WorldWideScience

Sample records for french radioactive waste

  1. A study on applicability of French legislative approach for radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyun Yub; Lee, Keon Hee [Seoul National University, Seoul (Korea, Republic of); Kim, Jong Bin [EuroNPC Ltd, Seoul (Korea, Republic of)

    2015-03-15

    Radioactive waste processing and disposal is a major problem that needs to be fully addressed by countries that use nuclear power. In recent years, only a few countries have made substantial progress on this issue, and the French stepwise legislative approach on radioactive waste management is evaluated as a successful case. For South Korea, it is still necessary to prepare an adequate national policy for dealing with radioactive waste so the French model has been suggested as a direction of policy making in Korea. Based on comparisons of technical status and sociopolitical indexes in both countries, then this study suggests that the French legislative model is a valid one which may be applicable to the Korean context, especially in relation to resource recycling and social acceptance enhancement strategies.

  2. Radioactive wastes. Management

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2001-01-01

    Many documents (journal articles, book chapters, non-conventional documents..) deal with radioactive wastes but very often this topic is covered in a partial way and sometimes the data presented are contradictory. The aim of this article is to precise the definition of radioactive wastes and the proper terms to describe this topic. It describes the main guidelines of the management of radioactive wastes, in particular in France, and presents the problems raised by this activity: 1 - goal and stakes of the management; 2 - definition of a radioactive waste; 3 - radionuclides encountered; 4 - radio-toxicity and radiation risks; 5 - French actors of waste production and management; 6 - French classification and management principles; 7 - wastes origin and characteristics; 8 - status of radioactive wastes in France per categories; 9 - management practices; 10 - packages conditioning and fabrication; 11 - storage of wastes; 12 - the French law from December 30, 1991 and the opportunities of new ways of management; 13 - international situation. (J.S.)

  3. French radioactive wastes performance assessment and the natural analogues approach: an overview

    International Nuclear Information System (INIS)

    Escalier des Orres, P.

    1988-10-01

    One of the main difficulties linked to the Radioactive Waste Performance Assessment calculations lies in the scale of time and space underlying these calculations: mechanisms and parameters can directly be affected by time or space dependency. The ''natural analogues'' approach has evident advantages, at least qualitative, to enlighten these aspects. It may also provide confidence in our ability to model partial or overall natural systems. The following paper gives the headlines of the use of the ''natural analogues'' methodology in the French Radioactive Wastes Performance Assessment in the field of waste disposal

  4. A new way of treating french radioactive waste

    International Nuclear Information System (INIS)

    Bernard Rottner; Fabrice Jannot; Lena Bergstroem

    2006-01-01

    STUDSVIK and ONECTRA have built a partnership in order to offer the French market new radwaste treatment services, by putting together their specific knowledge about radioactive waste treatment by combining and completing each other's specific knowledge. STUDSVIK provides services related to incineration, melting and recycling of waste originating from the nuclear industry and fuel fabrication plants. ONECTRA is a well known specialist about nuclear dismantling studies or operations driving, nuclear tools design, environmental engineering, chemical or radiological remediation, and nuclear project management. The goal of this partnership is to propose new solutions to treat radwaste, such as to: lower the global waste management price, Offer solutions for 'exotic' waste, provide recycling operations French nuclear Industry. The overall objectives with STUDSVIK's metal scrap treatment are to reduce the amount of waste having to be disposed of and to recycle valuable metals. The residual weight after treatment is normally between 2% and 7% of the incoming weight, depending on the activity content and combination of metals. Moreover, ONECTRA's specific developments for decontamination processes can lead to treat parts with higher levels of activity than what was done by STUDSVIK before. Experience from volume reduction has made it possible to develop a new approach for treatment of used steam generators. During the second half of 2005 this new method is used for treating a steam generator from a Swedish PWR. FREE RELEASE is a current operation in Europe, following the RP 89 European commission's recommendations, table 3-1. STUDSVIK is free-releasing metals since more than 15 years, with a long time partnership with the Steel Industry( ex: metallic waste from UK, Germany, Sweden, Switzerland, Belgium, a.s.o.). The waste owner gives an acceptance guarantee for return of secondary waste (like filter dust, material sorted out, slags, a.s.o), and ingots that can not be

  5. Visiatome: The French Discovery and Information Center on Radioactive Waste Management

    International Nuclear Information System (INIS)

    Brunel, G.; Rabbe, C.; Moncouyoux, J.P.

    2006-01-01

    The French radioactive waste management act of December 30, 1991, included two key provisions. It initiated a major research program with three areas of investigation concerning high-level long-lived radioactive waste management routes, and called for the Government to submit a legislative proposal to Parliament within 15 years (by 2006) specifying the policy guidelines adopted. Considering the sensitive nature of the subject, the questions surrounding the issue of radioactive waste, and the social, economic and environmental concerns for present and future generations, the Government has inaugurated, in 2005, a nationwide public debate on these issues between the submittal of the research reports and the parliamentary discussion of the proposed law. In this context, the CEA has decided to concentrate at Marcoule the expertise and experience acquired in the area of radioactive waste management and to make it available to stakeholders and to the public. A scientific cultural center, Visiatome, has been built to inform the public and facilitate the acceptance of nuclear energy and radioactive waste management by presenting the subject in a manner adapted to the level of knowledge of the visitors. A modern, fun and interactive exhibition of 600 m 2 allows visitors to find out more about energy, waste products, sources of radioactive waste, their treatment and where they are stored, natural and artificial radioactivity, effects of radiation on mankind. It also offers a media library, an auditorium for group discussions and teaching rooms for school groups with the aim of encouraging students to discover science through enjoyment. Visiatome has received several thousand visitors since it was opened to the public on April 10, 2005, and the initial results of this experience can now be reviewed: the design principles of the center and its permanent exhibits, the characteristics of the visitors and their perception of the subjects presented. (authors)

  6. National Inventory of Radioactive Wastes, Edition 1998

    International Nuclear Information System (INIS)

    Pallard, Bernard; Vervialle, Jean Pierre; Voizard, Patrice

    1998-01-01

    The National Radioactive Waste Inventory is an annual report of French National Agency for Radioactive Waste Management (ANDRA). The issue on 1998 has the following content: 1. General presentation; 2. Location of radioactive wastes in France; 3. Regional file catalogue; 4. Address directory; 5. Annexes. The inventory establishes the producer and owner categories, the French overseas waste sources, location of pollutant sides, spread wastes (hospitals, universities and industrial sector), railways terminals

  7. Low-level Radioactive waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    This meeting describes low-level radioactive waste management problems and contains 8 papers: 1 Low-level radioactive waste management: exemption concept and criteria used by international organizations. 2 Low-level radioactive waste management: french and foreign regulations 3 Low-level radioactive waste management in EDF nuclear power plants (FRANCE) 4 Low-level radioactive waste management in COGEMA (FRANCE) 5 Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE) 6 Low-level radioactive waste management in hospitals 7 Low-level radioactive waste disposal: radiation protection laws 8 Methods of low-level radioactive materials measurements during reactor dismantling or nuclear facilities demolition (FRANCE)

  8. French people and nuclear wastes

    International Nuclear Information System (INIS)

    D'Iribarne, Ph.

    2005-01-01

    On March 21, 2005, the French minister of industry gave to the author of this document, the mission to shade a sociological light on the radioactive wastes perception by French people. The objective of this study was to supply an additional information before the laying down in 2006 of the decisions about the management of high-level and long-lived radioactive wastes. This inquiry, carried out between April 2004 and March 2005, stresses on the knowledge and doubts of the questioned people, on the vision they have of radioactive wastes and of their hazards, and on their opinion about the actors in concern (experts, nuclear companies, government, anti-nuclear groups, public). The last two parts of the report consider the different ways of waste management under study today, and the differences between the opinion of people living close to the Bure site and the opinion of people living in other regions. (J.S.)

  9. Management situation and prospect of radioactive waste

    International Nuclear Information System (INIS)

    Han, Pil Jun

    1985-04-01

    This book tell US that management situation and prospect of radioactive waste matter, which includes importance of energy, independence, limitation of fossil fuel energy, density of nuclear energy, strategy of supply of energy resource in Korea, nuclear energy development and radioactive waste matter, summary of management of radioactive waste, statistics of radioactive waste, disposal principle of radioactive waste, management on radioactive waste after using, disposal of Trench, La Marche in French, and Asse salt mine in Germany.

  10. Radioactive waste management the new French way: An approach to the future

    International Nuclear Information System (INIS)

    Allegre, M.

    1994-01-01

    France has a consistent nuclear energy policy. France must have a consistent nuclear waste policy, too. Andra, since last year a wholly-owned company of the state, is now resuming field work in for Departments (France is divided into 95 territorial administrative departments), all of which have unanimously voted in favor of hosting one of the two underground laboratories that Andra plans to create. This was a real success for Christian Bataille - the French mediator appointed by the government - who selected those four areas. In early January 1994, the French government gave Andra the green light, thus putting an end to the 1990 moratorium. Andra is starting a fifteen year, phased program established by the 1991 Waste Act. After the year 2006, a decision can be made on whether to convert one of the two laboratories into a real waste repository, subject to positive laboratory testing results. Stating that he is a newcomer to the club, the author also emphasizes some truths that should be spoken: showing for instance that men in charge of radioactive waste management must still improve their method of explaining the type of waste involved to the public

  11. Radioactive wastes. Their industrial management

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1982-01-01

    This paper introduces a series that will review the present situation in the field of long-term management of radioactive wastes. Both the meaning and the purposes of an industrial management of radioactive wastes are specified. This short introduction is complemented by outline of data on the French problem [fr

  12. The management of radioactive wastes

    International Nuclear Information System (INIS)

    1998-01-01

    This educative booklet describes the role and missions of the ANDRA, the French national agency for the management of radioactive wastes, and the different aspects of the management of radioactive wastes: goal, national inventory, classification, transport (organisation, regulation, safety), drumming, labelling, surface storage of short life wastes, environmental control, management of long life wastes (composition, research, legal aspects) and the underground research laboratories (description, public information, projects, schedules). (J.S.)

  13. Low-level radioactive waste management: French and foreign regulations

    International Nuclear Information System (INIS)

    Coulon, R.

    1991-01-01

    This paper describes radioactive waste management regulations applied in USA, CANADA, SCANDINAVIA and FRANCE. For low level radioactive wastes, it is necessary to adapt waste management regulations which were firt definite for high level radioactive wastes. So the exemption concept is a simplification method of regulations applied to low radiation sources

  14. Radioactive wastes

    International Nuclear Information System (INIS)

    Dupuis, M.C.

    2007-01-01

    Managing radioactive wastes used to be a peripheral activity for the French atomic energy commission (Cea). Over the past 40 years, it has become a full-fledged phase in the fuel cycle of producing electricity from the atom. In 2005, the national radioactive waste management agency (ANDRA) presented to the government a comprehensive overview of the results drawn from 15 years of research. This landmark report has received recognition beyond France's borders. By broadening this agency's powers, an act of 28 June 2006 acknowledges the progress made and the quality of the results. It also sets an objective for the coming years: work out solutions for managing all forms of radioactive wastes. The possibility of recovering wastes packages from the disposal site must be assured as it was asked by the government in 1998. The next step will be the official demand for the creation of a geological disposal site in 2016

  15. French regulation and waste management

    International Nuclear Information System (INIS)

    1984-08-01

    The organization and the role played by French safety authorities for waste management are described. The French policy for storage and conditioning: basic objectives and waste management optimization are specified. Safety requirements are based on the barrier principle, they are mentioned for packaging and storage. The ''Institut de Protection et Surete Nucleaire'' deals not only with safety analysis but also help the ''autorites ministerielles'' for the development of fundamental safety rules. Examples for spent fuel storage and radioactive materials transport are treated in appendixes [fr

  16. Radioactive wastes management

    International Nuclear Information System (INIS)

    Albert, Ph.

    1999-01-01

    This article presents the French way to deal with nuclear wastes. 4 categories of radioactive wastes have been defined: 1) very low-level wastes (TFA), 2) low or medium-wastes with short or medium half-life (A), 3) low or medium-level wastes with long half-life (B), and 4) high-level wastes with long half-life (C). ANDRA (national agency for the management of radioactive wastes) manages 2 sites of definitive surface storage (La-Manche and Aube centers) for TFA-wastes. The Aube center allows the storage of A-wastes whose half-life is less than 30 years. This site will receive waste packages for 50 years and will require a regular monitoring for 300 years after its decommissioning. No definitive solutions have been taken for B and C wastes, they are temporarily stored at La Hague processing plant. Concerning these wastes the French parliament will have to take a decision by 2006. At this date and within the framework of the Bataille law (1991), scientific studies concerning the definitive or retrievable storage, the processing techniques (like transmutation) will have been achieved and solutions will be proposed. These studies are numerous, long and complex, they involve fresh knowledge in geology, chemistry, physics,.. and they have implied the setting of underground facilities in order to test and validate solutions in situ. This article presents also the transmutation technique. (A.C.)

  17. Current status of the French Radioactive Waste Disposal Programme

    International Nuclear Information System (INIS)

    Dupuis, M.C.

    2006-01-01

    The 15 years of research prescribed by the Law of 1991 are now over. Their results led to the promulgation of a new planning act on 28 June 2006 detailing the applicable conditions and process for the pursuit of further programmes. It sets 2015 as the deadline to submit the statutory application in order to commission a deep geological repository for high-level and long-lived radioactive waste by 2025. The new law also sets the prescribed framework for the management programmes of the different waste categories. As the years went by, experience kept accumulating and helped us to advance. Today, we are able to draw some lessons concerning the success factors of the most difficult projects in complex environments. Significant progress was recorded not only on the scientific and technical scales, but also and mainly with regard to governance and decision-making. The Planning Act of 28 June 2006 concerning the sustainable management of radioactive materials and waste marks a new step in the French legislation. It represents the natural outcome of the 15 years of research instigated by the Law of 30 December 1991. It is known also as the 'Bataille Law' from the name of Christian Bataille, MP, who drafted it and monitored its enforcement as a member of the Parliamentary Office for Scientific and Technological Assessment (Office parlementaire d'evaluation des choix scientifiques et techniques - OPECST). Many advances were made concerning not only scientific and technological knowledge, but also governance. The new law opens brand new prospects in relation with those different aspects. (author)

  18. Containers and overpacks for high-level radioactive waste in deep geological disposal. Conditions: French Corrosion Programme

    International Nuclear Information System (INIS)

    Crusset, D.; Plas, F.; Santarini, G.

    2003-01-01

    Within the framework of the act of French law dated 31 December, 1991, ANDRA (National Radioactive Waste Management Agency) is responsible for conducting the feasibility study on disposal of reversible and irreversible high-level or long-life radioactive waste in deep geological formations. Consequently, ANDRA is carrying out research on corrosion of the metallic materials envisaged for the possible construction of overpacks for vitrified waste packages or containers for spent nuclear fuel. Low-alloy or unalloyed steels and the passive alloys (Fe-Ni-Cr-Mo) constitute the two families of materials studied and ANDRA has set up a research programme in partnership with other research organisations. The 'broad outlines' of the programme, which includes experimental and modelling operations, are presented. (authors)

  19. What to do with radioactive wastes?

    International Nuclear Information System (INIS)

    2006-01-01

    This power point presentation (82 slides) gives information on what is a radioactive waste, radioactivity and historical review of radioactivity, radioactive period, natural radioactivity (with examples of data), the three main radiation types (α, β, γ), the origin of radioactive wastes (nuclear power, research, defense, other), the proportion of radioactive wastes in the total of industrial wastes in France, the classification of nuclear wastes according to their activity and period, the quantities and their storage means, the 1991 december 30 law (France) related to the radioactive waste management, the situation in other countries (Germany, Belgium, Canada, USA, Finland, Japan, Netherlands, Sweden, Switzerland), volume figures and previsions for the various waste types in 2004, 2010 and 2020, the storage perspectives, the French national debate on radioactive waste management and the objective of perpetuated solutions, the enhancement of the public information, the 15 June 2006 law on a sustainable management of radioactive materials and wastes with three main axis (deep separation and transmutation, deep storage, waste conditioning and long term surface storage), and the development of a nuclear safety and waste culture that could be extended to other types of industry

  20. Low-level radioactive waste management in France: two decades of experience

    International Nuclear Information System (INIS)

    Marque, Y.

    1993-01-01

    Human activities generate wastes and these wastes have potential impacts on our environment and important implications for the twilight years of the twentieth century. Radioactive wastes, in particular, is a matter of considerable concern to the public, with emotional debate often clouding the legitimate need of the public for information for the subject. In France, the development of the nuclear power program and the widespread use of radioisotopes by the medical profession, industry and the research community called for a radioactive waste management program. In 1979, the French Government created ANDRA, the National Radioactive Waste Management Agency, which has the complete responsibility for radioactive waste disposal, including design, siting, construction and operation of waste disposal facilities. In 1991, the Waste Law reaffirmed ANDRA's principle functions and created the National Waste Observatory within ANDRA, whose the mission is to establish and maintain a current inventory of all radioactive waste storage and disposal sites on French territory. The present paper describes the generation of short-lived waste in France, the french policy on short-lived waste disposal, operation and cancellation of Manche plant, design and construction of Aube plant

  1. Long term radioactive waste management

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1984-01-01

    In France, waste management, a sensitive issue in term of public opinion, is developing quickly, and due to twenty years of experience, is now reaching maturity. With the launching of the French nuclear programme, the use of radioactive sources in radiotherapy and industry, waste management has become an industrial activity. Waste management is an integrated system dealing with the wastes from their production to the long term disposal, including their identification, sortage, treatment, packaging, collection and transport. This system aims at guaranteing the protection of present and future populations with an available technology. In regard to their long term management, and the design of disposals, radioactive wastes are divided in three categories. This classification takes into account the different radioisotopes contained, their half life and their total activity. Presently short-lived wastes are stored in the shallowland disposal of the ''Centre de la Manche''. Set up within the French Atomic Energy Commission (CEA), the National Agency for waste management (ANDRA) is responsible within the framework of legislative and regulatory provisions for long term waste management in France [fr

  2. Radioactive wastes. The groundwork of current solutions

    International Nuclear Information System (INIS)

    Grevoz, A.; Boullis, B.; Devezeaux de Lavergne, J.G.; Butez, M.; Bordier, G.; Vitart, X.; Hablot, I.; Chastagnet, F.

    2005-01-01

    Today the groundwork laid down by research has made processes available for the durable treatment and conditioning of all types of radioactive waste. This document illustrates the today situations in five presentations. Now standing as a national reference, the french inventory of radioactive waste, drawn up by ANDRA, has not only expanded to cover recoverable material but also features predictions of waste arisings for 2010 and 2020, including waste from the decommissioning of current installations. The current process used for spent fuel reprocessing allows extraction for recycling purpose, of uranium and plutonium, with very high recovery and purification rates. Advances in characterization and decontamination allow improvements in sorting and retrieval and conditioning to be considered for older wastes. The french National radioactive waste management agency (ANDRA) is already providing optimum industrial solutions for all short-lived, low and very low level waste on its Soulaines and Morvillers sites. For several decades, Areva has been reprocessing spent fuel and conditioning ultimate waste in its La Hague plants. (A.L.B.)

  3. The management of radioactive wastes from small producers

    International Nuclear Information System (INIS)

    1996-01-01

    Medicine, research and industry generate various type of radioactive wastes which have to be managed by the ANDRA, the French agency for the management of radioactive wastes. This educative booklet explains the missions of the ANDRA with respect to these small producers: collection, selection, conditioning, control and storage of wastes. (J.S.)

  4. Andra. Everything on the management of radioactive wastes

    International Nuclear Information System (INIS)

    2014-08-01

    This publication briefly presents the ANDRA, the French National Agency for the management of radioactive wastes, its mission, its activities, its financing, and some key figures. It briefly presents the phenomenon of radioactivity, radioactive wastes and their storage. It presents the different classes of radioactive wastes (very-low-level, low- and intermediate-level and short-lived, low-level and long-lived, high-level and intermediate-level and long-lived) and their storage principles. It sketches the pathway followed by a waste from its production to its storage. It presents the various ANDRA sites

  5. Andra - Everything you ever wanted to know about radioactive waste management

    International Nuclear Information System (INIS)

    2014-08-01

    Andra is a publicly owned industrial and commercial body, set up by the French act of 30 December 1991. Its role was expanded by the 2006 Planning Act on the long-term management of radioactive materials and waste. Andra is independent of the producers of radioactive waste, and is under the supervision of the ministries responsible for energy, research and the environment. Andra is responsible for identifying, implementing and guaranteeing safe management solutions for all French radioactive waste, in order to protect present and future generations from the risks inherent in such substances. Andra's role involves a number of activities: running the two existing above-ground disposal facilities in the Aube, the first one for low- and intermediate- level, short-lived waste (LILW-SL) and the other one for very-low-level waste (VLLW), the Cires facility; monitoring the Manche disposal facility, the CSM, France's first above-ground disposal facility for low- and intermediate-level waste, which is now closed; studying and designing disposal facilities for waste as yet without a special facility, that is: Low-level, long-lived waste (LLW-LL), High-level and intermediate-level long-lived waste (HLW, ILW-LL) - the Cigeo project; taking in radioactive waste from hospitals, research laboratories, universities and radioactive objects owned by private individuals (old luminous clocks and watches, health care equipment containing radium, natural laboratory salts, certain minerals, etc.); at the request of the owner or the authorities, cleaning up sites polluted by radioactivity; surveying and listing French radioactive waste and issuing the National Inventory of Radioactive Materials and Waste every three years; informing all members of the public by means of documents, exhibitions, visits to its facilities, etc.; preserving the memory of its centers; promoting and disseminating its know-how outside France. Contents: 1 - Andra, its role, its activities, its funding; 2

  6. The storage center of very-low level radioactive wastes

    International Nuclear Information System (INIS)

    2008-01-01

    The low level radioactive wastes have a radioactivity level as same as the natural radioactivity. This wastes category and their storage has been taken into account by the french legislation. This document presents the storage principles of the site, containment, safety and the Center organization. (A.L.B.)

  7. National Inventory of radioactive materials and wastes: statement at the end of 2015

    International Nuclear Information System (INIS)

    2016-12-01

    As part of its general interest mission described in the French law from June 28, 2006, the French national agency of radioactive wastes is responsible of the annual inventory of all radioactive materials and wastes present on the French territory in order to have a vision of their nature, amount and localization as comprehensive as possible. This document presents the inventory of existing radioactive materials and wastes at December 31, 2015, according to the declarations made by their owners. These data are compared to the projected data established at the end of 2013

  8. Radioactive waste management in France

    International Nuclear Information System (INIS)

    Pradel, J.

    1975-01-01

    The different stages of radioactive waste production are examined: ore production, reactor operation, reprocessing plants. The treatment and storage methods used and the French realizations relative to these problems are described [fr

  9. Radioactive wastes transport. A safety logic

    International Nuclear Information System (INIS)

    2005-01-01

    The safety principle which applies to transport operations of radioactive wastes obeys to a very strict regulation. For the conditioning of wastes in package, the organisation of shipments and the qualification of carriers, the ANDRA, the French national agency of radioactive wastes, has implemented a rigorous policy based on the respect of a quality procedure and on the mastery of delivery fluxes. This brochure presents in a simple, illustrated and detailed manner the different steps of these transports. (J.S.)

  10. 2009 National inventory of radioactive material and wastes. In short

    International Nuclear Information System (INIS)

    2009-01-01

    This booklet gives a summary of the national inventory report on radioactive wastes that are present on the French territory (as recorded until december, 2007). Intended for public information, the booklet explains the basics of radioactive materials and wastes and waste management, and gives some data on present and future waste volumes, information about radioactive waste classification, the geographical distribution of waste sites in France, etc. The various types of radioactive wastes are described (classified by their lifetime and activity level) as well as historical storage sites, polluted areas where wastes are stored, radioactive objects, etc. and their respective management approaches are presented

  11. French policy concerning radioactive waste management

    International Nuclear Information System (INIS)

    Gauvenet, Andre.

    1981-01-01

    After having mentioned the origin of nuclear waste, the problems brought about by the existence of radioactive products and the change in the regulations, the processing and packaging of waste is examined. In the economic calculations the total cost of waste management, including storage, must be allowed for, and the risks-profits study must be applied to the waste and the sum total of the doses for the populations and the workers minimized. The temporary or definitive storage depends on the sort of wastes: beta-gamma without alpha stored on the surface or at small depth, low or medium activity stored temporarily whilst awaiting a site and the high activity waste which is vitrified then stored in situ and cooled before deep storage. Although there is no complete solution as yet for the problem of waste, it is technically very advanced and it is from the political and psychological angle that it meets most difficulties [fr

  12. Low-level radioactive waste disposal: radiation protection laws

    International Nuclear Information System (INIS)

    Chapuis, A.M.; Guetat, P.; Garbay, H.

    1991-01-01

    The politics of radioactive waste management is a part of waste management and activity levels are one of the components of potential waste pollutions in order to assume man and environment safety. French regulations about personnel and public' radiation protection defines clearly the conditions of radioactive waste processing, storage, transport and disposal. But below some activity levels definite by radiation protection laws, any administrative procedures or processes can be applied for lack of legal regulations. So regulations context is not actually ready to allow a rational low-level radioactive waste management. 15 refs.; 4 tabs.; 3 figs

  13. French regulations and waste management

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1985-01-01

    The authors describe the organization and the role of safety authorities in France in matter of waste management. They precise the French policy in waste storage and treatment: basic objectives, optimization of waste management. The safety requirements are based upon the barrier principle. Safety requirements about waste conditioning and waste disposal are mentioned. In addition to the safety analysis and studies described above, the Protection and Nuclear Safety Institute assists the ministerial authorities in the drafting of ''basic safety rules (RFS)'', laying down safety objectives. Appendix 1 and Appendix 2 deal with safety aspects in spent fuel storage and in transportation of radioactive materials [fr

  14. Radioactive waste treatment and handling in France

    International Nuclear Information System (INIS)

    Sivintsev, Yu.V.

    1984-01-01

    Classification of radioactive wastes customary in France and the program of radiation protection in handling them are discussed. Various methods of radioactive waste processing and burial are considered. The French classification of radioactive wastes differs from one used in the other countries. Wastes are classified under three categories: A, B and C. A - low- and intermediate-level radioactive wastes with short-lived radionuclides (half-life - less than 30 years, negligible or heat release, small amount of long-lived radionuclides, especially such as plutonium, americium and neptunium); B - low- and intermediate-level radioactive wastes with long-lived radionuclides (considerable amounts of long-lived radionuclides including α-emitters, low and moderate-level activity of β- and γ-emitters, low and moderate heat release); C - high-level radioactive wastes with long-lived radionuclides (high-level activity of β- and γ-emitters, high heat release, considerable amount of long-lived radionuclides). Volumetric estimations of wastes of various categories and predictions of their growth are given. It is noted that the concept of closed fuel cycle with radiochemical processing of spent fuel is customary in France

  15. Guidebook of radioactive wastes removal. From collection to storage

    International Nuclear Information System (INIS)

    2014-06-01

    This document, more particularly devoted to radioactive waste producers (except electronuclear industry), defines the technical specifications relative to the taking over of their wastes by the ANDRA, the French national agency of radioactive wastes. Content: general conditions (producers liability and obligations), instructions manual of the taking over demand, non-electronuclear wastes collecting, wastes conditioning specifications, specifications for each category of waste, the lightning arresters case, specifications for particular removals with prior consent

  16. Radioactive waste management for a radiologically contaminated hospitalized patient

    International Nuclear Information System (INIS)

    Pina Jomir, G.; Michel, X.; Lecompte, Y.; Chianea, N.; Cazoulat, A.

    2015-01-01

    Radioactive waste management in the post-accidental phase following caring for a radiologically contaminated patient in a hospital decontamination facility must be anticipated at a local level to be truly efficient, as the volume of waste could be substantial. This management must comply with the principles set out for radioactive as well as medical waste. The first step involves identification of radiologically contaminated waste based on radioactivity measurement for volume reduction. Then, the management depends on the longest radioactive half-life of contaminative radionuclides. For a half-life inferior to 100 days, wastes are stored for their radioactivity to decay for at least 10 periods before disposal like conventional medical waste. Long-lived radioactive waste management implies treatment of liquid waste and special handling for sorting and packaging before final elimination at the French National Agency for Radioactive Waste Management (ANDRA). Following this, highly specialized waste management skills, financial responsibility issues and detention of non-medical radioactive sources are questions raised by hospital radioactive waste management in the post-accidental phase. (authors)

  17. 2009 National inventory of radioactive material and wastes. Synthesis report

    International Nuclear Information System (INIS)

    2009-01-01

    Third edition of the ANDRA's national inventory report on radioactive wastes that are present on the French territory (as recorded until december, 2007). After a brief historical review of the national inventory and the way it is constructed, the report gives the basics on radioactive wastes, their classification, origins and management processes, followed by a general presentation and discussion of the inventory results (radioactive wastes and materials). Results are then detailed for the different activity sectors using radioactive materials (nuclear industry, medical domain, scientific research, conventional industry, Defense...). Information is also given concerning radioactive polluted areas (characterization and site management) and radioactive waste inventories in various foreign countries

  18. Public debate on radioactive wastes

    International Nuclear Information System (INIS)

    2005-01-01

    The definition and implementation of safe and perennial solutions for the management of radioactive wastes is a necessity from the point of view of both the nuclear industrialists and the public authorities, but also of the overall French citizens. For the low- or medium-level or short living radioactive wastes, some solutions have been defined are are already implemented. On the other hand, no decision has been taken so far for the long living medium to high-level radioactive wastes. Researches are in progress in this domain according to 3 ways of research defined by the law from December 30, 1991: separation-transmutation, disposal in deep underground, and long duration surface or sub-surface storage. This paper presents in a digest way, the principle, the results obtained so far, and the perspectives of each of the three solutions under study. (J.S.)

  19. French people and nuclear wastes; Les francais et les dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    D' Iribarne, Ph [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France)

    2005-07-01

    On March 21, 2005, the French minister of industry gave to the author of this document, the mission to shade a sociological light on the radioactive wastes perception by French people. The objective of this study was to supply an additional information before the laying down in 2006 of the decisions about the management of high-level and long-lived radioactive wastes. This inquiry, carried out between April 2004 and March 2005, stresses on the knowledge and doubts of the questioned people, on the vision they have of radioactive wastes and of their hazards, and on their opinion about the actors in concern (experts, nuclear companies, government, anti-nuclear groups, public). The last two parts of the report consider the different ways of waste management under study today, and the differences between the opinion of people living close to the Bure site and the opinion of people living in other regions. (J.S.)

  20. Radioactive materials and waste. Planning act of 28 jun 2006

    International Nuclear Information System (INIS)

    2006-01-01

    The English translation contained in this booklet is based on Planning Act No. 2006-739 of 28 June 2006 and on articles L. 542-1 and following of the Environmental Code (as modified). It gathers all articles of the French law dealing with the activities of the ANDRA, the French national agency of radioactive wastes, and with the sustainable management of radioactive materials and waste. It is provided for convenience purposes only. The French version remains the only valid and legally binding version. In order to enhance readability, all articles relating to ANDRA's activities are consolidated in this self-supporting document. The original French version of the new Act and of the Environmental Code, already published in the 'Journal officiel', are the only authentic biding texts

  1. The puzzle of nuclear wastes. Radioactive threat to your health..

    International Nuclear Information System (INIS)

    2007-01-01

    This document, published by the French association 'Sortir du nucleaire' (Get out of nuclear), gives some information on what is radioactivity, the radioactive materials as a risk for living organisms, nuclear wastes all over France (list and map of the storage sites, power plants and fuel cycle centers), nuclear wastes at every step of the nuclear connection, the insolvable problem of high activity wastes, burying nuclear wastes in order to better forget them, radioactivity as a time bomb for our health, radioactive effluents as an under-estimated risk, artificial radioactivity already responsible for the death of 61 million people in the world, and so on

  2. The French national inventory of radioactive waste. Elements of openness and responsibility

    International Nuclear Information System (INIS)

    Faussat, A.; Fernique, J.C.

    1995-01-01

    Article 13 of the Waste Act of 30 December 1991 calls for the Agence nationale pour la gestion des dechets radioactifs (ANDRA) ''to register the condition and location of all radioactive waste on national territory''. The establishment of a national inventory of radioactive waste and the broad distribution of inventory report to ensure that it becomes a matter of public record constitute a new approach to public information and an effective means of fulfilling the responsibility of the present generation vis-a-vis posterity. The National Waste Register goes beyond the low level radioactive waste disposal facilities to encompass 'all' waste, wherever it may be, including waste in storage at sites where waste is produced. As a result, the Register is multi-faceted, containing information on a variety of elements, from highly radioactive waste to hospital waste collected by ANDRA and to repositories with very low level radioactive material. Information must be provided about all of these widely divergent components. ANDRA has already published two inventories, which demonstrates the durability of its new mission. The Register now contains the inventory of radioactive waste generated by some activities connected with the defence programme. Data collection for the Register involves contacting the generators of waste and working with these entities, whether they are nuclear industry companies, defence organizations, non-nuclear industries, or the 25 Regional Directorates of Industry, Research and Environment, the control institutions or the environmental protection organizations. The yearly exchange of information among all partners involved in radioactive waste management is one of the basic tools of ANDRA, allowing it to be recognized as open and responsible, and to be more credible, fulfilling in this way one of the essential criteria for acceptability. (author). 4 refs

  3. The management of radioactive wastes; La gestion des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This educative booklet describes the role and missions of the ANDRA, the French national agency for the management of radioactive wastes, and the different aspects of the management of radioactive wastes: goal, national inventory, classification, transport (organisation, regulation, safety), drumming, labelling, surface storage of short life wastes, environmental control, management of long life wastes (composition, research, legal aspects) and the underground research laboratories (description, public information, projects, schedules). (J.S.)

  4. French experience in design and construction of near-surface disposal facilities for low-level waste

    International Nuclear Information System (INIS)

    Jousselin, D.; Medal, G.; Augustin, X.; Wavrechin, B. de

    1993-01-01

    France disposes of all radioactive waste produced on its territory. Short-lived waste (with a half-life shorter than 30 years) are disposed of, since 1969 on the 'La Manche' disposal facility (CSM 'Centre de La Manche'). As this center will be saturated in 1994, ANDRA (French National Agency for Radioactive Waste Management) has undertaken in 1984 the studies and works necessary to the realization of a new disposal facility. TECHNICATOME was associated, since the beginning of those studies and was chosen by ANDRA as Prime Contractor for the new Radwaste Disposal Center. French conception was chosen by Spanish Authorities in 1987, ENRESA (Empresa Nacional de Residuos Radioactivos SA) selected the Cabril Site in the South of Spain as disposal of low and medium activity radwaste. TECHNICATOME was associated with this project, through a joint French-Spanish engineering team. Authority of North Carolina State (USA) decided in 1989 to build a low-level radioactive waste disposal facility and the contract has been awarded to CNSI (Chem Nuclear System Inc.) with a proposal based on the French experience. A french team ANDRA/TECHNICATOME/SGN is in charge of the design of the disposal facility

  5. Radioactive materials and waste. Planning act of 28 jun 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The English translation contained in this booklet is based on Planning Act No. 2006-739 of 28 June 2006 and on articles L. 542-1 and following of the Environmental Code (as modified). It gathers all articles of the French law dealing with the activities of the ANDRA, the French national agency of radioactive wastes, and with the sustainable management of radioactive materials and waste. It is provided for convenience purposes only. The French version remains the only valid and legally binding version. In order to enhance readability, all articles relating to ANDRA's activities are consolidated in this self-supporting document. The original French version of the new Act and of the Environmental Code, already published in the 'Journal officiel', are the only authentic biding texts.

  6. Radioactive waste and recoverable material in France. Summary of the National Inventory 2006

    International Nuclear Information System (INIS)

    2006-01-01

    Thorough knowledge is needed if the various types of radioactive waste are to be managed openly, consistently and in a safe manner. All French radioactive material users have subscribed to this process for many years. Under the terms of the French Act of Parliament of 30 December 1991, the Government commissioned the French National Agency for Radioactive Waste Management (or ANDRA) to carry out a survey of all the radioactive waste present on French Territory. Through its efforts to collect and confirm information from many sources over the years, that is mainly from statements made by waste producers and handlers, ANDRA has built up a database on existing waste and its geographical location. This constantly updated resource has been regularly circulated. At the beginning of the century the Government decided to extend the areas covered by this database, in response to the recommendations made by the National Review Board (CNE) and the Parliamentary Office for Evaluating Scientific and Technology Options (OPECST). This is how the first edition of the National Inventory, published in 2004, came about. The National Inventory of Radioactive Waste and Recoverable Material, presents a full panorama of radioactive waste that it groups into waste families that present homogenous characteristics. It describes the state of the waste that may be conditioned (that is, in its final form) or may not be conditioned (that is, has not been put through sufficient treatments to arrive at its final form) at the end of 2004. Furthermore it presents not only a statistical and geographical summary, but a predictive summary, as it provides waste quantity forecasts for 2010, 2020 and beyond. The Inventory also includes recoverable materials that contain radioactivity. They are always accounted for separately because of their special nature. The data is presented in a synthesis report. This summary is the general public version of the report. The synthesis report offers more in

  7. Radioactive waste and recoverable material in France. Summary of the National Inventory 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Thorough knowledge is needed if the various types of radioactive waste are to be managed openly, consistently and in a safe manner. All French radioactive material users have subscribed to this process for many years. Under the terms of the French Act of Parliament of 30 December 1991, the Government commissioned the French National Agency for Radioactive Waste Management (or ANDRA) to carry out a survey of all the radioactive waste present on French Territory. Through its efforts to collect and confirm information from many sources over the years, that is mainly from statements made by waste producers and handlers, ANDRA has built up a database on existing waste and its geographical location. This constantly updated resource has been regularly circulated. At the beginning of the century the Government decided to extend the areas covered by this database, in response to the recommendations made by the National Review Board (CNE) and the Parliamentary Office for Evaluating Scientific and Technology Options (OPECST). This is how the first edition of the National Inventory, published in 2004, came about. The National Inventory of Radioactive Waste and Recoverable Material, presents a full panorama of radioactive waste that it groups into waste families that present homogenous characteristics. It describes the state of the waste that may be conditioned (that is, in its final form) or may not be conditioned (that is, has not been put through sufficient treatments to arrive at its final form) at the end of 2004. Furthermore it presents not only a statistical and geographical summary, but a predictive summary, as it provides waste quantity forecasts for 2010, 2020 and beyond. The Inventory also includes recoverable materials that contain radioactivity. They are always accounted for separately because of their special nature. The data is presented in a synthesis report. This summary is the general public version of the report. The synthesis report offers more in

  8. Radioactive waste management, decommissioning, spent fuel storage. V. 1. Waste management principles, decommissioning, dismantling, operations in hot environment

    International Nuclear Information System (INIS)

    1985-01-01

    This book deals mainly with decommissioning problems concerning more particularly dismantling and decontamination techniques, and radioactive waste processing. Radioactive waste management in France and the French regulation are tackled. Equipments developed for works in hostile environment are also presented [fr

  9. Guide book of radioactive wastes collecting. Producers, from collection to storage

    International Nuclear Information System (INIS)

    2003-01-01

    This document, more particularly devoted to radioactive waste producers (except electronuclear industry), defines the technical specifications and the financial conditions relative to the taking over of their wastes by the ANDRA, the French national agency of radioactive wastes. Content: general principles, instructions manual of the taking over demand, practical conditions of wastes collecting, packaging and containers, specifications for each category of waste, particular cases, price table, disputes. (J.S.)

  10. Radioactive wastes. The management of nuclear wastes. Waste workshop, first half-year - Year 2013-2014

    International Nuclear Information System (INIS)

    Esteoulle, Lucie; Rozwadowski, Elodie; Duverger, Clara

    2014-01-01

    The first part of this report first presents radioactive wastes with their definition, and their classification (radioactivity level, radioactive half-life). It addresses the issue of waste storage by presenting the different types of storage used since the 1950's (offshore storage, surface warehousing, storage in deep geological layer), and by discussing the multi-barrier approach used for storage safety. The authors then present the French strategy which is defined in the PNGMDR to develop new management modes on the long term, to improve existing management modes, and to take important events which occurred between 2010 and 2012 into account. They also briefly present the Cigeo project (industrial centre of geological storage), and evoke controversies related to the decision to locate this project in Bure (existence of geological cracks and defects, stability and tightness of the clay layer, geothermal potential of the region, economic cost). The second part proposes an overview of the issue of nuclear waste management. The author recalls the definition of a radioactive waste, indicates the origins of these wastes and their classification. She proposes a history of the radioactive waste: discovery of radioactivity, military industrialisation and awareness of the dangerousness of radioactive wastes, nuclear wastes and recent incidents (West Valley, La Hague, Windscale). An overview of policies of nuclear waste management is given: immersion of radioactive wastes, major accidental releases, solutions on the short term and on the medium term

  11. Long-lived radioactive waste, the French management policy

    International Nuclear Information System (INIS)

    Barber, P.

    1994-01-01

    An overwhelming majority of both chambers of the French Parliament voted in favor of Public Law 91-1381 on December 30, 1991, the Waste Act which outlines the research program to be conducted for disposal of long-lived waste. The program focuses on three main research objectives, which are briefly discussed in this presentation: reduction of waste volume and toxicity (advanced partitioning and transmutation); assessment of the waste isolation properties of deep geologic formations; and development of solidification processes and storage techniques for long-term interim storage in near surface facilities. Annual reports on this research will be reviewed by a national commission and submitted to Parliament. Within 15 years, the government will prepare a comprehensive report and may enact new legislation authorizing the creation of a repository. The Waste Act also establishes the conditions for underground geologic research laboratories; site selection, public information and monitoring procedures; and economic incentives related to these facilities, which represent major financial investments that will benefit communities in the involved regions

  12. The Perennial Environment Observatory by A.N.D.R.A. (the French National Radioactive Waste Management Agency)

    International Nuclear Information System (INIS)

    Leclerc, E.

    2010-01-01

    The Perennial Environment Observatory [Observatoire Perenne de l'Environnement - OPE] is a unique approach and infrastructure developed and implemented by ANDRA, the French National Radioactive Waste Management Agency, as part of its overall project of deep geological disposal for radioactive waste. Its current mission is to assess the initial state of the rural (forest, pasture, open-field and aquatic) environment, prior to repository construction. This will be followed in 2017 (pending construction authorizations) and for a period exceeding a century, by monitoring of any impact the repository may have on the environment. In addition to serving its own industrial purpose of environmental monitoring, ANDRA also opens the OPE approach, infrastructure and acquired knowledge (database...) to the scientific community to support further research on long term evolution of the environment subjected to natural and anthropogenic stresses, and to contribute to a better understanding of the interaction between the various compartments of the environment. (author)

  13. Civil nuclear and responsibilities related to radioactive wastes. The 'cumbersome' wastes of the civil nuclear; The Parliament and the management of wastes from the civil nuclear; The Swiss legal framework related to the shutting down of nuclear power stations and to the management of radioactive wastes; Economic theory and management of radioactive wastes: to dare the conflict

    International Nuclear Information System (INIS)

    Rambour, Muriel; Pauvert, Bertrand; Zuber-Roy, Celine; Thireau, Veronique

    2015-01-01

    This publication presents the contributions to a research seminar organised by the European Centre of research on Risk, Collective Accident and Disasters Law (CERDACC) on the following theme: civil nuclear and responsibilities related to radioactive wastes. Three main thematic issues have been addressed: the French legal framework for waste processing, the comparison with the Swiss case, and the controversy about the exposure of societies to waste-induced risks. The first contribution addressed the cumbersome wastes of the civil nuclear industry: characterization and management solutions, the hypothesis of reversibility of the storage of radioactive wastes. The second one comments the commitment of the French Parliament in the management of wastes of the civil nuclear industry: role of Parliamentary Office of assessment of scientific and technological choices (OPECST) to guide law elaboration, assessment by the Parliament of the management of nuclear wastes (history and evolution of legal arrangements). The next contribution describes the Swiss legal framework for the shutting down of nuclear power stations (decision and decommissioning) and for the management of radioactive wastes (removal, financing). The last contribution discusses the risk related to nuclear waste management for citizen and comments how economists address this issue

  14. Long-lived radioactive waste, the French management policy

    International Nuclear Information System (INIS)

    Barber, P.

    1994-01-01

    An overwhelming majority of both chambers of the French Parliament voted in favor of Public Law 91-1381 on December 30, 1991, which outlines the research program to be conducted for disposal of long-lived waste. The program focuses on three main research objectives: reduction of waste volumes and toxicity (advanced partitioning and transmutation); assessment of the waste isolation properties of deep geologic formations; and development of solidification processes and storage techniques for long-term interim storage in near-surface facilities. Annual reports on this research will be reviewed by a national commission and submitted to Parliament. Within 15 years, the government will prepare a comprehensive report and may enact new legislation authorizing the creation of a repository. The Waste Act also establishes the conditions for siting underground geologic research laboratories; site selection, public information and monitoring procedures; and economic incentives related to these facilities, which represent major financial investments that will benefit communities in the involved regions

  15. Descriptive catalogue of radioactive waste families

    International Nuclear Information System (INIS)

    2004-01-01

    This document describes the different types of radioactive wastes produced in France or which are expected to be produced in the future. The wastes have been shared into different families having similar characteristics. A description is made for each family: general presentation, photos, position of the family in the French classification, industrial origin, status of production. Some informations about the raw waste and its conditioning process are also given. The qualitative description is completed by some numerical data like: the quantity produced in the past and to be produced in the future, the evaluation of the radioactivity in 2002 and 2020, and the evaluation of the thermal power when it exists. Finally, some informations are given about the risk of toxicity of some chemical species or compounds. (J.S.)

  16. Radioactive waste management

    International Nuclear Information System (INIS)

    2013-01-01

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan

  17. Radioactive waste packages stored at the Aube facility for low-intermediate activity wastes. A selective and controlled storage

    International Nuclear Information System (INIS)

    2005-01-01

    The waste package is the first barrier designed to protect the man and the environment from the radioactivity contained in wastes. Its design is thus particularly stringent and controlled. This brochure describes the different types of packages for low to intermediate activity wastes like those received and stored at the Aube facility, and also the system implemented by the ANDRA (the French national agency of radioactive wastes) and by waste producers to safely control each step of the design and fabrication of these packages. (J.S.)

  18. French regulation regarding the underground disposal of radioactive waste

    International Nuclear Information System (INIS)

    Berges, G.

    1980-01-01

    The Act of 15 July 1975 fixed the requirements for waste disposal and set up a National Agency for Waste Recovery and Disposal. The legislative decree of 4 August 1975 established an International Committee for Nuclear Safety. This has the task, among other things, of co-ordinating action taken to ensure the protection of persons and property against the hazards of nuclear facilities. An order of 2 November 1976 concentrated all responsibility for studies and research on nuclear safety and radioactive waste within an Institute of Nuclear Safety and Protection. Installations designed for the treatment and storage of radioactive waste are considered to be ''basic nuclear facilities'' and come under the legislative decree of 11 December 1963, as modified by the decree of 27 March 1973. The procedure for licensing basic nuclear facilities is conducted by the Ministry of Industry: this procedure includes a safety study, a public enquiry, consultations with other interested ministries and authorization by the Ministry of Health and Social Security. Finally, nuclear facilities are subject to a specific twofold surveillance by the public authorities: surveillance carried out by basic nuclear facility inspectors; surveillance carried out by agents of the Central Service for Protection Against Ionizing Radiations (SCPRI) under the Ministry of Health and Social Security. (author)

  19. French National Plan for the Management of Radioactive Materials and Waste (PNGMDR) - 2010-2012

    International Nuclear Information System (INIS)

    2009-01-01

    Faced with the high diversity of radioactive materials and waste, it may be difficult to grasp the relevance and consistency of the installed management framework. The purpose of the National Plan for the Management of Radioactive Materials and Waste (PNGMDR) is to clarify this management framework and improve it. To this end, it draws up an assessment of the management policy, evaluates the needs and determines the objectives to be attained in the future. The PNGMDR's usefulness was confirmed by Parliament. The evaluation report of the PNGMDR 2007-2009 by the Parliamentary Office for Evaluation of Scientific and Technological Options thus indicates that 'the interest of a summary document exposing all the problems and the solutions related to the management of radioactive waste was underlined a number of times by the Office. Since such a plan can allow achieving exhaustiveness and introducing a consistency in the management of radioactive waste, the Office deemed it necessary that it be linked to the law in one way or another. Conforming to the Office's recommendations, the Act of 28 June 2006 related to the sustainable management of radioactive waste stipulated that such a plan must be elaborated, updated every three years and published, extending its scope to reusable radioactive materials'. Thus, the PNGMDR provides the public with a global vision of the management of radioactive materials and waste, concerning both topics 'in the news' and those less publicised. Some waste, in fact, attracts momentarily particular attention, for example, on the occasion of a search for a disposal site, such as in 2008-2009, for so-called low level and long lived ('LL-LL') waste. The media also broadcast in 2008 and 2009 special enquiries on the management of mining residues and on reprocessed uranium; all these topics are discussed in detail in the PNGMDR. Other waste topics attract less attention, such as sealed radioactive sources, which are more dispersed throughout France

  20. Radioactivity and the French uranium bearing minerals

    International Nuclear Information System (INIS)

    Guiollard, P.Ch.; Boisson, J.M.; Leydet, J.C.; Meisser, N.

    1998-01-01

    This special issue of Regne Mineral journal is entirely devoted to the French uranium mining industry. It comprises 4 parts dealing with: the uranium mining industry in France (history, uranium rush, deposits, geologic setting, prosperity and recession, situation in 1998, ore processing); radioactivity and the uranium and its descendants (discovery, first French uranium bearing ores, discovery of radioactivity, radium and other uranium descendants, radium mines, uranium mines, atoms, elements and isotopes, uranium genesis, uranium decay, isotopes in an uranium ore, spontaneous fission, selective migration of radionuclides, radon in mines and houses, radioactivity units, radioprotection standards, new standards and controversies, natural and artificial radioactivity, hazards linked with the handling and collecting of uranium ores, conformability with radioprotection standards, radioactivity of natural uranium minerals); the French uranium bearing minerals (composition, crystal structure, reference, etymology, fluorescence). (J.S.)

  1. Long term industrial management of radioactive wastes in France

    International Nuclear Information System (INIS)

    Lavie, J.

    1981-01-01

    All human activities including energy generation entail the wastes. This definitely applies also to nuclear power generation. Currently the nuclear power program is very extensive, and the plans of fuel reprocessing proceed along this line. In consequence, the Government has decided on tackling the problem of industrial radioactive waste management in earnest. For the purpose, the National Radioactive Waste Management Agency (ANDRA) was created in November, 1979, within the French Atomic Energy Commission (CEA). Its main functions are the design, siting and construction of waste disposal centers and their management, the establishment of waste treatment and disposal standards, and the research and development. The following matters are described: the need for comprehensive industrial approach, the concept of industrial management, ANDRA business program, the industrial policy on waste disposal, and ANDRA financing. (J.P.N.)

  2. Commissioning of the very low level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    2003-08-01

    This press kit presents the solution retained by the French national agency of radioactive wastes (ANDRA) for the management of very low level radioactive wastes. These wastes mainly come from the dismantling of decommissioned nuclear facilities and also from other industries (chemical, metal and other industries). The storage concept is a sub-surface disposal facility (Morvilliers center, Aube) with a clay barrier and a synthetic membrane system. The regulatory framework, and the details of the licensing, of the commissioning and of the environment monitoring are recalled. The detailed planing of the project and some exploitation data are given. (J.S.)

  3. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1982-01-01

    This book provides information on the origin, characteristics and methods of processing of radioactive wastes, as well as the philosophy and practice of their storage and disposal. Chapters are devoted to the following topics: radioactive wastes, characteristics of radioactive wastes, processing liquid and solid radioactive wastes, processing wastes from spent fuel reprocessing, processing gaseous radioactive wastes, fixation of radioactive concentrates, solidification of high-level radioactive wastes, use of radioactive wastes as raw material, radioactive waste disposal, transport of radioactive wastes and economic problems of radioactive wastes disposal. (C.F.)

  4. Management of radioactive wastes

    International Nuclear Information System (INIS)

    2005-01-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprises 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is the synthesis of the round table debates which took place at Joinville, i.e. in the same area as the Bure underground laboratory of Meuse/Haute-Marne. Therefore, the discussion focuses more on the local impacts of the setting up of a waste disposal facility (environmental aspects, employment, economic development). (J.S.)

  5. Radioactive waste management: the decision-making process (Bure, Meuse, France)

    International Nuclear Information System (INIS)

    Dose, F.

    2005-01-01

    The author presents the historical aspects and the main contain of the acts on the management of radioactive waste, adopted by the french Parliament. She speaks then about her experience of mayor of a small french town involved in the decision of the implementation of an underground laboratory. Few suggestions are also presented at the end of this brief presentation. (A.L.B.)

  6. The management of radioactive wastes from small producers; La gestion des dechets radioactifs des petits producteurs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    Medicine, research and industry generate various type of radioactive wastes which have to be managed by the ANDRA, the French agency for the management of radioactive wastes. This educative booklet explains the missions of the ANDRA with respect to these small producers: collection, selection, conditioning, control and storage of wastes. (J.S.)

  7. Radioactive waste management

    International Nuclear Information System (INIS)

    Kawakami, Yutaka

    2008-01-01

    Radioactive waste generated from utilization of radioisotopes and each step of the nuclear fuel cycle and decommissioning of nuclear facilities are presented. On the safe management of radioactive waste management, international safety standards are established such as ''The Principles of Radioactive Waste Management (IAEA)'' and T he Joint Convention on the Safety of Radioactive Waste Management . Basic steps of radioactive waste management consist of treatment, conditioning and disposal. Disposal is the final step of radioactive waste management and its safety is confirmed by safety assessment in the licensing process. Safety assessment means evaluation of radiation dose rate caused by radioactive materials contained in disposed radioactive waste. The results of the safety assessment are compared with dose limits. The key issues of radioactive waste disposal are establishment of long term national strategies and regulations for safe management of radioactive waste, siting of repository, continuity of management activities and financial bases for long term, and security of human resources. (Author)

  8. Status and prospects of radioactive waste management in France

    International Nuclear Information System (INIS)

    Gonnot, F.M.

    2012-01-01

    The chairman of ANDRA (French agency for the management of radioactive waste) presents the activities of the agency in the framework of the 2006 Planning Act that took in principle the decision to dispose of the high-level and the long-lived radioactive waste in a geological repository (Cigeo project). One of the important aspects of the Cigeo project is the requirement by law, to study the reversibility and therefore to demonstrate the capability to retrieve already disposed waste packages. In March 2010 the Government accepted the 30 km 2 area proposed by ANDRA for the location of the future repository. At present, ANDRA teams are fully busy on 2 fronts: first in preparing the license application for Cigeo to be submitted in 2015, and secondly in preparing the industrial phase of the Cigeo project. Low-level and intermediate-level radioactive waste are disposed of in surface facilities. (A.C.)

  9. Safety of radioactive waste management in France

    International Nuclear Information System (INIS)

    Raimbault, P.

    2002-01-01

    Radioactive waste produced in France vary considerably by their activity level, their half lives, their volume or even their nature. In order to manage them safely, the treatment and final disposal solution must be adapted to the type of waste considered by setting up specific waste management channels. A strong principle in France is that it is the responsibility of the nuclear operators as waste producers to dispose of their waste or have them disposed of in a suitable manner. The competent authorities regulate and control the radioactive waste management activities. At present, only short-lived low and intermediate level waste have a definitive solution, the surface repository, where adequate waste packages are disposed of in concrete structures. Other types of radioactive waste are in interim storage facilities at the production sites. For very low level waste coming mainly from dismantling of nuclear facilities a dedicated repository is planned to be built in the coming years. Dedicated repositories are also planned for radiferous, tritiated and graphite waste. As for high level waste and long-lived waste coming mainly from reprocessing of spent nuclear fuel the disposal options are being sought along the lines specified by law 91-1381 concerning research on radioactive waste management, passed on December 30, 1991: research of solutions to partition and transmute long-lived radionuclides in the waste; studies of retrievable and non retrievable disposal in deep geological layers with the help of underground laboratories; studies of processes for conditioning and long term surface storage of these waste. In 2006, the French Parliament will assess the results of the research conducted by ANDRA relative to deep geological disposal as well as the work conducted by CEA in the two other areas of research and, if this research is conclusive, pass a law defining the final disposal option. (author)

  10. Radioactive wastes: the challenge of volumes reduction

    International Nuclear Information System (INIS)

    Lepetit, V.

    2005-01-01

    The reduction of radioactive waste volumes is a priority for the French atomic energy commission (CEA) and for the Areva group. This article gives a rapid overview of the equipments and processes used to separate the valorizable materials from the ultimate wastes: pulsed separation columns and evaporators for the liquid-liquid extraction, compactification of spent fuel hulls, remote handling systems, recoverable colloid for surface decontamination, decontaminating foam, hydrothermal oxidation of organic and aqueous effluents, cold crucible vitrification etc. (J.S.)

  11. Law project on the radioactive materials and wastes management 2006 recommendations presented by Anne Duthilleul

    International Nuclear Information System (INIS)

    2006-01-01

    This document provides recommendations on the law project concerning the radioactive material and wastes management. It precises the law objectives, the french particularities concerning the radioactive wastes and materials management, the public debate in France, the evaluation of the researches, the recommendations of the economic and social council. (A.L.B.)

  12. Radioactive waste management, decommissioning, spent fuel storage. V.2. 3. ed.

    International Nuclear Information System (INIS)

    1986-10-01

    The aim of this book is to provide information on french technology achievements in the field of processing and conditioning of solid, liquid and gaseous radioactive wastes, through stationary or mobile units. It presents the facilities and services proposed by french industry, as well as the experience acquired. Separate abstracts were prepared for 16 papers [fr

  13. Admissible thermal loading in geological formations. Consequences on radioactive waste disposal methods

    International Nuclear Information System (INIS)

    1982-01-01

    The study of the ''Admissible thermal loading in geological formations and its consequence on radioactive waste disposal methods'' comprises four volumes: Volume 1. ''Synthesis report'' (English/French text). Volume 2. Granite formations (French text). Volume 3. Salt formations (German text). Volume 4. Clay formations (French text). The present ''synthesis report'' brings together the formation produced by the three specific studies dealing with granite, salt and clay

  14. CIGeO geological disposal for high-level radioactive waste in France

    International Nuclear Information System (INIS)

    Ouzounian, Gerald; Bolia, Jelana

    2014-01-01

    Andra is the sole French organization responsible for the radioactive waste management in the country. Its work relies extensively on the legal basis provided by several major laws (Waste Act of 1991 and the Planning Act of 2006), which shaped the main principles of the waste management strategy and determined the corresponding implementation tools. Andra's industrial activities are essentially based around three of its national disposal facilities. Two of these operational facilities, by their design and comprehensive monitoring system, are considered worldwide as solid and proven reference solutions for the concerned types of radioactive waste. Andra is also charged with designing a future deep geological repository for intermediate-level long-lived and high-level waste and researching potential management and disposal solutions for the graphite and radium-bearing waste. The purpose of this article is to update the information to the readers about the Cigeo geological disposal project for high-level radioactive waste in France (authors)

  15. Low-level radioactive waste, mixed low-level radioactive waste, and biomedical mixed waste

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This document describes the proceedings of a workshop entitled: Low-Level Radioactive Waste, Mixed Low-Level Radioactive Waste, and Biomedical Mixed Waste presented by the National Low-Level Waste Management Program at the University of Florida, October 17-19, 1994. The topics covered during the workshop include technical data and practical information regarding the generation, handling, storage and disposal of low-level radioactive and mixed wastes. A description of low-level radioactive waste activities in the United States and the regional compacts is presented

  16. Radioactive wastes

    International Nuclear Information System (INIS)

    Teillac, J.

    1988-01-01

    This study of general interest is an evaluation of the safety of radioactive waste management and consequently the preservation of the environment for the protection of man against ionizing radiations. The following topics were developed: radiation effects on man; radioactive waste inventory; radioactive waste processing, disposal and storage; the present state and future prospects [fr

  17. The storage center of very-low level radioactive wastes; Le centre de stockage des dechets de tres faible activite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The low level radioactive wastes have a radioactivity level as same as the natural radioactivity. This wastes category and their storage has been taken into account by the french legislation. This document presents the storage principles of the site, containment, safety and the Center organization. (A.L.B.)

  18. Classification of solid wastes as non-radioactive wastes

    International Nuclear Information System (INIS)

    Suzuki, Masahiro; Tomioka, Hideo; Kamike, Kozo; Komatu, Junji

    1995-01-01

    The radioactive wastes generally include nuclear fuels, materials contaminated with radioactive contaminants or neutron activation to be discarded. The solid wastes arising from the radiation control area in nuclear facilities are used to treat and stored as radioactive solid wastes at the operation of nuclear facilities in Japan. However, these wastes include many non-radioactive wastes. Especially, a large amount of wastes is expected to generate at the decommissioning of nuclear facilities in the near future. It is important to classify these wastes into non-radioactive and radioactive wastes. The exemption or recycling criteria of radioactive solid wastes is under discussion and not decided yet in Japan. Under these circumstances, the Nuclear Safety Committee recently decided the concept on the category of non-radioactive waste for the wastes arising from decommissioning of nuclear facilities. The concept is based on the separation and removal of the radioactively contaminated parts from radioactive solid wastes. The residual parts of these solid wastes will be treated as non-radioactive waste if no significant difference in radioactivity between the similar natural materials and materials removed the radioactive contaminants. The paper describes the procedures of classification of solid wastes as non-radioactive wastes. (author)

  19. Radioactive waste management

    International Nuclear Information System (INIS)

    Blomek, D.

    1980-01-01

    The prospects of nuclear power development in the USA up to 2000 and the problems of the fuel cycle high-level radioactive waste processing and storage are considered. The problems of liquid and solidified radioactive waste transportation and their disposal in salt deposits and other geologic formations are discussed. It is pointed out that the main part of the high-level radioactive wastes are produced at spent fuel reprocessing plants in the form of complex aqueous mixtures. These mixtures contain the decay products of about 35 isotopes which are the nuclear fuel fission products, about 18 actinides and their daughter products as well as corrosion products of fuel cans and structural materials and chemical reagents added in the process of fuel reprocessing. The high-level radioactive waste management includes the liquid waste cooling which is necessary for the short and middle living isotope decay, separation of some most dangerous components from the waste mixture, waste solidification, their storage and disposal. The conclusion is drawn that the seccessful solution of the high-level radioactive waste management problem will permit to solve the problem of the fuel cycle radioactive waste management as a whole. The salt deposits, shales and clays are the most suitable for radioactive waste disposal [ru

  20. Present situation and issues for the French radioactive waste management agency

    International Nuclear Information System (INIS)

    Dupuis, M.C.

    2009-01-01

    This series of slides makes a status of the radioactive waste management in France: 1 - Planned disposal facilities: A - Low level long lived waste (LL-LL: Graphite Waste And Radium Bearing Waste): Implementation within a shallow clay formation (between 15 and 200 m in depth). For graphite waste: a 'repository with an intact cover' as a reference option. For radium-bearing waste: a 'repository with a reworked cover' under investigation. The required footprint on ground surface is in the order of 100 ha. Siting approach: June 2, 2008: letter from the Minister of State to the Chairman of ANDRA; June 2008: file addressed by ANDRA to the mayors of 3,115 communes. Until the end of October 2008: expression of interest by local communities. Possibility to confirm their application in late 2010. December 2008: assessment report by ANDRA and proposal of ranked zones to the government. Beginning of 2009: government decision concerning the pre-selection still pending. 2009-2010: geological surveys, consultations, territorial projects. B - High level and Intermediate level long lived waste (HL and IL-LL): Preparing disposal in a clay formation. 2012: public debate, 2013: site selection, 2015: application, 2025: start up. The Meuse Haute Marne Underground Research Laboratory Siting: the disposal facility (drilling campaigns), Construction of a Visitors' Centre designed to present the waste-repository project and its technological aspect. Inauguration scheduled in June 2009. 2 - Operated disposal facilities: A - Low and intermediate level short lived waste (LIL-SL) and Very low level waste (VLL). LIL-SL Manche Centre: 1969: start up, 1994: end of operation, 2003: institutional control period, Disposed volume (1969-1994): 527,000 m 3 , Impact of the facility ∼0,65 μSv/year (2008). Institutional control period monitoring: Radiological and chemical monitoring (Discharges, Underground water, Surface water), Capping system monitoring (Water-tightness performances, Rainfall water

  1. 2009 National inventory of radioactive material and wastes. Geographical inventory

    International Nuclear Information System (INIS)

    2009-01-01

    A geographical inventory of the radioactive wastes present on the French territory (as recorded until the 31 of december, 2007) is presented, region by region. The various types of waste sites (production, processing, conditioning and storage sites, Uranium mines, ANDRA storage centers, historical storage sites and polluted sites where wastes are stored) are listed and located on maps. Details are given on the nature and origin of these wastes (nuclear industry, medical domain, scientific research, conventional industry, Defense...). A total of 1121 sites have been recorded, among which 163 are presented with details and charts

  2. Radioactive waste management solutions

    International Nuclear Information System (INIS)

    Siemann, Michael

    2015-01-01

    One of the more frequent questions that arise when discussing nuclear energy's potential contribution to mitigating climate change concerns that of how to manage radioactive waste. Radioactive waste is produced through nuclear power generation, but also - although to a significantly lesser extent - in a variety of other sectors including medicine, agriculture, research, industry and education. The amount, type and physical form of radioactive waste varies considerably. Some forms of radioactive waste, for example, need only be stored for a relatively short period while their radioactivity naturally decays to safe levels. Others remain radioactive for hundreds or even hundreds of thousands of years. Public concerns surrounding radioactive waste are largely related to long-lived high-level radioactive waste. Countries around the world with existing nuclear programmes are developing longer-term plans for final disposal of such waste, with an international consensus developing that the geological disposal of high-level waste (HLW) is the most technically feasible and safe solution. This article provides a brief overview of the different forms of radioactive waste, examines storage and disposal solutions, and briefly explores fuel recycling and stakeholder involvement in radioactive waste management decision making

  3. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1979-01-01

    Radioactive waste management and disposal requirements options available are discussed. The possibility of beneficial utilization of radioactive wastes is covered. Methods of interim storage of transuranium wastes are listed. Methods of shipment of low-level and high-level radioactive wastes are presented. Various methods of radioactive waste disposal are discussed

  4. Radioactive wastes

    International Nuclear Information System (INIS)

    Grass, F.

    1982-01-01

    Following a definition of the term 'radioactive waste', including a discussion of possible criteria allowing a delimitation of low-level radioactive against inactive wastes, present techniques of handling high-level, intermediate-level and low-level wastes are described. The factors relevant for the establishment of definitive disposals for high-level wastes are discussed in some detail. Finally, the waste management organization currently operative in Austria is described. (G.G.)

  5. Cigeo. The French deep geological repository for radioactive waste. Excavation techniques and technologies tested in underground laboratory and forecasted for the future construction of the project

    International Nuclear Information System (INIS)

    Chauvet, Francois; Bosgiraud, Jean-Michel

    2015-01-01

    Cigeo is the French project for the repository of the high activity and intermediate long-lived radioactive waste. It will be situated at a depth of 500 m, In a clayish rock formation. An underground laboratory was built in the year 2000 and numerous tests are performed since 15 years, in order to know in detail the behavior of the rock and its ability to confine radioactive elements. In addition, this underground laboratory has brought and will continue to bring many lessons on the excavation methods to be chosen for the construction of Cigeo.

  6. Radioactive waste management

    International Nuclear Information System (INIS)

    Balek, V.

    1994-01-01

    This booklet is a publication by International Atomic Energy Agency for general awareness of citizens and policy-makers to clarify their concept of nuclear wastes. In a very simple way it tells what is radioactivity, radiations and radioactive wastes. It further hints on various medial and industrial uses of radiations. It discusses about different types of radioactive wastes and radioactive waste management. Status of nuclear power plants in Central and Eastern European countries are also discussed

  7. Where, when, how: the place of radioactive wastes in France. Andra, 1998 activity report

    International Nuclear Information System (INIS)

    1998-01-01

    The 1998 activity report of the French national agency of radioactive wastes (Andra) presents successively: the role and missions of the Andra (history, status of radioactive wastes in France, surface storage and know-how, underground research laboratories, site selection and public information); the aspects of safety (inventory, identification and labelling of wastes, environmental policy, public relation, safety rules and reports, information storage); the scientific programs (collaborations, financing, site studies, rock mechanics and reversibility of storage, design of storage facilities, services); financial report. (J.S.)

  8. Management of waste from french nuclear fuel cycle: what are the key issues?

    International Nuclear Information System (INIS)

    Londres, V.; Do Quang, R.; Fournier, P.

    2000-01-01

    Like any other industry, the nuclear industry generates waste. This waste arises in the different successive stages of the fuel cycle, including nuclear power plants, and its physical and chemical properties vary greatly. What is special about it is the radioactivity it contains. Management of waste generated by spent fuel conditioning in nuclear reprocessing facilities, and which cannot be stored in surface repositories, according to current French regulations (ILW and HLW), is specifically discussed in this paper. (authors)

  9. Understanding radioactive waste

    International Nuclear Information System (INIS)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes)

  10. Understanding radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  11. Mastery of risks: we build the memory of radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Lacourcelle, C.

    2011-01-01

    The ANDRA, the French national agency of radioactive wastes, is organizing today the information needs of tomorrow. The aim is to allow the future generations to have access to the knowledge of the existence of subsurface radioactive waste facilities and to understand the context and technologies of such facilities. The storage of this information is made on 'permanent paper', a high resistant paper with a lifetime of 600 to 1000 years. An updating of these data is made every 5 years for each waste disposal center. Another project, still in progress, concerns the memory management of deep geologic waste disposal facilities for which the time scale to be considered is of the order of millennia. (J.S.)

  12. Modelling sequential Biosphere systems under Climate change for radioactive waste disposal. Project BIOCLIM

    International Nuclear Information System (INIS)

    Texier, D.; Degnan, P.; Loutre, M.F.; Lemaitre, G.; Paillard, D.; Thorne, M.

    2000-01-01

    The BIOCLIM project (Modelling Sequential Biosphere systems under Climate change for Radioactive Waste Disposal) is part of the EURATOM fifth European framework programme. The project was launched in October 2000 for a three-year period. It is coordinated by ANDRA, the French national radioactive waste management agency. The project brings together a number of European radioactive waste management organisations that have national responsibilities for the safe disposal of radioactive wastes, and several highly experienced climate research teams. Waste management organisations involved are: NIREX (UK), GRS (Germany), ENRESA (Spain), NRI (Czech Republic) and ANDRA (France). Climate research teams involved are: LSCE (CEA/CNRS, France), CIEMAT (Spain), UPMETSIMM (Spain), UCL/ASTR (Belgium) and CRU (UEA, UK). The Environmental Agency for England and Wales provides a regulatory perspective. The consulting company Enviros Consulting (UK) assists ANDRA by contributing to both the administrative and scientific aspects of the project. This paper describes the project and progress to date. (authors)

  13. Management of radioactive materials and wastes: status, stakes and perspectives

    International Nuclear Information System (INIS)

    Champion, Didier; Devin, Patrick; Tanguy, Loic; Bernard, Herve; Minon, Jean-Paul; Leclaire, Arnaud; Gilli, Ludivine; Lheureux, Yves; Pescatore, Claudio; Barbey, Pierre; Schneider, Thierry; Gay, Didier; Forest, Isabelle; Hemidy, Pierre-Yves; Baglan, Nicolas; Desnoyers, Bruno; Pieraccini, Michel; Poncet, Philippe; Seguin, Bertille; Calvez, Marianne; Leclerc, Elisabeth; Bancelin, Estelle; Fillion, Eric; Segura, Yannick; Vernaz, Etienne; Granier, Guy; De Preter, Peter; Petitfrere, Michael; Laye, Frederic; Nakamura, Takashi; Gin, Stephane; Lebaron-Jacobs, Laurence; Dinant, Sophie; Vacquier, Blandine; Crochon, Philippe; Griffault, Lise; Smith, Graham

    2013-10-01

    These technical days were organized by the Environment section of the French Society of Radiation Protection (SFRP). Time was given to some exchange about the societal aspects of radioactive waste management as well as about the legal context but the most part of the debates delt with the actual management modalities of the different types of wastes, both in France and in foreign countries, and with the related stakes, in particular in terms of impact. This document brings together the presentations (slides) of the following talks: - Contributions of radiation protection to the long-term safety management of radioactive wastes (Jean-Paul MINON - ONDRAF); - The national inventory of radioactive materials and wastes (Arnaud LECLAIRE - ANDRA); - The high activity, medium activity-long living wastes in debate - a co-building approach (ANCCLI/Clis of Bure/IRSN) to share stakes, enlighten, and develop thought (Ludivine GILLI - IRSN, Yves LHEUREUX - ANCCLI); - Social aspects of Radioactive Waste Management - The International Learning (Claudio PESCATORE - AEN/OCDE); - Citizens involvement and ACRO's point of view on radioactive wastes management (Pierre BARBEY - ACRO); - New CIPR recommendations about the geologic disposal of long-living radioactive wastes (Thierry SCHNEIDER - CEPN); - Overview of processes under the views of radiation protection principles (Didier GAY - IRSN); - The national plan of radioactive materials and wastes management (Loic TANGUY - ASN); - Joint convention on spent fuel management safety and on radioactive waste management safety - status and main stakes (Isabelle FOREST - ASN); - Transport of radioactive wastes (Bruno DESNOYERS - AREVA); - Optimisation and limitation of the environmental impacts of very-low level wastes - valorisation and processes selection (Michel PIERACCINI - EDF), Philippe PONCET - AREVA); - Management of hospital wastes - Example of Montpellier's University Regional Hospital (Bertille SEGUIN - CHRU de Montpellier); - Waste

  14. The French nuclear safety authority's experience with radioactive transport inspection

    International Nuclear Information System (INIS)

    Jacob, E.; Aguilar, J.

    2004-01-01

    About 300,000 radioactive material packages are transported annually in France. Most consist of radioisotopes for medical, pharmaceutical or industrial use. On the other hand, the nuclear industry deals with the transport of fuel cycle materials (uranium, fuel assemblies, etc.) and waste from power plants, reprocessing plants and research centers. France is also a transit country for shipments such as spent fuel packages from Switzerland or Germany, which are bound for Sellafield in Great Britain. The French nuclear safety authority (DGSNR: Directorate General for Nuclear Safety and Radioprotection) has been responsible since 1997 for the safety of radioactive material transport. This paper presents DGNSR's experience with transport inspection: a feedback of key points based on 300 inspections achieved during the past five years is given

  15. National inventory of radioactive wastes and recoverable materials 2006. Descriptive catalogue of radioactive waste families; Inventaire national des dechets radioactifs et des matieres valorisables 2006. Catalogue descriptif des familles de dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Real comprehensive overview of radioactive wastes, the national inventory of radioactive wastes and recoverable materials describes the situation in France of the wastes that can be conditioned (in their definitive form) or not. It presents also the waste production quantities foreseen for 2010, 2020 and beyond. This document is a complement to the synthesis report and to the geographic inventory of radioactive wastes in France and details the classification of wastes by families (wastes with similar characteristics). For each family of wastes, the description comprises a general presentation and some photos. It comprises also some data such as the position of the family in the French classification, the industrial activity at the origin of the waste, the production situation of the waste in concern (finished, in progress, not started). Some information about the raw waste are given and the conditioning process used is described. Some figures complete the description, like: the past and future production quantities, the evaluation of the radioactivity of the waste family in 2004 and 2020, and the evaluation of the thermal power when available. Finally, some information are given about the presence of compounds with a specific risk of toxicity. (J.S.)

  16. Radioactive waste processing

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1978-01-01

    This article gives an outline of the present situation, from a Belgian standpoint, in the field of the radioactive wastes processing. It estimates the annual quantity of various radioactive waste produced per 1000 MW(e) PWR installed from the ore mining till reprocessing of irradiated fuels. The methods of treatment concentration, fixation, final storable forms for liquid and solid waste of low activity and for high level activity waste. The storage of radioactive waste and the plutonium-bearing waste treatement are also considered. The estimated quantity of wastes produced for 5450 MW(e) in Belgium and their destination are presented. (A.F.)

  17. Radioactive wastes of Nuclear Industry

    International Nuclear Information System (INIS)

    1995-01-01

    This conference studies the radioactive waste of nuclear industry. Nine articles and presentations are exposed here; the action of the direction of nuclear installations safety, the improvement of industrial proceedings to reduce the waste volume, the packaging of radioactive waste, the safety of radioactive waste disposal and environmental impact studies, a presentation of waste coming from nuclear power plants, the new waste management policy, the international panorama of radioactive waste management, the international transport of radioactive waste, finally an economic analysis of the treatment and ultimate storage of radioactive waste. (N.C.)

  18. Radioactive Waste in Perspective

    International Nuclear Information System (INIS)

    2011-01-01

    Large volumes of hazardous wastes are produced each year, however only a small proportion of them are radioactive. While disposal options for hazardous wastes are generally well established, some types of hazardous waste face issues similar to those for radioactive waste and also require long-term disposal arrangements. The objective of this NEA study is to put the management of radioactive waste into perspective, firstly by contrasting features of radioactive and hazardous wastes, together with their management policies and strategies, and secondly by examining the specific case of the wastes resulting from carbon capture and storage of fossil fuels. The study seeks to give policy makers and interested stakeholders a broad overview of the similarities and differences between radioactive and hazardous wastes and their management strategies. Contents: - Foreword; - Key Points for Policy Makers; - Executive Summary; - Introduction; - Theme 1 - Radioactive and Hazardous Wastes in Perspective; - Theme 2 - The Outlook for Wastes Arising from Coal and from Nuclear Power Generation; - Risk, Perceived Risk and Public Attitudes; - Concluding Discussion and Lessons Learnt; - Strategic Issues for Radioactive Waste; - Strategic Issues for Hazardous Waste; - Case Studies - The Management of Coal Ash, CO 2 and Mercury as Wastes; - Risk and Perceived Risk; - List of Participants; - List of Abbreviations. (authors)

  19. Management of radioactive waste

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.; Volckaert, G.; Wacquier, W.

    1998-09-01

    The document gives an overview of of different aspects of radioactive waste management in Belgium. The document discusses the radioactive waste inventory in Belgium, the treatment and conditioning of radioactive waste as well as activities related to the characterisation of different waste forms. A separate chapter is dedicated to research and development regarding deep geological disposal of radioactive waste. In the Belgian waste management programme, particular emphasis is on studies for disposal in clay. Main results of these studies are highlighted and discussed

  20. The 2016-2018 National Plan of Management of Radioactive Materials and Wastes. Final report

    International Nuclear Information System (INIS)

    2017-01-01

    A first document contains the final version of the French National Plan of Management of Radioactive Materials and Wastes (PNGMDR) for the period 2016-2018: principles and objectives (presentation of radioactive materials and wastes, principles to be taken into account to define pathways of management of radioactive wastes, legal and institutional framework, information transparency), the management of radioactive materials (context and challenges, management pathways, works on fast breeder reactors of fourth generation), assessment and perspectives of existing pathways of management of radioactive wastes (management of historical situations, management of residues of mining and sterile processing, management of waste with a high natural radioactivity, management of very short life waste, of very low activity wastes, and low and medium activity wastes), needs and perspectives regarding management processes to be implemented for the different types of radioactive wastes. Appendices to this document contain: a recall of the content of previous PNGMDR since 2007, a synthesis of realisations and researches performed abroad, research orientations for the concerned period, and international agreement on spent fuel and radioactive waste management. A second document, released by the ASN, proposes an environmental and strategic assessment of the plan. A third one and a fourth one contain the opinion of the Environmental Authority on the plan preliminary focus and the answer to the Environmental Authority by the ASN. Finally, a synthesis of the remarks made by the public about the PNGMDR and the answers to these remarks conclude the document

  1. Immersed radioactive wastes

    International Nuclear Information System (INIS)

    2017-03-01

    This document presents a brief overview of immersed radioactive wastes worldwide: historical aspects, geographical localization, type of wastes (liquid, solid), radiological activity of immersed radioactive wastes in the NE Atlantic Ocean, immersion sites and monitoring

  2. Management of Radioactive Wastes

    International Nuclear Information System (INIS)

    Tchokosa, P.

    2010-01-01

    Management of Radioactive Wastes is to protect workers and the public from the radiological risk associated with radioactive waste for the present and future. It application of the principles to the management of waste generated in a radioisotope uses in the industry. Any material that contains or is contaminated with radionuclides at concentrations or radioactivity levels greater than ‘exempt quantities’ established by the competent regulatory authorities and for which no further use is foreseen or intended. Origin of the Radioactive Waste includes Uranium and Thorium mining and milling, nuclear fuel cycle operations, Operation of Nuclear power station, Decontamination and decommissioning of nuclear facilities and Institutional uses of isotopes. There are types of radioactive waste: Low-level Waste (LLW) and High-level Waste. The Management Options for Radioactive Waste Depends on Form, Activity, Concentration and half-lives of the radioactive waste, Storage and disposal methods will vary according to the following; the radionuclides present, and their concentration, and radio toxicity. The contamination results basically from: Contact between radioactive materials and any surface especially during handling. And it may occur in the solid, liquid or gas state. Decontamination is any process that will either reduce or completely remove the amount of radionuclides from a contaminated surface

  3. Radioactive waste management

    International Nuclear Information System (INIS)

    1992-01-01

    This book highlights the main issues of public concern related to radioactive waste management and puts them into perspective. It provides an overview of radioactive waste management covering, among other themes, policies, implementation and public communication based on national experiences. Its purpose is to assists in increasing the understanding of radioactive waste management issues by public and national authorities, organizations involved in radioactive waste management and the nuclear industry; it may also serve as a source book for those who communicate with the public. Even in the unlikely event that nuclear power does not further develop around the world, the necessity for dealing with nuclear waste from past usages, from uranium mining and milling, decontamination and decommissioning of existing nuclear facilities and from the uses of radioactive materials in medicine, industry and research would still exist. In many countries, radioactive waste management planning involves making effective institutional arrangements in which responsibilities and liabilities are well established for the technical operation and long term surveillance of disposal systems. Financing mechanisms are part of the arrangements. Continuous quality assurance and quality control, at all levels of radioactive waste management, are essential to ensure the required integrity of the system. As with any other human activity, improvements in technology and economics may be possible and secondary problems avoided. Improvements and confirmation of the efficiency of processes and reduction of uncertainties can only be achieved by continued active research, development and demonstration, which are the goals of many national programmes. International co-operation, also in the form of reviews, can contribute to increasing confidence in the ongoing work. The problem of radioactive wastes is not a unique one; it may be compared with other problems of toxic wastes resulting from many other

  4. Dynamics of radioactive waste generation

    International Nuclear Information System (INIS)

    Dogaru, Daniela; Virtopeanu, Cornelia; Ivan, Alexandrina

    2008-01-01

    In Romania there are in operation three facilities licensed for collection, treatment and storage of radioactive waste resulted from industry, research, medicine, and agriculture, named institutional radioactive waste. The repository, which is of near surface type, is designed for disposing institutional radioactive waste. The institutional radioactive wastes generated are allowed to be disposed into repository according to the waste acceptance criteria, defined for the disposal facility. The radioactive wastes which are not allowed for disposal are stored on the site of each facility which is special authorised for this. The paper describes the dynamics of generation of institutional waste in Romania, both for radioactive waste which are allowed to be disposed into repository and for radioactive waste which are not allowed to be disposed of. (authors)

  5. Controlling radioactive waste

    International Nuclear Information System (INIS)

    Wurtinger, W.

    1992-01-01

    The guideline of the Ministry for Environmental Protection for controlling radioactive waste with a negligible development of heat defines in detail what data are relevant to the control of radioactive waste and should be followed up on and included in a system of documentation. By introducing the AVK (product control system for tracing the course of waste disposal) the operators of German nuclear power plants have taken the requirements of this guideline into account. In particular, possibilities for determining the degree of radioactivity of radioactive waste, which the BMU-guidelines call for, were put into practice by means of the programming technology of the product control system's module MOPRO. (orig.) [de

  6. Aspects of radioactive waste management

    International Nuclear Information System (INIS)

    Cutoiu, Dan

    2003-01-01

    The origin and types of radioactive waste, the objective and the fundamental principles of radioactive waste management and the classification of radioactive waste are presented. Problems of the radioactive waste management are analyzed. (authors)

  7. Transport of radioactive wastes

    International Nuclear Information System (INIS)

    Stuller, C.

    2003-01-01

    In this article author describes the system of transport and processing of radioactive wastes from nuclear power of Slovenske elektrarne, plc. It is realized the assurance of transport of liquid and solid radioactive wastes to processing links from places of their formation, or of preliminary storage and consistent transports of treated radioactive wastes fixed in cement matrix of fibre-concrete container into Rebublic storage of radioactive wastes in Mochovce

  8. Public debate on radioactive wastes; Le debat public sur les dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The definition and implementation of safe and perennial solutions for the management of radioactive wastes is a necessity from the point of view of both the nuclear industrialists and the public authorities, but also of the overall French citizens. For the low- or medium-level or short living radioactive wastes, some solutions have been defined are are already implemented. On the other hand, no decision has been taken so far for the long living medium to high-level radioactive wastes. Researches are in progress in this domain according to 3 ways of research defined by the law from December 30, 1991: separation-transmutation, disposal in deep underground, and long duration surface or sub-surface storage. This paper presents in a digest way, the principle, the results obtained so far, and the perspectives of each of the three solutions under study. (J.S.)

  9. Convention of August the 3-rd 2010 between the French State and the ANDRA about the future investment program (action 'research in waste processing and storage')

    International Nuclear Information System (INIS)

    2010-01-01

    Published in the 'Journal Officiel' as a contract between the French State and the ANDRA (the French national agency for the management of radioactive wastes), this text first defines the financed action, describes the selection of beneficiaries, describes the various financial and accounting arrangements, defines the foreseen organisation and means within the operator, defines the assessment process, the implementation follow-up. The concerned action deals with the setting up of valorization or recycling activities for low radioactive metallic wastes produced by the dismantling of nuclear installations, and with the development of innovating processes and technologies for the processing of chemically reactive radioactive wastes in order to make their storage easier. Others objectives are to decrease the waste volume, to store wastes from small producers, to obtain the most inert as possible physical-chemical state, and to facilitate the storage of some particular wastes

  10. Radioactive waste management and regulation

    International Nuclear Information System (INIS)

    Willrich, M.; Lester, R.K.; Greenberg, S.C.; Mitchell, H.C.; Walker, D.A.

    1977-01-01

    Purpose of this book is to assist in developing public policy and institutions for the safe management of radioactive waste, currently and long term. Both high-level waste and low-level waste containing transuranium elements are covered. The following conclusions are drawn: the safe management of post-fission radioactive waste is already a present necessity and an irreversible long-term commitment; the basic goals of U.S. radioactive waste policy are unclear; the existing organization for radioactive waste management is likely to be unworkable if left unchanged; and the existing framework for radioactive waste regulation is likely to be ineffective if left unchanged. The following recommendations are made: a national Radioactive Waste Authority should be established as a federally chartered public corporation; with NRC as the primary agency, a comprehensive regulatory framework should be established to assure the safety of all radioactive waste management operations under U.S. jurisdiction or control; ERDA should continue to have primary government responsibility for R and D and demonstration of radioactive waste technology; and the U.S. government should propose that an international Radioactive Waste Commission be established under the IAEA

  11. Main outcomes from in situ thermo-hydro-mechanical experiments programme to demonstrate feasibility of radioactive high-level waste disposal in the Callovo-Oxfordian claystone

    Directory of Open Access Journals (Sweden)

    G. Armand

    2017-06-01

    Full Text Available In the context of radioactive waste disposal, an underground research laboratory (URL is a facility in which experiments are conducted to demonstrate the feasibility of constructing and operating a radioactive waste disposal facility within a geological formation. The Meuse/Haute-Marne URL is a site-specific facility planned to study the feasibility of a radioactive waste disposal in the Callovo-Oxfordian (COx claystone. The thermo-hydro-mechanical (THM behaviour of the host rock is significant for the design of the underground nuclear waste disposal facility and for its long-term safety. The French National Radioactive Waste Management Agency (Andra has begun a research programme aiming to demonstrate the relevancy of the French high-level waste (HLW concept. This paper presents the programme implemented from small-scale (small diameter boreholes to full-scale demonstration experiments to study the THM effects of the thermal transient on the COx claystone and the strategy implemented in this new programme to demonstrate and optimise current disposal facility components for HLW. It shows that the French high-level waste concept is feasible and working in the COx claystone. It also exhibits that, as for other plastic clay or claystone, heating-induced pore pressure increases and that the THM behaviour is anisotropic.

  12. Demister apparatus for gaseous wastes carrying radioactive aerosols

    International Nuclear Information System (INIS)

    Meline, F.G.; Richter, R.J.

    1983-01-01

    In the nuclear industry, more precisely in the field of spent fuel reprocessing, the cleaning of the gaseous wastes, before evacuation, should be realized with a device designed in order to take full account of the constraints that are inherent in the radioactive media. The French Atomic Authority (CEA), in collaboration with the Societe Generale pour les Techniques Nouvelles, have studied and developed types of demister for the nuclear field having good cleaning properties

  13. Radioactive Waste Management Basis

    International Nuclear Information System (INIS)

    Perkins, B.K.

    2009-01-01

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  14. Safety guidebook relative to the disposal of radioactive wastes in deep geologic formation

    International Nuclear Information System (INIS)

    2008-01-01

    The French nuclear safety authority (ASN) initiated in 2003 a revision process of the objectives to be considered during the research and work steps of the implementation of a radioactive waste storage facility in deep geologic formations. The purpose of this document is to define the safety objectives that have to be retained at each step of this implementation, from the site characterization to the closure of the facility. This update takes into account the works carried out by the ANDRA (French national agency of radioactive wastes) in the framework of the law from December 30, 1991, and the advices of the permanent experts group about these works. It takes also into consideration the international research works in this domain and the choices defined in the program law no 2006-739 from June 28, 2006 relative to the sustainable management of radioactive materials and wastes. The main modifications concern: the notion of reversibility, the definition of the safety functions of disposal components, the safety goals and the design principles assigned to waste packages, the control of nuclear materials and the monitoring objectives of the facility. The documents treats of the following points: 1 - the objectives of public health and environment protection; 2 - the safety principles and the safety-related design bases of the facility; and 3 - the method used for demonstrating the disposal safety. (J.S.)

  15. Radioactive wastes and discharges

    International Nuclear Information System (INIS)

    1993-01-01

    According to the Section 24 of the Finnish Radiation Decree (1512/91), the Finnish Centre for Radiation and Nuclear Safety shall specify the concentration and activity limits and principles for the determination whether a waste can be defined as a radioactive waste or not. The radiation safety requirements and limits for the disposal of radioactive waste are given in the guide. They must be observed when discharging radioactive waste into the atmosphere or sewer system, or when delivering solid low-activity waste to a landfill site without a separate waste disposal plan. The guide does not apply to the radioactive waste resulting from the utilization of nuclear energy of natural resources. (4 refs., 1 tab.)

  16. Management of radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1984-01-01

    The disposal of radioactive wastes is perhaps the most controversial and least understood aspect of the use of nuclear materials in generating electrical power, the investigation of biochemical processes through tracer kinetics, and the diagnosis and treatment of disease. In the siting of nuclear power facilities, the disposal of radioactive wastes is invariably posed as the ultimate unanswerable question. In the fall of 1979, biochemical and physiologic research employing radioactive tracers was threatened with a slowdown resulting from temporary closure of sites for disposal of low-level radioactive wastes (LLW). Radioactive pharmaceuticals used extensively for diagnosis and treatment of human disease have increased dramatically in price, partly as a result of the escalating cost of disposing of radioactive wastes created during production of the labeled pharmaceuticals. These problems have resulted in identification of the disposal of LLW as the most pressing issue in the entire scheme of management of hazardous wastes. How this issue as well as the separate issue of disposal of high-level radioactive wastes (HLW) are being addressed at both national and state levels is the subject of this chapter

  17. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Bohm, H.; Closs, K.D.; Kuhn, K.

    1981-01-01

    The solutions to the technical problem of the disposal of radioactive waste are limited by a) the state of knowledge of reprocessing possibilites, b) public acceptance of the use of those techniques which are known, c) legislative procedures linking licensing of new nuclear power plants to the solution of waste problems, and d) other political constraints. Wastes are generated in the mining and enriching of radioactive elements, and in the operation of nuclear power plants as well as in all fields where radioactive substances may be used. Waste management will depend on the stability and concentration of radioactive materials which must be stored, and a resolution of the tension between numerous small storage sites and a few large ones, which again face problems of public acceptability

  18. Radioactive wastes and discharges

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources.

  19. Radioactive wastes and discharges

    International Nuclear Information System (INIS)

    2000-01-01

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources

  20. International trends of radioactive waste management

    International Nuclear Information System (INIS)

    Luo Shanggeng

    1989-01-01

    The new trends of radioactive waste management in the world such as focusing on decreasing the amount of radioactive wastes, developing decontamination and decommissioning technology, conscientious solution for radiactive waste disposal, carrying out social services of waste treatment and quality assurance are reviewed. Besides, comments and suggestions are presented. Key words Radioactive waste management, Radioactive waste treatment, Radioactive waste disposal

  1. Radioactive waste management

    International Nuclear Information System (INIS)

    2003-01-01

    Almost all IAEA Member States use radioactive sources in medicine, industry, agriculture and scientific research, and countries remain responsible for the safe handling and storage of all radioactively contaminated waste that result from such activities. In some cases, waste must be specially treated or conditioned before storage and/or disposal. The Department of Technical Co-operation is sponsoring a programme with the support of the Nuclear Energy Department aimed at establishing appropriate technologies and procedures for managing radioactive wastes. (IAEA)

  2. Objectives for radioactive waste packaging

    International Nuclear Information System (INIS)

    Flowers, R.H.

    1982-04-01

    The report falls under the headings: introduction; the nature of radioactive wastes; how to manage radioactive wastes; packaging of radioactive wastes (supervised storage; disposal); waste form evaluation and test requirements (supervised storage; disposal); conclusions. (U.K.)

  3. The national plan of radioactive materials and wastes management. 2010-2012 edition

    International Nuclear Information System (INIS)

    2010-01-01

    This short presentation, given by the nuclear safety authority (ASN) at the meeting of January 26, 2010 of the high committee for the nuclear safety transparency and information (HCTISN), describes the different stages of the elaboration of the new edition of the French national plan of radioactive materials and wastes management (PNGMDR). The plan comprises 3 parts: the principles and objectives of the radioactive materials and wastes management, the status of existing procedures and of procedures still under development by the end of 2009, the improvements made. The topics concern: the interim storage, the long-term management and the global consistency of the plan. (J.S.)

  4. Radioactive Wastes. Revised.

    Science.gov (United States)

    Fox, Charles H.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. This booklet deals with the handling, processing and disposal of radioactive wastes. Among the topics discussed are: The Nature of Radioactive Wastes; Waste Management; and Research and Development. There are…

  5. Radioactive Waste Management Strategy

    International Nuclear Information System (INIS)

    2002-01-01

    This strategy defines methods and means how collect, transport and bury radioactive waste safely. It includes low level radiation waste and high level radiation waste. In the strategy are foreseen main principles and ways of storage radioactive waste

  6. Radioactive liquid waste filtering device

    International Nuclear Information System (INIS)

    Inami, Ichiro; Tabata, Masayuki; Kubo, Koji.

    1988-01-01

    Purpose: To prevent clogging in filter materials and improve the filtration performance for radioactive liquid wastes without increasing the amount of radioactive wastes. Constitution: In a radioactive waste filtering device, a liquid waste recycling pipe and a liquid recycling pump are disposed for recycling the radioactive liquid wastes in a liquid wastes vessel. In this case, the recycling pipe and the recycling pump are properly selected so as to satisfy the conditions capable of making the radioactive liquid wastes flowing through the pipe to have the Reynolds number of 10 4 - 10 5 . By repeating the transportation of radioactive liquid wastes in the liquid waste vessel through the liquid waste recycling pipe by the liquid waste recycling pump and then returning them to the liquid waste vessel again, particles of fine grain size in the suspended liquids are coagulated with each other upon collision to increase the grain size of the suspended particles. In this way, clogging of the filter materials caused by the particles of fine grain size can be prevented, thereby enabling to prevent the increase in the rising rate of the filtration differential pressure, reduce the frequency for the occurrence of radioactive wastes such as filter sludges and improve the processing performance. (Kamimura, M.)

  7. Radioactive Waste Repositories Administration - SURAO

    International Nuclear Information System (INIS)

    Kucerka, M.

    1998-01-01

    The Atomic Act specifies, among other things, responsibilities of the government in the field of safe disposal of radioactive wastes. To satisfy this responsibility, the Ministry of Industry and Trade has established the Radioactive Waste Repositories Administration (SURAO). SURAO's major responsibilities include: (a) the preparation, construction, commissioning, operation, and decommissioning of radioactive waste repositories and the monitoring of their environmental impacts; (b) radioactive waste management; (c) spent or irradiated nuclear fuel processing into a form suitable for storage/disposal or reuse; (d) record-keeping of received radioactive wastes and their producers; (e) administration of fund transfers as stipulated by the Atomic Act, Article 27; (f) development of proposals for specification of fees to be paid to the Nuclear Account; (g) responsibility for and coordination of research and development in the field of radioactive waste handling and management; (h) supervision of licensees' margin earmarked for the decommissioning of their facilities; (i) providing services in radioactive waste handling and management; (j) handling and management of radioactive wastes that have been transferred to the Czech Republic from abroad and cannot be sent back; (k) interim administration of radioactive wastes that have become state property. The Statute of the Administration is reproduced in full. (P.A.)

  8. Perspectives concerning radioactive waste management

    International Nuclear Information System (INIS)

    Noynaert, L.

    2013-01-01

    The article presents a general overview of the principles of radioactive waste management as established by the International Atomic Energy Agency. Subsequently, research and development related to radioactive waste management at the Belgian Nuclear Research Center SCK·CEN is discussed. Different topical areas are treated including radioactive waste characterisation, decontamination and the long-term management of radioactive waste. The decommissioning of the BR3 reactor and the construction and the exploitation of the underground research laboratory HADES are cited as examples of the pioneering role that SCK·CEN has played in radioactive waste management.

  9. An interim report of the Subcommittee on Radioactive Waste Countermeasures: measures for radioactive waste treatment and disposal

    International Nuclear Information System (INIS)

    1984-01-01

    The Subcommittee on Radioactive Waste Countermeasures has studied on the measures for land disposal of low-level radioactive wastes and ultra-low-level radioactive wastes and the measures for treatment and disposal of high-level radioactive wastes and transuranium wastes. The results of studies so far are presented as an interim report. In disposal of low-level radioactive wastes, the land disposal is being required increasingly. The measures according to the levels of radioactivity are necessary. For the ultra-low-level radioactive wastes, their occurrence in large quantities is expected along with reactor decommissioning. In disposal of the high-level radioactive wastes, the present status is a transition toward the practical stages. Transuranium wastes should increase in their arising in the future. (Mori, K.)

  10. INES scale: French application to radioactive material transport

    International Nuclear Information System (INIS)

    Sowinski, S.; Strawa, S.; Aguilar, J.

    2004-01-01

    After getting the control of radioactive material transport in June 1997, the French safety Authority (ASN) decided to apply the INES scale to transport events. DGSNR (Directorate General for Nuclear Safety and Radioprotection) requests that radioactive material package consignors declare any event occurring during transportation, and has introduced the use of the INES scale adapted to classify transport events in order to inform the public and to have feedback. This paper deals with DGSNR's feedback during the past seven years concerning the french application of the INES scale. Significant events that occurred during transportation are presented. The French experience was used by IAEA to develop a draft guide in 2002 and IAEA asked countries to use a new draft for a trial period in July 2004

  11. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    International Nuclear Information System (INIS)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S.; Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature

  12. Radioactive mixed waste disposal

    International Nuclear Information System (INIS)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste

  13. Long-lived high and intermediate level radioactive wastes: defining the context, stakes and perspectives

    International Nuclear Information System (INIS)

    2006-01-01

    The French law from December 30, 1991 has defined an ambitious 15 years program of researches in order to explore the different possible paths for the long-term management of long-lived high and intermediate level radioactive wastes. The law foresees also that at the end of the 15 years research program, a project of law will be prepared by the French government and transmitted to the European parliament in 2006. A public debate has been organized and emceed in 2005 in order dialogue with the general public and to gather its questions, remarks and fears. In the framework of their contribution to this debate, the ministries of industry and environment have prepared this document which answers some key questions about radioactive waste management: where do wastes come from, what are the risks, how are they managed today in France and in foreign countries, what are the results of the researches carried out during 15 years, what are the advantages and drawbacks of each waste management solution considered, what is the perspective of application of each solution, what is the position of experts, what will be the decision process. This synthetic document supplies some reference marks to better understand these different points. Some pedagogical files about radioactivity, fuel cycle, and nuclear industry activities are attached to the document. (J.S.)

  14. Radioactive waste management

    International Nuclear Information System (INIS)

    1984-07-01

    The purpose of this document is to set out the Government's current strategy for the long term in the management of radioactive wastes. It takes account of the latest developments, and will be subject to review in the light of future developments and studies. The subject is discussed under the headings: what are radioactive wastes; who is responsible; what monitoring takes place; disposal as the objective; low-level wastes; intermediate-level wastes; discharges from Sellafield; heat generating wastes; how will waste management systems and procedures be assessed; how much more waste is there going to be in future; conclusion. (U.K.)

  15. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    Energy Technology Data Exchange (ETDEWEB)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq); Cochran, John R. [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)

    2013-07-01

    Iraqi Decommissioning Directorate (IDD) is responsible for decommissioning activities. The IDD and the RWTMD work together on decommissioning projects. The IDD has developed plans and has completed decommissioning of the GeoPilot Facility in Baghdad and the Active Metallurgical Testing Laboratory (LAMA) in Al-Tuwaitha. Given this experience, the IDD has initiated work on more dangerous facilities. Plans are being developed to characterize, decontaminate and decommission the Tamuz II Research Reactor. The Tammuz Reactor was destroyed by an Israeli air-strike in 1981 and the Tammuz II Reactor was destroyed during the First Gulf War in 1991. In addition to being responsible for managing the decommissioning wastes, the RWTMD is responsible for more than 950 disused sealed radioactive sources, contaminated debris from the first Gulf War and (approximately 900 tons) of naturally-occurring radioactive materials wastes from oil production in Iraq. The RWTMD has trained staff, rehabilitated the Building 39 Radioactive Waste Storage building, rehabilitated portions of the French-built Radioactive Waste Treatment Station, organized and secured thousands of drums of radioactive waste organized and secured the stores of disused sealed radioactive sources. Currently, the IDD and the RWTMD are finalizing plans for the decommissioning of the Tammuz II Research Reactor. (authors)

  16. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    International Nuclear Information System (INIS)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi; Cochran, John R.

    2013-01-01

    Directorate (IDD) is responsible for decommissioning activities. The IDD and the RWTMD work together on decommissioning projects. The IDD has developed plans and has completed decommissioning of the GeoPilot Facility in Baghdad and the Active Metallurgical Testing Laboratory (LAMA) in Al-Tuwaitha. Given this experience, the IDD has initiated work on more dangerous facilities. Plans are being developed to characterize, decontaminate and decommission the Tamuz II Research Reactor. The Tammuz Reactor was destroyed by an Israeli air-strike in 1981 and the Tammuz II Reactor was destroyed during the First Gulf War in 1991. In addition to being responsible for managing the decommissioning wastes, the RWTMD is responsible for more than 950 disused sealed radioactive sources, contaminated debris from the first Gulf War and (approximately 900 tons) of naturally-occurring radioactive materials wastes from oil production in Iraq. The RWTMD has trained staff, rehabilitated the Building 39 Radioactive Waste Storage building, rehabilitated portions of the French-built Radioactive Waste Treatment Station, organized and secured thousands of drums of radioactive waste organized and secured the stores of disused sealed radioactive sources. Currently, the IDD and the RWTMD are finalizing plans for the decommissioning of the Tammuz II Research Reactor. (authors)

  17. Radioactive waste (disposal)

    International Nuclear Information System (INIS)

    Jenkin, P.

    1985-01-01

    The disposal of low- and intermediate-level radioactive wastes was discussed. The following aspects were covered: public consultation on the principles for assessing disposal facilities; procedures for dealing with the possible sites which the Nuclear Industry Radioactive Waste Executive (NIREX) had originally identified; geological investigations to be carried out by NIREX to search for alternative sites; announcement that proposal for a site at Billingham is not to proceed further; NIREX membership; storage of radioactive wastes; public inquiries; social and environmental aspects; safety aspects; interest groups; public relations; government policies. (U.K.)

  18. Management of ''short-lifetime'' radioactive wastes, an industrial reality to safeguard the environment

    International Nuclear Information System (INIS)

    Faussat, A.

    1992-01-01

    On the occasion of the inauguration of the Aube waste storage center by A.Billardon, Vice Minister for Energy, the author reviews the management situation in France for short life radioactive wastes. The wastes are first defined and their characteristics explained, and then are discussed the general principles underlying the management of these wastes, which involves finding ways to avoid the dispersal of radioactive products into the environment. The author explains why the French have chosen surface storage, and then goes into the integrated management system developed to optimize the long-term management of short-term wastes on the technical and economic levels. The two storage centers existing in France (the Manche and Aube centers) are then described. The article winds up with a presentation of the system as it has been adapted abroad, and another possible adaptation for use in storing toxic industrial wastes. 2 figs., 3 photos

  19. Management of radioactive wastes. Closing meeting

    International Nuclear Information System (INIS)

    2006-01-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprised 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is the proceedings of this closing meeting. The aim of this meeting is to make a status of the different public hearings and round-tables and to stress on some particular points of the nuclear waste management debate. Some points concern the social and democratic dimension of this debate which can be summarized in few words like: public information, decision making, secrecy, confidence, transparency, acceptability, ethics. Some other points concern the scientific and technical dimensions of nuclear waste management and refer to the advantages and drawbacks of the different options of the 1991 law (transmutation, deep geologic disposal, and subsurface storage). (J.S.)

  20. Bituminization of low- and medium-level radioactive wastes

    International Nuclear Information System (INIS)

    Lefillatre, G.

    1976-01-01

    French operations are presented concerning mainly: the bituminization of radioactive wastes produced in light water reactors; the direct bituminization of liquid effluents without concentration; the experiments carried out for 18 months on the land burial of concentrates solidified by bitumen into blocks of 100 liters. The knowledge acquired in France is exposed: in Valduc and in Saclay with facilities equipped with thin film evaporators and in Marcoule with the conditioning of trilaurylamine and tributyl-phosphate. At last the Cadarache bituminization [fr

  1. The disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ormai, P.

    2006-01-01

    The first part shows different ways of 'producing' radioactive wastes, defines the wastes of small, medium and high activity and gives estimation on the quantity of the necessary capacities of waste disposal facilities. The modern radioactive waste disposal that is the integrated processing of the form of waste, the package, the technical facility and the embedding geological environment that guarantee the isolation together. Another factor is the lifetime of radioactive waste which means that any waste containing long lifetime waste in higher concentration than 400-4000 kBq/kg should be disposed geologically. Today the centre of debate disposal of radioactive waste is more social than technical. For this reason not only geological conditions and technical preparations, but social discussions and accepting communities are needed in selecting place of facilities. Now, the focus is on long term temporary disposal of high activity wastes, like burnt out heating elements. The final part of the paper summarizes the current Hungarian situation of disposal of radioactive wastes. (T-R.A.)

  2. Radioactive waste processing

    International Nuclear Information System (INIS)

    Curtiss, D.H.; Heacock, H.W.

    1976-01-01

    The description is given of a process for treating radioactive waste whereby a mud of radioactive waste and cementing material is formed in a mixer. This mud is then transferred from the mixer to a storage and transport container where it is allowed to harden. To improve transport efficiency an alkali silicate or an alkaline-earth metal silicate is added to the mud. For one hundred parts by weight of radioactive waste in the mud, twenty to one hundred parts by weight of cementing material are added and five to fifty parts by weight of silicate, the amount of waste in the mud exceeding the combined amount of cementing and silicate material [fr

  3. Presentation the national Plan of management of radioactive materials and wastes. Friday, the 4. of June 2010

    International Nuclear Information System (INIS)

    2010-01-01

    After a synthesis of the national plan of management of radioactive materials and wastes (PNGMDR for Plan national de gestion des matieres et des dechets radioactifs), this document contains the main conclusions of this plan for the period 2010-2012, a presentation of its elaboration modalities, a presentation of the basic principles regarding radioactive materials and wastes (definitions, origins, waste types and categories, waste management types), a presentation of the main actors of their management (agencies, ministries, authorities, research organizations, institutional bodies, associations). A glossary and other documents are provided, notably a presentation of the ASN (the French Nuclear Safety Authority), a report by the ANDRA agency giving an inventory of radioactive materials and wastes, and a chapter of a report on nuclear safety and radioprotection status in France in 2009

  4. Radioactive wastes and valorizable materials in France: summary of the 2004 national inventory; Dechets radioactifs et matieres valorisables en France: resume de l'inventaire national 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The French national inventory of radioactive wastes is a reference document for professionals and scientists of the nuclear domain and also for any citizen interested in the management of radioactive wastes. This summary document contains: 1 - general introduction; 2 - classification of radioactive wastes: the 5 main categories; 3 - origin of the wastes; 4 - processing and conditioning; 5 - inventory of existing wastes: geographical inventory, inventory per category; 6 - prospective inventory: prospective scenarios, forecasting of waste production; 7 - valorizable radioactive materials; 8 - synthesis and perspective; 9 - glossary. (J.S.)

  5. Radioactive Waste Management BasisApril 2006

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  6. Radioactive waste management and regulation

    International Nuclear Information System (INIS)

    Willrich, M.

    1976-12-01

    The following conclusions are reached: (1) safe management of post-fission radioactive waste is already a present necessity and an irreversible long-term commitment; (2) basic goals of U.S. radioactive waste policy are unclear; (3) the existing organization for radioactive waste management is likely to be unworkable if left unchanged; and (4) the existing framework for radioactive waste regulation is likely to be ineffective if left unchanged

  7. Radioactive wastes. Management prospects

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2003-01-01

    This article describes the perspectives of management of radioactive wastes as defined in the French law from December 30, 1991. This law defines three ways of research: abatement of the radiotoxicity of wastes (first way), reversible geological storage (second way) or long duration geological disposal (third way). This article develops these three solutions: 1 - strategic perspectives; 2 - separation, transmutation and specific conditioning: isotopes to be separated (evolution of the radio-toxicity inventory of spent fuels, migration of long-living radionuclides, abatement of radio-toxicity), research on advanced separation (humid and dry way), research on transmutation of separate elements (transmutation and transmutation systems, realistic scenarios of Pu consumption and actinides transmutation, transmutation performances), research on materials (spallation targets, fuels and transmutation targets), research on conditioning matrices for separated elements; 3 - long-term storage: principles and problems, containers, surface and subsurface facilities; 4 - disposal: reversibility and disposal, geological disposal (principle and problems, site and concept selection), adaptation to reversibility, research on materials (bentonite and cements for geologic barrier, metals for containers), underground research and qualification laboratories, quantity of containers to be stored. (J.S.)

  8. IAEA Mission Says France Committed to Safe, Responsible Management of Radioactive Waste

    International Nuclear Information System (INIS)

    2018-01-01

    An International Atomic Energy Agency (IAEA) team of experts said France demonstrated a comprehensive commitment to safety with a responsible approach to the management of radioactive waste and spent nuclear fuel. The team also made suggestions aimed at further enhancements and noted several good practices. The Integrated Review Service for Radioactive Waste and Spent Fuel Management, Decommissioning and Remediation (ARTEMIS) team concluded an 11-day mission to France on 24 January. The mission, requested by the Government of France, was hosted by the Directorate General of Energy and Climate (DGEC), with the participation of officials from several relevant organizations including the French National Radioactive Waste Agency (ANDRA) and the Nuclear Safety Authority (ASN), which is responsible for nuclear and radiation safety regulation in the country. ARTEMIS missions provide independent expert advice from an international team of specialists convened by the IAEA. Reviews are based on the IAEA safety standards as well as international good practices. The mission to France aimed to help the country meet European Union obligations that require an independent peer review of national programmes for the safe and responsible management of spent fuel and radioactive waste. Nuclear power currently generates more than 70 percent of France’s electricity. The country has 58 operating nuclear power reactors, which will require the continuing safe management of radioactive waste and spent fuel. France operates facilities for the disposal of very low-level and low-level wastes, and is developing a deep geological repository for the disposal of high-level waste.

  9. Radioactive waste management

    International Nuclear Information System (INIS)

    Morley, F.

    1980-01-01

    A summary is given of the report of an Expert Group appointed in 1976 to consider the 1959 White Paper 'The Control of Radioactive Wastes' in the light of the changes that have taken place since it was written and with the extended remit of examining 'waste management' rather than the original 'waste disposal'. The Group undertook to; review the categories and quantities present and future of radioactive wastes, recommend the principles for the proper management of these wastes, advise whether any changes in practice or statutory controls are necessary and make recommendations. (UK)

  10. Assessment of management alternatives for LWR wastes. Volume 7. Cost and radiological impact associated with near-surface disposal of reactor waste (French concept)

    International Nuclear Information System (INIS)

    Malherbe, J.

    1993-01-01

    This report deals with the determination of the cost and the radiological impact associated with a near-surface disposal site (French concept) for low and medium-level radioactive waste generated during operation of a 20 GWe nuclear park composed of LWRs for 30 years. This study is part of an overall theoretical exercise aimed at evaluating a selection of management routes for LWR waste based on economical and radiological criteria

  11. Predisposal Radioactive Waste Management

    International Nuclear Information System (INIS)

    2014-01-01

    Recognition of the importance of the safe management of radioactive waste means that, over the years, many well-established and effective techniques have been developed, and the nuclear industry and governments have gained considerable experience in this field. Minimization of waste is a fundamental principle underpinning the design and operation of all nuclear operations, together with waste reuse and recycling. For the remaining radioactive waste that will be produced, it is essential that there is a well defined plan (called a waste treatment path) to ensure the safe management and ultimately the safe disposal of radioactive waste so as to guarantee the sustainable long term deployment of nuclear technologies

  12. Management of radioactive waste: A review

    OpenAIRE

    Luis Paulo Sant'ana; Taynara Cristina Cordeiro

    2016-01-01

    The issue of disposal of radioactive waste around the world is not solved by now and the principal reason is the lack of an efficient technologic system. The fact that radioactive waste decays of radioactivity with time are the main reasons for setting nuclear or radioactive waste apart from the other common hazardous wastes management. Radioactive waste can be classified according to the state of matter and level of radioactivity and this classification can be differently interpreted from co...

  13. Radioactive waste disposal: Regulations and Application

    International Nuclear Information System (INIS)

    Hebert, Jean.

    1977-01-01

    The regulation of radioactive discharges, i.e. solid radioactive waste resulting from operation of nuclear installations and liquid and gazeous effluents released by them may be dealt with from two angles: the receiving environment and the polluting agent. French law covers both. Law on atmospheric pollution is based mainly on the Act of 2 August 1961 while the Act of 16 December 1964 governs water pollution. Both Acts have been the subject of a great number of implementing decrees, certain of which contain standards specific to radioactive pollution. Regulations on the polluting agent, namely its activity, comply with the generally established distinction between large nuclear installations and others. There again, there are many applicable texts, in particular, the Act of 19 July 1976 for classified installations, and the Decree of 11 December 1963, supplemented by the Decrees of 6 November 1974 and 31 December 1974 for large nuclear installations. This detailed analysis of national regulations is followed by a presentation of the applicable provisions in the Communities law and in international public law. (N.E.A.) [fr

  14. Method of storing radioactive wastes

    International Nuclear Information System (INIS)

    Adachi, Toshio; Hiratake, Susumu.

    1980-01-01

    Purpose: To reduce the radiation doses externally irradiated from treated radioactive waste and also reduce the separation of radioactive nuclide due to external environmental factors such as air, water or the like. Method: Radioactive waste adhered with radioactive nuclide to solid material is molten to mix and submerge the radioactive nuclide adhered to the surface of the solid material into molten material. Then, the radioactive nuclide thus mixed is solidified to store the waste in solidified state. (Aizawa, K.)

  15. Regulation of radioactive waste management

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the regulation of radioactive waste management of the UJD are presented. Radioactive waste (RAW) is the gaseous, liquid or solid material that contains or is contaminated with radionuclides at concentrations or activities greater than clearance levels and for which no use is foreseen. The classification of radioactive waste on the basis of type and activity level is: - transition waste; - short lived low and intermediate level waste (LlLW-SL); - long lived low and intermediate level waste (LlLW-LL); - high level waste. Waste management (in accordance with Act 130/98 Coll.) involves collection, sorting, treatment, conditioning, transport and disposal of radioactive waste originated by nuclear facilities and conditioning, transport to repository and disposal of other radioactive waste (originated during medical, research and industrial use of radioactive sources). The final goal of radioactive waste management is RAW isolation using a system of engineered and natural barriers to protect population and environment. Nuclear Regulatory Authority of the Slovak Republic regulates radioactive waste management in accordance with Act 130/98 Coll. Inspectors regularly inspect and evaluate how the requirements for nuclear safety at nuclear facilities are fulfilled. On the basis of safety documentation evaluation, UJD issued permission for operation of four radioactive waste management facilities. Nuclear facility 'Technologies for treatment and conditioning contains bituminization plants and Bohunice conditioning centre with sorting, fragmentation, evaporation, incineration, supercompaction and cementation. Final product is waste package (Fibre reinforced container with solidified waste) acceptable for near surface repository in Mochovce. Republic repository in Mochovce is built for disposal of short lived low and intermediate level waste. Next

  16. CEA - Nuclear Energy Division. Report on Sustainable Radioactive Waste Management

    International Nuclear Information System (INIS)

    2012-12-01

    The Sustainable Radioactive Waste Management Act of June 28, 2006, specified clear guidelines for spent nuclear fuel management. It states two complementary principles: - The policy of treating and recycling spent nuclear fuel is valid for reducing the quantity and toxicity of suitably packaged ultimate radioactive waste-forms. - The reference process for high-activity and long-lived ultimate waste is deep geological disposal. The report prepared by the CEA in response to these requirements was completed after several years of work in cooperation with the other French actors in this field (EDF, AREVA) and with contribution of the CNRS and Andra. It addresses the following topics in several volumes: n guidelines for research on 4. generation systems, and a description of the various systems examined; - the results of research coordinated by the CEA on partitioning and transmutation of long-lived radioactive elements; - choices proposed for the Astrid integrated technology demonstrator - a sodium-cooled fast reactor (SFR) - and a reasonable timetable for its construction; - a review of research conducted around the world on 4. generation systems based on fast neutron reactors (FNRs). The principal results and findings compiled by the CEA from these studies are summarized in this document

  17. Radioactive waste in Federal Germany

    International Nuclear Information System (INIS)

    Brennecke, P.; Schumacher, J.; Warnecke, E.

    1988-01-01

    The Physikalisch-Technische Bundesanstalt (PTB) is responsible for the long-term storage and disposal of radioactive waste according to the Federal Atomic Energy Act. On behalf of the Federal Minister of the Environment, Nature Conservation and Nuclear Safety, since 1985, the PTB has been carrying out annual inquiries into the amounts of radioactive waste produced in the Federal Republic of Germany. Within the scope of this inquiry performed for the preceding year, the amounts of unconditioned and conditioned waste are compiled on a producer- and plant-specific basis. On the basis of the inquiry for 1986 and of data presented to the PTB by the waste producers, future amounts of radioactive waste have been estimated up to the year 2000. The result of this forecast is presented. In the Federal Republic of Germany two sites are under consideration for disposal of radioactive waste. In the abandoned Konrad iron mine in Salzgitter-Bleckenstedt it is intended to dispose of such radioactive waste which has a negligible thermal influence upon the host rock. The Gorleben salt dome is being investigated for its suitability for the disposal of all kinds of solid and solidified radioactive wastes, especially of heat-generating waste. Comparing the estimated amount of radioactive wastes with the capacity of both repositories it may be concluded that the Konrad and Gorleben repositories will provide sufficient capacity to ensure the disposal of all kinds of radioactive waste on a long-term basis in the Federal Republic of Germany. 1 fig., 2 tabs

  18. Management of radioactive wastes; Gestion des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprises 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is the synthesis of the round table debates which took place at Joinville, i.e. in the same area as the Bure underground laboratory of Meuse/Haute-Marne. Therefore, the discussion focuses more on the local impacts of the setting up of a waste disposal facility (environmental aspects, employment, economic development). (J.S.)

  19. Method for calcining radioactive wastes

    International Nuclear Information System (INIS)

    Bjorklund, W.J.; McElroy, J.L.; Mendel, J.E.

    1979-01-01

    A method for the preparation of radioactive wastes in a low leachability form involves calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix

  20. Evolution in radioactive waste countermeasures

    International Nuclear Information System (INIS)

    Moriguchi, Yasutaka

    1984-01-01

    The establishment of radioactive waste management measures is important to proceed further with nuclear power development. While the storage facility projects by utilities are in progress, large quantity of low level wastes are expected to arise in the future due to the decommissioning of nuclear reactors, etc. An interim report made by the committee on radioactive waste countermeasures to the Atomic Energy Commission is described as follows: the land disposal measures of ultra-low level and low level radioactive wastes, that is, the concept of level partitioning, waste management, the possible practice of handling wastes, etc.; the treatment and disposal measures of high level radioactive wastes and transuranium wastes, including task sharing among respective research institutions, the solidification/storage and the geological formation disposal of high level wastes, etc. (Mori, K.)

  1. ORNL radioactive waste operations

    International Nuclear Information System (INIS)

    Sease, J.D.; King, E.M.; Coobs, J.H.; Row, T.H.

    1982-01-01

    Since its beginning in 1943, ORNL has generated large amounts of solid, liquid, and gaseous radioactive waste material as a by-product of the basic research and development work carried out at the laboratory. The waste system at ORNL has been continually modified and updated to keep pace with the changing release requirements for radioactive wastes. Major upgrading projects are currently in progress. The operating record of ORNL waste operation has been excellent over many years. Recent surveillance of radioactivity in the Oak Ridge environs indicates that atmospheric concentrations of radioactivity were not significantly different from other areas in East Tennesseee. Concentrations of radioactivity in the Clinch River and in fish collected from the river were less than 4% of the permissible concentration and intake guides for individuals in the offsite environment. While some radioactivity was released to the environment from plant operations, the concentrations in all of the media sampled were well below established standards

  2. Management of hospital radioactive wastes

    International Nuclear Information System (INIS)

    Mantrana, D.

    1986-01-01

    The general structure of a regulatory scheme for the management of hospital radioactive wastes is presented. The responsabilities of an institution in the radioactive waste management, and storage conditions are defined. The radioactive wastes are classified in physical terms, and the criteria for evaluating the activity of solid wastes are described. The container characteristics and, the types of treatments given to the wastes are specified. (M.C.K.) [pt

  3. Studies for the storage of high level and long living radioactive wastes

    International Nuclear Information System (INIS)

    2001-01-01

    This synthesis presents the studies and main results of the year 1999 obtained in the framework of the second axis of the 1991 law about the feasibility study of deep underground radioactive waste repositories. It precises also the French and international context in which researches are carried out, in particular with the development of scientific partnerships. (J.S.)

  4. Radioactive Waste.

    Science.gov (United States)

    Blaylock, B. G.

    1978-01-01

    Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

  5. Handling of radioactive waste

    International Nuclear Information System (INIS)

    Sanhueza Mir, Azucena

    1998-01-01

    Based on characteristics and quantities of different types of radioactive waste produced in the country, achievements in infrastructure and the way to solve problems related with radioactive waste handling and management, are presented in this paper. Objectives of maintaining facilities and capacities for controlling, processing and storing radioactive waste in a conditioned form, are attained, within a great range of legal framework, so defined to contribute with safety to people and environment (au)

  6. Fusion reactor radioactive waste management

    International Nuclear Information System (INIS)

    Kaser, J.D.; Postma, A.K.; Bradley, D.J.

    1976-01-01

    Quantities and compositions of non-tritium radioactive waste are estimated for some current conceptual fusion reactor designs, and disposal of large amounts of radioactive waste appears necessary. Although the initial radioactivity of fusion reactor and fission reactor wastes are comparable, the radionuclides in fusion reactor wastes are less hazardous and have shorter half-lives. Areas requiring further research are discussed

  7. The conditioning of radioactive waste by bitumen; Conditionnement des dechets radioactifs par le bitume

    Energy Technology Data Exchange (ETDEWEB)

    Rodier, J; Scheidhauer, J; Malabre, M [Commissariat a l' Energie Atomique, Chusclan (France). Centre de Production de Plutonium de Marcoule

    1961-07-01

    The separation of radioactive sludge and waste by bitumen is studied. Results are given concerning various trials carried out on the lixiviation of the final product by water as a function of the pH, of the time, and of the composition. The conditions for carrying out this process of coating the waste are controlled from a radioactive point of view. (author) [French] L'isolement de boues radioactives et de dechets par le bitume est etudie. Les resultats de divers essais portant sur la lixiviation par l'eau du produit fini en fonction du pH, du temps et de la composition sont exposes. Les conditions de realisation de l'enrobage sont controlees au point de vue du risque radioactif. (auteur)

  8. radioactive waste disposal standards abroad

    International Nuclear Information System (INIS)

    Lu Yan; Xin Pingping; Wu Jian; Zhang Xue

    2012-01-01

    With the world focus on human health and environmental protection, the problem of radioactive waste disposal has gradually become a global issue, and the focus of attention of public. The safety of radioactive waste disposal, is not only related to human health and environmental safety, but also an important factor of affecting the sustainable development of nuclear energy. In recent years the formulation of the radioactive waste disposal standards has been generally paid attention to at home and abroad, and it has made great progress. In China, radioactive waste management standards are being improved, and there are many new standards need to be developed. The revised task of implement standards is very arduous, and there are many areas for improvement about methods and procedures of the preparation of standards. This paper studies the current situation of radioactive waste disposal standards of the International Atomic Energy Agency, USA, France, Britain, Russia, Japan, and give some corresponding recommendations of our radioactive waste disposal standards. (authors)

  9. Disposal facility for radioactive wastes

    International Nuclear Information System (INIS)

    Utsunomiya, Toru.

    1985-01-01

    Purpose: To remove heat generated from radioactive wastes thereby prevent the working circumstances from being worsened in a disposal-facility for radioactive wastes. Constitution: The disposal-facility comprises a plurality of holes dug out into the ground inside a tunnel excavated for the storage of radioactive wastes. After placing radioactive wastes into the shafts, re-filling materials are directly filled with a purpose of reducing the dosage. Further, a plurality of heat pipes are inserted into the holes and embedded within the re-filling materials so as to gather heat from the radioactive wastes. The heat pipes are connected to a heat exchanger disposed within the tunnel. As a result, heating of the solidified radioactive wastes itself or the containing vessel to high temperature can be avoided, as well as thermal degradation of the re-filling materials and the worsening in the working circumstance within the tunnel can be overcome. (Moriyama, K.)

  10. Radioactive Waste Management BasisSept 2001

    International Nuclear Information System (INIS)

    Goodwin, S.S.

    2011-01-01

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  11. Methodology development for radioactive waste treatment of CDTN/BR - liquid low-level radioactive wastes

    International Nuclear Information System (INIS)

    Morais, Carlos Antonio de

    1996-01-01

    The radioactive liquid wastes generated in Nuclear Technology Development Centre (CDTN) were initially treated by precipitation/filtration and then the resulting wet solid wastes were incorporated in cement. These wastes were composed of different chemicals and different radioactivities and were generated by different sectors. The objective of the waste treatment method was to obtain minimum wet solid waste volume and decontamination and minimum operational cost. The composition of the solid wastes were taken into consideration for compatible cementation process. Approximately 5,400 litres of liquid radioactive wastes were treated by this process during 1992-1995. The volume reduction was 1/24 th and contained 20% solids. (author)

  12. Radioactive waste: show time? - 16309

    International Nuclear Information System (INIS)

    Codee, Hans; Verhoef, Ewoud

    2009-01-01

    Time will render radioactive waste harmless. How can we manage the time radioactive substances remain harmful? Just 'wait and see' or 'marking time' is not an option. We need to isolate the waste from our living environment and control it as long as necessary. For the situation in the Netherlands, it is obvious that a period of long term storage is needed. Both the small volume of waste and the limited financial possibilities are determining factors. Time is needed to let the volume of waste grow and to let the money, needed for disposal, grow in a capital growth fund. An organisation such as COVRA - the radioactive waste organisation in the Netherlands - can only function when it has good, open and transparent relationship with the public and particularly with the local population. If we tell people that we safely store radioactive waste for 100 years, they often ask: 'That long?' How can we explain the long-term aspect of radioactive waste management in a way people can relate to? In this paper, an overview is given of the activities of COVRA on the communication of radioactive waste management. (authors)

  13. IRSN statement of four studies presented within the frame of the radioactive material and waste management national plan (PNGMDR)

    International Nuclear Information System (INIS)

    2009-01-01

    This document contains the comments and assessments by the IRSN (the French Institute for radioprotection and nuclear safety) on studies which were respectively dealing with: the warehousing of tritiated waste, the sustainable management of used sealed radioactive sources and the possibility of storing other types of wastes with graphite and radiferous wastes, studies of valorization of radioactive materials without any present use. For the first one (tritiated wastes), this report describes the context, specifies the various considered wastes and their characteristics and properties, specifies the storage requirements, and outlines the environmental impacts of such a warehousing. For the second one (sealed radioactive sources and other graphite and radiferous wastes) it specifies and comments the considered wastes and the storage technical options in both cases. For the third one (valorization of radioactive materials) it reviews the available processes for uranium, plutonium, and thorium, and gives a brief assessment of the experience performed by the Rhodia company in La Rochelle

  14. Descriptive catalogue of radioactive waste families; Catalogue descriptif des familles de dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This document describes the different types of radioactive wastes produced in France or which are expected to be produced in the future. The wastes have been shared into different families having similar characteristics. A description is made for each family: general presentation, photos, position of the family in the French classification, industrial origin, status of production. Some informations about the raw waste and its conditioning process are also given. The qualitative description is completed by some numerical data like: the quantity produced in the past and to be produced in the future, the evaluation of the radioactivity in 2002 and 2020, and the evaluation of the thermal power when it exists. Finally, some informations are given about the risk of toxicity of some chemical species or compounds. (J.S.)

  15. Radioactive wastes - inventories and classification

    International Nuclear Information System (INIS)

    Brennecke, P.; Hollmann, A.

    1992-01-01

    A survey is given of the origins, types, conditioning, inventories, and expected abundance of radioactive wastes in the future in the Federal Republic of Germany. The Federal Government's radioactive waste disposal scheme provides that radioactive wastes be buried in deep geological formations which are expected to ensure a maintenance-free, unlimited and safe disposal without intentional excavation of the wastes at a later date. (orig./BBR) [de

  16. Technological and organizational aspects of radioactive waste management

    International Nuclear Information System (INIS)

    2005-01-01

    This document comprises collected lecture on radioactive waste management which were given by specialists of the Radioactive Waste Management Section of the IAEA, scientific-industrial enterprise 'Radon' (Moscow, RF) and A.A. Bochvar's GNTs RF VNIINM (Moscow, RF) on various courses, seminars and conferences. These lectures include the following topics: basic principles and national systems of radioactive waste management; radioactive waste sources and their classification; collection, sorting and initial characterization of radioactive wastes; choice of technologies of radioactive waste processing and minimization of wastes; processing and immobilization of organic radioactive wastes; thermal technologies of radioactive waste processing; immobilization of radioactive wastes in cements, asphalts, glass and polymers; management of worked out closed radioactive sources; storage of radioactive wastes; deactivation methods; quality control and assurance in radioactive waste management

  17. Leaching behavior of a simulated bituminized radioactive waste form under deep geological conditions

    International Nuclear Information System (INIS)

    Nakayama, Shinichi; Iida, Yoshihisa; Nagano, Tetsushi; Akimoto, Toshiyuki

    2003-01-01

    The leaching behavior of a simulated bituminized waste form was studied to acquire data for the performance assessment of the geologic disposal of bituminized radioactive waste. Laboratory-scale leaching tests were performed for radioactive and non-radioactive waste specimens simulating bituminized waste of a French reprocessing company, COGEMA. The simulated waste was contacted with deionized water, an alkaline solution (0.03-mol/l KOH), and a saline solution (0.5-mol/l KCl) under atmospheric and anoxic conditions. The concentrations of Na, Ba, Cs, Sr, Np, Pu, NO 3 , SO 4 and I in the leachates were determined. Swelling of the bituminized waste progressed in deionized water and KOH. The release of the soluble components, Na and Cs, was enhanced by the swelling, and considered to be diffusion-controlled in the swelled layers of the specimens. The release of sparingly soluble components such as Ba and Np was solubility-limited in addition to the progression of leaching. Neptunium, a redox-sensitive element, showed a distinct difference in release between anoxic and atmospheric conditions. The elemental release from the bituminized waste specimens leached in the KCl was very low, which is likely due to the suppression of swelling of the specimens at high ionic strength. (author)

  18. Solid and liquid radioactive wastes

    International Nuclear Information System (INIS)

    Cluchet, J.; Desroches, J.

    1977-01-01

    The problems raised by the solid and liquid radioactive wastes from the CEA nuclear centres are briefly exposed. The processing methods developed at the Saclay centre are described together with the methods for the wastes from nuclear power plants and reprocessing plants. The different storage techniques used at the La Hague centre are presented. The production of radioactive wastes by laboratories, hospitals and private industry is studied for the sealed sources and the various radioactive substances used in these plants. The cost of the radioactive wastes is analysed: processing, transport, long term storage [fr

  19. Radioactive wastes in Oklo

    International Nuclear Information System (INIS)

    Balcazar, M.; Flores R, J.H.; Pena, P.; Lopez, A.

    2006-01-01

    The acceptance of the Nuclear Energy as electric power supply implies to give answer to the population on the two main challenges to conquer in the public opinion: the nuclear accidents and the radioactive wastes. Several of the questions that are made on the radioactive wastes, its are the mobility migration of them, the geologic stability of the place where its are deposited and the possible migration toward the aquifer mantels. Since the half lives of the radioactive waste of a Nuclear Reactor are of several hundred of thousands of years, the technical explanations to the previous questions little convince to the public in general. In this work summary the results of the radioactive waste generated in a natural reactor, denominated Oklo effect that took place in Gabon, Africa, it makes several thousands of millions of years, a lot before the man appeared in the Earth. The identification of at least 17 reactors in Oklo it was carried out thanks to the difference in the concentrations of Uranium 235 and 238 prospective, and to the analysis of the non-mobility of the radioactive waste in the site. It was able by this way to determine that the reactors with sizes of hardly some decimeter and powers of around 100 kilowatts were operating in intermittent and spontaneous form for space of 150,000 years, with operation cycles of around 30 minutes. Recent studies have contributed information valuable on the natural confinement of the radioactive waste of the Oklo reactors in matrixes of minerals of aluminum phosphate that caught and immobilized them for thousands of millions of years. This extracted information from the nature contributes guides and it allows 'to verify' the validity of the current proposals on the immobilization of radioactive wastes of a nuclear reactor. This work presents in clear and accessible form to the public in general on the secure 'design', operation, 'decommissioning' and 'storage' of the radioactive waste of the reactors that the nature put

  20. Treatment and conditioning of historical radioactive waste

    International Nuclear Information System (INIS)

    Dogaru, Ghe.; Dragolici, F.; Ionascu, L.; Rotarescu, Ghe.

    2009-01-01

    The paper describes the management of historical radioactive waste from the storage facility of Radioactive Waste Treatment Plant. The historical waste stored into storage facility of IFIN-HH consists of spent sealed radioactive sources, empty contaminated containers, wooden radioactive waste, low specific activity radioactive waste, contaminated waste as well as radioactive waste from operation of WWR-S research reactor. After decommissioning of temporary storage facility about 5000 packages with radioactive waste were produced and transferred to the disposal facility. A large amount of packages have been transferred and disposed of to repository but at the end of 2000 there were still about 800 packages containing cement conditioned radioactive waste in an advanced state of degradation declared by authorities as 'historical waste'. During the management of historical waste campaign there were identified: radium spent radioactive sources, containers containing other spent sealed radioactive sources, packages containing low specific activity waste consist of thorium scrap allow, 30 larger packages (316 L), packages with activity lower than activity limit for disposal, packages with activity higher than activity limit for disposal. At the end of 2008, the whole amount of historical waste which met the waste acceptance criteria has been conditioned and transferred to disposal facility. (authors)

  1. Thermal treatment of organic radioactive waste

    International Nuclear Information System (INIS)

    Chrubasik, A.; Stich, W.

    1993-01-01

    The organic radioactive waste which is generated in nuclear and isotope facilities (power plants, research centers and other) must be treated in order to achieve a waste form suitable for long term storage and disposal. Therefore the resulting waste treatment products should be stable under influence of temperature, time, radioactivity, chemical and biological activity. Another reason for the treatment of organic waste is the volume reduction with respect to the storage costs. For different kinds of waste, different treatment technologies have been developed and some are now used in industrial scale. The paper gives process descriptions for the treatment of solid organic radioactive waste of low beta/gamma activity and alpha-contaminated solid organic radioactive waste, and the pyrolysis of organic radioactive waste

  2. Radioactive waste management policy

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1983-06-01

    The speaker discusses the development of government policy regarding radioactive waste disposal in Canada, indicates overall policy objectives, and surveys the actual situation with respect to radioactive wastes in Canada. He also looks at the public perceptions of the waste management situation and how they relate to the views of governmental decision makers

  3. Disposal of radioactive wastes. Chapter 11

    International Nuclear Information System (INIS)

    Skitt, J.

    1979-01-01

    An account is given of the history and present position of legislation in the United Kingdom on the disposal of radioactive wastes. The sections are headed: introduction and definitions; history; the Radioactive Substances Act 1960; disposal of solid radioactive wastes through Local Authority services; function of Local Authorities; exemptions; national radioactive waste disposal service; incidents involving radioactivity. (U.K.)

  4. Handbook of high-level radioactive waste transportation

    International Nuclear Information System (INIS)

    Sattler, L.R.

    1992-10-01

    The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government's system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government's program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project

  5. Radioactive waste management in Mexico

    International Nuclear Information System (INIS)

    Paredes, L.; Reyes L, J.; Jimenez D, J.

    2000-01-01

    This paper describes the radioactive waste management in Mexico, particularly the activities that the National Institute of Nuclear Research (NINR) is undertaking in this field. Classification and annual generation of radioactive waste, together with practices and facilities relating to the management of radioactive waste are addressed. The respective national legal framework and policy are outlined. (author)

  6. Radioactive waste problems in Russia

    International Nuclear Information System (INIS)

    Bridges, O.; Bridges, J.W.

    1995-01-01

    The collapse of the former Soviet Union, with the consequent shift to a market driven economy and demilitarisation, has had a profound effect on the nuclear and associated industries. The introduction of tighter legislation to control the disposal of radioactive wastes has been delayed and the power and willingness of the various government bodies responsible for its regulation is in doubt. Previously secret information is becoming more accessible and it is apparent that substantial areas of Russian land and surface waters are contaminated with radioactive material. The main sources of radioactive pollution in Russia are similar to those in many western countries. The existing atomic power stations already face problems in the storage and safe disposal of their wastes. These arise because of limited on site capacity for storage and the paucity of waste processing facilities. Many Russian military nuclear facilities also have had a sequence of problems with their radioactive wastes. Attempts to ameliorate the impacts of discharges to important water sources have had variable success. Some of the procedures used have been technically unsound. The Russian navy has traditionally dealt with virtually all of its radioactive wastes by disposal to sea. Many areas of the Barents, Kola and the Sea of Japan are heavily contaminated. To deal with radioactive wastes 34 large and 257 small disposal sites are available. However, the controls at these sites are often inadequate and illegal dumps of radioactive waste abound. Substantial funding will be required to introduce the necessary technologies to achieve acceptable standards for the storage and disposal of radioactive wastes in Russia. (author)

  7. Radioactive waste management from nuclear facilities

    International Nuclear Information System (INIS)

    2005-06-01

    This report has been published as a NSA (Nuclear Systems Association, Japan) commentary series, No. 13, and documents the present status on management of radioactive wastes produced from nuclear facilities in Japan and other countries as well. Risks for radiation accidents coming from radioactive waste disposal and storage together with risks for reactor accidents from nuclear power plants are now causing public anxiety. This commentary concerns among all high-level radioactive waste management from nuclear fuel cycle facilities, with including radioactive wastes from research institutes or hospitals. Also included is wastes produced from reactor decommissioning. For low-level radioactive wastes, the wastes is reduced in volume, solidified, and removed to the sites of storage depending on their radioactivities. For high-level radioactive wastes, some ten thousand years must be necessary before the radioactivity decays to the natural level and protection against seismic or volcanic activities, and terrorist attacks is unavoidable for final disposals. This inevitably results in underground disposal at least 300 m below the ground. Various proposals for the disposal and management for this and their evaluation techniques are described in the present document. (S. Ohno)

  8. Classification of radioactive waste

    International Nuclear Information System (INIS)

    1994-01-01

    Radioactive wastes are generated in a number of different kinds of facilities and arise in a wide range of concentrations of radioactive materials and in a variety of physical and chemical forms. To simplify their management, a number of schemes have evolved for classifying radioactive waste according to the physical, chemical and radiological properties of significance to those facilities managing this waste. These schemes have led to a variety of terminologies, differing from country to country and even between facilities in the same country. This situation makes it difficult for those concerned to communicate with one another regarding waste management practices. This document revises and updates earlier IAEA references on radioactive waste classification systems given in IAEA Technical Reports Series and Safety Series. Guidance regarding exemption of materials from regulatory control is consistent with IAEA Safety Series and the RADWASS documents published under IAEA Safety Series. 11 refs, 2 figs, 2 tab

  9. R and D developments on the disposal of radioactive wastes recently carried out at CEA (France)

    International Nuclear Information System (INIS)

    Petit, J.C.

    1993-01-01

    Since the law of december 31, 1991 voted by the French Parliament, disposal in geological formations is not the sole option considered for the management of radioactive wastes. Scientists and engineers, notably within the 'Commissariat a l'Energie Atomique' (CEA), must investigate in parallel two other options, namely i. advanced separation of long-lived radioisotopes and transmutation, and ii. improvement of radioactive waste matrices and long-term storage. Still, the geological disposal of radioactive wastes, which has generated within the last decade an immense amount of Research and Development, remains a major proposed solution to the long-term management of transuranic and high-level wastes. In this paper, we will describe some of the Research and Development carried out within CEA, avoiding the industrial and engineering aspects of the issues dealt with. Rather, we will illustrate major points of our basic research, underlining in particular methodological considerations

  10. Radioactive waste management in Korea

    International Nuclear Information System (INIS)

    Lee, Ik Hwan

    1997-01-01

    In order to meet the increasing energy demand in Korea, continuous promotion of nuclear power program will be inevitable in the future. However, the use of nuclear energy eventually requires effective and reliable radioactive waste management. For the safe and economical management of radioactive waste, first of all, volume reduction is essentially required and hence the development of related technologies continuously be pursued. A site for overall radioactive waste management has to be secured in Korea. KEPCO-NETEC will improve public understanding by reinforcing PA and will maintain transparency of radioactive waste management. (author). 1 fig

  11. Radioactive waste management - a safe solution

    International Nuclear Information System (INIS)

    1993-01-01

    This booklet sets out current United Kingdom government policy regarding radioactive waste management and is aimed at reassuring members of the public concerned about the safety of radioactive wastes. The various disposal or, processing or storage options for low, intermediate and high-level radioactive wastes are explained and sites described, and the work of the Nuclear Industry Radioactive Waste Executive (NIREX) is outlined. (UK)

  12. Radioactive waste below regulatory concern

    International Nuclear Information System (INIS)

    Neuder, S.M.

    1987-01-01

    The U.S. Nuclear Regulatory Commission (NRC) published two notices in the Federal Register concerning radioactive waste below regulatory concern. The first, a Commission Policy Statement and Implementation Plan published August 29, 1986, concerns petition to exempt specific radioactive waste streams from the regulations. The second, an Advanced Notice of Proposed Rulemaking published Decemger 2, 1986, addresses the concept of generic rulemaking by the NRC on radioactive wastes that are below regulatory concern. Radioactive waste determined to be below regulatory concern would not be subject to regulatory control and would not need to go to a licensed low-level radioactive waste disposal site. The Policy Statement and Implementation Plan describe (1) the information a petitioner should file in support of a petition to exempt a specific waste stream, (2) the decision criteria the Commission intends to use for judging the petition, and (3) the internal administrative procedures to use be followed in order to permit the Commission to act upon the petition in an expedited manner

  13. Radioactive waste management - the Indian scenario

    International Nuclear Information System (INIS)

    Raj, Kanwar

    2008-01-01

    In India, nuclear power generation programme and application of radioisotopes for health care and various other application is increasing steadily. With resultant increase in generation of radioactive waste, emphasis is on the minimization of generation of radioactive waste by deploying suitable processes and materials, segregation of waste streams at sources, recycle and re-use of useful components of waste and use of volume reduction techniques. The minimization of the radioactive waste is also essential to facilitate judicious use of the scarce land available for disposal, to reduce impact on the environment due to disposal and, finally to optimize the cost of radioactive waste management. This paper presents a bird's eye view of radioactive waste management programme in the country today

  14. An evaluation of the production of solid radio-active waste in the Tricastin nuclear power station and, more generally, in the other French nuclear power stations

    International Nuclear Information System (INIS)

    Cuisenier, R.G.

    1986-01-01

    The importance of the effect of processing and packaging of solid radio-active wastes on the necessary staff, on the dosimetry acquired by this personnel and on the running costs will be presented, thus permitting a quantitative evaluation of the different types of waste produced, not only for the Tricastin plant but also for any typical French nuclear plant. Experience in the Tricastin power plant has shown that the volume of solid wastes can vary considerably depending on the different problems which can arise during production (cooling system leaks or less regular incidents). The different techniques used will be relooked at in order to facilitate the explanation of these fluctuations in the volume of waste produced and the measures which can be taken to limit them. The different measures which have been taken to improve performance in this domain will be presented: improvements in equipment, in methods, and in the increased awareness of the personnel concerning these problems

  15. Management of radioactive waste in France-policy, issues, and solutions

    International Nuclear Information System (INIS)

    Tamborini, J.

    1996-01-01

    The French nuclear industry has conducted a study to define a policy and an organization to deal with the waste generated from nuclear power plants, the fuel cycle industries, and medicine, research, and other industrial nuclear applications. This has resulted in the introduction of an organization which, by appropriate and responsible management, can guarantee to protect people and the environment while ensuring industrial effectiveness. The body in charge of waste management in France is the National Radioactive Waste Management Agency (ANDRA) created in 1979. The French policy is based on waste classification and the related solutions for the evacuation of these wastes. High-level and long-lived waste management is regulated by a law passed Dec 30, 1991. The law outlines the research program to be conducted. Three main research objectives are prescribed: 1. reduction of the waste volumes and toxicity (partitioning and transmutation); 2. assessment of the waste isolation properties of deep geologic formations by underground research laboratories; 3. development of solidification processes and storage techniques for long-term interim storage in near-surface facilities. This research will be implemented within a 15 yr period. At present, applications are submitted to the authorities for the construction of underground research laboratories. At the end of this period, reports will be submitted to parliament. It will have to choose among various options. The construction of a deep geologic repository, if this option is chosen, will need the passage of a new law

  16. Solidification method of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Tsutomu; Chino, Koichi; Sasahira, Akira; Ikeda, Takashi

    1992-07-24

    Metal solidification material can completely seal radioactive wastes and it has high sealing effect even if a trace amount of evaporation should be caused. In addition, the solidification operation can be conducted safely by using a metal having a melting point of lower than that of the decomposition temperature of the radioactive wastes. Further, the radioactive wastes having a possibility of evaporation and scattering along with oxidation can be solidified in a stable form by putting the solidification system under an inert gas atmosphere. Then in the present invention, a metal is selected as a solidification material for radioactive wastes, and a metal, for example, lead or tin having a melting point of lower than that of the decomposition temperature of the wastes is used in order to prevent the release of the wastes during the solidification operation. Radioactive wastes which are unstable in air and scatter easily, for example, Ru or the like can be converted into a stable solidification product by conducting the solidification processing under an inert gas atmosphere. (T.M.).

  17. Regulation on radioactive waste management

    International Nuclear Information System (INIS)

    1999-01-01

    A national calculator control system for the metropolitan radioactive waste banks was developed in 1999. The NNSA reviewed by the regulations the feasibility of some rectification projects for uranium ore decommissioning and conducted field inspections on waste treating systems and radioactive waste banks at the 821 plant. The NNSA realized in 1999 the calculator control for the disposal sites of low and medium radioactive waste. 3 routine inspections were organized on the reinforced concrete structures for disposal units and their pouring of concrete at waste disposal site and specific requirements were put forth

  18. Method and techniques of radioactive waste treatment

    International Nuclear Information System (INIS)

    Ghafar, M.; Aasi, N.

    2002-04-01

    This study illustrates the characterization of radioactive wastes produced by the application of radioisotopes in industry and research. The treatment methods of such radioactive wastes, chemical co-precipitation and ion exchange depending on the technical state of radioactive waste management facility in Syria were described. The disposal of conditioned radioactive wastes, in a safe way, has been discussed including the disposal of the radioactive sources. The characterizations of the repository to stock conditioned radioactive wastes were mentioned. (author)

  19. Radioactive wastes management development in Chile

    International Nuclear Information System (INIS)

    Mir, S.A.; Cruz, P.F.; Rivera, J.D.; Jorquera, O.H.

    1994-01-01

    A Facility for immobilizing and conditioning of radioactive wastes generated in Chile, has recently started in operation. It is a Radioactive Wastes Treatment Plant, RWTP, whose owner is Comision Chilena de Energia Nuclear, CCHEN. A Storgement Building of Conditioned Wastes accomplishes the facility for medium and low level activity wastes. The Project has been carried with participation of chilean professionals at CCHEN and Technical Assistance of International Atomic Energy Agency, IAEA. Processes developed are volume reduction by compaction; immobilization by cementation and conditioning. Equipment has been selected to process radioactive wastes into a 200 liters drum, in which wastes are definitively conditioned, avoiding exposition and contamination risks. The Plant has capacity to treat low and medium activity radioactive wastes produced in Chile due to Reactor Experimental No. 1 operation, and annex Laboratories in Nuclear Research Centers, as also those produced by users of nuclear techniques in Industries, Hospitals, Research Centers and Universities, in the whole country. With the infrastructure developed in Chile, a centralization of Radioactive Wastes Management activities is achieved. A data base system helps to control and register radioactive wastes arising in Chile. Generation of radioactive wastes in Chile, has found solution for the present production and that of near future

  20. Prediction of radionuclide inventory for the low-and intermediated-level radioactive waste disposal facility the radioactive waste classification

    International Nuclear Information System (INIS)

    Jung, Kang Il; Jeong, Noh Gyeom; Moon, Young Pyo; Jeong, Mi Seon; Park, Jin Beak

    2016-01-01

    To meet nuclear regulatory requirements, more than 95% individual radionuclides in the low- and intermediate-level radioactive waste inventory have to be identified. In this study, the radionuclide inventory has been estimated by taking the long-term radioactive waste generation, the development plan of disposal facility, and the new radioactive waste classification into account. The state of radioactive waste cumulated from 2014 was analyzed for various radioactive sources and future prospects for predicting the long-term radioactive waste generation. The predicted radionuclide inventory results are expected to contribute to secure the development of waste disposal facility and to deploy the safety case for its long-term safety assessment

  1. Law on the management of radioactive waste

    International Nuclear Information System (INIS)

    1999-01-01

    This law regulate the relations of legal persons, enterprises without the rights of legal persons, and natural persons in the management of radioactive waste in Lithuania and establish the legal grounds for the management of radioactive waste. Thirty one article of the law deals with the following subjects: principles of radioactive waste management, competence of the Government, State Nuclear Power Safety Inspectorate, Ministry of Economy, Ministry of Environment and Radiation Protection Center in the sphere of regulation of the radioactive waste management, activities subject to licensing, issue of licences and authorisations, duties and responsibilities of the waste producer, founding of the radioactive waste management agency, its basic status and principles of the activities, functions of the agency, management of the agency, transfer of the radioactive waste to the agency, assessment of the existing waste management facilities and their past practices, siting, design and construction, safety assessment, commissioning and operation of the radioactive waste management facilities, radiation protection, quality assurance, emergency preparedness, decommissioning of radioactive waste storage and other facilities, post-closure surveillance of the repository, disused sealed sources, transportation, export and transit of radioactive waste

  2. Radioactive waste management in Tanzania

    International Nuclear Information System (INIS)

    Banzi, F.P.; Bundala, F.M.; Nyanda, A.M.; Msaki, P.

    2002-01-01

    Radioactive waste, like many other hazardous wastes, is of great concern in Tanzania because of its undesirable health effects. The stochastic effects due to prolonged exposure to ionizing radiation produce cancer and hereditary effects. The deterministic effects due to higher doses cause vomiting, skin reddening, leukemia, and death to exposed victims. The aim of this paper is to give an overview of the status of radioactive wastes in Tanzania, how they are generated and managed to protect humans and the environment. As Tanzania develops, it is bound to increase the use of ionizing radiation in research and teaching, industry, health and agriculture. Already there are more than 42 Centers which use one form of radioisotopes or another for these purposes: Teletherapy (Co-60), Brach-therapy (Cs-137, Sr-89), Nuclear Medicine (P-32, Tc-99m, 1-131, 1-125, Ga-67, In-111, Tl-206), Nuclear gauge (Am-241, Cs- 137, Sr-90, Kr-85), Industrial radiography (Am-241, C-137, Co-60, lr-92), Research and Teaching (1-125, Am241/Be, Co-60, Cs-137, H-3 etc). According to IAEA definition, these radioactive sources become radioactive waste if they meet the following criteria: if they have outlived their usefulness, if they have been abandoned, if they have been displaced without authorization, and if they contaminate other substances. Besides the origin of radioactive wastes, special emphasis will also be placed on the existing radiation regulations that guide disposal of radioactive waste, and the radioactive infrastructure Tanzania needs for ultimate radioactive waste management. Specific examples of incidences (theft, loss, abandonment and illegal possession) of radioactive waste that could have led to serious deterministic radiation effects to humans will also be presented. (author)

  3. Security of Radioactive Waste

    International Nuclear Information System (INIS)

    Goldammer, W.

    2003-01-01

    Measures to achieve radioactive waste security are discussed. Categorization of waste in order to implement adequate and consistent security measures based on potential consequences is made. The measures include appropriate treatment/storage/disposal of waste to minimize the potential and consequences of malicious acts; management of waste only within an authorised, regulated, legal framework; management of the security of personnel and information; measures to minimize the acquisition of radioactive waste by those with malicious intent. The specific measures are: deter unauthorized access to the waste; detect any such attempt or any loss or theft of waste; delay unauthorized access; provide timely response to counter any attempt to gain unauthorised access; measures to minimize acts of sabotage; efforts to recover any lost or stolen waste; mitigation and emergency plans in case of release of radioactivity. An approach to develop guidance, starting with the categorisation of sources and identification of dangerous sources, is presented. Dosimetric criteria for internal and external irradiation are set. Different exposure scenarios are considered. Waste categories and security categories based on the IAEA INFCIRC/225/Rev.4 are presented

  4. Treatment of Radioactive Gaseous Waste

    International Nuclear Information System (INIS)

    2014-07-01

    Radioactive waste, with widely varying characteristics, is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. The waste needs to be treated and conditioned as necessary to provide waste forms acceptable for safe storage and disposal. Although radioactive gaseous radioactive waste does not constitute the main waste flow stream at nuclear fuel cycle and radioactive waste processing facilities, it represents a major source for potential direct environmental impact. Effective control and management of gaseous waste in both normal and accidental conditions is therefore one of the main issues of nuclear fuel cycle and waste processing facility design and operation. One of the duties of an operator is to take measures to avoid or to optimize the generation and management of radioactive waste to minimize the overall environmental impact. This includes ensuring that gaseous and liquid radioactive releases to the environment are within authorized limits, and that doses to the public and the effects on the environment are reduced to levels that are as low as reasonably achievable. Responsibilities of the regulatory body include the removal of radioactive materials within authorized practices from any further regulatory control — known as clearance — and the control of discharges — releases of gaseous radioactive material that originate from regulated nuclear facilities during normal operation to the environment within authorized limits. These issues, and others, are addressed in IAEA Safety Standards Series Nos RS-G-1.7, WS-G-2.3 and NS-G-3.2. Special systems should be designed and constructed to ensure proper isolation of areas within nuclear facilities that contain gaseous radioactive substances. Such systems consist of two basic subsystems. The first subsystem is for the supply of clean air to the facility, and the second subsystem is for the collection, cleanup and

  5. INES- French application to radioactive material transport

    International Nuclear Information System (INIS)

    Sowinski, S.; Strawa, S.; Aguilar, J.

    2004-01-01

    After gaining control of radioactive material transport in June 1997, the French Nuclear Safety Authority (ASN) decided to apply the International Nuclear Event Scale (INES scale) to transport events. The Directorate General for Nuclear Safety and Radioprotection (DGSNR) requests that radioactive material package consignors declare any event occurring during transport, and has introduced the use of the INES scale adapted to classify transport events in order to inform the public and to have feedback. The INES scale is applicable to events arising in nuclear installations associated with the civil nuclear industry and events occurring during the transport of radioactive materials to and from them. The INES scale consists of seven levels. It is based on the successive application of three types of criterion (off-site impact, on-site impact and degradation of defence in depth) and uses the maximum level to determine the rating of an accident. As the transport in question takes place on public thoroughfares, only the off-site impact criteria and degradation of defence in-depth criteria apply. This paper deals with DGSNR's feedback during the past 7 years concerning the French application of the INES scale. Significant events that occurred during transport are presented. The French experience was used by the International Atomic Energy Agency (IAEA) to develop a draft guide in 2002 and the IAEA asked countries to use a new draft for a trial period in July 2004. (author)

  6. Radioactive Waste Management Program Activities in Croatia

    International Nuclear Information System (INIS)

    Matanic, R.

    2000-01-01

    The concept of radioactive waste management in Croatia comprises three major areas: management of low and intermediate level radioactive waste (LILRW), spent fuel management and decommissioning. All the work regarding radioactive waste management program is coordinated by Hazardous Waste Management Agency (APO) and Croatian Power Utility (HEP) in cooperation with other relevant institutions. Since the majority of work has been done in developing low and intermediate level radioactive waste management program, the paper will focus on this part of radioactive waste management, mainly on issues of site selection and characterization, repository design, safety assessment and public acceptance. A short description of national radioactive waste management infrastructure will also be presented. (author)

  7. Final disposal of radioactive waste

    Directory of Open Access Journals (Sweden)

    Freiesleben H.

    2013-06-01

    Full Text Available In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  8. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    International Nuclear Information System (INIS)

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-01-01

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible

  9. Radioactivity and nuclear waste

    International Nuclear Information System (INIS)

    Saas, A.

    1996-01-01

    Radioactive wastes generated by nuclear activities must be reprocessed using specific treatments before packaging, storage and disposal. This digest paper gives first a classification of radioactive wastes according to their radionuclides content activity and half-life, and the amount of wastes from the different categories generated each year by the different industries. Then, the radiotoxicity of nuclear wastes is evaluated according to the reprocessing treatments used and to their environmental management (surface storage or burial). (J.S.)

  10. The technologically-reinforced natural radioactivity

    International Nuclear Information System (INIS)

    2005-01-01

    Technologically-reinforced natural radioactivity comes from mining industries, geological resources and ores de-confinement, and from separation, purification, transformation and use of by-products or products. Partly based on a survey and questionnaires sent to industrial organisations, this report proposes a large and detailed overview of this kind of radioactivity for different sectors or specific activities: the French phosphate sector, the international rare Earth and heavy ores sector, the French monazite sector, the ilmenite sector, the French and international zirconium sector, the non-ferrous metal sector, the international and French drinkable, mineral and spring water sector, the international wastewater sector, the French drilling sector, the international and French geothermal sector, the international and French gas and oil sector, the international and French coal sector, the international and French biomass sector, the international and French paper-making industry, and the management of wastes with technologically-reinforced natural radioactivity in France

  11. Characterization and hydrogeological modelling of a site for disposal of medium- and low-level radioactive waste

    International Nuclear Information System (INIS)

    Lavie, J.; Peaudecerf, P.

    1993-01-01

    Characterization studies of the French low-and intermediate-level radwaste site in the Aube Department includes a significant hydrogeological appraisal element. These studies are based upon geological, hydrogeological, and hydrodynamic measurements. The data are compiled into a model of the ground water- body. Data collection is continuous. The hydrodynamic model and the transport model is regularly validated for ANDRA (French National Radioactive Waste Disposal Agency) with a reliable and up-dated tool

  12. Low-level radioactive waste treatment technology. Low-level radioactive waste management handbook series

    International Nuclear Information System (INIS)

    1984-07-01

    Each generator of low-level radioactive waste must consider three sequential questions: (1) can the waste in its as-generated form be packaged and shipped to a disposal facility; (2) will the packaged waste be acceptable for disposal; and (3) if so, is it cost effective to dispose of the waste in its as-generated form. These questions are aimed at determining if the waste form, physical and chemical characteristics, and radionuclide content collectively are suitable for shipment and disposal in a cost-effective manner. If not, the waste management procedures will involve processing operations in addition to collection, segregation, packaging, shipment, and disposal. This handbook addresses methods of treating and conditioning low-level radioactive waste for shipment and disposal. A framework is provided for selection of cost-effective waste-processing options for generic categories of low-level radioactive waste. The handbook is intended as a decision-making guide that identifies types of information required to evaluate options, methods of evaluation, and limitations associated with selection of any of the processing options

  13. Disposal method of radioactive wastes

    International Nuclear Information System (INIS)

    Uetake, Naoto; Fukazawa, Tetsuo.

    1986-01-01

    Purpose: To improve the safety of underground disposal of radioactive wastes for a long period of time by surrounding the periphery of the radioactive wastes with materials that can inhibit the migration of radioactive nuclides and are physically and chemically stable. Method: Hardening products prepared from a water-hardenable calcium silicate compound and an aqueous solution of alkali silicate have compression strength as comparable with that of concretes, high water tightness and adsorbing property to radioactive isotopes such as cobalt similar to that of concretes and they also show adsorption to cesium which is not adsorbed to concretes. Further, the kneaded slurry thereof is excellent in the workability and can be poured even into narrow gaps. Accordingly, by alternately charging granular radioactive wastes and this slurry before hardening into the ground, the radioactive wastes can be put to underground disposal stably with simple procedures. (Kamimura, M.)

  14. Radioactive wastes. Safety of storage facilities

    International Nuclear Information System (INIS)

    Devillers, Ch.

    2001-01-01

    A radioactive waste storage facility is designed in a way that ensures the isolation of wastes with respect to the biosphere. This function comprises the damping of the gamma and neutron radiations from the wastes, and the confinement of the radionuclides content of the wastes. The safety approach is based on two time scales: the safety of the insulation system during the main phase of radioactive decay, and the assessment of the radiological risks following this phase. The safety of a surface storage facility is based on a three-barrier concept (container, storage structures, site). The confidence in the safety of the facility is based on the quality assurance of the barriers and on their surveillance and maintenance. The safety of a deep repository will be based on the site quality, on the design and construction of structures and on the quality of the safety demonstration. This article deals with the safety approach and principles of storage facilities: 1 - recall of the different types of storage facilities; 2 - different phases of the life of a storage facility and regulatory steps; 3 - safety and radiation protection goals (time scales, radiation protection goals); 4 - safety approach and principles of storage facilities: safety of the isolation system (confinement system, safety analysis, scenarios, radiological consequences, safety principles), assessment of the radiation risks after the main phase of decay; 5 - safety of surface storage facilities: safety analysis of the confinement system of the Aube plant (barriers, scenarios, modeling, efficiency), evaluation of radiological risks after the main phase of decay; experience feedback of the Manche plant; variants of surface storage facilities in France and abroad (very low activity wastes, mine wastes, short living wastes with low and average activity); 6 - safety of deep geological disposal facilities: legal framework of the French research; international context; safety analysis of the confinement system

  15. Classification of Radioactive Waste. General Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-11-15

    This publication is a revision of an earlier Safety Guide of the same title issued in 1994. It recommends revised waste management strategies that reflect changes in practices and approaches since then. It sets out a classification system for the management of waste prior to disposal and for disposal, driven by long term safety considerations. It includes a number of schemes for classifying radioactive waste that can be used to assist with planning overall national approaches to radioactive waste management and to assist with operational management at facilities. Contents: 1. Introduction; 2. The radioactive waste classification scheme; Appendix: The classification of radioactive waste; Annex I: Evolution of IAEA standards on radioactive waste classification; Annex II: Methods of classification; Annex III: Origin and types of radioactive waste.

  16. Classification of Radioactive Waste. General Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This publication is a revision of an earlier Safety Guide of the same title issued in 1994. It recommends revised waste management strategies that reflect changes in practices and approaches since then. It sets out a classification system for the management of waste prior to disposal and for disposal, driven by long term safety considerations. It includes a number of schemes for classifying radioactive waste that can be used to assist with planning overall national approaches to radioactive waste management and to assist with operational management at facilities. Contents: 1. Introduction; 2. The radioactive waste classification scheme; Appendix: The classification of radioactive waste; Annex I: Evolution of IAEA standards on radioactive waste classification; Annex II: Methods of classification; Annex III: Origin and types of radioactive waste

  17. Handling and disposing of radioactive waste

    International Nuclear Information System (INIS)

    Trauger, D.B.

    1983-01-01

    Radioactive waste has been separated by definition into six categories. These are: commercial spent fuel; high-level wastes; transuranium waste; low-level wastes; decommissioning and decontamination wastes; and mill tailings and mine wastes. Handling and disposing of these various types of radioactive wastes are discussed briefly

  18. Specified radioactive waste final disposal act

    International Nuclear Information System (INIS)

    Yasui, Masaya

    2001-01-01

    Radioactive wastes must be finally and safely disposed far from human activities. Disposal act is a long-range task and needs to be understood and accepted by public for site selection. This paper explains basic policy of Japanese Government for final disposal act of specified radioactive wastes, examination for site selection guidelines to promote residential understanding, general concept of multi-barrier system for isolating the specific radioactive wastes, and research and technical development for radioactive waste management. (S. Ohno)

  19. Management of Radioactive Wastes in Developing Countries

    International Nuclear Information System (INIS)

    Abdel Ghani, A.H.

    1999-01-01

    The management of radioactive wastes is one area of increasing interest especially in developing countries having more and more activities in the application of radioisotopes in medicine, research and industry. For a better understanding of radioactive waste management in developing countries this work will discuss the following items:Classification of countries with respect to waste management programs. Principal Radionuclides used in medicine, biological research and others and the range of radioactivity commonly used. Estimation of radioactive waste volumes and activities. Management of liquid wastes Collection. Treatment. Management of small volumes of organic liquid waste. Collection Treatment. Packaging and storage of radioactive wastes

  20. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1990-10-01

    This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab

  1. Radioactive waste management

    International Nuclear Information System (INIS)

    Tsoulfanidis, N.

    1991-01-01

    The management of radioactive waste is a very important part of the nuclear industry. The future of the nuclear power industry depends to a large extent on the successful solution of the perceived or real problems associated with the disposal of both low-level waste (LLW) and high-level waste (HLW). All the activities surrounding the management of radioactive waste are reviewed. The federal government and the individual states are working toward the implementation of the Nuclear Waste Policy Act and the Low-Level Waste Policy Act. The two congressional acts are reviewed and progress made as of early 1990 is presented. Spent-fuel storage and transportation are discussed in detail as are the concepts of repositories for HLW. The status of state compacts for LLW is also discussed. Finally, activities related to the decommissioning of nuclear facilities are also described

  2. Monitoring of radioactive wastes

    International Nuclear Information System (INIS)

    Houriet, J.Ph.

    1982-08-01

    The estimation of risks presented by final disposal of radioactive wastes depends, among other things, on what is known of their radioisotope content. The first aim of this report is to present the current state of possibilities for measuring (monitoring) radionuclides in wastes. The definition of a global monitoring system in the framework of radioactive waste disposal has to be realized, based on the information presented here, in accordance with the results of work to come and on the inventory of wastes to be stored. Designed for direct measurement of unpackaged wastes and for control of wastes ready to be stored, the system would ultimately make it possible to obtain all adaquate information about their radioisotope content with regard to the required disposal safety. The second aim of this report is to outline the definition of such a global system of monitoring. Designed as a workbase and reference source for future work by the National Cooperative for the Storage of Radioactive Waste on the topic of radioactive waste monitoring, this report describes the current situation in this field. It also makes it possible to draw some preliminary conclusions and to make several recommendations. Centered on the possibilities of current and developing techniques, it makes evident that a global monitoring system should be developed. However, it shows that the monitoring of packaged wastes will be difficult, and should be avoided as far as possible, except for control measurements

  3. Development of an air flow calorimeter prototype for the measurement of thermal power released by large radioactive waste packages.

    Science.gov (United States)

    Razouk, R; Beaumont, O; Failleau, G; Hay, B; Plumeri, S

    2018-03-01

    The estimation and control of the thermal power released by the radioactive waste packages are a key parameter in the management of radioactive waste geological repository sites. In the framework of the European project "Metrology for decommissioning nuclear facilities," the French National Agency of Radioactive Waste Management (ANDRA) collaborates with Laboratoire National de Métrologie et D'essais in order to measure the thermal power up to 500 W of typical real size radioactive waste packages (of at least 0.175 m 3 ) with an uncertainty better than 5% by using a measurement method traceable to the international system of units. One of the selected metrological approaches is based on the principles of air flow calorimetry. This paper describes in detail the development of the air flow calorimeter prototype as well as the design of a radioactive waste package simulator used for its calibration. Results obtained from the calibration of the calorimeter and from the determination of thermal powers are presented here with an investigation of the measurement uncertainties.

  4. Development of an air flow calorimeter prototype for the measurement of thermal power released by large radioactive waste packages

    Science.gov (United States)

    Razouk, R.; Beaumont, O.; Failleau, G.; Hay, B.; Plumeri, S.

    2018-03-01

    The estimation and control of the thermal power released by the radioactive waste packages are a key parameter in the management of radioactive waste geological repository sites. In the framework of the European project "Metrology for decommissioning nuclear facilities," the French National Agency of Radioactive Waste Management (ANDRA) collaborates with Laboratoire National de Métrologie et D'essais in order to measure the thermal power up to 500 W of typical real size radioactive waste packages (of at least 0.175 m3) with an uncertainty better than 5% by using a measurement method traceable to the international system of units. One of the selected metrological approaches is based on the principles of air flow calorimetry. This paper describes in detail the development of the air flow calorimeter prototype as well as the design of a radioactive waste package simulator used for its calibration. Results obtained from the calibration of the calorimeter and from the determination of thermal powers are presented here with an investigation of the measurement uncertainties.

  5. Geological Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    Dody, A.; Klein, Ben; David, O.

    2014-01-01

    Disposal of radioactive waste imposes complicated constrains on the regulator to ensure the isolation of radioactive elements from the biosphere. The IAEA (1995) states that T he objective of radioactive waste management is to deal with radioactive waste in a manner that protects human health and the environment now and the future without imposing undue burdens on future generation . The meaning of this statement is that the operator of the waste disposal facilities must prove to the regulator that in routine time and in different scenarios the dose rate to the public will not exceed 0.3 mSv/y in the present and in the future up to 10,000 years

  6. Croatian radioactive waste management program: Current status

    International Nuclear Information System (INIS)

    Matanic, R.; Lebegner, J.

    2001-01-01

    Croatia has a responsibility to develop a radioactive waste management program partly due to co-ownership of Krsko nuclear power plant (Slovenia) and partly because of its own medical and industrial radioactive waste. The total amount of generated radioactive waste in Croatia is stored in temporary storages located at two national research institutes, while radioactive waste from Krsko remains in temporary storage on site. National power utility Hrvatska Elektroprivreda (HEP) and Hazardous Waste Management Agency (APO) coordinate the work regarding decommissioning, spent fuel management and low and intermediate level radioactive waste (LILRW) management in Croatia. Since the majority of work has been done in developing the LILRW management program, the paper focuses on this part of radioactive waste management. Issues of site selection, repository design, safety assessment and public acceptance are being discussed. A short description of the national radioactive waste management infrastructure has also been presented. (author)

  7. Environmental aspects of commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Volume 2 contains chapters 6 through 10: environmental effects related to radioactive waste management associated with LWR fuel reprocessing - mixed-oxide fuel fabrication plant; environmental effects related to transporting radioactive wastes associated with LWR fuel reprocessing and fabrication; environmental effects related to radioactive waste management associated with LWR fuel reprocessing - retrievable waste storage facility; environmental effects related to geologic isolation of LWR fuel reprocessing wastes; and integrated systems for commercial radioactive waste management

  8. Disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1986-01-01

    The generation of low-level radioactive waste is a natural consequence of the societal uses of radioactive materials. These uses include the application of radioactive materials to the diagnosis and treatment of human disease and to research into the causes of human disease and their prevention. Currently, low level radioactive wastes are disposed of in one of three shallow land-burial disposal sites located in Washington, Nevada, and South Carolina. With the passage in December 1980 of Public Law 96-573, The Low-Level Radioactive Waste Policy Act, the disposal of low-level wastes generated in each state was identified as a responsibility of the state. To fulfill this responsibility, states were encouraged to form interstate compacts for radioactive waste disposal. At the present time, only 37 states have entered into compact agreements, in spite of the clause in Public Law 96-573 that established January 1, 1986, as a target date for implementation of state responsibility for radioactive wastes. Recent action by Congress has resulted in postponement of the implementation date to January 1, 1993

  9. National inventory of radioactive wastes

    International Nuclear Information System (INIS)

    1997-01-01

    There are in France 1064 sites corresponding to radioactive waste holders that appear in this radioactive waste inventory. We find the eighteen sites of E.D.F. nuclear power plants, The Cogema mine sites, the Cogema reprocessing plants, The Cea storages, the different factories and enterprises of nuclear industry, the sites of non nuclear industry, the Andra centers, decommissioned installations, disposals with low level radioactive wastes, sealed sources distributors, national defence. (N.C.)

  10. Radioactive wastes

    International Nuclear Information System (INIS)

    Devarakonda, M.S.; Melvin, J.M.

    1994-01-01

    This paper is part of the Annual Literature Review issue of Water Environment Research. The review attempts to provide a concise summary of important water-related environmental science and engineering literature of the past year, of which 40 separate topics are discussed. On the topic of radioactive wastes, the present paper deals with the following aspects: national programs; waste repositories; mixed wastes; waste processing and decommissioning; environmental occurrence and transport of radionuclides; and remedial actions and treatment. 178 refs

  11. Principles and objective of radioactive waste management

    International Nuclear Information System (INIS)

    Warnecke, E.

    1995-01-01

    Radioactive waste is generated in various nuclear applications, for example, in the use of radionuclides in medicine, industry and research or in the nuclear fuel cycle. It must be managed in a safe way independent of its very different characteristics. Establishing the basic safety philosophy is an important contribution to promoting and developing international consensus in radioactive waste management. The principles of radioactive waste management were developed with supporting text to provide such a safety philosophy. They cover the protection of human health and the environment now and in the future within and beyond national borders, the legal framework, the generation and management of radioactive wastes, and the safety of facilities. Details of the legal framework are provided by defining the roles and responsibilities of the Member State, the regulatory body and the waste generators and operators of radioactive waste management facilities. These principles and the responsibilities in radioactive waste management are contained in two recently published top level documents of the Radioactive Waste Safety Standards (RADWASS) programme which is the IAEA's contribution to foster international consensus in radioactive waste management. As the two documents have to cover all aspects of radioactive waste management they have to be formulated in a generic way. Details will be provided in other, more specific documents of the RADWASS programme as outlined in the RADWASS publication plant. The RADWASS documents are published in the Agency's Safety Series, which provides recommendations to Member Sates. Using material from the top level RADWASS documents a convention on the safety of radioactive waste management is under development to provide internationally binding requirements for radioactive waste management. (author). 12 refs

  12. Supercompaction of radioactive waste at NPP Krsko

    International Nuclear Information System (INIS)

    Fink, K.; Sirola, P.

    1996-01-01

    The problem of radioactive waste management is both scientifically and technically complex and also deeply emotional issue. In the last twenty years the first two aspects have been mostly resolved up to the point of safe implementation. In the Republic of Slovenia, certain fundamentalist approaches in politics and the use of radioactive waste problem as a political tool, brought the final radioactive repository siting effort to a stop. Although small amounts of radioactive waste are produced in research institutes, hospitals and industry, major source of radioactive waste in Slovenia is the Nuclear Power Plant Krsko. When Krsko NPP was originally built, plans were made to construct a permanent radioactive waste disposal facility. This facility was supposed to be available to receive waste from the plant long before the on site storage facility was full. However, the permanent disposal facility is not yet available, and it became necessary to retain the wastes produced at the plant in the on-site storage facility for an extended period of time. Temporary radioactive storage capacity at the plant site has limited capacity and having no other options available NPP Krsko is undertaking major efforts to reduce waste volume generated to allow normal operation. This article describes the Radioactive Waste Compaction Campaign performed from November, 1994 through November, 1995 at Krsko NPP, to enhance the efficiency and safety of storage of radioactive waste. The campaign involved the retrieval, segmented gamma-spectrum measurement, dose rate measurement, compaction, re-packaging, and systematic storage of radioactive wastes which had been stored in the NPP radioactive waste storage building since plant commissioning. (author)

  13. Mixed radioactive and chemotoxic wastes (RMW)

    International Nuclear Information System (INIS)

    Dejonghe, I.P.

    1991-01-01

    During the first decades of development of nuclear energy, organizations involved in the management of nuclear wastes had their attention focused essentially on radioactive components. The impression may have prevailed that, considering the severe restrictions on radioactive materials, the protection measured applied for radioactive components of wastes would be more than adequate to cope with potential hazards from non radioactive components associated with radioactive wastes. More recently it was acknowledged that such interpretation is not necessarily justified in all cases since certain radioactive wastes also contain non-negligible amounts of heavy metals or hazardous organic components which, either, do not decay, or are subject to completely different decay (decomposition) mechanisms. The main purposes of the present study are to analyze whether mixed radioactive wastes are likely to occur in Europe and in what form, whether one needs a basis for integration for evaluating various forms of toxicity and by which practical interventions possible problems can be avoided or at least reduced. (au)

  14. Hospital waste management and other small producers

    International Nuclear Information System (INIS)

    Herbst, H.; Roy, J.C.

    1992-01-01

    This paper describes waste management in hospitals and other waste producers. Low-level radioactive wastes are collected by ANDRA (French Agency for radioactive waste management) and informations on waste processing or regulations on radiation sources are given

  15. Understanding radioactive waste

    International Nuclear Information System (INIS)

    Murray, R.L.

    1989-01-01

    This book discusses the sources and health effects of radioactive wastes. It reveals the techniques to concentrate and immobilize radioactivity and examines the merits of various disposal ideas. The book, which is designed for the lay reader, explains the basic science of atoms,nuclear particles,radioactivity, radiation and health effects

  16. Communications strategies concerning ethical and environmental questions relative to radioactive waste

    International Nuclear Information System (INIS)

    Ropars, R.

    1996-01-01

    Today, in France, there is a radioactive waste public opinion and communications problem. Although 82 per cent of the population is favourable to the continuation of the French nuclear programme. 73 per cent considers that the truth is not being told about radioactive waste. Radioactive waste is the second ranking argument against nuclear power, after Chernobyl. Since 1991 there has been an official debate, and a national strategy has been set out. At present operational solutions are in existence for 90 per cent of the medium or short-lived waste. What communications strategy should be used? Technical solutions, not philosophical ones, are needed for technical problems, and the companies involved need to show that they can manage them from a technical point of view. However, the ethical component must be seen to be integrated into technical and management choices, as well as into means of communications. A communications policy must first show that ethical considerations are not absent from technical and legal choices, and secondly that they are included in the definition of the communications strategy itself; the paper discusses several possibilities. Companies must stick to their areas of competence, i.e. the technical and scientific fields, that are the only ones within which waste problems can be solved. However, showing that both technical and administrative choices made or envisaged, as well industrial and communications strategies, have an ethical inspiration constitutes a sensible way to go. (author)

  17. Radioactive waste material melter apparatus

    Science.gov (United States)

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  18. Radioactive waste material melter apparatus

    International Nuclear Information System (INIS)

    Newman, D.F.; Ross, W.A.

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs

  19. The transport of radioactive waste

    International Nuclear Information System (INIS)

    Appleton, P.R.; Poulter, D.R.

    1989-01-01

    Regulations have been developed to ensure the safe transport of all radioactive materials by all modes (road, rail, sea and air). There are no features of radioactive waste which set it aside from other radioactive materials for transport, and the same regulations control all radioactive material transport. These regulations and their underlying basis are described in this paper, and their application to waste transport is outlined. (author)

  20. Low-level radioactive biomedical wastes

    International Nuclear Information System (INIS)

    Casarett, G.W.

    A summary of the management and hazards of low-level radioactive biomedical wastes is presented. The volume, disposal methods, current problems, regulatory agencies, and possible solutions to disposal problems are discussed. The benefits derived from using radioactivity in medicine are briefly described. Potential health risks are discussed. The radioactivity in most of the radioactive biomedical waste is a small fraction of that contained naturally in the human body or in the natural environment. Benefit-risk-cost considerations are presented. The cost of managing these wastes is getting so high that a new perspective for comparison of radioactivity (facts, risks, costs, benefits and trade-offs) and alternate approaches to minimize the risk and cost and maximize the benefits is suggested

  1. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1994-08-01

    This report presents a history of commercial low-level radioactive waste disposal in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the last decade to ensure the safe disposal of low-level radioactive waste in the 1990s and beyond. These steps include the issuance of comprehensive State and Federal regulations governing the disposal of low-level radioactive waste, and the enactment of Federal laws making States responsible for the disposal of such waste generated within their borders

  2. Krsko NPP radioactive waste characteristics

    International Nuclear Information System (INIS)

    Skanata, D.; Kroselj, V.; Jankovic, M.

    2007-01-01

    In May 2005 Krsko NPP initiated the Radioactive Waste Characterization Project and commissioned its realization to the consulting company Enconet International, Zagreb. The Agency for Radwaste Management was invited to participate on the Project. The Project was successfully closed out in August 2006. The main Project goal consisted of systematization the existing and gathering the missing radiological, chemical, physical, mechanical, thermal and biological information and data on radioactive waste. In a general perspective, the Project may also be considered as a part of broader scope of activities to support state efforts to find a disposal solution for radioactive waste in Slovenia. The operational low and intermediate level radioactive waste has been structured into 6 waste streams that contain evaporator concentrates and tank sludges, spent ion resins, spent filters, compressible and non-compressible waste as well as specific waste. For each of mentioned waste streams, process schemes have been developed including raw waste, treatment and conditioning technologies, waste forms, containers and waste packages. In the paper the main results of the Characterization Project will be briefly described. The results will indicate that there are 17 different types of raw waste that have been processed by applying 9 treatment/conditioning technologies. By this way 18 different waste forms have been produced and stored into 3 types of containers. Within each type of container several combinations should be distinguished. Considering all of this, there are 34 different types of waste packages altogether that are currently stored in the Solid Radwaste Storage Facility at the Krsko NPP site. Because of these findings a new identification system has been recommended and consequently the improvement of the existing database on radioactive waste has been proposed. The potential areas of further in depth characterization are indicated. In the paper a brief description on the

  3. Radioactive waste management - with evidence

    International Nuclear Information System (INIS)

    1988-01-01

    The select committee was appointed to report on the present (1988) situation and future prospects in the field of radioactive waste management in the European Community. The report covers all aspects of the subject. After an introduction the parts of the report are concerned with the control of radiation hazards, the nuclear fuel cycle and radioactive waste, the control of radioactive effluents, storage and disposal of solid radioactive wastes, research programmes, surface storage versus deep geological disposal of long-term wastes, the future of reprocessing and the public debate. Part 10 is a resume of the main conclusions and recommendations. It is recommended that the House of Lords debate the issue. The oral and written evidence presented to the committee is included in the report. (U.K.)

  4. Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  5. Radioactive waste management

    International Nuclear Information System (INIS)

    Strohl, P.

    1985-01-01

    The OECD Nuclear Energy Agency (NEA) attaches considerable importance to its cooperation with Japan. It was said in the annual conference in 1977 that the presentation of the acceptable policy regarding radioactive waste management is the largest single factor for gaining public confidence when nuclear power is adopted with assurance. The risk connected with radioactive wastes was often presented as the major obstacle to the development of nuclear energy, however, an overall impression of optimism and confidence prevailed by the technical appraisal of the situation in this field by the committee of the NEA. This evolution can be easily explained by the significant progress achieved in radioactive waste management both at the technical level and with respect to the implementation of special legislation and the establishment of specialized institutions and financing schemes. More research will focus on the optimization of the technical, safety and economic aspects of specific engineering designs at specific sites on the long term isolation of wastes, and the NEA contributes to this general effort. The implementation of disposal programs is also in progress. (Kako, I.)

  6. The radioactive waste management conference

    International Nuclear Information System (INIS)

    Fareeduddin, S.; Hirling, J.

    1983-01-01

    The international conference on radioactive waste management was held in Seattle, Washington, from 16 to 20 May 1983. The response was gratifying, reflecting world-wide interest: it was attended by 528 participants from 29 Member States of the IAEA and eight international organizations. The conference programme was structured to permit reviews and presentation of up-to-date information on five major topics: - waste management policy and its implementation: national and international approaches; legal, economic, environmental, and social aspects (four sessions with 27 papers from 16 countries and four international organizations); - handling, treatment, and conditioning of wastes from nuclear facilities, nuclear power plants and reprocessing plants, including the handling and treatment of gaseous wastes and wastes of specific types (five sessions with 35 papers); - storage and underground disposal of radioactive wastes: general, national concepts, underground laboratories, and designs of repositories for high-level, and low- and intermediate-level waste disposal (five sessions with 35 papers); - environmental and safety assessment of waste management systems: goals methodologies, assessments for geological repositories, low- and intermediate-level wastes, and mill tailings (four sessions with 26 papers); - radioactive releases to the environment from nuclear operations: status and perspectives, environmental transport processes, and control of radioactive waste disposal into the environment (three sessions with 23 papers)

  7. Management on radioactive wastes

    International Nuclear Information System (INIS)

    Balu, K.; Bhatia, S.C.

    1979-01-01

    The basic philosophy governing the radioactive waste management activities in India is to concentrate and contain as much activity as possible and to discharge to the environment only such of these streams that have radioactive content much below the nationally and internationally accepted standards. The concept of ''Zero Release'' is also kept in view. At Tarapur, the effluents are discharged into coastal waters after the radioactivity of the effluents is brought down by a factor 100. The effluents fΩm Rajasthan reactors are discharged into a lake keeping their radioactivity well within permissible limits and a solar evaporation plant is being set up. The plant, when it becomes operational, will be a step towards the concept of ''Zero Release''. At Kalpakkam, the treated wastes are proposed to be diluted by circulating sea water and discharged away from the shore through a long pipe. At Narora, ion exchange followed by chemical precipitation is to be employed to treat effluents and solar evaporation process for total containment. Solid wastes are stored/dispsed in the concrete trenches, underground with the water proofing of external surfaces and the top of the trench is covered with concrete. Highly active wastes are stored/disposed in tile holes which are vaults made of steel-lined, reinforced concrete pipes. Gas cleaning, dilution and dispersion techniques are adopted to treat gaseous radioactive wastes. (M.G.B.)

  8. [Microbiological Aspects of Radioactive Waste Storage].

    Science.gov (United States)

    Safonov, A V; Gorbunova, O A; German, K E; Zakharova, E V; Tregubova, V E; Ershov, B G; Nazina, T N

    2015-01-01

    The article gives information about the microorganisms inhabiting in surface storages of solid radioactive waste and deep disposal sites of liquid radioactive waste. It was shown that intensification of microbial processes can lead to significant changes in the chemical composition and physical state of the radioactive waste. It was concluded that the biogeochemical processes can have both a positive effect on the safety of radioactive waste storages (immobilization of RW macrocomponents, a decreased migration ability of radionuclides) and a negative one (biogenic gas production in subterranean formations and destruction of cement matrix).

  9. Management of radioactive wastes in China

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1994-01-01

    The policy and principles on management of radioactive wastes are stipulated. Cement solidification and bituminization unit has come into trial run. Solid radioactive waste is stored in tentative storage vault built in each of nuclear facilities. Seventeen storages associated with applications of nuclear technology and radioisotopes have been built for provinces. Disposal of low and intermediate level radioactive wastes pursues the policy of 'regional disposal'. Four repositories have been planned to be built in northwest, southwest, south and east China respectively. A program for treatment and disposal of high level radioactive waste has been made

  10. Sponsored research on radioactive waste management

    International Nuclear Information System (INIS)

    1983-01-01

    The report is in chapters entitled: introduction (background, responsibilities, options, structure of the programme); strategy development; disposal of accumulations; disposal of radioactive waste arisings; quality assurance for waste conditioning quality assurance related to radioactive waste disposal (effectiveness of different rock types as natural barriers to the movement of radioactivity, and non-site specific factors in the design of repositories; radiological assessment; environmental studies; research and development to meet requirements specific to UKAEA wastes; long term research (processes for the solidification of highly active liquid wastes); plutonium contamination waste minimisation. (U.K.)

  11. Radioactive waste management

    International Nuclear Information System (INIS)

    Alfredson, P.G.; Levins, D.M.

    1975-08-01

    Present and future methods of managing radioactive wastes in the nuclear industry are reviewed. In the stages from uranium mining to fuel fabrication, the main purpose of waste management is to limit and control dispersal into the environment of uranium and its decay products, particularly radium and radon. Nuclear reactors produce large amounts of radioactivity but release rates from commercial power reactors have been low and well within legal limits. The principal waste from reprocessing is a high activity liquid containing essentially all the fission products along with the transuranium elements. Most high activity wastes are currently stored as liquids in tanks but there is agreement that future wastes must be converted into solids. Processes to solidify wastes have been demonstrated in pilot plant facilities in the United States and Europe. After solidification, wastes may be stored for some time in man-made structures at or near the Earth's surface. The best method for ultimate disposal appears to be placing solid wastes in a suitable geological formation on land. (author)

  12. Method of disposing radioactive wastes

    International Nuclear Information System (INIS)

    Isozaki, Kei.

    1983-01-01

    Purpose : To enable safety ocean disposal of radioactive wastes by decreasing the leaching rate of radioactive nucleides, improving the quick-curing nature and increasing the durability. Method : A mixture comprising 2 - 20 parts by weight of alkali metal hydroxide and 100 parts by weight of finely powdered aqueous slags from a blast furnace is added to radioactive wastes to solidify them. In the case of medium or low level radioactive wastes, the solidification agent is added by 200 parts by weight to 100 parts by weight of the wastes and, in the case of high level wastes, the solidification agent is added in such an amount that the wastes occupy about 20% by weight in the total of the wastes and the solidification agent. Sodium hydroxide used as the alkali metal hydroxide is partially replaced with sodium carbonate, a water-reducing agent such as lignin sulfonate is added to improve the fluidity and suppress the leaching rate and the wastes are solidified in a drum can. In this way, corrosions of the vessel can be suppressed by the alkaline nature and the compression strength, heat stability and the like of the product also become excellent. (Sekiya, K.)

  13. Radioactive waste interim storage in Germany

    International Nuclear Information System (INIS)

    2015-12-01

    The short summary on the radioactive waste interim storage in Germany covers the following issues: importance of interim storage in the frame of radioactive waste management, responsibilities and regulations, waste forms, storage containers, transport of vitrified high-level radioactive wastes from the reprocessing plants, central interim storage facilities (Gorleben, Ahaus, Nord/Lubmin), local interim storage facilities at nuclear power plant sites, federal state collecting facilities, safety, radiation exposure in Germany.

  14. Communication from the Radioactive Waste Service

    CERN Multimedia

    2011-01-01

    The Radioactive Waste service of the Radiation protection Group informs you that as of 15 April 2011 radioactive waste can be delivered to the waste treatment centre (Bldg. 573) only during the following hours: Mon- Thu: 08:00 – 11:30 / 13:30 – 16:00 Fri : 08:00 – 11:30 An electronic form must be filled in before the arrival of the waste at the treatment centre: https://edh.cern.ch/Document/General/RadioactiveWaste for further information, please call 73171.

  15. Radioactive wastes and their disposal

    International Nuclear Information System (INIS)

    Neumann, L.

    1984-01-01

    The classification of radioactive wastes is given and the achievements evaluated in the disposal of radioactive wastes from nuclear power plants. An experimental pilot unit was installed at the Jaslovske Bohunice nuclear power plant for the bituminization of liquid radioactive wastes. UJV has developed a mobile automated high-output unit for cementation. In 1985 the unit will be tested at the Jaslovske Bohunice and the Dukovany nuclear power plants. A prototype press for processing solid wastes was manufactured which is in operation at the Jaslovske Bohunice plant. A solidification process for atypical wastes from long-term storage of spent fuel elements has been developed to be used for the period of nuclear power plant decommissioning. (E.S.)

  16. Method of processing radioactive solid wastes

    International Nuclear Information System (INIS)

    Ootaka, Hisashi; Aizu, Tadashi.

    1980-01-01

    Purpose: To improve the volume-reducing effect for the radioactive solids wastes by freezing and then pulverizing them. Method: Miscellaneous radioactive solid wastes produced from a nuclear power plant and packed in vinyl resin bags are filled in a drum can and nitrogen gas at low temperature (lower than 0 0 C) from a cylinder previously prepared by filling liquid nitrogen (at 15kg/cm 2 , -196 0 C) to freeze the radioactive solid wastes. Thereafter, a hydraulic press is inserted into the drum can to compress and pulverize the thus freezed miscellaneous radioactive solid wastes into powder. The powder thus formed does not expand even after removing the hydraulic press from the drum can, whereby the volume reduction of the radioactive solid wastes can be carried out effectively. (Horiuchi, T.)

  17. Gaseous radioactive waste processing system

    International Nuclear Information System (INIS)

    Onizawa, Hideo.

    1976-01-01

    Object: To prevent explosion of hydrogen gas within gaseous radioactive waste by removing the hydrogen gas by means of a hydrogen absorber. Structure: A coolant extracted from a reactor cooling system is sprayed by nozzle into a gaseous phase (hydrogen) portion within a tank, thus causing slipping of radioactive rare gas. The gaseous radioactive waste rich in hydrogen, which is purged in the tank, is forced by a waste gas compressor into a hydrogen occlusion device. The hydrogen occlusion device is filled with hydrogen occluding agents such as Mg, Mg-Ni alloy, V-Nb alloy, La-Ni alloy and so forth, and hydrogen in the waste gas is removed through reaction to produce hydrogen metal. The gaseous radioactive waste, which is deprived of hydrogen and reduced in volume, is stored in an attenuation tank. The hydrogen stored in the hydrogen absorber is released and used again as purge gas. (Horiuchi, T.)

  18. Management of small quantities of radioactive waste

    International Nuclear Information System (INIS)

    1998-09-01

    The main objective of this publication is to provide practical guidance primarily to developing Member States on the predisposal management of small quantities of radioactive waste arising from hospitals, laboratories, industries, institutions, research reactors and research centres.The publication covers the management of liquid, solid and gaseous radioactive wastes at the users' premises and gives general guidance on procedures at a centralized waste management facility. Predisposal management of radioactive waste includes handling, treatment, conditioning, storage and transportation. This publication provides information and guidance on the following topics: national waste management framework; origin and characteristics of radioactive waste arising from users generating small quantities of waste; radioactive waste management concepts appropriate for small quantities; local waste management; the documentation and approval necessary for the consignment of waste to a centralized waste management facility; centralized waste management; exemption of radionuclides from the regulatory body; transportation; environmental monitoring; quality assurance for the whole predisposal process; regional co-operation aspects

  19. Radioactivity in French bottled waters

    Energy Technology Data Exchange (ETDEWEB)

    Loyen, J.; Brassac, A.; Augeray, C.; Fayolle, C.; Gleizes, M. [Institut de Radioprotection et de Surete Nucleaire - IRSN (France)

    2014-07-01

    As IRSN is considered as a reference laboratory for radioactivity measurements, French health ministry and French nuclear safety authority asked IRSN to carry out a study in order to get a fresh and complete status of radiological water quality of French bottled waters. The study was carried out during 12 months in 2012. A total of 142 bottled waters samples were analyzed (75 spring waters and 67 natural mineral waters). The laboratories of IRSN were in charge of: - systematic measurement of radioactivity following requirements of the French health ministry (Circulaire du 13/06/2007) regarding the monitoring and management of sanitary risk linked to the presence of radionuclides in drinking waters (natural mineral waters excepted). - systematic uranium mass concentration determination; - a few radon-222 gas measurements for waters in glass bottles. This study is a flash assessment of radiological characteristics of French bottled waters, at the analysis date for the sample received. It was done in informative way and was not done for regulatory control purposes.. This study has shown that: - all bottled waters analyzed have a tritium activity concentration lower than the quality reference value of 100 Bq/l of the French regulation; - More than 105 bottled waters analyzed (80% of the springs waters and 70% of natural mineral waters received) have a gross alpha activity concentration lower than the guideline value of 0,1 Bq/l of the French regulation; - All bottled waters analyzed have a residual gross beta activity concentration lower than the guideline value of 1 Bq/l of the French regulation; - All bottled waters analyzed have a uranium mass concentration lower than the provisory guideline value of 30 μg/l of the WHO for drinking waters; - radon-222 was only significantly measured once upon 6 glass bottled waters with a value far below the reference value of 100 Bq/l of the future European Directive on drinking waters. For 32 bottled waters with gross alpha

  20. Alternative methods for disposal of low-level radioactive wastes. Task 2c: technical requirements for earth mounded concrete bunker disposal of low-level radioactive waste. Volume 4

    International Nuclear Information System (INIS)

    Miller, W.O.; Bennett, R.D.

    1985-10-01

    The study reported herein contains the results of Task 2c (Technical Requirements for Earth Mounded Concrete Bunker Disposal of Low-Level Radioactive Waste) of a four-task study entitled ''Criteria for Evaluating Engineered Facilities''. The overall objective of this study is to ensure that the criteria needed to evaluate five alternative low-level radioactive waste (LLW) disposal methods are available to potential license applicants. The earth mounded concrete bunker disposal alternative is one of several methods that may be proposed for disposal of low-level radioactive waste. The name of this alternative is descriptive of the disposal method used in France at the Centre de la Manche. Experience gained with this method at the Centre is described, including unit operations and features and components. Some improvements to the French system are recommended herein, including the use of previous backfill around monoliths and extending the limits of a low permeability surface layer. The applicability of existing criteria developed for near-surface disposal (10 CFR Part 61 Subpart D) to the earth mounded concrete bunker disposal method, as assessed in Task 1, are reassessed herein. With minor qualifications, these criteria were found to be applicable in the reassessment. These conclusions differ slightly from the Task 1 findings

  1. Prospects of nuclear waste management and radioactive waste management

    International Nuclear Information System (INIS)

    Koprda, V.

    2015-01-01

    The policy of radioactive waste management in the Slovak Republic is based on the principles defined by law on the National Nuclear Fund (NJF) and sets basic objectives: 1 Safe and reliable nuclear decommissioning; 2 The minimization of radioactive waste; 3. Selection of a suitable fuel cycle; 4 Safe storage of radioactive waste (RAW) 5 Security chain management of radioactive waste and spent nuclear fuel (SNF); 6 Nuclear safety; 7 The application of a graduated approach; 8 Respect of the principle 'a polluter pays'; 9 Objective decision-making process; 10 Responsibility. In connection with the above objectives, it appears necessary to build required facilities that are listed in this article.

  2. Radioactive waste management

    International Nuclear Information System (INIS)

    Pahissa Campa, Jaime; Pahissa, Marta H. de

    2000-01-01

    Throughout this century, the application of nuclear energy has produced many benefits, in industry, in research, in medicine, and in the generation of electricity. These activities generate wastes in the same way as do other human activities. The primary objective of radioactive waste management is to protect human health and environment now and in the future without imposing undue burden on future generations, through sound, safe and efficient radioactive waste management. This paper briefly describes the different steps of the management of short lived low and intermediate level wastes, and presents and overview of the state of art in countries involved in nuclear energy, describing their organizations, methodologies used in the processing of these wastes and the final disposal concepts. It also presents the Argentine strategy, its technical and legal aspects. Worldwide experience during the past 50 years has shown that short lived low and intermediate level wastes can be successfully isolated from human and environment in near surface disposal facilities. (author)

  3. Strategic areas in radioactive waste management. The viewpoint and work orientations of the Nea radioactive waste management committee

    International Nuclear Information System (INIS)

    1999-01-01

    The NEA Radioactive Waste Management Committee (RWMC) is a forum of senior operators, regulators, policy makers, and senior representatives of R and D institutions in the field of radioactive waste management. The Committee assists Member countries by providing objective guidance on the solution of radioactive waste problems, and promotes Safety in the short- and long-term management of radioactive waste. This report identifies some of the major challenges currently faced by national waste management programmes, and describes the strategic areas in which the RWMC should focus its efforts in future years. (author)

  4. Radioactive waste management in West Germany

    Energy Technology Data Exchange (ETDEWEB)

    Krause, H [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.)

    1978-01-01

    The technologies developed in West Germany for radioactive waste management are widely reviewed. The first topic in this review paper is the disposal of low- and middle-level radioactive liquid wastes. Almost all these liquid wastes are evaporated, and the typical decontamination factor attained is 10/sup 4/ -- 10/sup 6/. The second topic is the solidification of residuals. Short explanation is given to bituminization and some new processes. The third topic is high-level liquid wastes. Degradation of glass quality due to various radiation is discussed. Embedding of small glass particles containing radioactive wastes into metal is also explained. Disposals of low-level solid wastes and the special wastes produced from reprocessing and mixed oxide fuel fabrication are explained. Final disposal of radioactive wastes in halite is discussed as the last topic. Many photographs are used to illustrate the industrial or experimental use of those management methods.

  5. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi

    1991-01-01

    The invention relates to a decontamination method for radioactive metal waste products derived from equipment that handles radioactive materials whose surfaces have been contaminated; in particular it concerns a decontamination method that reduces the amount of radioactive waste by decontaminating radioactive waste substances to a level of radioactivity in line with normal waste products. In order to apply chemical decontamination to metal waste products whose surfaces are divided into carbon steel waste and stainless steel waste; the carbon steel waste is treated using only a primary process in which the waste is immersed in a sulfuric acid solution, while the stainless steel waste must be treated with both the primary process and then electrolytically reduces it for a specific length of time and a secondary process that uses a solution of sulfuric acid mixed with oxidizing metal salts. The method used to categorize metal waste into carbon steel waste and stainless steel waste involves determining the presence, or absence, of magnetism. Voltage is applied for a fixed duration; once that has stopped, electrolytic reduction repeats the operative cycle of applying, then stopping voltage until the potential of the radioactive metal waste is retained in the active region. 1 fig. 2 tabs

  6. Radioactive waste management - an educational challenge

    International Nuclear Information System (INIS)

    Tulenko, J.S.

    1991-01-01

    University Radioactive Waste Management educational programs are being actively advanced by the educational support activities of the Offices of Civilian Radioactive Waste Management (OCRWM) and Environmental Restoration and Waste Management (ERWM) of the DOE. The DOE fellowship program formats of funding students and requiring a practical research experience (practicum) at a DOE site has helped to combine the academic process with a practical work experience. Support for faculty in these programs is augmenting the benefits of the fellowship programs. The many job opportunities and funding sources for students which currently exists in the radioactive waste management area are fueling an increase in academic programs seeking recognition of their radioactive waste management curriculums

  7. Nuclear fuel cycle waste recycling technology deverlopment - Radioactive metal waste recycling technology development

    International Nuclear Information System (INIS)

    Oh, Won Zin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1998-08-01

    With relation to recycling of the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following were described in this report. 1. Analysis of the state of the art on the radioactive metal waste recycling technologies. 2. Economical assessment on the radioactive metal waste recycling. 3. Process development for radioactive metal waste recycling, A. Decontamination technologies for radioactive metal waste recycling. B. Decontamination waste treatment technologies, C. Residual radioactivity evaluation technologies. (author). 238 refs., 60 tabs., 79 figs

  8. MANAGEMENT OF RADIOACTIVE WASTES IN CHINA

    Institute of Scientific and Technical Information of China (English)

    潘自强

    1994-01-01

    The policy and principles on management of radioactive wastes are stipulated.Cement solidification and bituminization unit has come into trial run.Solid radioactive waste is stored in tentative storage vault built in each of nuclear facilities.Seventeen storages associated with applications of nuclear technology and radioisotopes have been built for provinces.Disposal of low and intermediate level radioactive wastes pursues the policy of “regional disposal”.Four repositories have been planned to be built in northwest.southwest,south and east China respectively.A program for treatment and disposal of high level radioactive waste has been made.

  9. Radioactive Waste and Clean-up: Introduction

    International Nuclear Information System (INIS)

    Collard, G.

    2007-01-01

    The primary mission of the Radioactive Waste and Clean-up division is to propose, to develop and to evaluate solutions for a safe, acceptable and sustainable management of radioactive waste. The Radioactive Waste and Clean-up division programme consists in research, studies, development and demonstration aiming to realise the objective of Agenda 21 on sustainable development in the field of radioactive waste and rehabilitation on radioactively contaminated sites. Indeed, it participates in the realisation of an objective which is to ensure that radioactive wastes are safely managed, transported, stored and disposed of, with a view to protecting human health and the environment, within a wider framework of an interactive and integrated approach to radioactive waste management and safety. We believe that nuclear energy will be necessary for the sustainable development of mankind in the 21st century, but we well understand that it would not be maintained if it is not proven that within benefits of nuclear energy a better protection of the environment is included. Although the current waste management practices are both technically and from the environmental point of view adequate, efforts in relation of future power production and waste management technologies should be put on waste minimisation. Therefore, the new and innovative reactors, fuel cycle and waste management processes and installations should be designed so that the waste generation can be kept in minimum. In addition to the design, the installations should be operated so as to create less waste; consideration should be given e.g. to keeping water chemistry clean and other quality factors. SCK-CEN in general and the Radioactive Waste and Clean-up division in particular are present in international groups preparing the development of innovative nuclear reactors, as Generation 4 and INPRO. Because performance assessments are often black boxes for the public, demonstration is needed for the acceptation of

  10. Underground storage of radioactive wastes

    International Nuclear Information System (INIS)

    Dietz, D.N.

    1977-01-01

    An introductory survey of the underground disposal of radioactive wastes is given. Attention is paid to various types of radioactive wastes varying from low to highly active materials, as well as mining techniques and salt deposits

  11. The Radioactive Waste Management at Studsvik

    Energy Technology Data Exchange (ETDEWEB)

    Hedlund, R; Lindskog, A

    1966-04-15

    The report was originally prepared as a contribution to the discussions in an IAEA panel on economics of radioactive waste management held in Vienna from 13 - 17 December 1965. It contains the answers and comments to the questions of a questionnaire for the panel concerning the various operations associated with the management (collection, transport, treatment, discharge, storage, and operational monitoring) of: - radioactive liquid wastes, except high-level effluents from reactor fuel recovering operations; - solid wastes, except those produced from treatment of high level wastes; - gaseous wastes produced from treatment of the foregoing liquid and solid wastes; - equipment decontamination facilities and radioactive laundries.

  12. The Radioactive Waste Management at Studsvik

    International Nuclear Information System (INIS)

    Hedlund, R.; Lindskog, A.

    1966-04-01

    The report was originally prepared as a contribution to the discussions in an IAEA panel on economics of radioactive waste management held in Vienna from 13 - 17 December 1965. It contains the answers and comments to the questions of a questionnaire for the panel concerning the various operations associated with the management (collection, transport, treatment, discharge, storage, and operational monitoring) of: - radioactive liquid wastes, except high-level effluents from reactor fuel recovering operations; - solid wastes, except those produced from treatment of high level wastes; - gaseous wastes produced from treatment of the foregoing liquid and solid wastes; - equipment decontamination facilities and radioactive laundries

  13. The Radioactive Waste Management Advisory Committee's report on radioactive waste management practices in Switzerland

    International Nuclear Information System (INIS)

    1998-01-01

    Radioactive Waste Management Advisory Committee (RWMAC) is the independent body that advises the Secretary of State for the Environment, Transport and the Regions and the Secretaries of State for Scotland and for Wales on issues relating to radioactive waste management. The terms of reference of the RWMAC, and a list of its Members, are given in Annex 1 to this Report. A group of 16 RWMAC Members examined the management of radioactive waste in Switzerland during a study visit to that country made between 8 and 12 October 1996. The aim of the visit was to acquire first hand knowledge of a set of practices adopted outside the United Kingdom by visiting radioactive waste management facilities and holding discussions with those involved, whether as operators, regulators or advisors to Government. This Report describes what the group saw, records the information collected, and sets out its findings. Switzerland's political system, with the emphasis placed on referenda, encourages popular participation in the democratic process. This may appear to have slowed down the provision of management facilities for radioactive wastes. From a longer term perspective, however, it is clear that such facilities may only really be viable in locations where there is sufficient local support. The quality of the arguments, from both supporters and opponents of nuclear power, is clear evidence of the importance which needs to be attached to the views of those affected. In order to build on what has already been achieved, notably in storage and research, those concerned with radioactive waste management in Switzerland continue to recognise this underlying principle

  14. Method of solidifying radioactive waste

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Mihara, Shigeru; Yamashita, Koji; Sauda, Kenzo.

    1988-01-01

    Purpose: To obtain satisfactory plastic solidification products rapidly and more conveniently from radioactive wastes. Method: liquid wastes contain, in addition to sodium sulfate as the main ingredient, nitrates hindering the polymerizing curing reactions and various other unknown ingredients, while spent resins contain residual cationic exchange groups hindering the polymerizing reaction. Generally, as the acid value of unsaturated liquid polyester resins is lower, the number of terminal alkyd resins is small, formation of nitrates is reduced and the polymerizing curing reaction is taken place more smoothly. In view of the above, radioactive wastes obtained by dry powderization or dehydration of radioactive liquid wastes or spent resins are polymerized with unsaturated liquid polyester resins with the acid value of less than 13 to obtain plastic solidification. Thus, if the radioactive wastes contain a great amount of polymerization hindering material such as NaNO 2 , they can be solidified rapidly and conveniently with no requirement for pre-treatment. (Kamimura, Y.)

  15. Radioactive waste management in a hospital.

    Science.gov (United States)

    Khan, Shoukat; Syed, At; Ahmad, Reyaz; Rather, Tanveer A; Ajaz, M; Jan, Fa

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations.

  16. Method of solidifying radioactive solid wastes

    International Nuclear Information System (INIS)

    Fukazawa, Tetsuo; Kawamura, Fumio; Kikuchi, Makoto.

    1984-01-01

    Purpose: To obtain solidification products of radioactive wastes satisfactorily and safely with no destruction even under a high pressure atmosphere by preventing the stress concentration by considering the relationships of the elastic module between the solidifying material and radioactive solid wastes. Method: Solidification products of radioactive wastes with safety and securing an aimed safety ratio are produced by conditioning the modules of elasticity of the solidifying material equal to or less than that of the radioactive wastes in a case where the elastic module of radioactive solid wastes to be solidified is smaller than that of the solidifying material (the elastic module of wastes having the minimum elastic module among various wastes). The method of decreasing the elastic module of the solidifying material usable herein includes the use of such a resin having a long distance between cross-linking points of a polymer in the case of plastic solidifying materials, and addition of rubber-like binders in the case of cement or like other inorganic solidifying materials. (Yoshihara, H.)

  17. Radioactive Waste Management in A Hospital

    Science.gov (United States)

    Khan, Shoukat; Syed, AT; Ahmad, Reyaz; Rather, Tanveer A.; Ajaz, M; Jan, FA

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations. PMID:21475524

  18. Developing radioactive waste management policy

    International Nuclear Information System (INIS)

    Gichana, Z.

    2012-04-01

    A policy for radioactive waste management with defined goals and requirements is needed as a basis for the preparation of legislation, review or revision of related legislation and to define roles and responsibilities for ensuring the safe management of radioactive waste. A well defined policy and associated strategies are useful in promoting consistency of emphasis and direction within all of the sectors involved in radioactive waste management. The absence of policy and strategy can lead to confusion or lack of coordination and direction. A policy and/or strategy may sometimes be needed to prevent inaction on a particular waste management issue or to resolve an impasse. (author)

  19. Overview of radioactive waste management

    International Nuclear Information System (INIS)

    Ritter, G.L.

    1980-01-01

    The question of what to do with radioactive wastes is discussed. The need to resolve this issue promptly is pointed out. Two significant events which have occurred during the Carter administration are discussed. An Interagency Review Group (IRG) on waste management was formed to formulate recommendations leading to the establishment of a National policy for managing radioactive wastes. The technical findings in the IRG report are listed. The author points out some issues not addressed by the report. President Carter issued a national policy statement on Radioactive Waste Management in February 1980. The most significant elements of this statement are summarized. The cancellation of the Waste Isolation Pilot Plant is currently meeting opposition in Congress. This and other items in the National Policy Statement are discussed

  20. Radioactive waste packages stored at the Aube facility for low-intermediate activity wastes. A selective and controlled storage; Les colis de dechets radioactifs stockes au centre de stockage FMA de l'Aube. Une stockage selectif et maitrise

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The waste package is the first barrier designed to protect the man and the environment from the radioactivity contained in wastes. Its design is thus particularly stringent and controlled. This brochure describes the different types of packages for low to intermediate activity wastes like those received and stored at the Aube facility, and also the system implemented by the ANDRA (the French national agency of radioactive wastes) and by waste producers to safely control each step of the design and fabrication of these packages. (J.S.)

  1. France's State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes.

    Science.gov (United States)

    Delepine-Lesoille, Sylvie; Girard, Sylvain; Landolt, Marcel; Bertrand, Johan; Planes, Isabelle; Boukenter, Aziz; Marin, Emmanuel; Humbert, Georges; Leparmentier, Stéphanie; Auguste, Jean-Louis; Ouerdane, Youcef

    2017-06-13

    This paper presents the state of the art distributed sensing systems, based on optical fibres, developed and qualified for the French Cigéo project, the underground repository for high level and intermediate level long-lived radioactive wastes. Four main parameters, namely strain, temperature, radiation and hydrogen concentration are currently investigated by optical fibre sensors, as well as the tolerances of selected technologies to the unique constraints of the Cigéo's severe environment. Using fluorine-doped silica optical fibre surrounded by a carbon layer and polyimide coating, it is possible to exploit its Raman, Brillouin and Rayleigh scattering signatures to achieve the distributed sensing of the temperature and the strain inside the repository cells of radioactive wastes. Regarding the dose measurement, promising solutions are proposed based on Radiation Induced Attenuation (RIA) responses of sensitive fibres such as the P-doped ones. While for hydrogen measurements, the potential of specialty optical fibres with Pd particles embedded in their silica matrix is currently studied for this gas monitoring through its impact on the fibre Brillouin signature evolution.

  2. The incineration of radioactive waste

    International Nuclear Information System (INIS)

    Thegerstroem, C.

    1980-03-01

    In this study, made on contract for the Swedish Nuclear Power Inspectorate, different methods for incineration of radioactive wastes are reviewed. Operation experiences and methods under development are also discussed. The aim of incineration of radioactive wastes is to reduce the volume and weight of the wastes. Waste categories most commonly treated by incineration are burnable solid low level wastes like trash wastes consisting of plastic, paper, protective clothing, isolating material etc. Primarily, techniques for the incineration of this type of waste are described but incineration of other types of low level wastes like oil or solvents and medium level wastes like ion-exchange resins is also briefly discussed. The report contains tables with condensed data on incineration plants in different countries. Problems encountered, experiences and new developments are reviewed. The most important problems in incineration of radioactive wastes have been plugging and corrosion of offgas systems, due to incomplete combustion of combustion of materials like rubber and PVC giving rise to corrosive gases, combined with inadequate materials of construction in heat-exchangers, channels and filter housings. (author)

  3. Radioactive waste management at AECL

    International Nuclear Information System (INIS)

    Gadsby, R.D.; Allan, C.J.

    2003-01-01

    AECL has maintained an active program in radioactive waste management since 1945, when the Canadian nuclear program commenced activities at the Chalk River Laboratories (CRL). Waste management activities have included operation of waste management storage and processing facilities at AECL's CRL and Whiteshell Laboratories (WL); operation of the Low Level Radioactive Waste Management Office on behalf of Natural Resources Canada to resolve historic radioactive waste problems (largely associated with radioactive ore recovery, transport and processing operations) that are the responsibility of the Federal Government; development of the concept and related technology for geological disposal of Canada's nuclear fuel waste; development of the Intrusion-Resistant Underground Structure (IRUS) disposal concept for low-level nuclear waste; development of dry storage technology for the interim storage of used fuel; and development and assessment of waste processing technology for application in CANDU nuclear power plants and at CRL and WL. Today these activities are continuing. In addition, AECL is: preparing to decommission the nuclear facilities at WL; carrying out a number of smaller decommissioning projects at CRL; putting in place projects to upgrade the low-level liquid waste processing capabilities of the CRL Waste Treatment Centre, recover and process highly active liquid wastes currently in storage, and recover, condition and improve the storage of selected fuel wastes currently stored in below-ground standpipes in the CRL waste management areas; and assessing options for additional remediation projects to improve the management of other wastes currently in storage and to address environmental contamination from past practices. (author)

  4. Session 1984-85. Radioactive waste. Minutes of evidence, Monday 17 June 1985. Nuclear Industry Radioactive Waste Executive

    International Nuclear Information System (INIS)

    1985-01-01

    The Environment Select Committee of the House of Commons received a memorandum from the Nuclear Industry Radioactive Waste Executive, on the management and disposal of radioactive waste arising in the UK, under the headings: introduction; the structure of NIREX; the nature of radioactive waste; plans for the disposal of low and intermediate level wastes. Representatives of NIREX were examined on the subject of the memorandum and the minutes of evidence are recorded. (U.K.)

  5. Coal combustion ashes: A radioactive Waste?

    International Nuclear Information System (INIS)

    Michetti, F.P.; Tocci, M.

    1992-01-01

    The radioactive substances naturally hold in fossil fuels, such as Uranium and Thorium, after the combustion, are subjected to an increase of concentration in the residual combustion products as flying ashes or as firebox ashes. A significant percentage of the waste should be classified as radioactive waste, while the political strategies seems to be setted to declassify it as non-radioactive waste. (Author)

  6. Argentina's radioactive waste disposal policy

    International Nuclear Information System (INIS)

    Palacios, E.

    1986-01-01

    The Argentina policy for radioactive waste disposal from nuclear facilities is presented. The radioactive wastes are treated and disposed in confinement systems which ensure the isolation of the radionucles for an appropriate period. The safety criteria adopted by Argentina Authorities in case of the release of radioactive materials under normal conditions and in case of accidents are analysed. (M.C.K.) [pt

  7. Prospecting the radioactivity of the air. [In French

    Energy Technology Data Exchange (ETDEWEB)

    Garrigue, H

    1953-01-01

    The most recent French measurements made in an aerial laboratory and on the summit of the Puy-de-Dome are listed. The data shows the existence of a strong source of radioactivity at about August 15th.

  8. Management of radioactive waste from nuclear applications

    International Nuclear Information System (INIS)

    1997-01-01

    Radioactive waste arises from the generation of nuclear energy and from the production of radioactive materials and their applications in industry, agriculture, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. Technical expertise is a prerequisite for safe and cost-effective management of radioactive waste. A training course is considered an effective tool for providing technical expertise in various aspects of waste management. The IAEA, in co-operation with national authorities concerned with radioactive waste management, has organized and conducted a number of radioactive waste management training courses. The results of the courses conducted by the IAEA in 1991-1995 have been evaluated at consultants meetings held in December 1995 and May 1996. This guidance document for use by Member States in arranging national training courses on the management of low and intermediate level radioactive waste from nuclear applications has been prepared as the result of that effort. The report outlines the various requirements for the organization, conduct and evaluation of training courses in radioactive waste management and proposes an annotated outline of a reference training course

  9. Radioactive liquid waste processing system

    International Nuclear Information System (INIS)

    Noda, Tetsuya; Kuramitsu, Kiminori; Ishii, Tomoharu.

    1997-01-01

    The present invention provides a system for processing radioactive liquid wastes containing laundry liquid wastes, shower drains or radioactive liquid wastes containing chemical oxygen demand (COD) ingredients and oil content generated from a nuclear power plant. Namely, a collecting tank collects radioactive liquid wastes. A filtering device is connected to the exit of the collective tank. A sump tank is connected to the exit of the filtering device. A powdery active carbon supplying device is connected to the collecting tank. A chemical fluid tank is connected to the collecting tank and the filtering device by way of chemical fluid injection lines. Backwarding pipelines connect a filtered water flowing exit of the filtering device and the collecting tank. The chemical solution is stored in the chemical solution tank. Then, radioactive materials in radioactive liquid wastes generated from a nuclear power plant are removed by the filtering device. The water quality standard specified in environmental influence reports can be satisfied. In the filtering device, when the filtering flow rate is reduced, the chemical fluid is supplied from the chemical fluid tank to the filtering device to recover the filtering flow rate. (I.S.)

  10. Radioactive waste programme in Latvia

    International Nuclear Information System (INIS)

    Salmins, A.

    2000-01-01

    An overview is made on the use of radioactive sources and waste management in Latvia. Brief overview of the development of national legal documents - the framework law of environmental protection; international agreements; the new law on radiation safety and nuclear safety; regulation of the Cabinet of Ministers - is given. The regulatory infrastructure in the nearest future is outlined. The institutional framework for radioactive waste management is described. Basic design of the repository and radioactive waste inventory are also given. The activities on the EU DG Environment project CASIOPEE are reported

  11. Collecting and identifying the radioactive waste

    International Nuclear Information System (INIS)

    Dogaru, C. GH.

    2001-01-01

    The procedure 'Collecting and identifying the radioactive waste' applied by the Radioactive Waste Management Department, STDR, complies with the requirements of the competent authority concerning the radioactive source management. One of the most important tasks, requiring the application of this procedure, is collecting and identification of 'historical wastes' for which a complete book keeping does not exist from different reasons. The chapter 1 presents the procedure's goal and the chapter 2 defines the applicability field. Chapter 3 enlists the reference documents while the chapter 4 gives the definitions and abbreviations used in the procedure. Chapter 5 defines responsibilities of the operators implied in collecting, identification and characterization of the radioactive wastes, the producers of the radioactive wastes being implied. Chapter 6 gives the preliminary conditions for applying the procedure. Among these, the transport, collecting, processing, storing and characterization costs are implied, as well as the compliance with technical and different other condition. The procedure structure is presented in the chapter 7. In collecting radioactive wastes, two situations are possible: 1- the producer is able to prepare the wastes for transport and to deliver them to STDR; 2 - the wastes are received from the producer by a delegate STDR operator, properly and technically prepared. The producer must demonstrate by documents the origin and possession, analysis bulletins specifying, the radionuclides activity and measurement date, physical state and, in addition, for spent radiation sources, the series/number of the container and producer. In case the producer is not able to display all this information, the wastes are taken into custody by the STDR labs in view of their analysis. A record in writing is completed specifying the transfer of radioactive wastes from the producer to the STDR, a record which is sent to the national authority in charge with the

  12. French industrial plant AVM for continuous vitrification of high level radioactive wastes

    International Nuclear Information System (INIS)

    Bonniaud, Roger; Sombret, Claude; Barbe, Alain

    1975-01-01

    The A.V.M. plant is a continuous process plant now under construction at Marcoule and intended for vitrifying the whole of fission product solutions from the C.E.A. (Commissariat a l'Energie Atomique) - Marcoule reprocessing plant. The outset of the construction took place in the second 1974 half year; the first radioactive run is scheduled in July 1977. The two steps of the process are shown: first a continuous calcination then a continuous glass making from the calcined product and suitable additives. The plant consists in two parts: vitrification and storage facilities. Some wastes will be continuously produced day after day due to gas clean up and worn out materials. Characteristics of the solutions processed, calcined products, glass composition, and expected liquid wastes are given in tables [fr

  13. Radioactive waste storage facility and underground disposal method for radioactive wastes using the facility

    International Nuclear Information System (INIS)

    Endo, Yoshihiro.

    1997-01-01

    A sealed container storage chamber is formed in underground rocks. A container storage pool is formed on the inner bottom of the sealed vessel storage chamber. A heat exchanger for cooling water and a recycling pump are disposed on an operation floor of the sealed vessel storage chamber. Radioactive wastes sealed vessels in which radioactive wastes are sealed are transferred from the ground to the sealed vessel storage chamber through a sealed vessel transferring shaft, and immersed in cooling water stored in the vessel storage pool. When after heat of the radioactive wastes is removed by the cooling water, the cooling water in the vessel storage pool is sucked up to the ground surface. After dismantling equipments, bentonite-type fillers are filled in the inside of the sealed vessel storage chamber, sealed vessel transferring shaft, air supplying shaft and air exhaustion shaft, and the radioactive waste-sealed vessels can be subjected stably to into underground disposal. (I.N.)

  14. Geological aspects of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kobera, P.

    1985-01-01

    Geological formations suitable for burying various types of radioactive wastes are characterized applying criteria for the evaluation and selection of geological formations for building disposal sites for radioactive wastes issued in IAEA technical recommendations. They are surface disposal sites, disposal sites in medium depths and deep disposal sites. Attention is focused on geological formations usable for injecting self-hardening mixtures into cracks prepared by hydraulic decomposition and for injecting liquid radioactive wastes into permeable rocks. Briefly outlined are current trends of the disposal of radioactive wastes in Czechoslovakia and the possibilities are assessed from the geological point of view of building disposal sites for radioactive wastes on the sites of Czechoslovak nuclear power plants at Jaslovske Bohunice, Mochovce, Dukovany, Temelin, Holice (eastern Bohemia), Blahoutovice (northern Moravia) and Zehna (eastern Slovakia). It is stated that in order to design an optimal method of the burial of radioactive waste it will be necessary to improve knowledge of geological conditions in the potential disposal sites at the said nuclear plants. There is usually no detailed knowledge of geological and hydrological conditions at greater depths than 100 m. (Z.M.)

  15. Radioactive waste disposal package

    Science.gov (United States)

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  16. Shifting paradigms in managing radioactive waste

    International Nuclear Information System (INIS)

    Le Bars, Y.; Pescatore, C.

    2004-01-01

    The Stakeholder involvement in policy making of radioactive waste management, has received considerable attention within the OECD. The Nea forum on Stakeholder confidence (FSC) was set up in 2000. A Nea recent publication entitled ''Learning and adapting to societal requirements for radioactive waste management'' brings together the key FSC findings and experience covering four years of work. Six main areas are targeted in this publication and are briefly described in this document: favourable candidates for issuing radioactive waste management policy, the design of the decision-making process, the social and ethical dimension, trust in the actors, Stakeholder involvement and the local dimension of radioactive waste management. (A.L.B.)

  17. Low-level radioactive waste management. Background paper

    International Nuclear Information System (INIS)

    Fawcett, R.

    1993-11-01

    The management of radioactive waste is one of the most serious environmental problems facing Canadians. From the early industrial uses of radioactive material in the 1930s to the development of nuclear power reactors and the medical and experimental use of radioisotopes today, there has been a steady accumulation of waste products. Although the difficulties involved in radioactive waste management are considerable, responsible solutions are possible. This paper will discuss low-level radioactive waste, including its production, the amounts in storage, the rate of waste accumulation and possible strategies for its management. (author). 2 figs

  18. Radioactive waste management

    International Nuclear Information System (INIS)

    Kizawa, Hideo

    1982-01-01

    A system of combining a calciner for concentrated radioactive liquid waste and an incinerator for miscellaneous radioactive solid waste is being developed. Both the calciner and the incinerator are operated by fluidized bed method. The system features the following points: (1) Inflammable miscellaneous solids and concentrated liquid can be treated in combination to reduce the volume. (2) Used ion-exchange resin can be incinerated. (3) The system is applicable even if any final waste disposal method is adopted; calcinated and incinerated solids obtained as intermediate products are easy to handle and store. (4) The system is readily compatible with other waste treatment systems to form optimal total system. The following matters are described: the principle of fluidized-bed furnaces, the objects of treatment, system constitution, the features of the calciner and incinerator, and the current status of development. (J.P.N.)

  19. Radioactive waste management in Slovenia

    International Nuclear Information System (INIS)

    Fink, K.

    1992-01-01

    The problem of radioactive waste management is both scientifically and technically complex and also deeply emotional issue. In the last twenty years the first two aspects have been mostly resolved up to the point of safe implementation. In the Republic of Slovenia, certain fundamentalist approaches in politics and the use of radioactive waste problem as political marketing tool, make things even more complex. Public involvement in planning and development of radioactive waste management program must be perceived as essential for the success of the program. Education is a precursor to public comprehension and confidence which lead to adequate waste management decisions that will protect the public health, safety and environment without jeopardizing further progress and development. (author) [sl

  20. Underground radioactive waste disposal concept

    International Nuclear Information System (INIS)

    Frgic, L.; Tor, K.; Hudec, M.

    2002-01-01

    The paper presents some solutions for radioactive waste disposal. An underground disposal of radioactive waste is proposed in deep boreholes of greater diameter, fitted with containers. In northern part of Croatia, the geological data are available on numerous boreholes. The boreholes were drilled during investigations and prospecting of petroleum and gas fields. The available data may prove useful in defining safe deep layers suitable for waste repositories. The paper describes a Russian disposal design, execution and verification procedure. The aim of the paper is to discuss some earlier proposed solutions, and present a solution that has not yet been considered - lowering of containers with high level radioactive waste (HLW) to at least 500 m under the ground surface.(author)

  1. Radioactive waste management regulatory framework in Mexico

    International Nuclear Information System (INIS)

    Barcenas, M.; Mejia, M.

    2001-01-01

    The purpose of this paper is to present an overview of the current regulatory framework concerning the radioactive waste management in Mexico. It is intended to show regulatory historical antecedents, the legal responsibilities assigned to institutions involved in the radioactive waste management, the sources of radioactive waste, and the development and preparation of national standards for fulfilling the legal framework for low level radioactive waste. It is at present the most important matter to be resolved. (author)

  2. Radioactive wastes handling facility

    International Nuclear Information System (INIS)

    Hirose, Emiko; Inaguma, Masahiko; Ozaki, Shigeru; Matsumoto, Kaname.

    1997-01-01

    There are disposed an area where a conveyor is disposed for separating miscellaneous radioactive solid wastes such as metals, on area for operators which is disposed in the direction vertical to the transferring direction of the conveyor, an area for receiving the radioactive wastes and placing them on the conveyor and an area for collecting the radioactive wastes transferred by the conveyor. Since an operator can conduct handling while wearing a working cloth attached to a partition wall as he wears his ordinary cloth, the operation condition can be improved and the efficiency for the separating work can be improved. When the area for settling conveyors and the area for the operators is depressurized, cruds on the surface of the wastes are not released to the outside and the working clothes can be prevented from being involved. Since the wastes are transferred by the conveyor, the operator's moving range is reduced, poisonous materials are fallen and moved through a sliding way to an area for collecting materials to be separated. Accordingly, the materials to be removed can be accumulated easily. (N.H.)

  3. Method of processing radioactive liquid waste

    International Nuclear Information System (INIS)

    Motojima, Kenji; Kawamura, Fumio.

    1981-01-01

    Purpose: To increase the efficiency of removing radioactive cesium from radioactive liquid waste by employing zeolite affixed to metallic compound ferrocyanide as an adsorbent. Method: Regenerated liquid waste of a reactor condensation desalting unit, floor drain and so forth are collected through respective supply tubes to a liquid waste tank, and the liquid waste is fed by a pump to a column filled with zeolite containing a metallic compound ferrocyanide, such as with copper, zinc, manganese, iron, cobalt, nickel or the like. The liquid waste from which radioactive cesium is removed is dried and pelletized by volume reducing and solidifying means. (Yoshino, Y.)

  4. The management of radioactive waste in laboratories

    International Nuclear Information System (INIS)

    McLintock, I.S.

    1996-01-01

    Many laboratories in universities, colleges, research institutions and hospitals produce radioactive wastes. The recently-coined term for them is small users of radioactive materials, to distinguish them from concerns such as the nuclear industry. Until recently the accepted official view was that small users had few problems in disposing of their radioactive wastes. This misconception was dispelled in 1991 by the 12th Annual Report of the Radioactive Waste Management Advisory Committee. This book includes a description of the principles of the management and disposal of radioactive wastes from these laboratories. Its main intention, however, is to provide practical information and data for laboratory workers as well as for those responsible for management and ultimate disposal of radioactive wastes. I hope that it succeeds in this intention. (UK)

  5. Low-level radioactive wastes

    International Nuclear Information System (INIS)

    Garbay, H.; Chapuis, A.M.

    1988-01-01

    During dismantling operations of nuclear facilities radioctive and non radioactive wastes are produced. The distinction between both kinds of wastes is not easy. In each dismantling operation special care and rules are defined for the separation of wastes. Each case must be separately studied. The volume and the surface activites are analyzed. Part of the wastes had been disposed in a public environment. The regulations, the international recommendations, thetheoretical and experimental investigations in this field are presented. A regulation principle and examples of radioactivity limits, on the basis of international recommendations, are provided. Those limits are calculated from individual radiation dose that may reach human beings [fr

  6. Method of transporting radioactive slurry-like wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, K; Yusa, H; Sugimoto, Y

    1975-06-30

    The object is to prevent blockage of a transporting tube to positively and effectively transport radioactive slurry wastes. A method of transporting radioactive slurry-like wastes produced in an atomic power plant, wherein liquid wastes produced in the power plant are diluted to form into a driving liquid, by which said radioactive slurry-like wastes are transported within the pipe, and said driving liquid is recovered as the liquid waste.

  7. Radioactive waste engineering and management

    CERN Document Server

    Nakayama, Shinichi

    2015-01-01

    This book describes essential and effective management for reliably ensuring public safety from radioactive wastes in Japan. This is the first book to cover many aspects of wastes from the nuclear fuel cycle to research and medical use, allowing readers to understand the characterization, treatment and final disposal of generated wastes, performance assessment, institutional systems, and social issues such as intergenerational ethics. Exercises at the end of each chapter help to understand radioactive waste management in context.

  8. Disposal of radioactive wastes from Czechoslovak nuclear power plants

    International Nuclear Information System (INIS)

    Neumann, L.

    In gaseous radioactive waste disposal, aerosol particles are filtered and gaseous wastes are discharged in the environment. The filters and filter materials used are stored on solid radioactive waste storage sites in the individual power plants. Liquid radioactive wastes are concentrated and the concentrates are stored. Distillates and low-level radioactive waste water are discharged into the hydrosphere. Solid radioactive wastes are stored without treatment in power plant bunkers. Bituminization and cementation of liquid radioactive wastes are discussed. (H.S.)

  9. World ocean and radioactive wastes

    International Nuclear Information System (INIS)

    Kiknadze, O.E.; Sivintsev, Yu.V.

    2000-01-01

    The radioecological situation that took shape in the Arctic, North Atlantic Ocean and Far East regions as a result of radioactive waste marine disposal was assessed. Accurate account of radionuclides formation and decay in submerged water-water reactors of nuclear submarines suggests that total activity of radioactive waste disposed near the Novaya Zemlya amounted to 107 kCi by the end of 1999. Activity of radioactive waste disposed in the North Atlantic currently is not in excess of 430 kCi. It is pointed out that the Far East region heads the list in terms of total activity disposed (529 kCi). Effective individual dose for critical groups of population in the Arctic, North Atlantic and Far East regions was determined. The conclusion was made that there is no detrimental effect of the radioactive waste disposed on radioecological situation in the relevant areas [ru

  10. Radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Detilleux, E.

    1984-01-01

    The first part of this paper briefly describes the nuclear industry in Belgium and the problem of radioactive wastes with regard to their quality and quantity. The second part emphasizes the recent guidelines regarding the management of the nuclear industry in general and the radioactive wastes in particular. In this respect, important tasks are the reinforcement of administrative structures with regard to the supervision and the control of nuclear activities, the establishment of a mixed company entrusted with the covering of the needs of nuclear plants in the field of nuclear fuels and particularly the setting up of a public autonomous and specialized organization, the 'Public Organization for the Management of Radioactive Waste and Fissile Materials', in short 'O.N.D.R.A.F.'. This organization is in charge of the management of the transport, the conditioning, the storage and the disposal of radioactive wastes. (Auth.)

  11. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Fukazawa, Tetsuo; Ootsuka, Masaharu; Uetake, Naoto; Ozawa, Yoshihiro.

    1984-01-01

    Purpose: To prepare radioactive solidified wastes excellent in strength, heat resistance, weather-proof, water resistance, dampproof and low-leaching property. Method: A hardening material reactive with alkali silicates to form less soluble salts is used as a hardener for alkali silicates which are solidification filler for the radioactive wastes, and mixed with cement as a water absorbent and water to solidify the radioactive wastes. The hardening agent includes, for example, CaCO 3 , Ca(ClO 4 ) 2 , CaSiF 6 and CaSiO 3 . Further, in order to reduce the water content in the wastes and reduce the gap ratio in the solidification products, the hardener adding rate, cement adding rate and water content are selected adequately. As the result, solidification products can be prepared with no deposition of easily soluble salts to the surface thereof, with extremely low leaching of radioactive nucleides. (Kamimura, M.)

  12. Vitrification of hazardous and radioactive wastes

    International Nuclear Information System (INIS)

    Bickford, D.F.; Schumacher, R.

    1995-01-01

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification

  13. National Syrian Program for Radioactive Waste Management

    International Nuclear Information System (INIS)

    Othman, I.; Takriti, S.

    2009-06-01

    A national plan for radioactive waste management has been presented. It includes identifying, transport, recording, classifying, processing and disposal. It is an important reference for radioactive waste management for those dealing with radioactive waste, and presents a complete protection to environemnt and people. (author)

  14. A method for conditioning radioactive-wastes

    International Nuclear Information System (INIS)

    Cuaz, Daniel; Thiery, Daniel.

    1974-01-01

    Description is given of a method for conditioning radioactive-wastes, according to the main patent. This method is characterized in that the radioactive wastes are constituted by radio-elements incorporated with filtration and/or floculation promoters. This can be applied to radioactive effluent processing [fr

  15. Cosmic disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y; Morisawa, S [Kyoto Univ. (Japan). Faculty of Engineering

    1975-03-01

    The technical and economical possibility and safety of the disposal of highly radioactive waste into cosmos are reviewed. The disposal of highly radioactive waste is serious problem to be solved in the near future, because it is produced in large amounts by the reprocessing of spent fuel. The promising methods proposed are (i) underground disposal, (ii) ocean disposal, (iii) cosmic disposal and (iv) extinguishing disposal. The final disposal method is not yet decided internationally. The radioactive waste contains very long life nuclides, for example transuranic elements and actinide elements. The author thinks the most perfect and safe disposal method for these very long life nuclides is the disposal into cosmos. The space vehicle carrying radioactive waste will be launched safely into outer space with recent space technology. The selection of orbit for vehicles (earth satellite or orbit around planets) or escape from solar system, selection of launching rocket type pretreatment of waste, launching weight, and the cost of cosmic disposal were investigated roughly and quantitatively. Safety problem of cosmic disposal should be examined from the reliable safety study data in the future.

  16. Researches on the management of high activity and long-lived radioactive wastes. Axis 1 - separation-transmutation

    International Nuclear Information System (INIS)

    2005-11-01

    This document gathers the transparencies of seven presentations given at a technical workshop of the French nuclear energy society (SFEN) about the researches on separation-transmutation of high activity and long-lived radioactive wastes. The presentations deal with: inventory and radiotoxicity of the rad-wastes in concern; industrial experience; experience on chemical separation: molecules and processes; reactors physics and transmutation - reactors for transmutation; fuels and targets; scenarios that include transmutation; environmental impacts of these different scenarios. (J.S.)

  17. Radioactive waste storage issues

    International Nuclear Information System (INIS)

    Kunz, D.E.

    1994-01-01

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state's boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected

  18. Method of processing radioactive wastes

    International Nuclear Information System (INIS)

    Takahashi, Toshihiko; Maruko, Morihisa; Takamura, Yoshiyuki.

    1981-01-01

    Purpose: To effectively separate radioactive claddings from the slurry of wasted ion exchange resins containing radioactive claddings. Method: Wasted ion exchange resins having radioactive claddings (fine particles of iron oxides or hydroxide adhered with radioactive cobalt) are introduced into a clad separation tank. Sulfuric acid or sodium hydroxide is introduced to the separation tank to adjust the pH value to 3 - 6. Then, sodium lauryl sulfate is added for capturing claddings and airs are blown from an air supply nozzle to generate air bubbles. The claddings are detached from the ion exchange resins and adhered to the air bubbles. The air bubbles adhered with the claddings float up to the surface of the liquid wastes and then forced out of the separation tank. (Ikeda, J.)

  19. Method of processing radioactive wastes

    International Nuclear Information System (INIS)

    Katada, Katsuo.

    1986-01-01

    Purpose: To improve the management for radioactive wastes containers thereby decrease the amount of stored matters by arranging the radioactive wastes containers in the order of their radioactivity levels. Method: The radiation doses of radioactive wastes containers arranged in the storing area before volume-reducing treatment are previously measured by a dosemeter. Then, a classifying machine is actuated to hoist the containers in the order to their radiation levels and the containers are sent out passing through conveyor, surface contamination gage, weight measuring device and switcher to a volume-reducing processing machine. The volume-reduced products are packed each by several units to the storing containers. Thus, the storing containers after stored for a certain period of time can be transferred in an assembled state. (Kawakami, Y.)

  20. Radioactive waste disposal. Facts, problems and responsible action

    International Nuclear Information System (INIS)

    Finckh, E.; Seitz, M.

    1994-01-01

    In a first part, natural science and technology aspects of waste management are outlined: basic concepts of radioactivity; properties, detection and primary effects of radioactive radiation; biological effect of radioactivity and radiation; general geological bases; composition of spent fuel elements; interim storage and transport; reprocessing of spent fuels; classification and treatment of radioactive wastes; emplacement possibilities for radioactive wastes; possible ways of radionuclides from the repository back into the biosphere; comparative consideration of the risks involved in nuclear waste management. The second part of the paper deals with ethical and theological aspects of radioactive waste management. (orig./HP) [de

  1. Medical irradiation, radioactive waste and misinformation. A press release from the French Academy of Medicine

    International Nuclear Information System (INIS)

    The, G. de; Tubiana, M.

    2002-01-01

    The Academy of Medicine, worried by the problems that poses for public opinion the medical irradiation, the radioactive wastes and some erroneous information that these subjects give rise to, considers useful to give an advice based on objective data. (N.C.)

  2. 40 CFR 227.30 - High-level radioactive waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste from...

  3. Elements of a radioactive waste management course

    International Nuclear Information System (INIS)

    Fentiman, A.W.

    1994-01-01

    The demand for scientists, engineers, and technicians with expertise in radioactive waste management is growing rapidly. Many universities, government agencies, and private contractors are developing courses in radioactive waste management. Two such courses have been developed at The Ohio State University. In support of that course development, two surveys were conducted. One survey went to all nuclear engineering programs in the US to determine what radioactive waste management courses are currently being taught. The other went to 600 waste management professionals, asking them to list the topics they think should be included in a radioactive waste management course. Four key elements of a course in radioactive waste management were identified. They are (a) technical information, (b) legal and regulatory framework, (c) communicating with the public, and (d) sources of information on waste management. Contents of each of the four elements are discussed, and results of the surveys are presented

  4. Requirements for a radioactive waste data base

    International Nuclear Information System (INIS)

    Sato, Y.; Kobayashi, I.; Kikuchi, M.

    1990-01-01

    With the progress of nuclear fuel cycle in Japan, various types of radioactive waste will generate at each nuclear facility in the cycle. Therefor generated volume and stored quantity of waste will be supposed to increase. From the viewpoints of safety and public acceptance, by using mainframe computer it is necessary that the treatment of historical waste data, the estimation of generated waste volume and stored quantity and the investigation of research and development status of waste processing and disposal are carried out. This paper proposes design and development of the radioactive waste data base which is able to properly and correctly manage and grasp numerical and/or documentary information for generated radioactive waste. So the data base will be expected to use for planning the future management of radioactive waste. (author)

  5. Actions of a protocol for radioactive waste management

    International Nuclear Information System (INIS)

    Sousa, Joyce Caroline de Oliveira; Andrade, Idalmar Gomes da Silva; Frazão, Denys Wanderson Pereira; Abreu, Lukas Maxwell Oliveira de; França, Clyslane Alves; Macedo, Paulo de Tarso Silva de

    2017-01-01

    Radioactive wastes are all those materials generated in the various uses of radioactive materials, which can not be reused and which have radioactive substances in quantities that can not be treated as ordinary waste. All management of these wastes must be carried out carefully, including actions ranging from its collection to the point where they are generated to their final destination. However, any and all procedures must be carried out in order to comply with the requirements for the protection of workers, individuals, the public and the environment. The final product of the study was a descriptive tutorial on the procedures and actions of a standard radioactive waste management protocol developed from scientific publications on radiation protection. The management of radioactive waste is one of the essential procedures in the radiological protection of man and the environment where the manipulation of radioactive materials occurs. The standard radioactive management protocol includes: collection, segregation of various types of wastes, transport, characterization, treatment, storage and final disposal. The radioactive wastes typology interferes with sequencing and the way in which actions are developed. The standardization of mechanisms in the management of radioactive waste contributes to the radiological safety of all those involved

  6. The conceptual design of waste repository for radioactive waste from medical, industrial and research facilities containing comparatively high radioactivity

    International Nuclear Information System (INIS)

    Yamamoto, Masayuki; Hashimoto, Naro

    2002-02-01

    Advisory Committee on Nuclear Fuel Cycle Backend Policy reported the basic approach to the RI and Institute etc. wastes on March 2002. According to it, radioactive waste form medical, industrial and research facilities should be classified by their radioactivity properties and physical and chemical properties, and should be disposed in the appropriate types of repository with that classification. For the radioactive waste containing comparatively high radioactivity generated from reactors, NSC has established the Concentration limit for disposal. NSC is now discussing about the limit for the radioactive waste from medical, industrial and research facilities containing comparatively high radioactivity. Japan Nuclear Cycle Development Institute (JNC) preliminary studied about the repository for radioactive waste from medical, industrial and research facilities and discussed about the problems for design on H12. This study was started to consider those problems, and to develop the conceptual design of the repository for radioactive waste from medical, industrial and research facilities. Safety assessment for that repository is also performed. The result of this study showed that radioactive waste from medical, industrial and research facilities of high activity should be disposed in the repository that has higher performance of barrier system comparing with the vault type near surface facility. If the conditions of the natural barrier and the engineering barrier are clearer, optimization of the design will be possible. (author)

  7. The management of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Lennemann, Wm.L.

    1979-01-01

    The definition of high-level radioactive wastes is given. The following aspects of high-level radioactive wastes' management are discussed: fuel reprocessing and high-level waste; storage of high-level liquid waste; solidification of high-level waste; interim storage of solidified high-level waste; disposal of high-level waste; disposal of irradiated fuel elements as a waste

  8. France’s State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes

    Directory of Open Access Journals (Sweden)

    Sylvie Delepine-Lesoille

    2017-06-01

    Full Text Available This paper presents the state of the art distributed sensing systems, based on optical fibres, developed and qualified for the French Cigéo project, the underground repository for high level and intermediate level long-lived radioactive wastes. Four main parameters, namely strain, temperature, radiation and hydrogen concentration are currently investigated by optical fibre sensors, as well as the tolerances of selected technologies to the unique constraints of the Cigéo’s severe environment. Using fluorine-doped silica optical fibre surrounded by a carbon layer and polyimide coating, it is possible to exploit its Raman, Brillouin and Rayleigh scattering signatures to achieve the distributed sensing of the temperature and the strain inside the repository cells of radioactive wastes. Regarding the dose measurement, promising solutions are proposed based on Radiation Induced Attenuation (RIA responses of sensitive fibres such as the P-doped ones. While for hydrogen measurements, the potential of specialty optical fibres with Pd particles embedded in their silica matrix is currently studied for this gas monitoring through its impact on the fibre Brillouin signature evolution.

  9. France’s State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes

    Science.gov (United States)

    Delepine-Lesoille, Sylvie; Girard, Sylvain; Landolt, Marcel; Bertrand, Johan; Planes, Isabelle; Boukenter, Aziz; Marin, Emmanuel; Humbert, Georges; Leparmentier, Stéphanie; Auguste, Jean-Louis; Ouerdane, Youcef

    2017-01-01

    This paper presents the state of the art distributed sensing systems, based on optical fibres, developed and qualified for the French Cigéo project, the underground repository for high level and intermediate level long-lived radioactive wastes. Four main parameters, namely strain, temperature, radiation and hydrogen concentration are currently investigated by optical fibre sensors, as well as the tolerances of selected technologies to the unique constraints of the Cigéo’s severe environment. Using fluorine-doped silica optical fibre surrounded by a carbon layer and polyimide coating, it is possible to exploit its Raman, Brillouin and Rayleigh scattering signatures to achieve the distributed sensing of the temperature and the strain inside the repository cells of radioactive wastes. Regarding the dose measurement, promising solutions are proposed based on Radiation Induced Attenuation (RIA) responses of sensitive fibres such as the P-doped ones. While for hydrogen measurements, the potential of specialty optical fibres with Pd particles embedded in their silica matrix is currently studied for this gas monitoring through its impact on the fibre Brillouin signature evolution. PMID:28608831

  10. High Level Radioactive Waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    The proceedings of the second annual international conference on High Level Radioactive Waste Management, held on April 28--May 3, 1991, Las Vegas, Nevada, provides information on the current technical issue related to international high level radioactive waste management activities and how they relate to society as a whole. Besides discussing such technical topics as the best form of the waste, the integrity of storage containers, design and construction of a repository, the broader social aspects of these issues are explored in papers on such subjects as conformance to regulations, transportation safety, and public education. By providing this wider perspective of high level radioactive waste management, it becomes apparent that the various disciplines involved in this field are interrelated and that they should work to integrate their waste management activities. Individual records are processed separately for the data bases

  11. Lessons to be learned from radioactive waste disposal practices for non-radioactive hazardous waste management

    International Nuclear Information System (INIS)

    Merz, E.R.

    1991-01-01

    The criteria to be set up for any kind of hazardous waste disposal must always be put in perspective: 1. what are the waste characteristics? 2. what time period for safe isolation is of interest? 3. which geological disposal alternatives exist? Different approaches may be used in the short- and long-term perspective. In either case, a general procedure is recommended which involves concentrating, containing and isolating the source of toxicity, both radioactive and chemotoxic substances, as far as practicable. Waste characterization of either chemotoxic or radioactive wastes should be performed applying comparable scientifically based principles. The important question which arises is whether their hazard potential can be quantified on the basis of dose comparison regarding the morbidity effects of radiation and of chemical pollutants. Good control over the consequences of hazardous waste disposal requires threat detailed criteria for tolerable contamination of radioactive as well as chemical pollutants should be established, and that compliance with these criteria can be demonstrated. As yet, there are no well developed principles for assessing the detriment from most types of genotoxic waste other than radioactive material. The time horizon discussed for both categories of waste for their proof of safe isolation differs by a factor of about one hundred. (au)

  12. Database basic design for safe management radioactive waste

    International Nuclear Information System (INIS)

    Son, D. C.; Ahn, K. I.; Jung, D. J.; Cho, Y. B.

    2003-01-01

    As the amount of radioactive waste and related information to be managed are increasing, some organizations are trying or planning to computerize the management on radioactive waste. When we consider that information on safe management of radioactive waste should be used in association with national radioactive waste management project, standardization of data form and its protocol is required, Korea Institute of Nuclear Safety(KINS) will establish and operate nationwide integrated database in order to effectively manage a large amount of information on national radioactive waste. This database allows not only to trace and manage the trend of radioactive waste occurrence and in storage but also to produce reliable analysis results for the quantity accumulated. Consequently, we can provide necessary information for national radioactive waste management policy and related industry's planing. This study explains the database design which is the essential element for information management

  13. Method of processing radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Y; Kikuchi, M; Funabashi, K; Yusa, H; Horiuchi, S

    1978-12-21

    Purpose: To decrease the volume of radioactive liquid wastes essentially consisting of sodium hydroxide and boric acid. Method: The concentration ratio of sodium hydroxide to boric acid by weight in radioactive liquid wastes essentially consisting of sodium hydroxide and boric acid is adjusted in the range of 0.28 - 0.4 by means of a pH detector and a sodium concentration detector. Thereafter, the radioactive liquid wastes are dried into powder and then discharged.

  14. Ruthenium separation device from radioactive waste

    International Nuclear Information System (INIS)

    Ayabe, Osao.

    1988-01-01

    Purpose: To efficiently oxidize ruthenium in radioactive wastes and evaporize ruthenium tetraoxide after oxidization thereof, thereby improve the separation and recovery rate. Constitution: The device comprises an oxidization vessel for supplying an oxidizing agent into radioactive wastes to oxidize ruthenium in the wastes into ruthenium tetraoxide, and a distillation vessel for introducing radioactive wastes after oxidization, distillating under heating ruthenium tetraoxide leached into the wastes and evaporizing ruthenium tetraoxide. By dividing the device into the oxidizing vessel and the distillation vessel, the oxidizing treatment and the distilling treatment can individually be operated optimally to improve the separation and recovery rate of ruthenium. (Takahashi, M.)

  15. Nuclear power and radioactive waste

    International Nuclear Information System (INIS)

    Grimston, M.

    1991-03-01

    The gap between the relative perceptions in the area of nuclear waste is wide. The broad view of the industry is that the disposal of nuclear waste is not a serious technical problem, and that solutions are already available to provide safe disposal of all our waste. The broad view of those who oppose the industry is that radioactive waste is so unpleasant, and will remain lethal for so long, that no acceptable policy will ever be developed, and so production of such waste (except, oddly, the significant amounts arising from uses of radioactive materials in medicine, agriculture, industrial safety research, etc) should stop immediately. This booklet will not attempt to describe in great detail the technicalities of the United Kingdom nuclear industry's current approach to radioactive waste: such issues are described in detail in other publications, especially those by Nirex. It is our intention to outline some of the main issues involved, and to associate these issues with the divergence in perceptions of various parties. (author)

  16. Radioactive waste management in Switzerland

    International Nuclear Information System (INIS)

    Hugi, M.

    2011-01-01

    The Federal Nuclear Safety Inspectorate ENSI is the Supervisory Authority for Nuclear Safety and Security of Swiss Nuclear Facilities. The responsibilities include the evaluation and operational monitoring of the existing five Swiss nuclear power plants, the radioactive waste disposals and the nuclear research facilities. The supervisory area includes project planning, operational issues, and decommissioning of plants. ENSI supervises the formation, handling and storage of radioactive waste, the work on deep geological disposal and the transport of radioactive materials. The disposal of radioactive waste is regulated by the Swiss Nuclear Energy Act (2005) and the Nuclear Energy Ordinance (2005). The protection of humans and the environment must be guaranteed permanently. Waste disposal must be carried out in the own country by deep geological repositories. The licensing procedure for the disposal facilities is concentrated at the federal level, the cooperation of the location canton, neighboring cantons and the neighboring countries is ensured. The general license for the deep geological repository is subject to an optional referendum. The polluter pays principle applies to the disposal of radioactive waste. The waste producers are legally obliged to dispose of them and have founded the National Cooperative for the Storage of Radioactive Waste (Nagra). The federal government is responsible for waste from medicine, industry and research (MIF). The Federal Council approved the waste management certificate for low and intermediate level waste (SMA) in 1988. High-level-waste (HAA) and long-live-intermediate-level-waste (LMA), where approved in 2006. Nagra's disposal concept envisages two separate deep geological repositories for SMA and HAA / LMA in a suitable, tectonically stable, low-permeability rock formation. If a site meets both the SMA and HAA / LMA storage requirements, the selection process may result in a common location for all radioactive waste. Until the

  17. Program law n. 2006-739 of the 28 June 2006 relative to the sustainable management of radioactive materials and wastes: presentation by article

    International Nuclear Information System (INIS)

    2006-01-01

    The french law of 1991, decided to define management solutions in the radioactive wastes management policy, is now over. The results of researches led to the promulgation of a new planing act, the law of the 28 June 2006. This law concerns the sustainable management of radioactive materials and wastes. It takes also in account a public debate, organized in September 2005 by the National Commission for Public Debate. The Law project architecture can be described in three main points: the implementing of a national policy of radioactive materials and wastes, a better transparency and democratic control and the implementing of specific modalities for the organization and the financing of spent fuels and radioactive wastes management. This document presents what is in the different articles, with a special attention to the contributions of the parliamentary debate. (A.L.B.)

  18. Method for processing powdery radioactive wastes

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Matsuura, Hiroyuki; Tomita, Toshihide; Nakayama, Yasuyuki.

    1978-01-01

    Purpose: To solidify radioactive wastes with ease and safety at a high reaction speed but with no boiling by impregnating the radioactive wastes with chlorostyrene. Method: Beads-like dried ion exchange resin, powdery ion exchange resin, filter sludges, concentrated dried waste liquor or the like are mixed or impregnated with a chlorostyrene monomer dissolving therein a polymerization initiator such as methyl ethyl ketone peroxide and benzoyl peroxide. Mixed or impregnated products are polymerized to solid after a predetermined of time through curing reaction to produce solidified radioactive wastes. Since inflammable materials are used, this process has a high safety. About 70% wastes can be incorporated. The solidified products have a strength as high as 300 - 400 kg/cm 3 and are suitable to ocean disposal. The products have a greater radioactive resistance than other plastic solidification products. (Seki, T.)

  19. Radioactive waste treatment

    International Nuclear Information System (INIS)

    Alter, U.

    1988-01-01

    For the Federal Government the safe disposal of waste from nuclear power plants constitutes the precondition for their further operation. The events in the year 1987 about the conditioning and transport of low activity waste and medium activity waste made it clear that it was necessary to intensify state control and to examine the structures in the field of waste disposal. A concept for the control of radioactive waste with negligible heat development (LAW) from nuclear installations is presented. (DG) [de

  20. Liquid Radioactive Wastes Treatment: A Review

    Directory of Open Access Journals (Sweden)

    Yung-Tse Hung

    2011-05-01

    Full Text Available Radioactive wastes are generated during nuclear fuel cycle operation, production and application of radioisotope in medicine, industry, research, and agriculture, and as a byproduct of natural resource exploitation, which includes mining and processing of ores, combustion of fossil fuels, or production of natural gas and oil. To ensure the protection of human health and the environment from the hazard of these wastes, a planned integrated radioactive waste management practice should be applied. This work is directed to review recent published researches that are concerned with testing and application of different treatment options as a part of the integrated radioactive waste management practice. The main aim from this work is to highlight the scientific community interest in important problems that affect different treatment processes. This review is divided into the following sections: advances in conventional treatment of aqueous radioactive wastes, advances in conventional treatment of organic liquid wastes, and emerged technological options.

  1. Radioactive Waste and Clean-up Division

    International Nuclear Information System (INIS)

    Collard, G.

    2001-01-01

    The main objectives of the Radioactive Waste and Clean-up division of SCK-CEN are outlined. The division's programme consists of research, development and demonstration projects and aims to contribute to the objectives of Agenda 21 on sustainable development in the field of radioactive waste and rehabilitation of radioactively contaminated sites

  2. Characterization of the solid radioactive waste from Cernavoda NPP

    International Nuclear Information System (INIS)

    Iordache, M.; Lautaru, V.; Bujoreanu, D.

    2005-01-01

    During the operation of a nuclear plant significant quantities of radioactive waste result that have a very large diversity. At Cernavoda NPP large amounts of wastes are either non-radioactive wastes or radioactive wastes, each of these being managed completely different from each other. For a CANDU type reactor, the occurrence of radioactive wastes is due to contamination with the following types of radioactive substances: - fission products resulting from nuclear fuel burning; - activated products from materials composing the technological systems; - activated products in process fluids. Radioactive wastes can be in solid, liquid or gas form. At Cernavoda NPP the solid wastes represent about 70% of the waste volume which is produced during plant operation and as a consequence of maintenance and decontamination operations. The most important types of solid wastes that are obtained and then handled, processed (if necessary) and temporarily stored are: solid low-level radioactive wastes (classified as compactible and non-compactible), solid medium radioactive wastes, spent resins, used filters and filter cartridges. The liquid radioactive waste class includes organic liquids (used oil, scintillator liquids and used solvents) and aqueous wastes resulting from process system operating, from decontamination and maintenance operations. Radioactive gas wastes occur subsequently to the fission process inside the fuel elements as well as due to the neutron activation of process fluids in the reactor systems. As result of plant operation, iodine, noble gases, tritium and radioactive particles occur and are passed toward the ventilation stack in a controlled manner so that environmental release of radioactive materials with concentrations exceeding the maximum permissible level could not occur. (authors)

  3. The French National Network for the Measurement of Environmental Radioactivity

    International Nuclear Information System (INIS)

    Jaunet, P.

    2010-01-01

    After Chernobyl accident in 1986, the government began to implement mechanisms to ensure the quality of measurements of environmental radioactivity and to assure the transparency of information on environmental radioactivity monitoring results. Within this context, the French National Network for the Measurement of Environmental Radioactivity (RNM), is created in 2002 under the Public Health Code. This network is developed under the auspices of ASN in collaboration with IRSN and in partnership with government departments, major nuclear licensees, health agencies and environmental protection associations. In order to centralize information on environmental radioactivity and to provide access to measurement results, a single database that includes an the results of measurements of radioactivity in the environment on the national territory is build and a new web-site www.mesure-radioactivite.fr is launched. It provides quick and easy access to this database. The quality of measurements is performed by a laboratory system through an ASN decision. Novel initiative in Europe, the French National Network for the Measurement of Environmental Radioactivity web-site gives the user keys to understand the measurement results on the radiological state of the environment. The site will be improved over the time taking into account the feedback of the users. (author)

  4. China's status and strategy of radioactive waste management

    International Nuclear Information System (INIS)

    Bi Decai

    2001-01-01

    China has a forty-year history of nuclear industry and nuclear technology application. Safety management of radioactive wastes has been the great concern of related regulatory authorities. After the national policy on regional disposal for low and intermediate level radioactive waste was enacted in 1992, the management of radioactive wastes gradually focused on disposal. Currently, the strategies for radioactive waste management in China are: (a) storing high level radioactive wastes temporarily and launching the study of vitrification and deep geological disposal of high level liquid waste, treating spent fuels from PWR by reprocessing; (b) implementing regional disposal policy for low and intermediate level wastes, implementing cement solidification for low and intermediate level liquid waste before disposal, carrying out bulk casting shallow land disposal technology and hydraulic-fractured cement solidification for deep geological disposal in some special regions under specific conditions, treating low and intermediate level solid radioactive wastes by cement solidification after incineration or by compressing before final disposal; (c) stabilizing the tailing repository by reinforcing embankment, constructing flood dam and overlaying plantation; and (d) developing and formulating laws, regulations, and standards to ensure safe management of radioactive wastes. When establishing standards, other than to follow the generic principles and requirements, emphasis should be placed on the following principles: safety the first, economy, disposal of radioactive wastes as focus, and introduction of international advanced standards as possible. (author)

  5. FFTF radioactive solid waste handling and transport

    International Nuclear Information System (INIS)

    Thomson, J.D.

    1982-01-01

    The equipment necessary for the disposal of radioactive solid waste from the Fast Flux Test Facility (FFTF) is scheduled to be available for operation in late 1982. The plan for disposal of radioactive waste from FFTF will utilize special waste containers, a reusable Solid Waste Cask (SWC) and a Disposable Solid Waste Cask (DSWC). The SWC will be used to transport the waste from the Reactor Containment Building to a concrete and steel DSWC. The DSWC will then be transported to a burial site on the Hanford Reservation near Richland, Washington. Radioactive solid waste generated during the operation of the FFTF consists of activated test assembly hardware, reflectors, in-core shim assemblies and control rods. This radioactive waste must be cleaned (sodium removed) prior to disposal. This paper provides a description of the solid waste disposal process, and the casks and equipment used for handling and transport

  6. Waterproofing improvement of radioactive waste asphalt solid

    International Nuclear Information System (INIS)

    Adachi, Katsuhiko; Yamaguchi, Takashi; Ikeoka, Akira.

    1981-01-01

    Purpose: To improve the waterproofing of asphalt solid by adding an alkaline earth metal salt and, further, paraffin, into radioactive liquid waste when processing asphalt solidification of the radioactive liquid waste. Method: Before processing molten asphalt solidification of radioactive liquid waste, soluble salts of alkaline earth metal such as calcium chloride, magnesium chloride, or the like is added to the radioactive liquid waste. Paraffin having a melting point of higher than 60 0 C, for example, is added to the asphalt, and waterproofing can be remarkably improved. The waste asphalt solid thus fabricated can prevent the swelling thereof, and can improve its waterproofing. (Yoshihara, H.)

  7. Governing through time: management of radioactive waste in France, organizational changes and the construction of irreversible technical solutions (1950-2014)

    International Nuclear Information System (INIS)

    Blanck, Julie

    2017-01-01

    In France, the problem of radioactive waste has been subjected to different solutions. In 1979, the storage of radioactive waste was entrusted to a specialized operator, the National Agency for Radioactive Waste Management (Andra). Yet, through the course of its history, the Agency has faced many difficulties to implement its projects, which often came under strong public criticism. Still today, while its project of geological disposal is about to move into its industrial phase, the Andra is still widely criticized and serves as a crystallization point for power relationships in the nuclear sector. In order to retrace the evolution of French radioactive waste management since the 1950's, the archival and ethnographic study of the Andra's organizational work provides an insider perspective on how its agents have defined problems, as well as conceived and implemented solutions. Indeed, through this strategic and political work, they have frequently transformed the Agency to fit the progress of its projects. From an industrial subsidiary of the French Atomic Energy Commission (CEA), the Agency was transformed into a finalized research agency, then again into an industrial operator in order to undertake to construction the geological disposal site. Through to these changes, actors have been able to revived criticized projects, without necessarily modifying their contents. In fact, it is not stability but organizational and institutional flexibility, which can account for the preservation of these controversial solutions. Lastly, the problem of radioactive waste crystallizes a multiplicity of temporal logics. The analysis of this work of temporalization, which can be seen as a particular kind of organization, questions the articulation between change and permanency of public action. As such, this study sheds light on the relation between dynamics of problem definition, the construction of irreversible technical solutions, and organizational and temporal work

  8. Identification and characterization of radioactive wastes

    International Nuclear Information System (INIS)

    RANDRIAMORA, T.H.

    2007-01-01

    As the goal of the radioactive waste management is to protect human health and the environment, without imposing excessive constraints to the future generations, this work consists with of the identification of the radioactive waste existing in Madagascar, theirs characterizations for their later conditioning and their final storage. In this work, we used a dosimeter GRAETZ X5 C and a portable spectrometer EXPLORANIUM GR 135. These apparatuses have a great advantage at the user level because of their capacity to measure the equivalent dose rate, to identify, search and locate radiocative elements. The establishment of national center for radioactive waste management for the conditioning and the storage of spent sealed sources is the best solution for radioactive waste management in Madagascar. [fr

  9. Radioactive waste management perspectives in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Nurul Wahida Ahmad Khairuddin; Nik Marzukee Nik Ibrahim; Mat Bakar Mahusin; Mohamad Hakiman Mohamad Yusoff; Muhammad Zahid Azrmi

    2009-01-01

    Waste Technology Development Centre (WasTeC) has been mandated to carry out radioactive waste management activities since 1984. The main objective of WasTeC is to deal with radioactive waste in a manner that protects health and the environment now and in the future, without imposing undue burdens on the future generations. This centre provides services for waste generators within Nuclear Malaysia and also for external waste generators. Services provided include transportation of radioactive waste, decontamination, treatment and storage. This paper will discuss on procedure for applying for services, responsibility of waste generator, responsibility of waste operator, need to comply with waste acceptance criteria and regulations related to management of radioactive waste. (Author)

  10. Institutional arrangements for radioactive waste management

    International Nuclear Information System (INIS)

    Willrich, M.

    1976-01-01

    The existing organizational structure and regulations for management of high-level and TRU wastes are likely to become ineffective if left unchanged. Recommendations for institutional reforms include the establishment of a National Radioactive Waste Authority in the U.S. and of an International Radioactive Waste Commission under IAEA

  11. Spanish program on disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Lopez Perez, B.; Ramos Salvador, L.; Martines Martinez, A.

    1977-01-01

    The Spanish Energetic Program assumes an installed nuclear electrical power of 23.000 MWe by the year 1985. Therefore, Spain is making an effort in the managment of radioactive wastes, that can be synthesized in the following points: 1.- Make-up and review of the regulation on the management of radioactive wastes. 2.- Development of the processes and equipment for the treatment of solid, liquid and gaseous wastes from the CNEN ''Juan Vigon'', as well as those from the Nuclear Center of Soria. Solidification studies of RAA wastes arisen from the reprocessing. 3.- Evaluation of radioactive waste treatment systems of the new installed nuclear power plants. Assistance to the nuclear and radioactive facilities operators. 4.- Increase the storage capacity of the pilot repository for solid radioactive wastes of categories 1 and 2 IAEA, located in Sierra Albarrana. Studies of adequate geological formation for storage of solid wastes of IAEA categories 3 and 4. 5.- Studies about long term surface storage systems for solidified RAA wastes arisen from the reprocessing [es

  12. Optimization of the radioactive waste storage

    International Nuclear Information System (INIS)

    Dellamano, Jose Claudio

    2005-01-01

    Radioactive waste storage is the practice adopted in countries where the production of small quantities of radioactive waste does not justify the immediate investment in the construction of a repository. Accordingly, at IPEN, treated radioactive wastes, mainly solid compacted, have been stored for more than 20 years, in 200 dm 3 drums. The storage facility is almost complete and must be extended. Taking into account that a fraction of these wastes has decayed to a very low level due to the short half - life of some radionuclides and considering that 'retrieval for disposal as very low level radioactive waste' is one of the actions suggested to radioactive waste managers, the Laboratory of Waste Management of IPEN started a project to apply the concepts of clearance levels and exemption limits to optimize the radioactive waste storage capacity . This study has been carried out by determining the doses and costs related to two main options: either to maintain the present situation or to open the packages and segregate the wastes that may be subject to clearance, using the national, two international clearance levels and the annual public limit. Doses and costs were evaluated as well as the collective dose and the detriment cost. The analytical solution among the evaluated options was determined by using the technique to aid decision making known as cost-benefit analysis. At last, it was carried out the sensitivity analysis considering all criteria and parameters in order to assess the robustness of the analytical solution. This study can be used as base to other institutions or other countries with similar nuclear programs. (author)

  13. Method and device of decontaminating radioactive solid wastes

    International Nuclear Information System (INIS)

    Hasegawa, Hiroshi; Tamada, Masami.

    1983-01-01

    Purpose: To surely enable grinding for the inner surface of hollow radioactive solid wastes such as pipeways or valves, as well as enable to decontaminate these solid wastes to such a level as being capable of processing in the same manner for the ordinary wastes. Method: A grinding piece abutting resiliently against the inner surface of a hollow radioactive solid wastes to be contaminated is attached at the top end of a flexible shaft, and the inner surface of the radioactive solid wastes is ground while rotating and slightly reciprocating, as well as axially moving the flexible shaft. Consequently, since the grinding piece is always abutted against the inner surface of the radioactive solid wastes just following after the profile of the inner surface, and the flexible shaft is resiliently flexed corresponding to the profile of the inner surface of the radioactive solid wastes, even an inner surface of radioactive solid wastes with a complicated configuration can surely be ground entirely. This surely enables to remove radioactive claddings and contaminated layers deposited on the surface. (Yoshihara, H.)

  14. Method of decomposing radioactive organic solvent wastes

    International Nuclear Information System (INIS)

    Uki, Kazuo; Ichihashi, Toshio; Hasegawa, Akira; Sato, Tatsuaki

    1986-01-01

    Purpose: To decompose radioactive organic solvent wastes or radioactive hydrocarbon solvents separated therefrom into organic materials under moderate conditions, as well as greatly decrease the amount of secondary wastes generated. Method: Radioactive organic solvent wastes comprising an organic phosphoric acid ester ingredient and a hydrocarbon ingredient as a diluent therefor, or radioactive hydrocarbon solvents separated therefrom are oxidatively decomposed by hydrogen peroxide in an aqueous phosphoric acid solution of phosphoric acid metal salts finally into organic materials to perform decomposing treatment for the radioactive organic solvent wastes. The decomposing reaction is carried out under relatively moderate conditions and cause less burden to facilities or the likes. Further, since the decomposed liquid after the treatment can be reused for the decomposing reaction as a catalyst solution secondary wastes can significantly be decreased. (Yoshihara, H.)

  15. Optimization of Concrete Composition in Radioactive Waste Management

    International Nuclear Information System (INIS)

    IIija, P.

    1999-01-01

    Low and Intermediate level radioactive waste re presents 95% of the total wastes that is conditioned into special concrete containers. Since these containers are to protect radioactive waste safely for about 300 years, the selection and precise control of physical and mechanical characteristics of materials is very important. After volume reduction and valuable components recovery, waste materials have to be conditioned for transport, storage and disposal. Conditioning is the waste management step in which radioactive wastes are immobilized and packed . In this paper methods and optimization of concrete container composition, used for storing radioactive waste, is presented

  16. Instructive for radioactive solid waste management

    International Nuclear Information System (INIS)

    Mora Rodriguez, Patricia

    2014-01-01

    An instructive is established for the management system of radioactive solid residues waste of the Universidad de Costa Rica, ensuring the collection, segregation, storage and disposal of waste. The radioactive solid waste have been segregated and transferred according to features and provisions of the Universidad de Costa Rica and CICANUM [es

  17. Latest developments in the predisposal of radioactive waste at the radioactive waste management department from ifin-hh

    International Nuclear Information System (INIS)

    Dragolici, F.; Dogaru, G.; Neacsu, E.

    2016-01-01

    The Radioactive Waste Management Department (DMDR) from IFIN-HH has a wide experience in the management of the non-fuel cycle radioactive wastes from all over Romania generated from nuclear techniques and technologies application, assuring the radiological safety and security of operators, population and environment. During 2011-2015 was implemented a major upgrading programme applied both on the technological systems of the building and on equipment. The paper describes the facility developments having the scope to share to the public and stakeholders the radioactive waste predisposal capabilities available at DMDR-IFIN-HH. As a whole, today DMDR-IFIN-HH represents a complete and complex infrastructure, assuring high quality services in all the steps related to the management of the institutional radioactive waste in Romania. (authors)

  18. Proposed goals for radioactive waste management

    International Nuclear Information System (INIS)

    Bishop, W.P.; Frazier, D.H.; Hoos, I.R.; McGrath, P.E.; Metlay, D.S.; Stoneman, W.C.; Watson, R.A.

    1977-04-01

    Goals are proposed for the national radioactive waste management program to establish a policy basis for the guidance and coordination of the activities of government, business, and academic organizations whose responsibility it will be to manage radioactive wastes. The report is based on findings, interpretations, and analyses of selected primary literature and interviews of personnel concerned with waste management. Public concerns are identified, their relevance assessed, and a conceptual framework is developed that facilitates understanding of the dimensions and demands of the radioactive waste management problem. The nature and scope of the study are described along with the approach used to arrive at a set of goals appropriately focused on waste management

  19. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Cluchet, J.; Roger, B.

    1975-10-01

    After mentioning the importance of the problem of the disposal of wastes produced in the electro-nuclear industry, a short reminder on a few laws of radioactivity (nature and energy of radiations, half-life) and on some basic dosimetry is given. The conditioning and storage procedures are then indicated for solid wastes. The more active fractions of liquid wastes are incorporated into blocks of glass, whereas the less active are first concentrated by chemical treatments or by evaporation. The concentrates are then embedded into concrete, asphalt or resins. Storage is done according to the nature of each type of wastes: on a hard-surfaced area or inside concrete-lined trenches for the lowest radioactivity, in pits for the others. Transuranium elements with very long half-lives are buried in very deep natural cavities which can shelter them for centuries. From the investigations conducted so far and from the experience already gained, it can be concluded that safe solutions are within our reach [fr

  20. Interim storage of radioactive waste packages

    International Nuclear Information System (INIS)

    1998-01-01

    This report covers all the principal aspects of production and interim storage of radioactive waste packages. The latest design solutions of waste storage facilities and the operational experiences of developed countries are described and evaluated in order to assist developing Member States in decision making and design and construction of their own storage facilities. This report is applicable to any category of radioactive waste package prepared for interim storage, including conditioned spent fuel, high level waste and sealed radiation sources. This report addresses the following issues: safety principles and requirements for storage of waste packages; treatment and conditioning methods for the main categories of radioactive waste; examples of existing interim storage facilities for LILW, spent fuel and high level waste; operational experience of Member States in waste storage operations including control of storage conditions, surveillance of waste packages and observation of the behaviour of waste packages during storage; retrieval of waste packages from storage facilities; technical and administrative measures that will ensure optimal performance of waste packages subject to various periods of interim storage

  1. Characterization of the solid radioactive waste From Cernavoda NPP

    International Nuclear Information System (INIS)

    Iordache, M.; Laotaru, V.

    2005-01-01

    Full text: During the operation of a nuclear plant significant quantities of radioactive waste result that have a very large diversity. At Cernavoda NPP large amounts of wastes are either non-radioactive wastes or radioactive wastes, each of these being managed completely different from which other. For a CANDU type reactor, the appearance of radioactive wastes is due to contamination with the following types of radioactive substances: - fission products resulting from nuclear fuel burning; - activated products from materials composing the technological systems; - activated products in process fluids. Radioactive wastes can be in solid, liquid or gas form. At Cernavoda NPP the solid wastes represent about 70% of the waste volume which is produced during plant operation and as a consequence of maintenance and decontamination operations. The most important types of solid wastes that are obtained and then handled, processed (if necessary) and temporarily stored are: solid low-level radioactive wastes (classified as compactible and non-compactible), solid medium radioactive wastes, spent resins, used filters and filter cartridges. The liquid radioactive waste class includes organic liquids (used oil, scintillator liquids and used solvents) and aqueous wastes resulting from process system operating, from decontamination and maintenance operations. Radioactive gas wastes occur subsequently to the fission process inside the fuel elements as well as due to the neutron activation of process fluids in the reactor systems. As result of plant operation, iodine, noble gases, tritium and radioactive particles occur and are passed toward the ventilation stack in a controlled manner so that environmental release of radioactive materials with concentrations exceeding the maximum permissible level could not occur. (authors)

  2. Radioactive waste management

    International Nuclear Information System (INIS)

    1982-07-01

    In response to the Sixth Report of the Royal Commission on Environmental Pollution, a White Paper was published in 1977, announcing a number of steps to deal with the problems presented by wastes from the nuclear industry and setting out the position of the then government. The present White paper is in four sections. i. A brief description of the nature of radioactive wastes, and the general objectives of waste management. ii. What has been achieved, the role of the Radioactive Waste Management Advisory Committee, the expansion of research, and the conclusions from the review of existing controls. iii. The present position for each major category of waste, including relevant current action and research, transport and decommissioning. iv. The next steps. Research and development must continue; shallow land burial and the carefully controlled disposal of certain wastes to the sea will continue to play a role; and, for some wastes, new disposal facilities are needed at an early date. For others, the appropriate course of action at the moment is properly controlled storage. New developments are also required in organisation. Throughout, the public must be kept fully informed about what is being done, and there must be proper scope for public discussion. (U.K.)

  3. Classification and disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1990-01-01

    This paper reviews the historical development in the U.S. of definitions and requirements for permanent disposal of different classes of radioactive waste. We first consider the descriptions of different waste classes that were developed prior to definitions in laws and regulations. These descriptions usually were not based on requirements for permanent disposal but, rather, on the source of the waste and requirements for safe handling and storage. We then discuss existing laws and regulations for disposal of different waste classes. Current definitions of waste classes are largely qualitative, and thus somewhat ambiguous, and are based primarily on the source of the waste rather than the properties of its radioactive constituents. Furthermore, even though permanent disposal is clearly recognized as the ultimate goal of radioactive water management, current laws and regulations do not associated the definitions of different waste classes with requirement for particular disposal systems. Thus, requirements for waste disposal essentially are unaffected by ambiguities in the present waste classification system

  4. 2005 dossier. ANDRA's researches on the geological disposal of high-level and long-lived radioactive wastes. Results and perspectives

    International Nuclear Information System (INIS)

    2005-06-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the geologic disposal of high-level and long-lived radioactive wastes in deep geologic formations (argilites and granites). Content: 1 - Research on deep disposal of radioactive waste: general interest task: Legislative framework, ANDRA scientific objectives, Inspections and assessments; 2 - Designing a safe and reversible disposal system: Repository safety, Reversibility: an essential requirement; 3 - Clay Research on a repository in a clay formation, A long research programme, Dossier 2005 Argile; 4 - Meuse/Haute-Marne site clay: Expected properties of the rock formation, Choice of argillite, Meuse/Haute-Marne site, Conclusions from 10 years of research at the Meuse/Haute-Marne site; 5 - Repository installations: Safe and reversible architecture, Disposal of B waste, Disposal of C waste, Possible disposal of spent fuel (CU); 6 - The disposal facility in operation: From waste packages reception to their disposal in cells, Stages of the progressive closure of engineered structures; 7 - Reversible management: Freedom of choice for future generations, Various closure stages; 8 - Long-term evolution of the repository: Apprehending the repository complexity Main evolutions expected, Slow and limited release of radioactive substances; 9 - Repository safety and impact on man: Several evolution scenarios, Normal evolution, Altered evolution; 10 - Granite Research on a repository in a granite formation: A global approach, Scientific co-operations, Dossier 2005 Granite; 11 - Characteristics of French granite formations: What properties are required for a repository?, Different types of granite formations; 12 - Repository installations: Repository design adapted to granite fractures, Clay seals to prevent water flows, Waste disposal packages ensuring long-term leak-tightness, Physical and chemical environment favourable for waste packages, Architecture

  5. Management of radioactive waste in FR Yugoslavia

    International Nuclear Information System (INIS)

    Plecas, I.

    1998-01-01

    In the last forty years, in FR Yugoslavia, as a result of the two research reactors operation and as a result of the radionuclides application in the medicine, industry and agriculture, radioactive waste materials of different levels of specific activity was generated. As a temporary solution, these radioactive waste materials are stored in the two interim storage facilities. Since the one of the storages is completely filled with the radioactive waste materials that are packed in the metal drums and plastic barrels, and the second one has a effective space for radioactive waste materials storing for the approximately next few years, attempts are made in the 'Vinca' institute of nuclear sciences in developing the immobilization process for the low and intermediate level radioactive waste materials and their safe disposal into the appropriate disposal system, that was adopted for such materials. Research work on optimization of the chosen techniques in treatment, conditioning, immobilization and storing the radioactive waste materials is in progress. Investigations are carrying out on materials that are adopted as components of the engineer trench system, in aim to improve their physical-chemical properties, mainly retention the radionuclides release from the disposal facility to environment, as well as their mechanical characteristics. Parallel with the optimization of the composition of the materials that will create the engineer trench system, optimization of the processes and matrix-radioactive waste mixture forms is in progress, and we hope that this work will influence the design of the future Yugoslav storage center, shallow land burial type, for low and intermediate level radioactive waste materials

  6. Radioactive waste management: International peer reviews

    International Nuclear Information System (INIS)

    Warnecke, E.; Bonne, A.

    1995-01-01

    The Agency's peer review service for radioactive waste management - known as the Waste Management Assessment and Technical Review Programme (WATRP) - started in 1989, building upon earlier types of advisory programmes. WATRP's international experts today provide advice and guidance on proposed or ongoing radioactive waste management programmes; planning, operation, or decommissioning of waste facilities; or on legislative, organizational, and regulatory matters. Specific topics often cover waste conditioning, storage, and disposal concepts or facilities; or technical and other aspects of ongoing or planned research and development programmes. The missions can thus contributed to improving waste management systems and plans, and in raising levels of public confidence in them, as part of IAEA efforts to assist countries in the safe management of radioactive wastes. This article presents a brief overview of recent WATRP missions in Norway, Slovak Republic, Czech Republic and Finland

  7. Progress on Radioactive Waste Treatment Facilities Construction

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In 2011, five projects were undertaken by radioactive waste projects management department, which are "Cold Commissioning of the Pilot Project on Radioactive Waste Retrieval and Conditioning (abbreviation 'Pilot Project')", "Radioactive Ventilation Project Construction (abbreviation 'Ventilation

  8. Low-Activity Radioactive Wastes

    Science.gov (United States)

    In 2003 EPA published an Advance Notice of Proposed Rulemaking (ANPR) to collect public comment on alternatives for disposal of waste containing low concentrations of radioactive material ('low-activity' waste).

  9. Management of very low-level radioactive waste

    International Nuclear Information System (INIS)

    Chapalain, E.; Damoy, J.; Joly, J.M.

    2003-01-01

    This document comprises 3 articles. The first article presents the concern of very low-level radioactive wastes generated in nuclear installations, the second article describes the management of the wastes issued from the dismantling operations of the ALS (linear accelerator of Saclay) and of the Saturn synchrotron both located in Saclay Cea's center. The last article presents the storage facility which is specifically dedicated to very low-level radioactive wastes. This storage facility, which is located at Morvilliers, near the 'Centre de l Aube' (used to store the low-, and medium-level, short-lived radioactive wastes), will receive the first packages next summer. Like the other storage facilities, it will be managed by ANDRA (national radioactive waste management agency)

  10. Radioactive wastes: sources, treatment, and disposal

    International Nuclear Information System (INIS)

    Wymer, R.G.; Blomeke, J.O.

    1975-01-01

    Sources, treatment, and disposal of radioactive wastes are analyzed in an attempt to place a consideration of the problem of permanent disposal at the level of established or easily attainable technology. In addition to citing the natural radioactivity present in the biosphere, the radioactive waste generated at each phase of the fuel cycle (mills, fabrication plants, reactors, reprocessing plants) is evaluated. The three treatment processes discussed are preliminary storage to permit decay of the short-lived radioisotopes, solidification of aqueous wastes, and partitioning the long-lived α emitters for separate and long-term storage. Dispersion of radioactive gases to the atmosphere is already being done, and storage in geologically stable structures such as salt mines is under active study. The transmutation of high-level wastes appears feasible in principle, but exceedingly difficult to develop

  11. Radioactive waste processing device

    International Nuclear Information System (INIS)

    Seki, Shuji.

    1992-01-01

    Liquid wastes are supplied to a ceramic filter to conduct filtration. In this case, a device for adding a powdery inorganic ion exchanger is disposed to the upstream of the ceramic filter. When the powdery inorganic ion exchanger is charged to the addition device, it is precoated to the surface of the ceramic filter, to conduct separation of suspended matters and separation of ionic nuclides simultaneously. Liquid wastes returned to a collecting tank are condensed while being circulated between the ceramic filter and the tank and then contained in a condensation liquid waste tank. With such a constitution, both of radioactive nuclides accompanied by suspended matters in the radioactive liquid wastes and ionic nuclides can be captured efficiently. (T.M.)

  12. Radioactive waste management

    International Nuclear Information System (INIS)

    Tang, Y.S.; Saling, J.H.

    1990-01-01

    The purposes of the book are: To create a general awareness of technologies and programs of radioactive waste management. To summarize the current status of such technologies, and to prepare practicing scientists, engineers, administrative personnel, and students for the future demand for a working team in such waste management

  13. Radioactive waste management: An international perspective

    International Nuclear Information System (INIS)

    Chan, C.Y.

    1992-01-01

    Scientists, governments, and the general public have devoted considerable attention to the subject of radioactive waste over the past 35 years. The subject has gained even more attention of late, owing to heightened awareness of environmental protection. Potential transboundary effects have further added to this interest, which today extends beyond local domains to regional and global levels. Almost all of the IAEA's Member States generate some radioactive wastes. The type of waste they produce varies, however, as do the quantities, which range from a few grams to several hundred tonnes of wastes per year. This article will summarize the status of waste management and disposal activities in IAEA Member States as well as providing a brief background on what radioactive waste is, where it comes from, and how it is managed

  14. What ethics should apply to the management of long-lived radioactive waste?

    International Nuclear Information System (INIS)

    Strohl, P.

    2002-01-01

    Taking action now in the name of a responsible attitude towards humanity in the future: management of the long-term risk posed by certain types of radioactive waste may give rise to a kind of metamoral revolution which goes beyond its specific nature - as long as it remains in the province of reality, rather than the imagination. Following the decisions made by the French Government in December 1998 concerning the creation of two underground laboratories, and the recent granting of permission to build the laboratory at Bure in the Meuse, it is perhaps time to discuss the ethical questions raised by the management of radioactive waste, because the responses usually put forward remain too superficial. Furthermore, it is all too often accepted that they should be made subordinate to the debates on the future of the nuclear industry within the framework of energy policy, whereas the waste that the industry has generated already exists. The safety of this waste must therefore be guaranteed, both in the immediate future and in the long term, so that mankind and the environment are not exposed to levels of irradiation or contamination which exceed those permitted by the radiological protection standards - and this must be done until the danger disappears through radioactive decay, whatever the fate of the nuclear industry. However, we can be certain that any weakening in nuclear technology would adversely affect management of the downstream portion of the fuel cycle

  15. The management of radioactive wastes in Canada

    International Nuclear Information System (INIS)

    1979-01-01

    Ten papers are presented, dealing with the management and environmental impact of radioactive wastes, environmental considerations related to uranium mining and milling, the management of uranium refining wastes, reactor waste management, proposals for the disposal of low- and intermediate-level wastes, disposal of nuclear fuel wastes, federal government policy on radioactive waste management, licensing requirements, environmental assessment, and internatioal cooperation in wast management. (LL)

  16. Radioactive waste management and disposal in Australia

    International Nuclear Information System (INIS)

    Harries, J.R.

    1997-01-01

    A national near-surface repository at a remote and arid location is proposed for the disposal of solid low-level and short-lived intermediate-level radioactive wastes in Australia. The repository will be designed to isolate the radioactive waste from the human environment under controlled conditions and for a period long enough for the radioactivity to decay to low levels. Compared to countries that have nuclear power programs, the amount of waste in Australia is relatively small. Nevertheless, the need for a national disposal facility for solid low-level radioactive and short-lived intermediate-level radioactive wastes is widely recognised and the Federal Government is in the process of selecting a site for a national near-surface disposal facility for low and short-lived intermediate level wastes. Some near surface disposal facilities already exist in Australia, including tailings dams at uranium mines and the Mt Walton East Intractable Waste Disposal Facility in Western Australia which includes a near surface repository for low level wastes originating in Western Australia. 7 refs, 1 fig., 2 tabs

  17. Radioactive waste management at nuclear power plant Cernavoda

    International Nuclear Information System (INIS)

    Raducea, D.

    2002-01-01

    Many human activities generate waste, but people are worried about wastes produced in nuclear power plants (NPPs). Their concern is an unjustified fear toward the hazards from radioactive waste, probably because in any country generating electric power by NPPs a lot of attention is paid to relevant parties involved in radioactive waste management. Significant attention is also given to the management of radioactive waste at the Cemavoda NPP. The general approach required for the collection, handling, conditioning and storage of radioactive wastes, while maintaining acceptable levels of safety for workers, members of the public and the environment, is conceptually established. The overall programme provides the necessary facilities to adequately manage solid radioactive waste from Cemavoda NPP Unit 1 and will be capable of expansion when other units are brought into service. (author)

  18. Predisposal of Radioactive Waste from NPP 1000 MWe

    International Nuclear Information System (INIS)

    Suryantoro

    2007-01-01

    Predisposal of radioactive waste from NPP 1000 MW which was planned to be operated in 2016 has been conducted. In this study NPP applying PWR type was assumed. This assessment comprises all aspects of radioactive waste coming from NPP. One through cycle was chosen consequently no reprocessing step will be conducted. The assessment shows that technologically all radioactive waste treatment process rising from NPP operation has similarities to the existing radioactive waste process conducted by RWI which has lower scale of waste amount. (author)

  19. The solidification of radioactive waste

    International Nuclear Information System (INIS)

    Nagaya, Kiichi; Fujimoto, Yoshio; Hashimoto, Yasuo; Nomura, Ichiro

    1985-01-01

    A previous paper covered the decomposition and vitrification of Na 2 SO 4 (the primary component of the liquid waste from BWR) with silica. Now, in order to establish an integrated treatment system for the radioactive waste from BWR, this paper examines the effects of combining incinerator ash and other incinerator wastes with radioactive waste on the durability of the final vitrified products. A bench scale test plat consisting of a waiped file evaporator/dryer, a Joule-heated glass melter and SO 2 absorber was therefore put into operation and run safety for a period of 3000 hours. The combination of the radioactive waste with incinerator ash and the secondary waste of the incinerator was found to make no difference on the durability of the final vitrified products effecting no increase or decrease. Durability similar to that displayed in the beaker tests was proven, with the final vitrified products exhibiting a leaching rate less than 3 x 10 -4 g/cm 2 /day at 95 deg C. (author)

  20. Low-Level Radioactive Waste temporary storage issues

    International Nuclear Information System (INIS)

    1992-04-01

    The Low-Level Radioactive Waste Policy Act of 1980 gave responsibility for the disposal of commercially generated low-level radioactive waste to the States. The Low-Level Radioactive Waste Policy Amendments Act of 1985 attached additional requirements for specific State milestones. Compact regions were formed and host States selected to establish disposal facilities for the waste generated within their borders. As a result of the Low-Level Radioactive Waste Policy Amendments Act of 1985, the existing low-level radioactive waste disposal sites will close at the end of 1992; the only exception is the Richland, Washington, site, which will remain open to the Northwest Compact region only. All host States are required to provide for disposal of low-level radioactive waste by January 1, 1996. States also have the option of taking title to the waste after January 1, 1993, or taking title by default on January 1, 1996. Low-level radioactive waste disposal will not be available to most States on January 1, 1993. The most viable option between that date and the time disposal is available is storage. Several options for storage can be considered. In some cases, a finite storage time will be permitted by the Nuclear Regulatory Commission at the generator site, not to exceed five years. If disposal is not available within that time frame, other options must be considered. There are several options that include some form of extension for storage at the generator site, moving the waste to an existing storage site, or establishing a new storage facility. Each of these options will include differing issues specific to the type of storage sought

  1. The trends of radioactive waste disposal

    International Nuclear Information System (INIS)

    Nomi, Mitsuhiko

    1977-01-01

    The disposal of radioactive wastes instead of their treatment has come to be important problem. The future development of nuclear fuel can not be expected unless the final disposal of nuclear fuel cycle is determined. Research and development have been made on the basis of the development project on the treatment of radioactive wastes published by Japan Atomic Energy Commission in 1976. The high level wastes produced by the reprocessing installations for used nuclear fuel are accompanied by strong radioactivity and heat generation. The most promising method for their disposal is to keep them in holes dug at the sea bottom after they are solidified. Middle or low level wastes are divided into two groups; one contains transuranium elements and the other does not. These wastes are preserved on the ground or in shallow strata, while the safe abandonment into the ground or the sea has been discussed about the latter. The co-operations among nations are necessary not only for peaceful utilization of atomic energy but also for radioactive waste disposal. (Kobatake, H.)

  2. Membrane Treatment of Liquid Salt Bearing Radioactive Wastes

    International Nuclear Information System (INIS)

    Dmitriev, S. A.; Adamovich, D. V.; Demkin, V. I.; Timofeev, E. M.

    2003-01-01

    The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt bearing radioactive waste processing based on the state-of-the-art membrane unit design, namely, the filtering units equipped with the metal-ceramic membranes of ''TruMem'' brand, as well as the electrodialysis and electroosmosis concentrators. Application of the above mentioned units in conjunction with the pulse pole changer will allow the marked increase of the radioactive waste concentrating factor and the significant reduction of the waste volume intended for conversion into monolith and disposal. Besides, the application of the electrodialysis units loaded with an ion exchange material at the end polishing stage of the radioactive waste decontamination process will allow the reagent-free radioactive waste treatment that meets the standards set for the release of the decontaminated liquid radioactive waste effluents into the natural reservoirs of fish-farming value

  3. Method of processing radioactive wastes

    International Nuclear Information System (INIS)

    Funabashi, Kiyomi; Sugimoto, Yoshikazu; Kikuchi, Makoto; Yusa, Hideo.

    1979-01-01

    Purpose: To obtain solidified radioactive wastes at high packing density by packing radioactive waste pellets in a container and then packing and curing a thermosetting resin therein. Method: Radioactive liquid wastes are dried into power and subjected to compression molding. The pellets thus obtained are supplied in a predetermined amount from the hopper to the inside of a drum can. Then, thermosetting plastic and a curing agent are filled in the drum can. Gas between the pellets is completely expelled by the intrusion of the thermosetting resin and the curing agent among the pellets. Thereafter, the drum can is heated by a heater and curing is effected. After the curing, the drum can is sealed. (Kawakami, Y.)

  4. Collection and Segregation of Radioactive Waste. Principals for Characterization and Classification of Radioactive Waste

    International Nuclear Information System (INIS)

    Dziewinska, K.M.

    1998-01-01

    Radioactive wastes are generated by all activities which utilize radioactive materials as part of their processes. Generally such activities include all steps in the nuclear fuel cycle (for power generation) and non-fuel cycle activities. The increasing production of radioisotopes in a Member State without nuclear power must be accompanied by a corresponding development of a waste management system. An overall waste management scheme consists of the following steps: segregation, minimization, treatment, conditioning, storage, transport, and disposal. To achieve a satisfactory overall management strategy, all steps have to be complementary and compatible. Waste segregation and minimization are of great importance mainly because they lead to cost reduction and reduction of dose commitments to the personnel that handle the waste. Waste characterization plays a significant part in the waste segregation and waste classification processes, it implicates required waste treatment process including the need for the safety assessment of treatment conditioning and storage facilities

  5. High-Level Radioactive Waste.

    Science.gov (United States)

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  6. Management of radioactive wastes of iodine therapy

    International Nuclear Information System (INIS)

    Silva, Andre R.M.; Santos, Helena C.

    2015-01-01

    The main objective of waste radioactive management is to ensure the protection of man and the preservation of the environment. The regulation that established the basis for the good radioactive waste management was elaborated by the Comissao Nacional de Energia Nuclear (CNEN), in 1985. It is the CNEN-NE-6:05: 'Management radioactive waste in radioactive facilities', which although it an important standard related to radioactive waste management and help largely in the design of a management system in radioactive facilities of radioisotope users, covers the topics in a general way and does not consider individuals aspects of the different plants, as is the case of nuclear medicine units. The main objective of this study is to show the segregation and safe packaging, avoiding unnecessary exposure of professionals involved and public individuals in general

  7. Plastic solidification of radioactive wastes

    International Nuclear Information System (INIS)

    Moriyama, Noboru

    1981-01-01

    Over 20 years have elapsed after the start of nuclear power development, and the nuclear power generation in Japan now exceeds the level of 10,000 MW. In order to meet the energy demands, the problem of the treatment and disposal of radioactive wastes produced in nuclear power stations must be solved. The purpose of the plastic solidification of such wastes is to immobilize the contained radionuclides, same as other solidification methods, to provide the first barrier against their move into the environment. The following matters are described: the nuclear power generation in Japan, the radioactive wastes from LWR plants, the position of plastic solidification, the status of plastic solidification in overseas countries and in Japan, the solidification process for radioactive wastes with polyethylene, and the properties of solidified products, and the leachability of radionuclides in asphalt solids. (J.P.N.)

  8. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Maeda, Masahiko; Kira, Satoshi; Watanabe, Naotoshi; Nagaoka, Takeshi; Akane, Junta.

    1982-01-01

    Purpose: To obtain solidification products of radioactive wastes having sufficient monoaxial compression strength and excellent in water durability upon ocean disposal of the wastes. Method: Solidification products having sufficient strength and filled with a great amount of radioactive wastes are obtained by filling and solidifying 100 parts by weight of chlorinated polyethylene resin and 100 - 500 parts by weight of particular or powderous spent ion exchange resin as radioactive wastes. The chlorinated polyethylene resin preferably used herein is prepared by chlorinating powderous or particulate polyethylene resin in an aqueous suspending medium or by chlorinating polyethylene resin dissolved in an organic solvent capable of dissolving the polyethylene resin, and it is crystalline or non-crystalline chlorinated polyethylene resin comprising 20 - 50% by weight of chlorine, non-crystalline resin with 25 - 40% by weight of chlorine being particularly preferred. (Horiuchi, T.)

  9. Radioactive waste management; the realities as against the myths

    International Nuclear Information System (INIS)

    Williams, I.

    1980-01-01

    Nuclear power generation is now an essential requirement for the mankind in the current energy difficulties. The problem of radioactive waste management is arousing the opposition, but it must not inhibit the utilization of nuclear energy. Radioactive waste management concerns the whole course from its occurrence to its final disposal. The purpose of the management is then to protect absolutely the human beings of present and future generations from the danger of radioactivity. Radioactive wastes are varied much in their kinds and natures. While the management technology is nearly all established, the amounts of wastes are increasing. The following matters are described. Definition of radioactive waste management, fundamental strategies of the management, kinds of radioactive wastes, the present situation of radioactive waste management, and problems in the management. (J.P.N.)

  10. CEA and its radioactive wastes

    International Nuclear Information System (INIS)

    Marano, S.

    1999-01-01

    CEA annually produces about 3500 tons of radioactive wastes in its 43 basic nuclear installations. CEA ranks third behind EDF and Cogema. Low-level wastes (A wastes) are sent to ANDRA (national agency for the management of nuclear wastes)whereas medium-level wastes (B wastes) are stored by CEA itself. CEA has checked off its storing places and has set up an installation Cedra to process and store ancient and new nuclear wastes. 3 other installations are planned to operate within 6 years: Agate (Cadarache) will treat liquid effluents, Stella (Saclay) will process liquid wastes that are beta or gamma emitters, and Atena (Marcoule) will treat and store radioactive sodium coming from Phenix reactor and IPSN laboratories. The use of plasma torch for vitrifying wastes is detailed, the management of all the nuclear wastes produced by CEA laboratories and installations is presented. (A.C.)

  11. Note from the Radioactive Waste Section

    CERN Multimedia

    TS Department

    2008-01-01

    The Radioactive Waste Section of the Radiation Protection Group wishes to announce that the radioactive waste treatment centre will be closed on Friday, 19 December. In addition, waste reception will be limited to a strict minimum on Thursday, 18 December. Users of the centre are requested to adjust their plans accordingly. For more information, call 73875.

  12. Technology applications for radioactive waste minimization

    International Nuclear Information System (INIS)

    Devgun, J.S.

    1994-01-01

    The nuclear power industry has achieved one of the most successful examples of waste minimization. The annual volume of low-level radioactive waste shipped for disposal per reactor has decreased to approximately one-fifth the volume about a decade ago. In addition, the curie content of the total waste shipped for disposal has decreased. This paper will discuss the regulatory drivers and economic factors for waste minimization and describe the application of technologies for achieving waste minimization for low-level radioactive waste with examples from the nuclear power industry

  13. Electrochemistry and Radioactive Wastes: A Scientific Overview

    Directory of Open Access Journals (Sweden)

    Maher Abed Elaziz

    2015-12-01

    Full Text Available Radioactive wastes are arising from nuclear applications such as nuclear medicine and nuclear power plants. Radioactive wastes should be managed in a safe manner to protect human beings and the environment now and in the future. The management strategy depends on collection, segregation, treatment, immobilization, and disposal. The treatment process is a very important step in which the hazardous materials were converted to a more concentrated, less volume and less movable materials. Electrochemistry is the branch of chemistry in which the passage of electric current was producing a chemical change. Electrochemical treatment of radioactive wastes is widely used all over the world. It has a number of advantages and hence benefits. Electrochemistry can lead to remote, automatic control and increasing safety. The present work is focusing on the role of electrochemistry in the treatment of radioactive wastes worldwide. It contains the fundamentals of electrochemistry, the brief story of radioactive wastes, and the modern trends in the electrochemical treatment of radioactive wastes. An overview of electrochemical decomposition of organic wastes, electrochemical reduction of nitrates, electro- precipitation, electro- ion exchange, and electrochemical remediation of soil are outlined. The main operating factors, the mechanism of decontamination, energy consumption and examples of field trials are considered.

  14. The radiation protection and the radioactive wastes management

    International Nuclear Information System (INIS)

    Servais, F.; Woiche, Ch.; Hunin, Ch.

    2003-01-01

    This chapter concerns the radiation protection in relation with the radioactive waste management. Three articles make the matter of this file, the management of radioactive medical waste into hospitals, a new concept of waste storage on site, the protection devices on the long term with some lessons for the radioactive waste management. (N.C.)

  15. Commissioning of the very low level radioactive waste disposal facility; Mise en service du Centre de stockage de dechets de tres faible activite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    This press kit presents the solution retained by the French national agency of radioactive wastes (ANDRA) for the management of very low level radioactive wastes. These wastes mainly come from the dismantling of decommissioned nuclear facilities and also from other industries (chemical, metal and other industries). The storage concept is a sub-surface disposal facility (Morvilliers center, Aube) with a clay barrier and a synthetic membrane system. The regulatory framework, and the details of the licensing, of the commissioning and of the environment monitoring are recalled. The detailed planing of the project and some exploitation data are given. (J.S.)

  16. Transport of radioactive waste in Germany - a survey

    International Nuclear Information System (INIS)

    Alter, U.

    1995-01-01

    The transport of radioactive waste is centralised and coordinated by the German Railway Company (Deutsche Bahn AG, DB) in Germany. The conditioning of radioactive waste is now centralised and carried out by the Gesellschaft fuer Nucklear Service (GNS). The Germany Railway Company, DB, is totally and exclusively responsible for the transport, the GNS is totally and exclusively responsible for the conditioning of radioactive waste. The German Railway Company transports all radioactive waste from nuclear power plants, conditioning facilities and the existing intermediate storage facilities in Germany. In 1992 nearly 177 shipments of radioactive waste were carried out, in 1991 the total amount was 179 shipments. A brief description of the transport procedures, the use of different waste packages for radioactive waste with negligible heat generation and the transport routes within Germany will be given. For this purpose the inspection authorities in Germany have used a new documentation system, a special computer program for waste flow tracking and quality assurance and compliance assurance, developed by the electrical power companies in Germany. (Author)

  17. The French-German initiative for Chernobyl Sarcophagus waste management

    International Nuclear Information System (INIS)

    Pretzch, G.G.; Lhomme, V.; Seleznev, A.N.

    2002-01-01

    Sixteen years after the accident of unit 4 of the Chernobyl NPP the Sarcophagus still remains one of the most dangerous nuclear facilities in the world. The ruin of the destroyed unit 4 and its surrounding Sarcophagus together are termed object Shelter, which still comprises about 96 % of the spent nuclear fuel. The big amount of irradiated nuclear fuel and radioactive waste may cause potential radiological hazards. Thus, a comprehensive and detailed description of all parameters having influence on the safety state of the Sarcophagus was needed. At the Vienna Chernobyl Conference in April 1996 Germany and France declared to support the international co-operation of institutions of the Ukraine, Belarus and Russia in view of a solution of the Chernobyl related issues. The first project identified within the French-German Initiative (FGI) was dedicated to the safety state of the Chernobyl Sarcophagus. This FGI project has been funded by the governments and by the electricity utilities of Germany and France, respectively, with 2 million Euro. The main aim of the project was to collect, analyse and verify all safety relevant data and to integrate these data in a comprehensive data base. The major fields of investigation were building constructions, systems and equipment, radiological situation, nuclear fuel, radioactive waste and environmental impact. In this paper in a first step the spent nuclear fuel and the correlating radiological hazards will be described briefly. In the following sections the FGI Sarcophagus project along with some results and practical applications to estimate the radiological risks as well as to support maintenance, waste management and stabilization measures will be presented

  18. Outline of the radioactive waste management strategy at the national radioactive waste disposal facility 'Ekores'

    International Nuclear Information System (INIS)

    Rozdyalovskaya, L.F.; Tukhto, A.A.; Ivanov, V.B.

    2000-01-01

    The national Belarus radioactive waste disposal facility 'Ekores' was started in 1964 and was designed for radioactive waste coming from nuclear applications in industry, medicine and research. It is located in the neighbourhood of Minsk (2 Mil. people) and it is the only one in this country. In 1997 the Government initiated the project for the facility reconstruction. The main reconstruction goal is to upgrade radiological safety of the site by creating adequate safety conditions for managing radioactive waste at the Ekores disposal facility. This covers modernising technologies for new coming wastes and also that the wastes currently disposed in the pits are retrieved, sorted and treated in the same way as new coming wastes. The reconstruction project developed by Belarus specialists was reviewed by the IAEA experts. The main provisions of the revised project strategy are given in this paper. The paper's intention is to outline the technical measures which may be taken at standard 'old type Soviet Radon' disposal facility so as to ensure the radiological safety of the site. (author)

  19. Method for solidifying powdery radioactive wastes

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Matsuura, Hiroyuki; Tomita, Toshihide.

    1978-01-01

    Purpose: To solidify powdery radioactive wastes through polymerization in a vessel at a high impregnation speed with no cloggings in pipes. Method: A drum can is lined with an inner liner layer of a predetermined thickness made of inflammable material such as glass fiber. A plurality of pipes for supplying liquid plastic monomer are provided in adjacent to the upper end face of the inflammable material or inserted between the vessel and the inflammable material. Then powdery radioactive wastes are filled in the vessel and the liquid plastic monomer dissolving therein a polymerization initiator is supplied through the pipes. The liquid plastic monomer impregnates through the inflammable material layer into the radioactive wastes and the plastic monomer is polymerized by the aid of the polymerization initiator after a predetermined of time to produce solidified plastic products of radioactive wastes. (Seki, T.)

  20. ANSTO's radioactive waste management policy. Preliminary environmental review

    International Nuclear Information System (INIS)

    Levins, D.M.; Airey, P.; Breadner, B.; Bull, P.; Camilleri, A.; Dimitrovski, L.; Gorman, T.; Harries, J.; Innes, R.; Jarquin, E.; Jay, G.; Ridal, A.; Smith, A.

    1996-05-01

    For over forty years, radioactive wastes have been generated by ANSTO (and its predecessor, the AAEC) from the operation of nuclear facilities, the production of radioisotopes for medical and industrial use, and from various research activities. the quantities and activities of radioactive waste currently at Lucas Heights are very small compared to many other nuclear facilities overseas, especially those in countries with nuclear power program. Nevertheless, in the absence of a repository for nuclear wastes in Australia and guidelines for waste conditioning, the waste inventory has been growing steadily. This report reviews the status of radioactive waste management at ANSTO, including spent fuel management, treatment of effluents and environmental monitoring. It gives details of: relevant legislative, regulatory and related requirements; sources and types of radioactive waste generated at ANSTO; waste quantities and activities (both cumulative and annual arisings); existing practices and procedures for waste management and environmental monitoring; recommended broad strategies for dealing with radioactive waste management issues. Detailed proposals on how the recommendations should be implemented is the subject of a companion internal document, the Radioactive Waste Management Action Plan 1996-2000 which provides details of the tasks to be undertaken, milestones and resource requirements. 44 refs., 2 tabs., 18 figs

  1. Defense radioactive waste management

    International Nuclear Information System (INIS)

    Hindman, T.B. Jr.

    1988-01-01

    The Office of Defense Programs (DP), U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. Pursuant to this mission, DP operates a large industrial complex that employs over 60,000 people at various installations across the country. As a byproduct of their activities, these installations generate radioactive, hazardous, or mixed wastes that must be managed in a safe and cost-effective manner in compliance with all applicable Federal and STate environmental requirements. At the Federal level such requirements derive primarily from the Atomic Energy Act, the Resource Conservation and Recovery Act (RCRA), the comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Superfund Amendments and Reauthorization Act (SARA). Responsibility for DP activities in connection with the disposal of defense wastes is consolidated within the Office of Defense Waste and Transportation Management (DWTM). This paper discusses these activities which consist of five principal elements: the environmental restoration of inactive DP facilities and sites, the processing storage and disposal of wastes associated with ongoing operations at active DP facilities, research and development directed toward the long-term disposal of radioactive, hazardous, mixed wastes, technology development directly supporting regulatory compliance, and the development of policies, procedures, and technologies for assuring the safe transportation of radioactive and hazardous materials

  2. Method of processing radioactive liquid waste

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Kuribayashi, Hiroshi; Soda, Kenzo; Mihara, Shigeru.

    1988-01-01

    Purpose: To obtain satisfactory plastic solidification products rapidly and smoothly by adding oxidizers to radioactive liquid wastes. Method: Sulfuric acid, etc. are added to radioactive liquid wastes to adjust the pH value of the liquid wastes to less than 3.0. Then, ferrous sulfates are added such that the iron concentration in the liquid wastes is 100 mg/l. Then, after adjusting pH suitably to the drying powderization by adding alkali such as hydroxide, the liquid wastes are dried and powderized. The resultant powder is subjected to plastic solidification by using polymerizable liquid unsaturated polyester resins as the solidifying agent. The thus obtained solidification products are stable in view of the physical property such as strength or water proofness, as well as stable operation is possible even for those radioactive liquid wastes in which the content ingredients are unknown. (Takahashi, M.)

  3. Radioactive waste shredding: Preliminary evaluation

    International Nuclear Information System (INIS)

    Soelberg, N.R.; Reimann, G.A.

    1994-07-01

    The critical constraints for sizing solid radioactive and mixed wastes for subsequent thermal treatment were identified via a literature review and a survey of shredding equipment vendors. The types and amounts of DOE radioactive wastes that will require treatment to reduce the waste volume, destroy hazardous organics, or immobilize radionuclides and/or hazardous metals were considered. The preliminary steps of waste receipt, inspection, and separation were included because many potential waste treatment technologies have limits on feedstream chemical content, physical composition, and particle size. Most treatment processes and shredding operations require at least some degree of feed material characterization. Preliminary cost estimates show that pretreatment costs per unit of waste can be high and can vary significantly, depending on the processing rate and desired output particle size

  4. Classification of radioactive wastes produced by the nuclear industry

    International Nuclear Information System (INIS)

    2013-01-01

    This document first indicates the origins of radioactive wastes (mainly electronuclear industry), and the composition of spent fuel, and that only fission products and minor actinides are considered as radioactive wastes whereas uranium and plutonium can be used as new fuel after recycling. The classification of radioactive wastes is indicated in terms of radioactivity level and radionuclide half-life: high level (0.2 per cent of the total waste volume but 96 per cent of total waste radioactivity), medium level long life (3 per cent of volume, 4 per cent of radioactivity), low level long life (7 per cent of volume, 0.1 per cent of radioactivity), low and medium level and short life (63 per cent of volume and 0.02 per cent of radioactivity), very low level (27 per cent of volume and less than 0.01 per cent of radioactivity). An overview of radioactive waste processing and storage in France is presented for each category. Current and predicted volumes are indicated for each category. The main challenges are briefly addressed: spent fuel recycling, waste valorisation by fourth-generation reactors. Processing locations in France and in the World are indicated. Some key figures are provided: 2 kg of radioactive waste are produced per inhabitant and per year, and waste management costs represent 5 per cent of the total cost of produced electricity

  5. Current status of radioactive waste management in Japan

    International Nuclear Information System (INIS)

    Amanuma, Tsuyoshi

    1985-01-01

    In Japan the nuclear power generation capacity now exceeds the level of 20,000 MW, 24.3 % of the total power generation. It constitutes the major position of energy source, a substitute for a petroleum. In the nuclear power, chemical engineering contributes significantly to treatment and disposal of the radioactive wastes. In the interim report by an ad hoc committee in the Atomic Energy Commission, for the future, rational grouping of the wastes and the direction of land disposal are stated. Contents are the following: basic ideas for the radioactive wastes, radioactive wastes countermeasures in Japan (wastes classification, low and high level and transuranic wastes), radioactive wastes in the nuclear fuel cycle (reactor and fuel reprocessing and reactor dismantling wastes). (Mori, K.)

  6. Offgas treatment for radioactive waste incinerators

    International Nuclear Information System (INIS)

    Stretz, L.A.; Koenig, R.A.

    1980-01-01

    Incineration of radioactive materials for resource recovery or waste volume reduction is recognized as an effective waste treatment method that will increase in usage and importance throughout the nuclear industry. The offgas cleanup subsystem of an incineration process is essential to ensure radionuclide containment and protection of the environment. Several incineration processes and associated offgas cleanup systems are discussed along with potential application of commercial pollution control components to radioactive service. Problems common to radioactive waste incinerator offgas service are identified and areas of needed research and development effort are noted

  7. Disposal of radioactive waste in Romania. Present and future strategy

    International Nuclear Information System (INIS)

    Rodna, A.; Garlea, C.

    2002-01-01

    The paper begins with the presentation of the actual situation of radioactive waste management in Romania. The organizations responsible for radioactive waste management and their capabilities are described, including radioactive waste disposal. The main provisions of the 'Draft law regarding the management of nuclear spent fuel and radioactive waste, in view of their final disposal' are also presented, with accent on the responsibilities of the National Radioactive Waste Agency (ANDRAD) and on the fund for radioactive waste and spent fuel management and for decommissioning. The paper ends with the presentation of the future radioactive waste and spent fuel management strategy. (author)

  8. National Inventory of radioactive materials and wastes. The 2015 essentials. Synthesis report for 2015. 2015 descriptive catalogue of families. 2015 geographical inventory. The focus on 2015

    International Nuclear Information System (INIS)

    2015-03-01

    management of nuclear wastes proposes a geographical inventory, i.e. a set of sheets with the location and description of radioactive wastes in each French region. The last report recalls the definition of the various types of radioactive materials and wastes, discusses the existing and forecast volumes, and describes how these wastes are produced, processed, packaged, transported, and stored. It also present waste storage projects and historical management modes

  9. Disposal of liquid radioactive waste - discharge of radioactive waste waters from hospitals

    International Nuclear Information System (INIS)

    Ludwieg, F.

    1976-01-01

    A survey is given about legal prescriptions in the FRG concerning composition and amount of the liquid waste substances and waste water disposal by emitting into the sewerage, waste water decay systems and collecting and storage of patients excretions. The radiation exposure of the population due to drainage of radioactive waste water from hospitals lower by more than two orders than the mean exposure due to nuclear-medical use. (HP) [de

  10. Indian programme on radioactive waste management

    International Nuclear Information System (INIS)

    Wattal, P.K.

    2013-01-01

    The primary objective of radioactive waste management is protection of human health, environment and future generation. This article describes, briefly, the Indian programme on management of different radioactive wastes arising in the entire nuclear fuel cycle adhering to this objective. (author)

  11. A process for treating radioactive water-reactive wastes

    International Nuclear Information System (INIS)

    Dziewinski, J.; Lussiez, G.; Munger, D.

    1995-01-01

    Los Alamos National Laboratory and other locations in the complex of experimental and production facilities operated by the United States Department of Energy (DOE) have generated an appreciable quantity of hazardous and radioactive wastes. The Resource Conservation and Recovery Act (RCRA) enacted by the United States Congress in 1976 and subsequently amended in 1984, 1986, and 1988 requires that every hazardous waste must be rendered nonhazardous before disposal. Many of the wastes generated by the DOE complex are both hazardous and radioactive. These wastes, called mixed wastes, require applying appropriate regulations for radioactive waste disposal and the regulations under RCRA. Mixed wastes must be treated to remove the hazardous waste component before they are disposed as radioactive waste. This paper discusses the development of a treatment process for mixed wastes that exhibit the reactive hazardous characteristic. Specifically, these wastes react readily and violently with water. Wastes such as lithium hydride (LiH), sodium metal, and potassium metal are the primary wastes in this category

  12. Radioactive waste management policy for nuclear power

    International Nuclear Information System (INIS)

    Andrei, V.; Glodeanu, F.; Simionov, V.

    1998-01-01

    Nuclear power is part of energy future as a clean and environmental friendly source of energy. For the case of nuclear power, two specific aspects come more often in front of public attention: how much does it cost and what happens with radioactive waste. The competitiveness of nuclear power vs other sources of energy is already proved in many developed and developing countries. As concerns the radioactive wastes treatment and disposal, industrial technologies are available. Even final solutions for disposal of high level radioactive waste, including spent fuel, are now fully developed and ready for large scale implementation. Policies and waste management strategies are established by all countries having nuclear programs. Once, the first nuclear power reactor was commissioned in Romania, and based on the national legal provisions, our company prepared the first issue of a general strategy for radioactive waste management. The general objective of the strategy is to dispose the waste according to adequate safety standards protecting the man and the environment, without undue burden on future generations. Two target objectives were established for long term: an interim spent fuel dry storage facility and a low and intermediate level waste repository. A solution for spent fuel disposal will be implemented in the next decade, based on international experience. Principles for radioactive waste management, recommended by IAEA are closely followed in the activities of our company. The continuity of responsibilities is considered to be very important. The radioactive waste management cost will be supported by the company. A tax on unit price of electricity will be applied. The implementation of radioactive waste management strategy includes as a major component the public information. A special attention will be paid by the company to an information program addressed to different categories of public in order to have a better acceptance of our nuclear power projects

  13. Ocean disposal of radioactive waste: Status report

    International Nuclear Information System (INIS)

    Calmet, D.P.

    1989-01-01

    For hundreds of years, the seas have been used as a place to dispose of wastes resulting from human activities and although no high level radioactive waste (HLW) has been disposed of into the sea, variable amounts of packaged low level radioactive waste (LLW) have been dumped at more than 50 sites in the northern part of the Atlantic and Pacific oceans. So far, samples of sea water, sediments and deep sea organisms collected on the various sites have not shown any excess in the levels of radionuclides above those due to nuclear weapons fallout except on certain occasions where caesium and plutonium were detected at higher levels in samples taken close to packages at the dumping site. Since 1957, the date of its first meeting to design methodologies to assess the safety of ''radioactive waste disposal into the sea'', the IAEA has provided guidance and recommendations for ensuring that disposal of radioactive wastes into the sea will not result in unacceptable hazards to human health and marine organisms, damage to amenities or interference with other legitimate uses of the sea. Since the Convention for the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (referred to as the London Dumping Convention) came into force in 1975, the dumping of waste has been regulated on a global scale. The London Dumping Convention entrusted IAEA with specific responsibilities for the definition of high level radioactive wastes unsuitable for dumping at sea, and for making recommendations to national authorities for issuing special permits for ocean dumping of low level radioactive wastes. This paper presents a status report of immersion operations of low-level radioactive waste and the current studies the IAEA is undertaking on behalf of the LDC

  14. Acceptance criteria for disposal of radioactive waste in Romania

    International Nuclear Information System (INIS)

    Dogaru, D.

    2001-01-01

    In Romania the institutional radioactive waste are managed by National Institute of R and D for Physics and Nuclear Engineering. The institutional radioactive waste are collected, treated and conditioned at the Radioactive Waste Treatment Plant then transferred and disposed to the National Repository of Radioactive Waste at Baita Bihor. National Repository for Radioactive Waste is a long term storage facility. The repository is placed in a former worked out uranium ore mine, being excavated in the Bihor peak. The repository has been sited taking into account the known geological, hydrogeoloical, seismic and meteorological and mining properties of a uranium mining site. In the absence of an updated Safety Analysis Report, the maximum radioactive content permitted by the regulatory authority in the operation license is below the values reported for other engineered repositories in mine galleries. The paper presents the acceptance criteria for disposal of radioactive waste in National Repository for Radioactive Waste at Baita Bihor. (author)

  15. Method for processing radioactive wastes containing sodium

    International Nuclear Information System (INIS)

    Kubota, Takeshi.

    1975-01-01

    Object: To bake, solidify and process even radioactive wastes highly containing sodium. Structure: H and or NH 4 zeolites of more than 90g per chemical equivalent of sodium present in the waste is added to and left in radioactive wastes containing sodium, after which they are fed to a baker such as rotary cylindrical baker, spray baker and the like to bake and solidify the wastes at 350 to 800 0 C. Thereby, it is possible to bake and solidify even radioactive wastes highly containing sodium, which has been impossible to do so previously. (Kamimura, M.)

  16. BN-350 decommissioning problems of radioactive waste management

    International Nuclear Information System (INIS)

    Galkin, A.; Tkachenko, V.

    2002-01-01

    Pursuant of modern concept on radioactive waste management applied in IAEA Member States all radioactive wastes produced during the BN-350 operation and decommissioning are subject to processing in order to be transformed to a form suitable for long-term storage and final disposal. The first two priority objectives for BN-350 reactor are as follows: cesium cleaning from sodium followed by sodium drain, and processing; processing of liquid and solid radioactive waste accumulated during BN-350 operation. Cesium cleaning from sodium and sodium processing to NaOH will be implemented under USA engineering and financial support. However the outputted product might be only subject to temporary storage under special conditions. Currently the problem is being solved on selection of technology for sodium hydroxide conversion to final product incorporated into cement-like matrix ready for disposal pursuant to existing regulatory requirements. Industrial installation is being designed for liquid radioactive waste processing followed by incorporation to cement matrix subject to further disposal. The next general objective is management of radioactive waste expected from BN-350 decommissioning procedure. Complex of engineering-radiation investigation that is being conducted at BN-350 site will provide estimation of solid and liquid radioactive waste that will be produced during the course of the BN-350 decommission. Radioactive wastes that will be produced may be shared for primary (metal structures of both reactor and reactor plant main and auxiliary systems equipment as well as construction wastes of dismantled biological protection, buildings and structures) and secondary (deactivation solutions, tools, materials, cloth, special accessory, etc.). Processing of produced radioactive wastes (including high activity waste) requires the use of special industrial facilities and construction of special buildings and structures for arrangement of facilities mentioned as well as for

  17. Encapsulation of radioactive waste

    International Nuclear Information System (INIS)

    Pordes, O.; Plows, J.P.

    1980-01-01

    A method is described for encapsulating a particular radioactive waste which consists of suspending the waste in a viscous liquid encapsulating material, of synthetic resin monomers or prepolymers, and setting the encapsulating material by addition or condensation polymerization to form a solid material in which the waste is dispersed. (author)

  18. Public acceptance in radioactive waste management

    International Nuclear Information System (INIS)

    Diaconu, Stela; Covreag, Ilinca

    2008-01-01

    Radioactive waste, unavoidable by-products of economically developed societies, arises from the production of energy by nuclear fission reactors as well as from medical, research and industrial applications of radioactive materials. The main objective of radioactive waste management is the safety as well the protection of public health and the environment. The first approach for the disposal of radioactive waste was based on the traditional 'decide, announce and defend' model, focused almost exclusively on technical content. In spite of the significant technical progress that would ensure long-term safety, the rate of progress towards implementing such solutions has been slower than expected, partly attributable to an earlier technical optimism and to an underestimation of the societal and political dimensions. It is now broadly recognized that radioactive waste management involves both technical and societal dimensions which cannot be dissociated. Because of changes in society's decision-making environment and heightened public sensitivity to all matters connected with environmental protection, nuclear power, radioactivity, and especially radioactive waste, any decision regarding whether, when and how to implement waste management solutions will typically require thorough public examination and the involvement of many relevant stakeholders. The building of a long-term relationship with the local communities and the waste management facility is one of the most important contributors to sustainable radioactive waste management solutions. A new approach in now in place at international level, based on 'engage, interact and co-operate', for which both technical and societal issues are to be reconciled. That means that the involvement of all interested parties in the decision-making process is a condition for a successful and publicly acceptable implementation of such a project. A central role in the public acceptance of nuclear technologies play the management and

  19. Regulation on radioactive waste management, Governmental Agreement No. 559-98

    International Nuclear Information System (INIS)

    1998-01-01

    This regulation defines the responsibilities on the radioactive waste management in Guatemala including the requirements of users, handling of radioactive wastes, authorization of radioactive waste disposal, transport of radioactive wastes and penalties

  20. Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification

  1. Standardization of radioactive waste categories

    International Nuclear Information System (INIS)

    1970-01-01

    A large amount of information about most aspects of radioactive waste management has been accumulated and made available to interested nations in recent years. The efficiency of this service has been somewhat hampered because the terminology used to describe the different types of radioactive waste has varied from country to country and indeed from installation to installation within a given country. This publication is the outcome of a panel meeting on Standardization of Radioactive Waste Categories. It presents a simple standard to be used as a common language between people working in the field of waste management at nuclear installations. The purpose of the standard is only to act as a practical tool for increasing efficiency in communicating, collecting and assessing technical and economical information in the common interest of all nations and the developing countries in particular. 20 refs, 1 fig., 3 tabs

  2. Research programme on radioactive wastes

    International Nuclear Information System (INIS)

    Eckhardt, A.; Hufschmid, P.; Jordi, S.; Schanne, M.; Vigfusson, J.

    2009-11-01

    This report for the Swiss Federal Department of the Environment, Transport, Energy and Communication (DETEC) takes a look at work done within the framework of the research programme on radioactive wastes. The paper discusses the development of various projects and the associated organisations involved. Both long-term and short-term topics are examined. The long-term aspects of handling radioactive wastes include organisation and financing as well as the preservation of know-how and concepts for marking the repositories. Communication with the general public on the matter is looked at along with public perception, opinion-making and acceptance. Waste storage concepts are looked at in detail and aspects such as environmental protection, monitoring concepts, retrievability and encasement materials are discussed. Finally, ethical and legal aspects of radioactive waste repositories are examined. The paper is completed with appendixes dealing with planning, co-ordination and the responsibilities involved

  3. Public debate - radioactive wastes management

    International Nuclear Information System (INIS)

    2005-01-01

    Between September 2005 and January 2006 a national debate has been organized on the radioactive wastes management. This debate aimed to inform the public and to allow him to give his opinion. This document presents, the reasons of this debate, the operating, the synthesis of the results and technical documents to bring information in the domain of radioactive wastes management. (A.L.B.)

  4. Investigation on design of repository for radioactive waste

    International Nuclear Information System (INIS)

    Zhang Boming; Zhang Ruixue; Wang Fengying

    2010-01-01

    The scheme design of the repository for radioactive waste is introduced according to the traits of radioactive waste in Jiangsu province, such as the style of the repository, lifting facilities, the step for preventing or controlling flood, the aseismatic measure, the pollution prevention and so on. This ensured the radioactive waste and the waste radioactive sources to be stored in security, the area environment not to be polluted. It can improve the use of nuclear technology in Jiangsu province. (authors)

  5. The french low-level waste disposal site 'Centre de l'Aube'. A ten years process, from geological concept to waste deliveries

    International Nuclear Information System (INIS)

    Fernique, J.C.

    1993-01-01

    The 'Centre de la Manche', first French low-level waste disposal site opened in 1969 and will enter the institutional control period around 1994. A creation process for a new disposal was initiated in 1981 when ANDRA prepared a general radioactive waste management Program and presented it to the High Council for Nuclear Safety and Information. After acceptance of the Program, a national site screening was made, based on a conceptual geological model designed from the experience. In 1984, the Minister of Industry announced the pre-selection of 3 counties out of the inventory for preliminary studies that allowed to select l' Aube as a potential site for the new French disposal 'Centre de l'Aube'. The different steps of the process and procedure that brought to the acceptance of the first packages in January 1992 is presented in the paper, as well as the experience recently gained since that date. This additional know-how and expertise is made available by Andra through agreements already existing with various Countries like, among others, Spain, the United States, and Mexico

  6. The nuclear waste in France

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    French people are expecting from authorities that it become possible to recycle the radioactive wastes in order to make them disappear or to transform them in ordinary wastes without radioactivity, and in waiting for this time we can be organised to monitor these waste in order to react without delay if for any reason they become dangerous. (N.C.)

  7. Radioactive waste management

    International Nuclear Information System (INIS)

    Slansky, C.M.

    1975-01-01

    High-level radioactive waste is produced at Idaho Chemical Processing Plant (ICPP) during the recovery of spent highly enriched nuclear fuels. Liquid waste is stored safely in doubly contained tanks made of steel. The liquid waste is calcined to a solid and stored safely in a retrievable form in doubly contained underground bins. The calcine can be treated further or left untreated in anticipation of ultimate storage. Fluidized bed calcination has been applied to many kinds of high-level waste. The environmental impact of high-level waste management at the ICcP has been negligible and should continue to be negligible. 13 refs

  8. Waste characterization for radioactive liquid waste evaporators at Argonne National Laboratory - West

    International Nuclear Information System (INIS)

    Christensen, B. D.

    1999-01-01

    Several facilities at Argonne National Laboratory - West (ANL-W) generate many thousand gallons of radioactive liquid waste per year. These waste streams are sent to the AFL-W Radioactive Liquid Waste Treatment Facility (RLWTF) where they are processed through hot air evaporators. These evaporators remove the liquid portion of the waste and leave a relatively small volume of solids in a shielded container. The ANL-W sampling, characterization and tracking programs ensure that these solids ultimately meet the disposal requirements of a low-level radioactive waste landfill. One set of evaporators will process an average 25,000 gallons of radioactive liquid waste, provide shielding, and reduce it to a volume of six cubic meters (container volume) for disposal. Waste characterization of the shielded evaporators poses some challenges. The process of evaporating the liquid and reducing the volume of waste increases the concentrations of RCIU regulated metals and radionuclides in the final waste form. Also, once the liquid waste has been processed through the evaporators it is not possible to obtain sample material for characterization. The process for tracking and assessing the final radioactive waste concentrations is described in this paper, The structural components of the evaporator are an approved and integral part of the final waste stream and they are included in the final waste characterization

  9. Radioactive waste management at Institute for Nuclear Research (ICN) - Pitesti

    International Nuclear Information System (INIS)

    Bujoreanu, C.

    2004-01-01

    The amounts of liquid and solid wastes accumulated at the Radioactive Wastes Treatment Plant are given. The technologies used for the treatment and conditioning of radioactive wastes are presented. The final product is metallic drum-concrete-radioactive wastes (type A package) for the final disposal at the National Repository Baita, Bihor. The facilities for radioactive waste management at ICN Pitesti are: Plant for treatment, with uranium recovery of liquid radioactive waste resulting from the fabrication of CANDU type nuclear fuel; Plant for treatment of low-active liquid wastes; Plant for conditioning in concrete of the radioactive concentrate obtained during the evaporation treatment of liquid radioactive waste; Plant for incineration of solid radioactive waste contaminated with natural uranium; Plant for treatment and conditioning of organic liquid radioactive waste with tritium content. This wastes are generated by Cernavoda-NPP operation; Plant for conditioning into bitumen of spent ion exchangers at TRIGA reactor. The existing Facility is Baita repository - with two rock cavities of an uranium mine and the total capacity of 21000 containers (200 l drums)

  10. Decree nr 2013-1304 of the 27 December in application of the L. 542-1-2 article of the Code of the Environment and establishing prescriptions of the National Plan for the management of radioactive materials and wastes

    International Nuclear Information System (INIS)

    Ayrault, Jean-Marc; Martin, Philippe; Touraine, Marisol; Le Drian, Jean-Yves; Fioraso, Genevieve

    2013-01-01

    This decree defines the prescriptions of the French PNGMDR (National plan for the management of radioactive materials and wastes) and is addressed to managers, producers or holders of radioactive wastes, and at nuclear safety authorities. After some general measures, the decree addresses the management of temporary or historical situations, the long term management of radioactive materials and wastes, and the global coherence of the management. The appendix presents the classification of radioactive wastes and management solutions developed within the frame of the PNGMDR for the different categories of wastes

  11. Industrial radioactive wastes: what are we talking about?

    International Nuclear Information System (INIS)

    Le Bars, Y.

    2001-01-01

    The subject of radioactive wastes is developed through their origin, their classification, their scale of size. The different storage centers are given and the new channels of radioactive wastes management are tackled. The particular case of high level and long term radioactive wastes is detailed. (N.C.)

  12. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    Tanaka, Akio; Onuma, Tsutomu; Yamazaki, Sei; Miura, Haruki.

    1993-01-01

    The present invention provides a chemical decontamination method for radioactive metal wastes, which are generated from radioactive material handling facilities and the surfaces of which are contaminated by radioactive materials. That is, it has a feature of applying acid dissolution simultaneously with mechanical grinding. The radioactive metal wastes are contained in a vessel such as a barrel together with abrasives in a sulfuric acid solution and rotated at several tens rotation per minute. By such procedures for the radioactive metal wastes, (1) cruds and passive membranes are mechanically removed, (2) exposed mother metal materials are uniformly brought into contact with sulfuric acid and further (3) the mother metal materials dissolve the cruds and the passive membranes also chemically by a reducing dissolution (so-called local cell effect). According to the method of the present invention, stainless steel metal wastes having cruds and passive membranes can rapidly and efficiently be decontaminated to a radiation level equal with that of ordinary wastes. (I.S.)

  13. Proceedings of the Korean Radioactive Waste Society Spring 2010

    International Nuclear Information System (INIS)

    2010-01-01

    This proceedings contains articles of the Korean Radioactive Waste Society Spring 2010. It was held on May 13-14, 2010 in Yesan, Korea. The main topics are as follows: Radioactive wastes policy and decontamination and decommissioning, Radioactive waste treatment, Radioactive waste disposal and site selection, Spent fuel and fuel cycle and Radiation safety and environment. (Yi, J. H.)

  14. Step-By-Step: Life Cycle Radioactive Waste Management

    International Nuclear Information System (INIS)

    2014-01-01

    Radioactive waste is an unavoidable by-product when nuclear technologies are used for electricity production and for beneficial practices in medicine, agriculture, research and industry. When the radioactivity of the waste is above a certain threshold, the waste requires special disposal methods. Through extensive research, standards and approaches have been developed for safely and securely preparing for and managing radioactive waste disposal. In the course of its journey from the point of generation to disposal, radioactive waste undergoes a number of predisposal management treatment steps to transform it into a safe, stable and manageable form suitable for transport, storage and disposal

  15. ECOLOGICAL AND TECHNICAL REQUIREMENTS OF RADIOACTIVE WASTE UTILISATION

    Directory of Open Access Journals (Sweden)

    Gabriel Borowski

    2013-01-01

    Full Text Available The paper presents a survey of radioactive waste disposal technologies used worldwide in terms of their influence upon natural environment. Typical sources of radioactive waste from medicine and industry were presented. In addition, various types of radioactive waste, both liquid and solid, were described. Requirements and conditions of the waste’s storage were characterised. Selected liquid and solid waste processing technologies were shown. It was stipulated that contemporary methods of radioactive waste utilisation enable their successful neutralisation. The implementation of these methods ought to be mandated by ecological factors first and only then economical ones.

  16. Radioactive wastes management: what is the situation?

    International Nuclear Information System (INIS)

    2002-01-01

    This presentation takes stock on the situation of the radioactive wastes management in France. It gives information on the deep underground disposal, the public information, the management of the radioactive wastes in France, the researches in the framework of the law of the 30 december 1991, the underground laboratory of Meuse/Haute-Marne, the national agency for the radioactive wastes management (ANDRA) and its sites. (A.L.B.)

  17. Who regulates the disposal of low-level radioactive waste under the Low-Level Radioactive Waste Policy Act

    International Nuclear Information System (INIS)

    Mostaghel, D.M.

    1988-01-01

    The present existence of immense quantities of low-level nuclear waste, a federal law providing for state or regional control of such waste disposal, and a number of state disposal laws challenged on a variety of constitutional grounds underscore what currently may be the most serious problem in nuclear waste disposal: who is to regulate the disposal of low-level nuclear wastes. This problem's origin may be traced to crucial omissions in the Atomic Energy Act of 1946 and its 1954 amendments (AEA) that concern radioactive waste disposal. Although the AEA states that nuclear materials and facilities are affected with the public interest and should be regulated to provide for the public health and safety, the statute fails to prescribe specific guidelines for any nuclear waste disposal. The Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA) grants states some control over radioactive waste disposal, an area from which they were previously excluded by the doctrine of federal preemption. This Comment discusses the question of who regulates low-level radioactive waste disposal facilities by examining the following: the constitutional doctrines safeguarding federal government authority; area of state authority; grants of specific authority delegations under the LLRWPA and its amendment; and finally, potential problems that may arise depending on whether ultimate regulatory authority is deemed to rest with single states, regional compacts, or the federal government

  18. Managing radioactive waste issues and misunderstandings (radiation realities, energy comparison, waste strategies)

    International Nuclear Information System (INIS)

    Rosen, M.

    2001-01-01

    The technical specialist is confident that radioactive waste can be safely managed, but many in the public remain totally unconvinced. There are issues and deep-seated misunderstandings that drive public doubts. Currently, a growing concern with pollution from other industrial waste is enabling radioactive waste issues to be debated in a wider context that allows comparisons with other potentially hazardous waste, particularly from energy generation sources. Health effects and time period issues are not unique to radioactive waste. This paper concentrates on 3 topics. The first concerns radiation health effects where the real realities of radiation are covered. The large misunderstandings that exist about radiation and its health effects have led to an almost zero health impact regulatory policy. A policy which must be more fully understood and dealt with. The second topic deals with a few revealing comparisons about the various energy generation systems. Nuclear power's 10 thousand fold lower fuel requirements, compared with a comparable fossil fuelled plant, is a dominating factor decisively minimising environmental impacts. The third topic examines waste disposal strategies. Extraordinarily small radioactive waste quantities permit a confinement strategy for disposal as opposed to the more common dispersion strategy for most toxic waste. The small quantities coupled with radioactive decay, contrary to the public perception, make any potential hazard from both low and high level radioactive waste exceedingly small. (author)

  19. Juridical and institutional aspects of radioactive wastes

    International Nuclear Information System (INIS)

    Faria, N.M. de.

    1988-07-01

    The author proposes a discussion of a new branch of the public law - the nuclear law. The main subject is the radioactive waste. Its production is a decisive problem in the utilization of nuclear energy being one of the discussed questions from the technical, economical, political, social and juridical points of view. Countries have been striving to establish their own policies related to radioactive wastes having always in mind the man and the environmental protection. In this scenario the author developed the investigations trying to discuss juridical and institutional aspects of radioactive wastes on the international level as well as in different countries with the aim to establish the juridical basis of a radioactive wastes policy in Brazil [pt

  20. Geological storage of radioactive waste

    International Nuclear Information System (INIS)

    Barthoux, A.

    1983-01-01

    Certain radioactive waste contains substances which present, although they disappear naturally in a progressive manner, a potential risk which can last for very long periods, of over thousands of years. To ensure a safe long-term handling, provision has been made to bury it deep in stable geological structures which will secure its confinement. Radioactive waste is treated and conditioned to make it insoluble and is then encased in matrices which are to immobilize them. The most radioactive waste is thus incorporated in a matrix of glass which will ensure the insulation of the radioactive substances during the first thousands of years. Beyond that time, the safety will be ensured by the properties of the storage site which must be selected from now on. Various hydrogeological configurations have been identified. They must undergo detailed investigations, including even the creation of an underground laboratory. This document also presents examples of underground storage installations which are due to be built [fr

  1. The very low level radioactive military waste in France

    International Nuclear Information System (INIS)

    2005-01-01

    The recommendations of the Observatory of French nuclear weapons call attention to the fact the I.N.B.S. depend on the services of the High Commissioner of Atomic Energy;call attention to the fact that the reactors of the nuclear propulsion ( only military ones) are out of regulation: independent studies have to be realised on three harbors (Brest, Toulon, Cherbourg) for an evaluation about the environmental and sanitary consequences of the presence of nuclear facilities near urban areas that is not the case for any civil nuclear installation; call attention on the dismantling operations actually in some military nuclear installations, who is in charge of the control of the different steps of these dismantling operations, call attention on the setting up of radioactive waste storage ( very low activity at Saint-Priest, Rhone, very high activity with americium at Valduc, long lived elements at Cadarache, tritium waste at Valduc, alpha waste at Valduc waste not under the control of an independent organism; call attention on the final destination of depleted uranium; call attention on the bad management of tritium by the installation of nuclear weapons fabrication, about the actual stocks in plutonium and uranium. (N.C.)

  2. Must we be afraid by the radioactive waste?

    International Nuclear Information System (INIS)

    2002-01-01

    In the framework of the information on radioactive waste, scientists and politicians give information on the radioactive waste management in France, the researches in the framework of the law of the 30 december 1991, the national agency for the radioactive waste (ANDRA) and its sites. (A.L.B.)

  3. Method for burning radioactive wastes

    International Nuclear Information System (INIS)

    Hattori, Akinori; Tejima, Takaya.

    1987-01-01

    Purpose: To completely process less combustible radioactive wastes with no excess loads on discharge gas processing systems and without causing corrosions to furnace walls. Method: Among combustible radioactive wastes, chlorine-containing less combustible wastes such as chlorine-containing rubbers and vinyl chlorides, and highly heat generating wastes not containing chloride such as polyethylene are selectively packed into packages. While on the other hand, packages of less combustible wastes are charged into a water-cooled jacket type incinerator intermittently while controlling the amount and the interval of charging so that the temperature in the furnace will be kept to lower than 850 deg C for burning treatment. Directly after the completion of the burning, the packed highly heat calorie producing wastes are charged and subjected to combustion treatment. (Yoshihara, H.)

  4. Report on radioactive waste disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The safe management of radioactive wastes constitutes an essential part of the IAEA programme. A large number of reports and conference proceedings covering various aspects of the subject have been issued. The Technical Review Committee on Underground Disposal (February 1988) recommended that the Secretariat issue a report on the state of the art of underground disposal of radioactive wastes. The Committee recommended the need for a report that provided an overview of the present knowledge in the field. This report covers the basic principles associated with the state of the art of near surface and deep geological radioactive waste disposal, including examples of prudent practice, and basic information on performance assessment methods. It does not include a comprehensive description of the waste management programmes in different countries nor provide a textbook on waste disposal. Such books are available elsewhere. Reviewing all the concepts and practices of safe radioactive waste disposal in a document of reasonable size is not possible; therefore, the scope of this report has been limited to cover essential parts of the subject. Exotic disposal techniques and techniques for disposing of uranium mill tailings are not covered, and only brief coverage is provided for disposal at sea and in the sea-bed. The present report provides a list of references to more specialized reports on disposal published by the IAEA as well as by other bodies, which may be consulted if additional information is sought. 108 refs, 22 figs, 2 tabs

  5. Radioactive waste management centers: an approach

    International Nuclear Information System (INIS)

    Lotts, A.L.

    1980-01-01

    Radioactive waste management centers would satisfy the need for a cost-effective, sound management system for nuclear wastes by the industry and would provide a well integrated solution which could be understood by the public. The future demands for nuclear waste processing and disposal by industry and institutions outside the United States Government are such that a number of such facilities are required between now and the year 2000. Waste management centers can be organized around two general needs in the commercial sector: (1) the need for management of low-level waste generated by nuclear power plants, the once-through nuclear fuel cycle production facilities, from hospitals, and other institutions; and (2) more comprehensive centers handling all categories of nuclear wastes that would be generated by a nuclear fuel recycle industry. The basic technology for radioactive waste management will be available by the time such facilities can be deployed. This paper discusses the technical, economic, and social aspects of organizing radioactive waste managment centers and presents a strategy for stimulating their development

  6. Law project on the radioactive materials and wastes management 2006 recommendations presented by Anne Duthilleul; Projet de loi sur la gestion des matieres et des dechets radioactifs 2006 avis presente par Mme Anne Duthilleul

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This document provides recommendations on the law project concerning the radioactive material and wastes management. It precises the law objectives, the french particularities concerning the radioactive wastes and materials management, the public debate in France, the evaluation of the researches, the recommendations of the economic and social council. (A.L.B.)

  7. Safety of geological disposal of high-level and long-lived radioactive waste in France

    International Nuclear Information System (INIS)

    2006-01-01

    A major activity of the Nuclear Energy Agency (NEA) in the field of radioactive waste management is the organisation of independent, international peer reviews of national studies and projects. The peer reviews help national programmes assess accomplished work. The general comments expressed in these reviews are also of potential interest to other member countries. The French Government requested that the NEA organize an international peer review of the Dossier 2005 Argile produced by the National Agency for Radioactive Waste Management (ANDRA). The scope and objectives of the review were laid out in the Terms of Reference (ToR). The peer review was to inform the French Government whether the Dossier 2005 Argile was: consistent with international practices and with other national disposal programmes, in particular those considering argillaceous formations, and whether the future research needs were consistent with the available knowledge basis and priorities well-identified. The French authorities were particularly interested in receiving detailed recommendations for specific improvements, notably if the decision-making process led to a site-selection phase. According to the ToR, the NEA Secretariat established an international review team (IRT) made up of ten international specialists, including one member of the NEA Secretariat. The experts were chosen to bring complementary expertise to the review. This report presents the consensus view of the IRT. It is based on the Dossier 2005 Argile and supporting documents, on information provided by ANDRA in answers to questions raised by the IRT, and on direct interactions with staff from ANDRA during two working seminars in France. (author)

  8. Shallow land disposal of radioactive waste

    International Nuclear Information System (INIS)

    1987-01-01

    The application of basic radiation protection concepts and objectives to the disposal of radioactive wastes requires the development of specific reference levels or criteria for the radiological acceptance of each type of waste in each disposal option. This report suggests a methodology for the establishment of acceptance criteria for the disposal of low-level radioactive waste containing long-lived radionuclides in shallow land burial facilities

  9. High-level radioactive waste disposal problem in Russia

    International Nuclear Information System (INIS)

    Velichkin, Vasily I.

    1999-01-01

    This presentation on radioactive waste management in Russia discusses criteria for the selection of disposal sites, how the various types of waste should be contained and stored, and gives a list showing the liable owner, type, volume, activity and storage place of the present amount of radioactive waste. The bulk of this waste, in volume and radioactivity, is at the enterprises of Minatom of the Russian Federation

  10. Radioactive waste management in perspective

    International Nuclear Information System (INIS)

    1996-01-01

    This report drafted by the Nuclear Energy Agency (NEA) deals with the basic principles and the main stages of radioactive waste management. The review more precisely focuses on what relates to environment protection, safety assessment, financing, social issues, public concerns and international co-operation. An annex finally summarises the radioactive waste management programs that are implemented in 15 of the NEA countries. (TEC). figs

  11. Final disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kroebel, R [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Projekt Wiederaufarbeitung und Abfallbehandlung; Krause, H [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Abt. zur Behandlung Radioaktiver Abfaelle

    1978-08-01

    This paper discusses the final disposal possibilities for radioactive wastes in the Federal Republic of Germany and the related questions of waste conditioning, storage methods and safety. The programs in progress in neighbouring CEC countries and in the USA are also mentioned briefly. The autors conclude that the existing final disposal possibilities are sufficiently well known and safe, but that they could be improved still further by future development work. The residual hazard potential of radioactive wastes from fuel reprocessing after about 1000 years of storage is lower that of known inorganic core deposits.

  12. Management of radioactive wastes produced by users of radioactive materials

    International Nuclear Information System (INIS)

    1985-01-01

    This report is intended as a document to provide guidance for regulatory, administrative and technical authorities who are responsible for, or are involved in, planning, approving, executing and reviewing national waste management programmes related to the safe use of radioactive materials in hospitals, research laboratories, industrial and agricultural premises and the subsequent disposal of the radioactive wastes produced. It provides information and guidance for waste management including treatment techniques that may be available to establishments and individual users

  13. System for disposing of radioactive waste

    International Nuclear Information System (INIS)

    Gablin, K.A.; Hansen, L.J.

    1979-01-01

    A system is described for disposing of radioactive waste material from nuclear reactors by solidifying the liquid components to produce an encapsulated mass adapted for disposal by burial. The method contemplates mixing of radioactive waste materials, with or without contained solids, with a setting agent capable of solidifying the waste liquids into a free standing hardened mass, placing the resulting liquid mixture in a container with a proportionate amount of a curing agent to effect solidification under controlled conditions, and thereafter burying the container and contained solidified mixture. The setting agent is a water-extendable polymer consisting of a suspension of partially polymerized particles of urea formaldehyde in water, and the curing agent is sodium bisulfate. Methods are disclosed for dewatering slurry-like mixtures of liquid and particulate radioactive waste materials, such as spent ion exchange resin beads, and for effecting desired distribution of non-liquid radioactive materials in the central area of the container prior to solidification, so that the surrounding mass of lower specific radioactivity acts as a partial shield against higher radioactivity of the non-liquid radioactive materials. The methods also provide for addition of non-radioactive filler materials to dilute the mixture and lower the overall radioactivity of the hardened mixture to desired Lowest Specific Activity counts. An inhibiting agent is added to the liquid mixture to adjust the solidification time, and provision is made for adding additional amounts of setting agent and curing agent to take up any free water and further encapsulate the hardened material within the container. 30 claims

  14. System for disposing of radioactive waste

    International Nuclear Information System (INIS)

    Gablin, K.A.; Hansen, L.J.

    1977-01-01

    A system is described for disposing of radioactive waste material from nuclear reactors by solidifying the liquid components to produce an encapsulated mass adapted for disposal by burial. The method contemplates mixing of radioactive waste materials, with or without contained solids, with a setting agent capable of solidifying the waste liquids into a free standing hardened mass, placing the resulting liquid mixture in a container with a proportionate amount of a curing agent to effect solidification under controlled conditions, and thereafter burying the container and contained solidified mixture. The setting agent is a water-extendable polymer consisting of a suspension of partially polymerized particles of urea formaldehyde in water, and the curing agent is sodium bisulfate. Methods are disclosed for dewatering slurry-like mixtures of liquid and particulate radioactive waste materials, such as spent ion exchange resin beads, and for effecting desired distribution of non-liquid radioactive materials in the central area of the container prior to solidification, so that the surrounding mass of lower specific radioactivity acts as a partial shield against higher radioactivity of the non-liquid radioactive materials. The methods also provide for addition of non-radioactive filler materials to dilute the mixture and lower the overall radioactivity of the hardened mixture to desired Lowest Specific Activity counts. An inhibiting agent is added to the liquid mixture to adjust the solidification time, and provision is made for adding additional amounts of setting agent and curing agent to take up any free water and further encapsulate the hardened material within the container

  15. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  16. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1993-01-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities were built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Areas to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemicals as well as radioactive constituents. This paper focuses on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  17. Radioactive waste and transport. Chapter 6

    International Nuclear Information System (INIS)

    1978-01-01

    A brief definition of the nature of radioactive waste is followed by a more detailed discussion of high level waste, its composition the amounts involved, storage in liquid and in solid form and the storage of non-reprocessed spent fuel. The final disposal of high level waste in deep geological structures is then described, based on the Swedish KBS study. The effectiveness of the artificial and natural barriers in preventing the radioactive substances from reaching the biosphere is discussed. American and Swedish risk analyses are briefly discussed, and practical experience presented. Low and medium level wastes are thereafter treated in a similar, though briefer manner. Transport of radioactive materials, fresh fuel, spent fuel and waste is then dealt with. Regulations for the containers and their tests are briefly presented and the risk of accidents, theft and sabotage during transport are discussed. (JIW)

  18. Radioactive waste containment

    International Nuclear Information System (INIS)

    Beranger, J.-C.

    1978-01-01

    The problem of confining the radioactive wastes produced from the nuclear industry, after the ore concentration stage, is envisaged. These residues being not released into the environment are to be stored. The management policy consists in classifying them in view of adapting to each type of treatment, the suitable conditioning and storage. This classification is made with taking account of the following data: radioactivity (weak, medium or high) nature and lifetime of this radioactivity (transuranians) physical nature and volume. The principles retained are those of volume reduction and shaping into insoluble solids (vitrification) [fr

  19. The low-level radioactive waste crisis

    International Nuclear Information System (INIS)

    Bord, R.J.

    1988-01-01

    According to the author, the goals of the 1980 Low-Level Radioactive Waste Policy Act have not been met. That act stipulated that regional disposal sites were to be established by 1986. To date, no new sites have been established and none are anywhere near the construction phase. Congress, responding to existing impasse, has extended the deadline to the end of 1992 with the passage of the Low-Level Radioactive Waste Policy Act. The reasons for the impasse are no mystery: local intransigence regarding waste of any kind, public fears of radiation hazards, and politicians' anxieties about their constituents' fears. The focus of this paper is the viability of ongoing attempts to overcome public intransigence in the case of disposal siting for low-level radioactive waste (LLRW)

  20. Radioactive waste processing method

    International Nuclear Information System (INIS)

    Sakuramoto, Naohiko.

    1992-01-01

    When granular materials comprising radioactive wastes containing phosphorus are processed at first in a fluidized bed type furnace, if the granular materials are phosphorus-containing activated carbon, granular materials comprising alkali compound such as calcium hydroxide and barium hydroxide are used as fluidizing media. Even granular materials of slow burning speed can be burnt stably in a fluidizing state by high temperature heat of the fluidizing media, thereby enabling to take a long burning processing time. Accordingly, radioactive activated carbon wastes can be processed by burning treatment. (T.M.)

  1. RADWASS update. Radioactive Waste Safety Standards Programme

    International Nuclear Information System (INIS)

    Delattre, D.

    2000-01-01

    By the late 1980s, the issue of radioactive wastes and their management was becoming increasingly politically important. The IAEA responded by establishing a high profile family of safety standards, the Radioactive Waste Safety Standards (RADWASS). By this means, the IAEA intended to draw attention to the fact that well-established procedures for the safe management of radioactive wastes already were in place. The programme was intended to establish an ordered structure for safety documents on waste management and to ensure comprehensive coverage of all relevant subject areas. RADWASS documents are categorized under four subject areas - discharges, predisposal, disposal, and environmental restoration. The programme is overseen through a formalized review and approval mechanism that was established in 1996 for all safety standards activities. The Waste Safety Standards Committee (WASSC) is a standing body of senior regulatory officials with technical expertise in radioactive waste safety. To date, three Safety Requirements and seven Safety Guides have been issued

  2. 40 CFR 147.3005 - Radioactive waste injection wells.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Radioactive waste injection wells. 147... the Navajo, Ute Mountain Ute, and All Other New Mexico Tribes § 147.3005 Radioactive waste injection... dispose of radioactive waste (as defined in 10 CFR part 20, appendix B, table II, but not including high...

  3. Ocean abandonment of radioactive waste. 2

    International Nuclear Information System (INIS)

    Kouyama, Hiroaki

    1994-01-01

    Now, the nuclear powered submarines armed with ballistic missiles have become the main strength of navy. In Russia, eight nuclear powered icebreakers are operated. Mainly PWRs are used for these nuclear ships. The fuel exchange for nuclear powered submarines is carried out after the use for nearly ten years, therefore, the degree of enrichment of U-235 in fuel seems considerably high. So far, the sinking accidents of five nuclear powered submarines were reported. Former USSR began the ocean abandonment of radioactive waste in 1959, and continued it up to recent date. The northern sea area where the abandonment was carried out and the abandoned amount of radioactivity are shown. Also those in Far East sea area are shown. The management system for radioactive waste in Russia, the course after the abandonment of liquid waste in Japan Sea by Russian navy, the response of Japan regarding the ocean abandonment of radioactive waste and so on are described. (K.I.)

  4. Processing method for radioactive liquid waste

    International Nuclear Information System (INIS)

    Yasumura, Keijiro

    1991-01-01

    Drainages, such as water after used for washing operators' clothes and water used for washing hands and for showers have such features that the radioactive concentration is extremely low and detergent ingredients and insoluble ingredients such as waste threads, hairs and dirts are contained. At present, waste threads are removed by a strainer. Then, after measuring the radioactivity and determining that the radioactivity is less than a predetermined concentration, they are released to circumstances. However, various organic ingredients such as detergents and dirts in the liquid wastes are released as they are and it is not preferred in respect of environmental protection. Then, in the present invention, activated carbon is filled in a container orderly so that the diameter of the particles of the activated carbon is increased in the upper layer and decreased in the lower layer, and radioactive liquid wastes are passed through the container. With such a constitution. Both of soluble substances and insoluble substances can be removed efficiently without causing cloggings. (T.M.)

  5. Waste inventory record keeping systems (WIRKS) for the management and disposal of radioactive waste

    International Nuclear Information System (INIS)

    2001-06-01

    This report is intended to serve Member States planning to develop or implement radioactive waste disposal programmes and to discuss possible ways for compiling and managing information about the inventories in their radioactive waste repositories, which includes low and intermediate level waste (short lived and long lived) and high level radioactive waste. This report identifies generic information that may be recorded in a Waste Inventory Record Keeping System (WIRKS), as identified by consultants and based on their collective expertise in radioactive waste management. The report provides examples of WIRKS implementation in some countries

  6. Radioactive waste management for reactors

    International Nuclear Information System (INIS)

    Rodger, W.A.

    1974-01-01

    Radioactive waste management practices at nuclear power plants are summarized. The types of waste produced and methods for treating various types of wastes are described. The waste management systems, including simplified flow diagrams, for typical boiling water reactors and pressurized water reactors are discussed. (U.S.)

  7. Safety disposal studies of radioactive and hazardous wastes using cement

    International Nuclear Information System (INIS)

    Aly, M.M.E.

    2000-01-01

    radioactive waste is generated from the production of nuclear energy and from the use of radioactive materials applications, agriculture and medicine. the important of safe management of radioactive waste for the protection of human health and the environment has long been recognized. conditioning of radioactive waste is the transform of radioactive waste into a suitable form for storage and disposal. common immobilization methods include solidification of low radioactive waste in cement or bitumen.in order to improve cement properties to decrease the release of liquid radioactive waste into the environment and its dispersion to a level where the risks to individuals, population and the environment

  8. Mental Models of Radioactivity and Attitudes towards Radioactive Waste

    International Nuclear Information System (INIS)

    Zeleznik, N.

    2010-01-01

    Siting of a radioactive waste repository presents a great problem in almost every country that produces such waste. The main problem is not a technical one, but socio-psychological, namely the acceptability of this kind of repository. Previous research on people's perception of the LILW repository construction, their attitudes towards radioactive waste, their willingness to accept it, indicated significant differences in answers of experts and lay persons, mainly regarding evaluation of the consequences of repository construction. Based on the findings of pilot investigations a mental model approach to the radioactivity, radioactive waste and repository was used as a method for development better risk communication strategies with local communities. The mental models were obtained by adjustment of the method developed by Morgan and co-workers where expert model of radioactivity is compared with mental model of lay people obtained through individual opened interviews. Additional information on trust, risk perception, role of main actors in the site selection process and their credibility was gained with the overall questionnaire on the representative sample of Slovenian population. Results of the survey confirm some already known findings, in addition we gained new cognitions and with analyses obtained the relationships and ratios between different factors, which are characteristics both for the general public and for the public, which is involved in the site selection process for a longer period and has been living beside a nuclear power plant for one generation. People have in general negative associations regarding the repository, the perceived risk for nuclear facilities is high, and trust in representatives of governmental institutions is low. Mental models of radioactivity, radioactive waste and the LILW repository are mostly irregular and differ from the experts' models. This is particularly valid for the models of radioactivity and the influences of

  9. Purification of radioactive waste oil by a supercritical fluid

    International Nuclear Information System (INIS)

    Yoo, Jaeryong; Sung, Jinhyun; Park, Kwangheon; Kim, Hongdoo; Kim, Hakwon; Lim, Taeyoon; Yim, Sanghak; Yoon, Weonseob

    2006-01-01

    The radioactive waste oil from the nuclear industry is potentially hazardous due to its possibility to contaminate soil and underwater. Pollutants in waste oil are generally radioactive heavy metals or organo-metals. Radioactive waste oils are highly viscous fluids that are similar to used-motor oils. Several processes have been developed to regenerated used motor oil, such as acid clay treatment, chemical addition, vacuum distillation, thermal cracking and hydrofinishing. However, these technologies are difficult to apply to separating radioactive nuclides from radioactive waste oils. In recent years, our laboratory developed a membrane method for the regeneration of used motor oils. We applied supercritical Co2 (scCO2) as a viscosity reducing additive to waste oils at a lower process temperature in order to improve membrane permeability and thus the energy saving. However, the membrane cannot filter the contaminants in radioactive waste oil that are not particles, such as radioactive ions in impurity water in the oil. In this paper, we suggest a method extracting clean oil from the radioactive waste oil rather than filtering by a supercritical fluid. We selected R22, a refrigerant, as a solvent for extraction. R22 has a mild critical point - 96.1 .deg. and 49.9bar. Regeneration of waste oils by extracting clean oil using a supercritical fluid such as R22 is easy to handle and reduce secondary wastes. In this paper, we examine the feasibility of R22 in extracting clean oil from radioactive waste oils

  10. The national plan of radioactive materials and wastes management. ASN's notice about the choice of the sites to be investigated in view of the setting up of a disposal facility for low activity/long living wastes

    International Nuclear Information System (INIS)

    2009-07-01

    This short presentation, given by the national safety authority (ASN) at the meeting of July 1, 2009 of the high committee for the nuclear safety transparency and information (HCTISN), presents, first, the second French national plan of radioactive materials and wastes management (PNGMDR) with its main priorities, and then, the choice of the sites to survey in view of the setting up of a disposal facility for low level/long living wastes. The ASN expresses its opinion about the criteria retained by the ANDRA (the national agency of radioactive waste management) to select the most suitable sites. (J.S.)

  11. Transportation of radioactive wastes from nuclear fuel cycles

    International Nuclear Information System (INIS)

    1979-09-01

    This paper discusses current and foreseen radioactive waste transportation systems as they apply to the INFCE Working Group 7 study. The types of wastes considered include spent fuel, which is treated as a waste in once-through fuel cycles; high-, medium-, and low-level waste; and gaseous waste. Regulatory classification of waste quantities and containers applicable to these classifications are discussed. Radioactive wastes are presently being transported in a safe and satisfactory manner. None of the INFCE candidate fuel cycles pose any extraordinary problems to future radioactive waste transportation and such transportation will not constitute a decisive factor in the choice of a preferred fuel cycle

  12. Radioactive waste management profiles

    International Nuclear Information System (INIS)

    1991-10-01

    In 1989, the International Atomic Energy Agency began development of the Waste Management Data Base (WMDB) to, primarily, establish a mechanism for the collection, integration, storage, and retrieval of information relevant to radioactive waste management in Member States. This report is a summary and compilation of the information contained in the data base. The WMDB contains information and data on several aspects of waste management and offer a ready source of information on such activities as R and D efforts, waste disposal plans and programmes, important programme milestones, waste volume projections, and national and regulatory policies. This report is divided into two parts. Part one describes the Waste Management Data Base system and the type of information it contains. The second part contains data provided by Member States between August 1989 and December 1990 in response to a questionnaire sent by the Agency. However, if a Member State did not respond to the questionnaire, data from IAEA sources, such as technical assistance mission reports, were used - where such data exist. The WMDB system became operational in January 1991. The type of information contained in the data base includes radioactive waste management plans, policies and activities in Member States

  13. The structures and stability of media intended for the immobilization of high level radioactive waste

    International Nuclear Information System (INIS)

    Tempest, P.A.

    1979-05-01

    High level radioactive waste contains about 40 different elements and, in time, many of these elements are transformed by radioactive decay into different-sized atoms with new chemical properties. The suitability of ordered crystal structures and unordered glass structures as media for immobilising the waste elements is compared. The structural properties of a mixture of synthetic minerals (SYNROC) are described and the various minerals' ability to accommodate ions of different radii and charge assessed. Similary the unordered structure of glass is examined and the probability of the glass remaining non-crystalline during manufacture and storage taken into account. Alternative glassification technologies in the form of the French AVM continuous process and the UK HARVEST batch processes are described and compared, and their likely effect on the structural properties of the final solid glass block considered. (author)

  14. Operation of low-level radioactive waste incinerator

    International Nuclear Information System (INIS)

    Choi, E.C.; Drolet, T.S.; Stewart, W.B.; Campbell, A.V.

    1979-01-01

    Ontaro Hydro's radioactive waste incinerator designed to reduce the volume of low-level combustible wastes from nuclear generating station's was declared in-service in September 1977. Hiterto about 1500 m 3 of combustible waste have been processed in over 90 separate batches. The process has resulted in 40:1 reduction in the volume and 12.5:1 reduction in the weight of the Type 1 wastes. The ultimate volume reduction factor after storage is 23:1. Airborne emissions has been maintained at the order of 10 -3 to 10 -5 % of the Derived Emission Limits. Incineration of radioactive combustible wastes has been proven feasible, and will remain as one of the most important processes in Ontario Hydro's Radioactive Waste Management Program

  15. Final repositories for high-level radioactive waste; Endlagerung hochradioaktiver Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-10-15

    The brochure on final repositories for high-level radioactive waste covers the following issues: What is the origin of radioactive wastes? How large are the waste amounts? What is going to happen with the wastes? What is the solution for the Waste disposal? A new site search is started. Safety requirements for the final disposal of high-level radioactive wastes. Comparison of host rocks. Who is responsible and who will pay? Final disposal of high-level radioactive wastes worldwide. Short summary: History of the search for a final repository for high-level radioactive wastes in Germany.

  16. The French methodology for EBS confirmation and demonstration

    International Nuclear Information System (INIS)

    Plas, F.; Voinis, S.; Mayer, S.

    2007-01-01

    The December 30, 1991 French Waste Act entrusted ANDRA, the French national agency for radioactive waste management, with the task of assessing the feasibility of deep geological disposal of high- and medium-level long-lived waste (HLW and ILW, respectively C-waste and B-waste types in French) plus spent fuel (CU in French). In that context, the 'Dossier 2005 Argile' submitted by ANDRA presents the feasibility assessment - with regard to the technical capacity to accommodate all wastes, to reversibility, and to safety - of a radioactive waste disposal in a clay formation studied at the Meuse/Haute-Marne URL. This report was built upon an iterative approach between site characterisation, design, modelling, phenomenological analysis and safety analysis, in which two principles always guided the elaboration of the safety case: the principle of robustness - repository components must maintain their functionality given reasonable solicitations, taking into account uncertainties on the nature and level of these solicitations; and the principle of demonstrability - safety must be verified without requiring complex demonstrations, and based on multiple lines of evidence/argument (numerical simulation, qualitative arguments such as use of natural analogues, experiments and technological demonstrators). In that respect, the EBS definition, demonstration and confirmation of design is a part of the overall safety case. The 'Dossier 2005 Argile' was submitted to three independent peer reviews. The aim. of this article is to present the methodology that ANDRA implemented in the context of 'Dossier 2005 Argile' for defining, demonstrating and confirming the EBS design as well as the future programme with respect with the new Act of 28 June 2006. (author)

  17. ''New ' technology of solidification of liquid radioactive waste'

    International Nuclear Information System (INIS)

    Sytyl, V.A.; Svistova, L.M.; Spiridonova, V.P.

    1998-01-01

    It is generally accepted that the best method of processing of radioactive waste is its solidification and then storage. At present time, three methods of solidification of radioactive waste are widely used in the world: cementation, bituminous grouting and vitrification. But they do not solve the problem of ecologically processing of waste because of different disadvantages. General disadvantages are: low state of filling, difficulties in solidification of the crystalline hydrated forms of radioactive waste; particular sphere of application and economical difficulties while processing the great volume of waste. In connection with it the urgent necessity is emerging: to develop less expensive and ecologically more reliable technology of solidification of radioactive waste. A new method of solidification is presented with its technical schema. (N.C.)

  18. Management of radioactive wastes with negligible heat generation

    International Nuclear Information System (INIS)

    Alter, U.

    1990-01-01

    In the Federal Republic of Germany only one company is responsible for the management of radioactive wastes with negligible heat generations. This is the Company for Nuclear Service (GNS mbH). It was the intention of the competent authorities of the FRG to intensify state control during conditioning, intermediate storage and transport of low- and medium level radioactive waste. A guideline provides that the responsibility of the waste producers and of those concerned with conditioning, storage and transport of radioactive waste is assigned in the individual case and that the qualitative and quantitative registration of all waste streams will be ensured. An overview of the radioactive waste management within the last two years in the FRG is presented. (orig./DG)

  19. Radioactive waste from non-power applications in Sweden

    International Nuclear Information System (INIS)

    Haegg, Ann-Christin; Lindbom, Gunilla; Persson, Monica

    2001-01-01

    Full text: The system for handling of radioactive waste from the Nuclear Fuel Cycle in Sweden is well established and has been in use for many years. Radioactive waste from other sources is not always handled as rigorously. The Swedish Radiation Protection Institute, SSI has identified the issue and therefore initiated a study with the aim to achieve a sufficient system for handling and disposal of radioactive waste from all sources of radioactive waste. In this paper we discuss some of the sources of radioactive waste and the specific problems they represent. We give a brief description on how they are regulated and handled today and identify some interesting issues. Conventional industry, hospitals, research and education: In the conventional industry the use of different types of radioactive sources is common. The size and type of radioactive source depends on the application (from some megaBq up to thousands of terraBq). The radioactive waste from hospitals, research institutions and pharmaceutical or bio-technical industries consists mainly of very short-lived radionuclides. Also most sealed sources used in the medical field contains short-lived radionuclides. According to the Swedish Radiation Protection Act a licence is needed for the use of sealed sources exceeding 50 kiloBq. For hospitals and research institutes the SSI issues one license covering all radioactive sources below 500 megaBq up to a summary limit depending on the application. All sources with activity exceeding 500 megaBq require a separate license. SSI has issued about 2500 licences. For each licence an annual fee is paid to the SSI. When the radioactive source has fulfilled its purpose the licensee is obliged to inform the SSI that the source is no longer in use and show a certificate from the recognised waste facility. Not until this has been done the licensee is released from its responsibilities. SSI has issued regulations on Radioactive Waste Not Associated with Nuclear Energy. These

  20. Treatment and disposal of radioactive wastes and countermeasures

    International Nuclear Information System (INIS)

    Nomura, Kiyoshi

    1990-01-01

    The treatment and disposal of radioactive wastes are one of important subjects, together with the development of dismantling techniques accompanying the decommissioning measures for nuclear power plants and the development of reprocessing techniques for nuclear fuel cycle. About 25 years have elapsed since the beginning of commercial nuclear power generation in 1966, and the time that the solution of the problems of waste treatment and disposal must be tackled on full scale has come. The features and the amount of generation of radioactive wastes, the way of thinking on the treatment and disposal, and the present status of the treatment and disposal are outlined. For securing the stable supply of energy and solving the environmental problem of the earth such as acid rain and warming, nuclear power generation accomplishes important roles. The objective of waste treatment is based on the way of thinking of 'as low as reasonably achievable (ALARA)'. The radioactive wastes are classified into alpha waste and beta-gamma waste. The present status of RI wastes, the techniques of treating radioactive wastes, the nuclide separation, extinction treatment and the disposal in strata of high level radioactive wastes and the disposal of low level wastes are reported. (K.I.)

  1. Radioactive waste treatment technology at Czech nuclear power plants

    International Nuclear Information System (INIS)

    Kulovany, J.

    2001-01-01

    This presentation describes the main technologies for the treatment and conditioning of radioactive wastes at Czech nuclear power plants. The main technologies are bituminisation for liquid radioactive wastes and supercompaction for solid radioactive wastes. (author)

  2. Hanford's Radioactive Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    McKenney, D.E.

    1995-01-01

    The Radioactive Mixed Waste Disposal Facility, is located in the Hanford Site Low-Level Burial Grounds and is designated as Trench 31 in the 218-W-5 Burial Ground. Trench 31 is a Resource Conservation and Recovery Act compliant landfill and will receive wastes generated from both remediation and waste management activities. On December 30, 1994, Westinghouse Hanford Company declared readiness to operate Trench 31, which is the Hanford Site's (and the Department of Energy complex's) first facility for disposal of low-level radioactive mixed wastes

  3. Radioactive waste solidification material

    International Nuclear Information System (INIS)

    Nishihara, Yukio; Wakuta, Kuniharu; Ishizaki, Kanjiro; Koyanagi, Naoaki; Sakamoto, Hiroyuki; Uchida, Ikuo.

    1992-01-01

    The present invention concerns a radioactive waste solidification material containing vermiculite cement used for a vacuum packing type waste processing device, which contains no residue of calcium hydroxide in cement solidification products. No residue of calcium hydroxide means, for example, that peak of Ca(OH) 2 is not recognized in an X ray diffraction device. With such procedures, since calcium sulfoaluminate clinker and Portland cement themselves exhibit water hardening property, and slugs exhibit hydration activity from the early stage, the cement exhibits quick-hardening property, has great extension of long term strength, further, has no shrinking property, less dry- shrinkage, excellent durability, less causing damages such as cracks and peeling as processing products of radioactive wastes, enabling to attain highly safe solidification product. (T.M.)

  4. International co-operation for safe radioactive waste management

    International Nuclear Information System (INIS)

    1983-01-01

    As a specialised inter-governmental body, NEA pursues three main objectives for its radioactive waste management programme: - The promotion of studies to improve the data base available in support of national programmes. - The support of Research and Development through co-ordination of national activities and promotion of international projects. - An improvement in the general level of understanding of waste management issues and options, particularly in the field of waste disposal. The management of radioactive waste from nuclear activities covers several sequences of complex technical operations. However, as the ultimate objective of radioactive waste management is the disposal of the waste, the largest part of the work programme is directed towards the analysis of disposal options. In addition, NEA is active in various other areas of waste management, such as the treatment and conditioning of waste, the decommissioning of nuclear facilities and the institutional aspects of the long term management of radioactive waste

  5. Radioactive wastes and spent fuels management in Argentina

    International Nuclear Information System (INIS)

    Maset, Elvira R.

    2006-01-01

    CNEA was created in 1950 and since then has carried out research and development activities, production of radioisotopes, medical and industrial applications, and those activities related with the nuclear fuel cycle, including the operation of two nuclear power stations. More ever, different public and private institutions use radioactive materials in medical, industrial and research activities. These activities generate different types of radioactive waste, desuse sealed sources and spent fuel. The management of radioactive waste of all types produced in the country, as the spent nuclear fuel of power and research reactors and the used radioactive sources was always and it is at present a CNEA's responsibility. In February 2003, according to the Law No. 25.018, called 'Management of Radioactive Waste Regimen', the 'Radioactive Waste Management National Programme' was created by CNEA to fulfill the institutional functions and responsibilities established in the Law, in order to guarantee the safe management of radioactive waste according to the regulations established by the Argentine Nuclear Regulatory Agency and to the legislation in force. (author) [es

  6. Radioactive waste

    International Nuclear Information System (INIS)

    Berkhout, F.

    1991-01-01

    Focusing on radioactive waste management and disposal policies in the United Kingdom, Sweden and the Federal Republic of Germany, this book gives a detailed historical account of the policy process in these three countries, and draws out the implications for theory and public policy. This comparative approach underlines how profoundly different the policy process has been in different countries. By comparing the evolution of policy in three countries, fundamental questions about the formation and resolution of technical decisions under uncertainty are clarified. The analysis of nuclear strategy, the politics of nuclear power, and the shifting emphasis of government regulation redefines the issue of radwaste management and sets it at the heat of the current debate about power, the environment and society. The combination of up-to-date technological assessment with an account of the social and political implications of radwaste management makes'Radioactive Waste'particularly useful to students of environmental studies, geography and public administration. (author)

  7. Radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Berkhout, F

    1991-01-01

    Focusing on radioactive waste management and disposal policies in the United Kingdom, Sweden and the Federal Republic of Germany, this book gives a detailed historical account of the policy process in these three countries, and draws out the implications for theory and public policy. This comparative approach underlines how profoundly different the policy process has been in different countries. By comparing the evolution of policy in three countries, fundamental questions about the formation and resolution of technical decisions under uncertainty are clarified. The analysis of nuclear strategy, the politics of nuclear power, and the shifting emphasis of government regulation redefines the issue of radwaste management and sets it at the heat of the current debate about power, the environment and society. The combination of up-to-date technological assessment with an account of the social and political implications of radwaste management makes'Radioactive Waste'particularly useful to students of environmental studies, geography and public administration. (author).

  8. Radioactive waste mangement in Canada

    International Nuclear Information System (INIS)

    Didyk, J.P.

    1976-01-01

    The objectives of the Canadian radioactive waste management program are to manage the wastes so that the potential hazards of the material are minimized, and to manage the wastes in a manner which places the minimum possible burden on future generations. The Atomic Energy Control Board regulates all activities in the nuclear field in Canada, including radioactive waste management facility licensing. The Atomic Energy Control Act authorizes the Board to make rules for regulating its proceedings and the performance of its functions. The Atomic Energy Control Regulations define basic regulatory requirements for the licensing of facilities, equipment and materials, including requirements for records and inspection, for security and for health and safety

  9. Data for radioactive waste management and nuclear applications

    International Nuclear Information System (INIS)

    Stewart, D.C.

    1985-01-01

    This book is a specialized handbook on the management of radioactive waste, including information applicable to related applications. It consolidates information from many sources to develop techniques for dealing with radioactive waste management and features reports and other specialized data not available in libraries. It covers physical data, chemical data, types of radioactive wastes, and data for different operations

  10. Deep disposal of long-lived radioactive waste in France: The volunteering approach in site selection

    International Nuclear Information System (INIS)

    Raynal, M.; Barber, P.

    1995-01-01

    The French Waste Act of December 1991 set up important dispositions among which the deep disposal of long-lived waste should be evaluated before 2006. ANDRA, the French National Agency for Radioactive Waste Management, is particularly responsible for the siting, the construction and the operation of underground laboratories designed to study potential geologic host-formations for deep disposal. An open decision-making process started up in 1992, specially to restore the public confidence after strong contest in the early 1990. The mission of negotiation conducted in 1993 all over the country by the appointed Member of Parliament, Mr. Bataille, allowed volunteer candidates for the siting surveyed by ANDRA in 1994 and 1995. Four areas are presently under characterization investigations, proceeding with the first phase of the underground laboratory program with the objective of choosing two sites for two underground laboratories. France is now entering a new and very important phase on the long path towards the creation of an underground repository where public's understanding and acceptance is an important part of the overall process as it is shown in this paper

  11. Non-fuel cycle radioactive waste policy in Turkey

    International Nuclear Information System (INIS)

    Demirel, H.

    2003-01-01

    Radioactive wastes generated in Turkey are mostly low level radioactive waste generated from the operation of one research reactor, research centers and universities, hospitals, and from radiological application of various industries. Disused sealed sources which potentially represent medium and high radiological risks in Turkey are mainly Am-241, Ra-226, Kr-85, Co-60, Ir-192 and Cs-137. All radioactive waste produced in Turkey is collected, segregated, conditioned and stored at CWPSF. Main components of the facility are listed below: Liquid waste is treated in chemical processing unit where precipitation is applied. Compactable solids are compressed in a compaction cell. Spent sources are embedded into cement mortar with their original shielding. If the source activities are in several millicuries, sometimes dismantling is applied and segregated sources are conditioned in shielded drums. Due to increasing number of radiation and nuclear related activities, the waste facility of CNAEM is now becoming insufficient to meet the storage demand of the country. TAEA is now in a position to establish a new radioactive waste management facility and studies are now being carried out on the selection of best place for the final storage of processed radioactive wastes. Research and development studies in TAEA should continue in radioactive waste management with the aim of improving data, models, and concepts related to long-term safety of disposal of long-lived waste

  12. Storing solid radioactive wastes at the Savannah River Plant

    International Nuclear Information System (INIS)

    Horton, J.H.; Corey, J.C.

    1976-06-01

    The facilities and the operation of solid radioactive waste storage at the Savannah River Plant (SRP) are discussed in the report. The procedures used to segregate and the methods used to store radioactive waste materials are described, and the monitoring results obtained from studies of the movement of radionuclides from buried wastes at SRP are summarized. The solid radioactive waste storage site, centrally located on the 192,000-acre SRP reservation, was established in 1952 to 1953, before any radioactivity was generated onsite. The site is used for storage and burial of solid radioactive waste, for storage of contaminated equipment, and for miscellaneous other operations. The solid radioactive waste storage site is divided into sections for burying waste materials of specified types and radioactivity levels, such as transuranium (TRU) alpha waste, low-level waste (primarily beta-gamma), and high-level waste (primarily beta-gamma). Detailed records are kept of the burial location of each shipment of waste. With the attention currently given to monitoring and controlling migration, the solid wastes can remain safely in their present location for as long as is necessary for a national policy to be established for their eventual disposal. Migration of transuranium, activation product, and fission product nuclides from the buried wastes has been negligible. However, monitoring data indicate that tritium is migrating from the solid waste emplacements. Because of the low movement rate of ground water, the dose-to-man projection is less than 0.02 man-rem for the inventory of tritium in the burial trenches. Limits are placed on the amounts of beta-gamma waste that can be stored so that the site will require minimum surveillance and control. The major portion (approximately 98 percent) of the transuranium alpha radioactivity in the waste is stored in durable containers, which are amenable to recovery for processing and restorage should national policy so dictate

  13. Survey on non-nuclear radioactive waste

    International Nuclear Information System (INIS)

    2003-11-01

    On request from the Swedish Radiation Protection Authority, the Swedish government has in May 2002 set up a non-standing committee for non-nuclear radioactive waste. The objective was to elaborate proposals for a national system for the management of all types of non-nuclear radioactive wastes with special consideration of inter alia the polluter pays principle and the responsibility of the producers. The committee will deliver its proposals to the government 1 December 2003. SSI has assisted the committee to the necessary extent to fulfill the investigation. This report is a summery of SSI's background material concerning non-nuclear radioactive waste in Sweden

  14. Treatment of solid radioactive waste: The incineration of low level radioactive waste

    International Nuclear Information System (INIS)

    Dirks, F.; Hempelmann, W.

    1982-01-01

    Nuclear facilities produce large quantities of burnable solid radioactive waste which incineration can reduce in volume and change into a form capable of ultimate storage. Experiments over many years were carried out at the Karlsruhe Nuclear Research Center to determine the boundary conditions for the design and construction of incineration plants for radioactive waste. On the basis of those experiments a test facility was started up in 1971. This operating facility consists of a shaft furnace lined with ceramics with a downstream series of ceramic flue gas filters. In 1976 the plant was exchanged by the installation of a pilot facility for burning organic solvents and of a flue gas scrubber. The plant has so far been in operation for more than 28000 hours and has processed in excess of 1500 to of solid and some 300 m 3 of liquid low level radioactive wastes. Various repairs and interventions were carried out without greatly impairing availability, which was 81 % on the average. The plant design is being used by various licensees in Japan and Europe; three plants are either in operation or completed, three more are under construction or in the planning stage. On the basis of the available process an incineration plant for alpha contaminated waste will be built at the Karlsruhe Nuclear Research Center in the next few years. (orig.)

  15. Inventory of radioactive material entering the marine environment: Sea disposal of radioactive waste

    International Nuclear Information System (INIS)

    1991-03-01

    Variable amounts of packaged low level radioactive waste have been disposed at more than 50 sites in the northern parts of the Atlantic and Pacific Oceans. The last known disposal operation was in 1982, at a site about 550 km off the European continental shelf in the Atlantic Ocean. Since 1957, the IAEA has provided specific guidance and recommendations for ensuring that disposal of radioactive wastes into the sea will not result in unacceptable hazards to human health and marine organisms, damage to amenities or interference with other legitimate uses of the sea. In 1972, the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter designated the IAEA as the competent international authority in matters related to sea disposal of radioactive waste. The Contracting Parties requested the IAEA to develop an inventory of radioactive wastes entering the marine environment from all sources as an information base with which the impact of radioactive materials from disposal operations can be more adequately assessed. The continuous compilation of these data could ensure that the IAEA recommendations on the disposal rate in a single basin are not overstepped. The inventory shows that between 1946 to 1982 an estimated 46 PBq 1 (1.24 MCi) of radioactive waste coming from research, medicine, the nuclear industry and military activities were packaged, usually in metal drums lined with a concrete or bitumen matrix, and disposed of at sea. This inventory includes some unpackaged wastes and liquid wastes which were disposed of from 1950 to 1960. Beta-gamma emitters represent more than 98% of the total radioactivity of the waste and tritium alone represents one third of the total radioactivity disposed at the North East Atlantic sites. The other beta-gamma emitters radionuclides include 90 Sr, 137 Cs, 55 Fe, 58 Co, 60 Co, 125 I and 14 C. The wastes also contain low quantities of alpha-emitting nuclides with plutonium and americium isotopes representing

  16. Policies and strategies for radioactive waste management

    International Nuclear Information System (INIS)

    2009-01-01

    A policy for spent fuel and radioactive waste management should include a set of goals or requirements to ensure the safe and efficient management of spent fuel and radioactive waste in the country. Policy is mainly established by the national government and may become codified in the national legislative system. The spent fuel and radioactive waste management strategy sets out the means for achieving the goals and requirements set out in the national policy. It is normally established by the relevant waste owner or nuclear facility operator, or by government (institutional waste). Thus, the national policy may be elaborated in several different strategy components. To ensure the safe, technically optimal and cost effective management of radioactive waste, countries are advised to formulate appropriate policies and strategies. A typical policy should include the following elements: defined safety and security objectives, arrangements for providing resources for spent fuel and radioactive waste management, identification of the main approaches for the management of the national spent fuel and radioactive waste categories, policy on export/import of radioactive waste, and provisions for public information and participation. In addition, the policy should define national roles and responsibilities for spent fuel and radioactive waste management. In order to formulate a meaningful policy, it is necessary to have sufficient information on the national situation, for example, on the existing national legal framework, institutional structures, relevant international obligations, other relevant national policies and strategies, indicative waste and spent fuel inventories, the availability of resources, the situation in other countries and the preferences of the major interested parties. The strategy reflects and elaborates the goals and requirements set out in the policy statement. For its formulation, detailed information is needed on the current situation in the country

  17. Management of radioactive waste at INR-technical support for processing of radioactive waste from nuclear facilities

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Popescu, I.V.; Bujoreanu, L.

    2009-01-01

    The Institute for nuclear research (INR) subsidiary of the Romanian authority for nuclear activities has its own radwaste treatment plant (STDR). STDR is supposed to treat and condition radioactive waste from the nuclear fuel facility, the TRIGA reactor, post irradiation examination laboratories and other research laboratories of NRI. The main steps of waste processing are: pretreatment (collection, characterization, segregation, decontamination)., treatment (waste volume reduction, radionuclide removal, compositional change), conditioning (immobilization and containerization), interim storage of the packages in compliance with safety requirements for the protection of human health and environmental protection, transport of the packages containing radioactive waste, disposal.

  18. Inspection and testing in conditioning of radioactive waste

    International Nuclear Information System (INIS)

    1997-08-01

    This report was prepared as part of the IAEA's programme on quality assurance and quality control requirements for radioactive waste packages. The report provides guidance and rationale for the application of inspections and tests as part of the entire quality assurance programme to verify and demonstrate that waste conditioning is being performed in a manner that protects human health and the environment from hazards associated with radioactive waste. The report is relevant to the Technical Reports Series No. 376, ''Quality Assurance for Radioactive Waste Packages'' dealing in general with the quality assurance programme of organization consigning radioactive waste to the repository, and elaborates its section devoted to inspection and testing for acceptance. 14 refs, 7 figs

  19. The stakes in managing radioactive wastes

    International Nuclear Information System (INIS)

    Boissier, F.

    2012-01-01

    Like any human activity, the nuclear industry produces wastes. The wastes containing radioactive substances have to be managed as a function of the related risks. Nowadays, 1.300.000 tons of radioactive wastes have accumulated in France. More than 90% of them have short half-lives and are stored on the ground by ANDRA (national agency for the management of radioactive wastes) on 2 sites in the Aube district. ANDRA also designs solutions for stocking the other wastes. Those with long half-lives and very high activity will be stored deep underground (500 meter deep) at Cigeo in the Meuse and Haute-Marne districts. The wastes with long half-lives but low activity (less than 10 5 decays/s for graphite and less than a few thousands decays/s for radium contaminated wastes) will be disposed in a specific way. Implementing a storage solution for each type of waste is necessary for the nuclear industry's sustainability, but it does not dispense the latter from pursuing its efforts to reduce the quantity and danger of the wastes produced. This holds in particular for the so-called 'fourth generation' of future installations. It is important to take stock of all the issues related to managing nuclear wastes

  20. Public perceptions of aspects of radioactive waste management

    International Nuclear Information System (INIS)

    1985-04-01

    The paper concerns a study of peoples' attitude towards the siting of radioactive waste repositories, carried out by the University of Surrey, United Kingdom. The work has been commissioned by the Department of the Environment as part of its radioactive waste management research programme. The people taking part were asked to mark on a map of Great Britain places they felt radioactive waste repositories would be least objectionable. The degree to which people worried about the technology and the management of radioactive waste disposal was monitored. Questions were asked about storage, disposal and transportation aspects, and about present and future worries. (UK)