity of CTEs as reported in a previous static PL study. This latter situation is different from the case of FE and excimer excitons, which are transported via a resonant process and have no temperature dependence. The small Ea values of CTEs suggest that exciton transport takes place via a thermal hopping process in CTEs. The present experimental study provides information on nano-scaled exciton dynamics in a well-defined PTCDI-C8 (2 ML/QT (2 ML system.
Crespillo, M.L., E-mail: mcrespil@utk.edu [Centro de Microanálisis de Materiales, CMAM-UAM, Cantoblanco, Madrid 28049 (Spain); Department of Materials Science & Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Agulló-López, F., E-mail: fal@uam.es [Centro de Microanálisis de Materiales, CMAM-UAM, Cantoblanco, Madrid 28049 (Spain); Zucchiatti, A. [Centro de Microanálisis de Materiales, CMAM-UAM, Cantoblanco, Madrid 28049 (Spain)
2017-03-01
Highlights: • Extensive survey formation energies Frenkel pairs and electronic stopping thresholds. • Correlation: track formation thresholds and the energies for Frenkel pair formation. • Formation energies Frenkel pairs discussed in relation to the cumulative mechanisms. • Amorphous track formation mechanisms: defect accumulation models versus melting. • Advantages cumulative models to deal with new hot topics: nuclear-electronic synergy. - Abstract: An extensive survey for the formation energies of Frenkel pairs, as representative candidates for radiation-induced point defects, is presented and discussed in relation to the cumulative mechanisms (CM) of track formation in dielectric materials under swift heavy ion (SHI) irradiation. These mechanisms rely on the generation and accumulation of point defects during irradiation followed by collapse of the lattice once a threshold defect concentration is reached. The physical basis of those approaches has been discussed by Fecht as a defect-assisted transition to an amorphous phase. Although a first quantitative analysis of the CM model was previously performed for LiNbO{sub 3} crystals, we have, here, adopted a broader phenomenological approach. It explores the correlation between track formation thresholds and the energies for Frenkel pair formation for a broad range of materials. It is concluded that the threshold stopping powers can be roughly scaled with the energies required to generate a critical Frenkel pair concentration in the order of a few percent of the total atomic content. Finally, a comparison with the predictions of the thermal spike model is discussed within the analytical Szenes approximation.
Isa, Lawal; Abubakar, Aliyu; Rufa'i, Ahmad; Mukadas, Akindele
2014-12-01
Frenkel's ambulatory activity has been routinely employed by physiotherapists for rehabilitation of gait coordination, however, its immediate influence on blood pressure and heart rate has not been investigated. To investigate the acute effect of Frenkel's ambulatory activity on blood pressure and heart rate of chronic hemiparetic stroke survivors. Using a comparative study design, 60 chronic hemiparetic stroke survivors of varying onset of stroke, ≤6, >6-11 and ≥12 months were subjected to a 2-minute Frenkel's ambulatory activity on marked footsteps (from standard adult described footsteps). Participants were assessed for both blood pressure and heart rate before and after the Frenkel's ambulatory activity. Blood pressure and heart rate significantly increased (p0.05) across the onsets in both blood pressure and heart rate responses. The outcome of this study indicated that Frenkel's ambulatory activity has the propensity to increase blood pressure and heart rate of hemiparetic stroke survivors irrespective of the onset of stroke. We recommend a pre, within and post-activity monitoring of stroke survivors while subjecting them to Frenkel's ambulatory activity.
Exciton luminescence in BaFCl crystal
Radzhabov, E
1998-05-01
The luminescence spectra and decay characteristics of both 5.45 and 3.4 eV bands in BaFCl oxygen-free crystals were investigated at 5-300 K temperature range using vacuum ultraviolet excitation as well as X-ray excitation. The similarities with excitons in alkali halides allow us to consider both excitons in BaFCl as on-center excitons and strong off-center excitons.
Excitonic polaritons in Fibonacci quasicrystals.
Hendrickson, J; Richards, B C; Sweet, J; Khitrova, G; Poddubny, A N; Ivchenko, E L; Wegener, M; Gibbs, H M
2008-09-29
The fabrication and characterization of light-emitting one-dimensional photonic quasicrystals based on excitonic resonances is reported. The structures consist of high-quality GaAs/AlGaAs quantum wells grown by molecular-beam epitaxy with wavelength-scale spacings satisfying a Fibonacci sequence. The polaritonic (resonant light-matter coupling) effects and light emission originate from the quantum well excitonic resonances. Measured reflectivity spectra as a function of detuning between emission and Bragg wavelength are in good agreement with excitonic polariton theory. Photoluminescence experiments show that active photonic quasicrystals, unlike photonic crystals, can be good light emitters: While their long-range order results in a stopband similar to that of photonic crystals, the lack of periodicity results in strong emission.
Interwell excitons in GaAs superlattices
Birkedal, Dan; Sayed, Karim El; Sanders, G.;
1997-01-01
The formation of spatially indirect excitons in superlattices with narrow minibands is investigated experimentally. The interwell exciton is similar to the first Wannier-Stark localized exciton of an electrically biased superlattice. However, in the present case the localization is mediated by th...
Excitation energy transfer processes in condensed matter theory and applications
Singh, Jai
1994-01-01
Applying a unified quantum approach, contributors offer fresh insights into the theoretical developments in the excitation energy transfer processes in condensed matter This comprehensive volume examines Frenkel and Wannier excitonic processes; rates of excitonic processes; theory of laser sputter and polymer ablation; and polarons, excitonic polarons and self-trapping
An Exciton Bound to a Neutral Donor in Quantum Dots
解文方
2002-01-01
The binding energies for an exciton (X) trapped in a two-dimensional quantum dot by a neutral donor have been calculated using the method of few-body physics for the heavy hole (σ= 0.196) and the light hole (σr = 0.707).We find that the (D0, X) complex confined in a quantum dot has in general a larger binding energy than those in a two-dimensional quantum well and a three-dimensional bulk semiconductor, and the binding energy increases with the decrease of the dot radius. At dot radius R →∞, we compare our calculated result with the previous results.
Ground-State Transition in a Two-Dimensional Frenkel-Kontorova Model
YUAN Xiao-Ping; ZHENG Zhi-Gang
2011-01-01
The ground state of a generalized Frenkel-Kontorova model with a transversaJ degree of freedom is studied. When the coupling strength, K, and the frequency of & single-Atom vibration in the transversaJ direction, ωou are increased, the ground state of the model undergoes a transition from a two-dimensional configuration to a one-dimensional one. This transition can manifest in different ways. Furthermore, we find that the prerequisite of a two-dimensionai ground state is θ≠1//q.%The ground state of a generalized Frenkel-Kontorova model with a transversal degree of freedom is studied.When the coupling strength,K,and the frequency of a single-atom vibration in the transversal direction,ωoy,are increased,the ground state of the model undergoes a transition from a two-dimensional configuration to a one-dimensional one.This transition can manifest in different ways.Furthermore,we find that the prerequisite of a two-dimensional ground state is θ ≠ 1/q.In recent years,the Frenkel-Kontorova (FK) model has been applied to a variety of physical systems,such as adsorbed monolayers,[1,2] Josephsonjunction arrays,[3-5] tribology[6-8] and charge-density waves.[9,10] Experimental and large-scale simulation data at the nanoscale have become available,and more complicated FK-type models have been investigated using simulations of molecular dynamics.[11
Magnetic exciton dispersion in praseodymium
Rainford, B. D.; Houmann, Jens Christian Gylden
1971-01-01
Measurements of the dispersion of magnetic excitons have been made in a single crystal of praseodymium metal using inelastic neutron scattering. A preliminary analysis of the data yields the first detailed information about the exchange interactions and the crystal field splittings in the light...
Exciton dynamics in molecular aggregates
Augulis, R.; Pugžlys, A.; Loosdrecht, P.H.M. van; Pugzlys, A
2006-01-01
The fundamental aspects of exciton dynamics in double-wall cylindrical aggregates of cyanine dyes are studied by means of frequency resolved femtosecond pump-probe spectroscopy. The collective excitations of the aggregates, resulting from intermolecular dipole-dipole interactions have the characteri
Exciton dynamics in molecular aggregates
Augulis, R.; Pugžlys, A.; Loosdrecht, P.H.M. van; Pugzlys, A
2006-01-01
The fundamental aspects of exciton dynamics in double-wall cylindrical aggregates of cyanine dyes are studied by means of frequency resolved femtosecond pump-probe spectroscopy. The collective excitations of the aggregates, resulting from intermolecular dipole-dipole interactions have the
Exciton size and quantum transport in nanoplatelets
Pelzer, Kenley M., E-mail: kpelzer@anl.gov; Gray, Stephen K. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 Cass Ave., Argonne, Illinois 60439 (United States); Darling, Seth B. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 Cass Ave., Argonne, Illinois 60439 (United States); Institute for Molecular Engineering, University of Chicago, 5747 S. Ellis Ave., Chicago, Illinois 60637 (United States); Schaller, Richard D. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 Cass Ave., Argonne, Illinois 60439 (United States); Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States)
2015-12-14
Two-dimensional nanoplatelets (NPLs) are an exciting class of materials with promising optical and energy transport properties. The possibility of efficient energy transport between nanoplatelets raises questions regarding the nature of energy transfer in these thin, laterally extended systems. A challenge in understanding exciton transport is the uncertainty regarding the size of the exciton. Depending on the material and defects in the nanoplatelet, an exciton could plausibly extend over an entire plate or localize to a small region. The variation in possible exciton sizes raises the question how exciton size impacts the efficiency of transport between nanoplatelet structures. Here, we explore this issue using a quantum master equation approach. This method goes beyond the assumptions of Förster theory to allow for quantum mechanical effects that could increase energy transfer efficiency. The model is extremely flexible in describing different systems, allowing us to test the effect of varying the spatial extent of the exciton. We first discuss qualitative aspects of the relationship between exciton size and transport and then conduct simulations of exciton transport between NPLs for a range of exciton sizes and environmental conditions. Our results reveal that exciton size has a strong effect on energy transfer efficiency and suggest that manipulation of exciton size may be useful in designing NPLs for energy transport.
Exciton size and quantum transport in nanoplatelets.
Pelzer, Kenley M; Darling, Seth B; Gray, Stephen K; Schaller, Richard D
2015-12-14
Two-dimensional nanoplatelets (NPLs) are an exciting class of materials with promising optical and energy transport properties. The possibility of efficient energy transport between nanoplatelets raises questions regarding the nature of energy transfer in these thin, laterally extended systems. A challenge in understanding exciton transport is the uncertainty regarding the size of the exciton. Depending on the material and defects in the nanoplatelet, an exciton could plausibly extend over an entire plate or localize to a small region. The variation in possible exciton sizes raises the question how exciton size impacts the efficiency of transport between nanoplatelet structures. Here, we explore this issue using a quantum master equation approach. This method goes beyond the assumptions of Förster theory to allow for quantum mechanical effects that could increase energy transfer efficiency. The model is extremely flexible in describing different systems, allowing us to test the effect of varying the spatial extent of the exciton. We first discuss qualitative aspects of the relationship between exciton size and transport and then conduct simulations of exciton transport between NPLs for a range of exciton sizes and environmental conditions. Our results reveal that exciton size has a strong effect on energy transfer efficiency and suggest that manipulation of exciton size may be useful in designing NPLs for energy transport.
Resonance and Rectification in a Two-Dimensional Frenkel-Kontorova Model with Triangular Symmetry
YANG Yang; WANG Cang-Long; DUAN Wen-Shan; CHEN Jian-Min
2011-01-01
The mode-locking phenomena in the dc- and ac-driven overdamped two-dimensional Frenkel-Kontorova model with triangular symmetric structures are studied. The obtained results show that the transverse velocitylongitudinal velocity(vy) can occur when n is an odd number. It is also found in our simulations that the critical depinning force oscillates with the amplitude of ac-driven force, i.e., the system is dominated by the ac-driven force. The oscillatory behavior is strongly determined by the initial phase of ac force.
Krajewski, Florian R.; Müser, Martin H.
2005-07-01
The spectral density of quantum mechanical Frenkel Kontorova chains moving in disordered, external potentials is investigated by means of path-integral molecular dynamics. If the second moment of the embedding potential is well defined (roughness exponent H=0), there is one regime in which the chain is pinned (large masses m of chain particles) and one in which it is unpinned (small m). If the embedding potential can be classified as a random walk on large length scales ( H=1/2), then the chain is always pinned irrespective of the value of m. For H=1/2, two phonon-like branches appear in the spectra.
The Peierls-Nabarro model as a limit of a Frenkel-Kontorova model
Fino, Ahmad; Monneau, Régis
2010-01-01
We study a generalization of the fully overdamped Frenkel-Kontorova model in dimension $n\\geq 1.$ This model describes the evolution of the position of each atom in a crystal, and is mathematically given by an infinite system of coupled first order ODEs. We prove that for a suitable rescaling of this model, the solution converges to the solution of a Peierls-Nabarro model, which is a coupled system of two PDEs (typically an elliptic PDE in a domain with an evolution PDE on the boundary of the domain). This passage from the discrete model to a continuous model is done in the framework of viscosity solutions.
Exact solution of Frenkel-Kontorova models with a complete devil's staircase in higher dimensions
Kao, H; Tzeng, W J; Kao, Hsien-chung; Lee, Shih-Chang; Tzeng, Wen-Jer
1996-01-01
We solve exactly a class of Frenkel-Kontorova models with piecewise parabolic potential, which has $d$ sub-wells in a period. With careful analysis, we show that the phase diagram of the minimum enthalpy configurations exhibits the structure of a complete $d$-dimensional devil's staircase. The winding number of a minimum enthalpy configuration is locked to rational values, while the fraction of atoms in each sub-well is locked to values which are sub-commensurable with the winding number.
Poole-Frenkel Conduction in Cu/Nano-SnO2/Cu Arrangement
2011-01-01
It is well known that metal/Tin-dioxide/metal sandwich structures exhibit a field-assisted lowering of the potential barrier between donor-like center and the conduction band edge, known as the Poole-Frenkel effect. This behavior is indicated by a linear dependence of Iog on 1 / 2 , where is the current density, and is the applied voltage. In this study, the electrical properties of Cu/nano-SnO2/Cu sandwich structures were investigated through current-voltage measurements at room tem...
Generalized adiabatic polaron hopping: Meyer-Neldel compensation and Poole-Frenkel behavior.
Emin, David
2008-04-25
The commonly employed adiabatic treatment of polaron hopping is extended to treat the continuous alteration of a carrier wave function with the atoms' movements and a carrier's long-range interaction with a polar surrounding. These features, respectively, introduce carrier-induced softening of the atoms' vibrations and a hopping activation energy that depends on hopping distance. The Meyer-Neldel compensation effect results from carrier-induced softening of vibrations. Poole-Frenkel behavior emerges for electric-field driven polaron hopping in ionic and polar media.
Effects of Charge-Transfer Excitons on the Photophysics of Organic Semiconductors
Hestand, Nicholas J.
The field of organic electronics has received considerable attention over the past several years due to the promise of novel electronic materials that are cheap, flexible and light weight. While some devices based on organic materials have already emerged on the market (e.g. organic light emitting diodes), a deeper understanding of the excited states within the condensed phase is necessary both to improve current commercial products and to develop new materials for applications that are currently in the commercial pipeline (e.g. organic photovoltaics, wearable displays, and field effect transistors). To this end, a model for pi-conjugated molecular aggregates and crystals is developed and analyzed. The model considers two types of electronic excitations, namely Frenkel and charge-transfer excitons, both of which play a prominent role in determining the nature of the excited states within tightly-packed organic systems. The former consist of an electron-hole pair bound to the same molecule while in the later the electron and hole are located on different molecules. The model also considers the important nuclear reorganization that occurs when the system switches between electronic states. This is achieved using a Holstein-style Hamiltonian that includes linear vibronic coupling of the electronic states to the nuclear motion associated with the high frequency vinyl-stretching and ring-breathing modes. Analysis of the model reveals spectroscopic signatures of charge-transfer mediated J- and H-aggregation in systems where the photophysical properties are determined primarily by charge-transfer interactions. Importantly, such signatures are found to be sensitive to the relative phase of the intermolecular electron and hole transfer integrals, and the relative energy of the Frenkel and charge-transfer states. When the charge-transfer integrals are in phase and the energy of the charge-transfer state is higher than the Frenkel state, the system exhibits J
Spatially indirect excitons in coupled quantum wells
Lai, Chih-Wei Eddy [Univ. of California, Berkeley, CA (United States)
2004-03-01
Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer)^{2} were
Coherent exciton-polariton devices
Fraser, Michael D.
2017-09-01
The Bose-Einstein condensate of exciton-polaritons has emerged as a unique, coherent system for the study of non-equilibrium, macroscopically coherent Bose gases, while the full confinement of this coherent state to a semiconductor chip has also generated considerable interest in developing novel applications employing the polariton condensate, possibly even at room temperature. Such devices include low-threshold lasers, precision inertial sensors, and circuits based on superfluidity with ultra-fast non-linear elements. While the demonstration and development of such devices are at an early stage, rapid progress is being made. In this review, an overview of the exciton-polariton condensate system and the established and emerging material systems and fabrication techniques are presented, followed by a critical, in-depth assessment of the ability of the coherent polariton system to deliver on its promise of devices offering either new functionality and/or room-temperature operation.
A Thermally Activated Exciton-Exciton Collision Process in ZnO Microrods
ZHAO Dong-Xu; LIU Yi-Chun; SHEN De-Zhen; LU You-Ming; ZHANG Ji-Ying; FAN Xi-Wu
2004-01-01
@@ Room-temperature P-band emission induced by an exciton-exciton collision process was observed in ZnO microrods. Both temperature- and excitation-intensity-dependent photoluminescence (PL) measurements were conducted.
Exciton Seebeck effect in molecular systems
Yan, Yun-An, E-mail: yunan@nano.gznc.edu.cn [Guizhou Provincial Key Laboratory of Computational Nanomaterial Science, Guizhou Normal College, Guiyang, Guizhou 550018 (China); Cai, Shaohong [Guizhou Key Laboratory of Economic System Simulation, Guizhou University of Finance and Economics, Guiyang 550004 (China)
2014-08-07
We investigate the exciton dynamics under temperature difference with the hierarchical equations of motion. Through a nonperturbative simulation of the transient absorption of a heterogeneous trimer model, we show that the temperature difference causes exciton population redistribution and affects the exciton transfer time. It is found that one can reproduce not only the exciton population redistribution but also the change of the exciton transfer time induced by the temperature difference with a proper tuning of the site energies of the aggregate. In this sense, there exists a site energy shift equivalence for any temperature difference in a broad range. This phenomenon is similar to the Seebeck effect as well as spin Seebeck effect and can be named as exciton Seebeck effect.
Exciton Seebeck effect in molecular systems.
Yan, Yun-An; Cai, Shaohong
2014-08-07
We investigate the exciton dynamics under temperature difference with the hierarchical equations of motion. Through a nonperturbative simulation of the transient absorption of a heterogeneous trimer model, we show that the temperature difference causes exciton population redistribution and affects the exciton transfer time. It is found that one can reproduce not only the exciton population redistribution but also the change of the exciton transfer time induced by the temperature difference with a proper tuning of the site energies of the aggregate. In this sense, there exists a site energy shift equivalence for any temperature difference in a broad range. This phenomenon is similar to the Seebeck effect as well as spin Seebeck effect and can be named as exciton Seebeck effect.
Exciton quenching at PEDOT:PSS anode in polymer blue-light-emitting diodes
Abbaszadeh, D.; Wetzelaer, G. A. H. [Molecular Electronics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (Netherlands); Dutch Polymer Institute, P.O. Box 902, 5600 AX, Eindhoven (Netherlands); Nicolai, H. T. [TNO/Holst Centre, High Tech Campus 31, 5605 KN, Eindhoven (Netherlands); Blom, P. W. M., E-mail: blom@mpip-mainz.mpg.de [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia)
2014-12-14
The quenching of excitons at the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) anode in blue polyalkoxyspirobifluorene-arylamine polymer light-emitting diodes is investigated. Due to the combination of a higher electron mobility and the presence of electron traps, the recombination zone shifts from the cathode to the anode with increasing voltage. The exciton quenching at the anode at higher voltages leads to an efficiency roll-off. The voltage dependence of the luminous efficiency is reproduced by a drift-diffusion model under the condition that quenching of excitons at the PEDOT:PSS anode and metallic cathode is of equal strength. Experimentally, the efficiency roll-off at high voltages due to anode quenching is eliminated by the use of an electron-blocking layer between the anode and the light-emitting polymer.
On the drift mobility of a molecular polaron in the presence of Coulomb traps
Rackovsky, S.; Scher, H.
1999-08-01
We study the drift mobility of a molecular polaron in the presence of an external applied field and Coulomb traps. The model is based on one previously developed for geminate recombination of photogenerated charge carriers. It is shown that the unusual combination of Poole-Frenkel-like field dependence and non-Arrhenius temperature dependence of the mobility, measured experimentally in molecular films, is well reproduced by this model. Our key result is that this nearly universal experimental behavior of the mobility arises from competition between rates of polaron trapping and release from a very low density of Coulomb traps.
Hu, Miao; Bi, Cheng; Yuan, Yongbo; Xiao, Zhengguo; Dong, Qingfeng; Shao, Yuchuan; Huang, Jinsong
2015-05-13
The nonexcitonic character for organometal trihalide perovskites is demonstrated by examining the field-dependent exciton dissociation behavior. It is found that photogenerated excitons can be effectively dissociated into free charges inside perovskite without the assistance of charge extraction layer or external field, which is a stark contrast to the charge-separation behavior in excitonic materials in the same photovoltaic operation system.
Ballistic spin transport in exciton gases
Kavokin, A. V.; Vladimirova, M.; Jouault, B.; Liew, T. C. H.; Leonard, J. R.; Butov, L. V.
2013-11-01
Traditional spintronics relies on spin transport by charge carriers, such as electrons in semiconductor crystals. The challenges for the realization of long-range electron spin transport include rapid spin relaxation due to electron scattering. Scattering and, in turn, spin relaxation can be effectively suppressed in excitonic devices where the spin currents are carried by electrically neutral bosonic quasiparticles: excitons or exciton-polaritons. They can form coherent quantum liquids that carry spins over macroscopic distances. The price to pay is a finite lifetime of the bosonic spin carriers. We present the theory of exciton ballistic spin transport which may be applied to a range of systems supporting bosonic spin transport, in particular to indirect excitons in coupled quantum wells. We describe the effect of spin-orbit interaction for the electron and the hole on the exciton spin, account for the Zeeman effect induced by external magnetic fields and long-range and short-range exchange splittings of the exciton resonances. We also consider exciton transport in the nonlinear regime and discuss the definitions of the exciton spin current, polarization current, and spin conductivity.
Exciton coherence and energy transport in the light-harvesting dimers of allophycocyanin.
Womick, Jordan M; Moran, Andrew M
2009-12-03
Femtosecond transient grating and photon echo spectroscopies with a sub-20 fs time resolution are applied to allophycocyanin (APC), a protein located at the base of the phycobilisome antenna of cyanobacteria. Coupling between pairs of phycocyanobilin pigments with nondegenerate energy levels gives rise to the four-level exciton electronic structure of APC. Spectroscopic signals obtained in multiple experiments (e.g., linear absorption, fluorescence, transient grating, 2D Fourier transform photon echo) are used to constrain the parameters of a Frenkel exciton Hamiltonian. Comparison between experiment and theory yields a robust microscopic understanding of the electronic and nuclear relaxation dynamics. In agreement with previous work, transient absorption anisotropy establishes that internal conversion between the exciton states of the dimer occurs with time constants of 35, 220, and 280 fs. The sub-100 fs dynamics are decomposed into three distinct relaxation processes: electronic population transfer, intramolecular vibrational energy redistribution, and the dephasing of electronic and nuclear coherences. Model calculations show that the sub-100 fs red-shift in the transient absorption signal spectrum reflects interference between stimulated emission (ESE) and excited state absorption (ESA) signal components. It is also established that the pigment fluctuations in the dimer are not well-correlated, although further experiments will be required to precisely quantify the amount of correlation. The findings of this paper suggest that the light harvesting function of APC is enhanced by nondegeneracy of the pigments comprising the dimer and strong vibronic coupling of intramolecular modes on the phycocyanobilins. We find that the exciton states are 96% localized to the individual molecular sites within a particular dimer. Localization of the transition densities, in turn, is suggested to promote significant vibronic coupling which serves to both broaden the absorption
Boukahil, Abdelkrim; Zettili, Nouredine; Huber, David
2012-02-01
We report the results of studies of the tails near the band edges of a one-dimensional Frenkel exciton system in the Coherent Potential Approximation (CPA). A Gaussian distribution of the transition frequencies with rms width σ (0.1 <=σ<= 2.0) is used. We found that the tails obey two different exponential power laws depending on the value of σ. In the weak disorder limit 0.1 <=σ< 0.5, the tails of the absorption line shape and the density of states behave like exp(-k|E|^3/2 / 2̂), and in the strong disorder limit,0.5 < σ<= 2.0, the tails behave like exp(-|E|^2 / 2̂). In the weak disorder limit, our CPA results are in excellent agreement with previous investigations.
Clausen, Kurt Nørgaard; Hayes, W.; Macdonald, J E.
1984-01-01
Diffraction and coherent diffuse quasielastic scattering of neutrons have been used to investigate Frenkel disorder of the oxygen sublattice in single crystals of stoichiometric UO2. Measurements were made up to 2900 K using a special high-temperature furnace. The results provide the first direct...
Elliptic algebra, Frenkel-Kac construction and root of unity limit
Itoyama, H.; Oota, T.; Yoshioka, R.
2017-09-01
We argue that the level-1 elliptic algebra Uq, p(\\widehat{g}) is a dynamical symmetry realized as a part of 2d/5d correspondence where the Drinfeld currents are the screening currents to the q-Virasoro/W block in the 2d side. For the case of Uq, p(\\widehat{sl}(2)) , the level-1 module has a realization by an elliptic version of the Frenkel-Kac construction. The module admits the action of the deformed Virasoro algebra. In a rth root of unity limit of p with q2 → 1 , the {Z}r -parafermions and a free boson appear and the value of the central charge that we obtain agrees with that of the 2d coset CFT with para-Virasoro symmetry, which corresponds to the 4d N=2 SU(2) gauge theory on {R}^4/{Z}r .
Noguera, C; Goniakowski, J
2013-08-28
Relying on Frenkel Kontorova (FK) models of diatomic chains of increasing levels of complexity, this study presents an overall view of the diversity of structural effects that a compound (oxide) chain supported on a metal may display and helps assigning them to precise microscopic mechanisms. At each stage, the models are solved numerically, in order to provide phase diagrams as a function of chain-substrate interaction and misfit. Analytic derivations of transition lines are also provided within the continuum approximation. Their predictions are shown to quantitatively account for the numerical results, thus showing the validity of the continuum approximation in the misfit range under consideration. The present study thus extends our knowledge of the FK model by specifically focusing on diatomic chains and brings new information on a potentially interesting system which experimentalists just start being able to synthesize--oxide chains on metal substrates.
A two-component Frenkel-Kontorowa model for surface alloy formation
Daruka, I
2003-01-01
It has been shown by recent experiments that bulk immiscible metals (e.g. Ag/Cu, Ag/Co and Au/Ni) can form binary alloys on certain surfaces where the substrate mediates the elastic misfits between the two components, thus relieving the elastic strain in the overlayer. These novel surface alloys exhibit a rich phase structure. We formulate a two-component Frenkel-Kontorova model in one dimension to study surface alloy formation. This model can naturally incorporate dislocation formation that plays a crucial role in determining the actual structure of the system. Using energy minimization calculations we provide a phase diagram in terms of average alloy composition and the energy of mixing. Monte Carlo simulations were also performed to study the structure and interaction of the emerging dislocations.
Exciton-polaritons in Bragg gratings
Creatore, C [Department of Physics ' A. Volta' , Universita di Pavia, via Bassi 6, I-27100, Pavia (Italy); Mouchliadis, L; Langbein, W [School of Physics and Astronomy, Cardiff University, The Parade, CF24 3AA, Cardiff (United Kingdom); Biancalana, F [Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1/Bau 24, 91058 Erlangen (Germany); Osborne, S, E-mail: creatore@fisicavolta.unipv.i [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland)
2010-02-01
We study the strong coupling between photons and bulk excitons in a one-dimensional Bragg grating. The dispersion of the resulting Bragg-polariton states resembles the dispersion of quantum-well microcavity polaritons. We report on a parametric scattering process at two 'magic frequencies' occurring due to the strong excitonic nonlinearity.
Radiative recombination of excitons in amorphous semiconductors
Singh, Jai [School of Engineering and Logistics, Faculty Technology, B-41, Charles Darwin University, Darwin, NT 0909 (Australia)]. E-mail: jai.singh@cdu.edu.au
2005-04-15
A theory for calculating the radiative lifetime of excitons in amorphous semiconductors is presented. Four possibilities of excitonic radiative recombination are considered and the corresponding rates are derived at thermal equilibrium. The radiative lifetime is calculated from the inverse of the maximum rate for all the four possibilities. Results agree very well with experiments.
Binding energies of an exciton in a Gaussian potential quantum dot
Xie Wen-Fang
2006-01-01
In this paper, an exciton trapped by a Gaussian confining potential quantum dot has been investigated. Calculations are made by using the method of numerical diagonalization of Hamiltonian in the effective-mass approximation. The dependences of binding energies of the ground state and the first excited state on the size of the confining potential and the strength of the magnetic field are analysed explicitly.
Visualization of molecular excitons diffusion
Salamatova, Evgeniia; Kozlov, Oleg V.; Luponosov, Yuriy N.; Solodukhin, Alexander N.; Toropynina, Viktoria Y.; Ponomarenko, Sergei A.; Pshenichnikov, Maxim S.
2016-09-01
Small organic molecules of the push-pull architecture are rapidly gaining their status in the organic electronics applications. In densely packed molecular films, both intra- and intermolecular interactions play an essential role for the device performance. Here we study two different molecules, a highly symmetric star-shaped one and its newly synthesized single arm analogue, for their photophysical properties. Both chromophores were dissolved in a solid matrix at different concentrations to vary their separation and therefore intermolecular coupling. We show that in both molecules the population relaxation accelerates by more than a factor of 10 at shorter intermolecular distances due to self-quenching thereby reducing the exciton survival time. The transient anisotropy dynamics are also quite similar, with their substantial acceleration at shorter interchromophore distances due to exciton diffusion caused by the Förster-like resonance energy transfer. However, the anisotropy values are noticeably lower for the star-shaped molecule because of intramolecular mixing of different polarization states. Finally, a model is presented that accounts for the observed results.
Electron transport mechanism of bathocuproine exciton blocking layer in organic photovoltaics.
Lee, Jeihyun; Park, Soohyung; Lee, Younjoo; Kim, Hyein; Shin, Dongguen; Jeong, Junkyeong; Jeong, Kwangho; Cho, Sang Wan; Lee, Hyunbok; Yi, Yeonjin
2016-02-21
Efficient exciton management is a key issue to improve the power conversion efficiency of organic photovoltaics (OPVs). It is well known that the insertion of an exciton blocking layer (ExBL) having a large band gap promotes the efficient dissociation of photogenerated excitons at the donor-acceptor interface. However, the large band gap induces an energy barrier which disrupts the charge transport. Therefore, building an adequate strategy based on the knowledge of the true charge transport mechanism is necessary. In this study, the true electron transport mechanism of a bathocuproine (BCP) ExBL in OPVs is comprehensively investigated by in situ ultraviolet photoemission spectroscopy, inverse photoemission spectroscopy, density functional theory calculation, and impedance spectroscopy. The chemical interaction between deposited Al and BCP induces new states within the band gap of BCP, so that electrons can transport through these new energy levels. Localized trap states are also formed upon the Al-BCP interaction. The activation energy of these traps is estimated with temperature-dependent conductance measurements to be 0.20 eV. The Al-BCP interaction induces both transport and trap levels in the energy gap of BCP and their interplay results in the electron transport observed.
Coulomb Traps and Charge Transport in Molecular Solids
Scher, Harvey
2000-03-01
A major result of experimental studies of a diverse assortment of disordered molecular solids is the observation of a common pattern in the charge transport properties. The transport ranges from charge transfer between molecules doped in an inert polymer to motion along the silicon backbone of polysilylenes. The pattern is the unusual combination of Poole Frenkel-like electric field dependence and non-Arrhenius temperature dependence of the mobility. The latter feature has been especially puzzling. We study the drift mobility of a molecular polaron in the presence of an applied field and Coulomb traps. The model is based on one previously developed for geminate recombination of photogenerated charge carriers. The key electric field and temperature dependencies of the mobility measurements are well reproduced by this model. Our conclusion is that this nearly universal transport behavior arises from competition between rates of polaron trapping and release from a very low density of Coulomb traps.
Excitonic polaritons of zinc diarsenide single crystals
Syrbu, N. N.; Stamov, I. G.; Zalamai, V. V.; Dorogan, A.
2017-02-01
Excitonic polaritons of ZnAs2 single crystals had been investigated. Parameters of singlet excitons with D2bar(z) symmetry and orthoexcitons 2D1bar(y)+D2bar(x) had been determined. Spectral dependencies of ordinary and extraordinary dispersion of refractive index had been calculated using interferential reflection and transmittance spectra. It was shown, that A excitonic series were due to hole (V1) and electron (C1) bands. The values of effective masses of electrons (mc*=0.10 m0) and holes (mv1*=0.89 m0) had been estimated. It was revealed that the hole mass mv1* changes from 1.03 m0 to 0.55 m0 at temperature increasing from 10 K up to 230 K and that the electron mass mc* does not depend on temperature. The integral absorption A (eV cm-1) of the states n=1, 2 and 3 of D2bar(z) excitons depends on the An≈n-3 equality, which it is characteristic for S-type excitonic functions. Temperature dependences of the integral absorption of ground states for D2bar(z) and D2bar(D) excitons differ. The ground states of B and C excitons formed by V3 - C1 and V4 - C1 bands and its parameters had been determined.
Instantaneous Rayleigh scattering from excitons localized in monolayer islands
Langbein, Wolfgang; Leosson, Kristjan; Jensen, Jacob Riis;
2000-01-01
We show that the initial dynamics of Rayleigh scattering from excitons in quantum wells can be either instantaneous or delayed, depending on the exciton ensemble studied. For excitation of the entire exciton resonance, a finite rise time given by the inverse inhomogeneous broadening: of the exciton...... resonance is observed. Instead, when exciting only a subsystem of the exciton resonance, in our case excitons localized in quantum well regions of a specific monolayer thickness, the rise has an instantaneous component. This is due to the spatial nonuniformity of the initially excited exciton polarization...
Hatch, Courtney D.; Greenaway, Ann L.; Christie, Matthew J.; Baltrusaitis, Jonas
2014-04-01
Fresh mineral aerosol has recently been found to be effective cloud condensation nuclei (CCN) and contribute to the number of cloud droplets in the atmosphere due to the effect of water adsorption on CCN activation. The work described here uses experimental water adsorption measurements on Na-montmorillonite and illite clay to determine empirical adsorption parameters that can be used in a recently derived theoretical framework (Frenkel-Halsey-Hill Activation Theory, FHH-AT) that accounts for the effect of water adsorption on CCN activation. Upon fitting the Frenkel-Halsey-Hill (FHH) adsorption model to water adsorption measurements, we find FHH adsorption parameters, AFHH and BFHH, to be 98 ± 22 and 1.79 ± 0.11 for montmorillonite and 75 ± 17 and 1.77 ± 0.11 for illite, respectively. The AFHH and BFHH values obtained from water adsorption measurements differ from values reported previously determined by applying FHH-AT to CCN activation measurements. Differences in FHH adsorption parameters were attributed to different methods used to obtain them and the hydratable nature of the clays. FHH adsorption parameters determined from water adsorption measurements were then used to calculate the critical super-saturation (sc) for CCN activation using FHH-AT. The relationship between sc and the dry particle diameter (Ddry) gave CCN activation curve exponents (xFHH) of -0.61 and -0.64 for montmorillonite and illite, respectively. The xFHH values were slightly lower than reported previously for mineral aerosol. The lower exponent suggests that the CCN activity of hydratable clays is less sensitive to changes in Ddry and the hygroscopicity parameter exhibits a broader variability with Ddry compared to more soluble aerosols. Despite the differences in AFHH, BFHH and xFHH, the FHH-AT derived CCN activities of montmorillonite and illite are quite similar to each other and in excellent agreement with experimental CCN measurements resulting from wet-generated clay aerosol
Hatch, C. D.; Greenaway, A.; Christie, M. J.; Baltrusaitis, J.
2013-12-01
Recently, fresh, unprocessed mineral aerosol has been found to contribute to the number of available cloud condensation nuclei (CCN) and cloud droplets in the atmosphere due to the effect of water adsorption on CCN activation. The work described here uses experimental water adsorption measurements on montmorillonite and illite clay to determine empirical adsorption parameters for a recently derived theoretical framework (Frenkel-Halsey-Hill Activation Theory, FHH-AT) used to calculate CCN activities of clay minerals. Upon fitting the Frenkel-Halsey-Hill (FHH) adsorption model to experimental water adsorption measurements, we find FHH adsorption parameters, AFHH and BFHH, to be 98×22 and 1.79×0.11 for Na-montmorillonite and 75×17 and 1.77×0.11 for illite, respectively. The AFHH and BFHH values obtained for these clays are significantly different from FHH adsorption parameters derived from CCN activation measurements reported previously for similar clay minerals. Differences in FHH adsorption parameters were attributed to the different approaches used, the hydratable nature of the clays and the relative difficulty in measuring CCN activation of hydratable clays due to relatively long adsorption and desorption equilibration times. However, despite these differences, the calculated CCN activities of montmorillonite and illite are quite similar and are in excellent agreement with experimental CCN activation measurements reported previously for similar clays. The different FHH adsorption parameters, however, translate to lower sc-Ddry CCN activation curve exponents (xFHH = -0.61 and -0.64 for montmorillonite and illite, respectively) than have been reported previously. The lower exponent suggests that the CCN activity of hydratable clay aerosol is less sensitive to changes in dry particle diameter (Ddry) and the hygroscopicity parameter exhibits a broader variability with Ddry compared to more soluble aerosols. This study illustrates that FHH-AT using adsorption
O'Carroll, Deirdre M.
2016-09-01
Thin-film organic semiconductor materials are emerging as energy-efficient, versatile alternatives to inorganic semiconductors for display and solid-state lighting applications. Additionally, thin-film organic laser and photovoltaic technologies, while not yet competitive with inorganic semiconductor-based analogues, can exhibit small device embodied energies (due to comparatively low temperature and low energy-use fabrication processes) which is of interest for reducing overall device cost. To improve energy conversion efficiency in thin-film organic optoelectronics, light management using nanophotonic structures is necessary. Here, our recent work on improving light trapping and light extraction in organic semiconductor thin films using nanostructured silver plasmonic metasurfaces will be presented [1,2]. Numerous optical phenomena, such as absorption induced scattering, out-of-plane waveguiding and morphology-dependent surface plasmon outcoupling, are identified due to exciton-plasmon coupling between the organic semiconductor and the metasurface. Interactions between localized and propagating surface plasmon polaritons and the excitonic transitions of a variety of organic conjugated polymer materials will be discussed and ways in which these interactions may be optimized for particular optoelectronic applications will be presented. [1] C. E. Petoukhoff, D. M. O'Carroll, Absorption-Induced Scattering and Surface Plasmon Out-Coupling from Absorber-Coated Plasmonic Metasurfaces. Nat. Commun. 6, 7899-1-13 (2015). [2] Z. Shen, D. M. O'Carroll, Nanoporous Silver Thin Films: Multifunctional Platforms for Influencing Chain Morphology and Optical Properties of Conjugated Polymers. Adv. Funct. Mater. 25, 3302-3313 (2015).
Excitons in the Fractional Quantum Hall Effect
Laughlin, R. B.
1984-09-01
Quasiparticles of charge 1/m in the Fractional Quantum Hall Effect form excitons, which are collective excitations physically similar to the transverse magnetoplasma oscillations of a Wigner crystal. A variational exciton wavefunction which shows explicitly that the magnetic length is effectively longer for quasiparticles than for electrons is proposed. This wavefunction is used to estimate the dispersion relation of these excitons and the matrix elements to generate them optically out of the ground state. These quantities are then used to describe a type of nonlinear conductivity which may occur in these systems when they are relatively clean.
Foffi, Giuseppe; Sciortino, Francesco
2007-08-23
Colloidal systems (and protein solutions) are often characterized by attractive interactions whose ranges are much smaller than the particle size. When this is the case and the interaction is spherical, systems obey a generalized law of correspondent states (GLCS), first proposed by Noro and Frenkel (Noro, M. G.; Frenkel, D. J. Chem. Phys. 2000, 113, 2941). The thermodynamic properties become insensitive to the details of the potential, depending only on the value of the second virial coefficient B2 and the density rho. The GLCS does not generically hold for the case of nonspherical potentials. In this Letter, we suggest that when particles interact via short-ranged small-angular amplitude patchy interactions (so that the condition of only one bond per patch is fulfilled), it is still possible to generalize the GLCS close to the liquid-gas critical point.
Hestand, Nicholas J.; Spano, Frank C.
2016-12-01
The importance of spatial coherence in energy and charge transfer processes in biological systems and photovoltaic devices has been hotly debated over the past several years. While larger spatial coherences are thought to benefit transport, a clear correlation has yet to be established, partly because a simple and accurate measure of the coherence length has remained elusive. Previously, it was shown that the number of coherently connected chromophores, NCoh , can be determined directly from the ratio (SR) of the 0-0 and 0-1 vibronic line strengths in the photoluminescence (PL) spectrum. The relation NCoh = λ02SR, where λ02 is the associated monomeric Huang-Rhys parameter, was derived in the Frenkel exciton limit. Here, it is shown that SR remains a highly accurate measure of coherence for systems characterized by significant charge transfer interactions (e.g. conjugated π-stacked systems). The only requirement is that the exciton band curvature must be positive, as in a J-aggregate.
Crespillo, M. L.; Agulló-López, F.; Zucchiatti, A.
2017-03-01
An extensive survey for the formation energies of Frenkel pairs, as representative candidates for radiation-induced point defects, is presented and discussed in relation to the cumulative mechanisms (CM) of track formation in dielectric materials under swift heavy ion (SHI) irradiation. These mechanisms rely on the generation and accumulation of point defects during irradiation followed by collapse of the lattice once a threshold defect concentration is reached. The physical basis of those approaches has been discussed by Fecht as a defect-assisted transition to an amorphous phase. Although a first quantitative analysis of the CM model was previously performed for LiNbO3 crystals, we have, here, adopted a broader phenomenological approach. It explores the correlation between track formation thresholds and the energies for Frenkel pair formation for a broad range of materials. It is concluded that the threshold stopping powers can be roughly scaled with the energies required to generate a critical Frenkel pair concentration in the order of a few percent of the total atomic content. Finally, a comparison with the predictions of the thermal spike model is discussed within the analytical Szenes approximation.
Nagata, Yuki; Lennartz, Christian
2008-07-21
The atomistic simulation of charge transfer process for an amorphous Alq(3) system is reported. By employing electrostatic potential charges, we calculate site energies and find that the standard deviation of site energy distribution is about twice as large as predicted in previous research. The charge mobility is calculated via the Miller-Abrahams formalism and the master equation approach. We find that the wide site energy distribution governs Poole-Frenkel-type behavior of charge mobility against electric field, while the spatially correlated site energy is not a dominant mechanism of Poole-Frenkel behavior in the range from 2x10(5) to 1.4x10(6) V/cm. Also we reveal that randomly meshed connectivities are, in principle, required to account for the Poole-Frenkel mechanism. Charge carriers find a zigzag pathway at low electric field, while they find a straight pathway along electric field when a high electric field is applied. In the space-charge-limited current scheme, the charge-carrier density increases with electric field strength so that the nonlinear behavior of charge mobility is enhanced through the strong charge-carrier density dependence of charge mobility.
2000-01-01
The enhancement of the emission rate of charge carriers from deep-level defects in electric field is routinely used to determine the charge state of the defects. However, only a limited number of defects can be satisfactorily described by the Poole-Frenkel theory. An electric field dependence different from that expected from the Poole-Frenkel theory has been repeatedly reported in the literature, and no unambiguous identification of the charge state of the defect could be made. In this artic...
Multiphonon ionization of traps formed in hafnium oxide by electrical stress
Danilyuk, A.L.; Migas, D.B.; Danilyuk, M.A.; Borisenko, V.E. [Belorussian State University of Informatics and Radioelectronics, P. Browka 6, 220013 Minsk (Belarus); Wu, X.; Pey, K.L. [Microelectronics Center, School of EEE, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Concurrently with Engineering Product Development Pillar, Singapore University of Technology and Design, 20 Dover Drive, Singapore 138682 (Singapore); Raghavan, N. [Microelectronics Center, School of EEE, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore)
2013-02-15
We have investigated behavior of traps formed in hafnium oxide (HfO{sub 2}) by electrical stress and their influence on the charge carrier transport through Si/SiO{sub 2}/HfO{sub 2}/poly-Si nanostructures. The traps govern the transport process assuming a capture of charge carriers followed by their ionization via the multiphonon transition mechanism. The multiphonon transitions via the Poole-Frenkel effect or electron tunneling as well as the multiphonon tunneling ionization of neutral traps have been carefully considered for charged traps. We also provide a set of parameters including the trap concentration, ionization energy, the frequency factor, the effective mass of charge carriers, optical energy, and phonon energy in order to reproduce and reasonably fit available experimental data. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Charged-Exciton Complexes in Quantum Dots
XIE Wen-Fang
2001-01-01
It is known experimentally that stable charged-exciton complexes can exist in low-dimensional semiconductor nanostructures. Much less is known about the properties of such charged-exciton complexes since three-body problems are very difficult to be solved, even numerically. Here we introduce the correlated hyperspherical harmonics as basis functions to solve the hyperangular equation for negatively and positively charged excitons (trions) in a harmonic quantum dot. By using this method, we have calculated the energy spectra of the low-lying states of a charged exciton as a function of the radius of quantum dot. Based on symmetry analysis, the level crossover as the dot radius increases can be fully explained as the results of symmetry constraint.``
Can disorder enhance incoherent exciton diffusion?
Lee, Elizabeth M Y; Willard, Adam P
2015-01-01
Recent experiments aimed at probing the dynamics of excitons have revealed that semiconducting films composed of disordered molecular subunits, unlike expectations for their perfectly ordered counterparts, can exhibit a time-dependent diffusivity in which the effective early time diffusion constant is larger than that of the steady state. This observation has led to speculation about what role, if any, microscopic disorder may play in enhancing exciton transport properties. In this article, we present the results of a model study aimed at addressing this point. Specifically, we present a general model, based upon F\\"orster theory, for incoherent exciton diffusion in a material composed of independent molecular subunits with static energetic disorder. Energetic disorder leads to heterogeneity in molecule-to-molecule transition rates which we demonstrate has two important consequences related to exciton transport. First, the distribution of local site-specific diffusivity is broadened in a manner that results i...
Exciton absorption in narrow armchair graphene nanoribbons
Monozon, B. S.; Schmelcher, P.
2016-11-01
We develop an analytical approach to the exciton optical absorption for narrow gap armchair graphene nanoribbons (AGNR). We focus on the regime of dominant size quantization in combination with the attractive electron-hole interaction. An adiabatic separation of slow and fast motions leads via the two-body Dirac equation to the isolated and coupled subband approximations. Discrete and continuous exciton states are in general coupled and form quasi-Rydberg series of purely discrete and resonance type character. The corresponding oscillator strengths and widths are derived. We show that the exciton peaks are blue-shifted, become broader and increase in magnitude upon narrowing the ribbon. At the edge of a subband the singularity related to the 1D density of states is transformed into finite absorption via the presence of the exciton. Our analytical results are in good agreement with those obtained by other methods including numerical approaches. Estimates of the expected experimental values are provided for realistic AGNR.
Hu, Lilei; Mandelis, Andreas; Melnikov, Alexander; Lan, Xinzheng; Hoogland, Sjoerd; Sargent, Edward H.
2017-01-01
Solution-processed colloidal quantum dots (CQDs) are promising materials for realizing low-cost, large-area, and flexible photovoltaic devices. The study of charge carrier transport in quantum dot solids is essential for understanding energy conversion mechanisms. Recently, solution-processed two-layer oleic-acid-capped PbS CQD solar cells with one layer treated with tetrabutylammonium iodide (TBAI) serving as the main light-absorbing layer and the other treated with 1,2-ethanedithiol (EDT) acting as an electron-blocking/hole-extraction layer were reported. These solar cells demonstrated a significant improvement in power conversion efficiency of 8.55% and long-term air stability. Coupled with photocarrier radiometry measurements, this work used a new trap-state mediated exciton hopping transport model, specifically for CQD thin films, to unveil and quantify exciton transport mechanisms through the extraction of hopping transport parameters including exciton lifetimes, hopping diffusivity, exciton detrapping time, and trap-state density. It is shown that PbS-TBAI has higher trap-state density than PbS-EDT that results in higher PbS-EDT exciton lifetimes. Hopping diffusivities of both CQD thin film types show similar temperature dependence, particularly higher temperatures yield higher hopping diffusivity. The higher diffusivity of PbS-TBAI compared with PbS-EDT indicates that PbS-TBAI is a much better photovoltaic material than PbS-EDT. Furthermore, PCR temperature spectra and deep-level photothermal spectroscopy provided additional insights to CQD surface trap states: PbS-TBAI thin films exhibit a single dominant trap level, while PbS-EDT films with lower trap-state densities show multiple trap levels.
Gao, Yuan; Peng, Xiaogang
2015-04-01
A systematic and reproducible method was developed to study the decay dynamics of an exciton, a photogenerated electron-hole pair, in semiconductor nanocrystals in solution. Results revealed that the excitons in plain core CdSe nanocrystals in either zinc-blende or wurtzite or mixed lattice structures could be reproducibly prepared to decay radiatively in unity quantum yield and in single channel. The single-channel lifetime was found to increase monotonically by increasing size of the CdSe nanocrystals, with zinc-blende ones increasing in a relatively slow pace. Surface inorganic stoichiometry was found to be a sensitive parameter to affect the exciton decay dynamics for all crystal structures with different sizes. Excess Se (Cd) sites on the surface were found to induce short (long) lifetime channels for the excitons. Both types of traps reduced the quantum yield of the radiative decay of the excitons, and the hole traps associated with Se sites were nearly not emissive. With optimal surface inorganic stoichiometry, primary amines were identified as "ideal" organic ligands for CdSe core nanocrystals to achieve unity radiative decay of excitons in single channel in comparison to other types of neutral ligands commonly applied in the field.
Quantum-dot excitons in nanostructured environments
Hvam, Jørn Märcher; Stobbe, Søren; Lodahl, Peter
2011-01-01
The interaction between light and quantum-dot (QD) excitons is strongly influenced by the environment in which the QD is placed. We have investigated the interaction by measuring the time-resolved spontaneous-emission rate of QD excitons in different nanostructured environments. Thereby, we have...... is demonstrated and the influence of disorder is discussed. The findings have a strong bearing on future nanophotonic devices....
Quantum-dot excitons in nanostructured environments
Hvam, Jørn Märcher; Stobbe, Søren; Lodahl, Peter
2010-01-01
The interaction between light and quantum-dot (QD) excitons is strongly influenced by the environment in which the QD is placed. We have investigated the interaction by measuring the time-resolved spontaneous-emission rate of QD excitons in different nanostructured environments. Thereby, we have...... is demonstrated and the influence of disorder is discussed. The findings have a strong bearing on future nanophotonic devices....
Exciton Localization in Extended π-Electron Systems: Comparison of Linear and Cyclic Structures.
Thiessen, Alexander; Würsch, Dominik; Jester, Stefan-S; Aggarwal, A Vikas; Idelson, Alissa; Bange, Sebastian; Vogelsang, Jan; Höger, Sigurd; Lupton, John M
2015-07-30
We employ five π-conjugated model materials of different molecular shape-oligomers and cyclic structures-to investigate the extent of exciton self-trapping and torsional motion of the molecular framework following optical excitation. Our studies combine steady state and transient fluorescence spectroscopy in the ensemble with measurements of polarization anisotropy on single molecules, supported by Monte Carlo simulations. The dimer exhibits a significant spectral red shift within ∼100 ps after photoexcitation which is attributed to torsional relaxation. This relaxation mechanism is inhibited in the structurally rigid macrocyclic analogue. However, both systems show a high degree of exciton localization but with very different consequences: while, in the macrocycle, the exciton localizes randomly on different parts of the ring, scrambling polarization memory, in the dimer, localization leads to a deterministic exciton position with luminescence characteristics of a dipole. Monte Carlo simulations allow us to quantify the structural difference between the emitting and absorbing units of the π-conjugated system in terms of disorder parameters.
Excitonic recombinations in h-BN: From bulk to exfoliated layers
Pierret, A.; Loayza, J.; Berini, B.; Betz, A.; Plaçais, B.; Ducastelle, F.; Barjon, J.; Loiseau, A.
2014-01-01
Hexagonal boron nitride (h-BN) and graphite are structurally similar but with very different properties. Their combination in graphene-based devices is now of intense research focus, and it becomes particularly important to evaluate the role played by crystalline defects on their properties. In this paper, the cathodoluminescence (CL) properties of hexagonal boron nitride crystallites are reported and compared to those of nanosheets mechanically exfoliated from them. First, the link between the presence of structural defects and the recombination intensity of trapped excitons, the so-called D series, is confirmed. Low defective h-BN regions are further evidenced by CL spectral mapping (hyperspectral imaging), allowing us to observe new features in the near-band-edge region, tentatively attributed to phonon replicas of exciton recombinations. Second, the h-BN thickness was reduced down to six atomic layers, using mechanical exfoliation, as evidenced by atomic force microscopy. Even at these low thicknesses, the luminescence remains intense and exciton recombination energies are not strongly modified with respect to the bulk, as expected from theoretical calculations, indicating extremely compact excitons in h-BN.
Femtosecond spectroscopy study of the exciton relaxation dynamics in silicon quantum dots
Kryschi, Carola; Kuntermann, Volker; Cimpean, Carla [Institut fuer Physikalische Chemie I, FAU, Erlangen (Germany); Haarer, Dietrich [BIMF, Universitaet Bayreuth (Germany)
2008-07-01
This contribution is targeted to the development of surface-modified silicon quantum dots (Siqdots) with tailored luminescence properties. The surface modification of Siqdots with sizes between 1 and 5 nm has been successfully achieved via two different synthesis routes, first, by controlled oxidation followed from silanization and second, by thermal hydrosilylation with chromophores. The luminescence properties of ethanolic Siqdots dispersions were characterized using stationary and time-resolved luminescence spectroscopy techniques, whereas the ultrashort exciton relaxation dynamics were examined using femtosecond transient absorption spectroscopy. Silanized Siqdots were observed to exhibit two species of photoluminescence (PL): the blue emission at 380 nm is assigned to localized surface states, whereas radiative recombination of quantum confined excitons gives rise to a broad PL band around 800 nm. Whereas the latter is ascribed to Siqdots with sizes larger than 3 nm, for Siqdots smaller than 1.5 nm exciton relaxation dynamics is understood to occur predominantly by trapping due to lower-lying surface states which may radiatively decay. Siqdots terminated with suited chromophores were observed to exhibit only one PL band in the visible that is ascribed to exciton states involving resonant couplings to the conjugated electron system of the chromophores.
Bartram, R.H. E-mail: rhbartram2@aol.com; Lempicki, A.; Kappers, L.A.; Hamilton, D.S
2004-03-01
A sample of Eu{sup 3+}-activated lutetium sesquioxide transparent ceramic has been investigated by combined scintillation and thermoluminescence excited by prolonged gamma-ray irradiation. The thermoluminescence glow curve partially confirms and extends a previous model for afterglow following pulsed X-ray excitation. The initial concentration of hole traps, tentatively attributed to anion Frenkel defects in thermodynamic equilibrium, is found to be substantially augmented by reversible radiation damage.
Sun, Zheng; Xu, Yuan-Ping; Li, Sheng; George, Thomas F
2011-02-10
Through combining the electron transition process and dipole moment evolution as well as electron-phonon coupling, molecular dynamics calculations show that the radiative decay of singlet excitons in a conjugated polymer, such as a polymer light-emitting diode (PLED), is largely determined by the evolution of the dipole moment. Without an electric field, the decay life of a singlet exciton is about 1 ns. Once an electric field is applied and exceeds a critical value, with electron-phonon coupling, the original lattice structure evolves into two new localized lattice distortions, consistent with the experimental results. Owing to the new lattice structure and self-trapping, the dipole moment rapidly decreases to zero within 5 fs, eliminating the radiative decay of the singlet exciton.
Butler, E.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Cesar, C. L.; Chapman, S.; Charlton, M.; Deller, A.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jenkins, M. J.; Jonsell, S.; Jørgensen, L. V.; Kemp, S. L.; Kurchaninov, L.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sarid, E.; Seif el Nasr, S.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.
Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only ˜1 T (˜0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be `born' inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 104 times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been trapped for at least 172 ms and then released—the first instance of a purely antimatter atomic system confined for any length of time (Andresen et al., Nature 468:673, 2010). We present a description of the main components of the ALPHA traps and detectors that were key to realising this result. We discuss how the antihydrogen atoms were identified and how they were discriminated from the background processes. Since the results published in Andresen et al. (Nature 468:673, 2010), refinements in the antihydrogen production technique have allowed many more antihydrogen atoms to be trapped, and held for much longer times. We have identified antihydrogen atoms that have been trapped for at least 1,000 s in the apparatus (Andresen et al., Nature Physics 7:558, 2011). This is more than sufficient time to interrogate the atoms spectroscopically, as well as to ensure that they have relaxed to their ground state.
Exciton correlations and input-output relations in non-equilibrium exciton superfluids
Ye, Jinwu, E-mail: jy306@ccs.msstate.edu [Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048 (China); Department of Physics and Astronomy, Mississippi State University, MS 39762 (United States); Sun, Fadi; Yu, Yi-Xiang [Department of Physics and Astronomy, Mississippi State University, MS 39762 (United States); Institute of Physics, Chinese Academy of Sciences, Beijing, 100080 (China); Liu, Wuming [Institute of Physics, Chinese Academy of Sciences, Beijing, 100080 (China)
2013-02-15
The photoluminescence (PL) measurements on photons and the transport measurements on excitons are the two types of independent and complementary detection tools to search for possible exciton superfluids in electron-hole semi-conductor bilayer systems. In fact, it was believed that the transport measurements can provide more direct evidences on superfluids than the spectroscopic measurements. It is important to establish the relations between the two kinds of measurements. In this paper, using quantum Heisenberg-Langevin equations, we establish such a connection by calculating various exciton correlation functions in the putative exciton superfluids. These correlation functions include both normal and anomalous greater, lesser, advanced, retarded, and time-ordered exciton Green functions and also various two exciton correlation functions. We also evaluate the corresponding normal and anomalous spectral weights and the Keldysh distribution functions. We stress the violations of the fluctuation and dissipation theorem among these various exciton correlation functions in the non-equilibrium exciton superfluids. We also explore the input-output relations between various exciton correlation functions and those of emitted photons such as the angle resolved photon power spectrum, phase sensitive two mode squeezing spectrum and two photon correlations. Applications to possible superfluids in the exciton-polariton systems are also mentioned. For a comparison, using conventional imaginary time formalism, we also calculate all the exciton correlation functions in an equilibrium dissipative exciton superfluid in the electron-electron coupled semi-conductor bilayers at the quantum Hall regime at the total filling factor {nu}{sub T}=1. We stress the analogies and also important differences between the correlations functions in the two exciton superfluid systems. - Highlights: Black-Right-Pointing-Pointer Establish the relations between photoluminescence and transport
Yan, Yun-An, E-mail: yunan@gznc.edu.cn [Guizhou Provincial Key Laboratory of Computational Nanomaterial Science, Guizhou Education University, Guiyang, Guizhou 550018 (China)
2016-01-14
The quantum interference is an intrinsic phenomenon in quantum physics for photon and massive quantum particles. In principle, the quantum interference may also occur with quasi-particles, such as the exciton. In this study, we show how the exciton quantum interference can be significant in aggregates through theoretical simulations with hierarchical equations of motion. The systems under investigation are generalized donor-bridge-acceptor model aggregates with the donor consisting of six homogeneous sites assuming the nearest neighbor coupling. For the models with single-path bridge, the exciton transfer time only shows a weak excitation energy dependence. But models with double-path bridge have a new short transfer time scale and the excitation energy dependence of the exciton transfer time assumes clear peak structure which is detectable with today’s nonlinear spectroscopy. This abnormality is attributed to the exciton quantum interference and the condition for a clear observation in experiment is also explored.
Exciton polarizability in semiconductor nanocrystals.
Wang, Feng; Shan, Jie; Islam, Mohammad A; Herman, Irving P; Bonn, Mischa; Heinz, Tony F
2006-11-01
The response of charge to externally applied electric fields is an important basic property of any material system, as well as one critical for many applications. Here, we examine the behaviour and dynamics of charges fully confined on the nanometre length scale. This is accomplished using CdSe nanocrystals of controlled radius (1-2.5 nm) as prototype quantum systems. Individual electron-hole pairs are created at room temperature within these structures by photoexcitation and are probed by terahertz (THz) electromagnetic pulses. The electronic response is found to be instantaneous even for THz frequencies, in contrast to the behaviour reported in related measurements for larger nanocrystals and nanocrystal assemblies. The measured polarizability of an electron-hole pair (exciton) amounts to approximately 10(4) A(3) and scales approximately as the fourth power of the nanocrystal radius. This size dependence and the instantaneous response reflect the presence of well-separated electronic energy levels induced in the system by strong quantum-confinement effects.
Excitonic polaritons of zinc diarsenide single crystals
Syrbu, N.N., E-mail: sirbunn@yahoo.com [Technical University of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of); Stamov, I.G. [T.G. Shevchenko State University of Pridnestrovie, Tiraspol, Republic of Moldova (Moldova, Republic of); Zalamai, V.V. [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of); Dorogan, A. [Technical University of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of)
2017-02-01
Excitonic polaritons of ZnAs{sub 2} single crystals had been investigated. Parameters of singlet excitons with Ð“{sub 2}¯(z) symmetry and orthoexcitons 2Ð“{sub 1}¯(y)+Ð“{sub 2}¯(x) had been determined. Spectral dependencies of ordinary and extraordinary dispersion of refractive index had been calculated using interferential reflection and transmittance spectra. It was shown, that A excitonic series were due to hole (V{sub 1}) and electron (C{sub 1}) bands. The values of effective masses of electrons (m{sub c}{sup *}=0.10 m{sub 0}) and holes (m{sub v1}{sup *}=0.89 m{sub 0}) had been estimated. It was revealed that the hole mass m{sub v1}{sup *} changes from 1.03 m{sub 0} to 0.55 m{sub 0} at temperature increasing from 10 K up to 230 K and that the electron mass m{sub c}{sup *} does not depend on temperature. The integral absorption A (eV cm{sup −1}) of the states n=1, 2 and 3 of Ð“{sub 2}¯(z) excitons depends on the A{sub n}≈n{sup −3} equality, which it is characteristic for S-type excitonic functions. Temperature dependences of the integral absorption of ground states for Ð“{sub 2}¯(z) and Ð“{sub 2}¯(Ñ…) excitons differ. The ground states of B and C excitons formed by V{sub 3} – C{sub 1} and V{sub 4} – C{sub 1} bands and its parameters had been determined.
Tornow, Sabine; Tong, Ning-Hua; Bulla, Ralf
2006-07-01
We present a detailed model study of exciton transfer processes in donor-bridge-acceptor (DBA) systems. Using a model which includes the intermolecular Coulomb interaction and the coupling to a dissipative environment we calculate the phase diagram, the absorption spectrum as well as dynamic equilibrium properties with the numerical renormalization group. This method is non-perturbative and therefore allows one to cover the full parameter space, especially the case when the intermolecular Coulomb interaction is of the same order as the coupling to the environment and perturbation theory cannot be applied. For DBA systems with up to six sites we found a transition to the localized phase (self-trapping) depending on the coupling to the dissipative environment. We discuss various criteria which favour delocalized exciton transfer.
Tornow, Sabine [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitaet Augsburg, 86135 Augsburg (Germany); Tong, Ning-Hua [Institut fuer Theorie der Kondensierten Materie, Universitaet Karlsruhe, 76128 Karlsruhe (Germany); Bulla, Ralf [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitaet Augsburg, 86135 Augsburg (Germany)
2006-07-05
We present a detailed model study of exciton transfer processes in donor-bridge-acceptor (DBA) systems. Using a model which includes the intermolecular Coulomb interaction and the coupling to a dissipative environment we calculate the phase diagram, the absorption spectrum as well as dynamic equilibrium properties with the numerical renormalization group. This method is non-perturbative and therefore allows one to cover the full parameter space, especially the case when the intermolecular Coulomb interaction is of the same order as the coupling to the environment and perturbation theory cannot be applied. For DBA systems with up to six sites we found a transition to the localized phase (self-trapping) depending on the coupling to the dissipative environment. We discuss various criteria which favour delocalized exciton transfer.
Chen, Si-Guang; Stradins, Paul; Gregg, Brian A
2005-07-21
An in-depth study of n-type doping in a crystalline perylene diimide organic semiconductor (PPEEB) reveals that electrostatic attractions between the dopant electron and its conjugate dopant cation cause the free carrier density to be much lower than the doping density. Measurements of the dark currents as a function of field, doping density, electrode spacing, and temperature are reported along with preliminary Hall-effect measurements. The activation energy of the current, E(aJ), decreases with increasing field and with increasing dopant density, n(d). It is the measured change in E(aJ) with n(d) that accounts primarily for the variations between PPEEB films; the two adjustable parameters employed to fit the current-voltage data proved to be almost constants, independent of n(d) and temperature. The free electron density and the electron mobility are nonlinearly coupled through their shared dependences on both field and temperature. The data are fit to a modified Poole-Frenkel-like model that is shown to be valid for three important electronic processes in organic (excitonic) semiconductors: excitonic effects, doping, and transport. At room temperature, the electron mobility in PPEEB films is estimated to be 0.3 cm(2)/Vs; the fitted value of the mobility for an ideal PPEEB crystal is 3.4 +/- 2.7 cm(2)/Vs. The modified Poole-Frenkel factor that describes the field dependence of the current is 2 +/- 1 x 10(-4) eV (cm/V)(1/2). The analytical model is surprisingly accurate for a system that would require a coupled set of nonlinear tensor equations to describe it precisely. Being based on general electrostatic considerations, our model can form the requisite foundation for treatments of more complex systems. Some analogies to adventitiously doped materials such as pi-conjugated polymers are proposed.
Poole-Frenkel effect on electrical characterization of Al-doped ZnO films deposited on p-type GaN
Huang, Bohr-Ran [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Liao, Chung-Chi [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Ke, Wen-Cheng, E-mail: wcke@saturn.yzu.edu.tw; Chang, Yuan-Ching; Huang, Hao-Ping [Department of Mechanical Engineering, Yuan Ze University, Chung-Li 320, Taiwan (China); Chen, Nai-Chuan [Institute of Electro-Optical Engineering and Department of Electronic Engineering, Chang Gung University, Tao-Yuan 333, Taiwan (China)
2014-03-21
This paper presents the electrical properties of Al-doped ZnO (AZO) films directly grown on two types of p-type GaN thin films. The low-pressure p-GaN thin films (LP-p-GaN) exhibited structural properties of high-density edge-type threading dislocations (TDs) and compensated defects (i.e., nitrogen vacancy). Compared with high-pressure p-GaN thin films (HP-p-GaN), X-ray photoemission spectroscopy of Ga 3d core levels indicated that the surface Fermi-level shifted toward the higher binding-energy side by approximately 0.7 eV. The high-density edge-type TDs and compensated defects enabled surface Fermi-level shifting above the intrinsic Fermi-level, causing the surface of LP-p-GaN thin films to invert to n-type semiconductor. A highly nonlinear increase in leakage current regarding reverse-bias voltage was observed for AZO/LP-p-GaN. The theoretical fits for the reverse-bias voltage region indicated that the field-assisted thermal ionization of carriers from defect associated traps, which is known as the Poole-Frenkel effect, dominated the I-V behavior of AZO/LP-p-GaN. The fitting result estimated the trap energy level at 0.62 eV below the conduction band edge. In addition, the optical band gap increased from 3.50 eV for as-deposited AZO films to 3.62 eV for 300 °C annealed AZO films because of the increased carrier concentration. The increasing Fermi-level of the 300 °C annealed AZO films enabled the carrier transport to move across the interface into the LP-p-GaN thin films without any thermal activated energy. Thus, the Ohmic behavior of AZO contact can be achieved directly on the low-pressure p-GaN films at room temperature.
Ultrafast exciton transfers in DNA and its nonlinear optical spectroscopy
Kim, Hyeon-Deuk; Tanimura, Yoshitaka; Cho, Minhaeng
2008-01-01
We have calculated the nonlinear response function of a DNA duplex helix including the contributions from the exciton population and coherence transfers by developing an appropriate exciton theory as well as by utilizing a projector operator technique. As a representative example of DNA double helices, the B-form (dA)10-(dT)10 is considered in detail. The Green functions of the exciton population and coherence transfer processes were obtained by developing the DNA exciton Hamiltonian. This en...
Non-conservation of excitons in finite molecular chain
Tosic, Bratislav, E-mail: btosic@yahoo.co [Vojvodina Academy of Science and Arts, 21000 Novi Sad, Dunavska 37 (Serbia); Sajfert, Vjekoslav, E-mail: sajfertv@nadlanu.co [University of Novi Sad, Technical Faculty ' M. Pupin' , 23000 Zrenjanin, Djure Djakovica bb (Serbia); Maskovic, Ljiljana, E-mail: maskovicm@yahoo.co.u [Academy of Criminalistic and Police Studies, 11000 Belgrade, Zemun (Serbia); Bednar, Nikola, E-mail: bednar.nikola@gmail.co [University of Novi Sad, Faculty of Technical Sciences, 21000 Novi Sad, Trg Dositeja Obradovica 6 (Serbia)
2010-11-15
We have analyzed a linear molecular chain with exciton excitations when the number of excitons is not conserved. The dispersion law depends on two independent variables and it is surfaced in a 3D plot. The same conclusion is valid for the concentrations of excitons and exciton pairs. As it was expected, physical characteristics of the finite chain depend on spatial coordinates. All results are compared to the corresponding results of an infinite chain.
Resonant Transfer of Excitons and Quantum Computation
Lovett, B; Nazir, A; Kothari, B; Briggs, A; Lovett, Brendon; Reina, John H.; Nazir, Ahsan; Kothari, Beeneet; Briggs, Andrew
2003-01-01
The excitation-energy transfer--the so-called Forster resonant energy transfer--plays a key role in light harvesting processes in photosynthetic organisms in nature. Here we give two methods for performing quantum logic operations by tailoring this interaction. The first implementation uses a coupled quantum dot molecule where the exciton-exciton interaction and the Forster coupling are controlled by means of the dot size, interdot separation, material composition, confinement potential and applied electric field to obtain high fidelity logic. The second proposes the use of biological systems for embodying qubits where, as a result of a stronger Forster interaction, extended exciton states are expected. These states are likely to be more immune to decoherence.
Resonance effects of excitons and electrons. Basics and applications
Geru, Ion [Moldovan Academy of Sciences, Chisinau (Moldova, Republic of). Inst. of Chemistry; Suter, Dieter [Technische Univ. Dortmund (Germany). Fakultaet Physik
2013-08-01
Represents the first book on non-traditional resonance effects of excitons in semiconductors. Explains resonance phenomena of excitons and electrons in solids. Presents the Knight shift at the Bose-Einstein condensation of excitons. This book presents the various types of resonance effects on excitons, biexcitons and the local electronic centers (LEC) in solids, such as paramagnetic and paraelectric resonances on excitons, exciton acoustic resonance at intra- and interband transitions, radio-optical double resonance on excitons, hole-nuclear double resonance on localized biexcitons, ENDOR and acoustic ENDOR on LEC. The criteria for the generation of coherent photons, phonons and magnons by excitons are explained. The interactions of excitons and biexcitons with paramagnetic centers and nuclear spins, the indirect interaction between the PC through a field of excitons as well as the quasienergy spectrum of excitons and spin systems are discussed. It is proved that the interaction of paramagnetic centers with excitons increases the spin relaxation rate of paramagnetic centers in comparison with the case of their interaction with free carriers. The giant magneto-optical effects in semi-magnetic semiconductors are theoretically interpreted. In recent years, a new perspective has been added to these systems and their interactions: they can be used for storing and processing information in the form of quantum bits (qubits), the building blocks of quantum computers. The basics of this emerging technology are explained and examples of demonstration-type quantum computers based on localized spins in solids are discussed.
Spin coherence and electromagnetically induced transparency via exciton correlations.
Phillips, Mark; Wang, Hailin
2002-10-28
We report experimental studies on exciton spin coherence induced via Coulomb correlations between excitons with opposite spins, including correlations associated with unbound as well as bound exciton pairs. Electromagnetically induced transparency resulting from the spin coherence is demonstrated in the transient optical response in GaAs quantum wells.
Arsenic-bound excitons in diamond
Barjon, J.; Jomard, F.; Morata, S.
2014-01-01
A set of new excitonic recombinations is observed in arsenic-implanted diamond. It is composed of two groups of emissions at 5.355/5.361 eV and at 5.215/5.220/5.227 eV. They are respectively attributed to the no-phonon and transverse-optical phonon-assisted recombinations of excitons bound to neutral arsenic donors. From the Haynes rule, an ionization energy of 0.41 eV is deduced for arsenic in diamond, which shows that arsenic is a shallower donor than phosphorus (0.6 eV), in agreement with theory.
Heat pumping with optically driven excitons
Gauger, Erik M
2010-01-01
We present a theoretical study showing that an optically driven excitonic two-level system in a solid state environment acts as a heat pump by means of repeated phonon emission or absorption events. We derive a master equation for the combined phonon bath and two-level system dynamics and analyze the direction and rate of energy transfer as a function of the externally accessible driving parameters. We discover that if the driving laser is detuned from the exciton transition, cooling the phonon environment becomes possible.
Excitonic dynamical Franz-Keldysh effect
Nordstrøm, K.B.; Johnsen, Kristinn; Allen, S.J.
1998-01-01
The dynamical Franz-Keldysh effect is exposed by exploring near-band-gap absorption in the presence of intense THz electric fields. It bridges the gap between the de Franz-Keldysh effect and multiphoton absorption and competes with the THz ac Stark effect in shifting the energy of the excitonic...... resonance. A theoretical model which includes the strong THz field nonperturbatively via a nonequilibrium Green functions technique is able to describe the dynamical Franz-Keldysh effect in the presence of excitonic absorption....
Switching exciton pulses through conical intersections
Leonhardt, K; Rost, J -M
2013-01-01
Exciton pulses transport excitation and entanglement adiabatically through Rydberg aggregates, assemblies of highly excited light atoms, which are set into directed motion by resonant dipole-dipole interaction. Here, we demonstrate the coherent splitting of such pulses as well as the spatial segregation of electronic excitation and atomic motion. Both mechanisms exploit local non-adiabatic effects at a conical intersection, turning them from a decoherence source into an asset. The intersection provides a sensitive knob controlling the propagation direction and coherence properties of exciton pulses.
Nonlinearity and trapping in excitation transfer Dimers and Trimers.
Barvik, I; Schanz, H; Barvik, Ivan; Esser, Bernd; Schanz, Holger
1995-01-01
We study the interplay between nonlinearity in exciton transport and trapping due to a sink site for the dimer and the trimer with chain configuration by a numerical integration of the discrete nonlinear Schroedinger equation. Our results for the dimer show, that the formation of a self trapped state due to the nonlinear coupling increases the life time of the exciton substantially. Self trapping can be enhanced by the sink for short times, but for long times it disappears. In the trimer consisting of a subdimer extended by a sink site exists a transition between states localized on the two sites of the subdimer before for larger nonlinear coupling self trapping on one site of the subdimer is observed. For large trapping rates the fear of death effect leads to an increasing life time of the excitation on both, the dimer and the trimer. The sink site is then effectively decoupled. We explain this effect using an asymptotic theory for strong trapping and demonstrate it by direct numerical computation.
Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States
Stranks, Samuel D.; Burlakov, Victor M.; Leijtens, Tomas; Ball, James M.; Goriely, Alain; Snaith, Henry J.
2014-09-01
Organic-inorganic perovskites are attracting increasing attention for their use in high-performance solar cells. Nevertheless, a detailed understanding of charge generation, interplay of excitons and free charge carriers, and recombination pathways, crucial for further device improvement, remains incomplete. Here, we present an analytical model describing both equilibrium properties of free charge carriers and excitons in the presence of electronic subgap trap states and their time evolution after photoexcitation in CH3NH3PbI3-xClx. At low fluences the charge-trapping pathways limit the photoluminescence quantum efficiency, whereas at high fluences the traps are predominantly filled and recombination of the photogenerated species is dominated by efficient radiative processes. We show experimentally that the photoluminescence quantum efficiency approaches 100% at low temperatures and at high fluences, as predicted by our model. Our approach provides a theoretical framework to understand the fundamental physics of perovskite semiconductors and to help in designing and enhancing the material for improved optoelectronic device operation.
Bright and dark excitons in semiconductor carbon nanotubes
Tretiak, Sergei [Los Alamos National Laboratory
2008-01-01
We report electronic structure calculations of finite-length semiconducting carbon nanotubes using the time dependent density functional theory (TD-DFT) and the time dependent Hartree Fock (TD-HF) approach coupled with semiempirical AM1 and ZINDO Hamiltonians. We specifically focus on the energy splitting, relative ordering, and localization properties of the optically active (bright) and optically forbidden (dark) states from the lowest excitonic band of the nanotubes. These excitonic states are very important in competing radiative and non-radiative processes in these systems. Our analysis of excitonic transition density matrices demonstrates that pure DFT functionals overdelocalize excitons making an electron-hole pair unbound; consequently, excitonic features are not presented in this method. In contrast, the pure HF and A111 calculations overbind excitons inaccurately predicting the lowest energy state as a bright exciton. Changing AM1 with ZINDO Hamiltonian in TD-HF calculations, predicts the bright exciton as the second state after the dark one. However, in contrast to AM1 calculations, the diameter dependence of the excitation energies obtained by ZINDO does not follow the experimental trends. Finally, the TD-DFT approach incorporating hybrid functions with a moderate portion of the long-range HF exchange, such as B3LYP, has the most generality and predictive capacity providing a sufficiently accurate description of excitonic structure in finite-size nanotubes. These methods characterize four important lower exciton bands. The lowest state is dark, the upper band is bright, and the two other dark and nearly degenerate excitons lie in-between. Although the calculated energy splittings between the lowest dark and the bright excitons are relatively large ({approx}0.1 eV), the dense excitonic manifold below the bright exciton allows for fast non-radiative relaxation leasing to the fast population of the lowest dark exciton. This rationalizes the low
Butler, E; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jonsell, S; Jørgensen, L V; Kemp, S L; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Seif el Nasr, S; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki,Y
2012-01-01
Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only ∼1 T (∼0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be ‘born’ inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 104 times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been ...
Free-exciton states in crystalline GaTe
Wan, J. Z.; Brebner, J. L.; Leonelli, R.
1995-12-01
Polarized properties of both the singlet and triplet ground exciton states in the photoluminescence and transmission spectra of crystalline GaTe are explained based on the possible symmetry properties of the energy band edge of GaTe. Some experimental results about excited exciton states in GaTe are presented and discussed. The energy positions of exciton series in GaTe follow the three-dimensional direct allowed Wannier exciton formula just as in the the other III-VI layered compounds of GaSe and InSe. The nonthermalized, ``hot'' nature of excitons inside GaTe under higher optical excitation intensities is also discussed.
Poole-Frenkel Effect and Phonon-Assisted Tunneling in GaAs Nanowires
2010-01-01
We present electronic transport measurements of GaAs nanowires grown by catalyst-free metal-organic chemical vapor deposition. Despite the nanowires being doped with a relatively high concentration of substitutional impurities, we find them inordinately resistive. By measuring sufficiently high aspect-ratio nanowires individually in situ, we decouple the role of the contacts and show that this semi-insulating electrical behavior is the result of trap-mediated carrier transport. We observe Poo...
Energy Spectra of Excitons Bound to a Neutral Acceptor in Quantum Dots
XIE Wen-Fang
2004-01-01
The energy spectra of the ground state for an exciton (X) trapped by a neutral acceptor (A0) in a quantum dot with a parabolic confinement have been calculated as a function of the electron-to-hole mass ratio σ by using the hyperspherical coordinates. We find that the (A0, X) complex confined in a quantum dot has in general a larger binding energy than those in a two-dimensional quantum well and a three-dimensional bulk semiconductor, and the binding energy decreases with the increase of the electron-to-hole mass ratio.
Electrical Control of Excitons in Semiconductor Nanostructures
Kirsanské, Gabija
The scope of this thesis covers investigation of the exciton Mott transition in coupled quantum wells, fabrication of photonic-crystal structures with embedded self-assembled quantum dots, and tuning of their properties by means of an external electric field. In the first part of the thesis the f...
Excitons in van der Waals heterostructures
Latini, Simone; Olsen, Thomas; Thygesen, Kristian Sommer
2015-01-01
The existence of strongly bound excitons is one of the hallmarks of the newly discovered atomically thin semiconductors. While it is understood that the large binding energy is mainly due to the weak dielectric screening in two dimensions, a systematic investigation of the role of screening on tw...
Effective models for excitons in carbon nanotubes
Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin
2007-01-01
We analyse the low lying spectrum of a model of excitons in carbon nanotubes. Consider two particles with opposite charges and a Coulomb self-interaction, placed on an infinitely long cylinder. If the cylinder radius becomes small, the low lying spectrum of their relative motion is well described...
Effective models for excitons in carbon nanotubes
Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin
We analyse the low lying spectrum of a model of excitons in carbon nanotubes. Consider two particles with a Coulomb self-interaction, placed on an infinitely long cylinder. If the cylinder radius becomes small, the low lying spectrum is well described by a one-dimensional effective Hamiltonian...
Properties of Excitons Bound to Ionized Donors
Skettrup, Torben; Suffczynski, M.; Gorzkowski, W.
1971-01-01
Binding energies, interparticle distances, oscillator strengths, and exchange corrections are calculated for the three-particle complex corresponding to an exciton bound to an ionized donor. The results are given as functions of the mass ratio of the electron and hole. Binding of the complex is o...
Exciton Transfer Integrals Between Polymer Chains
Barford, W
2007-01-01
The line-dipole approximation for the evaluation of the exciton transfer integral, $J$, between conjugated polymer chains is rigorously justified. Using this approximation, as well as the plane-wave approximation for the exciton center-of-mass wavefunction, it is shown analytically that $J \\sim L$ when the chain lengths are smaller than the separation between them, or $J\\sim L^{-1}$ when the chain lengths are larger than their separation, where $L$ is the polymer length. Scaling relations are also obtained numerically for the more realistic standing-wave approximation for the exciton center-of-mass wavefunction, where it is found that for chain lengths larger than their separation $J \\sim L^{-1.8}$ or $J \\sim L^{-2}$, for parallel or collinear chains, respectively. These results have important implications for the photo-physics of conjugated polymers and self-assembled molecular systems, as the Davydov splitting in aggregates and the F\\"orster transfer rate for exciton migration decreases with chain lengths l...
Coherent quantum dynamics of excitons in monolayer transition metal dichalcogenides
Moody, Galan
2016-03-14
Transition metal dichalcogenides (TMDs) have garnered considerable interest in recent years owing to their layer thickness-dependent optoelectronic properties. In monolayer TMDs, the large carrier effective masses, strong quantum confinement, and reduced dielectric screening lead to pronounced exciton resonances with remarkably large binding energies and coupled spin and valley degrees of freedom (valley excitons). Coherent control of valley excitons for atomically thin optoelectronics and valleytronics requires understanding and quantifying sources of exciton decoherence. In this work, we reveal how exciton-exciton and exciton-phonon scattering influence the coherent quantum dynamics of valley excitons in monolayer TMDs, specifically tungsten diselenide (WSe2), using two-dimensional coherent spectroscopy. Excitation-density and temperature dependent measurements of the homogeneous linewidth (inversely proportional to the optical coherence time) reveal that exciton-exciton and exciton-phonon interactions are significantly stronger compared to quasi-2D quantum wells and 3D bulk materials. The residual homogeneous linewidth extrapolated to zero excitation density and temperature is ~1:6 meV (equivalent to a coherence time of 0.4 ps), which is limited only by the population recombination lifetime in this sample. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Polaronic Effects of an Exciton in a Cylindrical Quantum Wire
WANG Rui-Qiang; XIE Hong-Jing; GUO Kang-Xian; YU You-Bin; DENG Yong-Qing
2005-01-01
The effects of exciton-optical phonon interaction on the binding energy and the total and reduced effective masses of an exciton in a cylindrical quantum wire have been investigated. We adopt a perturbative-PLL [T.D. Lee,F. Low, and D. Pines, Phys. Rev. B90 (1953) 297] technique to construct an effective Hamiltonian and then use a variational solution to deal with the exciton-phonon system. The interactions of exciton with the longitudinal-optical phonon and the surface-optical phonon have been taken into consideration. The numerical calculations for GaAs show that the influences of phonon modes on the exciton in a quasi-one-dimensional quantum wire are considerable and should not be neglected. Moreover the numerical results for heavy- and light-hole exciton are obtained, which show that the polaronic effects on two types of excitons are very different but both depend heavily on the sizes of the wire.
Hybrid Quantum System of a Nanofiber Mode Coupled to Two Chains of Optically Trapped Atoms
Zoubi, Hashem
2010-01-01
A tapered optical nanofiber simultaneously used to trap and optically interface of cold atoms through evanescent fields constitutes a new and well controllable hybrid quantum system. The atoms are trapped in two parallel 1D optical lattices generated by suitable far blue and red detuned evanescent field modes very close to opposite sides of the nanofiber surface. Collective electronic excitations (excitons) of each of the optical lattices are resonantly coupled to the second lattice forming symmetric and antisymmetric common excitons. In contrast to the inverse cube dependence of the individual atomic dipole-dipole interaction, we analytically find an exponentially decaying coupling strength with distance between the lattices. The resulting symmetric (bright) excitons strongly interact with the resonant nanofiber photons to form fiber polaritons, which can be observed through linear optical spectra. For large enough wave vectors the polariton decay rate to free space is strongly reduced, which should render t...
Photo-reactive charge trapping memory based on lanthanide complex.
Zhuang, Jiaqing; Lo, Wai-Sum; Zhou, Li; Sun, Qi-Jun; Chan, Chi-Fai; Zhou, Ye; Han, Su-Ting; Yan, Yan; Wong, Wing-Tak; Wong, Ka-Leung; Roy, V A L
2015-10-09
Traditional utilization of photo-induced excitons is popularly but restricted in the fields of photovoltaic devices as well as photodetectors, and efforts on broadening its function have always been attempted. However, rare reports are available on organic field effect transistor (OFET) memory employing photo-induced charges. Here, we demonstrate an OFET memory containing a novel organic lanthanide complex Eu(tta)3ppta (Eu(tta)3 = Europium(III) thenoyltrifluoroacetonate, ppta = 2-phenyl-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), in which the photo-induced charges can be successfully trapped and detrapped. The luminescent complex emits intense red emission upon ultraviolet (UV) light excitation and serves as a trapping element of holes injected from the pentacene semiconductor layer. Memory window can be significantly enlarged by light-assisted programming and erasing procedures, during which the photo-induced excitons in the semiconductor layer are separated by voltage bias. The enhancement of memory window is attributed to the increasing number of photo-induced excitons by the UV light. The charges are stored in this luminescent complex for at least 10(4) s after withdrawing voltage bias. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices.
Next Generation Photovoltaics Based on Multiple Exciton Generation in Quantum Dot Solar Cells
Nozik, Arthur J.
Next Generation solar cells based onMultiple Exciton Generation (MEG) in semiconductorquantum dots (QDs) are described. This application of QDs depends upon efficient MEG in QDs incorporated into PV cells, followed by efficient exciton splitting into free electrons and holes and their efficient separation and collection in the cell contacts to produce multiple free carriers per absorbed photon. Using time-resolved transient absorption, bleaching, photoluminescence and THz spectroscopy, MEG has been initially confirmed in several Group IV-VI, III-V, II-VI, and IV colloidal semiconductor QDs. Some controversy using these techniques have now been attributed to effects of the variable of the QD surface chemisty and under certain conditions to artifacts arising from long-lived trapping of photoinduced charge; in our opinion these controversies have been resolved and are discussed here. Furthermore, various photovoltaic cell architectures utilizing QDs have recently been constructed and the photocurrent and photovoltage characterisitics have been studied. These photocurrent measurements provide a more direct measurement of MEG since the photogenerated carriers are counted directly via the current, and they are very consistent with the QYs of MEG reported using the proper spectroscopic techniques; thus, these new photocurrent measurements confirm the existence of enhanced exciton and carrier multiplication in QDs. The past work and prognosis for QD-based Next Generation PV cells based on MEG are discussed.
Gordon, H.S.
1959-09-15
An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.
Mannarelli, Massimo
2013-01-01
We analyze the effect of restricted geometries on the contribution of Nambu-Goldstone bosons (phonons) to the shear viscosity, $\\eta$, of a superfluid. For illustrative purpose we examine a simplified system consisting of a circular boundary of radius $R$, confining a two-dimensional rarefied gas of phonons. Considering the Maxwell-type conditions, we show that phonons that are not in equilibrium with the boundary and that are not specularly reflected exert a shear stress on the boundary. In this case it is possible to define an effective (ballistic) shear viscosity coefficient $\\eta \\propto \\rho_{\\rm ph} \\chi R$, where $\\rho_{\\rm ph}$ is the density of phonons and $\\chi$ is a parameter which characterizes the type of scattering at the boundary. For an optically trapped superfluid our results corroborate the findings of Refs. \\cite{Mannarelli:2012su, Mannarelli:2012eg}, which imply that at very low temperature the shear viscosity correlates with the size of the optical trap and decreases with decreasing tempe...
Fine structure of the exciton electroabsorption in semiconductor superlattices
Monozon, B. S.; Schmelcher, P.
2017-02-01
Wannier-Mott excitons in a semiconductor layered superlattice (SL) are investigated analytically for the case that the period of the superlattice is much smaller than the 2D exciton Bohr radius. Additionally we assume the presence of a longitudinal external static electric field directed parallel to the SL axis. The exciton states and the optical absorption coefficient are derived in the tight-binding and adiabatic approximations. Strong and weak electric fields providing spatially localized and extended electron and hole states, respectively, are studied. The dependencies of the exciton states and the exciton absorption spectrum on the SL parameters and the electric field strength are presented in an explicit form. We focus on the fine structure of the ground quasi-2D exciton level formed by the series of closely spaced energy levels adjacent from the high frequencies. These levels are related to the adiabatically slow relative exciton longitudinal motion governed by the potential formed by the in-plane exciton state. It is shown that the external electric fields compress the fine structure energy levels, decrease the intensities of the corresponding optical peaks and increase the exciton binding energy. A possible experimental study of the fine structure of the exciton electroabsorption is discussed.
Relaxation of nonthermal hh and lh excitons in ZnSe quantum wells
Kalt, H.; Hoffmann, J.; Umlauff, M.
1998-01-01
The strong exciton-LO phonon coupling in ZnSe QWs gives a direct access to the relaxation dynamics of nonthermal, free heavy-hole and light-hole excitons. Narrow hot-exciton distributions can be generated by LO-phonon assisted exciton formation. The thermalization of these excitons is monitored...
ZHONG Hong-Wei; TANG Yi
2006-01-01
@@ The phonon dispersion relation of the commensurate quantum Frenkel-Kontorova model is studied by means of the time-dependent variational approach combined with a Hartree-type many-body trial wavefunction for the particles. The single-particle state is taken to be a frozen Jackiw-Kerman wavefunction. Under the condition of minimum uncertainty, equations of motion for the particle expectation values are derived to obtain the phonon dispersion relation. It is shown that the strength of the substrate potential and the phonon excitation gap are reduced due to the quantum fluctuations in comparison with those of the classical model. We also compare our results with those previously obtained by using the path-integral molecular dynamics.
Modèle de diélectrique associant les effets Poole-Frenkel et Maxwell-Wagner
1992-01-01
Le modèle présenté associe les effets Poole-Frenkel (PF) et Maxwell-Wagner (MW) dans la détermination de la conductivité équivalente σ d'un diélectrique plan à deux couches. L'effet PF y est introduit sous sa forme usuelle (statistique de Boltzmann), puis sous une forme plus générale (statistique de Fermi-Dirac). Les courbes log σ en fonction du champ électrique $(\\sqrt{F})$ présentent généralement une ou deux parties linéaires, la pente en bas champs étant toujours supérieure à la pente en h...
Hoshi, Yusuke; Kuroda, Takashi; Okada, Mitsuhiro; Moriya, Rai; Masubuchi, Satoru; Watanabe, Kenji; Taniguchi, Takashi; Kitaura, Ryo; Machida, Tomoki
2017-06-01
We investigates exciton-exciton annihilation (EEA) in tungsten disulfide (W S2) monolayers encapsulated by hexagonal boron nitride (hBN). It is revealed that decay signals observed by time-resolved photoluminescence (PL) are not strongly dependent on the exciton densities of hBN-encapsulated W S2 monolayers (W S2/hBN ) . In contrast, the sample without the bottom hBN layer (W S2/Si O2) exhibits a drastic decrease of decay time with increasing exciton density due to the appearance of a rapid PL decay component, signifying nonradiative EEA-mediated recombination. Furthermore, the EEA rate constant of W S2/hBN was determined as (6.3 ±1.7 ) ×10-3c m2s-1 , being about 2 orders of magnitude smaller than that of W S2/Si O2 . Thus, the observed EEA rate reduction played a key role in enhancing luminescence intensity at high exciton densities in the W S2 monolayer.
Multiple Exciton Generation in Colloidal Nanocrystals
Charles Smith
2013-12-01
Full Text Available In a conventional solar cell, the energy of an absorbed photon in excess of the band gap is rapidly lost as heat, and this is one of the main reasons that the theoretical efficiency is limited to ~33%. However, an alternative process, multiple exciton generation (MEG, can occur in colloidal quantum dots. Here, some or all of the excess energy is instead used to promote one or more additional electrons to the conduction band, potentially increasing the photocurrent of a solar cell and thereby its output efficiency. This review will describe the development of this field over the decade since the first experimental demonstration of multiple exciton generation, including the controversies over experimental artefacts, comparison with similar effects in bulk materials, and the underlying mechanisms. We will also describe the current state-of-the-art and outline promising directions for further development.
Microcavity controlled coupling of excitonic qubits
Albert, F; Kasprzak, J; Strauß, M; Schneider, C; Höfling, S; Kamp, M; Forchel, A; Reitzenstein, S; Muljarov, E A; Langbein, W
2012-01-01
Controlled non-local energy and coherence transfer enables light harvesting in photosynthesis and non-local logical operations in quantum computing. The most relevant mechanism of coherent coupling of distant qubits is coupling via the electromagnetic field. Here, we demonstrate the controlled coherent coupling of spatially separated excitonic qubits via the photon mode of a solid state microresonator. This is revealed by two-dimensional spectroscopy of the sample's coherent response, a sensitive and selective probe of the coherent coupling. The experimental results are quantitatively described by a rigorous theory of the cavity mediated coupling within a cluster of quantum dots excitons. Having demonstrated this mechanism, it can be used in extended coupling channels - sculptured, for instance, in photonic crystal cavities - to enable a long-range, non-local wiring up of individual emitters in solids.
Can Natural Sunlight Induce Coherent Exciton Dynamics?
Olšina, Jan; Wang, Chen; Cao, Jianshu
2014-01-01
Excitation of a model photosynthetic molecular aggregate by incoherent sunlight is systematically examined. For a closed system, the excited state coherence induced by the sunlight oscillates with an average amplitude that is inversely proportional to the excitonic gap, and reaches a stationary amplitude that depends on the temperature and coherence time of the radiation field. For an open system, the light-induced dynamical coherence relaxes to a static coherence determined by the non-canonical thermal distribution resulting from the entanglement with the phonon bath. The decay of the excited state population to the common ground state establishes a non-equilibrium steady-state flux driven by the sunlight, and it defines a time window to observe the transition from dynamical to static coherence. For the parameters relevant to photosynthetic systems, the exciton dynamics initiated by the sunlight exhibits a non-negligible amount of dynamical coherence (quantum beats) on the sub-picosecond timescale; however, ...
Excitonic and photonic processes in materials
Williams, Richard
2015-01-01
This book is expected to present state-of-the-art understanding of a selection of excitonic and photonic processes in useful materials from semiconductors to insulators to metal/insulator nanocomposites, both inorganic and organic. Among the featured applications are components of solar cells, detectors, light-emitting devices, scintillators, and materials with novel optical properties. Excitonic properties are particularly important in organic photovoltaics and light emitting devices, as also in questions of the ultimate resolution and efficiency of new-generation scintillators for medical diagnostics, border security, and nuclear nonproliferation. Novel photonic and optoelectronic applications benefit from new material combinations and structures to be discussed.
Exciton Polaritons in Microcavities New Frontiers
Sanvitto, Daniele
2012-01-01
In the past decade, there has been a burst of new and fascinating physics associated to the unique properties of two-dimensional exciton polaritons, their recent demonstration of condensation under non-equilibrium conditions and all the related quantum phenomena, which have stimulated extensive research work. This monograph summarizes the current state of the art of research on exciton polaritons in microcavities: their interactions, fast dynamics, spin-dependent phenomena, temporal and spatial coherence, condensation under non-equilibrium conditions, related collective quantum phenomena and most advanced applications. The monograph is written by the most active authors who have strongly contributed to the advances in this area. It is of great interests to both physicists approaching this subject for the first time, as well as a wide audience of experts in other disciplines who want to be updated on this fast moving field.
Multiple Exciton Generation in Colloidal Silicon Nanocrystals
Beard, M. C.; Knutsen, K. P.; Yu, P.; Luther, J. M.; Song, Q.; Metzger, W. K.; Ellingson, R. J.; Nozik, A. M.
2007-01-01
Multiple exciton generation (MEG) is a process whereby multiple electron-hole pairs, or excitons, are produced upon absorption of a single photon in semiconductor nanocrystals (NCs) and represents a promising route to increased solar conversion efficiencies in single-junction photovoltaic cells. We report for the first time MEG yields in colloidal Si NCs using ultrafast transient absorption spectroscopy. We find the threshold photon energy for MEG in 9.5 nm diameter Si NCs (effective band gap {identical_to} Eg = 1.20 eV) to be 2.4 {+-} 0.1E{sub g} and find an exciton-production quantum yield of 2.6 {+-} 0.2 excitons per absorbed photon at 3.4E{sub g}. While MEG has been previously reported in direct-gap semiconductor NCs of PbSe, PbS, PbTe, CdSe, and InAs, this represents the first report of MEG within indirect-gap semiconductor NCs. Furthermore, MEG is found in relatively large Si NCs (diameter equal to about twice the Bohr radius) such that the confinement energy is not large enough to produce a large blue-shift of the band gap (only 80 meV), but the Coulomb interaction is sufficiently enhanced to produce efficient MEG. Our findings are of particular importance because Si dominates the photovoltaic solar cell industry, presents no problems regarding abundance and accessibility within the Earth's crust, and poses no significant environmental problems regarding toxicity.
Transport Theory for Metals with Excitonic Instabilities
Breitkreiz, Maxim
2015-01-01
Metals with excitonic instabilities are multiband systems with significant electron-electron interaction. The electronic transport in such systems is affected by collective fluctuations of the electrons, leading to anomalous features in the measured transport coefficients. Many of these anomalies have not been well understood because the transport mechanisms in these systems tend to be rather complex. The complexity arises, on the one hand, from the multiband nature and, on the other, fro...
Zang, Huidong; Cristea, Mihail; Shen, Xuan; Liu, Mingzhao; Camino, Fernando; Cotlet, Mircea
2015-09-28
Single nanoparticle studies of charge trapping and de-trapping in core/shell CdSe/ZnS nanocrystals incorporated into an insulating matrix and subjected to an external electric field demonstrate the ability to reversibly modulate the exciton dynamics and photoluminescence blinking while providing indirect evidence for the existence of a permanent ground state dipole moment in such nanocrystals. A model assuming the presence of energetically deep charge traps physically aligned along the direction of the permanent dipole is proposed in order to explain the dynamics of nanocrystal blinking in the presence of a permanent dipole moment.
Singlet exciton fission in nanostructured organic solar cells.
Jadhav, Priya J; Mohanty, Aseema; Sussman, Jason; Lee, Jiye; Baldo, Marc A
2011-04-13
Singlet exciton fission is an efficient multiexciton generation process in organic molecules. But two concerns must be satisfied before it can be exploited in low-cost solution-processed organic solar cells. Fission must be combined with longer wavelength absorption in a structure that can potentially surpass the single junction limit, and its efficiency must be demonstrated in nanoscale domains within blended devices. Here, we report organic solar cells comprised of tetracene, copper phthalocyanine, and the buckyball C(60). Short wavelength light generates singlet excitons in tetracene. These are subsequently split into two triplet excitons and transported through the phthalocyanine. In addition, the phthalocyanine absorbs photons below the singlet exciton energy of tetracene. To test tetracene in nanostructured blends, we fabricate coevaporated bulk heterojunctions and multilayer heterojunctions of tetracene and C(60). We measure a singlet fission efficiency of (71 ± 18)%, demonstrating that exciton fission can efficiently compete with exciton dissociation on the nanoscale.
Laser pulse induced multiple exciton kinetics in molecular ring structures
Hou, Xiao; Wang, Luxia
2016-11-01
Multiple excitons can be formed upon strong optical excitation of molecular aggregates and complexes. Based on a theoretical approach on exciton-exciton annihilation dynamics in supramolecular systems (May et al., 2014), exciton interaction kinetics in ring aggregates of two-level molecules are investigated. Excited by the sub-picosecond laser pulse, multiple excitons keep stable in the molecular ring shaped as a regular polygon. If the symmetry is destroyed by changing the dipole of a single molecule, the excitation of different molecules becomes not identical, and the changed dipole-dipole interaction initiates subsequent energy redistribution. Depending on the molecular distance and the dipole configuration, the kinetics undergo different types of processes, but all get stable within some hundreds of femtoseconds. The study of exciton kinetics will be helpful for further investigations of the efficiency of optical devices based on molecular aggregates.
Exciton Mapping at Subwavelength Scales in Two-Dimensional Materials
Tizei, Luiz H. G.
2015-03-01
Spatially resolved electron-energy-loss spectroscopy (EELS) is performed at diffuse interfaces between MoS2 and MoSe2 single layers. With a monochromated electron source (20 meV) we successfully probe excitons near the interface by obtaining the low loss spectra at the nanometer scale. The exciton maps clearly show variations even with a 10 nm separation between measurements; consequently, the optical band gap can be measured with nanometer-scale resolution, which is 50 times smaller than the wavelength of the emitted photons. By performing core-loss EELS at the same regions, we observe that variations in the excitonic signature follow the chemical composition. The exciton peaks are observed to be broader at interfaces and heterogeneous regions, possibly due to interface roughness and alloying effects. Moreover, we do not observe shifts of the exciton peak across the interface, possibly because the interface width is not much larger than the exciton Bohr radius.
Chiral topological excitons in the monolayer transition metal dichalcogenides
Gong, Z. R.; Luo, W. Z.; Jiang, Z. F.; Fu, H. C.
2017-02-01
We theoretically investigate the chiral topological excitons emerging in the monolayer transition metal dichalcogenides, where a bulk energy gap of valley excitons is opened up by a position dependent external magnetic field. We find two emerging chiral topological nontrivial excitons states, which exactly connects to the bulk topological properties, i.e., Chern number = 2. The dependence of the spectrum of the chiral topological excitons on the width of the magnetic field domain wall as well as the magnetic filed strength is numerically revealed. The chiral topological valley excitons are not only important to the excitonic transport due to prevention of the backscattering, but also give rise to the quantum coherent control in the optoelectronic applications.
Excitonic Stark effect in MoS2 monolayers
Scharf, Benedikt; Frank, Tobias; Gmitra, Martin; Fabian, Jaroslav; Žutić, Igor; Perebeinos, Vasili
2016-12-01
We theoretically investigate excitons in MoS2 monolayers in an applied in-plane electric field. Tight-binding and Bethe-Salpeter equation calculations predict a quadratic Stark shift, of the order of a few meV for fields of 10 V/μ m , in the linear absorption spectra. The spectral weight of the main exciton peaks decreases by a few percent with an increasing electric field due to the exciton field ionization into free carriers as reflected in the exciton wave functions. Subpicosecond exciton decay lifetimes at fields of a few tens of V/μ m could be utilized in solar energy harvesting and photodetection. We find simple scaling relations of the exciton binding, radius, and oscillator strength with the dielectric environment and an electric field, which provides a path to engineering the MoS2 electro-optical response.
Topological Excitonic Superfluids in Three Dimensions
Gilbert, Matthew; Hankiewicz, Ewelina; Kim, Youngseok
2013-03-01
We study the equilibrium and non-equilibrium properties of topological dipolar intersurface exciton condensates within time-reversal invariant topological insulators in three spatial dimensions without a magnetic field. We elucidate that, in order to correctly identify the proper pairing symmetry within the condensate order parameter, the full three-dimensional Hamiltonian must be considered. As a corollary, we demonstrate that only particles with similar chirality play a significant role in condensate formation. Furthermore, we find that the intersurface exciton condensation is not suppressed by the interconnection of surfaces in three-dimensional topological insulators as the intersurface polarizability vanishes in the condensed phase. This eliminates the surface current flow leaving only intersurface current flow through the bulk. We conclude by illustrating how the excitonic superfluidity may be identified through an examination of the terminal currents above and below the condensate critical current. Army Research Office (ARO) under contract number W911NF-09-1-0347, the Office of Naval Research (ONR) under contract number N0014-11-1-0728, and the Air Force Office of Scientific Research (AFOSR) under contract number FA9550-10-1-0459, DFG Grant HA 5893
Exciton ionization in multilayer transition-metal dichalcogenides
Pedersen, Thomas Garm; Latini, Simone; Thygesen, Kristian Sommer;
2016-01-01
Photodetectors and solar cells based on materials with strongly bound excitons rely crucially on field-assisted exciton ionization. We study the ionization process in multilayer transition-metal dichalcogenides (TMDs) within the Mott-Wannier model incorporating fully the pronounced anisotropy......-principles material parameters, an analysis of several important TMDs reveals WSe2 and MoSe2 to be superior for applications relying on ionization of direct and indirect excitons, respectively....
Determination of Surface Exciton Energies by Velocity Resolved Atomic Desorption
Hess, Wayne P.; Joly, Alan G.; Beck, Kenneth M.; Sushko, Petr V.; Shluger, Alexander L.
2004-08-20
We have developed a new method for determining surface exciton band energies in alkali halides based on velocity-resolved atomic desorption (VRAD). Using this new method, we predict the surface exciton energies for K1, KBr, KC1, and NaC1 within +0.15 eV. Our data, combined with the available EELS data for alkali fluorides, demonstrate a universal linear correlation with the inverse inter-atomic distance in these materials. The results suggest that surface excitons exist in all alkali halides and their excitation energies can be predicted from the known bulk exciton energies and the obtained correlation plot.
Exciton migration and quenching in poly(propylene imine) dendrimers
Minevičiūtė, I.; Gulbinas, V.; Franckevičius, M.; Vaišnoras, R.; Marcos, M.; Serrano, J. L.
2009-05-01
Exciton migration between chromophore groups of the poly(propylene imine) dendrimer in chloroform solution and in solid state has been investigated by means of the time-resolved fluorescence measurements. Fluorescence decay kinetics, dynamic band shift and the depolarization rate have been analyzed. Exciton migration in a single dendrimer was found to be slow in comparison with temperature-dependent chromophore reorientation time of 150-600 ps. In a solid state chromophore groups form collective excitonic states responsible for the dendrimer film fluorescence. Exciton migration and localization to the lowest energy sites within the distributed density of states take place on a subnanosecond-nanosecond time scale.
Revealing and Characterizing Dark Excitons Through Coherent Multidimensional Spectroscopy
Tollerud, Jonathan O; Davis, Jeffrey A
2016-01-01
Dark excitons are of fundamental importance in a broad range of contexts, but are difficult to study using conventional optical spectroscopy due to their weak interaction with light. We show how coherent multidimensional spectroscopy can reveal and characterize dark states. Using this approach, we identify different types of dark excitons in InGaAs/GaAs quantum wells and determine details regarding lifetimes, homogeneous and inhomogeneous linewidths, broadening mechanisms and coupling strengths. The observations of coherent coupling between bright and dark excitons hint at a role for a multi-step process by which excitons in the barrier can relax into the quantum wells.
Exciton management in organic photovoltaic multidonor energy cascades.
Griffith, Olga L; Forrest, Stephen R
2014-05-14
Multilayer donor regions in organic photovoltaics show improved power conversion efficiency when arranged in decreasing exciton energy order from the anode to the acceptor interface. These so-called "energy cascades" drive exciton transfer from the anode to the dissociating interface while reducing exciton quenching and allowing improved overlap with the solar spectrum. Here we investigate the relative importance of exciton transfer and blocking in a donor cascade employing diphenyltetracene (D1), rubrene (D2), and tetraphenyldibenzoperiflanthene (D3) whose optical gaps monotonically decrease from D1 to D3. In this structure, D1 blocks excitons from quenching at the anode, D2 accepts transfer of excitons from D1 and blocks excitons at the interface between D2 and D3, and D3 contributes the most to the photocurrent due to its strong absorption at visible wavelengths, while also determining the open circuit voltage. We observe singlet exciton Förster transfer from D1 to D2 to D3 consistent with cascade operation. The power conversion efficiency of the optimized cascade OPV with a C60 acceptor layer is 7.1 ± 0.4%, which is significantly higher than bilayer devices made with only the individual donors. We develop a quantitative model to identify the dominant exciton processes that govern the photocurrent generation in multilayer organic structures.
Samanta, Piyas; Mandal, Krishna C.
2016-08-01
We present for the first time a thorough investigation of trapped-hole induced gate oxide deterioration and simulation results of time-dependent dielectric breakdown (TDDB) of thin (7-25 nm) silicon dioxide (SiO2) films thermally grown on (0 0 0 1) silicon (Si) face of n-type 6H-silicon carbide (n-6H-SiC). Gate oxide reliability was studied during both constant voltage and current stress with positive bias on the degenerately doped n-type poly-crystalline silicon (n+-polySi) gate at a wide range of temperatures between 27 and 225 °C. The gate leakage current was identified as the Poole-Frenkel (PF) emission of electrons trapped at an energy 0.92 eV below the SiO2 conduction band. Holes were generated in the n+-polySi anode material as well as in the oxide bulk via band-to-band ionization depending on the film thickness tox and the energy of the hot-electrons (emitted via PF mechanism) during their transport through oxide films at oxide electric fields Eox ranging from 5 to 10 MV/cm. Our simulated time-to-breakdown (tBD) results are in excellent agreement with those obtained from time consuming TDDB measurements. It is observed that irrespective of stress temperatures, the tBD values estimated in the field range between 5 and 9 MV/cm better fit to reciprocal field (1/E) model for the thickness range studied here. Furthermore, for a 10 year projected device lifetime, a good reliability margin of safe operating field from 8.5 to 7.5 MV/cm for 7 nm and 8.1 to 6.9 MV/cm for 25 nm thick SiO2 was observed between 27 and 225 °C.
Wulf, K; Trissl, H W
1996-05-01
Excitation of photosynthetic systems with short intense flashes is known to lead to exciton-exciton annihilation processes. Here we quantify the effect of competition between annihilation and trapping for Photosystem II, Photosystem I (thylakoids from peas and membranes from the cyanobacterium Synechocystis sp.), as well as for the purple bacterium Rhodospirillum rubrum. In none of the cases it was possible to reach complete product saturation (i.e. closure of reaction centers) even with an excitation energy exceeding 10 hits per photosynthetic unit. The parameter α introduced by Deprez et al. ((1990) Biochim. Biophys. Acta 1015: 295-303) describing the competition between exciton-exciton annihilation and trapping was calculated to range between ≈4.5 (PS II) and ≈6 (Rs. rubrum). The rate constants for bimolecular exciton-exciton annihilation ranged between (42 ps)(-1) and (2.5 ps)(-1) for PS II and PS I-membranes of Synechocystis, respectively. The data are interpreted in terms of hopping times (i.e. mean residence time of the excited state on a chromophore) according to random walk in isoenergetic antenna.
US Fish and Wildlife Service, Department of the Interior — This Annual Trapping Plan for the 1984-1985 trapping season at Clarence Cannon NWR outlines rules and regulations for the trapping of beaver and muskrat on the...
Localized excitons in In sub x Ga sub 1 sub - sub x N/GaN quantum well structure
Ryu, M Y; Park, S W; Yu, P W; Oh, E S; Park, Y J; Park, H S; Kim, T I
1998-01-01
Photoluminescence (PL) photoreflectance (PR) have been employed to study the optical transitions of In sub x Ga sub 1 sub - sub x N/GaN quantum well (QW) structures grown by metal-organic chemical vapor deposition (MOCVD). The main Pl peak at 2.895 eV is attributed to the excitons localized at trap centers, which originate from the In-rich region within the well. Several emission bands on both sides of the main peak are attributed to the interference fringe effects and the recombination of excitons localized at several levels in the In sub 0 sub . sub 1 sub 8 sub 3 Ga sub 0 sub . sub 8 sub 1 sub 7 N well. The PL peak at 3.040 eV is ascribed to the lowest n=1 quantized transition which agrees well the calculated result.
Adachi, Takuji; Vogelsang, Jan; Lupton, John M
2014-02-06
Charge trapping is taken for granted in modeling the characteristics of organic semiconductor devices, but very few techniques actually exist to spectroscopically pinpoint trap states. For example, trap levels are often assumed to be discrete in energy. Using the well-known keto defect in polyfluorene as a model, we demonstrate how single-molecule spectroscopy can directly track the formation of charge and exciton traps in conjugated polymers in real time, providing crucial information on the energetic distribution of trap sites relative to the polymer optical gap. Charge traps with universal spectral fingerprints scatter by almost 1 eV in depth, implying that substantial heterogeneity must be taken into account when modeling devices.
Optics of plasmon-exciton nanomaterials.
Sukharev, Maxim; Nitzan, Abraham
2017-08-14
This review provides a brief introduction to the physics of coupled exciton-plasmon systems, the theoretical description and experimental manifestation of such phenomena, followed by an account of the state-of-the-art methodology for the numerical simulations of such phenomena and supplemented by a number of FORTRAN codes, by which the interested reader can introduce himself/herself to the practice of such simulations. Applications to CW light scattering as well as transient response and relaxation are described. Particular attention is given to so-called strong coupling limit, where the hybrid exciton-plasmon nature of the system response is strongly expressed. While traditional descriptions of such phenomena usually rely on analysis of the electromagnetic response of inhomogeneous dielectric environments that individually support plasmon and exciton excitations, here we explore also the consequences of a more detailed description of the molecular environment in terms of its quantum density matrix (applied in a mean field approximation level). Such a description makes it possible to account for characteristics that cannot be described by the dielectric response model: the effects of dephasing on the molecular response on one hand, and nonlinear response on the other. It also highlights the still missing important ingredients in the numerical approach, in particular its limitation to a classical description of the radiation field and its reliance on a mean field description of the many-body molecular system. We end our review with an outlook to the near future, where these limitations will be addressed and new novel applications of the numerical approach will be pursued. © 2017 IOP Publishing Ltd.
Optical properties of localized excitons in semiconductor nanostructures
Leosson, Kristjan; Hvam, Jørn Märcher; Langbein, Wolfgang Werner;
2002-01-01
Denne afhandling beskriver optiske undersøgelser af lokaliserede excitoner i III-V halvleder nanostrukturer. Det drejer sig især om tredimensional lokalisering af excitoner i to typer af selvorganiserede systemer, nemlig kvantebrønde med fluktuerende lagtykkelse og såkaldte selv-dannede kvantepun...
Exciton dephasing in ZnSe quantum wires
Wagner, Hans Peter; Langbein, Wolfgang Werner; Hvam, Jørn Märcher
1998-01-01
The homogeneous linewidths of excitons in wet-etched ZnSe quantum wires of lateral sizes down to 23 nm are studied by transient four-wave mixing. The low-density dephasing time is found to increase with decreasing wire width. This is attributed mainly to a reduction of electron-exciton scattering...
Molecular weight dependence of exciton diffusion in poly(3-hexylthiophene)
Masri, Zarifi; Ruseckas, Arvydas; Emelianova, Evguenia V.
2013-01-01
A joint experimental and theoretical study of singlet exciton diffusion in spin-coated poly(3-hexylthiophene) (P3HT) films and its dependence on molecular weight is presented. The results show that exciton diffusion is fast along the co-facial π–π aggregates of polymer chromophores and about 100...
Coherent secondary emission from resonantly excited two-exciton states
Birkedal, Dan
2000-01-01
to the nonlinear susceptibility. The method exploits that emission from two-exciton coherences can occur in non-specular directions, with the recoil momentum taken up by an exciton left behind in the sample. Using ultrafast spectral interferometry we demonstrate the presence of this new coherent component...
Coherent excitonic nonlinearity versus inhomogeneous broadening in single quantum wells
Langbein, Wolfgang Werner; Borri, Paola; Hvam, Jørn Märcher;
1998-01-01
The coherent response of excitons in semiconductor nanostructures, as measured in four wave mixing (FWM) experiments, depends strongly on the inhomogeneous broadening of the exciton transition. We investigate GaAs-AlGaAs single quantum wells (SQW) of 4 nm to 25 nm well width. Two main mechanisms...
Bose Condensation of Interwell Excitons in Double Quantum Wells
Larionov, A. V.; Timofeev, V. B.; Ni, P. A.
2002-01-01
in the domain. With a rise in temperature, this line disappears from the spectrum (Tc 3.4 K). The observed phenomenon is attributed to Bose–Einstein condensation in a quasi-two-dimensional system of interwell excitons. In the temperature range studied (1.5–3.4 K), the critical exciton density and temperature...
Magnetic excitons in singlet-ground-state ferromagnets
Birgeneau, R.J.; Als-Nielsen, Jens Aage; Bucher, E.
1971-01-01
The authors report measurements of the dispersion of singlet-triplet magnetic excitons as a function of temperature in the singlet-ground-state ferromagnets fcc Pr and Pr3Tl. Well-defined excitons are observed in both the ferromagnetic and paramagnetic regions, but with energies which are nearly...
Bose Condensation of Interwell Excitons in Double Quantum Wells
Larionov, A. V.; Timofeev, V. B.; Ni, P. A.
2002-01-01
The luminescence of interwell excitons in double quantum wells GaAs/AlGaAs (n–i–n heterostructures) with large-scale fluctuations of random potential in the heteroboundary planes was studied. The properties of excitons whose photoexcited electron and hole are spatially separated in the neighboring...
Excitons in conjugated polymers from first principles
van der Horst, J.-W.; Bobbert, P. A.; Pasveer, W. F.; Michels, M. A. J.; Brocks, G.; Kelly, P. J.
2002-08-01
By a combination of ab-initio computational techniques, based on density-functional theory, GW theory, and the Bethe-Salpeter equation, we study the opto-electronic properties of several conjugated polymers and in particular the properties of excitons. We study three different situations: (I) an isolated polymer chain, (II) a chain embedded in a dielectric medium, and (III) a polymer crystal. Surprisingly, the results obtained for situation (II) generally agree best with experiment. We discuss possible reasons for this rule and an interesting exception.
Directing energy transport in organic photovoltaic cells using interfacial exciton gates.
Menke, S Matthew; Mullenbach, Tyler K; Holmes, Russell J
2015-04-28
Exciton transport in organic semiconductors is a critical, mediating process in many optoelectronic devices. Often, the diffusive and subdiffusive nature of excitons in these systems can limit device performance, motivating the development of strategies to direct exciton transport. In this work, directed exciton transport is achieved with the incorporation of exciton permeable interfaces. These interfaces introduce a symmetry-breaking imbalance in exciton energy transfer, leading to directed motion. Despite their obvious utility for enhanced exciton harvesting in organic photovoltaic cells (OPVs), the emergent properties of these interfaces are as yet uncharacterized. Here, directed exciton transport is conclusively demonstrated in both dilute donor and energy-cascade OPVs where judicious optimization of the interface allows exciton transport to the donor-acceptor heterojunction to occur considerably faster than when relying on simple diffusion. Generalized systems incorporating multiple exciton permeable interfaces are also explored, demonstrating the ability to further harness this phenomenon and expeditiously direct exciton motion, overcoming the diffusive limit.
Gambalemoke, Mbalitini; Mukinzi, Itoka; Amundala, Drazo
2008-01-01
We investigated the efficiency of four trap types (pitfall, Sherman LFA, Victor snap and Museum Special snap traps) to capture shrews. This experiment was conducted in five inter-riverine forest blocks in the region of Kisangani. The total trapping effort was 6,300, 9,240, 5,280 and 5,460 trap-ni...
Superfluid phase transition in two-dimensional excitonic systems
Apinyan, V.; Kopeć, T.K., E-mail: kopec@int.pan.wroc.pl
2014-03-01
We study the superfluid phase transition in the two-dimensional (2D) excitonic system. Employing the extended Falicov–Kimball model (EFKM) and considering the local quantum correlations in the system composed of conduction band electrons and valence band holes we demonstrate the existence of the excitonic insulator (EI) state in the system. We show that at very low temperatures, the particle phase stiffness in the pure-2D excitonic system, governed by the non-local cross correlations, is responsible for the vortex–antivortex binding phase-field state, known as the Berezinskii–Kosterlitz–Thouless (BKT) superfluid state. We demonstrate that the existence of excitonic insulator phase is a necessary prerequisite, leading to quasi-long-range order in the 2D excitonic system.
Optically induced rotation of a quantum dot exciton spin
Poem, E; Kodriano, Y; Benny, Y; Khatsevich, S; Avron, J E; Gershoni, D
2011-01-01
We demonstrate control over the spin state of a semiconductor quantum dot exciton using a polarized picosecond laser pulse slightly detuned from a biexciton resonance. The control pulse follows an earlier pulse, which generates an exciton and initializes its spin state as a coherent superposition of its two non-degenerate eigenstates. The control pulse preferentially couples one component of the exciton state to the biexciton state, thereby rotating the exciton's spin direction. We detect the rotation by measuring the polarization of the exciton spectral line as a function of the time-difference between the two pulses. We show experimentally and theoretically how the angle of rotation depends on the detuning of the second pulse from the biexciton resonance.
Activated singlet exciton fission in a semiconducting polymer.
Musser, Andrew J; Al-Hashimi, Mohammed; Maiuri, Margherita; Brida, Daniele; Heeney, Martin; Cerullo, Giulio; Friend, Richard H; Clark, Jenny
2013-08-28
Singlet exciton fission is a spin-allowed process to generate two triplet excitons from a single absorbed photon. This phenomenon offers great potential in organic photovoltaics, but the mechanism remains poorly understood. Most reports to date have addressed intermolecular fission within small-molecular crystals. However, through appropriate chemical design chromophores capable of intramolecular fission can also be produced. Here we directly observe sub-100 fs activated singlet fission in a semiconducting poly(thienylenevinylene). We demonstrate that fission proceeds directly from the initial 1Bu exciton, contrary to current models that involve the lower-lying 2Ag exciton. In solution, the generated triplet pairs rapidly recombine and decay through the 2Ag state. In films, exciton diffusion breaks this symmetry and we observe long-lived triplets which form charge-transfer states in photovoltaic blends.
How to Draw Energy Level Diagrams in Excitonic Solar Cells.
Zhu, X-Y
2014-07-03
Emerging photovoltaic devices based on molecular and nanomaterials are mostly excitonic in nature. The initial absorption of a photon in these materials creates an exciton that can subsequently dissociate in each material or at their interfaces to give charge carriers. Any attempt at mechanistic understanding of excitonic solar cells must start with drawing energy level diagrams. This seemingly elementary exercise, which is described in textbooks for inorganic solar cells, has turned out to be a difficult subject in the literature. The problem stems from conceptual confusion of single-particle energy with quasi-particle energy and the misleading practice of mixing the two on the same energy level diagram. Here, I discuss how to draw physically accurate energy diagrams in excitonic solar cells using only single-particle energies (ionization potentials and electron affinities) of both ground and optically excited states. I will briefly discuss current understanding on the electronic energy landscape responsible for efficient charge separation in excitonic solar cells.
Excitons in quantum-dot quantum-well nanoparticles
史俊杰
2002-01-01
A variational calculation is presented for the ground-state properties of excitons confined in spherical core-shell quantum-dot quantum-well (QDQW) nanoparticles. The relationship between the exciton states and structure parameters of QDQW nanoparticles is investigated, in which both the heavy-hole and the light-hole exciton states are considered. The results show that the confinement energies of the electron and hole states and the exciton binding energies depend sensitively on the well width and core radius of the QDQW structure. A detailed comparison between the heavy-hole and light-hole exciton states is given. Excellent agreement is found between experimental results and our calculated 1se-1sh transition energies.
Excitons in conjugated polymers: wavefunctions, symmetries, and quantum numbers.
Barford, William; Paiboonvorachat, Nattapong
2008-10-28
We introduce a mapping from configuration interaction singles wavefunctions, expressed as linear combinations of particle-hole excitations between Hartree-Fock molecular orbitals, to real-space exciton wavefunctions, expressed as linear combinations of particle-hole excitations between localized Wannier functions. The exciton wavefunction is a two-dimensional amplitude for the exciton center-of-mass coordinate, R, and the electron-hole separation (or relative coordinate), r, having an exact analogy to one-dimensional hydrogenlike wavefunctions. We describe the excitons by their appropriate quantum numbers, namely, the principle quantum number, n, associated with r and the center-of-mass pseudomomentum quantum number, j, associated with R. In addition, for models with particle-hole symmetry, such as the Pariser-Parr-Pople model, we emphasize the connection between particle-hole symmetry and particle-hole parity. The method is applied to the study of excitons in trans-polyacetylene and poly(para-phenylene).
Exciton-Phonon Dynamics with Long-Range Interaction
Laskin, Nick
2011-01-01
Exciton-phonon dynamics on a 1D lattice with long-range exciton-exciton interaction have been introduced and elaborated. Long-range interaction leads to a nonlocal integral term in the motion equation of the exciton subsystem if we go from discrete to continuous space. In some particular cases for power-law interaction, the integral term can be expressed through a fractional order spatial derivative. A system of two coupled equations has been obtained, one is a fractional differential equation for the exciton subsystem, the other is a standard differential equation for the phonon subsystem. These two equations present a new fundamental framework to study nonlinear dynamics with long-range interaction. New approaches to model the impact of long-range interaction on nonlinear dynamics are: fractional generalization of Zakharov system, Hilbert-Zakharov system, Hilbert-Ginzburg-Landau equation and nonlinear Hilbert-Schrodinger equation. Nonlinear fractional Schrodinger equation and fractional Ginzburg-Landau equa...
Krajewski, Florian R.; Müser, Martin H.
2005-03-01
The commensurate Frenkel Kontorova (FK) model is studied using path-integral molecular dynamics (PIMD). We focus on the highly discrete case, in which the embedding potential has a much greater maximum curvature than the harmonic potential connecting two particles in the FK chain. When efficient sampling methods are used, the dynamical interpretation of adiabatic PIMD appears to represent quite accurately the true time correlation functions of this highly correlated many-body system. We have found that the discrete, quantum FK model shows different behavior than its continuum version. The spectral density does not show the characteristic ω-2Θ(ω-ωc) cusp of the continuum solution in the pinned phase (m>mc). We also identify a dynamical quantum hysteresis in addition to the regular classical hysteresis when an external force is applied to the FK chain. In the unpinned phase (m⩽mc), we find a linear response damping coefficient which is finite and only weakly dependent on temperature T at small values of T.
Sokolović, I.; Mali, P.; Odavić, J.; Radošević, S.; Medvedeva, S. Yu.; Botha, A. E.; Shukrinov, Yu. M.; Tekić, J.
2017-08-01
The devil's staircase structure arising from the complete mode locking of an entirely nonchaotic system, the overdamped dc+ac driven Frenkel-Kontorova model with deformable substrate potential, was observed. Even though no chaos was found, a hierarchical ordering of the Shapiro steps was made possible through the use of a previously introduced continued fraction formula. The absence of chaos, deduced here from Lyapunov exponent analyses, can be attributed to the overdamped character and the Middleton no-passing rule. A comparative analysis of a one-dimensional stack of Josephson junctions confirmed the disappearance of chaos with increasing dissipation. Other common dynamic features were also identified through this comparison. A detailed analysis of the amplitude dependence of the Shapiro steps revealed that only for the case of a purely sinusoidal substrate potential did the relative sizes of the steps follow a Farey sequence. For nonsinusoidal (deformed) potentials, the symmetry of the Stern-Brocot tree, depicting all members of particular Farey sequence, was seen to be increasingly broken, with certain steps being more prominent and their relative sizes not following the Farey rule.
Exciton Dynamics in Semiconducting Carbon Nanotubes
Graham, Matt [University of California, Berkeley; Chmeliov, Javgenij [Vilnius University, Lithuania; Ma, Yingzhong [ORNL; Shinohara, Nori [Nagoya University, Japan; Green, Alexander A. [Northwestern University, Evanston; Hersam, Mark C. [Northwestern University, Evanston; Valkunas, Leonas [Vilnius University, Lithuania; Fleming, Graham [University of California, Berkeley
2010-01-01
We report femtosecond transient absorption spectroscopic study on the (6, 5) single-walled carbon nanotubes and the (7, 5) inner tubes of a dominant double-walled carbon nanotube species. We found that the dynamics of exciton relaxation probed at the first transition-allowed state (E11) of a given tube type exhibits a markedly slower decay when the second transition-allowed state (E22) is excited than that measured by exciting its first transition-allowed state (E11). A linear intensity dependence of the maximal amplitude of the transient absorption signal is found for the E22 excitation, whereas the corresponding amplitude scales linearly with the square root of the E11 excitation intensity. Theoretical modeling of these experimental findings was performed by developing a continuum model and a stochastic model with explicit consideration of the annihilation of coherent excitons. Our detailed numerical simulations show that both models can reproduce reasonably well the initial portion of decay kinetics measured upon the E22 and E11 excitation of the chosen tube species, but the stochastic model gives qualitatively better agreement with the intensity dependence observed experimentally than those obtained with the continuum model.
Exciton Correlations in Intramolecular Singlet Fission.
Sanders, Samuel N; Kumarasamy, Elango; Pun, Andrew B; Appavoo, Kannatassen; Steigerwald, Michael L; Campos, Luis M; Sfeir, Matthew Y
2016-06-15
We have synthesized a series of asymmetric pentacene-tetracene heterodimers with a variable-length conjugated bridge that undergo fast and efficient intramolecular singlet fission (iSF). These compounds have distinct singlet and triplet energies, which allow us to study the spatial dynamics of excitons during the iSF process, including the significant role of exciton correlations in promoting triplet pair generation and recombination. We demonstrate that the primary photoexcitations in conjugated dimers are delocalized singlets that enable fast and efficient iSF. However, in these asymmetric dimers, the singlet becomes more localized on the lower energy unit as the length of the bridge is increased, slowing down iSF relative to analogous symmetric dimers. We resolve the recombination kinetics of the inequivalent triplets produced via iSF, and find that they primarily decay via concerted processes. By identifying different decay channels, including delayed fluorescence via triplet-triplet annihilation, we can separate transient species corresponding to both correlated triplet pairs and uncorrelated triplets. Recombination of the triplet pair proceeds rapidly despite our experimental and theoretical demonstration that individual triplets are highly localized and unable to be transported across the conjugated linker. In this class of compounds, the rate of formation and yield of uncorrelated triplets increases with bridge length. Overall, these constrained, asymmetric systems provide a unique platform to isolate and study transient species essential for singlet fission, which are otherwise difficult to observe in symmetric dimers or condensed phases.
PbSe Nanocrystal Excitonic Solar Cells
Choi, Joshua J.
2009-11-11
We report the design, fabrication, and characterization of colloidal PbSe nanocrystal (NC)-based photovoltaic test structures that exhibit an excitonic solar cell mechanism. Charge extraction from the NC active layer is driven by a photoinduced chemical potential energy gradient at the nanostructured heterojunction. By minimizing perturbation to PbSe NC energy levels and thereby gaining insight into the "intrinsic" photovoltaic properties and charge transfer mechanism of PbSe NC, we show a direct correlation between interfacial energy level offsets and photovoltaic device performance. Size dependent PbSe NC energy levels were determined by cyclic voltammetry and optical spectroscopy and correlated to photovoltaic measurements. Photovoltaic test structures were fabricated from PbSe NC films sandwiched between layers of ZnO nanoparticles and PEDOT:PSS as electron and hole transporting elements, respectively. The device current-voltage characteristics suggest a charge separation mechanism that Is distinct from previously reported Schottky devices and consistent with signatures of excitonic solar cells. Remarkably, despite the limitation of planar junction structure, and without film thickness optimization, the best performing device shows a 1-sun power conversion efficiency of 3.4%, ranking among the highest performing NC-based solar cells reported to date. © 2009 American Chemical Society.
Nakashima, Kenichi; Stoller, Roger E; Xu, Haixuan
2015-08-26
The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in irradiated materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1.0a0 to 3.3a0 have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomic level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a0 by taking the average of the recombination distances from 80 simulation cases. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster.
Energy and Information Transfer Via Coherent Exciton Wave Packets
Zang, Xiaoning
Electronic excitons are bound electron-hole states that are generated when light interacts with matter. Such excitations typically entangle with phonons and rapidly decohere; the resulting electronic state dynamics become diffusive as a result. However, if the exciton-phonon coupling can be reduced, it may be possible to construct excitonic wave packets that offer a means of efficiently transmitting information and energy. This thesis is a combined theory/computation investigation to design condensed matter systems which support the requisite coherent transport. Under the idealizing assumption that exciton-phonon entanglement could be completely suppressed, the majority of this thesis focuses on the creation and manipulation of exciton wave packets in quasi-one-dimensional systems. While each site could be a silicon quantum dot, the actual implementation focused on organic molecular assemblies for the sake of computational simplicity, ease of experimental implementation, potential for coherent transport, and promise because of reduced structural uncertainty. A laser design was derived to create exciton wave packets with tunable shape and speed. Quantum interference was then exploited to manipulate these packets to block, pass, and even dissociate excitons based on their energies. These developments allow exciton packets to be considered within the arena of quantum information science. The concept of controllable excitonic wave packets was subsequently extended to consider molecular designs that allow photons with orbital angular momentum to be absorbed to create excitons with a quasi-angular momentum of their own. It was shown that a well-defined measure of topological charge is conserved in such light-matter interactions. Significantly, it was also discovered that such molecules allow photon angular momenta to be combined and later emitted. This amounts to a new way of up/down converting photonic angular momentum without relying on nonlinear optical materials. The
McArthur, Eric A; Morris-Cohen, Adam J; Knowles, Kathryn E; Weiss, Emily A
2010-11-18
This manuscript describes a global regression analysis of near-infrared (NIR, 900-1300 nm) transient absorptions (TA) of colloidal CdSe quantum dots (QDs) photoexcited to their first (1S(e)1S(3/2)) excitonic state. Near-IR TA spectroscopy facilitates charge carrier-resolved analysis of excitonic decay of QDs because signals in the NIR are due exclusively to absorptions of photoexcited electrons and holes, as probe energies in this region are not high enough to induce absorptions across the optical bandgap that crowd the visible TA spectra. The response of each observed component of the excitonic decay to the presence of a hole-trapping ligand (1-octanethiol) and an electron-accepting ligand (1,4-benzoquinone), and comparison of time constants to those for recovery of the ground state bleaching feature in the visible TA spectrum, allow for the assignment of the components to (i) a 1.6 ps hole trapping process, (ii) 19 ps and 274 ps surface-mediated electron trapping processes, and (iii) a ∼5 ns recombination of untrapped electrons.
Exciton mechanisms and modeling of the ionoluminescence in silica
Bachiller-Perea, D.; Jiménez-Rey, D.; Muñoz-Martín, A.; Agulló-López, F.
2016-03-01
A theoretical model is presented in order to discuss detailed kinetic data describing the evolution of the two main ionoluminescence bands at 650 nm (1.9 eV) and 460 nm (2.7 eV) in silica as a function of the irradiation fluence at room temperature. The model is based on the generation of self-trapped excitons (STEs), their hopping migration through the silica network and their recombination at non-bridging oxygen hole and Type II oxygen-deficient centers to produce the red and blue emission bands, respectively. For heavy ions, which have a high electronic stopping power, the two emission yields experience a fast initial growth with fluence up to a maximum value and then decrease at a fairly comparable rate. The fluence for such a maximum strongly increases on decreasing ion mass and stopping power and, finally, for H and He it is not observed for any of the investigated energy and fluence range. This kinetic behavior is explained in terms of the strong structural distortions (compaction) induced by the heavy-ion irradiations. In particular, it is proposed that these strong structural distortions cause a significant decrease in the STE migration length and, consequently, in the recombination rates at the two active recombination centers. The model offers a good quantitative accordance with detailed infrared spectroscopy reporting on the changes in the frequency ω 4 of a first-order vibrational mode in the SiO2 network as a function of irradiation fluence.
Xiao, Ningru; Dai, Quanqin; Wang, Yingnan; Ning, Jiajia; Liu, Bingbing; Zou, Guangtian; Zou, Bo
2012-04-15
In the present work, we demonstrated a simple and green synthesis route for shape-controlled ZnS nanocrystals, where only environmentally benign chemicals, namely sulfur, zinc oxide and olive oil, were employed. By controlling the experimental conditions, we were able to tune the band edge and trap state photoluminescences of ZnS nanocrystals and obtain pure excitonic photoluminescence that was rarely observed in literature. The trap state emission was derived from sulfur vacancies and would be eliminated when an excess of sulfur was used during the synthesis. Additionally, the morphology of ZnS nanocrystals could be tuned to appear like flowers, where the formation mechanism was systematically discussed.
Influences of strong exciton-phonon interaction on two coupled quantum dots within cavity QED
Yuan Xiaozhong [Department of Physics, Institute of Quantum Optics and Quantum Information, Shanghai Jiao Tong University, Shanghai 200240 (China)]. E-mail: yxz@sjtu.edu.cn; Zhu Kadi [Department of Physics, Institute of Quantum Optics and Quantum Information, Shanghai Jiao Tong University, Shanghai 200240 (China); Li Waisang [Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong (China)
2004-08-30
For two coupled quantum dots within cavity QED, we show that the exciton-phonon interaction reduces the Rabi frequency and Foerster interaction even at absolute zero temperature. The exciton-phonon interaction also makes an additional contribution to the static exciton-exciton dipole interaction energy.
Influences of strong exciton-phonon interaction on two coupled quantum dots within cavity QED
Yuan, Xiao-Zhong; Zhu, Ka-Di; Li, Wai-Sang
2004-08-01
For two coupled quantum dots within cavity QED, we show that the exciton-phonon interaction reduces the Rabi frequency and Förster interaction even at absolute zero temperature. The exciton-phonon interaction also makes an additional contribution to the static exciton-exciton dipole interaction energy.
Exciton Transfer in Carbon Nanotube Aggregates for Energy Harvesting Applications
Davoody, Amirhossein; Karimi, Farhad; Knezevic, Irena
Carbon nanotubes (CNTs) are promising building blocks for organic photovoltaic devices, owing to their tunable band gap, mechanical and chemical stability. We study intertube excitonic energy transfer between pairs of CNTs with different orientations and band gaps. The optically bright and dark excitonic states in CNTs are calculated by solving the Bethe-Salpeter equation. We calculate the exciton transfer rates due to the direct and exchange Coulomb interactions, as well as the second-order phonon-assisted processes. We show the importance of phonons in calculating the transfer rates that match the measurements. In addition, we discuss the contribution of optically inactive excited states in the exciton transfer process, which is difficult to determine experimentally. Furthermore, we study the effects of sample inhomogeneity, impurities, and temperature on the exciton transfer rate. The inhomogeneity in the CNT sample dielectric function can increase the transfer rate by about a factor of two. We show that the exciton confinement by impurities has a detrimental effect on the transfer rate between pairs of similar CNTs. The exciton transfer rate increases monotonically with increasing temperature. Support by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0008712.
Ultrafast dynamics of exciton fission in polycrystalline pentacene.
Wilson, Mark W B; Rao, Akshay; Clark, Jenny; Kumar, R Sai Santosh; Brida, Daniele; Cerullo, Giulio; Friend, Richard H
2011-08-10
We use ultrafast transient absorption spectroscopy with sub-20 fs time resolution and broad spectral coverage to directly probe the process of exciton fission in polycrystalline thin films of pentacene. We observe that the overwhelming majority of initially photogenerated singlet excitons evolve into triplet excitons on an ∼80 fs time scale independent of the excitation wavelength. This implies that exciton fission occurs at a rate comparable to phonon-mediated exciton localization processes and may proceed directly from the initial, delocalized, state. The singlet population is identified due to the brief presence of stimulated emission, which is emitted at wavelengths which vary with the photon energy of the excitation pulse, a violation of Kasha's Rule that confirms that the lowest-lying singlet state is extremely short-lived. This direct demonstration that triplet generation is both rapid and efficient establishes multiple exciton generation by exciton fission as an attractive route to increased efficiency in organic solar cells. © 2011 American Chemical Society
Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers
Andernach, Rolf
2015-07-22
We report the synthesis of a novel polythiophene-based host-guest copolymer incorporating a Pt-porphyrin complex (TTP-Pt) into the backbone for efficient singlet to triplet polymer exciton sensitization. We elucidated the exciton dynamics in thin films of the material by means of Transient Absorption Spectrosopcy (TAS) on multiple timescales and investigated the mechanism of triplet exciton formation. During sensitization, single exciton diffusion is followed by exciton transfer from the polymer backbone to the complex where it undergoes intersystem crossing to the triplet state of the complex. We directly monitored the triplet exciton back transfer from the Pt-porphyrin to the polymer and find that 60% of the complex triplet excitons are transferred with a time constant of 1087 ps. We propose an equilibrium between polymer and porphyrin triplet states as a result of the low triplet diffusion length in the polymer backbone and hence an increased local triplet population resulting in increased triplet-triplet annihilation. This novel system has significant implications for the design of novel materials for triplet sensitized solar cells and up-conversion layers.
Exciton condensation and its influence on the specific heat
Wachter, P., E-mail: wachter@solid.phys.ethz.ch [Laboratorium fuer Festkoerperphysik, ETH Zuerich, 8093 Zuerich (Switzerland); Bucher, B. [HSR Hochschule fuer Technik, 8640 Rapperswil (Switzerland)
2013-01-01
In rare earth compounds with localized 4f states the observation of bound 4f-hole-5d-electron states, excitons, is questionable. On the other hand the same compounds exhibit p-d excitons, which are derived from itinerant bands. In rare earth compounds, which exhibit intermediate valence, 4f-5d hybridization produces a narrow, several 10 meV wide 4f band. Now 4f-5d excitons are possible and have been observed in TmSe{sub 0.45}Te{sub 0.55} and similar compositions. The special band structure of these materials permits an enormous amount of excitons ( Almost-Equal-To 10{sup 21} cm{sup -3}), which condense in a first order transition at low temperatures and high pressure. This static and immense concentration of excitons dominates the heat conductivity and the thermal diffusivity and even exhibits the phenomenon of superfluidity in a solid. The measured specific heat shows that phonons couple to these excitons forming exciton polarons.
Energy Transfer of Excitons Between Quantum Wells Separated by a Wide Barrier
LYO,SUNGKWUN K.
1999-12-06
We present a microscopic theory of the excitonic Stokes and anti-Stokes energy transfer mechanisms between two widely separated unequal quantum wells with a large energy mismatch ({Delta}) at low temperatures (T). Exciton transfer through dipolar coupling, photon-exchange coupling and over-barrier ionization of the excitons through exciton-exciton Auger processes are examined. The energy transfer rate is calculated as a function of T and the center-to-center distance d between the two wells. The rates depend sensitively on T for plane-wave excitons. For located excitons, the rates depend on T only through the T-dependence of the localization radius.
Novel exciton systems in 2D TMD monolayers and heterobilayers
Yu, Hongyi
In this talk, two exciton systems in transition metal dichalcogenides (TMDs) monolayer and heterobilayer will be discussed. In TMD monolayers, the strong e-h Coulomb exchange interaction splits the exciton and trion dispersions into two branches with zero and finite gap, respectively. Each branch is a center-of-mass wave vector dependent coherent superposition of the two valleys, which leads to a valley-orbit coupling and possibly a trion valley Hall effect. The exchange interaction also eliminates the linear polarization of the negative trion PL emission. In TMD heterobilayers with a type-II band alignment, the low energy exciton has an interlayer configuration with the e and h localized in opposite layers. Because of the inevitable twist or/and lattice mismatch between the two layers, the bright interlayer excitons are located at finite center-of-mass velocities with a six-fold degeneracy. The corresponding photon emission is elliptically polarized, with the major axis locked to the direction of exciton velocity, and helicity determined by the valley indices of the e and h. Some experimental results on the interlayer excitons in the WSe2-MoSe2 heterobilayers will also be presented. The interlayer exciton exhibits a long lifetime as well as a long depolarization time, which facilitate the observation of a PL polarization ring pattern due to the valley dependent exciton-exciton interaction induced expansion. The works were supported by the Research Grant Council of Hong Kong (HKU17305914P, HKU705513P), the Croucher Foundation, and the HKU OYRA and ROP.
Alternative approaches to electronic damage by ion-beam irradiation: Exciton models
Agullo-Lopez, F.; Munoz-Martin, A.; Zucchiatti, A. [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid, 28049, Madrid (Spain); Climent-Font, A. [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid, 28049, Madrid (Spain); Departamento de Fisica Aplicada, Universidad Autonoma de Madrid, 28049, Madrid (Spain)
2016-11-15
The paper briefly describes the main features of the damage produced by swift heavy ion (SHI) irradiation. After a short revision of the widely used thermal spike concept, it focuses on cumulative mechanisms of track formation which are alternative to those based on lattice melting (thermal spike models). These cumulative mechanisms rely on the production of point defects around the ion trajectory, and their accumulation up to a final lattice collapse or amorphization. As to the formation of point defects, the paper considers those mechanisms relying on direct local conversion of the excitation energy into atomic displacements (exciton models). A particular attention is given to processes based on the non-radiative recombination of excitons that have become self-trapped as a consequence of a strong electron-phonon interaction (STEs). These mechanisms, although operative under purely ionizing radiation in some dielectric materials, have been rarely invoked, so far, to discuss SHI damage. They are discussed in this paper together with relevant examples to materials such as Cu{sub 3}N, alkali halides, SiO{sub 2}, and LiNbO{sub 3}. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons
Rahman, Sk. Shaid-Ur; Klein, Thorsten; Klembt, Sebastian; Gutowski, Jürgen; Hommel, Detlef; Sebald, Kathrin
2016-10-01
We present evidence for the existence of a hybrid state of Tamm plasmons and microcavity exciton polaritons in a II-VI material based microcavity sample covered with an Ag metal layer. The bare cavity mode shows a characteristic anticrossing with the Tamm-plasmon mode, when microreflectivity measurements are performed for different detunings between the Tamm plasmon and the cavity mode. When the Tamm-plasmon mode is in resonance with the cavity polariton four hybrid eigenstates are observed due to the coupling of the cavity-photon mode, the Tamm-plasmon mode, and the heavy- and light-hole excitons. If the bare Tamm-plasmon mode is tuned, these resonances will exhibit three anticrossings. Experimental results are in good agreement with calculations based on the transfer matrix method as well as on the coupled-oscillators model. The lowest hybrid eigenstate is observed to be red shifted by about 13 meV with respect to the lower cavity polariton state when the Tamm plasmon is resonantly coupled with the cavity polariton. This spectral shift which is caused by the metal layer can be used to create a trapping potential channel for the polaritons. Such channels can guide the polariton propagation similar to one-dimensional polariton wires.
Yu, Yiling; Xu, Chao; Barrette, Andy; Gundogdu, Kenan; Cao, Linyou
2015-01-01
We quantitatively evaluate the exciton-exciton annihilation (EEA) and its effect on light emission properties in monolayer TMDC materials, including WS2, MoS2, and WSe2. The EEA rate is found to be 0.3 cm2/s and 0.1 cm2/s for suspended WS2 and MoS2 monolayers, respectively, and subject to the influence from substrates, being 0.1 cm2/s and 0.05 cm2/s for the supported WS2 and MoS2 on sapphire substrates. It can substantially affect the luminescence efficiency of suspended monolayers even at an exciton concentration as low as 109 cm-2, but plays a milder role for supported monolayers due to the effect of the substrate. However, regardless the presence of substrates or not, the lasing threshold of the monolayer is always predominantly determined by the EEA, which is estimated to be 12-18 MW/cm2 if using 532 nm as the pumping wavelength.
Hot exciton cooling and multiple exciton generation in PbSe quantum dots.
Kumar, Manoj; Vezzoli, Stefano; Wang, Zilong; Chaudhary, Varun; Ramanujan, Raju V; Gurzadyan, Gagik G; Bruno, Annalisa; Soci, Cesare
2016-11-16
Multiple exciton generation (MEG) is a promising process to improve the power conversion efficiency of solar cells. PbSe quantum dots (QDs) have shown reasonably high MEG quantum yield (QY), although the photon energy threshold for this process is still under debate. One of the reasons for this inconsistency is the complicated competition of MEG and hot exciton cooling, especially at higher excited states. Here, we investigate MEG QY and the origin of the photon energy threshold for MEG in PbSe QDs of three different sizes by studying the transient absorption (TA) spectra, both at the band gap (near infrared, NIR) and far from the band gap energy (visible range). The comparison of visible TA spectra and dynamics for different pump wavelengths, below, around and above the MEG threshold, provides evidence of the role of the Σ transition in slowing down the exciton cooling process that can help MEG to take over the phonon relaxation process. The universality of this behavior is confirmed by studying QDs of three different sizes. Moreover, our results suggest that MEG QY can be determined by pump-probe experiments probed above the band gap.
Excitonic fine structure and binding energies of excitonic complexes in single InAs quantum dashes
Mrowiński, P.; Zieliński, M.; Świderski, M.; Misiewicz, J.; Somers, A.; Reithmaier, J. P.; Höfling, S.; Sek, G.
2016-09-01
The fundamental electronic and optical properties of elongated InAs nanostructures embedded in quaternary InGaAlAs barrier are investigated by means of high-resolution optical spectroscopy and many-body atomistic tight-binding theory. These wire-like shaped, self-assembled nanostructures are known as quantum dashes and are typically formed during the molecular beam epitaxial growth on InP substrates. In this paper, we study properties of excitonic complexes confined in quantum dashes emitting in a broad spectral range from below 1.2 to 1.55 μm. We find peculiar trends for the biexciton and negative trion binding energies, with pronounced trion binding in smaller size quantum dashes. These experimental findings are then compared and qualitatively explained by atomistic theory. The theoretical analysis shows a fundamental role of correlation effects for the absolute values of excitonic binding energies. Eventually, we determine the bright exciton fine structure splitting (FSS), where both the experiment and theory predict a broad distribution of the splitting varying from below 50 to almost 180 μeV. We identify several key factors determining the FSS values in such nanostructures, including quantum dash size variation and composition fluctuations.
Excitonic AND Logic Gates on DNA Brick Nanobreadboards
2015-01-01
A promising application of DNA self-assembly is the fabrication of chromophore-based excitonic devices. DNA brick assembly is a compelling method for creating programmable nanobreadboards on which chromophores may be rapidly and easily repositioned to prototype new excitonic devices, optimize device operation, and induce reversible switching. Using DNA nanobreadboards, we have demonstrated each of these functions through the construction and operation of two different excitonic AND logic gates. The modularity and high chromophore density achievable via this brick-based approach provide a viable path toward developing information processing and storage systems. PMID:25839049
Excitonic AND Logic Gates on DNA Brick Nanobreadboards.
Cannon, Brittany L; Kellis, Donald L; Davis, Paul H; Lee, Jeunghoon; Kuang, Wan; Hughes, William L; Graugnard, Elton; Yurke, Bernard; Knowlton, William B
2015-03-18
A promising application of DNA self-assembly is the fabrication of chromophore-based excitonic devices. DNA brick assembly is a compelling method for creating programmable nanobreadboards on which chromophores may be rapidly and easily repositioned to prototype new excitonic devices, optimize device operation, and induce reversible switching. Using DNA nanobreadboards, we have demonstrated each of these functions through the construction and operation of two different excitonic AND logic gates. The modularity and high chromophore density achievable via this brick-based approach provide a viable path toward developing information processing and storage systems.
Ordered Dissipative Structures in Exciton Systems in Semiconductor Quantum Wells
Andrey A. Chernyuk
2006-02-01
Full Text Available A phenomenological theory of exciton condensation in conditions of inhomogeneous excitation is proposed. The theory is applied to the study of the development of an exciton luminescence ring and the ring fragmentation at macroscopical distances from the central excitation spot in coupled quantum wells. The transition between the fragmented and the continuous ring is considered. With assumption of a defect in the structure, a possibility of a localized island of the condensed phase in a fixed position is shown. Exciton density distribution is also analyzed in the case of two spatially separated spots of the laser excitation.
Generalized master equation for modular exciton density transfer
Jang, Seogjoo; Fleming, Graham; Whaley, K Birgitta
2013-01-01
A generalized master equation (GME) governing quantum evolution of modular exciton density (MED) is derived for large scale light harvesting systems composed of weakly interacting modules of multiple chromophores. The GME-MED offers a practical framework to incorporate real time coherent quantum dynamics calculations at small length scales into dynamics over large length scales, without assumptions of time scale separation or specific forms of intra-module quantum dynamics. A test of the GME-MED for four sites of the Fenna-Matthews-Olson complex demonstrates how coherent dynamics of excitonic populations over many coupled chromophores can be accurately described by transitions between subgroups (modules) of delocalized excitons.
Photogenerated Exciton Dissociation in Highly Coupled Lead Salt Nanocrystal Assemblies
Choi, Joshua J.
2010-05-12
Internanocrystal coupling induced excitons dissociation in lead salt nanocrystal assemblies is investigated. By combining transient photoluminescence spectroscopy, grazing incidence small-angle X-ray scattering, and time-resolved electric force microscopy, we show that excitons can dissociate, without the aid of an external bias or chemical potential gradient, via tunneling through a potential barrier when the coupling energy is comparable to the exciton binding energy. Our results have important implications for the design of nanocrystal-based optoelectronic devices. © 2010 American Chemical Society.
Ubiquity of Exciton Localization in Cryogenic Carbon Nanotubes.
Hofmann, Matthias S; Noé, Jonathan; Kneer, Alexander; Crochet, Jared J; Högele, Alexander
2016-05-11
We present photoluminescence studies of individual semiconducting single-wall carbon nanotubes at room and cryogenic temperatures. From the analysis of spatial and spectral features of nanotube photoluminescence, we identify characteristic signatures of unintentional exciton localization. Moreover, we quantify the energy scale of exciton localization potentials as ranging from a few to a few tens of millielectronvolts and stemming from both environmental disorder and shallow covalent side-wall defects. Our results establish disorder-induced crossover from the diffusive to the localized regime of nanotube excitons at cryogenic temperatures as a ubiquitous phenomenon in micelle-encapsulated and as-grown carbon nanotubes.
Evidence of Excitonic Optical Tamm States using Molecular Materials
Núñez-Sánchez, S; Murshidy, M M; Abdel-Hady, A G; Serry, M Y; Adawi, A M; Rarity, J G; Oulton, R; Barnes, W L
2015-01-01
We report the first experimental observation of an Excitonic Optical Tamm State supported at the interface between a periodic multilayer dielectric structure and an organic dye-doped polymer layer. The existence of such states is enabled by the metal-like optical properties of the excitonic layer based on aggregated dye molecules. Experimentally determined dispersion curves, together with simulated data, including field profiles, allow us to identify the nature of these new modes. Our results demonstrate the potential of organic excitonic materials as a powerful means to control light at the nanoscale, offering the prospect of a new alternative type of nanophotonics based on molecular materials.
Predicting polarizabilities and lifetimes of excitons on conjugated polymer chains
van der Horst, J.-W.; Bobbert, P. A.; de Jong, P. H. L.; Michels, M. A. J.; Siebbeles, L. D. A.; Warman, J. M.; Gelinck, G. H.; Brocks, G.
2001-02-01
The properties of excitons on three different conjugated polymers in solution are investigated both experimentally and theoretically. The theoretical description of the excitons is obtained by solving the electron-hole Bethe-Salpeter equation (BSE) for the polymers, starting from a calculation within density-functional theory. The calculated radiative lifetimes and polarizabilities of the excitons are compared with experimental results from time-resolved fluorescence decay and flash-photolysis microwave conductivity measurements. The quantitative agreement demonstrates the predictive power of the theoretical approach.
Excitation of exciton states on a curved surface
Silotia, Poonam; Prasad, Vinod
2016-05-01
Excitonic transitions on the surface of a sphere have been studied in he presence of external static electric and laser fields. The spectrum and the various coupling matrix elements, (for n = 1 , 2 , 3), between few states of exciton have been evaluated in the absence and presence of excitonic Coulombic interaction with different values of dielectric constant. Variation of various physical quantities: energy eigenvalues, transition probability, orientational and alignment parameter, has been shown to have strong dependence on the laser field and static electric field.
Spataru, Catalin D.; Ismail-Beigi, Sohrab; Capaz, Rodrigo B.; Louie, Steven G.
2005-01-01
We present theoretical analysis and first-principles calculation of the radiative lifetime of excitons in semiconducting carbon nanotubes. An intrinsic lifetime of the order of 10 ps is computed for the lowest optically active bright excitons. The intrinsic lifetime is however a rapid increasing function of the exciton momentum. Moreover, the electronic structure of the nanotubes dictates the existence of dark excitons nearby in energy to each bright exciton. Both effects strongly influence m...
Hot exciton dissociation in polymer solar cells.
Grancini, G; Maiuri, M; Fazzi, D; Petrozza, A; Egelhaaf, H-J; Brida, D; Cerullo, G; Lanzani, G
2013-01-01
The standard picture of photovoltaic conversion in all-organic bulk heterojunction solar cells predicts that the initial excitation dissociates at the donor/acceptor interface after thermalization. Accordingly, on above-gap excitation, the excess photon energy is quickly lost by internal dissipation. Here we directly target the interfacial physics of an efficient low-bandgap polymer/PC(60)BM system. Exciton splitting occurs within the first 50 fs, creating both interfacial charge transfer states (CTSs) and polaron species. On high-energy excitation, higher-lying singlet states convert into hot interfacial CTSs that effectively contribute to free-polaron generation. We rationalize these findings in terms of a higher degree of delocalization of the hot CTSs with respect to the relaxed ones, which enhances the probability of charge dissociation in the first 200 fs. Thus, the hot CTS dissociation produces an overall increase in the charge generation yield.
Benchmarking calculations of excitonic couplings between bacteriochlorophylls
Kenny, Elise P
2015-01-01
Excitonic couplings between (bacterio)chlorophyll molecules are necessary for simulating energy transport in photosynthetic complexes. Many techniques for calculating the couplings are in use, from the simple (but inaccurate) point-dipole approximation to fully quantum-chemical methods. We compared several approximations to determine their range of applicability, noting that the propagation of experimental uncertainties poses a fundamental limit on the achievable accuracy. In particular, the uncertainty in crystallographic coordinates yields an uncertainty of about 20% in the calculated couplings. Because quantum-chemical corrections are smaller than 20% in most biologically relevant cases, their considerable computational cost is rarely justified. We therefore recommend the electrostatic TrEsp method across the entire range of molecular separations and orientations because its cost is minimal and it generally agrees with quantum-chemical calculations to better than the geometric uncertainty. We also caution ...
Size Effect of a Negatively Charged Exciton in a Two-Dimensional Quantum Dot
LIU Chao; XIE Wen-Fang
2009-01-01
In this paper we study a negatively charged exciton (NCE), which is trapped by a two-dimensional (2D) parabolic potential.By using matrix diagonalization techniques, the correlation energies of the low-lying states with L = O, 1, and 2 are calculated as a function of confinement strength.We find that the size effects of different states are different.This phenomenon can be explained as a hidden symmetry, which is originated purely from symmetry.Based on symmetry, the features of the low-lying states are discussed in the influence of the 2D parabolic potential well.It is found that the confinement may cause accidental degeneracies between levels with different low-excited states.It is shown that the effect of quantum confinement on the binding energy of the heavy hole is stronger than that of a light hole.
US Fish and Wildlife Service, Department of the Interior — Small mammal traps were placed in the Baring division and in the Edmunds division of Moosehom National Wildlife Refuge. There were a total of 98 traps set for up to...
National Oceanic and Atmospheric Administration, Department of Commerce — The data set contains detailed information about the catch from 600 trap stations around St. Croix. Data fields include species caught, size data, trap location...
Fujiwara, Ippei; NAKAJIMA Tomoyuki; Sudo, Nao; Teranishi, Yuki
2011-01-01
In this paper we consider a two-country New Open Economy Macroeconomics model, and analyze the optimal monetary policy when countries cooperate in the face of a "global liquidity trap" -- i.e., a situation where the two countries are simultaneously caught in liquidity traps. The notable features of the optimal policy in the face of a global liquidity trap are history dependence and international dependence. The optimality of history dependent policy is confirmed as in local liquidity trap. A ...
Hamlet, Benjamin Roger
2009-02-01
Ion traps present a potential architecture for future quantum computers. These computers are of interest due to their increased power over classical computers stemming from the superposition of states and the resulting capability to simultaneously perform many computations. This paper describes a software application used to prepare and visualize simulations of trapping and maneuvering ions in ion traps.
Vibrational exciton-mediated quantum state transfert: a simple model
Pouthier, Vincent J C
2012-01-01
A communication protocol is proposed in which quantum state transfer is mediated by a vibrational exciton. We consider two distant molecular groups grafted on the sides of a lattice. These groups behave as two quantum computers where the information in encoded and received. The lattice plays the role of a communication channel along which the exciton propagates and interacts with a phonon bath. Special attention is paid for describing the system involving an exciton dressed by a single phonon mode. The Hamiltonian is thus solved exactly so that the relevance of the perturbation theory is checked. Within the nonadiabatic weak-coupling limit, it is shown that the system supports three quasi-degenerate states that define the relevant paths followed by the exciton to tunnel between the computers. When the model parameters are judiciously chosen, constructive interferences take place between these paths. Phonon-induced decoherence is minimized and a high-fidelity quantum state transfer occurs over a broad temperat...
Fate of the excitonic insulator in the presence of phonons
Zenker, B.; Fehske, H.; Beck, H.
2014-11-01
The influence of phonons on the formation of the excitonic insulator has hardly been analyzed so far. Recent experiments on Ta2NiSe5 ,1 T -TiSe2, and TmSe0.45Te0.55 , being candidates for realizing the excitonic-insulator state, suggest, however, that the underlying lattice plays a significant role. Employing the Kadanoff-Baym approach we address this issue theoretically. We show that owing to the electron-phonon coupling a static lattice distortion may arise at the excitonic instability. Most importantly such a distortion will destroy the acoustic phase mode being present if the electron-hole pairing and condensation is exclusively driven by the Coulomb interaction. The absence of off-diagonal long-range order, when lattice degrees of freedom are involved, challenges that excitons in these materials form a superfluid condensate of Bose particles or Cooper pairs composed of electrons and holes.
Ghost Fano Resonance of Excitons in Twisted Bilayer Graphene
Liang, Yufeng
2014-03-01
Metallic systems are generally considered to be unable to harbor tightly bound excitons because of the strong screening effect as well as the absence of a finite band gap. Previously, exception has only been found in one-dimensional metallic carbon nanotubes due to the depressed screening effects and the symmetry gap. We explore the exciton spectra of twisted bilayer graphene (tBLG) and predict the existence of even more strongly bound exciton (with binding energy as large as 0.5eV) in this system despite of its higher dimensionality. Based on our results from first-principles simulations and effective model calculations, a mechanism known as the ghost Fano resonance is proposed for the bound exciton formation in metallic systems beyond the dimensonality-related argument. Our results shed light on engineering the e-h excitations in the few-layer van der Waals heterojunction. NSF Grant No. DMR-1207141.
Neutral and positively charged excitons in narrow quantum ring
Porras Monroy, L. C.; Rodríguez-Prada, F. A.; Mikhailov, I. D. [Escuela de Física, Universidad Industrial de Santander, A. A. 678, Bucaramanga (Colombia)
2014-05-15
We study theoretically quantized states of a neutral and a positively charged exciton (trion X{sup +}) confined in a heterostructure with the ring-like geometry. In order to assess the experimentally relevant domain of parameters, we adopt a simple model of a narrow ring when 3D wave equations for the neutral and positively charged excitons can be separated. By using the Fourier series method, we have calculated the energy spectra of excitons complexes in a quantum ring as a function of the electron-to-hole mass ratio, the ring radius, and the magnetic field strength. The quantum-size effect and the size-dependent magnetic oscillations of energy levels of excitons' complexes spectra have been revealed.
Long-range exciton dissociation in organic solar cells
Domenico Caruso; Alessandro Troisi
2012-01-01
It is normally assumed that electrons and holes in organic solar cells are generated by the dissociation of excitons at the interface between donor and acceptor materials in strongly bound hole-electron pairs...
Exciton-Dependent Pre-formation Probability of Composite Particles
ZHANG Jing-Shang; WANG Ji-Min; DUAN Jun-Feng
2007-01-01
In Iwamoto-Harada model the whole phase space is full of fermions. When the momentum distributions of the exciton states are taken into account, the pre-formation probability of light composite particles could be improved,and the exciton state-dependent pre-formation probability has been proposed. The calculated results indicate that the consideration of the momentum distribution enhances the pre-formation probability of [1,m] configuration, and suppresses that of [l ＞ 1, m] configurations seriously.
One dimensional models of excitons in carbon nanotubes
Cornean, Horia Decebal; Duclos, P.; Pedersen, Thomas Garm
Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable.......Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable....
Tuning of Exciton States in a Magnetic Quantum Ring
Ghazaryan, Areg; Manaselyan, Aram; Chakraborty, Tapash
2014-01-01
We have studied the exciton states in a CdTe quantum ring in an external magnetic field containing a single magnetic impurity. We have used the multiband approximation which includes the heavy hole - light hole coupling effects. The electron-hole spin interactions and the s, p-d interactions between the electron, hole and the magnetic impurity are also included. The exciton energy levels and optical transitions are evaluated using the exact diagonalization scheme. We show that due to the spin...
Quantum confinement of excitons in wurtzite InP nanowires
Pemasiri, K.; Jackson, H. E.; Smith, L. M.; Wong, B. M.; Paiman, S.; Gao, Q.; Tan, H. H.; Jagadish, C.
2015-05-01
Exciton resonances are observed in photocurrent spectra of 80 nm wurtzite InP nanowire devices at low temperatures, which correspond to transitions between the A, B, and C valence bands and the lower conduction band. Photocurrent spectra for 30 nm WZ nanowires exhibit shifts of the exciton resonances to higher energy, which are consistent with finite element calculations of wavefunctions of the confined electrons and holes for the various bands.
Control of Exciton Dynamics in Nanodots for Quantum Operations
Chen, Pochung; Piermarocchi, C.; Sham, L. J.
2001-08-01
We present a theory to further a new perspective of proactive control of exciton dynamics in the quantum limit. Circularly polarized optical pulses in a semiconductor nanodot are used to control the dynamics of two interacting excitons of opposite polarizations. Shaping of femtosecond laser pulses keeps the quantum operation within the decoherence time. Computation of the fidelity of the operations and application to the complete solution of a minimal quantum computing algorithm demonstrate in theory the feasibility of quantum control.
Coherence and Optical Emission from Bilayer Exciton Condensates
D. W. Snoke
2011-01-01
Full Text Available Experiments aimed at demonstrating Bose-Einstein condensation of excitons in two types of experiments with bilayer structures (coupled quantum wells are reviewed, with an emphasis on the basic effects. Bose-Einstein condensation implies the existence of a macroscopic coherence, also known as off-diagonal long-range order, and proposed tests and past claims for coherence in these excitonic systems are discussed.
Bose condensation of interwell excitons in double quantum wells
Larionov, A V; Ni, P A; Dubonos, S V; Hvam, I; Soerensen, K
2002-01-01
The luminescence of the interwell excitons in the GaAs/AlGaAs double quantum wells, containing large-scale fluctuations of the random potential in the heteroboundary planes, is studied. The properties of the excitons, wherein the excited electron and hole are spatially separated between the neighboring quantum wells by the density and temperature variation within the domain limits of the scale below one micron, are investigated. The interwell excitons by low pumping (below 50 mW) are strongly localized due to the small-scale fluctuations of the random potential. The localized excitons line grows by increase in the resonance excitation capacity through the threshold method. With the temperature growth this line disappears in the spectrum (T sub c <= 3.4 K). The above phenomenon is related to the Bose-Einstein condensation in the quasi-two-dimensional system of the interwell excitons. The critical values of the exciton density and temperature in the studied temperature range (1.5-3.4 K) grow according to the...
Superconducting microfabricated ion traps
Wang, Shannon X; Labaziewicz, Jaroslaw; Dauler, Eric; Berggren, Karl; Chuang, Isaac L
2010-01-01
We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.
Acousto-exciton interaction in a gas of 2D indirect dipolar excitons in the presence of disorder
Kovalev, V. M.; Chaplik, A. V., E-mail: chaplik@isp.nsc.ru [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)
2016-03-15
A theory for the linear and quadratic responses of a 2D gas of indirect dipolar excitons to an external surface acoustic wave perturbation in the presence of a static random potential is considered. The theory is constructed both for high temperatures, definitely greater than the exciton gas condensation temperature, and at zero temperature by taking into account the Bose–Einstein condensation effects. The particle Green functions, the density–density correlation function, and the quadratic response function are calculated by the “cross” diagram technique. The results obtained are used to calculate the absorption of Rayleigh surface waves and the acoustic exciton gas drag by a Rayleigh wave. The damping of Bogoliubov excitations in an exciton condensate due to theirs scattering by a random potential has also been determined.
Phase coherence and spectral functions in the two-dimensional excitonic systems
Apinyan, V., E-mail: V.Apinyan@int.pan.wroc.pl; Kopeć, T.K.
2015-09-15
The nonlocal correlation mechanism between excitonic pairs is considered for a two dimensional exciton system. On the base of the unitary decomposition of the usual electron operator, we include the electron phase degrees of freedom into the problem of interacting excitons. Applying the path integral formalism, we treat the excitonic insulator state (EI) and the Bose–Einstein condensation (BEC) of preformed excitonic pairs as two independent problems. For the BEC of excitons the phase field variables play a crucial role. We derive the expression of the local EI order parameter by integrating out the phase variables. Then, considering the zero temperature limit, we obtain the excitonic BEC transition probability function, by integrating out the fermions. We calculate the normal excitonic Green functions for the conduction and valence band electrons and we derive the excitonic spectral functions, both analytically and numerically. Different values of the Coulomb interaction parameter are considered.
Chang, Jin; Ogomi, Yuhei; Ding, Chao; Zhang, Yao Hong; Toyoda, Taro; Hayase, Shuzi; Katayama, Kenji; Shen, Qing
2017-03-01
The surface chemistry of colloidal quantum dots (QDs) plays an important role in determining the photoelectric properties of QD films and the corresponding quantum dot heterojunction solar cells (QDHSCs). To investigate the effects of the ligand structure on the photovoltaic performance and exciton dynamics of QDHSCs, PbS QDHSCs were fabricated by the solid state ligand exchange method with mercaptoalkanoic acid as the cross-linking ligand. Temperature-dependent photoluminescence and ultrafast transient absorption spectra show that the electronic coupling and charge transfer rate within QD ensembles were monotonically enhanced as the ligand length decreased. However, in practical QDHSCs, the second shortest ligand 3-mercaptopropionic acid (MPA) showed higher power conversion efficiency than the shortest ligand thioglycolic acid (TGA). This could be attributed to the difference in their surface trap states, supported by thermally stimulated current measurements. Moreover, compared with the non-conjugated ligand MPA, the conjugated ligand 4-mercaptobenzoic acid (MBA) introduces less trap states and has a similar charge transfer rate in QD ensembles, but has poor photovoltaic properties. This unexpected result could be contributed by the QD-ligand orbital mixing, leading to the charge transfer from QDs to ligands instead of charge transfer between adjacent QDs. This work highlights the significant effects of ligand structures on the photovoltaic properties and exciton dynamics of QDHSCs, which would shed light on the further development of QD-based photoelectric devices.
Bhunia, Amit; Bansal, Kanika; Henini, Mohamed; Alshammari, Marzook S.; Datta, Shouvik
2016-10-01
Mostly, optical spectroscopies are used to investigate the physics of excitons, whereas their electrical evidences are hardly explored. Here, we examined a forward bias activated differential capacitance response of GaInP/AlGaInP based multi-quantum well laser diodes to trace the presence of excitons using electrical measurements. Occurrence of "negative activation energy" after light emission is understood as thermodynamical signature of steady state excitonic population under intermediate range of carrier injections. Similar corroborative results are also observed in an InGaAs/GaAs quantum dot laser structure grown by molecular beam epitaxy. With increasing biases, the measured differential capacitance response slowly vanishes. This represents gradual Mott transition of an excitonic phase into an electron-hole plasma in a GaInP/AlGaInP laser diode. This is further substantiated by more and more exponentially looking shapes of high energy tails in electroluminescence spectra with increasing forward bias, which originates from a growing non-degenerate population of free electrons and holes. Such an experimental correlation between electrical and optical properties of excitons can be used to advance the next generation excitonic devices.
V S Kushwaha; N Mehta; A Kumar
2010-03-01
In the present paper, we report the compensation effect on photoconductivity of thin films of Se70Te30−Cd ( = 2, 4, 6) alloys for high field conduction. Steady state photoconductivity measurements have been made in thin films for different electric fields. The photoconduction was found to be ohmic at low fields and Poole–Frenkel type at high fields. Meyer–Neldel rule (MN rule) for the pre-exponential factor (ph)0 and activation energy ( ph) of photoconduction in thin films of Se70Te30−Cd is observed in the present study.
Photosynthetic light harvesting: excitons and coherence.
Fassioli, Francesca; Dinshaw, Rayomond; Arpin, Paul C; Scholes, Gregory D
2014-03-06
Photosynthesis begins with light harvesting, where specialized pigment-protein complexes transform sunlight into electronic excitations delivered to reaction centres to initiate charge separation. There is evidence that quantum coherence between electronic excited states plays a role in energy transfer. In this review, we discuss how quantum coherence manifests in photosynthetic light harvesting and its implications. We begin by examining the concept of an exciton, an excited electronic state delocalized over several spatially separated molecules, which is the most widely available signature of quantum coherence in light harvesting. We then discuss recent results concerning the possibility that quantum coherence between electronically excited states of donors and acceptors may give rise to a quantum coherent evolution of excitations, modifying the traditional incoherent picture of energy transfer. Key to this (partially) coherent energy transfer appears to be the structure of the environment, in particular the participation of non-equilibrium vibrational modes. We discuss the open questions and controversies regarding quantum coherent energy transfer and how these can be addressed using new experimental techniques.
Trap style influences wild pig behavior and trapping success
Williams, B.L.; Holtfreter, R.W.; Ditchkoff, S.S.; Grand, J.B.
2011-01-01
Despite the efforts of many natural resource professionals, wild pig (Sus scrofa) populations are expanding in many areas of the world. Although many creative techniques for controlling pig populations are being explored, trapping has been and still is themost commonly usedmethod of population control formany public and private land managers. We conducted an observational study to examine the efficiency of 2 frequently used trap styles: a small, portable box-style trap and a larger, semi-permanent, corral-style trap.We used game cameras to examine patterns of trap entry by wild pigs around each style of trap, and we conducted a trapping session to compare trapping success between trap styles. Adult female and juvenile wild pigs entered both styles of trap more readily than did adult males, and adult males seemed particularly averse to entering box traps. Less than 10% of adult male visits to box traps resulted in entries, easily the least percentage of any class at any style of trap. Adult females entered corral traps approximately 2.2 times more often per visit than box traps and re-entered corral traps >2 times more frequently. Juveniles entered and reentered both box and corral traps at similar rates. Overall (all-class) entry-per-visit rates at corral traps (0.71) were nearly double that of box traps (0.37). Subsequent trapping data supported these preliminary entry data; the capture rate for corral traps was >4 times that of box traps. Our data suggest that corral traps are temporally and economically superior to box traps with respect to efficiency; that is, corral traps effectively trap more pigs per trap night at a lower cost per pig than do box traps. ?? 2011 The Wildlife Society.
Microfabricated ion trap array
Blain, Matthew G.; Fleming, James G.
2006-12-26
A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.
Correlated Pair States Formed by Singlet Fission and Exciton-Exciton Annihilation.
Scholes, Gregory D
2015-12-24
Singlet fission to form a pair of triplet excitations on two neighboring molecules and the reverse process, triplet-triplet annihilation to upconvert excitation, have been extensively studied. Comparatively little work has sought to examine the properties of the intermediate state in both of these processes-the bimolecular pair state. Here, the eigenstates constituting the manifold of 16 bimolecular pair excitations and their relative energies in the weak-coupling regime are reported. The lowest-energy states obtained from the branching diagram method are the triplet pairs with overall singlet spin |X1⟩ ≈ (1)[TT] and quintet spin |Q⟩ ≈ (5)[TT]. It is shown that triplet pair states can be separated by a triplet-triplet energy-transfer mechanism to give a separated, yet entangled triplet pair (1)[T···T]. Independent triplets are produced by decoherence of the separated triplet pair. Recombination of independent triplets by exciton-exciton annihilation to form the correlated triplet pair (i.e., nongeminate recombination) happens with 1/3 of the rate of either triplet migration or recombination of the separated correlated triplet pair (geminate recombination).
Photon echo study of excitons and excitonic complexes in self-assembled quantum dots
Ikezawa, Michio [Institute of Physics, University of Tsukuba, Tsukuba 305-8571 (Japan)]. E-mail: mikezawa@sakura.cc.tsukuba.ac.jp; Nair, Selvakumar [Centre for Nanotechnology, University of Toronto, Toronto M5S 3E3 (Canada); Suto, Fumitaka [Institute of Physics, University of Tsukuba, Tsukuba 305-8571 (Japan); Masumoto, Yasuaki [Institute of Physics, University of Tsukuba, Tsukuba 305-8571 (Japan); Uchiyama, Chikako [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11, Takeda, Kofu, Yamanashi 400-8511 (Japan); Aihara, Masaki [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0101 (Japan); Ruda, Harry [Centre for Nanotechnology, University of Toronto, Toronto M5S 3E3 (Canada)
2007-01-15
The authors have studied the excitons and excitonic complexes in two kinds of self-assembled quantum dots (QDs) using photon echo measurements. In GaAs strain-induced quantum dots (SIQDs), a pronounced biexcitonic beat with a period of 1 ps is observed. The biexciton binding energy in SIQDs is obtained from the beat period, and its magnetic field dependence is investigated. It is found that the biexciton binding energy is remarkably increased by the lateral confinement and they are almost independent of the applied magnetic field up to 8 T. A theoretical calculation of the biexciton binding energy in SIQDs is presented to explain the observed magnetic field dependence. In charge-tunable InP QDs, the photon echo signal shows dramatic changes depending on the electric bias. The decay profile of the echo intensity is not a single exponential but Gaussian-like function, which indicates non-Markovian nature of the dephasing process in this system. Theoretical calculation is done assuming tunneling induced dephasing mechanism, and it reproduces the experimental results quite well.
Pack, Michael Vern
2008-12-01
This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.
Jørgensen, L. V.; Andresen, G.; Bertsche, W.; Boston, A.; Bowe, P. D.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Fujiwara, M. C.; Funakoshi, R.; Gill, D. R.; Hangst, J. S.; Hayano, R. S.; Hydomako, R.; Jenkins, M. J.; Kurchaninov, L.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Page, R. D.; Povilus, A.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.; Alpha Collaboration
2008-02-01
Substantial progress has been made in the last few years in the nascent field of antihydrogen physics. The next big step forward is expected to be the trapping of the formed antihydrogen atoms using a magnetic multipole trap. ALPHA is a new international project that started to take data in 2006 at CERN's Antiproton Decelerator facility. The primary goal of ALPHA is stable trapping of cold antihydrogen atoms to facilitate measurements of its properties. We discuss the status of the ALPHA project and the prospects for antihydrogen trapping.
Jorgensen, L V; Bertsche, W; Boston, A; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hayano, R S; Hydomako, R; Jenkins, M J; Kurchaninov, L; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page, R D; Povilus, A; Robicheaux, F; Sarid, E; Silveira, D M; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y
2008-01-01
Substantial progress has been made in the last few years in the nascent field of antihydrogen physics. The next big step forward is expected to be the trapping of the formed antihydrogen atoms using a magnetic multipole trap. ALPHA is a new international project that started to take data in 2006 at CERN’s Antiproton Decelerator facility. The primary goal of ALPHA is stable trapping of cold antihydrogen atoms to facilitate measurements of its properties. We discuss the status of the ALPHA project and the prospects for antihydrogen trapping.
Zhou, Peng; Ye, Li; Sun, Qing Qing; Wang, Peng Fei; Jiang, An Quan; Ding, Shi Jin; Zhang, David Wei
2013-02-19
The RESET process of NbAlO-based resistive switching memory devices fabricated by atomic layer deposition is investigated at low temperatures from 80 to 200 K. We observed that the conduction mechanism of high resistance state changed from hopping conduction to Frenkel-Poole conduction with elevated temperature. It is found that the conductive filament rupture in RRAM RESET process can be attributed not only to the Joule heat generated by internal current flow through a filament but also to the charge trap/detrapping effect. The RESET current decreases upon heating. Meanwhile, the energy consumption also decreases exponentially. This phenomenon indicates the temperature-related charge trap/detrapping process which contributes to the RESET besides direct Joule heat.
Effect of de-trapping on carrier transport process in semi-insulating CdZnTe
Guo, Rong-Rong; Jie, Wan-Qi; Zha, Gang-Qiang; Xu, Ya-Dong; Feng, Tao; Wang, Tao; Du, Zhuo-Tong
2015-06-01
The effect of de-trapping on the carrier transport process in the CdZnTe detector is studied by laser beam-induced transient current (LBIC) measurement. Trapping time, de-trapping time, and mobility for electrons are determined directly from transient waveforms under various bias voltages. The results suggest that an electric field strengthens the capture and emission effects in trap center, which is associated with field-assisted capture and the Poole-Frenkel effect, respectively. The electron mobility is calculated to be 950 cm2/V·s and the corresponding electron mobility-lifetime product is found to be 1.32×10-3 cm2/V by a modified Hecht equation with considering the surface recombination effect. It is concluded that the trapping time and de-trapping time obtained from LBIC measurement provide direct information concerning the transport process. Project supported by the National Instrumentation Program, China (Grant No. 2011YQ040082), the National Natural Science Foundation of China (Grant Nos. 61274081, 51372205, and 51202197), the National 973 Project of China (Grant No. 2011CB610400), the China Postdoctoral Science Foundation (Grant No. 2014M550509), and the 111 Project of China (Grant No. B08040).
Reconfigurable exciton-plasmon interconversion for nanophotonic circuits
Lee, Hyun Seok; Luong, Dinh Hoa; Kim, Min Su; Jin, Youngjo; Kim, Hyun; Yun, Seokjoon; Lee, Young Hee
2016-11-01
The recent challenges for improving the operation speed of nanoelectronics have motivated research on manipulating light in on-chip integrated circuits. Hybrid plasmonic waveguides with low-dimensional semiconductors, including quantum dots and quantum wells, are a promising platform for realizing sub-diffraction limited optical components. Meanwhile, two-dimensional transition metal dichalcogenides (TMDs) have received broad interest in optoelectronics owing to tightly bound excitons at room temperature, strong light-matter and exciton-plasmon interactions, available top-down wafer-scale integration, and band-gap tunability. Here, we demonstrate principal functionalities for on-chip optical communications via reconfigurable exciton-plasmon interconversions in ~200-nm-diameter Ag-nanowires overlapping onto TMD transistors. By varying device configurations for each operation purpose, three active components for optical communications are realized: field-effect exciton transistors with a channel length of ~32 μm, field-effect exciton multiplexers transmitting multiple signals through a single NW and electrical detectors of propagating plasmons with a high On/Off ratio of~190. Our results illustrate the unique merits of two-dimensional semiconductors for constructing reconfigurable device architectures in integrated nanophotonic circuits.
Exciton effective mass enhancement in coupled quantum wells in electric and magnetic fields
Wilkes, J.; Muljarov, E. A.
2016-02-01
We present a calculation of exciton states in semiconductor coupled quantum wells in the presence of electric and magnetic fields applied perpendicular to the QW plane. The exciton Schrödinger equation is solved in real space in three-dimensions to obtain the Landau levels of both direct and indirect excitons. Calculation of the exciton energy levels and oscillator strengths enables mapping of the electric and magnetic field dependence of the exciton absorption spectrum. For the ground state of the system, we evaluate the Bohr radius, optical lifetime, binding energy and dipole moment. The exciton mass renormalization due to the magnetic field is calculated using a perturbative approach. We predict a non-monotonous dependence of the exciton ground state effective mass on magnetic field. Such a trend is explained in a classical picture, in terms of the ground state tending from an indirect to a direct exciton with increasing magnetic field.
Single Molecule Photobleaching Probes the Exciton Wavefunction in a Multichromophoric System
Hernando, J.; Hoogenboom, J.P.; Dijk, van E.M.H.P.; Garcia-Lopez, J.J.; Crego Calama, M.; Reinhoudt, D.N.; Hulst, van N.F.; Garcia-Parajo, M.F.
2004-01-01
The exciton wave function of a trichromophoric system is investigated by means of single molecule spectroscopy at room temperature. Individual trimers exhibit superradiance and loss of vibronic structure in emission spectrum, features proving exciton delocalization. We identify two distinct photodeg
Systematic study of exciton diffusion length in organic semiconductors by six experimental methods
Lin, Jason D. A.; Mikhnenko, Oleksandr V.; Chen, Jingrun; Masri, Zarifi; Ruseckas, Arvydas; Mikhailovsky, Alexander; Raab, Reilly P.; Liu, Jianhua; Blom, Paul W. M.; Loi, Maria Antonietta; Garcia-Cervera, Carlos J.; Samuel, Ifor D. W.; Thuc-Quyen Nguyen, [No Value
Six experimental methods have been used to investigate the exciton diffusion length in materials with systematic chemical modifications. We find that exciton diffusion length correlates with molecular ordering. We discuss situations in which certain experimental techniques are more appropriate.
Large Range Manipulation of Exciton Species in Monolayer WS2
Wei, Ke; Yang, Hang; Cheng, Xiangai; Jiang, Tian
2016-01-01
Unconventional emissions from exciton and trion in monolayer WS2 are studied by photoexcitation. Excited by 532nm laser beam, the carrier species in the monolayer WS2 are affected by the excess electrons escaping from photoionization of donor impurity, the concentration of which varies with different locations of the sample. Simply increasing the excitation power at room temperature, the excess electron and thus the intensity ratio of excited trion and exciton can be continuously tuned over a large range from 0.1 to 7.7. Furthermore, this intensity ratio can also be manipulated by varying temperature. However, in this way the resonance energy of the exciton and trion show red-shifts with increasing temperature due to electron-phonon coupling. The binding energy of the trion is determined to be ~23meV and independent to temperature, indicating strong Coulomb interaction of carriers in such 2D materials.
Non-Markovian Quantum Jumps in Excitonic Energy Transfer
Rebentrost, Patrick; Aspuru-Guzik, Alan
2009-01-01
We utilize the novel non-Markovian quantum jump (NMQJ) approach to stochastically simulate exciton dynamics derived from a time-convolutionless master equation. For relevant parameters and time scales, the time-dependent, oscillatory decoherence rates can have negative regions, a signature of non-Markovian behavior and of the revival of coherences. This can lead to non-Markovian population beatings for a dimer system at room temperature. We show that strong exciton-phonon coupling to low frequency modes can considerably modify transport properties. We observe increased exciton transport, which can be seen as an extension of recent environment-assisted quantum transport (ENAQT) concepts to the non-Markovian regime. Within the NMQJ method, the Fenna-Matthew-Olson protein is investigated as a prototype for larger photosynthetic complexes.
Exciton coupling induces vibronic hyperchromism in light-harvesting complexes
Schulze, Jan; Kühn, Oliver; Pullerits, Tõnu
2013-01-01
The recently suggested possibility that weak vibronic transitions can be excitonically enhanced in light-harvesting complexes is studied in detail. A vibronic exciton dimer model which includes ground state vibrations is investigated using multi-configuration time-dependent Hartree method with a parameter set typical to photosynthetic light-harvesting complexes. Absorption spectra are discussed in dependence on the Coulomb coupling, the detuning of site energies, and the number of vibrational mode. Calculations of the fluorescence spectra show that the spectral densities obtained from the low temperature fluorescence line narrowing measurements of light-harvesting systems need to be corrected for the exciton effects. For the J-aggregate configuration, as in most of the light-harvesting complexes, the true spectral density has larger amplitude than what is obtained from the measurement.
Exciton transport, charge extraction, and loss mechanisms in organic photovoltaics
Scully, Shawn Ryan
Organic photovoltaics have attracted significant interest over the last decade due to their promise as clean low-cost alternatives to large-scale electric power generation such as coal-fired power, natural gas, and nuclear power. Many believe power conversion efficiency targets of 10-15% must be reached before commercialization is possible. Consequently, understanding the loss mechanisms which currently limit efficiencies to 4-5% is crucial to identify paths to reach higher efficiencies. In this work, we investigate the dominant loss mechanisms in some of the leading organic photovoltaic architectures. In the first class of architectures, which include planar heterojunctions and bulk heterojunctions with large domains, efficiencies are primarily limited by the distance photogenerated excitations (excitons) can be transported (termed the exciton diffusion length) to a heterojunction where the excitons may dissociate. We will discuss how to properly measure the exciton diffusion length focusing on the effects of optical interference and of energy transfer when using fullerenes as quenching layers and show how this explains the variety of diffusion lengths reported for the same material. After understanding that disorder and defects limit exciton diffusion lengths, we suggest some approaches to overcome this. We then extensively investigate the use of long-range resonant energy transfer to increase exciton harvesting. Using simulations and experiments as support, we discuss how energy transfer can be engineered into architectures to increase the distance excitons can be harvested. In an experimental model system, DOW Red/PTPTB, we will show how the distance excitons are harvested can be increased by almost an order of magnitude up to 27 nm from a heterojunction and give design rules and extensions of this concept for future architectures. After understanding exciton harvesting limitations we will look at other losses that are present in planar heterojunctions. One of
Controlled Spin Transport in Planar Systems Through Topological Exciton
Abhinav, Kumar
2015-01-01
It is shown that a charge-neutral spin-1 exciton, possibly realizable only in planar systems like graphene and topological insulators, can be effectively used for controlled spin transport in such media. The effect of quantum and thermal fluctuations yield a parametric excitation threshold for its realization. This planar exciton differs from the conventional ones, as it owes its existence to the topological Chern-Simons (CS) term. The parity and time-reversal violating CS term can arise from quantum effects in systems with parity-breaking mass-gap. The spinning exciton naturally couples to magnetic field, leading to the possibility of controlled spin transport. Being neutral, it is immune to a host of effect, which afflicts spin transport through charged fermions.
Etzold, Fabian; Howard, Ian A; Mauer, Ralf; Meister, Michael; Kim, Tae-Dong; Lee, Kwang-Sup; Baek, Nam Seob; Laquai, Frédéric
2011-06-22
that then contribute to the extracted photocurrent. Despite the high yield of free charges the power conversion efficiency of devices remains moderate at about 3.0%. This is largely a consequence of the low fill factor of devices. We relate the low fill factor to significant energetic disorder present in the pristine polymer and in the polymer:fullerene blends. In the former we observed a significant spectral relaxation of exciton emission (fluorescence) and in the latter of the polaron-induced ground-state bleaching, implying that the density of states (DOS) for both excitons and charge carriers is significantly broadened by energetic disorder in pristine PCDTBT and in its blend with PCBM. This disorder leads to charge trapping in solar cells, which in turn causes higher carrier concentrations and more significant nongeminate recombination. The nongeminate recombination has a significant impact on the IV curves of devices, namely its competition with charge carrier extraction causes a stronger bias dependence of the photocurrent of devices, in turn leading to the poor device fill factor. In addition our results demonstrate the importance of ultrafast free carrier generation and suppression of interfacial CT-state formation and question the applicability of the often used Braun-Onsager model to describe the bias dependence of the photocurrent in polymer:fullerene organic photovoltaic devices.
Search for trapped antihydrogen
Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Bray, C. C.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jonsell, S.; Jørgensen, L. V.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Seif El Nasr, S.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wilding, D.; Wurtele, J. S.; Yamazaki, Y.; Alpha Collaboration
2011-01-01
We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ∼30 ms. After a three-week experimental run in 2009 involving mixing of 10 7 antiprotons with 1.3×10 positrons to produce 6×10 antihydrogen atoms, we have identified six antiproton annihilation events that are consistent with the release of trapped antihydrogen. The cosmic ray background, estimated to contribute 0.14 counts, is incompatible with this observation at a significance of 5.6 sigma. Extensive simulations predict that an alternative source of annihilations, the escape of mirror-trapped antiprotons, is highly unlikely, though this possibility has not yet been ruled out experimentally.
Exciton dephasing and biexciton binding in CdSe/ZnSe islands
Wagner, Hans Peter; Tranitz, H.-P.; Preis, H;
1999-01-01
The dephasing of excitons and the formation of biexcitons in self-organized CdSe/ZnSe islands grown by molecular-beam epitaxy is investigated using spectrally resolved four-wave mixing. A distribution of exciton-exciton scattering efficiencies and dephasing times in the range of 0.5-10 ps...
Kluge, Heinz-Jürgen
2004-01-01
Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning.
One-dimensional models of excitons in carbon nanotubes
Cornean, Horia Decebal; Duclos, Pierre; Pedersen, Thomas Garm
2004-01-01
Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one-dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable.......Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one-dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable....
Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices.
Wilson, Mark W B; Rao, Akshay; Ehrler, Bruno; Friend, Richard H
2013-06-18
Singlet exciton fission is the process in conjugated organic molecules bywhich a photogenerated singlet exciton couples to a nearby chromophore in the ground state, creating a pair of triplet excitons. Researchers first reported this phenomenon in the 1960s, an event that sparked further studies in the following decade. These investigations used fluorescence spectroscopy to establish that exciton fission occurred in single crystals of several acenes. However, research interest has been recently rekindled by the possibility that singlet fission could be used as a carrier multiplication technique to enhance the efficiency of photovoltaic cells. The most successful architecture to-date involves sensitizing a red-absorbing photoactive layer with a blue-absorbing material that undergoes fission, thereby generating additional photocurrent from higher-energy photons. The quest for improved solar cells has spurred a drive to better understand the fission process, which has received timely aid from modern techniques for time-resolved spectroscopy, quantum chemistry, and small-molecule device fabrication. However, the consensus interpretation of the initial studies using ultrafast transient absorption spectroscopy was that exciton fission was suppressed in polycrystalline thin films of pentacene, a material that would be otherwise expected to be an ideal model system, as well as a viable candidate for fission-sensitized photovoltaic devices. In this Account, we review the results of our recent transient absorption and device-based studies of polycrystalline pentacene. We address the controversy surrounding the assignment of spectroscopic features in transient absorption data, and illustrate how a consistent interpretation is possible. This work underpins our conclusion that singlet fission in pentacene is extraordinarily rapid (∼80 fs) and is thus the dominant decay channel for the photoexcited singlet exciton. Further, we discuss our demonstration that triplet excitons
Realization of an all optical exciton-polariton router
Marsault, Félix; Nguyen, Hai Son; Tanese, Dimitrii; Lemaître, Aristide; Galopin, Elisabeth; Sagnes, Isabelle; Amo, Alberto [Laboratoire de Photonique et de Nanostructures, LPN/CNRS, Route de Nozay, 91460 Marcoussis (France); Bloch, Jacqueline, E-mail: jacqueline.bloch@lpn.cnrs.fr [Laboratoire de Photonique et de Nanostructures, LPN/CNRS, Route de Nozay, 91460 Marcoussis (France); Physics Department, Ecole Polytechnique, F-91128 Palaiseau Cedex (France)
2015-11-16
We report on the experimental realization of an all optical router for exciton-polaritons. This device is based on the design proposed by Flayac and Savenko [Appl. Phys. Lett. 103, 201105 (2013)], in which a zero-dimensional island is connected through tunnel barriers to two periodically modulated wires of different periods. Selective transmission of polaritons injected in the island, into either of the two wires, is achieved by tuning the energy of the island state across the band structure of the modulated wires. We demonstrate routing of ps polariton pulses using an optical control beam which controls the energy of the island quantum states, thanks to polariton-exciton interactions.
Incomplete Exciton Harvesting from Fullerenes in Bulk Heterojunction Solar Cells
Burkhard, George F.
2009-12-09
We investigate the internal quantum efficiencies (IQEs) of high efficiency poly-3-hexylthiophene:[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) solar cells and find them to be lower at wavelengths where the PCBM absorbs. Because the exciton diffusion length in PCBM is too small, excitons generated in PCBM decay before reaching the donor-acceptor interface. This result has implications for most state of the art organic solar cells, since all of the most efficient devices use fullerenes as electron acceptors. © 2009 American Chemical Society.
Explicit Correlated Exciton-Vibrational Dynamics of the FMO Complex
Schulze, Jan
2015-01-01
The coupled exciton-vibrational dynamics of a 3-site FMO model is investigated using the numerically exact multilayer multiconfiguration time-dependent Hartree approach. Thereby the vibrational mode specific coupling to local electronic transitions is adapted from a discretized experimental spectral density. The solution of the resulting time-dependent Schr\\"odinger equation including three electronic and 450 vibrational degrees of freedom is analyzed in terms of excitonic populations and coherences. Emphasis is put onto the role of specific ranges of vibrational frequencies. It is observed that modes between 160 and 300 cm$^{-1}$ are responsible for the subpicosecond population and coherence decay.
Bimolecular Recombination Kinetics of an Exciton-Trion Gas
2015-07-01
The second and third reactions are catalytic agents for the loss of excitons. This implies that the constants R and S will appear only in the exciton...change the electron density. 3 Note that Reaction 3 in Table 2 is catalytic as defined above, because it changes the electron and e−trion...from the PL laser, which is fixed. Table 2 Reactions that change νe Reaction Rate Constant 1. νe + νh → ϕ A 2. νe + τh → Ex P 3
Environment-assisted quantum walks in excitonic energy transport
Mohseni, Masoud; Rebentrost, Patrick; Lloyd, Seth; Aspuru-Guzik, Alan
2010-03-01
Long-lived quantum coherence has recently been observed experimentally via ultrafast nonlinear spectroscopy in excitonic energy transfer within light-harvesting photosynthetic complexes, conjugated polymers, and marine alga even at room temperature. Here, we demonstrate that directed quantum walks lead to an enhancement of energy transfer efficiency in such systems. We introduce two complementary theoretical approaches, based on a Green's function method and energy transfer susceptibilities, to partition open quantum dynamics. We quantify the role of fundamental physical processes involved in energy transport. In particular, we examine the contributions of classical hopping, coherent excitonic Hamiltonian, and phonon-induced decoherence effects for pure dephasing, Markovian, and non-Markovian limits.
Nongeneric dispersion of excitons in the bulk of WSe2
Schuster, R.; Wan, Y.; Knupfer, M.; Büchner, B.
2016-08-01
We combine electron energy-loss spectroscopy (EELS) and density functional theory (DFT) calculations to study the dispersion and effective mass of excitons in the bulk of WSe2. Our EELS data suggest substantial deviations from the generic quadratic momentum dependence along the Γ K direction. From the DFT-derived Kohn-Sham states we deduce the EELS response without the inclusion of particle-hole attraction to study the possible role of the single-particle band structure on the exciton behavior. Based on this analysis we argue in favor of a strongly momentum dependent particle-hole interaction in WSe2 and other group-VI-transition-metal dichalcogenides.
Enhanced energy transport in genetically engineered excitonic networks
Park, Heechul; Heldman, Nimrod; Rebentrost, Patrick; Abbondanza, Luigi; Iagatti, Alessandro; Alessi, Andrea; Patrizi, Barbara; Salvalaggio, Mario; Bussotti, Laura; Mohseni, Masoud; Caruso, Filippo; Johnsen, Hannah C.; Fusco, Roberto; Foggi, Paolo; Scudo, Petra F.; Lloyd, Seth; Belcher, Angela M.
2016-02-01
One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime.
Defect Structure of Localized Excitons in a WSe2 Monolayer
Zhang, Shuai
2017-07-26
The atomic and electronic structure of intrinsic defects in a WSe2 monolayer grown on graphite was revealed by low temperature scanning tunneling microscopy and spectroscopy. Instead of chalcogen vacancies that prevail in other transition metal dichalcogenide materials, intrinsic defects in WSe2 arise surprisingly from single tungsten vacancies, leading to the hole (p-type) doping. Furthermore, we found these defects to dominate the excitonic emission of the WSe2 monolayer at low temperature. Our work provided the first atomic-scale understanding of defect excitons and paved the way toward deciphering the defect structure of single quantum emitters previously discovered in the WSe2 monolayer.
Strong-field terahertz-optical mixing in excitons
Su, M Y; Sherwin, M S; Huntington, A S; Coldren, L A
2002-01-01
Driving a double-quantum-well excitonic intersubband resonance with a terahertz (THz) electric field of frequency \\omega_{THz} generated terahertz optical sidebands \\omega=\\omega_{THz}+\\omega_{NIR} on a weak NIR probe. At high THz intensities, the intersubband dipole energy which coupled two excitons was comparable to the THz photon energy. In this strong-field regime the sideband intensity displayed a non-monotonic dependence on the THz field strength. The oscillating refractive index which gives rise to the sidebands may be understood by the formation of Floquet states, which oscillate with the same periodicity as the driving THz field.
Hybridized exciton-polariton resonances in core-shell nanoparticles
Gentile, Martin J
2016-01-01
The goal of nanophotonics is to control and manipulate light at length scales below the diffraction limit. Typically nanostructured metals are used for this purpose, light being confined by exploiting the surface plasmon-polaritons such structures support. Recently excitonic (molecular) materials have been identified as an alternative candidate material for nanophotonics. Here we use theoretical modelling to explore how hybridisation of surface exciton-polaritons can be achieved through appropriate nanostructuring. We focus on the extent to which the frequency of the hybridised modes can be shifted with respect to the underlying material resonances.
Dynamics of Photogenerated Polaron-Excitons in Organic Semiconductors
Junior, Luiz A. Ribeiro; Neto, Pedro H. Oliveira; da Cunha, Wiliam F.; Silva, Geraldo M. e.
In this work we performed numerical simulations of one π-conjugated polymer chain subjected to photogeneration. Within the SSH model modified to include the Brazoviskii-Kirova symmetry breaking term, we investigate the dynamics of photoexcitations to address the generation mechanism of polaron-excitons using the unrestricted Hartree-Fock approximation. It was obtained that after the photoexcitation the system relaxes spontaneously into a polaron-exciton in a transient state in a range of 200 fs. Our results also show that charged polarons are generated directly after this transient state.
Nonperturbative theory of exciton-phonon resonances in semiconductor absorption
Hannewald, K.; Bobbert, P. A.
2005-09-01
We develop a theory of exciton-phonon sidebands in the absorption spectra of semiconductors. The theory does not rely on an ad hoc exciton-phonon picture, but is based on a more fundamental electron-phonon Hamiltonian, thus avoiding a priori assumptions about excited-state properties. We derive a nonperturbative compact solution that can be looked upon as the semiconductor version of the textbook absorption formula for a two-level system coupled to phonons. Accompanied by an illustrative numerical example, the importance and usefulness of our approach with respect to practical applications for semiconductors is demonstrated.
Binding Energy of Excitons in a Quantum Ring
XIE Wen-Fang
2008-01-01
The binding energy of excitons confined to a quantum ring under the influence of perpendicular homogeneous magnetic field is calculated as a function of the ring radius. Calculations are made by using the method of exact diagonalization within the effective-mass approximation. The feature of binding energy of the ground state as a function of the ring radius for several values of the magnetic field has been revealed. The interesting feature of our study is that, in a quantum ring, the geometric structure of excitons may reveal transition.
Weaver, Amanda L; Gamelin, Daniel R
2012-04-18
Spectroelectrochemical experiments on wide-gap semiconductor nanocrystals (ZnSe and Mn(2+)-doped ZnSe) have allowed the influence of trap electrochemistry on nanocrystal photoluminescence to be examined in the absence of semiconductor band filling. Large photoluminescence electrobrightening is observed in both materials upon application of a reducing potential and is reversed upon return to the equilibrium potential. Electrobrightening is correlated with the transfer of electrons into nanocrystal films, implicating reductive passivation of midgap surface electron traps. Analysis indicates that the electrobrightening magnitude is determined by competition between electron trapping and photoluminescence (ZnSe) or energy transfer (Mn(2+)-doped ZnSe) dynamics within the excitonic excited state, and that electron trapping is extremely fast (k(trap) ≈ 10(11) s(-1)). These results shed new light on the complex surface chemistries of semiconductor nanocrystals. © 2012 American Chemical Society
On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls.
Bode, Stefan; Quentmeier, Claudia C; Liao, Pen-Nan; Hafi, Nour; Barros, Tiago; Wilk, Laura; Bittner, Florian; Walla, Peter J
2009-07-28
Selective 2-photon excitation (TPE) of carotenoid dark states, Car S(1), shows that in the major light-harvesting complex of photosystem II (LHCII), the extent of electronic interactions between carotenoid dark states (Car S(1)) and chlorophyll (Chl) states, phi(Coupling)(Car S(1)-Chl), correlates linearly with chlorophyll fluorescence quenching under different experimental conditions. Simultaneously, a linear correlation between both Chl fluorescence quenching and phi(Coupling)(Car S(1)-Chl) with the intensity of red-shifted bands in the Chl Q(y) and carotenoid absorption was also observed. These results suggest quenching excitonic Car S(1)-Chl states as origin for the observed effects. Furthermore, real time measurements of the light-dependent down- and up-regulation of the photosynthetic activity and phi(Coupling)(Car S(1)-Chl) in wild-type and mutant (npq1, npq2, npq4, lut2 and WT+PsbS) Arabidopsis thaliana plants reveal that also in vivo the quenching parameter NPQ correlates always linearly with the extent of electronic Car S(1)-Chl interactions in any adaptation status. Our in vivo measurements with Arabidopsis variants show that during high light illumination, phi(Coupling)(Car S(1)-Chl) depends on the presence of PsbS and zeaxanthin (Zea) in an almost identical way as NPQ. In summary, these results provide clear evidence for a very close link between electronic Car S(1)-Chl interactions and the regulation of photosynthesis. These findings support a photophysical mechanism in which short-living, low excitonic carotenoid-chlorophyll states serve as traps and dissipation valves for excess excitation energy.
Light-trapping for room temperature Bose-Einstein condensation in InGaAs quantum wells.
Vasudev, Pranai; Jiang, Jian-Hua; John, Sajeev
2016-06-27
, the strong light confinement results in light-matter coupling strength of ℏΩ = 13.7 meV. Assuming an exciton density per QW of (15aB)-2, well below the saturation density, in a 2-D box-trap with a side length of 10 to 500 µm, we predict thermal equilibrium Bose-Einstein condensation well above room temperature.
Hyeon-Deuk, Kim; Tanimura, Yoshitaka; Cho, Minheang
2007-08-21
Effects of the exciton-exciton coherence transfer (EECT) in strongly coupled molecular aggregates are investigated from the reduced time-evolution equation which we have developed to describe EECT. Starting with the nonlinear response function, we obtained explicit contributions from EECT to four-wave-mixing spectrum such as photon echo, taking into account double exciton states, static disorder, and heat-bath coupling represented by arbitrary spectral densities. By using the doorway-window picture and the projection operator technique, the transfer rates between two different electronic coherent states are obtained within a framework of cumulant expansion at high temperature. Applications of the present theory to strongly coupled B850 chlorophylls in the photosynthetic light harvesting system II (LH2) are discussed. It is shown that EECT is indispensable in properly describing ultrafast phenomena of strongly coupled molecular aggregates such as LH2 and that the EECT contribution to the two-dimensional optical spectroscopy is not negligible.
US Fish and Wildlife Service, Department of the Interior — This Annual Trapping Plan for the 1985-1986 trapping season at Clarence Cannon NWR outlines rules and regulations for the trapping of beaver and muskrat on the...
Li, Xingji; Yang, Jianqun; Liu, Chaoming
2017-07-01
The emission of charge carriers from the interface traps as a function of irradiation dose and bias voltage is investigated in terms of Poole-Frenkel effect (PFE) used by deep-level transient spectroscopy (DLTS). The electrical properties in lateral PNP (LPNP) transistors caused by Co60 gamma-ray radiation are measured in situ during irradiation, showing that the interface traps give the main contribution to the excess base current of LPNP transistors. Based on the DLTS results, with increasing irradiation dose, the density of the charged positive interface traps at a given bias voltage increases. This causes an increase in the electric-field strength in the space-charge region and a decrease in the activation energy of interface traps and an increase in the emission rate of charge carriers from the interface traps, showing a similar feature to the classical PFE. However, the charge sign of the interface traps changes from negative to positive, which is different to the classical PFE, and thus displays a new mode of PFE. In order to confirm this conclusion, various bias conditions are employed during DLTS measurements. With decreasing the reverse bias, the electric-field strength increases, leading to an obvious decrease in activation energy of the interface traps and increase in emission rate of charge carriers. Moreover, the interface traps are shown to be uniformly located at the Si/SiO2 interface, and the uniformly distributed interface traps give the new PFE mode, which is independent of the position in depletion layer.
Jiang, Xiangzhi; Xiang, Meichun; Liu, Xingzhong
2017-01-01
Nematode-trapping fungi are a unique and intriguing group of carnivorous microorganisms that can trap and digest nematodes by means of specialized trapping structures. They can develop diverse trapping devices, such as adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and nonconstricting rings. Nematode-trapping fungi have been found in all regions of the world, from the tropics to Antarctica, from terrestrial to aquatic ecosystems. They play an important ecological role in regulating nematode dynamics in soil. Molecular phylogenetic studies have shown that the majority of nematode-trapping fungi belong to a monophyletic group in the order Orbiliales (Ascomycota). Nematode-trapping fungi serve as an excellent model system for understanding fungal evolution and interaction between fungi and nematodes. With the development of molecular techniques and genome sequencing, their evolutionary origins and divergence, and the mechanisms underlying fungus-nematode interactions have been well studied. In recent decades, an increasing concern about the environmental hazards of using chemical nematicides has led to the application of these biological control agents as a rapidly developing component of crop protection.
Spectral signatures of x((5)) processes in four-wave mixing of homogeneously broadened excitons
Langbein, W.; Meier, T.; Koch, S.W.;
2001-01-01
The influence of fifth-order coherences on the spectrally resolved four-wave mixing response of predominantly homogeneously broadened quasi-two-dimensional excitons is studied. Fifth-order signatures are discussed as a function of spectral position and excitation polarization. An exciton-biexcito...... of one- and two-exciton resonances up to the fifth order in the optical field.......The influence of fifth-order coherences on the spectrally resolved four-wave mixing response of predominantly homogeneously broadened quasi-two-dimensional excitons is studied. Fifth-order signatures are discussed as a function of spectral position and excitation polarization. An exciton...
Quantum Statistical Properties of the Exciton in a Leaky Quasi-Mode Cavity
YU Zhao-Xian; JIAO Zhi-Yong
2002-01-01
We have studied quantum statistical properties of the exciton in a leaky quasi-mode cavity. It is shown that when the exciton is initially in a squeezed coherent state whereas cavity initially in a vacuum state, there is energy exchange between the exciton and cavity. Both the exciton and cavity may exhibit sub-Poissonian distribution and exist quadrature squeezing. Calculation shows that correlation between the exciton and cavity is classical, which implies that there is not the violation of the Cauchy-Schwartz inequality.
Intrinsic Delocalization during the Decay of Excitons in Polymeric Solar Cells
Weikang Chen
2016-11-01
Full Text Available In bulk heterojunction polymer solar cells, external photoexcitation results in localized excitons in the polymer chain. After hot exciton formation and subsequent relaxation, the dipole moment drives the electron to partially transfer to extended orbitals from the original localized ones, leading to self-delocalization. Based on the dynamic fluorescence spectra, the delocalization of excitons is revealed to be an intrinsic property dominated by exciton decay, acting as a bridge for the exciton to diffuse in the polymeric solar cell. The modification of the dipole moment enhances the efficiency of polymer solar cells.
Exciton-Phonon Scattering in CdSe/ZnSe Quantum Dots
张立功; 申德振; 范希武; 吕少哲
2002-01-01
A temperature-dependent photoluminescence measurement is performed in CdSe/ZnSe quantum dots with a ZnCdSe quantum well. We deduce the temperature dependence of the exciton linewidth and peak energy of the zero-dimensional exciton in the quantum dots and two-dimensional exciton in the CdSe wetting layer. The experimental data reveal a reduction of homogeneous broadening of the exciton line in the quantum dots in comparison with that in the two-dimensional wetting layer, which indicates the decrease of exciton and optical phonon coupling in the CdSe quantum dots.
Zhang Fu-Jun; Zhao Su-Ling; Xu Zheng; Huang Jin-Zhao; Xu Xu-Rong
2007-01-01
In the solid state cathodoluminescence (SSCL), organic materials were excited by hot electrons accelerated in silicon oxide (SiO2) layer under alternating current (AC). In this paper exciton behaviours were analysed by using transient spectra under different driving voltages. The threshold voltages of SSCL and exciton ionization were obtained from the transient spectra. The recombination radiation occurred when the driving voltage went beyond the threshold voltage of exciton ionization. Prom the transient spectrum of two kinds of luminescence (exciton emission and recombination radiation), it was demonstrated that recombination radiation should benefit from the exciton ionization.
Temperature-dependent exciton recombination in asymmetrical ZnCdSe/ZnSe double quantum wells
Yu Guang You; Zhang, J Y; Zheng, Z H; Yang, B J; Zhao Xiao Wei; Shen De Zhen; Kong Xiang Gui
1999-01-01
Temperature-dependent exciton recombination in asymmetrical ZnCdSe/ZnSe double quantum wells is studied by recording photoluminescence spectra and photoluminescence decay spectra. The exciton tunnelling from the wide well to the narrow well and the thermal dissociation of excitons are two factors that influence the exciton recombination in this structure. In the narrow well, both of the two processes decrease the emission intensity, whereas, in the wide well, these two processes have contrary influences on the exciton density. The change of the emission intensity depends on which is the stronger one. (author)
Lodahl, Peter; Johansen, Jeppe; Julsgaard, Brian;
2009-01-01
This work investigates the influence of dark excitons on the radiative dynamics of semiconductor quantum dots (QDs). Dark excitons have total angular momentum of 2 and contribute to the fine structure of the exciton ground state. As opposed to bright excitons that have total angular momentum 1...
Sasakura, H; Kumano, H; Suemune, I [Research Institute for Electron Science (RIES), Hokkaido University, Sapporo 001-0021 (Japan); Motohisa, J; Kobayashi, Y; Kouwen, M van; Tomioka, K; Fukui, T [Graduate School of Information Science Technology, Hokkaido University, Sapporo 060-0814 (Japan); Akopian, N; Zwiller, V, E-mail: hirotaka@eng.hokudai.ac.j [Quantum Transport, Kavli Institute of Nanoscience, Delf University of Technology (Netherlands)
2009-11-15
We report optical properties of InP/InAsP/InP nanowire quantum dots and single-photon Fourier spectroscopy of an exciton in a single InAsP quantum dot embedded in an InP nanowire. The coherent length of the time-averaged emission originating from the single InAsP QD was measured by a Mach-Zehnder interferometer inserted in the photoluminescence path. Effects of fluctuations in surrounding excess charges trapped in the InP nanowire were investigated by excitation power and energy dependencies.
2009-01-01
We report optical properties of InP/InAsP/InP nanowire quantum dots and single-photon Fourier spectroscopy of an exciton in a single InAsP quantum dot embedded in an InP nanowire. The coherent length of the time-averaged emission originating from the single InAsP QD was measured by a Mach-Zehnder interferometer inserted in the photoluminescence path. Effects of fluctuations in surrounding excess charges trapped in the InP nanowire were investigated by excitation power and energy dependencies.
Excitonic Doppler-Rabi Oscillations in a Moving Organic Slab
无
2005-01-01
It is theoretically shown that excitonic Doppler-Rabi oscillations can occur in an organic slab moving along the axis of a high-Q cavity. Due to the √N enhancement of the vacuum Rabi frequency, this effect can be more easily observed than that in a moving two-level atom.
Excitonic insulator transition in the conjugated polymer polyacene
Rice, MJ; Gartstein, YN
2004-01-01
According to molecular orbital theory, the symmetrically positioned one-dimensional (I-D) conduction and valence bands of polyacene touch at the X point. Clearly, the exciton binding energy of this semimetal exceeds the band gap so that polyacene should be a textbook case of a semimetal undergoing a
Optical absorption of charged excitons in semiconducting carbon nanotubes
Rønnow, Troels Frimodt; Pedersen, Thomas Garm; Cornean, Horia
2012-01-01
In this article we examine the absorption coefficient of charged excitons in carbon nanotubes. We investigate the temperature and damping dependence of the absorption spectra. We show that the trion peak in the spectrum is asymmetric for temperatures greater than approximately 1 K whereas the abs...
Exploration of exciton delocalization in organic crystalline thin films
Hua, Kim; Manning, Lane; Rawat, Naveen; Ainsworth, Victoria; Furis, Madalina
The electronic properties of organic semiconductors play a crucial role in designing new materials for specific applications. Our group recently found evidence for a rotation of molecular planes in phthalocyanines that is responsible for the disappearance of a delocalized exciton in these systems for T >150K.................()().......1 In this study, we attempt to tune the exciton delocalization of small organic molecules using strain effects and alloying different molecules in the same family. The exciton behavior is monitored using time- and polarization resolved photolumniscence (PL) spectroscopy as a function of temperature. Specifically, organic crystalline thin films of octabutoxy phthalocyanine (H2OBPc), octyloxy phthalocyanines and H-bonded semiconductors such as the quinacridone and indigo derivatives are deposited on flexible substrates (i.e. Kapton and PEN) using an in-house developed pen-writing method.........2 that results in crystalline films with macroscopic long range order. The room temperature PL studies show redshift and changes in polarization upon bending of the film. Crystalline thin films of alloyed H2OBPc and octabutoxy naphthalocyanine with ratios ranging from 1:1 to 100:1 fabricated on both sapphire and flexible substrates are also explored using the same PL spectroscopy to elucidate the behaviors of delocalized excitons. .1N. Rawat, et al., J Phys Chem Lett 6, 1834 (2015). 2R. L. Headrick, et al., Applied Physics Letters 92, 063302 (2008). NSF DMR-1056589, NSF DMR-1062966.
Continuum contribution to excitonic four-wave mixing
Birkedal, Dan; Sayed, Karim El; Vadim, Lyssenko
1996-01-01
Summary form only given. We present an experimental and theoretical investigation of ultrafast transient four-wave mixing (TFWM) of GaAs-AlGaAs quantum wells for simultaneous excitation of exciton and continuum states. Recent TFWM experiments on semiconductors have shown unexpected results when...
Excitons in van der Waals Heterostructures: A theoretical study
Latini, Simone
to experimental results. Ultimately this thesis puts forth a first-principles methodology that allows us to address scientific questions that are beyond the capability of existing state of the art techniques and enables 2D materials researcher to predict and design dielectric, electronic and excitonic properties...
Timeresolved Speckle Analysis: Probing the Coherence of Excitonic Secondary Emission
Langbein, Wolfgang; Hvam, Jørn Märcher; Zimmermann, R.
1998-01-01
A new technique to analyze the time-dependent coherence of light emitted in a non-specular direction is presented. We demonstrate that the coherence degree of the emission can be deduced from the intensity fluctuations over the emission directions (speckles). The secondary emission of excitons...
Hamiltonian multiplex interaction based on excitons effect in semiconductor QCs
Arezu Jahanshir
2014-11-01
Full Text Available The subject of modern technology has been the focus of extensive theoretical investigations in semiconducting nanostructures which we know as quantum dots (QCs. The possibility of monitoring and controlling the properties of QCs attracted considerable attention to these objects, as an important basic system in future technology. So, the quantum-mechanical effects play a significant role in the description of the formation mechanism QCs, determination of mass spectrum, binding energy and other characteristics. Based on QFT and by using oscillator representation method (ORM and operator product expansion technique developed in QFT, we study the properties of electron-hole QDs, determine mass spectrum and peruse spin-spin interactions in exciton system and its multiple pair systems. This method has applications to calculate the binding energy of exciton system in ground and excited states with semi-nuclear structure in semiconductor QCs or cold atomic few-body systems and develop the general calculation’s theory of few-body systems based on the Coulomb interaction between particles by forming excitonic pairs in semiconductor QCs. We investigate the binding energy of exciton bound states. It is shown that fermion particles have a very small mass, and after bonding together by dynamically force, constituent particles become massive, which is analogous to what happens in QCD.
Coherent Exciton Dynamics in the Presence of Underdamped Vibrations.
Dijkstra, Arend G; Wang, Chen; Cao, Jianshu; Fleming, Graham R
2015-02-19
Recent ultrafast optical experiments show that excitons in large biological light-harvesting complexes are coupled to molecular vibration modes. These high-frequency vibrations will not only affect the optical response, but also drive the exciton transport. Here, using a model dimer system, the frequency of the underdamped vibration is shown to have a strong effect on the exciton dynamics such that quantum coherent oscillations in the system can be present even in the case of strong noise. Two mechanisms are identified to be responsible for the enhanced transport efficiency: critical damping due to the tunable effective strength of the coupling to the bath, and resonance coupling where the vibrational frequency coincides with the energy gap in the system. The interplay of these two mechanisms determines parameters responsible for the most efficient transport, and these optimal control parameters are comparable to those in realistic light-harvesting complexes. Interestingly, oscillations in the excitonic coherence at resonance are suppressed in comparison to the case of an off-resonant vibration.
Coherent optical writing and reading of the exciton spin state in single quantum dots
Benny, Y; Kodriano, Y; Poem, E; Presman, R; Galushko, D; Petroff, P M; Gershoni, D
2010-01-01
We demonstrate a one to one correspondence between the polarization state of a light pulse tuned to excitonic resonances of single semiconductor quantum dots and the spin state of the exciton that it photogenerates. This is accomplished using two variably polarized and independently tuned picosecond laser pulses. The first "writes" the spin state of the resonantly excited exciton. The second is tuned to biexcitonic resonances, and its absorption is used to "read" the exciton spin state. The absorption of the second pulse depends on its polarization relative to the exciton spin direction. Changes in the exciton spin result in corresponding changes in the intensity of the photoluminescence from the biexciton lines which we monitor, obtaining thus a one to one mapping between any point on the Poincare sphere of the light polarization to a point on the Bloch sphere of the exciton spin.
Wang, X. H.; Su, Z. C.; Ning, J. Q.; Wang, M. Z.; Xu, S. J.; Han, S.; Jia, F.; Zhu, D. L.; Lu, Y. M.
2016-11-01
Monolayers of transition metal dichalcogenides (TMDs) have been recently demonstrated to be a new family of direct bandgap semiconductors exhibiting extraordinary excitonic effects and high-efficiency luminescence. Here we present a micro-photoluminescence (PL) study on temperature dependent luminescence of excitons from an exfoliated WS2 monolayer. It is found that lattice vibrations (i.e. phonons) have a profound influence on the excitonic luminescence of the WS2 monolayer in several aspects including the spectral peak shift, lineshape broadening, transfer, and even formation entropy of excitons. Our study not only leads to the determination of the fundamental excitonic bandgap: {{E}\\text{g}}=2.061~ eV at T=0 \\text{K} , but also reveals that 120 K is a ‘turning’ temperature for the competition and formation entropy of free excitons and defect-bound excitons in the studied 2D WS2 crystals.
Exciton transport in thin-film cyanine dye J-aggregates
Valleau, Stéphanie; Yung, Man-Hong; Aspuru-Guzik, Alán
2012-01-01
We present a theoretical model for the study of exciton dynamics in J-aggregated monolayers of fluorescent dyes. The excitonic evolution is described by a Monte-Carlo wave function approach which allows for a unified description of the quantum (ballistic) and classical (diffusive) propagation of an exciton on a lattice in different parameter regimes. The transition between the ballistic and diffusive regime is controlled by static and dynamic disorder. As an example, the model is applied to three cyanine dye J-aggregates: TC, TDBC, and U3. Each of the molecule-specific structure and excitation parameters are estimated using time-dependent density functional theory. The exciton diffusion coefficients are calculated and analyzed for different degrees of film disorder and are correlated to the physical properties and the structural arrangement of molecules in the aggregates. Further, exciton transport is anisotropic and dependent on the initial exciton energy. The upper-bound estimation of the exciton diffusion ...
Microfabricated Waveguide Atom Traps.
Jau, Yuan-Yu
2017-09-01
A nano - scale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon - atom interactions . A neutral - atom platf orm based on this microfabrication technology will be pre - aligned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano - waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.
Search For Trapped Antihydrogen
Andresen, Gorm B; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D; Bray, Crystal C; Butler, Eoin; Cesar, Claudio L; Chapman, Steven; Charlton, Michael; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C; Gill, David R; Hangst, Jeffrey S; Hardy, Walter N; Hayano, Ryugo S; Hayden, Michael E; Humphries, Andrew J; Hydomako, Richard; Jonsell, Svante; Jørgensen, Lars V; Kurchaninov, Lenoid; Lambo, Ricardo; Madsen, Niels; Menary, Scott; Nolan, Paul; Olchanski, Konstantin; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Nasr, Sarah Seif El; Silveira, Daniel M; So, Chukman; Storey, James W; Thompson, Robert I; van der Werf, Dirk P; Wilding, Dean; Wurtele, Jonathan S; Yamazaki, Yasunori
2011-01-01
We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ~30 ms. After a three-week experimental run in 2009 involving mixing of 10^7 antiprotons with 1.3 10^9 positrons to produce 6 10^5 antihydrogen atoms, we have identified six antiproton annihilation events that are consist...
Microfabricated cylindrical ion trap
Blain, Matthew G.
2005-03-22
A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.
Gong, Ke; Kelley, David F; Kelley, Anne Myers
2017-02-02
Zinc to cadmium cation exchange of ZnSe quantum dots has been used to produce a series of alloyed Zn1-xCdxSe quantum dots. As x increases and the lowest-energy exciton shifts to the red, the peak initially broadens and then sharpens as x approaches 1. Resonance Raman spectra obtained with excitation near the lowest excitonic absorption peak show a gradual shift of the longitudinal optical phonon peak from 251 cm(-1) in pure ZnSe to 210 cm(-1) in nearly pure CdSe with strong broadening at intermediate compositions. The LO overtone to fundamental intensity ratio, a rough gauge of exciton-phonon coupling strength, increases considerably for intermediate compositions compared with those of either pure ZnSe or pure CdSe. The results indicate that partial localization of the hole in locally Cd-rich regions of the alloyed particles increases the strengths of local internal electric fields, increasing the coupling between the exciton and polar optical phonons.
Charge trapping and carrier transport mechanism in silicon-rich silicon oxynitride
Yu Zhenrui [Department of Electronics, INAOE, Apdo. 51, Puebla, Pue. 72000 (Mexico)]. E-mail: yinaoep@yahoo.mx; Aceves, Mariano [Department of Electronics, INAOE, Apdo. 51, Puebla, Pue. 72000 (Mexico); Carrillo, Jesus [CIDS, BUAP, Puebla, Pue. (Mexico); Lopez-Estopier, Rosa [Department of Electronics, INAOE, Apdo. 51, Puebla, Pue. 72000 (Mexico)
2006-12-05
The charge-trapping and carrier transport properties of silicon-rich silicon oxynitride (SRO:N) were studied. The SRO:N films were deposited by low pressure chemical vapor deposition. Infrared (IR) and transmission electron microscopic (TEM) measurements were performed to characterize their structural properties. Capacitance versus voltage and current versus voltage measurements (I-V) were used to study the charge-trapping and carrier transport mechanism. IR and TEM measurements revealed the existence of Si nanodots in SRO:N films. I-V measurements revealed that there are two conduction regimes divided by a threshold voltage V {sub T}. When the applied voltage is smaller than V {sub T}, the current is dominated by the charge transfer between the SRO:N and substrate; and in this regime only dynamic charging/discharging of the SRO:N layer is observed. When the voltage is larger than V {sub T}, the current increases rapidly and is dominated by the Poole-Frenkel mechanism; and in this regime, large permanent trapped charge density is obtained. Nitrogen incorporation significantly reduced the silicon nanodots or defects near the SRO:N/Si interface. However, a significant increase of the density of silicon nanodot in the bulk of the SRO:N layer is obtained.
Excitonic complexes in GaN/(Al,Ga)N quantum dots
Elmaghraoui, D.; Triki, M.; Jaziri, S.; Muñoz-Matutano, G.; Leroux, M.; Martinez-Pastor, J.
2017-03-01
Here we report a theoretical investigation of excitonic complexes in polar GaN/(Al,Ga)N quantum dots (QDs). A sum rule between the binding energies of charged excitons is used to calculate the biexciton binding energy. The binding energies of excitonic complexes in GaN/AlN are shown to be strongly correlated to the QD size. Due to the large hole localization, the positively charged exciton energy is found to be always blueshifted compared to the exciton one. The negatively charged exciton and the biexciton energy can be blueshifted or redshifted according to the QD size. Increasing the size of GaN/AlN QDs makes the identification of charged excitons difficult, and the use of an Al0.5Ga0.5N barrier can be advantageous for clear identification. Our theoretical results for the binding energy of exciton complexes are also confronted with values deduced experimentally for InAs/GaAs QDs, confirming our theoretical prediction for charged excitonic complexes in GaN/(Al,Ga)N QDs. Finally, we realize that the trends of excitonic complexes in QDs are significantly related to competition between the local charge separation (whatever its origin) and the correlation effect. Following our findings, entangled photons pairs can be produced in QDs with careful control of their size in order to obtain zero exciton–biexciton energy separation.
Exciton-polariton dynamics in quantum dot-cavity system
Neto, Antonio F.; Lima, William J.; Villas-Boas, Jose M. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Fisica
2012-07-01
Full text: One of the basic requirement for quantum information processing systems is the ability to completely control the state of a single qubit. This imply in know all sources of decoherence and elaborate ways to avoid them. In recent work, A. Laucht et al. [1] presented detailed theoretical and experimental investigations of electrically tunable single quantum dot (QD) - photonic crystal (PhC) nanocavity systems operating in the strong coupling regime of the light matter interaction. Unlike previous studies, where the exciton-cavity spectral detuning was varied by changing the lattice temperature, or by the adsorption of inert gases at low temperatures, they employ the quantum confined Stark-effect to electro-optically control the exciton-cavity detuning. The new built device enabled them to systematically probe the emission spectrum of the strongly coupled system as a function of external control parameters, as for example the incoherent excitation power density or the lattice temperature. Those studies reveal for the first time insights in dephasing mechanisms of 0D exciton polaritons [1]. In another study [2], using a similar device, they investigate the coupling between two different QDs with a single cavity mode. In both works, incoherent pumping was used, but for quantum information, coherent and controlled excitations are necessary. Here, we theoretically investigate the dynamics a single quantum dot inside a cavity under coherent pulse excitation and explore a wide range of parameters, as for example, the exciton-cavity detunings, the excitation power, the spontaneous decay, and pure dephasing. We use density matrix formalism in the Lindblad form, and we solve it numerically. Our results show that coherent excitation can be used to probe strong coupling between exciton and cavity mode by monitoring the exciton Rabi oscillation as function of the cavity detuning. This can give new insights for future experimental measurement focusing on quantum
Lange, Adrian W; Herbert, John M
2009-03-25
Vertical electronic excitations in model systems representing single- and double-stranded B-DNA are characterized using electronic structure theory, including both time-dependent density functional theory (TD-DFT) and correlated wave function techniques. Previous TD-DFT predictions of charge-transfer (CT) states well below the optically bright (1)pipi* states are shown to be artifacts of the improper long-range behavior of standard density-functional exchange approximations, which we rectify here using a long-range correction (LRC) procedure. For nucleobase dimers (hydrogen-bonded or pi-stacked), TD-LRC-DFT affords vertical excitation energies in reasonable agreement with the wave function methods, not only for the (1)npi* and (1)pipi* states but also for the CT states, and qualitatively reproduces well-known base-stacking effects on the absorption spectrum of DNA. The emergence of (1)pipi* Frenkel exciton states, localized on a single strand, is clearly evident, and these states (rather than low-energy CT states) are primarily responsible for the fact that DNA's absorption spectrum exhibits a red tail that is absent in monomer absorption spectra. For B-DNA in aqueous solution, the low-energy tail of the CT band (representing both intra- and interstrand CT states) appears at energies comparable to those of the optically bright (1)pipi* exciton states. In systems with more than one base pair, we also observe the emergence of delocalized, interstrand CT excitations, whose excitation energies may be significantly lower than the lowest CT excitation in a single base pair. Together, these observations suggest that a single Watson-Crick base pair is an inadequate model of the photophysics of B-DNA.
Zheng, Jianping; Cheng, Baochang; Wu, Fuzhang; Su, Xiaohui; Xiao, Yanhe; Guo, Rui; Lei, Shuijin
2014-12-10
Bipolar resistive switching (RS) devices are commonly believed as a promising candidate for next generation nonvolatile resistance random access memory (RRAM). Here, two-terminal devices based on individual PbS micro/nanowires with Ag electrodes are constructed, whose electrical transport depends strongly on the abundant surface and bulk trap states in micro/nanostructures. The surface trap states can be filled/emptied effectively at negative/positive bias voltage, respectively, and the corresponding rise/fall of the Fermi level induces a variation in a degenerate/nondegenerate state, resulting in low/high resistance. Moreover, the filling/emptying of trap states can be utilized as RRAM. After annealing, the surface trap state can almost be eliminated completely; while most of the bulk trap states can still remain. In the devices unannealed and annealed at both ends, therefore, the symmetrical back-to-back Fowler-Nordheim tunneling with large ON/OFF resistance ratio and Poole-Frenkel emission with poor hysteresis can be observed under cyclic sweep voltage, respectively. However, a typical bipolar RS behavior can be observed effectively in the devices annealed at one end. The acquirement of bipolar RS and nonvolatile RRAM by the modulation of electrode annealing demonstrates the abundant trap states in micro/nanomaterials will be advantageous to the development of new type electronic components.
Szerypo, J. E-mail: jerzy.szerypo@phys.jyu.fi; Jokinen, A.; Kolhinen, V.S.; Nieminen, A.; Rinta-Antila, S.; Aeystoe, J
2002-04-22
The IGISOL facility at the Department of Physics of the University of Jyvaeskylae (JYFL) is delivering radioactive beams of short-lived exotic nuclei, in particular the neutron-rich isotopes from the fission reaction. These nuclei are studied with the nuclear spectroscopy methods. In order to substantially increase the quality and sensitivity of such studies, the beam should undergo beam handling: cooling, bunching and isobaric purification. The first two processes are performed with the use of an RFQ cooler/buncher. The isobaric purification will be made by a Penning trap placed after the RF-cooler element. This contribution describes the current status of the Penning trap project and its future prospects. The latter comprise the precise nuclear mass measurements, nuclear spectroscopy in the Penning trap interior as well as the laser spectroscopy on the extracted beams.
Harel, Elad [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States)
2012-05-07
Photosynthesis, the process by which energy from sunlight drives cellular metabolism, relies on a unique organization of light-harvesting and reaction center complexes. Recently, the organization of light-harvesting LH2 complexes and dimeric reaction center-light-harvesting I-PufX core complexes in membranes of purple non-sulfur bacteria was revealed by atomic force microscopy [S. Bahatyrova et al., Nature (London) 430, 1058 (2004)]. Here, we discuss optimal exciton transfer in a biomimetic system closely modeled on the structure of LH2 and its organization within the membrane using a Markovian quantum model with dissipation and trapping added phenomenologically. In a deliberate manner, we neglect the high level detail of the bacterial light-harvesting complex and its interaction with the phonon bath in order to elucidate a set of design principles that may be incorporated in artificial pigment-scaffold constructs in a supramolecular assembly. We show that our scheme reproduces many of the most salient features found in their natural counterpart and may be largely explained by simple electrostatic considerations. Most importantly, we show that quantum effects act primarily to enforce robustness with respect to spatial and spectral disorder between and within complexes. The implications of such an arrangement are discussed in the context of biomimetic photosynthetic analogs capable of transferring energy efficiently across tens to hundreds of nanometers.
Binding Energy of an Exciton Bound to Ionized Acceptor in Quantum Dots
XIE Wen-Fang
2001-01-01
Binding energiesfor an exciton (X ) trapped in the two-dimensional quantum dot by a negative ion located on the z axis at a distance from the dot plane are calculated by using the method of few-body physics.This configuration is called a barrier (A-,X) center.The dependence of the binding energy of the ground state of the barrier (A-,X)center on the electron-to-hole mass ratio for a few values of the distance d between the fixed negative ion on the z axis and the dot plane is obtained.We find that when d → 0,the barrier (A-,X) center has not any bound state.We also studied the stability and binding energy of the ground state of the barrier (A-,X) center in a parabolic quantum dot as a function of the distance d between the fixed negative ion on the z axis and the dot plane.``
Harel, Elad
2012-05-01
Photosynthesis, the process by which energy from sunlight drives cellular metabolism, relies on a unique organization of light-harvesting and reaction center complexes. Recently, the organization of light-harvesting LH2 complexes and dimeric reaction center-light-harvesting I-PufX core complexes in membranes of purple non-sulfur bacteria was revealed by atomic force microscopy [S. Bahatyrova et al., Nature (London) 430, 1058 (2004)]. Here, we discuss optimal exciton transfer in a biomimetic system closely modeled on the structure of LH2 and its organization within the membrane using a Markovian quantum model with dissipation and trapping added phenomenologically. In a deliberate manner, we neglect the high level detail of the bacterial light-harvesting complex and its interaction with the phonon bath in order to elucidate a set of design principles that may be incorporated in artificial pigment-scaffold constructs in a supramolecular assembly. We show that our scheme reproduces many of the most salient features found in their natural counterpart and may be largely explained by simple electrostatic considerations. Most importantly, we show that quantum effects act primarily to enforce robustness with respect to spatial and spectral disorder between and within complexes. The implications of such an arrangement are discussed in the context of biomimetic photosynthetic analogs capable of transferring energy efficiently across tens to hundreds of nanometers.
Santambrogio, Gabriele
2015-01-01
In the last years, it was demonstrated that neutral molecules can be loaded on a microchip directly from a supersonic beam. The molecules are confined in microscopic traps that can be moved smoothly over the surface of the chip. Once the molecules are trapped, they can be decelerated to a standstill, for instance, or pumped into selected quantum states by laser light or microwaves. Molecules are detected on the chip by time-resolved spatial imaging, which allows for the study of the distribution in the phase space of the molecular ensemble.
Evaluation of defects in cuprous oxide through exciton luminescence imaging
Frazer, Laszlo, E-mail: jl@laszlofrazer.com [Department of Physics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Lenferink, Erik J. [Department of Physics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Chang, Kelvin B. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Poeppelmeier, Kenneth R. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Stern, Nathaniel P. [Department of Physics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Ketterson, John B. [Department of Physics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Department of Electrical Engineering and Computer Science, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)
2015-03-15
The various decay mechanisms of excitons in cuprous oxide (Cu{sub 2}O) are highly sensitive to defects which can relax selection rules. Here we report cryogenic hyperspectral imaging of exciton luminescence from cuprous oxide crystals grown via the floating zone method showing that the samples have few defects. Some locations, however, show strain splitting of the 1s orthoexciton triplet polariton luminescence. Strain is reduced by annealing. In addition, annealing causes annihilation of oxygen and copper vacancies, which leads to a negative correlation between luminescence of unlike vacancies. - Highlights: • We use luminescence to observe defects in high quality cuprous oxide crystals. • Strain is reduced by annealing. • Annealing causes annihilation of oxygen and copper vacancies.
Quasiparticle Gaps and Exciton Coulomb Energies in Si Nanoshells
Frey, K. [University of Illinois, Chicago; Idrobo Tapia, Juan C [ORNL; Tiago, Murilo L [ORNL; Reboredo, Fernando A [ORNL; Ogut, Serdar [University of Illinois, Chicago
2009-01-01
Quasiparticle gaps and exciton Coulomb energies of H-passivated spherical Si nanoshells are computed using rst principles SCF and GW methods. We nd that the quasiparticle gap of a nanoshell depends on both its inner radius R1 (weakly) and outer radius R2 (strongly). These dependences on R1 and R2 are mostly consistent with electrostatics of a metallic shell. We also nd that the unscreened Coulomb energy ECoul in Si nanoshells has a somewhat unexpected size dependence at xed outer radius R2: ECoul decreases as the nanoshell becomes more conning, contrary to what one would expect from quantum connement eects. We show that this is a consequence of an increase in the average electron-hole distance, giving rise to reduced exciton Coulomb energies in spite of the reduction in the conning nanoshell volume.
Multiple exciton collection in a sensitized photovoltaic system.
Sambur, Justin B; Novet, Thomas; Parkinson, B A
2010-10-01
Multiple exciton generation, the creation of two electron-hole pairs from one high-energy photon, is well established in bulk semiconductors, but assessments of the efficiency of this effect remain controversial in quantum-confined systems like semiconductor nanocrystals. We used a photoelectrochemical system composed of PbS nanocrystals chemically bound to TiO(2) single crystals to demonstrate the collection of photocurrents with quantum yields greater than one electron per photon. The strong electronic coupling and favorable energy level alignment between PbS nanocrystals and bulk TiO(2) facilitate extraction of multiple excitons more quickly than they recombine, as well as collection of hot electrons from higher quantum dot excited states. Our results have implications for increasing the efficiency of photovoltaic devices by avoiding losses resulting from the thermalization of photogenerated carriers.
Jointly Tuned Plasmonic–Excitonic Photovoltaics Using Nanoshells
Paz-Soldan, Daniel
2013-04-10
Recent advances in spectrally tuned, solution-processed plasmonic nanoparticles have provided unprecedented control over light\\'s propagation and absorption via engineering at the nanoscale. Simultaneous parallel progress in colloidal quantum dot photovoltaics offers the potential for low-cost, large-area solar power; however, these devices suffer from poor quantum efficiency in the more weakly absorbed infrared portion of the sun\\'s spectrum. Here, we report a plasmonic-excitonic solar cell that combines two classes of solution-processed infrared materials that we tune jointly. We show through experiment and theory that a plasmonic-excitonic design using gold nanoshells with optimized single particle scattering-to-absorption cross-section ratios leads to a strong enhancement in near-field absorption and a resultant 35% enhancement in photocurrent in the performance-limiting near-infrared spectral region. © 2013 American Chemical Society.
Collective oscillations in spatially modulated exciton-polariton condensate arrays
Tikhomirov, Andrey A.; Kanakov, Oleg I.; Altshuler, Boris L.; Ivanchenko, Mikhail V.
2015-02-01
We study collective dynamics of interacting centers of exciton-polariton condensation in presence of spatial inhomogeneity, as modeled by diatomic active oscillator lattices. The mode formalism is developed and employed to derive existence and stability criteria of plane wave solutions. It is demonstrated that k0 = 0 wave number mode with the binary elementary cell on a diatomic lattice possesses superior existence and stability properties. Decreasing net on-site losses (balance of dissipation and pumping) or conservative nonlinearity favors multistability of modes, while increasing frequency mismatch between adjacent oscillators detriments it. On the other hand, spatial inhomogeneity may recover stability of modes at high nonlinearities. Entering the region where all single-mode solutions are unstable we discover subsequent transitions between localized quasiperiodic, chaotic and global chaotic dynamics in the mode space, as nonlinearity increases. Importantly, the last transition evokes the loss of synchronization. These effects may determine lasing dynamics of interacting exciton-polariton condensation centers.
Charge transfer excitons in C60-dimers and polymers
Harigaya, K
1996-01-01
Charge-transfer (CT) exciton effects are investigated for the optical absorption spectra of crosslinked C60 systems by using the intermediate exciton theory. We consider the C60-dimers, and the two (and three) molecule systems of the C60-polymers. We use a tight-binding model with long-range Coulomb interactions among electrons, and the model is treated by the Hartree-Fock approximation followed by the single-excitation configuration interaction method. We discuss the variations in the optical spectra by changing the conjugation parameter between molecules. We find that the total CT-component increases in smaller conjugations, and saturates at the intermediate conjugations. It decreases in the large conjugations. We also find that the CT-components of the doped systems are smaller than those of the neutral systems, indicating that the electron-hole distance becomes shorter in the doped C60-polymers.
Excitonic Absorption of Semiconductor Nanorings under Terahertz Fields
ZHANG Tong-Yi; ZHAO Wei; ZHU Shao-Lan
2005-01-01
@@ The optical absorption of GaAs nanorings (NRs) under a dc electric field and a terahertz (THz) ac electric field applied in the plane containing the NRs is investigated theoretically. The NRs may enclose some magnetic flux in the presence of a magnetic field perpendicular to the NRs plane. Numerical calculation shows that the excitonic effects are essential to correctly describe the optical absorption in NRs. The applied lateral THz electric field, as well as the dc field leads to reduction, broadening and splitting of the exciton peak. In contrast to the presence of a dc field, significant optical absorption peak arises below the zero-field bandgap in the presence of a THz electric field at a certain frequency. The optical absorption spectrum depends evidently on the frequency and amplitude of the applied THz field and on the magnetic flux threading the NRs. This promises potential applications of NRs for magneto-optical and THz electro-optical sensing.
Exciton and Biexciton Binding Energies in Rectangular Quantum Dots
LIU Yong-Hui; KONG Xiao-Jun
2005-01-01
@@ In the effective mass approximation, using the variational technology and a method of expanding the wavefunctions of exciton in terms of the eigenfunctions of the noninteracting electron-hole system, we calculate the exciton and biexciton ground state binding energies for rectangular quantum dots (QDs). In the calculation, a three-dimensional Fourier expansion of Coulomb potential is used to remove the numerical difficulty with the 1/r singularity, and it considerably reduces the computational effort. Our results agree fairly well with the previous results. It is found that the binding energies are highly correlated to the size of QDs. The quantum confinement effect of spherical QDs about biexciton is obviously larger than that of rectangular QDs when the well width is narrower than 2.0aB.
Interaction of excitons with optical phonons in layer crystals
Nitsovich, Bohdan M.; Zenkova, C. Y.; Kramar, N. K.
2002-02-01
The investigation is concerned with layer crystals of the GaSe, InSe, GaTe, MoS2-type and other inorganic semiconductors, whose phonon spectrum has a great number of peculiarities, among them the availability of low-energy optical phonons. In this case the dispersion of these phonons can be essential and vary in character. The mass operator of the exciton-phonon system and the light absorption coefficient for different dispersion laws of optical phonons have been calculated. The influence of the sign of the phonon 'effective mass' on the exciton absorption band of layer crystals, which causes the opposite in sign dynamics of the absorption maximum shift, and the change of the absorption curve asymmetry have been determined.
Chemical potential and compressibility of quantum Hall bilayer excitons,.
Skinner, Brian
2016-02-25
I consider a system of two parallel quantum Hall layers with total filling factor 0 or 1. When the distance between the layers is small enough, electrons and holes in opposite layers can form inter-layer excitons, which have a finite effective mass and interact via a dipole-dipole potential. I present results for the chemical potential u of the resulting bosonic system as a function of the exciton concentration n and the interlayer separation d. I show that both u and the interlayer capacitance have an unusual nonmonotonic dependence on d, owing to the interplay between an increasing dipole moment and an increasing effective mass with increasing d. Finally, I discuss the transition between the superfluid and Wigner crystal phases, which is shown to occur at d x n-1/10. Results are derived first via simple intuitive arguments, and then verified with more careful analytic derivations and numeric calculations.
Diffusive Propagation of Exciton-Polaritons through Thin Crystal Slabs.
Zaitsev, D A; Il'ynskaya, N D; Koudinov, A V; Poletaev, N K; Nikitina, E V; Egorov, A Yu; Kavokin, A V; Seisyan, R P
2015-06-19
If light beam propagates through matter containing point impurity centers, the amount of energy absorbed by the media is expected to be either independent of the impurity concentration N or proportional to N, corresponding to the intrinsic absorption or impurity absorption, respectively. Comparative studies of the resonant transmission of light in the vicinity of exciton resonances measured for 15 few-micron GaAs crystal slabs with different values of N, reveal a surprising tendency. While N spans almost five decimal orders of magnitude, the normalized spectrally-integrated absorption of light scales with the impurity concentration as N(1/6). We show analytically that this dependence is a signature of the diffusive mechanism of propagation of exciton-polaritons in a semiconductor.
Exciton localization in solution-processed organolead trihalide perovskites
He, Haiping; Yu, Qianqian; Li, Hui; Li, Jing; Si, Junjie; Jin, Yizheng; Wang, Nana; Wang, Jianpu; He, Jingwen; Wang, Xinke; Zhang, Yan; Ye, Zhizhen
2016-03-01
Organolead trihalide perovskites have attracted great attention due to the stunning advances in both photovoltaic and light-emitting devices. However, the photophysical properties, especially the recombination dynamics of photogenerated carriers, of this class of materials are controversial. Here we report that under an excitation level close to the working regime of solar cells, the recombination of photogenerated carriers in solution-processed methylammonium-lead-halide films is dominated by excitons weakly localized in band tail states. This scenario is evidenced by experiments of spectral-dependent luminescence decay, excitation density-dependent luminescence and frequency-dependent terahertz photoconductivity. The exciton localization effect is found to be general for several solution-processed hybrid perovskite films prepared by different methods. Our results provide insights into the charge transport and recombination mechanism in perovskite films and help to unravel their potential for high-performance optoelectronic devices.
The Reusable Astronomy Portal (TRAP)
Donaldson, T.; Rogers, A.; Wallace, G.
2012-09-01
The Reusable Astronomy Portal (TRAP) aims to provide a common platform for rapidly deploying Astronomy Archives to the web. TRAP is currently under development for both the VAO Data Discovery Portal and the MAST Multi-Mission Portal (Figure 1). TRAP consists of 2 major software packages: the TRAP Client and the TRAP Server. The TRAP framework allows developers to deploy the Server, connect to data resources, then focus on building custom tools for the Client. TRAP is built upon proven industry technologies including the Ext/JS JavaScript Component Library, Mono.NET Web Services, and JSON message based APIs. The multi-layered architecture of TRAP decouples each layer: Client, Service and Data Access, enabling each to evolve independently over time. Although currently deployed to provide astronomy science data access, the TRAP architecture is flexible enough to thrive in any distributed data environment.
Exciton lifetime measurements on single silicon quantum dots.
Sangghaleh, Fatemeh; Bruhn, Benjamin; Schmidt, Torsten; Linnros, Jan
2013-06-01
We measured the exciton lifetime of single silicon quantum dots, fabricated by electron beam lithography, reactive ion etching and oxidation. The observed photoluminescence decays are of mono-exponential character with a large variation (5-45 μs) from dot to dot, even for the same emission energy. We show that this lifetime variation may be the origin of the heavily debated non-exponential (stretched) decays typically observed for ensemble measurements.
Exciton-mediated photothermal cooling in GaAs membranes
Xuereb, André; Naesby, Andreas; Polzik, Eugene S; Hammerer, Klemens
2012-01-01
Cooling of the mechanical motion of a GaAs nano-membrane using the photothermal effect mediated by excitons was recently demonstrated by some of us [K. Usami, et al., Nature Phys. 8, 168 (2012)] and provides a clear example of the use of thermal forces to cool down mechanical motion. Here, we report on a single-free-parameter theoretical model to explain the results of this experiment which matches the experimental data remarkably well.
One Dimensional Time-Dependent Tunnelling of Excitons
Kilcullen, Patrick; Salayka-Ladouceur, Logan; Malmgren, Kevin; Reid, Matthew; Shegelski, Mark R. A.
2017-03-01
We study the time-dependent tunnelling of excitons in one dimension using numerical integration based on the Crank-Nicholson method. A complete development of the time-dependent simulator is provided. External barriers studied include single and double delta barriers. We find that the appearance of transmission resonances depends strongly on the dielectric constant, relative effective masses, and initial spatial spread of the wavefunction. A discussion regarding applications to realistic systems is provided.
Lindblad theory of dynamical decoherence of quantum-dot excitons
Eastham, P. R.; Spracklen, A O; Keeling, Jonathan Mark James
2013-01-01
We use the Bloch-Redfield-Wangsness theory to calculate the effects of acoustic phonons in coherent control experiments where quantum-dot excitons are driven by shaped laser pulses. This theory yields a generalized Lindblad equation for the density operator of the dot, with time-dependent damping and decoherence due to phonon transitions between the instantaneous dressed states. It captures similar physics to the form recently applied to Rabi oscillation experiments [Ramsay et al., Phys. Rev....
Exciton spin dynamics in ZnO epilayers
Lagarde, D.; Lombez, L.; Balocchi, A.; Renucci, P.; Carrere, H.; Amand, T.; Marie, X. [Laboratoire de Nanophysique, Magnetisme et Optoelectronique, INSA, 135 avenue de Rangueil, 31077 Toulouse Cedex 4 (France); Mei, Z.X.; Du, X.L.; Xue, Q.K. [Institute of Physics, Chinese Academy of Sciences and National Center for Nano-Science and Technology, Beijing 100080 (China)
2007-07-01
We used time-resolved optical orientation experiments to study the low temperature spin dynamics of a ZnO epilayer. The sample shows a circular polarisation of the donor-bound exciton of 11% with a decay time of 275 ps. A very narrow spectral dependence of the initial polarisation and a rapid decrease of the polarisation decay time with temperature are also observed. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
2017-01-01
Results on the theoretical explanation of the shape of optical bands in polymethine dyes, their dimers and aggregates are summarized. The theoretical dependence of the shape of optical bands for the dye monomers in the vinylogous series in line with a change in the solvent polarity is considered. A simple physical (analytical) model of the shape of optical absorption bands in H-aggregates of polymethine dyes is developed based on taking the dozy-chaos dynamics of the transient state and the Frenkel exciton effect in the theory of molecular quantum transitions into account. As an example, the details of the experimental shape of one of the known H-bands are well reproduced by this analytical model under the assumption that the main optical chromophore of H-aggregates is a tetramer resulting from the two most probable processes of inelastic binary collisions in sequence: first, monomers between themselves, and then, between the resulting dimers. The obtained results indicate that in contrast with the compact structure of J-aggregates (brickwork structure), the structure of H-aggregates is not the compact pack-of-cards structure, as stated in the literature, but a loose alternate structure. Based on this theoretical model, a simple general (analytical) method for treating the more complex shapes of optical bands in polymethine dyes in comparison with the H-band under consideration is proposed. This method mirrors the physical process of molecular aggregates forming in liquid solutions: aggregates are generated in the most probable processes of inelastic multiple binary collisions between polymethine species generally differing in complexity. The results obtained are given against a background of the theoretical results on the shape of optical bands in polymethine dyes and their aggregates (dimers, H*- and J-aggregates) previously obtained by V.V.E. PMID:28572984
Role of strain on the coherent properties of GaAs excitons and biexcitons
Wilmer, Brian L.; Webber, Daniel; Ashley, Joseph M.; Hall, Kimberley C.; Bristow, Alan D.
2016-08-01
Polarization-dependent two-dimensional Fourier-transform spectroscopy (2DFTS) is performed on excitons in strained bulk GaAs layers, probing the coherent response for differing amounts of strain. Uniaxial tensile strain lifts the degeneracy of heavy-hole (HH) and light-hole (LH) valence states, leading to an observed splitting of the associated excitons at low temperature. Increasing the strain increases the magnitude of the HH/LH exciton peak splitting, induces an asymmetry in the off-diagonal interaction coherences, increases the difference in the HH and LH exciton homogenous linewidths, and increases the inhomogeneous broadening of both exciton species. All results arise from strain-induced variations in the local electronic environment, which is not uniform along the growth direction of the thin layers. For cross-linear polarized excitation, wherein excitonic signals give way to biexcitonic signals, the high-strain sample shows evidence of bound LH, HH, and mixed biexcitons.
Pradhan, S.; Taraphder, A.
2016-10-01
A spinless, extended Falicov-Kimball model in the presence of a perpendicular magnetic field is investigated employing a self-consistent mean-field theory in two dimensions. In the presence of the field the excitonic average Δ = is modified: the exciton responds in subtle different ways for different values of the magnetic flux. We examine the effects of Coulomb interaction and hybridization between the localized and itinerant electrons on the excitonic average, for rational values of the applied magnetic field. The excitonic average is found to get enhanced exponentially with the Coulomb interaction while it saturates at large hybridization. The orbital magnetic field suppresses the excitonic average in general, though a strong commensurability effect of the magnetic flux on the behaviour of the excitonic order parameter is observed.
Role of Strain on the Coherent Properties of GaAs Excitons and Biexcitons
Wilmer, Brian L; Ashley, Joseph M; Hall, Kimberley C; Bristow, Alan D
2016-01-01
Polarization-dependent two-dimensional Fourier-transform spectroscopy (2DFTS) is performed on excitons in strained bulk GaAs layers probing the coherent response for differing amounts of strain. Biaxial tensile strain lifts the degeneracy of heavy-hole (HH) and light-hole (LH) valence states, leading to an observed splitting of the associated excitons at low temperature. Increasing the strain increases the magnitude of the HH/LH exciton peak splitting, induces an asymmetry in the off-diagonal coherences, increases the difference in the HH and LH exciton homogenous linewidths, and increases the inhomogeneous broadening of both exciton species. All results arise from strain-induced variations in the local electronic environment, which is not uniform along the growth direction of the thin layers. For cross-linear polarized excitation, wherein excitonic signals give way to biexcitonic signals, the high-strain sample shows evidence of bound LH, HH, and mixed biexcitons.
Theory for electric dipole superconductivity with an application for bilayer excitons.
Jiang, Qing-Dong; Bao, Zhi-qiang; Sun, Qing-Feng; Xie, X C
2015-07-08
Exciton superfluid is a macroscopic quantum phenomenon in which large quantities of excitons undergo the Bose-Einstein condensation. Recently, exciton superfluid has been widely studied in various bilayer systems. However, experimental measurements only provide indirect evidence for the existence of exciton superfluid. In this article, by viewing the exciton in a bilayer system as an electric dipole, we derive the London-type and Ginzburg-Landau-type equations for the electric dipole superconductors. By using these equations, we discover the Meissner-type effect and the electric dipole current Josephson effect. These effects can provide direct evidence for the formation of the exciton superfluid state in bilayer systems and pave new ways to drive an electric dipole current.
Excitons in conjugated polymers: Do we need a paradigma change?
Beenken, Wichard J.D. [Department of Theoretical Physics I, Ilmenau University of Thechnology (Germany)
2009-12-15
We have previously shown that both, polymer conformation and dynamics are crucial for the exciton transport in conjugated polymers. Thereby we found that the usual Foerster-type hopping transfer model - even if one applies the line-dipole approximation - falls short in one crucial aspect: the nature of the sites the excitons are transferred between is still unclear. We found that the simple model of spectroscopic units defined as segments of the polymer chains separated by structural defects breaking the {pi}-conjugation is only justified for chemical defects like hydrogenated double bonds, or extreme gauche (90 ) torsions between the monomers. Both defects are far too rare in a well-prepared conjugated polymer to explain the mean spectroscopic-unit length of typically 6-7 monomers. Meanwhile, also the concept of dynamical formation of the spectroscopic units, we had previously suggested, has also failed. Thus the question of a paradigma change concerning the exciton transport in conjugated polymers appears on the agenda. (Abstract Copyright [2009], Wiley Periodicals, Inc.)
Photoluminescence of localized excitons in InGan quantum dots
Usov, S. O., E-mail: S.Usov@mail.ioffe.ru; Tsatsul' nikov, A. F.; Lundin, V. V.; Sakharov, A. V.; Zavarin, E. E.; Ledentsov, N. N. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)
2008-02-15
Photoluminescence spectra of samples with ultrathin InGaN layers embedded in AlGaN and GaN matrices are studied experimentally in the temperature range of 80 to 300 K. It is shown that the temperature dependences can be understood in the context of Eliseev's model and that, in the active region of the structures under study, the dispersion {sigma} of the exciton-localization energy depends on the average In content in InGaN-alloy layers. Furthermore, the Urbach energy E{sub U}, which characterizes the localization energy of excitons in the tails of the density of states, was determined from an analysis of the shape of the low-energy slope of the spectrum. It is shown that {sigma} and E{sub U}, quantities representing the scale of the exciton-localization effects, vary linearly with the photoluminescence-peak wavelength in the range from the ultraviolet to the green region of the spectrum.
Temperature dependence of excitonic transition in ZnSe/ZnCdSe quantum wells
GUO Zi-zheng; LIANG Xi-xia; BAN Shi-liang
2005-01-01
A theoretical calculation for the temperature dependence of the excitonic transition in ZnSe/ZnCdSe quantum wells is performed. The exciton binding energy is calculated with a variational technique by considering the temperature-dependence parameters. Our results show that the exciton binding energy reduces linearly with temperature increasing. We find that the strain due to lattice mismatch and differential thermal expansion decreases with the temperature increasing.
Collective Behavior of a Spin-Aligned Gas of Interwell Excitons in Double Quantum Wells
Larionov, A. V.; Bayer, M.; Hvam, Jørn Märcher;
2005-01-01
The kinetics of a spin-aligned gas of interwell excitons in GaAs/AlGaAs double quantum wells (n–i–n heterostructure) is studied. The temperature dependence of the spin relaxation time for excitons, in which a photoexcited electron and hole are spatially separated between two adjacent quantum wells...... is associated with indirect evidence of the coherence of the collective phase of interwell excitons at temperatures below the critical value....
Eduarda Gomes
2014-06-01
In order to minimise the identified problems in the actual traps, the present work proposes a new design with the aim of reducing the volume and weight during transport, and also during onshore storage. Alternative materials to avoid corrosion and formation of encrustations were also proposed.
Exciton dynamics and non-linearities in two-dimensional hybrid organic perovskites
Abdel-Baki, K.; Boitier, F.; Diab, H.; Lanty, G.; Jemli, K.; Lédée, F.; Garrot, D.; Deleporte, E.; Lauret, J. S.
2016-02-01
Due to their high potentiality for photovoltaic applications or coherent light sources, a renewed interest in hybrid organic perovskites has emerged for few years. When they are arranged in two dimensions, these materials can be considered as hybrid quantum wells. One consequence of the unique structure of 2D hybrid organic perovskites is a huge exciton binding energy that can be tailored through chemical engineering. We present experimental investigations of the exciton non-linearities by means of femtosecond pump-probe spectroscopy. The exciton dynamics is fitted with a bi-exponential decay with a free exciton life-time of ˜100 ps. Moreover, an ultrafast intraband relaxation (energy.
Suppression of space broadening of exciton polariton transport by Bloch oscillation effect
Duan, Xudong; Zou, Bingsuo; Zhang, Yongyou
2015-12-01
We theoretically study the transport of exciton polaritons under different applied photon potentials. The relation between the photon potentials and the thickness of the cavity layer is first calculated by finite-element simulation. The theoretical analysis and numerical calculation indicate that the cavity photon potential is proportional to the thickness of the cavity layer with the coefficient being about 1.8 meV nm-1. Further, the periodic and linear photon potentials are considered to control the transport of the exciton polaritons in weak- and strong-field pump situations. In both situations the periodic potential cannot by itself effectively suppress the scatterings of the disorder potentials of the cavity photons and excitons and the nonlinear exciton-exciton interaction. When the linear potential is added to the cavity photons, the exciton polariton transport exhibits the Bloch oscillation behavior. Importantly, the polariton Bloch oscillation can strongly suppress the space broadening of the exciton polariton transport due to the disorder potentials and nonlinear exciton-exciton interaction, which is beneficial for designing the polariton circuits.
Dephasing in the quasi-two-dimensional exciton-biexciton system
Langbein, Wolfgang Werner; Hvam, Jørn Märcher
2000-01-01
The polarization decay in the exciton-biexciton system of a homogeneously broadened single quantum well is studied by transient four-wave mixing. All three decay rates in the exciton-biexciton three-level system are deduced. The relation between the rates unravels correlations between scattering...... processes of excitons and biexcitons. Density and temperature dependences show that the involved processes are mainly radiative decay and phonon scattering. The radiative decay rate of the biexcitons is found to be comparable to the one of the excitons, and the involved spontaneous photon emissions from...
Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells
Dimitrov, Stoichko
2016-01-13
The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in polymer films and has a direct impact on the photocurrent generation by organic solar cell devices. However, very little is known about the material properties controlling the lifetimes of singlet excitons, with most of our knowledge originating from studies of small organic molecules. Herein, we provide a brief summary of the nature of the excited states in conjugated polymer films and then present an analysis of the singlet exciton lifetimes of 16 semiconducting polymers. The exciton lifetimes of seven of the studied polymers were measured using ultrafast transient absorption spectroscopy and compared to the lifetimes of seven of the most common photoactive polymers found in the literature. A plot of the logarithm of the rate of exciton decay vs. the polymer optical bandgap reveals a medium correlation between lifetime and bandgap, thus suggesting that the Energy Gap Law may be valid for these systems. This therefore suggests that small bandgap polymers can suffer from short exciton lifetimes, which may limit their performance in organic solar cell devices. In addition, the impact of film crystallinity on the exciton lifetime was assessed for a small bandgap diketopyrrolopyrrole co-polymer. It is observed that the increase of polymer film crystallinity leads to reduction in exciton lifetime and optical bandgap again in agreement with the Energy Gap Law.
On the binding energies of excitons in polar quantum well structures in a weak electric field
Wu Yun-Feng; Liang Xi-Xia; K. K. Bajaj
2005-01-01
The binding energies of excitons in quantum well structures subjected to an applied uniform electric field by taking into account the exciton longitudinal optical phonon interaction is calculated. The binding energies and corresponding Stark shifts for Ⅲ-Ⅴ and Ⅱ-Ⅵ compound semiconductor quantum well structures have been numerically computed.The results for GaAs/AlGaAs and ZnCdSe/ZnSe quantum wells are given and discussed. Theoretical results show that the exciton-phonon coupling reduces both the exciton binding energies and the Stark shifts by screening the Coulomb interaction. This effect is observable experimentally and cannot be neglected.
Tavares, Luciana; Cadelano, Michele; Quochi, Francesco
2015-01-01
) spectroscopy to quantify exciton diffusion and resonance-energy transfer (RET) processes in multi-layered nanofibers consisting of alternating layers of para-hexaphenyl (p6P) and α-sexithiophene (6T), serving as exciton donor and acceptor material, respectively. The high probability for RET processes...... is confirmed by Quantum Chemical calculations. The activation energy for exciton diffusion in p6P is determined to be as low as 19 meV, proving p6P epitaxial layers also as a very suitable donor material system. The small activation energy for exciton diffusion of the p6P donor material, the inferred high p6P...
Direct observation of free-exciton thermalization in quantum-well structures
Umlauff, M.; Hoffmann, J.; Kalt, H.
1998-01-01
We report on a direct observation of free-exciton thermalization in quantum-well structures. A narrow energy distribution of free 1s excitons is created in ZnSe-based quantum wells by emission of one LO phonon after optical excitation of the continuum stales with picosecond laser pulses. The subs......We report on a direct observation of free-exciton thermalization in quantum-well structures. A narrow energy distribution of free 1s excitons is created in ZnSe-based quantum wells by emission of one LO phonon after optical excitation of the continuum stales with picosecond laser pulses...
Exciton binding energy in GaAsBiN spherical quantum dot heterostructures
Das, Subhasis; Dhar, S.
2017-03-01
The ground state exciton binding energies (EBE) of heavy hole excitons in GaAs1-x-yBixNy - GaAs spherical quantum dots (QD) are calculated using a variational approach under 1s hydrogenic wavefunctions within the framework of effective mass approximation. Both the nitrogen and the bismuth content in the material are found to affect the binding energy, in particular for larger nitrogen content and lower dot radii. Calculations also show that the ground state exciton binding energies of heavy holes increase more at smaller dot sizes as compared to that for the light hole excitons.
Effects of Electric and Magnetic Fields on Pure Dephasing of Exciton Qubits
LIU Yun-Fei; XIAO Jing-Lin
2009-01-01
In a two-dimensional quantum dot (QD) with parabolic confinement potential, we investigate pure dephasing due to deformation potential exciton-bulk longitudinal acoustic phonons (LAP) interaction for exciton qubits under the influence of external static electric and magnetic fields by adopting the full quantum-mechanical method of Kunihiro Kojima and Akihisa Tomita. The wave function is found and the dependence of the pure dephusing factor on the confinement length of the QD and time and temperature is discussed. We find the external electric and magnetic fields have important effects on pure dephasing of exciton qubits because exciton-LAP interaction increases, leading to more pure dephasing.
Spatial mapping of exciton lifetimes in single ZnO nanowires
J. S. Reparaz
2013-07-01
Full Text Available We investigate the spatial dependence of the exciton lifetimes in single ZnO nanowires. We have found that the free exciton and bound exciton lifetimes exhibit a maximum at the center of nanowires, while they decrease by 30% towards the tips. This dependence is explained by considering the cavity-like properties of the nanowires in combination with the Purcell effect. We show that the lifetime of the bound-excitons scales with the localization energy to the power of 3/2, which validates the model of Rashba and Gurgenishvili at the nanoscale.
Transport of dipolar excitons in (Al,Ga)N/GaN quantum wells
Fedichkin, F.; Andreakou, P.; Jouault, B.; Vladimirova, M.; Guillet, T.; Brimont, C.; Valvin, P.; Bretagnon, T.; Dussaigne, A.; Grandjean, N.; Lefebvre, P.
2015-05-01
We investigate the transport of dipolar indirect excitons along the growth plane of polar (Al,Ga)N/GaN quantum well structures by means of spatially and time-resolved photoluminescence spectroscopy. The transport in these strongly disordered quantum wells is activated by dipole-dipole repulsion. The latter induces an emission blue shift that increases linearly with exciton density, whereas the radiative recombination rate increases exponentially. Under continuous, localized excitation, we observe continuously decreasing emission energy, as excitons propagate away from the excitation spot. This corresponds to a steady-state gradient of exciton density, measured over several tens of micrometers. Time-resolved microphotoluminescence experiments provide information on the dynamics of recombination and transport of dipolar excitons. We account for the ensemble of experimental results by solving the nonlinear drift-diffusion equation. Quantitative analysis suggests that in such structures, exciton propagation on the scale of 10 to 20 μ m is mainly driven by diffusion, rather than by drift, due to the strong disorder and the presence of nonradiative defects. Secondary exciton creation, most probably by the intense higher-energy luminescence, guided along the sample plane, is shown to contribute to the exciton emission pattern on the scale up to 100 μ m . The exciton propagation length is strongly temperature dependent, the emission being quenched beyond a critical distance governed by nonradiative recombination.
Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells
Stoichko D. Dimitrov
2016-01-01
Full Text Available The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in polymer films and has a direct impact on the photocurrent generation by organic solar cell devices. However, very little is known about the material properties controlling the lifetimes of singlet excitons, with most of our knowledge originating from studies of small organic molecules. Herein, we provide a brief summary of the nature of the excited states in conjugated polymer films and then present an analysis of the singlet exciton lifetimes of 16 semiconducting polymers. The exciton lifetimes of seven of the studied polymers were measured using ultrafast transient absorption spectroscopy and compared to the lifetimes of seven of the most common photoactive polymers found in the literature. A plot of the logarithm of the rate of exciton decay vs. the polymer optical bandgap reveals a medium correlation between lifetime and bandgap, thus suggesting that the Energy Gap Law may be valid for these systems. This therefore suggests that small bandgap polymers can suffer from short exciton lifetimes, which may limit their performance in organic solar cell devices. In addition, the impact of film crystallinity on the exciton lifetime was assessed for a small bandgap diketopyrrolopyrrole co-polymer. It is observed that the increase of polymer film crystallinity leads to reduction in exciton lifetime and optical bandgap again in agreement with the Energy Gap Law.
Matsuda, Takuya; Yokoshi, Nobuhiko; Ishihara, Hajime
2015-06-01
We develop a theoretical formalism to calculate photoluminescence (PL) spectrum of weakly confined excitons incorporating the microscopic nonlocal optical response. The nonlocality is caused by the center-of-mass (c. m.) motion of exciton and becomes remarkable in nano-to-bulk crossover regime. The theory successfully explains the characteristics of recently observed peculiar PL spectra in high quality CuCl films [5], wherein the signals appear at the exciton states with the very large radiative corrections not only for the lowest level but also for the higher ones including non-dipole types of excitons.
Long Lifetime Hole Traps at Grain Boundaries in CdTe Thin-Film Photovoltaics
Mendis, B. G.; Gachet, D.; Major, J. D.; Durose, K.
2015-11-01
A novel time-resolved cathodoluminescence method, where a pulsed electron beam is generated via the photoelectric effect, is used to probe individual CdTe grain boundaries. Excitons have a short lifetime (≤100 ps ) within the grains and are rapidly quenched at the grain boundary. However, a ˜47 meV shallow acceptor, believed to be due to oxygen, can act as a long lifetime hole trap, even at the grain boundaries where their concentration is higher. This provides direct evidence supporting recent observations of hopping conduction across grain boundaries in highly doped CdTe at low temperature.
Giacometti, Achille; Gögelein, Christoph; Lado, Fred; Sciortino, Francesco; Ferrari, Silvano; Pastore, Giorgio
2014-03-07
Building upon past work on the phase diagram of Janus fluids [F. Sciortino, A. Giacometti, and G. Pastore, Phys. Rev. Lett. 103, 237801 (2009)], we perform a detailed study of integral equation theory of the Kern-Frenkel potential with coverage that is tuned from the isotropic square-well fluid to the Janus limit. An improved algorithm for the reference hypernetted-chain (RHNC) equation for this problem is implemented that significantly extends the range of applicability of RHNC. Results for both structure and thermodynamics are presented and compared with numerical simulations. Unlike previous attempts, this algorithm is shown to be stable down to the Janus limit, thus paving the way for analyzing the frustration mechanism characteristic of the gas-liquid transition in the Janus system. The results are also compared with Barker-Henderson thermodynamic perturbation theory on the same model. We then discuss the pros and cons of both approaches within a unified treatment. On balance, RHNC integral equation theory, even with an isotropic hard-sphere reference system, is found to be a good compromise between accuracy of the results, computational effort, and uniform quality to tackle self-assembly processes in patchy colloids of complex nature. Further improvement in RHNC however clearly requires an anisotropic reference bridge function.
Gögelein, Christoph; Romano, Flavio; Sciortino, Francesco; Giacometti, Achille
2012-03-01
We study the Kern-Frenkel model for patchy colloids using Barker-Henderson second-order thermodynamic perturbation theory. The model describes a fluid where hard sphere particles are decorated with one patch, so that they interact via a square-well potential if they are sufficiently close one another, and if patches on each particle are properly aligned. Both the gas-liquid and fluid-solid phase coexistences are computed and contrasted against corresponding Monte Carlo simulations results. We find that the perturbation theory describes rather accurately numerical simulations all the way from a fully covered square-well potential down to the Janus limit (half coverage). In the region where numerical data are not available (from Janus to hard-spheres), the method provides estimates of the location of the critical lines that could serve as a guideline for further efficient numerical work at these low coverages. A comparison with other techniques, such as integral equation theory, highlights the important aspect of this methodology in the present context.
Characterizing optical dipole trap via fluorescence of trapped cesium atoms
LIU Tao; GENG Tao; YAN Shubin; LI Gang; ZHANG Jing; WANG Junmin; PENG Kunchi; ZHANG Tiancai
2006-01-01
Optical dipole trap (ODT) is becoming an important tool of manipulating neutral atoms. In this paper ODT is realized with a far-off resonant laser beam strongly focused in the magneto-optical trap (MOT) of cesium atoms. The light shift is measured by simply monitoring the fluorescence of the atoms in the magneto-optical trap and the optical dipole trap simultaneously. The advantages of our experimental scheme are discussed, and the effect of the beam waist and power on the potential of dipole trap as well as heating rate is analyzed.
Traps for neutral radioactive atoms
Sprouse, G D; Grossman, J S; Orozco, L A; Pearson, M R
2002-01-01
We describe several methods for efficiently injecting a small number of radioactive atoms into a laser trap. The characteristics of laser traps that make them desirable for physics experiments are discussed and several different experimental directions are described. We describe recent experiments with the alkali element Fr and point to future directions of the neutral atom trapping program.
Zhao, Q.X. [Physical Electronics and Photonics, Department of Physics, Chalmers University of Technology and Goeteborg University, SE-412 96 Goeteborg (Sweden)]. E-mail: zhao@fly.chalmers.se; Wang, S.M. [Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Wei, Y.Q. [Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Sadeghi, M. [Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Larsson, A. [Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Willander, M. [Physical Electronics and Photonics, Department of Physics, Chalmers University of Technology and Goeteborg University, SE-412 96 Goeteborg (Sweden)
2005-06-20
The radiative recombination in In{sub x}Ga{sub 1-x}N{sub 0.01}As{sub 0.99}/GaAs quantum well structures exhibiting strong carrier localization was investigated by optical spectroscopy. For In-concentration from 0 to 30%, the results indicate that the degree of carrier localization decreases with increasing In-concentration. At temperatures below 100 K, the mobility edge excitons as well as localized excitons are identified and their transitions energies strongly depend on the excitation intensity. At elevated temperatures the localized excitons become quenched. The temperature dependence of the photoluminescence emission energy shows different behaviors at different excitation intensities.
Detection of Trapped Antihydrogen
Hydomako, Richard Allan
The ALPHA experiment is an international effort to produce, trap, and perform precision spectroscopic measurements on antihydrogen (the bound state of a positron and an antiproton). Based at the Antiproton Decelerator (AD) facility at CERN, the ALPHA experiment has recently magnetically confined antihydrogen atoms for the first time. A crucial element in the observation of trapped antihydrogen is ALPHA’s silicon vertexing detector. This detector contains sixty silicon modules arranged in three concentric layers, and is able to determine the three-dimensional location of the annihilation of an antihydrogen atom by reconstructing the trajectories of the produced annihilation products. This dissertation focuses mainly on the methods used to reconstruct the annihilation location. Specifically, the software algorithms used to identify and extrapolate charged particle tracks are presented along with the routines used to estimate the annihilation location from the convergence of the identified tracks. It is shown...
Cormick, Cecilia; Morigi, Giovanna
2010-01-01
This work theoretically addresses the trapping an ionized atom with a single valence electron by means of lasers, analyzing qualitatively and quantitatively the consequences of the net charge of the particle. In our model, the coupling between the ion and the electromagnetic field includes the charge monopole and the internal dipole, within a multipolar expansion of the interaction Hamiltonian. Specifically, we perform a Power-Zienau-Woolley transformation, taking into account the motion of the center of mass. The net charge produces a correction in the atomic dipole which is of order $m_e/M$ with $m_e$ the electron mass and $M$ the total mass of the ion. With respect to neutral atoms, there is also an extra coupling to the laser field which can be approximated by that of the monopole located at the position of the center of mass. These additional effects, however, are shown to be very small compared to the dominant dipolar trapping term.
Treutlein, P; Steinmetz, T; Hänsch, T W; Reichel, J; Treutlein, Philipp; Hommelhoff, Peter; Steinmetz, Tilo; H\\"ansch, Theodor W.; Reichel, Jakob
2003-01-01
We report the coherent manipulation of internal states of neutral atoms in a magnetic microchip trap. Coherence lifetimes exceeding 1 s are observed with atoms at distances of $4-130 \\mu$m from the microchip surface. The coherence lifetime in the microtrap is independent of atom-surface distance and agrees well with the results of similar measurements in macroscopic magnetic traps. Due to the absence of surface-induced decoherence, a miniaturized atomic clock with a relative stability in the $10^{-13}$ range can be realized. For applications in quantum information processing, we propose to use microwave near-fields in the proximity of chip wires to create potentials that depend on the internal state of the atoms.
2011-12-01
an inspiring speech at the MIT Physics of Computation 1st Conference in 1981, Feynman proposed the development of a computer that would obey the...on ion trap based 36 quantum computing for physics and computer science students would include lecture notes, slides, lesson plans, a syllabus...reading lists, videos, demonstrations, and laboratories. 37 LIST OF REFERENCES [1] R. P. Feynman , “Simulating physics with computers,” Int. J
Anand, M. J.; Ng, G. I.; Arulkumaran, S.; Manoj Kumar, C. M.; Ranjan, K.; Vicknesh, S.; Foo, S. C.; Syamal, B.; Zhou, X.
2015-02-01
The influence of electric field (EF) on the dynamic ON-resistance (dyn-RDS[ON]) and threshold-voltage shift (ΔVth) of AlGaN/GaN high electron mobility transistors on Si has been investigated using pulsed current-voltage (IDS-VDS) and drain current (ID) transients. Different EF was realized with devices of different gate-drain spacing (Lgd) under the same OFF-state stress. Under high-EF (Lgd = 2 μm), the devices exhibited higher dyn-RDS[ON] degradation but a small ΔVth (˜120 mV). However, at low-EF (Lgd = 5 μm), smaller dyn-RDS[ON] degradation but a larger ΔVth (˜380 mV) was observed. Our analysis shows that under OFF-state stress, the gate electrons are injected and trapped in the AlGaN barrier by tunnelling-assisted Poole-Frenkel conduction mechanism. Under high-EF, trapping spreads towards the gate-drain access region of the AlGaN barrier causing dyn-RDS[ON] degradation, whereas under low-EF, trapping is mostly confined under the gate causing ΔVth. A trap with activation energy 0.33 eV was identified in the AlGaN barrier by ID-transient measurements. The influence of EF on trapping was also verified by Silvaco TCAD simulations.
Menou, Kristen
2013-01-01
Although tidally-locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than about a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO2 as dayside ocean basins dry-up. Water-tr...
PREFACE: International Conference on Optics of Excitons in Confined Systems
Viña, Luis; Tejedor, Carlos; Calleja, José M.
2010-01-01
The OECS11 (International Conference on Optics of Excitons in Confined Systems) was the eleventh of a very successful series of conferences that started in 1987 in Rome (Italy). Afterwards the conference was held at Naxos (Sicily, Italy, 1991), Montpellier (France, 1993), Cortona (Italy, 1995), Göttingen (Germany, 1997), Ascona (Switzerland, 1999), Montpellier (France, 2001), Lecce (Italy, 2003), Southampton (UK, 2005) and Patti (Sicily, Italy, 2007). It is addressed to scientists who lead fundamental and applied research on the optical properties of excitons in novel condensed-matter nanostructures. The 2009 meeting (7-11 September 2009) has brought together a large representation of the world leading actors in this domain, with the aim of stimulating the exchange of ideas, promoting international collaborations, and coordinating research on the newest exciton-related issues such as quantum information science and exciton quantum-collective phenomena. The meeting has included invited lectures, contributed oral presentations and posters, covering the following general topics: low-dimensional heterostructures: quantum wells, quantum wires and quantum dots polaritons quantum optics with excitons and polaritons many-body effects under coherent and incoherent excitation coherent optical spectroscopy quantum coherence and quantum-phase manipulation Bose-Einstein condensation and other collective phenomena excitons in novel materials The OECS 11 was held at the campus of the Universidad Autónoma de Madrid in Cantoblanco. The scientific program was composed of more than 200 contributions divided into 16 invited talks, 44 oral contributions and 3 poster sessions with a total of 150 presentations. The scientific level of the presentations was guaranteed by a selection process where each contribution was rated by three members of the Program Committee. The Conference has gathered 238 participants from 21 different countries, with the following distribution: Germany (43
Crystalline Nanoporous Frameworks: a Nanolaboratory for Probing Excitonic Device Concepts.
Allendorf, Mark D.; Azoulay, Jason; Ford, Alexandra Caroline; Foster, Michael E.; El Gabaly Marquez, Farid; Leonard, Francois Leonard; Leong-Hau, Kirsty; Stavila, Vitalie; Talin, Albert Alec; Wong, Brian M.; Brumbach, Michael T.; Van Gough, D.; Lambert, Timothy N.; Rodriguez, Mark A.; Spoerke, Erik David; Wheeler, David Roger; Deaton, Joseph C.; Centrone, Andrea; Haney, Paul; Kinney, R.; Szalai, Veronika; Yoon, Heayoung P.
2014-09-01
Electro-optical organic materials hold great promise for the development of high-efficiency devices based on exciton formation and dissociation, such as organic photovoltaics (OPV) and organic light-emitting devices (OLEDs). However, the external quantum efficiency (EQE) of both OPV and OLEDs must be improved to make these technologies economical. Efficiency rolloff in OLEDs and inability to control morphology at key OPV interfaces both reduce EQE. Only by creating materials that allow manipulation and control of the intimate assembly and communication between various nanoscale excitonic components can we hope to first understand and then engineer the system to allow these materials to reach their potential. The aims of this proposal are to: 1) develop a paradigm-changing platform for probing excitonic processes composed of Crystalline Nanoporous Frameworks (CNFs) infiltrated with secondary materials (such as a complimentary semiconductor); 2) use them to probe fundamental aspects of excitonic processes; and 3) create prototype OPVs and OLEDs using infiltrated CNF as active device components. These functional platforms will allow detailed control of key interactions at the nanoscale, overcoming the disorder and limited synthetic control inherent in conventional organic materials. CNFs are revolutionary inorganic-organic hybrid materials boasting unmatched synthetic flexibility that allow tuning of chemical, geometric, electrical, and light absorption/generation properties. For example, bandgap engineering is feasible and polyaromatic linkers provide tunable photon antennae; rigid 1-5 nm pores provide an oriented, intimate host for triplet emitters (to improve light emission in OLEDs) or secondary semiconducting polymers (creating a charge-separation interface in OPV). These atomically engineered, ordered structures will enable critical fundamental questions to be answered concerning charge transport, nanoscale interfaces, and exciton behavior that are inaccessible
Hvam, Jørn Märcher; Langbein, Wolfgang; Borri, Paola
1999-01-01
Coherent optical spectroscopy in the form of nonlinear transient four-wave mixing (TFWM) and linear resonant Rayleigh scattering (RRS) has been applied to investigate the exciton dynamics of low-dimensional semiconductor heterostructures. The dephasing times of excitons are determined from...
Control of excitons in multi-layer van der Waals heterostructures
Calman, E. V., E-mail: ecalman@gmail.com; Dorow, C. J.; Fogler, M. M.; Butov, L. V. [Department of Physics, University of California at San Diego, La Jolla, California 92093-0319 (United States); Hu, S.; Mishchenko, A.; Geim, A. K. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom)
2016-03-07
We report an experimental study of excitons in a double quantum well van der Waals heterostructure made of atomically thin layers of MoS{sub 2} and hexagonal boron nitride. The emission of neutral and charged excitons is controlled by gate voltage, temperature, and both the helicity and the power of optical excitation.
Thermal effects in exciton harvesting in biased one-dimensional systems
Vlaming, S. M.; Malyshev, V.A.; Knoester, J.
2008-01-01
The study of energy harvesting in chain-like structures is important due to its relevance to a variety of interesting physical systems. Harvesting is understood as the combination of exciton transport through intra-band exciton relaxation (via scattering on phonon modes) and subsequent quenching by
Exciton states and optical absorption in quantum wires under laser radiation
Gonzalez-Santander, C., E-mail: cglezsantander@fis.ucm.e [GISC, Departamento de Fisica de Materiales, Universidad Complutense, E-28040 Madrid (Spain); Dominguez-Adame, F. [GISC, Departamento de Fisica de Materiales, Universidad Complutense, E-28040 Madrid (Spain)
2010-05-03
We analyze the exciton states in a quantum wire under intense laser radiation. Electrons and holes are confined by the parabolic potential of the quantum wire. An exactly solvable model is introduced for calculating the exciton binding energy, replacing the actual Coulomb interaction between the electron and the hole by a projective operator.
Excitonic-biexcitonic polariton interference in thin platelet of CuCl
Koinov, Z. G.
1999-04-01
The spectral position in Q-space of the transmission maxima of a 0.15 μm thick CuCl single crystal with parallel plates in Z 3-excitonic resonance region, measured by Mita and Nagasawa, has been interpreted as an indication for the mutual interference effect between two propagating excitonic-biexcitonic polariton modes.
Dephasing and interaction of excitons CdSe/ZnSe islands
Wagner, H. P.; Tranitz, H.-P.; Preis, H.;
2000-01-01
The dephasing of excitons in self-organized CdSe/ZnSe islands grown by molecular-beam epitaxy is investigated using spectrally resolved four-wave mixing. A distribution of dephasing times is observed, indicating the existence of localized excitons with different relaxation times at comparable...
Continuum contribution to excitonic four-wave mixing due to interaction-induced nonlinearities
Birkedal, Dan; Vadim, Lyssenko; Hvam, Jørn Märcher
1996-01-01
We present an experimental and theoretical investigation of ultrafast transient four-wave mixing of GaAs/AlxGa1-xAs quantum wells for coherent excitation of exciton and continuum states. The signal appears at the exciton resonance and is shown to consist of two contributions: an intense spectrally...
Radiation effects from first principles : the role of excitons in electronic-excited processes.
Wong, Bryan Matthew
2009-09-01
Electron-hole pairs, or excitons, are created within materials upon optical excitation or irradiation with X-rays/charged particles. The ability to control and predict the role of excitons in these energetically-induced processes would have a tremendous impact on understanding the effects of radiation on materials. In this report, the excitonic effects in large cycloparaphenylene carbon structures are investigated using various first-principles methods. These structures are particularly interesting since they allow a study of size-scaling properties of excitons in a prototypical semi-conducting material. In order to understand these properties, electron-hole transition density matrices and exciton binding energies were analyzed as a function of size. The transition density matrices allow a global view of electronic coherence during an electronic excitation, and the exciton binding energies give a quantitative measure of electron-hole interaction energies in these structures. Based on overall trends in exciton binding energies and their spatial delocalization, we find that excitonic effects play a vital role in understanding the unique photoinduced dynamics in these systems.
Thermalization of Hot Free Excitons in ZnSe-Based Quantum Wells
Hoffmann, J.; Umlauff, M.; Kalt, H.
1997-01-01
Thermalization of hot-exciton populations in ZnSe quantum wells occurs on a time scale of 100 ps. Strong exciton-phonon coupling in II-VI semiconductors leads to a direct access to the thermalization dynamics via time-resolved spectroscopy of phonon-assisted luminescence. The experimental spectra...
Dephasing and interaction of excitons CdSe/ZnSe islands
Wagner, H. P.; Tranitz, H.-P.; Preis, H.
2000-01-01
The dephasing of excitons in self-organized CdSe/ZnSe islands grown by molecular-beam epitaxy is investigated using spectrally resolved four-wave mixing. A distribution of dephasing times is observed, indicating the existence of localized excitons with different relaxation times at comparable...
Direct Measurement of the Triplet Exciton Diffusion Length in Organic Semiconductors
Mikhnenko, Oleksandr V.; Ruiter, Roald; Blom, Paul W. M.; Loi, Maria Antonietta
2012-01-01
We present a new method to measure the triplet exciton diffusion length in organic semiconductors. N,N'-di-[(1-naphthyl)-N,N'-diphenyl]-1,1'-biphenyl-4,4'-diamine (NPD) has been used as a model system. Triplet excitons are injected into a thin film of NPD by a phosphorescent thin film, which is opti
Dynamics of the Exciton Screening in CuCl on a Subpicosecond Time Scale
Hulin, D.; Antonetti, A.; Chase, L. L.; Martin, J. L.; Migus, A.; Mysyrowicz, A.; Löwenau, J. P.; Schmitt-Rink, S.; Haug, H.
1984-02-01
The dynamics of exciton screening in CuCl, following optical injection of a high-density hot plasma, is studied with subpicosecond resolution. A delayed response for exciton bleaching of ~1 ps is attributed to thermal relaxation of the plasma. The results are compared to a theoretical treatment of the particle density- and temperature-dependent dielectric function.
Li, L. L.; Zarenia, M.; Xu, W.; Dong, H. M.; Peeters, F. M.
2017-01-01
The magnetic-field dependence of the energy spectrum, wave function, binding energy, and oscillator strength of exciton states confined in a circular graphene quantum dot (CGQD) is obtained within the configuration interaction method. We predict that (i) excitonic effects are very significant in the CGQD as a consequence of a combination of geometric confinement, magnetic confinement, and reduced screening; (ii) two types of excitons (intravalley and intervalley) are present in the CGQD because of the valley degree of freedom in graphene; (iii) the intravalley and intervalley exciton states display different magnetic-field dependencies due to the different electron-hole symmetries of the single-particle energy spectra; (iv) with increasing magnetic field, the exciton ground state in the CGQD undergoes an intravalley to intervalley transition accompanied by a change of angular momentum; (v) the exciton binding energy does not increase monotonically with the magnetic field due to the competition between geometric and magnetic confinements; and (vi) the optical transitions of the intervalley and intravalley excitons can be tuned by the magnetic field, and valley-dependent excitonic transitions can be realized in a CGQD.
The Role of Excitons on Light Amplification in Lead Halide Perovskites.
Lü, Quan; Wei, Haohan; Sun, Wenzhao; Wang, Kaiyang; Gu, Zhiyuan; Li, Jiankai; Liu, Shuai; Xiao, Shumin; Song, Qinghai
2016-12-01
The role of excitons on the amplifications of lead halide perovskites has been explored. Unlike the photoluminescence, the intensity of amplified spontaneous emission is partially suppressed at low temperature. The detailed analysis and experiments show that the inhibition is attributed to the existence of exciton and a quantitative model has been built to explain the experimental observations.
Real-Time Tracking of Singlet Exciton Diffusion in Organic Semiconductors
Kozlov, Oleg V.; de Haan, Foppe; Kerner, Ross A.; Rand, Barry P.; Cheyns, David; Pshenichnikov, Maxim S.
2016-01-01
Exciton diffusion in organic materials provides the operational basis for functioning of such devices as organic solar cells and light-emitting diodes. Here we track the exciton diffusion process in organic semiconductors in real time with a novel technique based on femtosecond photoinduced absorpti
Influence of exciton-phonon interaction on long energy transport in J-aggregates
Bartnik, E. A.; Bednarz, M.
1998-01-01
This paper presents a theoretical model intended to address the question of energy transfer in two-dimensional molecular assemblies such as Scheibe aggregates. A new phonon-exciton interaction is introduced to explain the exciton width in J aggregates. It is shown that the long range energy transport can occur for weakly interacting acceptors.
Exciton size and binding energy limitations in one-dimensional organic materials
Kraner, S., E-mail: stefan.kraner@iapp.de; Koerner, C.; Leo, K. [Institut für Angewandte Photophysik, Technische Universität Dresden, Dresden (Germany); Scholz, R. [Institut für Angewandte Photophysik, Technische Universität Dresden, Dresden (Germany); Dresden Center of Computational Materials Science, Technische Universität Dresden, D-01062 Dresden (Germany); Plasser, F. [Institute for Theoretical Chemistry, University of Vienna, A-1090 Vienna (Austria)
2015-12-28
In current organic photovoltaic devices, the loss in energy caused by the charge transfer step necessary for exciton dissociation leads to a low open circuit voltage, being one of the main reasons for rather low power conversion efficiencies. A possible approach to avoid these losses is to tune the exciton binding energy to a value of the order of thermal energy, which would lead to free charges upon absorption of a photon, and therefore increase the power conversion efficiency towards the Shockley-Queisser limit. We determine the size of the excitons for different organic molecules and polymers by time dependent density functional theory calculations. For optically relevant transitions, the exciton size saturates around 0.7 nm for one-dimensional molecules with a size longer than about 4 nm. For the ladder-type polymer poly(benzimidazobenzophenanthroline), we obtain an exciton binding energy of about 0.3 eV, serving as a lower limit of the exciton binding energy for the organic materials investigated. Furthermore, we show that charge transfer transitions increase the exciton size and thus identify possible routes towards a further decrease of the exciton binding energy.
Particle-in-a-Box Model of Exciton Absorption and Electroabsorption in Conjugated Polymers
Pedersen, Thomas Garm
2001-01-01
The recently proposed particle-in-a-box model of one-dimensional excitons in conjugated polymers is applied in calculations of optical absorption and electroabsorption spectra. It is demonstrated that for polymers of long conjugation length a superposition of single exciton resonances produces...
Coherent dynamics of interwell excitons in GaAs/AlxGa1-xAs superlattices
Mizeikis, V.; Birkedal, Dan; Langbein, Wolfgang Werner;
1997-01-01
Coherent exciton dynamics in a GaAs/AlxGa1-xAs narrow-miniband superlattice is studied by spectrally resolved transient four-wave mixing. Coherent optical properties of the investigated structure are found to be strongly affected by the existence of two different heavy-hole excitonic states. One ...
Excitonic signatures in the optical response of single-wall carbon nanotubes
Voisin, Christophe; Berger, Sebastien; Cassabois, Guillaume; Roussignol, Philippe [Laboratoire Pierre Aigrain, Ecole Normale Superieure, CNRS UMR8551, UPMC, Universite Paris Diderot, 24 rue Lhomond, 75005 Paris (France); Berciaud, Stephane [IPCMS, UMR 7504, CNRS Universite de Strasbourg, 23 rue du Loess, 67034 Strasbourg (France); Yan, Hugen; Hone, James; Heinz, Tony F. [Physics, Mechanical Engineering and Electrical Engineering Departments, Columbia University, New York, NY (United States); Lauret, Jean-Sebastien [Laboratoire de Photonique Quantique et Moleculaire, Ecole Normale Superieure de Cachan, CNRS UMR 8537, Institut Dalembert, 61 Avenue Wilson, Cachan (France)
2012-05-15
The optical properties of single-wall carbon nanotubes (SWNTs) are dominated by the excitonic character of the transitions even at room temperature. The very peculiar properties of these excitons arise from both the one-dimensional (1D) nature of carbon nanotubes and from the electronic properties of graphene from which nanotubes are made. We first propose a brief qualitative review of the structure of the excitonic manifold and emphasize the role of dark states. We describe recent experimental investigations of this excitonic structure by means of temperature dependent PL measurements. We investigate the case of upper sub-bands and show that high-order optical transitions remain excitonic for large diameter nanotubes. A careful investigation of Rayleigh scattering spectra at the single nanotube level reveals clear exciton-phonon side-bands and Lorentzian line profiles for all semi-conducting nanotubes. In contrast, metallic nanotubes show an ambivalent behavior which is related to the reduced excitonic binding energy. Schematic of the exciton manifold in single-wall carbon nanotubes. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)