WorldWideScience

Sample records for freeze-traumatized rat brain

  1. Oxytocin biotransformation in the rat limbic brain

    NARCIS (Netherlands)

    Burbach, J.P.H.; Schotman, P.; Kloet, E.R. de

    2006-01-01

    Two peptide fragments of oxytocin were isolated by high-pressure liquid chromatography from digests of oxytocin obtained after exposure to a SPM preparation of the rat limbic brain. The structures of these peptides, being Gln-Asn-Cys(O)x-Pro-Leu-GlyNH2 and Gln-Asn-Cys(-S-S-Cys)-Pro-Leu-GlyNH2, were

  2. Neuroglobin in the rat brain: localization

    DEFF Research Database (Denmark)

    Hundahl, Christian Ansgar; Allen, Gregg C; Nyengaard, Jens Randel

    2008-01-01

    in the rat brain using immunohistochemistry, in situ hybridization, and quantitative real-time PCR (qRT-PCR). This revealed the interesting finding that Ngb expression is restricted to a few neurone populations, many of which are involved in the sleep-wake cycle, circadian regulation or food regulation...

  3. Aquaporin 9 in rat brain after severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2012-03-01

    Full Text Available OBJECTIVE: To reveal the expression and possible roles of aquaporin 9 (AQP9 in rat brain, after severe traumatic brain injury (TBI. METHODS: Brain water content (BWC, tetrazolium chloride staining, Evans blue staining, immunohistochemistry (IHC, immunofluorescence (IF, western blot, and real-time polymerase chain reaction were used. RESULTS: The BWC reached the first and second (highest peaks at 6 and 72 hours, and the blood brain barrier (BBB was severely destroyed at six hours after the TBI. The worst brain ischemia occurred at 72 hours after TBI. Widespread AQP9-positive astrocytes and neurons in the hypothalamus were detected by means of IHC and IF after TBI. The abundance of AQP9 and its mRNA increased after TBI and reached two peaks at 6 and 72 hours, respectively, after TBI. CONCLUSIONS: Increased AQP9 might contribute to clearance of excess water and lactate in the early stage of TBI. Widespread AQP9-positive astrocytes might help lactate move into neurons and result in cellular brain edema in the later stage of TBI. AQP9-positive neurons suggest that AQP9 plays a role in energy balance after TBI.

  4. [Rat brain cells containing ezrin (cytovillin)].

    Science.gov (United States)

    Korzhevskiĭ, D E; Kirik, O V; Giliarov, A V

    2011-01-01

    Ezrin (cytovillin or p81 protein) is an actin-binding protein, a member of ERM (ezrin, radixin and moesin) family, which species contribute to stabilization of the plasma membrane-formed structures. The aim of the present study was to demonstrate the ezrin-containing cells in the rat brain and to describe their topography and morphological features. The most pronounced immunohistochemical reaction to ezrin was found in the epithelium of the choroid plexus, cells of the subcommissural organ and ventricular ependyma. Moreover, ezrin staining was also detected in the unidentifiable cells in the subventricular zone, rostral migration pathway and astrocytes in various brain areas. Preferential ezrin localization in the brain cells contributing to formation of barrier structures suggests its involvement in transport processes in the CNS.

  5. Studies of aluminum in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using /sup 14/C autoradiography to measure the uptake of /sup 14/C 2-deoxy-D-glucose (/sup 14/C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-..mu..m resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The /sup 14/C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of /sup 14/C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10/sup 9/ Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab.

  6. [The expression of GFAP after brain concussion in rats].

    Science.gov (United States)

    Zhang, Chun-Bing; Li, Yong-Hong

    2006-04-01

    To study the expression of GFAP and pathologic changes after rats brain concussion, so that to provide evidence on brain concussion for forensic identification. Forty-five SD rats were divided into 3, 6, 12, 24 h and 2, 4, 7, 10 d and normal control groups in terms of different wounding time after brain concussion model established, and the expression of GFAP after rats brain concussion were then observed by using SP immunohistochemical method. In normal control brain, low-level GFAP expressions could be observed. After six hours' brain concussion, GFAP positive cells increased obviously. The trend reached to the peak at 7d, partly declined at 10d, then decreased gradually. Brain concussion induced the expression of GFAP. The detection of GFAP could be useful for diagnosis of brain concussion on forensic pathology, and could be a reference index for timing of injury after brain concussion.

  7. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats

    Directory of Open Access Journals (Sweden)

    Huang Yen

    2011-09-01

    Full Text Available Abstract Background Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE. Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE. Methods We used a neonatal rat model of HIE by unilateral ligation of carotid artery and subsequent exposure to 8% oxygen for 2 hrs on postnatal day 7 (P7 rats. Neonatal rats were administered three dosages of an antibiotic, ceftriaxone, 48 hrs prior to experimental HIE. Neurobehavioral tests of treated rats were assessed. Brain sections from P14 rats were examined with Nissl and immunohistochemical stain, and TUNEL assay. GLT1 protein expression was evaluated by Western blot and immunohistochemistry. Results Pre-treatment with 200 mg/kg ceftriaxone significantly reduced the brain injury scores and apoptotic cells in the hippocampus, restored myelination in the external capsule of P14 rats, and improved the hypoxia-ischemia induced learning and memory deficit of P23-24 rats. GLT1 expression was observed in the cortical neurons of ceftriaxone treated rats. Conclusion These results suggest that pre-treatment of infants at risk for HIE with ceftriaxone may reduce subsequent brain injury.

  8. Correlation of brain-derived neurotrophic factor to cognitive impairment following traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Dezhi Kang; Zhang Guo

    2008-01-01

    BACKGROUND: In vitro and in vivo studies have confirmed that brain-derived neurotrophic factor (BDNF) can promote survival and differentiation of cholinergic, dopaminergic and motor neurons, and axonal regeneration. BDNF has neuroprotective effects on the nervous system. OBJECTIVE: To explore changes in BDNF expression and cognitive function in rats after brain injury DESIGN, TIME AND SETTING: The neuropathology experiment was performed at the Second Research Room, Department of Neurosurgery, Fujian Medical University (China) from July 2007 to July 2008. MATERIALS: A total of 72 healthy, male, Sprague Dawley, rats were selected for this study. METHODS: Rat models of mild and moderate traumatic brain injury were created by percussion, according to Feeney's method (n = 24, each group). A bone window was made in rats from the sham operation group (n = 24), but no attack was conducted. MAIN OUTCOME MEASURES: At days 1,2, 4 and 7 following injury, BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was examined by immunohistochemistry (streptavidin-biotin-peroxidase complex method). Changes in rat cognitive function were assessed by the walking test, balance-beam test and memory function detection. RESULTS: Cognitive impairment was aggravated at day 2, and recovered to normal at days 3 and 7 in rats from the mild and moderate traumatic brain injury groups. BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was increased at 1 day, decreased at day 2, and then gradually increased in the mild and moderate traumatic brain injury groups. BDNF expression was greater in rats from the moderate traumatic brain injury group than in the sham operation and mild traumatic brain injury groups (P < 0.05). CONCLUSION: BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain is correlated to cognitive impairment after traumatic brain injury. BDNF has a protective effect on cognitive function in rats

  9. 26Al uptake and accumulation in the rat brain

    Science.gov (United States)

    Yumoto, S.; Nagai, H.; Imamura, M.; Matsuzaki, H.; Hayashi, K.; Masuda, A.; Kumazawa, H.; Ohashi, H.; Kobayashi, K.

    1997-03-01

    To investigate the cause of Alzheimer's disease (senile dementia), 26Al incorporation in the rat brain was studied by accelerator mass spectrometry (AMS). When 26Al was injected into healthy rats, a considerable amount of 26Al entered the brain (cerebrum) through the blood-brain barrier 5 days after a single injection, and the brain 26Al level remained almost constant from 5 to 270 days. On the other hand, the level of 26Al in the blood decreased remarkably 75 days after injection. Approximately 89% of the 26Al taken in by the brain cell nuclei bound to chromatin. This study supports the theory that Alzheimer's disease is caused by irreversible accumulation of aluminium (Al) in the brain, and brain cell nuclei.

  10. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    JTEkanem

    effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as ... SOD is an important enzyme family in living cells for maintaining ..... one unit of activity with oxidation rate of organic substrate in.

  11. Outer brain barriers in rat and human development

    DEFF Research Database (Denmark)

    Brøchner, Christian B; Holst, Camilla Bjørnbak; Møllgård, Kjeld

    2015-01-01

    diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post...

  12. Waxholm Space atlas of the Sprague Dawley rat brain

    OpenAIRE

    Papp, Eszter A.; Trygve B. Leergaard; Calabrese, Evan; Johnson, G. Allan; Bjaalie, Jan G.

    2014-01-01

    Three-dimensional digital brain atlases represent an important new generation of neuroinformatics tools for understanding complex brain anatomy, assigning location to experimental data, and planning of experiments. We have acquired a microscopic resolution isotropic MRI and DTI atlasing template for the Sprague Dawley rat brain with 39 µm isotropic voxels for the MRI volume and 78 µm isotropic voxels for the DTI. Building on this template, we have delineated 76 major anatomical structures in ...

  13. Actin purification from a gel of rat brain extracts.

    Science.gov (United States)

    Levilliers, N; Peron-Renner, M; Coffe, G; Pudles, J

    1984-01-01

    Actin, 99% pure, has been recovered from rat brain with a high yield (greater than 15 mg/100 g brain). We have shown that: 1. a low ionic strength extract from rat brain tissue is capable of giving rise to a gel; 2. actin is the main gel component and its proportion is one order of magnitude higher than in the original extract; 3. actin can be isolated from this extract by a three-step procedure involving gelation, dissociation of the gel in 0.6 M KCl, followed by one or two depolymerization-polymerization cycles.

  14. Brain glucose content in fetuses of ethanol-fed rats

    Energy Technology Data Exchange (ETDEWEB)

    Pullen, G.; Singh, S.P.; Snyder, A.K.; Hoffen, B.

    1986-03-01

    The authors have previously demonstrated impaired placental glucose transfer and fetal hypoglycemia in association with ethanol ingestion by pregnant rats. The present study examines the relationship between glucose availability and fetal brain growth under the same conditions. Rats (EF) were fed ethanol (30% of caloric intake) in liquid diet throughout gestation. Controls received isocaloric diet without ethanol by pair-feeding (PF) or ad libitum (AF). On the 22nd day of gestation fetuses were obtained by cesarean section. Fetal brains were removed and freeze-clamped. Brain weight was significantly reduced (p < 0.001) by maternal ethanol ingestion (206 +/- 2, 212 +/- 4 and 194 +/- 2 mg in AF, FP and EF fetuses respectively). Similarly, fetal brain glucose content was lower (p < 0.05) in the EF group (14.3 +/- 0.9 mmoles/g dry weight) than in the PF (18.6 +/- 1.0) or the AF (16.2 +/- 0.9) groups. The protein: DNA ratio, an indicator of cell size, correlated positively (r = 0.371, p < 0.005) with brain glucose content. In conclusion, maternal ethanol ingestion resulted in lower brain weight and reduced brain glucose content. Glucose availability may be a significant factor in the determination of cell size in the fetal rat brain.

  15. Non-signalling energy use in the developing rat brain.

    Science.gov (United States)

    Engl, Elisabeth; Jolivet, Renaud; Hall, Catherine N; Attwell, David

    2017-03-01

    Energy use in the brain constrains its information processing power, but only about half the brain's energy consumption is directly related to information processing. Evidence for which non-signalling processes consume the rest of the brain's energy has been scarce. For the first time, we investigated the energy use of the brain's main non-signalling tasks with a single method. After blocking each non-signalling process, we measured oxygen level changes in juvenile rat brain slices with an oxygen-sensing microelectrode and calculated changes in oxygen consumption throughout the slice using a modified diffusion equation. We found that the turnover of the actin and microtubule cytoskeleton, followed by lipid synthesis, are significant energy drains, contributing 25%, 22% and 18%, respectively, to the rate of oxygen consumption. In contrast, protein synthesis is energetically inexpensive. We assess how these estimates of energy expenditure relate to brain energy use in vivo, and how they might differ in the mature brain.

  16. Neuroglobin expression in rats after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Xin Lin; Min Li; Aijia Shang; Yazhuo Hu; Xiao Yang; Ling Ye; Suyan Bian; Zhongfeng Wang; Dingbiao Zhou

    2012-01-01

    In this study, we used a rat model of severe closed traumatic brain injury to explore the relationship between neuroglobin, brain injury and neuronal apoptosis. Real-time PCR showed that neuroglobin mRNA expression rapidly increased in the rat cerebral cortex, and peaked at 30 minutes and 48 hours following traumatic brain injury. Immunohistochemical staining demonstrated that neuroglobin expression increased and remained high 2 hours to 5 days following injury. The rate of increase in the apoptosis-related Bax/Bcl-2 ratio greatly decreased between 30 minutes and 1 hour as well as between 48 and 72 hours post injury. Expression of neuroglobin and the anti-apoptotic factor Bcl-2 greatly increased, while that of the proapoptotic factor decreased, in the cerebral cortex post severe closed traumatic brain injury. It suggests that neuroglobin might protect neurons from apoptosis after traumatic injury by regulating Bax/Bcl-2 pathway.

  17. Distribution of nimodipine in brain following intranasal administration in rats

    Institute of Scientific and Technical Information of China (English)

    Qi-zhi ZHANG; Xin-guo JIANG; Chun-hua WU

    2004-01-01

    AIM: To determine whether nasally applied nimodipine (NM) could improve its systemic bioavailability and be transported directly from the nasal cavity to the brain. METHODS: NM was administered nasally, intravenously (iv), and orally to male Sprague-Dawley rats. At different times post dose, blood, cerebrospinal fluid (CSF), and brain tissue samples were collected, and the concentrations of NM in the samples were analyzed by HPLC. RESULTS:Oral systemic bioavailability of NM in rats was 1.17 %, nasal dosing improved bioavailibility to 67.4 %. Following intranasal administration, NM concentrations in olfactory bulb (OB) within 30 min post dose were found significant higher than in the other brain tissues. However, similar NM levels in different brain regions were observed after iv injection. AUC in CSF and OB from the nasal route was 1.26 and 1.39 fold compared with the iv route, respectively.The brain-to-plasma AUC ratios were significantly higher after nasal administration than after iv administration (P<0.01). CONCLUSION: Nasally administered NM could markedly improve the bioavailability and a fraction of the NM dose could be transported into brain via the olfactory pathway in rats.

  18. The effects of sex on brain iron status in rats

    Institute of Scientific and Technical Information of China (English)

    HAO Qian; CHANG Yanzhong

    2015-01-01

    Objective:Iron plays essential roles in the human body. Studies have shown that iron is dis-tributed differently in male and female Rats in liver, spleen, bone marrow, kidney, heart. However, the effects of sex on iron distribution in central nervous system are not well established. Methods:To explore the effects of the above mentioned, in this study, female and male Sprague Dawley rats were used at 4 months of age. The synthesis of ferritin light chain (FTL), transferrin receptor1 (TfR1), ferroportin 1 (FPN1), divalent metal transporter 1 ( DMT1) in the cortex, hippocampus, striatum, cerebellum, and olfactory bulb was determined by Western blot a-nalysis. Results:The results showed that the levels of FTL protein in the cortex, hippocampus, striatum, cerebel-lum, and olfactory bulb were higher in female rats than in male rats, but the levels of TfR1 protein were lower in female rats than in male rats. There was no significant change in FPN1 and DMT1 expression in brain. Conclu-sions:These data suggest that sex have effects on brain iron status. Iron is distributed differently in central nervous system in male and female rats. However, the precise mechanisms need further study.

  19. Oxidative damage to rat brain in iron and copper overloads.

    Science.gov (United States)

    Musacco-Sebio, Rosario; Ferrarotti, Nidia; Saporito-Magriñá, Christian; Semprine, Jimena; Fuda, Julián; Torti, Horacio; Boveris, Alberto; Repetto, Marisa G

    2014-08-01

    This study reports on the acute brain toxicity of Fe and Cu in male Sprague-Dawley rats (200 g) that received 0 to 60 mg kg(-1) (ip) FeCl2 or CuSO4. Brain metal contents and time-responses were determined for rat survival, in situ brain chemiluminescence and phospholipid and protein oxidation products. Metal doses hyperbolically defined brain metal content. Rat survival was 91% and 60% after Fe and Cu overloads. Brain metal content increased from 35 to 114 μg of Fe per g and from 3.6 to 34 μg of Cu per g. Brain chemiluminescence (10 cps cm(-2)) increased 3 and 2 times after Fe and Cu overloads, with half maximal responses (C50) of 38 μg of Fe per g of brain and 15 μg of Cu per g of brain, and with half time responses (t1/2) of 12 h for Fe and 20 h for Cu. Phospholipid peroxidation increased by 56% and 31% with C50 of 40 μg of Fe per g and 20 μg of Cu per g and with t1/2 of 9 h and 14 h. Protein oxidation increased by 45% for Fe with a C50 of 40 μg of Fe per g and 18% for Cu with a C50 of 10 μg of Cu per g and a t1/2 of 12 h for both metals. Fe and Cu brain toxicities are likely mediated by Haber-Weiss type HO˙ formation with subsequent oxidative damage.

  20. Demonstration of endogenous imipramine like material in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Rehavi, M.; Ventura, I.; Sarne, Y.

    1985-02-18

    The extraction and partial purification of an endogenous imipramine-like material from rat brain is described. The endogenous factor obtained after gel filtration and silica chromatography inhibits (/sup 3/H) imipramine specific binding and mimics the inhibitory effect of imipramine on (/sup 3/H) serotonin uptake in both brain and platelet preparations. The effects of the endogenous material are dose-dependent and it inhibits (/sup 3/H) imipramine binding in a competitive fashion. The factor is unevenly distributed in the brain with high concentration in the hypothalamus and low concentration in the cerebellum.

  1. The effect of chemotherapy on rat brain PET: preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Su; Kim, Il Han; Yu, A Ram; Park, Ji Ae; Woo, Sang Keun; Kim, Jong Guk; Cheon, Gi Jeong; Kim, Byeong Il; Choi, Chang Woon; Lim, Sang Moo; Kim, Hee Joung; Kim, Kyeong Min [Korea Institute Radiological and Medical Science, Seoul (Korea, Republic of)

    2010-10-15

    Chemotherapy was widely used for the therapy of cancer patients. When chemotherapy was performed, transient cognitive memory problem was occurred. This cognitive problem in brain was called as chemobrain. In this study, we have developed rat model for chemobrain. Cerebral glucose metabolism after chemotherapy was assessed using animal PET and voxel based statistical analysis method

  2. BIOLOGICAL EFFECTS OF MICROWAVE RADIATION ON BRAIN TISSUE IN RATS

    Directory of Open Access Journals (Sweden)

    Boris Đinđić

    2003-04-01

    Full Text Available Exposure to microwave radiation induces multiple organ dysfunctions, especially in CNS.The aim of this work was investigation of biological effects of microwave radiation on rats' brain and determination of increased oxidative stress as a possible pathogenetic's mechanism.Wis tar rats 3 months old were divided in experimental (4 female and 4 male animal and control group (5 female and 4 male. This experimental group was constantly exposed to a magnetic field of 5 mG. We simulated using of mobile phones 30 min every day. The source of NIR emitted MF that was similar to mobile phones at 900 MHz. The rats were killed after 2 months. Biological effects were determined by observation of individual and collective behavior and body mass changes. Lipid per oxidation was determined by measuring quantity of malondialdehyde (MDA in brain homogenate.The animals in experimental group exposed to EMF showed les weight gain. The most important observations were changing of basic behavior models and expression of aggressive or panic behavior. The content of MDA in brain tissue is singificantly higher (1.42 times in rats exposed to electromagnetic fields (3,82±0.65 vs. control 2.69±0.42 nmol/mg proteins, p<0.01.Increased oxidative stress and lipid peroxidation after exposition in EM fields induced disorders of function and structure of brain.

  3. Brain tumors induced in rats by human adenovirus type 12

    Directory of Open Access Journals (Sweden)

    Murao,Tsuyoshi

    1974-02-01

    Full Text Available Oncogenesis of human adenovirus type 12 in the brain of rats was examined. Newborn rats of Sprague-Dawley and Donryu strains were injected intracranially with human adenovirus type 12. The incidence of intracranial tumors was 91% (30/33 in SpragueDawley and 56% (14/25 in Donryu rats. Except for one tumor nodule located in the parietal cortex of a Sprague.Dawley rat, all tumors developed in the paraventricular areas or in the meninges. Tumors were quite similar histologically to those induced in hamsters and mice resembling the undifferentiated human brain tumors such as medulloblastoma, ependymoblastoma and embryonic gliomas. From the histological features and primary sites of tumor development, it is suggested that the tumors in the brain of rats induced by adenovirus type 12 originate from the embryonic cells in the paraventricular area and also from the undifferentiated supporting cells of the peripheral nerves in the leptomeninges.

  4. Effects of magnesium sulfate on traumatic brain edema in rats

    Institute of Scientific and Technical Information of China (English)

    冯东福; 朱志安; 卢亦成

    2004-01-01

    Objective: To investigate the effects of magnesium sulfate on traumatic brain edema and explore its possible mechanism.Methods: Forty-eight Sprague-Dawley ( SD ) rats were randomly divided into three groups: Control, Trauma and Treatment groups. In Treatment group, magnesium sulfate was intraperitoneally administered immediately after the induction of brain trauma. At 24 h after trauma, total tissue water content and Na + , K + , Ca2 + , Mg2+ contents were measured. Permeability of blood-brain barrier (BBB)was assessed quantitatively by Evans Blue (EB) dye technique. The pathological changes were also studied.Results: Water, Na + , Ca2 + and EB contents in Treatment group were significantly lower than those in Trauma group ( P < 0. 05 ). Results of light microscopy and electron microscopy confirmed that magnesium sulfate can attenuate traumatic brain injury and relieve BBB injury.Conclusions: Treatment with MgSO4 in the early stage can attenuate traumatic brain edema and prevent BBB injury.

  5. ischemic brain injury in neonatal rats

    African Journals Online (AJOL)

    Keywords: Hypoxic–ischemic brain injury, α-Lipoic acid, Cerebral infarct area, Edema, Antioxidants,. Inflammatory markers .... were then moved back to their respective dams and immediately ..... various pro-inflammatory cytokines is stimulated.

  6. Inducible gene manipulations in brain serotonergic neurons of transgenic rats.

    Directory of Open Access Journals (Sweden)

    Tillmann Weber

    Full Text Available The serotonergic (5-HT system has been implicated in various physiological processes and neuropsychiatric disorders, but in many aspects its role in normal and pathologic brain function is still unclear. One reason for this might be the lack of appropriate animal models which can address the complexity of physiological and pathophysiological 5-HT functioning. In this respect, rats offer many advantages over mice as they have been the animal of choice for sophisticated neurophysiological and behavioral studies. However, only recently technologies for the targeted and tissue specific modification of rat genes - a prerequisite for a detailed study of the 5-HT system - have been successfully developed. Here, we describe a rat transgenic system for inducible gene manipulations in 5-HT neurons. We generated a Cre driver line consisting of a tamoxifen-inducible CreERT2 recombinase under the control of mouse Tph2 regulatory sequences. Tissue-specific serotonergic Cre recombinase expression was detected in four transgenic TPH2-CreERT2 rat founder lines. For functional analysis of Cre-mediated recombination, we used a rat Cre reporter line (CAG-loxP.EGFP, in which EGFP is expressed after Cre-mediated removal of a loxP-flanked lacZ STOP cassette. We show an in-depth characterisation of this rat Cre reporter line and demonstrate its applicability for monitoring Cre-mediated recombination in all major neuronal subpopulations of the rat brain. Upon tamoxifen induction, double transgenic TPH2-CreERT2/CAG-loxP.EGFP rats show selective and efficient EGFP expression in 5-HT neurons. Without tamoxifen administration, EGFP is only expressed in few 5-HT neurons which confirms minimal background recombination. This 5-HT neuron specific CreERT2 line allows Cre-mediated, inducible gene deletion or gene overexpression in transgenic rats which provides new opportunities to decipher the complex functions of the mammalian serotonergic system.

  7. Changes in intracellular calcium in brain cells of aged rats

    Institute of Scientific and Technical Information of China (English)

    Yu Li; Yunpeng Cao

    2008-01-01

    BACKGROUND: Studies have shown that voltage-dependent calcium influx, and enhancement of certain calcium-dependent processes in neurons, is related to aging. OBJECTIVE: To observe changes in intracellular calcium ([Ca2+]i) in neurons of aged rats, and to compare with young rats. DESIGN, TIME AND SETTING: A randomized control experiment of neurophysiology was performed at the Central Laboratory of School of Pharmaceutical Science, China Medical University from June to August 2004. MATERIALS: Ten male, healthy, Wistar rats, 19 months old, were selected for the aged group. Ten male, 3-month-old, Wistar rats were selected for the young control group. Fura-2/AM was provided by the Institute of Pharmaceutical Research of Chinese Academy of Medical Sciences, and the F-2000 fluorospectrophotometer was a product of Hitachi, Japan. METHODS: Fluorescence Fura-2 spectrophotometer was used to measure [Ca2+]i in acutely dissociated brain cells of aged and young rats. The concentration of extracellular potassium was controlled by adding different volumes of chloridated potassium solution of high concentration. MAIN OUTCOME MEASURES: [Ca2+]i in neurons of young and aged rats in the presence of 1 mmol/L extracellular calcium concentration and 0 mmol/L (resting state), 5, 10, 20, and 40 mmol/L extracellular potassium. Absolute increase of [Ca2+]i in neurons of young and aged rats when extraceUular potassium was 5,10,20, 40 mmol/L. RESULTS: In the presence of 1 mmol/L extracellular Ca2+ and 0 mmol/L (resting state), 5, 10, 20, and 40 mmol/L extracellular potassium, [Ca2+]i in the neurons of aged rats was significantly less than that in young rats (P 0.05). CONCLUSION: The overload of [Ca2+]i in neurons of aged rats is greater than that of young rats under the same circumstances.

  8. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    Science.gov (United States)

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V

    2013-06-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  9. Expression of neuropeptide Y in rat brain ischemia

    Directory of Open Access Journals (Sweden)

    Babović Siniša S.

    2013-01-01

    Full Text Available Introduction. The immunohistochemical method was used to follow the expression of neuropeptide Y in the course of pre ischemia of the rat brain. The aim of the study was to define all the areas of expression of this protein, show their localization, their map of distribution and histological types. Material and Methods. All the sections of telencephalon, diencephalon and midbrain were studied in resistant, and transitory ischemia, which enabled us to observe the reaction of neurons to an ischemic attack or to repeated attacks. The mapping was done for all three proteins by introducing our results into the maps of rat brain atlas, George Paxinos, Charles Watson. Photographing and protein expression was done using Analysis program. Results. The results of this research show that there is a differens in reaction between the resistant and transitory ischemia groups of rats, especially in the caudoputamen, gyrus dentatus, corpus amygdaloideum, particularly in the medial nucleus. The mapping shows the reaction in caudoputamen, gyrusdentatus, corpus amygdaloideum - especially in the central nucleus, then in the sensitive and secondary auditory cortex, mostly in the laminae V/VI, but less in neuron groups CA1, CA2, CA3 of hippocampus. Discussion. The phylogenetically older parts of the brain-rhinencephalon, also showed reaction, which lead us to conclude that both newer and older brain structures reacted immunohistochemically. Histological data have shown that small neurons are most commonly found while the second most common ones are big pyramidal cells of multipolar and bipolar type, with a different body shape. Conclusion. Our findings have confirmed the results obtained in some rare studies dealing with this issue, and offered a precise and detailed map of cells expressing neuropeptide Y in the rat brain following ischemic attack.

  10. Nerve growth factor receptor molecules in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Taniuchi, M.; Schweitzer, J.B.; Johnson, E.M. Jr.

    1986-03-01

    The authors have developed a method to immunoprecipitate rat nerve growth factor (NGF) receptor proteins and have applied the method to detect NGF receptor molecules in the rat brain. Crosslinking /sup 125/I-labeled NGF to either PC12 cells or cultured rat sympathetic neurons yielded two radiolabeled molecules (90 kDa and 220 kDa) that were immunoprecipitated by monoclonal antibody 192-IgG. Further, 192-IgG precipitated two radiolabeled proteins, with the expected sizes (80 kDa and 210 kDa) of noncrosslinked NGF receptor components, from among numerous surface-iodinated PC12 cell proteins. These results demonstrate the specific immunoprecipitation of NGF receptor molecules by 192-IgG. They applied the /sup 125/I-NGF crosslinking and 192-IgG-mediated immunoprecipitation procedures to plasma membrane preparations of rat brain: NGF receptor molecules of the same molecular masses as the peripheral receptor components were consistently detected in all regions and in preparations from whole brains. Removal of the peripheral sympathetic innervation of the brain did not eliminate these NGF receptor proteins, indicating that the receptor is endogenous to central nervous system tissues. They also observed retrograde transport of /sup 125/I-labeled 192-IgG from the parietal cortex to the nucleus basalis and from the hippocampus to the nucleus of the diagonal band of Broca and the medial septal nucleus. These findings demonstrate the presence in brain of NGF receptor molecules indistinguishable from those of the peripheral nervous system.

  11. Preserved modular network organization in the sedated rat brain.

    Directory of Open Access Journals (Sweden)

    Dany V D'Souza

    Full Text Available Translation of resting-state functional connectivity (FC magnetic resonance imaging (rs-fMRI applications from human to rodents has experienced growing interest, and bears a great potential in pre-clinical imaging as it enables assessing non-invasively the topological organization of complex FC networks (FCNs in rodent models under normal and various pathophysiological conditions. However, to date, little is known about the organizational architecture of FCNs in rodents in a mentally healthy state, although an understanding of the same is of paramount importance before investigating networks under compromised states. In this study, we characterized the properties of resting-state FCN in an extensive number of Sprague-Dawley rats (n = 40 under medetomidine sedation by evaluating its modular organization and centrality of brain regions and tested for reproducibility. Fully-connected large-scale complex networks of positively and negatively weighted connections were constructed based on Pearson partial correlation analysis between the time courses of 36 brain regions encompassing almost the entire brain. Applying recently proposed complex network analysis measures, we show that the rat FCN exhibits a modular architecture, comprising six modules with a high between subject reproducibility. In addition, we identified network hubs with strong connections to diverse brain regions. Overall our results obtained under a straight medetomidine protocol show for the first time that the community structure of the rat brain is preserved under pharmacologically induced sedation with a network modularity contrasting from the one reported for deep anesthesia but closely resembles the organization described for the rat in conscious state.

  12. Effect of glycolysis inhibition on mitochondrial function in rat brain.

    Science.gov (United States)

    Cano-Ramírez, D; Torres-Vargas, C E; Guerrero-Castillo, S; Uribe-Carvajal, S; Hernández-Pando, R; Pedraza-Chaverri, J; Orozco-Ibarra, M

    2012-05-01

    Inhibition of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase enhances the neural vulnerability to excitotoxicity both in vivo and in vitro through an unknown mechanism possibly related to mitochondrial failure. However, as the effect of glycolysis inhibition on mitochondrial function in brain has not been studied, the aim of the present work was to evaluate the effect of glycolysis inhibition induced by iodoacetate on mitochondrial function and oxidative stress in brain. Mitochondria were isolated from brain cortex, striatum and cerebellum of rats treated systemically with iodoacetate (25 mg/kg/day for 3 days). Oxygen consumption, ATP synthesis, transmembrane potential, reactive oxygen species production, lipoperoxidation, glutathione levels, and aconitase activity were assessed. Oxygen consumption and aconitase activity decreased in the brain cortex and striatum, showing that glycolysis inhibition did not trigger severe mitochondrial impairment, but a slight mitochondrial malfunction and oxidative stress were present.

  13. Effect of acute thioacetamide administration on rat brain phospholipid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Osada, J.; Aylagas, H.; Miro-Obradors, M.J.; Arce, C.; Palacios-Alaiz, E.; Cascales, M. (Tufs Univ., Boston, MA (USA))

    1990-09-01

    Brain phospholipid composition and the ({sup 32}P)orthophosphate incorporation into brain phospholipids of control and rats treated for 3 days with thioacetamide were studied. Brain phospholipid content, phosphatidylcholine, phosphatidylethanolamine, lysolecithin and phosphatidic acid did not show any significant change by the effect of thioacetamide. In contrast, thioacetamide induced a significant decrease in the levels of phosphatidylserine, sphingomyelin, phosphatidylinositol and diphosphatidylglycerol. After 75 minutes of intraperitoneal label injection, specific radioactivity of all the above phospholipids with the exception of phosphatidylethanolamine and phosphatidylcholine significantly increased. After 13 hours of isotope administration the specific radioactivity of almost all studied phospholipid classes was elevated, except for phosphatidic acid, the specific radioactivity of which did not change and for diphosphatidylglycerol which showed a decrease in specific radioactivity. These results suggest that under thioacetamide treatment brain phospholipids undergo metabolic transformations that may contribute to the hepatic encephalopathy induced by thioacetamide.

  14. Noninvasive method to assess the electrical brain activity from rats

    Directory of Open Access Journals (Sweden)

    Rosana Ferrari

    2013-10-01

    Full Text Available This research presents a noninvasive method for the acquisition of brain electrical signal in rat. Was used an electroencephalography (EEG system developed for bovine and adapted to rats. The bipolar electrode system (needle electrodes was glued on the surface of the head of the animal without surgical procedures and the other electrode was glued to the tail, as ground. The EEG activity was sampled at 120Hz for an hour. The accuracy and precision of the EEG measurement was performed using Fourier analysis and signal energy. For this, the digital signal was divided into sections successive of 3 seconds and was decomposed into four frequency bands: delta (0.3 to 4Hz, theta (4-8Hz, alpha (8-12Hz and beta (12-30Hz and energy (µV² of the series of time filtered were calculated. The method allowed the acquisition of non-invasive electrical brain signals in conscious rats and their frequency patterns were in agreement with previous studies that used surgical procedures to acquire EEG in rats. This system showed accuracy and precision and will allow further studies on behavior and to investigate the action of drugs on the central nervous system in rats without surgical procedures.

  15. Prostaglandin E2 metabolism in rat brain: Role of the blood-brain interfaces

    Directory of Open Access Journals (Sweden)

    Strazielle Nathalie

    2008-03-01

    Full Text Available Abstract Background Prostaglandin E2 (PGE2 is involved in the regulation of synaptic activity and plasticity, and in brain maturation. It is also an important mediator of the central response to inflammatory challenges. The aim of this study was to evaluate the ability of the tissues forming the blood-brain interfaces to act as signal termination sites for PGE2 by metabolic inactivation. Methods The specific activity of 15-hydroxyprostaglandin dehydrogenase was measured in homogenates of microvessels, choroid plexuses and cerebral cortex isolated from postnatal and adult rat brain, and compared to the activity measured in peripheral organs which are established signal termination sites for prostaglandins. PGE2 metabolites produced ex vivo by choroid plexuses were identified and quantified by HPLC coupled to radiochemical detection. Results The data confirmed the absence of metabolic activity in brain parenchyma, and showed that no detectable activity was associated with brain microvessels forming the blood-brain barrier. By contrast, 15-hydroxyprostaglandin dehydrogenase activity was measured in both fourth and lateral ventricle choroid plexuses from 2-day-old rats, albeit at a lower level than in lung or kidney. The activity was barely detectable in adult choroidal tissue. Metabolic profiles indicated that isolated choroid plexus has the ability to metabolize PGE2, mainly into 13,14-dihydro-15-keto-PGE2. In short-term incubations, this metabolite distributed in the tissue rather than in the external medium, suggesting its release in the choroidal stroma. Conclusion The rat choroidal tissue has a significant ability to metabolize PGE2 during early postnatal life. This metabolic activity may participate in signal termination of centrally released PGE2 in the brain, or function as an enzymatic barrier acting to maintain PGE2 homeostasis in CSF during the critical early postnatal period of brain development.

  16. Differential Expression of Sirtuins in the Ageing Rat Brain

    Directory of Open Access Journals (Sweden)

    Gilles J. Guillemin

    2015-05-01

    Full Text Available Although there are seven mammalian sirtuins (SIRT1-7, little is known about their expression in the ageing brain. To characterise the change(s in mRNA and protein expression of SIRT1-7 and their associated proteins in the brain of ‘physiologically’ aged Wistar rats. We tested mRNA and protein expression levels of rat SIRT1-7, and the levels of associated proteins in the brain using RT-PCR and western blotting. Our data shows that SIRT1 expression increases with age, concurrently with increased acetylated p53 levels in all brain regions investigated. SIRT2 and FOXO3a protein levels increased only in the occipital lobe. SIRT3-5 expression declined significantly in the hippocampus and frontal lobe, associated with increases in superoxide and fatty acid oxidation levels, and acetylated CPS-1 protein expression, and a reduction in MnSOD level. While SIRT6 expression declines significantly with age acetylated H3K9 protein expression is increased throughout the brain. SIRT7 and Pol I protein expression increased in the frontal lobe. This study identifies previously unknown roles for sirtuins in regulating cellular homeostasis and healthy ageing.

  17. Postnatal development of aminopeptidase (arylamidase) activity in rat brain.

    Science.gov (United States)

    de Gandarias, J M; Ramírez, M; Zulaica, J; Iribar, C; Casis, L

    1989-01-01

    Changes in the activities of Leu- and Arg-arylamidase in rat frontal and parietal cortices and the subcortical area (including thalamus, hypothalamus, and striatum) were examined in the 2nd, 4th, 8th, 12th, and 24th weeks of life. Average levels found in the subcortical region were greater than those in the cortical areas. The most marked changes in enzymatic activity in the course of brain development were found in the subcortical structure. Leu-arylamidase activity increased from the 2nd week up to the 8th week, returning to the 2nd week level at the 12th and 24th weeks. The maximum levels of Arg-arylamidase activity were found at the 4th and 8th weeks. These data suggest that proteolytic activity is involved in the postnatal development of rat brain.

  18. Effects of NOS inhibitor on dentate gyrus neurogenesis after diffuse brain injury in the adult rats

    Institute of Scientific and Technical Information of China (English)

    SunLi-Sha; XuJiang-ping

    2004-01-01

    Objective To investigate the effects of selective nitric oxide synthase (NOS) inhibitors on dentate gyrus neurogenesis after diffuse brain injury (DBI) in the adult rat brain. Methods Adult male SD rats were subjected to diffuse brain injury (DBI) model. By using systemic bromodeoxyuridine (BrdU) to label dividing cells, we compared the proliferation rate of

  19. Effects of magnesium sulfate on brain mitochondrial respiratory function in rats after experimental traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    许民辉; 代文光; 邓洵鼎

    2002-01-01

    Objective: To study the effects of magnesium sulfate on brain mitochondrial respiratory function in rats after experimental traumatic brain injury and the possible mechanism.Methods: The middle degree brain injury in rats was made by BIM-III multi-function impacting machine. The brain mitochondrial respiratory function was measured with oxygen electrode and the ultra-structural changes were observed with transmission electron microscope (TEM).Results: 1. The brain mitochondrial respiratory stage III and respiration control rate reduced significantly in the untreated groups within 24 and 72 hours. But treated Group A showed certain degree of recovery of respiratory function; treated Group B showed further improvement. 2. Untreated Group, treated Groups A and B had different degrees of mitochondrial ultra-structural damage respectively, which could be attenuated after the treatment with magnesium sulfate.Conclusions: The mitochondrial respiratory function decreases significantly after traumatic brain injury. But it can be apparently improved after magnesium sulfate management along with the attenuated damage of mitochondria discovered by TEM. The longer course of treatment can obtain a better improvement of mitochondrial respiratory function.

  20. Multiple opiate receptors in the brain of spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.; Bhargava, H.N.

    1986-03-01

    The characteristics of ..mu.., delta and kappa -opiate receptors in the brain of spontaneously hypertensive (SH) and normotensive Wistar-Kyoto (WKY) rats were determined using the receptor binding assays. The ligands used were /sup 3/H-naltrexone (..mu..), /sup 3/H-ethylketocyclazocine (EKC, kappa) and /sup 3/H-Tyr-D-Ser-Gly-Phe-Leu-Thr (DSTLE, delta). Since EKC binds to ..mu.. and delta receptors in addition to kappa, the binding was done in the presence of 100 nM each of DAGO and DADLE to suppress ..mu.. and delta sites, respectively. All three ligands bound to brain membranes of WKY rats at a single high affinity site with the following B/sub max/ (fmol/mg protein) and K/sub d/ (nM) values: /sup 3/H-naltrexone (130.5; 0.43) /sup 3/H-EKC (19.8, 1.7) and /sup 3/H-DSTLE (139, 2.5). The binding of /sup 3/H-naltrexone and /sup 3/H-DSTLE in the brain of WKY and SH did not differ. A consistent increase (22%) in B/sub max/ of /sup 3/H-EKC was found in SHR compared to WKY rats. However, the K/sub d/ values did not differ. The increase in B/sub max/ was due to increases in hypothalamus and cortex. It is concluded that SH rats have higher density of kappa-opiate receptors, particularly in hypothalamus and cortex, compared to WKY rats, and that kappa-opiate receptors may be involved in the pathophysiology of hypertension.

  1. Cultured human embryonic neocortical cells survive and grow in infarcted cavities of adult rat brains and interconnect with host brain

    Institute of Scientific and Technical Information of China (English)

    ZENG Jin-sheng; YU Jian; CUI Chun-mei; ZHAO Zhan; HONG Hua; SHENG Wen-li; TAO Yu-qian; LI Ling; HUANG Ru-xun

    2005-01-01

    Background There are no reports on exnografting cultured human fetal neocortical cells in this infracted cavities of adult rat brains. This study was undertaken to observe whether cultured human cortical neurons and astrocytes can survive and grow in the infarcted cavities of adult rat brains and whether they interconnect with host brains.Methods The right middle cerebral artery was ligated distal to the striatal branches in 16 adult stroke-prone renovascular hypertensive rats. One week later, cultured cells from human embryonic cerebral cortexes were stereotaxically transferred to the infarcted cavity of 11 rats. The other 5 rats receiving sham transplants served as controls. For immunosuppression, all transplanted rats received intraperitoneal injection of cyclosporine A daily starting on the day of grafting. Immunohistochemistry for glial fibrillary acidic protein (GFAP), synaptophysin, neurofilament, and microtubule associated protein-2 (MAP-2) was performed on brain sections perfused in situ 8 weeks after transplantation.Results Grafts in the infarcted cavities of 6 of 10 surviving rats consisted of bands of neurons with an immature appearance, bundles of fibers, and GFAP-immunopositive astrocytes, which were unevenly distributed. The grafts were rich in synaptophysin, neurofilament, and MAP2-positive neurons with long processes. The graft/host border was diffuse with dendrites apparently bridging over to the host brain, into which neurofilament immunopositive fibers protruded. Conclusion Cultured human fetal brain cells can survive and grow in the infarcted cavities of immunodepressed rats and integrate with the host brain.

  2. Marrow stromal cells administrated intracisternally to rats after traumatic brain injury migrate into the brain and improve neurological function

    Institute of Scientific and Technical Information of China (English)

    胡德志; 周良辅; 朱剑虹

    2004-01-01

    @@ Marrow stromal cells(MSCs) have been reported to transplant into injured brain via intravenous or intraarterial or direct intracerebral administration.1-3 In the present study, we observed that MSCs migrated into the brain, survived and diffeneriated into neural cells after they were injected into the cisterna magna of rats, and that the behavior of the rats after traumatic brain injury (TBI) was improved.

  3. Brain oxidative stress induced by obstructive jaundice in rats.

    Science.gov (United States)

    Chroni, Elisabeth; Patsoukis, Nikolaos; Karageorgos, Nikolaos; Konstantinou, Dimitris; Georgiou, Christos

    2006-02-01

    The effect of experimental obstructive jaundice on the oxidative status of brain tissues in rats was examined. Twenty-four male Wistar rats were divided into 4 groups: Group I was the control, group II was the sham operated, and groups III and IV were bile duct ligated and killed on the 5th and the 10th day, respectively. Oxidative stress was assessed by measuring the thiol redox state (protein and nonprotein components) and lipid peroxidation level variations in samples from the cerebral cortex, midbrain, and cerebellar tissue in all animals. Results indicated the presence of oxidative stress in the jaundiced animals that was more pronounced on the 10th day as indicated by a decrease in reduced glutathione and protein thiol and an increase in protein disulphide and lipid peroxidation. A dramatic elevation of the level of total nonprotein mixed disulphide level was found specifically in the midbrain in the 10th day group. This suggests an accumulation of nonprotein disulfides other than oxidized glutathione, which remained unchanged, in this particular brain area. This study showed a correlation between experimental obstructive jaundice and the oxidative stress in the rats' brain, implying that a similar pathogenetic mechanism may play a key role in cholestatic liver disease, resulting in hepatic encephalopathy in humans.

  4. Gelation and fodrin purification from rat brain extracts.

    Science.gov (United States)

    Levilliers, N; Péron-Renner, M; Coffe, G; Pudles, J

    1986-06-03

    Extracts from rat brain tissue have been shown to give rise to a gel which exhibits the following features. It is mainly enriched in actin and in a high-molecular-weight protein with polypeptide chains of 235 and 240 kDa, which we identified as fodrin. Tubulin is also a major component of the gel but it appears to be trapped non-specifically during the gelation process. Gelation is pH-, ionic strength- and Ca2+-concentration-dependent, and is optimal under the conditions which promote the interaction between polymerized actin and fodrin. In a similar way to that described for the purification of rat brain actin (Levilliers, N., Péron-Renner, M., Coffe, G. and Pudles, J. (1984) Biochimie 66, 531-537), we used the gelation system as a selective means of recovering fodrin from the mixture of a low-ionic-strength extract from whole rat brain and a high-ionic-strength extract of the particulate fraction. From this gel, fodrin was purified with a good yield by a simple procedure involving gel dissociation in 0.5 M KCl and depolymerization in 0.7 M KI, Bio-Gel A-15m chromatography, followed by ammonium sulfate precipitation.

  5. Carbofuran Modulating Functions of Acetylcholinesterase from Rat Brain In Vitro

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Gupta

    2016-01-01

    Full Text Available Carbofuran, a potential environmental xenobiotic, has the ability to cross blood brain barrier and to adversely influence brain functions. In the present study, the impact of carbofuran on the biophysical and biochemical properties of rat brain AChE has been evaluated in vitro. This enzyme was membrane-bound which could be solubilised using Triton-X100 (0.2%, v/v, a nonionic detergent, in the extraction buffer (50 mM phosphate, pH 7.4. The enzyme was highly stable up to one month when stored at -20°C and exhibited optimum activity at pH 7.4 and 37°C. AChE displayed a direct relationship between activity and varying substrate concentrations (acetylthiocholine iodide (ATI by following Michaelis-Menten curve. The Km and Vmax values as computed from the Lineweaver-Burk double reciprocal plot of the data were found to be 0.07 mM and 0.066 µmole/mL/min, respectively. The enzyme exhibited IC50 value for carbofuran equal to 6.0 nM. The steady-state kinetic studies to determine mode of action of carbofuran on rat brain AChE displayed it to be noncompetitive in nature with Ki value equal to 5 nm. These experiments suggested that rat brain AChE was very sensitive to carbofuran and this enzyme might serve as a significant biomarker of carbofuran induced neurotoxicity.

  6. Oxymatrine reduces neuroinflammation in rat brain A signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Jiahui Mao; Yae Hu; Ailing Zhou; Bing Zheng; Yi Liu; Yueming Du; Jia Li; Jinyang Lu; Pengcheng Zhou

    2012-01-01

    Cerebral neuroinflammation models were established by injecting 10 μg lipopolysaccharide into the hippocampus of male Sprague-Dawley rats.The rats were treated with an intraperitoneal injection of 120,90,or 60 mg/kg oxymatrine daily for three days prior to the lipopolysaccharide injection.Twenty-four hours after model induction,the hippocampus was analyzed by real-time quantitative PCR,and the cerebral cortex was analyzed by enzyme-linked immunosorbent assay and western blot assay.The results of the enzyme-linked immunosorbent assay and the real-time quantitative PCR showed that the secretion and mRNA expression of the pro-inflammatory cytokines interleukin-1β and tumor necrosis factor-α were significantly decreased in the hippocampus and cerebral cortex of model rats treated with oxymatrine.Western blot assay and real-time quantitative PCR analysis indicated that toll-like receptor 4 mRNA and protein expression were significantly decreased in the groups receiving different doses of oxymatrine.Additionally,120 and 90 mg/kg oxymatrine were shown to reduce protein levels of nuclear factor-kB p65 in the nucleus and of phosphorylated IkBα in the cytoplasm of brain cells,as detected by western blot assay.Experimental findings indicate that oxymatrine may inhibit neuroinflammation in rat brain via downregulating the expression of molecules in the toll-like receptor 4/nuclear factor-kB signaling pathway.

  7. Magnetic micelles for DNA delivery to rat brains after mild traumatic brain injury.

    Science.gov (United States)

    Das, Mahasweta; Wang, Chunyan; Bedi, Raminder; Mohapatra, Shyam S; Mohapatra, Subhra

    2014-10-01

    Traumatic brain injury (TBI) causes significant mortality, long term disability and psychological symptoms. Gene therapy is a promising approach for treatment of different pathological conditions. Here we tested chitosan and polyethyleneimine (PEI)-coated magnetic micelles (CP-mag micelles or CPMMs), a potential MRI contrast agent, to deliver a reporter DNA to the brain after mild TBI (mTBI). CPMM-tomato plasmid (ptd) conjugate expressing a red-fluorescent protein (RFP) was administered intranasally immediately after mTBI or sham surgery in male SD rats. Evans blue extravasation following mTBI suggested CPMM-ptd entry into the brain via the compromised blood-brain barrier. Magnetofection increased the concentration of CPMMs in the brain. RFP expression was observed in the brain (cortex and hippocampus), lung and liver 48 h after mTBI. CPMM did not evoke any inflammatory response by themselves and were excreted from the body. These results indicate the possibility of using intranasally administered CPMM as a theranostic vehicle for mTBI. From the clinical editor: In this study, chitosan and PEI-coated magnetic micelles (CPMM) were demonstrated as potentially useful vehicles in traumatic brain injury in a rodent model. Magnetofection increased the concentration of CPMMs in the brain and, after intranasal delivery, CPMM did not evoke any inflammatory response and were excreted from the body.

  8. Effects of protein malnutrition on oxidative status in rat brain.

    Science.gov (United States)

    Feoli, Ana M; Siqueira, Ionara R; Almeida, Lúcia; Tramontina, Ana C; Vanzella, Cláudia; Sbaraini, Sabrina; Schweigert, Ingrid D; Netto, Carlos A; Perry, Marcos L S; Gonçalves, Carlos A

    2006-02-01

    This study evaluated the effects of protein malnutrition on oxidative status in rat brain areas. We investigated various parameters of oxidative status, free radical content (dichlorofluorescein formation), indexes of damage to lipid (thiobarbituric acid-reactive substances assay), and protein damage (tryptophan and tyrosine content) in addition to total antioxidant reactivity levels and antioxidant enzyme activities of superoxide dismutase, glutathione peroxidase, and catalase in different cerebral regions (cortex, hippocampus, and cerebellum) from rats subjected to prenatal and postnatal protein malnutrition (control 25% casein and protein malnutrition 7% casein). Protein malnutrition altered various parameters of oxidative stress, especially damage to macromolecules. Free radical content was unchanged by protein malnutrition. There was an increase in levels of thiobarbituric acid-reactive substances, the index of lipid peroxidation, in the cerebellum and cerebral cortex (P brain structures (P malnutrition increased oxidative damage to lipids and proteins from the studied brain areas. These results may be an indication of an important mechanism for changes in brain development that are caused by protein malnutrition.

  9. Deferoxamine attenuates acute hydrocephalus after traumatic brain injury in rats.

    Science.gov (United States)

    Zhao, Jinbing; Chen, Zhi; Xi, Guohua; Keep, Richard F; Hua, Ya

    2014-10-01

    Acute post-traumatic ventricular dilation and hydrocephalus are relatively frequent consequences of traumatic brain injury (TBI). Several recent studies have indicated that high iron levels in brain may relate to hydrocephalus development after intracranial hemorrhage. However, the role of iron in the development of post-traumatic hydrocephalus is still unclear. This study was to determine whether or not iron has a role in hydrocephalus development after TBI. TBI was induced by lateral fluid-percussion in male Sprague-Dawley rats. Some rats had intraventricular injection of iron. Acute hydrocephalus was measured by magnetic resonance T2-weighted imaging and brain hemorrhage was determined by T2* gradient-echo sequence imaging and brain hemoglobin levels. The effect of deferoxamine on TBI-induced hydrocephalus was examined. TBI resulted in acute hydrocephalus at 24 h (lateral ventricle volume: 24.1 ± 3.0 vs. 9.9 ± 0.2 mm(3) in sham group). Intraventricular injection of iron also caused hydrocephalus (25.7 ± 3.4 vs. 9.0 ± 0.6 mm(3) in saline group). Deferoxamine treatment attenuated TBI-induced hydrocephalus and heme oxygenase-1 upregulation. In conclusion, iron may contribute to acute hydrocephalus after TBI.

  10. Relationship between Morphofunctional Changes in Open Traumatic Brain Injury and the Severity of Brain Damage in Rats.

    Science.gov (United States)

    Shakova, F M; Barskov, I V; Gulyaev, M V; Prokhorenko, S V; Romanova, G A; Grechko, A V

    2016-07-01

    A correlation between the severity of morphofunctional disturbances and the volume of brain tissue injury determined by MRT was demonstrated on the model of open traumatic brain injury in rats. A relationship between the studied parameters (limb placing and beam walking tests and histological changes) and impact force (the height of load fell onto exposed brain surface) was revealed.

  11. Distinct transcriptional changes in donor kidneys upon brain death induction in rats : Insights in the processes of brain death

    NARCIS (Netherlands)

    Schuurs, TA; Gerbens, F; van der Hoeven, JAB; Ottens, PJ; Kooi, KA; Leuvenink, HGD; Hofstra, RMW; Ploeg, RJ

    2004-01-01

    Brain death affects hormone regulation, inflammatory reactivity and hemodynamic stability. In transplant models, donor organs retrieved from brain dead (BD) rats suffer from increased rates of primary nonfunction and lower graft survival. To unravel the mechanisms behind brain death we have performe

  12. Influence of histidine on zinc transport into rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Atsushi; Suzuki, Mai; Okada, Shoji; Oku, Naoto [Shizuoka Univ. (Japan). School of Pharmaceutical Sciences

    2000-06-01

    The brain of rats injected intravenously with {sup 65}Zn-His or {sup 65}ZnCl{sub 2} was subjected to autoradiography to study the role of histidine on zinc transport into the brain. One hour after injection, the radioactivity from {sup 65}Zn-His was largely concentrated in the choroid plexus in the ventricles. Six days after injection, the radioactivity from {sup 65}Zn-His was relatively concentrated in the hippocampal CA3 and dentate gyrus and the amygdala. The relative distribution of {sup 65}Zn-His in the brain was similar to that of {sup 65}ZnCl{sub 2} group at both 1 h and 6 days, suggesting that histidine may participate in zinc uptake in the brain. On the other hand, the clearance of the {sup 65}Zn-His group from the blood was higher than that of the {sup 65}ZnCl{sub 2} group. Brain uptake of the former was lower than that of the latter both 1 h and 6 days after injection. These results suggest that zinc uptake in the brain is influenced by histidine levels in the bloodstream. (author)

  13. Photoacoustic imaging for transvascular drug delivery to the rat brain

    Science.gov (United States)

    Watanabe, Ryota; Sato, Shunichi; Tsunoi, Yasuyuki; Kawauchi, Satoko; Takemura, Toshiya; Terakawa, Mitsuhiro

    2015-03-01

    Transvascular drug delivery to the brain is difficult due to the blood-brain barrier (BBB). Thus, various methods for safely opening the BBB have been investigated, for which real-time imaging methods are desired both for the blood vessels and distribution of a drug. Photoacoustic (PA) imaging, which enables depth-resolved visualization of chromophores in tissue, would be useful for this purpose. In this study, we performed in vivo PA imaging of the blood vessels and distribution of a drug in the rat brain by using an originally developed compact PA imaging system with fiber-based illumination. As a test drug, Evans blue (EB) was injected to the tail vein, and a photomechanical wave was applied to the targeted brain tissue to increase the permeability of the blood vessel walls. For PA imaging of blood vessels and EB distribution, nanosecond pulses at 532 nm and 670 nm were used, respectively. We clearly visualized blood vessels with diameters larger than 50 μm and the distribution of EB in the brain, showing spatiotemporal characteristics of EB that was transvascularly delivered to the target tissue in the brain.

  14. Mass spectrometry imaging of rat brain lipid profile changes over time following traumatic brain injury.

    Science.gov (United States)

    Roux, Aurelie; Muller, Ludovic; Jackson, Shelley N; Post, Jeremy; Baldwin, Katherine; Hoffer, Barry; Balaban, Carey D; Barbacci, Damon; Schultz, J Albert; Gouty, Shawn; Cox, Brian M; Woods, Amina S

    2016-10-15

    Mild traumatic brain injury (TBI) is a common public health issue that may contribute to chronic degenerative disorders. Membrane lipids play a key role in tissue responses to injury, both as cell signals and as components of membrane structure and cell signaling. This study demonstrates the ability of high resolution mass spectrometry imaging (MSI) to assess sequences of responses of lipid species in a rat controlled cortical impact model for concussion. A matrix of implanted silver nanoparticles was implanted superficially in brain sections for matrix-assisted laser desorption (MALDI) imaging of 50μm diameter microdomains across unfixed cryostat sections of rat brain. Ion-mobility time-of-flight MS was used to analyze and map changes over time in brain lipid composition in a rats after Controlled Cortical Impact (CCI) TBI. Brain MS images showed changes in sphingolipids near the CCI site, including increased ceramides and decreased sphingomyelins, accompanied by changes in glycerophospholipids and cholesterol derivatives. The kinetics differed for each lipid class; for example ceramides increased as early as 1 day after the injury whereas other lipids changes occurred between 3 and 7 days post injury. Silver nanoparticles MALDI matrix is a sensitive new tool for revealing previously undetectable cellular injury response and remodeling in neural, glial and vascular structure of the brain. Lipid biochemical and structural changes after TBI could help highlighting molecules that can be used to determine the severity of such injuries as well as to evaluate the efficacy of potential treatments. Copyright © 2016. Published by Elsevier B.V.

  15. In utero exposure to microwave radiation and rat brain development.

    Science.gov (United States)

    Merritt, J H; Hardy, K A; Chamness, A F

    1984-01-01

    Timed-pregnancy rats were exposed in a circular waveguide system starting on day 2 of gestation. The system operated at 2,450 MHz (pulsed waves; 8 microseconds PW; 830 pps). Specific absorption rate (SAR) was maintained at 0.4 W/kg by increasing the input power as the animals grew in size. On day 18 of gestation the dams were removed from the waveguide cages and euthanized; the fetuses were removed and weighed. Fetal brains were excised and weighed, and brain RNA, DNA and protein were determined. Values for measured parameters of the radiated fetuses did not differ significantly from those of sham-exposed fetuses. A regression of brain weight on body weight showed no micrencephalous fetuses in the radiation group when using as a criterion a regression line based on two standard errors of the estimate of the sham-exposed group. In addition, metrics derived from brain DNA (ie, cell number and cell size) showed no significant differences when radiation was compared to sham exposure. We conclude that 2,450-MHz microwave radiation, at an SAR of 0.4 W/kg, did not produce significant alterations in brain organogenesis.

  16. Gene Expression Profiling during Pregnancy in Rat Brain Tissue.

    Science.gov (United States)

    Mann, Phyllis E

    2014-03-04

    The neurophysiological changes that occur during pregnancy in the female mammal have led to the coining of the phrases "expectant brain" and "maternal brain". Although much is known of the hormonal changes during pregnancy, alterations in neurotransmitter gene expression have not been well-studied. We examined gene expression in the ventromedial nucleus of the hypothalamus (VMH) during pregnancy based on the fact that this nucleus not only modulates the physiological changes that occur during pregnancy but is also involved in the development of maternal behavior. This study was designed to identify genes that are differentially expressed between mid- and late-pregnancy in order to determine which genes may be associated with the onset and display of maternal behavior and the development of the maternal brain. A commercially available PCR array containing 84 neurotransmitter receptor and regulator genes (RT2 Profiler PCR array) was used. Brains were harvested from rats on days 12 and 21 of gestation, frozen, and micropunched to obtain the VMH. Total RNA was extracted, cDNA prepared, and SYBR Green qPCR was performed. In the VMH, expression of five genes were reduced on day 21 of gestation compared to day 12 (Chrna6, Drd5, Gabrr2, Prokr2, and Ppyr1) whereas Chat, Chrm5, Drd4, Gabra5, Gabrg2, LOC289606, Nmu5r2, and Npy5r expression was elevated. Five genes were chosen to be validated in an additional experiment based on their known involvement in maternal behavior onset. This experiment confirmed that gene expression for both the CCK-A receptor and the GABAAR γ2 receptor increases at the end of pregnancy. In general, these results identify genes possibly involved in the establishment of the maternal brain in rats and indicate possible new genes to be investigated.

  17. Characteristics of muscarinic acetylcholine receptors in rat brain.

    Directory of Open Access Journals (Sweden)

    Nukina,Itaru

    1983-06-01

    Full Text Available Characteristics of muscarinic acetylcholine (ACh receptors were studied in the rat central nervous system (CNS using 3H-quinuclidinyl benzilate (QNB, an antagonist of muscarinic ACh receptors. Scatchard analysis indicated that the rat CNS had a single 3H-QNB binding site with an apparent dissociation constant (Kd of 5.0 X 10(-10 M. Li+, Zn++ and Cu++ had strong effects on 3H-QNB binding which indicates that these metal ions might play important roles at muscarinic ACh receptor sites in the brain. Since antidepressants and antischizophrenic drugs displaced the binding of 3H-QNB, the anticholinergic effects of these drugs need to be taken into account when they are applied clinically. The muscarinic ACh receptor was successfully solubilized with lysophosphatidylcholine. By gel chromatography, with a Sepharose 6B column, the solubilized muscarinic ACh receptor molecule eluted at the fraction corresponding to a Stokes' radius of 6.1 nm. With the use of sucrose-density-gradient centrifugation, the molecular weight of the solubilized muscarinic ACh receptor was determined to be about 90,000 daltons. The regional distribution of 3H-QNB binding in rat brain was examined, and the highest level of 3H-QNB binding was found to be in the striatum followed by cerebral cortex and hippocampus, indicating that muscarinic ACh mechanisms affect CNS function mainly through these areas.

  18. Measurement of tritiated norepinephrine metabolism in intact rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Levitt, M.; Kowalik, S.; Barkai, A.I. (New York State Psychiatric Inst., New York (USA))

    1983-06-01

    A procedure for the study of NE metabolism in the intact rat brain is described. The method involves ventriculocisternal perfusion of the adult male rat with artificial CSF containing (/sup 3/H)NE. Radioactivity in the perfusate associated with NE and its metabolites 3,4-dihydroxymandelic acid (DOMA), 3,4-dihydroxphenylethyleneglycol (DHPG), 3-methoxy-4-hydroxymandelic acid (VMA), 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG), and normetanephrine (NMN) is separated using high-performance liquid chromatography (HPLC). After 80 min the radioactivity in the perfusate reaches an apparent steady-state. Analysis of the steady-state samples shows higher activity in the fractions corresponding to DHPG and MHPG than in those corresponding to DOMA and VMA, confirming glycol formation as the major pathway of NE metabolism in the rat brain. Pretreatment with an MAO inhibitor (tranylcypromine) results in a marked decrease in the deaminated metabolites DHPG and MHPG and a concurrent increase in NMN. The results indicate this to be a sensitive procedure for the in vivo determination of changes in NE metabolism.

  19. Pharmacologically induced hypothermia attenuates traumatic brain injury in neonatal rats.

    Science.gov (United States)

    Gu, Xiaohuan; Wei, Zheng Zachory; Espinera, Alyssa; Lee, Jin Hwan; Ji, Xiaoya; Wei, Ling; Dix, Thomas A; Yu, Shan Ping

    2015-05-01

    Neonatal brain trauma is linked to higher risks of mortality and neurological disability. The use of mild to moderate hypothermia has shown promising potential against brain injuries induced by stroke and traumatic brain injury (TBI) in various experimental models and in clinical trials. Conventional methods of physical cooling, however, are difficult to use in acute treatments and in induction of regulated hypothermia. In addition, general anesthesia is usually required to mitigate the negative effects of shivering during physical cooling. Our recent investigations demonstrate the potential therapeutic benefits of pharmacologically induced hypothermia (PIH) using the neurotensin receptor (NTR) agonist HPI201 (formerly known as ABS201) in stroke and TBI models of adult rodents. The present investigation explored the brain protective effects of HPI201 in a P14 rat pediatric model of TBI induced by controlled cortical impact. When administered via intraperitoneal (i.p.) injection, HPI201 induced dose-dependent reduction of body and brain temperature. A 6-h hypothermic treatment, providing an overall 2-3°C reduction of brain and body temperature, showed significant effect of attenuating the contusion volume versus TBI controls. Attenuation occurs whether hypothermia is initiated 15min or 2h after TBI. No shivering response was seen in HPI201-treated animals. HPI201 treatment also reduced TUNEL-positive and TUNEL/NeuN-colabeled cells in the contusion area and peri-injury regions. TBI-induced blood-brain barrier damage was attenuated by HPI201 treatment, evaluated using the Evans Blue assay. HPI201 significantly decreased MMP-9 levels and caspase-3 activation, both of which are pro-apototic, while it increased anti-apoptotic Bcl-2 gene expression in the peri-contusion region. In addition, HPI201 prevented the up-regulation of pro-inflammatory tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6. In sensorimotor activity assessments, rats in the HPI201

  20. Cerebrolysin attenuates blood-brain barrier and brain pathology following whole body hyperthermia in the rat.

    Science.gov (United States)

    Sharma, Hari Shanker; Zimmermann-Meinzingen, Sibilla; Sharma, Aruna; Johanson, Conrad E

    2010-01-01

    The possibility that Cerebrolysin, a mixture of several neurotrophic factors, has some neuroprotective effects on whole body hyperthermia (WBH) induced breakdown of the blood-brain barrier (BBB), blood-CSF barrier (BCSFB), brain edema formation and neuropathology were examined in a rat model. Rats subjected to a 4 h heat stress at 38 degrees C in a biological oxygen demand (BOD) incubator exhibited profound increases in BBB and BCSFB permeability to Evans blue and radioiodine tracers compared to controls. Hippocampus, caudate nucleus, thalamus and hypothalamus exhibited pronounced increase in water content and brain pathology following 4 h heat stress. Pretreatment with Cerebrolysin (1, 2 or 5 mL/kg i.v.) 24 h before WBH significantly attenuated breakdown of the BBB or BCSFB and brain edema formation. This effect was dose dependent. Interestingly, the cell and tissue injury following WBH in cerebrolysin-treated groups were also considerably reduced. These novel observations suggest that cerebrolysin can attenuate WBH induced BBB and BCSFB damage resulting in neuroprotection.

  1. Intranasal pyrrolidine dithiocarbamate decreases brain inflammatory mediators and provides neuroprotection after brain hypoxia-ischemia in neonatal rats.

    Science.gov (United States)

    Wang, Zhi; Zhao, Huijuan; Peng, Shuling; Zuo, Zhiyi

    2013-11-01

    Brain injury due to birth asphyxia is the major cause of death and long-term disabilities in newborns. We determined whether intranasal pyrrolidine dithiocarbamate (PDTC) could provide neuroprotection in neonatal rats after brain hypoxia-ischemia (HI). Seven-day old male and female Sprague-Dawley rats were subjected to brain HI. They were then treated with intranasal PDTC. Neurological outcomes were evaluated 7 or 30 days after the brain HI. Brain tissues were harvested 6 or 24 h after the brain HI for biochemical analysis. Here, PDTC dose-dependently reduced brain HI-induced brain tissue loss with an effective dose (ED)50 at 27 mg/kg. PDTC needed to be applied within 45 min after the brain HI for this neuroprotection. This treatment reduced brain tissue loss and improved neurological and cognitive functions assessed 30 days after the HI. PDTC attenuated brain HI-induced lipid oxidative stress, nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells, and various inflammatory mediators in the brain tissues. Inhibition of inducible nitric oxide synthase after brain HI reduced brain tissue loss. Our results suggest that intranasal PDTC provides neuroprotection possibly via reducing inflammation and oxidative stress. Intranasal PDTC may have a potential to provide neuroprotection to human neonates after birth asphyxia.

  2. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    Science.gov (United States)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  3. Properties of Opiate-Receptor Binding in Rat Brain

    Science.gov (United States)

    Pert, Candace B.; Snyder, Solomon H.

    1973-01-01

    [3H]Naloxone, a potent opiate antagonist, binds stereospecifically to opiate-receptor sites in rat-brain tissue. The binding is time, temperature, and pH dependent and saturable with respect to [3H]naloxone and tissue concentration. The [3H]naloxone-receptor complex formation is bimolecular with a dissociation constant of 20 nM. 15 Opiate agonists and antagonists compete for the same receptors, whose density is 30 pmol/g. Potencies of opiates and their antagonists in displacing [3H]naloxone binding parallel their pharmacological potencies. PMID:4525427

  4. Risperidone treatment increases CB1 receptor binding in rat brain

    DEFF Research Database (Denmark)

    Secher, Anna; Husum, Henriette; Holst, Birgitte

    2010-01-01

    BACKGROUND/AIMS: Body weight gain is a common side effect of treatment with antipsychotics, but the mechanisms underlying this weight gain are unknown. Several factors may be involved in antipsychotic-induced body weight gain including the cannabinoid receptor 1 (CB(1)), the serotonin receptor 2C...... positively correlated with visceral fat mass. Risperidone treatment increased CB(1) receptor binding in the arcuate nucleus (40%), hippocampus (25-30%) and amygdala (35%) without concurrent alterations in the CB(1) receptor mRNA. Risperidone treatment increased adiponectin mRNA. CONCLUSION: The present study...... showed that risperidone treatment altered CB(1) receptor binding in the rat brain. Risperidone-induced adiposity and metabolic dysfunction in the clinic may be explained by increased CB(1) receptor density in brain regions involved in appetite and regulation of metabolic function....

  5. Induction by mercury compounds of brain metallothionein in rats: Hg{sup 0} exposure induces long-lived brain metallothionein

    Energy Technology Data Exchange (ETDEWEB)

    Yasutake, Akira; Nakano, Atsuhiro [Biochemistry Section, National Institute for Minamata Disease, Kumamoto (Japan); Hirayama, Kimiko [Kumamoto University, College of Medical Science (Japan)

    1998-03-01

    Metallothionein (MT) is one of the stress proteins which can easily be induced by various kind of heavy metals. However, MT in the brain is difficult to induce because of blood-brain barrier impermeability to most heavy metals. In this paper, we have attempted to induce brain MT in rats by exposure to methylmercury (MeHg) or metallic mercury vapor, both of which are known to penetrate the blood-brain barrier and cause neurological damage. Rats treated with MeHg (40 {mu}mol/kg per day x 5 days, p.o.) showed brain Hg levels as high as 18 {mu}g/g with slight neurological signs 10 days after final administration, but brain MT levels remained unchanged. However, rats exposed to Hg vapor for 7 days showed 7-8 {mu}g Hg/g brain tissue 24 h after cessation of exposure. At that time brain MT levels were about twice the control levels. Although brain Hg levels fell gradually with a half-life of 26 days, MT levels induced by Hg exposure remained unchanged for >2 weeks. Gel fractionation revealed that most Hg was in the brain cytosol fraction and thus bound to MT. Hybridization analysis showed that, despite a significant increase in MT-I and -II mRNA in brain, MT-III mRNA was less affected. Although significant Hg accumulation and MT induction were observed also in kidney and liver of Hg vapor-exposed rats, these decreased more quickly than in brain. The long-lived MT in brain might at least partly be accounted for by longer half-life of Hg accumulated there. The present results showed that exposure to Hg vapor might be a suitable procedure to provide an in vivo model with enhanced brain MT. (orig.) With 4 figs., 1 tab., 27 refs.

  6. Correlation between light scattering signal and tissue reversibility in rat brain exposed to hypoxia

    Science.gov (United States)

    Kawauchi, Satoko; Sato, Shunichi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2010-02-01

    Light scattering signal is a potential indicator of tissue viability in brain because cellular and subcellular structural integrity should be associated with cell viability in brain tissue. We previously performed multiwavelength diffuse reflectance measurement for a rat global ischemic brain model and observed a unique triphasic change in light scattering at a certain time after oxygen and glucose deprivation. This triphasic scattering change (TSC) was shown to precede cerebral ATP exhaustion, suggesting that loss of brain tissue viability can be predicted by detecting scattering signal. In the present study, we examined correlation between light scattering signal and tissue reversibility in rat brain in vivo. We performed transcranial diffuse reflectance measurement for rat brain; under spontaneous respiration, hypoxia was induced for the rat by nitrogen gas inhalation and reoxygenation was started at various time points. We observed a TSC, which started at 140 +/- 15 s after starting nitrogen gas inhalation (mean +/- SD, n=8). When reoxygenation was started before the TSC, all rats survived (n=7), while no rats survived when reoxygenation was started after the TSC (n=8). When reoxygenation was started during the TSC, rats survived probabilistically (n=31). Disability of motor function was not observed for the survived rats. These results indicate that TSC can be used as an indicator of loss of tissue reversibility in brains, providing useful information on the critical time zone for treatment to rescue the brain.

  7. Distribution of the mRNA for protein phosphatase T in rat brain

    NARCIS (Netherlands)

    Becker, W; Buttini, M; Limonta, S; Boddeke, H; Joost, HG

    1996-01-01

    We have recently cloned a novel protein serine/threonine phosphatase (PPT) from rat mRNA which is predominantly expressed in the brain (Becker et al., J. Biol. Chem., 269 (1994) 22586-22592). In the present study, the regional distribution of PPT mRNA in the brain of adult rats was characterized by

  8. Distribution of the mRNA for protein phosphatase T in rat brain

    NARCIS (Netherlands)

    Becker, W; Buttini, M; Limonta, S; Boddeke, H; Joost, HG

    1996-01-01

    We have recently cloned a novel protein serine/threonine phosphatase (PPT) from rat mRNA which is predominantly expressed in the brain (Becker et al., J. Biol. Chem., 269 (1994) 22586-22592). In the present study, the regional distribution of PPT mRNA in the brain of adult rats was characterized by

  9. Role of stanniocalcin1 in brain injury of coal-burning-borne fluorosis rats

    Institute of Scientific and Technical Information of China (English)

    陈旭义

    2013-01-01

    Objective To observe the change of stanniocalcin 1(STC1) and calcium content in brain of coal-burning-borne fluorosis rats,and to explore the role of STC1 in brain injury of coal-burning-borne fluorosis.Methods Twenty four male SD rats were randomly divided into control,low,medium,

  10. Hypobaric Hypoxia Imbalances Mitochondrial Dynamics in Rat Brain Hippocampus

    Directory of Open Access Journals (Sweden)

    Khushbu Jain

    2015-01-01

    Full Text Available Brain is predominantly susceptible to oxidative stress and mitochondrial dysfunction during hypobaric hypoxia, and therefore undergoes neurodegeneration due to energy crisis. Evidences illustrate a high degree of association for mitochondrial fusion/fission imbalance and mitochondrial dysfunction. Mitochondrial fusion/fission is a recently reported dynamic mechanism which frequently occurs among cellular mitochondrial network. Hence, the study investigated the temporal alteration and involvement of abnormal mitochondrial dynamics (fusion/fission along with disturbed mitochondrial functionality during chronic exposure to hypobaric hypoxia (HH. The Sprague-Dawley rats were exposed to simulated high altitude equivalent to 25000 ft for 3, 7, 14, 21, and 28 days. Mitochondrial morphology, distribution within neurons, enzyme activity of respiratory complexes, Δψm, ADP: ATP, and expression of fission/fusion key proteins were determined. Results demonstrated HH induced alteration in mitochondrial morphology by damaged, small mitochondria observed in neurons with disturbance of mitochondrial functionality and reduced mitochondrial density in neuronal processes manifested by excessive mitochondrial fragmentation (fission and decreased mitochondrial fusion as compared to unexposed rat brain hippocampus. The study suggested that imbalance in mitochondrial dynamics is one of the noteworthy mechanisms occurring in hippocampal neurons during HH insult.

  11. Anticonvulsant and neuroprotective effects of Pimpinella anisum in rat brain

    Directory of Open Access Journals (Sweden)

    Karimzadeh Fariba

    2012-06-01

    Full Text Available Abstract Background Essential oil of Pimpinella anisum L. Apiaceae (anise oil has been widely used in traditional Persian medicine to treat a variety of diseases, including some neurological disorders. This study was aimed to test the possible anti-seizure and anti-hypoxia effects of anise oil. Methods The effects of different concentrations of anise oil were tested on seizure attacks induced by pentylenetetrazol (PTZ injection and neuronal hypoxia induced by oxygen withdrawal as well as on production of dark neurons and induction of long-term potentiation (LTP in in vivo and in vitro experimental models of rat brain. Results Anise oil significantly prolonged the latency of seizure attacks and reduced the amplitude and duration of epileptiform burst discharges induced by injection of intraperitoneal PTZ. In addition, anise oil significantly inhibited production of dark neurons in different regions of the brain in epileptic rats. Anise oil also significantly enhanced the duration of the appearance of anoxic terminal negativity induced by oxygen withdrawal and inhibited induction of LTP in hippocampal slices. Conclusions Our data indicate the anticonvulsant and neuroprotective effects of anise oil, likely via inhibition of synaptic plasticity. Further evaluation of anise oil to use in the treatment of neurological disorders is suggested.

  12. DHA Depletion in Rat Brain Is Associated With Impairment on Spatial Learning and Memory

    Institute of Scientific and Technical Information of China (English)

    YING XIAO; LING WANG; RUO-JUN XU; ZHEN-YU CHEN

    2006-01-01

    Objective To examine the effect of docosahexaenoic acid (DHA) deficiency in brain on spatial learning and memory in rats. Methods Sprague Dawley rats were fed with an n-3 fatty acid deficient diet for two generations to induce DHA depletion in brain. DHA in seven brain regions was analyzed using the gas-liquid chromatography. Morris water maze (MWM) was employed as an assessing index of spatial learning and memory in the n-3 fatty acid deficient adult rats of second generation. Results Feeding an n-3 deficient diet for two generations depleted DHA differently by 39%-63% in the seven brain regions including cerebellum, medulla, hypothalamus, striatum, hippocampus, cortex and midbrain. The MWM test showed that the n-3 deficient rats took a longer time and swam a longer distance to find the escape platform than the n-3 Adq group. Conclusion The spatial learning and memory in adult rats are partially impaired by brain DHA depletion.

  13. Oral branched-chain amino acid supplements that reduce brain serotonin during exercise in rats also lower brain catecholamines.

    Science.gov (United States)

    Choi, Sujean; Disilvio, Briana; Fernstrom, Madelyn H; Fernstrom, John D

    2013-11-01

    Exercise raises brain serotonin release and is postulated to cause fatigue in athletes; ingestion of branched-chain amino acids (BCAA), by competitively inhibiting tryptophan transport into brain, lowers brain tryptophan uptake and serotonin synthesis and release in rats, and reputedly in humans prevents exercise-induced increases in serotonin and fatigue. This latter effect in humans is disputed. But BCAA also competitively inhibit tyrosine uptake into brain, and thus catecholamine synthesis and release. Since increasing brain catecholamines enhances physical performance, BCAA ingestion could lower catecholamines, reduce performance and thus negate any serotonin-linked benefit. We therefore examined in rats whether BCAA would reduce both brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Sedentary and exercising rats received BCAA or vehicle orally; tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis rates were measured 1 h later in brain. BCAA reduced brain tryptophan and tyrosine concentrations, and serotonin and catecholamine synthesis. These reductions in tyrosine concentrations and catecholamine synthesis, but not tryptophan or serotonin synthesis, could be prevented by co-administering tyrosine with BCAA. Complete essential amino acid mixtures, used to maintain or build muscle mass, were also studied, and produced different effects on brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Since pharmacologically increasing brain catecholamine function improves physical performance, the finding that BCAA reduce catecholamine synthesis may explain why this treatment does not enhance physical performance in humans, despite reducing serotonin synthesis. If so, adding tyrosine to BCAA supplements might allow a positive action on performance to emerge.

  14. NO-tryptophan: a new small molecule located in the rat brain

    Directory of Open Access Journals (Sweden)

    A. Mangas

    2016-09-01

    Full Text Available A highly specific monoclonal antibody directed against nitric oxide-tryptophan (NO-W with good affinity (10-9 M and specificity was developed. In the rat brain, using an indirect immunoperoxidase technique, cell bodies containing NO-W were exclusively found in the intermediate and dorsal parts of the lateral septal nucleus. No immunoreactive fibres were found in the rat brain. This work reports the first visualization and the morphological characteristics of cell bodies containing NO-W in the mammalian brain. The restricted distribution of NO-W in the rat brain suggests that this molecule could be involved in specific physiological mechanisms. 

  15. NO-tryptophan: a new small molecule located in the rat brain.

    Science.gov (United States)

    Mangas, A; Yajeya, J; González, N; Duleu, S; Geffard, M; Coveñas, R

    2016-09-22

    A highly specific monoclonal antibody directed against nitric oxide-tryptophan (NO-W) with good affinity (10-9 M) and specificity was developed. In the rat brain, using an indirect immunoperoxidase technique, cell bodies containing NO-W were exclusively found in the intermediate and dorsal parts of the lateral septal nucleus. No immunoreactive fibres were found in the rat brain. This work reports the first visualization and the morphological characteristics of cell bodies containing NO-W in the mammalian brain. The restricted distribution of NO-W in the rat brain suggests that this molecule could be involved in specific physiological mechanisms.

  16. Summary of high field diffusion MRI and microscopy data demonstrate microstructural aberration in chronic mild stress rat brain

    DEFF Research Database (Denmark)

    Khan, Ahmad Raza; Chuhutin, Andrey; Wiborg, Ove

    2016-01-01

    Abstract This data article describes a large, high resolution diffusion MRI data set from fixed rat brain acquired at high field strength. The rat brain samples consist of21adult rat brain hemispheres from animals exposed to chronic mild stress (anhedonic and resilient) and controls. Histology from...

  17. Anticancer and antioxidant properties of terpinolene in rat brain cells.

    Science.gov (United States)

    Aydin, Elanur; Türkez, Hasan; Taşdemir, Sener

    2013-09-01

    Terpinolene (TPO) is a natural monoterpene present in essential oils of many aromatic plant species. Although various biological activities of TPO have been demonstrated, its neurotoxicity has never been explored. In this in vitro study we investigated TPO's antiproliferative and/or cytotoxic properties using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) test, genotoxic damage potential using the single-cell gel electrophoresis (SCGE), and oxidative effects through total antioxidant capacity (TAC) and total oxidative stress (TOS) in cultured primary rat neurons and N2a neuroblastoma cells. Dose-dependent effects of TPO (at 10 mg L(-1), 25 mg L(-1), 50 mg L(-1), 100 mg L(-1), 200 mg L(-1), and 400 mg L(-1)) were tested in both cell types. Significant (P<0.05) decrease in cell proliferation were observed in cultured primary rat neurons starting with the dose of 100 mg L(-1) and in N2a neuroblastoma cells starting with 50 mg L(-1). TPO was not genotoxic in either cell type. In addition, TPO treatment at 10 mg L(-1), 25 mg L(-1), and 50 mg L(-1) increased TAC in primary rat neurons, but not in N2a cells. However, at concentrations above 50 mg L(-1) it increased TOS in both cell types. Our findings clearly demonstrate that TPO is a potent antiproliferative agent for brain tumour cells and may have potential as an anticancer agent, which needs to be further studied.

  18. Gene Expression Profiling during Pregnancy in Rat Brain Tissue

    Directory of Open Access Journals (Sweden)

    Phyllis E. Mann

    2014-03-01

    Full Text Available The neurophysiological changes that occur during pregnancy in the female mammal have led to the coining of the phrases “expectant brain” and “maternal brain”. Although much is known of the hormonal changes during pregnancy, alterations in neurotransmitter gene expression have not been well-studied. We examined gene expression in the ventromedial nucleus of the hypothalamus (VMH during pregnancy based on the fact that this nucleus not only modulates the physiological changes that occur during pregnancy but is also involved in the development of maternal behavior. This study was designed to identify genes that are differentially expressed between mid- and late-pregnancy in order to determine which genes may be associated with the onset and display of maternal behavior and the development of the maternal brain. A commercially available PCR array containing 84 neurotransmitter receptor and regulator genes (RT2 Profiler PCR array was used. Brains were harvested from rats on days 12 and 21 of gestation, frozen, and micropunched to obtain the VMH. Total RNA was extracted, cDNA prepared, and SYBR Green qPCR was performed. In the VMH, expression of five genes were reduced on day 21 of gestation compared to day 12 (Chrna6, Drd5, Gabrr2, Prokr2, and Ppyr1 whereas Chat, Chrm5, Drd4, Gabra5, Gabrg2, LOC289606, Nmu5r2, and Npy5r expression was elevated. Five genes were chosen to be validated in an additional experiment based on their known involvement in maternal behavior onset. This experiment confirmed that gene expression for both the CCK-A receptor and the GABAAR γ2 receptor increases at the end of pregnancy. In general, these results identify genes possibly involved in the establishment of the maternal brain in rats and indicate possible new genes to be investigated.

  19. Inhibition of lipid peroxidation in rat brain by nifedipine and clorazepate after electrically induced seizures.

    Science.gov (United States)

    Kułak, W; Sobaniec, W; Sobaniec-Lotowska, M

    1993-01-01

    The effect of nifedipine and clorazepate on the concentration of lipid peroxides (LP) in rat brain, and the characteristics of electrically induced seizures were assessed. A significant increase in the concentration of brain LP after electroshock was found. Both nifedipine (1.00 mg/kg per os) and clorazepate (20 mg/kg intraperitoneally) decreased the levels of LP in the rat brain after electroshock. Nifedipine combined with clorazepate brought an inhibition of LP formation and an additive anticonvulsant activity.

  20. Environmental enrichment promotes neural remodeling in newborn rats with hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    Chuanjun Liu; Yankui Guo; Yalu Li; Zhenying Yang

    2011-01-01

    We evaluated the effect of hypoxic-ischemic brain damage and treatment with early environmental enrichment intervention on development of newborn rats, as evaluated by light and electron microscopy and morphometry. Early intervention with environmental enrichment intelligence training attenuated brain edema and neuronal injury, promoted neuronal repair, and increased neuronal plasticity in the frontal lobe cortex of the newborn rats with hypoxic-ischemic brain damage.

  1. Selective glial vulnerability following transient global ischemia in rat brain.

    Science.gov (United States)

    Petito, C K; Olarte, J P; Roberts, B; Nowak, T S; Pulsinelli, W A

    1998-03-01

    Global cerebral ischemia selectively damages neurons, but its contribution to glial cell death is uncertain. Accordingly, adult male rats were sacrificed by perfusion fixation at 1, 2, 3, 5, and 14 days following 10 minutes of global ischemia. This insult produces CA1 hippocampal neuronal death at post-ischemic (PI) day 3, but minor or no damage to neurons in other regions. In situ end labeling (ISEL) and immunohistochemistry identified fragmented DNA of dead or dying glia and distinguished glial subtypes. Rare ISEL-positive oligodendroglia, astrocytes, and microglia were present in control brain. Apoptotic bodies and ISEL-positive glia significantly increased at PI day 1 in cortex and thalamus (p < 0.05), but were similar to controls in other regions and at other PI intervals. Most were oligodendroglia, although ISEL-positive microglia and astrocytes were also observed. These results show that oligodendroglia die rapidly after brief global ischemia and are more sensitive than neurons in certain brain regions. Their selective vulnerability to ischemia may be responsible for the delayed white matter damage following anoxia or CO poisoning or that associated with white matter arteriopathies. Glial apoptosis could contribute to the DNA ladders of apoptotic oligonucleosomes that have been found in post-ischemic brain.

  2. Kappa opioid receptors stimulate phosphoinositide turnover in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Periyasamy, S.; Hoss, W. (Univ. of Toledo, OH (USA))

    1990-01-01

    The effects of various subtype-selective opioid agonists and antagonists on the phosphoinositide (PI) turnover response were investigated in the rat brain. The {kappa}-agonists U-50,488H and ketocyclazocine produced a concentration-dependent increase in the accumulation of IP's in hippocampal slices. The other {kappa}-agonists Dynorphin-A (1-13) amide, and its protected analog D(Ala){sup 2}-dynorphin-A (1-13) amide also produced a significant increase in the formation of ({sup 3}H)-IP's, whereas the {mu}-selective agonists (D-Ala{sup 2}-N-Me-Phe{sup 4}-Gly{sup 5}-ol)-enkephalin and morphine and the {delta}-selective agonist (D-Pen{sup 2,5})-enkephalin were ineffective. The increase in IP's formation elicited by U-50,488H was partially antagonized by naloxone and more completely antagonized by the {kappa}-selective antagonists nor-binaltorphimine and MR 2266. The formation of IP's induced by U-50,488H varies with the regions of the brain used, being highest in hippocampus and amygdala, and lowest in striatum and pons-medullar. The results indicate that brain {kappa}- but neither {mu}- nor {delta}- receptors are coupled to the PI turnover response.

  3. Quinolinic acid induces oxidative stress in rat brain synaptosomes.

    Science.gov (United States)

    Santamaría, A; Galván-Arzate, S; Lisý, V; Ali, S F; Duhart, H M; Osorio-Rico, L; Ríos, C; St'astný, F

    2001-03-26

    The oxidative action of quinolinic acid (QUIN), and the protective effects of glutathione (GSH), and 2-amino-5-phosphonovaleric acid (APV), were tested in rat brain synaptosomes, Reactive oxygen species (ROS) formation was quantified after the exposure of synaptosomes to increasing concentrations of QUIN (25-500 microM). The potency of QUIN to induce lipid peroxidation (LP) was tested as a regional index of thiobarbituric acid-reactive substances (TBARS) production, and the antioxidant actions of both GSH (50 microM) and APV (250 microM) on QUIN-induced LP were evaluated in synaptosomes prepared from different brain regions. QUIN induced concentration-dependent increases in ROS formation and TBARS in all regions analyzed, but increased production of fluorescent peroxidized lipids only in the striatum and the hippocampus, whereas both GSH and APV decreased this index. These results suggest that the excitotoxic action of QUIN involves regional selectivity in the oxidative status of brain synaptosomes, and may be prevented by substances exhibiting antagonism at the NMDA receptor.

  4. Gallic acid improved behavior, brain electrophysiology, and inflammation in a rat model of traumatic brain injury.

    Science.gov (United States)

    Sarkaki, Alireza; Farbood, Yaghoub; Gharib-Naseri, Mohammad Kazem; Badavi, Mohammad; Mansouri, Mohammad Taghi; Haghparast, Abbas; Mirshekar, Mohammad Ali

    2015-08-01

    Traumatic brain injury (TBI) is one of the main causes of intellectual and cognitive disabilities. In the clinic it is essential to limit the development of cognitive impairment after TBI. In this study, the effects of gallic acid (GA; 100 mg/kg, per oral, from 7 days before to 2 days after TBI induction) on neurological score, passive avoidance memory, long-term potentiation (LTP) deficits, and levels of proinflammatory cytokines including interleukin-1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) in the brain have been evaluated. Brain injury was induced following Marmarou's method. Data were analyzed by one-way and repeated measures ANOVA followed by Tukey's post-hoc test. The results indicated that memory was significantly impaired (p memory and LTP in the TBI rats. The brain tissue levels of IL-1β, IL-6, and TNF-α were significantly reduced (p electrophysiological, and inflammatory disorders, probably via the decrease of cerebral proinflammatory cytokines.

  5. Dietary choline deprivation impairs rat brain mitochondrial function and behavioral phenotype.

    Science.gov (United States)

    Pacelli, Consiglia; Coluccia, Addolorata; Grattagliano, Ignazio; Cocco, Tiziana; Petrosillo, Giuseppe; Paradies, Giuseppe; De Nitto, Emanuele; Massaro, Antonio; Persichella, Michele; Borracci, Pietro; Portincasa, Piero; Carratù, Maria Rosaria

    2010-06-01

    Dietary choline deprivation (CD) is associated with behavioral changes, but mechanisms underlying these detrimental effects are not well characterized. For instance, no literature data are available concerning the CD effects on brain mitochondrial function related to impairment in cognition. Therefore, we investigated brain mitochondrial function and redox status in male Wistar rats fed a CD diet for 28 d. Moreover, the CD behavioral phenotype was characterized. Compared with rats fed a control diet (CTRL), CD rats showed lower NAD-dependent mitochondrial state III and state IV respiration, 40% lower complex I activity, and significantly higher reactive oxygen species production. Total glutathione was oxidatively consumed more in CD than in CTRL rats and the rate of protein oxidation was 40% higher in CD than in CTRL rats, reflecting an oxidative stress condition. The mitochondrial concentrations of cardiolipin, a phospholipid required for optimal activity of complex I, was 20% lower in CD rats than in CTRL rats. Compared with CTRL rats, the behavioral phenotype of CD rats was characterized by impairment in motor coordination and motor learning assessed with the rotarod/accelerod test. Furthermore, compared with CTRL rats, CD rats were less capable of learning the active avoidance task and the number of attempts they made to avoid foot shock was fewer. The results suggest that CD-induced dysfunction in brain mitochondria may be responsible for impairment in cognition and underline that, similar to the liver, the brain also needs an adequate choline supply for its normal functioning.

  6. Lipopolysaccharide-induced expression of IP-10 mRNA in rat brain and in cultured rat astrocytes and microglia

    NARCIS (Netherlands)

    Ren, LQ; Gourmala, N; Boddeke, HWGM; Gebicke-Haerter, PJ

    1998-01-01

    Using mRNA differential display technique, we have found a differentially expressed band in rat brain, designated HAP(2)G1, which was the strongest one induced in response to peripheral administration of lipopolysaccharide (LPS). Sequence analysis showed that HAP(2)G1 cDNA is the rat homologue of th

  7. Cognitive dysfunction and histological findings in adult rats one year after whole brain irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Katsuhiko; Tanaka, Ryuichi; Sato, Mitsuya; Takeda, Norio [Niigata Univ. (Japan). Brain Research Inst.

    2001-12-01

    Cognitive dysfunction and histological changes in the brain were investigated following irradiation in 20 Fischer 344 rats aged 6 months treated with whole brain irradiation (WBR) (25 Gy/single dose), and compared with the same number of sham-irradiated rats as controls. Performance of the Morris water maze task and the passive avoidance task were examined one year after WBR. Finally, histological and immunohistochemical examinations using antibodies to myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and neurofilament (NF) were performed of the rat brains. The irradiated rats continued to gain weight 7 months after WBR whereas the control rats stopped gaining weight. Cognitive functions in both the water maze task and the passive avoidance task were lower in the irradiated rats than in the control rats. Brain damage consisting of demyelination only or with necrosis was found mainly in the body of the corpus callosum and the parietal white matter near the corpus callosum in the irradiated rats. Immunohistochemical examination of the brains without necrosis found MBP-positive fibers were markedly decreased in the affected areas by irradiation; NF-positive fibers were moderately decreased and irregularly dispersed in various shapes in the affected areas; and GFAP-positive fibers were increased, with gliosis in those areas. These findings are similar to those in clinically accelerated brain aging in conditions such as Alzheimer's disease, Binswanger's disease, and multiple sclerosis. (author)

  8. Label-free dopamine imaging in live rat brain slices.

    Science.gov (United States)

    Sarkar, Bidyut; Banerjee, Arkarup; Das, Anand Kant; Nag, Suman; Kaushalya, Sanjeev Kumar; Tripathy, Umakanta; Shameem, Mohammad; Shukla, Shubha; Maiti, Sudipta

    2014-05-21

    Dopaminergic neurotransmission has been investigated extensively, yet direct optical probing of dopamine has not been possible in live cells. Here we image intracellular dopamine with sub-micrometer three-dimensional resolution by harnessing its intrinsic mid-ultraviolet (UV) autofluorescence. Two-photon excitation with visible light (540 nm) in conjunction with a non-epifluorescent detection scheme is used to circumvent the UV toxicity and the UV transmission problems. The method is established by imaging dopamine in a dopaminergic cell line and in control cells (glia), and is validated by mass spectrometry. We further show that individual dopamine vesicles/vesicular clusters can be imaged in cultured rat brain slices, thereby providing a direct visualization of the intracellular events preceding dopamine release induced by depolarization or amphetamine exposure. Our technique opens up a previously inaccessible mid-ultraviolet spectral regime (excitation ~270 nm, emission free imaging of native molecules in live tissue.

  9. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    Science.gov (United States)

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  10. Antioxidant effects of calcium antagonists in rat brain homogenates.

    Science.gov (United States)

    Yao, K; Ina, Y; Nagashima, K; Ohmori, K; Ohno, T

    2000-06-01

    We studied the antioxidant activities of calcium antagonists against autoxidation in rat brain homogenates. The homogenates were incubated for 30 min at 37 degrees C with or without a calcium antagonist and subsequently assayed for lipid peroxide content. Percent inhibition of the lipid peroxidation was used as an index of the antioxidant effect. Dihydropyridine calcium antagonists exhibited concentration-dependent (3-300 micromol/l) inhibitory effects against lipid peroxidation. The relative order of antioxidant potency and associated IC50 values (micromol/l) of the calcium antagonists for inhibition of the lipid peroxidation were as follows: nifedipine (51.5)>barnidipine (58.6)>benidipine (71.2)>nicardipine (129.3)>amlodipine (135.5)>nilvadipine (167.3)>nitrendipine (252.1)> diltiazem (>300)=verapamil (>300). These results suggest that some dihydropyridine calcium antagonists show antioxidant properties. The antioxidant effects of the calcium antagonists may contribute to their pharmacological actions.

  11. Localization and labeling of rat brain in MR image based on Paxinos-Watson atlas

    Science.gov (United States)

    Cao, Jie; Cai, Chao; Ding, Mingyue; Zhou, Chengping

    2006-03-01

    Localization and labeling of function regions in brain is an important topic in experimental brain sciences because the huge amount of data collected by neuroscientists will become meaningless if we cannot give them a precise description of their locations. In this paper, we proposed a localization and labelling method of 3D MR image of rat brain based on Paxinos-Watson atlas. Our objective is to use the specific atlas to accomplish localization and labeling of specified tissue of interest (TOI) to mimic a veteran expert such that invisible or unclear anatomic function regions in the MR images of rat brain can be automatically identified and marked. We proposed a multi-step method to locate and label the TOIs from the MR image of rat brain. Firstly, pre-processing. It aims at the digitization and 3D reconstruction of the atlas and MRI of rat brain. Secondly, two-step registration. The global registration is to eliminate the big misalign and section angle offset as well as the scale between the MRI and atlas. We can choose some unambiguous and characteristic points manually, and based on these correspondences a coarse registration is obtained using affine model. The local registration is to address individual variability of rat brain that can be performed by using Snake model. Thirdly, post-processing. The goal is to locate and label the TOIs in the selected MR image of rat brain slice guided by well-registered atlas. The experiments demonstrated the feasibility of our method.

  12. Regional protein synthesis in rat brain following acute hemispheric ischemia.

    Science.gov (United States)

    Dienel, G A; Pulsinelli, W A; Duffy, T E

    1980-11-01

    Regional protein synthesis was measured in rat brain at intervals up to 48 h following occlusion of the four major arteries to the brain for either 10 or 30 min. Four-vessel occlusions produces ischemia in the cerebral hemispheres and oligemia in the midbrain-diencephalon and brainstem. During the hour following 10 min of ischemia, protein synthesis, measured by incorporation of [14C]valine into protein, was inhibited in the cerebral cortex by 67%. Normal rates of protein synthesis were attained within 4 h of recirculation. In rats subjected to 30 min of ischemia, protein synthesis was inhibited by 83% during the first hour of recirculation in the cortex, caudate-putamen, and hippocampus. Recovery of protein synthesis in these regions was slow (25-48 h). The midbrain-diencephalon showed less inhibition, 67%, and faster recovery (by 12 h). Protein synthesis was unaffected in the brainstem. [14C]Autoradiography revealed that the pyramidal neurons of the hippocampus and areas of the caudate and cortex failed to recover normal rates of protein synthesis even after 48 h. The accumulation of TCA-soluble [14C]valine was enhanced (55-65%) in the cortex, caudate, and hippocampus after 30 min of ischemia; the increase persisted for 12 h. A smaller rise in [14C]valine content (30%) and more rapid normalization of valine accumulation (by 7 h) were observed in the midbrain-diencephalon; no changes were found in the brainstem. In the cortex, recovery was more rapid when the duration of ischemia was reduced. Thus, the degree of inhibition of protein synthesis, the accumulation of valine in the tissue, and the length of time required to reestablish normal values for these processes were dependent on both the severity and the duration of the ischemic insult. Restoration of normal rates of protein synthesis after ischemia was slow compared with the normalization of cerebral energy metabolites.

  13. The quantitative analysis of S100 in the brain tissue and serum following diffuse brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Wang Qi; Huang Ping; Xing Bo; Tuo Ya; Zhang Yongpan; Tian Weiping; Wang Zhenyuan

    2007-01-01

    Objective To investigate the dynamics of the level of S100 in cerebrum, brainstem, and serum following the diffuse brain injury in rats and provide the experimental evidences for estimating injury time. Methods ELISA was used to determine whether S100 protein is changed after diffuse brain injury in rats. Forty rats were sacrificed at 0.5 hour, 2 hours, 4 hours, 12 hours, 24 hours, 3 d and 7 d after diffuse brain injury and normal rats as control. Results The level of S100 in cerebrum, brainstem, and serum increased, followed by a decrease, and then further increased. The level of S100 could be detected to increase at 30 minutes and reached the peak at 4 hours after DBI. The level decreased gradually to the normal at 1d and till 3 d formed the second peak. The level returned to the normal at 7d following injury again. In the postmortem injury groups, there were no significant changes compared to the control group. Conclusion The present study showed that the time-dependent expression of S100 is obvious following diffuse brain injury in rats and suggested that S100 will be a suitable marker for diffuse brain injury age determination.

  14. Adenovirally Delivered Brain-derived Neurotrophic Factor to Rat Retina

    Institute of Scientific and Technical Information of China (English)

    Xu Hou; Dan Hu; Yannian Hui

    2004-01-01

    Purpose: To study the expression of brain-derived neurotrophic factor (BDNF) in the rat retina delivered by adenovirus.Methods: Adenovirus with BDNF gene was injected into the vitreous. Gene expression was detected by immunofluorescence staining, and quantitative analysis was performed after injury and transfection by Enzyme-linked immunosorbent assay (ELISA).Results: The positive cells can be seen on the 3rd day and last 4 weeks by immunofluorescence staining. Positive cells in the control group were fewer than those in the transfection group or the fluorescence intensity was lower at every time point. Quantitative analysis showed that the expression of BDNF groups was higher than that of the control group at every time point(P < 0.01 ), and that of the injured group without transfection was higher than that of the control group on the 3rd day and the 7th day (P < 0.01 ).Conclusion: Efficient and stable transfer of BDNF gene could be achieved by adenovirus delivery into the retina of rats. Injury can promote the expression of BDNF in early period.

  15. Protocatechuic acid protects brain mitochondrial function in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Semaming, Yoswaris; Sripetchwandee, Jirapas; Sa-Nguanmoo, Piangkwan; Pintana, Hiranya; Pannangpetch, Patchareewan; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2015-10-01

    Brain mitochondrial dysfunction has been demonstrated in diabetic animals with neurodegeneration. Protocatechuic acid (PCA), a major metabolite of anthocyanin, has been shown to exert glycemic control and oxidative stress reduction in the heart. However, its effects on oxidative stress and mitochondrial function in the brain under diabetic condition have never been investigated. We found that PCA exerted glycemic control, attenuates brain mitochondrial dysfunction, and contributes to the prevention of brain oxidative stress in diabetic rats.

  16. Regional energy balance in rat brain after transient forebrain ischemia.

    Science.gov (United States)

    Pulsinelli, W A; Duffy, T E

    1983-05-01

    Phosphocreatine, ATP, and glucose were severely depleted, and the lactate levels were increased in the paramedian neocortex, dorsal-lateral striatum, and CA1 zone of hippocampus of rats exposed to 30 min of forebrain ischemia. Upon recirculation of the brain, phosphocreatine, ATP, and lactate concentrations recovered to control values in the paramedian neocortex and CA1 zone of hippocampus and to near-control values in the striatum. The phosphocreatine and ATP concentrations then fell and the lactate levels rose in the striatum after 6-24 h, and in the CA1 zone of hippocampus after 24-72 h. The initial recovery and subsequent delayed changes in the phosphocreatine, ATP, and lactate concentrations in the striatum and hippocampus coincided with the onset and progression of morphological injury in these brain regions. The results suggest that cells in these regions regain normal or near-normal mitochondrial function and are viable, in terms of energy production, for many hours before unknown mechanisms cause irreversible neuronal before unknown mechanisms cause irreversible neuronal injury.

  17. Rat brain aryl acylamidase: further characterization of multiple forms.

    Science.gov (United States)

    Hsu, L L; Halaris, A E; Freedman, D X

    1982-01-01

    1. Two fractions of aryl acylamidase (EC 3.5.1.13) were further separated from rat brain extracts at pH 7.5 by ammonium sulfate precipitation and Bio-Gel chromatography. 2. 1,2,3,4-Tetrahydro-beta-carboline competitively inhibited (67%) fraction-1 but slightly inhibited (13%) fraction-2. Tetrahydroharman, 6-hydroxy-tetrahydroharman and harminic acid slightly inhibited both fractions. Harmalol inhibited fraction-1 but enhanced fraction-2. 6-Methoxy-harman, 6-methoxy-harmalan and harmaline enhanced both fractions. 3. Pargyline did not affect either fraction. Methiothepin, cyproheptadine and chlorimipramine inhibited fraction-1 but stimulated fraction-2. 4. Neostigmine moderately (30%) inhibited AAA-2 but did not have any significant effect on AAA-1. 5. These results indicate that the beta-carboline compounds might play a role in regulating activity of AAA-1 and 2 in brain. 6. Both fractions might be related to serotonergic neurons but only AAA-2 might be associated with acetylcholinesterase.

  18. Effect of ethanol on enkephalinergic opioid system of rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Belyayev, N.A.; Balakireva, N.N.; Brusov, O.S.; Panchenko, L.F.

    1983-10-13

    Specific binding of /sup 3/H-morphine and /sup 3/H-(D-Ala/sup 2/, D-Leu/sup 5/)-enkephalin (H-EN) with opiatic receptors was studied on white rats along with the content of Met- and Leu-enkephalin and the activity of enkephalinase in various brain segments after single dose (20% solution in 0.9% NaCl, IP; 1.5-4.5 g/kg body weight) and chronic injection (20% EtOH substituted for drinking water) of ethanol. The single injection of EtOH (1.5-4.5 g/kg) resulted in a depression of the specific binding of H-EN with opiate receptors. Doses of 1.5 and 2.5 g/kg led to a lower content of Leu-enkephalin in mid-brain but to an increase of Met-enkephalin; the 4.5 g/kg dose had no effect on the striatum. With chronic administration of EtOH, most of the values obtained on the experimental animals were similar to the control data. 23 references.

  19. Cyclosporin safety in a simplified rat brain tumor implantation model

    Directory of Open Access Journals (Sweden)

    Francisco H. C. Felix

    2012-01-01

    Full Text Available Brain cancer is the second neurological cause of death. A simplified animal brain tumor model using W256 (carcinoma 256, Walker cell line was developed to permit the testing of novel treatment modalities. Wistar rats had a cell tumor solution inoculated stereotactically in the basal ganglia (right subfrontal caudate. This model yielded tumor growth in 95% of the animals, and showed absence of extracranial metastasis and systemic infection. Survival median was 10 days. Estimated tumor volume was 17.08±6.7 mm³ on the 7th day and 67.25±19.8 mm³ on 9th day post-inoculation. Doubling time was 24.25 h. Tumor growth induced cachexia, but no hematological or biochemical alterations. This model behaved as an undifferentiated tumor and can be promising for studying tumor cell migration in the central nervous system. Dexamethasone 3.0 mg/kg/day diminished significantly survival in this model. Cyclosporine 10 mg/kg/day administration was safely tolerated.

  20. Are soluble and membrane-bound rat brain acetylcholinesterase different

    Energy Technology Data Exchange (ETDEWEB)

    Andres, C.; el Mourabit, M.; Stutz, C.; Mark, J.; Waksman, A. (Centre de Neurochimie du C.N.R.S., Strasbourg, (France))

    1990-11-01

    Salt-soluble and detergent-soluble acetylcholinesterases (AChE) from adult rat brain were purified to homogeneity and studied with the aim to establish the differences existing between these two forms. It was found that the enzymatic activities of the purified salt-soluble AChE as well as the detergent-soluble AChE were dependent on the Triton X-100 concentration. Moreover, the interaction of salt-soluble AChE with liposomes suggests amphiphilic behaviour of this enzyme. Serum cholinesterase (ChE) did not bind to liposomes but its activity was also detergent-dependent. Detergent-soluble AChE remained in solution below critical micellar concentrations of Triton X-100. SDS polyacrylamide gel electrophoresis of purified, Biobeads-treated and iodinated detergent-soluble 11 S AChE showed, under non reducing conditions, bands of 69 kD, 130 kD and greater than 250 kD corresponding, respectively, to monomers, dimers and probably tetramers of the same polypeptide chain. Under reducing conditions, only a 69 kD band was detected. It is proposed that an amphiphilic environment stabilizes the salt-soluble forms of AChE in the brain in vivo and that detergent-soluble Biobeads-treated 11 S AChE possess hydrophobic domain(s) different from the 20 kD peptide already described.

  1. Brain Metabolic Changes in Rats following Acoustic Trauma

    Science.gov (United States)

    He, Jun; Zhu, Yejin; Aa, Jiye; Smith, Paul F.; De Ridder, Dirk; Wang, Guangji; Zheng, Yiwen

    2017-01-01

    Acoustic trauma is the most common cause of hearing loss and tinnitus in humans. However, the impact of acoustic trauma on system biology is not fully understood. It has been increasingly recognized that tinnitus caused by acoustic trauma is unlikely to be generated by a single pathological source, but rather a complex network of changes involving not only the auditory system but also systems related to memory, emotion and stress. One obvious and significant gap in tinnitus research is a lack of biomarkers that reflect the consequences of this interactive “tinnitus-causing” network. In this study, we made the first attempt to analyse brain metabolic changes in rats following acoustic trauma using metabolomics, as a pilot study prior to directly linking metabolic changes to tinnitus. Metabolites in 12 different brain regions collected from either sham or acoustic trauma animals were profiled using a gas chromatography mass spectrometry (GC/MS)-based metabolomics platform. After deconvolution of mass spectra and identification of the molecules, the metabolomic data were processed using multivariate statistical analysis. Principal component analysis showed that metabolic patterns varied among different brain regions; however, brain regions with similar functions had a similar metabolite composition. Acoustic trauma did not change the metabolite clusters in these regions. When analyzed within each brain region using the orthogonal projection to latent structures discriminant analysis sub-model, 17 molecules showed distinct separation between control and acoustic trauma groups in the auditory cortex, inferior colliculus, superior colliculus, vestibular nucleus complex (VNC), and cerebellum. Further metabolic pathway impact analysis and the enrichment overview with network analysis suggested the primary involvement of amino acid metabolism, including the alanine, aspartate and glutamate metabolic pathways, the arginine and proline metabolic pathways and the purine

  2. Cordycepin attenuates traumatic brain injury-induced impairments of blood-brain barrier integrity in rats.

    Science.gov (United States)

    Yuan, Jing; Wang, Aihua; He, Yan; Si, Zhihua; Xu, Shan; Zhang, Shanchao; Wang, Kun; Wang, Dawei; Liu, Yiming

    2016-10-01

    Loss of blood-brain barrier (BBB) integrity is a downstream event caused by traumatic brain injury (TBI). BBB integrity is affected by certain physiological conditions, including inflammation and oxidative stress. Cordycepin is a susbtance with anti-inflammatory and anti-oxidative effects. Therefore, it is necessary to investigate whether cordycepin affects TBI-induced impairments of BBB integrity. Using TBI rats as the in vivo model and applying multiple techniques, including stroke severity evaluation, Evans blue assessment, quantitative real-time PCR, Western blotting and ELISA, we investigated the dose-dependent protective effects of cordycepin on the TBI-induced impairments of BBB integrity. Cordycepin treatment attenuated the TBI-induced impairments in a dose-dependent manner, and played a role in protecting BBB integrity. Cordycepin was able to alleviate TBI-induced loss of tight junction proteins zonula occludens protein-1 (ZO-1) and occludin, which are important for BBB integrity. Moreover, cordycepin suppressed pro-inflammatory factors, including IL-1β, iNOS, MPO and MMP-9, and promoted anti-inflammation-associated factors arginase 1 and IL-10. Furthermore, cordycepin inhibited NADPH oxidase (NOX) expression and activity following TBI, probably through NOX1, but not NOX2 and NOX4. Cordycepin has protective effects against brain damages induced by TBI. The protection of cordycepin on BBB integrity was probably achieved through recovery of tight junction proteins, inhibition of local inflammation, and prevention of NOX activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Calcium-activated potassium channels mediated blood-brain tumor barrier opening in a rat metastatic brain tumor model

    Directory of Open Access Journals (Sweden)

    Ong John M

    2007-03-01

    Full Text Available Abstract Background The blood-brain tumor barrier (BTB impedes the delivery of therapeutic agents to brain tumors. While adequate delivery of drugs occurs in systemic tumors, the BTB limits delivery of anti-tumor agents into brain metastases. Results In this study, we examined the function and regulation of calcium-activated potassium (KCa channels in a rat metastatic brain tumor model. We showed that intravenous infusion of NS1619, a KCa channel agonist, and bradykinin selectively enhanced BTB permeability in brain tumors, but not in normal brain. Iberiotoxin, a KCa channel antagonist, significantly attenuated NS1619-induced BTB permeability increase. We found KCa channels and bradykinin type 2 receptors (B2R expressed in cultured human metastatic brain tumor cells (CRL-5904, non-small cell lung cancer, metastasized to brain, human brain microvessel endothelial cells (HBMEC and human lung cancer brain metastasis tissues. Potentiometric assays demonstrated the activity of KCa channels in metastatic brain tumor cells and HBMEC. Furthermore, we detected higher expression of KCa channels in the metastatic brain tumor tissue and tumor capillary endothelia as compared to normal brain tissue. Co-culture of metastatic brain tumor cells and brain microvessel endothelial cells showed an upregulation of KCa channels, which may contribute to the overexpression of KCa channels in tumor microvessels and selectivity of BTB opening. Conclusion These findings suggest that KCa channels in metastatic brain tumors may serve as an effective target for biochemical modulation of BTB permeability to enhance selective delivery of chemotherapeutic drugs to metastatic brain tumors.

  4. Brain lipids in rats fed a diet supplemented with hen eggs of modified lipid content

    Directory of Open Access Journals (Sweden)

    Hodžić Aida

    2012-01-01

    Full Text Available The aim of this study was to research the impact of a diet supplemented with egg yolks of modified content, having in mind the type of fat added to the laying hens diet, on the brain lipids and their fatty acid composition in rats. During four weeks of the experiment, 64 Wistar rats, divided into four groups of 16 animals each (eight animals of both sexes, were fed the commercial rat feed (group C, or the feed that contained 70% of the commercial rat feed and 30% of freshly boiled yolks from the eggs originating from laying hens fed with 3% fish oil (group F, 3% palm olein (group P or 3% lard (group L. Concentration and content of total lipids and total cholesterol, as well as the fatty-acid composition of the total brain lipids were determined in the lipid extracts of the rats brains. Under unfavourable conditions, which in our case could be high dietary intake of the total fat due to egg yolk addition, the amount of total fat in the brain tissue or the mass of the organ itself can be changed. Applied dietary treatments could also influence the level of de novo synthesis of total cholesterol in the rat brain. High dietary fat intake, as well as the fat quality regarding its fatty acid composition, appear to be able to significantly influence the fatty acid profile of the total brain lipids in adult rats, whereas the level and quality of the changes also depend on sex.

  5. Garlic extract attenuates brain mitochondrial dysfunction and cognitive deficit in obese-insulin resistant rats.

    Science.gov (United States)

    Pintana, Hiranya; Sripetchwandee, Jirapas; Supakul, Luerat; Apaijai, Nattayaporn; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2014-12-01

    Oxidative stress in the obese-insulin resistant condition has been shown to affect cognitive as well as brain mitochondrial functions. Garlic extract has exerted a potent antioxidant effect. However, the effects of garlic extract on the brain of obese-insulin resistant rats have never been investigated. We hypothesized that garlic extract improves cognitive function and brain mitochondrial function in obese-insulin resistant rats induced by long-term high-fat diet (HFD) consumption. Male Wistar rats were fed either normal diet or HFD for 16 weeks (n = 24/group). At week 12, rats in each dietary group received either vehicle or garlic extract (250 and 500 mg·kg(-1)·day(-1)) for 28 days. Learning and memory behaviors, metabolic parameters, and brain mitochondrial function were determined at the end of treatment. HFD led to increased body weight, visceral fat, plasma insulin, cholesterol, and malondialdehyde (MDA) levels, indicating the development of insulin resistance. Furthermore, HFD rats had cognitive deficit and brain mitochondrial dysfunction. HFD rats treated with both doses of garlic extract had decreased body weight, visceral fat, plasma cholesterol, and MDA levels. Garlic extract also improved cognitive function and brain mitochondrial function, which were impaired in obese-insulin resistant rats caused by HFD consumption.

  6. Tannic acid alleviates lead acetate-induced neurochemical perturbations in rat brain.

    Science.gov (United States)

    Ashafaq, Mohammad; Tabassum, Heena; Vishnoi, Shruti; Salman, Mohd; Raisuddin, Sheikh; Parvez, Suhel

    2016-03-23

    Oxidative stress has been projected as a promising mechanism involved in lead exposure. The lead predisposition catalyzes oxidative reactions and generates reactive oxygen species. The present study was carried out to investigate the effect of oral administration of tannic acid (TA) on behavioral deficit, antioxidative deterioration induced by lead acetate (LA) exposure on experimental rat brain. Male Wistar rats were treated with 50mg/kg body weight of LA and TA for three times a week for two weeks. Our data showed LA-induced profound elevation of ROS production and oxidative stress, as evidenced by increased levels of oxidative stress markers such as lipid peroxidation and protein carbonyl observed in LA treated rats, whereas significant depletion in the activity of non-enzymatic antioxidants, enzymatic antioxidants, neurotoxicity biomarker and histological changes were observed in LA treated rat brain. However, TA administration restored antioxidant status of brain significantly when compared to control. Our results demonstrate that TA exhibits potent antioxidant properties and suppresses oxidative damages in rat brain induced by LA treatment. These findings were further supported by the neurotoxicity biomarker and histopathological findings in the brain tissue showed that TA protected tissue from deleterious effects of LA exposure. It is concluded, these data suggest that LA induces oxidative stress and supplementation of TA has a powerful antioxidant effect, and it protected rat brain from poisonous effect of LA exposure in experimental rat.

  7. Using laser confocal scanning microscope to study ischemia-hypoxia injury in rat brain slice

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The level of lipid peroxidation and cellular necrosis in rat living brain slices during brain ischemia-hypoxia injury have been observed using a laser confocal scanning microscope (LCSM) with double labeling of fluorescent probes D-399 (2,7-dichlorofluorescin diacetate) and propidium iodide (PI).The hypoxia and/or reoxygenation injury in rat brain slices is markedly decreased by pretreatment with L-NG-nitro-arginine (L-NNA) and N-acetylcysteine (NAC),showing that the nitric oxide (NO) and other free radicals play an important role in brain ischemia-hypoxia injury.

  8. Irradiation of rat brain reduces P-glycoprotein expression and function

    OpenAIRE

    Bart, J.; Nagengast, W B; Coppes, R P; Wegman, T D; van der Graaf, W T A; Groen, H J M; Vaalburg, W; de Vries, E G E; Hendrikse, N.H.

    2007-01-01

    The blood–brain barrier (BBB) hampers delivery of several drugs including chemotherapeutics to the brain. The drug efflux pump P-glycoprotein (P-gp), expressed on brain capillary endothelial cells, is part of the BBB. P-gp expression on capillary endothelium decreases 5 days after brain irradiation, which may reduce P-gp function and increase brain levels of P-gp substrates. To elucidate whether radiation therapy reduces P-gp expression and function in the brain, right hemispheres of rats wer...

  9. Yawning and stretching predict brain temperature changes in rats:Support for the thermoregulatory hypothesis

    Directory of Open Access Journals (Sweden)

    Melanie L Shoup-Knox

    2010-09-01

    Full Text Available Recent research suggests that yawning is an adaptive behavior that functions to promote brain thermoregulation among homeotherms. To explore the relationship between brain temperature and yawning we implanted thermocoupled probes in the frontal cortex of rats to measure brain temperature before, during and after yawning. Temperature recordings indicate that yawns and stretches occurred during increases in brain temperature, with brain temperatures being restored to baseline following the execution of each of these behaviors. The circulatory changes that accompany yawning and stretching may explain some of the thermal similarities surrounding these events. These results suggest that yawning and stretching may serve to maintain brain thermal homeostasis.

  10. Generation of primary cultures of bovine brain endothelial cells and setup of cocultures with rat astrocytes

    DEFF Research Database (Denmark)

    Helms, Hans C; Brodin, Birger

    2014-01-01

    In vitro models of the blood-brain barrier are useful tools to study blood-brain barrier function as well as drug permeation from the systemic circulation to the brain parenchyma. However, a large number of the available in vitro models fail to reflect the tightness of the in vivo blood-brain...... barrier. The present protocol describes the setup of an in vitro coculture model based on primary cultures of endothelial cells from bovine brain microvessels and primary cultures of rat astrocytes. The model displays a high electrical tightness and expresses blood-brain barrier marker proteins....

  11. Protein-energy malnutrition during pregnancy alters caffeine's effect on brain tissue of neonate rats.

    Science.gov (United States)

    Mori, M; Wilber, J F; Nakamoto, T

    1984-12-17

    We studied whether protein-energy malnutrition changed brain susceptibility to a small dose of caffeine in newborn rats. Since we had demonstrated previously that caffeine intake during lactation increased the brain neuropeptide on newborns, we investigated further the effects of the prenatal administration of caffeine on TRH and cyclo (His-Pro). From day 13 of gestation to delivery day, pregnant rats in one group were fed either a 20% or a 6% protein diet ad libitum, and those in the other group were pair-fed with each protein diet supplemented with caffeine at an effective dose of 2 mg/100 g body weight. Upon delivery, brain weight, brain protein, RNA, DNA and the neuropeptides thyrotropin-releasing hormone (TRH) and cyclo (His-Pro) were measured in the newborn rats. A 6% protein without caffeine diet caused reductions in brain weights and brain protein, RNA and DNA contents, but did not alter brain TRH and cyclo (His-Pro) concentrations in the newborn animals. In the offspring from dams fed a 6% protein diet, caffeine administration significantly elevated brain weights and brain contents of protein, RNA and DNA. In contrast, these values were similar between noncaffeine and caffeine-supplemented animals in a 20% protein diet group. Brain TRH and cyclo (His-Pro) concentrations were not changed by caffeine administration. These data suggest that caffeine augments protein synthesis in the newborn rat brain when malnourished, but that the same dose of caffeine did not affect protein synthesis in brains of newborn rats from normally nourished dams. Therefore, the present findings indicate that the nutritional status of mothers during pregnancy has important implication in the impact of caffeine on their offspring's brains.

  12. Effect of glutamine synthetase inhibition on brain and interorgan ammonia metabolism in bile duct ligated rats.

    Science.gov (United States)

    Fries, Andreas W; Dadsetan, Sherry; Keiding, Susanne; Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S; Simonsen, Mette; Ott, Peter; Vilstrup, Hendrik; Sørensen, Michael

    2014-03-01

    Ammonia has a key role in the development of hepatic encephalopathy (HE). In the brain, glutamine synthetase (GS) rapidly converts blood-borne ammonia into glutamine which in high concentrations may cause mitochondrial dysfunction and osmolytic brain edema. In astrocyte-neuron cocultures and brains of healthy rats, inhibition of GS by methionine sulfoximine (MSO) reduced glutamine synthesis and increased alanine synthesis. Here, we investigate effects of MSO on brain and interorgan ammonia metabolism in sham and bile duct ligated (BDL) rats. Concentrations of glutamine, glutamate, alanine, and aspartate and incorporation of (15)NH(4)(+) into these amino acids in brain, liver, muscle, kidney, and plasma were similar in sham and BDL rats treated with saline. Methionine sulfoximine reduced glutamine concentrations in liver, kidney, and plasma but not in brain and muscle; MSO reduced incorporation of (15)NH(4)(+) into glutamine in all tissues. It did not affect alanine concentrations in any of the tissues but plasma alanine concentration increased; incorporation of (15)NH(4)(+) into alanine was increased in brain in sham and BDL rats and in kidney in sham rats. It inhibited GS in all tissues examined but only in brain was an increased incorporation of (15)N-ammonia into alanine observed. Liver and kidney were important for metabolizing blood-borne ammonia.

  13. Localization profile of Cathepsin L in the brain of African giant rat ...

    African Journals Online (AJOL)

    Localization profile of Cathepsin L in the brain of African giant rat ( Cricestomys gambianus ) ... Log in or Register to get access to full text downloads. ... Within the diencephalon high density of positive signals was observed in mediodorsal and ...

  14. Catechins decrease neurological severity score through apoptosis and neurotropic factor pathway in rat traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Retty Ratnawati

    2017-08-01

    Administration of catechins decreased NSS through inhibiting inflammation and apoptosis, as well as induced the neurotrophic factors in rat brain injury. Catechins may serve as a potential intervention for TBI.

  15. Tumor necrosis factor α antibody prevents brain damage of rats with acute necrotizing pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Yan-Ling Yang; Ji-Peng Li; Kai-Zong Li; Ke-Feng Dou

    2004-01-01

    AIM: To study the protective effects of tumor necrosis factor á (TNFα) antibody on pancreatic encephalopathy in rats.METHODS:One hundred and twenty SD rats were randomly divided into normal control group,acute necrotizing pancreatitis group and TNFα antibody treated group.Acute hemorrhage necrotizing pancreatitis model in rats was induced by retrograde injection of 50 g/L sodium taurocholate into the pancreatobiliary duct.Serum TNFα was detected and animals were killed 12 h after drug administration.Changes in content of brain water,MDA and SOD as well as leucocyte adhesion of brain microvessels were measured.RESULTS:In TNFα antibody treated group,serum TNFálevel was decreased.Content of brain water,MDA and SOD as well as leucocyte adhesion were decreased significantly in comparison with those of acute necrotizing pancreatitis group (P<0.05).CONCLUSION:TNFα antibody can alleviate the brain damage of rats with acute hemorrhage necrotizing pancreatitis.

  16. Protective effects of melatonin on the ionizing radiation induced DNA damage in the rat brain.

    Science.gov (United States)

    Undeger, Ulko; Giray, Belma; Zorlu, A Faruk; Oge, Kamil; Baçaran, Nurçen

    2004-03-01

    Melatonin is an endogenously produced antioxidant with radioprotective actions while ionizing radiation is a well-known cytotoxic and mutagenic agent of which the biological results are attributable to its free radical producing effects. The effect of melatonin on the DNA strand breakage and lipid peroxidation induced by ionizing radiation in the rat brain were investigated in order to clarify its radioprotective ability. The DNA strand breakage in rat brain exposed to 1000 cGy ionizing radiation was assessed by alkaline single cell gel electrophoresis and the lipid peroxidation was evaluated by measuring thiobarbituric acid reactive substances (TBARS) concentrations. A significant increase in DNA damage (p radiation treated rat brain. Pre-treatment of rats with intraperitoneal doses of 100 mg/kg melatonin provided a significant decrease in the DNA strand breakage and lipid peroxidation. Our results indicate that melatonin can protect brain cells from oxidative damage induced by ionizing radiation.

  17. Changing Numbers of Neuronal and Non-Neuronal Cells Underlie Postnatal Brain Growth in the Rat

    National Research Council Canada - National Science Library

    Fabiana Bandeira; Roberto Lent; Suzana Herculano-Houzel; Jon H. Kaas

    2009-01-01

    .... To test this hypothesis, here we investigate quantitatively the postnatal changes in the total number of neuronal and non-neuronal cells in the developing rat brain, and examine how these changes...

  18. The expression of TRPA1 mRNA in the rat brain

    Institute of Scientific and Technical Information of China (English)

    Peng Du; Shua Li; Jinyu Zheng; Zhi-yuan Yu; Minjie Xie; Wei Wang

    2006-01-01

    Objective: To investigate the distribution of TRPA1 (one kind of the TRP-like ion channel family) channel in the hippocampus and cerebral cortex of rat. Methods: RT-PCR was used to amplify the fragment of TRPA1 in the DRG (dorsal root ganglion), hippocampus and cerebral cortex of adult SD rat. In situ hybridization staining was used to show the distribution of TRPA1 mRNA in the hippocampus and cerebral cortex of adult rat brain. Results: Both RT-PCR and in situ hybridization staining showed that TRPA1 mRNA was expressed in hippocampus and cerebral cortex of the adult rat brain. Conclusion: Ourresults suggest that there is expression of TRPA1 mRNA both in the hippocampus and cerebral cortex of the adult rat brain.

  19. BRAIN VOLUMES OF THE LAMB, RAT AND BIRD DO NOT SHOW HEMISPHERIC ASYMMETRY: A STEREOLOGICAL STUDY

    Directory of Open Access Journals (Sweden)

    Bünyamin Sahin

    2011-05-01

    Full Text Available It is well known that there are functional differences between right and left brain hemispheres. However, it is not clear whether these functional differences are reflected in morphometric differences. This study was carried out to investigate the right-left asymmetry, and sex and species differences of the brains using the Cavalieri principle for volume estimation. Seventeen lambs, 10 rats and 12 avian brains were used to estimate brain volumes. A transparent point grid was superimposed on the slices of lamb brains directly and the slices of the rat and avian brains were projected onto a screen at 10x magnification. Surface areas of the cut slice faces were estimated by simply counting the points that hit the slices. Mean brain volumes were 37.74 cm3, 598.95 mm3 and 730.38 mm3 and the coefficients of variations were 0.08, 0.05 and 0.05 for lamb, rat and avian brains respectively. The differences between left and right hemispheres did not show statistical significance (P > 0.05. However, the male brain volumes were larger than the females for the lamb and bird (P < 0.05. In light of such findings, it will be necessary to evaluate neuron number of the brain hemispheres to provide more useful data regarding inter-hemispheric brain asymmetry.

  20. Characterization of rat brain NCAM mRNA using DNA oligonucleotide probes

    DEFF Research Database (Denmark)

    1990-01-01

    A number of different isoforms of the neural cell adhesion molecule (NCAM) have been identified. The difference between these is due to alternative splicing of a single NCAM gene. In rat brain NCAM mRNAs with sizes of 7.4, 6.7, 5.2, 4.3 and 2.9 kb have been reported. We have synthesized six DNA...... the five NCAM mRNAs in rat brain....

  1. Increased expression of aquaporin-4 in brain tissue of amygdala-kindled rats

    Institute of Scientific and Technical Information of China (English)

    Yinghui Chen; Yongbo Zhao

    2011-01-01

    Recurrent epileptic seizures can lead to brain edema, indicating that water regulation may be perturbed by seizures.We hypothesized that the expression of the brain water channel aquaporin-4 (AQP-4) may be upregulated in the epileptic brain.In the present study, we established the amygdala kindling model of epilepsy, and quantified AQP-4 protein and mRNA levels, using reverse transcription-PCR, immunohistochemistry and western blotting, in epileptic and control rats.We found that AQP-4 was overexpressed in the cerebral cortex of rats with epilepsy compared with controls.These findings show that AQP-4 is highly expressed in the brain of amygdala-kindled rats, suggesting that repeated seizures affect water homeostasis in the brain.

  2. Effects of morphine dependence and withdrawal on levels of neurosteroids in rat brain

    Institute of Scientific and Technical Information of China (English)

    Cai-zhen YAN; Yan-ning HOU

    2004-01-01

    AIM: To investigate the effects of morphine dependence and withdrawal on the concentrations of neurosteroids in rat brain. METHODS: A method of simultaneous quantification of neurosteroids by gas chromatography-mass spectrometry (GC-MS) had been established. RESULTS: The chronic morphine administration (ip) resulted in a marked decrease in the brain concentrations of pregnenolone (PREG), progesterone (PROG), and pregenenolone sulfate (PREGS) in rats killed 6 h after the last treatment. In contrast, there were no significant effects of morphine dependence on the brain concentrations of allopregnanolone (AP), dihydroepiandrosterone (DHEA), and dihydroepiandrosterone sulfate (DHEAS). Naloxone-induced withdrawal produced a significant increase in the concentrations of PREG, PROG, AP, DHEA, PREGS, and DHEAS as compared with the control group.CONCLUSION: Morphine dependence and withdrawal affected the concentrations of neurosteroids in rat brain,which suggests that endogenous neurosteroids in brain might be related to the development of morphine dependence and withdrawal.

  3. Large litters rearing changes brain expression of GLUT3 and acetylcholinesterase activity in adult rats.

    Science.gov (United States)

    de Vasconcelos, Vivian Sarmento; Machado, Sonia Salgueiro; Guedes, Rubem Carlos Araújo; Bandeira, Bruno Carneiro; Ximenes-da-Silva, Adriana

    2012-09-06

    Effects of malnutrition in the brain are more pronounced during the period of growth spurt, corresponding to the suckling in rodents. Neuronal glucose transporter GLUT3 expression and acetylcholinesterase activity were studied in the brain of adult young rats (84 days old) suckled in litters formed by 6 (control group) or 12 pups (malnourished group). In the adult rats, brain weight, blood glucose levels and GLUT3 expression were decreased in malnourished group (5%, 18%, 58%, respectively, Pmalnutrition during suckling period decreased GLUT3 expression and increased acetylcholinesterase activity in the rat brain that could contribute to possible cognitive deficits and changes of brain metabolic activity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Through metal binding, curcumin protects against lead- and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain.

    Science.gov (United States)

    Daniel, Sheril; Limson, Janice L; Dairam, Amichand; Watkins, Gareth M; Daya, Santy

    2004-02-01

    Curcumin, the major constituent of turmeric is a known, naturally occurring antioxidant. The present study examined the ability of this compound to protect against lead-induced damage to hippocampal cells of male Wistar rats, as well as lipid peroxidation induced by lead and cadmium in rat brain homogenate. The thiobarbituric assay (TBA) was used to measure the extent of lipid peroxidation induced by lead and cadmium in rat brain homogenate. The results show that curcumin significantly protects against lipid peroxidation induced by both these toxic metals. Coronal brain sections of rats injected intraperitoneally with lead acetate (20 mg/kg) in the presence and absence of curcumin (30 mg/kg) were compared microscopically to determine the extent of lead-induced damage to the cells in the hippocampal CA1 and CA3 regions, and to establish the capacity of curcumin to prevent such damage. Lead-induced damage to the neurons was significantly curtailed in the rats injected with curcumin. Possible chelation of lead and cadmium by curcumin as its mechanism of neuroprotection against such heavy metal insult to the brain was investigated using electrochemical, ultraviolet spectrophotometric and infrared spectroscopic analyses. The results of the study show that there is an interaction between curcumin and both cadmium and lead, with the possible formation of a complex between the metal and this ligand. These results imply that curcumin could be used therapeutically to chelate these toxic metals, thus potentially reducing their neurotoxicity and tissue damage.

  5. Hyperammonemia,brain edema and blood-brain barrier alterations in prehepatic portal hypertensive rats and paravrtamol intoxication

    Institute of Scientific and Technical Information of China (English)

    Camila Scorticati; Juan P. Prestifilippo; Francisco X. Eizayaga; José L. Castro; Salvador Romay; Maria A. Fernández; Abraham Lemberg; Juan C. Perazzo

    2004-01-01

    AIM: To study the blood-brain barrier integrity, brain edema,animal behavior and ammonia plasma levels in prehepatic portal hypertensive rats with and without acute liver intoxication.METHODS: Adults male Wistar rats were divided into four groups. Group Ⅰ: sham operation; Ⅱ: Prehepatic portal hypertension, produced by partial portal vein ligation; Ⅲ:Acetaminophen intoxication and Ⅳ: Prehepatic portal hypertension plus acetaminophen. Acetaminophen was administered to produce acute hepatic injury. Portal pressure, liver serum enzymes and ammonia plasma levels were determined. Brain cortex water content was registered and trypan blue was utilized to study blood brain barrier integrity. Reflexes and behavioral tests were recorded.RESULTS: Portal hypertension was significantly elevated in groups Ⅱ and Ⅳ. Liver enzymes and ammonia plasma levels were increased in groups Ⅱ, Ⅳ and Ⅳ. Prehepatic portal hypertension (group Ⅱ), acetaminophen intoxication (group Ⅲ) and both (group Ⅳ) had changes in the blood brain-barrier integrity (trypan blue) and hyperammonemia. Cortical edema was present in rats with acute hepatic injury in groups Ⅲ and Ⅳ. Behavioral test (rota rod) was altered in group Ⅳ.CONCLUSION: These results suggest the possibility of another pathway for cortical edema production because blood brain barrier was altered (vasogenic) and hyperammonemia was registered (cytotoxic). Group Ⅳ, with behavioral altered test, can be considered as a model for study at an early stage of portal-systemic encephalopathy.

  6. Expression of c-jun in brain stem following moderate lateral fluid percussion brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM: To study the expression of c-jun in brain stem following moderate lateral fluid percussion brain injury in rats, and to observe the temporal patterns of its expressions following percussion.METHODS: Male Sprague-Dawley rats were divided into normal control, sham operation control and injury groups. The rats of injury group subjected to moderate lateral fluid percussion injury (0.2 mPa), and then were subdivided into 5 min, 15 min, 30 min, 1 h, 2 h, 4 h, 8 h and 12 h groups according to the time elapsed after injury. The expression of c-jun was studied by immunohistochemistry and in situ hybridization. RESULTS: After percussion for 15 min, Jun positive neurons increased in brain stem progressively, and peaked at 12h. At 5min after percussion, the induction of c-jun mRNA was increased, and remained elevated up to 1h-2h after brain injury. CONCLUSION: The induction and expression of the c-jun in brain stem after fluid percussion brain injury were increased rapidly and lasted for a long time.

  7. Effect of L-arginine on metabolism of polyamines in rat's brain with extrahepatic cholestasis.

    Science.gov (United States)

    Sokolovic, Dusan; Bjelakovic, Gordana; Nikolic, Jelenka; Djindjic, Boris; Pavlovic, Dusica; Kocic, Gordana; Stojanovic, Ivana; Pavlovic, Voja

    2010-01-01

    Cholestatic encephalopathy results from accumulation of unconjugated bilirubin and hydrophobic bile acids in the brain. The aim of this study was to determine disturbances of polyamine metabolism in the brains of rats with experimental extrahepatic cholestasis and the effects of L-arginine administration. Wister rats were divided into groups: I: sham-operated, II: rats treated with L-arginine, III: animals with bile-duct ligation (BDL), and IV: cholestatic-BDL rats treated with L-arginine. Increased plasma gamma-glutamyltransferase and alkaline phosphatase activity and increased bile-acids and bilirubin levels in BDL rats were reduced by administration of L-arginine (P < 0.001). Cholestasis increased the brain's putrescine (P < 0.001) and decreased spermidine and spermine concentration (P < 0.05). The activity of polyamine oxidase was increased (P < 0.001) and diamine oxidase was decreased (P < 0.001) in the brains of BDL rats. Cholestasis increased the activity of arginase (P < 0.05) and decreased the level of citrulline (P < 0.001). Administration of L-arginine in BDL rats prevents metabolic disorders of polyamines and establishes a neuroprotective role in the brain during cholestasis.

  8. Population-averaged diffusion tensor imaging atlas of the Sprague Dawley rat brain.

    Science.gov (United States)

    Veraart, Jelle; Leergaard, Trygve B; Antonsen, Bjørnar T; Van Hecke, Wim; Blockx, Ines; Jeurissen, Ben; Jiang, Yi; Van der Linden, Annemie; Johnson, G Allan; Verhoye, Marleen; Sijbers, Jan

    2011-10-15

    Rats are widely used in experimental neurobiological research, and rat brain atlases are important resources for identifying brain regions in the context of experimental microsurgery, tissue sampling, and neuroimaging, as well as comparison of findings across experiments. Currently, most available rat brain atlases are constructed from histological material derived from single specimens, and provide two-dimensional or three-dimensional (3D) outlines of diverse brain regions and fiber tracts. Important limitations of such atlases are that they represent individual specimens, and that finer details of tissue architecture are lacking. Access to more detailed 3D brain atlases representative of a population of animals is needed. Diffusion tensor imaging (DTI) is a unique neuroimaging modality that provides sensitive information about orientation structure in tissues, and is widely applied in basic and clinical neuroscience investigations. To facilitate analysis and assignment of location in rat brain neuroimaging investigations, we have developed a population-averaged three-dimensional DTI atlas of the normal adult Sprague Dawley rat brain. The atlas is constructed from high resolution ex vivo DTI images, which were nonlinearly warped into a population-averaged in vivo brain template. The atlas currently comprises a selection of manually delineated brain regions, the caudate-putamen complex, globus pallidus, entopeduncular nucleus, substantia nigra, external capsule, corpus callosum, internal capsule, cerebral peduncle, fimbria of the hippocampus, fornix, anterior commisure, optic tract, and stria terminalis. The atlas is freely distributed and potentially useful for several purposes, including automated and manual delineation of rat brain structural and functional imaging data.

  9. Immunocytochemical study on the intracellular localization of the type 2 glucocorticoid receptor in the rat brain

    NARCIS (Netherlands)

    Eekelen, J.A.M. van; Kiss, J.Z.; Westphal, H.M.; Kloet, E.R. de

    1987-01-01

    The localization of the glucocorticoid receptor (GR) (type 2) in the rat brain was studied with immunocytochemistry using a monoclonal antibody against the rat liver GR. Strong GR immunoreactivity (GR-ir) was observed in neurons of limbic and brainstem structures known to be associated with the stre

  10. Expression of annexin and Annexin-mRNA in rat brain under influence of steroid drugs

    NARCIS (Netherlands)

    Voermans, PH; Go, KG; ter Horst, GJ; Ruiters, MHJ; Solito, E; Parente, L; James, HE; Marshall, LF; Reulen, HJ; Baethmann, A; Marmarou, A; Ito, U; Hoff, JT; Kuroiwa, T; Czernicki, Z

    1997-01-01

    Brain tissue of rats pretreated with methylprednisolone or with the 21-aminosteroid U74389F, and that of untreated control rats, was assessed for the expression of Annexin-l (Anx-1) and the transcription of its mRNA. For this purpose Anx-1 cDNA was amplified and simultaneously a T7-RNA-polymerase pr

  11. Comparative proteomics of rat brain in the BCNU-induced model of cortical dysplasia

    Institute of Scientific and Technical Information of China (English)

    郭谊

    2014-01-01

    Objective To screen the differential proteins in the brain(neocortex and hippocampus)between the rats with cortical dysplasia(CD)and control ones,and investigate the role of their alteration in the development of epilepsy in CD.Methods Cortical dysplasia was induced in rat pups via in utero delivery of BCNU.A two-dimensional electrophoresis

  12. The effects of trypsin on rat brain astrocyte activation.

    Directory of Open Access Journals (Sweden)

    Masoud Fereidoni

    2013-12-01

    Full Text Available Astrocytes are cells within the central nervous system which are activated in a wide spectrum of infections, and autoimmune and neurodegenerative diseases. In pathologic states, they produce inflammatory cytokines, chemokines, and nitric oxide (NO, and sometimes they induce apoptosis. Their protease-activated receptors (PARs can be activated by proteases, e.g. thrombin and trypsin, which are important in brain inflammation. The current study aimed to investigate the effects of different concentrations of trypsin (1 to 100U/ml on cultured astrocytes.In the present study, two-day rat infants' brains were isolated and homogenized after meninges removal, then cultivated in DMEM + 10% FBS medium. 10 days later, astrocytes were harvested and recultivated for more purification (up to 95%, using Immunocytochemistry method, in order to be employed for tests. They were affected by different concentrations of trypsin (1, 5, 10, 15, 20, 40, 60, 80, and 100 U/ml. To reveal the inflammation progress, NO concentrations (the Griess test were assessed after 24 and 48 hours.The results showed that trypsin concentration up to 20 U/ml caused a significant increase in NO, in a dose-dependent manner, on cultured astrocytes (P < 0.001. Trypsin 20 U/ml increased NO production fivefold the control group (P < 0.001. At higher concentrations than 20 U/ml, NO production diminished (P < 0.001. At 100 U/ml, NO production was less than the control group (P < 0.001.Inflammatory effects of trypsin 5-20 U/ml are probably due to the stimulation of astrocytes' PAR-2 receptors and the increasing of the activation of NF-κB, PKC, MAPKs. Stimulation of astrocytes' PAR-2 receptors causes an increase in iNOS activation which in turn leads to NO production. However, higher trypsin concentration possibly made astrocyte apoptosis; therefore, NO production diminished. These assumptions need to be further investigated.

  13. The metabolism of malate by cultured rat brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, M.C.; Tildon, J.T.; Couto, R.; Stevenson, J.H.; Caprio, F.J. (Department of Pediatrics, University of Maryland School of Medicine, Baltimore (USA))

    1990-12-01

    Since malate is known to play an important role in a variety of functions in the brain including energy metabolism, the transfer of reducing equivalents and possibly metabolic trafficking between different cell types; a series of biochemical determinations were initiated to evaluate the rate of 14CO2 production from L-(U-14C)malate in rat brain astrocytes. The 14CO2 production from labeled malate was almost totally suppressed by the metabolic inhibitors rotenone and antimycin A suggesting that most of malate metabolism was coupled to the electron transport system. A double reciprocal plot of the 14CO2 production from the metabolism of labeled malate revealed biphasic kinetics with two apparent Km and Vmax values suggesting the presence of more than one mechanism of malate metabolism in these cells. Subsequent experiments were carried out using 0.01 mM and 0.5 mM malate to determine whether the addition of effectors would differentially alter the metabolism of high and low concentrations of malate. Effectors studied included compounds which could be endogenous regulators of malate metabolism and metabolic inhibitors which would provide information regarding the mechanisms regulating malate metabolism. Both lactate and aspartate decreased 14CO2 production from malate equally. However, a number of effectors were identified which selectively altered the metabolism of 0.01 mM malate including aminooxyacetate, furosemide, N-acetylaspartate, oxaloacetate, pyruvate and glucose, but had little or no effect on the metabolism of 0.5 mM malate. In addition, alpha-ketoglutarate and succinate decreased 14CO2 production from 0.01 mM malate much more than from 0.5 mM malate. In contrast, a number of effectors altered the metabolism of 0.5 mM malate more than 0.01 mM. These included methionine sulfoximine, glutamate, malonate, alpha-cyano-4-hydroxycinnamate and ouabain.

  14. Brain and Serum Androsterone Is Elevated in Response to Stress in Rats with Mild Traumatic Brain Injury.

    Science.gov (United States)

    Servatius, Richard J; Marx, Christine E; Sinha, Swamini; Avcu, Pelin; Kilts, Jason D; Naylor, Jennifer C; Pang, Kevin C H

    2016-01-01

    Exposure to lateral fluid percussion (LFP) injury consistent with mild traumatic brain injury (mTBI) persistently attenuates acoustic startle responses (ASRs) in rats. Here, we examined whether the experience of head trauma affects stress reactivity. Male Sprague-Dawley rats were matched for ASRs and randomly assigned to receive mTBI through LFP or experience a sham surgery (SHAM). ASRs were measured post injury days (PIDs) 1, 3, 7, 14, 21, and 28. To assess neurosteroids, rats received a single 2.0 mA, 0.5 s foot shock on PID 34 (S34), PID 35 (S35), on both days (2S), or the experimental context (CON). Levels of the neurosteroids pregnenolone (PREG), allopregnanolone (ALLO), and androsterone (ANDRO) were determined for the prefrontal cortex, hippocampus, and cerebellum. For 2S rats, repeated blood samples were obtained at 15, 30, and 60 min post-stressor for determination of corticosterone (CORT) levels after stress or context on PID 34. Similar to earlier work, ASRs were severely attenuated in mTBI rats without remission for 28 days after injury. No differences were observed between mTBI and SHAM rats in basal CORT, peak CORT levels or its recovery. In serum and brain, ANDRO levels were the most stress-sensitive. Stress-induced ANDRO elevations were greater than those in mTBI rats. As a positive allosteric modulator of gamma-aminobutyric acid (GABAA) receptors, increased brain ANDRO levels are expected to be anxiolytic. The impact of brain ANDRO elevations in the aftermath of mTBI on coping warrants further elaboration.

  15. Brain and Serum Androsterone is Elevated in Response to Stress in Rats with Mild Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Richard J Servatius

    2016-08-01

    Full Text Available Exposure to lateral fluid percussion (LFP injury consistent with mild traumatic brain injury (mTBI persistently attenuates acoustic startle responses (ASRs in rats. Here, we examined whether the experience of head trauma affects stress reactivity. Male Sprague-Dawley rats were matched for ASRs and randomly assigned to receive mTBI through LFP or experience a sham surgery (SHAM. ASRs were measured post injury days (PIDs 1, 3, 7, 14, 21 and 28. To assess neurosteroids, rats received a single 2.0 mA, 0.5 s foot shock on PID 34 (S34, PID 35 (S35, on both days (2S, or the experimental context (CON. Levels of the neurosteroids pregnenolone (PREG, allopregnanolone (ALLO, and androsterone (ANDRO were determined for the prefrontal cortex, hippocampus and cerebellum. For 2S rats, repeated blood samples were obtained at 15, 30 and 60 min post-stressor for determination of corticosterone (CORT levels after stress or context on PID 34. Similar to earlier work, ASRs were severely attenuated in mTBI rats without remission for 28 days after injury. No differences were observed between mTBI and SHAM rats in basal CORT, peak CORT levels or its recovery. In serum and brain, ANDRO levels were the most stress-sensitive. Stress-induced ANDRO elevations were greater than those in mTBI rats. As a positive allosteric modulator of gamma-aminobutyric acid (GABAA receptors, increased brain ANDRO levels are expected to be anxiolytic. The impact of brain ANDRO elevations in the aftermath of mTBI on coping warrants further elaboration.

  16. Serial Post-mortem Relaxometry in the Normal Rat Brain and Following Stroke

    OpenAIRE

    Fagan, Andrew J.; Mullin, JM; Gallagher, L; Hadley, DM; Macrae, IM; Condon, B

    2008-01-01

    PUBLISHED Purpose: Investigation of MRI for non-invasive autopsy via measurements of serial changes in relaxation parameters of the rat brain during the post-mortem interval. Materials and Methods: Post-mortem relaxometry measurements were performed before and hourly after death for 24 hours on five control rats and five rats which underwent middle cerebral artery occlusion. Analyses were performed on representative regions of grey, white, and mixed grey/white matter structures. ...

  17. Relationship between changes of N-methyl-D-aspartate receptor activity and brain edema after brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the relationship between the changes of N-methyl-D-aspartate (NMDA) receptor activity and brain edema after injury in rats.   Methods: The brain injury models were made by using a free-falling body. The treatment model was induced by means of injecting AP5 into lateral ventricle before brain injury; water contents in brain cortex were measured with dry-wet method; and NMDA receptor activity was detected with a radio ligand binding assay.   Results: The water contents began to increase at 30 minutes and reached the peak at 6 hours after brain injury. The maximal binding (Bmax) of NMDA receptor increased significantly at 15 minutes and reached the peak at 30 minutes, then decreased gradually and had the lowest value 6 hours after brain injury. Followed the treatment with AP5, NMDA receptor activity in the injured brain showed a normal value; and the water contents were lower than that of AP5-free injury group 24 hours after brain injury.   Conclusions: It suggests that excessive activation of NMDA receptor may be one of the most important factors to induce the secondary cerebral impairments, and AP5 may protect the brain from edema after brain injury.

  18. Restoration of brain protein synthesis in mature and aged rats by a DA agonist, piribedil.

    Science.gov (United States)

    Bustany, P; Trenque, T; Crambes, O; Moulin, M

    1995-01-01

    Brain ageing affects numerous cerebral metabolic pathways such as cerebral glucose consumption or protein synthesis rate. The pharmacological effect of a mixed D1-D2 dopaminergic agonist, piribedil, on this last metabolism is reported. Cerebral Protein Synthesis Rate (CPSR) was measured by the [35S]L-methionine autoradiographic procedure in 38 main brain regions of 11 and 26-month-old Wistar rats after a 2-month treatment per os at 9 and 30 mg/kg/day with piribedil. Mean decrease of CPSR was -21% during the 15-month ageing we followed, with important local variations. Mean CPSR increased with the two treatments, +25% in mature and +35% in aged rats. Treatments restored CPSR of aged rats to the exact mature subjects levels in quite all the brain regions. No dose-effect or asymetrical modification was statistically revealed for the two treatments. Metabolic increases involved particularly central brain gray structures, especially some DA-targeted brain nuclei concerned with behaviour and learning. This effect argued for a general metabotrophic effect of D1-D2 dopamine stimulation of the brain. The original pattern of local ageing of brain protein synthesis in rat was also incidentally reported. This was the first direct report of a wide and effective metabolic activation of CPSR in the brain during ageing by a curative dopaminergic agonist treatment.

  19. Alteration of water-soluble S-100 protein content in microembolized rat brain.

    Directory of Open Access Journals (Sweden)

    Harada,Yasuhiro

    1982-12-01

    Full Text Available The amount of S-100 protein in rat brain embolized with carbon microspheres decreased in parallel with the development of cerebral edema as judged by water content, recovering to the normal range by 24h after embolization. These results suggest the participation of S-100 protein in the permeability characterisitics of nervous system capillaries known as the blood-brain barrier.

  20. Congenital viral infections of the brain: lessons learned from lymphocytic choriomeningitis virus in the neonatal rat.

    Directory of Open Access Journals (Sweden)

    Daniel J Bonthius

    2007-11-01

    Full Text Available The fetal brain is highly vulnerable to teratogens, including many infectious agents. As a consequence of prenatal infection, many children suffer severe and permanent brain injury and dysfunction. Because most animal models of congenital brain infection do not strongly mirror human disease, the models are highly limited in their abilities to shed light on the pathogenesis of these diseases. The animal model for congenital lymphocytic choriomeningitis virus (LCMV infection, however, does not suffer from this limitation. LCMV is a well-known human pathogen. When the infection occurs during pregnancy, the virus can infect the fetus, and the developing brain is particularly vulnerable. Children with congenital LCMV infection often have substantial neurological deficits. The neonatal rat inoculated with LCMV is a superb model system of human congenital LCMV infection. Virtually all of the neuropathologic changes observed in humans congenitally infected with LCMV, including microencephaly, encephalomalacia, chorioretinitis, porencephalic cysts, neuronal migration disturbances, periventricular infection, and cerebellar hypoplasia, are reproduced in the rat model. Within the developing rat brain, LCMV selectively targets mitotically active neuronal precursors. Thus, the targets of infection and sites of pathology depend on host age at the time of infection. The rat model has further shown that the pathogenic changes induced by LCMV infection are both virus-mediated and immune-mediated. Furthermore, different brain regions simultaneously infected with LCMV can undergo widely different pathologic changes, reflecting different brain region-virus-immune system interactions. Because the neonatal rat inoculated with LCMV so faithfully reproduces the diverse neuropathology observed in the human counterpart, the rat model system is a highly valuable tool for the study of congenital LCMV infection and of all prenatal brain infections In addition, because LCMV

  1. Simultaneous MRI and PET imaging of a rat brain

    Science.gov (United States)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan K.; Sendhil Velan, S.; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Zorn, Carl; Marano, Gary D.

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.

  2. Simultaneous MRI and PET imaging of a rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Raylman, Raymond R [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Majewski, Stan [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Lemieux, Susan K [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Velan, S Sendhil [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Kross, Brian [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Popov, Vladimir [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Smith, Mark F [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Weisenberger, Andrew G [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Zorn, Carl [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Marano, Gary D [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States)

    2006-12-21

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.

  3. Traumatic brain injury impairs synaptic plasticity in hippocampus in rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bao-liang; CHEN Xin; TAN Tao; YANG Zhuo; CARLOS Dayao; JIANG Rong-cai; ZHANG Jian-ning

    2011-01-01

    Background Traumatic brain injury (TBl) often causes cognitive deficits and remote symptomatic epilepsy.Hippocampal regional excitability is associated with the cognitive function. However, little is known about injury-induced neuronal loss and subsequent alterations of hippocampal regional excitability. The present study was designed to determine whether TBl may impair the cellular circuit in the hippocampus.Methods Forty male Wistar rats were randomized into control (n=20) and TBl groups (n=20). Long-term potentiation,extracellular input/output curves, and hippocampal parvalbumin-immunoreactive and cholecystokinin-immunoreactive interneurons were compared between the two groups.Results TBI resulted in a significantly increased excitability in the dentate gyrus (DG), but a significantly decreased excitability in the cornu ammonis 1 (CA1) area. Using design-based stereological injury procedures, we induced interneuronal loss in the DG and CA3 subregions in the hippocampus, but not in the CA1 area.Conclusions TBl leads to the impairment of hippocampus synaptic plasticity due to the changing of interneuronal interaction. The injury-induced disruption of synaptic efficacy within the hippocampal circuit may underlie the observed cognitive deficits and symptomatic epilepsy.

  4. Localization of Brain Natriuretic Peptide Immunoreactivity in Rat Spinal Cord

    Directory of Open Access Journals (Sweden)

    Essam M Abdelalim

    2016-12-01

    Full Text Available Brain natriuretic peptide (BNP exerts its functions through natriuretic peptide receptors. Recently, BNP has been shown to be involved in a wide range of functions. Previous studies reported BNP expression in the sensory afferent fibers in the dorsal horn of the spinal cord. However, BNP expression and function in the neurons of the central nervous system are still controversial. Therefore, in this study, we investigated BNP expression in the rat spinal cord in detail using RT-PCR and immunohistochemistry. RT-PCR analysis showed that BNP mRNA was present in the spinal cord and DRG. BNP immunoreactivity was observed in different structures of the spinal cord, including the neuronal cell bodies and neuronal processes. BNP immunoreactivity was observed in the dorsal horn of the spinal cord and in the neurons of the intermediate column and ventral horn. Double-immunolabeling showed a high level of BNP expression in the afferent fibers (laminae I-II labeled with calcitonin gene-related peptide (CGRP, suggesting BNP involvement in sensory function. In addition, BNP was co-localized with CGRP and choline acetyltransferase in the motor neurons of the ventral horn. Together, these results indicate that BNP is expressed in sensory and motor systems of the spinal cord, suggesting its involvement in several biological actions on sensory and motor neurons via its binding to NPR-A and/or NPR-B in the DRG and spinal cord.

  5. Amphetamine administration improves neurochemical outcome of lateral fluid percussion brain injury in the rat.

    Science.gov (United States)

    Dhillon, H S; Dose, J M; Prasad, R M

    1998-09-07

    This study examined the effects of the administration of D-amphetamine on the regional accumulation of lactate and free fatty acids (FFAs) after lateral fluid percussion (FP) brain injury in the rat. Rats were subjected to either FP brain injury of moderate severity (1.9 to 2.0 atm) or sham operation. At 5 min after injury, rats were treated with either d-amphetamine (4 mg/kg, i.p.) or saline. At 30 min and 60 min after brain injury, brains were frozen in situ, and cortices and hippocampi were excised at 0 degrees C. In the saline-treated brain injured rats, levels of lactate were increased in the ipsilateral left cortex and hippocampus at 30 min and 60 min after injury. These increases were attenuated by the administration of D-amphetamine at 5 min after lateral FP brain injury. At 30 and 60 min after FP brain injury, increases in the levels of all individual FFAs (palmitic, stearic, oleic and arachidonic acids) and of total FFAs were also observed in the ipsilateral cortex of the saline-treated injured rats. These increases in the ipsilateral cortex and hippocampus were also attenuated by the administration of d-amphetamine. Neither levels of lactate nor levels of FFAs were increased in the contralateral cortex in the saline-treated injured rats at 30 min or 60 min after FP brain injury. The levels of lactate and FFAs in the contralateral cortex were also unaffected by the administration of D-amphetamine. These results suggest that the attenuation of increases in the levels of lactate and FFAs in the ipsilateral cortex and hippocampus may be involved in the amphetamine-induced improvement in behavioral outcome after lateral FP brain injury.

  6. Phospholipase A_2 changes and its significance on brain tissue of rat in severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Multiple systemorgan failure is often compli-cated with SAP and PLA2could play an i mportantrole in the study of brain damages.Through thestudy of makingthe rat SAP model inthis study,thesignificance of PLA2on brain damages was surveyedand reported.Materials and methods1 The rat SAP model and its classificationEighty male Sprague-Dawley rats,weight(300±30)g,were randomly divided into4groups:thecontrol group,the sham-operation group,the SAPgroup and the treat ment group of SAP.The ratswere not given food but...

  7. Effect of domoic acid on metabolism of 5-hydroxytryptamine in rat brain.

    Science.gov (United States)

    Arias, B; Arufe, M; Alfonso, M; Duran, R

    1995-04-01

    Domoic acid (Dom) is a neurotoxic secondary amino acid that interacts with the glutamate receptors, producing neurological problems. In the present work, we study the effects of Dom on the levels of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in discrete rat brain regions. The effects of Dom on the brain metabolism of serotonin are also discussed in this paper. Dom stimulates the rat brain serotoninergic system, increasing differentially the synthesis and the catabolism of 5-HT and the elimination of 5-HIAA.

  8. Functional Magnetic Resonance Study of Non-conventional Morphological Brains: malnourished rats

    Directory of Open Access Journals (Sweden)

    Martin R.

    2015-08-01

    Full Text Available Malnutrition during brain development can cause serious problems that can be irreversible. Dysfunctional patterns of brain activity can be detected with functional MRI. We used BOLD functional Magnetic Resonance Imaging (fMRI to investigate region differences of brain activity between control and malnourished rats. The food-competition method was applied to a rat model to induce malnutrition during lactation. A 7T magnet was used to detect changes of the BOLD signal associated with changes in brain activity caused by the trigeminal nerve stimulation in malnourished and control rats. Major neuronal activation was observed in malnourished rats in several brain regions, including cerebellum, somatosensory cortex, hippocampus, and hypothalamus. Statistical analysis of the BOLD signals from various brain areas revealed significant differences in somatosensory cortex between the control and experimental groups, as well as a significant difference between the cerebellum and other structures in the experimental group. This study, particularly in malnourished rats, demonstrates increased BOLD activation in the cerebellum.

  9. Schwann Cells Transplantation Promoted and the Repair of Brain Stem Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    HONG WAN; YI-HUA AN; MEI-ZHEN SUN; YA-ZHUO ZHANG; ZHONG-CHENG WANG

    2003-01-01

    To explore the possibility of Schwann cells transplantation to promote the repair of injured brain stem reticular structure in rats. Methods Schwann cells originated from sciatic nerves of 1 to 2-day-old rats were expanded and labelled by BrdU in vitro, transplanted into rat brain stem reticular structure that was pre-injured by electric needle stimulus. Immunohistochemistry and myelin-staining were used to investigate the expression of BrdU, GAP-43 and new myelination respectively. Results BrdU positive cells could be identified for up to 8 months and their number increased by about 23%, which mainly migrated toward injured ipsilateral cortex. The GAP-43expression reached its peak in 1 month after transplantation and was significantly higher than that in the control group. New myelination could be seen in destructed brain stem areas. Conclusion The transplantation of Schwann cells can promote the restoration of injured brain stem reticular structure.

  10. Stereological brain volume changes in post-weaned socially isolated rats

    DEFF Research Database (Denmark)

    Fabricius, Katrine; Helboe, Lone; Steiniger-Brach, Björn;

    2010-01-01

    have evaluated the neuroanatomical changes in this animal model in comparison to changes seen in schizophrenia. In this study, we applied stereological volume estimates to evaluate the total brain, the ventricular system, and the pyramidal and granular cell layers of the hippocampus in male and female...... Lister Hooded rats isolated from postnatal day 25 for 15 weeks. We observed the expected gender differences in total brain volume with males having larger brains than females. Further, we found that isolated males had significantly smaller brains than group-housed controls and larger lateral ventricles...... than controls. However, this was not seen in female rats. Isolated males had a significant smaller hippocampus, dentate gyrus and CA2/3 where isolated females had a significant smaller CA1 compared to controls. Thus, our results indicate that long-term isolation of male rats leads to neuroanatomical...

  11. Upregulated gene expression of local brain-derived neurotrophic factor and nerve growth factor after intracisternal administration of marrow stromal cells in rats with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    胡德志; 周良辅; 朱剑虹; 毛颖; 吴雪海

    2005-01-01

    Objective: To examine the effects of rat marrow stromal cells (rMSCs) on gene expression of local brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) after injection of rMSCs into Cistern Magnum of adult rats subjected to traumatic brain injury(TBI).Results: Group cell transplantation had higher BDNF and NGF gene expressions than Group saline control during a period of less than 3 weeks (P<0.05).Conclusions: rMSCs transplantation via Cistern Magnum in rats subjected to traumatic brain injury can enhance expressions of local brain NGF and BDNF to a certain extent.

  12. Age-related changes in reactive oxygen species production in rat brain homogenates.

    Science.gov (United States)

    Driver, A S; Kodavanti, P R; Mundy, W R

    2000-01-01

    The generation of reactive oxygen species (ROS) and resultant oxidative stress have been implicated in the mechanism of brain dysfunction due to age-related neurodegenerative diseases or exposure to environmental chemicals. We have investigated intrinsic age-related differences in the ability of the various brain regions to generate ROS in the absence and presence of Fe(2)+. ROS production in crude brain homogenates from adult rats was linear with respect to time and tissue concentration, and was stimulated to a greater extent by Fe(2)+ than was TBARS production. ROS production was then determined in homogenates from cerebral cortex, striatum, hippocampus, and cerebellum of 7-day-old, 14-day-old, 21-day-old, adult (3-6-month old), and aged (24-month-old) rats using the fluorescent probe 2',7'-dichlorodihydrofluorescin (DCFH). Basal levels of ROS production were similar in 7-, 14-, and 21-day olds, increased in adults, and highest in aged rats, and did not differ between brain regions. ROS production was stimulated by Fe(2)+ (0. 3-30 microM) in a concentration-dependent manner in all brain regions. However, the stimulation of ROS production by Fe(2)+ varied with age. ROS production was greater in 14- and 21-day-old rats compared with adult and aged animals. ROS production in 7-day-old rats was decreased at low Fe(2)+ concentrations and increased at high Fe(2)+ concentrations compared to adult and aged rats. These data show that brain homogenates from neonatal rats respond differently to Fe(2)+, and suggest that developing animals may be more sensitive to oxidative stress in the brain after exposure to toxicants. Published by Elsevier Science Inc.

  13. Oxidative state and oxidative metabolism in the brain of rats with adjuvant-induced arthritis.

    Science.gov (United States)

    Wendt, Mariana Marques Nogueira; de Sá-Nakanishi, Anacharis Babeto; de Castro Ghizoni, Cristiane Vizioli; Bersani Amado, Ciomar Aparecida; Peralta, Rosane Marina; Bracht, Adelar; Comar, Jurandir Fernando

    2015-06-01

    The purpose of the present study was to evaluate the oxidative status of the brain of arthritic rats, based mainly on the observation that arthritis induces a pronounced oxidative stress in the liver of arthritis rats and that morphological alterations have been reported to occur in patients with rheumatoid arthritis. Rats with adjuvant-induced arthritis were used. These animals presented higher levels of reactive oxygen species (ROS) in the total brain homogenate (25% higher) and in the mitochondria (+55%) when compared to healthy rats. The nitrite plus nitrate contents, nitric oxide (NO) markers, were also increased in both mitochondria (+27%) and cytosol (+14%). Arthritic rats also presented higher levels of protein carbonyl groups in the total homogenate (+43%), mitochondria (+69%) and cytosol (+145%). Arthritis caused a diminution of oxygen consumption in isolated brain mitochondria only when ascorbate was the electron donor. The disease diminished the mitochondrial cytochrome c oxidase activity by 55%, but increased the transmembrane potential by 16%. The pro-oxidant enzyme xanthine oxidase was 150%, 110% and 283% higher, respectively, in the brain homogenate, mitochondria and cytosol of arthritic animals. The same occurred with the calcium-independent NO-synthase activity that was higher in the brain homogenate (90%) and cytosol (122%) of arthritic rats. The catalase activity, on the other hand, was diminished by arthritis in all cellular fractions (between 30 and 40%). It is apparent that the brain of rats with adjuvant-induced arthritis presents a pronounced oxidative stress and a significant injury to lipids and proteins, a situation that possibly contributes to the brain symptoms of the arthritis disease.

  14. Antenatal taurine supplementation for improving brain ultrastructure in fetal rats with intrauterine growth restriction.

    Science.gov (United States)

    Liu, J; Liu, L; Chen, H

    2011-05-05

    Changes in brain ultrastructure of fetal rats with intrauterine growth restriction (IUGR) were explored and the effects of antenatal taurine supplementation on their brain ultrastructure were determined. Fifteen pregnant rats were randomly divided into three groups: control group, IUGR model group and IUGR group given antenatal taurine supplements. Taurine was added to the diet of the taurine group at a dose of 300 mg/kg/d from 12 days after conception until natural delivery. Transmission electron microscopy was used to observe ultrastructural changes in the brains of the newborn rats. At the same time, brain cellular apoptosis was detected using TUNEL, and the changes in protein expression of neuron specific enolase and glial fibrillary acidic protein were analyzed using immunohistochemistry. The results showed that: 1) The average body weight and cerebral weight were significantly lower in the IUGR group than in the control group (ptaurine was supplemented (ptaurine supplementation. 3) The results of TUNEL showed that the counts of apoptotic brain cells in IUGR groups were significantly increased from those in control groups and that taurine could significantly decrease brain cell apoptosis (ptaurine-supplementation could significantly increase the counts of neuron specific enolase and glial fibrillary acidic protein immunoreactive cells in fetal rats with IUGR (ptaurine can significantly improve the IUGR fetal brain development.

  15. Action of the pyrethroid insecticide cypermethrin on rat brain IIa sodium channels expressed in xenopus oocytes.

    Science.gov (United States)

    Smith, T J; Soderlund, D M

    1998-12-01

    Pyrethroid insecticides bind to a unique site on voltage-dependent sodium channels and prolong sodium currents, leading to repetitive bursts of action potentials or use-dependent nerve block. To further characterize the site and mode of action of pyrethroids on sodium channels, we injected synthetic mRNA encoding the rat brain IIa sodium channel alpha subunit, either alone or in combination with synthetic mRNA encoding the rat sodium channel beta1 subunit, into oocytes of the frog Xenopus laevis and assessed the actions of the pyrethroid insecticide [1R,cis,alphaS]-cypermethrin on expressed sodium currents by two-electrode voltage clamp. In oocytes expressing only the rat brain IIa alpha subunit, cypermethrin produced a slowly-decaying sodium tail current following a depolarizing pulse. In parallel experiments using oocytes expressing the rat brain IIa alpha subunit in combination with the rat beta1 subunit, cypermethrin produced qualitatively similar tail currents following a depolarizing pulse and also induced a sustained component of the sodium current measured during a step depolarization of the oocyte membrane. The voltage dependence of activation and steady-state inactivation of the cypermethrin-dependent sustained current were identical to those of the peak transient sodium current measured in the absence of cypermethrin. Concentration-response curves obtained using normalized tail current amplitude as an index of the extent of sodium channel modification by cypermethrin revealed that coexpression of the rat brain IIa alpha subunit with the rat beta1 subunit increased the apparent affinity of the sodium channel binding site for cypermethrin by more than 20-fold. These results confirm that the pyrethroid binding site is intrinsic to the sodium channel alpha subunit and demonstrate that coexpression of the rat brain IIa alpha subunit with the rat beta1 subunit alters the apparent affinity of this site for pyrethroids.

  16. Zinc supplementation ameliorates electromagnetic field-induced lipid peroxidation in the rat brain.

    Science.gov (United States)

    Bediz, Cem Seref; Baltaci, Abdulkerim Kasim; Mogulkoc, Rasim; Oztekin, Esma

    2006-02-01

    Extremely low-frequency (0-300 Hz) electromagnetic fields (EMFs) generated by power lines, wiring and home appliances are ubiquitous in our environment. All populations are now exposed to EMF, and exposure to EMF may pose health risks. Some of the adverse health effects of EMF exposure are lipid peroxidation and cell damage in various tissues. This study has investigated the effects of EMF exposure and zinc administration on lipid peroxidation in the rat brain. Twenty-four male Sprague-Dawley rats were randomly allocated to three groups; they were maintained untreated for 6 months (control, n = 8), exposed to low-frequency (50 Hz) EMF for 5 minutes every other day for 6 months (n = 8), or exposed to EMF and received zinc sulfate daily (3 mg/kg/day) intraperitoneally (n = 8). We measured plasma levels of zinc and thiobarbituric acid reactive substances (TBARS), and levels of reduced glutathione (GSH) in erythrocytes. TBARS and GSH levels were also determined in the brain tissues. TBARS levels in the plasma and brain tissues were higher in EMF-exposed rats with or without zinc supplementation, than those in controls (p < 0.001). In addition, TBARS levels were significantly lower in the zinc-supplemented rats than those in the EMF-exposed rats (p < 0.001). GSH levels were significantly decreased in the brain and erythrocytes of the EMF-exposed rats (p < 0.01), and were highest in the zinc-supplemented rats (p < 0.001). Plasma zinc was significantly lower in the EMF-exposed rats than those in controls (p < 0.001), while it was highest in the zinc-supplemented rats (p < 0.001). The present study suggests that long-term exposure to low-frequency EMF increases lipid peroxidation in the brain, which may be ameliorated by zinc supplementation.

  17. Antenatal taurine supplementation increases taurine content in intrauterine growth restricted fetal rat brain tissue.

    Science.gov (United States)

    Li, Fang; Teng, Hui-Yun; Liu, Jing; Wang, Hua-Wei; Zeng, Li; Zhao, Li-Fang

    2014-09-01

    This study aimed to determine the influence of antenatal taurine supplementation on taurine content in the brains of fetal rats with intrauterine growth restriction (IUGR). Experiments were performed at the Central Laboratory of Bayi Children's Hospital Affiliated to Beijing Military General Hospital in China from January to June 2013. Fifteen pregnant rats were randomly divided into three groups: normal controls, an IUGR group and an IUGR + antenatal taurine supplement group (Taurine group) (n = 5). The IUGR model was induced using a low-protein diet throughout gestation. Rats in the taurine group were fed a diet supplemented with 300 mg/kg/day taurine for 12 days after conception until natural delivery. Two fetal rats were randomly selected in every litter, and taurine levels in the brains of rats were detected using high-performance liquid chromatography-mass spectrometry. Results showed that (1) the mean body weight of the fetal rats in the normal control, IUGR and IUGR + antenatal taurine supplement groups was 6.619 ± 0.4132, 4.509 ± 0.454, and 5.176 ± 0.436 g (F = 429.818, P taurine levels in the brains of the fetal rats in the normal control, IUGR and taurine groups were (2.399 ± 0.134) × 10(5), (1.881 ± 0.166) × 10(5) and (2.170 ± 0.191) × 10(5) μg/g (F = 24.828, P taurine levels in IUGR fetal rat brains were lower than in the control animals, and that antenatal taurine supplementation could significantly increase taurine levels in the brains of fetal rats with IUGR.

  18. Effects of neonatal treatment with the TRPV1 agonist, capsaicin, on adult rat brain and behaviour.

    Science.gov (United States)

    Newson, Penny N; van den Buuse, Maarten; Martin, Sally; Lynch-Frame, Ann; Chahl, Loris A

    2014-10-01

    Treatment of neonatal rats with the transient receptor potential vanilloid 1 (TRPV1) channel agonist, capsaicin, produces life-long loss of sensory neurons expressing TRPV1 channels. Previously it was shown that rats treated on day 2 of life with capsaicin had behavioural hyperactivity in a novel environment at 5-7 weeks of age and brain changes reminiscent of those found in subjects with schizophrenia. The objective of the present study was to investigate brain and behavioural responses of adult rats treated as neonates with capsaicin. It was found that the brain changes found at 5-7 weeks in rats treated as neonates with capsaicin persisted into adulthood (12 weeks) but were less in older rats (16-18 weeks). Increased prepulse inhibition (PPI) of acoustic startle was found in these rats at 8 and 12 weeks of age rather than the deficit commonly found in animal models of schizophrenia. Subjects with schizophrenia also have reduced flare responses to niacin and methylnicotinate proposed to be mediated by prostaglandin D2 (PGD2). Flare responses are accompanied by cutaneous plasma extravasation. It was found that the cutaneous plasma extravasation responses to methylnicotinate and PGD2 were reduced in capsaicin-treated rats. In conclusion, several neuroanatomical changes observed in capsaicin-treated rats, as well as the reduced cutaneous plasma extravasation responses, indicate that the role of TRPV1 channels in schizophrenia is worthy of investigation.

  19. Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Jian-Qin Wang

    2014-01-01

    Full Text Available Objective. Numerous epidemiological studies have linked diabetes mellitus (DM with an increased risk of developing Alzheimer’s disease (AD. However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ- induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC. Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies.

  20. Effect of manganese on the concentration of amino acids in different regions of the rat brain.

    Science.gov (United States)

    Lipe, G W; Duhart, H; Newport, G D; Slikker, W; Ali, S F

    1999-01-01

    The present study was designed to determine if chronic exposure of weanlings and adult rats to Mn produces significant alterations in amino acid concentrations in different regions of the rat brain. Weanling (30 day old) and adult (90 day old) male rats were exposed to 10 and 20 mg Mn/kg body weight per day, by gavage, for 30 days. Forty-eight hours after the last dose, animals were sacrificed by decapitation and brains were dissected into different regions to determine the concentration of amino acids by HPLC/EC. A dose dependent decrease in body weight gain was found in the adult, but not in the weanling rats. Significant increases occurred in concentrations of aspartate, glutamate, glutamine, taurine and gamma-aminobutyric acid (GABA) in the cerebellum of the adult rats dosed with 20 mg/kg per day, Mn. A significant decrease in the concentration of glutamine was observed in caudate nucleus and hippocampus of weanling rats dosed with 10 mg/kg, Mn. These data suggest that chronic Mn exposure can produce a decrease in body weight gain in adult rats and alterations in amino acids in different regions of weanling and adult rat brains.

  1. Protection of GBE50 on brain mitochondria in rats with hyperlipidemia

    Institute of Scientific and Technical Information of China (English)

    KaiSUN; GangLIU; Yun-xuanZHANG; Ghen-liangYIN; Gaj-junTIAN; Jia-huPAN

    2005-01-01

    AIM To study the protective effects of the new standardized preparation of Ginkgo biloba extracts(GBE50) anainst brain mitochondrial damages induced by hyperlipemia in rats. METHODS Rat model with hyperlipemia was established by feeding the young male SD rats (3 weeks after born) with high lipid food for 3 months. Then the rats were treated with different dosage of GBE50(ig) for 4 weeks. The prophylaxis rat group were fed with the mixture of high lipid food and GBE50 (50mg/kg/d). The brain mitochondria was separated for determination of the R3, R4 and RCR of the respiration function with the method of Clark's electrode. The mitochondrial transmembrane potential(Δψm) was derected by the Rho123 assay and the cytochrome c release was checked by spectrography. In addition, the parameters of oxidative stress (the activities of SOD, GSH-Px, and the MDA leve) and the activities of ATPase were assayed.

  2. Glucocorticoids modulate the NGF mRNA response in the rat hippocampus after traumatic brain injury.

    Science.gov (United States)

    Grundy, P L; Patel, N; Harbuz, M S; Lightman, S L; Sharples, P M

    2001-02-23

    Nerve growth factor (NGF) expression in the rat hippocampus is increased after experimental traumatic brain injury (TBI) and is neuroprotective. Glucocorticoids are regulators of brain neurotrophin levels and are often prescribed following TBI. The effect of adrenalectomy (ADX) and corticosterone (CORT) replacement on the expression of NGF mRNA in the hippocampus after TBI has not been investigated to date. We used fluid percussion injury and in situ hybridisation to evaluate the expression of NGF mRNA in the hippocampus 4 h after TBI in adrenal-intact or adrenalectomised rats (with or without CORT replacement). TBI increased expression of NGF mRNA in sham-ADX rats, but not in ADX rats. Furthermore, CORT replacement in ADX rats restored the increase in NGF mRNA induced by TBI. These findings suggest that glucocorticoids have an important role in the induction of hippocampal NGF mRNA after TBI.

  3. Circumventing the blood-brain barrier: Local delivery of cyclosporin A stimulates stem cells in stroke-injured rat brain.

    Science.gov (United States)

    Tuladhar, Anup; Morshead, Cindi M; Shoichet, Molly S

    2015-10-10

    Drug delivery to the central nervous system is limited by the blood-brain barrier, which can be circumvented by local delivery. In applications of stroke therapy, for example, stimulation of endogenous neural stem/progenitor cells (NSPCs) by cyclosporin A (CsA) is promising. However, current strategies rely on high systemic drug doses to achieve small amounts of CsA in the brain tissue, resulting in systemic toxicity and undesirable global immunosuppression. Herein we describe the efficacy of local CsA delivery to the stroke-injured rat brain using an epi-cortically injected hydrogel composed of hyaluronan and methylcellulose (HAMC). CsA was encapsulated in poly(lactic-co-glycolic acid) microparticles dispersed in HAMC, allowing for its sustained release over 14days in vivo. Tissue penetration was sufficient to provide sustained CsA delivery to the sub-cortical NSPC niche. In comparison to systemic delivery using an osmotic minipump, HAMC achieved higher CsA concentrations in the brain while significantly reducing drug exposure in other organs. HAMC alone was beneficial in the stroke-injured rat brain, significantly reducing the stroke infarct volume relative to untreated stroke-injured controls. The combination of HAMC and local CsA release increased the number of proliferating cells in the lateral ventricles - the NSPC niche in the adult brain. Thus, we demonstrate a superior method of drug delivery to the rat brain that provides dual benefits of tissue protection and endogenous NSPC stimulation after stroke. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Effect of ketamine on aquaporin-4 expression and neuronal apoptosis in brain tissues following brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Zangong Zhou; Xiangyu Ji; Li Song; Jianfang Song; Shiduan Wang; Yanwei Yin

    2006-01-01

    BACKGROUND: Aquaporin-4 (AQP-4) is closely related to the formation of brain edema. Neuronal apoptosis plays an important part in the conversion of swelled neuron following traumatic brain injury. At present, the studies on the protective effect of ketamine on brain have involved in its effect on aquaporin-4 expression and neuronal apoptosis in the brain tissues following brain injury in rats.OBJECTIVE: To observe the effect of ketamine on AQP-4 expression and neuronal apoptosis in the brain tissue following rat brain injury, and analyze the time-dependence of ketamine in the treatment of brain injury.DESIGN: Randomized grouping design, controlled animal trial.SETTING: Department of Anesthesiology, the Medical School Hospital of Qingdao University.MATERIALS: Totally 150 rats of clean grade, aged 3 months, were involved and randomized into control group and ketamine-treated group, with 75 rats in each. Each group was divided into 5 subgroups separately at 6,12, 24, 48 and 72 hours after injury, with 15 rats at each time point. Main instruments and reagents:homemade beat machine, ketamine hydrochloride (Hengrui Pharmaceutical Factory, Jiangsu), rabbit anti-rat AQP-4 polyclonal antibody, SABC immunohistochemical reagent kit and TUNEL reagent kit (Boster Co.,Ltd.,Wuhan).METHODS: This trial was carried out in the Institute of Cerebrovascular Disease, Medical College of Qingdao University during March 2005 to February 2006. A weight-dropping rat model of brain injury was created with Feeney method. The rats in the ketamine-treated group were intraperitoneally administered with 50 g/L ketamine (120 mg/kg) one hour after injury, but ketamine was replaced by normal saline in the control group. In each subgroup, the water content of cerebral hemisphere was measured in 5 rats chosen randomly. The left 10 rats in each subgroup were transcardiacally perfused with ketamine, then the brain tissue was made into paraffin sections and stained by haematoxylin and eosin. Neuronal

  5. Acute hyperammonemia and systemic inflammation is associated with increased extracellular brain adenosine in rats

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Dale, Nicholas; Larsen, Fin Stolze

    2015-01-01

    Acute liver failure (ALF) can lead to brain edema, cerebral hyperperfusion and intracranial hypertension. These complications are thought to be mediated by hyperammonemia and inflammation leading to altered brain metabolism. As increased levels of adenosine degradation products have been found...... in brain tissue of patients with ALF we investigated whether hyperammonemia could induce adenosine release in brain tissue. Since adenosine is a potent vasodilator and modulator of cerebral metabolism we furthermore studied the effect of adenosine receptor ligands on intracranial pressure (ICP......) and cerebral blood flow (CBF). We measured the adenosine concentration with biosensors in rat brain slices exposed to ammonia and in a rat model with hyperammonemia and systemic inflammation. Exposure to ammonia in concentrations from 0.15-10 mM led to increases in the cortical adenosine concentration up to 18...

  6. Influence of silver nanoparticles on neurons and blood-brain barrier via subcutaneous injection in rats

    Science.gov (United States)

    Tang, Jinglong; Xiong, Ling; Wang, Shuo; Wang, Jianyu; Liu, Li; Li, Jiage; Wan, Ziyi; Xi, Tingfei

    2008-11-01

    Nanosilver has been widely used in medical biology; however, the distribution and interaction of nanosilver with cells is still unclear. There have been some reports demonstrating that nanoparticles can cross the blood-brain barrier (BBB). The present study investigated the accumulation of silver nanoparticles in the brain, and the effects of silver nanoparticles on BBB. Nanosilver and microsilver (62.8 mg/kg) particles were subcutaneously injected into rats. The rats were sacrificed at predetermined time points and the brains were obtained for ultrastructural observation and silver level detection. The results showed that silver nanoparticles could traverse the BBB and move into the brain in the form of particle. The silver nanoparticles can induce neuronal degeneration and necrosis by accumulating in the brain over a long period of time.

  7. Quantitative autoradiography of (/sup 3/H)corticosterone receptors in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Sapolsky, R.M.; McEwen, B.S. (Rockefeller Univ., New York (USA)); Rainbow, T.C. (Pennsylvania Univ., Philadelphia (USA). School of Medicine)

    1983-07-25

    The authors have quantified corticosterone receptors in rat brain by optical density measurements of tritium-film autoradiograms. Rats were injected i.v. with 500 ..mu..Ci (/sup 3/H)corticosterone to label brain receptors. Frozen sections of brain were cut with a cryostat and exposed for 2 months against tritium-sensitive sheet film (LKB Ultrofilm). Tritium standards were used to convert optical density readings into molar concentrations of receptor. High levels of corticosterone receptors were present throughout the pyramidal and granule cell layers of the hippocampus. Moderate levels of receptors were found in the neuropil of the hippocampus, the lateral septum, the cortical nucleus of the amygdala and the entorhinal cortex. All other brain regions had low levels of receptors. These results extend previous non-quantitative autoradiographic studies of corticosterone receptors and provide a general procedure for the quantitative autoradiography of steroid hormone receptors in brain tissue.

  8. The effects of perinatal protein malnutrition on spatial learning and memory behaviour and brain-derived neurotrophic factor concentration in the brain tissue in young rats.

    Science.gov (United States)

    Wang, Ling; Xu, Ruo-Jun

    2007-01-01

    This study aimed to investigate the effects of perinatal protein malnutrition on brain derived-neurotrophic factor (BDNF) concentration in brain tissue and spatial learning and memory performance in young rats. Nine pregnant Wistar rats were assigned into three groups. Rats in one group were fed with a control diet containing 20% protein. Rats in remaining two groups were fed with a diet containing 6% protein from gestation day eight and day 15 respectively till four weeks after birth. At four weeks of age, the rat pups were evaluated for spatial learning ability using Morris Water Maze (MWM) task. At the end of the behaviour tests, rat pups were sacrificed and the brain tissue samples were collected for measurement of total protein and BDNF concentrations. It was found that rat pups fed the low protein diet had lower body weight and slightly lighter brain compared to the control pups. Total protein levels in hippocampus and cerebral cortex were significantly lower in malnourished pups than the controls. The concentration of BDNF in the hippocampus was also significantly lower in rat pups suffered protein malnutrition from early pregnancy than in the controls. MWM tests showed that perinatal protein deprivation, particularly from early pregnancy, significantly impaired learning and memory ability. The results of the present study indicate that perinatal protein malnutrition had adverse influence on spatial navigation and brain BDNF levels in rats. The decreased hippocampal BDNF concentration might partially contribute to the poor learning memory performance in the protein deprived rats.

  9. Nose to brain delivery in rats: Effect of surface charge of rhodamine B labeled nanocarriers on brain subregion localization.

    Science.gov (United States)

    Bonaccorso, A; Musumeci, T; Serapide, M F; Pellitteri, R; Uchegbu, I F; Puglisi, G

    2017-03-18

    Nose to brain delivery and nanotechnology are the combination of innovative strategies for molecules to reach the brain and to bypass blood brain barriers. In this work we investigated the fate of two rhodamine B labeled polymeric nanoparticles (Z-ave brain after intranasal administration in rats. A preliminary screening was carried out to select the suitable positive (chitosan/poly-l-lactide-co-glycolide) nanocarrier through photon correlation spectroscopy and turbiscan. Physico-chemical and technological characterizations of poly-l-lactide-co-glycolide (negative) and chitosan/poly-l-lactide-co-glycolide (positive) fluorescent labeled nanoparticles were performed. The animals were allocated to three groups receiving negative and positive polymeric nanoparticles via single intranasal administration or no treatment. The localization of both nanocarriers in different brain areas was detected using fluorescent microscopy. Our data revealed that both nanocarriers reach the brain and are able to persist in the brain up to 48h after intranasal administration. Surface charge influenced the involved pathways in their translocation from the nasal cavity to the central nervous system. The positive charge of nanoparticles slows down brain reaching and the trigeminal pathway is involved, while the olfactory pathway may be responsible for the transport of negatively charged nanoparticles, and systemic pathways are not excluded.

  10. Standardized Environmental Enrichment Supports Enhanced Brain Plasticity in Healthy Rats and Prevents Cognitive Impairment in Epileptic Rats

    Science.gov (United States)

    Kouchi, Hayet Y.; Bodennec, Jacques; Morales, Anne; Georges, Béatrice; Bonnet, Chantal; Bouvard, Sandrine; Sloviter, Robert S.; Bezin, Laurent

    2013-01-01

    Environmental enrichment of laboratory animals influences brain plasticity, stimulates neurogenesis, increases neurotrophic factor expression, and protects against the effects of brain insult. However, these positive effects are not constantly observed, probably because standardized procedures of environmental enrichment are lacking. Therefore, we engineered an enriched cage (the Marlau™ cage), which offers: (1) minimally stressful social interactions; (2) increased voluntary exercise; (3) multiple entertaining activities; (4) cognitive stimulation (maze exploration), and (5) novelty (maze configuration changed three times a week). The maze, which separates food pellet and water bottle compartments, guarantees cognitive stimulation for all animals. Compared to rats raised in groups in conventional cages, rats housed in Marlau™ cages exhibited increased cortical thickness, hippocampal neurogenesis and hippocampal levels of transcripts encoding various genes involved in tissue plasticity and remodeling. In addition, rats housed in Marlau™ cages exhibited better performances in learning and memory, decreased anxiety-associated behaviors, and better recovery of basal plasma corticosterone level after acute restraint stress. Marlau™ cages also insure inter-experiment reproducibility in spatial learning and brain gene expression assays. Finally, housing rats in Marlau™ cages after severe status epilepticus at weaning prevents the cognitive impairment observed in rats subjected to the same insult and then housed in conventional cages. By providing a standardized enriched environment for rodents during housing, the Marlau™ cage should facilitate the uniformity of environmental enrichment across laboratories. PMID:23342033

  11. The expression of Fetuin-A in brain tissues of WAG/Rij Rats, genetic rat model of absence epilepsy

    Directory of Open Access Journals (Sweden)

    Ramazan Yüksel

    2015-12-01

    Full Text Available Objective: In the present study, we aimed to determine the Fetuin-A levels in different regions of the brain in absence epileptic Wistar Albino Glaxo/Rijswijk (WAG/Rij rats in order to contribute the identification of new potential biomarkers of the diagnosis, prognosis and follow up the epilepsy treatment. Methods: 1, 3 and 6 months old male WAG/Rij rats (n=21 with absence epilepsy were used in this study. All of the rats were decapitated under anesthesia and their cortex and thalamus tissues were isolated. Fetuin-A levels of the groups were determined by Western Blot method by using standard techniques and differences between densities of the groups were compared. Results: According to data obtained, there was no Fetuin-A expression in brain cortex and thalamus tissues of WAG/Rij rats with absence epilepsy. Conclusion: In this study, it was shown that Fetuin-A is not expressed in brain cortex and thalamus tissues of WAG/Rij rats with absence epilepsy throughout the age-related development. By evaluating the findings obtained, extensive researches that contain molecular and histological methods must be planned, Fetuin-A findings that are obtained experimentally must be confirmed. J Clin Exp Invest 2015; 6 (4: 387-390

  12. Standardized environmental enrichment supports enhanced brain plasticity in healthy rats and prevents cognitive impairment in epileptic rats.

    Directory of Open Access Journals (Sweden)

    Raafat P Fares

    Full Text Available Environmental enrichment of laboratory animals influences brain plasticity, stimulates neurogenesis, increases neurotrophic factor expression, and protects against the effects of brain insult. However, these positive effects are not constantly observed, probably because standardized procedures of environmental enrichment are lacking. Therefore, we engineered an enriched cage (the Marlau™ cage, which offers: (1 minimally stressful social interactions; (2 increased voluntary exercise; (3 multiple entertaining activities; (4 cognitive stimulation (maze exploration, and (5 novelty (maze configuration changed three times a week. The maze, which separates food pellet and water bottle compartments, guarantees cognitive stimulation for all animals. Compared to rats raised in groups in conventional cages, rats housed in Marlau™ cages exhibited increased cortical thickness, hippocampal neurogenesis and hippocampal levels of transcripts encoding various genes involved in tissue plasticity and remodeling. In addition, rats housed in Marlau™ cages exhibited better performances in learning and memory, decreased anxiety-associated behaviors, and better recovery of basal plasma corticosterone level after acute restraint stress. Marlau™ cages also insure inter-experiment reproducibility in spatial learning and brain gene expression assays. Finally, housing rats in Marlau™ cages after severe status epilepticus at weaning prevents the cognitive impairment observed in rats subjected to the same insult and then housed in conventional cages. By providing a standardized enriched environment for rodents during housing, the Marlau™ cage should facilitate the uniformity of environmental enrichment across laboratories.

  13. Brain activation patterns at exhaustion in rats that differ in inherent exercise capacity.

    Directory of Open Access Journals (Sweden)

    Teresa E Foley

    Full Text Available In order to further understand the genetic basis for variation in inherent (untrained exercise capacity, we examined the brains of 32 male rats selectively bred for high or low running capacity (HCR and LCR, respectively. The aim was to characterize the activation patterns of brain regions potentially involved in differences in inherent running capacity between HCR and LCR. Using quantitative in situ hybridization techniques, we measured messenger ribonuclease (mRNA levels of c-Fos, a marker of neuronal activation, in the brains of HCR and LCR rats after a single bout of acute treadmill running (7.5-15 minutes, 15° slope, 10 m/min or after treadmill running to exhaustion (15-51 minutes, 15° slope, initial velocity 10 m/min. During verification of trait differences, HCR rats ran six times farther and three times longer prior to exhaustion than LCR rats. Running to exhaustion significantly increased c-Fos mRNA activation of several brain areas in HCR, but LCR failed to show significant elevations of c-Fos mRNA at exhaustion in the majority of areas examined compared to acutely run controls. Results from these studies suggest that there are differences in central c-Fos mRNA expression, and potential brain activation patterns, between HCR and LCR rats during treadmill running to exhaustion and these differences could be involved in the variation in inherent running capacity between lines.

  14. Neuroanatomy-based matrix-guided trimming protocol for the rat brain.

    Science.gov (United States)

    Defazio, Rossella; Criado, Ana; Zantedeschi, Valentina; Scanziani, Eugenio

    2015-02-01

    Brain trimming through defined neuroanatomical landmarks is recommended to obtain consistent sections in rat toxicity studies. In this article, we describe a matrix-guided trimming protocol that uses channels to reproduce coronal levels of anatomical landmarks. Both setup phase and validation study were performed on Han Wistar male rats (Crl:WI(Han)), 10-week-old, with bodyweight of 298 ± 29 (SD) g, using a matrix (ASI-Instruments(®), Houston, TX) fitted for brains of rats with 200 to 400 g bodyweight. In the setup phase, we identified eight channels, that is, 6, 8, 10, 12, 14, 16, 19, and 21, matching the recommended landmarks midway to the optic chiasm, frontal pole, optic chiasm, infundibulum, mamillary bodies, midbrain, middle cerebellum, and posterior cerebellum, respectively. In the validation study, we trimmed the immersion-fixed brains of 60 rats using the selected channels to determine how consistently the channels reproduced anatomical landmarks. Percentage of success (i.e., presence of expected targets for each level) ranged from 89 to 100%. Where 100% success was not achieved, it was noted that the shift in brain trimming was toward the caudal pole. In conclusion, we developed and validated a trimming protocol for the rat brain that allow comparable extensiveness, homology, and relevance of coronal sections as the landmark-guided trimming with the advantage of being quickly learned by technicians.

  15. Matrix metalloproteinase-9 expression and blood brain barrier permeability in the rat brain after cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Lifang Lei; Xiaohong Zi; Qiuyun Tu

    2008-01-01

    BACKGROUND: The integrity of the blood brain barrier (BBB) plays an important role in the patho-physiological process of cerebral ischemia/reperfusion injury. It has been recently observed that metalloproteinase-9 (MMP-9) is closely related to cerebral ischemia/reperfusion injuryOBJECTIVE: This study was designed to observe MMP-9 expression in the rat brain after cerebral ischemia/reperfusion injury and to investigate its correlation to BBB permeability.DESIGN, TIME AND SETTING: This study, a randomized controlled animal experiment, was performed at the Institute of Neurobiology, Central South University between September 2005 and March 2006.MATERIALS: Ninety healthy male SD rats, aged 3-4 months, weighing 200-280g, were used in the present study. Rabbit anti-rat MMP-9 polyclonal antibody (Boster, Wuhan, China) and Evans blue (Sigma, USA) were also used.METHODS: All rats were randomly divided into 9 groups with 10 rats in each group: normal control group, sham-operated group, and ischemia for 2 hours followed by reperfusion for 3,6,12 hours, 1,2,4 and 7 days groups. In the ischemia/reperfusion groups, rats were subjected to ischemia/reperfusion injury by suture occlusion of the right middle cerebral artery. In the sham-operated group, rats were merely subjected to vessel dissociation. In the normal control group, rats were not modeled.MAIN OUTCOME MEASURES: BBB permeability was assessed by determining the level of effusion of Evans blue. MMP-9 expression was detected by an immunohistochemical method.RESULTS: All 90 rats were included in the final analysis. BBB permeability alteration was closely correlated to ischemia/reperfusion time. BBB permeability began to increase at ischemia/reperfusion for 3 hours, then it gradually reached a peak level at ischemia/reperfusion for 1 day, and thereafter it gradually decreased. MMP-9 expression began to increase at ischemia/reperfusion for 3 hours, then gradually reached its peak level 2 days after perfusion, and thereafter

  16. Acetaldehyde metabolism by brain mitochondria from UChA and UChB rats.

    Science.gov (United States)

    Quintanilla, M E; Tampier, L

    1995-01-01

    The acetaldehyde (AcH) oxidizing capacity of total brain homogenates from the genetically high-ethanol consumer (UChB) appeared to be greater than that of the low-ethanol consumer (UChA) rats. To gain further information about this strain difference, the activity of aldehyde dehydrogenase (AIDH) in different subcellular fractions of whole brain homogenates from naive UChA and UChB rat strains of both sexes has been studied by measuring the rate of AcH disappearance and by following the reduction of NAD to NADH. The results demonstrated that the higher capacity of brain homogenates from UChB rats to oxidize AcH when compared to UChA ones was because the UChB mitochondrial low Km AIDH exhibits a much greater affinity for NAD than that of the UChA rats, as evidenced by four-to fivefold differences in the Km values for NAD. But the dehydrogenases from both strains exhibited a similar maximum rate at saturating NAD concentrations. Because intact brain mitochondria isolated from UChB rats oxidized AcH at a higher rate than did mitochondria from UChA rats only in state 4, but not in state 3, this strain difference in AIDH activity might be restricted in vivo to NAD disposition.

  17. Probing Intrinsic Resting-State Networks in the Infant Rat Brain

    Science.gov (United States)

    Bajic, Dusica; Craig, Michael M.; Borsook, David; Becerra, Lino

    2016-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) measures spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signal in the absence of external stimuli. It has become a powerful tool for mapping large-scale brain networks in humans and animal models. Several rs-fMRI studies have been conducted in anesthetized and awake adult rats, reporting consistent patterns of brain activity at the systems level. However, the evolution to adult patterns of resting-state activity has not yet been evaluated and quantified in the developing rat brain. In this study, we hypothesized that large-scale intrinsic networks would be easily detectable but not fully established as specific patterns of activity in lightly anesthetized 2-week-old rats (N = 11). Independent component analysis (ICA) identified 8 networks in 2-week-old-rats. These included Default mode, Sensory (Exteroceptive), Salience (Interoceptive), Basal Ganglia-Thalamic-Hippocampal, Basal Ganglia, Autonomic, Cerebellar, as well as Thalamic-Brainstem networks. Many of these networks consisted of more than one component, possibly indicative of immature, underdeveloped networks at this early time point. Except for the Autonomic network, infant rat networks showed reduced connectivity with subcortical structures in comparison to previously published adult networks. Reported slow fluctuations in the BOLD signal that correspond to functionally relevant resting-state networks in 2-week-old rats can serve as an important tool for future studies of brain development in the settings of different pharmacological applications or disease. PMID:27803653

  18. Moderate hyperglycemia augments ischemic brain damage: a neuropathologic study in the rat.

    Science.gov (United States)

    Pulsinelli, W A; Waldman, S; Rawlinson, D; Plum, F

    1982-11-01

    We compared the effects of glucose injection with those of saline or mannitol on ischemic brain damage and brain water content in a four-vessel occlusion (4-VO) rat model, which simultaneously causes severe forebrain ischemia and moderate hindbrain ischemia. Glucose given before onset of ischemia was followed by severe brain injury, with necrosis of the majority of neocortical neurons and glia, substantial neuronal damage throughout the remainder of forebrain, and severe brain edema. By comparison, saline injection before forebrain ischemia resulted in only scattered ischemic damage confined to neurons and no change in the brain water content. Mannitol injection before 4-VO or D-glucose injection during or after 4-VO produced no greater forebrain damage than did the saline injection. Morphologic damage in the cerebellum, however, was increased by D-glucose injection given either before or during 4-VO. The results demonstrate that hyperglycemia before severe brain ischemia or during moderate ischemia markedly augments morphologic brain damage.

  19. Low-intensity treadmill exercise and/or bright light promote neurogenesis in adult rat brain

    Institute of Scientific and Technical Information of China (English)

    Sung Jin Kwon; Jeongsook Park; So Yun Park; Kwang Seop Song; Sun Tae Jung; So Bong Jung; Ik Ryeul Park; Wan Sung Choi; Sun Ok Kwon

    2013-01-01

    The hippocampus is a brain region responsible for learning and memory functions. The purpose of this study was to investigate the effects of low-intensity exercise and bright light exposure on neurogenesis and brain-derived neurotrophic factor expression in adult rat hippocampus. Male Sprague-Dawley rats were randomly assigned to control, exercise, light, or exercise + light groups (n = 9 per group). The rats in the exercise group were subjected to treadmill exercise (5 days per week, 30 minutes per day, over a 4-week period), the light group rats were irradiated (5 days per week, 30 minutes per day, 10 000 lx, over a 4-week period), the exercise + light group rats were subjected to treadmill exercise in combination with bright light exposure, and the control group rats remained sedentary over a 4-week period. Compared with the control group, there was a significant increase in neurogenesis in the hippocampal dentate gyrus of rats in the exercise, light, and exercise + light groups. Moreover, the expression level of brain-derived neurotrophic factor in the rat hippocampal dentate gyrus was significantly higher in the exercise group and light group than that in the control group. Interestingly, there was no significant difference in brain-derived neurotrophic factor expression between the control group and exercise + light group. These results indicate that low-intensity treadmill exercise (first 5 minutes at a speed of 2 m/min, second 5 minutes at a speed of 5 m/min, and the last 20 minutes at a speed of 8 m/min) or bright-light exposure therapy induces positive biochemical changes in the brain. In view of these findings, we propose that moderate exercise or exposure to sunlight during childhood can be beneficial for neural development.

  20. Brain edema after intracerebral hemorrhage in rats: The role of inflammation

    Directory of Open Access Journals (Sweden)

    Zhang Xiangjian

    2006-01-01

    Full Text Available Background: Intracerebral hemorrhage (ICH results in secondary brain edema and injury that may lead to death and disability. ICH also causes inflammation. It is unclear whether inflammation contributes to brain edema and neuron injury or functions in repairing the brain tissue. Aims: To understand the effect of inflammation in ICH, we have carried out an investigation on the various aspects and the dynamic changes of inflammation. Settings and Design: An ICH model was generated by injecting 50 ml autologous tail artery blood stereotactically into the right caudate nucleus of 30 rats, which were randomly divided into five ICH groups. Similarly, five Sham control groups were generated by inserting the needle to the right caudate nucleus of rats. Materials and Methods: Rat behavior was evaluated over the time course (6 h, 24 h, 48 h, 72 h and 7 d in each group. The rats were then killed by administering an overdose of pentobarbital. Following the euthanasia, the brain water content, neuronal loss, glia proliferation, inflammatory infiltration and brain morphology of the rats were measured. Additionally, the expression of TNF-a,IL-6, ICAM-1, VEGF, NF-kB, C3 and CR2 was analyzed by immunohistochemistry. Statistical Analysis: The data were analyzed by student′s t test. Results: Rat brain water content increased progressively over the time course and reached its peak at 48h followed ICH. The maximum of inflammatory infiltrate (especially neutrophils and immunopositive cells of TNF-a, IL-6 and NF-kB, were at 48h. The expression of C3 and CR2 reached their peaks at 48-72h, while the expression ICAM-1 and VEGF were at maximum at 72h followed ICH. Conclusions: The results suggested that the inflammatory cytokines, complement system and VEGF may have a function in the development of the brain edema and neuron injury followed ICH.

  1. Astaxanthin alleviates brain aging in rats by attenuating oxidative stress and increasing BDNF levels.

    Science.gov (United States)

    Wu, Wanqiang; Wang, Xin; Xiang, Qisen; Meng, Xu; Peng, Ye; Du, Na; Liu, Zhigang; Sun, Quancai; Wang, Chan; Liu, Xuebo

    2014-01-01

    Astaxanthin (AST) is a carotenoid pigment which possesses potent antioxidative, anti-inflammatory, and neuroprotective properties. The aim of this study was to investigate whether administration of AST had protective effects on D-galactose-induced brain aging in rats, and further examined its protective mechanisms. The results showed that AST treatment significantly restored the activities of glutathione peroxidase (GSH-PX) and superoxide dismutase (SOD), and increased glutathione (GSH) contents and total antioxidant capacity (T-AOC), but decreased malondialdehyde (MDA), protein carbonylation and 8-hydroxy-2- deoxyguanosine (8-OHdG) levels in the brains of aging rats. Furthermore, AST increased the ratio of Bcl-2/Bax, but decreased the expression of Cyclooxygenase-2 (COX-2) in the brains of aging rats. Additionally, AST ameliorated histopathological changes in the hippocampus and restored brain derived neurotrophic factor (BDNF) levels in both the brains and hippocampus of aging rats. These results suggested that AST could alleviate brain aging, which may be due to attenuating oxidative stress, ameliorating hippocampus damage, and upregulating BDNF expression.

  2. Ovariectomy-induced chronic abdominal hypernociception in rats: Relation with brain oxidative stress

    Directory of Open Access Journals (Sweden)

    Bárbara B. Garrido-Suárez

    2015-12-01

    Full Text Available Context: Ovarian hormone deficiency observed in menopausal women increases the production of reactive oxygen species, which could be implicated in central sensitization subjacent in chronic functional pain syndromes. Aims: To examine the hyperalgesic state induced by ovariectomy in adult rats and its relation to some oxidative stress outcomes. Methods: The female Wistar rats were divided into normal, sham ovariectomized (OVX and OVX groups, which were tested for mechanical and thermal hypernociception during 6 weeks and a single acetic acid-induced test 6 weeks after surgery. Redox biomarkers determinations of superoxide dismutase (SOD enzyme activity, glutathione (GSH and nitrates/nitrites as an indicator of nitric oxide (NO concentrations were determined in the brain and cerebellum of 6 animals of each group. Results: Exclusivity OVX rats developed a robust state of mechanical hypernociception and allodynia in the abdomen, hindlimbs and proximal tail. Besides, thermal pain thresholds (hot plate decreased. That was established 3-4 weeks after OVX and lasted for the 6 weeks of the experiment. Increases in visceral sensitivity were also observed in OVX rats. SOD enzyme activity decreased in OVX rats, which showed major deficit for this enzymatic defense under visceral inflammatory injury. However GSH concentrations were increased in brain of OVX animals that allow the balance during acute inflammation. NO concentrations were raised only in OVX rats exposure to chemical inflammatory injury. Conclusions: OVX in rats provide a useful model, which mimics the functional pain in females that could be related with brain oxidative stress.

  3. Inhibition of tau hyperphosphorylation and beta amyloid production in rat brain by oral administration of atorvastatin

    Institute of Scientific and Technical Information of China (English)

    LU Fen; LI Xu; SUO Ai-qin; ZHANG Jie-wen

    2010-01-01

    Background Alzheimer's disease (AD) is a neurodegenerative disorder and the leading cause of dementia in the elderly. The two hallmark lesions in AD brain are deposition of amyloid plaques and neurofibrillary tangles (NFTs).Hypercholesteremia is one of the risk factors of AD. But its role in the pathogenesis of AD is largely unknown. The aim of this study was to investigate the relationship between hypercholesteremia and tau phosphorylation or β-amyloid (Aβ),and evaluate the effect of atorvastatin on the level of tau phosphorylation and Aβ in the brains of rats fed with high cholesterol diet.Methods Sprague-Dawley (SD) rats were randomly divided into normal diet control group, high cholesterol diet group,and high cholesterol diet plus atorvastatin (Lipitor, 15 mg·kg-1·d-1) treated group. Blood from caudal vein was collected to measure total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL) and high-density lipoprotein (HDL) at the end of the 3th and the 6th months by an enzymatic method. The animals were sacrificed 6 months later and brains were removed. All left brain hemispheres were fixed for immunohistochemistry. Hippocampus and cerebral cortex were separated from right hemispheres and homogenized separately. Tau phosphorylation and Aβ in the brain tissue were determined by Western blotting (using antibodies PHF-1 and Tau-1) and anti-Aβ40/anti-Aβ42, respectively.Results We found that high cholesterol diet led to hypercholesteremia of rats as well as hyperphosphorylation of tau and increased Aβ level in the brains. Treatment of the high cholesterol diet fed rats with atorvastatin prevented the changes of both tau phosphorylation and Aβ level induced by high cholesterol diet.Conclusions Hypercholesteremia could induce tau hyperphosphorylation and Aβ production in rat brain. Atorvastatin could inhibit tau hyperphosphorylation and decrease Aβ generation. It may play a protective role in the patho-process of hypercholesteremia

  4. Rapamycin alleviates brain edema after focal cerebral ischemia reperfusion in rats.

    Science.gov (United States)

    Guo, Wei; Feng, Guoying; Miao, Yanying; Liu, Guixiang; Xu, Chunsheng

    2014-06-01

    Brain edema is a major consequence of cerebral ischemia reperfusion. However, few effective therapeutic options are available for retarding the brain edema progression after cerebral ischemia. Recently, rapamycin has been shown to produce neuroprotective effects in rats after cerebral ischemia reperfusion. Whether rapamycin could alleviate this brain edema injury is still unclear. In this study, the rat stroke model was induced by a 1-h left transient middle cerebral artery occlusion using an intraluminal filament, followed by 48 h of reperfusion. The effects of rapamycin (250 μg/kg body weight, intraperitoneal; i.p.) on brain edema progression were evaluated. The results showed that rapamycin treatment significantly reduced the infarct volume, the water content of the brain tissue and the Evans blue extravasation through the blood-brain barrier (BBB). Rapamycin treatment could improve histological appearance of the brain tissue, increased the capillary lumen space and maintain the integrity of BBB. Rapamycin also inhibited matrix metalloproteinase 9 (MMP9) and aquaporin 4 (AQP4) expression. These data imply that rapamycin could improve brain edema progression after reperfusion injury through maintaining BBB integrity and inhibiting MMP9 and AQP4 expression. The data of this study provide a new possible approach for improving brain edema after cerebral ischemia reperfusion by administration of rapamycin.

  5. Effect of borneol and electroacupuncture on the distribution of hyperforin in the rat brain

    Institute of Scientific and Technical Information of China (English)

    Bin Yu; Ming Ruan; Yong Sun; Xiaobing Cui; Yun Yu; Lingling Wang; Taihui Fang

    2011-01-01

    Hyperforin is an antidepressant drug that has unstable therapeutic effects, due to its poor ability to cross the blood-brain barrier. Borneol and electroacupuncture have both been found to increase the permeability of the blood-brain barrier. As such, the current study examined the distribution of hyperforin in the rat brain, and the effects on the brain distribution of hyperforin of borneol alone (orally administered), and borneol combined with electroacupuncture treatment. High-performance liquid chromatography technology and pharmacokinetic analysis revealed that treatment with borneol alone (300, 600 mg/kg) increased peak concentration and the area under the curve for hyperforin in the brain. In addition, the bioavailability of hyperforin in rat brain increased by 42.7%. However, increasing the dose of borneol dose did not appear to increase the distribution of hyperforin in the brain. Importantly, applying electroacupuncture at Baihui (GV 20) or Yamen (GV 15) appeared to enhance the brain-delivery effects of borneol, although this effect was weak. Overall, our results indicated that borneol alone or combined with electroacupuncture can provide promising strategies for brain-targeted delivery in central nervous system therapy.

  6. Liver and brain tryptophan metabolism following hydrocortisone administration to rats and gerbils.

    Science.gov (United States)

    Green, A R; Sourkes, T L; Young, S N

    1975-02-01

    1 Liver tryptophan pyrrolase activity is low in the mongolian gerbil (Meriones unguiculatus) and is not induced by hydrocortisone (5 mg/kg). In contrast, there is measurable activity in the rat liver and this is induced by hydrocortisone. In vivo measurements confirmed the absence of induction in gerbils but suggested that they were able to metabolize tryptophan. However no detectable pyrrolase activity was found in any other tissues either before or after hydrocortisone. 2 In agreement with previous observations hydrocortisone decreased rat brain 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) 6 h after administration. Brain tryptophan concentrations were also decreased at this time. In contrast, hydrocortisone did not alter gerbil brain 5-HT, 5-HIAA or trytophan. alpha-Methyltryptophan activated hepatic tryptophan pyrrolase and decreased brain 5-HT and 5-HIAA in both animals. 3 Results suggest that the decrease in rat brain 5-HT and 5-HIAA following hydrocortisone may be associated with the rise in liver tryptophan pyrrolase and that the brain amine changes are mediated through the decrease in brain tryptophan concentration.

  7. Metabolism and disposition of 3,6-dibutanoylmorphine in rat brain.

    Science.gov (United States)

    Tasker, R A; Nakatsu, K

    1986-09-01

    In previous studies from this laboratory it was found that dibutanoylmorphine (DBM) was more potent than morphine as an analgesic in rats and that it was less active than acetyl esters of morphine on behaviour. As DBM is a morphine prodrug, the aim of this work was to determine if rat brain homogenates were capable of deacylating DBM and monobutanoylmorphine (MBM) and to determine relative proportions of parent drug to metabolites in the brain in vivo. In 10% (w/v) brain homogenates, DBM was eliminated with a half-life of about 70 min (corrected for dilution), while MBM was eliminated 10 times as quickly. DBM and its metabolites were found in both blood and brain as early as 1 min after i.v. administration of DBM. After 5 min, the predominant form in blood was MBM and in brain it was DBM. Thus, rat brain possesses the capacity to metabolize DBM by deesterification and the parent drug, MBM, and morphine were found in blood and brain in vivo.

  8. MRI relaxation in the presence of fictitious fields correlates with myelin content in normal rat brain.

    Science.gov (United States)

    Hakkarainen, Hanne; Sierra, Alejandra; Mangia, Silvia; Garwood, Michael; Michaeli, Shalom; Gröhn, Olli; Liimatainen, Timo

    2016-01-01

    Brain myelin plays an important role in normal brain function. Demyelination is involved in many degenerative brain diseases, thus quantitative imaging of myelin has been under active investigation. In previous work, we demonstrated the capability of the method known as Relaxation Along a Fictitious Field (RAFF) in the rotating frame of rank n (RAFFn) to provide image contrast between white and gray matter in human and rat brains. Here, we provide evidence pointing to myelin being the major source of this contrast. RAFFn relaxation time constant (TRAFFn) was mapped in rat brain ex vivo. TRAFFn was quantified in 12 different brain areas. TRAFFn values were compared with multiple other MRI metrics (T1, T2 , continuous wave T1ρ, adiabatic T1ρ and T2ρ, magnetization transfer ratio), and with histologic measurements of cell density, myelin and iron content. Highest contrast between white and grey matter was obtained with TRAFFn in the rotating frames of ranks n = 4 and 5. TRAFFn values correlated strongly with myelin content, whereas no associations between TRAFFn and iron content or cell density were found. TRAFFn with n = 4 or 5 provides a high sensitivity for selective myelin mapping in the rat brain. © 2015 Wiley Periodicals, Inc.

  9. Imaging of aromatase distribution in rat and rhesus monkey brains with [{sup 11}C]vorozole

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kayo [Division of Pharmacology, Department of Neuroscience, Uppsala University, Uppsala SE-75124 (Sweden); Uppsala Imanet, Uppsala SE-75109 (Sweden)]. E-mail: kayo.takahashi@uppsala.imanet.se; Bergstroem, Mats [Uppsala Imanet, Uppsala SE-75109 (Sweden); Department of Pharmaceutical Biosciences, Uppsala University, Uppsala SE-75124 (Sweden); Fraendberg, Pernilla [Uppsala Imanet, Uppsala SE-75109 (Sweden); Vesstroem, Eva-Lotta [Uppsala Imanet, Uppsala SE-75109 (Sweden); Watanabe, Yasuyoshi [Department of Physiology, Osaka City University Graduate School of Medicine, Osaka 545-8585 (Japan); Langstroem, Bengt [Uppsala Imanet, Uppsala SE-75109 (Sweden)

    2006-07-15

    Aromatase is an enzyme that converts androgens to estrogens and may play a role in mood and mental status. The aim of this study was to demonstrate that brain aromatase distribution could be evaluated with a novel positron emission tomography (PET) tracer [{sup 11}C]vorozole. Vorozole is a nonsteroidal aromatase inhibitor that reversibly binds to the heme domain of aromatase. In vitro experiments in rat brain, using frozen section autoradiography, illustrated specific binding in the medial amygdala (MA), the bed nucleus of stria terminalis (BST) and the preoptic area (POA) of male rat brain. Specific binding in female rat brain was found in the MA and the BST; however, the signals were lower than those of males. The K {sub d} of [{sup 11}C]vorozole binding to aromatase in MA was determined to be 0.60{+-}0.06 nM by Scatchard plot analysis using homogenates. An in vivo PET study in female rhesus monkey brain demonstrated the uptake of [{sup 11}C]vorozole in the amygdala, where the uptake was blocked by the presence of excess amounts of unlabeled vorozole. Thus, this tracer has a high affinity for brain aromatase and could have a potential for in vivo aromatase imaging. This technique might enable the investigation of human brain aromatase in healthy and diseased persons.

  10. Anti-epileptic effects of neuropeptide Y gene transfection into the rat brain

    Institute of Scientific and Technical Information of China (English)

    Changzheng Dong; Wenqing Zhao; Wenling Li; Peiyuan Lv; Xiufang Dong

    2013-01-01

    Neuropeptide Y gene transfection into normal rat brain tissue can provide gene overexpression, which can attenuate the severity of kainic acid-induced seizures. In this study, a recombinant adeno-associated virus carrying the neuropeptide Y gene was transfected into brain tissue of rats with kainic acid-induced epilepsy through stereotactic methods. Following these transfections, we verified overexpression of the neuropeptide Y gene in the epileptic brain. Electroencephalograms showed that seizure severity was significantly inhibited and seizure latency was significantly prolonged up to 4 weeks after gene transfection. Moreover, quantitative fluorescent PCR and western blot assays revealed that the mRNA and protein expression of the N-methyl-D-aspartate receptor subunits NR1, NR2A, and NR2B was inhibited in the hippocampus of epileptic rats. These findings indicate that neuropeptide Y may inhibit seizures via down-regulation of the functional expression of N-methyl-D-aspartate receptors.

  11. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats

    Science.gov (United States)

    Ortiz-Avila, Omar; Esquivel-Martínez, Mauricio; Olmos-Orizaba, Berenice Eridani; Saavedra-Molina, Alfredo; Rodriguez-Orozco, Alain R.; Cortés-Rojo, Christian

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨm), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress. PMID:26180820

  12. Features of microelement maintenance in rat's brain tissues at experimental hypoxia of different degree.

    Directory of Open Access Journals (Sweden)

    Tarasova I.V.

    2011-01-01

    Full Text Available Features of microelement maintenance (iron, zinc, copper, manganese, and cobalt, conditionally toxic chrome and toxic lead were studied in newborn rat's brain tissues at experimental hypoxia of different degree. Tissues of newborn rat’s brain are characterized by high level of saturation and considerable dynamism of microelement maintenance. Till the end of the first week of life, the maintenance of these microelements decreases in 1,5 – 10 times. The level of the toxic lead decreases more than in 2,5 times. The hypoxia of easy degree of newborn rats invokes reduction cobalt level 3 times, iron level 2 times, manganese – on 27,65 %, chrome – on 25,84%, zinc – on 16,43%. It means that considerable deficiency and disbalance of microelement maintenance rat's brain tissues. The heavy degree of hypoxia is characterized by further increase of deficiency and disbalance of microelements.

  13. Effect of pineapple peel extract on total phospholipids and lipid peroxidation in brain tissues of rats

    Institute of Scientific and Technical Information of China (English)

    Erukainure OL; Ajiboye JA; Adejobi RO; Okafor OY; Kosoko SB; Owolabi FO

    2011-01-01

    Objective:To investigate the ability of the methanolic extract of pineapple peel to attenuate alcohol-induced changes in total phospholipids and lipid peroxidation in brain tissues. Methods:Oxidative stress was induced by oral administration of ethanol (20%w/v) at a dosage of 5 mL/kg bw in rats. After 28 days of treatment, the rats were fasted overnight and sacrificed by cervical dislocation. Brain tissues were assayed for total phospholipid (TP) content and malondialdehyde (MDA). Results:Administration of alcohol significantly caused a reduction in TP content. Treatment with pineapple peel extract significantly increased the TP content. Significant high levels of MDA was observed in alcohol-fed rats, treatment with pineapple peel extract significantly reduced the MDA levels. Conclusions:Results obtained from this study indicates that pineapple peel extract protects against alcohol-induced changes in total phospholipids and lipid peroxidation in brain tissues.

  14. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats.

    Science.gov (United States)

    Ortiz-Avila, Omar; Esquivel-Martínez, Mauricio; Olmos-Orizaba, Berenice Eridani; Saavedra-Molina, Alfredo; Rodriguez-Orozco, Alain R; Cortés-Rojo, Christian

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨ m ), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress.

  15. Glucocorticoids modulate BDNF mRNA expression in the rat hippocampus after traumatic brain injury.

    Science.gov (United States)

    Grundy, P L; Patel, N; Harbuz, M S; Lightman, S L; Sharples, P M

    2000-10-20

    Brain-derived neurotrophic factor (BDNF) expression in rat hippocampus is increased after experimental traumatic brain injury (TBI) and may be neuroprotective. Glucocorticoids are important regulators of brain neurotrophin levels and are often prescribed following TBI. The effect of adrenalectomy (ADX) on the expression of BDNF mRNA in the hippocampus after TBI has not been investigated to date. We used fluid percussion injury (FPI) and in situ hybridization to evaluate the expression of BDNF mRNA in the hippocampus 4 h after TBI in adrenal-intact or adrenalectomized rats (with or without corticosterone replacement). FPI and ADX independently increased expression of BDNF mRNA. In animals undergoing FPI, prior ADX caused further elevation of BDNF mRNA and this upregulation was prevented by corticosterone replacement in ADX rats. These findings suggest that glucocorticoids are involved in the modulation of the BDNF mRNA response to TBI.

  16. Effects of anesthesia on [11C]raclopride binding in the rat brain

    DEFF Research Database (Denmark)

    Alstrup, Aage Kristian Olsen; Simonsen, Mette; Møller, Arne

    Background Very often rats are anesthetized prior to micro positron emission tomography (microPET) brain imaging in order to prevent head movements. Anesthesia can be administered by inhalation agents, such as isoflurane, or injection mixtures, such as fentanyl-fluanisone-midazolam. Unfortunately......, anesthesia affects a variety of physiological variables, including in the brain. Aim The aim of this study was to compare the effects of inhalation and injection anesthesia on the binding potential of the dopaminergic D2/3 tracer [11C]raclopride used for PET brain imaging in human and animal studies....... Materials & Methods Nine male Lew/Mol rats were assigned to either inhalation (isoflurane; N=4) or injection (fentanyl-fluanisone-midazolam; N=5) anesthesia. Catheters were surgically placed in femoral arteries and veins for blood sampling and tracer injection. After a short attenuation scan, the rats were...

  17. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Omar Ortiz-Avila

    2015-01-01

    Full Text Available Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats. Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential ΔΨm, besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress.

  18. DISTRIBUTION OF GLIAL FIBRILLARY ACIDIC PROTEIN IN DIFFERENT PARTS OF THE RAT BRAIN UNDER CADMIUM EXPOSURE.

    Science.gov (United States)

    Kovalchuk, Yu P; Prischepa, I V; Si, U; Nedzvetsky, V S; Kot, Y G; Persky, E E; Ushakova, G A

    2015-01-01

    The chronic effects of low doses of cadmium on the distribution of soluble and filament forms of glial fibrillary acidic protein (GFAP) and their polypeptide fragments in different parts of the rat brain were investigated. Obtained results showed dose-dependent effect of cadmium on the soluble form of GFAP and more pronounced effect on the filament form and composition of the polypeptide fragments of the protein in the rat brain. Prolonged intoxication by cadmium ions in a dose of 1.0 μg/kg of body weight induced a significant decrease in soluble GFAP and an increase in the filament form in the rat brain, pointing to the development of reactive astrogliosis and the risk of neurodegeneration.

  19. Prospective microglia and brain macrophage distribution pattern in normal rat brain shows age sensitive dispersal and stabilization with development.

    Science.gov (United States)

    Ghosh, Payel; Mukherjee, Nabanita; Ghosh, Krishnendu; Mallick, Suvadip; Pal, Chiranjib; Laskar, Aparna; Ghosh, Anirban

    2015-09-01

    The monocytic lineage cells in brain, generally speaking brain macrophage and/or microglia show some dissimilar distribution patterns and disagreement regarding their origin and onset in brain. Here, we investigated its onset and distribution/colonization pattern in normal brain with development. Primarily, early and late embryonic stages, neonate and adult brains were sectioned for routine H/E staining; a modified silver-gold staining was used for discriminating monocytic lineage cells in brain; and TEM to deliver ultramicroscopic details of these cells in brain. Immunofluorescence study with CD11b marker revealed the distribution of active microglia/macrophage like cells. Overall, in early embryonic day 12, the band of densely stained cells are found at the margin of developing ventricles and cells sprout from there dispersed towards the outer edge. However, with development, this band shrunk and the dispersion trend decreased. The deeply stained macrophage like cell population migration from outer cortex to ventricle observed highest in late embryonic days, continued with decreased amount in neonates and settled down in adult. In adult, a few blood borne macrophage like cells were observed through the vascular margins. TEM study depicted less distinguishable features of cells in brain in early embryo, whereas from late embryo to adult different neuroglial populations and microglia/macrophages showed distinctive features and organization in brain. CD11b expression showed some similarity, though not fully, with the distribution pattern depending on the differentiation/activation status of these macrophage lineage cells. This study provides some generalized spatial and temporal pattern of macrophage/microglia distribution in rat brain, and further indicates some intrigue areas that need to be addressed.

  20. Effect of Piper betle leaf extract on alcoholic toxicity in the rat brain.

    Science.gov (United States)

    Saravanan, R; Rajendra Prasad, N; Pugalendi, K V

    2003-01-01

    The protective effect of Piper betle, a commonly used masticatory, has been examined in the brain of ethanol-administered Wistar rats. Brain of ethanol-treated rats exhibited increased levels of lipids, lipid peroxidation, and disturbances in antioxidant defense. Subsequent to the experimental induction of toxicity (i.e., the initial period of 30 days), aqueous P. betle extract was simultaneously administered in three different doses (100, 200, and 300 mg kg(-1)) for 30 days along with the daily dose of alcohol. P. betle coadministration resulted in significant reduction of lipid levels (free fatty acids, cholesterol, and phospholipids) and lipid peroxidation markers such as thiobarbituric acid reactive substances and hydroperoxides. Further, antioxidants, like reduced glutathione, vitamin C, vitamin E, superoxide dismutase, catalase, and glutathione peroxidase, were increased in P. betle-coadministered rats. The higher dose of extract (300 mg kg(-1)) was more effective, and these results indicate the neuroprotective effect of P. betle in ethanol-treated rats.

  1. EFFECT OF GINKGO BILOBA EXTRACT ON BRAIN EDEMA AFTER SUBARACHNOID HEMORRHAGE IN RATS

    Institute of Scientific and Technical Information of China (English)

    孙保亮; 夏作理; 杨明峰; 邱平明

    2001-01-01

    @@ The aim of this study was to investigate the protectiveeffect of Ginkgo biloba extract (EGb) on brain edemaafter subarachnoid hemorrhage . Eighty male and femaleWistar rats, weighing 300~ 350g, were used in the ex-periment. Animals were divided into pure SAH group andEGb-treated group. Dynamic changes of regional cerebralblood flow (rCBF) were detected in eight rats from eachgroup. Brain water and electrolytes contents at differenttime points were detected in thirty-two rats from eachgroup (eight rats at each time point from each group) .EGb. provided by Pizhou Pharmaceutical Factory(Xuzhou, Jiangsu, China), was injected intraperi-toneally 30 minutes before operation and repeated withsingle dose of 15mg/kg .every 6 hours.

  2. Effects of Graded Hypothermia on Hypoxic-ischemic Brain Damage in the Neonatal Rat

    Institute of Scientific and Technical Information of China (English)

    Xiao-yan Xia; Yi-xin Xia

    2011-01-01

    Objective To investigate the effect of graded hypothermia on neuropathologic alteratiors of neonatal rat brain after exposed to hypoxic-ischemic insult at 37℃, 33℃, 31℃, and 28℃, respectively, and to observe the effect of hypothermia on 72-kDa heat shock protein (HSP72) expression after hypoxic-ischemic insult. Methods Seven days old Wistar rats were subjected to unilateral common carotid artery ligation followed by exposure to hypoxia in 8% oxygen for 2 hours at 37℃, 33℃, 31℃, and 28℃, respectively. The brain temperature was monitored indirectly by inserting a mini-thermocouple probe into the temporal muscle during hypoxia. After hypoxia-ischemia their mortality was assessed. Neuronal damage was assessed with HE staining 72 hours after hypoxia. HSP72 expression at 0.5, 24, and 72 hours of recovery was immunohistochemically assessed using a monoclonal antibody to HSP72. Results Hypoxia-ischemia caused 10.5% (2/19) of mortality in rat of 37℃ group, but no death occurred in 33℃, 31℃ or 28℃ groups. HE staining showed neuropathologic damage was extensive in rats exposed to hypoxia-ischemia at 37℃ (more than 80.0%). The incidence of severe brain damage was significantly decreased in 33℃ (53.3%) and 31℃ groups (44.4%), and no histologic injury was seen in the 28℃ group of rats. Expression of HSP72 was manifest and persistent in the rat brain of 37℃ group, but minimum in the rat brain of 28℃ group. Conclusion Mild and moderate hypothermia might prevent cerebral visible neuropathologic damage associated with hypoxic-ischemic injury by decreasing stress response.

  3. Safety evaluation of mercury based Ayurvedic formulation (Sidh Makardhwaj) on brain cerebrum, liver & kidney in rats

    OpenAIRE

    Gajendra Kumar; Amita Srivastava; Surinder Kumar Sharma; Yogendra Kumar Gupta

    2014-01-01

    Background & objectives: Sidh Makardhwaj (SM) is a mercury based Ayurvedic formulation used in rheumatoid arthritis and neurological disorders. However, toxicity concerns due to mercury content are often raised. Therefore, the present study was carried out to evaluate the effect of SM on brain cerebrum, liver and kidney in rats. Methods: Graded doses of SM (10, 50, 100 mg/kg), mercuric chloride (1 mg/kg) and normal saline were administered orally to male Wistar rats for 28 days. Behaviou...

  4. Predator Cat Odors Activate Sexual Arousal Pathways in Brains of Toxoplasma gondii Infected Rats

    OpenAIRE

    House, Patrick K.; Ajai Vyas; Robert Sapolsky

    2011-01-01

    Cat odors induce rapid, innate and stereotyped defensive behaviors in rats at first exposure, a presumed response to the evolutionary pressures of predation. Bizarrely, rats infected with the brain parasite Toxoplasma gondii approach the cat odors they typically avoid. Since the protozoan Toxoplasma requires the cat to sexually reproduce, this change in host behavior is thought to be a remarkable example of a parasite manipulating a mammalian host for its own benefit. Toxoplasma does not infl...

  5. Effects of Brain-Derived Neurotrophic Factor on Local Inflammation in Experimental Stroke of Rat

    OpenAIRE

    Yongjun Jiang; Ning Wei; Juehua Zhu; Tingting Lu; Zhaoyao Chen; Gelin Xu; Xinfeng Liu

    2010-01-01

    This study was aimed to investigate whether brain-derived neurotrophic factor (BDNF) can modulate local cerebral inflammation in ischemic stroke. Rats were subjected to ischemia by occluding the right middle cerebral artery (MCAO) for 2 hours. Rats were randomized as control, BDNF, and antibody groups. The local inflammation was evaluated on cellular, cytokine, and transcription factor levels with immunofluorescence, enzyme-linked immunosorbent assay, real-time qPCR, and electrophoretic mobil...

  6. A Comparison of Psychotomimetic Drug Effects on Rat Brain Norepinephrine Metabolism

    Science.gov (United States)

    1973-02-19

    chemical . Rats remained in the water for a maxi- Indircet evidence for participation of brain cate- mum of 20 minutes, but were removed prior to that...ANI) NOH EPINEPHRINE 45 TABLE 1 Endogenous noresiinephrine content mo rat whole braiin after treatment with various psychoactive drugs or exposure to...conclusion that any differences exist b.-tween these two psychoactive effect of LSD on cerebral norepincphrine metab- drugs with respect to serotonin

  7. Element distribution in the brain sections of rats measured by synchrotron radiation X-ray fluorescence

    Science.gov (United States)

    Liu, N. Q.; Zhang, F.; Wang, X. F.; Zhang, Z. Y.; Chai, Z. F.; Huang, Y. Y.; He, W.; Zhao, X. Q.; Zuo, A. J.; Yang, R.

    2004-02-01

    The concentration of trace elements in brain sections was measured by synchrotron radiation X-ray fluorescence. The relative concentration was calculated by means of the normalization of Compton scattering intensity approximately 22 keV, after the normalization for collecting time of X-ray spectrum and the counting of the ion chamber, and subtracting the contribution of the polycarbonate film for supporting sample. Furthermore, the statistical evaluation of the element distribution in various regions of the brain sections of the 20-day-old rats was tested. For investigating the distribution of elements in the brain of iodine deficient rats, Wistar rats were fed with iodine deficient diet and deionized water (ID group). The rats were fed the same iodine deficient diet, but drank KIO 3 solution as control (CT group). The results showed that the contents of calcium (Ca) in thalamus (TH) and copper (Cu) and iron (Fe) in cerebral cortex (CX) of ID rats were significantly lower than that of control rats, while the contents of phosphor (P), sulfur (S), potassium (K), rubidium (Rb), bromine (Br), chlorine (Cl), zinc (Zn), Ca and Cu of ID in hippocampus (H) and the contents of Br, Cl, Zn and Ca in cerebral cortex of ID rats were significantly higher. Especially, the difference of Br, Cl, Zn and Ca in H between ID and CT was more significant. The contents of all elements measured in H were higher than (or equal to) CX and/or TH for both groups, except low Cl of the control rats. Furthermore Zn and Cu contents along the hippocampal fissure in both groups were 1.5 ( Ptimes higher than in hippocampus, respectively. Considering the results of cluster analysis our study shows that the marked alterations in the spatial distribution of Zn and Ca of ID rats brain during brain development stages. In addition, the effect of the perfusion with 0.9% NaCl solution before taking brain on the distribution of elements in the brain sections was observed and discussed.

  8. Macrophagic and microglial responses after focal traumatic brain injury in the female rat

    OpenAIRE

    Turtzo, L. Christine; Lescher, Jacob; Janes, Lindsay; Dean, Dana D.; Budde, Matthew D.; Joseph A Frank

    2014-01-01

    Background After central nervous system injury, inflammatory macrophages (M1) predominate over anti-inflammatory macrophages (M2). The temporal profile of M1/M2 phenotypes in macrophages and microglia after traumatic brain injury (TBI) in rats is unknown. We subjected female rats to severe controlled cortical impact (CCI) and examined the postinjury M1/M2 time course in their brains. Methods The motor cortex (2.5 mm left laterally and 1.0 mm anteriorly from the bregma) of anesthetized female ...

  9. Histamine H3 receptor-mediated inhibition of serotonin release in the rat brain cortex.

    Science.gov (United States)

    Schlicker, E; Betz, R; Göthert, M

    1988-05-01

    Rat brain cortex slices preincubated with 3H-serotonin were superfused with physiological salt solution (containing citalopram, an inhibitor of serotonin uptake) and the effect of histamine on the electrically (3 Hz) evoked 3H overflow was studied. Histamine decreased the evoked overflow in a concentration-dependent manner. The inhibitory effect of histamine was antagonized by impromidine and burimamide, but was not affected by pheniramine, ranitidine, metitepine and phentolamine. Given alone, impromidine facilitated the evoked overflow, whereas burimamide, pheniramine and ranitidine had no effect. The results suggest that histamine inhibits serotonin release in the rat brain cortex via histamine H3 receptors, which may be located presynaptically.

  10. Molecular cloning, expression and in situ hybridization of rat brain glutamic acid decarboxylase messenger RNA.

    Science.gov (United States)

    Julien, J F; Legay, F; Dumas, S; Tappaz, M; Mallet, J

    1987-01-14

    A cDNA library was generated in the expression vector lambda GT11 from rat brain poly(A)+ RNAs and screened with a GAD antiserum. Two clones reacted positively. One of them was shown to express a GAD activity which was specifically trapped on anti-GAD immunogel and was inhibited by gamma-acetylenic-GABA. Blot hybridization analysis of RNAs from rat brain revealed a single 4 kilobases band. Preliminary in situ hybridizations showed numerous cells labelled by the GAD probe such as the Purkinje and stellate cells in the cerebellar cortex and the cells of the reticular thalamic nucleus.

  11. Responsiveness of fetal rat brain cells to glia maturation factor during neoplastic transformation in cell culture

    DEFF Research Database (Denmark)

    Haugen, A; Laerum, O D; Bock, E

    1981-01-01

    The effect of partially purified extracts from adult pig brains containing a glia maturation protein factor (BE) has been investigated on neural cells during carcinogenesis. Pregnant BD IX-rats were given a single transplacental dose of the carcinogen ethylnitrosourea (EtNU) on the 18th day of ge...... on GFA-content was seen any longer, although some few weakly GFA positive cells could be observed in all permanent cell lines. Fetal rat brain cells therefore seem to become less responsive to this differentiation inducer during neoplastic transformation in cell culture....

  12. Prevention of brain infarction by postischemic administration of histidine in rats.

    Science.gov (United States)

    Adachi, Naoto; Liu, Keyue; Arai, Tatsuru

    2005-03-28

    Focal cerebral ischemia for 2 h by occlusion of the right middle cerebral artery provoked severe brain infarction in the rat brain after 24 h. Intraperitoneal administration of histidine, a precursor of histamine, immediately and 6 h after reperfusion, alleviated brain infarction. The infarct size in the histidine (200 mg/kg, 500 mg/kg, and 1000 mg/kg, each time) groups was 71%, 39%, and 7% of that in the control group, respectively. Although intracerebroventricular administration of mepyramine (3 nmol), an H1 antagonist, did not affect the morphologic outcome in histidine-treated rats, ranitidine (30 nmol), an H2 antagonist, completely abolished the alleviation caused by histidine. These findings indicate that postischemic administration of histidine prevents development of brain infarction by stimulating central histamine H2 receptors.

  13. Pharmacological activities of clobazam and diazepam in the rat: relation to drug brain levels.

    Science.gov (United States)

    Caccia, S; Carli, M; Garattini, S; Poggesi, E; Rech, R; Samanin, R

    1980-02-01

    Brain distribution and various pharmacological effects of clobazam and diazepam were studied in rats. When given at 10 mg/kg i.p. the compounds reached peak brain levels 15 min after injection, and showed similar half lives. At peak time brain levels were proportional to the dose administered. Very little of the N-desmethylmetabolite of each compound was found in the brain. Clobazam was less effective than diazepam in protecting rats from pentetrazol convulsions. Disrupting rota-rod performance and increasing punished responses in a "conflict" test, the relative potencies ranging from 4 to 8 in the various tests. The results are discussed in relation to the importance of animal species selection for predicting favourable therapeutic effects in humans.

  14. A quantitative in-vivo MR imaging study of brain dehydration in diabetic rats and rats treated with peptide hormones.

    Science.gov (United States)

    Haraldseth, O; Jones, R A; Skottner, A

    1997-01-01

    The main aim of the study was to evaluate the combination of quantitative diffusion, T2 and Magnetisation Transfer Imaging of brain water homeostasis using untreated diabetes as an animal model of brain dehydration. In addition, experimental groups of diabetic rats treated with insulin and insulin-like growth factor (IGF-I) and normal rats treated with IGF-I and growth hormone were studied using the same MR imaging protocol. Untreated diabetes caused weight reduction and an increase in water intake, indicating a general body dehydration linked to chronic blood hyperosmolarity. In the investigated cortical gray matter untreated diabetes caused a significant reduction in the apparent diffusion coefficient of water (ADC) and an increase in T2 relaxtivity (R2) when compared to a control group. No significant changes were observed for the calculated magnetisation transfer parameters Kfor and T1sat. Both ADC and R2 normalized after appropriate insulin treatment whereas only ADC was normalized after IGF-I treatment. IGF-I treatment of normal rats caused significantly higher rate of increase in body weight compared to normal controls. There were, however, no significant changes in ADC, R2 nor the magnetisation transfer parameters measured in the cortical gray matter of the IGF-I treated normal rats. In conclusion, we found that changes in brain water homeostasis during diabetes were detected by quantitative MR imaging, and that the dehydration induced by diabetes was normalized by insulin treatment but not by IGF-I.

  15. Brain monoamine metabolism is altered in rats following spontaneous, long-distance running.

    Science.gov (United States)

    Elam, M; Svensson, T H; Thorén, P

    1987-06-01

    Brain monoamine metabolism in rats was studied during spontaneous, long-term running in a microprocessor-controlled wheel cage. Immediately after heavy spontaneous exercise, DOPA accumulation was decreased in dopamine-rich brain regions such as the limbic forebrain and corpus striatum, indicating a decreased rate of synthesis of dopamine in brain. In contrast, DOPA accumulation was increased in the noradrenaline-predominated region of the brain stem, indicating an increased synthesis of noradrenaline in this region. Alterations in brain monoamine metabolism were normalized in exercising animals analysed 24 h after the last running period. Changes in brain monoamine metabolism may be involved in the mechanisms underlying the clinically observed psychological effects of physical exercise.

  16. Dynamic effects of point source electroporation on the rat brain tissue.

    Science.gov (United States)

    Sharabi, Shirley; Last, David; Guez, David; Daniels, Dianne; Hjouj, Mohammad Ibrahim; Salomon, Sharona; Maor, Elad; Mardor, Yael

    2014-10-01

    In spite of aggressive therapy, existing treatments offer poor prognosis for glioblastoma multiforme due to tumor infiltration into the surrounding brain as well as poor blood-brain barrier penetration of most therapeutic agents. In this paper we present a novel approach for a minimally invasive treatment and a non-invasive response assessment methodology consisting of applying intracranial point-source electroporation and assessing treatment effect volumes using magnetic resonance imaging. Using a unique setup of a single intracranial electrode and an external surface electrode we treated rats' brains with various electroporation protocols and applied magnetic resonance imaging to study the dependence of the physiological effects on electroporation treatment parameters. The extent of blood-brain barrier disruption and later volumes of permanent brain tissue damage were found to correlate significantly with the treatment voltages (r(2)=0.99, pelectroporation when planning a treatment for brain tumors.

  17. A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics.

    Science.gov (United States)

    Marmarou, A; Foda, M A; van den Brink, W; Campbell, J; Kita, H; Demetriadou, K

    1994-02-01

    This report describes the development of an experimental head injury model capable of producing diffuse brain injury in the rodent. A total of 161 anesthetized adult rats were injured utilizing a simple weight-drop device consisting of a segmented brass weight free-falling through a Plexiglas guide tube. Skull fracture was prevented by cementing a small stainless-steel disc on the calvaria. Two groups of rats were tested: Group 1, consisting of 54 rats, to establish fracture threshold; and Group 2, consisting of 107 animals, to determine the primary cause of death at severe injury levels. Data from Group 1 animals showed that a 450-gm weight falling from a 2-m height (0.9 kg-m) resulted in a mortality rate of 44% with a low incidence (12.5%) of skull fracture. Impact was followed by apnea, convulsions, and moderate hypertension. The surviving rats developed decortication flexion deformity of the forelimbs, with behavioral depression and loss of muscle tone. Data from Group 2 animals suggested that the cause of death was due to central respiratory depression; the mortality rate decreased markedly in animals mechanically ventilated during the impact. Analysis of mathematical models showed that this mass-height combination resulted in a brain acceleration of 900 G and a brain compression gradient of 0.28 mm. It is concluded that this simple model is capable of producing a graded brain injury in the rodent without a massive hypertensive surge or excessive brain-stem damage.

  18. Energetic, oxidative and ionic exchange in rat brain and liver mitochondria at experimental audiogenic epilepsy (Krushinsky-Molodkina model).

    Science.gov (United States)

    Venediktova, Natalya I; Gorbacheva, Olga S; Belosludtseva, Natalia V; Fedotova, Irina B; Surina, Natalia M; Poletaeva, Inga I; Kolomytkin, Oleg V; Mironova, Galina D

    2017-01-09

    The role of brain and liver mitochondria at epileptic seizure was studied on Krushinsky-Molodkina (KM) rats which respond to sound with an intensive epileptic seizure (audiogenic epilepsy). We didn't find significant changes in respiration rats of brain and liver mitochondria of KM and control rats; however the efficiency of АТР synthesis in the KM rat mitochondria was 10% lower. In rats with audiogenic epilepsy the concentration of oxidative stress marker malondialdehyde in mitochondria of the brain (but not liver) was 2-fold higher than that in the control rats. The rate of H2O2 generation in brain mitochondria of КМ rats was twofold higher than in the control animals when using NAD-dependent substrates. This difference was less pronounced in liver mitochondria. In KM rats, the activity of mitochondrial ATP-dependent potassium channel was lower than in liver mitochondria of control rats. The comparative study of the mitochondria ability to retain calcium ions revealed that in the case of using the complex I and complex II substrates, permeability transition pore is easier to trigger in brain and liver mitochondria of KM and КМs rats than in the control ones. The role of the changes in the energetic, oxidative, and ionic exchange in the mechanism of audiogenic epilepsy generation in rats and the possible correction of the epilepsy seizures are discussed.

  19. Extremely low frequency magnetic fields induce oxidative stress in rat brain.

    Science.gov (United States)

    Manikonda, Pavan K; Rajendra, Pilankatta; Devendranath, D; Gunasekaran, B; Channakeshava; Aradhya, Shivakumara R S; Sashidhar, Rao B; Subramanyam, Chivukula

    2014-01-01

    The present investigation was conducted to understand the influence of long-term exposure of rats to extremely low frequency magnetic fields (ELF-MF), focusing on oxidative stress (OS) on different regions of rat's brain. Male Wistar rats (21-day-old) were exposed to ELF-MF (50 Hz; 50 and 100 µT) for 90 days continuously; hippocampal, cerebellar and cortical regions from rats were analyzed for (i) reactive oxygen species (ROS), (ii) metabolites indicative of OS and (iii) antioxidant enzymes. In comparison to control group rats, the rats that were continuously exposed to ELF-MF caused OS and altered glutathione (GSH/GSSG) levels in dose-dependent manner in all the regions of the brain. Accumulation of ROS, lipid peroxidation end products and activity of superoxide dismutase in different regions was in the descending order of cerebellum glutathione peroxidase activity were in the descending order of hippocampus 50 µT. Varied influences observed in different regions of the brain, as documented in this study, may contribute to altered metabolic patterns in its related regions of the central nervous system, leading to aberrant neuronal functions.

  20. Summary of high field diffusion MRI and microscopy data demonstrate microstructural aberration in chronic mild stress rat brain

    DEFF Research Database (Denmark)

    Khan, Ahmad Raza; Chuhutin, Andrey; Wiborg, Ove

    2016-01-01

    Abstract This data article describes a large, high resolution diffusion MRI data set from fixed rat brain acquired at high field strength. The rat brain samples consist of21adult rat brain hemispheres from animals exposed to chronic mild stress (anhedonic and resilient) and controls. Histology from...... amygdala of the same brain hemispheres is also included with three different stains: DiI and Hoechst stained microscopic images (confocal microscopy) andALDH1L1 antibody based immunohistochemistry.These stains may be used to evaluate neurite density (DiI), nuclear density (Hoechst) and astrocytic density...

  1. Circulating and Brain BDNF Levels in Stroke Rats. Relevance to Clinical Studies

    OpenAIRE

    Yannick Béjot; Claude Mossiat; Maurice Giroud; Anne Prigent-Tessier; Christine Marie

    2011-01-01

    BACKGROUND: Whereas brain-derived neurotrophic factor (BDNF) levels are measured in the brain in animal models of stroke, neurotrophin levels in stroke patients are measured in plasma or serum samples. The present study was designed to investigate the meaning of circulating BDNF levels in stroke patients. METHODS AND RESULTS: Unilateral ischemic stroke was induced in rats by the injection of various numbers of microspheres into the carotid circulation in order to mimic the different degrees o...

  2. Recovery of energy metabolism in rat brain after carbon monoxide hypoxia.

    OpenAIRE

    Brown, S D; Piantadosi, C. A.

    1992-01-01

    Carbon monoxide (CO) may inhibit mitochondrial electron transport in the brain and increase the toxic effects of the gas. This hypothesis was investigated in anesthetized rats during CO exposure and recovery at either normobaric or hyperbaric O2 concentrations. During exposure and recovery, we measured the oxidation level of cerebrocortical cytochrome c oxidase by differential spectroscopy and biochemical metabolites known to reflect aerobic energy provision in the brain. CO exposure (HbCO = ...

  3. Total anesthesia, rats brain surgery, nitric oxide (NO) and free radicals

    OpenAIRE

    Jelenković Ankica V.; Jovanović Marina; Ninković Milica; Maksimović M.; Bošković Bogdan

    2005-01-01

    It is expected that clinical recovery after surgically induced brain trauma is followed by molecular and biochemical restitution. Seven days after surgery, we investigated whether the plastic cannula implanted in the left brain ventricle of adult Wistar rats (n = 6-7), performed in pentobarbital anesthesia, could influence oxidative stress elements (superoxide anion and lipid peroxidation), as well as the antioxidative system (superoxide dismuthase-SOD). Also, we investigated whether nitric o...

  4. Voluntary Alcohol Intake following Blast Exposure in a Rat Model of Mild Traumatic Brain Injury

    Science.gov (United States)

    Lim, Yi Wei; Meyer, Nathan P.; Shah, Alok S.; Budde, Matthew D.; Stemper, Brian D.; Olsen, Christopher M.

    2015-01-01

    Alcoholism is a frequent comorbidity following mild traumatic brain injury (mTBI), even in patients without a previous history of alcohol dependence. Despite this correlational relationship, the extent to which the neurological effects of mTBI contribute to the development of alcoholism is unknown. In this study, we used a rodent blast exposure model to investigate the relationship between mTBI and voluntary alcohol drinking in alcohol naïve rats. We have previously demonstrated in Sprague Dawley rats that blast exposure leads to microstructural abnormalities in the medial prefrontal cortex (mPFC) and other brain regions that progress from four to thirty days. The mPFC is a brain region implicated in alcoholism and drug addiction, although the impact of mTBI on drug reward and addiction using controlled models remains largely unexplored. Alcohol naïve Sprague Dawley rats were subjected to a blast model of mTBI (or sham conditions) and then tested in several common measures of voluntary alcohol intake. In a seven-week intermittent two-bottle choice alcohol drinking test, sham and blast exposed rats had comparable levels of alcohol intake. In a short access test session at the conclusion of the two-bottle test, blast rats fell into a bimodal distribution, and among high intake rats, blast treated animals had significantly elevated intake compared to shams. We found no effect of blast when rats were tested for an alcohol deprivation effect or compulsive drinking in a quinine adulteration test. Throughout the experiment, alcohol drinking was modest in both groups, consistent with other studies using Sprague Dawley rats. In conclusion, blast exposure had a minimal impact on overall alcohol intake in Sprague Dawley rats, although intake was increased in a subpopulation of blast animals in a short access session following intermittent access exposure. PMID:25910266

  5. Development of regional cerebral oedema after lateral fluid-percussion brain injury in the rat.

    Science.gov (United States)

    McIntosh, T K; Soares, H; Thomas, M; Cloherty, K

    1990-01-01

    Most studies attempting to characterize post-traumatic oedema formation have focused on the acute postinjury period. We have recently developed a new model of lateral (parasagittal) fluidpercussion (FP) brain injury in the rat. The purpose of the present study was to characterize the temporal course of oedema formation and resolution in this experimental model of brain injury. Male Sprague-Dawley rats (n = 67) were anaesthetized and subjected to FP brain injury of moderate severity. Animals were sacrified at 1 hour, 6 hours, 24 hours, 2 days, 3 days, 5 days and 7 days after brain injury, brains removed and assayed for water content using either specific gravitimetric or wet weight/dry weight techniques. In the injured left parietal cortex, a significant increase in water content was observed by 6 hours postinjury (p less than 0.05) that persisted up to 5 days postinjury. A prolonged and significant increase in water content was also observed in the left (ipsilateral) hippocampus which began at 1 hour postinjury (p less than 0.05) and continued up to 3 days. Other regions examined showed no significant regional oedema after brain injury. These results suggest that lateral FP brain injury produces an early focus oedema that persists for a prolonged period after trauma. This model may be useful in the evaluation of novel pharmacological therapies designed to reduce cerebral oedema after brain injury.

  6. Effects of white spirits on rat brain 5-HT receptor functions and synaptic remodeling

    DEFF Research Database (Denmark)

    Lam, Henrik Rye; Plenge, P.; Jørgensen, O.S.

    2001-01-01

    Previously, inhalation exposure to different types of white spirit (i.e. complex mixtures of aliphatic, aromatic, alkyl aromatic, and naphthenic hydrocarbons) has been shown to induce neurochemical effects in rat brains. Especially, the serotonergic system was involved at the global, regional...... applied as indices for synaptic remodeling in forebrain, hippocampus, and entorhinal cortex. Male Wistar rats were exposed to 0, 400, or 800 ppm of aromatic (20 vol.% aromatic hydrocarbons) or dearomatized white spirit (catalytically hydrogenated white spirit) in the inhaled air for 6 h/day, 7 days...... that inhalation exposure to high concentrations of white spirit may be neurotoxic to rats, especially the aromatic white spirit type....

  7. Naoxintong dose effects on inflammatory factor expression in the rat brain following focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Xiangjian Zhang; Li Xü; Zuoran Chen; Shuchao Hu; Liying Zhang; Haiyan Li; Ruichun Liu

    2008-01-01

    BACKGROUND: Certain components of tetramethylpyrazine, a traditional Chinese medicine, exhibit protective effects against brain injury.OBJECTIVE: To investigate the effects of different Naoxintong doses on expression of nuclear factor-kappa B (κ B), interleukin-6, tumor necrosis factor-α, and complement 3 in rats following focal cerebral ischemia.DESIGN, TIME AND SETTING: The randomized experiment was performed at the Laboratory of Neurology, Second Hospital of Hebei Medical University from June 2004 to June 2006. MATERIAIS: A total of 150 adult, healthy, male, Sprague Dawley rats, weighing 280-320 g, were selected. Naoxintong powder (mainly comprising szechwan lovage rhizome, milkvetch root, danshen root, and radix angelicae sinensis) was obtained from Buchang Pharmacy Co., Ltd. in Xianyang City of Shanxi Province of China, lot number 040608.METHODS: The rats were randomly assigned into sham operation, saline, high-dose Naoxintong, moderate-dose Naoxintong, and low-dose Naoxintong groups, with 30 rats in each group. Rat models of middle cerebral artery occlusion were established using the suture method, with the exception of the sham operation group. Rats in the high-dose, moderate-dose and low-dose Naoxintong groups received 4, 2, and 1 glkg Naoxintong respectively, by gavage. Rats in the saline group were treated with 1 mL saline by gavage. All rats were administered by garage at 5 and 23 hours following surgery, and subsequently, once per day.MAIN OUTCOME MEASURES: At 6, 24, 48, 72 hours, and 7 days following model establishment, brain water content was measured. Histopathological changes in brain tissues were detected using hematoxylin-eosin staining. Expression of nuclear factor- κB, interleukin-6, tumor necrosis factor-α, and complement 3 was examined by immunohistochemistry.RESULTS: A total of 150 rats were included in the final analysis with no loss. Brain water content was significantly increased in the ischemic hemisphere of rats from the saline, as

  8. Compromised Blood-Brain Barrier Competence in Remote Brain Areas in Ischemic Stroke Rats at Chronic Stage

    Science.gov (United States)

    Garbuzova-Davis, Svitlana; Haller, Edward; Williams, Stephanie N.; Haim, Eithan D.; Tajiri, Naoki; Hernandez-Ontiveros, Diana G.; Frisina-Deyo, Aric; Boffeli, Sean M.; Sanberg, Paul R.; Borlongan, Cesario V.

    2014-01-01

    Stroke is a life threatening disease leading to long-term disability in stroke survivors. Cerebral functional insufficiency in chronic stroke might be due to pathological changes in brain areas remote from initial ischemic lesion, i.e. diaschisis. Previously, we showed that the damaged blood-brain barrier (BBB) was implicated in subacute diaschisis. The present study investigated BBB competence in chronic diaschisis using a transient middle cerebral artery occlusion (tMCAO) rat model. Our results demonstrated significant BBB damage mostly in the ipsilateral striatum and motor cortex in rats at 30 days after tMCAO. The BBB alterations were also determined in the contralateral hemisphere via ultrastructural and immunohistochemical analyses. Major BBB pathological changes in contralateral remote striatum and motor cortex areas included: (1) vacuolated endothelial cells containing large autophagosomes, (2) degenerated pericytes displaying mitochondria with cristae disruption, (3) degenerated astrocytes and perivascular edema, (4) Evans Blue extravasation, and (5) appearance of parenchymal astrogliosis. Importantly, discrete analyses of striatal and motor cortex areas revealed significantly higher autophagosome accumulation in capillaries of ventral striatum and astrogliosis in dorsal striatum in both cerebral hemispheres. These widespread microvascular alterations in ipsilateral and contralateral brain hemispheres suggest persistent and/or continued BBB damage in chronic ischemia. The pathological changes in remote brain areas likely indicate chronic ischemic diaschisis, which should be considered in the development of treatment strategies for stroke. PMID:24610730

  9. Fenbendazole treatment may influence lipopolysaccharide effects in rat brain.

    Science.gov (United States)

    Hunter, Randy L; Choi, Dong-Young; Kincer, Jeanie F; Cass, Wayne A; Bing, Guoying; Gash, Don M

    2007-10-01

    In evaluating discrepant results between experiments in our laboratory, we collected data that challenge the notion that anthelminthic drugs like FBZ do not alter inflammatory responses. We found that FBZ significantly modulates inflammation in F344 rats intrastriatally injected with LPS. FBZ treatment of LPS-injected rats significantly increased weight loss, microglial activation, and dopamine loss; in addition, FBZ attenuated the LPS-induced loss of astrocytes. Therefore, FBZ treatment altered the effects of LPS injection. Caution should be used in interpreting data collected from rats treated with LPS and FBZ.

  10. Effect of monoamine nervous transmitter and neuropeptide Y in the aged rats with myocardial injury after brain ischemia-reperfusion

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM: To study the mechanism of myocardial injury after brain ischemia-reperfusion in aged rats from the changes in Dopamine (DA), Noradrenalin (NE), Epinephrine(E) and Neuropeptide Y(NPY).METHODS: Young (5 months) and aged (20 months or more) rats were divided into model groups and normal control groups, respectively. We observed the following items in rats with 60 minute reperfusion after 30 minute brain ischemia: the pathological changed of myocardium, the activities of lactic dehydrrogenase(LDH), creatine phosphokinase(CPK), the contents of NE, DA, E, NPY. RESULTS:The CPK and LDH activities in the young model rats were higher than those in the young control rats was higher than that in the young control rats (P<0.05). The serum CPK activity in the aged control rats was higher than that in the young control rats (P<0.05). The myocardial CPK activity was higher in the aged model rats compared with the young molel rats (P<0.05) and was higher in aged control rats compared with the young control rats (P<0.01). The myocardial LDH activity was lower in the aged control rats than that in the young control rats (P<0.05) and aged model rats (P<0.01). The serum NE level, the level of NE and DA in the hypothalamus were higher obviously than those in the young control rats. The serum NE contents in the two model groups (young and aged) were higher respectively than the two control rats (young and aged). The following items’ contents were higher in the aged model rats than in the young model rats: serum NE, serum E, hypothalamus NE. The hypothalamus NE and E content was lower in the aged model rats than in te aged control rats. NPY level in the brain tissue was lower in the aged control rats than that in the young control rats and aged model rats (P<0.05).CONCLUSION: The myocardial injury after brain ischemia-reperfusion was concerned with the enhanced excitability of sympathetic-adrenal system, espectially in the aged rats. However, the change in myocardial

  11. Effects of anesthesia on [11C]raclopride binding in the rat brain

    DEFF Research Database (Denmark)

    Alstrup, Aage Kristian Olsen; Simonsen, Mette; Møller, Arne

    Background Very often rats are anesthetized prior to micro positron emission tomography (microPET) brain imaging in order to prevent head movements. Anesthesia can be administered by inhalation agents, such as isoflurane, or injection mixtures, such as fentanyl-fluanisone-midazolam. Unfortunately....... Materials & Methods Nine male Lew/Mol rats were assigned to either inhalation (isoflurane; N=4) or injection (fentanyl-fluanisone-midazolam; N=5) anesthesia. Catheters were surgically placed in femoral arteries and veins for blood sampling and tracer injection. After a short attenuation scan, the rats were...... PET scanned for 90 minutes after injection of [11C]raclopride. Results We found that rats anesthetized with isoflurane had double the binding potential in the striatum compared with fentanyl-fluanisone-midazolam anesthetized rats. Conclusion Our results are in agreement with other studies showing...

  12. Metabolic enhancer piracetam attenuates rotenone induced oxidative stress: a study in different rat brain regions.

    Science.gov (United States)

    Verma, Dinesh Kumar; Joshi, Neeraj; Raju, Kunumuri Sivarama; Wahajuddin, Muhammad; Singh, Rama Kant; Singh, Sarika

    2015-01-01

    Piracetam is clinically being used nootropic drug but the details of its neuroprotective mechanism are not well studied. The present study was conducted to assess the effects of piracetam on rotenone induced oxidative stress by using both ex vivo and in vivo test systems. Rats were treated with piracetam (600 mg/kg b.w. oral) for seven constitutive days prior to rotenone administration (intracerebroventricular, 12 µg) in rat brain. Rotenone induced oxidative stress was assessed after 1 h and 24 h of rotenone administration. Ex vivo estimations were performed by using two experimental designs. In one experimental design the rat brain homogenate was treated with rotenone (1 mM, 2 mM and 4 mM) and rotenone+piracetam (10 mM) for 1 h. While in second experimental design the rats were pretreated with piracetam for seven consecutive days. On eighth day the rats were sacrificed, brain homogenate was prepared and treated with rotenone (1 mM, 2 mM and 4mM) for 1h. After treatment the glutathione (GSH) and malondialdehyde (MDA) levels were estimated in brain homogenate. In vivo study showed that pretreatment of piracetam offered significant protection against rotenone induced decreased GSH and increased MDA level though the protection was region specific. But the co-treatment of piracetam with rotenone did not offer significant protection against rotenone induced oxidative stress in ex vivo study. Whereas ex vivo experiments in rat brain homogenate of piracetam pretreated rats, showed the significant protection against rotenone induced oxidative stress. Findings indicated that pretreatment of piracetam significantly attenuated the rotenone induced oxidative stress though the protection was region specific. Piracetam treatment to rats led to its absorption and accumulation in different brain regions as assessed by liquid chromatography mass spectrometry/mass spectrometry. In conclusion, study indicates the piracetam is able to enhance the antioxidant capacity in brain cells

  13. Zinc influences on brain development, pituitary an thyroidfunction iniodine-deficient pregnant and neonatal rats

    Institute of Scientific and Technical Information of China (English)

    Xiaoxia Yang; Jianchao Bian; Xin Wang; Haiming Wang; Yongping Liu; Shuzhen Wang; Zhichun Mu; Xinluan Li

    2008-01-01

    BACKGROUND: Zinc (Zn) has been shown to greatly influence brain development. Zn supplements may reduce injury to cell membranes of the thyroid gland due to iodine deficiency. OBJECTIVE: To establish an iodine deficiency rat model using low-iodine food, which was supplemented with compound Zn and Zn gluconate, to observe the effects of Zn on brain development, as well as pituitary gland and thyroid gland function in iodine-deficient rats. DESIGN, TIME AND SETTING: Randomized grouping study of neural development was performed in the central laboratory of Shandong Institute for Prevention and Treatment of Endemic Disease from 1998 to 1999. MATERIALS: A total of 270 Wistar, female rats, one month after weaning, were used in this study, including 150 pregnant and 120 neonatal rats. Rats were randomly divided into six groups: normal control, model, iodine, compound Zn, iodine and compound Zn, and zinc gluconate. Each group contained 25 pregnant rats and 20 nenoatal rats. METHODS: The pregnant rats and 20 neonatal rats, and well as the normal group, were fed standard chow and allowed free access to tap water (containing 5 μ g/L iodine and 1 mg/L Zn). The remaining five groups were fed low-iodine chow. However, the model group received distilled water, the iodine group received potassium-iodide distilled water (containing 300 μ g/L iodine), the compound Zn group received distilled water and intragastrically administrated 10 mL/kg compound Zn solution, once per day, the iodine and compound Zn group received distilled water with 300 p g/L iodine and intragastrically administrated 10 mL/kg compound Zn solution, once per day. All treatments lasted 90 days. MAIN OUTCOME MEASURES: All pregnant rats were sacrificed on the day 21 of pregnancy. Body mass, number and rate of fetal absorption, as well as fetal death and malformation, were determined. Thyroid and pituitary gland weights were measured, as well as serum levels of thyroid hormone, gonadotropin, and sex hormones. In the

  14. Electrical Guidance of Human Stem Cells in the Rat Brain

    Directory of Open Access Journals (Sweden)

    Jun-Feng Feng

    2017-07-01

    Full Text Available Limited migration of neural stem cells in adult brain is a roadblock for the use of stem cell therapies to treat brain diseases and injuries. Here, we report a strategy that mobilizes and guides migration of stem cells in the brain in vivo. We developed a safe stimulation paradigm to deliver directional currents in the brain. Tracking cells expressing GFP demonstrated electrical mobilization and guidance of migration of human neural stem cells, even against co-existing intrinsic cues in the rostral migration stream. Transplanted cells were observed at 3 weeks and 4 months after stimulation in areas guided by the stimulation currents, and with indications of differentiation. Electrical stimulation thus may provide a potential approach to facilitate brain stem cell therapies.

  15. A warmer ambient temperature increases the passage of interleukin-1β into the brains of old rats

    Science.gov (United States)

    Buchanan, Jessica B.; Peloso, Elizabeth; Satinoff, Evelyn

    2008-01-01

    We have demonstrated that after intraperitoneal lipopolysaccharide (LPS) injection, old rats mount fevers similar to those of young rats at an ambient temperature (Ta) of 31°C, but not at 21°C. The same is true for intraperitoneal or intravenous IL-1β administration. The underlying mechanism responsible for blunted fever in old rats may be a deficiency in communication between the periphery and the brain. Possibly, peripheral cytokine actions are altered in old rats, such that the signal that reaches the brain is diminished. Here, we hypothesized that at standard laboratory temperatures, not enough IL-1β is reaching the brain for fever to occur and that a warmer Ta would increase the influx of IL-1β into the brain, enabling old rats to generate fever. Young (3–5 mo) and old (23–29 mo) Long-Evans rats were maintained for 3 days at either Ta 21 or 31°C prior to intravenous injection with radiolabeled IL-1β to measure passage across the blood-brain barrier. Young rats showed similar influx of IL-1β into the brain at the two Tas, but old rats showed significant influx only at the warmer Ta. These data suggest that the lack of fever at a cool Ta may be due to a reduced influx of IL-1β into the brain. PMID:18448612

  16. Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains

    Energy Technology Data Exchange (ETDEWEB)

    Constanzo, Julie; Paquette, Benoit; Charest, Gabriel [Center for Radiotherapy Research, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001 12th Avenue Nord, Sherbrooke, Québec J1H 5N4 (Canada); Masson-Côté, Laurence; Guillot, Mathieu, E-mail: mathieu.guillot@usherbrooke.ca [Department of Radiation Oncology, Centre Hospitalier Universitaire de Sherbrooke, 3001 12th Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada and Center for Radiotherapy Research, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001 12th Avenue Nord, Sherbrooke, Québec J1H 5N4 (Canada)

    2015-05-15

    Purpose: Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Methods: Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brain were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. Results: The authors’ results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. Conclusions: The authors’ results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife.

  17. Functional brain activation during retrieval of visceral pain-conditioned passive avoidance in the rat.

    Science.gov (United States)

    Wang, Zhuo; Bradesi, Sylvie; Charles, Jonathan R; Pang, Raina D; Maarek, Jean-Michel I; Mayer, Emeran A; Holschneider, Daniel P

    2011-12-01

    This study assessed functional brain activation in rats during expectation of visceral pain. Male rats were trained in step-down passive avoidance (PA) for 2 days. Upon stepping down from a platform, conditioned animals received noxious colorectal distension delivered through a colorectal balloon, whereas the balloon in control rats remained uninflated. On day 3, PA behavior was assessed while [(14)C]-iodoantipyrine was infused intravenously, followed by immediate euthanasia. Regional cerebral blood flow-related tissue radioactivity (rCBF) was analyzed by statistical parametric mapping using 3-dimensional brains reconstructed from autoradiographic brain slice images. Associated with retrieved PA behavior, conditioned rats compared with control subjects showed increases in rCBF in sensory (anterior insula, somatosensory cortex), limbic/paralimbic regions (anterior cingulate, prelimbic cortex, amygdala), all regions previously reported to show activation during acute visceral pain. Increases in rCBF were also noted in the dorsal hippocampus, nucleus accumbens, and caudate putamen, regions associated with retrieval of PA. Organization of the underlying brain network was further delineated by functional connectivity analysis. This revealed in conditioned rats a strongly and positively connected corticostriatal cluster (cingulate, prelimbic cortex, caudate putamen). The amygdala and cerebellar hemispheres formed another positively connected cluster, which was negatively connected with the corticostriatal cluster, suggesting corticolimbic modulation. Prelimbic cortex, nucleus accumbens, and anterior insula emerged in conditioned animals as hubs. Our results show that during retrieval of PA, brain areas implicated in PA expression as well as those implicated in acute visceral pain processing were recruited, in line with findings from human brain imaging studies on pain expectation. Copyright © 2011 International Association for the Study of Pain. All rights reserved.

  18. Increased expression of receptor for advanced glycation end-products worsens focal brain ischemia in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Ying Xing; Jinting He; Weidong Yu; Lingling Hou; Jiajun Chen

    2012-01-01

    A rat model of diabetes mellitus was induced by a high fat diet, followed by focal brain ischemia induced using the thread method after 0.5 month. Immunohistochemistry showed that expression of receptor for advanced glycation end-products was higher in the ischemic cortex of diabetic rats compared with non-diabetic rats with brain ischemia. Western blot assay revealed increased phosphorylated c-Jun N-terminal kinase expression, and unchanged phosphorylated extracellular signal-regulated protein kinase protein expression in the ischemic cortex of diabetic rats compared with non-diabetic rats with brain ischemia. Additionally, phosphorylated p38 mitogen-activated protein kinase protein was not detected in any rats in the two groups. Severity of limb hemiplegia was worse in diabetic rats with brain ischemia compared with ischemia alone rats. The results suggest that increased expression of receptor for advanced glycation end-products can further activate the c-Jun N-terminal kinase pathway in mitogen-activated protein kinase, thereby worsening brain injury associated with focal brain ischemia in diabetic rats.

  19. Neuroprotective effects of edaravone on early brain injury in rats after subarachnoid hemorrhage

    Institute of Scientific and Technical Information of China (English)

    GAO Yang; DING Xin-sheng; XU Shu; WANG Wei; ZUO Qi-long; KUAI Feng

    2009-01-01

    Background The underlying mechanism of early neurobiological impairment after subarachnoid hemorrhage (SAH) is not well understood,but the system of reactive oxygen superoxide (ROS) might be involved.Edaravone (MC1-186),a potent free radical scavenger that prevents apoptosis of neurons,was thus used in this study to see its possible therapeutic effect in early brain injury due to SAH in a rat model.Methods One hundred and twenty male Sprague-Dawley rats were randomly assigned to four groups:group 1,control rats receiving sham operation only;group 2,rats with SAH treated by saline;group 3,rats with SAH treated with 1 mg/kg MCI-186 injected intraperitoneally;and group 4,rats with SAH treated with 3 mg/kg MC1-186.Treated with either saline or MC1-186 twice daily for two consecutive days after SAH,the rats were sacrificed for measurements of malondialdehyde (MDA) and activity of superoxide dismutase (SOD) and histological analysis of caspase-3 protein by Western blotting and immunohistochemical staining.In addition,mortality and neurological scores were statistically analyzed by the chi-square test and Dunn's procedure respectively for each group.One-way analysis of variance followed by the Tukey's procedure was also used in data analysis.Results The rats in group 2 that received saline only showed neurological impairment as well as elevated mortality,and were found to have significantly increased levels of MDA and caspase-3,but reduced SOD activities in brain tissues (P<0.05).When treated with MC1-186 at two different dosages,the rats in groups 3 and 4 had markedly decreased levels of MDA and caspase-3 but increased SOD activities in the brain tissue (P<0.05),along with improved scores of neurological evaluation (P<0.05).Conclusions This study sheds some lights on the therapy of SAH-induced early brain injury by providing the promising data indicating that MC1-186,a radical scavenger,can efficiently diminish apoptosis of neurons and thus prevent the function

  20. Brain catecholamines in spontaneously hypertensive and DOCA-salt hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Fujino,Kazuyuki

    1984-08-01

    Full Text Available The concentrations and alpha-methyl-p-tyrosine (alpha-MPT induced disappearance of catecholamines, adrenaline, noradrenaline and dopamine, were measured in selected areas of the brainstem and hypothalamus of spontaneously hypertensive rats (SHR and deoxycorticosterone acetate (DOCA-salt hypertensive rats. The catecholamine levels were measured by a sensitive radioenzymatic assay method combined with microdissection of the rat brain. The adrenaline concentration was higher in the area A1 of young SHR, but not in adult SHR, than in age-matched control rats. Noradrenaline concentrations and the alpha-MPT induced noradrenaline disappearance were less in the rostral part of the nucleus tractus solitarii (NTS and the nucleus hypothalamic anterior of young SHR, and in the rostral part of the NTS of adult SHR. On the other hand in DOCA-salt hypertensive rats, the concentrations of adrenaline and noradrenaline were the same as in control rats in the examined areas. The alpha-MPT induced noradrenaline disappearance was less in the rostral part of the NTS of DOCA-salt hypertensive rats. Dopamine concentrations and the alpha-MPT induced dopamine disappearance were the same in the examined areas of SHR and DOCA-salt hypertensive rats. The results suggest that SHR have a change in adrenergic neural activity in the brainstem and a decrease in noradrenergic neural activity in the brainstem and hypothalamus while DOCA-salt hypertensive rats have a decrease in noradrenergic neural activity in the brainstem. Such changes in brain catecholaminergic neurons may have played an important role in the development of hypertension in these rats.

  1. The diffusion permeability to water of the rat blood-brain barrier

    DEFF Research Database (Denmark)

    Bolwig, T G; Lassen, N A

    1975-01-01

    The diffusion permeability to water of the rat blood-brain-barrier (BBB) was studied. Preliminary data obtained with the Oldendorf tissue uptake method (Oldendorf 1970) in seizure experiments suggested that the transfer from blood to brain of labelled water is diffusion-limited. More definite evi...... passage increased from 0.26 to 0.67 when the arterial carbon dioxide tension was changed from 15 to 85 mm Hg, a change increasing the cerebral blood flow about sixfold. This finding suggests that water does not pass the blood-brain barrier as freely as lipophilic gases....

  2. Circulating and brain BDNF levels in stroke rats. Relevance to clinical studies.

    Directory of Open Access Journals (Sweden)

    Yannick Béjot

    Full Text Available BACKGROUND: Whereas brain-derived neurotrophic factor (BDNF levels are measured in the brain in animal models of stroke, neurotrophin levels in stroke patients are measured in plasma or serum samples. The present study was designed to investigate the meaning of circulating BDNF levels in stroke patients. METHODS AND RESULTS: Unilateral ischemic stroke was induced in rats by the injection of various numbers of microspheres into the carotid circulation in order to mimic the different degrees of stroke severity observed in stroke patients. Blood was serially collected from the jugular vein before and after (4 h, 24 h and 8 d embolization and the whole brains were collected at 4, 24 h and 8 d post-embolization. Rats were then selected from their degree of embolization, so that the distribution of stroke severity in the rats at the different time points was large but similar. Using ELISA tests, BDNF levels were measured in plasma, serum and brain of selected rats. Whereas plasma and serum BDNF levels were not changed by stroke, stroke induced an increase in brain BDNF levels at 4 h and 24 h post-embolization, which was not correlated with stroke severity. Individual plasma BDNF levels did not correlate with brain levels at any time point after stroke but a positive correlation (r = 0.67 was observed between individual plasma BDNF levels and stroke severity at 4 h post-embolization. CONCLUSION: Circulating BDNF levels do not mirror brain BDNF levels after stroke, and severe stroke is associated with high plasma BDNF in the very acute stage.

  3. Brain receptors for thyrotropin releasing hormone in morphine tolerant-dependent rats

    Energy Technology Data Exchange (ETDEWEB)

    Bhargava, H.N.; Das, S.

    1986-03-01

    The effect of chronic treatment of rats with morphine and its subsequent withdrawal on the brain receptors for thyrotropin releasing hormone (TRH) labeled with /sup 3/H-(3MeHis/sup 2/)TRH (MeTRH). Male Sprague Dawley rats were implanted with 4 morphine pellets (each containing 75 mg morphine base) during a 3-day period. Placebo pellet implanted rats served as controls. Both tolerance to and dependence on morphine developed as a result of this procedure. For characterization of brain TRH receptors, the animals were sacrificed 72 h after the implantation of first pellet. In another set of animals the pellets were removed and were sacrificed 24 h later. The binding of /sup 3/H-MeTRH to membranes prepared from brain without the cerebellum was determined. /sup 3/H-MeTRH bound to brain membranes prepared from placebo pellet implanted rats at a single high affinity site with a B/sub max/ value of 33.50 +/- 0.97 fmol/mg protein and a K/sub d/ of 5.18 +/- 0.21 nM. Implantation of morphine pellets did not alter the B/sub max/ value of /sup 3/H-MeTRH but decreased the K/sub d/ value significantly. Abrupt or naloxone precipitated withdrawal of morphine did not alter B/sub max/ or the K/sub d/ values. The binding of /sup 3/H-MeTRH to brain areas was also determined. The results suggest that the development of tolerance to morphine is associated with enhanced sensitivity of brain TRH receptors, however abrupt withdrawal of morphine does not change the characteristics of brain TRH receptors.

  4. Aqueous Date Fruit Efficiency as Preventing Traumatic Brain Deterioration and Improving Pathological Parameters after Traumatic Brain Injury in Male Rats

    Directory of Open Access Journals (Sweden)

    Hamze Badeli

    2016-09-01

    Full Text Available Objective: Following traumatic brain injury, disruption of blood-brain-barrier and consequent brain edema are critical events which might lead to increasing intracranial pressure (ICP, and nerve damage. The current study assessed the effects of aqueous date fruit extract (ADFE on the aforementioned parameters. Materials and Methods: In this experimental study, diffused traumatic brain injury (TBI was generated in adult male rats using Marmarou’s method. Experimental groups include two pre-treatment (oral ADFE, 4 and 8 mL/kg for 14 days, vehicle (distilled water, for 14 days and sham groups. Brain edema and neuronal injury were measured 72 hours after TBI. Veterinary coma scale (VCS and ICP were determined at -1, 4, 24, 48 and 72 hours after TBI. Differences among multiple groups were assessed using ANOVA. Turkey’s test was employed for the ANOVA post-hoc analysis. The criterion of statistical significance was sign at P<0.05. Results: Brain water content in ADFE-treated groups was decreased in comparison with the TBI+vehicle group. VCS at 24, 48 and 72 hours after TBI showed a significant increase in ADFE groups in comparison with the TBI+vehicle group. ICP at 24, 48 and 72 hours after TBI, was decreased in ADFE groups, compared to the TBI+vehicle. Brain edema, ICP and neuronal injury were also decreased in ADFE group, but VCS was increased following on TBI. Conclusion: ADFE pre-treatment demonstrated an efficient method for preventing traumatic brain deterioration and improving pathological parameters after TBI.

  5. Paradoxical effects of brain death and associated trauma on rat mesenteric microcirculation: an intravital microscopic study

    Directory of Open Access Journals (Sweden)

    Rafael Simas

    2012-01-01

    Full Text Available OBJECTIVE: Experimental findings support clinical evidence that brain death impairs the viability of organs for transplantation, triggering hemodynamic, hormonal, and inflammatory responses. However, several of these events could be consequences of brain death-associated trauma. This study investigated microcirculatory alterations and systemic inflammatory markers in brain-dead rats and the influence of the associated trauma. METHOD: Brain death was induced using intracranial balloon inflation; sham-operated rats were trepanned only. After 30 or 180 min, the mesenteric microcirculation was observed using intravital microscopy. The expression of Pselectin and ICAM-1 on the endothelium was evaluated using immunohistochemistry. The serum cytokine, chemokine, and corticosterone levels were quantified using enzyme-linked immunosorbent assays. White blood cell counts were also determined. RESULTS: Brain death resulted in a decrease in the mesenteric perfusion to 30%, a 2.6-fold increase in the expression of ICAM-1 and leukocyte migration at the mesentery, a 70% reduction in the serum corticosterone level and pronounced leukopenia. Similar increases in the cytokine and chemokine levels were seen in the both the experimental and control animals. CONCLUSION: The data presented in this study suggest that brain death itself induces hypoperfusion in the mesenteric microcirculation that is associated with a pronounced reduction in the endogenous corticosterone level, thereby leading to increased local inflammation and organ dysfunction. These events are paradoxically associated with induced leukopenia after brain damage

  6. Phospholipase A2 changes and its significance on brain tissue of rat in severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Yao Xuan; Chen Xi; Ji Zongzheng

    2007-01-01

    Objective To survey changes and the significance of phospholipase A2(PLA2) on brain tissue of SD rat in acute pancreatitis. Methods With retrograde injection of 3% taurocholate sodium into pancreatic and biliary duct, rat model of severe acute pancreatitis (SAP) was made,and it included four groups: the control group, the sham-operation group, the SAP group and the PLA2 inhibitor-treated group of SAP. Serum amylases, PLA2 and PLA2 in brain tissue were measured and the brain tissue changes were observed. Results There were no significant difference in serum amylases, PLA2 and PLA2 in brain tissue between the sham-operation and the control groups; the levels of serum amylases, PLA2 and PLA2 in brain tissue in the SAP group were higher than those in the control. In the SAP group expansion and hemorrhage of meninges, intracephalic arteriolar hyperemia, in meninges and cephalic-parenchyma infiltration of inflammatory cells and interval broaden were observed, significant differences were found between two groups.Compared with the SAP group, the level of serum amylase, PLA2 and PLA2 in brain tissue were reduced significantly in the treatment group of SAP. Pathological damages in the treatment group were significantly reduced when compared with the SAP group. Conclusion PLA2 might play an important role in brain tissue damages in severe acute pancreatitis.

  7. The low levels of eicosapentaenoic acid in rat brain phospholipids are maintained via multiple redundant mechanisms.

    Science.gov (United States)

    Chen, Chuck T; Domenichiello, Anthony F; Trépanier, Marc-Olivier; Liu, Zhen; Masoodi, Mojgan; Bazinet, Richard P

    2013-09-01

    Brain eicosapentaenoic acid (EPA) levels are 250- to 300-fold lower than docosahexaenoic acid (DHA), at least partly, because EPA is rapidly β-oxidized and lost from brain phospholipids. Therefore, we examined if β-oxidation was necessary for maintaining low EPA levels by inhibiting β-oxidation with methyl palmoxirate (MEP). Furthermore, because other metabolic differences between DHA and EPA may also contribute to their vastly different levels, this study aimed to quantify the incorporation and turnover of DHA and EPA into brain phospholipids. Fifteen-week-old rats were subjected to vehicle or MEP prior to a 5 min intravenous infusion of (14)C-palmitate, (14)C-DHA, or (14)C-EPA. MEP reduced the radioactivity of brain aqueous fractions for (14)C-palmitate-, (14)C-EPA-, and (14)C-DHA-infused rats by 74, 54, and 23%, respectively; while it increased the net rate of incorporation of plasma unesterified palmitate into choline glycerophospholipids and phosphatidylinositol and EPA into ethanolamine glycerophospholipids and phosphatidylserine. MEP also increased the synthesis of n-3 docosapentaenoic acid (n-3 DPA) from EPA. Moreover, the recycling of EPA into brain phospholipids was 154-fold lower than DHA. Therefore, the low levels of EPA in the brain are maintained by multiple redundant pathways including β-oxidation, decreased incorporation from plasma unesterified FA pool, elongation/desaturation to n-3 DPA, and lower recycling within brain phospholipids.

  8. 65zinc uptake from blood into brain and other tissues in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Pullen, R.G.; Franklin, P.A.; Hall, G.H. (Sunderland Polytechnic, Tyne Wear (England))

    1990-10-01

    Zinc is essential for normal growth, development and brain function although little is known about brain zinc homeostasis. Therefore, in this investigation we have studied 65Zn uptake from blood into brain and other tissues and have measured the blood-brain barrier permeability to 65Zn in the anaesthetized rat in vivo. Adult male Wistar rats within the weight range 500-600 g were used. 65ZnCl2 and (125I)albumin, the latter serving as a vascular marker, were injected in a bolus of normal saline I.V. Sequential arterial blood samples were taken during experiments that lasted between 5 min and 5 hr. At termination, samples from the liver, spleen, pancreas, lung, heart, muscle, kidney, bone, testis, ileum, blood cells, csf, and whole brain were taken and analysed for radio-isotope activity. Data have been analysed by Graphical Analysis which suggests 65Zn uptake from blood by all tissues sampled was unidirectional during this experimental period except brain, where at circulation times less than 30 min, 65Zn fluxes were bidirectional. In addition to the blood space, the brain appears to contain a rapidly exchanging compartment(s) for 65Zn of about 4 ml/100g which is not csf.

  9. L-DEPRENYL REDUCES BRAIN-DAMAGE IN RATS EXPOSED TO TRANSIENT HYPOXIA-ISCHEMIA

    NARCIS (Netherlands)

    KNOLLEMA, S; AUKEMA, W; HOM, H; KORF, J; TERHORST, GJ

    1995-01-01

    Background and Purpose L-Deprenyl (Selegiline) protects animal brains against toxic substances such as 1-methyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine. Experiments were conducted to test whether L-deprenyl prevents or reduces cerebral damage in a transient hypoxia/ischemia rat model. Metho

  10. Brain-specific modulation of kynurenic acid synthesis in the rat

    DEFF Research Database (Denmark)

    Gramsbergen, J B; Hodgkins, P S; Rassoulpour, A;

    1997-01-01

    This study was designed to investigate modulatory mechanisms that control the synthesis of the neuroprotective endogenous excitatory amino acid receptor antagonist kynurenate. De novo kynurenate formation was examined in vitro using tissue slices from rat brain, liver, and kidney. In slices from ...

  11. Effect of chronic exposure to aspartame on oxidative stress in the brain of albino rats

    Indian Academy of Sciences (India)

    Ashok Iyyaswamy; Sheeladevi Rathinasamy

    2012-09-01

    This study was aimed at investigating the chronic effect of the artificial sweetener aspartame on oxidative stress in brain regions of Wistar strain albino rats. Many controversial reports are available on the use of aspartame as it releases methanol as one of its metabolite during metabolism. The present study proposed to investigate whether chronic aspartame (75 mg/kg) administration could release methanol and induce oxidative stress in the rat brain. To mimic the human methanol metabolism, methotrexate (MTX)-treated rats were included to study the aspartame effects. Wistar strain male albino rats were administered with aspartame orally and studied along with controls and MTX-treated controls. The blood methanol level was estimated, the animal was sacrificed and the free radical changes were observed in brain discrete regions by assessing the scavenging enzymes, reduced glutathione, lipid peroxidation (LPO) and protein thiol levels. It was observed that there was a significant increase in LPO levels, superoxide dismutase (SOD) activity, GPx levels and CAT activity with a significant decrease in GSH and protein thiol. Moreover, the increases in some of these enzymes were region specific. Chronic exposure of aspartame resulted in detectable methanol in blood. Methanol per se and its metabolites may be responsible for the generation of oxidative stress in brain regions.

  12. Inhibition of acetylcholinesterase and different ATPases by a novel phosphorothionate (RPR-II) in rat brain.

    Science.gov (United States)

    Rahman, M F; Siddiqui, M K; Jamil, K

    2000-10-01

    A novel phosphorothionate (2-butenoic acid-3-(diethoxy phosphinothioyl)-methyl ester (RPR-II), synthesized at the Indian Institute of Chemical Technology, Hyderabad, targets its effect on rat brain acetylcholinesterase (AChE) and Na(+)-K(+), Mg(2+), and Ca(2+) ATPases, as evident in this investigation. Three subchronic doses 0.014 (low), 0.028 (medium), and 0.042 (high) mg kg(-1) were administered to rats daily for a period of 90 days RPR-II caused statistically significant dose- and time-dependent inhibition in brain AChE and also in Na(+)-K(+), Mg(2+), and Ca(2+) ATPases in both male and female rats after 45 and 90 days of treatment. The low dose was generally insignificant while the medium and high doses were significantly effective. Females were more susceptible than males with regard to brain AChE, Na(+)-K(+), and Mg(2+) ATPases, which indicates sexual dimorphism in the treated rats. Interestingly, after 28 days post-treatment, recovery of these enzymes was observed. The relative sensitivities of these enzymes indicated that brain AChE was more sensitive than any of the ATPases, but among the ATPases Na(+)-K(+) ATPase was more susceptible than Ca(2+) or Mg(2+) ATPases. This compound, besides inhibiting the target of organophosphates, AChE, also inhibited different ATPases, suggesting both synaptic transmission and nerve conduction were affected.

  13. Differential distribution of calcineurin Aα isoenzyme mRNA's in rat brain

    NARCIS (Netherlands)

    Buttini, M.; Limonta, S.; Luyten, M.; Boddeke, H.

    1993-01-01

    Specific antisense oligonucleotide probes for the α isoforms of the catalytic subunit (A-subunit) of calcineurin were prepared and the distribution of Aα1 and Aα2 mRNA's has been studied in rat brain using in situ hybridization histochemistry. Clear regional differences have been observed for the Aα

  14. Local oxytocin expression and oxytocin receptor binding in the male rat brain is associated with aggressiveness

    NARCIS (Netherlands)

    Calcagnoli, Federica; de Boer, Sietse F.; Beiderbeck, Daniela I.; Althaus, Monika; Koolhaas, Jaap M.; Neumann, Inga D.

    2014-01-01

    We recently demonstrated in male wild-type Groningen rats that enhancing brain oxytocin (OXT) levels acutely produces marked pro-social explorative and anti-aggressive effects. Moreover, these pharmacologically-induced changes are moderated by the individual's aggressive phenotype, suggesting an inv

  15. Effect of chronic exposure to aspartame on oxidative stress in the brain of albino rats.

    Science.gov (United States)

    Iyyaswamy, Ashok; Rathinasamy, Sheeladevi

    2012-09-01

    This study was aimed at investigating the chronic effect of the artificial sweetener aspartame on oxidative stress in brain regions of Wistar strain albino rats. Many controversial reports are available on the use of aspartame as it releases methanol as one of its metabolite during metabolism. The present study proposed to investigate whether chronic aspartame (75 mg/kg) administration could release methanol and induce oxidative stress in the rat brain. To mimic the human methanol metabolism, methotrexate (MTX)-treated rats were included to study the aspartame effects. Wistar strain male albino rats were administered with aspartame orally and studied along with controls and MTX-treated controls. The blood methanol level was estimated, the animal was sacrificed and the free radical changes were observed in brain discrete regions by assessing the scavenging enzymes, reduced glutathione, lipid peroxidation (LPO) and protein thiol levels. It was observed that there was a significant increase in LPO levels, superoxide dismutase (SOD) activity, GPx levels and CAT activity with a significant decrease in GSH and protein thiol. Moreover, the increases in some of these enzymes were region specific. Chronic exposure of aspartame resulted in detectable methanol in blood. Methanol per se and its metabolites may be responsible for the generation of oxidative stress in brain regions.

  16. Inositol trisphosphate and thapsigargin discriminate endoplasmic reticulum stores of calcium in rat brain

    DEFF Research Database (Denmark)

    Verma, A; Hirsch, D J; Hanley, M R

    1990-01-01

    ATP dependent Ca2+ accumulation into oxalate-loaded rat brain microsomes is potently inhibited by thapsigargin with an IC50 of 2 nM and maximal inhibition at 10 nM. Approximately 15% of the total A23187-releasable microsomal calcium store is insensitive to thapsigargin concentrations up to 100 mi...

  17. Brain SERT Expression of Male Rats Is Reduced by Aging and Increased by Testosterone Restitution

    Directory of Open Access Journals (Sweden)

    José Jaime Herrera-Pérez

    2013-01-01

    Full Text Available In preclinical and clinical studies aging has been associated with a deteriorated response to antidepressant treatment. We hypothesize that such impairment is explained by an age-related decrease in brain serotonin transporter (SERT expression associated with low testosterone (T levels. The objectives of this study were to establish (1 if brain SERT expression is reduced by aging and (2 if the SERT expression in middle-aged rats is increased by T-restitution. Intact young rats (3–5 months and gonad-intact middle-aged rats with or without T-restitution were used. The identification of the brain SERT expression was done by immunofluorescence in prefrontal cortex, lateral septum, hippocampus, and raphe nuclei. An age-dependent reduction of SERT expression was observed in all brain regions examined, while T-restitution recovered the SERT expression only in the dorsal raphe of middle-aged rats. This last action seems relevant since dorsal raphe plays an important role in the antidepressant action of selective serotonin reuptake inhibitors. All data suggest that this mechanism accounts for the T-replacement usefulness to improve the response to antidepressants in the aged population.

  18. The Physiochemistry of Capped Nanosilver Predicts Its Biological Activity in Rat Brain Endothelial Cells (REBEC4)

    Science.gov (United States)

    The “capping” or coating of nanosilver (nanoAg) extends its potency by limiting its oxidation and aggregation and stabilizing its size and shape. The ability of such coated nanoAg to alter the permeability and activate oxidative stress pathways in rat brain endothelia...

  19. Dragon's blood may have radioprotective effects in radiation-induced rat brain injury.

    Science.gov (United States)

    Xin, Nian; Li, Yu-Juan; Li, Xu; Wang, Xiao; Li, Yan; Zhang, Xiao; Dai, Rong-Ji; Meng, Wei-Wei; Wang, Hai-Long; Ma, Hong; Schläppi, Michael; Deng, Yu-Lin

    2012-07-01

    Dragon's blood is a bright red resin obtained from Dracaena cochinchinensis. It is a traditional medicinal that is used for wound healing and to stop bleeding. Its main biological activity appears to be from phenolic compounds found in Dragon's blood. In this study, the radioprotective effects of Dragon's blood were examined after whole brain irradiation of rats with either 100 MeV/u Carbon (12)C(6+) heavy ions or (60)Co γ-rays. The amounts of radiation-induced oxidative stress, inflammatory cytokines and apoptosis in irradiated rat brains were compared with and without Dragon's blood treatment. Compared to the "irradiation only" control group, the Dragon's blood treatment group significantly decreased malondialdehyde and hydrogen peroxide levels, and increased superoxide dismutase activity and glutathione levels induced by oxidative stress in radiation exposed rats (P Dragon's blood also significantly reduced radiation-induced inflammatory cytokines of tumor necrosis factor-α, interferon-γ and interleukin-6 levels (P Dragon's blood significantly increased expression of brain-derived neurophic factor and inhibited the expression of pro-apoptotic caspase 3 (P Dragon's blood significantly inhibited expression of the AP-1 transcription factor family members c-fos and c-jun proteins (P Dragon's blood has radioprotective properties in rat brains after both heavy ions and (60)Co γ-ray exposure.

  20. Regional localization of halopemide, a new psychotropic agent, in the rat brain

    NARCIS (Netherlands)

    Loonen, A.J.M.; Van Wijngaarden, I.; Janssen, P.A.J.; Soudijn, W.

    1978-01-01

    Halopemide is a new psychotropic agent, structurally related to the neuroleptics of the butyrophenone type, but with a different pharmacological and clinical profile. The concentration of halopemide in the rat brain is about 10 times less than that of R 29800, its chemical congener and of spiperone,

  1. Steroid Anti-Inflammatory Effects Did Not Improve Organ Quality in Brain-Dead Rats

    NARCIS (Netherlands)

    Rebolledo, Rolando A.; Liu, Bo; Akhtar, Mohammed Z.; Ottens, Petra J.; Zhang, Jian-ning; Ploeg, Rutger J.; Leuvenink, Henri G. D.

    2015-01-01

    Effect of glucocorticoid administration on improving the outcomes of kidney and liver allografts has not been clearly elucidated. This study investigated the effect of prednisolone administration after onset of brain death (BD) on kidney and liver in a controlled rat model of BD. BD was induced in

  2. Age dependent accumulation of N-acyl-ethanolamine phospholipids in ischemic rat brain

    DEFF Research Database (Denmark)

    Moesgaard, B.; Petersen, G.; Hansen, Harald S.;

    2000-01-01

    of various age (1, 6, 12, 19, 30, and ~70 days) by the use of P NMR spectroscopy of lipid extracts. This ability to accumulate NAPE was compared with the activity of N-acyltransferase and of NAPE-hydrolyzing phospholipase D (NAPE-PLD) in brain microsomes. These two enzymes are involved in the formation...... and degradation of NAPE, respectively. The results showed that 1) the ability to accumulate NAPE during post-decapitative ischemia is especially high in the youngest rats and is markedly reduced in older brains [in 1-day-old rat brains NAPE accumulated to 1.5% of total phospholipids, while in 30-day-old rat......N-acyl-ethanolamine phospholipids (NAPE) can be formed as a stress response during neuronal injury, and they are precursors for N-acyl- ethanolamines (NAE), some of which are endocannabinoids. The levels of NAPE accumulated during post-decapitative ischemia (6 h at 37°C) were studied in rat brains...

  3. Metabolic, gastrointestinal, and CNS neuropeptide effects of brain leptin administration in the rat

    NARCIS (Netherlands)

    Van Dijk, G; Seeley, RJ; Thiele, TE; Friedman, MI; Ji, H; Wilkinson, CW; Burn, P; Campfield, LA; Tenenbaum, R; Baskin, DG; Woods, SC; Schwartz, MW; Seeley, Randy J.; Thiele, Todd E.; Friedman, Mark I.; Wilkinson, Charles W.; Baskin, Denis G.; Woods, Stephen C.; Schwartz, Michael W.

    To investigate whether brain leptin involves neuropeptidergic pathways influencing ingestion, metabolism, and gastrointestinal functioning, leptin (3.5 mu g) was infused daily into the third cerebral ventricular of rats for 3 days. To distinguish between direct leptin effects and those secondary to

  4. The rate of training response to aerobic exercise affects brain function of rats.

    Science.gov (United States)

    Marton, Orsolya; Koltai, Erika; Takeda, Masaki; Mimura, Tatsuya; Pajk, Melitta; Abraham, Dora; Koch, Lauren Gerard; Britton, Steven L; Higuchi, Mitsuru; Boldogh, Istvan; Radak, Zsolt

    2016-10-01

    There is an increasing volume of data connecting capacity to respond to exercise training with quality of life and aging. In this study, we used a rat model in which animals were selectively bred for low and high gain in running distance to test t whether genetic segregation for trainability is associated with brain function and signaling processes in the hippocampus. Rats selected for low response (LRT) and high response training (HRT) were randomly divided into control or exercise group that trained five times a week for 30 min per day for three months at 70% VO2max. All four groups had similar running distance before training. With training, HRT rats showed significantly greater increases in VO2max and running distance than LRT rats (p brain-derived neurotrophic factor (BDNF), ratio of phospho and total cAMP-response element binding protein (CREB), and apoptotic index, also showed significant differences between LRT and HRT groups. These findings suggest that aerobic training responses are not localized to skeletal muscle, but differently involve signaling processes in the brain of LRT and HRT rats.

  5. The influence of microwave radiation from cellular phone on fetal rat brain.

    Science.gov (United States)

    Jing, Ji; Yuhua, Zhang; Xiao-qian, Yang; Rongping, Jiang; Dong-mei, Guo; Xi, Cui

    2012-03-01

    The increasing use of cellular phones in our society has brought focus on the potential detrimental effects to human health by microwave radiation. The aim of our study was to evaluate the intensity of oxidative stress and the level of neurotransmitters in the brains of fetal rats chronically exposed to cellular phones. The experiment was performed on pregnant rats exposed to different intensities of microwave radiation from cellular phones. Thirty-two pregnant rats were randomly divided into four groups: CG, GL, GM, and GH. CG accepted no microwave radiation, GL group radiated 10 min each time, GM group radiated 30 min, and GH group radiated 60 min. The 3 experimental groups were radiated 3 times a day from the first pregnant day for consecutively 20 days, and on the 21st day, the fetal rats were taken and then the contents of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), noradrenaline (NE), dopamine (DA), and 5-hydroxyindole acetic acid (5-HT) in the brain were assayed. Compared with CG, there were significant differences (Pcellular phones during pregnancy has certain harm on fetal rat brains.

  6. Acute effect of aspartame-induced oxidative stress in Wistar albino rat brain.

    Science.gov (United States)

    Ashok, Iyaswamy; Sheeladevi, Rathinasamy; Wankhar, Dapkupar

    2015-09-01

    The present study was carried out to investigate the acute effect of aspartame on oxidative stress in the Wistar albino rat brain. We sought to investigate whether acute administration of aspartame (75 mg/kg) could release methanol and induce oxidative stress in the rat brain 24 hours after administration. To mimic human methanol metabolism, methotrexate treated rats were used to study aspartame effects. Wistar strain male albino rats were administered with aspartame orally as a single dose and studied along with controls and methotrexate treated controls. Blood methanol and formate level were estimated after 24 hours and rats were sacrificed and free radical changes were observed in discrete regions by assessing the scavenging enzymes, reduce dglutathione (GSH), lipid peroxidation and protein thiol levels. There was a significant increase in lipid peroxidation levels, superoxide dismutase activity (SOD), glutathione peroxidase levels (GPx), and catalase activity (CAT) with a significant decrease in GSH and protein thiol. Aspartame exposure resulted in detectable methanol even after 24 hours. Methanol and its metabolites may be responsible for the generation of oxidative stress in brain regions. The observed alteration in aspartame fed animals may be due to its metabolite methanol and elevated formate. The elevated free radicals due to methanol induced oxidative stress.

  7. Estrogen inhibits lipid peroxidation after hypoxic-ischemic brain damage in neonatal rats

    Institute of Scientific and Technical Information of China (English)

    Hui Zhu; Xiao Han; Dafeng Ji; Guangming Lv; Meiyu Xu

    2012-01-01

    Sprague-Dawley neonatal rats within 7 days after birth were used in this study. The left common carotid artery was occluded and rats were housed in an 8% O2 environment for 2 hours to establish a hypoxic-ischemic brain damage model. 17β-estradiol (1 × 10-5 M) was injected into the rat abdominal cavity after the model was successfully established. The left hemisphere was obtained at 12, 24, 48, 72 hours after operation. Results showed that malondialdehyde content in the left brain of neonatal rats gradually increased as modeling time prolonged, while malondialdehyde content of 17β-estrodial-treated rats significantly declined by 24 hours, reached lowest levels at 48 hours, and then peaked at 72 hours after injury. Nicotinamide-adenine dinucleotide phosphate histochemical staining showed the nitric oxide synthase-positive cells and fibers dyed blue/violet and were mainly distributed in the cortex, hippocampus and medial septal nuclei. The number of nitric oxide synthase-positive cells peaked at 48 hours and significantly decreased after 17β-estrodial treatment. Our experimental findings indicate that estrogen plays a protective role following hypoxic-ischemic brain damage by alleviating lipid peroxidation through reducing the expression of nitric oxide synthase and the content of malondialdehyde.

  8. Increased CD133+ cell infiltration in the rat brain following fluid percussion injury

    Institute of Scientific and Technical Information of China (English)

    Ming Wei; Ziwei Zhou; Shenghui Li; Chengwei Jing; Dashi Zhi; Jianning Zhang

    2012-01-01

    The prominin-1/CD133 epitope is expressed in undifferentiated cells. Studies have reported that craniocerebral trauma in animal models of fluid percussion injury induces production of a specific stem cell subgroup. It has been hypothesized that fluid percussion injury induces CD133+ cell infiltration in the brain tissue. The present study established a traumatic brain injury model through fluid percussion injury. Immunohistochemical staining showed significantly increased CD133 antigen expression in the rat brain following injury. CD133+ cells were mainly distributed in hippocampal CA1-3 regions, as well as the dentate gyrus and hilus, of the lesioned hemisphere. Occasional cells were also detected in the cortex. In addition, reverse transcription-PCR revealed that no change in CD133 mRNA expression in injured brain tissue. These results suggested that fluid percussion injury induced CD133 antigen expression in the brain tissues as a result of conformational epitope changes, but not transcriptional expression.

  9. Age-dependent pharmacokinetics and effect of roscovitine on Cdk5 and Erk1/2 in the rat brain.

    Science.gov (United States)

    Sallam, Hatem; Jimenez, Patricia; Song, Hairong; Vita, Marina; Cedazo-Minguez, Angel; Hassan, Moustapha

    2008-07-01

    Roscovitine is a cyclin-dependent kinase (Cdk) and signal-regulated kinase (Erk1/2) inhibitor that has been shown to be effective against several cancer types including brain tumors. We have shown previously that roscovitine crosses the blood brain barrier (BBB) and is rapidly eliminated from both plasma and brain in adult rats. However, age-dependent kinetics and its effects on the brain have not been reported. In the present study, we investigated the pharmacokinetics of roscovitine in adult and in 14 days old rats after the administration of a single dose of 25 mg/kg. Moreover, we studied the effect of the drug on Cdk5 and Erk1/2 activities in three brain regions, hippocampus, frontal cortex and cerebellum. The pharmacokinetics of roscovitine followed a two-compartment model in both plasma and brain in both adult and young rats. The terminal elimination half-life was 7 h in brain as well as in plasma in rat pups compared to Roscovitine induced a significant Cdk5 inhibition and significant Erk1/2 activation in all studied pups brain regions at 2 h. This is the first study describing age-dependent pharmacokinetics of roscovitine and showing the high brain exposure of infant rats to the drug. Thus, roscovitine may be a promising candidate for the treatment of brain tumors in children.

  10. Transcriptome sequencing of gene expression in the brain of the HIV-1 transgenic rat.

    Directory of Open Access Journals (Sweden)

    Ming D Li

    Full Text Available The noninfectious HIV-1 transgenic (HIV-1Tg rat was developed as a model of AIDs-related pathology and immune dysfunction by manipulation of a noninfectious HIV-1(gag-pol virus with a deleted 3-kb SphI-MscI fragment containing the 3' -region of gag and the 5' region of pol into F344 rats. Our previous studies revealed significant behavioral differences between HIV-1Tg and F344 control rats in their performance in the Morris water maze and responses to psychostimulants. However, the molecular mechanisms underlying these behavioral differences remain largely unknown. The primary goal of this study was to identify differentially expressed genes and enriched pathways affected by the gag-pol-deleted HIV-1 genome. Using RNA deep sequencing, we sequenced RNA transcripts in the prefrontal cortex, hippocampus, and striatum of HIV-1Tg and F344 rats. A total of 72 RNA samples were analyzed (i.e., 12 animals per group × 2 strains × 3 brain regions. Following deep-sequencing analysis of 50-bp paired-end reads of RNA-Seq, we used Bowtie/Tophat/Cufflinks suites to align these reads into transcripts based on the Rn4 rat reference genome and to measure the relative abundance of each transcript. Statistical analyses on each brain region in the two strains revealed that immune response- and neurotransmission-related pathways were altered in the HIV-1Tg rats, with brain region differences. Other neuronal survival-related pathways, including those encoding myelin proteins, growth factors, and translation regulators, were altered in the HIV-1Tg rats in a brain region-dependent manner. This study is the first deep-sequencing analysis of RNA transcripts associated the HIV-1Tg rat. Considering the functions of the pathways and brain regions examined in this study, our findings of abnormal gene expression patterns in HIV-1Tg rats suggest mechanisms underlying the deficits in learning and memory and vulnerability to drug addiction and other psychiatric disorders

  11. Brain of rats intoxicated with acrylamide: observation with 4.7 tesla magnetic resonance.

    Science.gov (United States)

    Kinoshita, Y; Matsumura, H; Igisu, H; Yokota, A

    2000-10-01

    When rats were injected intraperitoneally with acrylamide (50 mg/kg per day) for 8 days, all animals developed ataxia and weakness in the hindlimbs. On examining their brain with an ultrahigh-field (4.7 T) magnetic resonance (MR) spectrometer, the lateral ventricles on both sides and the third ventricle were dilated. The aqueduct and cisterns were also enlarged. The size of the cerebral cortex was quantified in three MR image slices covering the cerebrum. Compared with the images of the brain of body weight-matched controls, the cerebral cortex of rats intoxicated with acrylamide was found to be smaller in the primary motor area in all slices, and in the primary or secondary sensory area in two slices. Taken together with previous enzymatic analyses, rats intoxicated with acrylamide (50 mg/kg per day for 8 days) seem to represent an animal model of acrylamide encephalopathy not only biochemically but also structurally.

  12. Effects of Nonylphenol on Brain Gene Expression Profiles in F1 Generation Rats

    Institute of Scientific and Technical Information of China (English)

    YIN-YIN XIA; PING ZHANG; YANG WANG

    2008-01-01

    Objective To explore the effects of nonylphenol on brain gene expression profiles in F1 generation rats by microarray technique.Methods mRNA was extracted from the brain of 2-day old F1 generation male rats Whose F0 female generation was either exposed to nonylphenol or free from nonylphenol exposure,and then it was reversely transcribed to cDNA hbeled with cy5 and cy3 fluorescence.Subsequently,cDNA probes were hybridized to two BiostarR-40S cDNA gene chips and fluorescent signals of cy5 and cy3 were scanned and analyzed. Results Two genes were differentially down-regulated.Conclusion Nonylphenol may disturb the neurcendocrine function of male rats when administered perinatally.

  13. Fluid-percussion–induced traumatic brain injury model in rats

    OpenAIRE

    2010-01-01

    Traumatic brain injury (TBI) is a major cause of mortality and morbidity. Various attempts have been made to replicate clinical TBI using animal models. The fluid-percussion model (FP) is one of the oldest and most commonly used models of experimentally induced TBI. Both central (CFP) and lateral (LFP) variations of the model have been used. Developed initially for use in larger species, the standard FP device was adapted more than 20 years ago to induce consistent degrees of brain injury in ...

  14. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir [Pharmacology and Toxicology, Rutgers University-Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Richardson, Jason R. [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States); Heck, Diane E. [Environmental Science, School of Health Sciences and Practice, New York Medical College, Valhalla, NY (United States); Laskin, Debra L. [Pharmacology and Toxicology, Rutgers University-Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2014-08-15

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.

  15. Safety evaluation of mercury based Ayurvedic formulation (Sidh Makardhwaj) on brain cerebrum, liver & kidney in rats.

    Science.gov (United States)

    Kumar, Gajendra; Srivastava, Amita; Sharma, Surinder Kumar; Gupta, Yogendra Kumar

    2014-04-01

    Sidh Makardhwaj (SM) is a mercury based Ayurvedic formulation used in rheumatoid arthritis and neurological disorders. However, toxicity concerns due to mercury content are often raised. Therefore, the present study was carried out to evaluate the effect of SM on brain cerebrum, liver and kidney in rats. Graded doses of SM (10, 50, 100 mg/kg), mercuric chloride (1 mg/kg) and normal saline were administered orally to male Wistar rats for 28 days. Behavioural parameters were assessed on days 1, 7, 14 and 28 using Morris water maze, passive avoidance, elevated plus maze and rota rod. Liver and kidney function tests were done on day 28. Animals were sacrificed and brain cerebrum acetylcholinesterase activity, levels of malondialdehyde (MDA), reduced glutathione (GSH) in brain cerebrum, liver, kidney were estimated. The levels of mercury in brain cerebrum, liver and kidney were estimated and histopathology of these tissues was also performed. SM in the doses used did not cause significant change in neurobehavioural parameters, brain cerebrum AChE activity, liver (ALT, AST, ALP bilirubin) and kidney (serum urea and creatinine) function tests as compared to control. The levels of mercury in brain cerebrum, liver, and kidney were found to be raised in dose dependent manner. However, the levels of MDA and GSH in these tissues did not show significant changes at doses of 10 and 50 mg/kg. Also, there was no histopathological change in cytoarchitecture of brain cerebrum, liver, and kidney tissues at doses of 10 and 50 mg/kg. The findings of the present study suggest that Sidh Makardhwaj upto five times the equivalent human dose administered for 28 days did not show any toxicological effects on rat brain cerebrum, liver and kidney.

  16. Safety evaluation of mercury based Ayurvedic formulation (Sidh Makardhwaj on brain cerebrum, liver & kidney in rats

    Directory of Open Access Journals (Sweden)

    Gajendra Kumar

    2014-01-01

    Full Text Available Background & objectives: Sidh Makardhwaj (SM is a mercury based Ayurvedic formulation used in rheumatoid arthritis and neurological disorders. However, toxicity concerns due to mercury content are often raised. Therefore, the present study was carried out to evaluate the effect of SM on brain cerebrum, liver and kidney in rats. Methods: Graded doses of SM (10, 50, 100 mg/kg, mercuric chloride (1 mg/kg and normal saline were administered orally to male Wistar rats for 28 days. Behavioural parameters were assessed on days 1, 7, 14 and 28 using Morris water maze, passive avoidance, elevated plus maze and rota rod. Liver and kidney function tests were done on day 28. Animals were sacrificed and brain cerebrum acetylcholinesterase activity, levels of malondialdehyde (MDA, reduced glutathione (GSH in brain cerebrum, liver, kidney were estimated. The levels of mercury in brain cerebrum, liver and kidney were estimated and histopathology of these tissues was also performed. Results: SM in the doses used did not cause significant change in neurobehavioural parameters, brain cerebrum AChE activity, liver (ALT, AST, ALP bilirubin and kidney (serum urea and creatinine function tests as compared to control. The levels of mercury in brain cerebrum, liver, and kidney were found to be raised in dose dependent manner. However, the levels of MDA and GSH in these tissues did not show significant changes at doses of 10 and 50 mg/kg. Also, there was no histopathological change in cytoarchitecture of brain cerebrum, liver, and kidney tissues at doses of 10 and 50 mg/kg. Interpretation & conclusions: The findings of the present study suggest that Sidh Makardhwaj upto five times the equivalent human dose administered for 28 days did not show any toxicological effects on rat brain cerebrum, liver and kidney.

  17. Testosterone replacement attenuates cognitive decline in testosterone-deprived lean rats, but not in obese rats, by mitigating brain oxidative stress.

    Science.gov (United States)

    Pintana, Hiranya; Pongkan, Wanpitak; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2015-10-01

    Testosterone replacement improves metabolic parameters and cognitive function in hypogonadism. However, the effects of testosterone therapy on cognition in obese condition with testosterone deprivation have not been investigated. We hypothesized that testosterone replacement improves cognitive function in testosterone-deprived obese rats by restoring brain insulin sensitivity, brain mitochondrial function, and hippocampal synaptic plasticity. Thirty male Wistar rats had either a bilateral orchiectomy (ORX: O, n = 24) or a sham operation (S, n = 6). ORX rats were further divided into two groups fed with either a normal diet (NDO) or a high-fat diet (HFO) for 12 weeks. Then, ORX rats in each dietary group were divided into two subgroups (n = 6/subgroup) and were given either castor oil or testosterone (2 mg/kg/day, s.c.) for 4 weeks. At the end of this protocol, cognitive function, metabolic parameters, brain insulin sensitivity, hippocampal synaptic plasticity, and brain mitochondrial function were determined. We found that testosterone replacement increased peripheral insulin sensitivity, decreased circulation and brain oxidative stress levels, and attenuated brain mitochondrial ROS production in HFO rats. However, testosterone failed to restore hippocampal synaptic plasticity and cognitive function in HFO rats. In contrast, in NDO rats, testosterone decreased circulation and brain oxidative stress levels, attenuated brain mitochondrial ROS production, and restored hippocampal synaptic plasticity as well as cognitive function. These findings suggest that testosterone replacement improved peripheral insulin sensitivity and decreased oxidative stress levels, but failed to restore hippocampal synaptic plasticity and cognitive function in testosterone-deprived obese rats. However, it provided beneficial effects in reversing cognitive impairment in testosterone-deprived non-obese rats.

  18. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.

    Science.gov (United States)

    Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam

    2015-05-01

    Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.

  19. Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus.

    Science.gov (United States)

    Jugé, Lauriane; Pong, Alice C; Bongers, Andre; Sinkus, Ralph; Bilston, Lynne E; Cheng, Shaokoon

    2016-01-01

    Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR) imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old) by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI) was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P hydrocephalus development.

  20. Autoradiographic visualization of insulin-like growth factor-II receptors in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, L.G.; Kerchner, G.A.; Clemens, J.A.; Smith, M.C.

    1986-03-01

    The documented presence of IGF-II in brain and CSF prompted us to investigate the distribution of receptors for IGF-II in rat brain slices. Human /sup 125/-I-IGF-II (10 pM) was incubated for 16 hrs at 4/sup 0/C with slide-mounted rat brain slices in the absence and presence of unlabeled human IGF-II (67 nM) or human insulin (86 nM). Slides were washed, dried, and exposed to X-ray film for 4-7 days. The results showed dense labeling in the granular layers of the olfactory bulbs, deep layers of the cerebral cortex, pineal gland, anterior pituitary, hippocampus (pyramidal cells CA/sub 1/-CA/sub 2/ and dentate gyrus), and the granule cell layers of the cerebellum. Unlabeled IGF-II eliminated most of the binding of these brain regions while insulin produced only a minimal reduction in the amount of /sup 125/I-IGF-II bound. These results indicate that a specific neural receptor for IGS-II is uniquely distributed in rat brain tissue and supports the notion that this peptide might play an important role in normal neuronal functioning.

  1. Sildenafil Improves Brain Injury Recovery following Term Neonatal Hypoxia-Ischemia in Male Rat Pups.

    Science.gov (United States)

    Yazdani, Armin; Khoja, Zehra; Johnstone, Aaron; Dale, Laura; Rampakakis, Emmanouil; Wintermark, Pia

    2016-01-01

    Term asphyxiated newborns remain at risk of developing brain injury despite available neuropreventive therapies such as hypothermia. Neurorestorative treatments may be an alternative. This study investigated the effect of sildenafil on brain injury induced by neonatal hypoxia-ischemia (HI) at term-equivalent age. Neonatal HI was induced in male Long-Evans rat pups at postnatal day 10 (P10) by left common carotid ligation followed by a 2-hour exposure to 8% oxygen; sham-operated rat pups served as the control. Both groups were randomized to oral sildenafil or vehicle twice daily for 7 consecutive days. Gait analysis was performed on P27. At P30, the rats were sacrificed, and their brains were extracted. The surfaces of both hemispheres were measured on hematoxylin and eosin-stained brain sections. Mature neurons and endothelial cells were quantified near the infarct boundary zone using immunohistochemistry. HI caused significant gait impairment and a reduction in the size of the left hemisphere. Treatment with sildenafil led to an improvement in the neurological deficits as measured by gait analysis, as well as an improvement in the size of the left hemisphere. Sildenafil, especially at higher doses, also caused a significant increase in the number of neurons near the infarct boundary zone. In conclusion, sildenafil administered after neonatal HI may improve brain injury recovery by promoting neuronal populations.

  2. Huayu capsule enhances limb-catching capability of rats with experimental open traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Chunyang Zhou; Juan Zhang; Yong Wang; Haibing Qian; Li Gong; Guojun Huang

    2007-01-01

    BACKGROUND: It is hard to cure the open traumatic brain injury (TBI), especially for the brain functional recovery after brain injury. In this regard, traditional Chinese medicine (TCM) has a wide prospect.OBJECTIVE: To observe the effect of Huayu capsule on limb-catching capability of rat models of open TBI,and investigate its possible mechanism.DESIGN: Randomized and controlled study.SETTING: Grade 3 Pharmacological Laboratory of TCM, State Administration of TCM, Chengdu University of TCM.MATERIALS: This study was performed from October 2005 to January 2006. Fifty Sprague-Dawley rats of either gender, aged 3 months old, weighing from 190 to 220 g, were involved in this study. Huayu capsule was made and supplied by the Department of TCM Processing of Chengdu University of TCM, Lot No.050121; Xuefuzhuyu oral liquid was manufactured by Jilin Aodong Yanbian Pharmaceutical Industry Co.,Ltd., Lot No. 050406.METHODS: Open right parietal lobe TBI rat models were made as described in references. The involved rat models were randomized into 5 groups according to gender and body mass: model group, high-, middle-,low-dose Huayu capsule groups and Xuefuzhuyu oral liquid group, with 10 rats in each. Rats in the model group were administrated with distilled water of 5 mL/kg; Rats in the high-, middle- and low-dose Huayu capsule groups were administrated with 1.030, 0.515, 0.258 g/kg raw herbs; Rats in the Xuefuzhuyu oral liquid group were administrated with Xuefuzhuyu oral liquid of 5 mL/kg, intragastrically once a day for 7 days successively for all after recovering consciousness from anesthetization. ① One hour after administration on the 6th day, rats in each group were placed on a 100 cm fine straight iron wire paralleling to the ground and 20 cm above the operational table. The time of the rats keeping on the wire was counted and it indicated the nerve-muscle catching capability. The longer the remained time, the better the nerve-muscle catching capability.② Twenty

  3. Uptake and biodistribution of rizatriptan to blood and brain following different routes of administration in rats.

    Science.gov (United States)

    Wang, Chun; Quan, Li-Hui; Guo, Yi; Liu, Chun-Yu; Liao, Yong-Hong

    2007-06-07

    The objective of the present study was to investigate the biodistribution profiles of rizatriptan in the blood and brain of Wistar rats after peroral, subcutaneous, intranasal and intratracheal administration with a particular view to determining the applicability of inhalation delivery to achieve rapid and high availability of the drug in both blood and the brain. Following the intratracheal administration of the drug (4.0mg/kg) to the rats, the absolute bioavailability was found to be 91.2%, significantly higher than those from intranasal or peroral routes, and T(max) in plasma and brain was attained within 2 min, significantly shorter than the T(max) of intranasal ( approximately 10 min in both plasma and brain), subcutaneous (16.7 min in plasma and 22.5 min in brain) and peroral (30.0 min in plasma and 45.0 min in brain) administration. In addition, other pharmacokinetic parameters associated with rapid onset of action including AUC(plasma/brain) and C(max), of intratracheal instillated rizatriptan appeared also to be comparable or superior to those of other delivered routes. Although AUC(brain)/AUC(plasma) ratios after intranasal delivery (43.4%) differed significantly from the ratios shown after intratracheal instillation (23.2%), the AUC(brain 0-120 min) via the latter routes was slightly but not significantly higher than that from the former routes. The results in the present study indicated that pulmonary delivery of rizatriptan may achieve maximum plasma and brain concentrations significantly more rapidly compared with intranasal, subcutaneous and peroral administration and be a promising delivery method with extremely rapid onset of action in the pain relief of migraine.

  4. Dietary Virgin Olive Oil Reduces Blood Brain Barrier Permeability, Brain Edema, and Brain Injury in Rats Subjected to Ischemia-Reperfusion

    Directory of Open Access Journals (Sweden)

    Fatemeh Mohagheghi

    2010-01-01

    Full Text Available Recent studies suggest that dietary virgin olive oil (VOO reduces hypoxia-reoxygenation injury in rat brain slices. We sought to extend these observations in an in vivo study of rat cerebral ischemia-reperfusion injury. Four groups, each consisting of 18 Wistar rats, were studied. One group (control received saline, while three treatment groups received oral VOO (0.25, 0.5, and 0.75 mL/kg/day, respectively. After 30 days, blood lipid profiles were determined, before a 60-min period of middle cerebral artery occlusion (MCAO. After 24-h reperfusion, neurological deficit scores, infarct volume, brain edema, and blood brain barrier permeability were each assessed in subgroups of six animals drawn from each main group. VOO reduced the LDL/HDL ratio in doses of 0.25, 0.5, and 0.75 mL/kg/day in comparison to the control group (p < 0.05, and offered cerebroprotection from ischemia-reperfusion. For controls vs. doses of 0.25 vs. 0.5 vs. 0.75 mL/kg/day, attenuated corrected infarct volumes were 207.82 ± 34.29 vs. 206.41 ± 26.23 vs. 124.21 ± 14.73 vs. 108.46 ± 31.63 mm3; brain water content of the infarcted hemisphere was 82 ±± 0.25 vs. 81.5 ± 0.56 vs. 80.5 ± 0.22 vs. 80.5 ± 0.34%; and blood brain barrier permeability of the infarcted hemisphere was 11.31 ± 2.67 vs. 9.21 ± 2.28 vs. 5.83 ± 1.6 vs. 4.43 ± 0.93 µg/g tissue (p < 0.05 for measures in doses 0.5 and 0.75 mL/kg/day vs. controls. Oral administration of VOO reduces infarct volume, brain edema, blood brain barrier permeability, and improves neurologic deficit scores after transient MCAO in rats.

  5. Quantitative vascular neuroimaging of the rat brain using superparamagnetic nanoparticles: New insights on vascular organization and brain function.

    Science.gov (United States)

    Gharagouzloo, Codi A; Timms, Liam; Qiao, Ju; Fang, Zihang; Nneji, Joseph; Pandya, Aniket; Kulkarni, Praveen; van de Ven, Anne L; Ferris, Craig; Sridhar, Srinivas

    2017-09-06

    A method called Quantitative Ultra-Short Time-to-Echo Contrast Enhanced (QUTE-CE) Magnetic Resonance Imaging (MRI) which utilizes superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent to yield positive contrast angiograms with high clarity and definition is applied to the whole live rat brain. QUTE-CE MRI intensity data are particularly well suited for measuring quantitative cerebral blood volume (qCBV). A global map of qCBV in the awake resting-state with unprecedented detail was created via application of a 3D MRI rat brain atlas with 173 segmented and annotated brain areas. From this map we identified two distributed, integrated neural circuits showing the highest capillary densities in the brain. One is the neural circuitry involved with the primary senses of smell, hearing and vision and the other is the neural circuitry of memory. Under isoflurane anesthesia, these same circuits showed significant decreases in qCBV suggesting a role in consciousness. Neural circuits in the brainstem associated with the reticular activating system and the maintenance of respiration, body temperature and cardiovascular function showed an increase in qCBV with anesthesia. During awake CO2 challenge, 84 regions showed significant increases relative to an awake baseline state. This CO2 response provides a measure of cerebral vascular reactivity and regional perfusion reserve with the highest response measured in the somatosensory cortex. These results demonstrate the utility of QUTE-CE MRI for qCBV analysis and offer a new perspective on brain function and vascular organization. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Response to Deep Brain Stimulation in Three Brain Targets with Implications in Mental Disorders: A PET Study in Rats

    Science.gov (United States)

    Casquero-Veiga, Marta; Hadar, Ravit; Pascau, Javier; Winter, Christine; Desco, Manuel; Soto-Montenegro, María Luisa

    2016-01-01

    Objective To investigate metabolic changes in brain networks by deep brain stimulation (DBS) of the medial prefrontal cortex (mPFC), nucleus accumbens (NAcc) and dorsomedial thalamus (DM) using positron emission tomography (PET) in naïve rats. Methods 43 male Wistar rats underwent stereotactic surgery and concentric bipolar platinum-iridium electrodes were bilaterally implanted into one of the three brain sites. [18F]-fluoro-2-deoxy-glucose-PET (18FDG-PET) and computed tomography (CT) scans were performed at the 7th (without DBS) and 9th day (with DBS) after surgery. Stimulation period matched tracer uptake period. Images were acquired with a small-animal PET-CT scanner. Differences in glucose uptake between groups were assessed with Statistical Parametric Mapping. Results DBS induced site-specific metabolic changes, although a common increased metabolic activity in the piriform cortex was found for the three brain targets. mPFC-DBS increased metabolic activity in the striatum, temporal and amygdala, and reduced it in the cerebellum, brainstem (BS) and periaqueductal gray matter (PAG). NAcc-DBS increased metabolic activity in the subiculum and olfactory bulb, and decreased it in the BS, PAG, septum and hypothalamus. DM-DBS increased metabolic activity in the striatum, NAcc and thalamus and decreased it in the temporal and cingulate cortex. Conclusions DBS induced significant changes in 18FDG uptake in brain regions associated with the basal ganglia-thalamo-cortical circuitry. Stimulation of mPFC, NAcc and DM induced different patterns of 18FDG uptake despite interacting with the same circuitries. This may have important implications to DBS research suggesting individualized target selection according to specific neural modulatory requirements. PMID:28033356

  7. Regulation of calpain activity in rat brain with altered Ca2+ homeostasis.

    Science.gov (United States)

    Averna, Monica; Stifanese, Roberto; De Tullio, Roberta; Passalacqua, Mario; Defranchi, Enrico; Salamino, Franca; Melloni, Edon; Pontremoli, Sandro

    2007-01-26

    Activation of calpain occurs as an early event in correlation with an increase in [Ca2+]i induced in rat brain upon treatment with a high salt diet for a prolonged period of time. The resulting sequential events have been monitored in the brain of normal and hypertensive rats of the Milan strain, diverging for a constitutive alteration in the level of [Ca2+]i found to be present in nerve cells of hypertensive animals. After 2 weeks of treatment, the levels of the plasma membrane Ca2+-ATPase and of native calpastatin are profoundly decreased. These degradative processes, more pronounced in the brain of hypertensive rats, are progressively and efficiently compensated in the brain of both rat strains by different incoming mechanisms. Along with calpastatin degradation, 15-kDa still-active inhibitory fragments are accumulated, capable of efficiently replacing the loss of native inhibitor molecules. A partial return to a more efficient control of Ca2+ homeostasis occurs in parallel, assured by an early increase in the expression of Ca2+-ATPase and of calpastatin, both producing, after 12 weeks of a high salt (sodium) diet, the restoration of almost original levels of the Ca2+ pump and of significant amounts of native inhibitor molecules. Thus, conservative calpastatin fragmentation, associated with an increased expression of Ca2+-ATPase and of the calpain natural inhibitor, has been demonstrated to occur in vivo in rat brain. This represents a sequential adaptive response capable of overcoming the effects of calpain activation induced by a moderate long term elevation of [Ca2+]i.

  8. The protective effect of Nigella sativa oil in the brain of the biliary obstructed rats

    Directory of Open Access Journals (Sweden)

    Hale Zerrin Toklu

    2013-01-01

    Full Text Available Oxidative stress is one of the important mechanisms of jaundice induced encephalopathy. The aim of this study was to examine the possible protective effect of Nigella sativa (NS seed oil against the oxidative stress of brain tissue induced by experimentalobstructive jaundice in rats.BiliarY obstruction was performed in male Wistar albino rats by bile duct ligation and scission (BDL. Intragastric NS oil (1 mg/kg p.o. or saline was administered for 28 days. At the end of the experiment, in the half of the rats the blood brain barrier (BBB permeability wasevaluated by Evans blue (EB extravasation. Other rats were decapitated and brain tissue samples were obtained for the measurement of malondialdehyde (MDA and glutathione(GSH levels, myeloperoxidase (MPO and Na+,K+-ATPase activities.ChronIC biliary obstruction caused a significant increase in the BBB permeability which was verified by EB extravasation while this effect was attenuated by NS oil treatment. On the other hand, BDL-induced decrease in brain GSH level and Na+,K+-ATPase activity were el-evated back to control level in NS oil-treated BDL group. Increase in tissue MDA level, and MPO activity due to BDL were also attenuated by NS oil treatment.Our results suggest that NS oil treatment protects the brain from oxidative damage following bile duct ligation in rats. This effect possibly involves the inhibition of neutrophil infiltration and lipid peroxidation and the restoration of antioxidant status in the tissue. Accordingly, supplementing cirrhotic patients with adjuvant therapy of NS oil may have some benefit against hepatic encephalopathy

  9. Lithium ameliorates lipopolysaccharide-induced neurotoxicity in the cortex and hippocampus of the adult rat brain.

    Science.gov (United States)

    Khan, Muhammad Sohail; Ali, Tahir; Abid, Muhammad Noman; Jo, Myeung Hoon; Khan, Amjad; Kim, Min Woo; Yoon, Gwang Ho; Cheon, Eun Woo; Rehman, Shafiq Ur; Kim, Myeong Ok

    2017-09-01

    Lithium an effective mood stabilizer, primary used in the treatment of bipolar disorders, has been reported as a protective agent in various neurological disorders. In this study, we examined the neuroprotective role of lithium chloride (LiCl) against lipopolysaccharide (LPS) in the cortex and hippocampus of the adult rat brain. We determined that LiCl -attenuated LPS-induced activated toll-like receptor 4 (TLR4) signalling and significantly reduced the nuclear factor-kB (NF-KB) translation factor and various other inflammatory mediators such as interleukin-1 beta (IL-1β) and tumour necrosis factor alpha (TNF-α). We also analyzed that LiCl significantly abrogated activated gliosis via attenuation of specific markers for activated microglia, ionized calcium-binding adaptor molecule (Iba-1) and astrocytes, glial fibrillary acidic protein (GFAP) in both the cortex and hippocampus of the adult rat brain. Furthermore, we also observed that LiCl treatment significantly ameliorated the increase expression level of apoptotic neurodegeneration protein markers Bax/Bcl2, activated caspase-3 and poly (ADP-ribose) polymerase-1 (PARP-1) in the cortex and hippocampus regions of the LPS-treated adult rat brain. In addition, the morphological results of the fluoro-jade B (FJB) and Nissl staining showed that LiCl attenuated the neuronal degeneration in the cortex and hippocampus regions of the LPS-treated adult rat brain. Taken together, our Western blot and morphological results indicated that LiCl significantly prevents the LPS-induced neurotoxicity via attenuation of neuroinflammation and apoptotic neurodegeneration in the cortex and hippocampus of the adult rat brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Protective Effects of Sufentanil Pretreatment on Rat Brains under the State of Cardiopulmonary Bypass.

    Science.gov (United States)

    Zhang, Kun; Li, Man; Peng, Xiao-Chun; Wang, Li-Shen; Dong, Ai-Ping; Shen, Shu-Wei; Wang, Rong

    2015-01-01

    This study aimed to observe the protective effects of sufentanil pretreatment on rat cerebral injury during cardiopulmonary bypass (CPB) and to explore the underlying mechanism. Twenty-four male adult Sprague Dawley (SD) rats were divided into 4 groups. Then, the rat CPB model was established. A 14G trocar was inserted into the atrium dextrum. For rats in S1 and S5 groups, sufentanil (1 µgKg(-1) and 5 µgKg(-1)) were applied before CPB process. After the operation, rat brain samples were harvested for measurement of the water content of the brains, total calcium in brain tissue and the level of serum S100β. Compared with the Sham group, the water content and the total calcium of the brain tissue, and the expression of S100β in serum were significantly increased in the CPB group (PCPB group, sufentanil treatment significantly reduced the water content of the brains, the total calcium and S100β expression (PCPB, S1, and S5 compared with Sham group during CPB. Compared with the Sham group, the levels of pH and blood lactate in other groups were decreased and increased, respectively, in the post-CPB period. During the CPB and post-CPB periods, the hematocrit levels were significantly down-regulated in groups CPB, S1, and S5 compared with Sham group. In conclusion, sufentanil pretreatment was effective in reducing the cerebral injury during CPB. Reduction in calcium overload may be a potential mechanism in such process.

  11. Methylphenidate administration to juvenile rats alters brain areas involved in cognition, motivated behaviors, appetite, and stress.

    Science.gov (United States)

    Gray, Jason D; Punsoni, Michael; Tabori, Nora E; Melton, Jay T; Fanslow, Victoria; Ward, Mary J; Zupan, Bojana; Menzer, David; Rice, Jackson; Drake, Carrie T; Romeo, Russell D; Brake, Wayne G; Torres-Reveron, Annelyn; Milner, Teresa A

    2007-07-04

    Thousands of children receive methylphenidate (MPH; Ritalin) for attention deficit/hyperactivity disorder (ADHD), yet the long-term neurochemical consequences of MPH treatment are unknown. To mimic clinical Ritalin treatment in children, male rats were injected with MPH (5 mg/kg) or vehicle twice daily from postnatal day 7 (PND7)-PND35. At the end of administration (PND35) or in adulthood (PND135), brain sections from littermate pairs were immunocytochemically labeled for neurotransmitters and cytological markers in 16 regions implicated in MPH effects and/or ADHD etiology. At PND35, the medial prefrontal cortex (mPFC) of rats given MPH showed 55% greater immunoreactivity (-ir) for the catecholamine marker tyrosine hydroxylase (TH), 60% more Nissl-stained cells, and 40% less norepinephrine transporter (NET)-ir density. In hippocampal dentate gyrus, MPH-receiving rats showed a 51% decrease in NET-ir density and a 61% expanded distribution of the new-cell marker PSA-NCAM (polysialylated form of neural cell adhesion molecule). In medial striatum, TH-ir decreased by 21%, and in hypothalamus neuropeptide Y-ir increased by 10% in MPH-exposed rats. At PND135, MPH-exposed rats exhibited decreased anxiety in the elevated plus-maze and a trend for decreased TH-ir in the mPFC. Neither PND35 nor PND135 rats showed major structural differences with MPH exposure. These findings suggest that developmental exposure to high therapeutic doses of MPH has short-term effects on select neurotransmitters in brain regions involved in motivated behaviors, cognition, appetite, and stress. Although the observed neuroanatomical changes largely resolve with time, chronic modulation of young brains with MPH may exert effects on brain neurochemistry that modify some behaviors even in adulthood.

  12. Protective role of Cynodon dactylon in ameliorating the aluminium-induced neurotoxicity in rat brain regions.

    Science.gov (United States)

    Sumathi, Thangarajan; Shobana, Chandrasekar; Kumari, Balasubramanian Rathina; Nandhini, Devarajulu Nisha

    2011-12-01

    Cynodon dactylon (Poaceae) is a creeping grass used as a traditional ayurvedic medicine in India. Aluminium-induced neurotoxicity is well known and different salts of aluminium have been reported to accelerate damage to biomolecules like lipids, proteins and nucleic acids. The objective of the present study was to investigate whether the aqueous extract of C. dactylon (AECD) could potentially prevent aluminium-induced neurotoxicity in the cerebral cortex, hippocampus and cerebellum of the rat brain. Male albino rats were administered with AlCl(3) at a dose of 4.2 mg/kg/day i.p. for 4 weeks. Experimental rats were given C. dactylon extract in two different doses of 300 mg and 750 mg/keg/day orally 1 h prior to the AlCl(3) administration for 4 weeks. At the end of the experiments, antioxidant status and activities of ATPases in cerebral cortex, hippocampus and cerebellum of rat brain were measured. Aluminium administration significantly decreased the level of GSH and the activities of SOD, GPx, GST, Na(+)/K(+) ATPase, and Mg(2+) ATPase and increased the level of lipid peroxidation (LPO) in all the brain regions when compared with control rats. Pre-treatment with AECD at a dose of 750 mg/kg b.w increased the antioxidant status and activities of membrane-bound enzymes (Na(+)/K(+) ATPase and Mg(2+) ATPase) and also decreased the level of LPO significantly, when compared with aluminium-induced rats. The results of this study indicated that AECD has potential to protect the various brain regions from aluminium-induced neurotoxicity.

  13. Neuroplasticity Changes of Rat Brain by Musical Stimuli during Fetal Period

    Directory of Open Access Journals (Sweden)

    Siamak Sheikhi

    2015-01-01

    Full Text Available Objective: Fetal development of the central nervous system is an important and sensitive stage which is affected by many external and internal stimuli. This study aimed to investigate effect of musical stimuli on fetal rat brain. Materials and Methods: In this experimental study, twelve female Wistar rats were selected and evenly assigned to control and musical groups. The females were mated with a male rat of the same genotype. Musical group was exposed to classic music with 60 dB power for 90 minutes twice per day from 2nd to 20th day of gestation. The control rats were handled similar to the musical group, but were not exposed to music. Before parturition, all the dams were anesthetized, and their blood samples were obtained and used for corticosterone (COS measurement. They were transcardially perfused by electron microscope (EM fixative agent. The fetal brains were extracted intact and used for slice preparation. Horizontal slices were made for electron microscope preparation, and images were taken and analyzed in terms of cell density and morphological changes. Results: EM observation indicated significant morphological difference in cellular and intercellular spaces between the two groups. Music-treated fetuses had significantly higher cell density in parietal cortex and music-treated dams had lower COS level. Conclusion: It was concluded that prenatal music would have a great impact on neuroplasticity of fetal rat brain, at least indirectly. Although the rat fetuses cannot hear until birth, music-induced reduction in COS blood level of dams might be the reason for neuroplasticity of fetal brain.

  14. Effect of transporter inhibition on the distribution of cefadroxil in rat brain.

    Science.gov (United States)

    Chen, Xiaomei; Loryan, Irena; Payan, Maryam; Keep, Richard F; Smith, David E; Hammarlund-Udenaes, Margareta

    2014-01-01

    Cefadroxil, a cephalosporin antibiotic, is a substrate for several membrane transporters including peptide transporter 2 (PEPT2), organic anion transporters (OATs), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptides (OATPs). These transporters are expressed at the blood-brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB), and/or brain cells. The effect of these transporters on cefadroxil distribution in brain is unknown, especially in the extracellular and intracellular fluids within brain. Intracerebral microdialysis was used to measure unbound concentrations of cefadroxil in rat blood, striatum extracellular fluid (ECF) and lateral ventricle cerebrospinal fluid (CSF). The distribution of cefadroxil in brain was compared in the absence and presence of probenecid, an inhibitor of OATs, MRPs and OATPs, where both drugs were administered intravenously. The effect of PEPT2 inhibition by intracerebroventricular (icv) infusion of Ala-Ala, a substrate of PEPT2, on cefadroxil levels in brain was also evaluated. In addition, using an in vitro brain slice method, the distribution of cefadroxil in brain intracellular fluid (ICF) was studied in the absence and presence of transport inhibitors (probenecid for OATs, MRPs and OATPs; Ala-Ala and glycylsarcosine for PEPT2). The ratio of unbound cefadroxil AUC in brain ECF to blood (Kp,uu,ECF) was ~2.5-fold greater during probenecid treatment. In contrast, the ratio of cefadroxil AUC in CSF to blood (Kp,uu,CSF) did not change significantly during probenecid infusion. Icv infusion of Ala-Ala did not change cefadroxil levels in brain ECF, CSF or blood. In the brain slice study, Ala-Ala and glycylsarcosine decreased the unbound volume of distribution of cefadroxil in brain (Vu,brain), indicating a reduction in cefadroxil accumulation in brain cells. In contrast, probenecid increased cefadroxil accumulation in brain cells, as indicated by a greater value for Vu,brain. Transporters

  15. The feeding behavior of cross-intestine parabiotic rats are modulated by brain histamine

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To clarify the mechanism in which signals to regulate food intake are transmitted from the gastro-intestinal system to the brain, we analyzed changes in hypothalamic neuronal histamine using cross-intestine parabiotic rats. Pairs of weight matched Lewis rats were sewn together in such a way as to form a common abdominal cavity. The small intestines of rats were transected and reconnected so that food eaten by one rat passed through a segment of its partner's intestine before returning to the intestine of the first rat. Concentrations of neuronal histamine were measured in microdissected hypothalami using radioimmnoassay. Sustained alteration of food intake were observed in both rats, one rat eating an average of 2.2 times (SE 0.15) as much as the other, without development of any significant difference in body weight after seven weeks. We found significant increase in hypothalamic neuronal histamine concentrations in the arcuate and tublomamelary nuclei of the hypophagic rats.These results are supportive of the theory that histamine acts in response to signals from the gut to regulate food intake.

  16. The Ketogenic Diet Suppresses the Cathepsin E Expression Induced by Kainic Acid in the Rat Brain

    Science.gov (United States)

    Jeong, Hyun Jeong; Kim, Hojeong; Kim, Yoon-Kyoung; Park, Sang-Kyu; Kang, Dong-Won

    2010-01-01

    Purpose The ketogenic diet has long been used to treat epilepsy, but its mechanism is not yet clearly understood. To explore the potential mechanism, we analyzed the changes in gene expression induced by the ketogenic diet in the rat kainic acid (KA) epilepsy model. Materials and Methods KA-administered rats were fed the ketogenic diet or a normal diet for 4 weeks, and microarray analysis was performed with their brain tissues. The effects of the ketogenic diet on cathepsin E messenger ribonucleic acid (mRNA) expression were analyzed in KA-administered and normal saline-administered groups with semi-quantitative and real-time reverse transcription polymerase chain reaction (RT-PCR). Brain tissues were dissected into 8 regions to compare differential effects of the ketogenic diet on cathepsin E mRNA expression. Immunohistochemistry with an anti-cathepsin E antibody was performed on slides of hippocampus obtained from whole brain paraffin blocks. Results The microarray data and subsequent RT-PCR experiments showed that KA increased the mRNA expression of cathepsin E, known to be related to neuronal cell death, in most brain areas except the brain stem, and these increases of cathepsin E mRNA expression were suppressed by the ketogenic diet. The expression of cathepsin E mRNA in the control group, however, was not significantly affected by the ketogenic diet. The change in cathepsin E mRNA expression was greatest in the hippocampus. The protein level of cathepsin E in the hippocampus of KA-administered rat was elevated in immunohistochemistry and the ketogenic diet suppressed this increase. Conclusion Our results showed that KA administration increased cathepsin E expression in the rat brain and its increase was suppressed by the ketogenic diet. PMID:20635438

  17. Neuron-astrocyte interactions, pyruvate carboxylation and the pentose phosphate pathway in the neonatal rat brain.

    Science.gov (United States)

    Morken, Tora Sund; Brekke, Eva; Håberg, Asta; Widerøe, Marius; Brubakk, Ann-Mari; Sonnewald, Ursula

    2014-01-01

    Glucose and acetate metabolism and the synthesis of amino acid neurotransmitters, anaplerosis, glutamate-glutamine cycling and the pentose phosphate pathway (PPP) have been extensively investigated in the adult, but not the neonatal rat brain. To do this, 7 day postnatal (P7) rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate and sacrificed 5, 10, 15, 30 and 45 min later. Adult rats were injected and sacrificed after 15 min. To analyse pyruvate carboxylation and PPP activity during development, P7 rats received [1,2-(13)C]glucose and were sacrificed 30 min later. Brain extracts were analysed using (1)H- and (13)C-NMR spectroscopy. Numerous differences in metabolism were found between the neonatal and adult brain. The neonatal brain contained lower levels of glutamate, aspartate and N-acetylaspartate but similar levels of GABA and glutamine per mg tissue. Metabolism of [1-(13)C]glucose at the acetyl CoA stage was reduced much more than that of [1,2-(13)C]acetate. The transfer of glutamate from neurons to astrocytes was much lower while transfer of glutamine from astrocytes to glutamatergic neurons was relatively higher. However, transport of glutamine from astrocytes to GABAergic neurons was lower. Using [1,2-(13)C]glucose it could be shown that despite much lower pyruvate carboxylation, relatively more pyruvate from glycolysis was directed towards anaplerosis than pyruvate dehydrogenation in astrocytes. Moreover, the ratio of PPP/glucose-metabolism was higher. These findings indicate that only the part of the glutamate-glutamine cycle that transfers glutamine from astrocytes to neurons is operating in the neonatal brain and that compared to adults, relatively more glucose is prioritised to PPP and pyruvate carboxylation. Our results may have implications for the capacity to protect the neonatal brain against excitotoxicity and oxidative stress.

  18. Adenosine transport systems on dissociated brain cells from mouse, guinea-pig, and rat

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, M.E.; Geiger, J.D. (Univ. of Manitoba, Winnipeg (Canada))

    1990-09-01

    The kinetics and sodium dependence of adenosine transport were determined using an inhibitor-stop method on dissociated cell body preparations obtained from mouse, guinea-pig and rat brain. Transport affinity (KT) values for the high affinity adenosine transport systems KT(H) were significantly different between these three species; mean +/- SEM values were 0.34 +/- 0.1 in mouse, 0.9 +/- 0.2 in rat, and 1.5 +/- 0.5 microM in guinea-pig. The KT values for the low affinity transport system KT(L) were not different between the three species. Brain cells from rat displayed a significantly greater maximal capacity to accumulate (3H)adenosine (Vmax) than did mouse or guinea-pig for the high affinity system, or than did mouse for the low affinity system. When sodium chloride was replaced in the transport medium with choline chloride, the KT(H) values for guinea-pig and rat were both increased by approximately 100%; only in rat did the change reach statistical significance. The sodium-dependence of adenosine transport in mouse brain was clearly absent. The differences between KT(H) values in mouse and those in guinea-pig or rat were accentuated in the absence of sodium. The differences in kinetic values, ionic requirements, and pharmacological characteristics between adenosine transporters in CNS tissues of mouse, guinea-pig and rat may help account for some of the variability noted among species in terms of their physiological responses to adenosine.

  19. Concentrations of Nitric Oxide in Rat Brain Tissues after Diffuse Brain Injury and Neuroprotection by the Selective Inducible Nitric Oxide Synthase Inhibitor Aminoguanidine

    Institute of Scientific and Technical Information of China (English)

    Yi-bao Wang; Shao-wu Ou; Guang-yu Li; Yun-hui Liu

    2005-01-01

    @@ To investigate the effects of nitric oxide (NO) and the selective inducible nitric oxide synthase (iNOS) inhibitor aminoguanidine (AG) on trauma, we explored the concentrations of nitric oxide in rat brain tissues at different time stamps after diffuse brain injury (DBI) with or without AG treatment.

  20. The effect of butylphthalide on the brain edema, blood-brain barrier of rats after focal cerebral infarction and the expression of Rho A.

    Science.gov (United States)

    Hu, Jinyang; Wen, Qingping; Wu, Yue; Li, Baozhu; Gao, Peng

    2014-06-01

    The aim of this study was to explore the effect of butylphthalide on the brain edema, blood-brain barrier of rats of rats after focal cerebral infarction and the expression of Rho A. A total of 195 sprague-dawley male rats were randomly divided into control group, model group, and butylphthalide group (40 mg/kg, once a day, by gavage). The model was made by photochemical method. After surgery 3, 12, 24, 72, and 144 h, brain water content was done to see the effect of butylphthalide for the cerebral edema. Evans blue extravasation method was done to see the changes in blood-brain barrier immunohistochemistry, and Western blot was done to see the expression of Rho A around the infarction. Compared with the control group, the brain water content of model group and butylphthalide group rats was increased, the permeability of blood-brain barrier of model group and butylphthalide group rats was increased, and the Rho A protein of model group and butylphthalide group rats was increased. Compared with the model group, the brain water content of butylphthalide group rats was induced (73.67 ± 0.67 vs 74.14 ± 0.46; 74.89 ± 0.57 vs 75.61 ± 0.52; 77.49 ± 0.34 vs 79.33 ± 0.49; 76.31 ± 0.56 vs 78.01 ± 0.48; 72.36 ± 0.44 vs 73.12 ± 0.73; P edema, protect the blood-brain barrier, and decrease the expression of Rho A around the infarction.

  1. Direct nose-brain transport of benzoylecgonine following intranasal administration in rats.

    Science.gov (United States)

    Chow, H H; Anavy, N; Villalobos, A

    2001-11-01

    In our previous research, cocaine applied intranasally in rats diffused or was transported directly from the nasal cavity to the brain. However, the direct nose-brain cocaine transport only contributes to an initial increase in the relative cocaine brain exposure. In this study, we have determined the nose-brain transport of a polar metabolite of cocaine, benzoylecgonine, to help understand factors affecting drug transport via this novel pathway. The nasal cavity of male Sprague-Dawley rats was isolated to prevent drainage of nasally applied dosing solution to non-nasal regions. Benzoylecgonine was then administered, either by intranasal administration or by intravenous (iv) injection. At different times postdose, blood and tissues from different regions of the brain were collected from groups of rats (n = 4 for each collection time) and benzoylecgonine concentrations in these samples were analyzed by high-performance liquid chromatography. Benzoylecgonine concentrations in plasma were at maximal levels immediately after iv dosing and declined as a function of time. Following intranasal administration, benzoylecgonine concentrations in plasma reached maximal levels between 15 and 30 min after dosing and declined as a function of time. To allow comparison of brain benzoylecgonine content after iv and intranasal administration, brain benzoylecgonine contents were normalized by plasma benzoylecgonine concentrations. The ratios of the area under the benzoylecgonine concentration-time curve (AUC) between the olfactory bulb and plasma following intranasal administration were 10-100 times higher than those obtained after iv dosing. The olfactory tract-to-plasma benzoylecgonine AUC ratios after intranasal administration were significantly higher than those after iv dosing up to 120 min following dosing. The brain tissue-to-plasma AUC ratios in cerebellum, brain stem, and cerebral cortex after intranasal administration were significantly higher than the corresponding ratios

  2. Incorporation of radioactive polyunsaturated fatty acids into liver and brain of developing rat.

    Science.gov (United States)

    Sinclair, A J

    1975-03-01

    The incorporation of radioactivity from orally administered linoleic acid-1-14C, linolenic acid-1-14C, arachidonic acid-3H8, and docosahexaenoic acid-14C into the liver and brain lipids of suckling rats was studied. In both tissues, 22 hr after dosing, 2 distinct levels of incorporation were observed: a low uptake (from 18:2-1-14C and 18:3-1-14C) and a high uptake (from 20:4-3H8 and 22:6-14C). In adult rats, the incorporation of radioactivity into brain lipids from 18:2-1-14C and 20:4-3H was considerably lower than the incorporation into the brains of the young rats. In the livers of the suckling rats, the activity from the 18 carbon acids was associated mostly with the triglyceride fraction, whereas the activity from the 20:4-3H8 and 22:6-14C was concentrated in the phospholipid fraction. In the brain lipids, the activity from the different fatty apid fatty acids, some of the activity in the 18:2-1-14C and 18:3-1-14C experiments was associated with 20 and 22 carbon polyunsaturated fatty acids; however, radioactivity from orally administered 20:4-3H8 and 22:6-14C was incorporated intact into the tissue phospholipid to a much greater extent compared with the incorporation of radioactivity into 20:4 and 22:6 in the experiments where 18:2-1-14C and 18:3-1-14C, respectively, were administered. Possible reasons for these differences are discussed. Rat milk contains a wide spectrum of polyunsaturated fatty acids, including linoleate, linolenate, arachidonate, and docosahexaenoate. During the suckling period in the rat, there is a rapid deposition of 20:4 and 22:6 in the brain. The results of the present experiments suggested that dietary 20:4 and 22:6 were important sources of brain 20:4 and 22:6 in the developing rat.

  3. Dexmedetomidine and ketamine show distinct patterns of cell degeneration and apoptosis in the developing rat neonatal brain.

    Science.gov (United States)

    Pancaro, Carlo; Segal, B Scott; Sikes, Robert W; Almeer, Zainab; Schumann, Roman; Azocar, Ruben J; Marchand, James E

    2016-12-01

    Early exposure to common anesthetic and sedative agents causes widespread brain cell degeneration and apoptosis in the developing rat brain, associated with persistent learning deficits in rats. This study was designed to determine whether the α2 adrenergic receptor agonist, dexmedetomidine, produces brain cell degeneration and apoptosis in postnatal day-7 rats in the same brain areas when compared to ketamine. Systemic saline, ketamine 20 mg/kg, or dexmedetomidine at 30 or 45 μg/kg were given six times to postnatal day 7 rats (n  =  6/group) every 90 min. Twenty-four hours after the initial injection, brain regions were processed and analyzed for cell degeneration using the silver stain and for apoptosis using activated caspase-3 immunohistochemistry. Exposure to ketamine resulted in significant cellular degeneration and apoptosis in limbic brain regions, but nonsignificant changes in primary sensory brain regions. In contrast, dexmedetomidine produced significant cellular degeneration and apoptosis in primary sensory brain regions, but nonsignificant changes in limbic regions. These data show that ketamine and dexmedetomidine result in anatomically distinct patterns of cell degeneration and apoptosis in the brains of 7-day-old rat pups. The meaning and the clinical significance of these findings remain to be established.

  4. Protective effects of N-acetylcysteine on brain-dead rat liver

    Institute of Scientific and Technical Information of China (English)

    Shui-Jun Zhang; Ting-Wu Ma; Xiu-Xian Ma; Jian-Jun Gou; Ji-Hua Shi; Wen-Zhi Guo

    2006-01-01

    BACKGROUND: Brain-dead donors have been the main sources in organ transplantation. But many studies show that brain-death affects the organ's function after transplantation. This study was undertaken to investigate liver injury after brain-death in rats and the protective effects of N-acetyleysteine (NAC) on liver injury. METHODS: A total of 30 Wistar rats were randomized into 3 groups: normal control group (C), brain-dead group (B), and NAC pretreatment group (N). At 4 hours after the establishment of a brain-dead model, serum was collected to determine the levels of ALT, AST, TNF-α and hyaluronic acid (HA). Hepatic tissue was obtained for electron microscopic examination. RESULTS:At 4 hours, the levels of ALT, AST, TNF-α, and HA in group N were signiifcantly higher than those in group C, but these parameters were signiifcantly lower than those in group B. Electron microscopy showed activated Kupffer cells, denuded sinusoidal endothelial cells (SECs), and widened fenestration in group B, but eliminated activation of Kupffer cells and intact SECs in group N. CONCLUSION: Brain death can cause liver injury, and N-acetyleysteine can protect the liver from the injury.

  5. Effects of Moxibustion Pretreating on SOD and MDA in the Rat of Global Brain Ischemia

    Institute of Scientific and Technical Information of China (English)

    HUA Jin-shuang; LI Li-ping; ZHU Xian-min

    2008-01-01

    objective;To probe into the mechanism of moxibustion preconditioning in preventive brain-protecting effect.Methods;The global brain ischemia rat model was developed by blocking 4 artenes.Seventy-eight Wistarmale rats were randomly divided into 5 groups;a nomal control group,a sham-operation group,a brain ischemia group,a brain ischemia preconditioning group,a moxibustion pretreating group.The brains in the 5groups were taken at 24 h,48h,and 72h after operation respectively Superoxide dismulase(SOD)activity was determined with xanthine oxidase method and malondialdehyde(MDA)content with thiobarbituric acid method.Results;After the operation,in the moxibustion preconditioning group,SOD activity significantly increased,especially 24h after moxibustion preconditioning;and MDA content decreased,with a very significant difference as compared with that of the cerebral ischemia group(P<0.01).Conclusion;Moxibustion preconditioning protects the ischemic and anoxic brain tissue by increasing the activity of endogenous antioxidase.

  6. Response of regional brain glutamate transaminases of rat to aluminum in protein malnutrition

    Science.gov (United States)

    Nayak, Prasunpriya; Chatterjee, Ajay K

    2002-01-01

    Background The mechanism of aluminum-induced neurotoxicity is not clear. The involvement of glutamate in the aluminium-induced neurocomplications has been suggested. Brain glutamate levels also found to be altered in protein malnutrition. Alterations in glutamate levels as well as glutamate-α-decarboxylase in different regions of rat brain has been reported in response to aluminum exposure. Thus the study of glutamate metabolising enzymes in different brain regions of rats maintained on either normal or restricted protein diet may be of importance for understanding the neurotoxicity properties of aluminium. Results Dietary protein restrictions does not have an significant impact on regional aluminum content of the brain. The interaction of aluminum intoxication and protein restriction is significant in the thalamic area and the midbrain-hippocampal region in cases of glutamate oxaloacetate transaminase. In the case of gluatmate pyruvate transaminase, this interaction is significant only in thalamic area. Conclusion The metabolism of amino acids, as indicated by activities of specific transaminases, of brain is altered in response to aluminum exposure. These alterations are region specific and are dependent on dietary protein intake or manipulation of the brain amino acid homeostasis. PMID:12197946

  7. Response of regional brain glutamate transaminases of rat to aluminum in protein malnutrition

    Directory of Open Access Journals (Sweden)

    Chatterjee Ajay K

    2002-08-01

    Full Text Available Abstract Background The mechanism of aluminum-induced neurotoxicity is not clear. The involvement of glutamate in the aluminium-induced neurocomplications has been suggested. Brain glutamate levels also found to be altered in protein malnutrition. Alterations in glutamate levels as well as glutamate-α-decarboxylase in different regions of rat brain has been reported in response to aluminum exposure. Thus the study of glutamate metabolising enzymes in different brain regions of rats maintained on either normal or restricted protein diet may be of importance for understanding the neurotoxicity properties of aluminium. Results Dietary protein restrictions does not have an significant impact on regional aluminum content of the brain. The interaction of aluminum intoxication and protein restriction is significant in the thalamic area and the midbrain-hippocampal region in cases of glutamate oxaloacetate transaminase. In the case of gluatmate pyruvate transaminase, this interaction is significant only in thalamic area. Conclusion The metabolism of amino acids, as indicated by activities of specific transaminases, of brain is altered in response to aluminum exposure. These alterations are region specific and are dependent on dietary protein intake or manipulation of the brain amino acid homeostasis.

  8. A model of posttraumatic epilepsy induced by lateral fluid-percussion brain injury in rats.

    Science.gov (United States)

    Kharatishvili, I; Nissinen, J P; McIntosh, T K; Pitkänen, A

    2006-06-30

    Although traumatic brain injury is a major cause of symptomatic epilepsy, the mechanism by which it leads to recurrent seizures is unknown. An animal model of posttraumatic epilepsy that reliably reproduces the clinical sequelae of human traumatic brain injury is essential to identify the molecular and cellular substrates of posttraumatic epileptogenesis, and perform preclinical screening of new antiepileptogenic compounds. We studied the electrophysiologic, behavioral, and structural features of posttraumatic epilepsy induced by severe, non-penetrating lateral fluid-percussion brain injury in rats. Data from two independent experiments indicated that 43% to 50% of injured animals developed epilepsy, with a latency period between 7 weeks to 1 year. Mean seizure frequency was 0.3+/-0.2 seizures per day and mean seizure duration was 113+/-46 s. Behavioral seizure severity increased over time in the majority of animals. Secondarily-generalized seizures comprised an average of 66+/-37% of all seizures. Mossy fiber sprouting was increased in the ipsilateral hippocampus of animals with posttraumatic epilepsy compared with those subjected to traumatic brain injury without epilepsy. Stereologic cell counts indicated a loss of dentate hilar neurons ipsilaterally following traumatic brain injury. Our data suggest that posttraumatic epilepsy occurs with a frequency of 40% to 50% after severe non-penetrating fluid-percussion brain injury in rats, and that the lateral fluid percussion model can serve as a clinically-relevant tool for pathophysiologic and preclinical studies.

  9. Amphetamine affects the behavioral outcome of lateral fluid percussion brain injury in the rat.

    Science.gov (United States)

    Prasad, R M; Dose, J M; Dhillon, H S; Carbary, T; Kraemer, P J

    1995-01-01

    This study examined the effects of (D)-amphetamine, methoxamine (an al-adrenergic receptor agonist), and prazosin (an al-adrenergic receptor antagonist) on the behavioral outcome of lateral fluid percussion brain injury. Rats trained to perform a beam walking task were subjected to brain injury of moderate severity (2.1-2.2 atm). At 10 min after injury, rats were treated with amphetamine, methoxamine or prazosin at two different dose levels. Amphetamine-treated animals displayed significantly lower impairment in beam walking ability from days 1 to 5 after brain injury. Neither methoxamine nor prazosin significantly affected the impairment in beam walking ability from day 1 to day 7 after injury. However, prazosin treatment at both dose levels increased the post-injury mortality and the incidences of failure to recovery from hemiplegia. Amphetamine-treatment at 4 mg/kg, but not at 2 mg/kg, improved the spatial learning abilities of the injured animals. Neither methoxamine nor prazosin affected the spatial learning abilities. These results indicate that amphetamine facilitated beam walking recovery and improved cognitive function after concussive fluid percussion injury. Although the methoxamine experiments suggest that the norepinephrine-α1-adrenergic receptor system may not be involved in the pathophysiology of fluid percussion brain injury, our results with amphetamine (beneficial effects) and prazosin (deleterious effects) and the results observed in other models of brain injury point out that further investigations are necessary to understand the role of a1-adrenergic receptors in brain injury.

  10. In vivo and in vitro assessment of brain bioenergetics in aging rats.

    Science.gov (United States)

    Vančová, Ol'ga; Bačiak, Ladislav; Kašparová, Svatava; Kucharská, Jarmila; Palacios, Hector H; Horecký, Jaromír; Aliev, Gjumrakch

    2010-11-01

    Brain energy disorders can be present in aged men and animals. To this respect, the mitochondrial and free radical theory of aging postulates that age-associated brain energy disorders are caused by an imbalance between pro- and anti-oxidants that can result in oxidative stress. Our study was designed to investigate brain energy metabolism and the activity of endogenous antioxidants during their lifespan in male Wistar rats. In vivo brain bioenergetics were measured using ³¹P nuclear magnetic resonance (NMR) spectroscopy and in vitro by polarographic analysis of mitochondrial oxidative phosphorylation. When compared to the young controls, a significant decrease of age-dependent mitochondrial respiration and adenosine-3-phosphate (ATP) production measured in vitro correlated with significant reduction of forward creatine kinase reaction (kfor) and with an increase in phosphocreatine (PCr)/ATP, PCr/Pi and PME/ATP ratio measured in vivo. The levels of enzymatic antioxidants catalase, GPx and GST significantly decreased in the brain tissue as well as in the peripheral blood of aged rats. We suppose that mitochondrial dysfunction and oxidative inactivation of endogenous enzymes may participate in age-related disorders of brain energy metabolism.

  11. Zingiber officinale Mitigates Brain Damage and Improves Memory Impairment in Focal Cerebral Ischemic Rat

    Directory of Open Access Journals (Sweden)

    Jintanaporn Wattanathorn

    2011-01-01

    Full Text Available Cerebral ischemia is known to produce brain damage and related behavioral deficits including memory. Recently, accumulating lines of evidence showed that dietary enrichment with nutritional antioxidants could reduce brain damage and improve cognitive function. In this study, possible protective effect of Zingiber officinale, a medicinal plant reputed for neuroprotective effect against oxidative stress-related brain damage, on brain damage and memory deficit induced by focal cerebral ischemia was elucidated. Male adult Wistar rats were administrated an alcoholic extract of ginger rhizome orally 14 days before and 21 days after the permanent occlusion of right middle cerebral artery (MCAO. Cognitive function assessment was performed at 7, 14, and 21 days after MCAO using the Morris water maze test. The brain infarct volume and density of neurons in hippocampus were also determined. Furthermore, the level of malondialdehyde (MDA, superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px in cerebral cortex, striatum, and hippocampus was also quantified at the end of experiment. The results showed that cognitive function and neurons density in hippocampus of rats receiving ginger rhizome extract were improved while the brain infarct volume was decreased. The cognitive enhancing effect and neuroprotective effect occurred partly via the antioxidant activity of the extract. In conclusion, our study demonstrated the beneficial effect of ginger rhizome to protect against focal cerebral ischemia.

  12. Malnutrition during brain growth spurt alters the effect of fluoxetine on aggressive behavior in adult rats.

    Science.gov (United States)

    Barreto-Medeiros, J M; Feitoza, E G; Magalhaes, K; Cabral-Filho, J E; Manhaes-De-Castro, F M; De-Castro, C M; Manhaes-De-Castro, R

    2004-02-01

    Malnutrition effect during the suckling period on aggressive behavior was investigated in adult rats treated and not treated with fluoxetine, a selective serotonin reuptake inhibitor. Sixty-four Wistar male rats were allocated in two groups, according to their mothers' diet during lactation. The well-nourished group was fed by mothers receiving a 23% protein diet; the malnourished one by mothers receiving a 8% protein diet. Following weaning, all rats received the 23% protein diet. On the 90th day after birth, each nutritional group was divided into two subgroups, one receiving a single daily injection of fluoxetine (10 mg/kg) and the other of a saline solution (0.9% NaCl) for 14 days. Treatment with Fluoxetine reduced aggressive response in well-nourished but not in malnourished rats. These findings suggest that the serotoninergic system was affected by malnutrition during the critical period of brain development, and persisted even after a long period of nutritional recovery.

  13. ALA-PDT of glioma cell micro-clusters in BD-IX rat brain

    Science.gov (United States)

    Madsen, Steen J.; Angell-Petersen, Even; Spetalen, Signe; Carper, Stephen W.; Ziegler, Sarah A.; Hirschberg, Henry

    2006-02-01

    A significant contributory factor to the poor prognosis of patients with glioblastoma multiforme is the inability of conventional treatments to eradicate infiltrating glioma cells. A syngeneic rat brain tumor model is used to investigate the effects of aminolevulinic acid (ALA)-mediated photodynamic therapy (PDT) on small clusters of tumor cells sequestered in normal brain. The intrinsic sensitivity of rat glioma cells to PDT was investigated by exposing ALA-incubated cells to a range of radiant exposures and irradiances using 635 nm light. Biodistribution studies were undertaken on tumor-bearing animals in order to determine the tumor selectivity of the photosensitizer following systemic administration (i.p.) of ALA. Effects of ALA-PDT on normal brain and gross tumor were evaluated using histopathology. Effects of PDT on isolated glioma cells in normal brain were investigated by treating animals 48 h after tumor cell implantation: a time when the micro-clusters of cells are protected by an intact blood-brain-barrier (BBB). Rat glioma cells in monolayer are susceptible to ALA-PDT - lower irradiances are more effective than higher ones. Fluorescence microscopy of frozen tissue sections showed that photosensitizer is produced with better than 200:1 tumor-to-normal tissue selectivity following i.p. ALA administration. ALA-PDT resulted in significant damage to both gross tumor and normal brain, however, the treatment failed to prolong survival of animals with newly implanted glioma cells compared to non-treated controls if the drug was delivered either i.p. or directly into the brain. In contrast, animals inoculated with tumor cells pre-incubated in vitro with ALA showed a significant survival advantage in response to PDT.

  14. Multidimensional MRI-CT atlas of the naked mole-rat brain

    Directory of Open Access Journals (Sweden)

    Fumiko eSeki

    2013-12-01

    Full Text Available Naked mole-rats have a variety of distinctive features such as the organisation of a hierarchical society (known as eusociality, extraordinary longevity, and cancer resistance; thus, it would be worthwhile investigating these animals in detail. One important task is the preparation of a brain atlas database that provide comprehensive information containing multidimensional data with various image contrasts, which can be achievable using a magnetic resonance imaging (MRI. Advanced MRI techniques such as diffusion tensor imaging (DTI, which generates high contrast images of fibre structures, can characterise unique morphological properties in addition to conventional MRI. To obtain high spatial resolution images, MR histology, DTI, and X-ray computed tomography (CT were performed on the fixed adult brain. Skull and brain structures were segmented as well as reconstructed in stereotaxic coordinates. Data were also acquired for the neonatal brain to allow developmental changes to be observed. Moreover, in vivo imaging of naked mole-rats was established as an evaluation tool of live animals. The data obtained comprised three-dimensional (3D images with high tissue contrast as well as stereotaxic coordinates. Developmental differences in the visual system were highlighted in particular by DTI. Although it was difficult to delineate optic nerves in the mature adult brain, parts of them could be distinguished in the immature neonatal brain. From observation of cortical thickness, possibility of high somatosensory system development replaced to the visual system was indicated. 3D visualisation of brain structures in the atlas as well as the establishment of in vivo imaging would promote neuroimaging researches towards detection of novel characteristics of eusocial naked mole-rats.

  15. Melatonin reduces traumatic brain injury-induced oxidative stress in the cerebral cortex and blood of rats

    OpenAIRE

    Şenol, Nilgün; Nazıroğlu, Mustafa

    2014-01-01

    Free radicals induced by traumatic brain injury have deleterious effects on the function and antioxidant vitamin levels of several organ systems including the brain. Melatonin possesses antioxidant effect on the brain by maintaining antioxidant enzyme and vitamin levels. We investigated the effects of melatonin on antioxidant ability in the cerebral cortex and blood of traumatic brain injury rats. Results showed that the cerebral cortex β-carotene, vitamin C, vitamin E, reduced glutathione, a...

  16. Enhanced Expression of Aquaporin-9 in Rat Brain Edema Induced by Bacterial Lipopolysaccharides

    Institute of Scientific and Technical Information of China (English)

    Huaili WANG; Runming JIN; Peichao TIAN; Zhihong ZHUO

    2009-01-01

    To investigate the role of AQP9 in brain edema,the expression of AQP9 in an infectious rat brain edema model induced by the injection of lipopolysaccharide (LPS) was examined.Immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated that the expressions of AQP9 mRNA and protein at all observed intervals were significantly increased in LPS-treated animals in comparison with the control animals.Time-course analysis showed that the first signs of blood-brain barrier disruption and the increase of brain water content in LPS-treated animals were evident 6 h after LPS injection,with maximum value appearing at 12 h,which coincided with the expression profiles of AQP9 mRNA and protein in LPS-treated animals.The further correlation analysis revealed strong positive correlations among the brain water content,the disruption of the blood-brain barrier and the enhanced expressions of AQP9 mRNA and protein in LPS-treated animals.These results suggested that the regulation of AQP9 expression may play important roles in water movement and in brain metabolic homeostasis associated with the pathophysiology of brain edema induced by LPS injection.

  17. Effects of Acute Lithium Treatment on Brain Levels of Inflammatory Mediators in Poststroke Rats

    Directory of Open Access Journals (Sweden)

    Matthew Boyko

    2015-01-01

    Full Text Available Stroke is a leading cause of mortality and morbidity worldwide. Few therapeutic options with proven efficacy are available for the treatment of this disabling disease. Lithium is the gold standard treatment for bipolar disorder. Moreover, lithium has been shown to exhibit neuroprotective effects and therapeutic efficacy as a treatment of other neurological disorders. This study was undertaken to examine the effects of lithium on brain inflammatory mediators levels, fever, and mortality in postischemic stroke rats. Ischemic stroke was induced by occlusion of the mid cerebral artery (MCAO. Pretreatment with a single dose of lithium at 2 hours before MCAO induction significantly reduced the elevation in interleukin- (IL- 6 and prostaglandin E2 levels in brain of post-MCAO rats, as compared to vehicle-treated animals. On the other hand, lithium did not affect the elevation in IL-1α, IL-10, IL-12, and tumor necrosis factor-α levels in brain of post-MCAO rats. Moreover, pretreatment with lithium did not alter post-MCAO fever and mortality. These results suggest that acute pretreatment with a single dose of lithium did not markedly affect post-MCAO morbidity and mortality in rats.

  18. Quantitative autoradiographic assessment of sup 55 Fe-RBC distribution in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S.Z.; Nakata, H.; Tajima, A.; Gruber, K.; Acuff, V.; Patlak, C.; Fenstermacher, J. (State Univ. of New York, Stony Brook (USA))

    1990-11-01

    A simple in vivo technique of labeling erythrocytes (RBCs) with {sup 55}Fe was developed for quantitative autoradiography (QAR). This procedure involved injecting 5-6 ml of ({sup 55}Fe)ferrous citrate solution (1 mCi/ml) intraperitoneally into donor rats. The number of labeled RBCs reached a maximum at around 7 days and declined very slowly thereafter. Labeled RBCs were harvested from donor rats and used for RBC volume measurement in awake rats. Brain radioactivity was assayed by QAR, which yielded spatial resolution of greater than 50 microns. Tight nearly irreversible binding of {sup 55}Fe to RBCs was found in vivo and in vitro. More than 99.5% of the {sup 55}Fe in the blood of donor rats was bound to RBCs. Because of this, labeled blood can be taken from donors and injected into recipients without further preparation. The tissue absorption of {sup 55}Fe emissions was the same in gray and white matter. Microvascular RBC volumes measured with {sup 55}Fe-labeled RBCs agreed with those assayed with {sup 51}Cr-labeled RBCs for many, but not all, brain areas. In conclusion, {sup 55}Fe-RBCs can be readily prepared by this technique and accurately quantitated in brain tissue by QAR.

  19. Increased angiotensin II receptors in brain nuclei of DOCA-salt hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Gutkind, J.S.; Kurihara, M.; Saavedra, J.M.

    1988-09-01

    We analyzed angiotensin II (ANG II) receptors by in vitro autoradiography in selective brain nuclei of control, salt-treated (1% NaCl in drinking water), deoxycorticosterone acetate (DOCA)-treated (DOCA pivalate, 25 mg/kg sc weekly), and DOCA-salt-treated (DOCA + salt treatments) uninephrectomized male Wistar-Kyoto rats. After 4 wk of treatment, only the DOCA-salt group developed hypertension. ANG II binding increased in median preoptic nucleus and subfornical organ of salt- and DOCA-treated rats. DOCA-treated rats also showed increased ANG II binding in paraventricular nucleus. DOCA-salt-treated rats showed higher ANG II binding in nucleus of the solitary tract and area postrema, as well as in the areas mentioned before. Although salt and/or DOCA treatments alone increased ANG II receptors in some brain nuclei, after combined DOCA-salt treatment there was significantly higher ANG II binding in all areas, except the median preoptic nucleus. These results suggest that increased ANG II receptors in selected brain areas may play a role in the pathophysiology of mineralocorticoid-salt experimental hypertension.

  20. Na+ K(+)-ATPase activity in response to exogenous dehydroepiandrosterone administration in aging rat brain.

    Science.gov (United States)

    Taha, Asia; Mishra, Monika; Baquer, N Z; Sharma, Deepak

    2008-12-01

    Influence of exogenously administered dehydroepiandrosterone (DHEA) on the activity of Na+ K+ ATPase was investigated in synaptosomal fraction from cerebral cortex, cerebellum, hippocampus and medulla regions of brain of 12 and 22 months old rats. DHEA was administered daily at the dose of 30 mg/kg/body wt, intraperitonially (ip) in both the age groups of rats for 1 month. Results showed that Na+ K+ ATPase activity, increased in DHEA treated rats in both the age groups. In terms of per cent increase, 22 months old animals showed significant increase in Na+ K+ ATPase activity in the synaptosomal fraction of all the four brain regions than in 12 months old DHEA-treated rats. This showed that exogenous DHEA modulated the activity of Na+ K+ ATPase and also protected the age-related loss of membrane integrity and functions. It was concluded that exogenous DHEA might be beneficial in terms of neuroprotection against age-related loss of Na+ K+ ATPase mediated brain functions like learning and memory.

  1. Curcumin Mediated Attenuation of Carbofuran Induced Oxidative Stress in Rat Brain

    Science.gov (United States)

    Jaiswal, Sunil Kumar; Sharma, Ashish; Gupta, Vivek Kumar; Singh, Rakesh Kumar; Sharma, Bechan

    2016-01-01

    The indiscriminate use of carbofuran to improve crop productivity causes adverse effects in nontargets including mammalian systems. The objective of this study was to evaluate carbofuran induced oxidative stress in rat brain stem and its attenuation by curcumin, a herbal product. Out of 6 groups of rats, 2 groups received two different doses of carbofuran, that is, 15 and 30% of LD50, respectively, for 30 days. Out of these, 2 groups receiving same doses of carbofuran were pretreated with curcumin (100 mg/kg body weight). The levels of antioxidants, TBARS, GSH, SOD, catalase, and GST were determined in rat brain stem. The 2 remaining groups served as placebo and curcumin treated, respectively. The data suggested that carbofuran at different doses caused significant alterations in the levels of TBARS and GSH in dose dependent manner. The TBARS and GSH contents were elevated. The activities of SOD, catalase, and GST were significantly inhibited at both doses of carbofuran. The ratio of P/A was also found to be sharply increased. The pretreatment of curcumin exhibited significant protection from carbofuran induced toxicity. The results suggested that carbofuran at sublethal doses was able to induce oxidative stress in rat brain which could be attenuated by curcumin. PMID:27213055

  2. Curcumin Mediated Attenuation of Carbofuran Induced Oxidative Stress in Rat Brain

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Jaiswal

    2016-01-01

    Full Text Available The indiscriminate use of carbofuran to improve crop productivity causes adverse effects in nontargets including mammalian systems. The objective of this study was to evaluate carbofuran induced oxidative stress in rat brain stem and its attenuation by curcumin, a herbal product. Out of 6 groups of rats, 2 groups received two different doses of carbofuran, that is, 15 and 30% of LD50, respectively, for 30 days. Out of these, 2 groups receiving same doses of carbofuran were pretreated with curcumin (100 mg/kg body weight. The levels of antioxidants, TBARS, GSH, SOD, catalase, and GST were determined in rat brain stem. The 2 remaining groups served as placebo and curcumin treated, respectively. The data suggested that carbofuran at different doses caused significant alterations in the levels of TBARS and GSH in dose dependent manner. The TBARS and GSH contents were elevated. The activities of SOD, catalase, and GST were significantly inhibited at both doses of carbofuran. The ratio of P/A was also found to be sharply increased. The pretreatment of curcumin exhibited significant protection from carbofuran induced toxicity. The results suggested that carbofuran at sublethal doses was able to induce oxidative stress in rat brain which could be attenuated by curcumin.

  3. [Protective effect of salidroside against high altitude hypoxia-induced brain injury in rats].

    Science.gov (United States)

    Dong, Xiaoru; Zhang, Xiangnan; Li, Dan; Li, Bin; Wang, Jiye; Meng, Shanshan; Luo, Wenjing; Zhang, Wenbin

    2015-10-01

    To observe the protective effect of salidroside against brain injury in rats exposed to hypobaric hypoxia, and investigate the molecular mechanism of salidroside in the prevention of hypobaric hypoxia-induced brain injury. Rats were placed in experiment module simulating 6000 m altitude to establish acute hypobaric hypoxia-induced brain injury models. Their respiratory frequency was observed and recorded. Cell apoptosis in the hippocampal dentate gyrus (DG) was detected by TUNEL assay; the expressions of Ras homolog family member A (RhoA), phosphorylated extracellular signal-regulated kinase (p-ERK) and phosphorylated c-Jun N-terminal kinase (p-JNK) were detected by Western blotting. After acute exposure to 6000 m altitude, the respiratory frequency of the rats increased remarkably. The simulation of hypobaric hypoxia induced cell apoptosis in hippocampal DG region, and salidroside intervention inhibited the process of cell apoptosis. The expressions of RhoA, p-ERK, p-JNK decreased after hypobaric hypoxia exposure. Salidroside intervention reversed RhoA expression and raised the levels of p-ERK and p-JNK. Acute exposure to hypobaric hypoxia can induce cell apoptosis in rat hippocampal DG, and salidroside can protect the cells from the exposure-induced apoptosis.

  4. Sodium butyrate reverses the inhibition of Krebs cycle enzymes induced by amphetamine in the rat brain.

    Science.gov (United States)

    Valvassori, Samira S; Calixto, Karen V; Budni, Josiane; Resende, Wilson R; Varela, Roger B; de Freitas, Karolina V; Gonçalves, Cinara L; Streck, Emilio L; Quevedo, João

    2013-12-01

    There is increasing interest in the possibility that mitochondrial impairment may play an important role in bipolar disorder (BD). The Krebs cycle is the central point of oxidative metabolism, providing carbon for biosynthesis and reducing agents for generation of ATP. Recently, studies have suggested that histone deacetylase (HDAC) inhibitors may have antimanic effects. The present study aims to investigate the effects of sodium butyrate (SB), a HDAC inhibitor, on Krebs cycle enzymes activity in the brain of rats subjected to an animal model of mania induced by D-amphetamine (D-AMPH). Wistar rats were first given D-AMPH or saline (Sal) for 14 days, and then, between days 8 and 14, rats were treated with SB or Sal. The citrate synthase (CS), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH) were evaluated in the prefrontal cortex, hippocampus, and striatum of rats. The D-AMPH administration inhibited Krebs cycle enzymes activity in all analyzed brain structures and SB reversed D-AMPH-induced dysfunction analyzed in all brain regions. These findings suggest that Krebs cycle enzymes' inhibition can be an important link for the mitochondrial dysfunction seen in BD and SB exerts protective effects against the D-AMPH-induced Krebs cycle enzymes' dysfunction.

  5. Preliminary observation of genes specifically expressed in brain tissues during stroke-like episodes in rats

    Institute of Scientific and Technical Information of China (English)

    WANG Xian-mei; ZHAO Bin; ZHU Shan-jun; ZHU Zhi-ming; ZHANG Qian; HUI Ru-tai

    2001-01-01

    Objective: To observe the difference of gene expressions of brain tissues during apoplectic episodes and those of normal brain in Wistar rats in order to study the pathological mechanism of apoplexy. Methods: A rat model of hypertension was established with the administration of cold stimulus and high salt intake as the environmental risk factors.Apoplexy occurred in the rats because of hypertension. Suppression subtractive hybridization(SSH) was used to identify and analyze the differential genes specifically expressed in cerebral tissues of stoke group and control rats. Results: A total of 226 genes out of the 228 were usable and analyzed. The average length of the 226 genes was (286.6±120.3) bp with a range from 50 bp to 619 bp. And 126 clones out of the 226 showed a sequence with significant identity to the known genes; 78 clones demonstrated homogenous sequences to the existing ESTs ofdbEST, but no one of the 78 showed sequence with identity to that of known genes; and remaining 22 were novel transrcipts exhibiting no similarity to any known sequences. All the clones which were highly homogenous to the known genes were categorized on the basis of their function. It was found that 26.5% of the mitochodrial genes in brain tissues underwent changes after apoplexy and the changes showed a twofold relationship of cause and effect. Conclusion: Environmental factors are able to induce changes of gene expression, which may increase the sensitivity to apoplectic stroke.

  6. A multidimensional magnetic resonance histology atlas of the Wistar rat brain.

    Science.gov (United States)

    Johnson, G Allan; Calabrese, Evan; Badea, Alexandra; Paxinos, George; Watson, Charles

    2012-09-01

    We have produced a multidimensional atlas of the adult Wistar rat brain based on magnetic resonance histology (MRH). This MR atlas has been carefully aligned with the widely used Paxinos-Watson atlas based on optical sections to allow comparisons between histochemical and immuno-marker data, and the use of the Paxinos-Watson abbreviation set. Our MR atlas attempts to make a seamless connection with the advantageous features of the Paxinos-Watson atlas, and to extend the utility of the data through the unique capabilities of MR histology: a) ability to view the brain in the skull with limited distortion from shrinkage or sectioning; b) isotropic spatial resolution, which permits sectioning along any arbitrary axis without loss of detail; c) three-dimensional (3D) images preserving spatial relationships; and d) widely varied contrast dependent on the unique properties of water protons. 3D diffusion tensor images (DTI) at what we believe to be the highest resolution ever attained in the rat provide unique insight into white matter structures and connectivity. The 3D isotropic data allow registration of multiple data sets into a common reference space to provide average atlases not possible with conventional histology. The resulting multidimensional atlas that combines Paxinos-Watson with multidimensional MRH images from multiple specimens provides a new, comprehensive view of the neuroanatomy of the rat and offers a collaborative platform for future rat brain studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. A statistical parametric mapping toolbox used for voxel-wise analysis of FDG-PET images of rat brain.

    Directory of Open Access Journals (Sweden)

    Binbin Nie

    Full Text Available PURPOSE: PET (positron emission tomography imaging researches of functional metabolism using fluorodeoxyglucose (18F-FDG of animal brain are important in neuroscience studies. FDG-PET imaging studies are often performed on groups of rats, so it is desirable to establish an objective voxel-based statistical methodology for group data analysis. MATERIAL AND METHODS: This study establishes a statistical parametric mapping (SPM toolbox (plug-ins named spmratIHEP for voxel-wise analysis of FDG-PET images of rat brain, in which an FDG-PET template and an intracranial mask image of rat brain in Paxinos & Watson space were constructed, and the default settings were modified according to features of rat brain. Compared to previous studies, our constructed rat brain template comprises not only the cerebrum and cerebellum, but also the whole olfactory bulb which made the later cognitive studies much more exhaustive. And with an intracranial mask image in the template space, the brain tissues of individuals could be extracted automatically. Moreover, an atlas space is used for anatomically labeling the functional findings in the Paxinos & Watson space. In order to standardize the template image with the atlas accurately, a synthetic FDG-PET image with six main anatomy structures is constructed from the atlas, which performs as a target image in the co-registration. RESULTS: The spatial normalization procedure is evaluated, by which the individual rat brain images could be standardized into the Paxinos & Watson space successfully and the intracranial tissues could also be extracted accurately. The practical usability of this toolbox is evaluated using FDG-PET functional images from rats with left side middle cerebral artery occlusion (MCAO in comparison to normal control rats. And the two-sample t-test statistical result is almost related to the left side MCA. CONCLUSION: We established a toolbox of SPM8 named spmratIHEP for voxel-wise analysis of FDG

  8. Fertility, aging and the brain neuroendocrinological studies in female rats

    NARCIS (Netherlands)

    Franke, A.N.

    2003-01-01

    It is well known that fertility decreases in female mammals with advancing age. In women this decrease already starts around the age of 30 and shows a large variation between individuals. The aim of this thesis was to elucidate changes in the reproductive system, especially in the brain, that may un

  9. Tenoxicam modulates antioxidant redox system and lipid peroxidation in rat brain.

    Science.gov (United States)

    Naziroğlu, Mustafa; Uğuz, Abdulhadi Cihangir; Gokçimen, Alpaslan; Bülbül, Metin; Karatopuk, Dilek Ulusoy; Türker, Yasin; Cerçi, Celal

    2008-09-01

    We investigated effects of two doses of Tenoxicam, a type 2 cyclooxygenase inhibitor, administration on lipid peroxidation and antioxidant redox system in cortex of the brain in rats. Twenty-two male Wistar rats were randomly divided into three groups. First group was used as control. 10 and 20 mg/kg body weight Tenoxicam were intramuscularly administrated to rats constituting the second and third groups for 10 days, respectively. Both dose of Tenoxicam administration resulted in significant increase in the glutathione peroxidase activity, reduced glutathione and vitamins C and E of cortex of the brain. The lipid peroxidation levels in the cortex of the brain were significantly decreased by the administration. Vitamin A and beta-carotene concentration was not affected by the administration. There was no statistical difference in all values between 10 and 20 mg Tenoxicam administrated groups. In conclusion, treatment of brain with 10 and 20 mg Tenoxicam has protective effects on the oxidative stress by inhibiting free radical and supporting antioxidant redox system.

  10. Near-infrared oxymeter prototype for noninvasive analysis of rat brain oxygenation

    Science.gov (United States)

    Crespi, Francesco; Donini, Maurizio; Bandera, Andrea; Heidbreder, Christian; Salvatori, Giorgia; Rovati, Luigi

    2004-09-01

    The feasibility of non-invasive analysis of brain activities was studied in the attempt to overcome the major limitation of actual in vivo methodologies i.e. invasiveness. Optic fibre probes were used as optical head of a novel, highly sensitive near infrared continuous wave spectroscopy (CW-NIR) instrument. This prototype was designed for non-invasive analysis of the two main forms of haemoglobin: oxy-haemoglobin (HbO2) and deoxy-haemoglobin (Hb), chromophores present in biological tissues. It was tested in peripheral tissue (human gastrocnemius muscle) and then reset to perform measurement on rat brain. In animal studies, the optical head was firmly placed using stereotaxic apparatus upon the sagittal line of anaesthetised adult rat's head, without any surgery. Then pharmacological treatments with saline (300μl s.c.) amphetamine (2mg/kg) or nicotine (0.4mg/kg) were performed. Within 10-20 min amphetamine substantially increased HbO2 and reduced Hb control levels. Nicotine produced a rapid initial increase followed by a decrease of HbO2. In contrast to amphetamine, nicotine treatment also reduced Hb and blood volume. These results support the capacity of our CW-NIR prototype to measure non-invasively HbO2 and Hb levels in the rat brain, markers of the degree of tissue oxygenation, index of blood level then of the state of brain metabolism.

  11. Role of 5-hydroxytryptamine in the regulation of brain neuropeptides in normal and diabetic rat

    Science.gov (United States)

    Kolta, Malak G.; Williams, Byron B.; Soliman, Karam F. A.

    1986-01-01

    The effect of 5-hydroxytryptamine (5-HT) alteration on brain dopamine (DA), norepinephrine (NE), beta-endorphin (beta-E), and immunoreactive insulin was studied in Sprague-Dawley diabetic and control rats. Diabetes was induced using alloxan (45 mg/kg), 15 days prior to sacrificing. Both control and diabetic animals were treated with either p-chlorophenylalanine (PCPA, 300 mg/kg) three days prior to sacrificing or fluoxetine (10 mg/kg) twice daily for three days. PCPA treatment significantly decreased brain content of 5-HT and 5-hydroxyindolel acetic acid, while it caused significant increase and decrease in brain beta-E and insulin levels, respectively, in both normal and diabetic rat. Meanwhile, the administration of fluoxetine resulted in significant increase in brain content of 5-HT, DA, NE and insulin but significant decline of beta-E in diabetic and saline control rats. The results of this experiment indicate that 5-HT may be regulating both beta-E and insulin regardless of the availability of pancreatic insulin.

  12. Chronic treatment with simvastatin upregulates muscarinic M1/4 receptor binding in the rat brain.

    Science.gov (United States)

    Wang, Q; Zengin, A; Ying, W; Newell, K A; Wang, P; Yeo, W; Wong, P T-H; Yenari, M A; Huang, X-F

    2008-06-26

    Statins are increasingly being used for the treatment of a variety of conditions beyond their original indication for cholesterol lowering. We previously reported that simvastatin affected the dopaminergic system in the rat brain. This study aims to investigate regional changes of muscarinic M1/4 receptors in the rat brain after 4-week administration of simvastatin (1 or 10 mg/kg/day). M1/4 receptor distribution and alterations in the post-mortem rat brain were detected by [(3)H]pirenzepine binding autoradiography. Simvastatin (1 mg/kg/day) increased [(3)H]pirenzepine binding, predominantly in the prefrontal cortex (171%, Ppirenzepine binding were observed in the examined regions following simvastatin (10 mg/kg/day) treatment. Our results also provide strong evidence that chronic simvastatin administration, especially at a low dosage, up-regulates M1/4 receptor binding, which is likely to be independent of its muscarinic agonist-like effect. Alterations in [(3)H]pirenzepine binding in the examined brain areas may represent the specific regions that mediate the clinical effects of simvastatin treatment on cognition and memory via the muscarinic cholinergic system. These findings contribute to a better understanding of the critical roles of simvastatin in treating neurodegenerative disorders, via muscarinic receptors.

  13. The effects of different hyperbaric oxygen manipulations in rats after traumatic brain injury.

    Science.gov (United States)

    Yang, Yang; Zhang, Yong-Gang; Lin, Guo-An; Xie, He-Qiu; Pan, Hai-Tao; Huang, Ben-Qing; Liu, Ji-Dong; Liu, Hui; Zhang, Nan; Li, Li; Chen, Jian-Hua

    2014-03-20

    The protective effects of hyperbaric oxygenation following traumatic brain injury have been widely investigated; however, few studies have made systematic comparisons between the different hyperbaric oxygenation manipulations and their corresponding effects. In this study, male Sprague-Dawley rats were observed at 4h, 15d and 75d after traumatic brain injury. The effects of the different hyperbaric oxygenation manipulations on the rats were compared based on morphological, molecular biological and behavioral tests. Our results showed that hyperbaric oxygenation inhibited cell apoptosis in the rat hippocampus and improved their physiological functions. The effects observed in the hyperbaric oxygen-early group were better than the hyperbaric oxygen-delayed group, and the hyperbaric oxygen-early-delayed group demonstrated the best effects among all the groups. Our results showed the hyperbaric oxygenation was recommended early and delayed post-traumatic brain injury and exposure to hyperbaric oxygenation should be prolonged. These findings provide new ideal therapeutic insight for the clinical treatment of traumatic brain injury.

  14. Increased Arousal Levels and Decreased Sleep by Brain Music in Rats

    Institute of Scientific and Technical Information of China (English)

    Guang-Zhan Fang; Chun-Peng Zhang; Dan Wu; Yang Xia; Yong-Xiu Lai; De-Zhong Yao

    2009-01-01

    More and more studies have been reported on whether music and other types of auditory stimulation would improve the quality of sleep.Many of these studies have found significant results,but others argue that music is not significantly better than the tones or control conditions in improving sleep.For further understanding the relationship between music and sleep or music and arousal,the present study therefore examines the effects of brain music on sleep and arousal by means of biofeedback.The music is from the transformation of rapid eye movement (REM) sleep electroencephalogram (EEG) of rats using an algorithm in the Chengdu Brain Music (CBM) system.When the brain music was played back to rats,EEG data were recorded to assess the efficacy of music to induce or improve sleep,or increase arousal levels by sleep staging,etc.Our results demonstrate that exposure to the brain music increases arousal levels and decreases sleep in rats,and the underlying mechanism of decreased non-rapid eye movement (NREM) and REM sleep may be different.

  15. Effect of a chronic GSM 900 MHz exposure on glia in the rat brain.

    Science.gov (United States)

    Ammari, Mohamed; Brillaud, Elsa; Gamez, Christelle; Lecomte, Anthony; Sakly, Mohsen; Abdelmelek, Hafedh; de Seze, René

    2008-01-01

    Extension of the mobile phone technology raises concern about the health effects of 900 MHz microwaves on the central nervous system (CNS). In this study we measured GFAP expression using immunocytochemistry method, to evaluate glial evolution 10 days after a chronic exposure (5 days a week for 24 weeks) to GSM signal for 45 min/day at a brain-averaged specific absorption rate (SAR)=1.5 W/kg and for 15 min/day at a SAR=6 W/kg in the following rat brain areas: prefrontal cortex (PfCx), caudate putamen (Cpu), lateral globus pallidus of striatum (LGP), dentate gyrus of hippocampus (DG) and cerebellum cortex (CCx). In comparison to sham or cage control animals, rats exposed to chronic GSM signal at 6 W/kg have increased GFAP stained surface areas in the brain (pGSM at 1.5 W/kg did not increase GFAP expression. Our results indicated that chronic exposure to GSM 900 MHz microwaves (SAR=6 W/kg) may induce persistent astroglia activation in the rat brain (sign of a potential gliosis).

  16. Halofuginone Inhibits Angiogenesis and Growth in Implanted Metastatic Rat Brain Tumor Model-an MRI Study

    Directory of Open Access Journals (Sweden)

    Rinat Abramovitch

    2004-09-01

    Full Text Available Tumor growth and metastasis depend on angiogenesis; therefore, efforts are made to develop specific angiogenic inhibitors. Halofuginone (HF is a potent inhibitor of collagen type α1(I. In solid tumor models, HF has a potent antitumor and antiangiogenic effect in vivo, but its effect on brain tumors has not yet been evaluated. By employing magnetic resonance imaging (MRI, we monitored the effect of HF on tumor progression and vascularization by utilizing an implanted malignant fibrous histiocytoma metastatic rat brain tumor model. Here we demonstrate that treatment with HF effectively and dose-dependently reduced tumor growth and angiogenesis. On day 13, HF-treated tumors were fivefold smaller than control (P < .001. Treatment with HF significantly prolonged survival of treated animals (142%; P = .001. In HF-treated rats, tumor vascularization was inhibited by 30% on day 13 and by 37% on day 19 (P < .05. Additionally, HF treatment inhibited vessel maturation (P = .03. Finally, in HF-treated rats, we noticed the appearance of a few clusters of satellite tumors, which were distinct from the primary tumor and usually contained vessel cores. This phenomenon was relatively moderate when compared to previous reports of other antiangiogenic agents used to treat brain tumors. We therefore conclude that HF is effective for treatment of metastatic brain tumors.

  17. Minor Functional Deficits in Basic Response Patterns for Reinforcement after Frontal Traumatic Brain Injury in Rats.

    Science.gov (United States)

    Vonder Haar, Cole; Winstanley, Catharine A

    2016-10-15

    Traumatic brain injury (TBI) is a major contributor to numerous psychiatric conditions and chronic behavioral dysfunction. Recent studies in experimental brain injury have begun to adopt operant methodologies to assess these deficits, all of which rely on the process of reinforcement. No studies have directly examined how reinforced behaviors are affected by TBI, however. The current study assessed performance under the four most common schedules of reinforcement (fixed ratio, variable ratio, fixed interval, variable interval) and one higher order schedule assessing motivation (progressive ratio) after bilateral, pre-frontal controlled cortical impact injury. TBI-induced differences on the basic schedules were minor, with the exception of the variable ratio, where increased efficacy (more reinforcers, higher response rates, lower interresponse times) at higher requirements was observed as a result of brain injury. Performance on the progressive ratio schedule showed some gross differences between the groups, in that sham rats became more efficient under this schedule while injured rats perseverated in lever pressing. Further, injured rats were specifically impaired at lower response requirements on the progressive ratio. Taken together, these findings indicate that simple reinforced behaviors are mostly unaffected after TBI, except in the case of variable ratio schedules, but the altered performance on the higher-order progressive ratio schedule suggests changes involving motivation or potentially perseveration. These findings validate operant measures of more complex behaviors for brain injury, all of which rely on reinforcement and can be taken into consideration when adapting and developing novel functional assessments.

  18. Rifaximin, but not growth factor 1, reduces brain edema in cirrhotic rats

    Institute of Scientific and Technical Information of China (English)

    Gemma (ò)dena; Mireia Miquel; Anna Serafín; Amparo Galan; Rosa Morillas; Ramon Planas; Ramon Bartolí

    2012-01-01

    AIM:To compare rifaximin and insulin-like growth factor (IGF)-1 treatment of hyperammonemia and brain edema in cirrhotic rats with portal occlusion.METHODS:Rats with CCl4-induced cirrhosis with ascites plus portal vein occlusion and controls were randomized into six groups:Cirrhosis; Cirrhosis + IGF-1;Cirrhosis + rifaximin; Controls; Controls + IGF-1; and Controls + rifaximin.An oral glutamine-challenge test was performed,and plasma and cerebral ammonia,glucose,bilirubin,transaminases,endotoxemia,brain water content and ileocecal cultures were measured and liver histology was assessed.RESULTS:Rifaximin treatment significantly reduced bacterial overgrowth and endotoxemia compared with cirrhosis groups,and improved some liver function parameters (bilirubin,alanine aminotransferase and aspartate aminotransferase).These effects were associated with a significant reduction in cerebral water content.Blood and cerebral ammonia levels,and area-underthe-curve values for oral glutamine-challenge tests were similar in rifaximin-treated cirrhotic rats and control group animals.By contrast,IGF-1 administration failed to improve most alterations observed in cirrhosis.CONCLUSION:By reducing gut bacterial overgrowth,only rifaximin was capable of normalizing plasma and brain ammonia and thereby abolishing low-grade brain edema,alterations associated with hepatic encephalopathy.

  19. Possible effects of rosuvastatin on noise-induced oxidative stress in rat brain.

    Science.gov (United States)

    Ersoy, Alevtina; Koc, Emine Rabia; Sahin, Semsettin; Duzgun, Ulkuhan; Acar, Burcu; Ilhan, Atilla

    2014-01-01

    The problem of noise has recently gained more attention as it has become an integral part of our daily lives. However, its influence has yet to be fully elucidated. Other than being an unpleasant stimulus, noise may cause health disorders through annoyance and stress, including oxidative stress. Rosuvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, may possess antioxidant properties. Based on rat models, our project investigates the effect of rosuvastatin on noise-induced oxidative stress in the brain tissue. Thirty-two male Wistar albino rats were used. The rats were divided into four groups: Noise exposure plus rosuvastatin usage, only noise exposure, only rosuvastatin usage, and control. After the data had been collected, oxidant and antioxidant parameters were analyzed in the cerebral cortex, brain stem, and cerebellum. Results indicated that superoxide dismutase values were significantly decreased in the cerebral cortex, while malondialdehyde values in the brainstem and cerebellum were significantly increased in the group with only noise exposure. Superoxide dismutase values in the brainstem were significantly increased, but nitric oxide values in the cerebellum and brainstem and malondialdehyde values in the cerebellum and cerebral cortex were significantly decreased in the group where only rosuvastatin was used. During noise exposure, the use of rosuvastatin caused significantly increased superoxide dismutase values in the cerebral cortex and brainstem, but significantly reduced malondialdehyde values in the brain stem. Consequently, our data show that brain tissue was affected by oxidative stress due to continued exposure to noise. This noise-induced stress decreases with rosuvastatin therapy.

  20. Intranasal brain-derived neurotrophic factor protects brain from ischemic insult via modulating local inflammation in rats.

    Science.gov (United States)

    Jiang, Y; Wei, N; Lu, T; Zhu, J; Xu, G; Liu, X

    2011-01-13

    Inflammation plays a vital role in the pathogenesis of ischemic stroke. Brain-derived neurotrophic factor (BDNF) may protect brain tissues from ischemic injury. In this study, we investigated whether intranasal BDNF exerted neuroprotection against ischemic insult by modulating the local inflammation in rats with ischemic stroke. Rats were subjected to temporary occlusion of the right middle cerebral artery (120 min) and intranasal BDNF or vehicle was adminstrated 2 h after reperfusion. Infarct volume and neuron injury were measured using triphenyltetrazolium chloride, Nissl staining and TUNEL assay, respectively. Microglia were detected by immunohistofluorescence. Tumor necrosis factor-α, interleukin10 and mRNAs were evaluated by enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction. DNA-binding activity of nuclear factor-kappa B was measured by electrophoretic mobility shift assay. BDNF level in brain tissues was markedly raised following intranasal administration. There were more Nissl positive and less TUNEL positive neurons in BDNF group than in control group while intranasal BDNF did not reduce the infarct volume significantly (n=6, 0.27±0.04 vs. 0.24±0.05, P>0.05). BDNF increased the number of activated microglia (OX-42 positive) and phagocytotic microglia (ED1 positive). BDNF suppressed tumor necrosis factor-α and mRNA expression while increasing the interleukin10 and mRNA expression. BDNF also increased DNA-binding activity of nuclear factor-kappa B (n=6, 49.78±1.23 vs. 52.89±1.64, PBDNF might protect the brain against ischemic insult by modulating local inflammation via regulation of the levels of cellular, cytokine and transcription factor in the experimental stroke.

  1. Action of peripherally administered cholecystokinin on monoaminergic and GABAergic neurons in the rat brain.

    Directory of Open Access Journals (Sweden)

    Kaneyuki,Takao

    1989-06-01

    Full Text Available In an acute study, cholecystokinin octapeptide sulfate (CCK in doses of 1, 10 or 100 micrograms/kg body weight was injected intraperitoneally into rats just prior to the dark cycle. Rats were sacrificed two hours following the CCK injection. Norepinephrine levels were elevated in the dorsal amygdala of rats injected with 10 micrograms of CCK as well as in the septum of rats injected with 1 and 10 micrograms of CCK. The dopamine level in the septum of rats injected with 1 microgram of CCK as well as the gamma-aminobutyric acid (GABA level in the lateral hypothalamus of rats injected with 10 micrograms of CCK were also elevated. In a chronic study, CCK (1 microgram/kg body weight/h was subcutaneously infused into rats with Alzet osmotic minipump for seven consecutive days. The daily food consumption did not change during the 7 days of CCK infusion. The dopamine turnover in the striatum accelerated and the GABA level increased. On the contrary, dopamine metabolism in the substantia nigra and locus coeruleus decreased. Furthermore, the serotonin level in the substantia nigra decreased. Norepinephrine levels decreased in the nucleus paraventricularis, the locus coeruleus and the substantia nigra. The results suggest that peripherally administered CCK may act on the monoaminergic neurons and GABAergic neurons in the brain.

  2. Erythropoietin can promote survival of cerebral cells by downregulating Bax gene after traumatic brain injury in rats

    Directory of Open Access Journals (Sweden)

    Liao Z

    2009-01-01

    Full Text Available Background : Traumatic brain injury (TBI is an important cause of adult mortality and morbidity. Erythropoietin (Epo has been shown to promote the viability of cerebral cells by upregulating Bcl-2 gene; however, Epo may exert its antiapoptotic effect via the differential regulation of the expression of genes involved in the apoptotic process. Aim : The present study examined the neuroprotective effect of Epo as a survival factor through the regulation of the Bax. Materials and Methods : Wistar rats were randomly divided into three groups: Recombinant human EPO treated (rhEPO TBI, vehicle-treated TBI, and sham-operated. Traumatic brain injury was induced by the Feeney free-falling model. Rats were killed 5, 12, 24, 72, 120, or 168 h after TBI. Regulation of Bcl-2 was detected by reverse transcription-polymerase chain reaction (RT-PCR, western blotting and immunofluorescence. Results : Bax mRNA and protein levels were lower in the rhEPO-treated rat brains than in the vehicle-treated rat brains. Induction of Bax expression peaked at 24 h and remained stable for 72-120 h in vehicle-treated rat brains, whereas induction of Bax expression was only slightly elevated in rhEPO-treated rat brains. The number of TdT-mediated dUTP Nick-End Labeling(TUNEL-positive cells in the rhEPO-treated rat brains was far fewer than in the vehicle-treated rat brains. Conclusions : Epo exerts neuroprotective effect against traumatic brain injury via reducing Bax gene expression involved in inhibiting TBI-induced neuronal cell death.

  3. Propofol Inhibits NLRP3 Inflammasome and Attenuates Blast-Induced Traumatic Brain Injury in Rats.

    Science.gov (United States)

    Ma, Jie; Xiao, Wenjing; Wang, Junrui; Wu, Juan; Ren, Jiandong; Hou, Jun; Gu, Jianwen; Fan, Kaihua; Yu, Botao

    2016-12-01

    Increasing evidence has demonstrated that inflammatory response plays a crucial role in the pathogenesis of secondary injury following blast-induced traumatic brain injury (bTBI). Propofol, a lipid-soluble intravenous anesthetic, has been shown to possess therapeutic benefit during neuroinflammation on various brain injury models. Recent findings have proved that the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome involved in the process of the inflammatory response following brain trauma, may probably be a promising target in the treatment of bTBI. Rats were randomly divided into six groups (n = 8): normal group; bTBI-12 and 24 h group; bTBI-12 h and bTBI-24 h group treated with propofol; and bTBI treated with control dimethyl sulfoxide (DMSO) group. The effect of propofol on the expression and activation of NLRP3 inflammasome and the degree of oxidative stress and inflammatory cascades, as well as the brain trauma biomarkers were evaluated in rats suffering from bTBI. The enhanced expressions and activation of NLRP3 inflammasome in the cerebral cortex of bTBI rats were substantially suppressed by the administration of propofol, which was paralleled with the decreased oxidative stress, cytokines production, and the amelioration of cerebral cortex damage. Our results have, for the first time, revealed that over-activation of NLRP3 inflammasome in the cerebral cortex may be involved in the process of neuroinflammation during the secondary injury of bTBI in rats. Propofol might relieve the inflammatory response and attenuate brain injury by inhibiting ROS and reluctant depressing NLRP3 inflammasome activation and pro-inflammatory cytokines maturation.

  4. Differential effects of antipsychotics on expression of antioxidant enzymes and membrane lipid peroxidation in rat brain.

    Science.gov (United States)

    Parikh, Vinay; Khan, Mohammad M; Mahadik, Sahebarao P

    2003-01-01

    Typical and atypical antipsychotics significantly differ in their neurotransmitter receptor affinity profiles, and their efficacy and side effects in schizophrenic patients. Typical antipsychotics have been found to increase the oxidative (i.e. free radical-mediated) cellular injury in rats. Since schizophrenia also involves oxidative injury, the understanding of differential effects of these antipsychotics on expression of antioxidant enzymes and oxidative injury may be very critical. The effect of chronic exposure of haloperidol (HAL), a typical antipsychotic, was compared to effects of risperidone (RIS) or clozapine (CLZ) or olanzapine (OLZ), atypical antipsychotics on antioxidant defense enzymes and lipid peroxidation in the rat brain. The levels of antioxidant enzymes and hydroxyalkenals (HAEs) were measured in rat brain cytosol and fatty acids were measured in brain cell membranes. Chronic HAL treatment for both 45 and 90 days significantly decreased manganese-superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD) and catalase (CAT) activity with parallel marked increase in (HAEs), a marker of lipid peroxidation in rat brain. The levels of enzymatic activity very well correlated with the levels of enzyme proteins indicating that the changes were probably in the expression of net protein. However, RIS, CLZ and OLZ treatments did not produce any alterations in the levels of antioxidant enzymes and HAEs, both after 45 and 90 days. There were no alterations in the levels of saturated as well as polyunsaturated fatty acids in brain membranes. These findings indicate that chronic administration of HAL, but none of the studied atypicals induce oxidative stress by persistent changes in the levels of antioxidant enzymes and cause membrane lipid peroxidation.

  5. Brain antioxidant markers, cognitive performance and acetylcholinesterase activity of rats: efficiency of Sonchus asper

    Directory of Open Access Journals (Sweden)

    Khan Rahmat

    2012-05-01

    Full Text Available Abstract Background Sonchus asper (SA is traditionally used as a folk medicine to treat mental disorders in Pakistan. The aim of this study was to investigate the effect of polyphenolic rich methanolic fraction of SA on cognitive performance, brain antioxidant activities and acetylcholinesterase activity in male rats. Methods 30 male Sprague–Dawley rats were equally divided into three groups in this study. Animals of group I (control received saline (vehicle, group II received SA (50 mg/kg body weight (b.w., and group III treated with SA (100 mg/kg b.w., orally in dimethyl sulphoxide (DMSO for 7 days. The effect of SA was checked on rat cognitive performance, brain antioxidatant and acetylcholinesterase activities. Evaluation of learning and memory was assessed by a step-through a passive avoidance test on day 6 after two habituation trials and an initial acquisition trial on day 5. Antioxidant potential was determined by measuring activities of superoxide dismutase (SOD, catalase (CAT, contents of thiobarbituric acid reactive substances (TBARS and reduced glutathione (GSH in whole-brain homogenates. Acetylcholinesterase (AChE activity was determined by the colorimetric method. Results Results showed that 100 mg/kg b.w., SA treated rats exhibited a significant improvement in learning and memory (step-through latency time. SA administration reduced lipid peroxidation products and elevated glutathione levels in the SA100-treated group. Furthermore, salt and detergent soluble AChE activity was significantly decreased in both SA-treated groups. Short-term orally supplementation of SA showed significant cognitive enhancement as well as elevated brain antioxidant enzymes and inhibited AChE activity. Conclusion These findings stress the critical impact of Sonchus asper bioactive components on brain function.

  6. Changes of interleukin-1β, tumor necrosis factor α and interleukin-6 in brain and plasma after brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    朱涛; 姚智; 袁汉娜; 陆伯刚; 杨树源

    2004-01-01

    Objective: To study the changes of interleukin-1 β (IL-1β), tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) levels in brain and plasma after brain injury and to assess the relationship between the cytokine levels and injury severity in rats. Methods: A total of 51 male Wistar rats, weighing 280-340 g, were anesthetized with chloral hydrate (400 mg/kg body weight) through intraperitoneal injection and fixed on a stereotaxic instrument. Severe brain injury was created in 16 rats (severe injury group) and moderate brain injury in 18 rats (moderate injury group) by a fluid percussion model, and cytokine levels of IL-1β, TNFα and IL-6 were measured with biological assay. And sham operation was made on the other 17 rats (control group). Results: In the control group, the levels of IL-1β, TNFα and IL-6 were hardly detected in the cortex of the rats, but in the ipsilateral cortex of the rats in both injury groups, they increased obviously at 8 hours after injury. The increasing degree of these cytokines had no significant difference between the two injury groups. The levels of IL-6 in the plasma of all the rats increased slightly, whereas the levels of IL-1β and TNFα were undetectable. Conclusions: The increase of IL-1β, TNFα and IL-6 levels is closely related to brain injury. The increased cytokine levels in the central nervous system are not parallel to those in the peripheral blood. It suggests that inflammatory cytokines play important roles in the secondary neural damage after brain injury.

  7. Functional brain fluorescence plurimetry in rat by implantable concatenated CMOS imaging system.

    Science.gov (United States)

    Kobayashi, Takuma; Masuda, Hiroyuki; Kitsumoto, Chikara; Haruta, Makito; Motoyama, Mayumi; Ohta, Yasumi; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Shiosaka, Sadao; Ohta, Jun

    2014-03-15

    Measurement of brain activity in multiple areas simultaneously by minimally invasive methods contributes to the study of neuroscience and development of brain machine interfaces. However, this requires compact wearable instruments that do not inhibit natural movements. Application of optical potentiometry with voltage-sensitive fluorescent dye using an implantable image sensor is also useful. However, the increasing number of leads required for the multiple wired sensors to measure larger domains inhibits natural behavior. For imaging broad areas by numerous sensors without excessive wiring, a web-like sensor that can wrap the brain was developed. Kaleidoscopic potentiometry is possible using the imaging system with concatenated sensors by changing the alignment of the sensors. This paper describes organization of the system, evaluation of the system by a fluorescence imaging, and finally, functional brain fluorescence plurimetry by the sensor. The recorded data in rat somatosensory cortex using the developed multiple-area imaging system compared well with electrophysiology results.

  8. Nonparallel changes in brain monoamines of pyridoxine-deficient growing rats.

    Science.gov (United States)

    Dakshinamurti, K; LeBlancq, W D; Herchl, R; Havlicek, V

    1976-11-23

    The effects of a large number of neurotropic drugs have been attributed to changes in the metabolism of 5-hydroxytryptamine. The aromatic amino acid decarboxylase considered to decarboxylate both dihydroxyphenylalanine and 5-hydroxytryptophan requires pyridoxal phosphate as coenzyme. Thus, in pyridoxine deficiency one would expect a decrease of serotonin as well as the catecholamines of the brain. In the present study we have found a very significant decrease in brain serotonin of the pyridoxine-deficient growing rat. However, the brain levels of norepinephrine and dopamine were not altered. This decrease in serotonin does not result from a decrease either in the brain level of trytophan or the activity of tryptophan hydroxylase. Increased degradation of serotonin measured by the levels of its metabolite, 5-hydroxyindoleacetic acid is also excluded, thus suggesting the possibility that the decarboxylation of 5-hydroxytryptophan is decreased in pyridoxine deficiency.

  9. Liver irradiation causes distal bystander effects in the rat brain and affects animal behaviour.

    Science.gov (United States)

    Kovalchuk, Anna; Mychasiuk, Richelle; Muhammad, Arif; Hossain, Shakhawat; Ilnytskyy, Slava; Ghose, Abhijit; Kirkby, Charles; Ghasroddashti, Esmaeel; Kovalchuk, Olga; Kolb, Bryan

    2016-01-26

    Radiation therapy can not only produce effects on targeted organs, but can also influence shielded bystander organs, such as the brain in targeted liver irradiation. The brain is sensitive to radiation exposure, and irradiation causes significant neuro-cognitive deficits, including deficits in attention, concentration, memory, and executive and visuospatial functions. The mechanisms of their occurrence are not understood, although they may be related to the bystander effects.We analyzed the induction, mechanisms, and behavioural repercussions of bystander effects in the brain upon liver irradiation in a well-established rat model.Here, we show for the first time that bystander effects occur in the prefrontal cortex and hippocampus regions upon liver irradiation, where they manifest as altered gene expression and somewhat increased levels of γH2AX. We also report that bystander effects in the brain are associated with neuroanatomical and behavioural changes, and are more pronounced in females than in males.

  10. Protective effects of tetrandrine on brain cells in phenobarbital-dependent and -withdrawn rats.

    Science.gov (United States)

    Han, Bin; Fu, Ping; Ye, Yun; Zhang, Hong; Wang, Guojun

    2015-03-01

    The aim of this study was to investigate the effects of tetrandrine (Tet) on the brain cells of phenobarbital‑dependant and ‑withdrawn rats, and to explore the underlying mechanisms. A total of 100 rats were randomly divided into five groups: The control group, the phenobarbital‑dependent model group, and Tet‑treated groups of low‑, mid‑ and high‑dosages. Following drug withdrawl, the morphological changes of the frontal lobe cells were examined by hematoxylin and eosin (H&E) staining. Immunohistochemical staining was applied to detect the expression of apoptosis‑related proteins Bcl‑2 and Bax. Reverse transcription‑polymerase chain reaction (RT‑PCR) and western blotting methods were applied to detect the mRNA and protein expression levels of Bcl‑2 and Bax, respectively, in the frontal lobe. The results indicated that Tet effectively reduced the withdrawal symptoms, particularly the weight loss, in phenobarbital‑dependent and ‑withdrawn rats. H&E staining revealed that Tet significantly restored the histopathological changes in the addicted rats in a dose‑dependent manner. The immunohistochemical, RT‑PCR, and western blot analyses indicated that Tet treatment significantly increased the Bcl‑2+ brain cells and the mRNA and protein expression levels of Bcl‑2, and decreased the Bax+ cells and the mRNA and protein expression levels of Bax, as well as elevated the ratio of Bcl‑2/Bax, in phenobarbital‑dependent and ‑withdrawn rats. Tet may inhibit apoptosis in these addicted rats, in a dose‑dependent manner. Tet alleviates the phenobarbital withdrawal symptoms and protects the brain cells against apoptosis, which may be a result of the regulation of the mRNA and protein expression levels of Bcl‑2 and Bax.

  11. Brain beta-adrenergic receptor binding in rats with obesity induced by a beef tallow diet.

    Science.gov (United States)

    Matsuo, T; Suzuki, M

    1997-01-01

    We have previously reported that compared with safflower oil diet, feeding a beef tallow diet leads to a greater accumulation of body fat by reducing sympathetic activities. The present study examined the effects of dietary fats consisting of different fatty acids on alpha1- and beta-adrenergic receptor binding in the hypothalamus and cerebral cortex. Male Sprague-Dawley rats were meal-fed isoenergetic diets based on safflower oil (rich in n-6 polyunsaturated fatty acids) or beef tallow (rich in saturated fatty acids) for 8 weeks. Binding affinities of the beta-adrenergic receptor in the hypothalamus and cortex were significantly lower in the beef tallow diet group, but those of the alpha1-receptor did not differ between the two groups. The polyunsaturated to saturated fatty acid (P/S) ratio and fluidities of plasma membranes in the hypothalamus and cortex were lower in the beef tallow diet group than in the safflower oil diet group. These results suggest that the beef tallow diet decreases membrane fluidity by altering the fatty acid composition of plasma membranes in the hypothalamus and cerebral cortex of rat. Consequently, beta-adrenergic receptor binding affinities in the brain were lower in rats fed the beef tallow diet than in rats fed the safflower oil diet. We recognized that there is possible link between the membrane fluidity and the changes in affinity of beta-adrenoceptors in rat brain.

  12. Expression of the 5-HT receptors in rat brain during memory consolidation.

    Science.gov (United States)

    Meneses, A; Manuel-Apolinar, L; Rocha, L; Castillo, E; Castillo, C

    2004-07-09

    Serotonin (5-hydroxytryptamine, 5-HT) system displays more than 14 receptors subtypes on brain areas involved in learning and memory processes, and pharmacological manipulation of specific receptors selectively affects memory formation. In order to begin the search of 5-HT receptors expression during memory formation, in this work, we aimed to determine, by autoradiography (using 3H 5-HT as ligand, 2 nM, specific activity 123 Ci/mmol), 5-HT receptors (5-HTR) expression in passive (untrained) and autoshaping trained (3 sessions) adult (3 months) and old (9 months) male rats. Thus, trained adult rats had better retention than old animals. Raphe nuclei of adult and old trained rats expressed less receptors on medial and dorsal, respectively. Hippocampal CA1 area and dentate gyrus of adult trained rats expressed less 5-HTR, while dentate gyrus of old increased them. Basomedial amygdaloid nucleus in old trained rats expressed more 5-HTR; while in the basolateral amygdaloid nucleus they were augmented in both groups. Training decreased or did not change 5-HTR in caudate-putamen of adult or old animals. The above profile of 5-HTR expression is consistent with previous reports, and suggests that memory formation and aging modulates 5-HTR expression in brain areas relevant to memory systems.

  13. Hyperglycolysis is exacerbated after traumatic brain injury with fentanyl vs. isoflurane anesthesia in rats.

    Science.gov (United States)

    Statler, Kimberly D; Janesko, Keri L; Melick, John A; Clark, Robert S B; Jenkins, Larry W; Kochanek, Patrick M

    2003-12-19

    Despite common use of narcotics in the clinical management of severe traumatic brain injury (TBI), in experimental models rats treated with fentanyl have exhibited worse functional outcome and more CA1 hippocampal death than rats treated with standard isoflurane anesthesia. We hypothesized that greater post-traumatic excitotoxicity, reflected by cerebral glucose utilization (CMRglu), may account for detrimental effects of fentanyl vs. isoflurane. Rats were anesthetized with either isoflurane (1% by inhalation) or fentanyl (10 mcg/kg iv bolus then 50 mcg/kg/h infusion). 14C-deoxyglucose autoradiography was performed 45 min after controlled cortical impact (CCI) to left parietal cortex (n=4 per anesthetic group) or in uninjured rats after 45 min of anesthesia (n=3 per anesthetic group). Uninjured rats treated with fentanyl vs. isoflurane showed 35-45% higher CMRglu in all brain structures (panesthesia. This post-traumatic hyperglycolysis suggests greater excitotoxicity and concurs with reports of worse functional outcome and more CA1 hippocampal death after TBI with fentanyl vs. isoflurane anesthesia.

  14. Glucocorticoids aggravate retrograde memory deficiency associated with traumatic brain injury in rats.

    Science.gov (United States)

    Chen, Xin; Zhang, Ke-Li; Yang, Shu-Yuan; Dong, Jing-Fei; Zhang, Jian-Ning

    2009-02-11

    Administration of glucocorticoid to patients with head injury has previously been demonstrated to impair memory. We hypothesize that glucocorticoids promote post-traumatic hippocampal apoptosis, resulting in retrograde memory deficiency associated with traumatic brain injury (TBI). In the present study, we tested this hypothesis by measuring spatial memory deficiency in rats subjected to fluid percussion injury (FPI) and receiving dexamethasone (DXM at 0.5-10 mg/kg) or methylprednisolone (MP at 5-30 mg/kg); we also examined neuronal apoptosis in hippocampus. Adult male Wistar rats were trained for the acquisition of spatial memory, then subjected to FPI and tested for spatial reference memory on post-injury days 7 and 14 using the Morris Water Maze. Brain tissue from injured rats was examined 24 h to 2 weeks after injury. The percent time in the goal quadrant, which measures spatial reference memory, was significantly lower in injured rats receiving either high-dose DXM or MP than in control groups. TUNEL-positive cells in hippocampus were first detected 24 h post-injury, plateauing at 48h. The number of TUNEL-positive cells was significantly higher in injured rats treated with either DXM or MP. The data suggest that glucocorticoid therapy for TBI may increase neuronal apoptosis in hippocampus and, as a result, aggravate retrograde memory deficits induced by TBI.

  15. Protection of Effective Component Group from Xiaoshuan Tongluo on Brain Injury after Chronic Hypoperfusion in Rats

    Institute of Scientific and Technical Information of China (English)

    TAN Chu-bing; WANG Hong-qing; TIAN Shuo; GAO Mei; XU Wei-ren; CHEN Ruo-yun; DU Guan-hua

    2011-01-01

    Objective To investigate the protective effects of purified effective component group in extract from Xiaoshuan Tongluo(CGXT)formula on chronic brain ischemia in rats.Methods CGXT 75,150,and 300 mg/kg or vehicle were ig administered daily for four weeks to rats with bilateral common carotid arteries ligation(BCCAL).From the day 24 to 28 after BCCAL,Morris water maze was performed to assess the learning and memory impairment of rats.Four weeks after BCCAL,brain gray and white matter damage were assessed.Results In Morris test,the mean escape latency of rats in the CGXT(150 and 300 mg/kg)groups was significantly shorter than that in the vehicle group.CGXT also attenuated the neuronal damage in hippocampus and cortex and reduced the pathological damage in the optic tract and corpus callosum.Conclusion CGXT could improve learning and memory impairment resulted from BCCAL in rats.These results provide the experimental basis for the clinical use of CGXT in stroke treatment and may help in investigation of multimodal therapy strategies in ischemic cerebrovascular diseases including stroke.

  16. Pericyte abundance affects sucrose permeability in cultures of rat brain microvascular endothelial cells.

    Science.gov (United States)

    Parkinson, Fiona E; Hacking, Cindy

    2005-07-05

    The blood-brain barrier is a physical and metabolic barrier that restricts diffusion of blood-borne substances into brain. In vitro models of the blood-brain barrier are used to characterize this structure, examine mechanisms of damage and repair and measure permeability of test substances. The core component of in vitro models of the blood-brain barrier is brain microvascular endothelial cells. We cultured rat brain microvascular endothelial cells (RBMEC) from isolated rat cortex microvessels. After 2-14 days in vitro (DIV), immunohistochemistry of these cells showed strong labeling for zona occludens 1 (ZO-1), a tight junction protein expressed in endothelial cells. Pericytes were also present in these cultures, as determined by expression of alpha-actin. The present study was performed to test different cell isolation methods and to compare the resulting cell cultures for abundance of pericytes and for blood-brain barrier function, as assessed by 14C-sucrose flux. Two purification strategies were used. First, microvessels were preabsorbed onto uncoated plastic for 4 h, then unattached microvessels were transferred to coated culture ware. Second, microvessels were incubated with an antibody to platelet-endothelial cell adhesion molecule 1 (PECAM-1; CD31) precoupled to magnetic beads, and a magnetic separation procedure was performed. Our results indicate that immunopurification, but not preadsorption, was an effective method to purify microvessels and reduce pericyte abundance in the resulting cultures. This purification significantly reduced 14C-sucrose fluxes across cell monolayers. These data indicate that pericytes can interfere with the development of blood-brain barrier properties in in vitro models that utilize primary cultures of RBMECs.

  17. Protein aggregation in association with delayed neuronal death in rat model of brain ischemia

    Institute of Scientific and Technical Information of China (English)

    Pengfei GE; Tianfei LUG; Shuanglin FU; Wenchen LI; Chonghao WANG; Chuibing ZHOU; Yinan LUO

    2008-01-01

    To investigate the relationship between protein aggregation and delayed neuronal death, we adopted rat models of 20 min ischemia. Brain ischemia was produced using the 2-vessel occlusion (2VO) model in rats Light microscopy, transmission electronic microscopy and Western blot analysis were performed for morphological analysis of neurons, and protein detection. The results showed delayed neuronal death took place at 72 h after ischemia-reperfusion, protein aggregates formed at 4 h after reperfusion and reached the peak at 24 h after reper-fusion, and Western blot analysis was consistent with transmission electronic microscopy. We conclude that protein aggregation is one of the important factors leading to delayed neuronal death.

  18. Contents of myelin-basic protein and S-100 in serum and brain tissue of neonatal rats with intrauterine infection-caused brain injury

    Institute of Scientific and Technical Information of China (English)

    Xiaojie Li; Hongying Li; Zhihai Lu

    2006-01-01

    BACKGROUND: The change of the content of myelin basic protein (MBP) in serum and brain tissue is the bio chemical diadynamic index of amyelination. S-100 is a specific and sensitive marker of central nervous system (CNS) injury. Whether or not the content of S-100 and MBP in blood and brain tissue can be used as the quan titative index for early diagnosing the intrauterine infection-caused brain injury still needs investigation. OBJECTIVE: To observe whether or not MBP and S-100 detection can be used as the biochemical indexes for early diagnosing the intrauterine infection-caused brain injury. DESIGN: Randomized controlled animal experiment. SETTING: Laboratory of Pediatric Neuro-rehabilitation, Medical College of Rehabilitation, Jiamusi University. MATERIALS: Sixty female and thirty male common Wistar rats, weighing from 180 to 240 g, were provided by the Experimental Animal Center of Jiamusi University. Reagent: Lipopolysaccharide(LPS, serological type 055: B5, SIGMA Company of USA); MBP enzyme linked immunosobent assay (ELISA) immunoreagent kit (Preclinicai Recombination DNA Laboratory, Chengdu Huaxi Medical Center, Sichuan Province); S-100 ELISA immunoreagent kit ( Department of Physiology, the Fourth Military Medical University of Chinese PLA) and bovine serum albumin(Haitaike Biotechnology Co.,Ltd.).METHODS: This experiment was carried out in the Laboratory of Pediatric Neuro-Rehabilitation, Experimental Animal Center, Department of Pathology and Central Laboratory of Jiamusi University from July 2005 to March 2006. ① Preparation of models and grouping: The female and male rats were placed in one cage at 2: 1 at 17:00 o'clock. Vaginal smear was checked at 8:00 on the next morning. Sperm was found and 0 day of pregnancy was recorded. Pregnant rats were bred in another cage. The pregnant 47 rats were randomly divided into 2 groups: control group (n =10) and experimental group (n =37). The experimental pregnant rats were intraperitoneally injected with LPS

  19. N-Acetylaspartate distribution in rat brain striatum during acute brain ischemia

    DEFF Research Database (Denmark)

    Sager, T.N.; Laursen, H; Fink-Jensen, A

    1999-01-01

    Brain N-acetylaspartate (NAA) can be quantified by in vivo proton magnetic resonance spectroscopy (1H-MRS) and is used in clinical settings as a marker of neuronal density. It is, however, uncertain whether the change in brain NAA content in acute stroke is reliably measured by 1H-MRS and how NAA......]e increased linearly to 4 mmol/L after 3 hours and this level was maintained for the next 4 h. From the change in in vivo recovery of the interstitial space volume marker [14C]mannitol, the relative amount of NAA distributed in the interstitial space was calculated to be 0.2% of the total brain NAA during...... normal conditions and only 2 to 6% during ischemia. It was concluded that the majority of brain NAA is intracellularly located during ischemia despite large increases of interstitial [NAA]. Thus, MR quantification of NAA during acute ischemia reflects primarily changes in intracellular levels of NAA...

  20. Effect of α-Ketoglutarate on Cyanide-induced Biochemical Alterations in Rat Brain and Liver

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To investigate the biochemical changes in rat brain and liver following acute exposure to a lethal dose of cyanide, and its response to treatment of α-ketoglutarate (α-KG) in the absence or presence of sodium thiosulfate (STS). Methods Female rats were administered 2.0 LD50 potassium cyanide (KCN; oral) in the absence or presence of pre-treatment (-10 min), simultaneous treatment (0 min) or post-treatment (+2-3 min) of α-KG (2.0 g/kg, oral) and/or STS (1.0 g/kg,intraperitoneal, -15 min, 0 min or + 2-3 min). At the time of onset of signs and symptoms of KCN toxicity (2-4 min) and at the time of death (5-15 min), various parameters particularly akin to oxidative stress viz. Cytochrome oxidase (CYTOX),superoxide dismutase (SOD), glutathione peroxidase (GPx), reduced glutathione (GSH) and oxidized glutathione (GSSG) in brain, and CYTOX, sorbitol dehydrogenase (SDH), alkaline phosphatase (ALP), GSH and GSSG in liver homogenate were measured. Results At both time intervals brain CYTOX, SOD, GPx, and GSH significantly reduced (percent inhibition compared to control) to 24%, 56%, 77%, and 65%, and 44%, 46%, 78%, and 57%, respectively. At the corresponding time points liver CYTOX and GSH reduced to 74% and 63%, and 44% and 68%, respectively. The levels of GSSG in the brain and liver, and hepatic ALP and SDH were unchanged. Pre-treatment and simultaneous treatment of α-KG alone or with STS conferred significant protection on above variables. Post-treatment was effective in restoring the changes in liver but failed to normalize the changes in the brain. Conclusions Oral treatment with α-KG alone or in combination with STS has protective effects on cyanide-induced biochemical alterations in rat brain and liver.

  1. Glucocorticoids Protect Neonatal Rat Brain in Model of Hypoxic-Ischemic Encephalopathy (HIE)

    Science.gov (United States)

    Harding, Benjamin; Conception, Katherine; Li, Yong; Zhang, Lubo

    2016-01-01

    Hypoxic-ischemic encephalopathy (HIE) resulting from asphyxia in the peripartum period is the most common cause of neonatal brain damage and can result in significant neurologic sequelae, including cerebral palsy. Currently therapeutic hypothermia is the only accepted treatment in addition to supportive care for infants with HIE, however, many additional neuroprotective therapies have been investigated. Of these, glucocorticoids have previously been shown to have neuroprotective effects. HIE is also frequently compounded by infectious inflammatory processes (sepsis) and as such, the infants may be more amenable to treatment with an anti-inflammatory agent. Thus, the present study investigated dexamethasone and hydrocortisone treatment given after hypoxic-ischemic (HI) insult in neonatal rats via intracerebroventricular (ICV) injection and intranasal administration. In addition, we examined the effects of hydrocortisone treatment in HIE after lipopolysaccharide (LPS) sensitization in a model of HIE and sepsis. We found that dexamethasone significantly reduced rat brain infarction size when given after HI treatment via ICV injection; however it did not demonstrate any neuroprotective effects when given intranasally. Hydrocortisone after HI insult also significantly reduced brain infarction size when given via ICV injection; and the intranasal administration showed to be protective of brain injury in male rats at a dose of 300 µg. LPS sensitization did significantly increase the brain infarction size compared to controls, and hydrocortisone treatment after LPS sensitization showed a significant decrease in brain infarction size when given via ICV injection, as well as intranasal administration in both genders at a dose of 300 µg. To conclude, these results show that glucocorticoids have significant neuroprotective effects when given after HI injury and that these effects may be even more pronounced when given in circumstances of additional inflammatory injury, such

  2. Stiripentol exhibits higher anticonvulsant properties in the immature than in the mature rat brain.

    Science.gov (United States)

    Auvin, Stéphane; Lecointe, Cécile; Dupuis, Nina; Desnous, Béatrice; Lebon, Sophie; Gressens, Pierre; Dournaud, Pascal

    2013-12-01

    After the first positive experimental data in rodents in the early 1970s demonstrating the anticonvulsant effect of stiripentol (STP), in vitro studies showed that STP acts directly on γ-aminobutyric acid A (GABAA ) receptors. Chloride influx is higher when these receptors contain an α3 subunit, leading to the hypothesis that STP might exhibit higher efficacy in the immature brain. We explored this issue by studying the efficacy of STP in P21 and P75 rats using the pentylenetetrazol model of acute seizures or the lithium-pilocarpine status epilepticus model. P21 and adult rats received vehicle, 150, 250, or 350 mg/kg of STP, i.p., 1 h before evaluating the anticonvulsant. We also studied the blood and brain levels of STP as well as the expression and the messenger RNA (mRNA) levels of the α3 subunit of the GABAA receptors at both ages. STP exhibited anticonvulsant properties in both models at both ages, but STP was more effective in P21 than in P75 rats. This was shown by the significant suppression of seizure or status epilepticus occurrence in P21 with 350 mg/kg STP, whereas the same dose had no significant effect at P75. The blood level, brain level, and blood/brain ratio of STP did not explain these differences between the two age groups. Moreover, the higher anticonvulsant properties in the immature brain were not explained by the mRNA level or protein expression of the GABAA α3 subunit at either age. Stiripentol exhibits higher anticonvulsant properties in the immature than in the mature brain. These findings require further investigation because it might lead to new clinical developments. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  3. PCA and level set based non-rigid image registration for MRI and Paxinos-Watson atlas of rat brain

    Science.gov (United States)

    Cai, Chao; Liu, Ailing; Ding, Mingyue; Zhou, Chengping

    2007-12-01

    Image registration provides the ability to geometrically align one dataset with another. It is a basic task in a great variety of biomedical imaging applications. This paper introduced a novel three-dimensional registration method for Magnetic Resonance Image (MRI) and Paxinos-Watson Atlas of rat brain. For the purpose of adapting to a large range and non-linear deformation between MRI and atlas in higher registration accuracy, based on the segmentation of rat brain, we chose the principle components analysis (PCA) automatically performing the linear registration, and then, a level set based nonlinear registration correcting some small distortions. We implemented this registration method in a rat brain 3D reconstruction and analysis system. Experiments have demonstrated that this method can be successfully applied to registering the low resolution and noise affection MRI with Paxinos-Watson Atlas of rat brain.

  4. Effect of Xingnaojing injection on cerebral edema and blood-brain barrier in rats following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    XU Miao; SU Wei; XU Qiu-ping; HUANG Wei-dong

    2010-01-01

    Objective:To explore the effects of Xingnaojing injection on cerebral edema and blood-brain barrier (BBB) in rats following traumatic brain injury (TBI).Methods: A total of 108 adult male Sprague-Dawley rats were used as subjects and randomly assigned to three groups:sham-operation,TBI and Xingnaojing injection was set up by the improved device of Feeney's weightcontent and BBB permeability expressed as Evans blue content were measured at 1, 3, 5 and 7 days after surgery.Results: In sham-operation group, brain water content and Evans blue content in brain tissue were 78.97%±1.22%and 5.13μg±0.71μg. Following TBI, water content in brain tissue was increased significantly at 1, 3, 5 and 7 days (83.49%±0.54%, 82.74%±0.72%, 80.22%±0.68%, 79.21%±0.60%), being significantly higher than that in sham operation group (P<0.05). Evans blue content was increased in TBI group (16.54 μg±0.60 μg, 14.92μg±0.71μg, 12.44 μg ±0.92μg, 10.14μg±0.52 μg) as compared with sham-operation group(P<0.05). After treatment with Xingnaojing injection, brain water content decreased as compared with TBI group (81.91%±1.04%, 80.38%±0.72%, 79.54%±0.58%,78.60%±0.77%, P<0.05). Xingnaojing injection also reduced the leakage of BBB as compared with TBI group (15.11 μg± 0.63 μg, 13.62 μg±0.85μg, 10.06 μg±0.67 μg, 9.54 μg±0.41 μg,P<0.05).Conclusion: Xingnaojing injection could alleviate cerebral edema following TBI via reducing permeability ofBBB.

  5. Enzymatic transamination of D-kynurenine generates kynurenic acid in rat and human brain.

    Science.gov (United States)

    Pérez-de la Cruz, Veronica; Amori, Laura; Sathyasaikumar, Korrapati V; Wang, Xiao-Dan; Notarangelo, Francesca M; Wu, Hui-Qiu; Schwarcz, Robert

    2012-03-01

    In the mammalian brain, the α7 nicotinic and NMDA receptor antagonist kynurenic acid is synthesized by irreversible enzymatic transamination of the tryptophan metabolite l-kynurenine. d-kynurenine, too, serves as a bioprecursor of kynurenic acid in several organs including the brain, but the conversion is reportedly catalyzed through oxidative deamination by d-amino acid oxidase. Using brain and liver tissue homogenates from rats and humans, and conventional incubation conditions for kynurenine aminotransferases, we show here that kynurenic acid production from d-kynurenine, like the more efficient kynurenic acid synthesis from l-kynurenine, is blocked by the aminotransferase inhibitor amino-oxyacetic acid. In vivo, focal application of 100 μM d-kynurenine by reverse microdialysis led to a steady rise in extracellular kynurenic acid in the rat striatum, causing a 4-fold elevation after 2 h. Attesting to functional significance, this increase was accompanied by a 36% reduction in extracellular dopamine. Both of these effects were duplicated by perfusion of 2 μM l-kynurenine. Co-infusion of amino-oxyacetic acid (2 mM) significantly attenuated the in vivo effects of d-kynurenine and essentially eliminated the effects of l-kynurenine. Thus, enzymatic transamination accounts in part for kynurenic acid synthesis from d-kynurenine in the brain. These results are discussed with regard to implications for brain physiology and pathology.

  6. C/EBPβ Isoforms Expression in the Rat Brain during the Estrous Cycle

    Directory of Open Access Journals (Sweden)

    Valeria Hansberg-Pastor

    2015-01-01

    Full Text Available The CCAAT/enhancer-binding protein beta (C/EBPβ is a transcription factor expressed in different areas of the brain that regulates the expression of several genes involved in cell differentiation and proliferation. This protein has three isoforms (LAP1, LAP2, and LIP with different transcription activation potential. The role of female sex hormones in the expression pattern of C/EBPβ isoforms in the rat brain has not yet been described. In this study we demonstrate by western blot that the expression of the three C/EBPβ isoforms changes in different brain areas during the estrous cycle. In the cerebellum, LAP2 content diminished on diestrus and proestrus and LIP content diminished on proestrus and estrus days. In the prefrontal cortex, LIP content was higher on proestrus and estrus days. In the hippocampus, LAP isoforms presented a switch on diestrus day, since LAP1 content was the highest while that of LAP2 was the lowest. The LAP2 isoform was the most abundant one in all the three brain areas. The LAP/LIP ratio changed throughout the cycle and was tissue specific. These results suggest that C/EBPβ isoforms expression changes in a tissue-specific manner in the rat brain due to the changes in sex steroid hormone levels presented during the estrous cycle.

  7. Hyperbaric oxygen suppresses hypoxic-ischemic brain damage in newborn rats.

    Science.gov (United States)

    Zhu, Min; Lu, Mengru; Li, Qing-Jie; Zhang, Zhuo; Wu, Zheng-Zheng; Li, Jie; Qian, Lai; Xu, Yun; Wang, Zhong-Yuan

    2015-01-01

    The optimal therapeutic time-window and protective mechanism of hyperbaric oxygen in hypoxic-ischemic brain damage remain unclear. This study aimed to determine the neuroprotective effects of hyperbaric oxygen. Following hypoxic-ischemic brain damage modeling in neonatal rats, hyperbaric oxygen was administered at 6, 24, 48, and 72 hours and 1 week after hypoxia, respectively, once daily for 1 week. Fourteen days after hypoxic-ischemic brain damage, cell density and apoptosis rate, number of Fas-L+, caspase-8+, and caspase-3+ neuronal cells, levels of nitric oxide, malondialdehyde, and superoxide dismutase in hippocampus were examined. Morris water maze test was conducted 28 days after insult. Significant improvements were found in cell density, rate of apoptosis, oxidative stress markers, FasL, and caspases in rats treated with hyperbaric oxygen within 72 hours compared to hypoxic-ischemic injury. Similarly, time-dependent behavioral amelioration was observed in pups treated with hyperbaric oxygen. Our findings suggest that hyperbaric oxygen protects against hypoxic-ischemic brain damage by inhibiting oxidative stress and FasL-induced apoptosis, and optimal therapeutic time window is within 72 hours after hypoxic-ischemic brain damage.

  8. A template of rat brain based on fMRI T2* imaging

    Institute of Scientific and Technical Information of China (English)

    HU Zhenghui; WU Yigen; WANG Xiaochuan; WANG Jianzhi; CHEN Feiyan; TANG Xiaowei

    2005-01-01

    The development of functional magnetic resonance imaging (fMRI) technology has made it possible to carry out functional brain imaging experiments in small animals. Usually, group data is required to form the assessment of population, which can not only increase the sensitivity of the overall experiment, but also allow the generalization of the conclusion to the whole population. In order to average the signals of functional brain images from different subjects, it is necessary to put all the mapping images into the same standard space (template image). However, up to now, most animal brain templates remain unavailable and it must be done by ourselves. In this study, a template image based on the brains of eight male Wistar rats is obtained, and it is successfully used in our present Alzheimer disease (AD)-like rat model studies as template for spatially normalizing images to the same stereotaxical space. The fMRI results processed with statistical parametric mapping (SPM99) software are in agreement with the results from immunohistochemical experiment, which proves that this method is universally applicable to the pathologic models of other small animals and to human brain lesion studies.

  9. Unilateral Opening of Rat Blood-Brain Barrier Assisted by Diagnostic Ultrasound Targeted Microbubbles Destruction

    Directory of Open Access Journals (Sweden)

    Yali Xu

    2016-01-01

    Full Text Available Objective. Blood-brain barrier (BBB is a key obstacle that prevents the medication from blood to the brain. Microbubble-enhanced cavitation by focused ultrasound can open the BBB and proves to be valuable in the brain drug delivery. The study aimed to explore the feasibility, efficacy, and safety of unilateral opening of BBB using diagnostic ultrasound targeted microbubbles destruction in rats. Methods. A transtemporal bone irradiation of diagnostic ultrasound and intravenous injection of lipid-coated microbubbles were performed at unilateral hemisphere. Pathological changes were monitored. Evans Blue extravasation grades, extraction from brain tissue, and fluorescence optical density were quantified. Lanthanum nitrate was traced by transmission electron microscopy. Results. After diagnostic ultrasound mediated microbubbles destruction, Evans Blue extravasation and fluorescence integrated optical density were significantly higher in the irradiated hemisphere than the contralateral side (all p<0.01. Erythrocytes extravasations were demonstrated in the ultrasound-exposed hemisphere (4±1, grade 2 while being invisible in the control side. Lanthanum nitrate tracers leaked through interendothelial cleft and spread to the nerve fiber existed in the irradiation side. Conclusions. Transtemporal bone irradiation under DUS mediated microbubble destruction provides us with a more accessible, safer, and higher selective BBB opening approach in rats, which is advantageous in brain targeted drugs delivery.

  10. Concurrent loss and proliferation of astrocytes following lateral fluid percussion brain injury in the adult rat.

    Science.gov (United States)

    Hill-Felberg, S J; McIntosh, T K; Oliver, D L; Raghupathi, R; Barbarese, E

    1999-07-15

    Astrocyte populations were analyzed over a period of 1 month in the hippocampus following lateral fluid percussion (FP) brain injury. Rats (n = 23) were subjected either to a brain injury of moderate severity, or to anesthesia and surgery without injury (n = 7). At 3 days, 1, 2, or 4 weeks postinjury, subgroups of animals were sacrificed and the brains removed and sectioned for histochemical analysis. The density of astrocytes, identified with gold sublimate staining, decreased significantly in the ipsilateral hippocampus of injured rats 3 days following injury, eventually falling to 64% of the total astrocyte population present in uninjured animals by 1 week postinjury. One month postinjury, the density of hippocampal astrocytes had returned to 85% of the total number of astrocytes observed in the hippocampus of uninjured animals. In order to characterize the post-traumatic formation of new astrocytes, immunohistochemistry was performed using antibodies to proliferating cell nuclear antigen (PCNA) and to glial fibriallary acidic protein (GFAP). Positive immunolabeling for both PCNA and GFAP was most abundant at 3 days following FP brain injury in regions where the blood brain barrier was compromised, and was not detectable by 1 month postinjury. These results indicate that astrocyte proliferation after injury may be evoked by mitogens released from vascular sources, and may be an attempt to compensate for some of the astrocytic cell loss observed after injury.

  11. A quantitative magnetic resonance histology atlas of postnatal rat brain development with regional estimates of growth and variability.

    Science.gov (United States)

    Calabrese, Evan; Badea, Alexandra; Watson, Charles; Johnson, G Allan

    2013-05-01

    There has been growing interest in the role of postnatal brain development in the etiology of several neurologic diseases. The rat has long been recognized as a powerful model system for studying neuropathology and the safety of pharmacologic treatments. However, the complex spatiotemporal changes that occur during rat neurodevelopment remain to be elucidated. This work establishes the first magnetic resonance histology (MRH) atlas of the developing rat brain, with an emphasis on quantitation. The atlas comprises five specimens at each of nine time points, imaged with eight distinct MR contrasts and segmented into 26 developmentally defined brain regions. The atlas was used to establish a timeline of morphometric changes and variability throughout neurodevelopment and represents a quantitative database of rat neurodevelopment for characterizing rat models of human neurologic disease. Published by Elsevier Inc.

  12. Antioxidant effect of sericin in brain and peripheral tissues of oxidative stress induced hypercholesterolemic rats

    Directory of Open Access Journals (Sweden)

    Meetali Deori

    2016-09-01

    Full Text Available This study evaluated the antioxidant effect of crude sericin extract (CSE from Antheraea assamenisis (Aa in high cholesterol fed rats. Investigation was conducted by administering graded oral dose of 0.25 and 0.5 gm/kg body weight (b.w./day of CSE for a period of 28 days. Experiments were conducted in 30 rats and were divided into five groups: normal control (NC, high cholesterol fed (HCF, HCF + 0.065 gm/kg b.w./day fenofibrate (FF, HCF + sericin 0.25 gm/kg b.w./day (LSD and HCF + sericin 0.5 gm/kg b.w./day (HSD. In brain, heart, liver, serum and kidney homogenates nitric oxide (NO, thiobarbituric acid reactive substances (TBARS, protein carbonyl content (PCC, superoxide dismutase (SOD, reduced glutathione (GSH was measured. LSD treatment prevented the alterations in GSH and PCC levels in hypercholesterolemic (HyC brain tissue homogenates of rats. CSE lowers the serum total cholesterol level in HyC rats by promoting fecal cholesterol (FC excretion. CSE increases FC level by promoting inhibition of cholesterol absorption in intestine. The endogenous antioxidant reduced significantly and the oxidative stress (OS marker TBARS level increases significantly in the peripheral tissue of HCF rats. However, the administration of LSD and HSD exhibited a good antioxidant activity by reducing the TBARS level and increasing the endogenous antioxidant in peripheral tissue. In addition, a histological examination revealed loss of normal liver and kidney architecture in cholesterol fed rats which were retained in sericin treated groups. The findings of this study suggested that CSE improves hypercholesterolemia in rats fed a HyC diet. Clinical relevance of this effect of CSE seems worthy of further studies.

  13. Antioxidant Effect of Sericin in Brain and Peripheral Tissues of Oxidative Stress Induced Hypercholesterolemic Rats.

    Science.gov (United States)

    Deori, Meetali; Devi, Dipali; Kumari, Sima; Hazarika, Ankita; Kalita, Himadri; Sarma, Rahul; Devi, Rajlakshmi

    2016-01-01

    This study evaluated the antioxidant effect of crude sericin extract (CSE) from Antheraea assamensis in high cholesterol fed rats. Investigation was conducted by administering graded oral dose of 0.25 and 0.5 gm/kg body weight (b.w.)/day of CSE for a period of 28 days. Experiments were conducted in 30 rats and were divided into five groups: normal control, high cholesterol fed (HCF), HCF + 0.065 gm/kg b.w./day fenofibrate (FF), HCF + sericin 0.25 gm/kg b.w./day (LSD), and HCF + sericin 0.5 gm/kg b.w./day (HSD). In brain, heart, liver, serum, and kidney homogenates nitric oxide (NO), thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC), superoxide dismutase, reduced glutathione (GSH) was measured. LSD treatment prevented the alterations in GSH and PCC levels in hypercholesterolemic (HyC) brain tissue homogenates of rats. CSE lowers the serum total cholesterol level in HyC rats by promoting fecal cholesterol (FC) excretion. CSE increases FC level by promoting inhibition of cholesterol absorption in intestine. The endogenous antioxidant reduced significantly and the oxidative stress marker TBARS level increases significantly in the peripheral tissue of HCF rats. However, the administration of LSD and HSD exhibited a good antioxidant activity by reducing the TBARS level and increasing the endogenous antioxidant in peripheral tissue. In addition, a histological examination revealed loss of normal liver and kidney architecture in cholesterol fed rats which were retained in sericin treated groups. The findings of this study suggested that CSE improves hypercholesterolemia in rats fed a HyC diet. Clinical relevance of this effect of CSE seems worthy of further studies.

  14. Decreased resting functional connectivity after traumatic brain injury in the rat.

    Directory of Open Access Journals (Sweden)

    Asht Mangal Mishra

    Full Text Available Traumatic brain injury (TBI contributes to about 10% of acquired epilepsy. Even though the mechanisms of post-traumatic epileptogenesis are poorly known, a disruption of neuronal networks predisposing to altered neuronal synchrony remains a viable candidate mechanism. We tested a hypothesis that resting state BOLD-fMRI functional connectivity can reveal network abnormalities in brain regions that are connected to the lesioned cortex, and that these changes associate with functional impairment, particularly epileptogenesis. TBI was induced using lateral fluid-percussion injury in seven adult male Sprague-Dawley rats followed by functional imaging at 9.4T 4 months later. As controls we used six sham-operated animals that underwent all surgical operations but were not injured. Electroencephalogram (EEG-functional magnetic resonance imaging (fMRI was performed to measure resting functional connectivity. A week after functional imaging, rats were implanted with bipolar skull electrodes. After recovery, rats underwent pentyleneterazol (PTZ seizure-susceptibility test under EEG. For image analysis, four pairs of regions of interests were analyzed in each hemisphere: ipsilateral and contralateral frontal and parietal cortex, hippocampus, and thalamus. High-pass and low-pass filters were applied to functional imaging data. Group statistics comparing injured and sham-operated rats and correlations over time between each region were calculated. In the end, rats were perfused for histology. None of the rats had epileptiform discharges during functional imaging. PTZ-test, however revealed increased seizure susceptibility in injured rats as compared to controls. Group statistics revealed decreased connectivity between the ipsilateral and contralateral parietal cortex and between the parietal cortex and hippocampus on the side of injury as compared to sham-operated animals. Injured animals also had abnormal negative connectivity between the ipsilateral and

  15. Decreased resting functional connectivity after traumatic brain injury in the rat.

    Science.gov (United States)

    Mishra, Asht Mangal; Bai, Xiaoxiao; Sanganahalli, Basavaraju G; Waxman, Stephen G; Shatillo, Olena; Grohn, Olli; Hyder, Fahmeed; Pitkänen, Asla; Blumenfeld, Hal

    2014-01-01

    Traumatic brain injury (TBI) contributes to about 10% of acquired epilepsy. Even though the mechanisms of post-traumatic epileptogenesis are poorly known, a disruption of neuronal networks predisposing to altered neuronal synchrony remains a viable candidate mechanism. We tested a hypothesis that resting state BOLD-fMRI functional connectivity can reveal network abnormalities in brain regions that are connected to the lesioned cortex, and that these changes associate with functional impairment, particularly epileptogenesis. TBI was induced using lateral fluid-percussion injury in seven adult male Sprague-Dawley rats followed by functional imaging at 9.4T 4 months later. As controls we used six sham-operated animals that underwent all surgical operations but were not injured. Electroencephalogram (EEG)-functional magnetic resonance imaging (fMRI) was performed to measure resting functional connectivity. A week after functional imaging, rats were implanted with bipolar skull electrodes. After recovery, rats underwent pentyleneterazol (PTZ) seizure-susceptibility test under EEG. For image analysis, four pairs of regions of interests were analyzed in each hemisphere: ipsilateral and contralateral frontal and parietal cortex, hippocampus, and thalamus. High-pass and low-pass filters were applied to functional imaging data. Group statistics comparing injured and sham-operated rats and correlations over time between each region were calculated. In the end, rats were perfused for histology. None of the rats had epileptiform discharges during functional imaging. PTZ-test, however revealed increased seizure susceptibility in injured rats as compared to controls. Group statistics revealed decreased connectivity between the ipsilateral and contralateral parietal cortex and between the parietal cortex and hippocampus on the side of injury as compared to sham-operated animals. Injured animals also had abnormal negative connectivity between the ipsilateral and contralateral

  16. Effects of acute gamma-irradiation on extracellular adenine nucleotide hydrolysis in developing rat brain

    Science.gov (United States)

    Stanojević, I.; Drakulić, D.; Veličković, N.; Milošević, M.; Petrović, S.; Horvat, A.

    2009-09-01

    Cell membrane is highly sensitive to irradiation which, acting directly or indirectly, may disturb functions of constitutive proteins including membrane enzymes. Plasma membrane surface-located enzyme chain of ecto-nucleotide triphospho diphosphohydrolases (NTPDases) and 5'-nucleotidase are involved in termination of cell purinergic signalization by hydrolyzing extracellular, excitatory adenosine triphosphate (ATP), as well as nucleotide di-, and mono-phosphate (ADP and AMP) to neuroprotective adenosine. Extracellular ATP, ADP, and AMP hydrolyzes were examined in purified synaptic plasma membranes after whole-body acute irradiation. All measurements were done 24 h after irradiation of developing (15-, 30-day-old) and adult (90-day-old) rats with low (50 cGy) and high (2 Gy) dose of gamma-rays. Both, high and low doses inhibited nucleotide hydrolyses in 15-day-old rats; in 30-day-old rats low dose of radiation inhibited ADP and AMP hydrolyses while high dose inhibited only ATP hydrolyse. In adult rats high dose induced no effects, while low dose stimulated nucleotides hydrolyses. According to obtained results it was concluded that ecto-nucleotidases of young rats are more sensitive to irradiation, since even low dose induces inhibition of ecto-nucleotidases activities. Ionizing radiation, by decreasing brain nucleotide hydrolyses in developing rats, induces accumulation of ATP and decreases production of adenosine in synaptic cleft which could be neurocytotoxic. On the contrary, in adult rats low dose of radiation stimulates NTPDase and 5'-nucleotidase activity and protective adenosine production which indicates protective and adaptive mechanisms developed in adult brain neuronal cells.

  17. Gastrodin protects neonatal rat brain against hypoxic-ischemic encephalopathy Acute therapeutic drug effects

    Institute of Scientific and Technical Information of China (English)

    Yanjun Niu; Zhengyong Jin

    2008-01-01

    BACKGROUND:Pharmacological experiments have demonstrated that gastrodin has a protective effect on neonatal rat brain subjected to hypoxia-ischemia; however,the underlying mechanism has not been fully elucidated. OBJECTIVE:The aim of this study was to investigate the acute therapeutic effects of gastrodin by observing prostaglandin B2 and 6-keto-prostaglandin F 1 a in brain issue of neonatal rats that received gastrodin injections immediately after hypoxia-ischemia.DESIGN:Single-factor design.SETTING:Department of Pediatrics,Affiliated Hospital of Yanbian University. MATERIALS:This study was performed in the Laboratory of the Department of Pediatrics,Affiliated Hospital of Yanbian University(key laboratory of provincial Health Department)from April to December 2003.Fifty-five Wistar rats of either gender,aged 7 days,were provided by the Laboratory Animal Center of Affiliated Hospital of Yanbian University.The rats were randomly divided into normal control(n=10), model(n=15),gastrodin-treated(n=15),and Danshen-treated(n=15)groups.The protocol was performed in accordance with guidelines from the Institute of Health Sciences for the use and care of animals.The following reagents were.used:Gastrodin(Sancai Medicine Group Co.,Ltd.,Zhongshan,Guangdong Province,China;component:gastrodin),Danshen(Conba Stock Company,Jinhua,Zhengjiang Province,China; component:salvia miltiorrhiza),and reagent kits for 125I-prostaglandin B2 and 125I-6-prostaglandin F 1 a (Research and Development Center for Science and Technology,General Hospital of Chinese PLA). METHODS:Rats in the normal control group received no treatment.Rats in the remaining 3 groups were anesthetized,followed by ligation of the left common carotid artery.One hour later,the rats were placed in a closed hypoxic box and allowed to inhale 8% oxygen-air(2.0-3.0 L/min)for 2 hours to develop hypoxic-ischemic encephalopathy.Immediately after lesion,rats in the gastrodin and Danshen-treated groups were intraperitoneally

  18. Establishment of 9L/F344 rat intracerebral glioma model of brain tumor stem cells

    Directory of Open Access Journals (Sweden)

    Zong-yu XIAO

    2015-04-01

    Full Text Available Objective To establish the 9L/F344 rat intracerebral glioma model of brain tumor stem cells.  Methods Rat 9L gliosarcoma stem-like cells were cultured in serum-free suspension. The expression of CD133 and nestin were tested by immunohistochemistry. A total of 48 inbredline male F344 rats were randomly divided into 2 groups, and 9L tumor sphere cells and 9L monolayer cells were respectively implanted into the right caudate nucleus of F344 rats in 2 groups. Survival time was observed and determined using the method of Kaplan-Meier survival analysis. Fourteen days after implantation or when the rats were dying, their brains were perfused and sectioned for HE staining, and CD133 and nestin were detected by immunohistochemistry.  Results Rat 9L tumor spheres were formed with suspension culture in serum-free medium. The gliomas formed in both groups were invasive without obvious capsule. More new vessels, bleeding and necrosis could be detected in 9L tumor spheres group. The tumor cells in both groups were positive for CD133 and nestin. There was no significant difference in the expression of CD133 and nestin between 2 groups (P > 0.05, for all. According to the expression of nestin, the tumors formed by 9L tumor sphere cells were more invasive. The median survival time of the rats bearing 9L tumor sphere cells was 15 d (95%CI: 15.219-15.781, and the median survival time of the rats bearing 9L monolayer cells was 21 d (95%CI: 20.395-21.605. There was significant difference between 2 groups (χ2 = 12.800, P = 0.000.  Conclusions 9L/F344 rat intracerebral glioma model of brain tumor stem cells is successfully established, which provides a glioma model for the future research. DOI: 10.3969/j.issn.1672-6731.2015.04.012

  19. The effects of Tanshinone IIA on blood-brain barrier and brain edema after transient middle cerebral artery occlusion in rats.

    Science.gov (United States)

    Tang, Chao; Xue, Hongli; Bai, Changlin; Fu, Rong; Wu, Anhua

    2010-12-01

    Disruption of blood-brain barrier (BBB) and edema formation play a key role in the development of neurological dysfunction after cerebral ischemia. In this study, the effects of Tanshinone IIA (Tan IIA), one of the active ingredients of Salvia miltiorrhiza root, on the BBB and brain edema after transient middle cerebral artery occlusion in rats were examined. Our study demonstrated that Tan IIA reduced brain infarct area, water content in the ischemic hemisphere. Furthermore, Tan IIA significantly decreased BBB permeability to Evans blue, suppressed the expression of intercellular adhesion molecule-1 (ICAM-1), matrix metalloproteinase-9 (MMP-9), inhibited the degradation of tight junction proteins zonula occludens-1 (ZO-1) and Occludin. These results demonstrated that Tan IIA was effective for attenuating the extent of brain edema formation in response to ischemia injury in rats, partly by Tan IIA's protective effect on the BBB. Our results may have implications in the treatment of brain edema in cerebral ischemia.

  20. Neuroprotection of GST, an extract of traditional Chinese herb, against ischemic brain injury induced by transient brain ischemia and reperfusion in rat hippocampus.

    Science.gov (United States)

    Sun, Ya-Feng; Pei, Dong-Sheng; Zhang, Qing-Xiu; Zhang, Guang-Yi

    2008-06-01

    In this study, we investigated the effect of GST, an extract of Chinese traditional herb, on transient brain ischemia/reperfusion-induced neuronal cell death. Immunoblotting was used to detect the phosphorylation of MLK, JNK and c-jun. Transient (15 minutes) brain ischemia was induced by the four-vessel occlusion in Sprague-Dawley rats. GST was administrated to the SD rats 20 minutes before ischemia or 1 hour after ischemia. Our data showed that the pretreatment of GST could inhibit phosphorylation of MLK, JNK and c-jun. Moreover, GST showed potent neuroprotective effects on ischemic brain damage in vivo and administration of it 1 hour after ischemia also achieved the protective effects. These results indicate that GST has a prominent neuroprotection action against brain ischemic damage and provides a promising therapeutic approach for ischemic brain injury.

  1. Volume regulatory loss of Na, Cl, and K from rat brain during acute hyponatremia

    Energy Technology Data Exchange (ETDEWEB)

    Melton, J.E.; Patlak, C.S.; Pettigrew, K.D.; Cserr, H.F.

    1987-04-01

    This study quantitatively evaluates the contribution of tissue Na, Cl, and K loss to brain volume regulation during acute dilutional hyponatremia (DH) and examines the mechanism of Na loss. DH was produced in pentobarbital sodium-anesthetized rats by intraperitoneal infusion of distilled water and brain water and electrolytes analyzed 30 min, 1 h, 3 h, 4 h, or 6 h later. The rate of Na and Cl loss was greatest during the first 30 min of DH. Net loss of Na and Cl was maximal after 3 h of DH. K loss was slower, achieving significance after 3 h. Electrolyte loss was sufficient to account for observed brain volume regulation after three or more hours of DH. Measurements of /sup 22/Na influx and efflux across the blood brain barrier showed that barrier permeability to Na is unchanged during DH. Analysis of results using a two-compartment model of plasma-brain exchange suggests that loss of brain Na during DH does not result solely from a shift of electrolyte across the blood-brain barrier to plasma, and thus provides indirect evidence for an additional pathway for Na loss, presumably via cerebrospinal fluid.

  2. Glycogen Supercompensation in the Rat Brain After Acute Hypoglycemia is Independent of Glucose Levels During Recovery.

    Science.gov (United States)

    Duarte, João M N; Morgenthaler, Florence D; Gruetter, Rolf

    2017-01-12

    Patients with diabetes display a progressive decay in the physiological counter-regulatory response to hypoglycemia, resulting in hypoglycemia unawareness. The mechanism through which the brain adapts to hypoglycemia may involve brain glycogen. We tested the hypothesis that brain glycogen supercompensation following hypoglycemia depends on blood glucose levels during recovery. Conscious rats were submitted to hypoglycemia of 2 mmol/L for 90 min and allowed to recover at different glycemia, controlled by means of i.v. glucose infusion. Brain glycogen concentration was elevated above control levels after 24 h of recovery in the cortex, hippocampus and striatum. This glycogen supercompensation was independent of blood glucose levels in the post-hypoglycemia period. In the absence of a preceding hypoglycemia insult, brain glycogen concentrations were unaltered after 24 h under hyperglycemia. In the hypothalamus, which controls peripheral glucose homeostasis, glycogen levels were unaltered. Overall, we conclude that post-hypoglycemia glycogen supercompensation occurs in several brain areas and its magnitude is independent of plasma glucose levels. By supporting brain metabolism during recurrent hypoglycemia periods, glycogen may have a role in the development of hypoglycemia unawareness.

  3. Developmental Toxic Effects of Exposure to Chemical Warfare Nerve Agents in Rats: Effects on Brain and Behavior

    Science.gov (United States)

    2015-03-01

    spatial memory, locomotor activity and vestibular motor function , as well as neuropathology. Similar to our adult model, we found that juvenile...rats exposed to GB exhibited deficits in vestibular motor function for up to 1 week and cognitive deficits in the Morris water maze at 3 weeks post...Preparation of rat brains for Golgi-Cox staining: Upon euthanasia, the brain of each animal was carefully removed from the skull. The cerebrum was blocked

  4. Restraint stress-induced morphological changes at the blood-brain barrier in adult rats

    Directory of Open Access Journals (Sweden)

    Petra eSántha

    2016-01-01

    Full Text Available Stress is well known to contribute to the development of both neurological and psychiatric diseases. While the role of the blood-brain barrier is increasingly recognised in the development of neurodegenerative disorders, such as Alzheimer’s disease, dysfunction of the blood-brain barrier has been linked to stress-related psychiatric diseases only recently. In the present study the effects of restraint stress with different duration (1, 3 and 21 days were investigated on the morphology of the blood-brain barrier in male adult Wistar rats. Frontal cortex and hippocampus sections were immunostained for markers of brain endothelial cells (claudin-5, occludin and glucose transporter-1 and astroglia (GFAP. Staining pattern and intensity were visualized by confocal microscopy and evaluated by several types of image analysis. The ultrastructure of brain capillaries was investigated by electron microscopy. Morphological changes and intensity alterations in brain endothelial tight junction proteins claudin-5 and occludin were induced by stress. Following restraint stress significant increases in the fluorescence intensity of glucose transporter-1 were detected in brain endothelial cells in the frontal cortex and hippocampus. Significant reductions in GFAP fluorescence intensity were observed in the frontal cortex in all stress groups. As observed by electron microscopy, one-day acute stress induced morphological changes indicating damage in capillary endothelial cells in both brain regions. After 21 days of stress thicker and irregular capillary basal membranes in the hippocampus and edema in astrocytes in both regions were seen. These findings indicate that stress exerts time-dependent changes in the staining pattern of tight junction proteins occludin, claudin-5 and glucose transporter-1 at the level of brain capillaries and in the ultrastructure of brain endothelial cells and astroglial endfeet, which may contribute to neurodegenerative processes

  5. Hepcidin Suppresses Brain Iron Accumulation by Downregulating Iron Transport Proteins in Iron-Overloaded Rats.

    Science.gov (United States)

    Du, Fang; Qian, Zhong-Ming; Luo, Qianqian; Yung, Wing-Ho; Ke, Ya

    2015-08-01

    Iron accumulates progressively in the brain with age, and iron-induced oxidative stress has been considered as one of the initial causes for Alzheimer's disease (AD) and Parkinson's disease (PD). Based on the role of hepcidin in peripheral organs and its expression in the brain, we hypothesized that this peptide has a role to reduce iron in the brain and hence has the potential to prevent or delay brain iron accumulation in iron-associated neurodegenerative disorders. Here, we investigated the effects of hepcidin expression adenovirus (ad-hepcidin) and hepcidin peptide on brain iron contents, iron transport across the brain-blood barrier, iron uptake and release, and also the expression of transferrin receptor-1 (TfR1), divalent metal transporter 1 (DMT1), and ferroportin 1 (Fpn1) in cultured microvascular endothelial cells and neurons. We demonstrated that hepcidin significantly reduced brain iron in iron-overloaded rats and suppressed transport of transferrin-bound iron (Tf-Fe) from the periphery into the brain. Also, the peptide significantly inhibited expression of TfR1, DMT1, and Fpn1 as well as reduced Tf-Fe and non-transferrin-bound iron uptake and iron release in cultured microvascular endothelial cells and neurons, while downregulation of hepcidin with hepcidin siRNA retrovirus generated opposite results. We concluded that, under iron-overload, hepcidin functions to reduce iron in the brain by downregulating iron transport proteins. Upregulation of brain hepcidin by ad-hepcidin emerges as a new pharmacological treatment and prevention for iron-associated neurodegenerative disorders.

  6. The Stress and Vascular Catastrophes in Newborn Rats: Mechanisms Preceding and Accompanying the Brain Hemorrhages

    Science.gov (United States)

    Semyachkina-Glushkovskaya, Oxana; Borisova, Ekaterina; Abakumov, Maxim; Gorin, Dmitry; Avramov, Latchezar; Fedosov, Ivan; Namykin, Anton; Abdurashitov, Arkady; Serov, Alexander; Pavlov, Alexey; Zinchenko, Ekaterina; Lychagov, Vlad; Navolokin, Nikita; Shirokov, Alexander; Maslyakova, Galina; Zhu, Dan; Luo, Qingming; Chekhonin, Vladimir; Tuchin, Valery; Kurths, Jürgen

    2016-01-01

    In this study, we analyzed the time-depended scenario of stress response cascade preceding and accompanying brain hemorrhages in newborn rats using an interdisciplinary approach based on: a morphological analysis of brain tissues, coherent-domain optical technologies for visualization of the cerebral blood flow, monitoring of the cerebral oxygenation and the deformability of red blood cells (RBCs). Using a model of stress-induced brain hemorrhages (sound stress, 120 dB, 370 Hz), we studied changes in neonatal brain 2, 4, 6, 8 h after stress (the pre-hemorrhage, latent period) and 24 h after stress (the post-hemorrhage period). We found that latent period of brain hemorrhages is accompanied by gradual pathological changes in systemic, metabolic, and cellular levels of stress. The incidence of brain hemorrhages is characterized by a progression of these changes and the irreversible cell death in the brain areas involved in higher mental functions. These processes are realized via a time-depended reduction of cerebral venous blood flow and oxygenation that was accompanied by an increase in RBCs deformability. The significant depletion of the molecular layer of the prefrontal cortex and the pyramidal neurons, which are crucial for associative learning and attention, is developed as a consequence of homeostasis imbalance. Thus, stress-induced processes preceding and accompanying brain hemorrhages in neonatal period contribute to serious injuries of the brain blood circulation, cerebral metabolic activity and structural elements of cognitive function. These results are an informative platform for further studies of mechanisms underlying stress-induced brain hemorrhages during the first days of life that will improve the future generation's health. PMID:27378933

  7. Striatal trophic activity is reduced in the aged rat brain.

    Science.gov (United States)

    Ling, Z D; Collier, T J; Sortwell, C E; Lipton, J W; Vu, T Q; Robie, H C; Carvey, P M

    2000-02-21

    Our previous studies demonstrated that the survival of a mesencephalic graft was reduced in aged animals suggesting an age-related decline in target-derived neurotrophic activity. We tested this hypothesis by examining dopamine (DA) and trophic activities from the striatum of intact or unilateral 6-hydroxydopamine (6-OHDA) lesioned rats of increasing age. Fisher 344 rats were 4, 12, 18, and 23 months old (m.o.) at sacrifice. Half the animals had received unilateral 6-OHDA lesions of the mesostriatal DA pathway 8 weeks earlier. Striatal tissue punches were analyzed for DA, homovanillic acid (HVA), and DA activity (HVA/DA) using HPLC. The remainder of the striatal tissue was homogenized to generate tissue extracts which were added to E14.5 ventral mesencephalic cultures to test trophic activity. In the non-lesioned animals, striatal DA was reduced and striatal DA activity was increased in the 18 and 23 m.o. animals relative to the 4 and 12 m.o. animals. Striatal trophic activity was inversely related to age. In the lesioned animals, striatal DA ipsilateral to 6-OHDA infusion was below detection limits while the contralateral striatum exhibited age-related changes in DA similar to those seen in the non-lesioned animals. In 4 m.o. lesioned rats, striatal trophic activity ipsilateral to 6-OHDA infusion was elevated by 26% relative to the contralateral side. The ipsi/contra-lateral differences in striatal trophic activity were reduced in 12 m.o. animals and absent in the 18 and 23 m.o. groups. These data suggest that advancing age is associated with a reduction in striatal DA as well as trophic activity. Moreover, the aged striatum loses its ability to biochemically and trophically compensate for DA reduction and therefore may represent a more challenging environment for the survival, growth, and function of a fetal graft.

  8. Effect of whole-brain irradiation on the specific brain regions in a rat model: Metabolic and histopathological changes.

    Science.gov (United States)

    Bálentová, Soňa; Hnilicová, Petra; Kalenská, Dagmar; Murín, Peter; Hajtmanová, Eva; Lehotský, Ján; Adamkov, Marian

    2017-05-01

    Effect of ionizing radiation on the brain affects neuronal, glial, and endothelial cell population and lead to significant morphological, metabolic, and functional deficits. In the present study we investigated a dose- and time-dependent correlation between radiation-induced metabolic and histopathological changes. Adult male Wistar rats received a total dose of 35Gy delivered in 7 fractions (dose 5Gy per fraction) once per week in the same weekday during 7 consecutive weeks. Proton magnetic resonance spectroscopy ((1)H MRS), histochemistry, immunohistochemistry and confocal microscopy were used to determine whether radiation-induced alteration of the brain metabolites correlates with appropriate histopathological changes of neurogenesis and glial cell response in 2 neurogenic regions: the hippocampal dentate gyrus (DG) and the subventricular zone-olfactory bulb axis (SVZ-OB axis). Evaluation of the brain metabolites 18-19 weeks after irradiation performed by (1)H MRS revealed a significant decrease in the total N-acetylaspartate to total creatine (tNAA/tCr) ratio in the striatum and OB. A significant decline of gamma-aminobutyric acid to tCr (GABA/tCr) ratio was seen in the OB and hippocampus. MR revealed absence of gross inflammatory or necrotic lesions in these regions. Image analysis of the brain sections 18-21 weeks after the exposure showed a radiation-induced increase of neurodegeneration, inhibition of neurogenesis and strong resemblance to the reactive astrogliosis. Results showed that fractionated whole-brain irradiation led to the changes in neurotransmission and to the loss of neuronal viability in vivo. Metabolic changes were closely associated with histopathological findings, i.e. initiation of neuronal cell death, inhibition of neurogenesis and strong response of astrocytes indicated development of late radiation-induced changes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Distinct time courses of secondary brain damage in the hippocampus following brain concussion and contusion in rats.

    Science.gov (United States)

    Nakajima, Yuko; Horiuchi, Yutaka; Kamata, Hiroshi; Yukawa, Masayoshi; Kuwabara, Masato; Tsubokawa, Takashi

    2010-07-01

    Secondary brain damage (SBD) is caused by apoptosis after traumatic brain injury that is classified into concussion and contusion. Brain concussion is temporary unconsciousness or confusion caused by a blow on the head without pathological changes, and contusion is a brain injury with hemorrhage and broad extravasations. In this study, we investigated the time-dependent changes of apoptosis in hippocampus after brain concussion and contusion using rat models. We generated the concussion by dropping a plumb on the dura from a height of 3.5 cm and the contusion by cauterizing the cerebral cortex. SBD was evaluated in the hippocampus by histopathological analyses and measuring caspase-3 activity that induces apoptotic neuronal cell death. The frequency of abnormal neuronal cells with vacuolation or nuclear condensation, or those with DNA fragmentation was remarkably increased at 1 hr after concussion (about 30% for each abnormality) from the pre-injury level (0%) and reached the highest level (about 50% for each) by 48 hrs, whereas the frequency of abnormal neuronal cells was increased at 1 hr after contusion (about 10%) and reached the highest level (about 40%) by 48 hrs. In parallel, caspase-3 activity was increased sevenfold in the hippocampus at 1 hr after concussion and returned to the pre-injury level by 48 hrs, whereas after contusion, caspase-3 activity was continuously increased to the highest level at 48 hrs (fivefold). Thus, anti-apoptotic-cell-death treatment to prevent SBD must be performed by 1 hr after concussion and at latest by 48 hrs after contusion.

  10. High-sensitivity phase-contrast tomography of rat brain in phosphate buffered saline

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, Franz [Department of Physics, Technical University Munich, 85748 Garching (Germany); David, Christian; Bunk, Oliver [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Poitry-Yamate, Carole; Gruetter, Rolf [Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Mueller, Bert [Biomaterials Science Center, University of Basel, 4031 Basel (Switzerland); Weitkamp, Timm, E-mail: franz.pfeiffer@ph.tum.d [European Synchrotron Radiation Facility, B.P. 220, 38043 Grenoble Cedex (France)

    2009-09-01

    We report advances and complementary results concerning a recently developed method for high-sensitivity grating-based x-ray phase-contrast tomography. In particular we demonstrate how the soft tissue sensitivity of the technique can be used to obtain in-vitro tomographic images of rat brain specimens. Contrary to our previous experiments with fixated specimen (chemically modified or formalin fixed), the present results on the rat's brain are closer to the in-vivo situation. The findings are particularly important from a clinical point of view, since a similar approach using three gratings can be implemented with more readily available x-ray sources, such as standard x-ray tubes.

  11. Autoradiographic localization of adenosine receptors in rat brain using (/sup 3/H)cyclohexyladenosine

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, R.R.; Synder, S.H.

    1982-09-01

    Adenosine (A1) receptor binding sites have been localized in rat brain by an in vitro light microscopic autoradiographic method. The binding of (/sup 3/H)N6-cyclohexyladenosine to slide-mounted rat brain tissue sections has the characteristics of A1 receptors. It is saturable with high affinity and has appropriate pharmacology and stereospecificity. The highest densities of adenosine receptors occur in the molecular layer of the cerebellum, the molecular and polymorphic layers of the hippocampus and dentate gyrus, the medial geniculate body, certain thalamic nuclei, and the lateral septum. High densities also are observed in certain layers of the cerebral cortex, the piriform cortex, the caudate-putamen, the nucleus accumbens, and the granule cell layer of the cerebellum. Most white matter areas, as well as certain gray matter areas, such as the hypothalamus, have negligible receptor concentrations. These localizations suggest possible central nervous system sites of action of adenosine.

  12. Morphological and Functional Changes in Rat Brain under Total Sleep Deprivation

    Directory of Open Access Journals (Sweden)

    Babak ABUSHOV

    2015-07-01

    Full Text Available In this article the effect of 36 h total sleep deprivation (TSD on behavioural reactions of rats (rearing, grooming and sexual activity and on ultrastructure of brain neurons have been studied. A group of somnogenic structures (III-V layers of the frontal limbic cortex, CA1 area of the dorsal hippocampus, reticular formation of pons varolli, nucleus raphe dorsalis and locus coeruleus of the brain of 6 month-old Wistar rats has been analized in this study. It has been revealed that dystrophic changes (chromatolysis of cytoplasm and vacuolization enveloping a group of medium-sized neurons (20-30 (μ micron in diameter are accompanied by decrease of numbers of rearing, grooming and sexual activity. It is supposed that dystrophic changes revealed in medium-sized neurons result in partial disturbances of integrative and behavioral reactions of animals.

  13. Biological effect of velvet antler polypeptides on neural stem cells from embryonic rat brain

    Institute of Scientific and Technical Information of China (English)

    LU Lai-jin; CHEN Lei; MENG Xiao-ting; YANG Fan; ZHANG Zhi-xin; CHEN Dong

    2005-01-01

    Background Velvet antler polypeptides (VAPs), which are derived from the antler velvets, have been reported to maintain survival and promote growth and differentiation of neural cells and, especially the development of neural tissues. This study was designed to explore the influence of VAPs on neural stem cells in vitro derived from embryonic rat brain. Methods Neural stem cells derived from E12-14 rat brain were isolated, cultured, and expanded for 7 days until neural stem cell aggregations and neurospheres were generated. The neurospheres were cultured under the condition of different concentration of VAPs followed by immunocytochemistry to detect the differentiation of neural stem cells. Results VAPs could remarkablely promote differentiation of neural stem cells and most neural stem cells were induced to differentiate towards the direction of neurons under certain concentration of VAPs.Conclusion Neural stem cells can be successfully induced into neurons by VAPs in vitro, which could provide a basis for regeneration of the nervous system.

  14. Brain network reorganization differs in response to stress in rats genetically predisposed to depression and stress-resilient rats.

    Science.gov (United States)

    Gass, N; Becker, R; Schwarz, A J; Weber-Fahr, W; Clemm von Hohenberg, C; Vollmayr, B; Sartorius, A

    2016-12-06

    Treatment-resistant depression (TRD) remains a pressing clinical problem. Optimizing treatment requires better definition of the specificity of the involved brain circuits. The rat strain bred for negative cognitive state (NC) represents a genetic animal model of TRD with high face, construct and predictive validity. Vice versa, the positive cognitive state (PC) strain represents a stress-resilient phenotype. Although NC rats show depressive-like behavior, some symptoms such as anhedonia require an external trigger, i.e. a stressful event, which is similar to humans when stressful event induces a depressive episode in genetically predisposed individuals (gene-environment interaction). We aimed to distinguish neurobiological predisposition from the depressogenic pathology at the level of brain-network reorganization. For this purpose, resting-state functional magnetic resonance imaging time series were acquired at 9.4 Tesla scanner in NC (N=11) and PC (N=7) rats before and after stressful event. We used a graph theory analytical approach to calculate the brain-network global and local properties. There was no difference in the global characteristics between the strains. At the local level, the response in the risk strain was characterized with an increased internodal role and reduced local clustering and efficiency of the anterior cingulate cortex (ACC) and prelimbic cortex compared to the stress-resilient strain. We suggest that the increased internodal role of these prefrontal regions could be due to the enhancement of some of their long-range connections, given their connectivity with the amygdala and other default-mode-like network hubs, which could create a bias to attend to negative information characteristic for depression.

  15. Oxidative stress induces the decline of brain EPO expression in aging rats.

    Science.gov (United States)

    Li, Xu; Chen, Yubao; Shao, Siying; Tang, Qing; Chen, Weihai; Chen, Yi; Xu, Xiaoyu

    2016-10-01

    Brain Erythropoietin (EPO), an important neurotrophic factor and neuroprotective factor, was found to be associated with aging. Studies found EPO expression was significantly decreased in the hippocampus of aging rat compared with that of the youth. But mechanisms of the decline of the brain EPO during aging remain unclear. The present study utilized a d-galactose (d-gal)-induced aging model in which the inducement of aging was mainly oxidative injury, to explore underlying mechanisms for the decline of brain EPO in aging rats. d-gal-induced aging rats (2months) were simulated by subcutaneously injecting with d-gal at doses of 50mg·kg(-1), 150mg·kg(-1) and 250mg·kg(-1) daily for 8weeks while the control group received vehicle only. These groups were all compared with the aging rats (24months) which had received no other treatment. The cognitive impairment was assessed using Morris water maze (MWM) in the prepared models, and the amount of β-galactosidase, the lipid peroxidation product malondialdehyde (MDA) level and the superoxide dismutase (SOD) activity in the hippocampus was examined by assay kits. The levels of EPO, EPOR, p-JAK2 and hypoxia-inducible factor-2α (HIF-2α) in the hippocampus were detected by western blot. Additionally, the correlation coefficient between EPO/EPOR expression and MDA level was analyzed. The MWM test showed that compared to control group, the escape latency was significantly extended and the times of crossing the platform was decreased at the doses of 150mg·kg(-1) and 250mg·kg(-1) (pEPO, EPOR, p-JAK2, and HIF-2αin the brain of d-gal-treated rats were significantly decreased (pEPO (r=-0.701, pEPO in the hippocampus and oxidative stress might be the main reason for the decline of brain EPO in aging rats, involved with the decrease of HIF-2α stability.

  16. Detection of neural stem cells function in rats with traumatic brain injury by manganese-enhanced magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    TANG Hai-liang; SUN Hua-ping; WU Xing; SHA Hong-ying; FENG Xiao-yuan; ZHU Jian-hong

    2011-01-01

    Background Previously we had successfully tracked adult human neural stem cells (NSCs) labeled with superparamagnetic iron oxide particles (SPIOs) in host human brain after transplantation In vivo non-invasively by magnetic resonance imaging (MRI). However, the function of the transplanted NSCs could not be evaluated by the method. In the study, we applied manganese-enhanced MRI (ME-MRI) to detect NSCs function after implantation in brain of rats with traumatic brain injury (TBI) In vivo.Methods Totally 40 TBI rats were randomly divided into 4 groups with 10 rats in each group. In group 1, the TBI rats did not receive NSCs transplantation. MnCl2-4H2O was intravenously injected, hyperosmolar mannitol was delivered to disrupt rightside blood brain barrier, and its contralateral forepaw was electrically stimulated. In group 2, the TBI rats received NSCs (labeled with SPIO) transplantation, and the ME-MRI procedure was same to group 1. In group 3, the TBI rats received NSCs (labeled with SPIO) transplantation, and the ME-MRI procedure was same to group 1, but diltiazem was introduced during the electrical stimulation period. In group 4, the TBI rats received phosphate buffered saline (PBS) injection, and the ME-MRI procedure was same to group 1.Results Hyperintense signals were detected by ME-MRI in the cortex areas associated with somatosensory in TBI rats of group 2. These signals, which could not be induced in TBI rats of groups 1 and 4, disappeared when diltiazem was introduced in TBI rats of group 3.Conclusion In this initial study, we mapped implanted NSCs activity and its functional participation within local brain area in TBI rats by ME-MRI technique, paving the way for further pre-clinical research.

  17. The Pattern of Brain-Derived Neurotrophic Factor Gene Expression in the Hippocampus of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Iraj Salehi

    2010-06-01

    Full Text Available Objective(sThe aim of this study was to evaluate the effects of regular exercise in preventing diabetes complication in the hippocampus of streptozotocin (STZ-induced diabetic rat.Materials and MethodsA total of 48 male wistar rats were divided into four groups (control, control exercise, diabetic and diabetic exercise. Diabetes was induced by injection of single dose of STZ. Exercise was performed for one hr every day, over a period of 8 weeks. The antioxidant enzymes (SOD, GPX, CAT and GR and oxidant indexes with brain-derived neurotrophic factor (BDNF protein and its mRNA and apoptosis were measured in hippocampus of rats. ResultsA significant decrease in antioxidant enzymes activities and increased malondialdehyde (MDA level were observed in diabetic rats (P= 0.004. In response to exercise, antioxidant enzymes activities increased (P= 0.004. In contrast, MDA level decreased in diabetic rats (P= 0.004. Induction of diabetes caused an increase of BDNF protein and its mRNA expression. In response to exercise, BDNF protein and its mRNA expression reduced in hippocampus of diabetic rats. ConclusionDiabetes induced oxidative stress and increased BDNF gene expression. Exercise ameliorated oxidative stress and decreased BDNF gene expression.

  18. Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus.

    Directory of Open Access Journals (Sweden)

    Lauriane Jugé

    Full Text Available Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P < 0.001, for both, an alteration of the corpus callosum and periventricular white matter microstructure (CC+PVWM and rearrangement of the cortical gray matter microstructure (P < 0.001, for both, while compression without gross microstructural alteration was evident in the caudate-putamen and ventral internal capsule (P < 0.001, for both. During hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P < 0.001, while a decrease in space was observed for the ventral internal capsule (P < 0.001. For the cortical gray matter, an increase in extracellular tissue water was significantly associated with a decrease in tissue stiffness (P = 0.001. To conclude, this study characterizes the temporal changes in tissue microstructure, water content and stiffness in different brain regions and their association with ventricular enlargement. In summary, whilst diffusion changes were larger and statistically significant for majority of the brain regions

  19. Effect of glycyrrhizin on traumatic brain injury in rats and its mechanism

    Institute of Scientific and Technical Information of China (English)

    Gu Xiangjin; Xu Jin; Ma Banyou; Chen Gong; Gu Peiyuan; Wei Dong; Hu Weixing

    2014-01-01

    Objective:To investigate the neuroprotective effects of glycyrrhizin (Gly) as well as its effect on expression of high-mobility group box 1 (HMGB 1) in rats after traumatic brain injury (TBI).Methods:Male Sprague-Dawley rats were randomly divided into three groups:sham group,TBI group,and TBI+Gly group (n=36 per group).Rat TBI model was made by using the modified Feeney's method.In TBI+Gly group,Gly was administered intravenously at a dosage of 10 mg/kg 30 min after TBI.At 24 h after TBI,motor function and brain water content were evaluated.Meanwhile,HMGB 1/HMGB 1 receptors including toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE)/nuclear factor-κ B(NF-κ B) signaling pathway and inflammatory cytokines in the injured brain tissues were detected using quantitative real-time polymerase chain reaction,western blot,electrophoretic mobility shift assay and enzyme-linked immunosorbent assay.Furthermore,HMGB 1,RAGE and TLR4 immunohistochemistry and apoptosis were analyzed.Results:Beam walking performance impairment and brain edema were significantly reduced in TBI+Gly group compared with TBI group; meanwhile,the over-expressions of HMGB 1/HMGB 1 receptors (TLR4 and RAGE)/NF-κB DNA-binding activity and inflammatory cytokines were inhibited.The percentages of HMGB 1,RAGE and TLR4positive cells and apoptotic cells were respectively 58.37%±5.06%,54.15%±4.65%,65.50%± 4.83%,52.02%± 4.63% in TBI group and 39.99%±4.99%,34.87%±5.02%,43.33%±4.54%,37.84%±5.16% in TBI+Gly group (all P<0.01 compared with TBI group).Conclusion:Gly can reduce secondary brain injury and improve outcomes in rat following TBI by down-regulation of HMGB 1/HMGB 1 receptors (TLR4 and RAGE)/NF-κ B-mediated inflammatory responses in the injured rat brain.

  20. Effect of glycyrrhizin on traumatic brain injury in rats and its mechanism

    Directory of Open Access Journals (Sweden)

    Gu Xiangjin

    2014-02-01

    Full Text Available 【Abstract】Objective: To investigate the neuroprotective effects of glycyrrhizin (Gly as well as its effect on expression of high-mobility group box 1 (HMGB1 in rats after traumatic brain injury (TBI. Methods: Male Sprague-Dawley rats were randomly divided into three groups: sham group, TBI group, and TBI+Gly group (n=36 per group. Rat TBI model was made by using the modified Feeney’s method. In TBI+Gly group, Gly was administered intravenously at a dosage of 10 mg/kg 30 min after TBI. At 24 h after TBI, motor function and brain water content were evaluated. Meanwhile, HMGB1/HMGB1 receptors including toll-like receptor 4 (TLR4 and receptor for advanced glycation end products (RAGE/nuclear factor- κB(NF- κB signaling pathway and inflammatory cytokines in the injured brain tissues were detected using quantitative real-time polymerase chain reaction, western blot, electrophoretic mobility shift assay and enzyme-linked immunosorbent assay. Furthermore, HMGB1, RAGE and TLR4 immunohistochemistry and apoptosis were analyzed. Results: Beam walking performance impairment and brain edema were significantly reduced in TBI+Gly group compared with TBI group; meanwhile, the over-expressions of HMGB1/HMGB1 receptors (TLR4 and RAGE/NF-κB DNA-binding activity and inflammatory cytokines were inhibited. The percentages of HMGB1, RAGE and TLR4- positive cells and apoptotic cells were respectively 58.37%±5.06%, 54.15%±4.65%, 65.50%± 4.83%, 52.02%± 4.63% in TBI group and 39.99%±4.99%, 34.87%±5.02%, 43.33%±4.54%, 37.84%±5.16% in TBI+Gly group (all P<0.01 compared with TBI group. Conclusion: Gly can reduce secondary brain injury and improve outcomes in rat following TBI by down-regulation of HMGB1/HMGB1 receptors (TLR4 and RAGE/NF-κB - mediated inflammatory responses in the injured rat brain.

  1. DARPP-32 expression in rat brain after electroconvulsive stimulation.

    Science.gov (United States)

    Rosa, Daniela V F; Souza, Renan P; Souza, Bruno R; Motta, Bernardo S; Caetano, Fernando; Jornada, Luciano K; Feier, Gustavo; Gomez, Marcus V; Quevedo, João; Romano-Silva, Marco A

    2007-11-07

    Although electroconvulsive therapy (ECT) has been used as a treatment for mental disorder since 1930s, little progress has been made in the mechanisms underlying its therapeutic or adverse effects. The aim of this work was to analyze the expression of DARPP-32 (a protein with a central role in dopaminergic signaling) in striatum, cortex, hippocampus and cerebellum of Wistar rats subjected to acute or chronic electroconvulsive stimulation (ECS). Rats were submitted to a single stimulation (acute) or to a series of eight stimulations, applied one every 48 h (chronic). Animals were killed for collection of tissue samples at time zero, 0.5, 3, 12, 24 and 48 h after stimulation in the acute model and at the same time intervals after the last stimulation in the chronic model. Our results indicated that acute ECS produces smaller changes in the expression of DARPP-32 but, interestingly, chronic ECS increased transient expression of DARPP-32 in several time frames, in striatum and hippocampus, after the last stimulation. Results on the expression of proteins involved in signaling pathways are relevant for neuropsychiatric disorders and treatment, in particular ECT, and can contribute to shed light on the mechanisms related to therapeutic and adverse effects.

  2. Changes in neurotransmitter receptor expression levels in rat brain after 4-week exposure to 1-bromopropane.

    Science.gov (United States)

    Mohideen, Sahabudeen Sheik; Ichihara, Sahoko; Banu, Shameema; Liu, Fang; Kitoh, Junzoh; Ichihara, Gaku

    2009-11-01

    1-Bromopropane (1-BP), an alternative to ozone-depleting solvents, exhibits neurotoxicity and reproductive toxicity in animals and humans. The present study investigated the effects of exposure to 1-BP on expression of neurotransmitter receptor genes in the rat brain to explore possible biomarkers for central neurotoxicity and find brain regions sensitive for microarray analysis. Thirty-six F344 rats were divided at random into four equal groups of nine and exposed to 1-BP at 0, 400, 800 and 1000 ppm for 8 h/day; 7 days/week for 4 weeks. Total RNA from different brain regions was extracted and real-time PCR was conducted to quantify the mRNA levels of serotonin, dopamine and GABA receptors. Western blot analysis for specific regions of interest was also carried out to determine the protein levels. The mRNAs of 5HTr2a, D2R and GABAa1 were down regulated in a 1-BP dose-dependent manner in the hippocampus. The mRNA levels of 5HTr1a, 5HTr2a, D1R and GABAa1 were significantly decreased in the cortex of rats exposed to 800 ppm, but not to 1000 ppm. The mRNAs of 5HTr1a and 5HTr3a in the pons-medulla were decreased in rats exposed to 400 ppm or higher concentrations. The mRNA expression of D2R in the hippocampus and 5HTr1a and 5HTr3a in the pons-medulla oblongata were the most sensitive indicators of 1-BP neurotoxicity. The results suggest that mRNA expression analysis is useful in identifying brain regions susceptible to 1-BP, as well as providing potential biomarkers for central nervous system toxicity.

  3. Protective effect of bacoside A on cigarette smoking-induced brain mitochondrial dysfunction in rats.

    Science.gov (United States)

    Anbarasi, Kothandapani; Vani, Ganapathy; Devi, Chennam Srinivasulu Shyamala

    2005-01-01

    Chronic exposure to cigarette smoke affects the structure and function of mitochondria, which may account for the pathogenesis of smoking-related diseases. Bacopa monniera Linn., used in traditional Indian medicine for various neurological disorders, was shown to possess mitrochondrial membrane-stabilizing properties in the rat brain during exposure to morphine. We investigated the protective effect of bacoside A, the active principle of Bacopa monniera, against mitochondrial dysfunction in rat brain induced by cigarette smoke. Male Wistar albino rats were exposed to cigarette smoke and administered bacoside A for a period of 12 weeks. The mitochondrial damage in the brain was assessed by examining the levels of lipid peroxides, cholesterol, phospholipid, cholesterol/phospholipid (C/P) ratio, and the activities of isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, NADH dehydrogenase, and cytochrome C oxidase. The oxidative phosphorylation (rate of succinate oxidation, respiratory control ratio and ADP/O ratio, and the levels of ATP) was evaluated for the assessment of mitochondrial functional capacity. We found significantly elevated levels of lipid peroxides, cholesterol, and C/P ratio, and decreased levels of phospholipids and mitochondrial enzymes in the rats exposed to cigarette smoke. Measurement of oxidative phosphorylation revealed a marked depletion in all the variables studied. Administration of bacoside A prevented the structural and functional impairment of mitochondria upon exposure to cigarette smoke. From the results, we suggest that chronic cigarette smoke exposure induces damage to the mitochondria and that bacoside A protects the brain from this damage by maintaining the structural and functional integrity of the mitochondrial membrane.

  4. Emergency Interventions After Severe Traumatic Brain Injury in Rats: Effect on Neuropatholgy and Functional Outcome.

    Science.gov (United States)

    1999-01-01

    brain of male Long-Evans rats (225-250 gm) via intracerebroventricular infusion. The distribution of bio-rncfosriis was detected using antibodies...Please check one: □ A. Administration /Education D B. Burns/Trauma D C. CPR D D. Cardiovascular O E. Computers/Technology O F. Ethics □ G. Immunology...therapies. Dietrich et aP reported that combination of 3 hours of moderate hypothermia with sustained administration of the glu- tamate antagonist

  5. DNA microarray unravels rapid changes in transcriptome of MK-801 treated rat brain

    Institute of Scientific and Technical Information of China (English)

    Yuka; Kobayashi; Sofya; P; Kulikova; Junko; Shibato; Randeep; Rakwal; Hiroyuki; Satoh; Didier; Pinault; Yoshinori; Masuo

    2015-01-01

    AIM:To investigate the impact of MK-801 on gene expression patterns genome wide in rat brain regions. METHODS:Rats were treated with an intraperitoneal injection of MK-801 [0.08(low-dose) and 0.16(highdose) mg/kg] or NaC l(vehicle control). In a first series of experiment,the frontoparietal electrocorticogram was recorded 15 min before and 60 min after injection. In a second series of experiments,the whole brain of each animal was rapidly removed at 40 min post-injection,and different regions were separated:amygdala,cerebral cortex,hippocampus,hypothalamus,midbrain and ventral striatum on ice followed by DNA microarray(4 × 44 K whole rat genome chip) analysis.RESULTS:Spectral analysis revealed that a single systemic injection of MK-801 significantly and selectively augmented the power of baseline gamma frequency(30-80 Hz) oscillations in the frontoparietal electroencephalogram. DNA microarray analysis showed the largest number(up- and down- regulations) of gene expressions in the cerebral cortex(378),midbrain(376),hippocampus(375),ventral striatum(353),amygdala(301),and hypothalamus(201) under low-dose(0.08 mg/kg) of MK-801. Under high-dose(0.16 mg/kg),ventral striatum(811) showed the largest number of gene expression changes. Gene expression changes were functionally categorized to reveal expression of genes and function varies with each brain region.CONCLUSION:Acute MK-801 treatment increases synchrony of baseline gamma oscillations,and causes very early changes in gene expressions in six individual rat brain regions,a first report.

  6. Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kopelman, Raoul [Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor MI 48109 (United States)]. E-mail: kopelman@umich.edu; Lee Koo, Yong-Eun [Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor MI 48109 (United States); Philbert, Martin [Environmental Health Sciences, niversity of Michigan (United States); Moffat, Bradford A. [Department of Radiology, The University of Michigan (United States); Ramachandra Reddy, G. [Molecular Therapeutics, Inc., Ann Arbor, MI 48104 (United States); McConville, Patrick [Molecular Therapeutics, Inc., Ann Arbor, MI 48104 (United States); Hall, Daniel E. [Department of Radiology, University of Michigan (United States); Chenevert, Thomas L. [Department of Radiology, University of Michigan (United States); Bhojani, Mahaveer Swaroop [Department of Radiation Oncology, University of Michigan (United States); Buck, Sarah M. [Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor MI 48109 (United States); Rehemtulla, Alnawaz [Department of Radiation Oncology, University of Michigan (United States); Ross, Brian D. [Department of Radiology, University of Michigan (United States)

    2005-05-15

    A paradigm for brain cancer detection, treatment, and monitoring is established. Multifunctional biomedical nanoparticles (30-60 nm) containing photosensitizer externally deliver reactive oxygen species (ROS) to cancer cells while simultaneously enhancing magnetic resonance imaging (MRI) contrast providing real-time tumor kill measurement. Plasma residence time control and specific cell targeting are achieved. A 5 min treatment in rats halted and even reversed in vivo tumor growth after 3-4 days post-treatment.

  7. Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer

    Science.gov (United States)

    Kopelman, Raoul; Lee Koo, Yong-Eun; Philbert, Martin; Moffat, Bradford A.; Ramachandra Reddy, G.; McConville, Patrick; Hall, Daniel E.; Chenevert, Thomas L.; Bhojani, Mahaveer Swaroop; Buck, Sarah M.; Rehemtulla, Alnawaz; Ross, Brian D.

    2005-05-01

    A paradigm for brain cancer detection, treatment, and monitoring is established. Multifunctional biomedical nanoparticles (30-60 nm) containing photosensitizer externally deliver reactive oxygen species (ROS) to cancer cells while simultaneously enhancing magnetic resonance imaging (MRI) contrast providing real-time tumor kill measurement. Plasma residence time control and specific cell targeting are achieved. A 5 min treatment in rats halted and even reversed in vivo tumor growth after 3-4 days post-treatment.

  8. A Neurobehavioral Phenotype of Blast Traumatic Brain Injury and Psychological Stress in Male and Female Rats

    Science.gov (United States)

    2012-02-03

    The weight drop model (also called Marmarou’s weight drop model; Marmarou et al., 1994; Foda & Marmarou, 1994) is frequently used to model...locomotion depend on rat sex and housing condition. Nicotine & Tobacco Research, 1(2), 143-151. Foda , M.A., & Marmarou, A. (1994). A new model of diffuse...of traumatic brain injury. Georgian Med News, 140, 1306. Marmarou, A., Foda , M.A., van den Brink, W., Campbell, J., Kita, H., & Demetriadou

  9. The Ayurvedic drug, Ksheerabala, ameliorates quinolinic acid-induced oxidative stress in rat brain

    OpenAIRE

    Swathy, S. S.; Indira, M.

    2010-01-01

    One of the mechanisms of neurotoxicity is the induction of oxidative stress. There is hardly any cure for neurotoxicity in modern medicine, whereas many drugs in Ayurveda possess neuroprotective effects; however, there is no scientific validation for these drugs. Ksheerabala is an ayurvedic drug which is used to treat central nervous system disorders, arthritis, and insomnia. The aim of our study was to evaluate the effect of Ksheerabala on quinolinic acid-induced toxicity in rat brain. The o...

  10. Effect of Heavy Ion Brain Radiation on Nerve-immune System Regulation Mechanism in Rat

    Institute of Scientific and Technical Information of China (English)

    YU; Ying-qi; WANG; Xiao; KONG; Fu-quan; SUI; Li; LEI; Run-hong; MA; Hong; DENG; Yu-lin; LI; Qiang

    2013-01-01

    High-dose ionizing irradiation can cause extensive injuries in susceptible tissues.Blood,nervous and immune systems are highly radiation-sensitive.While the nerve-immune system regulation of radiationdamage in the relevant research is rare.So the brain injury model that rats were subjected to 15 Gy of head irradiation was built.By detecting hypothalamic-pituitary-adrenal axis(HPA axis)changes,the

  11. Quantitative determination of angiotensin II binding sites in rat brain and pituitary gland by autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Israel, A.; Correa, F.M.A.; Niwa, M.; Saavedra, J.M. (National Inst. of Mental Health, Bethesda, MD (USA))

    1984-11-26

    Rat brain and pituitary angiotensin II (AII) binding sites were quantitated by incubation of tissue sections with /sup 125/I-(Sar/sup 1/) AII, Ultrofilm radioautography, computerized densitometry, and comparison with /sup 125/I-standards at appropriate film exposure times. The highest number of AII binding sites was found in anterior pituitary and the circumventricular organs, organon subfornicalis and organon vasculosum laminae terminalis.

  12. Glucose-6-phosphate Reduces Calcium Accumulation in Rat Brain Endoplasmic Reticulum

    Science.gov (United States)

    2012-04-01

    clinically relevant neu- ropathologies. For example, diabetes and hyperglycemia are well- documented to cause significantly worse outcome for patients who...enhanced in microsomes from liver, brain, and heart. Diabetes 47, 874. Dong, Z., Saikumar, P., Weinberg, J. M., and Venkatachalam, M. A. (2006...Pompella, A., and Benedetti, A. (1990). Glucose 6-phosphate stimulation of MgATP- dependent Ca2+ uptake by rat kid - ney microsomes. Biochim. Biophys. Acta

  13. Characterization of cholinergic muscarinic receptor-stimulated phosphoinositide metabolism in brain from immature rats

    Energy Technology Data Exchange (ETDEWEB)

    Balduini, W.; Murphy, S.D.; Costa, L.G. (Univ. of Washington, Seattle (USA))

    1990-05-01

    Hydrolysis of phosphoinositides elicited by stimulation of cholinergic muscarinic receptors has been studied in brain from neonatal (7-day-old) rats in order to determine: (1) whether the neonatal rat could provide a good model system to study this signal-transduction pathway; and (2) whether potential differences with adult nerve tissue would explain the differential, age-related effects of cholinergic agonists. Accumulation of (3H) inositol phosphates in (3H)inositol prelabeled slices from neonatal and adult rats was measured as an index of phosphoinositide metabolism. Full (acetylcholine, methacholine, carbachol) and partial (oxotremorine, bethanechol) agonists had qualitatively similar, albeit quantitatively different, effects in neonatal and adult rats. Atropine and pirenzepine effectively blocked the carbachol-induced response with inhibition constants of 1.2 and 20.7 nM, respectively. In all brain areas, response to all agonists was higher in neonatal than adult rats, and in hippocampus and cerebral cortex the response was higher than in cerebellum or brainstem. The relative intrinsic activity of partial agonists was higher in the latter two areas (0.6-0.7) than in the former two (0.3-0.4). Carbachol-stimulated phosphoinositide metabolism in brain areas correlated well with the binding of (3H)QNB (r2 = 0.627) and, particularly, with (3H)pirenzepine (r2 = 0.911). In cerebral cortex the effect of carbachol was additive to that of norepinephrine and glutamate. The presence of calcium (250-500 microM) was necessary for maximal response to carbachol to be elicited; the EC50 value for Ca2+ was 65.4 microM. Addition of EDTA completely abolished the response. Removal of sodium ions from the incubation medium reduced the response to carbachol by 50%.

  14. The effects of hyperbaric air and hyperbaric oxygen on blood-brain barrier integrity in rats.

    Science.gov (United States)

    Cevik, Nihal Gunes; Orhan, Nurcan; Yilmaz, Canan Ugur; Arican, Nadir; Ahishali, Bulent; Kucuk, Mutlu; Kaya, Mehmet; Toklu, Akin Savas

    2013-09-19

    Hyperbaric oxygen (HBO) treatment yields conflicting results on blood-brain barrier (BBB) integrity under various pathological conditions and the effects of HBO on healthy brain is poorly understood. In this experimental study, the effects of HBO on BBB integrity were investigated in comparison with hyperbaric air (HBA) in intact rats. Four sessions of HBA or HBO were applied to intact rats in 24h. BBB integrity was functionally and structurally evaluated by determining extravasation of Evans blue (EB) dye and horseradish peroxidase (HRP) tracers. In immunohistochemical evaluation, relative staining intensity for occludin, a tight junction (TJ) protein, and aquaporin 4 (AQP4), a water-channel protein, was detected in the barrier type of microvessels of brain by image analysis. BBB permeability to EB dye significantly increased in animals in HBO treatment group compared to those in HBA and control groups (p<0.05). The immunoreactivity of occludin, a tight junction protein, remained essentially unaltered in capillaries of hippocampus in all groups. In animals exposed to HBO, AQP4 immunoreactivity significantly increased in parietal cortex compared to those in HBA and control groups (p<0.01). Ultrastructurally, frequent vesicles containing HRP reaction products were observed in capillary endothelial cells in cerebral cortex and hippocampus of rats subjected to both HBA and HBO. Our results indicate that the HBO administration to intact rats increased BBB permeability to both EB and HRP while HBA increased only HRP extravasation in these animals. The results of this study suggest that HBA also impairs the BBB integrity in intact rats as well as HBO.

  15. Mitochondrial dysfunction in brain cortex mitochondria of STZ-diabetic rats: effect of l-Arginine.

    Science.gov (United States)

    Ortiz, M Del Carmen; Lores-Arnaiz, Silvia; Albertoni Borghese, M Florencia; Balonga, Sabrina; Lavagna, Agustina; Filipuzzi, Ana Laura; Cicerchia, Daniela; Majowicz, Monica; Bustamante, Juanita

    2013-12-01

    Mitochondrial dysfunction has been implicated in many diseases, including diabetes. It is well known that oxygen free radical species are produced endogenously by mitochondria, and also nitric oxide (NO) by nitric oxide synthases (NOS) associated to mitochondrial membranes, in consequence these organelles constitute main targets for oxidative damage. The aim of this study was to analyze mitochondrial physiology and NO production in brain cortex mitochondria of streptozotocin (STZ) diabetic rats in an early stage of diabetes and the potential effect of L-arginine administration. The diabetic condition was characterized by a clear hyperglycaemic state with loose of body weight after 4 days of STZ injection. This hyperglycaemic state was associated with mitochondrial dysfunction that was evident by an impairment of the respiratory activity, increased production of superoxide anion and a clear mitochondrial depolarization. In addition, the alteration in mitochondrial physiology was associated with a significant decrease in both NO production and nitric oxide synthase type I (NOS I) expression associated to the mitochondrial membranes. An increased level of thiobarbituric acid-reactive substances (TBARS) in brain cortex homogenates from STZ-diabetic rats indicated the presence of lipid peroxidation. L-arginine treatment to diabetic rats did not change blood glucose levels but significantly ameliorated the oxidative stress evidenced by lower TBARS and a lower level of superoxide anion. This effect was paralleled by improvement of mitochondrial respiratory function and a partial mitochondrial repolarization.In addition, the administration of L-arginine to diabetic rats prevented the decrease in NO production and NOSI expression. These results could indicate that exogenously administered L-arginine may have beneficial effects on mitochondrial function, oxidative stress and NO production in brain cortex mitochondria of STZ-diabetic rats.

  16. Mode of GH administration and gene expression in the female rat brain.

    Science.gov (United States)

    Walser, Marion; Schiöler, Linus; Oscarsson, Jan; Åberg, Maria A I; Wickelgren, Ruth; Svensson, Johan; Isgaard, Jörgen; Aberg, N David

    2017-03-08

    The endogenous secretion of growth hormone (GH) is sexually dimorphic in rats with females having a more even and males a more pulsatile secretion and low trough levels. The mode of GH administration, mimicking the sexually dimorphic secretion, has different systemic effects. In the brains of male rats, we have previously found that the mode of GH administration differently affects neuron haemoglobin beta (Hbb) expression whereas effects on other transcripts were moderate. The different modes of GH administration could have different effects on brain transcripts in female rats. Hypophysectomised female rats were given GH either as injections twice daily or as continuous infusion and GH-responsive transcripts were assessed by quantitative reverse transcription polymerase chain reaction in the hippocampus and parietal cortex (cortex). The different modes of GH-administration markedly increased Hbb and 5'-aminolevulinate synthase 2 (Alas2) in both brain regions. As other effects were relatively moderate, a mixed model analysis (MMA) was used to investigate general effects of the treatments. In the hippocampus, MMA showed that GH-infusion suppressed glia- and neuron-related transcript expression whereas GH-injections increased expression. In the cortex, GH-infusion instead increased neuron-related transcripts, whereas GH-injections had no significant effect. Interestingly, this contrasts to previous results from male rat cortex where GH-infusion generally decreased expression levels. In conclusion, the results indicate that there is a small but significant difference in response to mode of GH administration, in the hippocampus as compared to the cortex. For both modes of GH administration, there was a robust effect on Hbb and Alas2.

  17. Evaluation of Krebs cycle enzymes in the brain of rats after chronic administration of antidepressants.

    Science.gov (United States)

    Scaini, Giselli; Santos, Patricia M; Benedet, Joana; Rochi, Natália; Gomes, Lara M; Borges, Lislaine S; Rezin, Gislaine T; Pezente, Daiana P; Quevedo, João; Streck, Emilio L

    2010-05-31

    Several works report brain impairment of metabolism as a mechanism underlying depression. Citrate synthase and succinate dehydrogenase are enzymes localized within cells in the mitochondrial matrix and are important steps of Krebs cycle. In addition, citrate synthase has been used as a quantitative enzyme marker for the presence of intact mitochondria. Thus, we investigated citrate synthase and succinate dehydrogenase activities from rat brain after chronic administration of paroxetine, nortriptiline and venlafaxine. Adult male Wistar rats received daily injections of paroxetine (10mg/kg), nortriptiline (15mg/kg), venlafaxine (10mg/kg) or saline in 1.0mL/kg volume for 15 days. Twelve hours after the last administration, the rats were killed by decapitation, the hippocampus, striatum and prefrontal cortex were immediately removed, and activities of citrate synthase and succinate dehydrogenase were measured. We verified that chronic administration of paroxetine increased citrate synthase activity in the prefrontal cortex, hippocampus, striatum and cerebral cortex of adult rats; cerebellum was not affected. Chronic administration of nortriptiline and venlafaxine did not affect the enzyme activity in these brain areas. Succinate dehydrogenase activity was increased by chronic administration of paroxetine and nortriptiline in the prefrontal cortex, hippocampus, striatum and cerebral cortex of adult rats; cerebellum was not affected either. Chronic administration of venlafaxine increased succinate dehydrogenase activity in prefrontal cortex, but did not affect the enzyme activity in cerebellum, hippocampus, striatum and cerebral cortex. Considering that metabolism impairment is probably involved in the pathophysiology of depressive disorders, an increase in these enzymes by antidepressants may be an important mechanism of action of these drugs.

  18. Characteristics of brain injury induced by shock wave propagation in solids after underwater explosion in rats

    Directory of Open Access Journals (Sweden)

    Xin-ling LI

    2016-09-01

    Full Text Available Objective  To observe the characteristics of rat brain injury induced by shock wave propagation in solids resulting from underwater explosion and explore the related mechanism. Methods  Explosion source outside the simulated ship cabin underwater was detonated for establishing a model of brain injury in rats by shock wave propagation in solid; 72 male SD rats were randomly divided into normal control group (n=8, injury group 1 (600mg RDX paper particle explosion source, n=32, injury group 2 (800mg RDX paper particle explosion source, n=32. The each injury group was randomly divided into 4 subgroups (n=8, 3, 6, 24 and 72h groups. The division plate as a whole and the head of 8 rats in each injury group were measured for the peak value of the solid shock wave, its rising time and the duration time of shock wave propagation in solid. To observe the physiological changes of animals after injury, plasma samples were collected for determination of brain damage markers, NSE and S-100β. All the animals were sacrificed, the right hemisphere of the brain was taken in each group of animals, weighting after baking, and the brain water content was calculated. Pathological examination was performed for left cerebral hemisphere in 24-h group. The normal pyramidal cells in the hippocampal CA1 region were counted. Results  The peak value, rising time and duration time of shock wave propagation on the division plate and head were 1369.74±91.70g, 0.317±0.037ms and 24.85±2.53ms, 26.83±3.09g, 0.901±0.077ms and 104.21±6.26ms respectively in injury group 1, 1850.11±83.86g, 0.184±0.031ms and 35.61±2.66ms, 39.75±3.14g, 0.607±0.069ms and 132.44±7.17ms in injury group 2 (P<0.01. After the injury, there was no abnormality in the anatomy, and brain damage markers NSE, S-100β increased, reached the peak at 24 h, and they were highest in injury group 2 and lowest in control group with a statistically significant difference (P<0.05. The brain water content

  19. PREDICTION OF SPECIFIC DAMAGE OR INFARCTION FROM THE MEASUREMENT OF TISSUE IMPEDANCE FOLLOWING REPETITIVE BRAIN ISCHEMIA IN THE RAT

    NARCIS (Netherlands)

    KLEIN, HC; KROPVANGASTEL, W; GO, KG; KORF, J

    The development of irreversible brain damage during repetitive periods of hypoxia and normoxia was studied in anaesthetized rats with unilateral occlusion of the carotid artery (modified Levine model). Rats were exposed to 10 min hypoxia and normoxia until severe damage developed. As indices of

  20. Hyperlipidemia affects neuronal nitric oxide synthase expression in brains of focal cerebral ischemia rat model

    Institute of Scientific and Technical Information of China (English)

    Jianji Pei; Liqiang Liu; Jinping Pang; Xiaohong Tian

    2008-01-01

    BACKGROUND: Hyperlipidemia, a risk factor for ischemic cerebrovascular disease, may mediate production of neuronal nitric oxide synthase (nNOS) to induce increased nitric oxide levels, resulting in brain neuronal injury. OBJECTIVE: To investigate effects of hyperlipidemia on brain nNOS expression, and to verify changes in infarct volume and pathology during reperfusion, as well as neuronal injury following ischemia/reperfusion in a rat model of focal cerebral ischemia. DESIGN, TIME AND SETTING: Complete, randomized grouping experiment was performed at the Laboratory of Physiology, Shanxi Medical University from March 2005 to March 2006. MATERIALS: A total of 144 eight-week-old, male, Wistar rats, weighing 160-180 g, were selected. A rat model of middle cerebral artery occlusion was established by suture method after 4 weeks of formulated diet. Nitric oxide kit and rabbit anti-rat nNOS kit were respectively purchased from Nanjing Jiancheng Bioengineering Institute, China and Wuhan Boster Biological Technology, Ltd., China. METHODS: The rats were equally and randomly divided into high-fat diet and a normal diet groups. Rats in the high-fat diet group were fed a high-fat diet, consisting of 10% egg yolk powder, 5% pork fat, and 0.5% pig bile salt combined with standard chow to create hyperlipidemia. Rats in the normal diet group were fed a standard rat chow. A total of 72 rats in both groups were randomly divided into 6 subgroups: sham-operated, 4-hour ischemia, 4-hour ischemia/2-hour reperfusion, 4-hour ischemia/4-hour reperfusion, 4-hour ischemia/6-hour reperfusion, and 4-hour ischemia/12-hour reperfusion, with 12 rats in each subgroup. MAIN OUTCOME MEASURES: nNOS expression was measured by immunohistochemistry, and pathomorphology changes were detected by hematoxylin-eosin staining. Infarct volume and nitric oxide levels were respectively measured using 2, 3, 5-triphenyltetrazolium chloride (TTC) and immunohistochemistry. RESULTS: In the ischemic region, pathology

  1. Distribution of synaptobrevin/VAMP 1 and 2 in rat brain.

    Science.gov (United States)

    Raptis, Adriana; Torrejón-Escribano, Benjamín; Gómez de Aranda, Inmaculada; Blasi, Juan

    2005-12-01

    The synaptobrevin/vesicle-associated membrane protein (VAMP) family of proteins, which are essential for neurotransmitter release, are the vesicle donor soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) proteins first described in synaptic vesicles at nerve terminals. Two synaptobrevin/VAMP isoforms are involved in calcium-dependent synaptic vesicle exocytosis, synaptobrevin/VAMP 1 and synaptobrevin/VAMP 2. However, the functional significance of these two highly homologous isoforms remains to be elucidated. Here, we used immunohistochemical, immunofluorescence and confocal microscope techniques to localize the two synaptobrevin/VAMP isoforms in rat brain areas, particularly in nerve terminals. Our results show that the two isoforms are present in the rat central nervous system and that their expression overlaps in some areas. However, a distinct distribution pattern was detected. Synaptobrevin/VAMP 2 is the most abundant isoform in the rat brain and is widely distributed. Although synaptobrevin/VAMP 1 is less abundant, it is the main isoform in particular brain areas (e.g. zona incerta at the subthalamus or nerve terminals surrounding thalamic neurons). The colocalization of synaptophysin with synaptobrevin/VAMP 1 demonstrates the presence of this isoform in subsets of nerve terminals. These results indicate that each synaptic vesicle donor SNARE protein isoform could have a specialized role in the neurosecretory process.

  2. Acute administration of fenproporex increased acetylcholinesterase activity in brain of young rats

    Directory of Open Access Journals (Sweden)

    BRENA P. TEODORAK

    2015-08-01

    Full Text Available Fenproporex is the second most commonly amphetamine-based anorectic consumed worldwide; this drug is rapidly converted into amphetamine, in vivo, and acts by increasing dopamine levels in the synaptic cleft. Considering that fenproporex effects on the central nervous system are still poorly known and that acetylcholinesterase is a regulatory enzyme which is involved in cholinergic synapses and may indirectly modulate the release of dopamine, the present study investigated the effects of acute administration of fenproporex on acetylcholinesterase activity in brain of young rats. Young male Wistar rats received a single injection of fenproporex (6.25, 12.5 or 25mg/kg i.p. or vehicle (2% Tween 80. Two hours after the injection, the rats were killed by decapitation and the brain was removed for evaluation of acetylcholinesterase activity. Results showed that fenproporex administration increased acetylcholinesterase activity in the hippocampus and posterior cortex, whereas in the prefrontal cortex, striatum and cerebellum the enzyme activity was not altered. In conclusion, in the present study we demonstrated that acute administration of fenproporex exerts an effect in the cholinergic system causing an increase in the activity of acetylcholinesterase in a dose-dependent manner in the hippocampus and posterior cortex. Thus, we suggest that the imbalance in cholinergic homeostasis could be considered as an important pathophysiological mechanism underlying the brain damage observed in patients who use amphetamines such as fenproporex.

  3. Effects of Launaea procumbens on brain antioxidant enzymes and cognitive performance of rat.

    Science.gov (United States)

    Khan, Rahmat Ali

    2012-11-14

    Launaea procumbens is used in the treatment of oxidative stress and mental disorders. The effects of Launaea procumbens methanolic extracts (LPMEs), i.e., 100 and 200 LPME mg/kg body weight (b.w.), on cognitive performance as well as on the activity of acetylcholinesterase, and antioxidant enzymes in rat brain tissue homogenates were evaluated. Thirty male Sprague-Dawley rats were divided equally into three groups. Rats in group I (control) were given saline (vehicle), group II received LPME (100 mg/kg b.w., p.o.), and group III were treated with LPME (200 mg/kg b.w., p.o.) in dimethyl sulfoxide (DMSO) for 7 days. Antioxidant potential was assessed by measuring the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHpx), glutathione reductase (GSR) and glutathione-S-transferase (GST) as well as lipid peroxidation and glutathione (GSH) contents in brain tissue homogenates. Activity of acetylcholinesterase (AChE) and cognitive performance were also assessed. LPME administration reduced the levels of lipid peroxidation products (TBARS contents), increased GSH levels and enhanced the activities of SOD, CAT, GSHpx, GSR and GST. AChE activity was reduced by LPME treatment compared with untreated controls. These findings suggested the significant impact of LPMEs on brain function. These effects could be through the antioxidant effects of the bioactive constituents present in LPME.

  4. Anisotropy mapping in rat brains using Intermolecular Multiple Quantum Coherence Effects

    CERN Document Server

    Han, Yi

    2014-01-01

    This document reports an unconventional and rapidly developing approach to magnetic resonance imaging (MRI) using intermolecular multiple-quantum coherences (iMQCs). Rat brain images are acquired using iMQCs. We detect iMQCs between spins that are 10 {\\mu}m to 500 {\\mu}m apart. The interaction between spins is dependent on different directions. We can choose the directions on physical Z, Y and X axis by choosing correlation gradients along those directions. As an important application, iMQCs can be used for anisotropy mapping. In the rat brains, we investigate tissue microstructure. We simulated images expected from rat brains without microstructure. We compare those with experimental results to prove that the dipolar field from the overall shape only has small contributions to the experimental iMQC signal. Because of the underlying low signal to noise ratio (SNR) in iMQCs, this anisotropy mapping method still has comparatively large potentials to grow. The ultimate goal of my project is to develop creative a...

  5. The acute effects of 3,4-methylenedioxymethamphetamine on oxidative stress in rat brain

    Directory of Open Access Journals (Sweden)

    Simić Ivan

    2008-01-01

    Full Text Available Introduction Oxidative stress and oxygen free radicals are thought to play an important role in acute effects of a number of neurotoxic processes. 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy, a ring substituted amphetamine derivate, has attracted a great deal of media attention in recent years due to its widespread abuse as recreational drug by the young generation. The aim of the present study was to evaluate the acute effects of 3,4-methylenedioxymethamphetamine on oxidative stress parameters (index of lipid peroxidation - ILP, superoxide radicals O2-, superoxide dismutase - SOD and glutathione - GSH in frontal cortex, striatum and hippocampus in Wistar rats. Materials and methods The study included 40 male Wistar rats (200-250 g, housed 4 per cage having free access to food and water. MDMA was dissolved in distillated water and administered peroraly at 5, 10, 20 or 40 mg/kg. 8 hours following MDMA, the rats were killed by decapitation, their brains were rapidly removed and the brain structures were dissected out on ice and analyzed biochemically. Results Acute peroral administration of a single dose (5, 10, 20 and 40 mg/kg resulted in increase of ILP, O2-, SOD and decrease of GSH. Conclusion The results obtained in the present study suggest that oxidative stress plays a crucial role in MDMA-induced neurotoxicity and that the mechanism of MDMA neurotoxycity may vary between brain regions.

  6. Topiramate reduces non-convulsive seizures after focal brain ischemia in the rat.

    Science.gov (United States)

    Williams, Anthony J; Tortella, Frank C; Gryder, Divina; Hartings, Jed A

    2008-01-03

    Acute "silent" seizures after brain injury are associated with a worsening of patient outcome and are often refractory to anti-epileptic drug (AED) therapy. In the present study we evaluated topiramate (TPM, 1-30 mg/kg, i.v.) in a rodent model of spontaneous non-convulsive seizure (NCS) activity induced by focal cerebral ischemia. For seizure detection, electroencephalographic (EEG) activity was continuously recorded for 24h in male Sprague-Dawley rats subjected to permanent middle cerebral artery occlusion (MCAo). Infarct volume, neurological deficit, and NCS were evaluated by an experimenter blinded to the treatment group. All vehicle treated rats (7/7) exhibited NCS following MCAo. TPM treatment, delivered at 20 min post-occlusion and prior to onset of NCS activity, dose-dependently reduced the incidence of NCS (ED(50)=21.1mg/kg). The highest dose of TPM tested (30 mg/kg) exhibited maximal reductions of 76% in the number of NCS/rat (vehicle=22.1+/-5.3, TPM=4.4+/-3.2, Pseizure treatment, TPM was not effective when delivered immediately following onset of the first NCS event (36+/-5 min post-MCAo). In conclusion, TPM exhibited significant efficacy for the prophylactic treatment of brain-injury induced NCS and represents a novel class of AED for treatment of this type of silent brain seizure.

  7. Posttraining Epinephrine Reverses Memory Deficits Produced by Traumatic Brain Injury in Rats

    Directory of Open Access Journals (Sweden)

    Alejandro Lorón-Sánchez

    2016-01-01

    Full Text Available The aim of this research is to evaluate whether posttraining systemic epinephrine is able to improve object recognition memory in rats with memory deficits produced by traumatic brain injury. Forty-nine two-month-old naïve male Wistar rats were submitted to surgical procedures to induce traumatic brain injury (TBI or were sham-operated. Rats were trained in an object recognition task and, immediately after training, received an intraperitoneal injection of distilled water (Sham-Veh and TBI-Veh group or 0.01 mg/kg epinephrine (TBI-Epi group or no injection (TBI-0 and Sham-0 groups. Retention was tested 3 h and 24 h after acquisition. The results showed that brain injury produced severe memory deficits and that posttraining administration of epinephrine was able to reverse them. Systemic administration of distilled water also had an enhancing effect, but of a lower magnitude. These data indicate that posttraining epinephrine and, to a lesser extent, vehicle injection reduce memory deficits associated with TBI, probably through induction of a low-to-moderate emotional arousal.

  8. Effect of metal fragments in brain on electrical monitoring: In vitro and in vivo rat studies

    Science.gov (United States)

    Ahmed, A.; Bodo, M.; Armonda, R. A.

    2010-04-01

    Preliminary results showed, measurements by rheoencephalography (REG) very promising as a practical, noninvasive continuous monitoring modality of traumatic brain/blast injuries. As the impact of metal fragments on the REG signal is unknown, we report here results of our study .The in vitro study confirmed that impedance pulse amplitude waves do not change in the presence of metal (needles) placed between electrodes. In vivo studies: rats under anesthesia (10 rats, 101 trials) were measured after implantation of EEG and REG electrodes in the brain. Metal fragments were represented by 18 g needles inserted and removed between EEG and REG electrodes. Data were stored in a PC. EEG recording typically showed amplitude decrease; REG showed transitory amplitude increase after placement of a needle into either hemisphere. Removal of needles caused a decrease in REG amplitude after a transitory increase. The change in REG amplitude statistically was non-significant. Cerebral blood flow (CBF) autoregulation(AR) persisted following placement of metal fragments in rat brain.

  9. Posttraining Epinephrine Reverses Memory Deficits Produced by Traumatic Brain Injury in Rats

    Science.gov (United States)

    Lorón-Sánchez, Alejandro; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Costa-Miserachs, David; Portell-Cortés, Isabel

    2016-01-01

    The aim of this research is to evaluate whether posttraining systemic epinephrine is able to improve object recognition memory in rats with memory deficits produced by traumatic brain injury. Forty-nine two-month-old naïve male Wistar rats were submitted to surgical procedures to induce traumatic brain injury (TBI) or were sham-operated. Rats were trained in an object recognition task and, immediately after training, received an intraperitoneal injection of distilled water (Sham-Veh and TBI-Veh group) or 0.01 mg/kg epinephrine (TBI-Epi group) or no injection (TBI-0 and Sham-0 groups). Retention was tested 3 h and 24 h after acquisition. The results showed that brain injury produced severe memory deficits and that posttraining administration of epinephrine was able to reverse them. Systemic administration of distilled water also had an enhancing effect, but of a lower magnitude. These data indicate that posttraining epinephrine and, to a lesser extent, vehicle injection reduce memory deficits associated with TBI, probably through induction of a low-to-moderate emotional arousal. PMID:27127685

  10. L-Tryptophan's effects on brain chemistry and sleep in cats and rats: a review.

    Science.gov (United States)

    Radulovacki, M

    1982-01-01

    In this review I shall discuss published and unpublished work from my laboratory dealing with L-tryptophan's effects on brain monoamines and sleep in cats and rats. From our work it appears that normal animals may not be suitable subjects for testing sleep-inducing effect of tryptophan since their slow-wave sleep (SWS) latency is relatively short. In polyphasic sleepers like cats, we did not observe tryptophan's hypnotic effect with any dosage used (10, 30 or 135 mg/kg). However, we found small, but statistically significant, sleep-inducing effect of tryptophan (30 mg/kg, IP) in normal rats. We have tried, therefore, to create insomniac cats with long sleep latencies by using methysergide, a serotonin receptor blocker. The results show that in insomniac cats hypnotic effect of tryptophan, a precursor to brain serotonin, was observed. It involved not only reduction of sleep latencies but also an increase in SWS. It seems likely that tryptophan's partial reversal of methysergide's effect in cats occurred via a dual mechanism of serotonergic activation and catecholaminergic deactivation, while its sleep-inducing effect in normal rats may have been due to the attenuation of the activity of brain catecholamines.

  11. Caffeic acid ameliorates early and delayed brain injuries after focal cerebral ischemia in rats

    Institute of Scientific and Technical Information of China (English)

    Yu ZHOU; San-hua FANG; Yi-lu YE; Li-sheng CHU; Wei-ping ZHANG; Meng-ling WANG; Er-qing WEI

    2006-01-01

    Aim: To investigate the effects of caffeic acid on early and delayed injuries after focal cerebral ischemia in rats, and the possible relation to 5-lipoxygenase inhibition. Methods: Transient focal cerebral ischemia was induced by middle cerebral artery occlusion in Sprague-Dawley rats. Caffeic acid (10 and 50 mg/kg) was ip injected for 5 d after ischemia. The brain injuries were observed, and the levels of cysteinyl leukotrienes and leukotriene B4 in the brain tissue were measured. Results: Caffeic acid (50 mg/kg) ameliorated neurological dysfunction and neuron loss, and decreased infarct volume 24 h after ischemia; it attenuated brain atrophy, infarct volume, and particularly astrocyte proliferation 14 d after ischemia. In addition, it reduced the production of leukotrienes (5-lipoxygenase metabolites) in the ischemic hemispheres 3 h and 7 d after ischemia. Conclusion: Caffeic acid has protective effect on both early and delayed injuries after focal cerebral ischemia in rats; and this effect may partly relate to 5-lipoxygenase inhibition.

  12. Rapid eye movement sleep deprivation induces an increase in acetylcholinesterase activity in discrete rat brain regions

    Directory of Open Access Journals (Sweden)

    Benedito M.A.C.

    2001-01-01

    Full Text Available Some upper brainstem cholinergic neurons (pedunculopontine and laterodorsal tegmental nuclei are involved in the generation of rapid eye movement (REM sleep and project rostrally to the thalamus and caudally to the medulla oblongata. A previous report showed that 96 h of REM sleep deprivation in rats induced an increase in the activity of brainstem acetylcholinesterase (Achase, the enzyme which inactivates acetylcholine (Ach in the synaptic cleft. There was no change in the enzyme's activity in the whole brain and cerebrum. The components of the cholinergic synaptic endings (for example, Achase are not uniformly distributed throughout the discrete regions of the brain. In order to detect possible regional changes we measured Achase activity in several discrete rat brain regions (medulla oblongata, pons, thalamus, striatum, hippocampus and cerebral cortex after 96 h of REM sleep deprivation. Naive adult male Wistar rats were deprived of REM sleep using the flower-pot technique, while control rats were left in their home cages. Total, membrane-bound and soluble Achase activities (nmol of thiocholine formed min-1 mg protein-1 were assayed photometrically. The results (mean ± SD obtained showed a statistically significant (Student t-test increase in total Achase activity in the pons (control: 147.8 ± 12.8, REM sleep-deprived: 169.3 ± 17.4, N = 6 for both groups, P<0.025 and thalamus (control: 167.4 ± 29.0, REM sleep-deprived: 191.9 ± 15.4, N = 6 for both groups, P<0.05. Increases in membrane-bound Achase activity in the pons (control: 171.0 ± 14.7, REM sleep-deprived: 189.5 ± 19.5, N = 6 for both groups, P<0.05 and soluble enzyme activity in the medulla oblongata (control: 147.6 ± 16.3, REM sleep-deprived: 163.8 ± 8.3, N = 6 for both groups, P<0.05 were also observed. There were no statistically significant differences in the enzyme's activity in the other brain regions assayed. The present findings show that the increase in Achase activity

  13. Tissue tears in the white matter after lateral fluid percussion brain injury in the rat: relevance to human brain injury.

    Science.gov (United States)

    Graham, D I; Raghupathi, R; Saatman, K E; Meaney, D; McIntosh, T K

    2000-02-01

    A characteristic feature of severe diffuse axonal injury in man is radiological evidence of the "shearing injury triad" represented by lesions, sometimes haemorrhagic, in the corpus callosum, deep white matter and the rostral brain stem. With the exception of studies carried out on the non-human primate, such lesions have not been replicated to date in the multiple and diverse rodent laboratory models of traumatic brain injury. The present report describes tissue tears in the white matter, particularly in the fimbria of Sprague-Dawley rats killed 12, 24, and 48 h and 7 days after lateral fluid percussion brain injury of moderate severity (2.1-2.4 atm). The lesions were most easily seen at 24 h when they appeared as foci of tissue rarefaction in which there were a few polymorphonuclear leucocytes. At the margins of these lesions, large amounts of accumulated amyloid precursor protein (APP) were found in axonal swellings and bulbs. By 1 week post-injury, there was macrophage infiltration with marked astrocytosis and early scar formation. This lesion is considered to be due to severe deformation of white matter and this is the first time that it has been identified reproducibly in a rodent model of head injury under controlled conditions.

  14. Free radical reaction in ischemic rat brain. ESR-CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kayama, Takamasa [Yamagata Univ. (Japan). School of Medicine

    1998-07-01

    Free radical change in images of rat brain during brain ischemia was observed by using a rapid scan L-band ESR-CT system. Male Wistar rats weighing 200 g were used. Rats were divided into three groups according to the duration of occlusion of 2, 4, and 8 hr as well as a control, sham-operated group. C-PROXYL dissolved in saline solution was used as an imaging agent and injected intraperitoneally in a volume of 3 ml at a concentration of 0.3 M at the beginning of reperfusion. ESR-CT imaging was performed 20 min after injection of C-PROXYL. In the sham-operated group, histological examination disclosed no ischemic lesion. Because C-PROXYL does not pass the blood-brain barrier, no brain image was obtained. In the 2 hr occlusion ischemic group, histological findings revealed spongioid change at the dorsal putamen. The ESR-CT image showed a small spot of uptake of nitroxide radicals in the area of the presumed left putamen which corresponded to the histological ischemic lesion. In the 8 hr occlusion group, the ischemic lesion was found even in the cerebral cortex. The image of nitroxide radical in the brain again closely corresponded to the histological ischemic area and occupied most of the left cerebral hemisphere. However, the area of ESR-CT image was wider than that of histological ischemic lesion. This may be because C-PROXYL leakage in the ischemic lesion diffuses and also because the extent of the efficiency of scavenging free radicals may decline. (K.H.)

  15. Astrogliosis in the brain of obese Zucker rat: a model of metabolic syndrome.

    Science.gov (United States)

    Tomassoni, Daniele; Nwankwo, Innocent Ejike; Gabrielli, Maria Gabriella; Bhatt, Siddhartha; Muhammad, Abdul Bari; Lokhandwala, Mustafa F; Tayebati, Seyed Khosrow; Amenta, Francesco

    2013-05-24

    Metabolic syndrome (MetS) is a disorder characterized primarily by the development of insulin resistance. Insulin resistance and subsequent hyperinsulinemia, originating from abdominal obesity, increases the risk of cerebrovascular and cardiovascular disease and all-cause mortality. Obesity is probably a risk factor for Alzheimer's disease and vascular dementia and is associated with impaired cognitive function. The obese Zucker rat (OZR) represents a model of type 2 diabetes exhibiting a moderate degree of arterial hypertension and of increased oxidative stress. To clarify the possible relationships between MetS and brain damage, the present study has investigated brain microanatomy in OZRs compared with their littermate controls lean Zucker rats (LZRs). Male OZRs and LZRs of 12 weeks of age were used. Their brain was processed for immunochemical and immunohistochemical analysis of glial fibrillary acidic protein (GFAP). In frontal and parietal cortex of OZRs a significant increase in the number of GFAP immunoreactive astrocytes was observed. Similar findings were found in the hippocampus, where an increased number of GFAP immunoreactive astrocytes were detected in the CA1 and CA3 subfields and dentate gyrus of OZRs compared to the LZRs. These findings indicating the occurrence of brain injury accompanied by astrogliosis in OZRs suggest that these rats, developed as an animal model of type 2 diabetes, may also represent a model for assessing the influence of MetS on brain. The identification of neurodegenerative changes in OZRs may represent the first step for better characterizing neuronal involvement in this model of MetS and possible treatment for countering it.

  16. A palatable hyperlipidic diet causes obesity and affects brain glucose metabolism in rats

    Directory of Open Access Journals (Sweden)

    Motoyama Caio SM

    2011-09-01

    Full Text Available Abstract Background We have previously shown that either the continuous intake of a palatable hyperlipidic diet (H or the alternation of chow (C and an H diet (CH regimen induced obesity in rats. Here, we investigated whether the time of the start and duration of these feeding regimens are relevant and whether they affect brain glucose metabolism. Methods Male Wistar rats received C, H, or CH diets during various periods of their life spans: days 30-60, days 30-90, or days 60-90. Experiments were performed the 60th or the 90th day of life. Rats were killed by decapitation. The glucose, insulin, leptin plasma concentration, and lipid content of the carcasses were determined. The brain was sliced and incubated with or without insulin for the analysis of glucose uptake, oxidation, and the conversion of [1-14C]-glucose to lipids. Results The relative carcass lipid content increased in all of the H and CH groups, and the H30-60 and H30-90 groups had the highest levels. Groups H30-60, H30-90, CH30-60, and CH30-90 exhibited a higher serum glucose level. Serum leptin increased in all H groups and in the CH60-90 and CH30-90 groups. Serum insulin was elevated in the H30-60, H60-90, CH60-90, CH30-90 groups. Basal brain glucose consumption and hypothalamic insulin receptor density were lower only in the CH30-60 group. The rate of brain lipogenesis was increased in the H30-90 and CH30-90 groups. Conclusion These findings indicate that both H and CH diet regimens increased body adiposity independent treatment and the age at which treatment was started, whereas these diets caused hyperglycemia and affected brain metabolism when started at an early age.

  17. Age-related changes of metallothionein 1/2 and metallothionein 3 expression in rat brain.

    Science.gov (United States)

    Scudiero, Rosaria; Cigliano, Luisa; Verderame, Mariailaria

    2017-01-01

    Neurodegeneration is one of the main physiological consequences of aging on brain. Metallothioneins (MTs), low molecular weight, cysteine-rich proteins that bind heavy-metal ions and oxygen-free radicals, are commonly expressed in various tissues of mammals. MTs are involved in the regulation of cell proliferation and protection, and may be engaged in aging. Expression of the ubiquitous MTs (1 and 2) and the brain specific MT3 have been studied in many neurodegenerative disorders. The research results indicate that MTs may play important, although not yet fully known, roles in brain diseases; in addition, data lack the ability to identify the MT isoforms functionally involved. The aim of this study was to analyse the level of gene expression of selected MT isoforms during brain aging. By using real-time PCR analysis, we determined the MT1/2 and MT3 expression profiles in cerebral cortex and hippocampus of adolescent (2months), adult (4 and 8months), and middle-aged (16months) rats. We show that the relative abundance of all types of MT transcripts changes during aging in both hippocampus and cortex; the first effect is a generalized decrease in the content of MTs transcripts from 2- to 8-months-old rats. After passing middle age, at 16months, we observe a huge increase in MT3 transcripts in both cortical and hippocampal areas, while the MT1/2 mRNA content increases slightly, returning to the levels measured in adolescent rats. These findings demonstrate an age-related expression of the MT3 gene. A possible link between the increasing amount of MT3 in brain aging and its different metal-binding behaviour is discussed.

  18. Ethylene glycol ethers induce apoptosis and disturb glucose metabolism in the rat brain.

    Science.gov (United States)

    Pomierny, Bartosz; Krzyżanowska, Weronika; Niedzielska, Ewa; Broniowska, Żaneta; Budziszewska, Bogusława

    2016-02-01

    Ethylene glycol ethers (EGEs) are compounds widely used in industry and household products, but their potential, adverse effect on brain is poorly understood, so far. The aim of the present study was to determine whether 4-week administration of 2-buthoxyethanol (BE), 2-phenoxyethanol (PHE), and 2-ethoxyethanol (EE) induces apoptotic process in the rat hippocampus and frontal cortex, and whether their adverse effect on the brain cells can result from disturbances in the glucose metabolism. Experiments were conducted on 40 rats, exposed to BE, PHE, EE, saline or sunflower oil for 4 weeks. Markers of apoptosis and glucose metabolism were determined in frontal cortex and hippocampus by western blot, ELISA, and fluorescent-based assays. BE and PHE, but not EE, increased expression of the active form of caspase-3 in the examined brain regions. BE and PHE increased caspase-9 level in the cortex and PHE also in the hippocampus. BE and PHE increased the level of pro-apoptotic proteins (Bax, Bak) and/or reduced the concentration of anti-apoptotic proteins (Bcl-2, Bcl-xL); whereas, the effect of BE was observed mainly in the cortex and that of PHE in the hippocampus. It has also been found that PHE increased brain glucose level, and both BE and PHE elevated pyruvate and lactate concentration. It can be concluded that chronic treatment with BE and PHE induced mitochondrial pathway of apoptosis, and disturbed glucose metabolism in the rat brain. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  19. Decreases in rat brain aquaporin-4 expression following intracerebroventricular administration of an endothelin ET B receptor agonist.

    Science.gov (United States)

    Koyama, Yutaka; Tanaka, Kazuhiro

    2010-01-29

    Aquaporins (AQPs) comprise a family of water channel proteins, some of which are expressed in brain. Expressions of brain AQPs are altered after brain insults, such as ischemia and head trauma. However, little is known about the regulation of brain AQP expression. Endothelins (ETs), vasoconstrictor peptides, regulate several pathophysiological responses of damaged nerve tissues via ET(B) receptors. To show possible roles of ET(B) receptors in the regulation of brain AQP expression, the effects of intracerebroventricular administration of an ET(B) agonist were examined in rat brain. In the cerebrum, the copy numbers of AQP4 mRNAs were highest among AQP1, 3, 4, 5 and 9. Continuous administration of 500 pmol/day Ala(1,3,11,15)-ET-1, an ET(B) selective agonist, into rat brain for 7 days decreased the level of AQP4 mRNA in the cerebrum, but had no effect on AQP1, 3, 5 and 9 mRNA levels. The level of AQP4 protein in the cerebrum decreased by the administration of Ala(1,3,11,15)-ET-1. Immunohistochemical observations of Ala(1,3,11,15)-ET-1-infused rats showed that GFAP-positive astrocytes, but not neurons, activated microglia or brain capillary endothelial cells, had immunoreactivity for AQP4. These findings indicate that activation of brain ET(B) receptors causes a decrease in AQP4 expression, suggesting that ET down-regulates brain AQP4 via ET(B) receptors.

  20. Effect of Electromagnetic Pulse Exposure on Brain Micro Vascular Permeability in Rats

    Institute of Scientific and Technical Information of China (English)

    GUI-RONG DING; KANG-CHU LI; XIAO-WU WANG; YONG-CHUN ZHOU; LIAN-BO QIU; JUAN TAN; SHENG-LONG XU; GUO-ZHEN GUO

    2009-01-01

    Objective To observe the effect of electromagnetic pulse (EMP) exposure on cerebral micro vascular permeability in rats.Methods The whole-body of male Sprague-Dawley rats were exposed or sham exposed to 200 pulses or 400 pulses (1 Hz) of EMP at 200 kV/m.At 0.5,1,3,6,and 12 h after EMP exposure,the permeability of cerebral micro vascular was detected by transmission electron microscopy and immunohistochemistry using lanthanum nitrate and endogenous albumin as vascular tracers,respectively. Results The lanthanum nitrate tracer was limited to the micro vascular lumen with no lanthanum nitrate or albumin tracer extravasation in control rat brain.After EMP exposure,the lanthanum nitrate ions reached the tight junction,basal lamina and pericapillary tissue.Similarly,the albumin immunopositive staining was identified in pericapillary tissue.The changes in brain micro vascular permeability were transient,the leakage of micro vascular vessels appeared at 1 h,and reached its peak at 3 h,and nearly recovered at 12 h,after EMP exposure.In addition,the leakage of micro vascular was more obvious after exposure of EMP at 400 pulses than after exposure of EMP at 200 pulses. Conclusion Exposure to 200 and 400 pulses (1 Hz) of EMP at 200 kV/m can increase cerebral micro vascular permeability in rats,which is recoverable.

  1. Stereotaxic surgery for excitotoxic lesion of specific brain areas in the adult rat.

    Science.gov (United States)

    Kirby, Elizabeth D; Jensen, Kelly; Goosens, Ki A; Kaufer, Daniela

    2012-07-19

    Many behavioral functions in mammals, including rodents and humans, are mediated principally by discrete brain regions. A common method for discerning the function of various brain regions for behavior or other experimental outcomes is to implement a localized ablation of function. In humans, patient populations with localized brain lesions are often studied for deficits, in hopes of revealing the underlying function of the damaged area. In rodents, one can experimentally induce lesions of specific brain regions. Lesion can be accomplished in several ways. Electrolytic lesions can cause localized damage but will damage a variety of cell types as well as traversing fibers from other brain regions that happen to be near the lesion site. Inducible genetic techniques using cell-type specific promoters may also enable site-specific targeting. These techniques are complex and not always practical depending on the target brain area. Excitotoxic lesion using stereotaxic surgery, by contrast, is one of the most reliable and practical methods of lesioning excitatory neurons without damaging local glial cells or traversing fibers. Here, we present a protocol for stereotaxic infusion of the excitotoxin, N-methyl-D-aspartate (NMDA), into the basolateral amygdala complex. Using anatomical indications, we apply stereotaxic coordinates to determine the location of our target brain region and lower an injection needle in place just above the target. We then infuse our excitotoxin into the brain, resulting in excitotoxic death of nearby neurons. While our experimental subject of choice is a rat, the same methods can be applied to other mammals, with the appropriate adjustments in equipment and coordinates. This method can be used on a variety of brain regions, including the basolateral amygdala, other amygdala nuclei, hippocampus, entorhinal cortex and prefrontal cortex. It can also be used to infuse biological compounds such as viral vectors. The basic stereotaxic technique could

  2. Low dose X-irradiation mitigates diazepam induced depression in rat brain.

    Science.gov (United States)

    Kaur, Amandeep; Singla, Neha; Dhawan, D K

    2016-10-01

    Depression is considered as one of the most prevalent health ailments. Various anti-depressant drugs have been used to provide succour to this ailment, but with little success and rather have resulted in many side effects. On the other hand, low dose of ionizing radiations are reported to exhibit many beneficial effects on human body by stimulating various biological processes. The present study was conducted to investigate the beneficial effects of low doses of X-rays, if any, during diazepam induced depression in rats. Female Sprague Dawley rats were segregated into four different groups viz: Normal control, Diazepam treated, X-irradiated and Diazepam + X-irradiated. Depression model was created in rats by subjecting them to diazepam treatment at a dosage of 2 mg/kg b.wt./day for 3 weeks. The skulls of animals belonging to X-irradiated and Diazepam + X-irradiated rats were X-irradiated with a single fraction of 0.5 Gy, given twice a day for 3 days, thereby delivered dose of 3 Gy. Diazepam treated animals showed significant alterations in the neurobehavior and neuro-histoarchitecture, which were improved after X-irradiation. Further, diazepam exposure significantly decreased the levels of neurotransmitters and acetylcholinesterase activity, but increased the monoamine oxidase activity in brain. Interestingly, X-rays exposure to diazepam treated rats increased the levels of neurotransmitters, acetylcholinesterase activity and decreased the monoamine oxidase activity. Further, depressed rats also showed increased oxidative stress with altered antioxidant parameters, which were normalized on X-rays exposure. The present study, suggests that low dose of ionizing radiations, shall prove to be an effective intervention and a novel therapy in controlling depression and possibly other brain related disorders.

  3. Brain somatostatinergic system at late pregnancy, parturition and the early postpartum period in the rat.

    Science.gov (United States)

    Barrios, V; Puebla, L; Rodriguez-Sanchez, M N; Arilla, E

    1993-11-03

    During pregnancy and postpartum rats experience a wide variety of behavioural changes. Since the somatostatinergic system has been implicated in the control of some of these changes, the present study examined somatostatin (SS) content and specific binding in the frontoparietal cortex and hippocampus of non-pregnant, pregnant (17 to 18 days), parturition and postpartum (10 and 30 days) rats as well as in ovariectomized rats which were or were not treated with estradiol valerianate. The content of somatostatin-like immunoreactivity (SSLI) was increased at 17 days of pregnancy in frontoparietal cortex and decreased at parturition and 10 days postpartum in that region and the hippocampus under study when compared with SSLI levels in non-pregnant rats. At 30 days postpartum the SSLI content returned to non-pregnant values in both brain regions. Scatchard analysis showed that the decrease in [125I]Tyr11-SS binding observed at 17 days of pregnancy in the frontoparietal cortex was due to the decrease in the number of SS receptors. In contrast, on the day of delivery the number of SS receptors in the same brain region increased. The affinity of the SS receptors was consistently unchanged in pregnant and non-pregnant rats in both regions. At 10 days postpartum the value of specific binding of the tracer to SS receptors in the frontoparietal cortex was not significantly different from that in the non-pregnant rats, although the actual number of receptors was slightly higher. Pregnancy did not change SS binding in the hippocampus.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Deep brain stimulation exacerbates hypokinetic dysarthria in a rat model of Parkinson's disease.

    Science.gov (United States)

    King, Nathaniel O; Anderson, Collin J; Dorval, Alan D

    2016-02-01

    Motor symptoms of Parkinson's disease (PD) follow the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Deep brain stimulation (DBS) treats some parkinsonian symptoms, such as tremor, rigidity, and bradykinesia, but may worsen certain medial motor symptoms, including hypokinetic dysarthria. The mechanisms by which DBS exacerbates dysarthria while improving other symptoms are unclear and difficult to study in human patients. This study proposes an animal model of DBS-exacerbated dysarthria. We use the unilateral, 6-hydroxydopamine (6-OHDA) rat model of PD to test the hypothesis that DBS exacerbates quantifiable aspects of vocalization. Mating calls were recorded from sexually experienced male rats under healthy and parkinsonian conditions and during DBS of the subthalamic nucleus. Relative to healthy rats, parkinsonian animals made fewer calls with shorter and less complex vocalizations. In the parkinsonian rats, putatively therapeutic DBS further reduced call frequency, duration, and complexity. The individual utterances of parkinsonian rats spanned a greater bandwidth than those of healthy rats, potentially reducing the effectiveness of the vocal signal. This utterance bandwidth was further increased by DBS. We propose that the parkinsonism-associated changes in call frequency, duration, complexity, and dynamic range combine to constitute a rat analog of parkinsonian dysarthria. Because DBS exacerbates the parkinsonism-associated changes in each of these metrics, the subthalamic stimulated 6-OHDA rat is a good model of DBS-induced hypokinetic dysarthria in PD. This model will help researchers examine how DBS alleviates many motor symptoms of PD while exacerbating parkinsonian speech deficits that can greatly diminish patient quality of life.

  5. The Effects of Female Sex Steroids on Gastric Secretory Responses of Rat Following Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Zakieh Keshavarzi

    2011-05-01

    Full Text Available AbstractObjective(sGastric ulceration is induced by various forms of stress like surgery, ischemia and trauma. The female sex has more resistance to stress and the gastrointestinal lesions happen fewer than male sex. The purpose of this study was to evaluate the role of estradiol and progesterone on the gastric acid and pepsin levels following traumatic brain injury (TBI induction.Materials and MethodsDiffuse TBI was induced by Marmarou method in female rats. Rats randomly assigned into 9 groups: intact, OVX (ovarectomized rat, Sham+OVX, TBI (intact rats under TBI, TBI+OVX (ovarectomized rats under TBI and treated OVX rats with vehicle (sesame oil, E2 (estradiol, P4 (progesterone or E2+P4 combination. The acid content and pepsin levels of each gastric washout sample were measured 5 days after the TBI induction.ResultsThere was no significant difference in gastric acid output between groups either after TBI induction or after treatment with E2 or P4 or E2+P4. Gastric pepsin levels were increased in Sham+OVX, TBI (P< 0.001 and TBI+OVX (P< 0.05 compared to intact group. Gastric pepsin levels were significantly lower in E2 and E2+ P4 treated rats than vehicle treated group (P< 0.01. P4 treatment increased gastric pepsin level compared to TBI+OVX group (P< 0.05 and this increment was higher than rats that were treated with the E2 and E2+P4 (P< 0.01.ConclusionThese results suggest that protective effect of estradiol and E2+P4 combination against mucosal damage after TBI, might be mediated by inhibition of pepsin secretion.

  6. Oxytocin biotransformation in the rat limbic brain: Characterization of peptidase activities and significance in the formation of oxytocin fragments

    NARCIS (Netherlands)

    Burbach, J.P.H.; Kloet, E.R. de; Wied, D. de

    1980-01-01

    The enzymatic conversion of oxytocin by brain peptidases has been studied. Oxytocin was incubated with synaptosomal plasma membranes (SPM) isolated from the rat brain. Qualitative studies using a microdansylation technique revealed two types of oxytocin converting peptidases, e.g. aminopeptidase and

  7. Rapid reversal by naloxone of the chronic effects of morphine on rat liver and brain tryptophan metabolism.

    OpenAIRE

    Badawy, A. A.; Evans, M.

    1981-01-01

    The chronic morphine-induced inhibition of rat liver tryptophan pyrrolase activity and the resultant increases in tryptophan availability to the brain and brain 5-hydroxytryptamine (5-HT) synthesis are reversed within 10 min after naloxone administration. The possible involvement of hepatic tryptophan metabolism in morphine dependence is briefly discussed.

  8. In vivo DTI tractography of the rat brain: an atlas of the main tracts in Paxinos space with histological comparison.

    Science.gov (United States)

    Figini, Matteo; Zucca, Ileana; Aquino, Domenico; Pennacchio, Paolo; Nava, Simone; Di Marzio, Alessandro; Preti, Maria Giulia; Baselli, Guseppe; Spreafico, Roberto; Frassoni, Carolina

    2015-04-01

    Diffusion tensor imaging (DTI) is a magnetic resonance modality that permits to characterize the orientation and integrity of white matter (WM). DTI-based tractography techniques, allowing the virtual reconstruction of WM tract pathways, have found wide application in preclinical neurological research. Recently, anatomically detailed rat brain atlases including DTI data were constructed from ex vivo DTI images, but tractographic atlases of normal rats in vivo are still lacking. We propose here a probabilistic tractographic atlas of the main WM tracts in the healthy rat brain based on in vivo DTI acquisition. Our study was carried out on 10 adult female Sprague-Dawley rats using a 7T preclinical scanner. The MRI protocol permitted a reliable reconstruction of the main rat brain bundles: corpus callosum, cingulum, external capsule, internal capsule, anterior commissure, optic tract. The reconstructed fibers were compared with histological data, proving the viability of in vivo DTI tractography in the rat brain with the proposed acquisition and processing protocol. All the data were registered to a rat brain template in the coordinate system of the commonly used atlas by Paxinos and Watson; then the individual tracts were binarized and averaged, obtaining a probabilistic atlas in Paxinos-Watson space of the main rat brain WM bundles. With respect to the recent high-resolution MRI atlases, the resulting tractographic atlas, available online, provides complementary information about the average anatomical position of the considered WM tracts and their variability between normal animals. Furthermore, reference values for the main DTI-derived parameters, mean diffusivity and fractional anisotropy, were provided. Both these results can be used as references in preclinical studies on pathological rat models involving potential alterations of WM.

  9. Localized delivery of low-density lipoprotein docosahexaenoic acid nanoparticles to the rat brain using focused ultrasound.

    Science.gov (United States)

    Mulik, Rohit S; Bing, Chenchen; Ladouceur-Wodzak, Michelle; Munaweera, Imalka; Chopra, Rajiv; Corbin, Ian R

    2016-03-01

    Focused ultrasound exposures in the presence of microbubbles can achieve transient, non-invasive, and localized blood-brain barrier (BBB) opening, offering a method for targeted delivery of therapeutic agents into the brain. Low-density lipoprotein (LDL) nanoparticles reconstituted with docosahexaenoic acid (DHA) could have significant therapeutic value in the brain, since DHA is known to be neuroprotective. BBB opening was achieved using pulsed ultrasound exposures in a localized brain region in normal rats, after which LDL nanoparticles containing the fluorescent probe DiR (1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindotricarbocyanine Iodide) or DHA were administered intravenously. Fluorescent imaging of brain tissue from rats administered LDL-DiR demonstrated strong localization of fluorescence signal in the exposed hemisphere. LDL-DHA administration produced 2 × more DHA in the exposed region of the brain, with a corresponding increase in Resolvin D1 levels, indicating DHA was incorporated into cells and metabolized. Histological evaluation did not indicate any evidence of increased tissue damage in exposed brain regions compared to normal brain. This work demonstrates that localized delivery of DHA to the brain is possible using systemically-administered LDL nanoparticles combined with pulsed focused ultrasound exposures in the brain. This technology could be used in regions of acute brain injury or as a means to target infiltrating tumor cells in the brain.

  10. Restoring susceptibility induced MRI signal loss in rat brain at 9.4 T: A step towards whole brain functional connectivity imaging.

    Directory of Open Access Journals (Sweden)

    Rupeng Li

    Full Text Available The aural cavity magnetic susceptibility artifact leads to significant echo planar imaging (EPI signal dropout in rat deep brain that limits acquisition of functional connectivity fcMRI data. In this study, we provide a method that recovers much of the EPI signal in deep brain. Needle puncture introduction of a liquid-phase fluorocarbon into the middle ear allows acquisition of rat fcMRI data without signal dropout. We demonstrate that with seeds chosen from previously unavailable areas, including the amygdala and the insular cortex, we are able to acquire large scale networks, including the limbic system. This tool allows EPI-based neuroscience and pharmaceutical research in rat brain using fcMRI that was previously not feasible.

  11. Brief isoflurane anaesthesia affects differential gene expression, gene ontology and gene networks in rat brain.

    Science.gov (United States)

    Lowes, Damon A; Galley, Helen F; Moura, Alessandro P S; Webster, Nigel R

    2017-01-15

    Much is still unknown about the mechanisms of effects of even brief anaesthesia on the brain and previous studies have simply compared differential expression profiles with and without anaesthesia. We hypothesised that network analysis, in addition to the traditional differential gene expression and ontology analysis, would enable identification of the effects of anaesthesia on interactions between genes. Rats (n=10 per group) were randomised to anaesthesia with isoflurane in oxygen or oxygen only for 15min, and 6h later brains were removed. Differential gene expression and gene ontology analysis of microarray data was performed. Standard clustering techniques and principal component analysis with Bayesian rules were used along with social network analysis methods, to quantitatively model and describe the gene networks. Anaesthesia had marked effects on genes in the brain with differential regulation of 416 probe sets by at least 2 fold. Gene ontology analysis showed 23 genes were functionally related to the anaesthesia and of these, 12 were involved with neurotransmitter release, transport and secretion. Gene network analysis revealed much greater connectivity in genes from brains from anaesthetised rats compared to controls. Other importance measures were also altered after anaesthesia; median [range] closeness centrality (shortest path) was lower in anaesthetized animals (0.07 [0-0.30]) than controls (0.39 [0.30-0.53], pgenes after anaesthesia and suggests future targets for investigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Effect of bacoside A on brain antioxidant status in cigarette smoke exposed rats.

    Science.gov (United States)

    Anbarasi, K; Vani, G; Balakrishna, K; Devi, C S Shyamala

    2006-02-16

    Free radicals mediated oxidative stress has been implicated in the pathogenesis of smoking-related diseases and antioxidant nutrients are reported to prevent the oxidative damage induced by smoking. Therefore, the present study was conducted to evaluate the antioxidant role of bacoside A (triterpenoid saponin isolated from Bacopa monniera) against chronic cigarette smoking induced oxidative damage in rat brain. Adult male albino rats were exposed to cigarette smoke for a period of 12 weeks and simultaneously administered with bacoside A (10 mg/kg b.w./day, p.o.). Antioxidant status of the brain was assessed from the levels of reduced glutathione, vitamin C, vitamin E, and vitamin A and the activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. The levels of copper, iron, zinc and selenium in brain and serum ceruloplasmin activity were also measured. Oxidative stress was evident from the diminished levels of both enzymatic and non-enzymatic antioxidants. Alterations in the levels of trace elements with accumulation of copper and iron, and depletion of zinc and selenium were also observed. Bacoside A administration improved the antioxidant status and maintained the levels of trace elements. These results suggest that chronic cigarette smoke exposure enhances oxidative stress, thereby disturbing the tissue defense system and bacoside A protects the brain from the oxidative damage through its antioxidant potential.

  13. The effect of titanium dioxide nanoparticles on neuroinflammation response in rat brain.

    Science.gov (United States)

    Grissa, Intissar; Guezguez, Sabrine; Ezzi, Lobna; Chakroun, Sana; Sallem, Amira; Kerkeni, Emna; Elghoul, Jaber; El Mir, Lassaad; Mehdi, Meriem; Cheikh, Hassen Ben; Haouas, Zohra

    2016-10-01

    Titanium dioxide nanoparticles (TiO2 NPs) are widely used for their whiteness and opacity in several applications such as food colorants, drug additives, biomedical ceramic, and implanted biomaterials. Research on the neurobiological response to orally administered TiO2 NPs is still limited. In our study, we investigate the effects of anatase TiO2 NPs on the brain of Wistar rats after oral intake. After daily intragastric administration of anatase TiO2 NPs (5-10 nm) at 0, 50, 100, and 200 mg/kg body weight (BW) for 60 days, the coefficient of the brain, acethylcholinesterase (AChE) activities, the level of interleukin 6 (IL-6), and the expression of glial fibrillary acidic protein (GFAP) were assessed to quantify the brain damage. The results showed that high-dose anatase TiO2 NPs could induce a downregulated level of AChE activities and showed an increase in plasmatic IL-6 level as compared to the control group accompanied by a dose-dependent decrease inter-doses, associated to an increase in the cerebral IL-6 level as a response to a local inflammation in brain. Furthermore, we observed elevated levels of immunoreactivity to GFAP in rat cerebral cortex. We concluded that oral intake of anatase TiO2 NPs can induce neuroinflammation and could be neurotoxic and hazardous to health.

  14. Effect of Efflux Transporter Inhibition on the Distribution of Fluconazole in the Rat Brain.

    Science.gov (United States)

    Wang, Wei; Zheng, Na; Zhang, Jiatang; Huang, Xusheng; Yu, Shengyuan

    2017-03-24

    Multidrug resistance-associated proteins (MRPs) and organic anion transporters (OATs) are expressed on the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB), preventing the entry of or the pumping out of numerous molecules. Fluconazole is widely used to treat fungal meningoencephalitis. The effect of these transporters on the distribution of fluconazole in the brain is unclear. We used microdialysis to compare the distribution of fluconazole in the rat brain with and without co-administration of probenecid, a MRP and OAT inhibitor. Additionally, we also observed the difference in fluconazole distribution between the two barriers. The results showed that probenecid increased the penetration of fluconazole into the BBB but did not alter the penetration of fluconazole into the BCSFB of rats. The penetration of the BBB and BCSFB by fluconazole did not statistically differ according to physiological condition. These results demonstrate that transporters that can be inhibited by probenecid may be involved in fluconazole resistance at the BBB and provide a laboratory basis for predicting brain extracellular fluid (ECF) concentration using the cerebrospinal fluid (CSF) concentration of fluconazole.

  15. Effect of Hemin on Brain Alterations and Neuroglobin Expression in Water Immersion Restraint Stressed Rats

    Directory of Open Access Journals (Sweden)

    Merhan Ragy

    2016-01-01

    Full Text Available In the brain, the heme oxygenase (HO system has been reported to be very active and its modulation seems to play a crucial role in the pathophysiology of neurodegenerative disorders. Hemin as HO-1 inducer has been shown to attenuate neuronal injury so the goal of this study was to assess the effect of hemin therapy on the acute stress and how it would modulate neurological outcome. Thirty male albino rats were divided into three groups: control group and stressed group with six-hour water immersion restraint stress (WIRS and stressed group, treated with hemin, in which each rat received a single intraperitoneal injection of hemin at a dose level of 50 mg/kg body weight at 12 hours before exposure to WIRS. Stress hormones, oxidative stress markers, malondialdehyde (MDA, and total antioxidant capacity (TAC were measured and expressions of neuroglobin and S100B mRNA in brain tissue were assayed. Our results revealed that hemin significantly affects brain alterations induced by acute stress and this may be through increased expression of neuroglobin and through antioxidant effect. Hemin decreased blood-brain barrier damage as it significantly decreased the expression of S100B. These results suggest that hemin may be an effective therapy for being neuroprotective against acute stress.

  16. Melatonin treatment reduces astrogliosis and apoptosis in rats with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Abdolreza Babaee

    2015-09-01

    Full Text Available Objective(s:Melatonin is known as an anti-inflammatory agent, and it has been proven to exert neuroprotection through inhibition of cell death (apoptosis in several models of brain injury.Secondary injury following the primary traumatic brain injury (TBI results in glial cells activation, especially astrocytes. In fact, astrocyte activation causes the production of pro-inflammatory cytokines that may lead to secondary injury. Since most TBI research studies have focused on injured neurons and paid little attention to glial cells, the aim of current study was to investigate the effects of melatonin against astrocytes activation (astrogliosis, as well as inhibition of apoptosis in brain tissue of male rats after TBI. Materials and Methods: The animals were randomly allocated into five groups: sham group, TBI+ vehicle group (1% ethanol in saline and TBI+ melatonin groups (5 mg/kg, 10 mg/kg and 20 mg/kg. All rats were intubated and then exposed to diffuse TBI, except for the sham group. Immunohistochemical methods were conducted using glial fibrillary acidic protein (GFAP marker and TUNEL assay to evaluate astrocyte reactivity and cell death, respectively. Results: The results showed that based on the number of GFAP positive astrocytes in brain cortex, astrogliosis was reduced significantly (P

  17. Three-dimensional atlas system for mouse and rat brain imaging data

    Directory of Open Access Journals (Sweden)

    Trine Hjornevik

    2007-11-01

    Full Text Available Tomographic neuroimaging techniques allow visualization of functionally and structurally specific signals in the mouse and rat brain. The interpretation of the image data relies on accurate determination of anatomical location, which is frequently obstructed by the lack of structural information in the data sets. Positron emission tomography (PET generally yields images with low spatial resolution and little structural contrast, and many experimental magnetic resonance imaging (MRI paradigms give specific signal enhancements but often limited anatomical information. Side-by-side comparison of image data with conventional atlas diagram is hampered by the 2-D format of the atlases, and by the lack of an analytical environment for accumulation of data and integrative analyses. We here present a method for reconstructing 3-D atlases from digital 2-D atlas diagrams, and exemplify 3-D atlas-based analysis of PET and MRI data. The reconstruction procedure is based on two seminal mouse and brain atlases, but is applicable to any stereotaxic atlas. Currently, 30 mouse brain structures and 60 rat brain structures have been reconstructed. To exploit the 3-D atlas models, we have developed a multi-platform atlas tool (available via The Rodent Workbench, http://rbwb.org which allows combined visualization of experimental image data within the 3-D atlas space together with 3-D viewing and user-defined slicing of selected atlas structures. The tool presented facilitates assignment of location and comparative analysis of signal location in tomographic images with low structural contrast.

  18. Novel method for functional brain imaging in awake minimally restrained rats.

    Science.gov (United States)

    Chang, Pei-Ching; Procissi, Daniel; Bao, Qiyuan; Centeno, Maria Virginia; Baria, Alex; Apkarian, A Vania

    2016-07-01

    Functional magnetic resonance imaging (fMRI) in rodents holds great promise for advancing our knowledge about human brain function. However, the use of anesthetics to immobilize rodents during fMRI experiments has restricted the type of questions that can be addressed using this technique. Here we describe an innovative procedure to train rats to be constrained without the need of any anesthesia during the whole procedure. We show that with 8-10 days of acclimation rats can be conscious and remain still during fMRI experiments under minimal stress. In addition, we provide fMRI results of conscious rodents in a variety of commonly used fMRI experimental paradigms, and we demonstrate the improved quality of these scans by comparing results when the same rodents were scanned under anesthesia. We confirm that the awake scanning procedure permits an improved evaluation of brain networks and brain response to external stimuli with minimal movement artifact. The present study further advances the field of fMRI in awake rodents, which provide more direct, forward and reverse, translational opportunities regarding brain functional correspondences between human and rodent research. Copyright © 2016 the American Physiological Society.

  19. Quantitative distribution of angiotensin II binding sites in rat brain by autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra, J.M.; Israel, A.; Plunkett, L.M.; Kurihara, M.; Shigematsu, K.; Correa, F.M.

    1986-07-01

    Angiotensin II binding sites were localized and quantified in individual brain nuclei from single rats by incubation of tissue sections with 1 nM /sup 125/I-(Sar1)-angiotensin II, (/sup 3/H)-Ultrofilm autoradiography, computerized microdensitometry and comparison with /sup 125/I-standards. High angiotensin II binding was present in the circumventricular organs (organon vasculosum laminae terminalis, organon subfornicalis and area postrema), in selected hypothalamic nuclei (nuclei suprachiasmatis, periventricularis and paraventricularis) and in the nucleus tractus olfactorii lateralis, the nucleus preopticus medianus, the dorsal motor nucleus of the vagus and the nucleus tractus solitarii. High affinity (KA from 0.3 to 1.5 X 10(9) M-1) angiotensin II binding sites were demonstrated in the organon subfornicalis, the nucleus tractus solitarii and the area postrema after incubation of consecutive sections from single rat brains with /sup 125/I-(Sar1)-angiotensin II in concentrations from 100 pM to 5 nM. These results demonstrate and characterize brain binding sites for angiotensin II of variable high affinity binding both inside and outside the blood-brain barrier.

  20. Effect of acute hypoxic shock on the rat brain morphology and tripeptidyl peptidase I activity.

    Science.gov (United States)

    Petrova, Emilia B; Dimitrova, Mashenka B; Ivanov, Ivaylo P; Pavlova, Velichka G; Dimitrova, Stella G; Kadiysky, Dimitar S

    2016-06-01

    Hypoxic events are known to cause substantial damage to the hippocampus, cerebellum and striatum. The impact of hypoxic shock on other brain parts is not sufficiently studied. Recent studies show that tripeptidyl peptidase I (TPPI) activity in fish is altered after a hypoxic stress pointing out at a possible enzyme involvement in response to hypoxia. Similar studies are not performed in mammals. In this work, the effect of sodium nitrite-induced acute hypoxic shock on the rat brain was studied at different post-treatment periods. Morphological changes in cerebral cortex, cerebellum, medulla oblongata, thalamus, mesencephalon and pons were assessed using silver-copper impregnation for neurodegeneration. TPPI activity was biochemically assayed and localized by enzyme histochemistry. Although less vulnerable to oxidative stress, the studied brain areas showed different histopathological changes, such as neuronal loss and tissue vacuolization, dilatation of the smallest capillaries and impairment of neuronal processes. TPPI activity was strictly regulated following the hypoxic stress. It was found to increase 12-24h post-treatment, then decreas