WorldWideScience

Sample records for freeze liquid nitrogen

  1. Advantages of liquid nitrogen freezing of Penaeus monodon over conventional plate freezing

    OpenAIRE

    Chakrabarti, R.; Chaudhury, D.R.

    1987-01-01

    Liquid nitrogen frozen products are biochemically and organoleptically superior to conventional plate frozen products but beneficial effect of liquid nitrogen freezing over conventional plate freezing can exist only up to 59 days at a commercial storage temperature of -18°C.

  2. Fast-freezing with liquid nitrogen preserves bulk dissolved organic matter concentrations, but not its composition

    DEFF Research Database (Denmark)

    Thieme, Lisa; Graeber, Daniel; Kaupenjohann, Martin

    2016-01-01

    -freezing with liquid nitrogen) on DOM concentrations measured as organic carbon (DOC) concentrations and on spectroscopic properties of DOM from different terrestrial ecosystems (forest and grassland). Fresh and differently frozen throughfall, stemflow, litter leachate and soil solution samples were analyzed for DOC...... concentrations, UV-vis absorption and fluorescence excitation–emission matrices combined with parallel factor analysis (PARAFAC). Fast-freezing with liquid nitrogen prevented a significant decrease of DOC concentrations observed after freezing at −18 °C. Nonetheless, the share of PARAFAC components 1 (EXmax...... component 4 (EXmax: 280 nm, EXmax: 328 nm) to total fluorescence was not affected by freezing. We recommend fast-freezing with liquid nitrogen for preservation of bulk DOC concentrations of samples from terrestrial sources, whereas immediate measuring is preferable to preserve spectroscopic properties...

  3. Analytical solution and numerical simulation of the liquid nitrogen freezing-temperature field of a single pipe

    Science.gov (United States)

    Cai, Haibing; Xu, Liuxun; Yang, Yugui; Li, Longqi

    2018-05-01

    Artificial liquid nitrogen freezing technology is widely used in urban underground engineering due to its technical advantages, such as simple freezing system, high freezing speed, low freezing temperature, high strength of frozen soil, and absence of pollution. However, technical difficulties such as undefined range of liquid nitrogen freezing and thickness of frozen wall gradually emerge during the application process. Thus, the analytical solution of the freezing-temperature field of a single pipe is established considering the freezing temperature of soil and the constant temperature of freezing pipe wall. This solution is then applied in a liquid nitrogen freezing project. Calculation results show that the radius of freezing front of liquid nitrogen is proportional to the square root of freezing time. The radius of the freezing front also decreases with decreased the freezing temperature, and the temperature gradient of soil decreases with increased distance from the freezing pipe. The radius of cooling zone in the unfrozen area is approximately four times the radius of the freezing front. Meanwhile, the numerical simulation of the liquid nitrogen freezing-temperature field of a single pipe is conducted using the Abaqus finite-element program. Results show that the numerical simulation of soil temperature distribution law well agrees with the analytical solution, further verifies the reliability of the established analytical solution of the liquid nitrogen freezing-temperature field of a single pipe.

  4. A model of freezing foods with liquid nitrogen using special functions

    Science.gov (United States)

    Rodríguez Vega, Martín.

    2014-05-01

    A food freezing model is analyzed analytically. The model is based on the heat diffusion equation in the case of cylindrical shaped food frozen by liquid nitrogen; and assuming that the thermal conductivity of the cylindrical food is radially modulated. The model is solved using the Laplace transform method, the Bromwich theorem, and the residue theorem. The temperature profile in the cylindrical food is presented as an infinite series of special functions. All the required computations are performed with computer algebra software, specifically Maple. Using the numeric values of the thermal and geometric parameters for the cylindrical food, as well as the thermal parameters of the liquid nitrogen freezing system, the temporal evolution of the temperature in different regions in the interior of the cylindrical food is presented both analytically and graphically. The duration of the liquid nitrogen freezing process to achieve the specified effect on the cylindrical food is computed. The analytical results are expected to be of importance in food engineering and cooking engineering. As a future research line, the formulation and solution of freezing models with thermal memory is proposed.

  5. Comparison between mechanical freezer and conventional freezing using liquid nitrogen in normozoospermia.

    Science.gov (United States)

    Rahana, A R; Ng, S P; Leong, C F; Rahimah, M D

    2011-10-01

    This study evaluated the effect of human semen cryopreservation using an ultra-low temperature technique with a mechanical freezer at -85°C as an alternative method to the conventional liquid nitrogen technique at -196°C. This was a prospective experimental study conducted in the Medically Assisted Conception unit, Department of Obstetrics and Gynaecology, National University Hospital, Malaysia from January 1, 2006 to April 30, 2007. All normozoospermic semen samples were included in the study. The concentration, motility and percentage of intact DNA of each semen sample were assessed before and after freezing and thawing on Days 7 and 30 post freezing. Sperm cryopreservation at -85°C was comparable to the conventional liquid nitrogen technique for a period of up to 30 days in a normozoospermic sample. There was no statistical difference in concentration (Day 7 p-value is 0.1, Day 30 p-value is 0.2), motility (Day 7 p-value is 0.9, Day 30 p-value is 0.5) and proportion of intact DNA (Day 7 p-value is 0.1, Day 30 p-value is 0.2) between the ultra-low temperature technique and conventional liquid nitrogen cryopreservation at Days 7 and 30 post thawing. This study clearly demonstrates that short-term storage of sperm at -85°C could be a viable alternative to conventional liquid nitrogen cryopreservation at -196°C due to their comparable post-thaw results.

  6. Mathematical prediction of freezing times of bovine semen in straws placed in static vapor over liquid nitrogen.

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2013-02-01

    A widespread practice in cryopreservation is to freeze spermatozoa by suspending the straws in stagnant nitrogen vapor over liquid nitrogen (N(2)V/LN(2)) for variable periods of time before plunging into liquid nitrogen (-196°C) for indefinite storage. A mathematical heat transfer model was developed to predict freezing times (phase change was considered) required for bull semen and extender packaged in 0.5ml plastic straws and suspended in static liquid nitrogen vapor. Thermophysical properties (i.e. thermal conductivity, specific heat, density, initial freezing temperature) of bovine semen and extender as a function of temperature were determined considering the water change of phase. The non-stationary heat transfer partial differential equations with variable properties (nonlinear mathematical problem) were numerically solved considering in series thermal resistances (semen suspension-straw) and the temperature profiles were obtained for both semen suspension and plastic straw. It was observed both the external heat transfer coefficient in stagnant nitrogen vapor and its temperature (controlled by the distance from the surface of liquid nitrogen to the straw) affected freezing times. The accuracy of the model to estimate freezing times of the straws was further confirmed by comparing with experimental literature data. Results of this study will be useful to select "safe" holding times of bull semen in plastic straws placed N(2)V/LN(2) to ensure that complete freezing of the sample has occurred in the nitrogen vapor and avoid cryodamage when plunging in LN(2). Freezing times predicted by the numerical model can be applied to optimize freezing protocols of bull semen in straws. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Cryopreservation of human sperm: efficacy and use of a new nitrogen-free controlled rate freezer versus liquid nitrogen vapour freezing.

    Science.gov (United States)

    Creemers, E; Nijs, M; Vanheusden, E; Ombelet, W

    2011-12-01

    Preservation of spermatozoa is an important aspect of assisted reproductive medicine. The aim of this study was to investigate the efficacy and use of a recently developed liquid nitrogen and cryogen-free controlled rate freezer and this compared with the classical liquid nitrogen vapour freezing method for the cryopreservation of human spermatozoa. Ten patients entering the IVF programme donated semen samples for the study. Samples were analysed according to the World Health Organization guidelines. No significant difference in total sperm motility after freeze-thawing between the new technique and classical technique was demonstrated. The advantage of the new freezing technique is that it uses no liquid nitrogen during the freezing process, hence being safer to use and clean room compatible. Investment costs are higher for the apparatus but running costs are only 1% in comparison with classical liquid nitrogen freezing. In conclusion, post-thaw motility of samples frozen with the classical liquid nitrogen vapour technique was comparable with samples frozen with the new nitrogen-free freezing technique. This latter technique can thus be a very useful asset to the sperm cryopreservation laboratory. © 2011 Blackwell Verlag GmbH.

  8. Optimization of the freezing process for hematopoietic progenitor cells: effect of precooling, initial dimethyl sulfoxide concentration, freezing program, and storage in vapor-phase or liquid nitrogen on in vitro white blood cell quality.

    Science.gov (United States)

    Dijkstra-Tiekstra, Margriet J; Setroikromo, Airies C; Kraan, Marcha; Gkoumassi, Effimia; de Wildt-Eggen, Janny

    2014-12-01

    Adding dimethyl sulfoxide (DMSO) to hematopoietic progenitor cells (HPCs) causes an exothermic reaction, potentially affecting their viability. The freezing method might also influence this. The aim was to investigate the effect of 1) precooling of DMSO and plasma (D/P) and white blood cell (WBC)-enriched product, 2) DMSO concentration of D/P, 3) freezing program, and 4) storage method on WBC quality. WBC-enriched product without CD34+ cells was used instead of HPCs. This was divided into six or eight portions. D/P (20 or 50%; precooled or room temperature [RT]) was added to the WBC-enriched product (precooled or RT), resulting in 10% DMSO, while monitoring temperature. The product was frozen using controlled-rate freezing ("fast-rate" or "slow-rate") and placed in vapor-phase or liquid nitrogen. After thawing, WBC recovery and viability were determined. Temperature increased most for precooled D/P to precooled WBC-enriched product, without influence of 20 or 50% D/P, but remained for all variations below 30°C. WBC recovery for both freezing programs was more than 95%. Recovery of WBC viability was higher for slow-rate freezing compared to fast-rate freezing (74% vs. 61%; p liquid nitrogen was marginal. Based on these results, precooling is not necessary. Fifty percent D/P is preferred over 20% D/P. Slow-rate freezing is preferred over fast-rate freezing. For safety reasons storage in vapor-phase nitrogen is preferred over storage in liquid nitrogen. Additional testing using real HPCs might be necessary. © 2014 AABB.

  9. Processing Adipose-Rich Mohs Samples: A Comparative Study of Effectiveness of Pretreatment With Liquid Nitrogen Versus Flash Freezing Spray.

    Science.gov (United States)

    Reserva, Jeave; Kozel, Zachary; Krol, Cindy; Speiser, Jodi; Adams, William; Tung, Rebecca

    2017-11-01

    Processing of adipose-rich Mohs micrographic surgery (MMS) specimens poses challenges that may preclude complete margin evaluation. In this setting, the value of additional freezing methods using various cooling agents has not been previously investigated. The aim of this study is to compare the frozen section quality of high-adipose Mohs specimens processed without additional cooling treatments versus those pretreated with 1,1,1,2-tetrafluoroethane (TFE) or liquid nitrogen (LN2). A set of 3 sections were each taken from 24 adipose-rich Mohs micrographic surgery specimens. A section from each set was subjected to either no additional cooling treatment (control), two 10-second pulse sprays of 1,1,1,2-tetrafluoroethane, or three 2-second pulse sprays of LN2. After staining, 2 blinded raters evaluated slide quality based on the presence or absence of the following features: margin completeness, nuclear clearing, epidermal or adipose folding, holes, or venetian blind-like artifacts. Pretreatment of the sample with LN2 produced a significantly (P < 0.001) greater number of high-quality slides (19/24) compared to pretreatment with 1,1,1,2-tetrafluoroethane (1/24) and no additional treatment (0/24). The adjunctive use of LN2 spray before tissue embedding circumvents the challenges of processing "thick" (high-adipose) specimens and facilitates the production of high-quality frozen section slides during Mohs micrographic surgery.

  10. Tolerability and effectiveness of liquid nitrogen spray cryotherapy with very short freeze times in the treatment of xanthelasma palpebrarum.

    Science.gov (United States)

    Labandeira, Javier; Vázquez-Osorio, Igor; Figueroa-Silva, Olalla; Pereiro, Manuel; Toribio, Jaime

    2015-01-01

    Xanthelasma are cholesterol-filled, soft, yellow plaques that usually appear on the medial aspects of the eyelids bilaterally. They are always benign lesions so therapy is usually undertaken only for cosmetic reasons. Surgical excision, chemical peeling with tricholoroacetic acid, and laser ablation are commonly used treatments. Liquid nitrogen cryotherapy is a potentially effective but rarely used treatment due to the risk of intense eyelid swelling. We report on our experience with four of our patients, and propose an explanation for the effectiveness of gentle liquid nitrogen spray cryotherapy in xanthelasma. We consider that gentle liquid nitrogen cryotherapy should be used in the treatment of xanthelasma due to the ease of application and low risk of adverse effects. © 2015 Wiley Periodicals, Inc.

  11. Demonstrating Paramagnetism Using Liquid Nitrogen.

    Science.gov (United States)

    Simmonds, Ray; And Others

    1994-01-01

    Describes how liquid nitrogen is attracted to the poles of neodymium magnets. Nitrogen is not paramagnetic, so the attraction suggests that the liquid nitrogen contains a small amount of oxygen, which causes the paramagnetism. (MVL)

  12. Replaceable liquid nitrogen piping

    International Nuclear Information System (INIS)

    Yasujima, Yasuo; Sato, Kiyoshi; Sato, Masataka; Hongo, Toshio

    1982-01-01

    This liquid nitrogen piping with total length of about 50 m was made and installed to supply the liquid nitrogen for heat insulating shield to three superconducting magnets for deflection and large super-conducting magnet for detection in the π-meson beam line used for high energy physics experiment in the National Laboratory for High Energy Physics. The points considered in the design and manufacture stages are reported. In order to minimize the consumption of liquid nitrogen during transport, vacuum heat insulation method was adopted. The construction period and cost were reduced by the standardization of the components, the improvement of welding works and the elimination of ineffective works. For simplifying the maintenance, spare parts are always prepared. The construction and the procedure of assembling of the liquid nitrogen piping are described. The piping is of double-walled construction, and its low temperature part was made of SUS 316L. The super-insulation by aluminum vacuum evaporation and active carbon were attached on the external surface of the internal pipe. The final leak test and the heating degassing were performed. The tests on evacuation, transport capacity and heat entry are reported. By making the internal pipe into smaller size, the piping may be more efficient. (Kako, I.)

  13. Liquid nitrogen cryotherapy of superior limbic keratoconjunctivitis.

    Science.gov (United States)

    Fraunfelder, Frederick W

    2009-02-01

    To evaluate the effects of liquid nitrogen cryotherapy on superior limbic keratoconjunctivitis (SLK). Interventional case series. In this clinical practice case series, the effects of liquid nitrogen cryotherapy on SLK were observed. Liquid nitrogen cryotherapy was performed using a Brymill E tip spray (0.013-inch aperture) with a double freeze-thaw technique. All subjects were outpatients who had local anesthesia with a single drop of topical proparacaine. The main outcome measure was the resolution of the disease process after treatment. Four female patients (average age, 64 +/- 13 years) and seven eyes with SLK were treated with liquid nitrogen cryotherapy. Resolution of signs and symptoms occurred within two weeks. Disease recurred in two patients and three of seven eyes, although repeat cryotherapy eradicated SLK in all cases. The repeat cryotherapy was performed at three months postoperatively. There were no adverse ocular events. Liquid nitrogen cryotherapy appears to be an effective alternative treatment for SLK as all subjects studied achieved long-term cures. Repeat cryotherapy may be necessary in some instances and may be performed three months after the first treatment.

  14. Swivel Joint For Liquid Nitrogen

    Science.gov (United States)

    Milner, James F.

    1988-01-01

    Swivel joint allows liquid-nitrogen pipe to rotate through angle of 100 degree with respect to mating pipe. Functions without cracking hard foam insulation on lines. Pipe joint rotates on disks so mechanical stress not transmitted to thick insulation on pipes. Inner disks ride on fixed outer disks. Disks help to seal pressurized liquid nitrogen flowing through joint.

  15. Automatic liquid nitrogen feeding device

    International Nuclear Information System (INIS)

    Gillardeau, J.; Bona, F.; Dejachy, G.

    1963-01-01

    An automatic liquid nitrogen feeding device has been developed (and used) in the framework of corrosion tests realized with constantly renewed uranium hexafluoride. The issue was to feed liquid nitrogen to a large capacity metallic trap in order to condensate uranium hexafluoride at the exit of the corrosion chambers. After having studied various available devices, a feeding device has been specifically designed to be robust, secure and autonomous, as well as ensuring a high liquid nitrogen flowrate and a highly elevated feeding frequency. The device, made of standard material, has been used during 4000 hours without any problem [fr

  16. How important are internal temperature gradients in french straws during freezing of bovine sperm in nitrogen vapor?

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2013-01-01

    The subject of present work was to predict internal temperature gradients developed during freezing of bovine sperm diluted in extender, packaged in 0.5 ml French plastic straws and suspended in static liquid nitrogen vapor at -100 degree C. For this purpose, a mathematical heat transfer model previously developed to predict freezing times (phase change was considered) of semen/extender packaged in straw was extended to predict internal temperature gradients during the cooling/freezing process. Results showed maximum temperature differences between the centre and the periphery of semen/extender "liquid" column was 1.5 degree C for an external heat transfer coefficient, h = 15 W per (m(2) K), and only 0.5 degree C for h = 5 W per (m(2) K). It is concluded that if a thermocouple wire were inserted in a 0.5 ml plastic straw to monitor the freezing process in nitrogen vapor, its radial position would have little importance since expected internal gradients may be safely neglected. This finding facilitates the interpretation of freezing rates in 0.5 ml plastic straws immersed in nitrogen vapor over liquid nitrogen, a widely used method for cryopreservation of bovine spermatozoa.

  17. The Joys of Liquid Nitrogen.

    Science.gov (United States)

    Nolan, William T.; Gish, Thaddeus J.

    1996-01-01

    Presents 6 short experiments with liquid nitrogen that 12- and 13-year-old students can safely perform under close supervision. Helps the students in learning a number of basic chemical principles while spurring their curiosity and showing them how much fun chemistry can be. (JRH)

  18. Design Optimization of Liquid Nitrogen Based IQF Tunnel

    Science.gov (United States)

    Datye, A. B.; Narayankhedkar, K. G.; Sharma, G. K.

    2006-04-01

    A design methodology for an Individual Quick Freezing (IQF) tunnel using liquid nitrogen is developed and the design based on this methodology is validated using the data of commercial tunnels. The design takes care of heat gains due to the conveyor belt which is exposed to atmosphere at the infeed and outfeed ends. The design also considers the heat gains through the insulation as well as due to circulating fans located within the tunnel. For minimum liquid nitrogen consumption, the ratio of the length of the belt, L (from infeed to out feed) to the width of the belt, W can be considered as a parameter. The comparison of predicted and reported liquid nitrogen (experimental data) consumption shows good agreement and is within 10 %.

  19. Liquid nitrogen cryotherapy for conjunctival lymphangiectasia: a case series.

    Science.gov (United States)

    Fraunfelder, Frederick W

    2009-12-01

    To report a case series of conjunctival lymphangiectasia treated with liquid nitrogen cryotherapy. A 1.5-mm Brymill cryoprobe was applied in a double freeze-thaw method after an incisional biopsy of a portion of the conjunctiva in patients with conjunctival lymphangiectasia. Freeze times were 1 to 2 seconds with thawing of 5 to 10 seconds between treatments. Patients were reexamined at 1 day, 2 weeks, 3 months, 6 months, and yearly following cryotherapy. Five eyes of 4 patients (3 male and 1 female) with biopsy-proven conjunctival lymphangiectasia underwent liquid nitrogen cryotherapy. The average patient age was 53 years. Ocular examination revealed large lymphatic vessels that were translucent and without conjunctival injection. Subjective symptoms included epiphora, ocular irritation, eye redness, and occasional blurred vision. After treatment with liquid nitrogen cryotherapy, the patients' symptoms and signs resolved within 2 weeks. Lymphangiectasia recurred twice in one patient, at 1 and 3 years postoperatively. In another patient, lymphangiectasia recurred at 6 months. The average time to recurrence in these 3 eyes was 18 months. Average length of follow-up was 24.5 months for all subjects. Liquid nitrogen cryotherapy may be an effective surgical alternative in the treatment of conjunctival lymphangiectasia. Cryotherapy may need to be repeated in some instances.

  20. Freezing of liquid alkali metals as screened ionic plasmas

    International Nuclear Information System (INIS)

    Badirkhan, Z.; Rovere, M.; Tosi, M.P.

    1990-08-01

    The relationship between Wigner crystallization of the classical ionic plasma and the liquid-solid transition of alkali metals is examined within the density wave theory of freezing. Freezing of the classical plasma on a rigid neutralizing background into the bcc structure is first re-evaluated, in view of recent progress in the determination of its thermodynamic functions by simulation and of the known difficulties of the theory relating to the order parameter at the (200) star of reciprocal lattice vectors. Freezing into the fcc structure is also considered in this context and found to be unfavoured. On allowing for long-wavelength deformability of the background, the ensuing appearance of a volume change on freezing into the bcc structure is accompanied by reduced stability of the fluid phase and by an increase in the entropy of melting. Freezing of alkali metals into the bcc structure is next evaluated, taking their ionic pair structure as that of an ionic plasma reference fluid screened by conduction electrons and asking that the correct ionic coupling strength at liquid-solid coexistence should be approximately reproduced. The ensuring values of the volume and entropy changes across the phase transition, as estimated from the theory by two alternative routes, are in reasonable agreement with experiment. The order parameters of the phase transition, excepting the (200) one, conform rather closely to a Gaussian behaviour and yield a Lindemann ratio in reasonable agreement with the empirical value for melting of bcc crystals. It is suggested that ionic ordering at the (200) star in the metal may be (i) assisted by medium range ordering in the conduction electrons, as indicated by differences in X-ray and neutron diffraction intensities from the liquid, and/or (ii) quite small in the hot bcc solid. Such a possible premelting behaviour of bcc metals should be worth testing experimentally by diffraction. (author). 48 refs, 1 fig., 1 tab

  1. Thermodynamic processes associated with frostbite in the handling of liquid nitrogen

    Science.gov (United States)

    Johnson, W. L.; Cook, C. R.

    2014-01-01

    It is often taught that exposure to liquid nitrogen will cause frostbite or more severe damage to exposed skin tissue. However, it is also demonstrated that a full hand can be briefly immersed in liquid nitrogen without damage. To better understand and possibly visualize the effects of human tissue exposure to liquid nitrogen, a series of tests were conducted using simulated hands and arms composed of molded gelatin forms. The simulated hands and arms were immersed, sprayed, or splashed with liquid nitrogen both with and without state of the art personal protective equipment. Thermocouples were located within the test articles to allow for thermal mapping during the freezing process. The study is aimed to help understand frostbite hazards and the time constants involved with the handling of liquid nitrogen to improve future safety protocols for the safe handling of cryogenic fluids. Results of the testing also show the limits to handling liquid nitrogen while using various means of protection.

  2. Thermodynamic processes associated with frostbite in the handling of liquid nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W. L. [Cryogenics Test Laboratory, NASA Kennedy Space Center, Kennedy Space Center, FL, 32899 (United States); Cook, C. R. [Dept. Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611 (United States)

    2014-01-29

    It is often taught that exposure to liquid nitrogen will cause frostbite or more severe damage to exposed skin tissue. However, it is also demonstrated that a full hand can be briefly immersed in liquid nitrogen without damage. To better understand and possibly visualize the effects of human tissue exposure to liquid nitrogen, a series of tests were conducted using simulated hands and arms composed of molded gelatin forms. The simulated hands and arms were immersed, sprayed, or splashed with liquid nitrogen both with and without state of the art personal protective equipment. Thermocouples were located within the test articles to allow for thermal mapping during the freezing process. The study is aimed to help understand frostbite hazards and the time constants involved with the handling of liquid nitrogen to improve future safety protocols for the safe handling of cryogenic fluids. Results of the testing also show the limits to handling liquid nitrogen while using various means of protection.

  3. Thermodynamic processes associated with frostbite in the handling of liquid nitrogen

    International Nuclear Information System (INIS)

    Johnson, W. L.; Cook, C. R.

    2014-01-01

    It is often taught that exposure to liquid nitrogen will cause frostbite or more severe damage to exposed skin tissue. However, it is also demonstrated that a full hand can be briefly immersed in liquid nitrogen without damage. To better understand and possibly visualize the effects of human tissue exposure to liquid nitrogen, a series of tests were conducted using simulated hands and arms composed of molded gelatin forms. The simulated hands and arms were immersed, sprayed, or splashed with liquid nitrogen both with and without state of the art personal protective equipment. Thermocouples were located within the test articles to allow for thermal mapping during the freezing process. The study is aimed to help understand frostbite hazards and the time constants involved with the handling of liquid nitrogen to improve future safety protocols for the safe handling of cryogenic fluids. Results of the testing also show the limits to handling liquid nitrogen while using various means of protection

  4. Liquid nitrogen ingestion followed by gastric perforation.

    Science.gov (United States)

    Berrizbeitia, Luis D; Calello, Diane P; Dhir, Nisha; O'Reilly, Colin; Marcus, Steven

    2010-01-01

    Ingestion of liquid nitrogen is rare but carries catastrophic complications related to barotrauma to the gastrointestinal tract. We describe a case of ingestion of liquid nitrogen followed by gastric perforation and respiratory insufficiency and discuss the mechanism of injury and management of this condition. Liquid nitrogen is widely available and is frequently used in classroom settings, in gastronomy, and for recreational purposes. Given the potentially lethal complications of ingestion, regulation of its use, acquisition, and storage may be appropriate.

  5. Freezing of a colloidal liquid subject to shear flow

    International Nuclear Information System (INIS)

    Bagchi, B.; Thirumalai, D.

    1988-01-01

    A nonequilibrium generalization of the density-functional theory of freezing is proposed to investigate the shear-induced first-order phase transition in colloidal suspensions. It is assumed that the main effect of a steady shear is to break the symmetry of the structure factor of the liquid and that for small shear rate, the phenomenon of a shear-induced order-disorder transition may be viewed as an equilibrium phase transition. The theory predicts that the effective density at which freezing takes place increases with shear rate. The solid (which is assumed to be a bcc lattice) formed upon freezing is distorted and specifically there is less order in one plane compared with the order in the other two perpendicular planes. It is shown that there exists a critical shear rate above which the colloidal liquid does not undergo a transition to an ordered (or partially ordered) state no matter how large the density is. Conversely, above the critical shear rate an initially formed bcc solid always melts into an amorphous or liquidlike state. Several of these predictions are in qualitative agreement with the light-scattering experiments of Ackerson and Clark. The limitations as well as possible extensions of the theory are also discussed

  6. Numerical Simulation and Analysis on Liquid Nitrogen Spray Heat Exchanger

    OpenAIRE

    Wenjing Ding; Weiwei Shan; Zijuan; Wang; Chao He

    2017-01-01

    Liquid spray heat exchanger is the critical equipment of temperature regulating system by gaseous nitrogen which realizes the environment temperature in the range of -180 ℃~+180 ℃. Liquid nitrogen is atomized into smaller liquid drops through liquid nitrogen sprayer and then contacts with gaseous nitrogen to be cooled. By adjusting the pressure of liquid nitrogen and gaseous nitrogen, the flowrate of liquid nitrogen is changed to realize the required outlet temperature of heat exchanger. The ...

  7. Applying Freeze Technology for Characterisation of Liquids, Sludge and Sediment

    International Nuclear Information System (INIS)

    Eriksson, Jens; Foster, Adam; Lindberg, Maria

    2016-01-01

    Full text of publication follows: Contaminated solids below a water table or solids in a water saturated environment can be major cost drivers and have a massive impact on the overall schedule and scope for a decommissioning project if not managed properly. One well recognized key activity in the preparation for decommissioning is to perform a proper characterisation covering all objects and areas which have been affected or potentially affected by contamination. Characterization of potentially contaminated material located below water or in water saturated environments can be difficult to perform accurately. Furthermore, traditional sampling techniques typically result in the disturbance or spreading of the contamination during sample collection. Sampling programs should be done in such a way that the radioactivity is contained (to avoid further spread of contamination), and in a way that the risk for cross contamination is minimised. Studsvik's Freeze Technology has been used to develop the necessary sampling techniques to meet these objectives. This technology is proven and frequently used for environmental characterization and remediation applications. The design of the sampling tools for radiological characterisation allows for samples to be taken at specific depths and at specific locations within the contaminated area without disturbing the contaminated material around the sample location. In addition to the sampling technique described above, a modified freeze sampling design has proven to be very useful in collecting frozen core samples that provide an accurate profile of the contamination and chemical and physical characteristics of the sediment or sludge as a function of depth into the sludge or sediment. Ultimately, this technique is used to develop a 3-D map of the physical characteristics and the chemical and radiological composition of the contaminated area. For many projects, this type of information will allow for a large reduction in the

  8. Deformed liquid marbles: Freezing drop oscillations with powders

    KAUST Repository

    Marston, Jeremy; Zhu, Y.; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur T

    2012-01-01

    In this work we show that when a liquid drop impacts onto a fine-grained hydrophobic powder, the final form of the drop can be very different from the spherical form with which it impacts. In all cases, the drop rebounds due to the hydrophobic nature of the powder. However, we find that above a critical impact speed, the drop undergoes a permanent deformation to a highly non-spherical shape with a near-complete coverage of powder, which then freezes the drop oscillations during rebound. © 2012 Elsevier B.V.

  9. Deformed liquid marbles: Freezing drop oscillations with powders

    KAUST Repository

    Marston, Jeremy

    2012-09-01

    In this work we show that when a liquid drop impacts onto a fine-grained hydrophobic powder, the final form of the drop can be very different from the spherical form with which it impacts. In all cases, the drop rebounds due to the hydrophobic nature of the powder. However, we find that above a critical impact speed, the drop undergoes a permanent deformation to a highly non-spherical shape with a near-complete coverage of powder, which then freezes the drop oscillations during rebound. © 2012 Elsevier B.V.

  10. The Effect of Liquid Nitrogen on Bone Graft Survival.

    Science.gov (United States)

    Sirinoglu, Hakan; Çilingir, Özlem Tuğçe; Çelebiler, Ozhan; Ercan, Feriha; Numanoglu, Ayhan

    2015-08-01

    Liquid nitrogen is used in medicine for cancer treatment and tissue preservation; however, bone viability after its application is controversial. This study aims to evaluate both the tissue viability and the clinical and histopathologic findings following liquid nitrogen application with different thawing techniques in rats. Mandibular bone grafts were taken from 45 Wistar rats and freezed in liquid nitrogen for 20 minutes. In the rapid-thawing technique (Rapid Thawing-1, Rapid Thawing-2), the grafts were held for 20 minutes in room temperature; in the slow-thawing technique (Slow Thawing-1, Slow Thawing-2), 20 minutes in -20°C, 20 minutes in +4°C, and 20 minutes in room temperature, respectively. In Rapid Thawing-2 and Slow Thawing-2 groups, autografts were implanted to their origin for 3 weeks and bone staining with India ink was performed and samples taken for histologic examination. The amount of cells and blood vessels and the density of bone canaliculi were significantly reduced in Rapid Thawing-1 and Slow Thawing-1 groups comparing to the Control group. However, the reduction rate was more significant in the Slow Thawing-1 group. Histomorphometric evaluation of the healing autografts after 3 weeks revealed that the decreased amounts of canaliculi were not changed in Slow Thawing-2 group. The study results demonstrated that bone tissue survives after liquid nitrogen treatment regardless of the performed thawing technique; however, slow thawing causes more tissue damage and metabolism impairment. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  11. Development of liquid nitrogen Centrifugal Pump

    International Nuclear Information System (INIS)

    Abe, M; Sagiyama, R; Tsuchiya, H; Takayama, T; Torii, Y; Nakamura, M; Hoshino, Y; Odashima, Y

    2009-01-01

    Usually liquid nitrogen (LN 2 ) transfer from a container to a laboratory equipment takes place by applying pressure to the container to push out liquid or pouring liquid into the cryostat directly by lifting the container. In order to overcome inconvenience of pressuring or lifting containers, we have been developing the Liquid Nitrogen Centrifugal Pump of a small electric turbine pump. Significant advantages that both reducing time to fill LN 2 and controlling the flow rate of liquid into the cryostat are obtained by introducing this pump. We have achieved the lift of about 800mm with the vessel's opening diameter of 28mm.

  12. Determination of Meteorite Porosity Using Liquid Nitrogen

    Science.gov (United States)

    Kohout, T.; Kletetschka, G.; Pesonen, L. J.; Wasilewski, P. J.

    2005-01-01

    We introduce a new harmless method for porosity measurement suitable for meteorite samples. The method is a modification of the traditional Archimedean method based on immersion of the samples in a liquid medium like water or organic liquids. In our case we used liquid nitrogen for its chemically inert characteristics.

  13. The Bevatron liquid nitrogen circulation system

    International Nuclear Information System (INIS)

    Hunt, D.; Stover, G.

    1987-03-01

    A nitrogen liquefier and computer controlled valving system have been added to the Bevatron cryoliner vacuum system to cut operating costs by reducing liquid nitrogen consumption. The computer and interface electronic systems, which control the temperatures of twenty-eight liquid nitrogen circuits, have been chosen and designed to operate in the Bevatron's pulsating magnetic field. The nitrogen exhaust is routed back to a liquefier, of about five kilowatt capacity, liquefied, and rerouted through the cooling circuits. A description of the system and operating results are presented

  14. Automatic Transmission Of Liquid Nitrogen

    Directory of Open Access Journals (Sweden)

    Sumedh Mhatre

    2015-08-01

    Full Text Available Liquid Nitrogen is one of the major substance used as a chiller in industry such as Ice cream factory Milk Diary Storage of blood sample Blood Bank etc. It helps to maintain the required product at a lower temperature for preservation purpose. We cannot fully utilise the LN2 so practically if we are using 3.75 litre LN2 for a single day then around 12 of LN2 450 ml is wasted due to vaporisation. A pressure relief valve is provided to create a pressure difference. If there is no pressure difference between the cylinder carrying LN2 and its surrounding it will results in damage of container as well as wastage of LN2.Transmission of LN2 from TA55 to BA3 is carried manually .So care must be taken for the transmission of LN2 in order to avoid its wastage. With the help of this project concept the transmission of LN2 will be carried automatically so as to reduce the wastage of LN2 in case of manual operation.

  15. DETERMINATION OF HEAT TRANSFER COEFFICIENTS FOR FRENCH PLASTIC SEMEN STRAW SUSPENDED IN STATIC NITROGEN VAPOR OVER LIQUID NITROGEN.

    Science.gov (United States)

    Santo, M V; Sansinena, M; Chirife, J; Zaritzky, N

    2015-01-01

    The use of mathematical models describing heat transfer during the freezing process is useful for the improvement of cryopreservation protocols. A widespread practice for cryopreservation of spermatozoa of domestic animal species consists of suspending plastic straws in nitrogen vapor before plunging into liquid nitrogen. Knowledge of surface heat transfer coefficient (h) is mandatory for computational modelling; however, h values for nitrogen vapor are not available. In the present study, surface heat transfer coefficients for plastic French straws immersed in nitrogen vapor over liquid nitrogen was determined; vertical and horizontal positions were considered. Heat transfer coefficients were determined from the measurement of time-temperature curves and from numerical solution of heat transfer partial differential equation under transient conditions using finite elements. The h values experimentally obtained for horizontal and vertically placed straws were compared to those calculated using correlations based on the Nusselt number for natural convection. For horizontal straws the average obtained value was h=12.5 ± 1.2 W m(2) K and in the case of vertical straws h=16 ± 2.48 W m(2) K. The numerical simulation validated against experimental measurements, combined with accurate h values provides a reliable tool for the prediction of freezing curves of semen-filled straws immersed in nitrogen vapor. The present study contributes to the understanding of the cryopreservation techniques for sperm freezing based on engineering concepts, improving the cooling protocols and the manipulation of the straws.

  16. Specific cooling capacity of liquid nitrogen

    Science.gov (United States)

    Kilgore, R. A.; Adcock, J. B.

    1977-01-01

    The assumed cooling process and the method used to calculate the specific cooling capacity of liquid nitrogen are described, and the simple equation fitted to the calculated specific cooling capacity data, together with the graphical form calculated values of the specific cooling capacity of nitrogen for stagnation temperatures from saturation to 350 K and stagnation pressures from 1 to 10 atmospheres, are given.

  17. Faktor Influencing the Vacuum Freezing Rate of Liquid Food

    OpenAIRE

    Tambunan, Armansyah H

    2000-01-01

    Many,freezing methods, mechanicul as well as cryogenic, have been in wide application in food industries. Each method has its own advantage, but in regard with the food quality, freezing rule can be accomplished by the method is one of the tnost important factors. Nowadays, many researchers are conducting experiment in order to enhance thefi.eezing rate. This paper deals with the advantage of vacuum freezing method in enhancing the freezing rate and its applicability for liquidfood.Experinren...

  18. Liquid nitrogen dewar for protein crystal growth

    Science.gov (United States)

    2001-01-01

    Gaseous Nitrogen Dewar apparatus developed by Dr. Alex McPherson of the University of California, Irvine for use aboard Mir and the International Space Station allows large quantities of protein samples to be crystallized in orbit. The specimens are contained either in plastic tubing (heat-sealed at each end). Biological samples are prepared with a precipitating agent in either a batch or liquid-liquid diffusion configuration. The samples are then flash-frozen in liquid nitrogen before crystallization can start. On orbit, the Dewar is placed in a quiet area of the station and the nitrogen slowly boils off (it is taken up by the environmental control system), allowing the proteins to thaw to begin crystallization. The Dewar is returned to Earth after one to four months on orbit, depending on Shuttle flight opportunities. The tubes then are analyzed for crystal presence and quality

  19. Charge-charge liquid structure factor and the freezing of alkali halides

    International Nuclear Information System (INIS)

    March, N.H.; Tosi, M.P.

    1980-10-01

    The peak height of the charge-charge liquid structure factor Ssub(QQ) in molten alkali halides is proposed as a criterion for freezing. Available data on molten alkali chlorides, when extrapolated to the freezing point suggests Ssub(QQ)sup(max) approximately 5. (author)

  20. Ceramic packages for liquid-nitrogen operation

    International Nuclear Information System (INIS)

    Tong, H.M.; Yeh, H.L.; Goldblatt, R.D.

    1989-01-01

    To evaluate their compatibility for use in a liquid-nitrogen computer, metallized ceramic packages with test chips joined using IBM controlled-collapse solder (Pb-Sn) technology have been cycled between 30 0 C and liquid-nitrogen temperature. Room-temperature electrical resistance measurements were made at regular intervals of cycles to determine whether solder failure accompanied by a significant resistance increase had occurred. For the failed solder joints characterized by the highest thermal shear strain amplitude of 3.3 percent, the authors were able to estimate the number of liquid-nitrogen cycles needed to produce the corresponding failure rate using a room-temperature solder lifetime model. Cross-sectional examination of the failed solder joints using scanning electron microscopy and energy dispersive X-ray analysis indicated solder cracking occurring at the solder-ceramic interface. Chip pull tests on cycled packages yielded strengths far exceeding the minimal requirement. Mechanisms involving the formation of intermetallics were proposed to account for the observed solder fracture modes after liquid-nitrogen cycling and after chip pull. Furthermore, scanning electron microscopic examination of pulled chips in cycled packages showed no apparent sign of cracking in quartz and polyimide for chip insulation

  1. Liquid-Nitrogen Test for Blocked Tubes

    Science.gov (United States)

    Wagner, W. R.

    1984-01-01

    Nondestructive test identifies obstructed tube in array of parallel tubes. Trickle of liquid nitrogen allowed to flow through tube array until array accumulates substantial formation of frost from moisture in air. Flow stopped and warm air introduced into inlet manifold to heat tubes in array. Tubes still frosted after others defrosted identified as obstructed tubes. Applications include inspection of flow systems having parallel legs.

  2. Vitrification and levitation of a liquid droplet on liquid nitrogen.

    Science.gov (United States)

    Song, Young S; Adler, Douglas; Xu, Feng; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M; Maas, Richard L; Demirci, Utkan

    2010-03-09

    The vitrification of a liquid occurs when ice crystal formation is prevented in the cryogenic environment through ultrarapid cooling. In general, vitrification entails a large temperature difference between the liquid and its surrounding medium. In our droplet vitrification experiments, we observed that such vitrification events are accompanied by a Leidenfrost phenomenon, which impedes the heat transfer to cool the liquid, when the liquid droplet comes into direct contact with liquid nitrogen. This is distinct from the more generally observed Leidenfrost phenomenon that occurs when a liquid droplet is self-vaporized on a hot plate. In the case of rapid cooling, the phase transition from liquid to vitrified solid (i.e., vitrification) and the levitation of droplets on liquid nitrogen (i.e., Leidenfrost phenomenon) take place simultaneously. Here, we investigate these two simultaneous physical events by using a theoretical model containing three dimensionless parameters (i.e., Stefan, Biot, and Fourier numbers). We explain theoretically and observe experimentally a threshold droplet radius during the vitrification of a cryoprotectant droplet in the presence of the Leidenfrost effect.

  3. Liquid Nitrogen Zero Boiloff Testing

    Science.gov (United States)

    Plachta, David; Feller, Jeffrey; Johnson, Wesley; Robinson, Craig

    2017-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASAs future space exploration due to their high specific impulse for rocket motors of upper stages suitable for transporting 10s to 100s of metric tons of payload mass to destinations outside of low earth orbit and for their return. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several months. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler to control tank pressure. The active thermal control technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center, in a vacuum chamber and cryo-shroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. Testing consisted of three passive tests with the active cryo-cooler system off, and 7 active tests, with the cryocooler powered up. The test matrix included zero boil-off tests performed at 90 full and 25 full, and several demonstrations at excess cooling capacity and reduced cooling capacity. From this, the tank pressure response with varied cryocooler power inputs was determined. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  4. Cryosurgical treatment of warts: dimethyl ether and propane versus liquid nitrogen - case report and review of the literature.

    Science.gov (United States)

    Nguyen, Nicholas V; Burkhart, Craig G

    2011-10-01

    For years, dermatologists have relied on cryotherapy with liquid nitrogen as a safe and effective treatment for warts. More recently, several over-the-counter (OTC) wart-freezing therapies have become available. Manufacturers have substituted liquid nitrogen with dimethyl ether and propane (DMEP), and marketed these new preparations to be safe and effective alternatives to in-office cryotherapy with liquid nitrogen. However, data from in vitro studies and comparative studies in humans refute manufacturers' claims that these products reproduce in-office cryotherapy.

  5. Increased nitrogen leaching following soil freezing is due to decreased root uptake in a northern hardwood forest

    Science.gov (United States)

    John L. Campbell; Anne M. Socci; Pamela H. Templer

    2014-01-01

    The depth and duration of snow pack is declining in the northeastern United States as a result of warming air temperatures. Since snow insulates soil, a decreased snow pack can increase the frequency of soil freezing, which has been shown to have important biogeochemical implications. One of the most notable effects of soil freezing is increased inorganic nitrogen...

  6. Cryopreserving turkey semen in straws and nitrogen vapour using DMSO or DMA: effects of cryoprotectant concentration, freezing rate and thawing rate on post-thaw semen quality.

    Science.gov (United States)

    Iaffaldano, N; Di Iorio, M; Miranda, M; Zaniboni, L; Manchisi, A; Cerolini, S

    2016-04-01

    1. This study was designed to identify a suitable protocol for freezing turkey semen in straws exposed to nitrogen vapour by examining the effects of dimethylacetamide (DMA) or dimethylsulfoxide (DMSO) as cryoprotectant (CPA), CPA concentration, freezing rate and thawing rate on in vitro post-thaw semen quality. 2. Pooled semen samples were diluted 1:1 (v:v) with a freezing extender composed of Tselutin diluent containing DMA or DMSO to give final concentrations of 8% or 18% DMA and 4% or 10% DMSO. The semen was packaged in 0.25 ml plastic straws and frozen at different heights above the liquid nitrogen (LN2) surface (1, 5 and 10 cm) for 10 min. Semen samples were thawed at 4°C for 5 min or at 50°C for 10 s. After thawing, sperm motility, viability and osmotic tolerance were determined. 3. Cryosurvival of turkey sperm was affected by DMSO concentration. Freezing rate affected the motility of sperm cryopreserved using both CPAs, while thawing rates showed an effect on the motility of sperm cryopreserved using DMA and on the viability of sperm cryopreserved using DMSO. Significant interactions between freezing rate × thawing rate on sperm viability in the DMA protocol were found. 4. The most effective freezing protocol was the use of 18% DMA or 10% DMSO with freezing 10 cm above the LN2 surface and a thawing temperature of 50°C. An efficient protocol for turkey semen would improve prospects for sperm cryobanks and the commercial use of frozen turkey semen.

  7. Correlation of Helium Solubility in Liquid Nitrogen

    Science.gov (United States)

    VanDresar, Neil T.; Zimmerli, Gregory A.

    2012-01-01

    A correlation has been developed for the equilibrium mole fraction of soluble gaseous helium in liquid nitrogen as a function of temperature and pressure. Experimental solubility data was compiled and provided by National Institute of Standards and Technology (NIST). Data from six sources was used to develop a correlation within the range of 0.5 to 9.9 MPa and 72.0 to 119.6 K. The relative standard deviation of the correlation is 6.9 percent.

  8. Ice plugging of pipes using liquid nitrogen

    International Nuclear Information System (INIS)

    Twigg, R.J.

    1987-03-01

    This report presents a study on the ice plugging of pipe using liquid nitrogen, and is based on a literature review and on discussions with individuals who use the technique. Emphasis is placed on ferritic alloys, primarily carbon steels, in pipe sized up to 60 cm in diameter and on austenitic stainless steels in pipe sizes up to 30 cm in diameter. This technique is frequently used for leak testing in nuclear facilities

  9. Foil bearing performance in liquid nitrogen and liquid oxygen

    Science.gov (United States)

    Genge, Gary G.; Saville, Marshall; Gu, Alston

    1993-01-01

    Space transfer vehicles and other power and propulsion systems require long-life turbopumps. Rolling-element bearings used in current turbopumps do not have sufficient life for these applications. Process fluid foil bearings have established long life, with exceptional reliability, over a wide range of temperatures and fluids in many high-speed turbomachinery applications. However, actual data on bearing performance in cryogenic fluids has been minimal. The National Aeronautics and Space Administration (NASA) and AlliedSignal Aerospace Systems and Equipment (ASE) have attempted to characterize the leaf-type compliant foil bearing in oxygen and nitrogen. The work performed under a joint internal research and development program between Marshall Space Flight Center (MSFC) and ASE demonstrated that the foil bearing has load capacities of at least 266 psi in liquid oxygen and 352 psi in liquid nitrogen. In addition, the bearing demonstrated a direct damping coefficient of 40 to 50 lb-sec/in. with a damping ratio of .7 to 1.4 in. liquid nitrogen using a bearing sized for upper-stage turbopumps. With the results from this testing and the years of successful use in air cycle machines and other applications, leaf-type compliant foil bearings are ready for testing in liquid oxygen turbopumps.

  10. Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen.

    Science.gov (United States)

    Kostál, Vladimír; Zahradnícková, Helena; Šimek, Petr

    2011-08-09

    The larva of the drosophilid fly, Chymomyza costata, is probably the most complex metazoan organism that can survive submergence in liquid nitrogen (-196 °C) in a fully hydrated state. We examined the associations between the physiological and biochemical parameters of differently acclimated larvae and their freeze tolerance. Entering diapause is an essential and sufficient prerequisite for attaining high levels of survival in liquid nitrogen (23% survival to adult stage), although cold acclimation further improves this capacity (62% survival). Profiling of 61 different metabolites identified proline as a prominent compound whose concentration increased from 20 to 147 mM during diapause transition and subsequent cold acclimation. This study provides direct evidence for the essential role of proline in high freeze tolerance. We increased the levels of proline in the larval tissues by feeding larvae proline-augmented diets and found that this simple treatment dramatically improved their freeze tolerance. Cell and tissue survival following exposure to liquid nitrogen was evident in proline-fed nondiapause larvae, and survival to adult stage increased from 0% to 36% in proline-fed diapause-destined larvae. A significant statistical correlation was found between the whole-body concentration of proline, either natural or artificial, and survival to the adult stage in liquid nitrogen for diapause larvae. Differential scanning calorimetry analysis suggested that high proline levels, in combination with a relatively low content of osmotically active water and freeze dehydration, increased the propensity of the remaining unfrozen water to undergo a glass-like transition (vitrification) and thus facilitated the prevention of cryoinjury.

  11. Freezing Point Determination of Water–Ionic Liquid Mixtures

    DEFF Research Database (Denmark)

    Liu, Yanrong; Meyer, Anne S.; Nie, Yi

    2017-01-01

    .841 K in thefirst system and at a water mole fraction of 0.657 and 202.565 K inthe second system. Water activities in aqueous IL solutions were predictedby COSMO-RS and COSMO-SAC and compared to water activities derivedfrom the experimentally determined freezing points. The COSMO-RS predictionswere...... closer to the experimental water activities than the COSMO-SACpredictions. The experimental results indicate that the freezing pointsof IL+H2O systems are affected by the nature of both cationsand anions. However, according to the COSMO-RS excess enthalpy predictionresults, the anions have a relatively...

  12. An explanation for why it is difficult to form slush nitrogen from liquid nitrogen used previously for this purpose.

    Science.gov (United States)

    Baker, Michael J; Denton, Travis T; Herr, Charles

    2013-02-01

    Slush nitrogen (SN) is used to avoid the Leidenfrost effect, which is problematic when using liquid nitrogen (LN). Slush nitrogen's usefulness has been demonstrated by its requirement for the successful cryopreservation of insect embryos. To convert LN to SN, typically, the pressure above a Dewar of LN is reduced, using a vacuum pump in a sealed system until conversion occurs. It has been observed that LN from a fresh tank will readily produce SN; however, repeated use of the same LN results in the inability to form SN in subsequent trials. The current experiments were designed to identify the cause of this phenomenon. The hypothesis is that gaseous oxygen from the surrounding, ambient air condenses and mixes with the LN to form a mixture with a lower freezing point and; therefore, prevents the formation of SN. The hypothesis was tested and found to be true. Copyright © 2012. Published by Elsevier Inc.

  13. Liquid nitrogen fire extinguishing system test report

    International Nuclear Information System (INIS)

    Beidelman, J.A.

    1972-01-01

    The objective of this test series was to demonstrate the feasibility of using liquid nitrogen as a fire-extinguishing agent for certain types of metal fires. It was intended to provide data and experience appropriate to the design of a second series which will test the applicability of this technique to plutonium fires and which will develop more detailed operating information and permit more precise measurement of test parameters-oxygen depletion rates and equilibrium concentrations, temperature effects, and nitrogen pressures, flow rates, spray methods and patterns, etc. The test series was directed specifically toward extinguishment of metal fires occurring in well-confined areas and was not intended to be representative of any larger classification. Fires of several types were tested, e.g., magnesium, mixed magnesium and zirconium, sodium and cerium

  14. Sorption Properties of Aerogel in Liquid Nitrogen

    Science.gov (United States)

    Johnson, Wesley L.

    2006-01-01

    Aerogel products are now available as insulation materials of the future. The Cryogenics Test Laboratory at the NASA Kennedy Space Center is developing aerogel-based thermal insulation systems for space launch applications. Aerogel beads (Cabot Nanogel ) and aerogel blankets (Aspen Aerogels Spaceloft ) have outstanding ambient pressure thermal performance that makes them useful for applications where sealing is not possible. Aerogel beads are open-celled silicone dioxide and have tiny pores that run throughout the body of the bead. It has also recently been discovered that aerogel beads can be used as a filtering device for aqueous compounds at room temperature. With their hydrophobic covering, the beads absorb any non-polar substance and they can be chemically altered to absorb hot gases. The combination of the absorption and cryogenic insulating properties of aerogel beads have never been studied together. For future cryogenic insulation applications, it is crucial to know how the beads react while immersed in cryogenic liquids, most notably liquid nitrogen. Aerogel beads in loose-fill situation and aerogel blankets with composite fiber structure have been tested for absorption properties. Depending on the type of aerogel used and the preparation, preliminary results show the material can absorb up to seven times its own weight of liquid nitrogen, corresponding to a volumetric ratio of 0.70 (unit volume nitrogen per unit volume aerogel). These tests allow for an estimate on how much insulation is needed in certain situations. The theory behind the different processes of sorption is necessary for a better understanding of the preparation of the beads before they are used in an insulation system.

  15. Liquid Nitrogen Removal of Critical Aerospace Materials

    Science.gov (United States)

    Noah, Donald E.; Merrick, Jason; Hayes, Paul W.

    2005-01-01

    Identification of innovative solutions to unique materials problems is an every-day quest for members of the aerospace community. Finding a technique that will minimize costs, maximize throughput, and generate quality results is always the target. United Space Alliance Materials Engineers recently conducted such a search in their drive to return the Space Shuttle fleet to operational status. The removal of high performance thermal coatings from solid rocket motors represents a formidable task during post flight disassembly on reusable expended hardware. The removal of these coatings from unfired motors increases the complexity and safety requirements while reducing the available facilities and approved processes. A temporary solution to this problem was identified, tested and approved during the Solid Rocket Booster (SRB) return to flight activities. Utilization of ultra high-pressure liquid nitrogen (LN2) to strip the protective coating from assembled space shuttle hardware marked the first such use of the technology in the aerospace industry. This process provides a configurable stream of liquid nitrogen (LN2) at pressures of up to 55,000 psig. The performance of a one-time certification for the removal of thermal ablatives from SRB hardware involved extensive testing to ensure adequate material removal without causing undesirable damage to the residual materials or aluminum substrates. Testing to establish appropriate process parameters such as flow, temperature and pressures of the liquid nitrogen stream provided an initial benchmark for process testing. Equipped with these initial parameters engineers were then able to establish more detailed test criteria that set the process limits. Quantifying the potential for aluminum hardware damage represented the greatest hurdle for satisfying engineers as to the safety of this process. Extensive testing for aluminum erosion, surface profiling, and substrate weight loss was performed. This successful project clearly

  16. Knee joint preservation surgery in osteosarcoma using tumour-bearing bone treated with liquid nitrogen.

    Science.gov (United States)

    Higuchi, Takashi; Yamamoto, Norio; Nishida, Hideji; Hayashi, Katsuhiro; Takeuchi, Akihiko; Kimura, Hiroaki; Miwa, Shinji; Inatani, Hiroyuki; Shimozaki, Shingo; Kato, Takashi; Aoki, Yu; Abe, Kensaku; Taniguchi, Yuta; Tsuchiya, Hiroyuki

    2017-10-01

    To preserve the joint structure in order to maintain good limb function in patients with osteosarcoma, we perform epiphyseal or metaphyseal osteotomy and reconstruction using frozen autografts that contain a tumour treated with liquid nitrogen. There are two methods of using liquid nitrogen-treated autografts: the free-freezing method and the pedicle-freezing method. The purpose of this study was to evaluate the results of intentional joint-preserving reconstruction using the free-freezing method and the pedicle-freezing method in patients with osteosarcoma. Between 2006 and 2014, we performed joint-preserving surgery (12 with the free-freezing method and six with the pedicle freezing method) to treat 18 cases of osteosarcoma (12 distal femurs and six proximal tibias) in patients who had achieved a good response to neoadjuvant chemotherapy. Among the 18 patients (nine boys and nine girls) who had a mean age of 11.6 years, 13 remained continuously disease-free, three showed no evidence of disease, one was alive with the disease, and one died from the disease. Functional outcomes were assessed as excellent in 15 patients and poor in three, with a mean follow-up period of 46.1 months. The mean Musculoskeletal Tumour Society (MSTS) score was 90.2%. Except for one patient who underwent amputation, all patients could bend their knee through >90° flexion, and nine achieved full ROM. All but two patients could walk without aid, and 11 were able to run normally throughout the follow-up period. No intraoperative complications were observed, such as surrounding soft-tissue damage, neurovascular injury, or recurrence from frozen bone. Joint-preserving reconstruction using frozen autografts yielded excellent function in patients with osteosarcoma.

  17. [Effects and mechanism of freeze-thawing cycles on key processes of nitrogen cycle in terrestrial ecosystem].

    Science.gov (United States)

    Wang, Li-qin; Qi, Yu-chun; Dong, Yun-she; Peng, Qin; Guo, Shu-fang; He, Yun-long; Yan, Zhong-qing

    2015-11-01

    As a widespread natural phenomenon in the soil of middle and high latitude as well as high altitude, freeze-thawing cycles have a great influence on the nitrogen cycle of terrestrial ecosystem in non-growing season. Freeze-thawing cycles can alter the physicochemical and biological properties of the soil, which thereby affect the migration and transformation of soil nitrogen. The impacts of freeze-thawing cycles on key processes of nitrogen cycle in terrestrial ecosystem found in available studies remain inconsistent, the mechanism is still not clear, and the research methods also need to be further explored and innovated. So it is necessary to sum up and analyze the existing achievements in order to better understand the processes of soil nitrogen cycle subjected to freeze-thawing cycles. This paper reviewed the research progress in China and abroad about the effects and mechanisms of freeze-thawing cycles on key processes of nitrogen cycle in terrestrial ecosystem, including mineralization, immobilization, nitrification and denitrification, N leakage and gaseous loss, and analyzed the deficiencies of extant research. The possible key research topics that should be urgently paid more attention to in the future were also discussed.

  18. Excitation of cavitation bubbles in low-temperature liquid nitrogen

    Science.gov (United States)

    Sasaki, Koichi; Harada, Shingo

    2017-06-01

    We excited a cavitation bubble by irradiating a Nd:YAG laser pulse onto a titanium target that was installed in liquid nitrogen at a temperature below the boiling point. To our knowledge, this is the first experiment in which a cavitation bubble has been successfully excited in liquid nitrogen. We compared the cavitation bubble in liquid nitrogen with that in water on the basis of an equation reported by Florschuetz and Chao [J. Heat Transfer 87, 209 (1965)].

  19. Separation of nitrogen-krypton by the freeze-dried cellulose acetate membrane

    International Nuclear Information System (INIS)

    Tanioka, Akihiko; Ishikawa, Kinzo; Kakuta, Akio; Ozaki, Osamu; Oono, Masanori.

    1977-01-01

    The utility of freeze-dried cellulose acetate membranes, which consist of a thin skin layer supported upon a more porous matrix substructure, was examined for separation of nitrogen-radioactive krypton 85. The high permeable and separative membranes were prepared by fixed freezed-drying of swollen membrane after evaporation of acetone for 4-6 minutes. The permeation rate of nitrogen was 10 -1 -10 -3 (cc/cm 2 .sec.atm). Knudsen flow was predominant, since the permeation rate was inversely proportional to square root of molecular weight of gases. The influence of viscous flow was also observed by slight dependence on the pressure. The mean pore size was calculated by the equation of gas permeation in porous media. There exist fine pores of 30-40A radii in the skin layer. The separation factor (dilution of Kr) was about 0.7 and the separation efficiency was 60%. The collision between different gas molecules (Present-de Bethunes' effect) and the influence of viscous flow depreciates the efficiency. The separation efficiency which was determined by the experiment coincided with the one predicted according to the Present-de Bethunes' equation, supposing that the pore size in skin layer was 10-25A. (auth.)

  20. Freezing and fractionation: effects of preservation on carbon and nitrogen stable isotope ratios of some limnetic organisms.

    Science.gov (United States)

    Wolf, J Marshall; Johnson, Brett; Silver, Douglas; Pate, William; Christianson, Kyle

    2016-03-15

    Stable isotopes of carbon and nitrogen have become important natural tracers for studying food-web structure and function. Considerable research has demonstrated that chemical preservatives and fixatives shift the isotopic ratios of aquatic organisms. Much less is known about the effects of freezing as a preservation method although this technique is commonly used. We conducted a controlled experiment to test the effects of freezing (-10 °C) and flash freezing (–79 °C) on the carbon and nitrogen isotope ratios of zooplankton (Cladocera), Mysis diluviana and Rainbow Trout (Oncorhynchus mykiss). Subsamples (~0.5 mg) of dried material were analyzed for percentage carbon, percentage nitrogen, and the relative abundance of stable carbon and nitrogen isotopes (δ13C and δ15N values) using a Carlo Erba NC2500 elemental analyzer interfaced to a ThermoFinnigan MAT Delta Plus isotope ratio mass spectrometer. The effects of freezing were taxon-dependent. Freezing had no effect on the isotopic or elemental values of Rainbow Trout muscle. Effects on the δ13C and δ15N values of zooplankton and Mysis were statistically significant but small relative to typical values of trophic fractionation. The treatment-control offsets had larger absolute values for Mysis (δ13C: ≤0.76 ± 0.41‰, δ15N: ≤0.37 ± 0.16‰) than for zooplankton (δ13C: ≤0.12 ± 0.06‰, δ15N: ≤0.30 ± 0.27‰). The effects of freezing were more variable for the δ13C values of Mysis, and more variable for the δ15N values of zooplankton. Generally, both freezing methods reduced the carbon content of zooplankton and Mysis, but freezing had a negative effect on the %N of zooplankton and a positive effect on the %N of Mysis. The species-dependencies and variability of freezing effects on aquatic organisms suggest that more research is needed to understand the mechanisms responsible for freezing-related fractionation before standardized protocols for freezing as a preservation method can be adopted.

  1. Removing Spilled Oil With Liquid Nitrogen

    Science.gov (United States)

    Snow, Daniel B.

    1991-01-01

    Technique proposed to reduce more quickly, contain, clean up, and remove petroleum products and such other pollutants as raw sewage and chemicals without damage to humans, animals, plants, or the environment. Unique and primary aspect of new technique is use of cryogenic fluid to solidify spill so it can be carried away in solid chunks. Liquid nitrogen (LN2), with boiling point at -320 degrees F (-196 degrees C), offers probably best tradeoff among extreme cold, cost, availability, and lack of impact on environment among various cryogenic fluids available. Other applications include extinguishing fires at such locations as oil derricks or platforms and at tank farms containing such petroleum products as gasoline, diesel fuel, and kerosene.

  2. The automatic liquid nitrogen filling system for GDA detectors

    Indian Academy of Sciences (India)

    . Abstract. An indigenously developed automatic liquid nitrogen (LN2) filling system has been installed in gamma detector array (GDA) facility at Nuclear Science Centre. Electro-pneumatic valves are used for filling the liquid nitrogen into the ...

  3. Mount makes liquid nitrogen-cooled gamma ray detector portable

    Science.gov (United States)

    Fessler, T. E.

    1966-01-01

    Liquid nitrogen-cooled gamma ray detector system is made portable by attaching the detector to a fixture which provides a good thermal conductive path between the detector and the liquid nitrogen in a dewar flask and a low heat leak path between the detector and the external environment.

  4. Liquid structure and freezing of the two-dimensional classical electron fluid

    International Nuclear Information System (INIS)

    Ballone, P.; Pastore, G.; Rovere, M.; Tosi, M.P.

    1984-11-01

    Accurate theoretical results are reported for the pair correlation function of the classical two-dimensional electron liquid with r -1 interactions at strong coupling. The approach involves an evaluation of the bridge diagram corrections to the hypernetted-chain approximation, the role of low dimensionality being evident, relative to the case of the three-dimensional classical plasma, in an enhanced sensitivity to long range correlations. The liquid structure results are utilized in a density-wave theory of first-order freezing into the triangular lattice, the calculated coupling strength at freezing being in reasonable agreement with computer simulation results and with data on electron films on a liquid-He surface. The stability of the triangular electron lattice against deformation into a body-centered rectangular lattice is also discussed. (author)

  5. Effect of cooling rate on the survival of cryopreserved rooster sperm: Comparison of different distances in the vapor above the surface of the liquid nitrogen.

    Science.gov (United States)

    Madeddu, M; Mosca, F; Abdel Sayed, A; Zaniboni, L; Mangiagalli, M G; Colombo, E; Cerolini, S

    2016-08-01

    The aim of the present trial was to study the effect of different freezing rates on the survival of cryopreserved rooster semen packaged in straws. Slow and fast freezing rates were obtained keeping straws at different distances in the vapor above the surface of the nitrogen during freezing. Adult Lohmann roosters (n=27) were used. Two experiments were conducted. In Experiment 1, semen was packaged in straws and frozen comparing the distances of 1, 3 and 5cm in nitrogen vapor above the surface of the liquid nitrogen. In Experiment 2, the distances of 3, 7 and 10cm above the surfaces of the liquid nitrogen were compared. Sperm viability, motility and progressive motility and the kinetic variables were assessed in fresh and cryopreserved semen samples. The recovery rates after freezing/thawing were also calculated. In Experiment 1, there were no significant differences among treatments for all semen quality variables. In Experiment 2, the percentage of viable (46%) and motile (22%) sperm in cryopreserved semen was greater when semen was placed 3cm compared with 7 and 10cm in the vapor above the surface of the liquid nitrogen. The recovery rate of progressive motile sperm after thawing was also greater when semen was stored 3cm in the vapor above the surface of the liquid nitrogen. More rapid freezing rates are required to improve the survival of rooster sperm after cryopreservation and a range of distances from 1 to 5cm in nitrogen vapor above the surface of the liquid nitrogen is recommended for optimal sperm viability. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Use of liquid nitrogen and albendazole in successfully treating cutaneous larva migrans

    International Nuclear Information System (INIS)

    Kapadia, N.; Farooqui, M.; Borhany, T.

    2013-01-01

    Objective: To determine the efficacy of combination treatment of Albendazole along with liquid nitrogen in cutaneous larva migrans. Study Design: Quasi-experimental study. Place and Duration of Study: Abbasi Shaheed Hospital and The Aga Khan Hospital, Karachi, from December 2008 to December 2010. Methodology: Eighteen cases of cutaneous larva migrans were collected and divided into two groups. Group-A was administered oral Albendazole 400 mg once per day along with topical steroid and oral cetrizine 10 mg once at night for 7 days. Group-B also received oral Albendazole 400 mg once per day along with cetrizine 10 mg once at night but they also received single application of liquid nitrogen to freeze the larva. Results: It was found that in Group-A only 2 out of 9 (22%) showed improvement whereas 78% had to be given liquid nitrogen cryotherapy 3 - 7 days after Albendazole to prevent migration of larva. In Group-B, the improvement was 100% and all 9 patients were successfully treated. Conclusion: Use of liquid nitrogen along with oral anti-helminths is very effective in treating cutaneous larva migrans than Albendazole alone. (author)

  7. Use of liquid nitrogen and albendazole in successfully treating cutaneous larva migrans.

    Science.gov (United States)

    Kapadia, Naseema; Borhany, Tasneem; Farooqui, Maria

    2013-05-01

    To determine the efficacy of combination treatment of Albendazole along with liquid nitrogen in cutaneous larva migrans. Quasi-experimental study. Abbasi Shaheed Hospital and The Aga Khan Hospital, Karachi, from December 2008 to December 2010. Eighteen cases of cutaneous larva migrans were collected and divided into two groups. Group-A was administered oral Albendazole 400 mg once per day along with topical steroid and oral cetrizine 10 mg once at night for 7 days. Group-B also received oral Albendazole 400 mg once per day along with cetrizine 10 mg once at night but they also received single application of liquid nitrogen to freeze the larva. It was found that in Group-A only 2 out of 9 (22%) showed improvement whereas 78% had to be given liquid nitrogen cryotherapy 3 - 7 days after Albendazole to prevent migration of larva. In Group-B, the improvement was 100% and all 9 patients were successfully treated. Use of liquid nitrogen along with oral anti-helminths is very effective in treating cutaneous larva migrans than Albendazole alone.

  8. Liquid nitrogen cryotherapy for surface eye disease (an AOS thesis).

    Science.gov (United States)

    Fraunfelder, Frederick Web

    2008-01-01

    To evaluate the effects of new treatments with liquid nitrogen cryotherapy on some external eye conditions. In this retrospective case study, 6 separate series from a single tertiary care referral center practice are described. Liquid nitrogen cryotherapy was used to treat conjunctival amyloidosis, primary pterygia, recurrent pterygia, advancing wavelike epitheliopathy (AWLE), superior limbic keratoconjunctivitis (SLK), and palpebral vernal keratoconjunctivitis (VKC). The main outcome measure was the resolution of the disease process after treatment. Four patients with primary localized conjunctival amyloidosis were treated with liquid nitrogen cryotherapy. Two of them had recurrence of the amyloidosis, which cleared with subsequent treatment. Eighteen patients with primary pterygia had excision and cryotherapy with 1 recurrence. Of 6 subjects who presented with recurrent pterygia, 4 had a second recurrence after excision and cryotherapy. In 5 patients with AWLE, the condition resolved within 2 weeks without recurrence or the need for subsequent cryotherapy. Four patients with SLK were treated with liquid nitrogen cryotherapy. Disease recurred in 2 patients and 3 of 7 eyes, although subsequent cryotherapy eradicated SLK in all cases. Two patients and 3 eyelids with palpebral VKC were treated with liquid nitrogen cryotherapy. VKC recurred in all cases. Liquid nitrogen cryotherapy to the surface of the eye is effective in treating AWLE, and SLK. Excision followed by cryotherapy is successful in treating conjunctival amyloidosis and primary pterygia Liquid nitrogen cryotherapy is unsuccessful in the treatment of recurrent pterygia and VKC.

  9. Effect of exogenous carbon addition and the freeze-thaw cycle on soil microbes and mineral nitrogen pools1

    Science.gov (United States)

    Hu, Xia; Yin, Peng; Nong, Xiang; Liao, Jinhua

    2018-01-01

    To elucidate the alpine soil process in winter, the response mechanism of soil mineral nitrogen and soil microbes to exogenous carbon (0 mg C, 1 mg C, 2 mg C, 4 mg C and 8 mg C·g-1 dry soil) and the freeze-thaw cycle (-2 °C, -2 ∼ 2 °C, -20 ∼2°C) were studied by laboratory simulation. The freeze-thaw treatment had no significant effect on microbial biomass nitrogen and the number of bacteria. The soil mineral N pool, the number of fungi, and enzyme activities were obviously affected by the freeze-thaw cycle. A mild freeze-thaw cycle (-2∼2°C) significantly increased the number of fungi and catalase activity, while severe freeze-thaw cycle (-20∼2°C) obviously decreased invertase activity. The results suggested that both the freeze-thaw rate and freeze-thaw temperature amplitudes have a strong effect on soil microbial dynamics in the alpine zone in winter. The results showed that exogenous carbon addition significantly decreased soil NO3-N and NH4 +-N contents, increased soil microbial biomass, the number of microbes, and soil enzyme activities. The results showed that microbial growth in the eastern Tibetan Plateau was somewhat limited by available C. It may represent a larger potential pulse of soil nutrient for alpine plants in the next spring, and may be instrumental for plant community shifts under future climate change predictions due to the possible increased litter addition.

  10. Control of nitrogen concentration in liquid lithium by hot trapping

    International Nuclear Information System (INIS)

    Sakurai, Toshiharu; Yoneoka, Toshiaki; Tanaka, Satoru; Suzuki, Akihiro; Muroga, Takeo

    2002-01-01

    Nitrogen concentration in liquid lithium was controlled by the method of hot trapping. V-Ti alloy and chromium were used as nitrogen gettering materials. Chromium is known to form ternary nitride with lithium. Gettering experiments were conducted at 823 K for 0.8-2.2 Ms. Under high nitrogen concentration in liquid lithium, above 10 -2 mass%, nitrogen gettering effect of chromium was found to be larger than that of V-10at.% Ti alloy. Nitrogen gettering by chromium at 823 K reached a limit at about 6.5x10 -3 mass% of nitrogen concentration in liquid lithium. Instability of ternary nitride of chromium and lithium below this nitrogen concentration in liquid lithium was considered to be the reason for this limit. The composition of the ternary nitride that was formed in this study was considered to be Li 6 Cr(III) 3 N 5 . In addition, immersion experiments of yttrium with V-10at.% Ti alloy were performed. It was found that nitriding of yttrium in liquid lithium is controlled by nitrogen gettering effect of V-10at.% Ti alloy

  11. Explosion hazard in liquid nitrogen cooled fusion systems

    International Nuclear Information System (INIS)

    Brereton, S.J.

    1988-01-01

    The explosion hazard associated with the use of liquid nitrogen in a radiation environment in fusion facilities has been investigated. The principal product of irradiating liquid nitrogen is thought to be ozone, resulting from the action of radiation on oxygen impurity. Ozone is a very unstable material, and explosions may occur as it rapidly decomposes to oxygen. Occurrences of this problem in irradiated liquid nitrogen systems are reviewed. An empirical expression, from early experiments, for the yield of ozone in liquid nitrogen-oxygen mixtures exposed to gamma radiation is employed to assess the degree of ozone explosion hazard expected at fusion facilities. The problem is investigated for the Compact Ignition Tokamak (CIT) as a particular example. 16 refs., 5 figs., 1 tab

  12. Electronic circuit provides automatic level control for liquid nitrogen traps

    Science.gov (United States)

    Turvy, R. R.

    1968-01-01

    Electronic circuit, based on the principle of increased thermistor resistance corresponding to decreases in temperature provides an automatic level control for liquid nitrogen cold traps. The electronically controlled apparatus is practically service-free, requiring only occasional reliability checks.

  13. Storage of Euschistus heros Eggs (Fabricius) (Hemiptera: Pentatomidae) in Liquid Nitrogen for Parasitization by Telenomus podisi Ashmead (Hymenoptera: Platygastridae).

    Science.gov (United States)

    Favetti, B M; Butnariu, A R; Doetzer, A K

    2014-06-01

    Records in the literature with regard to the influence of freezing of pentatomid eggs on parasitism by microhymenopterans are scarce. In this research, we compared the storage of Euschistus heros (Fabricius) (Hemiptera: Pentatomidae) eggs in liquid nitrogen for different periods with the objective of optimizing the multiplication of Telenomus podisi Ashmead (Hymenoptera: Platygastridae) in the laboratory. Fresh eggs of E. heros were exposed (S3, S6) or not (NS3, NS6) to UV light for 30 min and stored in 1.5-mL plastic vials in liquid nitrogen either for 3 (S3, NS3) or 6 months (S6, NS6), and egg suitability to parasitoid development was compared to control eggs exposed (SC) or not (NSC) to UV treatment. Global data analysis showed that E. heros eggs stored in liquid nitrogen with or without UV treatment, for 3 or 6 months, were suitable for T. podisi parasitization.

  14. Liquid direct correlation function, singlet densities and the theory of freezing

    International Nuclear Information System (INIS)

    March, N.H.; Tosi, M.P.

    1981-04-01

    We have examined the solutions for the singlet density rho(r) in the hierarchical equation connecting rho(r) with the liquid direct correlation function c(r). In addition to the homogeneous solution rho(r)=rhosub(liquid), we exhibit a periodic solution which can co-exist with the liquid solution. If the defining equation for this is linearized, we recover the bifurcation condition of Lovett and Buff. We stress the difference between the two treatments as that between first and second-order transitions. It turns out that the treatment presented here leads to the same periodic density as that derived, using the hypernetted chain approximation, by Ramakrishnan and Yussouff in their theory of freezing. Invoking that approximation is shown thereby to be inessential. (author)

  15. Complete equation of state for shocked liquid nitrogen: Analytical developments

    International Nuclear Information System (INIS)

    Winey, J. M.; Gupta, Y. M.

    2016-01-01

    The thermodynamic response of liquid nitrogen has been studied extensively, in part, due to the long-standing interest in the high pressure and high temperature dissociation of shocked molecular nitrogen. Previous equation of state (EOS) developments regarding shocked liquid nitrogen have focused mainly on the use of intermolecular pair potentials in atomistic calculations. Here, we present EOS developments for liquid nitrogen, incorporating analytical models, for use in continuum calculations of the shock compression response. The analytical models, together with available Hugoniot data, were used to extrapolate a low pressure reference EOS for molecular nitrogen [Span, et al., J. Phys. Chem. Ref. Data 29, 1361 (2000)] to high pressures and high temperatures. Using the EOS presented here, the calculated pressures and temperatures for single shock, double shock, and multiple shock compression of liquid nitrogen provide a good match to the measured results over a broad range of P-T space. Our calculations provide the first comparison of EOS developments with recently-measured P-T states under multiple shock compression. The present EOS developments are general and are expected to be useful for other liquids that have low pressure reference EOS information available.

  16. Nitrogen deposition may enhance soil carbon storage via change of soil respiration dynamic during a spring freeze-thaw cycle period.

    Science.gov (United States)

    Yan, Guoyong; Xing, Yajuan; Xu, Lijian; Wang, Jianyu; Meng, Wei; Wang, Qinggui; Yu, Jinghua; Zhang, Zhi; Wang, Zhidong; Jiang, Siling; Liu, Boqi; Han, Shijie

    2016-06-30

    As crucial terrestrial ecosystems, temperate forests play an important role in global soil carbon dioxide flux, and this process can be sensitive to atmospheric nitrogen deposition. It is often reported that the nitrogen addition induces a change in soil carbon dioxide emission in growing season. However, the important effects of interactions between nitrogen deposition and the freeze-thaw-cycle have never been investigated. Here we show nitrogen deposition delays spikes of soil respiration and weaken soil respiration. We found the nitrogen addition, time and nitrogen addition×time exerted the negative impact on the soil respiration of spring freeze-thaw periods due to delay of spikes and inhibition of soil respiration (p nitrogen), 39% (medium-nitrogen) and 36% (high-nitrogen) compared with the control. And the decrease values of soil respiration under medium- and high-nitrogen treatments during spring freeze-thaw-cycle period in temperate forest would be approximately equivalent to 1% of global annual C emissions. Therefore, we show interactions between nitrogen deposition and freeze-thaw-cycle in temperate forest ecosystems are important to predict global carbon emissions and sequestrations. We anticipate our finding to be a starting point for more sophisticated prediction of soil respirations in temperate forests ecosystems.

  17. Vitrification and levitation of a liquid droplet on liquid nitrogen

    OpenAIRE

    Song, Young S.; Adler, Douglas; Xu, Feng; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M.; Maas, Richard L.; Demirci, Utkan

    2010-01-01

    The vitrification of a liquid occurs when ice crystal formation is prevented in the cryogenic environment through ultrarapid cooling. In general, vitrification entails a large temperature difference between the liquid and its surrounding medium. In our droplet vitrification experiments, we observed that such vitrification events are accompanied by a Leidenfrost phenomenon, which impedes the heat transfer to cool the liquid, when the liquid droplet comes into direct contact with liquid nitroge...

  18. Effect of liquid nitrogen flow rate on solidification of stagnant water in a horizontal tube

    International Nuclear Information System (INIS)

    Ibrahim, S.M.

    1995-01-01

    Five experiments are conducted to study the effect of liquid nitrogen flow rate on the solidification of stagnant water inside a horizontal stainless steel tube of inner diameter 19.6 cm and 12 mm thick. This tube simulates the down-comer of the nuclear reactor ET-R R-1. The apparatus design is mentioned more detail description. The results show that for the first experiment where the liquid nitrogen flow rate is 30 1/hr, the progress of solidification of water has stopped at a diameter of 12 cm. By increasing the flow rate from 30 1/hr to 40,50 and 60 1/hr, the time of freezing the water inside the tube is decreased from 86 to 67 and 60 minutes respectively. By increasing the liquid nitrogen flow rate to 70 1/hr, there is no much effect on the time of frozen. In all experiments, where the solidification is happened, the ice block formed inside the tube is subjected to a pressure of 3 at mg least, and is succeed to withstand this pressure without any leak. 7 figs

  19. Liquid to gas leak ratios with liquid nitrogen and liquid helium

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1985-01-01

    To predict the leak rates of liquid helium and liquid nitrogen containers at operating conditions we need to know how small leaks (10 -8 to 10 -5 atm-cm 3 air/s), measured at standard conditions, behave when flooded with these cryogens. Two small leaks were measured at ambient conditions (approx.750 Torr and 295 K), at the normal boiling points of LN 2 and LHe, and at elevated pressures above the liquids. The ratios of the leak rates of the liquids at ambient pressure to the gases (G) at ambient pressure and room temperature were: GN 2 (1), LN 2 (18), GHe(1), and LHe(172). The leak rate ratio of LN 2 at elevated pressure was linear with pressure. The leak rate ratio of LHe at elevated pressure was also linear with pressure

  20. Liquid to gas leak ratios with liquid nitrogen and liquid helium

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1985-01-01

    To predict the leak rates of liquid helium and liquid nitrogen containers at operating conditions we need to know how small leaks (10 -8 to 10 -5 atm-cm 3 air/s), measured at standard conditions, behave when flooded with these cryogens. Two small leaks were measured at ambient conditions (about 750 Torr and 295 K), at the normal boiling points of LN 2 and LHe, and at elevated pressures above the liquids. The ratios of the leak rates of the liquids at ambient pressure to the gases at ambient pressure and room temperature are presented. The leak rate ratio of LN 2 at elevated pressure was linear with pressure. The leak rate ratio of LHe at elevated pressure was also linear with pressure

  1. Experimental study of nitrogen oxide absorption by a liquid nitrogen tetroxide flow

    International Nuclear Information System (INIS)

    Verzhinskaya, A.B.; Saskovets, V.V.; Borovik, T.F.

    1984-01-01

    The system of N 2 O 4 based coolant regeneration needs productive and efficient absorbers, providing effective production of nitrogen oxide, decreasing upon NPP operation at the expense of radiation-thermal decomposition. The experimental istallation flowsheet for studying the nitrogen oxide absorbtion by liquid nitrogen tetroxide is given. The experiments have been carried out in removable test sections, looked like helical tubes with internal steam-and-liquid mixture flow and external water cooling. Six test sections with variable geometry factors have been manufactured. The plotted results of the experiments are given as dependences of extraction level and mass transfer volumetric coefficients on the geometry factor, pressure and Froude number

  2. Phase equilibrium condition measurements in nitrogen and air clathrate hydrate forming systems at temperatures below freezing point of water

    International Nuclear Information System (INIS)

    Yasuda, Keita; Oto, Yuya; Shen, Renkai; Uchida, Tsutomu; Ohmura, Ryo

    2013-01-01

    Highlights: • Phase equilibrium conditions in the nitrogen and modelled air hydrate forming systems are measured. • Measurements are conducted at temperatures below the freezing point of water. • Results have relevance to the air hydrate formation in the ice sheets. • Measured data are quantitatively compared with the previously reported values. • Range of the equilibrium measurements was from (242 to 268) K. -- Abstract: Contained in this paper are the three phase equilibrium conditions of the (ice + clathrate hydrate + guest-rich) vapour in the (nitrogen + water) and the modelled (air + water) systems at temperatures below the freezing point of water. The precise determination of the equilibrium conditions in those systems are of importance for the analysis of the past climate change using the cored samples from the ice sheets at Antarctica and Greenland because the air hydrates keep the ancient climate signals. The mole ratio of the modelled air composed of nitrogen and oxygen is 0.790:0.210. The equilibrium conditions were measured by the batch, isochoric procedure. The temperature range of the measurements in the nitrogen hydrate forming system is (244.05 < T < 266.55) K and the corresponding equilibrium pressure range is (7.151 < p < 12.613) MPa. The temperature range of the measurements in the modelled air hydrate forming system is (242.55 < T < 267.85) K, and the corresponding equilibrium pressure range is (6.294 < p < 12.144) MPa. The data obtained quantitatively compared with the previously reported data

  3. Freeze-drying technology: A separation technique for liquid nuclear materials

    International Nuclear Information System (INIS)

    Musgrave, J.A.; Efurd, D.W.; Banar, J.C.

    1997-01-01

    Freeze-drying technology (FDT) has been around for several decades as a separation technology. Most commonly, FDT is associated with the processing of food, but the largest industrial-scale use of FDT is in the pharmaceutical industry. Through a Cooperative Research and Development Agreement (CRADA) with BOC Edwards Calumatic, we are demonstrating the feasibility of FDT as a waste minimization and pollution prevention technology. This is a novel and innovative application of FDT. In addition, we plan to demonstrate that the freeze-dried residue is an ideal feed material for ceramic stabilization of radioactive waste and excess fissile material. The objective of this work is to demonstrate the feasibility of FDT for the separation of complex radioactive and nonradioactive materials, including liquids, slurries, and sludges containing a wide variety of constituents in which the separation factors are >10 8 . This is the first application of FDT in which the condensate is of primary importance. Our focus is applying this technology to the elimination of radioactive liquid discharges from facilities at Los Alamos National Laboratory (LANL) and within the U.S. Department of Energy complex; however, successful demonstration will lead to nuclear industry-wide applications

  4. Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air.

    Science.gov (United States)

    Men, Yongjun; Ambrogi, Martina; Han, Baohang; Yuan, Jiayin

    2016-04-08

    Ionic liquids and poly(ionic liquid)s have been successfully converted into nitrogen-doped porous carbons with tunable surface area up to 1200 m²/g at high temperatures in air. Compared to conventional carbonization process conducted under inert gas to produce nitrogen-doped carbons, the new production method was completed in a rather shorter time without noble gas protection.

  5. Observation and modeling of 222Rn daughters in liquid nitrogen

    International Nuclear Information System (INIS)

    Frodyma, N.; Pelczar, K.; Wójcik, M.

    2014-01-01

    The results of alpha spectrometric measurements of the activity of 222 Rn daughters dissolved in liquefied nitrogen are presented. A direct detection method of ionized alpha-emitters from the 222 Rn decay chain ( 214 Po and 218 Po) in a cryogenic liquid in the presence of an external electric field is shown. Properties of the radioactive ions are derived from a proposed model of ion production and transport in the cryogenic liquid. Ionic life-time of the ions was found to be on the order of 10 s in liquid nitrogen (4.0 purity class). The presence of positive and negative ions was observed. - Highlights: • A direct detection method of the alpha-emitters in a cryogenic liquid is shown. • We examine electrostatic drifting of the radioactive ions in liquid nitrogen. • The ions belong to the Radon-222 decay chain; Radon-222 is dissolved in the liquid. • The model of the ions production and behaviour in the liquid is proposed. • The ion production significantly depends on the nuclear decay type (alpha or beta)

  6. Effects of freezing conditions on quality changes in blueberries.

    Science.gov (United States)

    Cao, Xuehui; Zhang, Fangfang; Zhao, Dongyu; Zhu, Danshi; Li, Jianrong

    2018-03-12

    Freezing preservation is one of the most effective methods used to maintain the flavour and nutritional value of fruit. This research studied the effects of different freezing conditions, -20 °C, -40 °C, -80 °C, and immersion in liquid nitrogen, on quality changes of freeze-thawed blueberries. The water distribution estimates of blueberries were measured based on low-field nuclear magnetic resonance (LF-NMR) analysis. The pectin content, drip loss, and fruit texture were also detected to evaluate quality changes in samples. The freezing curves of blueberry showed super-cooling points at -20 °C and - 40 °C, whereas super-cooling points were not observed at -80 °C or in liquid nitrogen. After freeze-thaw treatment, the relaxation time of the cell wall water (T 21 ), cytoplasm water and extracellular space (T 22 ), and vacuole water (T 23 ) were significantly shortened compared to fresh samples, which suggested a lower liquidity. Although the freezing speed for samples immersed in liquid nitrogen was faster than other treatments, samples treated at -80 °C showed better quality regarding vacuole water holding, drip loss, and original pectin content retention. This study contributed to understanding how freezing temperature affects the qualities of blueberries. The super-fast freezing rate might injure fruit, and an appropriate freezing rate could better preserve blueberries. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  7. Behaviour of uranium dioxide in liquid nitrogen tetraoxide

    International Nuclear Information System (INIS)

    Kobets, L.V.; Klavsut', G.N.; Dolgov, V.M.

    1983-01-01

    Interaction kinetics of uranium dioxide with liquid nitrogen tetroxide at 25-150 deg C has been studied. It is shown that in the temperature range studied NO[UO 2 (NO 3 ) 3 ] is the final product of the reaction. With the increase of specific surface of uranium dioxide and with the temperature increase the degree of oxide transformation increases. Uranium dioxide-liquid N 2 O 4 interaction proceeds in the diffusion region. Seeming activation energies and rate constants of the mentioned processes are calculated. Effect of nitrogen trioxide additions on transformation kinetics is considered

  8. Electrical conductivity measurements in shock compressed liquid nitrogen

    International Nuclear Information System (INIS)

    Hamilton, D.C.; Mitchell, A.C.; Nellis, W.J.

    1985-06-01

    The electrical conductivity of shock compressed liquid nitrogen was measured in the pressure range 20 to 50 GPa using a two-stage light-gas gun. The conductivities covered a range 4 x 10 -2 to 1 x 10 2 ohm -1 cm -1 . The data are discussed in terms of a liquid semiconductor model below the onset of the dissociative phase transition at 30 GPa. 15 refs., 1 fig

  9. Absorption and oxidation of nitrogen oxide in ionic liquids

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas; Thomassen, Peter Langelund; Riisager, Anders

    2016-01-01

    A new strategy for capturing nitrogen oxide, NO, from the gas phase is presented. Dilute NO gas is removed from the gas phase by ionic liquids under ambient conditions. The nitrate anion of the ionic liquid catalyzes the oxidation of NO to nitric acid by atmospheric oxygen in the presence of water....... The nitric acid is absorbed in the ionic liquid up to approximately one mole HNO3 per mole of the ionic liquid due to the formation of hydrogen bonds. The nitric acid can be desorbed by heating, thereby regenerating the ionic liquid with excellent reproducibility. Here, time-resolved in-situ spectroscopic...... investigations of the reaction and products are presented. The procedure reveals a new vision for removing the pollutant NO by absorption into a non-volatile liquid and converting it into a useful bulk chemical, that is, HNO3....

  10. Effectiveness of liquid organic-nitrogen fertilizer in enhancing ...

    African Journals Online (AJOL)

    The ever increasing price of nitrogenous (N) fertilizers coupled with the deleterious effects of imbalanced N fertilizers on the environment necessitates the enhancement of N use efficiency of plants. The objectives of this study were to: (1) Evaluate the uptake of selected nutrients due to application of liquid organic-N ...

  11. Effect of liquid nitrogen storage time on the survival and ...

    African Journals Online (AJOL)

    Investigations were undertaken on the effect of liquid nitrogen (LN) storage time on survival and regeneration of somatic embryos of cocoa (Theobroma cacao l.). Somatic embryos from different cocoa genotypes (AMAZ 3-2, AMAZ 10-1, AMAZ 12, SIAL 93, and IMC 14) at 15.45% moisture content were cryopreserved in LN ...

  12. Isolating silkworm genomic DNA without liquid nitrogen suitable for ...

    African Journals Online (AJOL)

    Genomic DNA was isolated from posterior silk gland of silkworms, Antheraea assama. Absolute alcohol was used as tissue fixing solution instead of grinding in liquid nitrogen, which yielded high molecular weight DNA (>40 kb). Samples yielded similar amount of DNA when fixed in absolute alcohol (400 μmg/g of silk gland ...

  13. The investigation of rf-squids at liquid nitrogen temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Polushkin, V N; Vasiliev, B V [Joint Inst. for Nuclear Research, Dubna (USSR)

    1989-12-01

    One- and two-hole YBCO ceramic rf-squids operating at liquid nitrogen temperatures have been developed. The main squid parameters: self-inductance, white noise level and magnetic flux resolution were measured. The directly measured external field sensitivity for one-hole squid was at the level of 100 fT/{radical}Hz. (orig.).

  14. Liquid Nitrogen Dewar Loading at KSC for STS-71 Flight

    Science.gov (United States)

    1995-01-01

    Liquid nitrogen dewar loading at Kennedy Space Center for STS-71 flight with Stan Koszelak (right), University of California at Riverside, adn Tamara Chinareva (left), Russian Spacecraft Coporation-Energia. The picture shows Koszelak removing the insert from the transportation dewar.

  15. A high Tc superconducting liquid nitrogen level sensor

    International Nuclear Information System (INIS)

    Jin, J. X.; Liu, H. K.; Dou, S. X.; Grantham, C.; Beer, J.

    1996-01-01

    Full text: The dramatic resistance change in the superconducting-normal transition temperature range enables a high T c superconductor to be considered for designing a liquid nitrogen level sensor. A (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10+x Ag clad superconducting wire is selected and tested as a continuous liquid nitrogen level sensor to investigate the possibility for this application. The (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10+x Ag clad superconducting wire has approximately 110 K critical temperature, with more flexible and stable properties compared with bulk shape ceramic high T c superconductors. The voltage drops across the sensor are tested with different immersion lengths in liquid nitrogen. The accuracy of the HTS sensor is analysed with its dR/dT in the superconducting-normal transition range. The voltage signal is sensitive to liquid nitrogen level change, and this signal can be optimized by controlling the transport current. The problems of the Ag clad superconductor are that the Ag sheath thermal conductivity is very high, and the sensor normal resistance is low. These are the main disadvantages for using such a wire as a continuous level sensor. However, a satisfactory accuracy can be achieved by control of the transport current. A different configuration of the wire sensor is also designed to avoid this thermal influence

  16. Electrically and Thermally Insulated Joint for Liquid Nitrogen Transfer

    DEFF Research Database (Denmark)

    Rasmussen, Carsten; Jensen, Kim Høj; Holbøll, Joachim T.

    1999-01-01

    A prototype of a superconducting cable is currently under construction. The cable conductor is cooled by liquid nitrogen in order to obtain superconductivity. The peripheral cooling circuit is kept at ground potential. This requires a joint which insulates both electrically and thermally...

  17. Polystyrene cryostat facilitates testing tensile specimens under liquid nitrogen

    Science.gov (United States)

    Shogan, R. P.; Skalka, R. J.

    1967-01-01

    Lightweight cryostat made of expanded polystyrene reduces eccentricity in a tensile system being tested under liquid nitrogen. The cryostat is attached directly to the tensile system by a special seal, reducing misalignment effects due to cryostat weight, and facilitates viewing and loading of the specimens.

  18. Concurrent freezing and sublimation of a liquid-saturated porous slab

    International Nuclear Information System (INIS)

    Vaidyanathan, N.; Shamsundar, N.

    1991-01-01

    In this paper analytical models are formulated for describing heat and mass transport during concurrent freezing and sublimation of a one-dimensional liquid-saturated porous slab. The models are based on transient heat transfer in the frozen and wet regions, and quasi-steady heat and mass transfer in the dried region. The enthalpy method in conjunction with a fully implicit finite-difference scheme is employed to obtain the solution in the frozen and wet regions. A quasi-steady solution is used in the dried region. The governing equations are nondimensionalized and parametric studies are performed. The results indicate that the Luikov number, the ambient vapor pressure, and the heat transfer Biot number are important parameters. The results also confirm that the sublimation interface temperature may show significant variations, in contrast to earlier studies in which it was assumed constant

  19. Liquid-vapour surface sensors for liquid nitrogen and hydrogen

    Science.gov (United States)

    Siegwarth, J. D.; Voth, R. O.; Snyder, S. M.

    1992-01-01

    The present paper identifies devices to serve as liquid-vapor detectors in zero gravity. The testing in LH2 was done in a sealed glass Dewar system to eliminate any chance of mixing H2 and air. Most of the tests were performed with the leads to the sensor horizontal. Some results of rapid cycle testing of LVDG in LH2 are presented. Findings of rapid-cycle testing of LVDG in LH2 are discussed. The sensor crossed the liquid surface when the position sensor registered 1.9 V, which occurred at about 0.4075 s. The delay time was about 1.5 ms. From the estimated slope of the position sensor curve at 1.9 V, the velocity of the sensor through the liquid surface is over 3 m/s. Results of tests of optical sensors are presented as well.

  20. Liquid nitrogen - water interaction experiments for fusion reactor accident scenarios

    International Nuclear Information System (INIS)

    Duckworth, R.; Murphy, J.; Pfotenhauer, J.; Corradini, M.

    2001-01-01

    With the implementation of superconducting magnets in fusion reactors, the possibility exists for the interaction between water and cryogenic systems. The interaction between liquid nitrogen and water was investigated experimentally and numerically. The rate of pressurization and peak pressure were found to be driven thermodynamically by the expansion of the water and the boil-off of the liquid nitrogen and did not have a vapor explosion nature. Since the peak pressure was small in comparison to previous work with stratified geometries, the role of the geometry of the interacting fluids has been shown to be significant. Comparisons of the peak pressure and the rate of pressurization with respect to the ratio of the liquid nitrogen mass to water mass reveal no functional dependence as was observed in the liquid helium-water experiments. A simple thermodynamic model provides a fairly good description of the pressure rise data. From the data, the model will allow one to extract the interaction area of the water. As with previous liquid helium-water interaction experiments, more extensive investigation of the mass ratio and interaction geometry is needed to define boundaries between explosive and non-explosive conditions. (authors)

  1. Successful vitrification of bovine immature oocyte using liquid helium instead of liquid nitrogen as cryogenic liquid.

    Science.gov (United States)

    Yu, Xue-Li; Xu, Ya-Kun; Wu, Hua; Guo, Xian-Fei; Li, Xiao-Xia; Han, Wen-Xia; Li, Ying-Hua

    2016-04-01

    The objectives of this study were to compare the effectiveness of liquid helium (LHe) and liquid nitrogen (LN2) as cryogenic liquid for vitrification of bovine immature oocytes with open-pulled straw (OPS) system and determine the optimal cryoprotectant concentration of LHe vitrification. Cumulus oocyte complexes were divided into three groups, namely, untreated group (control), LN2 vitrified with OPS group, and LHe vitrified with OPS group. Oocyte survival was assessed by morphology, nuclear maturation, and developmental capability. Results indicated that the rates of normal morphology, maturation, cleavage, and blastocyst (89.3%, 52.8%, 42.7%, and 10.1%, respectively) in the LHe-vitrified group were all higher than those (79.3%, 43.4%, 34.1%, and 4.7%) in the LN2-vitrified group (P 0.05). The maturation rate of the EDS35 group (65.0%) was higher than those of the EDS30 (51.3%), EDS40 (50.1%), EDS45 (52.1%), and EDS50 groups (36.9%; P liquid for vitrification of bovine immature oocytes, and it is more efficient than LN2-vitrified oocytes in terms of blastocyst production. EDS35 was the optimal cryoprotectant agent combination for LHe vitrification in this study. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Freezing Bubbles

    Science.gov (United States)

    Kingett, Christian; Ahmadi, Farzad; Nath, Saurabh; Boreyko, Jonathan

    2017-11-01

    The two-stage freezing process of a liquid droplet on a substrate is well known; however, how bubbles freeze has not yet been studied. We first deposited bubbles on a silicon substrate that was chilled at temperatures ranging from -10 °C to -40 °C, while the air was at room temperature. We observed that the freeze front moved very slowly up the bubble, and in some cases, even came to a complete halt at a critical height. This slow freezing front propagation can be explained by the low thermal conductivity of the thin soap film, and can be observed more clearly when the bubble size or the surface temperature is increased. This delayed freezing allows the frozen portion of the bubble to cool the air within the bubble while the top part is still liquid, which induces a vapor pressure mismatch that either collapses the top or causes the top to pop. In cases where the freeze front reaches the top of the bubble, a portion of the top may melt and slowly refreeze; this can happen more than just once for a single bubble. We also investigated freezing bubbles inside of a freezer where the air was held at -20 °C. In this case, the bubbles freeze quickly and the ice grows radially from nucleation sites instead of perpendicular to the surface, which provides a clear contrast with the conduction limited room temperature bubbles.

  3. Mandibular Reconstruction by Using a Liquid Nitrogen-Treated Autograft in a Dog with an Oral Tumor.

    Science.gov (United States)

    Okamura, Yasuhiko; Heishima, Kazuki; Motegi, Tomoki; Sasaki, Jun; Goryo, Masanobu; Nishida, Hideji; Tsuchiya, Hiroyuki; Katayama, Masaaki; Uzuka, Yuji

    A 10 yr old intact female German shepherd dog presented with a large peripheral odontogenic fibroma and malignant melanoma on her lower jaw. The tumor was resected with a unilateral subtotal rostral hemimandibulectomy. After the mandible was removed, it was devitalized intraoperatively by freezing it in liquid nitrogen. It was subsequently reimplanted. New bone tissue formed in the gap between the frozen bone and the host bone. The regenerated bone contained osteocytes, osteoblasts, and blood vessels. The cosmetic appearance of the dog was preserved. The dog had normal mastication. The malignant melanoma recurred rostral of the left canine tooth at 159 days after the reconstruction surgery. A subtotal hemimandibulectomy was consequently performed. This is the first reported case of mandibular reconstruction using a liquid nitrogen-treated autograft in a dog with oral tumors.

  4. Freeze-drying for sustainable synthesis of nitrogen doped porous carbon cryogel with enhanced supercapacitor and lithium ion storage performance

    International Nuclear Information System (INIS)

    Ling, Zheng; Yu, Chang; Fan, Xiaoming; Liu, Shaohong; Yang, Juan; Zhang, Mengdi; Wang, Gang; Xiao, Nan; Qiu, Jieshan

    2015-01-01

    A chitosan (CS) based nitrogen doped carbon cryogel with a high specific surface area (SSA) has been directly synthesized via a combined process of freeze-drying and high-temperature carbonization without adding any activation agents. The as-made carbon cryogel demonstrates an SSA up to 1025 m 2 g −1 and a high nitrogen content of 5.98 wt%, while its counterpart derived from CS powder only shows an SSA of 26 m 2 g −1 . Freeze-drying is a determining factor for the formation of carbon cryogel with a high SSA, where the CS powder with a size of ca. 200 μm is transformed into the sheet-shaped cryogel with a thickness of 5–8 μm. The as-made carbon cryogel keeps the sheet-shaped structure and the abundant pores are formed in situ and decorated inside the sheets during carbonization. The carbon cryogel shows significantly enhanced performance as supercapacitor and lithium ion battery electrodes in terms of capacity and rate capability due to its quasi two-dimensional (2D) structure with reduced thickness. The proposed method may provide a simple approach to configure 2D biomass-derived advanced carbon materials for energy storage devices. (paper)

  5. Liquid nitrogen cooling for the compact ignition tokamak

    International Nuclear Information System (INIS)

    Fleming, R.B.; Martin, G.D.; Lyon, R.E.

    1989-01-01

    The Compact Ignition Tokamak (CIT), which is currently being designed, will have toroidal and poloidal magnetic field coils pre-cooled by liquid nitrogen to a temperature near 80 degree K prior to each plasma pulse. The purpose is to gain the advantage of lower copper resistivity at reduced temperature. To maintain this temperature, the field coils, vacuum vessel, and surrounding structure will be enclosed within a cryostat. During a full-power D-T pulse, nuclear and resistive heating will impart a heat load of 11.0 GJ to the coils, which will raise the temperature of certain areas of the coils to near room temperature. The cryogenic system will supply 60,000 kg (19,500 gallons) of liquid nitrogen to remove this heat within a 60-minute cool-down period between pulses. A primary design consideration is that the nitrogen gas within the cryostat during a pulse will be activated by neutrons, producing nitrogen-13, which has a half-life of 10 minutes. This gas cannot be released into the environment without a sufficient decay period. The coolant nitrogen will therefore be contained within a closed (primary) circuit, and will be condensed in a heat exchanger. Liquid nitrogen from the supply dewars will be evaporated on the other side of the exchanger (the secondary side), and released to the atmosphere via a roof vent. Other operating modes (standby operation and initial cool-down from room temperature) are described in the paper. A safety analysis indicates that the cryogenic system will meet all applicable environmental requirements. 1 ref., 1 fig., 1 tab

  6. Experimental study of nitrogen oxide absorption by a liquid nitrogen tetroxide flow

    Energy Technology Data Exchange (ETDEWEB)

    Verzhinskaya, A B; Saskovets, V V; Borovik, T F

    1984-01-01

    The system of N/sub 2/O/sub 4/ based coolant regeneration needs productive and efficient absorbers, providing effective production of nitrogen oxide, decreasing upon NPP operation at the expense of radiation-thermal decomposition. The experimental istallation flowsheet for studying the nitrogen oxide absorbtion by liquid nitrogen tetroxide is given. The experiments have been carried out in removable test sections, looked like helical tubes with internal steam-and-liquid mixture flow and external water cooling. Six test sections with variable geometry factors have been manufactured. The plotted results of the experiments are given as dependences of extraction level and mass transfer volumetric coefficients on the geometry factor, pressure and Froude number.

  7. Feasibility of refreezing human spermatozoa through the technique of liquid nitrogen vapor

    Directory of Open Access Journals (Sweden)

    Sidney Verza Jr

    2004-12-01

    Full Text Available OBJECTIVE: To assess the feasibility of refreezing human semen using the technique of liquid nitrogen vapor with static phases. MATERIALS AND METHODS: Twenty samples from 16 subjects who required disposal of their cryopreserved semen were thawed, corresponding to 6 cancer patients and 10 participants in the assisted reproduction (AR program. Samples were refrozen using the technique of liquid nitrogen vapor with static phases, identical to the one used for the initial freezing, and thawed again after 72 hours. We assessed the concentration of motile spermatozoa, total and progressive percent motility and spermatic vitality, according to criteria of the World Health Organization (WHO, as well as spermatic morphology according to the strict Kruger criterion, after the first and after the second thawing. RESULTS: We observed a significant decrease in all the parameters evaluated between the first and the second thawing. Median values for the concentration of motile spermatozoa decreased from 2.0x10(6/mL to 0.1x10(6/mL (p < 0.01; total percent motility from 42% to 22.5% (p < 0.01; progressive percent motility from 34% to 9.5% (p < 0.01; vitality from 45% to 20% (p < 0.01; and morphology from 5% to 5% (p = 0.03. There was no significant difference in the spermatic parameters between the cancer and assisted reproduction groups, both after the first and after the second thawing. We observed that in 100% of cases there was retrieval of motile spermatozoa after the second thawing. CONCLUSIONS: Refreezing of human semen by the technique of liquid nitrogen vapor allows the retrieval of viable spermatozoa after thawing.

  8. Corrosion of ferrous alloys in nitrogen contaminated liquid lithium

    International Nuclear Information System (INIS)

    Olson, D.L.; Bradley, W.L.

    1976-01-01

    Liquid lithium penetration of 304L stainless steel and Armco iron grain boundaries has been studied. The penetration kinetics for the 304L stainless steel was found to be diffusion controlled. The measured temperature dependent delay time has been associated with the initial formation of the corrosion product at the grain boundary. Nitrogen in the stainless steel or the liquid lithium has been found to accelerate the rate of attack without changing the apparent activation energy. Grain boundary grooving of Armco iron in liquid lithium indicates that the controlling mass transport is also through a corrosion product present as a surface film. Stresses as small as 12 MPa have been found to give rise to a fifty-fold increase in the rate of penetration of Armco iron by liquid lithium

  9. Removal of nitrogen compounds from Brazilian petroleum samples by oxidation followed by liquid-liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, L.; Pergher, S.B.C. [Universidade Regional Integrada do Alto Uruguai e das Misses (URI), Erechim, RS (Brazil). Dept. de Quimica], E-mail: pergher@uricer.edu.br; Oliveira, J.V. [Universidade Regional Integrada do Alto Uruguai e das Misses (URI), Erechim, RS (Brazil). Dept. de Engenharia dos Alimentos; Souza, W.F. [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2009-10-15

    This work reports liquid-liquid extraction of nitrogen compounds from oxidized and non-oxidized Brazilian petroleum samples. The experiments were accomplished in a laboratory-scale liquid-liquid apparatus in the temperature range of 303 K-323 K, using methanol, n-methyl-2-pyrrolidone (NMP) and N,Ndimethylformamide (DMF), and their mixtures as extraction solvents, employing solvent to sample volume ratios of 1:2, 1:1 and 2:1, exploring up to three separation stages. Results show that an increase in temperature, solvent to oil ratio, and number of equilibrium stages greatly improves the nitrogen removal from the oxidized sample (from 2600 to 200 ppm). The employed oxidation scheme is thus demonstrated to be an essential and efficient step of sample preparation for the selective liquid-liquid removal of nitrogen compounds. It is shown that the use of mixtures of DMF and NMP as well their use as co-solvents with methanol did not prove to be useful for selective nitrogen extraction since great oil losses were observed in the final process. (author)

  10. Polymerization, shock cooling and ionization of liquid nitrogen

    International Nuclear Information System (INIS)

    Ross, M; Rogers, F

    2005-01-01

    The trajectory of thermodynamic states passed through by the nitrogen Hugoniot starting from the liquid and up to 10 6 GPa has been studied. An earlier report of cooling in the doubly shocked liquid, near 50 to 100 GPa and 7500 K, is revisited in light of the recent discovery of solid polymeric nitrogen. It is found that cooling occurs when the doubly shocked liquid is driven into a volume near the molecular to polymer transition and raising the possibility of a liquid-liquid phase transition (LLPT). By increasing the shock pressure and temperature by an order of magnitude, theoretical calculations predict thermal ionization of the L shell drives the compression maxima to 5-6 fold compression at 10 Mbar (T ∼ 3.5 10 5 K) and at 400 Mbar (T ∼ 2.3 10 6 K) from K shell ionization. Near a pressure of 10 6 GPa the K shell ionizes completely and the Hugoniot approaches the classical ideal gas compression fourfold limit

  11. Liquid Nitrogen (Oxygen Simulent) Thermodynamic Venting System Test Data Analysis

    Science.gov (United States)

    Hedayat, A.; Nelson, S. L.; Hastings, L. J.; Flachbart, R. H.; Tucker, S. P.

    2005-01-01

    In designing systems for the long-term storage of cryogens in low gravity space environments, one must consider the effects of thermal stratification on excessive tank pressure that will occur due to environmental heat leakage. During low gravity operations, a Thermodynamic Venting System (TVS) concept is expected to maintain tank pressure without propellant resettling. The TVS consists of a recirculation pump, Joule-Thomson (J-T) expansion valve, and a parallel flow concentric tube heat exchanger combined with a longitudinal spray bar. Using a small amount of liquid extracted by the pump and passing it though the J-T valve, then through the heat exchanger, the bulk liquid and ullage are cooled, resulting in lower tank pressure. A series of TVS tests were conducted at the Marshall Space Flight Center using liquid nitrogen as a liquid oxygen simulant. The tests were performed at fill levels of 90%, 50%, and 25% with gaseous nitrogen and helium pressurants, and with a tank pressure control band of 7 kPa. A transient one-dimensional model of the TVS is used to analyze the data. The code is comprised of four models for the heat exchanger, the spray manifold and injector tubes, the recirculation pump, and the tank. The TVS model predicted ullage pressure and temperature and bulk liquid saturation pressure and temperature are compared with data. Details of predictions and comparisons with test data regarding pressure rise and collapse rates will be presented in the final paper.

  12. Polymerization, shock cooling and ionization of liquid nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M; Rogers, F

    2005-07-21

    The trajectory of thermodynamic states passed through by the nitrogen Hugoniot starting from the liquid and up to 10{sup 6} GPa has been studied. An earlier report of cooling in the doubly shocked liquid, near 50 to 100 GPa and 7500 K, is revisited in light of the recent discovery of solid polymeric nitrogen. It is found that cooling occurs when the doubly shocked liquid is driven into a volume near the molecular to polymer transition and raising the possibility of a liquid-liquid phase transition (LLPT). By increasing the shock pressure and temperature by an order of magnitude, theoretical calculations predict thermal ionization of the L shell drives the compression maxima to 5-6 fold compression at 10 Mbar (T {approx} 3.5 10{sup 5} K) and at 400 Mbar (T {approx} 2.3 10{sup 6} K) from K shell ionization. Near a pressure of 10{sup 6} GPa the K shell ionizes completely and the Hugoniot approaches the classical ideal gas compression fourfold limit.

  13. Numerical Simulation of Liquid Nitrogen Chilldown of a Vertical Tube

    Science.gov (United States)

    Darr, Samuel; Hu, Hong; Schaeffer, Reid; Chung, Jacob; Hartwig, Jason; Majumdar, Alok

    2015-01-01

    This paper presents the results of a one-dimensional numerical simulation of the transient chilldown of a vertical stainless steel tube with liquid nitrogen. The direction of flow is downward (with gravity) through the tube. Heat transfer correlations for film, transition, and nucleate boiling, as well as critical heat flux, rewetting temperature, and the temperature at the onset of nucleate boiling were used to model the convection to the tube wall. Chilldown curves from the simulations were compared with data from 55 recent liquid nitrogen chilldown experiments. With these new correlations the simulation is able to predict the time to rewetting temperature and time to onset of nucleate boiling to within 25% for mass fluxes ranging from 61.2 to 1150 kg/(sq m s), inlet pressures from 175 to 817 kPa, and subcooled inlet temperatures from 0 to 14 K below the saturation temperature.

  14. A lethal cocktail: gastric perforation following liquid nitrogen ingestion.

    Science.gov (United States)

    Pollard, James Scott; Simpson, Joanne Elizabeth; Bukhari, Moatasiem Idris

    2013-01-07

    We report a case of gastric perforation in an 18-year-old girl as a result of ingesting an alcoholic drink containing liquid nitrogen. The drink was purchased in licensed premises. The extent of the injury necessitated total gastrectomy with Roux-en Y reconstruction. We review the literature, discuss the mechanism of injury and consider the implications for medical services. The authors believe this case is of educational interest to professionals working in emergency medicine, general surgery and public health fields. It raises awareness of a rare injury, but one that may be more commonly encountered because of developing social trends. It informs surgeons confronted with this type of injury that trauma to the gastrointestinal tract can be extensive and preoperative contact with oesophago-gastric colleagues is advisable. Public health bodies must be aware of, and monitor, the use of liquid nitrogen in this way and consider regulation to prevent further injuries.

  15. Liquid nitrogen enhancement of alpha particle tracks in a polycarbonate detector

    International Nuclear Information System (INIS)

    Pilione, L.J.

    1977-01-01

    Makrofol-E polycarbonate detectors were exposed to 1 to 3 MeV alpha particles and subsequently immersed in liquid nitrogen for various periods of time. The influence of the liquid nitrogen on the track recording properties of the detector has been found by measuring the track densities and diameters. Track densities increase with immersion time with a maximum gain of approximately 9% after 1200 min in liquid nitrogen. Track enhancement decreases with waiting time between the end of alpha particle exposure and the beginning of liquid nitrogen immersion. Track diameters decrease with time after passage of the particles and this process is accelerated by immersion in liquid nitrogen. (author)

  16. A liquid nitrogen cooled polyethylene moderator for the Harwell Linac

    International Nuclear Information System (INIS)

    Boland, B.C.; Hey, P.D.; Houzego, P.J.; Mack, B.; Mildner, D.F.R.; Sinclair, R.N.

    1978-09-01

    A 40 mm thick polyethylene block has been maintained at a temperature close to 80 K by using a liquid nitrogen cryostat, and used to moderate neutrons from pulsed source. The assembly has been tested with a dummy heat load of 400W. The cryostat and cooling system was installed on the Harwell 45 MeV electron linac, and enabled the production of sharper pulses in the thermal neutron energy range. The design, safety considerations and performance are described. (author)

  17. Acoustic velocity investigation and density calculation in liquid nitrogen tetroxide

    International Nuclear Information System (INIS)

    Belyaeva, O.V.; Nikolaev, V.A.; Timofeev, B.D.

    1979-01-01

    Acoustic velocity in liquid nitrogen tetroxide was investigated on an ultrasonic interferometer, which represents a tube with the 30x2.5 mm diameter, at the ends of which ultrasonic sensors are located. The sensors and the interferometer tube are fabricated of the Kh18N9T stainless steel. The calibration tests were carried out on twice-distilled water at the pressure from 1 to 80 bar in the operational range of temperatures from 283 to 360 K. The relative mean square error in experimental data on the acoustic velocity in liquid nitrogen tetroxide is 0.17%. The experimental data are described by the interpolation polynom in the investigated range of state parameters. On the basis of experimental data on the density of liquid nitrogen tetroxide near the saturation line and the experimental values of acoustic velocity, an interpolation equation is suggested to calculate the substance density under investigation in the range of 290-360 K from pressures corresponding to the saturation line, to 300 bar

  18. A Comparative Study of Liquid Nitrogen Cryotherapy as Monotherapy versus in Combination with Podophyllin in the Treatment of Condyloma Acuminata.

    Science.gov (United States)

    Sharma, Nidhi; Sharma, Sanjeev; Singhal, Chetna

    2017-03-01

    Condyloma Acuminata (CA) is a common viral sexually transmitted disease. Although various treatment modalities are available for treating CA, but none of them can achieve 100% response rate. In a search for better response rate and less recurrence rate, the combination of cytotoxic agent Podophyllin with ablative liquid nitrogen cryotherapy was evaluated over cryotherapy alone. To evaluate the synergistic effect of Podophyllin as a chemotherapeutic adjunct to an ablative therapy of liquid nitrogen cryotherapy versus liquid nitrogen cryotherapy alone in the treatment of CA. Sixty patients with multiple CA were randomly assigned to two groups in the study. Thirty patients in group A received double freeze thaw cycle of 25 seconds of liquid nitrogen cryotherapy. Thirty patients in Group B were subjected to liquid nitrogen cryotherapy in a similar manner followed by application of not more than 0.5 ml of 25% Podophyllin solution. All patients were followed up at 1, 4, 8, 12 and 24 weeks after the treatment to monitor the response to therapy and evaluation for any recurrence. When the number of unresponsive lesions were more than 30% of original lesions at 4 weeks follow-up, then the whole procedure was repeated again. The complete response rate and the recurrence rate in the Group B in our study were comparable to Group A as the difference was statistically insignificant. But the differentiating point was that the similar results were obtained in Group B with an average1.2 sessions per patient in comparison to an average of 1.67 sessions per patient in Group A. Cryotherapy represents a simple, safe and effective regimen for the treatment of multiple CA which in combination with Podophyllin is even more effective as a single session procedure; thereby shortening the treatment regimen.

  19. Liquid Nitrogen (Oxygen Simulant) Thermodynamic Vent System Test Data Analysis

    Science.gov (United States)

    Hedayat, A.; Nelson, S. L.; Hastings, L. J.; Flachbart, R. H.; Tucker, S. P.

    2005-01-01

    In designing systems for the long-term storage of cryogens in low-gravity (space) environments, one must consider the effects of thermal stratification on tank pressure that will occur due to environmental heat leaks. During low-gravity operations, a Thermodynamic Vent System (TVS) concept is expected to maintain tank pressure without propellant resettling. A series of TVS tests was conducted at NASA Marshall Space Flight Center (MSFC) using liquid nitrogen (LN2) as a liquid oxygen (LO2) simulant. The tests were performed at tank til1 levels of 90%, 50%, and 25%, and with a specified tank pressure control band. A transient one-dimensional TVS performance program is used to analyze and correlate the test data for all three fill levels. Predictions and comparisons of ullage pressure and temperature and bulk liquid saturation pressure and temperature with test data are presented.

  20. Kinetics of liquid lithium reaction with oxygen-nitrogen mixtures

    International Nuclear Information System (INIS)

    Gil, T.K.; Kazimi, M.S.

    1986-01-01

    A series of experiments have been conducted in order to characterize the kinetics of lithium chemical reaction with a mixture of oxygen and nitrogen. Three mixed gas compositions were used; 80% N 2 and 20% O 2 , 90% N 2 and 10% O 2 , and 95% N 2 and 5% O 2 . The reaction rate was obtained as a function of lithium temperature and the oxygen fraction. Liquid lithium temperature varied from 400 to 1100 0 C. By varying the composition, the degree of inhibition of the lithium-nitrogen reaction rate due to the presence of oxygen was observed. The results indicate that the lithium-nitrogen reaction rate depended on both the fraction of oxygen present and lithium temperature. The lithium nitride layer formed from the reaction also had a significant inhibition effect on the lithium-nitrogen reaction rate while the lithium-oxygen reaction rate was not as greatly hindered. LITFIRE, a computer code which simulates temperature and pressure history in a containment building following lithium spills, was modified by including (1) an improved model for the lithium-nitrogen reaction rate and (2) a model for the lithium-CO 2 reaction. LITFIRE was used to simulate HEDL's LC-2 and LA-5 experiments, and the predicted temperatures and pressures were in a reasonable agreement. Furthermore, LITFIRE was applied to a prototypical fusion reactor containment in order to simulate the consequences of a lithium spill accident. The result indicated that if nitrogen was used as containment building gas during the accident, the consequences of the accident would be less severe than those with air. The pressure rise in the building was found to be reduced by 50% and the maximum temperature of the combustion zone was limited to 900 0 C instead of 1200 0 C in the case of air

  1. Determination of heat transfer coefficients in plastic French straws plunged in liquid nitrogen.

    Science.gov (United States)

    Santos, M Victoria; Sansinena, M; Chirife, J; Zaritzky, N

    2014-12-01

    The knowledge of the thermodynamic process during the cooling of reproductive biological systems is important to assess and optimize the cryopreservation procedures. The time-temperature curve of a sample immersed in liquid nitrogen enables the calculation of cooling rates and helps to determine whether it is vitrified or undergoes phase change transition. When dealing with cryogenic liquids, the temperature difference between the solid and the sample is high enough to cause boiling of the liquid, and the sample can undergo different regimes such as film and/or nucleate pool boiling. In the present work, the surface heat transfer coefficients (h) for plastic French straws plunged in liquid nitrogen were determined using the measurement of time-temperature curves. When straws filled with ice were used the cooling curve showed an abrupt slope change which was attributed to the transition of film into nucleate pool boiling regime. The h value that fitted each stage of the cooling process was calculated using a numerical finite element program that solves the heat transfer partial differential equation under transient conditions. In the cooling process corresponding to film boiling regime, the h that best fitted experimental results was h=148.12±5.4 W/m(2) K and for nucleate-boiling h=1355±51 W/m(2) K. These values were further validated by predicting the time-temperature curve for French straws filled with a biological fluid system (bovine semen-extender) which undergoes freezing. Good agreement was obtained between the experimental and predicted temperature profiles, further confirming the accuracy of the h values previously determined for the ice-filled straw. These coefficients were corroborated using literature correlations. The determination of the boiling regimes that govern the cooling process when plunging straws in liquid nitrogen constitutes an important issue when trying to optimize cryopreservation procedures. Furthermore, this information can lead to

  2. Production of liquid nitrogen using liquefied natural gas as sole refrigerant

    International Nuclear Information System (INIS)

    Agrawal, R.; Ayres, C.L.

    1992-01-01

    This patent describes a process for the liquefaction of a nitrogen stream produced by a cryogenic air separation unit having at least one distillation column. It comprises compressing the nitrogen stream to a pressure of at least 350 psi in a multi-stage compressor wherein interstage cooling is provided by heat exchange against vaporizing liquefied natural gas; condensing the compressed nitrogen stream by heat exchange against vaporizing liquefied natural gas; reducing the pressure of the condensed, compressed nitrogen stream thereby producing a two phase nitrogen stream; phase separating the two phase nitrogen stream into a liquid nitrogen stream and a nitrogen vapor stream; and warming the nitrogen vapor stream to recover refrigeration

  3. [Simultaneous determination of four common nonprotein nitrogen substances in urine by high performance liquid chromatography].

    Science.gov (United States)

    Ma, Yuhua; Huang, Dongqun; Zhang, Rui; Xu, Shiru; Feng, Shun

    2013-11-01

    A high performance liquid chromatographic (HPLC) method was proposed to simultaneously determine four common nonprotein nitrogen substances, including creatine (Cr), creatinine (Cn), uric acid (Ua) and pseudouridine (Pu) in urine. After proteins being removed by acetone precipitation method, freeze drying and redissolving, the urine samples were analyzed by HPLC. Chromatographic separation was performed on a Waters RP18 Column (150 mm x 4.60 mm, 3.5 microm) in gradient elution mode using 10.0 mmol/L KH2PO4 solution (pH 4.78) and acetonitrile as mobile phases at a flow rate of 0.8 mL/min. The samples were detected at 220 nm. Rapid separation was achieved within 7 min. Under the optimized conditions, good linearities of four common nonprotein nitrogen substances were obtained in the range of 0.1-250 mg/L. The detection limits were 9.31 (Cr), 26.19 (Cn), 4.70 (Ua), an 6.30 (Pu) microg/L and the recoveries were in the range of 81%-111% with the relative standar deviations of 0.23%-2.78% (n = 3). The results demonstrate that this method is simple, rapid and accurate with good reproducibility, and can provide early diagnosis and preliminary judgment for type 2 diabetes mellitus (T2DM) patients with renal damage.

  4. The solubility of carbon in low-nitrogen liquid lithium

    International Nuclear Information System (INIS)

    Yonco, R.M.; Homa, M.I.

    1986-01-01

    The solubility of carbon in liquid lithium containing 0 C and compared with the solubility in lithium containing proportional 2600 wppm nitrogen in that same temperature range. A direct sampling method was employed in which filtered samples of the saturated solution were taken at randomly selected temperatures. The entire sample was analyzed for carbon by the acetylene evolution method. The analytical method was examined critically and it was found that (1) all of the carbon in solution, including carbon introduced as lithium cyanamide is detected and (2) ethylene and ethane must also be measured and included with the acetylene to get complete recovery of the carbon content of the sample. The solubility of carbon in low-nitrogen lithium can be expressed by the equations ln S=6.731-8617T -1 and log Ssup(*)=7.459-3740T -1 , where S is the mole percent Li 2 C 2 and Ssup(*) is in weight parts per million carbon. The presence of proportional 2600 wppm nitrogen does not affect the solubility of carbon in lithium at temperatures above proportional 350 0 C, but at lower temperatures it increased the solubility by as much as an order of magnitude compared to the solubility in low-nitrogen lithium. (orig.)

  5. Histomorphometric assessment of bone necrosis produced by two cryosurgery protocols using liquid nitrogen: an experimental study on rat femurs.

    Science.gov (United States)

    Costa, Fábio Wildson Gurgel; Brito, Gerly Anne de Castro; Pessoa, Rosana Maria Andrade; Studart-Soares, Eduardo Costa

    2011-01-01

    The aim of this study was to evaluate the effects of liquid nitrogen cryosurgery on the femoral diaphysis of rats. The femoral diaphyses of 42 Wistar rats were exposed to three local and sequential applications of liquid nitrogen for 1 or 2 min, intercalated with periods of 5 min of passive thawing. The animals were sacrificed after 1, 2, 4 and 12 weeks and the specimens obtained were processed and analyzed histomorphometrically. The depth and extent of peak bone necrosis were 124.509 µm and 2087.094 µm for the 1-min protocol, respectively, and 436.424 µm and 12046.426 µm for the 2-min protocol. Peak necrosis was observed in the second experimental week with both cryotherapy protocols. The present results indicate that the 2-min protocol produced more marked bone necrosis than the 1-min protocol. Although our results cannot be entirely extrapolated to clinical practice, they contribute to the understanding of the behavior of bone tissue submitted to different cycles of liquid nitrogen freezing and may serve as a basis for new studies.

  6. Liquid nitrogen cooling considerations of the compact ignition tokamak

    International Nuclear Information System (INIS)

    Dabiri, A.E.

    1986-01-01

    An analytical procedure was developed to estimate the cooldown time between pulses of the Compact Ignition Tokamak (CIT) utilizing liquid nitrogen. Fairly good agreement was obtained between the analysis results and those measured in the early fusion experimental devices. The cooldown time between pulses in the CIT is controlled by the energy disposition in the inner leg of the TF coil. A cooldown time of less than one hour is feasible for the CIT if fins are used in the cooling channels. An R and D experimental program is proposed to determine the actual cooldown time between pulses since this would be considered an issue in the conceptual design of the CIT

  7. Measurement of partial discharge inception characteristics in sub-cooled liquid nitrogen

    International Nuclear Information System (INIS)

    Koo, J.Y.; Lee, S.H.; Shin, W.J.; Khan, Umer A.; Oh, S.H.; Seong, J.K.; Lee, B.W.

    2011-01-01

    We measured partial discharge and partial discharge initiation voltage of subcooled liquid nitrogen. Various kinds of test samples have been prepared. Sub-cooled temperature in liquid nitrogen were changed. The number of PD pluses were decreased when 68 K liquid nitrogen was used. Sub-cooled liquid nitrogen has positive effects to suppress PD activities. Partial discharge (PD) measurement is one of the effective diagnostic techniques to predict abnormal high voltage dielectric insulation conditions of the electric equipments. PD diagnostic techniques were also could be utilized to evaluate the conditions of cryogenic dielectric insulation media of high temperature superconducting electric equipment in liquid nitrogen. Generally, liquid nitrogen at 77 K is used as cryogenic and dielectric media for high temperature superconducting devices for high voltage electric power systems. But due to generation of bubbles during quench conditions which cause harmful effect on the properties of liquid nitrogen insulation, sub-cooled nitrogen under 77 K was also employed to suppress bubble formation. In this work, investigation of PD characteristics of sub-cooled liquid nitrogen was conducted in order to clarify the relation between PD inception and the temperature of liquid nitrogen. It was observed that measured PDIV (PD inception voltage) shows little differences according to the sub-cooled temperature of liquid nitrogen, but the magnitude and total numbers of PD has been slightly decreased according the decrease of cooled temperature of liquid nitrogen. From experimental results, it was deduced that the sub-cooled liquid nitrogen from 68 K to 77 K, could be applicable without any considerations of the variation of PDIV.

  8. Automatic dispensing of liquid nitrogen in submilliliter doses

    Science.gov (United States)

    Milner, C. J.

    1984-10-01

    Well-controlled doses of 0.2 to 0.5 ml of liquid nitrogen are delivered, on electrical signal (not more than once per 5 s), as fills of a miniature bucket raised by an automatic hoist. The bucket is lifted, brimming, from the storage flask and then moved sideways until over the receiver. At this point, a steel ball, which has been resting in and sealing a drain hole in the bucket, is lifted from its seat by a magnet fixed alongside the (now descending) bucket. Design features are outlined: some alternative designs, valving liquid through a short drain tube fixed in the storage flask, are briefly reviewed. In tests the device delivered 74 g (approx. 260 doses) during 63 min, the loss by evaporation meanwhile being 11 g from the bucket, implying a transfer efficiency of 87%. An indirect measure indicated the dose sizes as 354±10 μl approximately.

  9. Trial manufacture of liquid nitrogen cooling High Temperature Superconductivity Motor

    International Nuclear Information System (INIS)

    Sugimoto, H; Nishikawa, T; Tsuda, T; Hondou, Y; Akita, Y; Takeda, T; Okazaki, T; Ohashi, S; Yoshida, Y

    2006-01-01

    We present a new high temperature superconductivity (HTS) synchronous motor using the liquid nitrogen as the refrigerant in this paper. This motor is designed to be used as the propulsion motor in ship. Because we use the liquid nitrogen as the refrigerant, it is possible to simplify the cooling equipments in the motor. And in our design, we apply the axial flux type of motor to simplify the cryostat of the HTS wires used to make the field coils. Here, the fields using the bismuth HTS wire for the HTS coils are fixed. Moreover, the cores used in the fields are separated from cryostat, and the armature applies the core-less structure. According to various the electromagnetic field analysis results, the new motor was designed and produced. The diameter of the motor is 650mm, and the width of the motor is 360mm. The motor's rated output is 8.8kW at 100rpm, while the overload output is 44kW, and the maximum efficiency is 97.7%. Also, in order to further miniaturize the motor, other magnetic field analysis have been done when the high-current-density type HTS wire was used and the permendur was used instead of magnetic steel plates. In this case, the motor's rated output is 12kW, and the overload output is 60kW

  10. Contamination of liquid oxygen by pressurized gaseous nitrogen

    Science.gov (United States)

    Zuckerwar, Allan J.; King, Tracy K.; Ngo, Kim Chi

    1989-01-01

    The penetration of pressurized gaseous nitrogen (GN2) into liquid oxygen (LOX) was investigated experimentally in the 7-inch High Temperature Tunnel, the pilot tunnel for the 8-foot High Temperature Tunnel (8'HTT) at Langley Research Center. A preliminary test using a nuclear monitor revealed the extent of the liquid nitrogen (LN2) build-up at the LOX interface as a function of GN2 pressure. Then an adaptation of the differential flash vaporization technique was used to determine the binary diffusivity of the LOX-LN2 system at a temperature of 90.2 K. The measured value D equals 0.000086 sq cm/s + or - 25 percent together with two prior measurements at lower temperatures revealed an excellent fit to the Arrhenius equation, yielding a pre-exponential factor D sub 0 equals 0.0452 sq cm/s and an activation enthalpy H equals 1.08 kcal/mol. At a pressure of 1700 psi and holding time of 15 min, the penetration of LN2 into LOX (to a 1 percent contamination level) was found to be 0.9 cm, indicating but minimal impact upon 8'HTT operations.

  11. High Energy Cutting and Stripping Utilizing Liquid Nitrogen

    Science.gov (United States)

    Hume, Howard; Noah, Donald E.; Hayes, Paul W.

    2005-01-01

    The Aerospace Industry has endeavored for decades to develop hybrid materials that withstand the rigors of mechanized flight both within our atmosphere and beyond. The development of these high performance materials has led to the need for environmentally friendly technologies for material re-work and removal. The NitroJet(TM) is a fluid jet technology that represents an evolution of the widely used, large-scale water jet fluid jet technology. It involves the amalgamation of fluid jet technology and cryogenics technology to create a new capability that is applicable where water jet or abrasive jet (water jet plus entrained abrasive) are not suitable or acceptable because of technical constraints such as process or materials compatibility, environmental concerns and aesthetic or legal requirements. The NitroJet(TM) uses ultra high-pressure nitrogen to cut materials, strip numerous types of coatings such as paint or powder coating, clean surfaces and profile metals. Liquid nitrogen (LN2) is used as the feed stream and is pressurized in two stages. The first stage pressurizes sub cooled LN2 to an intermediate pressure of between 15,000 and 20,000 psi at which point the temperature of the LN2 is about -250 F. The discharge from this stage is then introduced as feed to a dual intensifier system, which boosts the pressure from 15,000 - 20,000 psi up to the maximum operating pressure of 55,000 psi. A temperature of about -220 F is achieved at which point the nitrogen is supercritical. In this condition the nitrogen cuts, strips and abrades much like ultra high-pressure water would but without any residual liquid to collect, remove or be contaminated. Once the nitrogen has performed its function it harmlessly flashes back into the atmosphere as pure nitrogen gas. The system uses heat exchangers to control and modify the temperature of the various intake and discharge nitrogen streams. Since the system is hydraulically operated, discharge pressures can be easily varied over

  12. A novel particle engineering technology to enhance dissolution of poorly water soluble drugs: spray-freezing into liquid.

    Science.gov (United States)

    Rogers, True L; Nelsen, Andrew C; Hu, Jiahui; Brown, Judith N; Sarkari, Marazban; Young, Timothy J; Johnston, Keith P; Williams, Robert O

    2002-11-01

    A novel cryogenic spray-freezing into liquid (SFL) process was developed to produce microparticulate powders consisting of an active pharmaceutical ingredient (API) molecularly embedded within a pharmaceutical excipient matrix. In the SFL process, a feed solution containing the API was atomized beneath the surface of a cryogenic liquid such that the liquid-liquid impingement between the feed and cryogenic liquids resulted in intense atomization into microdroplets, which were frozen instantaneously into microparticles. The SFL micronized powder was obtained following lyophilization of the frozen microparticles. The objective of this study was to develop a particle engineering technology to produce micronized powders of the hydrophobic drug, danazol, complexed with hydroxypropyl-beta-cyclodextrin (HPbetaCD) and to compare these SFL micronized powders to inclusion complex powders produced from other techniques, such as co-grinding of dry powder mixtures and lyophilization of bulk solutions. Danazol and HPbetaCD were dissolved in a water/tetrahydrofuran cosolvent mixture prior to SFL processing or slow freezing. Identical quantities of the API and HPbetaCD used in the solutions were co-ground in a mortar and pestle and blended to produce a co-ground physical mixture for comparison. The powder samples were characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanning electron microscopy, surface area analysis, and dissolution testing. The results provided by DSC, XRD, and FTIR suggested the formation of inclusion complexes by both slow-freezing and SFL. However, the specific surface area was significantly higher for the latter. Dissolution results suggested that equilibration of the danazol/HPbetaCD solution prior to SFL processing was required to produce the most soluble conformation of the resulting inclusion complex following SFL. SFL micronized powders exhibited better dissolution

  13. Patterns of nitrogen export from a seasonal freezing agricultural watershed during the thawing period.

    Science.gov (United States)

    Zhao, Qiang; Chang, Dan; Wang, Kang; Huang, Jiesheng

    2017-12-01

    The objectives of this study were to investigate water, ammonium nitrogen (NH 4 + -N), and nitrate nitrogen (NO 3 - -N) export processes during the thawing period in a watershed with heavy agricultural activities and to evaluate contributions of N (i.e., NO 3 - -N and NH 4 + -N) from different source areas under different climate conditions. Experiments were conducted within the 75km 2 agricultural Heidingzi watershed in northeast China. The thawing period was divided into four stages: early-melt, late-melt, rain-on-melt, and post-melt. Drainage regions (DRs) were separated into three types. The processes of water and N discharge from soil into rivers were monitored in these DRs during the thawing periods of 2014, 2015, and 2016. Results show that the processes of water and N discharge were not synchronous during the thawing period. Variations in discharge concentrations of NH 4 + -N and NO 3 - -N during the thawing period were mainly affected by the flushing effect, which was controlled by the physical state of the surface water (snow or ice) and the melt rate of frozen soil. Contributions of N export from the DRs varied under different land uses and climate conditions during the thawing period. NO 3 - -N export was mainly from maize fields. Thawing stages with high NO 3 - -N export were always accompanied by higher discharge rates. NH 4 + -N export mainly occurred during the early-melt and late-melt stages and from riverside rural regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Prediction of vapour-liquid and vapour-liquid-liquid equilibria of nitrogen-hydrocarbon mixtures used in J-T refrigerators

    Science.gov (United States)

    Narayanan, Vineed; Venkatarathnam, G.

    2018-03-01

    Nitrogen-hydrocarbon mixtures are widely used as refrigerants in J-T refrigerators operating with mixtures, as well as in natural gas liquefiers. The Peng-Robinson equation of state has traditionally been used to simulate the above cryogenic process. Multi parameter Helmholtz energy equations are now preferred for determining the properties of natural gas. They have, however, been used only to predict vapour-liquid equilibria, and not vapour-liquid-liquid equilibria that can occur in mixtures used in cryogenic mixed refrigerant processes. In this paper the vapour-liquid equilibrium of binary mixtures of nitrogen-methane, nitrogen-ethane, nitrogen-propane, nitrogen-isobutane and three component mixtures of nitrogen-methane-ethane and nitrogen-methane-propane have been studied with the Peng-Robinson and the Helmholtz energy equations of state of NIST REFPROP and compared with experimental data available in the literature.

  15. Properties of concrete mixed with sand frozen by liquid nitrogen

    International Nuclear Information System (INIS)

    Negami, Yoshiaki; Kurita, Morio; Kuwahara, Takashi; Goto, Sadao.

    1990-01-01

    This paper presents a new precooling method which reduces the temperature of mixed concrete by mixing it with sand frozen by liquid nitrogen. The authors tried to clarify the properties of both the frozen sand and the concrete mixed with the frozen sand. The results of a series of experimental studies indicate that the temperature of mixed concrete can be reduced about 25degC, which is a larger reduction quantity than that achieved by conventional precooling methods; and that this method contributes to improvement of the consistency and the compressive strength of the concrete. Furthermore, the advantageous effect of this precooling method is confirmed from the results of laboratory tests using massive concrete members. (author)

  16. Pool boiling from rotating and stationary spheres in liquid nitrogen

    Science.gov (United States)

    Cuan, Winston M.; Schwartz, Sidney H.

    1988-01-01

    Results are presented for a preliminary experiment involving saturated pool boiling at 1 atm from rotating 2 and 3 in. diameter spheres which were immersed in liquid nitrogen (LN2). Additional results are presented for a stationary, 2 inch diameter sphere, quenched in LN2, which were obtained utilizing a more versatile and complete experimental apparatus that will eventually be used for additional rotating sphere experiments. The speed for the rotational tests was varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere. The average Nusselt number over the cooling period was plotted against the rotational Reynolds number. Stationary sphere results included local boiling heat transfer coefficients at different latitudinal locations, for various pressure and subcooling levels.

  17. Liquid Nitrogen Temperature Operation of a Switching Power Converter

    Science.gov (United States)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    The performance of a 42/28 V, 175 W, 50 kHz pulse-width modulated buck dc/dc switching power converter at liquid nitrogen temperature (LNT) is compared with room temperature operation. The power circuit as well as the control circuit of the converter, designed with commercially available components, were operated at LNT and resulted in a slight improvement in converter efficiency. The improvement in power MOSFET operation was offset by deteriorating performance of the output diode rectifier at LNT. Performance of the converter could be further improved at low temperatures by using only power MOSFET's as switches. The use of a resonant topology will further improve the circuit performance by reducing the switching noise and loss.

  18. Heat and mass transfer of liquid nitrogen in coal porous media

    Science.gov (United States)

    Lang, Lu; Chengyun, Xin; Xinyu, Liu

    2018-04-01

    Liquid nitrogen has been working as an important medium in fire extinguishing and prevention, due to its efficiency in oxygen exclusion and heat removal. Such a technique is especially crucial for coal industry in China. We built a tunnel model with a temperature monitor system (with 36 thermocouples installed) to experimentally study heat and mass transfer of liquid nitrogen in non-homogeneous coal porous media (CPM), and expected to optimize parameters of liquid nitrogen injection in engineering applications. Results indicate that injection location and amount of liquid nitrogen, together with air leakage, significantly affect temperature distribution in CPM, and non-equilibrium heat inside and outside of coal particles. The injection position of liquid nitrogen determines locations of the lowest CPM temperature and liquid nitrogen residual. In the deeper coal bed, coal particles take longer time to reach thermal equilibrium between their surface and inside. Air leakage accelerates temperature increase at the bottom of the coal bed, which is a major reason leading to fire prevention inefficiency. Measurement fluctuation of CPM temperature may be caused by incomplete contact of coal particles with liquid nitrogen flowing in the coal bed. Moreover, the secondary temperature drop (STD) happens and grows with the more injection of liquid nitrogen, and the STD phenomenon is explained through temperature distributions at different locations.

  19. Effect of liquid nitrogen storage on seed germination of 51 tree species

    Science.gov (United States)

    Jill R. Barbour; Bernard R. Parresol

    2003-01-01

    Two liquid nitrogen storage experiments were performed on 51 tree species. In experiment 1, seeds of 9western tree species were placed in a liquid nitrogen tank for 3 time periods: 24 hours, 4 weeks, and 222 days. A corresponding control sample accompanied each treatment. For three species,Calocedrus decurrens, Pinus jefferyi, and ...

  20. Angiogenic effects of cryosurgery with liquid nitrogen on the normal skin of rats, through morphometric study.

    Science.gov (United States)

    Pimentel, Camila Bianco; Moraes, Aparecida Machado de; Cintra, Maria Letícia

    2014-01-01

    Cryosurgery is an efficient therapeutic technique used to treat benign and malignant cutaneous diseases. The primary active mechanism of cryosurgery is related to vascular effects on treated tissue. After a cryosurgical procedure, exuberant granulation tissue is formed at the injection site, probably as a result of angiogenic stimulation of the cryogen and inflammatory response, particularly in endothelial cells. To evaluate the angiogenic effects of freezing, as part of the phenomenon of healing rat skin subjected to previous injury. Two incisions were made in each of the twenty rats, which were divided randomly into two groups of ten. After 3 days, cryosurgery with liquid nitrogen was performed in one of incisions. The rats' samples were then collected, cut and stained to conduct histopathological examination, to assess the local angiogenesis in differing moments and situations. It was possible to demonstrate that cryosurgery, in spite of promoting cell death and accentuated local inflammation soon after its application, induces quicker cell proliferation in the affected tissue and maintenance of this rate in a second phase, than in tissue healing without this procedure. These findings, together with the knowledge that there is a direct relationship between mononuclear cells and neovascularization (the development of a rich system of new vessels in injury caused by cold), suggest that cryosurgery possesses angiogenic stimulus, even though complete healing takes longer to occur. The significance level for statistical tests was 5% (p<0,05).

  1. Homogeneous nucleation in liquid nitrogen at negative pressures

    Energy Technology Data Exchange (ETDEWEB)

    Baidakov, V. G., E-mail: baidakov@itp.uran.ru; Vinogradov, V. E.; Pavlov, P. A. [Russian Academy of Sciences, Institute of Thermal Physics, Ural Branch (Russian Federation)

    2016-10-15

    The kinetics of spontaneous cavitation in liquid nitrogen at positive and negative pressures has been studied in a tension wave formed by a compression pulse reflected from the liquid–vapor interface on a thin platinum wire heated by a current pulse. The limiting tensile stresses (Δp = p{sub s}–p, where p{sub s} is the saturation pressure), the corresponding bubble nucleation frequencies J (10{sup 20}–10{sup 22} s{sup –1} m{sup –3}), and temperature induced nucleation frequency growth rate G{sub T} = dlnJ/dT have been experimentally determined. At T = 90 K, the limiting tensile stress was Δp = 8.3 MPa, which was 4.9 MPa lower than the value corresponding to the boundary of thermodynamic stability of the liquid phase (spinodal). The measurement results were compared to classical (homogeneous) nucleation theory (CNT) with and without neglect of the dependence of the surface tension of critical bubbles on their dimensions. In the latter case, the properties of new phase nuclei were described in terms of the Van der Waals theory of capillarity. The experimental data agree well with the CNT theory when it takes into account the “size effect.”.

  2. Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets

    Energy Technology Data Exchange (ETDEWEB)

    Snezhko, Alexey; Aranson, Igor S [Materials Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Argonne, IL 60439 (United States); Jacob, Eshel Ben [School of Physics and Astronomy, 69978 Tel Aviv University, Tel Aviv (Israel)], E-mail: aranson@msd.anl.gov

    2008-04-15

    Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 {sup 0}C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets.

  3. Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets

    International Nuclear Information System (INIS)

    Snezhko, Alexey; Aranson, Igor S; Jacob, Eshel Ben

    2008-01-01

    Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 0 C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets

  4. Small-scale experimental study of vaporization flux of liquid nitrogen released on water.

    Science.gov (United States)

    Gopalaswami, Nirupama; Olewski, Tomasz; Véchot, Luc N; Mannan, M Sam

    2015-10-30

    A small-scale experimental study was conducted using liquid nitrogen to investigate the convective heat transfer behavior of cryogenic liquids released on water. The experiment was performed by spilling five different amounts of liquid nitrogen at different release rates and initial water temperatures. The vaporization mass fluxes of liquid nitrogen were determined directly from the mass loss measured during the experiment. A variation of initial vaporization fluxes and a subsequent shift in heat transfer mechanism were observed with changes in initial water temperature. The initial vaporization fluxes were directly dependent on the liquid nitrogen spill rate. The heat flux from water to liquid nitrogen determined from experimental data was validated with two theoretical correlations for convective boiling. It was also observed from validation with correlations that liquid nitrogen was found to be predominantly in the film boiling regime. The substantial results provide a suitable procedure for predicting the heat flux from water to cryogenic liquids that is required for source term modeling. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Simulation of water vapor condensation on LOX droplet surface using liquid nitrogen

    Science.gov (United States)

    Powell, Eugene A.

    1988-01-01

    The formation of ice or water layers on liquid oxygen (LOX) droplets in the Space Shuttle Main Engine (SSME) environment was investigated. Formulation of such ice/water layers is indicated by phase-equilibrium considerations under conditions of high partial pressure of water vapor (steam) and low LOX droplet temperature prevailing in the SSME preburner or main chamber. An experimental investigation was begun using liquid nitrogen as a LOX simulant. A monodisperse liquid nitrogen droplet generator was developed which uses an acoustic driver to force the stream of liquid emerging from a capillary tube to break up into a stream of regularly space uniformly sized spherical droplets. The atmospheric pressure liquid nitrogen in the droplet generator reservoir was cooled below its boiling point to prevent two phase flow from occurring in the capillary tube. An existing steam chamber was modified for injection of liquid nitrogen droplets into atmospheric pressure superheated steam. The droplets were imaged using a stroboscopic video system and a laser shadowgraphy system. Several tests were conducted in which liquid nitrogen droplets were injected into the steam chamber. Under conditions of periodic droplet formation, images of 600 micron diameter liquid nitrogen droplets were obtained with the stroboscopic video systems.

  6. Renewable energy carriers: Hydrogen or liquid air/nitrogen?

    International Nuclear Information System (INIS)

    Li Yongliang; Chen Haisheng; Zhang Xinjing; Tan Chunqing; Ding Yulong

    2010-01-01

    The world's energy demand is met mainly by the fossil fuels today. The use of such fuels, however, causes serious environmental issues, including global warming, ozone layer depletion and acid rains. A sustainable solution to the issues is to replace the fossil fuels with renewable ones. Implementing such a solution, however, requires overcoming a number of technological barriers including low energy density, intermittent supply and mobility of the renewable energy sources. A potential approach to overcoming these barriers is to use an appropriate energy carrier, which can store, transport and distribute energy. The work to be reported in this paper aims to assess and compare a chemical energy carrier, hydrogen, with a physical energy carrier, liquid air/nitrogen, and discuss potential applications of the physical carrier. The ocean energy is used as an example of the renewable energy sources in the work. The assessment and comparison are carried out in terms of the overall efficiency, including production, storage/transportation and energy extraction. The environmental impact, waste heat recovery and safety issues are also considered. It is found that the physical energy carrier may be a better alternative to the chemical energy carrier under some circumstances, particularly when there are waste heat sources.

  7. Design Tool for Liquid-Nitrogen Gaps in Superconducting Apparatus

    International Nuclear Information System (INIS)

    Pace, Marshall O.; Sauers, Isidor; James, David Randy; Tuncer, Enis; Polyzos, Georgios

    2011-01-01

    For designers of high temperature superconducting equipment with liquid nitrogen as a dielectric, an expedient universal curve is sought that provides breakdown strength for a specified class of electrode shapes, with any practical sizes of electrodes and gap; thus the universal curve fills in missing experimental data. Universal breakdown strength curves at pressures of or slightly above 100 kPa, are being developed for AC, DC or impulse stress for the class with sphere-sphere, plane-plane and sphere-plane gaps, with three independent parameters: the size of each electrode and gap. A user can normalize his parameters and find the corresponding breakdown strength, even though no data were available for his exact dimensions. For AC and DC stresses the geometrical effects of stressed area/volume are incorporated from most published AC and DC experimental data of the last 50 years, by plotting breakdown field versus new geometrical quantities, such that all data fall approximately on or near one normalized universal curve. This avoids the usual difficult task of calculating stressed area and volume effects on the breakdown values for the graph ordinate. For impulse stress a more traditional plot suffices to produce a universal curve. This suggests that area/volume effects might not be so important with impulse stress. If the method proves reliable, it may be possible to determine design parameters for a broad range of geometries, help unify seemingly disparate breakdown data in the literature, and provide easily used, practical guidance for designers.

  8. Connection for transfer of Liquid Nitrogen from High Voltage to ground potential

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Hansen, Finn; Willén, Dag

    2001-01-01

    In order to operate a superconducting cable conductor it must be kept at a cryogenic temperature (e.g. using liquid nitrogen). The superconducting cable conductor is at high voltage and the cooling equipment is kept at ground potential. This requires a thermally insulating connection that is also...... properties and withstand towards high-pressure liquid nitrogen. The length per joint is approximately 900 mm, including a Johnstoncoupling. The joints are tested in a closed liquid nitrogen circuit, with a pressure of up to 10 bars. The rated voltage of the cable system is 36 kV (phase-phase)....

  9. Liquid absorbent solutions for separating nitrogen from natural gas

    Science.gov (United States)

    Friesen, Dwayne T.; Babcock, Walter C.; Edlund, David J.; Lyon, David K.; Miller, Warren K.

    2000-01-01

    Nitrogen-absorbing and -desorbing compositions, novel ligands and transition metal complexes, and methods of using the same, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  10. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms

    DEFF Research Database (Denmark)

    Grogan, P.; Michelsen, A.; Ambus, P.

    2004-01-01

    phase, and in a subsequent equilibration phase. A single deep freeze treatment phase enhanced dissolved total and labelled N pools in the soil solution at initial thaw, and resulted in reduced pool sizes at the end of the equilibration phase. By contrast, a multiple freeze-thaw cycling treatment......, these results indicate that moderate freeze-thaw fluctuations may have minimal influences on microbial biomass pools, but nevertheless can have strong contrasting effects on the amounts, forms, and timing of N and organic C supply into the soil solution. Ecosystem losses via N2O effluxes were of greatest...... directly enhanced the dissolved labelled N pool, but did not significantly affect dissolved total N. Furthermore, both dissolved labelled N and dissolved total N pools were significantly enhanced in the equilibration period following multiple freeze-thaw, the latter due to a marked increase in soil...

  11. The reaction between barium and nitrogen in liquid sodium: resistivity studies

    International Nuclear Information System (INIS)

    Addison, C.C.; Creffield, G.K.; Hubberstey, P.; Pulham, R.J.

    1976-01-01

    The reaction of nitrogen with solutions of barium (between 0.34 and 6.89 mol % Ba) in liquid sodium at 573 K has been followed by changes in the electrical resistivity of the liquid. The capillary method has been employed, continuous sampling during reaction being achieved by electromagnetic pumping. The initial solution of nitrogen in the metal, followed by precipitation of barium and nitrogen from sodium as the nitride Ba 2 N, are reflected in the resistivity changes. The solubility of nitrogen in the alloy is a linear function of the barium concentration: S(mol % N) = x/4 (0 <= x <= 6.89 mol % Ba). This and the decrease in resistivity which invariably occurs during the solution process, provides additional information on the nature of solvation of nitrogen in solution in the liquid metal. (author)

  12. 14 MeV INAA nitrogen determination in coal conversion liquids

    International Nuclear Information System (INIS)

    Ehmann, W.D.; Khalil, S.R.

    1980-01-01

    Fast neutron activation analysis has been used for the direct determination of nitrogen in coal conversion liqui-ds. In our previous work on coals, solid standards such as N-1-napthylacetamide, NBS SRM 912 urea and NBS SRM 148 nicotinic acid were used for nitrogen determinations. In this work, a set of organic liquids was selected and evaluated for use as nitrogen standards in the analysis of coal-derived liquids. The use of the liquid standards minimizes problems associated with maintaining uniform irradation and counting geometries and self absorption differences related to varying matrix densities. The standard liquids were selected using criteria of high boiling point, well-defined stoichiometry, high-purity, non-hygroscopic nature and simple C-H-N elemental compositions. Excellent agreement between the 14 MeV INAA data and calculated stoichiometric values has been demonstrated for liquids with nitrogen contents from 1.89 to 39.95%. The liquid standards have been used to determine nitrogen in a set of typical coal conversion liquids and several international standards. (author)

  13. Comparative study of two drying techniques used in radioactive source preparation: Freeze-drying and evaporation using hot dry nitrogen jets

    International Nuclear Information System (INIS)

    Branger, T.; Bobin, C.; Iroulart, M.-G.; Lepy, M.-C.; Le Garreres, I.; Morelli, S.; Lacour, D.; Plagnard, J.

    2008-01-01

    Quantitative solid sources are used widely in the field of radionuclide metrology. With the aim to improve the detection efficiency for electrons and x-rays, a comparative study between two source drying techniques has been undertaken at LNE-Laboratoire National Henri Becquerel (LNE-LNHB, France). In this paper, freeze-drying using commercial equipment is compared with a system of drying using hot jets of nitrogen developed at Institute for Reference Materials and Measurements (IRMM, Belgium). In order to characterize the influence of self-absorption, the detection efficiencies for 51 Cr sources have been measured by coincidence counting and photon spectrometry

  14. Control of the nitrogen concentration in liquid lithium by the hot trap method

    International Nuclear Information System (INIS)

    Sakurai, Toshiharu; Yoneoka, Toshiaki; Tanaka, Satoru; Suzuki, Akihiro; Muroga, Takeo

    2002-01-01

    The nitrogen concentration in liquid lithium was controlled by the hot-trap method. Titanium, vanadium and a V-Ti alloy were used as nitrogen gettering materials. Gettering experiments were conducted at 673, 773 and 823 K for 0.4-2.8 Ms. After immersion, the nitrogen concentration increased in titanium and V-Ti were tested at 823 K. Especially the nitrogen gettering effect by the V-10at.%Ti alloy was found to be large. Nitrogen was considered to exist mainly as solid solution in the V-10at.%Ti alloy. The decrease of the nitrogen concentration in liquid lithium by the V-Ti gettering was also confirmed

  15. New displacement sensor for a hybrid magnetic bearing in liquid nitrogen

    International Nuclear Information System (INIS)

    Komori, M.; Kobayashi, H.; Shiraishi, C.

    1999-01-01

    This paper describes a newly developed displacement sensor. The displacement sensor is used for a hybrid magnetic bearing in liquid nitrogen. The principle of the displacement sensor is based on a differential transformer. The sensor is found to be useful in liquid nitrogen at 77 K (-196 C). Moreover, the sensor is applied to a hybrid magnetic bearing. The displacement sensor is found to be useful and promising

  16. Solubility of Hydrogen and Nitrogen in liquid cast iron during melting and mold filling

    OpenAIRE

    Diószegi, Attila; Elfsberg, Jessica; Diószegi, Zoltán

    2016-01-01

    Defect formation like gas- and shrinkage porosity at cast iron component production is related to the content of gaseous elements in the liquid metal. The present work investigate the solubility of hydrogen and nitrogen in liquid iron aimed for production of lamellar and compacted graphite cast iron. The used methods and instruments are a combination of commercial measuring devices and novel experimental assemblies for measuring solubility of hydrogen and nitrogen during melting and mold fill...

  17. Chemical equilibrium calculations for the high pressure and temperature dissociation of liquid nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, D.C.; Ree, F.H.

    1987-07-01

    Calculations are reported for the equation-of-state properties of shock-compressed liquid nitrogen. The statistical mechanical, chemical equilibrium calculations, which allow for the simultaneous presence of both the diatomic and monatomic forms of nitrogen, show good agreement with recent dynamic experiments.

  18. Chemical equilibrium calculations for the high pressure and temperature dissociation of liquid nitrogen

    International Nuclear Information System (INIS)

    Hamilton, D.C.; Ree, F.H.

    1987-07-01

    Calculations are reported for the equation-of-state properties of shock-compressed liquid nitrogen. The statistical mechanical, chemical equilibrium calculations, which allow for the simultaneous presence of both the diatomic and monatomic forms of nitrogen, show good agreement with recent dynamic experiments

  19. The formation of nitrogeneous compounds in the γ-radiolyses of liquid nitrogen solutions of hydrogen, methane, and ethane

    International Nuclear Information System (INIS)

    Horigome, Keiichi; Hirokami, Shun-ichi; Sato, Shin

    1978-01-01

    The γ-radiolyses of liquid nitrogen solutions of hydrogen, methane, and ethane have been reinvestigated. A complete survey of nitrogen-containing products has been attempted. The nitrogeneous compounds observed were ammonia (0.7) and hydrogen azide (0.02) in the case of hydrogen, ammonia (0.3), hydrogen cyanide (0.1), methyl azide (0.01), and a polymer in the case of methane, and ammonia (0.3), hydrogen cyanide (0.05), acetonitrile (0.04), ethyl azide (0.01), and a polymer in the case of ethane. The values in parentheses are the G-values obtained at optimum conditions. The hydrolysis of the polymer obtained with methane gave formaldehyde in amounts which correspond to the fact that the G-value of the nitrogen atoms which were converted into the polymer is about 1.0. In order to explain these results, possible reaction mechanisms are discussed. (auth.)

  20. Effect of Freeze-Thaw Cycles on Soil Nitrogen Reactive Transport in a Polygonal Arctic Tundra Ecosystem at Barrow AK Using 3-D Coupled ALM-PFLOTRAN

    Science.gov (United States)

    Yuan, F.; Wang, G.; Painter, S. L.; Tang, G.; Xu, X.; Kumar, J.; Bisht, G.; Hammond, G. E.; Mills, R. T.; Thornton, P. E.; Wullschleger, S. D.

    2017-12-01

    In Arctic tundra ecosystem soil freezing-thawing is one of dominant physical processes through which biogeochemical (e.g., carbon and nitrogen) cycles are tightly coupled. Besides hydraulic transport, freezing-thawing can cause pore water movement and aqueous species gradients, which are additional mechanisms for soil nitrogen (N) reactive-transport in Tundra ecosystem. In this study, we have fully coupled an in-development ESM(i.e., Advanced Climate Model for Energy, ACME)'s Land Model (ALM) aboveground processes with a state-of-the-art massively parallel 3-D subsurface thermal-hydrology and reactive transport code, PFLOTRAN. The resulting coupled ALM-PFLOTRAN model is a Land Surface Model (LSM) capable of resolving 3-D soil thermal-hydrological-biogeochemical cycles. This specific version of PFLOTRAN has incorporated CLM-CN Converging Trophic Cascade (CTC) model and a full and simple but robust soil N cycle. It includes absorption-desorption for soil NH4+ and gas dissolving-degasing process as well. It also implements thermal-hydrology mode codes with three newly-modified freezing-thawing algorithms which can greatly improve computing performance in regarding to numerical stiffness at freezing-point. Here we tested the model in fully 3-D coupled mode at the Next Generation Ecosystem Experiment-Arctic (NGEE-Arctic) field intensive study site at the Barrow Environmental Observatory (BEO), AK. The simulations show that: (1) synchronous coupling of soil thermal-hydrology and biogeochemistry in 3-D can greatly impact ecosystem dynamics across polygonal tundra landscape; and (2) freezing-thawing cycles can add more complexity to the system, resulting in greater mobility of soil N vertically and laterally, depending upon local micro-topography. As a preliminary experiment, the model is also implemented for Pan-Arctic region in 1-D column mode (i.e. no lateral connection), showing significant differences compared to stand-alone ALM. The developed ALM-PFLOTRAN coupling

  1. Cryogenic freezing of fresh date fruits for quality preservation during frozen storage

    Directory of Open Access Journals (Sweden)

    Abdullah Alhamdan

    2018-01-01

    Full Text Available Fresh date fruits, especially Barhi cultivar, are favored and widely consumed at the Khalal maturity stage (first color edible stage. These fruits are seasonal and perishable and there is a need for extending their shelf life. This study evaluates two different freezing methods, namely cryogenic freezing using liquid nitrogen and conventional deep freezing on preserving the quality and stability of date fruits (cv. Barhi at Khalal maturity stage. Fresh date fruits (cv. Barhi at Khalal stage were frozen utilizing the two methods. The produced frozen dates were stored under frozen storage conditions for nine months (at −20 °C and −40 °C for the conventional and cryogenic freezing, respectively. Color values, textural properties (hardness, elasticity, chewiness and resilience, and nutrition attributes (enzymes and sugars for fresh dates before freezing and for the frozen dates were measured every three months during the frozen storage. Color values of the frozen dates were affected by the freezing method and the frozen storage period. There are substantial differences in the quality of the frozen fruits in favor of cryogenic freezing compared to the conventional slow freezing. The results revealed a large disparity between the times of freezing of the two methods. The freezing time accounted to 10 min in the cryogenic freezing method, whereas it was 1800 min for the conventional slow freezing system.

  2. Calorimetry by immersion into liquid nitrogen and liquid argon: a better way to determine the internal surface area of micropores.

    Science.gov (United States)

    Navarrete, Ricardo; Llewellyn, Philip; Rouquerol, Françoise; Denoyel, Renaud; Rouquerol, Jean

    2004-09-15

    The aim of this work is to assess the internal surface area of a set of samples (either carbons or oxides, either porous or nonporous, either microporous or mesoporous) by microcalorimetry via immersion into liquid nitrogen or argon. We have made use of an isothermal, heat-flux microcalorimeter, initially designed and built in our laboratory for the sake of gas adsorption experiments at 77 or 87 K. It seems that immersion calorimetry into liquid nitrogen and argon makes it possible to go one step further in the determination of the internal surface area of micropores.

  3. Kinetics and mechanisms of interactions of nitrogen and carbon monoxide with liquid niobium

    International Nuclear Information System (INIS)

    Park, H.G.

    1990-01-01

    The kinetics and mechanisms of interactions of N 2 and CO with liquid niobium were investigated in the temperature range of 2,700 to 3,000 K in samples levitated in N 2 /Ar and CO/Ar streams. The nitrogen absorption and desorption processes were found to be second-order with respect to nitrogen concentration, indicating that the rate controlling step is either the adsorption of nitrogen molecules on the liquid surface or dissociation of absorbed nitrogen molecules into adsorbed atoms. The carbon and oxygen dissolution in liquid niobium from CO gas is an exothermic process and the solubilities of carbon and oxygen (C Ce , C Oe in at%) are related to the temperature and the partial pressure of CO. The reaction CO → [C] + [O] along with the evaporation of niobium oxide takes place during C and O dissolution, whereas C and O desorption occurs via CO evolution only

  4. Thermodynamic Modeling and Mechanical Design of a Liquid Nitrogen Vaporization and Pressure Building Device

    Science.gov (United States)

    Leege, Brian J.

    The design of a liquid nitrogen vaporization and pressure building device that has zero product waste while recovering some of its stored energy is of interest for the cost reduction of nitrogen for use in industrial processes. Current devices may waste up to 30% of the gaseous nitrogen product by venting it to atmosphere. Furthermore, no attempt is made to recover the thermal energy available in the coldness of the cryogen. A seven step cycle with changing volumes and ambient heat addition is proposed, eliminating all product waste and providing the means of energy recovery from the nitrogen. This thesis discusses the new thermodynamic cycle and modeling as well as the mechanical design and testing of a prototype device. The prototype was able to achieve liquid nitrogen vaporization and pressurization up to 1000 psi, while full cycle validation is ongoing with promising initial results.

  5. Liquid Nitrogen (-196°C effect under pollen of some cultured or ornamental species

    Directory of Open Access Journals (Sweden)

    Sabina GLIGOR

    2006-05-01

    Full Text Available The criopreservation involve the stock of the vegetal material at low temperatures (-196°C in liquid nitrogen, in thermal conditions in which the division of cells and metabolic processes slow down, thus that the samplings may be conserved for long periods without suffering any genetic modifications. This stock technique is applied till present only on 80 vegetal species, keeping their seeds and vitrocultures preponderantly; researches were made regarding the maintenance of pollen in liquid nitrogen.The mature pollen, able to resist a higher degree of desiccation, may be conserved at low temperatures, without criopreservation. It was made researches on criopreservation of rise, maize, wheat, roses, sun flower and soy pollen. Our study purpose was to follow the impact of liquid nitrogen (-196°C about on viability of some cultured and ornamental species. The designed time of criopreservation it was 30 minutes and 7 days, using the TTC (tripheniltetrazole chloride method which allows testing the viability of vegetal material based on dehydrogenase activity.It was observed at Petunia hybrida species, that the pollen viability was low - in relevance with the witness represented from the pollen which was not resigned to the nitrogen liquid treatment - between percentage limits of 3.5-8%, in the case when the vegetal material was submersed 30 minutes in liquid nitrogen and 7.5-14.5% 7 days at (-196°C. The submersing of Nicotiana alata var. grandiflora species at 7 days, determined a low viability with 11.53%. The following two studied species Cucurbita and Hosta were proved to be the most resistant at submersing and maintenance in liquid nitrogen. The most affected pollen was Campsis radicans species. At Datura stramonium species was observed 2.59% a low viability of pollen, after 30 minutes of liquid nitrogen treatment, was 19.56%, after 7 days of submersing, the most pollen granules losing completely their viability.

  6. Evaluation of the Activities of Antioxidant Enzyme and Lysosomal Enzymes of the Longissimus dorsi Muscle from Hanwoo (Korean Cattle) in Various Freezing Conditions

    OpenAIRE

    Kang, Sun Moon; Kang, Geunho; Seong, Pil-Nam; Park, Beomyoung; Kim, Donghun; Cho, Soohyun

    2014-01-01

    This study was conducted to evaluate the activities of antioxidant enzyme (glutathione peroxidase (GSH-Px)) and lysosomal enzymes (alpha-glucopyranosidase (AGP) and beta-N-acetyl-glucosaminidase (BNAG)) of the longissimus dorsi (LD) muscle from Hanwoo (Korean cattle) in three freezing conditions. Following freezing at -20, -60, and -196? (liquid nitrogen), LD samples (48 h post-slaughter) were treated as follows: 1) freezing for 14 d, 2) 1 to 4 freeze-thaw cycles (2 d of freezing in each cycl...

  7. Vitrification of human pronuclear oocytes by direct plunging into cooling agent: Non sterile liquid nitrogen vs. sterile liquid air.

    Science.gov (United States)

    Isachenko, Vladimir; Todorov, Plamen; Seisenbayeva, Akerke; Toishibekov, Yerzhan; Isachenko, Evgenia; Rahimi, Gohar; Mallmann, Peter; Foth, Dolores; Merzenich, Markus

    2018-02-01

    In fact, a full sterilization of commercially-produced liquid nitrogen contaminated with different pathogens is not possible. The aim of this study was to compare the viability of human pronuclear oocytes subjected to cooling by direct submerging of open carrier in liquid nitrogen versus submerging in clean liquid air (aseptic system). One- and three-pronuclei stage embryos (n = 444) were cryopreserved by direct plunging into liquid nitrogen (vitrified) in ethylene glycol (15%), dimethylsulphoxide (15%) and 0.2M sucrose. Oocytes were exposed in 20, 33, 50 and 100% vitrification solution for 2, 1 and 1 min, and 30-50 s, respectively at room temperature. Then first part of oocytes (n = 225) were directly plunged into liquid nitrogen, and second part of oocytes (n = 219) into liquid air. Oocytes were thawed rapidly at a speed of 20,000 °C/min and then subsequently were placed into a graded series of sucrose solutions (0.5, 0.25, 0.12 and 0.06M) at 2.5 min intervals and cultured in vitro for 3 days. In both groups, the rate of high-quality embryos (Grade 6A: 6 blastomeres, no fragmentation; Grade 8A: 8 blastomeres, no fragmentation; Grade 8A compacting: 8 blastomeres, beginning of compacting) was noted. The rates of high-quality embryos developed from one-pronuclear oocytes vitrified by cooling in liquid nitrogen and liquid air were: 39.4% ± 0.6 and 38.7% ± 0.8, respectively (P > 0.1). These rates for three-pronuclear oocytes were: 45.8 ± 0.8% and 52.0 ± 0.7%, respectively (P liquid air (aseptic system) is a good alternative for using of not sterile liquid nitrogen. Copyright © 2017. Published by Elsevier Inc.

  8. Generalized correlation of latent heats of vaporization of coal liquid model compounds between their freezing points and critical points

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, A.; Kobuyashi, R.; Mayee, J.W.

    1984-02-01

    Based on Pitzer's three-parameter corresponding states principle, the authors have developed a correlation of the latent heat of vaporization of aromatic coal liquid model compounds for a temperature range from the freezing point to the critical point. An expansion of the form L = L/sub 0/ + ..omega..L /sub 1/ is used for the dimensionless latent heat of vaporization. This model utilizes a nonanalytic functional form based on results derived from renormalization group theory of fluids in the vicinity of the critical point. A simple expression for the latent heat of vaporization L = D/sub 1/epsilon /SUP 0.3333/ + D/sub 2/epsilon /SUP 0.8333/ + D/sub 4/epsilon /SUP 1.2083/ + E/sub 1/epsilon + E/sub 2/epsilon/sup 2/ + E/sub 3/epsilon/sup 3/ is cast in a corresponding states principle correlation for coal liquid compounds. Benzene, the basic constituent of the functional groups of the multi-ring coal liquid compounds, is used as the reference compound in the present correlation. This model works very well at both low and high reduced temperatures approaching the critical point (0.02 < epsilon = (T /SUB c/ - T)/(T /SUB c/- 0.69)). About 16 compounds, including single, two, and three-ring compounds, have been tested and the percent root-mean-square deviations in latent heat of vaporization reported and estimated through the model are 0.42 to 5.27%. Tables of the coefficients of L/sub 0/ and L/sub 1/ are presented. The contributing terms of the latent heat of vaporization function are also presented in a table for small increments of epsilon.

  9. Freezing of a modulated liquid: The superionic-to-normal transition of strontium chloride

    International Nuclear Information System (INIS)

    Rovere, M.; Tosi, M.P.; Trieste Univ.

    1985-05-01

    The anionic component in SrCl 2 near melting is treated as a modulated liquid in the periodic potential of the sublattice of cations. With decreasing temperature from the melting point, we find a diffuse disorder-order phase transition. The calculated behaviours of the order parameter and of thermodynamic properties approximate those observed for SrCl 2 across its superionic transition. (author)

  10. Control of nitrogen concentration in liquid lithium by iron-titanium alloy

    International Nuclear Information System (INIS)

    Hirakane, Shinji; Yoneoka, Toshiaki; Tanaka, Satoru

    2006-01-01

    Reducing the nitrogen concentration in liquid lithium is one of the most important steps in creating a liquid lithium blanket system. In this study, in order to verify the nitrogen gettering performance of Fe-Ti alloy, the variation in the nitrogen concentration in liquid lithium, into which Fe-10 at.% Ti or Fe-5 at.% Ti getter was immersed, was examined. The results confirmed a gettering performance of Fe-Ti alloy comparable to that of V-Ti alloy, although the effects were not durable in either the Fe-Ti or the V-Ti alloy. After the immersion test, the existing states of nitrogen absorbed in the gettering material were analyzed by means of XRD, XMA and XPS. TiN and some nitrogen dissolved in α-Fe without forming TiN were observed. It was indicated that nitrogen gettering is prevented not only by the surface nitrides, but also by the internal diffusion barriers originating from the absorbed nitrogen

  11. Cellulitis Secondary to Liquid Nitrogen Cryotherapy: Case Report and Literature Review.

    Science.gov (United States)

    Huang, Christina M; Lu, Emily Y; Kirchhof, Mark G

    Liquid nitrogen cryotherapy is a commonly used technique to treat a wide variety of dermatologic conditions including actinic keratoses, non-melanoma skin cancers, verrucae, and seborrheic keratoses. The risks associated with liquid nitrogen cryotherapy are important to know and discuss with patients prior to treatment. We report a case of cellulitis secondary to liquid nitrogen cryotherapy for actinic keratosis. We sought to review the literature for an estimate of secondary infection rates following cryotherapy treatment. We searched Pubmed using the terms cryotherapy and infection or cellulitis. We then looked at articles classified as clinical trials where cryotherapy was used to treat skin conditions. We then selected clinical trials that listed cellulitis or infection as an adverse event. There were no case reports, case series, or review articles detailing the risk of infection from liquid nitrogen cryotherapy. We found 8 articles classified as clinical trials on Pubmed that did list infection as an adverse event. The risk of infection from these studies varied from approximately 2% to 30%. There was a great degree of heterogeneity in treatment sites, length of treatment, and treatment targets. While it is difficult to determine the true incidence of infection from liquid nitrogen cryotherapy, clinicians should endeavor to inform patients of this potential risk.

  12. Needling versus liquid nitrogen cryotherapy for the treatment of pedal warts a randomized controlled pilot study.

    Science.gov (United States)

    Cunningham, Daniel J; Brimage, Jessica T; Naraghi, Reza N; Bower, Virginia M

    2014-07-01

    We hypothesized that needling of a pedal wart creates local inflammation and a subsequent cell-mediated immune response (CMIR) against human papillomavirus. The primary objective of this study was to investigate whether needling to induce a CMIR against human papillomavirus is an effective treatment for pedal warts compared with liquid nitrogen cryotherapy. A secondary objective was to investigate whether the CMIR induced by needling is effective against satellite pedal warts. Eligible patients with pedal warts were randomly allocated to receive either needling or liquid nitrogen cryotherapy. Only the primary pedal wart was treated during the study. Follow-up was 12 weeks, with outcome assessments made independently under blinded circumstances. Of 37 patients enrolled in the study, 18 were allocated to receive needling and 19 to receive liquid nitrogen cryotherapy. Regression of the primary pedal wart occurred in 64.7% of the needling group (11 of 17) and in 6.2% of the liquid nitrogen cryotherapy group (1 of 16) (P =  .001). No significant relationship was found between needling of the primary pedal wart and regression of satellite pedal warts (P = .615) or complete pedal wart regression (P = .175). There was no significant difference in pain, satisfaction, or cosmesis between the two groups. The regression rate of the primary pedal wart was significantly higher in the needling group compared with the liquid nitrogen cryotherapy group.

  13. Comparison of cryopreserved human sperm in vapor and liquid phases of liquid nitrogen: effect on motility parameters, morphology, and sperm function.

    Science.gov (United States)

    Punyatanasakchai, Piyaphan; Sophonsritsuk, Areephan; Weerakiet, Sawaek; Wansumrit, Surapee; Chompurat, Deonthip

    2008-11-01

    To compare the effects of cryopreserved sperm in vapor and liquid phases of liquid nitrogen on sperm motility, morphology, and sperm function. Experimental study. Andrology laboratory at Ramathibodi Hospital, Thailand. Thirty-eight semen samples with normal motility and sperm count were collected from 38 men who were either patients of an infertility clinic or had donated sperm for research. Each semen sample was divided into two aliquots. Samples were frozen with static-phase vapor cooling. One aliquot was plunged into liquid nitrogen (-196 degrees C), and the other was stored in vapor-phase nitrogen (-179 degrees C) for 3 days. Thawing was performed at room temperature. Motility was determined by using computer-assisted semen analysis, sperm morphology was determined by using eosin-methylene blue staining, and sperm function was determined by using a hemizona binding test. Most of the motility parameters of sperm stored in the vapor phase were not significantly different from those stored in the liquid phase of liquid nitrogen, except in amplitude of lateral head displacement. The percentages of normal sperm morphology in both vapor and liquid phases also were not significantly different. There was no significant difference in the number of bound sperm in hemizona between sperm cryopreserved in both vapor and liquid phases of liquid nitrogen. Cryopreservation of human sperm in a vapor phase of liquid nitrogen was comparable to cryopreservation in a liquid phase of liquid nitrogen.

  14. Liquid Transfer Cryogenic Test Facility: Initial hydrogen and nitrogen no-vent fill data

    Science.gov (United States)

    Moran, Matthew E.; Nyland, Ted W.; Papell, S. Stephen

    1990-01-01

    The Liquid Transfer Cryogenic Test Facility is a versatile testbed for ground-based cryogenic fluid storage, handling, and transfer experimentation. The test rig contains two well instrumented tanks, and a third interchangeable tank, designed to accommodate liquid nitrogen or liquid hydrogen testing. The internal tank volumes are approx. 18, 5, and 1.2 cu. ft. Tank pressures can be varied from 2 to 30 psia. Preliminary no vent fill tests with nitrogen and hydrogen were successfully completed with the test rig. Initial results indicate that no vent fills of nitrogen above 90 percent full are achievable using this test configuration, in a 1-g environment, and with inlet liquid temperatures as high as 143 R, and an average tank wall temperature of nearly 300 R. This inlet temperature corresponds to a saturation pressure of 19 psia for nitrogen. Hydrogen proved considerably more difficult to transfer between tanks without venting. The highest temperature conditions resulting in a fill level greater than 90 percent were with an inlet liquid temperature of 34 R, and an estimated tank wall temperature of slightly more than 100 R. Saturation pressure for hydrogen at this inlet temperature is 10 psia. All preliminary no vent fill tests were performed with a top mounted full cone nozzle for liquid injection. The nozzle produces a 120 degree conical droplet spray at a differential pressure of 10 psi. Pressure in the receiving tank was held to less than 30 psia for all tests.

  15. Reaction between barium and nitrogen in liquid sodium

    International Nuclear Information System (INIS)

    Addison, C.C.; Pulham, R.J.; Trevillion, E.A.

    1975-01-01

    Nitrogen in increasing amounts has been added to separate solutions of barium in sodium of constant composition (ca.4.40 mol % Ba) at 300 0 C. After rendering each mixture homogenous using an electromagnetic pump, filtration, and nitrogen analysis, all the N 2 added has been found in solution up to a solution composition approximating to Ba 4 N (i.e. 1.1 mol % N) beyond which the quantity of dissolved N 2 decreases progressively due to precipitation of the nitride Ba 2 N. The solubilization is interpreted in terms of strong preferential solvation of the nitride ion by barium cations. (author)

  16. Orbital storage and supply of subcritical liquid nitrogen

    Science.gov (United States)

    Aydelott, John C.

    1990-01-01

    Subcritical cryogenic fluid management has long been recognized as an enabling technology for key propulsion applications, such as space transfer vehicles (STV) and the on-orbit cryogenic fuel depots which will provide STV servicing capability. The LeRC Cryogenic Fluids Technology Office (CFTO), under the sponsorship of OAST, has the responsibility of developing the required technology via a balanced program involving analytical modeling, ground based testing, and in-space experimentation. Topics covered in viewgraph form include: cryogenic management technologies; nitrogen storage and supply; cryogenic nitrogen cooling capability; and LN2 system demonstration technical objectives.

  17. Influence of nitrogen loading and plant nitrogen assimilation on nitrogen leaching and N₂O emission in forage rice paddy fields fertilized with liquid cattle waste.

    Science.gov (United States)

    Riya, Shohei; Zhou, Sheng; Kobara, Yuso; Sagehashi, Masaki; Terada, Akihiko; Hosomi, Masaaki

    2015-04-01

    Livestock wastewater disposal onto rice paddy fields is a cost- and labor-effective way to treat wastewater and cultivate rice crops. We evaluated the influence of nitrogen loading rates on nitrogen assimilation by rice plants and on nitrogen losses (leaching and N2O emission) in forage rice fields receiving liquid cattle waste (LCW). Four forage rice fields were subjected to nitrogen loads of 107, 258, 522, and 786 kg N ha(-1) (N100, N250, N500, and N750, respectively) using basal fertilizer (chemical fertilizer) (50 kg N ha(-1)) and three LCW topdressings (each 57-284 kg N ha(-1)). Nitrogen assimilated by rice plants increased over time. However, after the third topdressing, the nitrogen content of the biomass did not increase in any treatment. Harvested aboveground biomass contained 93, 60, 33, and 31 % of applied nitrogen in N100, N250, N500, and N750, respectively. The NH4 (+) concentration in the pore water at a depth of 20 cm was less than 1 mg N L(-1) in N100, N250, and N500 throughout the cultivation period, while the NH4 (+) concentration in N750 increased to 3 mg N L(-1) after the third topdressing. Cumulative N2O emissions ranged from -0.042 to 2.39 kg N ha(-1); the highest value was observed in N750, followed by N500. In N750, N2O emitted during the final drainage accounted for 80 % of cumulative N2O emissions. This study suggested that 100-258 kg N ha(-1) is a recommended nitrogen loading rate for nitrogen recovery by rice plants without negative environmental impacts such as groundwater pollution and N2O emission.

  18. Enucleation and liquid nitrogen cryotherapy in the treatment of keratocystic odontogenic tumors: a case series.

    Science.gov (United States)

    Tonietto, Leonardo; Borges, Hedelson Odenir Iecher; Martins, Carlos Alberto Medeiros; Silva, Daniela Nascimento; Sant'Ana Filho, Manoel

    2011-06-01

    This study describes the technique of lesion enucleation without capsule disruption combined with liquid nitrogen cryotherapy in the surgical treatment of keratocystic odontogenic tumors (KOTs). Eight patients (9 KOTs) were included in the study. After enucleation, liquid nitrogen was applied twice for 1 minute, with 5-minute intervals between applications. The patients were followed up for 3 to 9 years. There were no recurrences during the follow-up of 9 KOTs for up to 9 years. Only 1 patient had temporary reversible loss of lip sensation after treatment. There were no pathologic fractures. In all cases bone height at the surgical site was restored, and no patients needed bone reconstruction for post-treatment rehabilitation. This study confirmed the efficiency of KOT treatment enucleation without fragmentation combined with liquid nitrogen cryotherapy at the surgical site. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Does Parmelina tiliacea lichen photosystem II survive at liquid nitrogen temperatures?

    Science.gov (United States)

    Oukarroum, Abdallah; El Gharous, Mohamed; Strasser, Reto J

    2017-02-01

    Parmelina tiliacea lichens kept in the wet and dry state were stored in liquid nitrogen for 1 week and the subsequent recovery of their photosynthetic apparatus was followed. The chlorophyll a fluorescence rise and the maximum quantum yield of primary photochemistry φ Po (F V /F M ) were analysed for this purpose. Storage of wet thalli for 1 week in liquid nitrogen led to an impairment of photosystem II and probably the photosynthetic apparatus as a whole, from which the thalli did not recover over time. Thalli exposed in the dry state thalli were far less affected by the treatment and recovered well. These results indicate that the thalli are extremely tolerant to liquid nitrogen temperatures only in the dry state. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A coupled melt-freeze temperature index approach in a one-layer model to predict bulk volumetric liquid water content dynamics in snow

    Science.gov (United States)

    Avanzi, Francesco; Yamaguchi, Satoru; Hirashima, Hiroyuki; De Michele, Carlo

    2016-04-01

    Liquid water in snow rules runoff dynamics and wet snow avalanches release. Moreover, it affects snow viscosity and snow albedo. As a result, measuring and modeling liquid water dynamics in snow have important implications for many scientific applications. However, measurements are usually challenging, while modeling is difficult due to an overlap of mechanical, thermal and hydraulic processes. Here, we evaluate the use of a simple one-layer one-dimensional model to predict hourly time-series of bulk volumetric liquid water content in seasonal snow. The model considers both a simple temperature-index approach (melt only) and a coupled melt-freeze temperature-index approach that is able to reconstruct melt-freeze dynamics. Performance of this approach is evaluated at three sites in Japan. These sites (Nagaoka, Shinjo and Sapporo) present multi-year time-series of snow and meteorological data, vertical profiles of snow physical properties and snow melt lysimeters data. These data-sets are an interesting opportunity to test this application in different climatic conditions, as sites span a wide latitudinal range and are subjected to different snow conditions during the season. When melt-freeze dynamics are included in the model, results show that median absolute differences between observations and predictions of bulk volumetric liquid water content are consistently lower than 1 vol%. Moreover, the model is able to predict an observed dry condition of the snowpack in 80% of observed cases at a non-calibration site, where parameters from calibration sites are transferred. Overall, the analysis show that a coupled melt-freeze temperature-index approach may be a valid solution to predict average wetness conditions of a snow cover at local scale.

  1. Solutions for Liquid Nitrogen Pre-Cooling in Helium Refrigeration Cycles

    CERN Document Server

    Wagner, U

    2000-01-01

    Pre-cooling of helium by means of liquid nitrogen is the oldest and one of the most common process features used in helium liquefiers and refrigerators. Its two principle tasks are to allow or increase the rate of pure liquefaction, and to permit the initial cool-down of large masses to about 80 K. Several arrangements for the pre-cooling process are possible depending on the desired application. Each arrangement has its proper advantages and drawbacks. The aim of this paper is to review the possible process solutions for liquid nitrogen pre-cooling and their particularities.

  2. Viability of Bacillus popilliae after Lyophilization of Liquid Nitrogen Frozen Cells1

    Science.gov (United States)

    Lingg, A. J.; Mcmahon, K. J.; Herzmann, Cheryl

    1967-01-01

    The per cent viability of Bacillus popilliae after lyophilization of liquid nitrogen frozen cells was determined. Lyophilization of 9- to 12-hr cells which had been suspended in 5% sodium glutamate plus 0.5% gum tragacanth, frozen in liquid nitrogen vapor, and dried 4 to 5 hr with the ampoules exposed to room temperature resulted in survival of 64.6% of the original cells. After storage of these lyophilized preparations for 6 months at room temperature, 10.5% of the original cells were still viable. PMID:6031431

  3. The self limiting effect of hydrogen cluster in gas jet under liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Han Jifeng; Yang Chaowen; Miao Jingwei; Fu Pengtao; Luo Xiaobing; Shi Miangong

    2010-01-01

    The generation of hydrogen clusters in gas jet is tested using the Rayleigh scattering method under liquid nitrogen temperature of 79 K. The self limiting effect of hydrogen cluster is studied and it is found that the cluster formation is greatly affected by the number of expanded molecules. The well designed liquid nitrogen cold trap ensured that the hydrogen cluster would keep maximum size for maximum 15 ms during one gas jet. The scattered light intensity exhibits a power scaling on the backing pressure ranging from 5 to 48 bar with the power value of 4.1.

  4. Pressure-volume-temperature gauging method experiment using liquid nitrogen under microgravity condition of parabolic flight

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Man Su; Park, Hana; Yoo, Don Gyu; Jeong, Sang Kwon [Cryogenic Engineering Laboratory, Department of Mechanical Engineering, KAIST, Daejeon (Korea, Republic of); Jung, Young Suk [Launcher Systems Development Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of)

    2014-06-15

    Measuring an exact amount of remaining cryogenic liquid propellant under microgravity condition is one of the important issues of rocket vehicle. A Pressure-Volume-Temperature (PVT) gauging method is attractive due to its minimal additional hardware and simple gauging process. In this paper, PVT gauging method using liquid nitrogen is investigated under microgravity condition with parabolic flight. A 9.2 litre metal cryogenic liquid storage tank containing approximately 30% of liquid nitrogen is pressurized by ambient temperature helium gas. During microgravity condition, the inside of the liquid tank becomes near-isothermal condition within 1 K difference indicated by 6 silicon diode sensors vertically distributed in the middle of the liquid tank. Helium injection with higher mass flow rate after 10 seconds of the waiting time results in successful measurements of helium partial pressure in the tank. Average liquid volume measurement error is within 11% of the whole liquid tank volume and standard deviation of errors is 11.9. As a result, the applicability of PVT gauging method to liquid.

  5. Pressure-volume-temperature gauging method experiment using liquid nitrogen under microgravity condition of parabolic flight

    International Nuclear Information System (INIS)

    Seo, Man Su; Park, Hana; Yoo, Don Gyu; Jeong, Sang Kwon; Jung, Young Suk

    2014-01-01

    Measuring an exact amount of remaining cryogenic liquid propellant under microgravity condition is one of the important issues of rocket vehicle. A Pressure-Volume-Temperature (PVT) gauging method is attractive due to its minimal additional hardware and simple gauging process. In this paper, PVT gauging method using liquid nitrogen is investigated under microgravity condition with parabolic flight. A 9.2 litre metal cryogenic liquid storage tank containing approximately 30% of liquid nitrogen is pressurized by ambient temperature helium gas. During microgravity condition, the inside of the liquid tank becomes near-isothermal condition within 1 K difference indicated by 6 silicon diode sensors vertically distributed in the middle of the liquid tank. Helium injection with higher mass flow rate after 10 seconds of the waiting time results in successful measurements of helium partial pressure in the tank. Average liquid volume measurement error is within 11% of the whole liquid tank volume and standard deviation of errors is 11.9. As a result, the applicability of PVT gauging method to liquid

  6. Simulation methods of rocket fuel refrigerating with liquid nitrogen and intermediate heat carrier

    Directory of Open Access Journals (Sweden)

    O. E. Denisov

    2014-01-01

    Full Text Available Temperature preparation of liquid propellant components (LPC before fueling the tanks of rocket and space technology is the one of the operations performed by ground technological complexes on cosmodromes. Refrigeration of high-boiling LPC is needed to increase its density and to create cold reserve for compensation of heat flows existing during fueling and prelaunch operations of space rockets.The method and results of simulation of LPC refrigeration in the recuperative heat exchangers with heat carrier which is refrigerated by-turn with liquid nitrogen sparging. The refrigerating system consists of two tanks (for the chilled coolant and LPC, LPC and heat carrier circulation loops with heat exchanger and system of heat carrier refrigeration in its tank with bubbler. Application of intermediate heat carrier between LPC and liquid nitrogen allows to avoid LPC crystallization on cold surfaces of the heat exchanger.Simulation of such systems performance is necessary to determine its basic design and functional parameters ensuring effective refrigerating of liquid propellant components, time and the amount of liquid nitrogen spent on refrigeration operation. Creating a simulator is quite complicated because of the need to take into consideration many different heat exchange processes occurring in the system. Also, to determine the influence of various parameters on occurring processes it is necessary to take into consideration the dependence of all heat exchange parameters on each other: heat emission coefficients, heat transfer coefficients, heat flow amounts, etc.The paper offers an overview of 10 references to foreign and Russian publications on separate issues and processes occurring in liquids refrigerating, including LPC refrigeration with liquid nitrogen. Concluded the need to define the LPC refrigerating conditions to minimize cost of liquid nitrogen. The experimental data presented in these publications is conformed with the application of

  7. Intact preservation of environmental samples by freezing under an alternating magnetic field.

    Science.gov (United States)

    Morono, Yuki; Terada, Takeshi; Yamamoto, Yuhji; Xiao, Nan; Hirose, Takehiro; Sugeno, Masaya; Ohwada, Norio; Inagaki, Fumio

    2015-04-01

    The study of environmental samples requires a preservation system that stabilizes the sample structure, including cells and biomolecules. To address this fundamental issue, we tested the cell alive system (CAS)-freezing technique for subseafloor sediment core samples. In the CAS-freezing technique, an alternating magnetic field is applied during the freezing process to produce vibration of water molecules and achieve a stable, super-cooled liquid phase. Upon further cooling, the temperature decreases further, achieving a uniform freezing of sample with minimal ice crystal formation. In this study, samples were preserved using the CAS and conventional freezing techniques at 4, -20, -80 and -196 (liquid nitrogen) °C. After 6 months of storage, microbial cell counts by conventional freezing significantly decreased (down to 10.7% of initial), whereas that by CAS-freezing resulted in minimal. When Escherichia coli cells were tested under the same freezing conditions and storage for 2.5 months, CAS-frozen E. coli cells showed higher viability than the other conditions. In addition, an alternating magnetic field does not impact on the direction of remanent magnetization in sediment core samples, although slight partial demagnetization in intensity due to freezing was observed. Consequently, our data indicate that the CAS technique is highly useful for the preservation of environmental samples. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Liquid nitrogen-cooled diamond-wire concrete cutting. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    Liquid nitrogen-cooled diamond-wire concrete cutting can be used to cut through thick concrete walls, floors, and structures without using water to cool the cutting wire. The diamond wire is cooled with liquid nitrogen in a 0.9-m (3-ft) long by 7.6-cm (3-in.) diameter pipe housing. The nitrogen evaporates, so no contaminated liquid waste is generated. Other than the use of liquid nitrogen, the system is a conventional diamond-wire saw assembly with remote hydraulic controls. Setup of the hydraulic-powered drive wheel and the diamond wire for cutting requires a relatively short period of time using people with minimal training. Concrete dust generated during the cutting is considerable and requires control. The production rate of this improved technology is 0.78 m 2 /hr (8.4 ft 2 /hr). The production rates of traditional (baseline) water-cooled diamond-wire cutting and circular saw cutting technologies are 1.11 m 2 /hr (12 ft 2 /hr), and 0.45 m 2 /hr (4.8 ft 2 /hr), respectively. The liquid nitrogen-cooled system costs 189% more than conventional diamond-wire cutting if contaminated liquid wastes collection, treatment, and disposal are not accounted for with the baseline. The new technology was 310% more costly than a conventional diamond circular saw, under the conditions of this demonstration (no wastewater control). For cutting a 0.9-m x 3.7-m (3-ft x 12-ft) wall, the improved technology costs $17,000, while baseline diamond-wire cutting would cost $9,000 and baseline circular-saw cutting would cost $5,500. The improved system may cost less than the baseline technologies or may be comparable in cost if wastewater control is included

  9. Liquid nitrogen-cooled diamond-wire concrete cutting. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Liquid nitrogen-cooled diamond-wire concrete cutting can be used to cut through thick concrete walls, floors, and structures without using water to cool the cutting wire. The diamond wire is cooled with liquid nitrogen in a 0.9-m (3-ft) long by 7.6-cm (3-in.) diameter pipe housing. The nitrogen evaporates, so no contaminated liquid waste is generated. Other than the use of liquid nitrogen, the system is a conventional diamond-wire saw assembly with remote hydraulic controls. Setup of the hydraulic-powered drive wheel and the diamond wire for cutting requires a relatively short period of time using people with minimal training. Concrete dust generated during the cutting is considerable and requires control. The production rate of this improved technology is 0.78 m{sup 2}/hr (8.4 ft{sup 2}/hr). The production rates of traditional (baseline) water-cooled diamond-wire cutting and circular saw cutting technologies are 1.11 m{sup 2}/hr (12 ft{sup 2}/hr), and 0.45 m{sup 2}/hr (4.8 ft{sup 2}/hr), respectively. The liquid nitrogen-cooled system costs 189% more than conventional diamond-wire cutting if contaminated liquid wastes collection, treatment, and disposal are not accounted for with the baseline. The new technology was 310% more costly than a conventional diamond circular saw, under the conditions of this demonstration (no wastewater control). For cutting a 0.9-m x 3.7-m (3-ft x 12-ft) wall, the improved technology costs $17,000, while baseline diamond-wire cutting would cost $9,000 and baseline circular-saw cutting would cost $5,500. The improved system may cost less than the baseline technologies or may be comparable in cost if wastewater control is included.

  10. DNB heat flux on inner side of a vertical pipe in forced flow of liquid hydrogen and liquid nitrogen

    Science.gov (United States)

    Shirai, Yasuyuki; Tatsumoto, Hideki; Shiotsu, Masahiro; Hata, Koichi; Kobayashi, Hiroaki; Naruo, Yoshihiro; Inatani, Yoshifumi

    2018-06-01

    Heat transfer from inner side of a heated vertical pipe to liquid hydrogen flowing upward was measured at the pressures of 0.4, 0.7 and 1.1 MPa for wide ranges of flow rate and liquid temperature. Nine test heaters with different inner diameters of 3, 4, 6 and 9 mm and the lengths of 50, 100, 150, 200, 250 and 300 mm were used. The DNB (departure from nucleate boiling) heat fluxes in forced flow of liquid hydrogen were measured for various subcoolings and flow velocities at pressures of 0.4, 0.7 and 1.1 MPa. Effect of L/d (ratio of heater length to diameter) was clarified for the range of L / d ⩽ 50 . A new correlation of DNB heat flux was presented based on a simple model and the experimental data. Similar experiments were performed for liquid nitrogen at pressures of 0.5 MPa and 1.0 MPa by using the same experimental system and some of the test heaters. It was confirmed that the new correlation can describe not only the hydrogen data, but also the data of liquid nitrogen.

  11. Microbial contamination of embryos and semen during long term banking in liquid nitrogen.

    Science.gov (United States)

    Bielanski, A; Bergeron, H; Lau, P C K; Devenish, J

    2003-04-01

    We report on microbial contamination of embryos and semen cryopreserved in sealed plastic straws and stored for 6-35 years in liquid nitrogen. There were 32 bacterial and 1 fungal species identified from randomly drawn liquid nitrogen, frozen semen, and embryos samples stored in 8 commercial and 8 research facility liquid nitrogen (LN) tanks. The identified bacteria represented commensal or environmental microorganisms and some, such as Escherichia coli, were potential or opportunistic pathogens for humans and animals. Stenotrophomonas maltophilia was the most common contaminant identified from the samples and was further shown to significantly suppress fertilization and embryonic development in vitro. Analysis of the strains by pulsed field gel electrophoresis revealed restriction patterns with no relatedness indicating that there was no apparent cross-contamination of S. maltophilia strains between the germplasm and liquid nitrogen samples. In addition, no transmission of bovine viral diarrhea virus (BVDV) and bovine herpesvirus-1 (BHV-1) from infected semen and embryos straws to clean germplasm stored in the same LN tanks or LN was detected.

  12. Non liquid nitrogen-based-method for isolation of DNA from ...

    African Journals Online (AJOL)

    A simple, efficient, reliable and cost-effective method for isolation of total genomic DNA from fungi, suitable for polymerase chain reaction (PCR) amplification and other molecular applications was described. The main advantages of the method are: (1) does not require the use of liquid nitrogen for preparation of fungi DNA; ...

  13. Open loop, auto reversing liquid nitrogen circulation thermal system for thermo vacuum chamber

    International Nuclear Information System (INIS)

    Naidu, M C A; Nolakha, Dinesh; Saharkar, B S; Kavani, K M; Patel, D R

    2012-01-01

    In a thermo vacuum chamber, attaining and controlling low and high temperatures (-100 Deg. C to +120 Deg. C) is a very important task. This paper describes the development of 'Open loop, auto reversing liquid nitrogen based thermal system'. System specifications, features, open loop auto reversing system, liquid nitrogen flow paths etc. are discussed in this paper. This thermal system consists of solenoid operated cryogenic valves, double embossed thermal plate (shroud), heating elements, temperature sensors and PLC. Bulky items like blowers, heating chambers, liquid nitrogen injection chambers, huge pipe lines and valves were not used. This entire thermal system is very simple to operate and PLC based, fully auto system with auto tuned to given set temperatures. This system requires a very nominal amount of liquid nitrogen (approx. 80 liters / hour) while conducting thermo vacuum tests. This system was integrated to 1.2m dia thermo vacuum chamber, as a part of its augmentation, to conduct extreme temperature cycling tests on passive antenna reflectors of satellites.

  14. Preservation of Meloidogyne hapla and M. chitwoodi in liquid nitrogen: Differences in response between populations

    NARCIS (Netherlands)

    Beek, van der J.G.; Veldhuis, W.B.J.; ZijIstra, C.; Silfhout, van C.H.

    1996-01-01

    A procedure for long-term preservation of gennplasm of Meloidogyne hapla and M. chitwoodi in liquid nitrogen is described, including a pretrearrnenr with 10% ethanediol for 2 h at room temperature and 40 % ethanecliol for 45 min on ice. Survival rates ranged from 45 to 98 % with an average of 75 %.

  15. Recovery time of high temperature superconducting tapes exposed in liquid nitrogen

    International Nuclear Information System (INIS)

    Sheng, Jie; Zeng, Weina; Yao, Zhihao; Zhao, Anfeng; Hu, Daoyu; Hong, Zhiyong

    2016-01-01

    Highlights: • A novel method based on a sequence of AC pulses is presented. • Liquid nitrogen temperature is used as criterion to judge whether the sample has recovered. • Recovery time of some tape doesn't increase with the amplitude of fault current. • This phenomenon is caused by boiling heat transfer process of liquid nitrogen. • This phenomenon can be used in optimizing both the limiting rate and reclosing system. - Abstract: The recovery time is a crucial parameter to high temperature superconducting tapes, especially in power applications. The cooperation between the reclosing device and the superconducting facilities mostly relies on the recovery time of the superconducting tapes. In this paper, a novel method is presented to measure the recovery time of several different superconducting samples. In this method criterion used to judge whether the sample has recovered is the liquid nitrogen temperature, instead of the critical temperature. An interesting phenomenon is observed during the testing of superconducting samples exposed in the liquid nitrogen. Theoretical explanations of this phenomenon are presented from the aspect of heat transfer. Optimization strategy of recovery characteristics based on this phenomenon is also briefly discussed.

  16. Liquid nitrogen-treated autogenous dentin as bone substitute: an experimental study in a rabbit model.

    Science.gov (United States)

    Atiya, Basim K; Shanmuhasuntharam, Palasuntharam; Huat, Siar; Abdulrazzak, Shurooq; Oon, Ha

    2014-01-01

    Different forms of dentin, including untreated, undemineralized, demineralized, boiled, or mixed with other materials, have been evaluated for efficacy as bone substitutes. However, the effects of application of liquid nitrogen-treated dentin for bone grafting remain unknown. The objective of this study was to chronologically evaluate bone healing following grafting with liquid nitrogen-treated dentin in a rabbit model. Autogenous dentin treated with liquid nitrogen at -196°C for 20 minutes was used. In 16 New Zealand White rabbits, a bone defect (5 mm in diameter) was created in each femur and randomly grafted with either autogenous dentin (experimental group) or autogenous bone grafts (positive control). In another four rabbits (negative control), a similar defect in each femur was left empty. The rabbits were sacrificed at 2, 4, 8, and 12 weeks. Explants of grafted sites were harvested for histologic and histomorphometric analysis. At 2 and 4 weeks in both the experimental and positive control groups, accelerated formation of new bone was observed, which was undergoing remodeling at 8 and 12 weeks. The mean new bone score was higher in the experimental than in the negative control groups, but this was not statistically significant. The present results demonstrated that liquid nitrogen-treated autogenous dentin has both osteoconductive and osteoinductive properties and therefore has potential as a bone substitute.

  17. Dissolved nitrogen in liquid lithium - a problem in fusion reactor chemistry

    International Nuclear Information System (INIS)

    Hubberstey, P.

    1984-01-01

    When dissolved in liquid lithium, nitrogen adopts the role filled by oxygen in liquid sodium systems, reacting readily with stainless steel containment materials to form Li 9 CrN 5 as a surface product; extended reaction leads to pronounced corrosion and embrittlement problems. It also interacts with both carbon and silicon impurities forming Li 2 NCN and Li 5 SiN 3 , respectively; it is inert, however, to oxygen impurity. Although dissolved nitrogen reacts with neither the tritium generated in the breeding process nor the lead added to act as a neutron multiplier, its presence may seriously influence tritium recovery processes since it reacts with and hence may poison the majority of the transition metals (Y,Ti,Zr) presently being considered as tritium getter materials. Its reactivity with these metals forms the basis of the hot trapping technique used to remove dissolved nitrogen from liquid lithium systems; cold trapping is ineffective because of its large solubility even at temperatures just above the melting point of pure lithium (453.6K). Whenever possible, the chemistry of nitrogen dissolved in liquid lithium is rationalised using the thermodynamic concepts and its significance to fusion reactor technology stressed. (author)

  18. Nitrogen Fertilizer Replacement Value of Concentrated Liquid Fraction of Separated Pig Slurry Applied to Grassland

    NARCIS (Netherlands)

    Middelkoop, Van J.C.; Holshof, G.

    2017-01-01

    Seven grassland experiments on sandy and clay soils were performed during a period of 4 years to estimate the nitrogen (N) fertilizer replacement value (NFRV) of concentrated liquid fractions of separated pig slurry (mineral concentrate: MC). The risk of nitrate leaching when applying MC was

  19. Cryopreservation of citrus seed via dehydration followed by immersion in liquid nitrogen

    Science.gov (United States)

    An important method for plant germplasm conservation is offered by a biotechnology-based approach of cryopreservation. Cryopreservation refers to the storage of plant material at ultralow temperatures in liquid nitrogen. A procedure for cryopreservation of polyembryonic seeds was improved for select...

  20. Installation of the liquid nitrogen tank for the external cryogenics system

    CERN Multimedia

    2001-01-01

    The picture shows the installation of the 50000l liquid nitrogen tank in its first position next to the SHL annex of the SX5 building. The tank will be moved to its final position after the completion of the surface tests.

  1. Recovery of valuable nitrogen compounds from agricultural liquid wastes: potential possibilities, bottlenecks and future technological challenges.

    NARCIS (Netherlands)

    Rulkens, W.H.; Klapwijk, A.; Willers, H.C.

    1998-01-01

    Agricultural liquid livestock wastes are an important potential source of valuable nitrogen-containing compounds such as ammonia and proteins. Large volumetric quantities of these wastes are produced in areas with a high livestock production density. Much technological research has been carried out

  2. How to best freeze liver samples to perform the in vivo mammalian alkaline comet assay

    Directory of Open Access Journals (Sweden)

    José Manuel Enciso Gadea

    2015-06-01

    None of the different methods used was capable of giving good results, except immersing the liver samples in liquid nitrogen, followed by Jackson’s et al. (2013 thawing protocol, suggesting that the thawing process may be as critical as the freezing process. To sum up, these results highlight the importance of deepening the possibility to perform the comet assay with frozen tissue.

  3. The effects of freezing, storage, and thawing on cell compartment integrity and ultrastructure

    DEFF Research Database (Denmark)

    Prentø, P

    1997-01-01

    The effects of slow freezing and thawing on enzyme compartmentalization and ultrastructure were studied in rat liver slices frozen in dry ice, isopentane/ethanol-dry ice, or liquid nitrogen, and stored at -80 degrees C for 1-14 days. Non-frozen slices served as controls. Frozen liver slices were...

  4. Experimental research on rock fracture failure characteristics under liquid nitrogen cooling conditions

    Science.gov (United States)

    Gao, Feng; Cai, Chengzheng; Yang, Yugui

    2018-06-01

    As liquid nitrogen is injected into a wellbore as fracturing fluid, it can rapidly absorb heat from warmer rock and generate cryogenic condition in downhole region. This will alter the physical conditions of reservoir rocks and further affect rock failure characteristics. To investigate rock fracture failure characteristics under liquid nitrogen cooling conditions, the fracture features of four types of sandstones and one type of marble were tested on original samples (the sample without any treatment) and cryogenic samples (the samples just taken out from the liquid nitrogen), respectively. The differences between original samples and cryogenic samples in load-displacement curves, fracture toughness, energy evolution and the crack density of ruptured samples were compared and analyzed. The results showed that at elastic deformation stage, cryogenic samples presented less plastic deformation and more obvious brittle failure characteristics than original ones. The average fracture toughness of cryogenic samples was 10.47%-158.33% greater than that of original ones, indicating that the mechanical strength of rocks used were enhanced under cooling conditions. When the samples ruptured, the cryogenic ones were required to absorb more energy and reserve more elastic energy. In general, the fracture degree of cryogenic samples was higher than that of original ones. As the samples were entirely fractured, the crack density of cryogenic samples was about 536.67% at most larger than that of original ones. This indicated that under liquid nitrogen cooling conditions, the stimulation reservoir volume is expected to be improved during fracturing. This work could provide a reference to the research on the mechanical properties and fracture failure of rock during liquid nitrogen fracturing.

  5. Post-thaw sperm characteristics following long-term storage of boar semen in liquid nitrogen.

    Science.gov (United States)

    Fraser, L; Strzeżek, J; Kordan, W

    2014-06-30

    This study investigated the effect of long-term liquid nitrogen storage of semen from individual boars on post-thaw sperm characteristics. Ejaculates, collected from five Polish large white (PLW) and five Polish landrace (PLR) boars, were frozen using a standard cryopreservation protocol. Post-thaw analysis was performed within a week (Period 1) and 42-48 months (Period 2) of semen storage in liquid nitrogen. Post-thaw sperm assessments included total motility, mitochondrial function (JC-1/PI assay), plasma membrane integrity (SYBR-14/PI assay), osmotic resistance test (ORT), lipid peroxidation (LPO) status and DNA fragmentation, analysed by the neutral Comet assay. Individual boar variability within breed and cryostorage periods had significant effects on the analysed parameters of frozen-thawed spermatozoa. Prolonged semen storage in liquid nitrogen (Period 2) induced a marked reduction in post-thaw sperm motility, mitochondrial function and plasma membrane integrity in most of the boars. Post-thaw semen of eight boars exhibited a marked decrease in osmotic resistance of the sperm acrosomal membrane, whereas a significant increase in the sperm cryo-susceptibility to induced LPO and DNA fragmentation was observed only in three boars after long-term semen storage. Additionally, frozen-thawed spermatozoa of PLR boars exhibited significantly lower osmotic resistance of the acrosomal membrane than PLW boars following prolonged semen storage in liquid nitrogen. The results of this study provide evidence of ageing processes in frozen-thawed boar spermatozoa following prolonged cryostorage. It seems that, even though cryopreservation allows long-term semen storage in liquid nitrogen, spermatozoa from individual boars are more susceptible to cryo-induced damage. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Experimental investigation on No-Vent Fill (NVF) process using liquid Nitrogen

    International Nuclear Information System (INIS)

    Kim, Young Cheol; Seo, Man Su; Yoo, Dong Gyu; Jeong, Sang Kwon

    2014-01-01

    For a long-term space mission, filling process of cryogenic liquid propellant is operated on a space vehicle in space. A vent process during transfer and filling of cryogenic propellant is needed to maintain the fuel tank pressure at a safe level due to its volatile characteristic. It is possible that both liquid and vapor phases of the cryogenic propellant are released simultaneously to outer space when the vent process occurs under low gravity environment. As a result, the existing filling process with venting not only accompanies wasting liquid propellant, but also consumes extra fuel to compensate for the unexpected momentum originated from the vent process. No-Vent Fill (NVF) method, a filling procedure without a venting process of cryogenic liquid propellant, is an attractive technology to perform a long-term space mission. In this paper, the preliminary experimental results of the NVF process are described. The experimental set-up consists of a 9-liter cryogenic liquid receiver tank and a supply tank. Liquid nitrogen (LN2) is used to simulate the behavior of cryogenic propellant. The whole situation in the receiver tank during NVF is monitored. The major experimental parameter in the experiment is the mass flow rate of the liquid nitrogen. The experimental results demonstrate that as the mass flow rate is increased, NVF process is conducted successfully. The quality and the inlet temperature of the injected LN2 are affected by the mass flow rate. These parameters determine success of NVF.

  7. Nitrogen tetroxide vapor scrubber using a recirculating liquid

    Science.gov (United States)

    Reisert, T. D.

    1978-01-01

    Scrubbers required to reduce N2O4 contamination of nitrogen vent gas streams to a safe level to preclude health hazard to personnel and to preclude adverse environmental effects were developed. The scrubber principle involved is to absorb and neutralize the N2O4 component in a closed circuit circulating water/chemical solution in a vertical counter-flow, packed-tower configuration. The operational and performance test requirements for the scrubbers consist of demonstrating that the exit gas contamination level from the scrubbers does not exceed 150 ppm oxidizer under any flow conditions up to 400 scfm with inlet concentrations of up to 100,000 ppm oxidizer. Several problems were encountered during the performance testing that led to a series of investigations and supplementary testing. It was finally necessary to change the scrubber liquors in oxidizer scrubber to successfully achieve performance requirements. The scrubbers, the test configuration, and the various tests performed are described.

  8. Measurement of the neutron and gamma-ray spectra originating from a 14-MeV neutron source in liquid nitrogen and liquid air

    International Nuclear Information System (INIS)

    Broecker, B.; Clausen, K.; Schneider-Kuehnle, P.; Weinert, M.

    1975-01-01

    An experiment to measure the radiation transport originating from a 14-MeV neutron source in liquid nitrogen and liquid air is presented. Neutron and gamma-ray spectra were measured with a proton-recoil NE 213 scintillator and with four spherical proportional counters in a tank filled with liquid nitrogen or liquid air. The neutron spectra cover the energy range of 20 keV to 18 MeV. The source-detector separation varies in the liquid medium between 60 and 240 cm. The experimental setup is briefly described and the errors are estimated. (2 tables, 9 figures) (auth)

  9. Effect of carbon and silicon on nitrogen solubility in liquid chromium and iron-chromium alloys

    International Nuclear Information System (INIS)

    Khyakkinen, V.I.; Bezobrazov, S.V.

    1986-01-01

    The study is aimed at specifying the role of carbon and silicon in high-chromium melts nitridation processes. It is shown that in high-chromium melts of the Cr-Fe-C system the nitrogen solubility is reduced with the growth of carbon content and in the chromium concentration range of 70-100% at 1873 K and P N 2 =0.1 MPa it is described by the lg[%N] Cr-Fe-C =lg[%N] cr-fe -0.098[%C] equation. While decreasing the temperature the nitrogen solubility in alloys is increased. Silicon essentially decreases the nitrogen solubility in liquid chromium. For the 0-10% silicon concentration range the relation between the equilibrium content of nitrogen and silicon at 1873 K and P N 2 =0.1 MPa is described by the straight line equation [%N] Cr-Si =6.1-0.338 [%Si

  10. Liquid nitrogen enhancement of partially annealed fission tracks in glass

    International Nuclear Information System (INIS)

    Pilione, L.J.; Gold, D.P.

    1976-01-01

    It is known that the number density of fission tracks in solids is reduced if the sample is heated before chemical etching, and the effect of annealing must be allowed for before an age can be assigned to the sample. The extent of annealing can be determined by measuring the reduction of track parameters (diameter and/or length) and comparison with unannealed tracks. Correct ages can be obtained by careful calibration studies of track density reduction against track diameter or length reduction at different annealing temperatures and times. For crystallised minerals, however, the resulting correction techniques are not generally valid. In the experimental work described glass samples were partially annealed and then immersed in liquid N 2 for various periods, and it was shown that the properties of the glass and the track parameters could be altered so as to observe tracks that would normally be erased by annealing. The results of track density measurements against liquid N 2 immersion times are shown graphically. A gain of about 40% was achieved after 760 hours immersion time. The size of the tracks was not noticeably affected by the immersion. It was thought that thermal shock might be the cause of the track enhancement, but it was found that repeated immersion for about 2 hours did not lead to an increase in track density. Other studies suggest that the mechanism that erases the tracks through annealing may be partially reversed when the temperature of the sample is significantly lowered for a sufficient length of time. Further work is under way to find whether or not the process of enhancement is a reversal of the annealing process. Similar enhancement effects using liquid N 2 have been observed for d-particle tracks in polycarbonate detectors. (U.K.)

  11. CHARACTERISTICS OF INTERACTIONS BETWEEN SOME TEXTURE PROPERTIES AND COMPOSITION OF CARRAGEENAN GELS AS A RESULT OF ITS DEFINED DIVERSIFIED FREEZING AND THAWING TREATMENT

    Directory of Open Access Journals (Sweden)

    Katarzyna Kozłowicz

    2013-06-01

    Full Text Available Model samples of carrageenan gels based on water, milk and juice were air-blast frozen and frozen by immersion in glycol and in liquid nitrogen. The gel freezing rate was determined on the basis of the kinetics of freezing. Carrageenan gel samples were characterized by evaluation of its thawing drip loss and hardness determined with compression and penetration tests. Freezing in liquid nitrogen ensured the highest freezing rates. Thawing drip loss of gels significantly depended on the carrageenan content, pH of the solution, freezing method and freezing rate. The resulting relationships are linear functions with high determination coefficients. The results of compression and penetration tests prove the significant effect of the carrageenan content and pH on gel hardness. The higher carrageenan content in a sample, the higher compression force and penetration of the gel. Gel freezing resulted in lower hardness. Freezing conditions had a significant effect on the properties tested. The correlation between compression forces and penetration depending on the carrageenan content and the freezing method was described using regression equations with high determination coefficients. Gels based on milk and juice with 2.2% carrageenan content are recommended for immersion freezing at rates above 5.0 cm·h-1.

  12. Nitrogen losses and chemical parameters during co-composting of solid wastes and liquid pig manure.

    Science.gov (United States)

    Vázquez, M A; de la Varga, D; Plana, R; Soto, M

    2017-07-04

    The aim of this research was to study nitrogen losses during the treatment of the liquid fraction (LF) of pig manure by co-composting and to establish the best conditions for compost production with higher nitrogen and low heavy metal contents. Windrows were constituted with the solid fraction (SF) of pig manure, different organic waste (SF of pig manure, sawdust and grape bagasse) as co-substrate and Populus spp. wood chips as bulking material and watered intensely with the LF. Results show that nitrogen losses ranged from 30% to 66% of initial nitrogen and were mainly governed by substrate to bulking mass ratio and liquid fraction to substrate (LF/S) ratio, and only secondarily by operational parameters. Nitrogen losses decreased from 55-65% at low LF/S ratios (1.7-1.9 m 3 /t total solids (TS)) to 30-39% at high LF/S ratios (4.4-4.7 m 3 /t TS). Therefore, integrating the LF in the composting process at high LF/S ratios favoured nitrogen recovery and conservation. Nitrogen in the fine fraction (ranging from 27% to 48% of initial nitrogen) was governed by operational parameters, namely pH and temperature. Final compost showed low content in most heavy metals, but Zn was higher than the limits for compost use in agriculture. Zn content in the obtained compost varied from 1863 to 3269 mg/kg dm, depending on several factors. The options for obtaining better quality composts from the LF of pig manure are selecting co-substrates with low heavy metal content and using them instead of the SF of pig manure.

  13. Thermodynamic analysis and evaluation of the nitrogen solubility in liquid Nb and Fe-Nb alloys

    International Nuclear Information System (INIS)

    Qiu Caian

    1994-01-01

    Experimental information on the nitrogen solubility in liquid Nb and Fe-Nb alloys has been critically analysed and then utilized to evaluate the thermodynamic properties of the Nb-N and Fe-Nb-N liquid phases on the basis of thermodynamic models of Gibbs energy. A thermodynamic description of the Fe-Nb-N liquid phase was obtained, which has been used to calculate the N solubility in comparison with experimental results. The effect of an addition of Nb on the temperature dependence of the N solubility in liquid Fe has been examined by comparing with the effect of the Cr and V additions. It has been shown that the N solubility in liquid Nb and Fe-Nb alloys under various conditions is well described by the present calculation. (orig.)

  14. [In vitro activity of human bone marrow cells after cryopreservation in liquid nitrogen for 21 - 25 years].

    Science.gov (United States)

    Huang, You-Zhang; Shen, Jian-Liang; Gong, Li-Zhong; Zheng, Pei-Hao; Liu, Yi; Yin, Wen-Jie; Cen, Jian; Wang, Ning; Zhao, De-Feng

    2010-02-01

    influence of the cryoprotectant prescriptions and the frozen methods on the cryopreservative effectiveness was little. It is concluded that the human bone marrow cells with DMSO-AuP or DMSO-HES-HuA as cryoprotectant, frozen by a programmed freezer or -80 degrees C refrigerator, could be then preserved in liquid nitrogen for long time. When the preserving time was as long as 21 to 25 years, the morphology, the recovery rate and the activity of various kinds of cells were still good. The method of freezing by -80 degrees C refrigerator with 5% DMSO-6% HES-4% HuA and preserving in liquid nitrogen would be convenient, cheap and easily-manipulated for preservation of the human bone marrow cells.

  15. Microstructure study of a material on the basis of YSZ obtained be freeze-drying

    International Nuclear Information System (INIS)

    Rizea, A.; Abrudeanu, M.; Petot, C.; Petot Ervas, G.

    2001-01-01

    Freeze-drying is a dehydration proceeding of the products in a frozen state, which is based on the ice sublimation process. It is a method, which leads to a very good homogeneity of the products and it allows obtaining very fine powders, which directs to reducing the sintering temperature. Freeze drying always supposes three stages: - freezing, sublimation and absorption of the residual water. The preparation of ZrO 20.91 Y 2 O 30.09 samples proceeds through the following stages: - a. solution preparation; b. solution spraying (into small droplets in liquid nitrogen); c. freeze drying processing; d. calcination of the freeze dried powder; e. powder compacting; f. sintering at four different temperature. The different structure of samples with different density are characterized on basis of micrographs. The results of these analyses are presented, discussed and explained through the chemical composition of the samples

  16. Automatic filling of liquid nitrogen traps auxiliary safety devices of a pumping unit

    International Nuclear Information System (INIS)

    Chatel, S.

    1969-01-01

    The liquid nitrogen traps in our laboratories are generally filled at fixed time intervals, the supply being cut when the liquid flowing through the overflow pipe acts on a lever to which is fixed a small cup fitted with a hole which allows the water of condensation to escape. This system is reliable. After a certain time however, the escape hole blocks up, water accumulates and the lever arm no longer works properly. Furthermore the duration of any cuts in the current, is added to the fixed time intervals, and in this case there can be a lack of liquid nitrogen for several hours after the current has been restored. The device described here avoids these problems. A stainless steel tube containing a copper wire passes into the trap and is immersed in the nitrogen which boils at its tip. A mercury manometer with concentric reservoirs, or an oil manometer, acting on two micro switches through a floater, records the pressure corresponding to the difference in level and controls the filling operation. If there is a lack of nitrogen, a valve can be closed by means of a falling weight, or a diffusion pump can be cut off; one time switch and at least two relays are required. One single relay can be used to control, the supply of several similar traps placed in series [fr

  17. NaK-nitrogen liquid metal MHD converter tests at 30 kw

    Science.gov (United States)

    Cerini, D. J.

    1974-01-01

    The feasibility of electrical power generation with an ambient temperature liquid-metal MHD separator cycle is demonstrated by tests in which a NaK-nitrogen LM-MHD converter was operated at nozzle inlet pressures ranging from 100 to 165 N/sq cm, NaK flow rates from 46 to 72 kg/sec, and nitrogen flow rates from 2.4 to 3.8 kg/sec. The generator was operated as an eight-phase linear induction generator, with two of the eight phases providing magnetic field compensation to minimized electrical end losses at the generator channel inlet and exit.

  18. Long term storage in liquid nitrogen leads to only minor phenotypic and gene expression changes in the mammary carcinoma model cell line BT474.

    Science.gov (United States)

    Fazekas, Judit; Grunt, Thomas W; Jensen-Jarolim, Erika; Singer, Josef

    2017-05-23

    Cancer cell lines are indispensible surrogate models in cancer research, as they can be used off-the-shelf, expanded to the desired extent, easily modified and exchanged between research groups for affirmation, reproduction or follow-up experiments.As malignant cells are prone to genomic instability, phenotypical changes may occur after certain passages in culture. Thus, cell lines have to be regularly authenticated to ensure data quality. In between experiments these cell lines are often stored in liquid nitrogen for extended time periods.Although freezing of cells is a necessary evil, little research is performed on how long-term storage affects cancer cell lines. Therefore, this study investigated the effects of a 28-year long liquid nitrogen storage period on BT474 cells with regard to phenotypical changes, differences in cell-surface receptor expression as well as cytokine and gene expressional variations. Two batches of BT474 cells, one frozen in 1986, the other directly purchased from ATCC were investigated by light microscopy, cell growth analysis, flow cytometry and cytokine as well as whole-transcriptome expression profiling. The cell lines were morphologically indifferent and showed similar growth rates and similar cell-surface receptor expression. Transcriptome analysis revealed significant differences in only 26 of 40,716 investigated RefSeq transcripts with 4 of them being up-regulated and 22 down-regulated. This study demonstrates that even after very long periods of storage in liquid nitrogen, cancer cell lines display only minimal changes in their gene expression profiles. However, also such minor changes should be carefully assessed before continuation of experiments, especially if phenotypic alterations can be additionally observed.

  19. A novel freeze-dried storage and preparation method for the determination of mycophenolic acid in plasma by high-performance liquid chromatography.

    Science.gov (United States)

    Wang, Lei; Qiang, Wei; Li, Ying; Cheng, Zeneng; Xie, Mengmeng

    2017-09-01

    Plasma samples were conventionally stored at freezing conditions until the time of detection. Such a technique, when carried out over an extended period, is energy consuming; in addition, preparation and transportation of stored samples is inconvenient. In this study, a freeze-dried storage and preparation method was proposed to determine the presence of mycophenolic acid (MPA) in plasma. Fresh plasma samples were freeze-dried using a device, and then stored at ambient temperature. After the stored samples were soaked with methanol spiked with the internal standard, high-performance liquid chromatography was conducted to detect MPA. The proposed method was demonstrated to be precise and accurate over the linear range of 0.5-50 μg mL -1 , with both intra- and inter-day precision being plasma concentration, time point of maximum plasma concentration and elimination half-life, among others, were consistent with the results in the published study. This proposed technique was proved to be simple, reproducible and energy saving. This approach could also simplify the storage and analysis of samples in clinical and scientific drug research. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Test of a cryogenic set-up for a 10 meter long liquid nitrogen cooled superconducting power cable

    DEFF Research Database (Denmark)

    Træholt, Chresten; Rasmussen, Carsten; Kühle (fratrådt), Anders Van Der Aa

    2000-01-01

    High temperature superconducting power cables may be cooled by a forced flow of sub-cooled liquid nitrogen. One way to do this is to circulate the liquid nitrogen (LN2) by means of a mechanical pump through the core of the cable and through a sub-cooler.Besides the cooling station, the cryogenics...... cable. We report on our experimental set-up for testing a 10 meter long high temperature superconducting cable with a critical current of 3.2 kA at 77K. The set-up consists of a custom designed cable end termination, current lead, coolant feed-through, liquid nitrogen closed loop circulation system...

  1. LC-MS/MS analysis of uncommon paracetamol metabolites derived through in vitro polymerization and nitration reactions in liquid nitrogen.

    Science.gov (United States)

    Trettin, Arne; Jordan, Jens; Tsikas, Dimitrios

    2014-09-01

    Paracetamol (acetaminophen, APAP) is a commonly used analgesic drug. Known paracetamol metabolites include the glucuronide, sulfate and mercapturate. N-Acetyl-benzoquinonimine (NAPQI) is considered the toxic intermediate metabolite of paracetamol. In vitro and in vivo studies indicate that paracetamol is also metabolized to additional poorly characterized metabolites. For example, metabolomic studies in urine samples of APAP-treated mice revealed metabolites such as APAP-sulfate-APAP and APAP-S-S-APAP in addition to the classical phase II metabolites. Here, we report on the development and application of LC-MS and LC-MS/MS approaches to study reactions of unlabelled and (2)H-labelled APAP with unlabelled and (15)N-labelled nitrite in aqueous phosphate buffers (pH 7.4) upon their immersion into liquid nitrogen (-196°C). In mechanistic studies, these reactions were also studied in aqueous buffer prepared in (18)O-labelled water. LC-MS and LC-MS/MS analyses were performed on a reverse-phase material (C18) using gradient elution (2mM ammonium acetate/acetonitrile), in positive and negative electrospray mode. We identified a series of APAP metabolites including di-, tri- and tetra-APAP, mono- and di-nitro-APAP and nitric ester of di-APAP. Our study indicates that nitrite induces oxidation, i.e., polymerization and nitration of APAP, when buffered APAP/nitrite solutions are immersed into liquid nitrogen. These reactions are specific for nitrite with respect to nitrate and do not proceed via intermediate formation of NAPQI. Potassium ions and physiological saline but not thiols inhibit nitrite- and shock-freeze-induced reactions of paracetamol. The underlying mechanism likely involves in situ formation of NO2 radicals from nitrite secondary to profound pH reduction (down to pH 1) and disproportionation. Polymeric paracetamol species can be analyzed as pentafluorobenzyl derivatives by LC-MS but not by GC-MS. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Successful long-term preservation of rat sperm by freeze-drying.

    Directory of Open Access Journals (Sweden)

    Takehito Kaneko

    Full Text Available BACKGROUND: Freeze-drying sperm has been developed as a new preservation method where liquid nitrogen is no longer necessary. An advantage of freeze-drying sperm is that it can be stored at 4 °C and transported at room temperature. Although the successful freeze-drying of sperm has been reported in a number of animals, the possibility of long-term preservation using this method has not yet been studied. METHODOLOGY/PRINCIPAL FINDINGS: Offspring were obtained from oocytes fertilized with rat epididymal sperm freeze-dried using a solution containing 10 mM Tris and 1 mM EDTA adjusted to pH 8.0. Tolerance of testicular sperm to freeze-drying was increased by pre-treatment with diamide. Offspring with normal fertility were obtained from oocytes fertilized with freeze-dried epididymal sperm stored at 4 °C for 5 years. CONCLUSIONS AND SIGNIFICANCE: Sperm with -SS- cross-linking in the thiol-disulfide of their protamine were highly tolerant to freeze-drying, and the fertility of freeze-dried sperm was maintained for 5 years without deterioration. This is the first report to demonstrate the successful freeze-drying of sperm using a new and simple method for long-term preservation.

  3. Generalized structural theory of freezing

    International Nuclear Information System (INIS)

    Yussouff, M.

    1980-10-01

    The first-principles order parameter theory of freezing, proposed in an earlier work, has been successful in yielding quantitative agreement with known freezing parameters for monoatomic liquids forming solids with one atom per unit cell. A generalization of this theory is presented here to include the effects of a basis set of many atoms per unit cell. The basic equations get modified by the 'density structure factors' fsub(i) which arise from the density variations within the unit cell. Calculations are presented for the important case of monoatomic liquids freezing into hexagonal close packed solids. It is concluded that all freezing transitions can be described by using structural correlations in the liquid instead of the pair potential; and that the three body correlations are important in deciding the type of solid formed after freezing. (author)

  4. Use of liquid chromatography for measuring atmospheric sulfur dioxide and nitrogen oxide

    Energy Technology Data Exchange (ETDEWEB)

    Benova, E

    1973-02-01

    A literature search to ascertain the applicability of liquid chromatography to the analysis of atmospheric sulfur dioxide and various oxides of nitrogen is reported. Simple or enriched samples can be analyzed. Plastic bags are recommended for preparation of simple samples; and a table of 18 plastic materials, their manufacturers, and pollutants to which they are inert is provided. Enriched samples can be prepared in chromatographic columns by adsorption methods. Tables are provided listing carriers, stationary phase materials, temperatures, carrier liquids (helium or nitrogen), column dimensions, and other data recommended for chromatographic tests of SO/sub 2/ and NOx. Because of its reactivity and tendency to polymerize, sulfur trioxide should be reduced to SO/sub 2/ prior to analysis.

  5. Two-Dimensional Metrology with Flatbed Scanners at Room and Liquid Nitrogen Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.; Grau Malonda, A. [CIEMAT. Madrid (Spain)

    2000-07-01

    We study the capability of the commercial flatbed scanner as a measuring instrument of two-coordinate sample both at room and liquid nitrogen temperatures. We describes simple procedure to calibrate the scanner, and the most adequate standard configuration to carry out the measurements. To illustrate the procedure, we measure the relative positions of the conductors in a cross-section of a superconducting magnet of CERN. (Author) 8 refs.

  6. Two-Dimensional Metrology with Flatbed Scanners at Room and Liquid Nitrogen Temperatures

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau Malonda, A.

    2000-01-01

    We study the capability of the commercial flatbed scanner as a measuring instrument of two-coordinate sample both at room and liquid nitrogen temperatures. We describes simple procedure to calibrate the scanner, and the most adequate standard configuration to carry out the measurements. To illustrate the procedure, we measure the relative positions of the conductors in a cross-section of a superconducting magnet of CERN. (Author) 8 refs

  7. A liquid-nitrogen monitor for lithium-drifted germanium detectors

    International Nuclear Information System (INIS)

    Andeweg, A.H.

    1977-11-01

    An instrument has been developed that makes use of a load cell to monitor the liquid nitrogen in the Dewar flask of a lithium-drifted germaniun detector. The contents are recorded on a chart recorder, and an alarm is sounded when the previously set content has been reached. A signal switches off the high-voltage power supply 30 minutes after the alarm is triggered. The calibration of the load-cell monitor is described in an appendix [af

  8. Surface Quality Improvement of AA6060 Aluminum Extruded Components through Liquid Nitrogen Mold Cooling

    Directory of Open Access Journals (Sweden)

    Andrea Francesco Ciuffini

    2018-06-01

    Full Text Available 6xxx aluminum alloys are suitable for the realization of both structural applications and architectural decorative elements, thanks to the combination of high corrosion resistance and good surface finish. In areas where the aesthetic aspects are fundamental, further improvements in surface quality are significant. The cooling of the extrusion mold via internal liquid nitrogen fluxes is emerging as an important innovation in aluminum extrusion. Nowadays, this innovation is providing a large-scale solution to obtain high quality surface finishes in extruded aluminum semi-finished products. These results are also coupled to a significant increase in productivity. The aim of the work is to compare the surface quality of both cooled liquid nitrogen molds and classically extruded products. In this work, adhesion phenomena, occurring during the extrusion between the mold and the flowing material, have been detected as the main causes of the presence of surface defects. The analysis also highlighted a strong increase in the surface quality whenever the extrusion mold was cooled with liquid nitrogen fluxes. This improvement has further been confirmed by an analysis performed on the finished products, after painting and chromium plating. This work on the AA6060 alloy has moreover proceeded to roughness measurements and metallographic analyses, to investigate the eventual occurrence of other possible benefits stemming from this new extrusion mold cooling technology.

  9. Proposal for the award of three contracts for the supply and delivery of liquid nitrogen

    CERN Document Server

    2001-01-01

    This document concerns the award of three contracts for the supply and delivery of liquid nitrogen. A call for tenders (IT-3016/LHC) was sent on 21 September 2001 to 24 firms in eight Member States. By the closing date, CERN had received tenders from four firms in one Member State. For the reasons explained in this document, the Finance Committee is invited to agree to the negotiation of the following three contracts: - a contract with PRAXAIR (FR), the lowest bidder, for the supply of up to 20 000 metric tons of liquid nitrogen over a period of three years for an amount not exceeding 2 486 000 Swiss francs, not subject to revision. - a contract with MESSER FRANCE (FR), the second lowest bidder, for the supply of up to 15 000 metric tons of liquid nitrogen over a period of three years for an amount not exceeding 1 292 542 euros (1 905 000 Swiss francs), not subject to revision. The rate of exchange which has been used is that stipulated in the tender. - a contract with AIR PRODUCTS (FR), the third lowest bidd...

  10. Base profile design for high-performance operation of bipolar transistors at liquid-nitrogen temperature

    International Nuclear Information System (INIS)

    Stork, J.M.C.; Harame, D.L.; Meyerson, B.S.; Nguyen, T.N.

    1989-01-01

    The base profile requirements of Si bipolar junction transistors (BJT's) high-performance operation at liquid-nitrogen temperature are examined. Measurements of thin epitaxial-base polysilicon-emitter n-p-n transistors with increasing base doping show the effects of bandgap narrowing, mobility changes, and carrier freezeout. At room temperature the collector current at low injection is proportional to the integrated base charge, independent of the impurity distribution. At temperatures below 150 Κ, however, minority injection is dominated by the peak base doping because of the greater effectiveness of bandgap narrowing. When the peak doping in the base approaches 10 19 cm -3 , the bandgap difference between emitter and base is sufficiently small that the current gain no longer monotonically decreases with lower temperature but instead shows a maximum as low as 180 Κ. The device design window appears limited at the low-current end by increased base-emitter leakage due to tunneling and by resistance control at the high-current end. Using the measured dc characteristics, circuit delay calculations are made to estimate the performance of an ECL ring oscillator at room and liquid-nitrogen temperatures. It is shown that if the base doping can be raised to 10 19 cm -3 while keeping the base thickness constant, the minimum delay at liquid nitrogen can approach the delay of optimized devices at room temperature

  11. Liquid nitrogen cryotherapy for lip mucous membrane venous malformation in infants.

    Science.gov (United States)

    Zhang, Da-Ming; Wang, You-Yuan; Lin, Zhao-Yu; Yang, Zhao-Hui; Chen, Wei-Liang

    2015-03-01

    Lip mucous membrane venous malformations are common benign lesions in infants. This clinical study evaluates the efficacy and safety of liquid nitrogen cryotherapy used to treat this condition. A total of 84 pediatric patients undergoing liquid nitrogen cryotherapy for venous malformations involving the lips were reviewed, with 45 males and 39 females treated. The overall median age at mucous membrane venous malformation diagnosis was 5.6 months (range 2-18 months). The venous malformations involved the vermilion of the lower lip in 44 cases, the vermilion of the upper lip in 31 cases, and both vermilions in 9 cases. No complications due to anesthesia occurred. After a follow-up period of 2-38 months (mean 25 months), 65 lesions (77.4 %) were completely involuted, 14 lesions (16.7 %) were mostly involuted, and 5 lesions (5.9 %) were partially involuted; no lesions showed a minor amount of involution. Liquid nitrogen cryotherapy is an effective, simple, and safe management tool for mucous membrane venous malformations of the lip in infants.

  12. Mathematical Model-Based Temperature Preparation of Liquid-Propellant Components Cooled by Liquid Nitrogen in the Heat Exchanger with a Coolant

    Directory of Open Access Journals (Sweden)

    S. K. Pavlov

    2014-01-01

    Full Text Available Before fuelling the tanks of missiles, boosters, and spacecraft with liquid-propellant components (LPC their temperature preparation is needed. The missile-system ground equipment performs this operation during prelaunch processing of space-purpose missiles (SPM. Usually, the fuel cooling is necessary to increase its density and provide heat compensation during prelaunch operation of SPM. The fuel temperature control systems (FTCS using different principles of operation and types of coolants are applied for fuel cooling.To determine parameters of LPC cooling process through the fuel heat exchange in the heat exchanger with coolant, which is cooled by liquid nitrogen upon contact heat exchange in the coolant reservoir, a mathematical model of this process and a design technique are necessary. Both allow us to determine design parameters of the cooling system and the required liquid nitrogen reserve to cool LPC to the appropriate temperature.The article presents an overview of foreign and domestic publications on cooling processes research and implementation using cryogenic products such as liquid nitrogen. The article draws a conclusion that it is necessary to determine the parameters of LPC cooling process through the fuel heat exchange in the heat exchanger with coolant, which is liquid nitrogen-cooled upon contact heat exchange in the coolant reservoir allowing to define rational propellant cooling conditions to the specified temperature.The mathematical model describes the set task on the assumption that a heat exchange between the LPC and the coolant in the heat exchanger and with the environment through the walls of tanks and pipelines of circulation loops is quasi-stationary.The obtained curves allow us to calculate temperature changes of LPC and coolant, cooling time and liquid nitrogen consumption, depending on the process parameters such as a flow rate of liquid nitrogen, initial coolant temperature, pump characteristics, thermal

  13. Theoretical and experimental investigation of the thermodynamic and kinetic nitrogen absorption by liquid alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grigorenko, G.M.; Pomarin, Yu.M.; Orlovsky, V.Yu. [Natsional' na Akademyiya Nauk Ukrayini, Kiev (Ukraine). E.O. Paton Inst. of Electrical Welding

    1999-07-01

    The work was performed within the framework of the Ukrainian-French program of cooperation in the field of metal of high inclusion and was dedicated to joint fundamental investigation of thermodynamics and kinetics of nitrogen absorption by the Ni-20%Cr liquid alloy. The comparative investigations of kinetic absorption of nitrogen from the gas phase were performed by the method of levitation melting within the temperature range of 1600-1800 C in the atmosphere of pure nitrogen. Using the method of mathematical statistics and experimental Cp values at the different temperatures, the temperature dependence of the equilibrium constant of nitrogen solution reaction in the Ni-20%Cr alloy was obtained (lgK{sub N}=1284/T-1.94). Theoretical and graphical analysis of the experimental data allowed to make the conclusion that the absorption nitrogen process is controlled by the general kinetic equation of the first degree. Using of the aforementioned results the mass transfer factors were calculated with the different temperature and were obtained their mathematical description ({beta}{sub N}{sup Ni-Cr}=-454/T+0.285). (orig.)

  14. Dryland soil hydrological processes and their impacts on the nitrogen balance in a soil-maize system of a freeze-thawing agricultural area.

    Directory of Open Access Journals (Sweden)

    Wei Ouyang

    Full Text Available Understanding the fates of soil hydrological processes and nitrogen (N is essential for optimizing the water and N in a dryland crop system with the goal of obtaining a maximum yield. Few investigations have addressed the dynamics of dryland N and its association with the soil hydrological process in a freeze-thawing agricultural area. With the daily monitoring of soil water content and acquisition rates at 15, 30, 60 and 90 cm depths, the soil hydrological process with the influence of rainfall was identified. The temporal-vertical soil water storage analysis indicated the local albic soil texture provided a stable soil water condition for maize growth with the rainfall as the only water source. Soil storage water averages at 0-20, 20-40 and 40-60 cm were observed to be 490.2, 593.8, and 358 m3 ha-1, respectively, during the growing season. The evapo-transpiration (ET, rainfall, and water loss analysis demonstrated that these factors increased in same temporal pattern and provided necessary water conditions for maize growth in a short period. The dry weight and N concentration of maize organs (root, leaf, stem, tassel, and grain demonstrated the N accumulation increased to a peak in the maturity period and that grain had the most N. The maximum N accumulative rate reached about 500 mg m-2d-1 in leaves and grain. Over the entire growing season, the soil nitrate N decreased by amounts ranging from 48.9 kg N ha-1 to 65.3 kg N ha-1 over the 90 cm profile and the loss of ammonia-N ranged from 9.79 to 12.69 kg N ha-1. With soil water loss and N balance calculation, the N usage efficiency (NUE over the 0-90 cm soil profile was 43%. The soil hydrological process due to special soil texture and the temporal features of rainfall determined the maize growth in the freeze-thawing agricultural area.

  15. Dynamics of liquid nitrogen cooling process of solid surface at wetting contact coefficient

    International Nuclear Information System (INIS)

    Smakulski, P; Pietrowicz, S

    2015-01-01

    Liquid cryogens cooling by direct contact is very often used as a method for decreasing the temperature of electronic devices or equipment i.e. HTS cables. Somehow, cooldown process conducted in that way could not be optimized, because of cryogen pool boiling characteristic and low value of the heat transfer coefficient. One of the possibilities to increase the efficiency of heat transfer, as well as the efficiency of cooling itself, it is to use a spray cooling method. The paper shows dynamics analysis of liquid nitrogen cooling solid surface process. The model of heat transfer for the single droplet of liquid nitrogen, which hits on a flat and smooth surface with respect to the different Weber numbers, is shown. Temperature profiles in calculation domains are presented, as well as the required cooling time. The numerical calculations are performed for different initial and boundary conditions, to study how the wetting contact coefficient is changing, and how it contributed to heat transfer between solid and liquid cryogen. (paper)

  16. Testing of a Spray-bar Thermodynamic Vent System in Liquid Nitrogen

    Science.gov (United States)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S. L.; Tucker, S. P.

    2005-01-01

    To support development of a microgravity pressure control capability for liquid oxygen, thermodynamic vent system (TVS) testing was conducted at Marshall Space Flight Center (MSFC) using liquid nitrogen (LN2) as a LOX simulant. The spray bar TVS hardware used was originally designed by the Boeing Company for testing in liquid hydrogen (LH2). With this concept, a small portion of the tank fluid is passed through a Joule-Thomson (J-T) device, and then through a longitudinal spray bar mixed-heat exchanger in order to cool the bulk fluid. To accommodate the larger mass flow rates associated with LN2, the TVS hardware was modified by replacing the recirculation pump with an LN2 compatible pump and replacing the J-T valve. The primary advantage of the spray-bar configuration is that tank pressure control can be achieved independent of liquid and vapor location, enhancing the applicability of ground test data to microgravity conditions. Performance testing revealed that the spray-bar TVS was effective in controlling tank pressure within a 6.89 kPa band for fill levels of 90%, 50%, and 25%. Tests were also conducted with gaseous helium (GHe) in the ullage. The TVS operated nominally with GHe in the ullage, with performance similar to the tests with gaseous nitrogen (GN2). Testing demonstrated that the spray-bar TVS design was flexible enough for use in two different propellants with minimal hardware modifications.

  17. Experimental, Numerical, and Analytical Slosh Dynamics of Water and Liquid Nitrogen in a Spherical Tank

    Science.gov (United States)

    Storey, Jedediah Morse

    2016-01-01

    Understanding, predicting, and controlling fluid slosh dynamics is critical to safety and improving performance of space missions when a significant percentage of the spacecraft's mass is a liquid. Computational fluid dynamics simulations can be used to predict the dynamics of slosh, but these programs require extensive validation. Many experimental and numerical studies of water slosh have been conducted. However, slosh data for cryogenic liquids is lacking. Water and cryogenic liquid nitrogen are used in various ground-based tests with a spherical tank to characterize damping, slosh mode frequencies, and slosh forces. A single ring baffle is installed in the tank for some of the tests. Analytical models for slosh modes, slosh forces, and baffle damping are constructed based on prior work. Select experiments are simulated using a commercial CFD software, and the numerical results are compared to the analytical and experimental results for the purposes of validation and methodology-improvement.

  18. Nitrogen

    Science.gov (United States)

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  19. Liquid-liquid extraction from molten alkaline nitrates by using nitrogenous and organophosphorus derivatives

    International Nuclear Information System (INIS)

    Vittori, Olivier

    1971-01-01

    This research thesis reports the use of a system made of the LiNO 3 -KNO 3 eutectic at 160 deg. C and poly-phenyls in order to study the behaviour of phosphine and arsine oxides as extracting agents in a liquid-liquid process. In a first part, the author presents the studied system, its physical characteristics and its preparation, and the various analytical methods which have used. He discusses existing computation methods adapted to the separation of molten salts and organic phase, and proposes a specific method. Then, he reports the study of the behaviour of a phosphine oxide with Cobalt II and Nickel II, and discusses its application to the separation of this pair, Co II and Ni II. He highlights the different possibilities of three agents which are derivatives of phosphine and arsine in their ability to extract rare earths. A study of separation of rare earths is then addressed. The author reports the application of extraction equilibriums to the study of equilibriums in environments of molten salts with the Co II - chloride ions system. The author finally addresses the synergic phenomenon that pairs of neutral complexing agents of neighbouring structure or different donor central atom may display in liquid-liquid extraction

  20. A reliable procedure for decontamination before thawing of human specimens cryostored in liquid nitrogen: three washes with sterile liquid nitrogen (SLN2).

    Science.gov (United States)

    Parmegiani, Lodovico; Accorsi, Antonio; Bernardi, Silvia; Arnone, Alessandra; Cognigni, Graciela Estela; Filicori, Marco

    2012-10-01

    To report a washing procedure, to be performed as frozen specimens are taken out of cryobanks, to minimize the risk of hypothetical culture contamination during thawing. Basic research. Private assisted reproduction center. Two batches of liquid nitrogen (LN(2)) were experimentally contaminated, one with bacteria (Pseudomonas aeruginosa, Escherichia coli, Stenotrophomonas maltophilia) and the other with fungi (Aspergillus niger). Two hundred thirty-two of the most common human gamete/embryo vitrification carriers (Cryotop, Cryoleaf, Cryopette) were immersed in the contaminated LN(2) (117 in the bacteria and 25 in the fungi-contaminated LN(2)). The carriers were tested microbiologically, one group without washing (control) and the other after three subsequent washings in certified ultraviolet sterile liquid nitrogen (SLN(2)). The carriers were randomly allocated to the "three-wash procedure" (three-wash group, 142 carriers) or "no-wash" (control group, 90 carriers) using a specific software tool. Assessment of microorganism growth. In the no-wash control group, 78.6% of the carriers were contaminated by the bacteria and 100% by the fungi. No carriers were found to be contaminated, either by bacteria or fungi, after the three-wash procedure. The three-wash procedure with SLN(2) produced an efficient decontamination of carriers in extreme experimental conditions. For this reason, this procedure could be routinely performed in IVF laboratories for safe thawing of human specimens that are cryostored in nonhermetical cryocontainers, particularly in the case of open or single-straw closed vitrification systems. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Effect of the Freezing Step in the Stability and Bioactivity of Protein-Loaded PLGA Nanoparticles Upon Lyophilization

    DEFF Research Database (Denmark)

    Fonte, Pedro; Andrade, Fernanda; Azevedo, Cláudia

    2016-01-01

    , sucrose and sorbitol as cryoprotectants was evaluated. METHODS: Cryoprotectants were co-encapsulated with insulin into PLGA nanoparticles and lyophilized using an optimized cycle with freezing at -80°C, in liquid nitrogen, or ramped cooling at -40°C. Upon lyophilization, the stability of protein structure...

  2. An investigation of an uninterruptible power supply (UPS) based on supercapacitor and liquid nitrogen hybridization system

    International Nuclear Information System (INIS)

    Zhang, Xinjing; Xue, Haobai; Xu, Yujie; Chen, Haisheng; Tan, Chunqing

    2014-01-01

    Highlights: • A hybrid UPS based on supercapacitor and liquid nitrogen engine is proposed. • The dynamic modelling of the hybrid UPS system is conducted. • The dynamic working performance is obtained and analysed based on the simulation. • The hybrid UPS enjoys environmental benignity, long life and easy maintenance. • It is a highly possible solution to replace conventional UPS systems. - Abstract: An uninterruptible power supply (UPS) system based on supercapacitor and liquid nitrogen (LN 2 ) hybridization is first introduced in this paper. Of the newly designed UPS, the supercapacitor reacts instantaneously once the main supply fails, and it also starts the LN 2 power system to produce continuing electricity for the customer. This hybrid UPS system is of environment cleanness, long life time, easy maintenaince, etc. A 10 kW model is analyzed in this study. A two-stage nitrogen expander is designed with the rated speed of 900 rpm as the long time power generation device of the LN 2 cycle. The UPS starting process calculation is carried out. The results reveal that commercial supercapacitors could fulfill this request. This UPS could be a competent choice for the UPS application. Further discussion indicates the LN 2 power system could be used widely from UPS to low carbon vehicles

  3. Conidiation of Penicillium camemberti in submerged liquid cultures is dependent on the nitrogen source.

    Science.gov (United States)

    Boualem, Khadidja; Labrie, Steve; Gervais, Patrick; Waché, Yves; Cavin, Jean-François

    2016-02-01

    To study the ability of a commercial Penicillium camemberti strain, used for Camembert type cheese ripening, to produce conidia during growth in liquid culture (LC), in media containing different sources of nitrogen as, industrially, conidia are produced by growth at the surface of a solid state culture because conidiation in stirred submerged aerobic LC is not known. In complex media containing peptic digest of meat, hyphae ends did not differentiate into phialides and conidia. Contrarily, in a synthetic media containing KNO3 as sole nitrogen source, hyphae ends differentiated into phialides producing 0.5 × 10(7) conidia/ml. Conidia produced in LC were 25 % less hydrophobic than conidia produced in solid culture, and this correlates with a seven-times-lower expression of the gene rodA encoding hydrophobin RodA in the mycelium grown in LC. Conidiation of P. camembertii is stimulated in iquid medium containing KNO3 as sole source of nitrogen and therefore opens up opportunities for using liquid medium in commercial productions.

  4. Effects of various freezing containers for vitrification freezing on mouse oogenesis.

    Science.gov (United States)

    Kim, Ji Chul; Kim, Jae Myeoung; Seo, Byoung Boo

    2016-01-01

    In the present study, various freezing containers were tested for mouse embryos of respective developmental stages; embryos were vitrified and then their survival rate and developmental rate were monitored. Mouse two cell, 8 cell, and blastula stage embryos underwent vitrification freezing-thawing and then their recovery rate, survival rate, development rate, and hatching rate were investigated. EM-grid, OPS, and cryo-loop were utilized for vitrification freezing-thawing of mouse embryos. It was found that recovery rate and survival rate were higher in the group of cryo-loop compared to those of EM-grid (p containers on vitrified embryos of respective developmental stages; it was demonstrated that higher developmental rate was shown in more progressed (or developed) embryos with more blastomeres. There was however, no difference in embryonic development rate was shown amongst containers. Taken together, further additional studies are warranted with regards to 1) manipulation techniques of embryos for various vitrification freezing containers and 2) preventive measures against contamination via liquid nitrogen.

  5. Real-Time, Non-Intrusive Detection of Liquid Nitrogen in Liquid Oxygen at High Pressure and High Flow

    Science.gov (United States)

    Singh, Jagdish P.; Yueh, Fang-Yu; Kalluru, Rajamohan R.; Harrison, Louie

    2012-01-01

    An integrated fiber-optic Raman sensor has been designed for real-time, nonintrusive detection of liquid nitrogen in liquid oxygen (LOX) at high pressures and high flow rates in order to monitor the quality of LOX used during rocket engine ground testing. The integrated sensor employs a high-power (3-W) Melles Griot diode-pumped, solid-state (DPSS), frequency-doubled Nd:YAG 532- nm laser; a modified Raman probe that has built-in Raman signal filter optics; two high-resolution spectrometers; and photomultiplier tubes (PMTs) with selected bandpass filters to collect both N2 and O2 Raman signals. The PMT detection units are interfaced with National Instruments Lab- VIEW for fast data acquisition. Studies of sensor performance with different detection systems (i.e., spectrometer and PMT) were carried out. The concentration ratio of N2 and O2 can be inferred by comparing the intensities of the N2 and O2 Raman signals. The final system was fabricated to measure N2 and O2 gas mixtures as well as mixtures of liquid N2 and LOX

  6. CooLN2Car: An Experimental Car Which Uses Liquid Nitrogen as Its Fuel

    Science.gov (United States)

    Parker, M. E.; Plummer, M. C.; Ordonez, C. A.

    1997-10-01

    A ``cryogenic" heat engine which operates using the atmosphere as a heat source and a cryogenic medium as a heat sink has been incorporated as the power system for an automobile. A 1973 Volkswagen Beetle has been converted and uses liquid nitrogen as its ``fuel." A Dewar was mounted in the car and provides nitrogen under pressure to two heat exchangers connected in parallel which use atmospheric heat to heat the nitrogen. The heat exchangers deliver compressed nitrogen gas to a vane-type pneumatic motor mounted in place of the original gasoline engine. Pressure in the tank is maintained internally at 1.2 MPa and is reduced to 0.7 MPa before the motor by a pressure regulator. A throttle, composed of a butterfly valve, is mounted between the regulator and the motor and is connected to the driver's accelerator peddle. The vehicle has good acceleration, a maximum range of 15 miles, and a maximum speed of 25 mph. A demonstration with the vehicle is planned.

  7. Freeze-dried plasma enhances clot formation and inhibits fibrinolysis in the presence of tissue plasminogen activator similar to pooled liquid plasma.

    Science.gov (United States)

    Huebner, Benjamin R; Moore, Ernest E; Moore, Hunter B; Sauaia, Angela; Stettler, Gregory; Dzieciatkowska, Monika; Hansen, Kirk; Banerjee, Anirban; Silliman, Christopher C

    2017-08-01

    Systemic hyperfibrinolysis is an integral part of trauma-induced coagulopathy associated with uncontrolled bleeding. Recent data suggest that plasma-first resuscitation attenuates hyperfibrinolysis; however, the availability, transport, storage, and administration of plasma in austere environments remain challenging and have limited its use. Freeze-dried plasma (FDP) is a potential alternative due to ease of storage, longer shelf life, and efficient reconstitution. FDP potentially enhances clot formation and resists breakdown better than normal saline (NS) and albumin and similar to liquid plasma. Healthy volunteers underwent citrated blood draw followed by 50% dilution with NS, albumin, pooled plasma (PP), or pooled freeze-dried plasma (pFDP). Citrated native and tissue plasminogen activator (t-PA)-challenge (75 ng/mL) thrombelastography were done. Proteins in PP, pFDP, and albumin were analyzed by mass spectroscopy. pFDP and PP had superior clot-formation rates (angle) and clot strength (maximum amplitude) compared with NS and albumin in t-PA-challenge thrombelastographies (angle: pFDP, 67.9 degrees; PP, 67.8 degrees; NS, 40.6 degrees; albumin, 35.8 degrees; maximum amplitude: pFDP, 62.4 mm; PP, 63.5 mm; NS, 44.8 mm; albumin, 41.1 mm). NS and albumin dilution increased susceptibility to t-PA-induced hyperfibrinolysis compared with pFDP and PP (NS, 62.4%; albumin, 62.6%; PP, 8.5%; pFDP, 6.7%). pFDP was similar to PP in the attenuation of t-PA-induced fibrinolysis. Most proteins (97%) were conserved during the freeze-dry process, with higher levels in 12% of pFDP proteins compared with PP. pFDP enhances clot formation and attenuates hyperfibrinolysis better than NS and albumin and is a potential alternative to plasma resuscitation in the treatment of hemorrhagic shock. © 2017 AABB.

  8. Application of the Open Cycle Stirling Engine Driven with Liquid Nitrogen for the Non-Polluting Automobiles

    Directory of Open Access Journals (Sweden)

    M.B. Kravchenko

    2017-10-01

    Full Text Available Progress on advancing technology of using liquid nitrogen for the non-polluting automobiles is reported. It is shown that the low exergy efficiency of the known engines fueled with liquid nitrogen has discredited the very idea of a cryomobile. The design of the open-cycle cryogenic Stirling engine is proposed. This engine allows extracting up to 57% of the exergy accumulated in liquid nitrogen. The method used to calculate of such open-cycle Stirling engine is described and the calculation results and discussion are presented. It is shown that 200 liters of liquid nitrogen is sufficient for 180 km range of cryomobile at speed of 55 km/h, while a full charge of the 300-kilogram battery of Nissan LEAF electric vehicle is sufficient for a range of 160 km. Use of liquid nitrogen or liquid air as an energy vector in a transport will not require scarce materials, and, in comparison with using of lithium-ion batteries or hydrogen, this will require less capital investment.

  9. Liquid nitrogen spray cryotherapy in Barrett's esophagus with high-grade dysplasia: long-term results.

    Science.gov (United States)

    Gosain, Sonia; Mercer, Kim; Twaddell, William S; Uradomo, Lance; Greenwald, Bruce D

    2013-08-01

    Liquid nitrogen endoscopic spray cryotherapy can safely and effectively eradicate high-grade dysplasia in Barrett's esophagus (BE-HGD). Long-term data on treatment success and safety are lacking. To assess the long-term safety and efficacy of spray cryotherapy in patients with BE-HGD. Single-center, retrospective study. Tertiary-care referral center. A total of 32 patients with BE-HGD of any length. Patients were treated with liquid nitrogen spray cryotherapy every 8 weeks until complete eradication of HGD (CE-HGD) and intestinal metaplasia (CE-IM) was found by endoscopic biopsy. Surveillance endoscopy with biopsies was performed for at least 2 years. CE-HGD, CE-IM, durability of response, disease progression, and adverse events. CE-HGD was 100% (32/32), and CE-IM was 84% (27/32) at 2-year follow-up. At last follow-up (range 24-57 months), CE-HGD was 31/32 (97%), and CE-IM was 26/32 (81%). Recurrent HGD was found in 6 (18%), with CE-HGD in 5 after repeat treatment. One patient progressed to adenocarcinoma, downgraded to HGD after repeat cryotherapy. BE segment length ≥3 cm was associated with a higher recurrence of IM (P = .004; odds ratio 22.6) but not HGD. No serious adverse events occurred. Stricture was seen in 3 patients (9%), all successfully dilated. Retrospective study design, small sample size. In patients with BE-HGD, liquid nitrogen spray cryotherapy has an acceptable safety profile and success rate for eliminating HGD and IM and is associated with a low rate of recurrence or progression to cancer with long-term follow-up. Copyright © 2013 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  10. Characteristic evaluation of cooling technique using liquid nitrogen and metal porous media

    International Nuclear Information System (INIS)

    Tanno, Yusuke; Ito, Satoshi; Hashizume, Hidetoshi

    2014-01-01

    A remountable high-temperature superconducting magnet, whose segments can be mounted and demounted repeatedly, has been proposed for construction and maintenance of superconducting magnet and inner reactor components of a fusion reactor. One of the issues in this design is that the performance of the magnet deteriorates by a local temperature rise due to Joule heating in jointing regions. In order to prevent local temperature rise, a cooling system using a cryogenic coolant and metal porous media was proposed and experimental studies have been carried out using liquid nitrogen. In this study, flow and heat transfer characteristics of cooling system using subcooled liquid nitrogen and bronze particle sintered porous media are evaluated through experiments in which the inlet degree of subcooling and flow rate of the liquid nitrogen. The flow characteristics without heat input were coincided with Ergun’s equation expressing single-phase flow in porous materials. The obtained boiling curve was categorized into three conditions; convection region, nucleate boiling region and mixed region with nucleate and film boiling. Wall superheat did not increase drastically with porous media after departure from nucleate boiling point, which is different from a situation of usual boiling curve in a smooth tube. The fact is important characteristic to cooling superconducting magnet to avoid its quench. Heat transfer coefficient with bronze particle sintered porous media was at least twice larger than that without the porous media. It was also indicated qualitatively that departure from nucleate boiling point and heat transfer coefficient depends on degree of subcooling and mass flow rate. The quantitative evaluation of them and further discussion for the cooling system will be performed as future tasks

  11. Experimentation of netlike hydro gel nitrogen containing polymer sorbents for biological liquids purification

    International Nuclear Information System (INIS)

    Karieva, Z.M.; Karimova, N. Kh.

    2003-01-01

    The high efficiency of hydrogels synthesized earlier in comparison with Pharmacopoeia sorbents are interesting to study comprehensively for the number of the toxins of biological liquids. Taking into considerations the high electoral sorption ability of ethynilpiperidol polymers to the hydro phobic interaction it may be suggested that they have a high detoxication ability. The detoxication characteristics of studied polymers have advantages over the known sorbents. Experiences with animals showed that in identical conditions of experiment in application of netlike polymers the survival grew 90%. Synthesis and investigations of netlike hydrogels polymer materials on nitrogen containing monomers of ethynil piperidol were given in the work. (author)

  12. Sperm preservation by freeze-drying for the conservation of wild animals.

    Directory of Open Access Journals (Sweden)

    Takehito Kaneko

    Full Text Available Sperm preservation is a useful technique for the maintenance of biological resources in experimental and domestic animals, and in wild animals. A new preservation method has been developed that enables sperm to be stored for a long time in a refrigerator at 4 °C. Sperm are freeze-dried in a solution containing 10 mM Tris and 1 mM EDTA. Using this method, liquid nitrogen is not required for the storage and transportation of sperm. We demonstrate that chimpanzee, giraffe, jaguar, weasel and the long-haired rat sperm remain viable after freeze-drying. In all species, pronuclei were formed after the injection of freeze-dried sperm into the mouse oocytes. Although preliminary, these results may be useful for the future establishment of "freeze-drying zoo" to conserve wild animals.

  13. Cryogenic system with the sub-cooled liquid nitrogen for cooling HTS power cable

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Y.F. [Chinese Academy of Sciences, Beijing (China). Technical Institute of Physics and Chemistry; Graduate School of Chinese Academy of Sciences, Beijing (China); Gong, L.H.; Xu, X.D.; Li, L.F.; Zhang, L. [Chinese Academy of Sciences, Beijing (China). Technical Institute of Physics and Chemistry; Xiao, L.Y. [Chinese Academy of Sciences, Beijing (China). Institute of Electrical Engineering

    2005-04-01

    A 10 m long, three-phase AC high-temperature superconducting (HTS) power cable had been fabricated and tested in China August 2003. The sub-cooled liquid nitrogen (LN{sub 2}) was used to cool the HTS cable. The sub-cooled LN{sub 2} circulation was built by means of a centrifugal pump through a heat exchanger in the sub-cooler, the three-phase HTS cable cryostats and a LN{sub 2} gas-liquid separator. The LN{sub 2} was cooled down to 65 K by means of decompressing, and the maximum cooling capacity was about 3.3 kW and the amount of consumed LN{sub 2} was about 72 L/h at 1500 A. Cryogenic system design, test and some experimental results would be presented in this paper. (author)

  14. Experimental investigation of passive thermodynamic vent system (TVS) with liquid nitrogen

    Science.gov (United States)

    Bae, Junhyuk; Yoo, Junghyun; Jin, Lingxue; Jeong, Sangkwon

    2018-01-01

    Thermodynamic vent system (TVS) is an attractive technology to maintain an allowable pressure level of a cryogenic propellant storage in a spacecraft under micro-gravity condition. There are two types of TVS; active or passive. In this paper, the passive TVS which does not utilize a cryogenic liquid circulation pump is experimentally investigated with liquid nitrogen and numerically analyzed by thermodynamic and heat transfer model. A cylindrical copper tank, which is 198 mm in inner diameter and 216 mm in height, is utilized to suppress a thermal-stratification effect of inside cryogenic fluid. A coil heat exchanger, which is 3 m in length and 6.35 mm in outer diameter, and a fixed size orifice of which diameter is 0.4 mm are fabricated to remove heat from the stored fluid to the vented flow. Each vent process is initiated at 140 kPa and ended at 120 kPa with liquid nitrogen fill levels which are 30%, 50% and 70%, respectively. In the numerical model, the fluid in the tank is assumed to be homogeneous saturated liquid-vapor. Mass and energy balance equations with heat transfer conditions suggested in this research are considered to calculate the transient pressure variation in the tank and the amount of heat transfer across the heat exchanger. We achieve the average heat rejection rate of more than 9 W by TVS and conclude that the passive TVS operates satisfactorily. In addition, the prediction model is verified by experimental results. Although the model has limitation in providing accurate results, it can surely predict the tendency of pressure and temperature changes in the tank. Furthermore, the model can suggest how we can improve the heat exchanger design to enhance an overall efficiency of passive TVS. Moreover, the performance of passive TVS is compared with other cryogenic vent systems (direct vent system and active TVS) by suggested performance indicator.

  15. A measurement of the absorption of liquid argon scintillation light by dissolved nitrogen at the part-per-million level

    International Nuclear Information System (INIS)

    Jones, B J P; Chiu, C S; Conrad, J M; Ignarra, C M; Katori, T; Toups, M

    2013-01-01

    We report on a measurement of the absorption length of scintillation light in liquid argon due to dissolved nitrogen at the part-per-million (ppm) level. We inject controlled quantities of nitrogen into a high purity volume of liquid argon and monitor the light yield from an alpha source. The source is placed at different distances from a cryogenic photomultiplier tube assembly. By comparing the light yield from each position we extract the absorption cross section of nitrogen. We find that nitrogen absorbs argon scintillation light with strength of (1.51±0.15) × 10 −4 cm −1 ppm −1 , corresponding to an absorption cross section of (4.99±0.51) × 10 −21 cm 2 molecule −1 . We obtain the relationship between absorption length and nitrogen concentration over the 0 to 50 ppm range and discuss the implications for the design and data analysis of future large liquid argon time projection chamber (LArTPC) detectors. Our results indicate that for a current-generation LArTPC, where a concentration of 2 parts per million of nitrogen is expected, the attenuation length due to nitrogen will be 30±3 meters

  16. The Linear Thermal Expansion of Bulk Nanocrystalline Ingot Iron from Liquid Nitrogen to 300 K.

    Science.gov (United States)

    Wang, S G; Mei, Y; Long, K; Zhang, Z D

    2009-09-17

    The linear thermal expansions (LTE) of bulk nanocrystalline ingot iron (BNII) at six directions on rolling plane and conventional polycrystalline ingot iron (CPII) at one direction were measured from liquid nitrogen temperature to 300 K. Although the volume fraction of grain boundary and residual strain of BNII are larger than those of CPII, LTE of BNII at the six measurement directions were less than those of CPII. This phenomenon could be explained with Morse potential function and the crystalline structure of metals. Our LTE results ruled out that the grain boundary and residual strain of BNII did much contribution to its thermal expansion. The higher interaction potential energy of atoms, the less partial derivative of interaction potential energy with respect to temperature T and the porosity free at the grain boundary of BNII resulted in less LTE in comparison with CPII from liquid nitrogen temperature to 300 K. The higher LTE of many bulk nanocrystalline materials resulted from the porosity at their grain boundaries. However, many authors attributed the higher LTE of many nanocrystalline metal materials to their higher volume fraction of grain boundaries.

  17. The Linear Thermal Expansion of Bulk Nanocrystalline Ingot Iron from Liquid Nitrogen to 300 K

    Directory of Open Access Journals (Sweden)

    Mei Y

    2009-01-01

    Full Text Available Abstract The linear thermal expansions (LTE of bulk nanocrystalline ingot iron (BNII at six directions on rolling plane and conventional polycrystalline ingot iron (CPII at one direction were measured from liquid nitrogen temperature to 300 K. Although the volume fraction of grain boundary and residual strain of BNII are larger than those of CPII, LTE of BNII at the six measurement directions were less than those of CPII. This phenomenon could be explained with Morse potential function and the crystalline structure of metals. Our LTE results ruled out that the grain boundary and residual strain of BNII did much contribution to its thermal expansion. The higher interaction potential energy of atoms, the less partial derivative of interaction potential energy with respect to temperature T and the porosity free at the grain boundary of BNII resulted in less LTE in comparison with CPII from liquid nitrogen temperature to 300 K. The higher LTE of many bulk nanocrystalline materials resulted from the porosity at their grain boundaries. However, many authors attributed the higher LTE of many nanocrystalline metal materials to their higher volume fraction of grain boundaries.

  18. Development of liquid-nitrogen-cooling friction stir spot welding for AZ31 magnesium alloy joints

    Science.gov (United States)

    Wu, Dong; Shen, Jun; Zhou, Meng-bing; Cheng, Liang; Sang, Jia-xing

    2017-10-01

    A liquid-nitrogen-cooling friction stir spot welding (C-FSSW) technology was developed for welding AZ31 magnesium alloy sheets. The liquid-nitrogen cooling degraded the deformability of the welded materials such that the width of interfacial cracks increased with increasing cooling time. The grain size of the stirred zone (SZ) and the heat-affected zone (HAZ) of the C-FSSW-welded joints decreased, whereas that of the thermomechanically affected zone (TMAZ) increased with increasing cooling time. The maximum tensile shear load of the C-FSSW-welded joints welded with a cooling time of 5 or 7 s was larger than that of the friction stir spot welding (FSSW)-welded joint, and the tensile shear load decreased with increasing cooling time. The microhardness of the C-FSSW-welded joints was greater than that of the FSSW-welded joint. Moreover, the microhardness of the SZ and the HAZ of the C-FSSW-welded joints increased, whereas that of the TMAZ decreased, with increasing cooling time.

  19. Changes in morphology of long bone marrow tissue of rats submitted to cryotherapy with liquid nitrogen.

    Science.gov (United States)

    Costa, Fábio Wildson Gurgel; Pessoa, Rosana Maria Andrade; Nogueira, Carlos Bruno Pinheiro; Pereira, Karuza Maria Alves; Brito, Gerly Anne de Castro; Soares, Eduardo Costa Studart

    2012-02-01

    To study the main effects of local use of liquid nitrogen on bone marrow tissue in rats. The femoral diaphyses of 42 Wistar rats were exposed to three local and sequential applications of liquid nitrogen for one or two minutes, intercalated with periods of five minutes of passive thawing. The animals were sacrificed after one, two, four and 12 weeks and the specimens obtained were analyzed histomorphologically. In the second experimental week of one-minute protocol, histological degree of inflammation obtained a mean score of one (mild), ranging from 0 (absent or scarce) and two (moderate) (Kruskal-Wallis test p=0.01). In the second experimental week of two-minute protocol, degree of inflammation to the medullar tissue obtained an average score of two (Kruskal-Wallis test p=0.01). The degree of inflammation of the bone marrow tissue was higher in protocol of three applications of two minutes compared to protocol of three applications of one minute.

  20. Soft X-ray and cathodoluminescence measurement, optimisation and analysis at liquid nitrogen temperatures

    Science.gov (United States)

    MacRae, C. M.; Wilson, N. C.; Torpy, A.; Delle Piane, C.

    2018-01-01

    Advances in field emission gun electron microprobes have led to significant gains in the beam power density and when analysis at high resolution is required then low voltages are often selected. The resulting beam power can lead to damage and this can be minimised by cooling the sample down to cryogenic temperatures allowing sub-micrometre imaging using a variety of spectrometers. Recent advances in soft X-ray emission spectrometers (SXES) offer a spectral tool to measure both chemistry and bonding and when combined with spectral cathodoluminescence the complementary techniques enable new knowledge to be gained from both mineral and materials. Magnesium and aluminium metals have been examined at both room and liquid nitrogen temperatures by SXES and the L-emission Fermi-edge has been observed to sharpen at the lower temperatures directly confirming thermal broadening of the X-ray spectra. Gains in emission intensity and resolution have been observed in cathodoluminescence for liquid nitrogen cooled quartz grains compared to ambient temperature quartz. This has enabled subtle growth features at quartz to quartz-cement boundaries to be imaged for the first time.

  1. Progressive Tool Wear in Cryogenic Machining: The Effect of Liquid Nitrogen and Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Yusuf Kaynak

    2018-05-01

    Full Text Available This experimental study focuses on various cooling strategies and lubrication-assisted cooling strategies to improve machining performance in the turning process of AISI 4140 steel. Liquid nitrogen (LN2 and carbon dioxide (CO2 were used as cryogenic coolants, and their performances were compared with respect to progression of tool wear. Minimum quantity lubrication (MQL was also used with carbon dioxide. Progression of wear, including flank and nose, are the main outputs examined during experimental study. This study illustrates that carbon dioxide-assisted cryogenic machining alone and with minimum quantity lubrication does not contribute to decreasing the progression of wear within selected cutting conditions. This study also showed that carbon dioxide-assisted cryogenic machining helps to increase chip breakability. Liquid nitrogen-assisted cryogenic machining results in a reduction of tool wear, including flank and nose wear, in the machining process of AISI 4140 steel material. It was also observed that in the machining process of this material at a cutting speed of 80 m/min, built-up edges occurred in both cryogenic cooling conditions. Additionally, chip flow damage occurs in particularly dry machining.

  2. Liquid nitrogen vapor is comparable to liquid nitrogen for storage of cryopreserved human sperm: evidence from the characteristics of post-thaw human sperm.

    Science.gov (United States)

    Hu, Jingmei; Zhao, Shidou; Xu, Chengyan; Zhang, Lin; Lu, Shaoming; Cui, Linlin; Ma, Jinlong; Chen, Zi-Jiang

    2015-11-01

    To compare the differences in the characteristics of post-thaw human sperm after storage in either liquid nitrogen (LN2; -196 °C) or LN2 vapor (-167 °C). Experimental study. University hospital. Thirty healthy volunteers who agreed to donate their normal semen samples for infertility or research were included in the study. Semen samples (n = 30) were divided into eight aliquots and frozen. Four aliquots of each human semen sample were stored in LN2 (-196 °C), and the other four aliquots were stored in LN2 vapor (-167 °C). After 1, 3, 6, or 12 months, samples were thawed and analyzed. The motility was evaluated by the manual counting method. The viability was estimated by eosin staining. The morphology was analyzed by Diff-Quik staining. The sperm DNA integrity was determined with acridine orange fluorescent staining, and acrosin activity was assayed by the modified Kennedy method. The characteristics of post-thaw human sperm, including motility, viability, morphology, DNA integrity, and acrosin activity, showed no significant difference between LN2 and LN2 vapor storage for the different time periods. LN2 vapor was comparable to LN2 in post-thaw sperm characteristics, suggesting that LN2 vapor may be substituted for LN2 for the long-term storage of human sperm. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Transition from natural-convection-controlled freezing to conduction-controlled freezing

    International Nuclear Information System (INIS)

    Sparrow, E.M.; Ramsey, J.W.; Harris, J.S.

    1981-01-01

    Experiments were performed to study the transition between freezing controlled by natural convection in the liquid adjacent to a freezing interface and freezing controlled by heat conduction in the solidified material. The freezing took place on a cooled vertical tube immersed in an initially superheated liquid contained in an adiabatic-walled vessel. At early and intermediate times, temperature differences throughout the liquid induce a vigorous natural convection motion which retards freezing, but the temperature differences diminish with time and natural convection ebbs. At large times, the freezing rate is fully controlled by heat conduction in the solidified material. The frozen specimens for short and intermediate freezing times are smooth-surfaced and tapered, while those for large times are straight-sided and have surfaces that are overlaid with a thicket of large discrete crystals. These characteristics correspond respectively to those of natural-convection- controlled freezing and conduction-controlled freezing. At early times, the measured mass of the frozen material is identical to that for natural-convection-controlled freezing and conduction-controlled freezing. At early times, the measured mass of the frozen material is identical to that for natural-convection-controlled freezing. At later times, the frozen mass tends to approach that for conduction-controlled freezing, but a residual deficit remains

  4. Calculation of neutron and gamma-ray energy spectra in liquid air and liquid nitrogen due to 14-MeV neutron and californium-252 sources

    International Nuclear Information System (INIS)

    Straker, E.A.; Gritzner, M.L.; Harris, L. Jr.

    1978-01-01

    Calculations of neutron and gamma-ray fluences from 14-MeV neutron and 252 Cf sources in liquid air and liquid nitrogen have been performed. These calculations were made specifically for comparison with experimental data measured at Stohl, Federal Republic of Germany. The discrete-ordinates method was utilized with neutron and gamma-ray cross sections from ENDF/B-IV. One-dimensional calculational models were developed for the sources and tank. Limited comparisons are made with experimental data

  5. Methane, Ethane, and Nitrogen Stability on Titan

    Science.gov (United States)

    Hanley, J.; Grundy, W. M.; Thompson, G.; Dustrud, S.; Pearce, L.; Lindberg, G.; Roe, H. G.; Tegler, S.

    2017-12-01

    Many outer solar system bodies are likely to have a combination of methane, ethane and nitrogen. In particular the lakes of Titan are known to consist of these species. Understanding the past and current stability of these lakes requires characterizing the interactions of methane and ethane, along with nitrogen, as both liquids and ices. Our cryogenic laboratory setup allows us to explore ices down to 30 K through imaging, and transmission and Raman spectroscopy. Our recent work has shown that although methane and ethane have similar freezing points, when mixed they can remain liquid down to 72 K. Concurrently with the freezing point measurements we acquire transmission or Raman spectra of these mixtures to understand how the structural features change with concentration and temperature. Any mixing of these two species together will depress the freezing point of the lake below Titan's surface temperature, preventing them from freezing. We will present new results utilizing our recently acquired Raman spectrometer that allow us to explore both the liquid and solid phases of the ternary system of methane, ethane and nitrogen. In particular we will explore the effect of nitrogen on the eutectic of the methane-ethane system. At high pressure we find that the ternary creates two separate liquid phases. Through spectroscopy we determined the bottom layer to be nitrogen rich, and the top layer to be ethane rich. Identifying the eutectic, as well as understanding the liquidus and solidus points of combinations of these species, has implications for not only the lakes on the surface of Titan, but also for the evaporation/condensation/cloud cycle in the atmosphere, as well as the stability of these species on other outer solar system bodies. These results will help interpretation of future observational data, and guide current theoretical models.

  6. Thermodynamic analysis of chromium solubility data in liquid lithium containing nitrogen: Comparison between experimental data and computer simulation

    International Nuclear Information System (INIS)

    Krasin, Valery P.; Soyustova, Svetlana I.

    2015-01-01

    The mathematical formalism for description of solute interactions in dilute solution of chromium and nitrogen in liquid lithium have been applied for calculating of the temperature dependence of the solubility of chromium in liquid lithium with the various nitrogen contents. It is shown that the derived equations are useful to provide understanding of a relationship between thermodynamic properties and local ordering in the Li–Cr–N melt. Comparison between theory and data reported in the literature for solubility of chromium in nitrogen-contaminated liquid lithium, was allowed to explain the reasons of the deviation of the experimental semi-logarithmic plot of chromium content in liquid lithium as a function of the reciprocal temperature from a straight line. - Highlights: • The activity coefficient of chromium in ternary melt can be obtained by means of integrating the Gibbs–Duhem equation. • In lithium with the high nitrogen content, the dependence of a logarithm of chromium solubility as a function of the reciprocal temperature has essentially nonlinear character. • At temperatures below a certain threshold, the process of dissolution of chromium in lithium will be controlled by the equilibrium concentration of nitrogen required for the formation of ternary nitride Li_9CrN_5at a given temperature.

  7. Gamma irradiation of hydrocarbon-liquid nitrogen systems and the synthesis of ammonia

    International Nuclear Information System (INIS)

    Fleming, H.L.

    1982-01-01

    The 60 Co-gamma radiolysis of hydrocarbons (HC)-liquid N 2 mixtures at 77 0 K and 1.8 atm of pressure was investigated. Batch irradiation studies of methane, ethane, and ethylene and semibatch studies of methane were made in the presence and absence of transition metal oxide catalysts. In noncatalyzed systems, the effects of varying the radiation dose, total dose, solute feed rate and concentration and liquid N 2 volume were investigated. NH 3 was found to be the major N-containing product in the alkane solute system. N 2 and HC radical addition was found to be the predominate initial reaction for nitrogeneous product formation. Results of scavenger studies indicate that excited N 2 played a lesser role in precursor formation. All product yields were found to be dependent upon the H-containing species availability in the liquid N 2 solution. Production rates were limited by HC solubility. The use of the transition metal oxide supported catalyst greatly increased product formation in all systems. Product yields were found to be dependent upon the available catalyst surface area, metal loading, and reduction techniques for each metal examined. As evidenced by the radiation lag time studies, the stability of the N 2 precursors on the catalyst surface was believed to be a significant factor in reaction enhancement. Energy transfer from the catalyst to the absorbates was examined and could not be ruled out

  8. Performance of miniature electromagnetic pump at liquid nitrogen temperature; Kogata deji ponpu no ekitai chiso ondo ni okeru seino

    Energy Technology Data Exchange (ETDEWEB)

    Nagashima, K.; Herai, T. [Railway Technical Research Inst., Tokyo (Japan)

    1999-11-10

    Though it cools the radiant heat shield board of superconducting magnet for levitation system railway by the liquid nitrogen, the piping on the shield board must be made to circulate the refrigerant in order to maintain the large area, which covers superconducting coil at the uniform temperature. Though as a circulating pump, it had developed thermal pumps using the heater and systems using natural circulation, etc. until now, it examined circulation performance of liquid nitrogen using the electromagnetic pump that here, it was small, and that to do the operation is sure. (NEDO)

  9. Effective freezing rate for semen cryopreservation in endangered Mediterranean brown trout (Salmo trutta macrostigma) inhabiting the Biferno river (South Italy).

    Science.gov (United States)

    Iaffaldano, Nicolaia; Di Iorio, Michele; Manchisi, Angelo; Esposito, Stefano; Gibertoni, Pier Paolo

    2016-10-01

    This study was designed to determine: (i) the in vitro effects of different freezing rates on post-thaw semen quality of Mediterranean brown trout (Salmo trutta macrostigma) from the Biferno river; and (ii) the in vivo fertilization and hatching percentage of freezing rate giving rise to the best post-thaw semen quality. Pooled semen samples were diluted 1:3 (v:v) in a freezing extender composed of 300 mM glucose, 10% egg yolk and 10% dimethyl sulfoxide (DMSO). The extended semen was packaged in 0.25 ml plastic straws and frozen at different heights above the liquid nitrogen surface (1, 5 or 10 cm) for 10 min to give three different freezing rates. Semen samples were thawed at 30°C for 10 s. The variables assessed after thawing were sperm motility, duration of motility and viability. Our results clearly indicate a significant effect of freezing rate on post-thaw semen quality. Semen frozen 5 cm above the liquid nitrogen surface showed the best quality after freezing/thawing. Based on these in vitro data, 2 groups of 200 eggs were fertilized with fresh semen or semen frozen 5 cm above the liquid nitrogen surface. Fertilization and hatching rates recorded for eggs fertilized with frozen semen were significantly lower (25.4% and 22.5%, respectively) than the ones obtained using fresh semen (87.8% and 75.5%, respectively). An effective freezing protocol will allow for the creation of a sperm cryobank to recover the original population of Mediterranean brown trout in the Biferno river.

  10. Liquid nitrogen or phenolization for giant cell tumor of bone?: a comparative cohort study of various standard treatments at two tertiary referral centers.

    Science.gov (United States)

    van der Heijden, Lizz; van der Geest, Ingrid C M; Schreuder, H W Bart; van de Sande, Michiel A J; Dijkstra, P D Sander

    2014-03-05

    The rate of recurrence of giant cell tumor of bone is decreased by use of adjuvant treatments such as phenol, liquid nitrogen, or polymethylmethacrylate (PMMA) during curettage. We assessed recurrence and complication rates and functional outcome after curettage with use of phenol and PMMA, liquid nitrogen and PMMA, and liquid nitrogen and bone grafts. We retrospectively compared the relative effectiveness of treatment of giant cell tumors of bone at two tertiary centers with a regional function from 1990 to 2010. The 132 (of 201) patients who met the inclusion criteria had a mean age of thirty-three years (range, eleven to sixty-nine years). Treatment assignment depended purely on the center, with primary treatment consisting of curettage with use of phenol and PMMA (n = 82) at one center and with use of either liquid nitrogen and PMMA (n = 26) or liquid nitrogen and bone grafts (n = 24) at the other center. Recurrence and complication rates were determined, and functional outcome was assessed on the basis of the Musculoskeletal Tumor Society (MSTS) score. The mean duration of follow-up was eight years (range, two to twenty-two years). Recurrence rates were comparable among the groups (28% for phenol and PMMA, 31% for liquid nitrogen and PMMA, and 38% for liquid nitrogen and bone grafts; p = 0.52). Soft-tissue extension increased the recurrence risk (hazard ratio [HR] = 2.1, 95% confidence interval [CI] = 1.1 to 4.0, p = 0.024). The complication rate was 33% after use of liquid nitrogen and bone grafts, 27% after liquid nitrogen and PMMA, and 11% after phenol and PMMA (p = 0.019); complications included osteoarthritis, infection, postoperative fracture, nonunion, transient nerve palsy, and PMMA leakage. The complication risk was increased by the presence of a pathologic fracture (HR = 4.1, 95% CI = 1.7 to 9.5, p = 0.001) and use of liquid nitrogen (HR = 3.9, 95% CI = 1.5 to 10, p = 0.006 for liquid nitrogen and bone grafts; HR = 3.1, 95% CI = 1.1 to 8.6, p = 0

  11. Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries

    Science.gov (United States)

    Tu, Xiaofeng; Zhou, Yingke; Song, Yijie

    2017-04-01

    The three-dimensional porous LiFePO4 modified with uniformly dispersed nitrogen-doped carbon nanotubes has been successfully prepared by a freeze-drying method. The morphology and structure of the porous composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performances are evaluated using the constant current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The nitrogen-doped carbon nanotubes are uniformly dispersed inside the porous LiFePO4 to construct a superior three-dimensional conductive network, which remarkably increases the electronic conductivity and accelerates the diffusion of lithium ion. The porous composite displays high specific capacity, good rate capability and excellent cycling stability, rendering it a promising positive electrode material for high-performance lithium-ion batteries.

  12. Determination of desipramine in biological samples using liquid-liquid-liquid microextraction combined with in-syringe derivatization, gas chromatography, and nitrogen/phosphorus detection.

    Science.gov (United States)

    Saraji, Mohammad; Mehrafza, Narges; Bidgoli, Ali Akbar Hajialiakbari; Jafari, Mohammad Taghi

    2012-10-01

    A method was established for the determination of desipramine in biological samples using liquid-liquid-liquid microextraction followed by in-syringe derivatization and gas chromatography-nitrogen phosphorus detection. The extraction method was based on the use of two immiscible organic solvents. n-Dodecane was impregnated in the pores of the hollow fiber and methanol was placed inside the lumen of the fiber as the acceptor phase. Acetic anhydride was used as the reagent for the derivatization of the analyte inside the syringe barrel. Parameters that affect the extraction efficiency (composition of donor and acceptor phase, ionic strength, sample temperature, and extraction time) as well as derivatization efficiency (amount of acetic anhydride and reaction time and temperature) were investigated. The limit of detection was 0.02 μg/L with intra and interday RSDs of 2.6 and 7.7%, respectively. The linearity of the method was in the range of 0.2-20 μg/L (r(2) = 0.9986). The method was successfully applied to determine desipramine in human plasma and urine. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen

    Science.gov (United States)

    Tonkovich, Anna Lee Y [Dublin, OH; Litt, Robert D [Westerville, OH; Dongming, Qiu [Dublin, OH; Silva, Laura J [Plain City, OH; Lamont, Micheal Jay [Plain City, OH; Fanelli, Maddalena [Plain City, OH; Simmons, Wayne W [Plain city, OH; Perry, Steven [Galloway, OH

    2011-10-04

    Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

  14. Process configuration of Liquid-nitrogen Energy Storage System (LESS) for maximum turnaround efficiency

    Science.gov (United States)

    Dutta, Rohan; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2017-12-01

    Diverse power generation sector requires energy storage due to penetration of variable renewable energy sources and use of CO2 capture plants with fossil fuel based power plants. Cryogenic energy storage being large-scale, decoupled system with capability of producing large power in the range of MWs is one of the options. The drawback of these systems is low turnaround efficiencies due to liquefaction processes being highly energy intensive. In this paper, the scopes of improving the turnaround efficiency of such a plant based on liquid Nitrogen were identified and some of them were addressed. A method using multiple stages of reheat and expansion was proposed for improved turnaround efficiency from 22% to 47% using four such stages in the cycle. The novelty here is the application of reheating in a cryogenic system and utilization of waste heat for that purpose. Based on the study, process conditions for a laboratory-scale setup were determined and presented here.

  15. Rapid hydrogen hydrate growth from non-stoichiometric tuning mixtures during liquid nitrogen quenching.

    Science.gov (United States)

    Grim, R Gary; Kerkar, Prasad B; Sloan, E Dendy; Koh, Carolyn A; Sum, Amadeu K

    2012-06-21

    In this study the rapid growth of sII H(2) hydrate within 20 min of post formation quenching towards liquid nitrogen (LN(2)) temperature is presented. Initially at 72 MPa and 258 K, hydrate samples would cool to the conditions of ~60 MPa and ~90 K after quenching. Although within the stability region for H(2) hydrate, new hydrate growth only occurred under LN(2) quenching of the samples when preformed hydrate "seeds" of THF + H(2) were in the presence of unconverted ice. The characterization of hydrate seeds and the post-quenched samples was performed with confocal Raman spectroscopy. These results suggest that quenching to LN(2) temperature, a common preservation technique for ex situ hydrate analysis, can lead to rapid unintended hydrate growth. Specifically, guest such as H(2) that may otherwise need sufficiently long induction periods to nucleate, may still experience rapid growth through an increased kinetic effect from a preformed hydrate template.

  16. Mechanical characterization of selected adhesives and bulk materials at liquid nitrogen and room temperatures

    International Nuclear Information System (INIS)

    Fitzpatrick, C.M.; Stoddart, W.C.T.

    1977-01-01

    This paper presents the results of a series of mechanical tests on selected adhesives and bulk materials. The materials tested are of general interest to designers of magnets for cryogenic service and include several epoxies, a varnish, a B-stage glass cloth, insulation papers, and commercially available fiber-reinforced composites. These tests were performed at room temperature (293 K) and at liquid nitrogen temperature (77 K). The tests include both simple tension tests and lap shear tests with various adherends. The parameters critical to tensile or bond strength were varied as part of the test program. The procedures used to manufacture and test these specimens and the results of the tests are reported in this paper

  17. Device for the crystallographic study of substances maintained at liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Pluchery, M.; Debrenne, P.

    1961-01-01

    When a substance to be studied has been submitted to a processing at low temperature, and that no heating can be tolerated between this processing and the X-ray investigation, conventional low temperature devices are difficult to use. Diffraction lines are recorded, as well as Bragg angles between 55 and 88 deg. The authors present a device that allows a sample permanently immersed in liquid nitrogen to be studied, either through its lower part, or as a whole. They describe the operation principle, how a sample is set into place, how measurements are performed. They comment technical characteristics and performance. This device has been used to measure parameters of graphite irradiated at high temperature [fr

  18. Deformation behavior of human dentin in liquid nitrogen: a diametral compression test.

    Science.gov (United States)

    Zaytsev, Dmitry; Panfilov, Peter

    2014-09-01

    Contribution of the collagen fibers into the plasticity of human dentin is considered. Mechanical testing of dentin at low temperature allows excluding the plastic response of its organic matrix. Therefore, deformation and fracture behavior of the dentin samples under diametral compression at room temperature and liquid nitrogen temperature are compared. At 77K dentin behaves like almost brittle material: it is deformed exclusively in the elastic regime and it fails due to growth of the sole crack. On the contrary, dentin demonstrates the ductile response at 300K. There are both elastic and plastic contributions in the deformation of dentin samples. Multiple cracking and crack tip blunting precede the failure of samples. Organic phase plays an important role in fracture of dentin: plasticity of the collagen fibers could inhibit the crack growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A visual study of radial inward choked flow of liquid nitrogen.

    Science.gov (United States)

    Hendricks, R. C.; Simoneau, R. J.; Hsu, Y. Y.

    1973-01-01

    Data and high speed movies were acquired on pressurized subcooled liquid nitrogen flowing radially inward through a 0.0076 cm gap. The stagnation pressure ranged from 0.7 to 4 MN/sq m. Steady radial inward choked flow appears equivalent to steady choked flow through axisymmetric nozzles. Transient choked flows through the radial gap are not uniform and the discharge pattern appears as nonuniform impinging jets. The critical mass flow rate data for the transient case appear different from those for the steady case. On the mass flow rate vs pressure map, the slope and separation of the isotherms appear to be less for transient than for steady radial choked flow.

  20. Freeze-drying synthesis of three-dimensional porous LiFePO{sub 4} modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Xiaofeng; Zhou, Yingke, E-mail: zhouyk888@hotmail.com; Song, Yijie

    2017-04-01

    Highlights: • Three-dimensional porous LiFePO{sub 4}/N-CNTs is synthesized by a freeze-drying method. • The N-CNTs conductive network enhances the electron transport within the LiFePO{sub 4} electrode. • The continuous pores accelerate the diffusion of lithium ions. • LiFePO{sub 4}/N-CNTs demonstrates an excellent electrochemical Li-insertion performance. - Abstract: The three-dimensional porous LiFePO{sub 4} modified with uniformly dispersed nitrogen-doped carbon nanotubes has been successfully prepared by a freeze-drying method. The morphology and structure of the porous composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performances are evaluated using the constant current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The nitrogen-doped carbon nanotubes are uniformly dispersed inside the porous LiFePO{sub 4} to construct a superior three-dimensional conductive network, which remarkably increases the electronic conductivity and accelerates the diffusion of lithium ion. The porous composite displays high specific capacity, good rate capability and excellent cycling stability, rendering it a promising positive electrode material for high-performance lithium-ion batteries.

  1. Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Tu, Xiaofeng; Zhou, Yingke; Song, Yijie

    2017-01-01

    Highlights: • Three-dimensional porous LiFePO 4 /N-CNTs is synthesized by a freeze-drying method. • The N-CNTs conductive network enhances the electron transport within the LiFePO 4 electrode. • The continuous pores accelerate the diffusion of lithium ions. • LiFePO 4 /N-CNTs demonstrates an excellent electrochemical Li-insertion performance. - Abstract: The three-dimensional porous LiFePO 4 modified with uniformly dispersed nitrogen-doped carbon nanotubes has been successfully prepared by a freeze-drying method. The morphology and structure of the porous composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performances are evaluated using the constant current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The nitrogen-doped carbon nanotubes are uniformly dispersed inside the porous LiFePO 4 to construct a superior three-dimensional conductive network, which remarkably increases the electronic conductivity and accelerates the diffusion of lithium ion. The porous composite displays high specific capacity, good rate capability and excellent cycling stability, rendering it a promising positive electrode material for high-performance lithium-ion batteries.

  2. Air conditioning and power generation for residential applications using liquid nitrogen

    International Nuclear Information System (INIS)

    Ahmad, Abdalqader; Al-Dadah, Raya; Mahmoud, Saad

    2016-01-01

    Highlights: • Using liquid nitrogen to provide power and air conditioning for domestic applications. • The proposed system leads to save energy and reduce the peak electricity demands. • Compared with conventional AC saving up to 36% was achieved at the current LN2 price. • The widespread of this technology leads to lower LN2 price and saving up to 81%. • The last configuration was the efficient system with overall thermal efficiency 74%. - Abstract: Current air conditioning (AC) systems consume a significant amount of energy, particularly during peak times where most electricity suppliers face difficulties to meet the users’ demands, and the global demands for AC systems have increased rapidly over the last few decades leading to significant power consumption and carbon dioxide emissions. This paper presents a new technique that uses liquid nitrogen (LN2) produced from renewable energy sources, or surplus electricity at off peak times, to provide cooling and power for domestic houses. Thermodynamic analyses of various cryogenic cycles have been carried out to achieve the most effective configuration that produces the maximum power output with minimum LN2 flow rate, to meet the required cooling of a 170 m"2 dwelling in Libya. A comparison with a conventional AC system was also made. Results showed that at the current LN2 prices, using LN2 to provide cooling and power demands of residential buildings is feasible and saves up to 36% compared to conventional air conditioning systems with an overall thermal efficiency of 74%. However, as the LN2 price decreases to around 1.3 pence per kg, the proposed technology will have significant advantages compared to conventional AC systems with savings of up to 81%.

  3. Feasibility of liquid nitrogen cryotherapy after failed radiofrequency ablation for Barrett's esophagus.

    Science.gov (United States)

    Trindade, Arvind J; Inamdar, Sumant; Kothari, Shivangi; Berkowitz, Joshua; McKinley, Matthew; Kaul, Vivek

    2017-09-01

    Radiofrequency ablation (RFA) for dysplastic Barrett's esophagus (BE) is highly effective. RFA failures are infrequent but can be a challenging cohort to manage. There are limited data on the feasibility of liquid nitrogen cryospray ablation for complete eradication of dysplasia (CE-D) and/or intestinal metaplasia (CE-IM) after RFA has failed to achieve CE-IM in patients with dysplastic BE. This is a retrospective review from two medical centers of prospectively maintained databases looking at patients that underwent liquid nitrogen cryospray ablation for refractory intestinal metaplasia post failed RFA. Eighteen patients were identified that met inclusion criteria. Eleven patients had persistent dysplasia and IM following RFA and seven had persistent non-dysplastic IM. More than 80% of patients were male with long-segment BE (median length 8 cm). Seventy two percent of patients with dysplasia achieved CE-D after cryotherapy. Fifty percent (9/18) of all RFA failures achieved CE-IM with cryotherapy. In comparison, RFA has a CE-IM of 78% in a less challenging treatment naïve cohort from a large-scale meta-analysis of 3802 patients. No adverse events occurred in our cohort. Cryospray ablation is feasible and safe for achieving CE-D and CE-IM after RFA failure. The CE-D rates are high with cryotherapy in this population. CE-IM with cryotherapy is acceptable in this difficult-to-treat cohort when compared to CE-IM rates with RFA in dysplastic BE treatment naïve patients (50% vs 78%). © 2017 Japan Gastroenterological Endoscopy Society.

  4. Integrated design of cryogenic refrigerator and liquid-nitrogen circulation loop for HTS cable

    Science.gov (United States)

    Chang, Ho-Myung; Ryu, Ki Nam; Yang, Hyung Suk

    2016-12-01

    A new concept of cryogenic cooling system is proposed and investigated for application to long-length HTS cables. One of major obstacles to the cable length of 1 km or longer is the difficulty in circulating liquid nitrogen (LN) along the cables, since the temperature rise and pressure drop of LN flow could be excessively large. This study attempts a breakthrough by integrating the refrigerator with the LN circulation loop in order to eliminate the cryogenic LN pumps, and generate a large LN flow with the power of compressors at ambient temperature. A variety of thermodynamic structures are investigated on standard and modified Claude cycles, where nitrogen is used as refrigerant and the LN circulation loop is included as part of the closed cycle. Four proposed cycles are fully analyzed and optimized with a process simulator (Aspen HYSYS) to evaluate the FOM (figure of merit) and examine the feasibility. The modified dual-pressure cycle cooled with expander stream is recommended for long HTS cables.

  5. Liquid nitrogen for the treatment of actinic keratosis: a longitudinal assessment.

    Science.gov (United States)

    Ianhez, Mayra; Miot, Hélio Amante; Bagatin, Edileia

    2014-08-01

    Cryosurgery with liquid nitrogen is one of the most used treatments for actinic keratosis. We aimed to study the effectiveness of two consecutive sessions of cryosurgery for actinic keratosis and investigate factors associated with its therapeutic success. Hence, we conducted a longitudinal study including 92 patients of both sexes, aged 50-75 years with 5-50 actinic keratosis on the face and forearms, who underwent cryosurgery and treatment with sunscreen SPF 30, at baseline and after 120 days. The lesions were counted in duplicate by the same examiner before the start of treatment and after 120 (N=92) and 300 days (N=33), represented by their medians and quartiles and compared using the generalized linear mixed effects model (negative binomial). Treatment behavior was investigated in relation to sex, age, education, skin type, smoking, sun exposure at work and the use of aspirin, anti-inflammatory and angiotensin-converting enzyme inhibitors. There was a significant reduction in the actinic keratosis count on the face and forearms (pliquid nitrogen reduced the actinic keratosis count. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Straightforward single-calibrant quantification of seized designer drugs by liquid chromatography-chemiluminescence nitrogen detection.

    Science.gov (United States)

    Rasanen, Ilpo; Kyber, Marianne; Szilvay, Ilmari; Rintatalo, Janne; Ojanperä, Ilkka

    2014-04-01

    Sixty-one different psychoactive substances were quantified by liquid chromatography-chemiluminescence nitrogen detection (LC-CLND) in 177 samples, using a single secondary standard (caffeine), in a trial concerning the quantitative purity assessment of drug-related material seized by the police in 2011-2012 and customs in 2011-2013 in Finland. The substances found were predominantly substituted phenethylamines, cathinones, tryptamines and synthetic cannabinoids, which were identified by appropriate methods prior to submitting the samples for quantification by LC-CLND. The equimolarity and expanded uncertainty of measurement by LC-CLND were on average 95% and 13%, respectively, based on 16 different substances. The median (mean) purity of stimulant/hallucinogenic drug samples seized at the border was 92.9% (87.6%) and in the street 82.0% (64.5%). The corresponding figures for powdery synthetic cannabinoid samples seized at the border and in the street were 99.0% (96.8%) and 90.0% (92.2%), respectively. There was generally only one active drug to be quantified in each sample. Seized herbal samples contained 0.15-9.2% of between one and three components. LC-CLND was found to be suitable for quantification of the nitrogen-containing drugs encountered in the study, showing sufficient N-equimolarity for both stimulant/hallucinogenic drugs and synthetic cannabinoids. The technique possesses great potential as a standard technique in forensic laboratories. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Cryopreservation of human oocytes, zygotes, embryos and blastocysts: A comparison study between slow freezing and ultra rapid (vitrification methods

    Directory of Open Access Journals (Sweden)

    Tahani Al-Azawi

    2013-12-01

    Full Text Available Preservation of female genetics is currently done primarily by means of oocyte and embryo cryopreservation. The field has seen much progress during its four-decade history, progress driven predominantly by research in humans. It can also be done by preservation of ovarian tissue or entire ovary for transplantation, followed by oocyte harvesting or natural fertilization. Two basic cryopreservation techniques rule the field, slow-rate freezing, the first to be developed and vitrification which in recent years, has gained a foothold. The slow-rate freezing method previously reported had low survival and pregnancy rates, along with the high cost of cryopreservation. Although there are some recent data indicating better survival rates, cryopreservation by the slow freezing method has started to discontinue. Vitrification of human embryos, especially at early stages, became a more popular alternative to the slow rate freezing method due to reported comparable clinical and laboratory outcomes. In addition, vitrification is relatively simple, requires no expensive programmable freezing equipment, and uses a small amount of liquid nitrogen for freezing. Moreover, oocyte cryopreservation using vitrification has been proposed as a solution to maintain women’s fertility by serving and freezing their oocytes at the optimal time. The aim of this research is to compare slow freezing and vitrification in cryopreservation of oocytes, zygotes, embryos and blastocysts during the last twelve years. Therefore, due to a lot of controversies in this regard, we tried to achieve an exact idea about the subject and the best technique used.

  8. Fluctuations and freezing in a one-dimensional liquid: Hg/sub 3-delta/AsF6

    International Nuclear Information System (INIS)

    Axe, J.D.

    1979-01-01

    Many papers deal quite properly with systems at their critical dimensionality, d*. In such systems the competing forces between organization and disorder are nearly equally balanced and the analysis of the resulting situation requires some subtlety. Not surprisingly, the situation is somewhat simplified when the dimensionality falls below d*. For ordinary translational ordering of fluids (i.e., crystallization), d*=2. The properties of certain quasi-one-dimensional systems are explored, which since they are effectively below d*, resist the conventional crystalline order until abnormally low temperatures, and assume instead a state which is likened to a 1-dimensional liquid

  9. First 10 kg of naked Germanium detectors in liquid nitrogen installed in the GENIUS-Test-Facility

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.; Chkvorets, O.; Krivosheina, I.V.; Strecker, H.; Tomei, C.

    2003-01-01

    The first four naked high-purity Germanium detectors were installed successfully in liquid nitrogen in the GENIUS-Test-Facility in the GRAN SASSO Underground Laboratory on May 5, 2003. This is the first time ever that this novel technique aiming at extreme background reduction in search for rare decays is going to be tested underground. First operational parameters are presented

  10. Effect of geographical location, year and cultivar on survival of Malus sp. dormant buds stored in vapors of liquid nitrogen

    Science.gov (United States)

    Woody plant crop germplasm is often grown in different geographical locations with various climatic conditions. One of the methods of a secure back-up of tree crop is storing winter buds in liquid nitrogen. It was thought that dormant buds from colder climates would have a higher post storage surviv...

  11. Application of a Novel Liquid Nitrogen Control Technique for Heat Stress and Fire Prevention in Underground Mines.

    Science.gov (United States)

    Shi, Bobo; Ma, Lingjun; Dong, Wei; Zhou, Fubao

    2015-01-01

    With the continually increasing mining depths, heat stress and spontaneous combustion hazards in high-temperature mines are becoming increasingly severe. Mining production risks from natural hazards and exposures to hot and humid environments can cause occupational diseases and other work-related injuries. Liquid nitrogen injection, an engineering control developed to reduce heat stress and spontaneous combustion hazards in mines, was successfully utilized for environmental cooling and combustion prevention in an underground mining site named "Y120205 Working Face" (Y120205 mine) of Yangchangwan colliery. Both localized humidities and temperatures within the Y120205 mine decreased significantly with liquid nitrogen injection. The maximum percentage drop in temperature and humidity of the Y120205 mine were 21.9% and 10.8%, respectively. The liquid nitrogen injection system has the advantages of economical price, process simplicity, energy savings and emission reduction. The optimized heat exchanger used in the liquid nitrogen injection process achieved superior air-cooling results, resulting in considerable economic benefits.

  12. TEMPORARY STORAGE OF BOVINE SEMEN CRYOPRESERVED IN LIQUID NITROGEN ON DRY ICE AND REFREEZING OF FROZEN-THAWED SEMEN.

    Science.gov (United States)

    Abdussamad, A M; Gauly, M; Holtz, W

    2015-01-01

    Two experiments were conducted. The purpose of Experiment 1 was to investigate whether viability of bovine semen stored in liquid nitrogen (-196°C) will be adversely affected by temporary exposure to dry ice (-79°C). It was convincingly shown that post thaw-motility was not affected, regardless whether semen was thawed immediately or after being returned to liquid nitrogen. Shipping or temporary storage on dry ice, thus, is a viable option. In Experiment 2, refreezing of frozen-thawed semen was attempted. The proportion of motile spermatozoa was reduced by a factor of ten to between 6.0 % and 7.4 %, regardless whether thawing occurred directly after removal from liquid nitrogen or after an interim period on dry ice. When semen was refrozen on dry ice before being returned to liquid nitrogen, motility rates were significantly improved (13.0 % to 17.0 %, P<0.05). In both experiments sperm cells that remained motile displayed vigorous forward movement and normal morphological appearance.

  13. Test of Topmetal-II{sup −} in liquid nitrogen for cryogenic temperature TPCs

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Shuguang; Fan, Yan; An, Mangmang; Chen, Chufeng; Huang, Guangming; Liu, Jun; Pei, Hua; Sun, Xiangming, E-mail: xmsun@phy.ccnu.edu.cn; Yang, Ping; Wang, Dong; Xiao, Le; Wang, Zhen; Wang, Kai; Zhou, Wei

    2016-09-11

    Topmetal-II{sup −} is a highly pixelated direct charge sensor that contains a 72×72 pixel array of 83 μm pitch size. The key feature of Topmetal-II{sup −} is that it can directly collect charges via metal nodes of each pixel to form two-dimensional images of charge cloud distributions. Topmetal-II{sup −} was proved to measure charged particles without amplification at room temperature. To measure its performance at cryogenic temperature, a Topmetal-II{sup −} sensor is embedded into a liquid nitrogen dewar. The results presented in this paper show that Topmetal-II{sup −} can also operate well at this low temperature with a noise (ENC) of 12 e{sup −} lower than that at room temperature (13 e{sup −}). From the noise perspective, Topmetal-II{sup −} is a promising candidate for the next generation readout of liquid argon and xenon time projection chamber (TPC) used in experiments searching for neutrinoless double beta decay and dark matter.

  14. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment.

    Science.gov (United States)

    Tong, Juan; Chen, Yinguang

    2009-07-01

    In previous publications we reported that by controlling the pH at 10.0 the accumulation of short-chain fatty acids (SCFA) during waste activated sludge (WAS) fermentation was remarkably improved [Yuan, H., Chen, Y., Zhang, H., Jiang, S., Zhou, Q., Gu, G., 2006. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. Environ. Sci. Technol. 40, 2025-2029], but significant ammonium nitrogen (NH(4)-N) and soluble ortho-phosphorus (SOP) were released [Chen, Y., Jiang, S., Yuan, H., Zhou, Q., Gu, G., 2007. Hydrolysis and acidification of waste activated sludge at different pHs. Water Res. 41, 683-689]. This paper investigated the simultaneous recovery of NH(4)-N and SOP from WAS alkaline fermentation liquid and the application of the fermentation liquid as an additional carbon source for municipal wastewater biological nitrogen and phosphorus removal. The central composite design (CCD) of the response surface methodology (RSM) was employed to optimize and model the simultaneous NH(4)-N and SOP recovery from WAS alkaline fermentation liquid. Under the optimum conditions, the predicted and experimental recovery efficiency was respectively 73.4 and 75.7% with NH(4)-N, and 82.0 and 83.2% with SOP, which suggested that the developed models described the experiments well. After NH(4)-N and SOP recovery, the alkaline fermentation liquid was added to municipal wastewater, and the influence of volume ratio of fermentation liquid to municipal wastewater (FL/MW) on biological nitrogen and phosphorus removal was investigated. The addition of fermentation liquid didn't significantly affect nitrification. Both SOP and total nitrogen (TN) removal were increased with fermentation liquid, but there was no significant increase at FL/MW greater than 1/35. Compared to the blank test, the removal efficiency of SOP and TN at FL/MW=1/35 was improved from 44.0 to 92.9%, and 63.3 to 83.2%, respectively. The enhancement of phosphorus and nitrogen

  15. Use of highly pressurized liquid nitrogen technology for concrete scabbling application at SICN nuclear facility - 59282

    International Nuclear Information System (INIS)

    Moggia, Fabrice; Vaudey, Claire-Emilie; Damerval, Frederique; Varet, Thierry; Toulemonde, Valerie; Richard, Frederic; Anderson, Gary

    2012-01-01

    The decommissioning process is a quite long and complicated stage who may take few years or decades to be achieved. Generally, this process involves the implementation of a large number of technologies dedicated to cutting and decontamination operations. Based on this finding, the Clean- Up Business Unit of AREVA with Air Liquide decided to start the development of a new technology based on the use of liquid nitrogen (-140 deg. C / 3500 bar). The NitroJet R process is a quite interesting and promising technology. It can be used, as we described in this document, for concrete scabbling operations but also for decontamination and cutting applications. The Clean-Up Business Unit, with its partner Air Liquide, realized a complete study of this technology including several tests and optimizations to be able to handle it in a nuclear environment. Thus, we did: - increase of the reliability of the machine, - nuclearization of the system (including the development of efficient shroud system and efficient HP pipes insulation); - development of a dedicated bearer for automatic configuration; - optimization of parameters for D and D applications. As we already mentioned, NitroJet R technology showed promising perspectives as: - economic: increase of rate processing, decrease in site monitoring costs, - environmental: use of an inert gas, no secondary waste generation, non use of chemical, dry process, - social: less strenuous work, decrease of operator dosimetry compatible with ALARA principle The future for the NitroJet R technology will be its implementation in a real high level activity environment. This process will be used in spring 2012 in AREVA nuclear reprocessing facility of La Hague (France) to accomplish concrete scabbling applications. This test will be the last of a long development period before industrial exploitation. (authors)

  16. Nitrogen

    Science.gov (United States)

    Apodaca, L.E.

    2010-01-01

    Ammonia was produced by 13 companies at 23 plants in 16 states during 2009. Sixty percent of all U.S. ammonia production capacity was centered in Louisiana. Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2009, U.S. producers operated at about 83 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies — Koch Nitrogen Co.; Terra Industries Inc.; CF Industries Inc.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 80 percent of the total U.S. ammonia production capacity. U.S. production was estimated to be 7.7 Mt (8.5 million st) of nitrogen (N) content in 2009 compared with 7.85 Mt (8.65 million st) of N content in 2008. Apparent consumption was estimated to have decreased to 12.1 Mt (13.3 million st) of N, a 10-percent decrease from 2008. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  17. Nitrogen-doped carbon capsules via poly(ionic liquid)-based layer-by-layer assembly.

    Science.gov (United States)

    Zhao, Qiang; Fellinger, Tim-Patrick; Antonietti, Markus; Yuan, Jiayin

    2012-07-13

    Layer-by-layer (LbL) assembly technique is applied for the first time for the preparation of nitrogen-doped carbon capsules. This approach uses colloid silica as template and two polymeric deposition components, that is, poly(ammonium acrylate) and a poly (ionic liquid) poly(3-cyanomethyl-1-vinylimidazolium bromide), which acts as both the carbon precursor and nitrogen source. Nitrogen-doped carbon capsules are prepared successfully by polymer wrapping, subsequent carbonization and template removal. The as-synthesized carbon capsules contain ≈7 wt% of nitrogen and have a structured specific surface area of 423 m(2) g(-1). Their application as supercapacitor has been briefly introduced. This work proves that LbL assembly methodology is available for preparing carbon structures of complex morphology. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Impregnation of leather during "freeze-drying"

    DEFF Research Database (Denmark)

    Storch, Mikkel; Vestergaard Poulsen Sommer, Dorte; Hovmand, Ida

    2016-01-01

    Freeze-drying is a recognized method for the preservation of waterlogged objects. Naturally, freeze-drying has also been used for waterlogged archaeological leather often after treatment with Na2.EDTA and impregnation with PEG; but the treated leather sometimes suffers from “excessive drying......” becoming too stiff and brittle. The aim of this study was to examine the effect of a conventional freeze-drying method against an alternative freeze-drying method that preserves the natural moisture content of the leather. Both new and archaeological waterlogged leather were included in the study...... suggest that the process which takes place within the leather during the freeze-drying in not actual freeze-drying, but rather a sophisticated way of distributing the impregnating agent. The pure ice phase freezes out, but the impregnating agent remains liquid as the temperature does not become low enough...

  19. Influence of Freezing and Storage Procedure on Human Urine Samples in NMR-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Burkhard Luy

    2013-04-01

    Full Text Available It is consensus in the metabolomics community that standardized protocols should be followed for sample handling, storage and analysis, as it is of utmost importance to maintain constant measurement conditions to identify subtle biological differences. The aim of this work, therefore, was to systematically investigate the influence of freezing procedures and storage temperatures and their effect on NMR spectra as a potentially disturbing aspect for NMR-based metabolomics studies. Urine samples were collected from two healthy volunteers, centrifuged and divided into aliquots. Urine aliquots were frozen either at −20 °C, on dry ice, at −80 °C or in liquid nitrogen and then stored at −20 °C, −80 °C or in liquid nitrogen vapor phase for 1–5 weeks before NMR analysis. Results show spectral changes depending on the freezing procedure, with samples frozen on dry ice showing the largest deviations. The effect was found to be based on pH differences, which were caused by variations in CO2 concentrations introduced by the freezing procedure. Thus, we recommend that urine samples should be frozen at −20 °C and transferred to lower storage temperatures within one week and that freezing procedures should be part of the publication protocol.

  20. Influence of Freezing and Storage Procedure on Human Urine Samples in NMR-Based Metabolomics.

    Science.gov (United States)

    Rist, Manuela J; Muhle-Goll, Claudia; Görling, Benjamin; Bub, Achim; Heissler, Stefan; Watzl, Bernhard; Luy, Burkhard

    2013-04-09

    It is consensus in the metabolomics community that standardized protocols should be followed for sample handling, storage and analysis, as it is of utmost importance to maintain constant measurement conditions to identify subtle biological differences. The aim of this work, therefore, was to systematically investigate the influence of freezing procedures and storage temperatures and their effect on NMR spectra as a potentially disturbing aspect for NMR-based metabolomics studies. Urine samples were collected from two healthy volunteers, centrifuged and divided into aliquots. Urine aliquots were frozen either at -20 °C, on dry ice, at -80 °C or in liquid nitrogen and then stored at -20 °C, -80 °C or in liquid nitrogen vapor phase for 1-5 weeks before NMR analysis. Results show spectral changes depending on the freezing procedure, with samples frozen on dry ice showing the largest deviations. The effect was found to be based on pH differences, which were caused by variations in CO2 concentrations introduced by the freezing procedure. Thus, we recommend that urine samples should be frozen at -20 °C and transferred to lower storage temperatures within one week and that freezing procedures should be part of the publication protocol.

  1. Commissioning of the Liquid Nitrogen Thermo-Siphon System for NASA-JSC Chamber-A

    Science.gov (United States)

    Homan, J.; Montz, M.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Garcia, S.; Garza, J.

    2013-01-01

    NASA's Space Environment Simulation Laboratory's (SESL) Chamber A, located at the Johnson Space Center in Houston Texas has recently implemented major enhancements of its cryogenic and vacuum systems. The new liquid nitrogen (LN2) thermo-siphon system was successfully commissioned in August of 2012. Chamber A, which has 20 K helium cryo-panels (or shrouds ) which are shielded by 80 K nitrogen shrouds, is capable of simulating a deep space environment necessary to perform ground testing of NASA s James Webb Space Telescope (JWST). Chamber A s previous system used forced flow LN2 cooling with centrifugal pumps, requiring 200,000 liters of LN2 to cool-down and consuming 180,000 liters per day of LN2 in steady operation. The LN2 system did not have the reliability required to meet the long duration test of the JWST, and the cost estimate provided in the initial approach to NASA-JSC by the sub-contractor for refurbishment of the system to meet the reliability goals was prohibitive. At NASA-JSC's request, the JLab Cryogenics Group provided alternative options in 2007, including a thermo-siphon, or natural flow system. This system, eliminated the need for pumps and used one tenth of the original control valves, relief valves, and burst disks. After the thermo-siphon approach was selected, JLab provided technical assistance in the process design, mechanical design, component specification development and commissioning oversight, while the installation and commissioning operations of the system was overseen by the Jacobs Technology/ESC group at JSC. The preliminary commissioning data indicate lower shroud temperatures, 70,000 liters to cool-down and less than 90,000 liters per day consumed in steady operation. All of the performance capabilities have exceeded the design goals. This paper will outline the comparison between the original system and the predicted results of the selected design option, and the commissioning results of thermo-siphon system.

  2. Commissioning of the Liquid Nitrogen Thermo-Siphon System for NASA-JSC Chamber A

    Science.gov (United States)

    Homan, J.; Montz, M.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Garcia, S.; Garza, J.

    2013-01-01

    NASA s Space Environment Simulation Laboratory s (SESL) Chamber A, located at the Johnson Space Center in Houston Texas has recently implemented major enhancements of its cryogenic and vacuum systems. The new liquid nitrogen (LN) thermo-siphon system was successfully commissioned in August of 2012. Chamber A, which has 20 K helium cryo-panels (or shrouds ) which are shielded by 80 K nitrogen shrouds, is capable of simulating a deep space environment necessary to perform ground testing of NASA s James Webb Space Telescope (JWST). Chamber A s previous system used forced flow LN cooling with centrifugal pumps, requiring 220,000 liters of LN to cool-down and consuming 180,000 liters per day of LN in steady operation. The LN system did not have the reliability required to meet the long duration test of the JWST, and the cost estimate provided in the initial approach to NASA-JSC by the subcontractor for refurbishment of the system to meet the reliability goals was prohibitive. At NASA-JSC s request, the JLab Cryogenics Group provided alternative options in 2007, including a thermo-siphon, or natural flow system. This system, eliminated the need for pumps and used one tenth of the original control valves, relief valves, and burst disks. After the thermo-siphon approach was selected, JLab provided technical assistance in the process design, mechanical design, component specification development and commissioning oversight, while the installation and commissioning operations of the system was overseen by the Jacobs Technology/ESC group at JSC. The preliminary commissioning data indicate lower shroud temperatures, 68,000 liters to cool-down and less than 91,000 liters per day consumed in steady operation. All of the performance capabilities have exceeded the design goals. This paper will outline the comparison between the original system and the predicted results of the selected design option, and the commissioning results of thermo-siphon system.

  3. Principle of a liquid nitrogen irradiation device and its realization for use in a swimming-pool type reactor

    International Nuclear Information System (INIS)

    Bochirol, L.; Doulat, J.; Weil, L.

    1961-01-01

    The problem of pile irradiation of samples immersed in liquid nitrogen has been solved with total elimination of explosion hazards and high reliability (no moving parts). The principle of the device is that of a double bath: one of high purity nitrogen cools the samples at the level of the core; a second of commercial nitrogen is located above the first one, outside the high radiation field, and works as a continuous condenser for the pure nitrogen, the flow-back of which is provided simply by gravity. The apparatus described in detail here has been designed for a swimming-pool pile. It was so designed as to provide absolute protection against radiations and to allow the irradiated samples to be easily removed in the cold condition. This apparatus has been in operation for several months. In a fast flux greater than 10 13 neutrons/cm 2 .s and a γ-flux of the order of 10 8 roentgens/h, the consumption of liquid nitrogen is of the order of 100 liters a day. (author) [fr

  4. Dynamic Low-Vacuum Scanning Electron Microscope Freeze Drying Observation for Fresh Water Algae

    International Nuclear Information System (INIS)

    Mohsen, H.T.; Ghaly, W.A.; Zahran, N.F.; Helal, A.I.

    2010-01-01

    A new perpetration method for serving in dynamic examinations of the fresh water algae is developed in connection with the Low-Vacuum Scanning Electron Microscope (LV-SEM) freeze drying technique. Specimens are collected from fresh water of Ismailia channel then transferred directly to freeze by liquid nitrogen and dried in the chamber of the scanning electron microscope in the low vacuum mode. Scanning electron micrographs revealed that the drying method presented the microstructure of algae. Dehydration in a graded ethanol series is not necessary in the new method. Dried algae specimen is observed in SEM high vacuum mode after conductive coating at higher resolution. Low-vacuum SEM freeze drying technique is a simple, time-saving and reproducible method for scanning electron microscopy that is applicable to various aquatic microorganisms covered with soft tissues.

  5. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates.

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2012-01-01

    In oocyte vitrification, plunging directly into liquid nitrogen favor film boiling and strong nitrogen vaporization. A survey of literature values of heat transfer coefficients (h) for film boiling of small metal objects with different geometries plunged in liquid nitrogen revealed values between 125 to 1000 W per per square m per K. These h values were used in a numerical simulation of cooling rates of two oocyte vitrification devices (open-pulled straw and Cryotop), plunged in liquid and slush nitrogen conditions. Heat conduction equation with convective boundary condition was considered a linear mathematical problem and was solved using the finite element method applying the variational formulation. COMSOL Multiphysics was used to simulate the cooling process of the systems. Predicted cooling rates for OPS and Cryotop when cooled at -196 degree C (liquid nitrogen) or -207 degree C (average for slush nitrogen) for heat transfer coefficients estimated to be representative of film boiling, indicated lowering the cooling temperature produces only a maximum 10 percent increase in cooling rates; confirming the main benefit of plunging in slush over liquid nitrogen does not arise from their temperature difference. Numerical simulations also demonstrated that a hypothetical four-fold increase in the cooling rate of vitrification devices when plunging in slush nitrogen would be explained by an increase in heat transfer coefficient. This improvement in heat transfer (i.e., high cooling rates) in slush nitrogen is attributed to less or null film boiling when a sample is placed in slush (mixture of liquid and solid nitrogen) because it first melts the solid nitrogen before causing the liquid to boil and form a film.

  6. Tensile strengths of polyamide based 3D printed polymers in liquid nitrogen

    International Nuclear Information System (INIS)

    Cruz, P; Shoemake, E D; Adam, P; Leachman, J

    2015-01-01

    Advances in additive manufacturing technology have made 3D printing a viable solution for many industries, allowing for the manufacture of designs that could not be made through traditional subtractive methods. Applicability of additive manufacturing in cryogenic applications is hindered, however, by a lack of accurate material properties information. Nylon is available for printing using fused deposition modeling (FDM) and selective laser sintering (SLS). We selected 5 SLS (DuraForm® EX, DuraForm® HST, DuraForm® PA, PA 640-GSL, and PA 840-GSL) and 2 FDM (Nylon 12, ULTEM) nylon variants based on the bulk material properties and printed properties at room temperature. Tensile tests were performed on five samples of each material while immersed in liquid nitrogen at approximately 77 Kelvin. Samples were tested in XY and, where available, Z printing directions to determine influence on material properties. Results show typical SLS and FDM nylon ultimate strength retention at 77 K, when compared to (extruded or molded) nylon ultimate strength. (paper)

  7. 1000–ton testing machine for cyclic fatigue tests of materials at liquid nitrogen temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Khitruk, A. A.; Klimchenko, Yu. A.; Kovalchuk, O. A.; Marushin, E. L.; Mednikov, A. A.; Nasluzov, S. N.; Privalova, E. K.; Rodin, I. Yu.; Stepanov, D. B.; Sukhanova, M. V. [The D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA), 3 Doroga na Metallostroy, Metallostroy, Saint Petersburg 196641 (Russian Federation)

    2014-01-29

    One of the main tasks of superconductive magnets R and D is to determine the mechanical and fatigue properties of structural materials and the critical design elements in the cryogenic temperature range. This paper describes a new facility built based on the industrial 1000-ton (10 MN) testing machine Schenk PC10.0S. Special equipment was developed to provide the mechanical and cyclic tensile fatigue tests of large-scale samples at the liquid nitrogen temperature and in a given load range. The main feature of the developed testing machine is the cryostat, in which the device converting a standard compression force of the testing machine to the tensile force affected at the test object is placed. The control system provides the remote control of the test and obtaining, processing and presentation of test data. As an example of the testing machine operation the test program and test results of the cyclic tensile fatigue tests of fullscale helium inlet sample of the PF1 coil ITER are presented.

  8. 1000–ton testing machine for cyclic fatigue tests of materials at liquid nitrogen temperatures

    International Nuclear Information System (INIS)

    Khitruk, A. A.; Klimchenko, Yu. A.; Kovalchuk, O. A.; Marushin, E. L.; Mednikov, A. A.; Nasluzov, S. N.; Privalova, E. K.; Rodin, I. Yu.; Stepanov, D. B.; Sukhanova, M. V.

    2014-01-01

    One of the main tasks of superconductive magnets R and D is to determine the mechanical and fatigue properties of structural materials and the critical design elements in the cryogenic temperature range. This paper describes a new facility built based on the industrial 1000-ton (10 MN) testing machine Schenk PC10.0S. Special equipment was developed to provide the mechanical and cyclic tensile fatigue tests of large-scale samples at the liquid nitrogen temperature and in a given load range. The main feature of the developed testing machine is the cryostat, in which the device converting a standard compression force of the testing machine to the tensile force affected at the test object is placed. The control system provides the remote control of the test and obtaining, processing and presentation of test data. As an example of the testing machine operation the test program and test results of the cyclic tensile fatigue tests of fullscale helium inlet sample of the PF1 coil ITER are presented

  9. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry

    Science.gov (United States)

    Coplen, Tyler B.; Qi, Haiping

    2010-01-01

    An anomalous stable hydrogen isotopic fractionation of 4 ‰ in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) δ2H reproducibility (1& sigma; standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1‰ to 0.58 ‰. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen

  10. Liquid nitrogen pretreatment of eucalyptus sawdust and rice hull for enhanced enzymatic saccharification.

    Science.gov (United States)

    Castoldi, Rafael; Correa, Vanesa G; de Morais, Gutierrez Rodrigues; de Souza, Cristina G M; Bracht, Adelar; Peralta, Rosely A; Peralta-Muniz Moreira, Regina F; Peralta, Rosane M

    2017-01-01

    In this work, liquid nitrogen was used for the first time in the pretreatment of plant biomasses for purposes of enzymatic saccharification. After treatment (cryocrushing), the initial rates of the enzymatic hydrolysis of eucalyptus sawdust and rice hull were increased more than ten-fold. Cryocrushing did not modify significantly the contents of cellulose, hemicellulose and lignin in both eucalyptus sawdust and rice hulls. However, substantial disorganization of the lignocellulosic materials in consequence of the pretreatment could be observed by electron microscopy. Cryocrushing was highly efficient in improving the saccharification of the holocellulose component of the plant biomasses (from 4.3% to 54.1% for eucalyptus sawdust and from 3.9% to 40.6% for rice hull). It is important to emphasize that it consists in a simple operation with low requirements of water and chemicals, no corrosion, no release of products such as soluble phenolics, furfural and hydroxymethylfurfural and no waste generation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Experimental investigations on cryogenic cooling by liquid nitrogen in the end milling of hardened steel

    Science.gov (United States)

    Ravi, S.; Pradeep Kumar, M.

    2011-09-01

    Milling of hardened steel generates excessive heat during the chip formation process, which increases the temperature of cutting tool and accelerates tool wear. Application of conventional cutting fluid in milling process may not effectively control the heat generation also it has inherent health and environmental problems. To minimize health hazard and environmental problems caused by using conventional cutting fluid, a cryogenic cooling set up is developed to cool tool-chip interface using liquid nitrogen (LN 2). This paper presents results on the effect of LN 2 as a coolant on machinability of hardened AISI H13 tool steel for varying cutting speed in the range of 75-125 m/min during end milling with PVD TiAlN coated carbide inserts at a constant feed rate. The results show that machining with LN 2 lowers cutting temperature, tool flank wear, surface roughness and cutting forces as compared with dry and wet machining. With LN 2 cooling, it has been found that the cutting temperature was reduced by 57-60% and 37-42%; the tool flank wear was reduced by 29-34% and 10-12%; the surface roughness was decreased by 33-40% and 25-29% compared to dry and wet machining. The cutting forces also decreased moderately compared to dry and wet machining. This can be attributed to the fact that LN 2 machining provides better cooling and lubrication through substantial reduction in the cutting zone temperature.

  12. Two-phase flow instability in a liquid nitrogen heat exchanger, 2

    International Nuclear Information System (INIS)

    Kondoh, Tetsuya; Fukuda, Kenji; Hasegawa, Shu; Yamada, Hidetomo; Ryu, Hiroyuki.

    1988-01-01

    Experimental and analytical investigations are conducted on flow instability in a vertically installed liquid nitrogen shell and tube type heat exchanger. The experiments are carried out by making use of water steam as a secondary fluid and it is observed that flow instability occurs in the range of small inlet flow rate. Mode analysis of the flow instability oscillation reveals that there exists a fundamental mode and its higher harmonics up to the fourth. As the period of the fundamental mode is nearly equal to the transit time for a fluid particle to travel through the heated tube, it is suggested that this flow instability is of the density wave type. It is shown that the amount of exchanged heat, as well as the pressure drop, decrease when unstable flow oscillation occurs. An analysis of the static heat transfer and pressure drop characteristics can simulate the experimental results in the stable region. Linear stability analysis is also carried out to yield the stability map as well as the period of flow oscillation, which proved to agree with the experimental data qualitatively. (author)

  13. Arcing time analysis of liquid nitrogen with respect to electrode materials

    Science.gov (United States)

    Junaid, Muhammad; Yang, Kun; Ge, Hanming; Wang, Jianhua

    2018-03-01

    Unlike sulphur hexafluoride (SF6), liquid nitrogen (LN2) is cost effective, environment friendly and cryogenic dielectric. It has astounding insulating properties with the potential to decrease power loss in switchgear applications due to its remarkably low temperatures. The basic research is however a necessity to observe the performance of LN2 subjected to high luminance arcs. So far, there are no findings that refer to the arcing time inside the LN2 environment. The objective of this work was to investigate the arcing times in LN2 and compare the results with open air conditions using different electrode materials. Experiments were conducted on different DC voltages and their arcing times were measured. Three different kinds of electrode materials, namely: pure copper (Cu), stainless used steel (SUS) and aluminium alloy (Al 6061) were tested under 1 atmospheric pressure. The results revealed that LN2 extinguishes arc in almost half the amount of time required by the open air insulation. With Al 6061 has the shortest arcing time, whilst Cu, the second best choice and SUS places last in the evaluation. It was encapsulated from the findings that LN2 is a better choice than air insulation in terms of arc quenching and a better alternative to SF6 when environment is the priority.

  14. Utilization of urea/molasses liquid feed as a major source of nitrogen and energy for lactating cows

    International Nuclear Information System (INIS)

    Ranjhan, S.K.; Krishna Mohan, D.V.G.; Pathak, N.N.

    1976-01-01

    Experiments were conducted in which urea/molasses liquid feed along with a limited amount of intact protein and cereal forage was fed to lactating cows, and compared with another group receiving conventional concentrate and roughage-based rations. Voluntary consumption of liquid feed by cows was satisfactory. There was no significant difference in the milk yield between the two groups. The higher consumption of metabolizable energy and digestible crude protein by experimental cows from liquid feed was not reflected in their milk yields or body weights. Various other parameters such as digestibilities of nutrients, efficiency of energy and nitrogen utilization for milk production and N-balance have been presented in cows fed urea/molasses liquid diets and conventional diets. (author)

  15. Removal of Basic Nitrogen Compounds from Fuel Oil with [Hnmp]H2PO4 Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Z. Zhou

    2017-04-01

    Full Text Available Ionic liquid (IL N-methyl pyrrolidone dihydrogen phosphate ([Hnmp]H2PO4 was synthesized and its structure was characterized with FT-IR spectroscopy and 1H NMR. The denitrogenation performance of the ionic liquid was investigated using Fushun shale diesel oil that included 0.52 w% basic nitrogen as feedstock. Experiment results showed that under the operating conditions with temperature of 30 °C, 1:7 (w/w IL: oil, reaction time of 20 min, and settling time of 2 h, the ionic liquid exhibited good denitrogenation performance achieving 86.27 % basic N-extraction efficiency and the yield of refined diesel oil can reach more than 90 %. In addition, the basic N-removal efficiency can still reach 54 % during four recycles of the ionic liquid.

  16. About the Shape of the Melting Line as a Possible Precursor of a Liquid-Liquid Phase Transition

    Science.gov (United States)

    Imre, Attila R.; Rzoska, Sylwester J.

    Several simple, non-mesogenic liquids can exists in two or more different liquid forms. When the liquid-liquid line, separating two liquid forms, meets the melting line, one can expect some kind of break on the melting line, caused by the different freezing/melting behaviour of the two liquid forms. Unfortunately recently several researchers are using this vein of thinking in reverse; seeing some irregularity on the melting line, they will expect a break and the appearance of a liquid-liquid line. In this short paper, we are going to show, that in the case of the high-pressure nitrogen studied recently by Mukherjee and Boehler, the high-pressure data can be easily described by a smooth, break-free function, the modified Simon-Glatzel equation. In this way, the break, suggested by them and consequently the suggested appearance of a new liquid phase of the nitrogen might be artefacts.

  17. A planar, solid-state amperometric sensor for nitrogen dioxide, employing an ionic liquid electrolyte contained in a polymeric matrix

    Czech Academy of Sciences Publication Activity Database

    Nádherná, M.; Opekar, F.; Reiter, Jakub; Stulík, K.

    2012-01-01

    Roč. 161, č. 1 (2012), s. 811-817 ISSN 0925-4005 R&D Projects: GA MŠk LC523; GA AV ČR KJB200320901 Institutional research plan: CEZ:AV0Z40320502 Keywords : Amperometry * Gas sensor * Solid-state sensor * Planar sensor * Ionic liquid * Solid polymer electrolyte * Gold minigrid electrode * Nitrogen dioxide Subject RIV: CG - Electrochemistry Impact factor: 3.535, year: 2012

  18. Liquid Phase Plasma Synthesis of Iron Oxide Nanoparticles on Nitrogen-Doped Activated Carbon Resulting in Nanocomposite for Supercapacitor Applications.

    Science.gov (United States)

    Lee, Heon; Lee, Won-June; Park, Young-Kwon; Ki, Seo Jin; Kim, Byung-Joo; Jung, Sang-Chul

    2018-03-25

    Iron oxide nanoparticles supported on nitrogen-doped activated carbon powder were synthesized using an innovative plasma-in-liquid method, called the liquid phase plasma (LPP) method. Nitrogen-doped carbon (NC) was prepared by a primary LPP reaction using an ammonium chloride reactant solution, and an iron oxide/NC composite (IONCC) was prepared by a secondary LPP reaction using an iron chloride reactant solution. The nitrogen component at 3.77 at. % formed uniformly over the activated carbon (AC) surface after a 1 h LPP reaction. Iron oxide nanoparticles, 40~100 nm in size, were impregnated homogeneously over the NC surface after the LPP reaction, and were identified as Fe₃O₄ by X-ray photoelectron spectroscopy and X-ray diffraction. NC and IONCCs exhibited pseudo-capacitive characteristics, and their specific capacitance and cycling stability were superior to those of bare AC. The nitrogen content on the NC surface increased the compatibility and charge transfer rate, and the composites containing iron oxide exhibited a lower equivalent series resistance.

  19. Feasibility analysis of gas turbine inlet air cooling by means of liquid nitrogen evaporation for IGCC power augmentation

    International Nuclear Information System (INIS)

    Morini, Mirko; Pinelli, Michele; Spina, Pier Ruggero; Vaccari, Anna; Venturini, Mauro

    2015-01-01

    Integrated Gasification Combined Cycles (IGCC) are energy systems mainly composed of a gasifier and a combined cycle power plant. Since the gasification process usually requires oxygen as the oxidant, an Air Separation Unit (ASU) is also part of the plant. In this paper, a system for power augmentation in IGCC is evaluated. The system is based on gas turbine inlet air cooling by means of liquid nitrogen spray. In fact, nitrogen is a product of the ASU, but is not always exploited. In the proposed plant, the nitrogen is first liquefied to be used for inlet air cooling or stored for later use. This system is not characterized by the limits of water evaporative cooling systems (the lower temperature is limited by air saturation) and refrigeration cooling (the effectiveness is limited by the pressure drop in the heat exchanger). A thermodynamic model of the system is built by using a commercial code for energy conversion system simulation. A sensitivity analysis on the main parameters is presented. Finally the model is used to study the capabilities of the system by imposing the real temperature profiles of different sites for a whole year and by comparing to traditional inlet air cooling strategies. - Highlights: • Gas turbine inlet air cooling by means of liquid nitrogen spray. • Humidity condensation may form a fog which provides further power augmentation. • High peak and off peak electric energy price ratios make the system profitable

  20. Transport critical current measurement apparatus using liquid nitrogen cooled high-T(c) superconducting magnet with variable temperature insert.

    Science.gov (United States)

    Nishijima, G; Kitaguchi, H; Tshuchiya, Y; Nishimura, T; Kato, T

    2013-01-01

    We have developed an apparatus to investigate transport critical current (I(c)) as a function of magnetic field and temperature using only liquid nitrogen. The apparatus consists of a (Bi,Pb)(2)Sr(2)Ca(2)Cu(3)O(10) (Bi-2223) superconducting magnet, an outer dewar, and a variable temperature insert (VTI). The magnet, which is operated in depressurized liquid nitrogen, generates magnetic field up to 1.26 T. The sample is also immersed in liquid nitrogen. The pressure in the VTI is controlled from 0.02 to 0.3 MPa, which corresponds to temperature ranging from 66 to 88 K. We have confirmed the long-term stable operation of the Bi-2223 magnet at 1 T. The temperature stability of the sample at high transport current was also demonstrated. The apparatus provides easy-operating I(c) measurement environment for a high-T(c) superconductor up to 500 A in magnetic fields up to 1 T and in temperatures ranging from 66 to 88 K.

  1. Facile fabrication of palladium-ionic liquids-nitrogen-doped graphene nanocomposites as enhanced electro-catalyst for ethanol oxidation

    Science.gov (United States)

    Li, Shuwen; Yang, Honglei; Ren, Ren; Ma, Jianxin; Jin, Jun; Ma, Jiantai

    2015-10-01

    The palladium-ionic liquids-nitrogen-doped graphene nanocomposites are facile fabricated as enhanced electro-catalyst for ethanol oxidation. First, the ionic liquids functionalized nitrogen-doping graphene nanosheets (PDIL-NGS) with few layers is synthesized through a facile and effective one-pot hydrothermal method with graphene oxide as raw material, urea as reducing-doping agents and ionic liquids (ILs) derived from 3,4,9,10-perylene tetracarboxylic acid as functional molecules. The results of systematic characterization reveal that the PDIL molecules not only can functionalize NGS by π-π stacking with no affecting the nitrogen doping but also prevent the agglomeration of NGS. More importantly, the processing performance and the property of electron transfer are remarkably enhanced duo to introducing a large number of ILs groups. Then, the enhanced electrocatalytic Pd nanoparticles are successfully anchored on PDIL-NGS by a facile and surfactant-free synthetic technique. As an anode catalyst, the novel catalyst exhibits better kinetics, more superior electrocatalytic performance, higher tolerance and electrochemical stability than the other catalysts toward ethanol electrooxidation, owing to the role of PDIL molecules. Therefore, the new catalyst is believed to have the potential use for direct alcohol fuel cells in the future and the functionalized NGS is promising useful materials applied in other fields.

  2. The potential of Mythimna sequax Franclemont eggs for the production of Trichogramma spp. after cryopreservation in liquid nitrogen

    Directory of Open Access Journals (Sweden)

    Magda Fernanda Paixão

    Full Text Available ABSTRACT The cryopreservation of noctuid eggs in liquid nitrogen has proved be a promising tool in the mass production of Trichogramma, however studies into this technique have only just begun. This study evaluated the response of different densities of the female of Trichogramma pretiosum Riley to the parasitism of Mythimna sequax eggs stored and not stored in liquid nitrogen, and the performance of females reared only in cryopreserved eggs. The study evaluated the influence of the number of T. pretiosum females (4, 8 and 12 released to parasitise 40 M. sequax eggs, stored and not stored for 15 days in liquid nitrogen, as well as the performance of T. pretiosum females reared in eggs stored for three generations and females reared in non-stored eggs. Parasitism by T. pretiosum in stored eggs was 84%, twice the value obtained in previous studies. The emergence of parasitoids was greater than 95% in both experiments. The performance of females raised in stored eggs did not differ from that of females raised in non-stored eggs. The data show that the technique of cryopreservation of M. sequax eggs may be a viable alternative in the mass production of T. pretiosum.

  3. Clinical results of primary malignant musculoskeletal tumor treated by wide resection and recycling autograft reconstruction using liquid nitrogen.

    Science.gov (United States)

    Paholpak, Permsak; Sirichativapee, Winai; Wisanuyotin, Taweechok; Kosuwon, Weerachai; Jeeravipoolvarn, Polasak

    2015-06-01

    To evaluate the clinical results of primary malignant musculoskeletal tumors treated with wide resection and recycling autograft reconstruction using liquid nitrogen. We reviewed 12 patients who had a primary malignant bone and soft tissue tumor treated by wide resection and recycling autograft reconstruction using liquid nitrogen between March 2006 and March 2013. The results were judged by recurrence, functional status and complications. Functional status was assessed according to the Musculoskeletal Tumor Society Score (MSTSS). Clinical failure was defined as need for reoperation in order to change the type of reconstruction or to amputate, and the presence of local recurrence. The most common tumor was osteosarcoma (eight cases) followed by Ewing's sarcoma (two cases). The tibia was the most frequently involved skeletal site (six cases) followed by the femur (three cases). The median follow-up period was 32 months. In 12 patients, 7 were still alive without recurrence. There were 3 clinical failures: 1 local recurrence and 2 graft complications at 28, 51 and 20 months after reconstruction, respectively. The main complication was infection (three cases). All osteotomy sites were radiographic unions, and the union time was 8.2 ± 2.7 months. The mean ± SD MSTSS score was 79% ± 11%; excellent functional results were achieved in seven patients. Recycling autograft reconstruction using liquid nitrogen had favorable clinical outcomes in terms of functional status and local recurrence. This reconstruction method, therefore, represents a reasonable alternative for limb salvage surgery. © 2014 Wiley Publishing Asia Pty Ltd.

  4. The influence of cavitation on the flow characteristics of liquid nitrogen through spray nozzles: A CFD study

    Science.gov (United States)

    Xue, Rong; Ruan, Yixiao; Liu, Xiufang; Cao, Feng; Hou, Yu

    2017-09-01

    Spray cooling with cryogen could achieve lower temperature level than refrigerant spray. The internal flow conditions within spray nozzles have crucial impacts on the mass flow rate, particle size, spray angle and spray penetration, thereby influencing the cooling performance. In this paper, CFD simulations based on mixture model are performed to study the cavitating flow of liquid nitrogen in spray nozzles. The cavitation model is verified using the experimental results of liquid nitrogen flow over hydrofoil. The numerical models of spray nozzle are validated against the experimental data of the mass flow rate of liquid nitrogen flow through different types of nozzles including the pressure swirl nozzle and the simple convergent nozzle. The numerical studies are performed under a wide range of pressure difference and inflow temperature, and the vapor volume fraction distribution, outlet vapor quality, mass flow rate and discharge coefficient are obtained. The results show that the outlet diameter, the pressure difference, and the inflow temperature significantly influence the mass flow rate of spray nozzles. The increase of the inflow temperature leads to higher saturation pressure, higher cavitation intensity, and more vapor at nozzle outlet, which can significantly reduce mass flow rate. While the discharge coefficient is mainly determined by the inflow temperature and has little dependence on the pressure difference and outlet diameter. Based on the numerical results, correlations of discharge coefficient are proposed for pressure swirl nozzle and simple convergent nozzles, respectively, and the deviation is less than 20% for 93% of data.

  5. Freeze-fracture of infected plant leaves in ethanol for scanning electron microscopic study of fungal pathogens.

    Science.gov (United States)

    Moore, Jayma A; Payne, Scott A

    2012-01-01

    Fungi often are found within plant tissues where they cannot be visualized with the scanning electron microscope (SEM). We present a simple way to reveal cell interiors while avoiding many common causes of artifact. Freeze-fracture of leaf tissue using liquid nitrogen during the 100% ethanol step of the dehydration process just before critical point drying is useful in exposing intracellular fungi to the SEM.

  6. Cryopreservation of Citrus seeds via dehydration and direct immersion in liquid nitrogen

    Science.gov (United States)

    Citrus germplasm is conventionally conserved in clonal orchards and greenhouses, where it is subjected to potential losses due to pests, diseases and climatic hazards. In recent years, many studies reported preservation of germplasm in the genus Citrus. As a result, effective freezing protocols have...

  7. Electrical conductivity and equation of state of liquid nitrogen, oxygen, benzene, and 1-butene shocked to 60 GPa

    International Nuclear Information System (INIS)

    Hamilton, D.C.

    1986-01-01

    Measurements are reported for the electrical conductivity of liquid nitrogen (N 2 ), oxygen (O 2 ) and benzene (C 6 H 6 ), and Hugoniot equation of state of liquid 1-butene (C 4 H 8 ) under shock compressed conditions. The conductivity data span 7 x 10 -4 to 7 x 10 1 Ω -1 cm -1 over a dynamic pressure range 18.1 to 61.5 GPa and are discussed in terms of amorphous semiconduction models which include such transport phenomena as hopping, percolation, pseudogaps, and metallization. Excellent agreement is found between the equation-of-state measurements, which span a dynamic pressure range 12.3 to 53.8 GPa, and Ree's calculated values which assume a 2-phase mixture consisting of molecular hydrogen and carbon in a dense diamond-like phase. There is a 2-1/2 fold increase in the thermal pressure contribution over a less dense, stoichiometrically equivalent liquid. 90 refs., 48 figs., 8 tabs

  8. Automatic filling of liquid nitrogen traps auxiliary safety devices of a pumping unit; Alimentation automatique des pieges a azote liquide securites annexes d'un groupe de pompage

    Energy Technology Data Exchange (ETDEWEB)

    Chatel, S [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The liquid nitrogen traps in our laboratories are generally filled at fixed time intervals, the supply being cut when the liquid flowing through the overflow pipe acts on a lever to which is fixed a small cup fitted with a hole which allows the water of condensation to escape. This system is reliable. After a certain time however, the escape hole blocks up, water accumulates and the lever arm no longer works properly. Furthermore the duration of any cuts in the current, is added to the fixed time intervals, and in this case there can be a lack of liquid nitrogen for several hours after the current has been restored. The device described here avoids these problems. A stainless steel tube containing a copper wire passes into the trap and is immersed in the nitrogen which boils at its tip. A mercury manometer with concentric reservoirs, or an oil manometer, acting on two micro switches through a floater, records the pressure corresponding to the difference in level and controls the filling operation. If there is a lack of nitrogen, a valve can be closed by means of a falling weight, or a diffusion pump can be cut off; one time switch and at least two relays are required. One single relay can be used to control, the supply of several similar traps placed in series. [French] Dans nos laboratoires, les pieges a azote liquide sont generalement remplis a intervalles fixes jusqu'a ce que le trop-plein d'azote actionne une bascule dont le recipient presente un petit trou par ou s'en va l'eau de condensation. Ce systeme est sur. A la longue, pourtant, le trou d'ecoulement se bouche, l'eau s'accumule et la bascule cesse de fonctionner. De plus, la duree des pannes de courant s'ajoute aux 'intervalles fixes' de sorte que l'azote peut manquer plusieurs heures apres le retour du courant. Le dispositif suivant evite ces ennuis. Un tube d'acier inoxydable contenant un fil de cuivre penetre dans le piege et plonge dans l'azote qui bout a son extremite. Un manometre a mercure a cuves

  9. Biochar can restrict N2O emissions and the risk of nitrogen leaching from an agricultural soil during the freeze-thaw period

    Directory of Open Access Journals (Sweden)

    Riitta Kettunen

    2013-12-01

    Full Text Available Freeze-thaw (FT events in soils can cause a burst of nitrous oxide (N2O and enhance N leaching during the spring-thaw event. We studied whether a soil amended with wood-derived (spruce chips biochar (10 tonnes ha-1, produced at rather low temperatures (400-450°C, could reduce the burst of N2O and the risk of N leaching from an agricultural soil after a FT event. A short-term laboratory experiment (4 weeks was conducted with 24 vegetated (Phleum pratense mesocosms (12 controls, 12 biochar-treated that had spent a dormant season in the dark at 15°C for two months after the growing season. N2O efflux to the atmosphere and ammonium (NH4+-N and nitrate (NO3-N in the percolated soil water were monitored before and after the FT event. N2O was monitored with the dark chamber method and analyzed using a gas chromatograph. We found that soil amended biochar can significantly diminish the burst of N2O after the soil FT event (by 61% just after FT event and substantially reduce the risk of NO3-N and NH4+-N leaching from the agricultural soil. Compared to the control, the decrement in concentrations of NO3-N and NH4+-N in water percolated through the biochar amended soil in the mesocosms was 58% and 22%, respectively.

  10. Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen

    Czech Academy of Sciences Publication Activity Database

    Košťál, Vladimír; Zahradníčková, Helena; Šimek, Petr

    2011-01-01

    Roč. 108, č. 32 (2011), s. 13041-13046 ISSN 0027-8424 R&D Projects: GA ČR GA206/07/0269; GA ČR GA203/09/2014 Institutional research plan: CEZ:AV0Z50070508 Keywords : insect freeze tolerance * cold hardiness * glass transition Subject RIV: ED - Physiology Impact factor: 9.681, year: 2011

  11. A Theory of Immersion Freezing

    Science.gov (United States)

    Barahona, Donifan

    2017-01-01

    Immersion freezing is likely involved in the initiation of precipitation and determines to large extent the phase partitioning in convective clouds. Theoretical models commonly used to describe immersion freezing in atmospheric models are based on the classical nucleation theory which however neglects important interactions near the immersed particle that may affect nucleation rates. This work introduces a new theory of immersion freezing based on two premises. First, immersion ice nucleation is mediated by the modification of the properties of water near the particle-liquid interface, rather than by the geometry of the ice germ. Second, the same mechanism that leads to the decrease in the work of germ formation also decreases the mobility of water molecules near the immersed particle. These two premises allow establishing general thermodynamic constraints to the ice nucleation rate. Analysis of the new theory shows that active sites likely trigger ice nucleation, but they do not control the overall nucleation rate nor the probability of freezing. It also suggests that materials with different ice nucleation efficiency may exhibit similar freezing temperatures under similar conditions but differ in their sensitivity to particle surface area and cooling rate. Predicted nucleation rates show good agreement with observations for a diverse set of materials including dust, black carbon and bacterial ice nucleating particles. The application of the new theory within the NASA Global Earth System Model (GEOS-5) is also discussed.

  12. Drying of α-amylase by spray drying and freeze-drying - a comparative study

    Directory of Open Access Journals (Sweden)

    S. S. de Jesus

    2014-09-01

    Full Text Available This study is aimed at comparing two traditional methods of drying of enzymes and at verifying the efficiency of each one and their advantages and disadvantages. The experiments were performed with a laboratory spray dryer and freeze-dryer using α-amylase as the model enzyme. An experimental design in star revealed that spray drying is mainly influenced by the inlet air temperature and feed flow rate, which were considered to be the main factors influencing the enzymatic activity and water activity; the long period of material exposure to high temperatures causes a partial activity loss. In the experiments of freeze drying, three methods of freezing were used (freezer, acetone and dry ice, and liquid nitrogen and samples subsequently freeze-dried for times ranging between 0-24 hours. The product obtained from the two techniques showed high enzymatic activity and low water activity. For the drying of heat-resistant enzymes, in which the product to be obtained does not have high added value, spray drying may be more economically viable because, in the freeze drying process, the process time can be considered as a limiting factor when choosing a technique.

  13. Liquid methane gelled with methanol and water reduces rate of nitrogen absorption

    Science.gov (United States)

    Vanderwall, E. M.

    1972-01-01

    Dilution of gelant vapor with inert carrier gas accomplishes gelation. Mixture is injected through heated tube and orifice into liquid methane for immediate condensation within bulk of liquid. Direct dispersion of particles in liquid avoids condensation on walls of vessel and eliminates additional mixing.

  14. The Application of Liquid Nitrogen Spray Cryotherapy in Treatment of Bronchial Stenosis.

    Science.gov (United States)

    Janke, Kelly J; Abbas, Abbas El-Sayed; Ambur, Vishnu; Yu, Daohai

    Spray cryotherapy (SCT), the application of liquid nitrogen in a noncontact form, has been demonstrated to have efficacy in treating various types of pathologic lesions of the airway when used as an adjunct with bronchoscopy. The purpose of the study was to evaluate the results of the use of bronchoscopic SCT on the airway in a single institution. We performed a retrospective review of data collected on all patients who underwent SCT to re-establish or improve airway patency in an 11-month period. Patients were classified based on the nature of their disease into benign or malignant. Demographic data, change in luminal patency, and clinical outcomes were recorded. The percent of stenosis was divided into grades according to the following classification: 1, ≤25%; 2, 26% to 50%; 3, 51% to 75%; and 4, ≥76%. We defined successful completion of treatment as obtaining a final patency of grade 1. Twenty-two patients met inclusion criteria, with 45.5% (10 patients) having benign stenosis and 54.5% (12 patients) malignant. At initial bronchoscopic evaluation, the median grade of stenosis was 4 for malignant disease and 3.5 for benign disease. The median final posttreatment grade of stenosis was 2 for malignant disease and 1 for benign. The median improvement in grade of stenosis after treatment was 2 for both malignant and benign causes (Wilcoxon test, P = 0.92). Final patency of grade 1 was achieved in 42% of malignant stenosis and 80% of benign. Overall, 86.4% of patients had an improvement in grade of stenosis after treatment. The rate of morbidity was 4.5% (1/22) of all patients. The median change in grade after treatment was 2 grades of improvement for both the benign and malignant groups. These results provide evidence that the use of SCT is equally efficacious for both types of stenosis with an expectation of overall improvement in luminal patency, offering a safe and effective method of achieving airway patency in a minimally invasive fashion. This study

  15. Critical Current Properties of HTS Twisted Stacked-Tape Cable in Subcooled- and Pressurized-Liquid Nitrogen

    International Nuclear Information System (INIS)

    Tomita, M; Suzuki, K; Fukumoto, Y; Ishihara, A; Akasaka, T; Kobayashi, Y; Maeda, A; Takayasu, M

    2015-01-01

    A 2 m length Twisted Stacked-Tape Cable (TSTC) conductor which was fabricated by 32-YBCO-tapes (4 mm width) with a 200 mm twist pitch was investigated at various temperatures near 77 K in subcooled- and pressurized-liquid nitrogen. The critical current of the TSTC cable which was 1.45 kA at 77 K measured from 64 K to 85 K by controlling the equilibrium vapor pressure of nitrogen bath and were varied from 3.65 kA at 64 K to 0.42 kA at 85 K. The temperature dependence of cables’ critical current agrees with that of the 4 mm width YBCO tape. These results are encouraging for applications of a compact Twisted Stacked-Tape Cable application in railway systems. (paper)

  16. Physicochemical processes in embryonic plant tissue during the transition to the state of cold anabiosis and storage at liquid nitrogen temperature

    Science.gov (United States)

    Khodko, A. T.; Lysak, Yu. S.

    2017-10-01

    Critical opalescence phenomenon was observed in the cytoplasm of garlic embryonic tissue—meristem—upon cooling in liquid nitrogen vapor, indicating liquid-liquid phase transition in the system. It was established that cells of the meristem tissue survive the cooling-thawing cycle. We suggest that the transition of meristem tissue to the state of anabiosis is mainly due to a drastic slowing of the diffusion in the cytoplasm caused by the passage of the solution through the critical point, followed by the formation of a dispersed system—a highly concentrated emulsion—as a result of a liquid-liquid phase transition. This macrophase separation is characteristic of polymer-solvent systems. We established the regime of cooling down to liquid nitrogen temperature and subsequent thawing in the cryopreservation cycle for the biological object under study, which ensures the preservation of tissue viability.

  17. First 10 kg of naked germanium detectors installed in liquid nitrogen in GENIUS Test-Facility in GRAN-SASSO

    Energy Technology Data Exchange (ETDEWEB)

    Klapdor-Kleingrothaus, H.V. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2004-07-01

    The GENIUS Test Facility has come into operation in Gran Sasso on May 5, 2003 with its first ten kg of naked Ge detectors in liquid nitrogen. This is the first time that this novel technique for extreme background reduction in search for rare decays is applied under the background conditions of an underground laboratory. GENIUS-TF has the potential to check the DAMA evidence for cold dark matter by modulation, and possibly, to improve the accuracy of the recently observed first signal for neutrinoless double beta decay. (orig.)

  18. First 10 kg of naked germanium detectors installed in liquid nitrogen in GENIUS Test-Facility in GRAN-SASSO

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.

    2004-01-01

    The GENIUS Test Facility has come into operation in Gran Sasso on May 5, 2003 with its first ten kg of naked Ge detectors in liquid nitrogen. This is the first time that this novel technique for extreme background reduction in search for rare decays is applied under the background conditions of an underground laboratory. GENIUS-TF has the potential to check the DAMA evidence for cold dark matter by modulation, and possibly, to improve the accuracy of the recently observed first signal for neutrinoless double beta decay. (orig.)

  19. A Simple Method to Measure the Thermal contraction Percentage of a Solid Between Room and Liquid Nitrogen Temperatures

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau Malonda, A.

    2000-01-01

    We described how to build a simple device for measuring, with a reasonable good accuracy, the thermal contraction of a flat sample between room and liquid nitrogen temperatures. The contraction percentage of the sample is determined by the dimensional comparison of two images taken through the bottom of a transparent quartz tray. Instead of a photo or video camera, a high-resolution flatbed scanner is utilized to avoid the correction of perspectives. The so-called Grueneisen approximation are applied to evaluate the contraction percentages for intermediate temperatures. (Author) 28 refs

  20. Lap shear strength of selected adhesives (epoxy, varnish, B-stage glass cloth) in liquid nitrogen and at room temperature

    International Nuclear Information System (INIS)

    Froelich, K.J.; Fitzpatrick, C.M.

    1976-12-01

    The adhesives included several epoxy resins, a varnish, and a B-stage glass cloth (a partially cured resin in a fiberglass cloth matrix). Several parameters critical to bond strength were varied: adhesive and adherend differences, surface preparation, coupling agents, glass cloth, epoxy thickness, fillers, and bonding pressure and temperature. The highest lap shear strengths were obtained with the B-shear glass cloth at both liquid nitrogen and room temperatures with values of approximately 20 MPa (3000 psi) and approximately 25.5 MPa (3700 psi) respectively

  1. Photo- and electro-luminescence of rare earth doped ZnO electroluminors at liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Bhushan, S.; Kaza, B.R.; Pandey, A.N.

    1981-01-01

    Photo (PL) and electroluminescent (EL) spectra of some rare earth (La, Gd, Er or Dy) doped ZnO electroluminors have been investigated at liquid nitrogen temperature (LNT) and compared with their corresponding results at room temperature (RT). In addition to three bands observed at RT, one more band on the higher wavelength side appears in EL spectra. Spectral shift with the exciting intensity at LNT supports the donor-acceptor (DA) model in which the rare earths form the donor levels. From the temperature dependent studies of PL and EL brightness, the EL phenomenon is found to be more susceptible to traps. (author)

  2. Quantitative study of sniffer leak rate and pressure drop leak rate of liquid nitrogen panels of SST-1 tokamak

    Science.gov (United States)

    Pathan, F. S.; Khan, Z.; Semwal, P.; Raval, D. C.; Joshi, K. S.; Thankey, P. L.; Dhanani, K. R.

    2008-05-01

    Steady State Super-conducting (SST-1) Tokamak is in commissioning stage at Institute for Plasma Research. Vacuum chamber of SST-1 Tokamak consists of 1) Vacuum vessel, an ultra high vacuum (UHV) chamber, 2) Cryostat, a high vacuum (HV) chamber. Cryostat encloses the liquid helium cooled super-conducting magnets (TF and PF), which require the thermal radiation protection against room temperature. Liquid nitrogen (LN2) cooled panels are used to provide thermal shield around super-conducting magnets. During operation, LN2 panels will be under pressurized condition and its surrounding (cryostat) will be at high vacuum. Hence, LN2 panels must have very low leak rate. This paper describes an experiment to study the behaviour of the leaks in LN2 panels during sniffer test and pressure drop test using helium gas.

  3. Quantitative study of sniffer leak rate and pressure drop leak rate of liquid nitrogen panels of SST-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pathan, F S; Khan, Z; Semwal, P; Raval, D C; Joshi, K S; Thankey, P L; Dhanani, K R [Institute for Plasma Research, Bhat, Gandhinagar - 382 428, Gujarat (India)], E-mail: firose@ipr.res.in

    2008-05-01

    Steady State Super-conducting (SST-1) Tokamak is in commissioning stage at Institute for Plasma Research. Vacuum chamber of SST-1 Tokamak consists of 1) Vacuum vessel, an ultra high vacuum (UHV) chamber, 2) Cryostat, a high vacuum (HV) chamber. Cryostat encloses the liquid helium cooled super-conducting magnets (TF and PF), which require the thermal radiation protection against room temperature. Liquid nitrogen (LN2) cooled panels are used to provide thermal shield around super-conducting magnets. During operation, LN{sub 2} panels will be under pressurized condition and its surrounding (cryostat) will be at high vacuum. Hence, LN{sub 2} panels must have very low leak rate. This paper describes an experiment to study the behaviour of the leaks in LN{sub 2} panels during sniffer test and pressure drop test using helium gas.

  4. Quantitative study of sniffer leak rate and pressure drop leak rate of liquid nitrogen panels of SST-1 tokamak

    International Nuclear Information System (INIS)

    Pathan, F S; Khan, Z; Semwal, P; Raval, D C; Joshi, K S; Thankey, P L; Dhanani, K R

    2008-01-01

    Steady State Super-conducting (SST-1) Tokamak is in commissioning stage at Institute for Plasma Research. Vacuum chamber of SST-1 Tokamak consists of 1) Vacuum vessel, an ultra high vacuum (UHV) chamber, 2) Cryostat, a high vacuum (HV) chamber. Cryostat encloses the liquid helium cooled super-conducting magnets (TF and PF), which require the thermal radiation protection against room temperature. Liquid nitrogen (LN2) cooled panels are used to provide thermal shield around super-conducting magnets. During operation, LN 2 panels will be under pressurized condition and its surrounding (cryostat) will be at high vacuum. Hence, LN 2 panels must have very low leak rate. This paper describes an experiment to study the behaviour of the leaks in LN 2 panels during sniffer test and pressure drop test using helium gas

  5. Using Power Ultrasound to Accelerate Food Freezing Processes: Effects on Freezing Efficiency and Food Microstructure.

    Science.gov (United States)

    Zhang, Peizhi; Zhu, Zhiwei; Sun, Da-Wen

    2018-05-31

    Freezing is an effective way of food preservation. However, traditional freezing methods have the disadvantages of low freezing efficiency and generation of large ice crystals, leading to possible damage of food quality. Power ultrasound assisted freezing as a novel technique can effectively reduce the adverse effects during freezing process. This paper gives an overview on recent researches of power ultrasound technique to accelerate the food freezing processes and illustrates the main principles of power ultrasound assisted freezing. The effects of power ultrasound on liquid food, model solid food as well as fruit and vegetables are discussed, respectively, from the aspects of increasing freezing rate and improving microstructure. It is shown that ultrasound assisted freezing can effectively improve the freezing efficiency and promote the formation of small and evenly distributed ice crystals, resulting in better food quality. Different inherent properties of food samples affect the effectiveness of ultrasound application and optimum ultrasound parameters depend on the nature of the samples. The application of ultrasound to the food industry is more likely on certain types of food products and more efforts are still needed to realize the industrial translation of laboratory results.

  6. Comparison of heat transfer in liquid and slush nitrogen by numerical simulation of cooling rates for French straws used for sperm cryopreservation.

    Science.gov (United States)

    Sansinena, M; Santos, M V; Zaritzky, N; Chirife, J

    2012-05-01

    Slush nitrogen (SN(2)) is a mixture of solid nitrogen and liquid nitrogen, with an average temperature of -207 °C. To investigate whether plunging a French plastic straw (commonly used for sperm cryopreservation) in SN(2) substantially increases cooling rates with respect to liquid nitrogen (LN(2)), a numerical simulation of the heat conduction equation with convective boundary condition was used to predict cooling rates. Calculations performed using heat transfer coefficients in the range of film boiling confirmed the main benefit of plunging a straw in slush over LN(2) did not arise from their temperature difference (-207 vs. -196 °C), but rather from an increase in the external heat transfer coefficient. Numerical simulations using high heat transfer (h) coefficients (assumed to prevail in SN(2)) suggested that plunging in SN(2) would increase cooling rates of French straw. This increase of cooling rates was attributed to a less or null film boiling responsible for low heat transfer coefficients in liquid nitrogen when the straw is placed in the solid-liquid mixture or slush. In addition, predicted cooling rates of French straws in SN(2) tended to level-off for high h values, suggesting heat transfer was dictated by heat conduction within the liquid filled plastic straw. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Survival and death of seeds during liquid nitrogen storage: a case study on seeds with short lifespans.

    Science.gov (United States)

    Ballesteros, D; Pence, V C

    The low temperature of liquid nitrogen is assumed to stop ageing and preserve viability indefinitely, however there are few validating data sets. The use of seeds to test these assumptions is important because other cryopreserved systems lack quantitative measures of viability to allow comparisons among timed points. To evaluate survival of a collection of seeds with short lifespans stored 12-20 years in liquid nitrogen. Seeds from 11 species (26 accessions) were removed from cryostorage and evaluated for germination and normal growth. Germination of Plantago cordata and Betula spp. seeds did not decrease significantly during cryostorage. However, Populus deltoides and most Salix spp. accessions showed a significant decrease in germination, with further loss observed when P. deltoides seedlings were followed to the young plant stage. Seeds of initial low quality showed greater deterioration during cryostorage. Cryostorage maintained viability of Salix and Populus seeds longer than other temperatures. However, ageing was not completely stopped and seed longevity was shorter than that predicted for many other species. A high initial seed quality is important in order to obtain the maximum benefit of cryostorage.

  8. IMPACT OF LIQUID NITROGEN EXPOSURE ON SELECTED BIOCHEMICAL AND STRUCTURAL PARAMETERS OF HYDRATED Phaseolus vulgaris L. SEEDS.

    Science.gov (United States)

    Cejas, Inaudis; Rivas, Maribel; Nápoles, Lelurlys; Marrero, Pedro; Yabor, Lourdes; Aragón, Carlos; Pérez, Aurora; Engelmann, Florent; Martínez-Montero, Marcos Edel; Lorenzo, José Carlos

    2015-01-01

    It is well known that cryopreserving seeds with high water content is detrimental to survival, but biochemical and structural parameters of cryostored hydrated common bean seeds have not been published. The objective of this work was to study the effect of liquid nitrogen exposure on selected biochemical and structural parameters of hydrated Phaseolus vulgaris seeds. We cryopreserved seeds at various moisture contents and evaluated: germination; electrolyte leakage; fresh seed weight; levels of chlorophyll pigments, malondialdehyde, other aldehydes, phenolics and proteins; thickness of cotyledon epidermis, parenchyma, and starch storage parenchyma; and radicle and plumule lengths. Germination was totally inhibited when seeds were immersed in water for 50 min (moisture content of 38%, FW basis) before cryopreservation. The combined effects of seed water imbibition and cryostorage decreased phenolics (free, cell wall-linked, total), chlorophyll a and protein content. By contrast, electrolyte leakage and levels of chlorophyll b and other aldehydes increased as a result of the combination of these two experimental factors. These were the most significant effects observed during exposure of humid seed to liquid nitrogen. Further studies are still required to clarify the molecular events taking place in plant cells during cryostorage.

  9. Identification of multiply charged proteins and amino acid clusters by liquid nitrogen assisted spray ionization mass spectrometry.

    Science.gov (United States)

    Kumar Kailasa, Suresh; Hasan, Nazim; Wu, Hui-Fen

    2012-08-15

    The development of liquid nitrogen assisted spray ionization mass spectrometry (LNASI MS) for the analysis of multiply charged proteins (insulin, ubiquitin, cytochrome c, α-lactalbumin, myoglobin and BSA), peptides (glutathione, HW6, angiotensin-II and valinomycin) and amino acid (arginine) clusters is described. The charged droplets are formed by liquid nitrogen assisted sample spray through a stainless steel nebulizer and transported into mass analyzer for the identification of multiply charged protein ions. The effects of acids and modifier volumes for the efficient ionization of the above analytes in LNASI MS were carefully investigated. Multiply charged proteins and amino acid clusters were effectively identified by LNASI MS. The present approach can effectively detect the multiply charged states of cytochrome c at 400 nM. A comparison between LNASI and ESI, CSI, SSI and V-EASI methods on instrumental conditions, applied temperature and observed charge states for the multiply charged proteins, shows that the LNASI method produces the good quality spectra of amino acid clusters at ambient conditions without applied any electric field and heat. To date, we believe that the LNASI method is the most simple, low cost and provided an alternative paradigm for production of multiply charged ions by LNASI MS, just as ESI-like ions yet no need for applying any electrical field and it could be operated at low temperature for generation of highly charged protein/peptide ions. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. DETERMINATION OF CONVECTIVE HEAT TRANSFER COEFFICIENT AT THE OUTER SURFACE OF A CRYOVIAL BEING PLUNGED INTO LIQUID NITROGEN.

    Science.gov (United States)

    Wang, T; Zhao, G; Tang, H Y; Jiang, Z D

    2015-01-01

    Cell survival upon cryopreservation is affected by the cooling rate. However, it is difficult to model the heat transfer process or to predict the cooling curve of a cryoprotective agent (CPA) solution due to the uncertainty of its convective heat transfer coefficient (h). To measure the h and to better understand the heat transfer process of cryovials filled with CPA solution being plunged in liquid nitrogen. The temperatures at three locations of the CPA solution in a cryovial were measured. Different h values were selected after the cooling process was modeled as natural convection heat transfer, the film boiling and the nucleate boiling, respectively. And the temperatures of the selected points are simulated based on the selected h values. h was determined when the simulated temperature best fitted the experimental temperature. When the experimental results were best fitted, according to natural convection heat transfer model, h(1) = 120 W/(m(2)·K) while due to film boiling and nucleate boiling regimes h(f) = 5 W/(m(2)·K) followed by h(n) = 245 W/(m(2)·K). These values were verified by the differential cooling rates at the three locations of a cryovial. The heat transfer process during cooling in liquid nitrogen is better modeled as film boiling followed by nucleate boiling.

  11. Low cyclic fatigue behavior of 32 % Mn nonmagnetic steel and the effects of C and N in liquid nitrogen and liquid helium

    International Nuclear Information System (INIS)

    Shibata, Koji; Fujita, Toshio

    1987-01-01

    The effects of testing temperature, C, and N on the low cyclic deformation behavior of 32 % Mn non-magnetic steels have been investigated in ambient air, liquid nitrogen, and liquid helium. It was observed that several problems exsisted in fatigue tests in liquid helium due to special phenomena occurred at very low temperatures. The steel containing 0.3 % N, which showed large fatigue softening at room temperature, increased the trend toward the softening at low temperatures. The steel containing 0.14 % C and 0.13 % N also increased the tendency of softening with the temperature decrease, while it was not so large at room temperature. Dislocation configuration in steels showing the softening tended to be mainly planne at very low temperatures same as at room temperature. The steel with a very low content of C and N, the 0.3 % C steel, and the 0.12 % N steel did not show the softening at low temperatures, but showed only fatigue hardening. The hardening of the former two steels increased remarkably as the temperature decreased. This phenomenon was attributable to ε martensite induced by the cyclic deformation. The fatigue softening behavior observed at low temperatures could qualitatively be explained with the hypothesis that the softening occurred through the breakdown of solid solution strengthening due to IS complexes during the cyclic deformation. (author)

  12. Controllable synthesis of nitrogen-doped hollow mesoporous carbon spheres using ionic liquids as template for supercapacitors

    Science.gov (United States)

    Chen, Aibing; Li, Yunqian; Liu, Lei; Yu, Yifeng; Xia, Kechan; Wang, Yuying; Li, Shuhui

    2017-01-01

    We have demonstrated a facile and controllable synthesis of monodispersed nitrogen-doped hollow mesoporous carbon spheres (N-HMCSs) using resorcinol/formaldehyde resin as a carbon precursor, tetraethyl orthosilicate as a structure-assistant agent, ionic liquids (ILs) as soft template, partial carbon sources, and nitrogen sources. The sizes and the architectures including hollow and yolk-shell of resultant carbon spheres can be efficiently controlled through the adjustment of the content of ILs. Alkyl chain length of the ILs also has an important effect on the formation of N-HMCSs. With proper alkyl chain length and content of ILs, the resultant N-HMCSs show monodispersed hollow spheres with high surface areas (up to 1158 m2 g-1), large pore volumes (up to 1.70 cm3 g-1), and uniform mesopore size (5.0 nm). Combining the hollow mesoporous structure, high porosity, large surface area, and nitrogen functionality, the as-synthesized N-HMCSs have good supercapacitor performance with good capacitance (up to 159 F g-1) and favorable capacitance retention (88% capacitive retention after 5000 cycles).

  13. Freezing for Love

    DEFF Research Database (Denmark)

    Carroll, Katherine; Kroløkke, Charlotte

    2018-01-01

    The promise of egg freezing for women’s fertility preservation entered feminist debate in connection with medical and commercial control over, and emancipation from, biological reproduction restrictions. In this paper we explore how women negotiate and make sense of the decision to freeze...... their eggs. Our analysis draws on semi-structured interviews with 16 women from the Midwest and East Coast regions of the USA who froze their eggs. Rather than freezing to balance career choices and ‘have it all’, the women in this cohort were largely ‘freezing for love’ and in the hope of having their ‘own...... healthy baby’. This finding extends existing feminist scholarship and challenges bioethical concerns about egg freezing by drawing on the voices of women who freeze their eggs. By viewing egg freezing as neither exclusively liberation nor oppression or financial exploitation, this study casts egg freezing...

  14. A new electrodynamic balance (EDB) design for low-temperature studies: application to immersion freezing of pollen extract bioaerosols

    Science.gov (United States)

    Tong, H.-J.; Ouyang, B.; Nikolovski, N.; Lienhard, D. M.; Pope, F. D.; Kalberer, M.

    2015-03-01

    In this paper we describe a newly designed cold electrodynamic balance(CEDB) system, built to study the evaporation kinetics and freezing properties of supercooled water droplets. The temperature of the CEDB chamber at the location of the levitated water droplet can be controlled in the range -40 to +40 °C, which is achieved using a combination of liquid nitrogen cooling and heating by positive temperature coefficient heaters. The measurement of liquid droplet radius is obtained by analysing the Mie elastic light scattering from a 532 nm laser. The Mie scattering signal was also used to characterise and distinguish droplet freezing events; liquid droplets produce a regular fringe pattern, whilst the pattern from frozen particles is irregular. The evaporation rate of singly levitated water droplets was calculated from time-resolved measurements of the radii of evaporating droplets and a clear trend of the evaporation rate on temperature was measured. The statistical freezing probabilities of aqueous pollen extracts (pollen washing water) are obtained in the temperature range -4.5 to -40 °C. It was found that that pollen washing water from water birch (Betula fontinalis occidentalis) pollen can act as ice nuclei in the immersion freezing mode at temperatures as warm as -22.45 (±0.65) °C. Furthermore it was found that the protein-rich component of the washing water was significantly more ice-active than the non-proteinaceous component.

  15. Surface freezing of water

    OpenAIRE

    P?rez-D?az, J. L.; ?lvarez-Valenzuela, M. A.; Rodr?guez-Celis, F.

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered?exclusively?by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on ...

  16. Pyrolysis of high-ash sewage sludge in a circulating fluidized bed reactor for production of liquids rich in heterocyclic nitrogenated compounds.

    Science.gov (United States)

    Zuo, Wu; Jin, Baosheng; Huang, Yaji; Sun, Yu; Li, Rui; Jia, Jiqiang

    2013-01-01

    A circulating fluidized bed reactor was used for pyrolyzing sewage sludge with a high ash content to produce liquids rich in heterocyclic nitrogenated compounds. GC/MS and FTIR analyses showed that heterocyclic nitrogenated compounds and hydrocarbons made up 38.5-61.21% and 2.24-17.48% of the pyrolysis liquids, respectively. A fluidized gas velocity of 1.13 m/s, a sludge feed rate of 10.78 kg/h and a particle size of 1-2mm promoted heterocyclic nitrogenated compound production. Utilizing heterocyclic nitrogenated compounds as chemical feedstock could be a way for offsetting the cost of sewage sludge treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. A case of death of the driver due to environmental asphyxia by liquid nitrogen leakage in the cabin of the car during a road accident

    Science.gov (United States)

    Raczkowska, Zuzanna; Samojłowicz, Dorota

    2013-01-01

    Nitrogen causes environmental asphyxia by displacing oxygen in the air leading to death. The study presents a case of a death of a driver death who was transporting flasks with liquid nitrogen that depressurized during an accident. The mechanism and cause of death were determined based on the result of the autopsy and histopathologic examination. The authors emphasize the relevance of accident scene inspection during establishing the cause of death in similar cases.

  18. An automatic device for refilling liquid nitrogen traps at constant time intervals; Dispositif automatique assurant le remplissage de pieces en azote liquide a intervales de temps constant

    Energy Technology Data Exchange (ETDEWEB)

    Bourguillot, R; Lohez, P [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    We have been led to study the design of an automatic device for the filling of liquid nitrogen traps at constant time intervals in connection with the maintenance of a type MS 5 mass spectrometer; in the tube of this apparatus it is necessary to maintain a vacuum of about 10{sup -7} mm of mercury. The replenishing is done every four hours. The presence in the vacuum section of an electron multiplier has led us to provide a safety-device making it impossible for mercury vapour to come into contact with either the copper tube or the multiplier in the event of an incident leading to the warming up of the traps. In case of a breakdown, the vacuum section is therefore brought up to atmospheric pressure by the introduction of nitrogen. (author) [French] Nous avons ete conduits pour la maintenance d'un spectrometre de masse type MS 5, dans le tube duquel il faut entretenir un vide de quelques 10{sup -7} mm de mercure, a etudier un systeme de remplissage automatique a intervalle de temps fixe des pieges en azote liquide. Ce remplissage se fait toutes les quatre heures. La presence dans l'enceinte sous vide, d'un multiplicateur d'electrons, nous a amenes a prevoir un systeme de securite evitant de mettre le tube en cuivre et le multiplicateur en contact avec la vapeur de mercure en cas d'incident amenant le rechauffage des pieges. En cas de panne, l'enceinte sous vide est donc ramenee a la pression atmospherique par une introduction d'azote. (auteur)

  19. Electrical conductivity and equation of state of liquid nitrogen, oxygen, benzene, and 1-butene shocked to 60 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, D.C.

    1986-10-08

    Measurements are reported for the electrical conductivity of liquid nitrogen (N/sub 2/), oxygen (O/sub 2/) and benzene (C/sub 6/H/sub 6/), and Hugoniot equation of state of liquid 1-butene (C/sub 4/H/sub 8/) under shock compressed conditions. The conductivity data span 7 x 10/sup -4/ to 7 x 10/sup 1/ ..cap omega../sup -1/cm/sup -1/ over a dynamic pressure range 18.1 to 61.5 GPa and are discussed in terms of amorphous semiconduction models which include such transport phenomena as hopping, percolation, pseudogaps, and metallization. Excellent agreement is found between the equation-of-state measurements, which span a dynamic pressure range 12.3 to 53.8 GPa, and Ree's calculated values which assume a 2-phase mixture consisting of molecular hydrogen and carbon in a dense diamond-like phase. There is a 2-1/2 fold increase in the thermal pressure contribution over a less dense, stoichiometrically equivalent liquid. 90 refs., 48 figs., 8 tabs.

  20. Outcome of bone recycling using liquid nitrogen as bone reconstruction procedure in malignant and recurrent benign aggressive bone tumour of distal tibia: A report of four cases.

    Science.gov (United States)

    Gede, Eka Wiratnaya I; Ida Ayu, Arrisna Artha; Setiawan I Gn, Yudhi; Aryana Ign, Wien; I Ketut, Suyasa; I Ketut, Siki Kawiyana; Putu, Astawa

    2017-01-01

    Amputation still considered as primary choice of malignancy treatment in distal tibia. Bone recycling with liquid nitrogen for reconstruction following resection of malignant bone tumours offers many advantages. We presented four patients with osteosarcoma, Ewing sarcoma, adamantinoma and recurrent giant cell tumour over distal tibia. All of the patients underwent wide excision and bone recycling using liquid nitrogen as bone reconstruction. The mean functional Musculoskeletal Tumor Society (MSTS) score was 75% with no infection and local recurrent. The reconstruction provides good local control and functional outcome.

  1. Effects of nitrogen on corrosion of stainless steels in a liquid sodium environment

    International Nuclear Information System (INIS)

    Suzuki, Tadashi; Mutoh, Isao

    1990-01-01

    The corrosion of ferritic stainless steels using sodium at 650degC in a maximum isothermal region contained in a non-isothermal sodium loop constructed of a Type 316 stainless steel has been examined. Also, previous results on corrosion of austenitic stainless steels in sodium at 700degC in the same loop have been reproduced. The selective dissolution and absorption of nickel, the selective dissolution of chromium, and the resultant increase in iron in the surface of stainless steels in the loop mainly determine the corrosion loss of the stainless steel specimens. The austenitic steels hardly decarburize, but denitride. The ferritic steels decarburize and denitride and the denitriding is more remarkable than the decarburizing. The vanadium and niobium, carbide and nitride formers, in the ferritic steels inhibit the decarburizing to some extent, but barely inhibit the denitriding. The nitrogen in the steels rapidly diffuses to the grain boundaries, and rapidly dissolves into sodium, which will lower surface energy of the steels to enhance the dissolution of other elements. The dissolved N in sodium would then be transported to the free surface of the sodium adjacent to the argon cover gas of sodium and easily be released into the cover gas. This mechanism would cause the rapid dissolution of nitrogen into sodium and the enhancement of the corrosion rate of the steels containing nitrogen. (orig.)

  2. Fabrication of Li2TiO3 pebbles by a freeze drying process

    International Nuclear Information System (INIS)

    Lee, Sang-Jin; Park, Yi-Hyun; Yu, Min-Woo

    2013-01-01

    Li 2 TiO 3 pebbles were successfully fabricated by using a freeze drying process. The Li 2 TiO 3 slurry was prepared using a commercial powder of particle size 0.5–1.5 μm and the pebble pre-form was prepared by dropping the slurry into liquid nitrogen through a syringe needle. The droplets were rapidly frozen, changing their morphology to spherical pebbles. The frozen pebbles were dried at −10 °C in vacuum. To make crack-free pebbles, some glycerin was employed in the slurry, and long drying time and a low vacuum condition were applied in the freeze drying process. In the process, the solid content in the slurry influenced the spheroidicity of the pebble green body. The dried pebbles were sintered at 1200 °C in an air atmosphere. The sintered pebbles showed almost 40% shrinkage. The sintered pebbles revealed a porous microstructure with a uniform pore distribution and the sintered pebbles were crushed under an average load of 50 N in a compressive strength test. In the present study, a freeze drying process for fabrication of spherical Li 2 TiO 3 pebbles is introduced. The processing parameters, such as solid content in the slurry and the conditions of freeze drying and sintering, are also examined

  3. Instrumentation for cryogenic magic angle spinning dynamic nuclear polarization using 90L of liquid nitrogen per day.

    Science.gov (United States)

    Albert, Brice J; Pahng, Seong Ho; Alaniva, Nicholas; Sesti, Erika L; Rand, Peter W; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Barnes, Alexander B

    2017-10-01

    Cryogenic sample temperatures can enhance NMR sensitivity by extending spin relaxation times to improve dynamic nuclear polarization (DNP) and by increasing Boltzmann spin polarization. We have developed an efficient heat exchanger with a liquid nitrogen consumption rate of only 90L per day to perform magic-angle spinning (MAS) DNP experiments below 85K. In this heat exchanger implementation, cold exhaust gas from the NMR probe is returned to the outer portion of a counterflow coil within an intermediate cooling stage to improve cooling efficiency of the spinning and variable temperature gases. The heat exchange within the counterflow coil is calculated with computational fluid dynamics to optimize the heat transfer. Experimental results using the novel counterflow heat exchanger demonstrate MAS DNP signal enhancements of 328±3 at 81±2K, and 276±4 at 105±2K. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effect of killer impurities on laser-excited barium-doped ZnS phosphors at liquid nitrogen temperature

    Science.gov (United States)

    Kumar, Sunil; Verma, N. K.; Bhatti, H. S.

    Zinc sulphide phosphors doped with Ba, as well as killer impurities of Fe, Co and Ni, having variable concentrations, were synthesized; and using an ultraviolet laser as the excitation source, decay-curve analyses were done. Various strong emissions in these phosphors were detected and the corresponding excited-state life times were measured at liquid nitrogen temperature. Studies were carried out to see the effect of killer impurities on the phosphorescence excited-state life times. Excited-state life times were found to decrease appreciably (microsecond to nanosecond) with the addition of quenchers. These studies are quite useful and find applications in areas such as optical memories, sensors, luminescent screens, laser-beam detection and alignment, color displays, printing, etc.

  5. Histopathological analysis of the therapeutic response to cryotherapy with liquid nitrogen in patients with multiple actinic keratosis.

    Science.gov (United States)

    Oliveira, Marina Câmara de; Trevisan, Flávia; Pinto, Clovis Antônio Lopes; Xavier, Célia Antônia; Pinto, Jaqueline Campoi Calvo Lopes

    2015-01-01

    Actinic keratoses are premalignant lesions of the skin caused by excessive sun exposure. Lesions may become mainly squamous cell carcinoma. Cryotherapy with liquid nitrogen is one of the main treatments. In order to evaluate the response of actinic keratosis to cryotherapy by histopathology, two lesions were selected in each of 14 patients with multiple actinic keratoses. In one lesion a biopsy was performed and in the other lesion a biopsy was performed after cryotherapy. Subsequently, both biopsies were compared histologically. Of the thirteen patients who completed the study, the best results were obtained in lesions undergoing cryotherapy concerning the atypia of keratinocytes, epithelial thickness and corneal layer and lymphocytic infiltrate. Despite the small number of patients, it was concluded that, if performed correctly, cryotherapy has high efficacy in the treatment of actinic keratoses.

  6. The cryoablation of lung tissue using liquid nitrogen in gel and in the ex vivo pig lung.

    Science.gov (United States)

    Nomori, Hiroaki; Yamazaki, Ikuo; Kondo, Toshiya; Kanno, Masaya

    2017-02-01

    To examine the efficiency of cryoablation using liquid nitrogen in lung tissue, we measured the size and temperature distribution of the frozen area (iceball) in gel and in the ex vivo pig lungs. Cryoprobes with diameters of 2.4 and 3.4 mm (2.4D and 3.4D, respectively) were used. Three temperature sensors were positioned at the surface of the cryoprobe and at distances of 0.5 and 1.5 cm from the cryoprobe. The ex vivo pig lungs were perfused with 37 °C saline and inflated using ventilator to simulate in vivo lung conditions. In gel, the 2.4D and 3.4D probes made iceballs of 3.9 ± 0.1 and 4.8 ± 0.3 cm in diameter, respectively, and the temperature at 1.5 cm from those probes reached -32 ± 8 and -53 ± 5 °C, respectively. In the pig lung, the 2.4D and 3.4D probes made iceballs of 5.2 ± 0.1 and 5.5 ± 0.4 cm in diameter, respectively, and the temperature at 1.5 cm from these probes reached -49 ± 5 and -58 ± 3 °C, respectively. Liquid nitrogen cryoablation using both 2.4D and 3.4D probes made iceballs that were of sufficient size, and effective temperatures were reached in both gel and the ex vivo pig lung.

  7. Changes in transcript expression patterns as a result of cryoprotectant treatment and liquid nitrogen exposure in Arabidopsis shoot tips.

    Science.gov (United States)

    Gross, Briana L; Henk, Adam D; Bonnart, Remi; Volk, Gayle M

    2017-03-01

    Transcripts related to abiotic stress, oxidation, and wounding were differentially expressed in Arabidopsis shoot tips in response to cryoprotectant and liquid nitrogen treatment. Cryopreservation methods have been implemented in genebanks as a strategy to back-up plant genetic resource collections that are vegetatively propagated. Cryopreservation is frequently performed using vitrification methods, whereby shoot tips are treated with cryoprotectant solutions, such as Plant Vitrification Solution 2 (PVS2) or Plant Vitrification Solution 3 (PVS3); these solutions remove and/or replace freezable water within the meristem cells. We used the model system Arabidopsis thaliana to identify suites of transcripts that are up- or downregulated in response to PVS2 and PVS3 treatment and liquid nitrogen (LN) exposure. Our results suggest that there are many changes in transcript expression in shoot tips as a result of cryoprotection and that these changes exceed the number detected as a result of LN exposure. In total, 180 transcripts showed significant changes in expression level unique to treatment with either the cryoprotectant or cryopreservation followed by recovery. Of these 180 transcripts, 67 were related to stress, defense, wounding, lipid, carbohydrate, abscisic acid, oxidation, temperature (cold/heat), or osmoregulation. The responses of five transcripts were confirmed using qPCR methods. The transcripts responding to PVS2 + LN suggest an oxidative response to this treatment, whereas the PVS3 + LN treatment invoked a more general metabolic response. This work shows that the choice of cryoprotectant can have a major influence on the patterns of transcript expression, presumably due to the level and extent of stress experienced by the shoot tip. As a result, there may be divergent responses of study systems to PVS2 and PVS3 treatments.

  8. Hydrophobic recovery of repeatedly plasma-treated silicone rubber .2. A comparison of the hydrophobic recovery in air, water, or liquid nitrogen

    NARCIS (Netherlands)

    Everaert, EP; VanderMei, HC; Busscher, HJ

    1996-01-01

    Surfaces of medical grade silicone rubber (Q7-4750, Dow Coming) were modified by repeated (six times) RF plasma treatments using various discharge gases: oxygen, argon, carbon dioxide, and ammonia. The treated samples were stored for a period of 3 months in ambient air, water, or liquid nitrogen.

  9. Liquid nitrogen or phenolization for giant cell tumor of bone?: a comparative cohort study of various standard treatments at two tertiary referral centers

    NARCIS (Netherlands)

    Heijden, L. van der; Geest, I.C.M. van der; Schreuder, H.W.B.; Sande, M.A.B. van der; Dijkstra, P.D.

    2014-01-01

    BACKGROUND: The rate of recurrence of giant cell tumor of bone is decreased by use of adjuvant treatments such as phenol, liquid nitrogen, or polymethylmethacrylate (PMMA) during curettage. We assessed recurrence and complication rates and functional outcome after curettage with use of phenol and

  10. Liquid nitrogen enhancement of partially annealed fission tracks in glass; and reply

    International Nuclear Information System (INIS)

    Wagner, G.A.; Carpenter, B.S.; Pilione, L.J.; Gold, D.P.

    1977-01-01

    Pilione and Gold (Nature 262: 773 (1976)) stated that it was possible to reveal partially annealed fission tracks in glass by immersion in liquid N 2 , and that it was possible to increase the total number of etchable tracks by increasing the immersion time. The present authors attempted to duplicate the work of the former authors using the same glass. They found no significant change in the number of etchable tracks after immersion in liquid N 2 , and they concluded that the latter has no effect on annealed tracks in glass. Any observed enhancement of partially annealed tracks is probably a surface effect and has no effect on the interior matrix of the glass. A reply by Pilione and Gold is appended. (U.K.)

  11. Use of liquid nitrogen during storage in a cell and tissue bank: contamination risk and effect on the detectability of potential viral contaminants.

    Science.gov (United States)

    Mirabet, Vicente; Alvarez, Manuel; Solves, Pilar; Ocete, Dolores; Gimeno, Concepción

    2012-04-01

    Cryopreservation is widely used for banking cells and tissues intended for transplantation. Liquid nitrogen provides a very stable ultra-low temperature environment. Thus, it is used for longterm storage. Unlike the exhaustive microbiological monitoring of the environmental conditions during tissue processing, storage is not usually considered as a critical point of potential contamination risk in professional standards for cell and tissue banking. We have analysed the presence of microbial agents inside our nitrogen tanks. We have mainly detected environmental and water-borne bacteria and fungi. In addition, we have studied the effect of liquid nitrogen exposure on virus detectability. Only differences for hepatitis C virus RNA were observed. Measures for contamination risk reduction during storage must be mandatory in cell and tissue banking. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Nitrogen injection in stagnant liquid metal. Eulerian-Eulerian and VOF calculations by fluent

    International Nuclear Information System (INIS)

    Pena, A.; Esteban, G.A.

    2004-01-01

    High power spallation sources are devices that can be very useful in different fields, as medicine, material science, and also in the Accelerator Driven Systems (ADS). This devices use Heavy Liquid Metals (HLM) as the spallation target. Furthermore, HLM are thought to be the coolant of those big energy sources produced by the process. Fast breeder reactors, advanced nuclear reactors, as well as the future designs of fusion reactors, also consider HLM as targets or coolants. Gas injection in liquid metal flows allows the enhancement of this coolant circulation. The difference in densities between the gas and the liquid metal is a big challenge for the multiphase models implemented in the Computational Fluid Dynamics (CFD) codes. Also the changing shape of the bubbles involves extra difficulties in the calculations. A N 2 flow in stagnant Lead-Bismuth eutectic (Pb-Bi), experiment available at Forschungszentrum Rossendorf e.V (FZR) in Germany, was used in one of the work-packages of the ASCHLIM project (EU contract number FIKW-CT-2001-80121). In this paper, calculations made by the UPV/EHU (University of the Basque Country) show measuring data compared with numerical results using the CFD (Computational Fluid Dynamics) code FLUENT and two multiphase models: the Eulerian-Eulerian and the Volume of Fluid (VOF). The interpretation of the experimental resulting velocities was difficult, because some parameters were not known, bubble trajectory and bubble shape, for example, as direct optical methods cannot be used, like it is done with water experiments. (author)

  13. POST-HARVEST QUALITY OF PEQUI (Caryocar brasiliense CAMB. COLLECTED FROM THE PLANT OR AFTER NATURALLY FALLING OFF AND SUBJECTED TO SLOW AND QUICK FREEZING

    Directory of Open Access Journals (Sweden)

    MARIA NEUDES SOUSA OLIVEIRA

    Full Text Available ABSTRACT Soluble solids (SS, titratable acidity (TA, SS/TA ratio, pH, moisture, soluble sugars (SSU, total reducing sugars (RSU, and non-reducing sugars (NRS were assessed in the pulp of pequi fruits collected at three ripening stages: from the plant, from the ground after naturally falling off, and collected from the ground three days after naturally falling off. The evaluation was performed after six months of freezer storage both for fruits subjected to quick freezing (liquid nitrogen followed by freezer and slow freezing (straight into the freezer. The variables assessed were not influenced by the freezing method. The SS, TA, and RSU contents increased with the ripening stage, suggesting that the fruits collected from the plant are still immature and have lower quality than those collected after naturally falling off. Although considered mature when they fall off, fruits consumed three days after naturally falling off have better quality.

  14. Denitration of medium level liquid radioactive wastes by catalytic destruction of nitrogen oxides

    International Nuclear Information System (INIS)

    Donato, A.; Ricci, G.

    1984-01-01

    The catalytic abatement by means of NH 3 of the NOsub(x) produced in the radwaste conditioning has been studied. With reference to the gas produced in a bituminization plant, the thermodynamics and the chemistry of the NOsub(x) catalytic reduction to nitrogen and H 2 O have been evaluated. The following operational parameters have been experimentally studied: the catalyst bed temperature; the gas residence time; the vapour concentration; the NOsub(x) concentration; the gas velocity; the catalyst grain size distribution; the catalyst time-life. Abatement yields of the order of 99,5% have been obtained following experimental conditions must be selected. In the case of a bituminization plant, a NOsub(x) catalytic reactor, if installed between the evaporator denitrator and the condenser, could reduce to less than 1/100 the volume of the NaNO 3 secondary wastes produced by the gas scrubbing

  15. High-pressure (vapor + liquid) equilibria in the (nitrogen + n-heptane) system

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sanchez, Fernando [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico)]. E-mail: fgarcias@imp.mx; Eliosa-Jimenez, Gaudencio [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico); Silva-Oliver, Guadalupe [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico); Godinez-Silva, Armando [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico)

    2007-06-15

    In this work, new (vapor + liquid) equilibrium data for the (N{sub 2} + n-heptane) system were experimentally measured over a wide temperature range from (313.6 to 523.7) K and pressures up to 50 MPa. A static-analytic apparatus with visual sapphire windows and pneumatic capillary samplers was used in the experimental measurements. Equilibrium phase compositions and (vapor + liquid) equilibrium ratios are reported. The new results were compared with those reported by other authors. The comparison showed that the pressure-composition data reported in this work are less scattered than those determined by others. Hence, the results demonstrate the reliability of the experimental apparatus at high temperatures and pressures. The experimental data were represented with the PR and PC-SAFT equations of state by using one-fluid mixing rules and a single temperature independent interaction parameter. Results of the representation showed that the PC-SAFT equation was superior to the PR equation in correlating the experimental data of the (N{sub 2} + n-heptane) system.

  16. High-pressure (vapor + liquid) equilibria in the (nitrogen + n-heptane) system

    International Nuclear Information System (INIS)

    Garcia-Sanchez, Fernando; Eliosa-Jimenez, Gaudencio; Silva-Oliver, Guadalupe; Godinez-Silva, Armando

    2007-01-01

    In this work, new (vapor + liquid) equilibrium data for the (N 2 + n-heptane) system were experimentally measured over a wide temperature range from (313.6 to 523.7) K and pressures up to 50 MPa. A static-analytic apparatus with visual sapphire windows and pneumatic capillary samplers was used in the experimental measurements. Equilibrium phase compositions and (vapor + liquid) equilibrium ratios are reported. The new results were compared with those reported by other authors. The comparison showed that the pressure-composition data reported in this work are less scattered than those determined by others. Hence, the results demonstrate the reliability of the experimental apparatus at high temperatures and pressures. The experimental data were represented with the PR and PC-SAFT equations of state by using one-fluid mixing rules and a single temperature independent interaction parameter. Results of the representation showed that the PC-SAFT equation was superior to the PR equation in correlating the experimental data of the (N 2 + n-heptane) system

  17. Fast freezing of cow embryos in French straws with an automatic program.

    Science.gov (United States)

    Massip, A; Van der Zwalmen, P; Hanzen, C; Ectors, F

    1982-09-01

    Cow embryos between day 6.5 and 9 were frozen in 1.5M DMSO in PBS at 2 degrees C/min from seeding to -25 degrees C before being plunged into liquid nitrogen directly or after 10 min at -25 degrees C. Cooling rate from 20 degrees C to -5 degrees C was 9 degrees C/min. Seeding was induced automatically at -5 degrees C by injection of liquid nitrogen vapour. Embryos were subsequently thawed by direct transfer to water at 20 degrees C (group I) or at 37 degrees C (group II). Survival was assessed by culture in vitro and by transfer. In group I, 35.7% were degenerated after thawing (compared to 35.4% in group II). Survival rate after culture in vitro for 24h was not significantly different (48.3% vs 42.8%) and hatching rate after 96h culture was quite similar (33.3% vs 34.4%). In group II, four pregnancies were obtained from 10 embryos transferred. Time at -25 degrees C did not improve the results. Automatic seeding did not impair survival. These results show that the quality of the embryo is the determinant factor for survival after freezing and that the plastic straw is the most suitable vessel for freezing, storage and transfer of embryos.

  18. 3 CFR - Pay Freeze

    Science.gov (United States)

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Pay Freeze Presidential Documents Other Presidential Documents Memorandum of January 21, 2009 Pay Freeze Memorandum for the Assistant to the President and Chief... the White House staff forgo pay increases until further notice. Accordingly, as a signal of our shared...

  19. The Freezing Bomb

    Science.gov (United States)

    Mills, Allan

    2010-01-01

    The extreme pressures that are generated when water freezes were traditionally demonstrated by sealing a small volume in a massive cast iron "bomb" and then surrounding it with a freezing mixture of ice and salt. This vessel would dramatically fail by brittle fracture, but no quantitative measurement of bursting pressure was available. Calculation…

  20. Insulation effect on thermal stability of Coated Conductors wires in liquid nitrogen

    Science.gov (United States)

    Rubeli, Thomas; Dutoit, Bertrand; Martynova, Irina; Makarevich, Artem; Molodyk, Alexander; Samoilenkov, Sergey

    2017-02-01

    Superconducting wires are not perfectly homogeneous in term of critical current as well as stabilization. In resistive fault current limiter applications this could lead to hot spots if the fault current is only slightly above the nominal current of the device. Increasing stabilization by using thicker silver coating for example may prevent this problem but this method implies longer wire length to maintain the same impedance during a fault. Very efficient cooling in another way to prevent hot spots, this can be achieved in nucleate boiling regime. Optimal insulation can be used to prevent film boiling regime, staying in nucleate boiling regime in a much broader temperature range. In this work a novel technique is used to monitor in real time the temperature of the wire during the quench. Using this method several increasing insulation thicknesses are tested, measuring for each the heat exchange rate to the nitrogen bath. Exchange rate measurements are made in quasistatic regime and during the re-cooling of the wire. SuperOx wires provided with different insulation thicknesses exhibit an excellent stability, far above a bare wire. On the other side, for very thick insulations the stability gain is lost. Re-cooling speeds dependency on insulation thicknesses is measured too.

  1. Surface freezing of water.

    Science.gov (United States)

    Pérez-Díaz, J L; Álvarez-Valenzuela, M A; Rodríguez-Celis, F

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered-exclusively-by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on humidity, presenting at least three different types of surface crystals. Humidity triggers surface freezing as soon as it overpasses a defined value for a given temperature, generating a plurality of nucleation nodes. An evidence of simultaneous nucleation of surface ice crystals is also provided.

  2. Freeze drying method

    International Nuclear Information System (INIS)

    Coppa, N.V.; Stewart, P.; Renzi, E.

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser

  3. Theoretical analysis and experimental investigation on performance of the thermal shield of accelerator cryomodules by thermo-siphon cooling of liquid nitrogen

    Science.gov (United States)

    Datta, T. S.; Kar, S.; Kumar, M.; Choudhury, A.; Chacko, J.; Antony, J.; Babu, S.; Sahu, S. K.

    2015-12-01

    Five beam line cryomodules with total 27 superconducting Radio Frequency (RF) cavities are installed and commissioned at IUAC to enhance the energy of heavy ion from 15 UD Pelletron. To reduce the heat load at 4.2 K, liquid nitrogen (LN2) cooled intermediate thermal shield is used for all these cryomodules. For three linac cryomodules, concept of forced flow LN2 cooling is used and for superbuncher and rebuncher, thermo-siphon cooling is incorporated. It is noticed that the shield temperature of superbuncher varies from 90 K to 110 K with respect to liquid nitrogen level. The temperature difference can't be explained by using the basic concept of thermo-siphon with the heat load on up flow line. A simple thermo-siphon experimental set up is developed to simulate the thermal shield temperature profile. Mass flow rate of liquid nitrogen is measured with different heat load on up flow line for different liquid levels. It is noticed that small amount of heat load on down flow line have a significant effect on mass flow rate. The present paper will be investigating the data generated from the thermosiphon experimental set up and a theoretical analysis will be presented here to validate the measured temperature profile of the cryomodule shield.

  4. Sintering of a freeze-dried 10 mol% Y2O3-stabilized zirconia

    International Nuclear Information System (INIS)

    Rakotoson, A.; Paulus, M.

    1983-01-01

    After presenting the results of freeze drying a sulfate solution, the authors describe a preparation process in which the freeze-drying technique by addition of a suspension of stabilized zirconia in the liquid solution before freeze-drying. This process breaks the polymeric chains, increases the green density of the compact, and decreases the sintering temperature. The mechanisms involved are discussed

  5. Investigation of transient chill down phenomena in tubes using liquid nitrogen

    Science.gov (United States)

    Shukla, A. K.; Sridharan, Arunkumar; Atrey, M. D.

    2017-12-01

    Chill down of cryogenic transfer lines is a crucial part of cryogenic propulsion as chill down ensures transfer of single phase fluid to the storage tanks of cryogenic engines. It also ensures single phase liquid flow at the start of the engine. Chill down time depends on several parameters such as length of the pipe, pipe diameter, orientation, mass flux etc. To understand the effect of these parameters, experiments are carried out in a set up designed and fabricated at Indian Institute of Technology Bombay using tubes of two different diameters. Experiments are conducted at different inlet pressures and mass flow rate values to understand their effect. Two different pipe sizes are taken to study the effect of variation in diameter on chill down time and quantity of cryogen required. Different orientations are taken to understand their effect on the chill down time, heat transfer coefficient and critical heat flux for the same inlet pressure and mass flux. Pipe inner wall temperature, heat transfer coefficient for different boiling regimes and critical heat flux are calculated based on measured outer surface temperature history for each case. A one dimensional energy conservation equation is solved for transient chill down process considering constant mass flux and inlet pressure to predict the chill down time. Temperature variation during chill down obtained from the numerical simulations are compared with the measured temperature history.

  6. Research on Flow Pattern of Nitrogen Tetroxide Liquid in the Different Bend Radii Pipes

    Directory of Open Access Journals (Sweden)

    Hao Pengfei

    2016-01-01

    Full Text Available N2O4 is a common rocket fuel propellants, it has the characteristics of low boiling point and a large viscosity , the friction between viscosity fluids and pipeline dramatic leads to a huge sticky heat, therefore, the vaporization phenomenon often occurs in the pipeline, particularly in bending of the viscous heat. For this reason, the research of the different bending radii vaporized fluid conditions for optimizing the piping and precise the filling flow is significant. In this paper, the MIXTURE mixed flow model is used to achieve the numerical simulation the pipelines filling of the three different bending radii, it still have not solved the mass transfer problem between the different phases. Therefore, the custom functions are needed to define the mass transfer problems from the liquid phase to the vapor phase. Though the contrast among the volume phase cloud of six different elbow models , we have the following conclusions: 1 In the entire pipeline transportation, the distribution vaporization rate from the inlet pipe to the outlet pipe follows the distribution of the first increasing and then decreasing, the gas rates of the elbow area is highest; 2Analyzing the sticky heat for different bend radii, we have the conclusion that the lowest bending vaporization the of the optimal radius is 0.45m. The above conclusions are drawn in good agreement with the actual law, can effectively guide the engineering practice, have important significance for the future design for the optimization of the fuel pipeline transportation.

  7. Thermodynamic models for vapor-liquid equilibria of nitrogen + oxygen + carbon dioxide at low temperatures

    Science.gov (United States)

    Vrabec, Jadran; Kedia, Gaurav Kumar; Buchhauser, Ulrich; Meyer-Pittroff, Roland; Hasse, Hans

    2009-02-01

    For the design and optimization of CO 2 recovery from alcoholic fermentation processes by distillation, models for vapor-liquid equilibria (VLE) are needed. Two such thermodynamic models, the Peng-Robinson equation of state (EOS) and a model based on Henry's law constants, are proposed for the ternary mixture N 2 + O 2 + CO 2. Pure substance parameters of the Peng-Robinson EOS are taken from the literature, whereas the binary parameters of the Van der Waals one-fluid mixing rule are adjusted to experimental binary VLE data. The Peng-Robinson EOS describes both binary and ternary experimental data well, except at high pressures approaching the critical region. A molecular model is validated by simulation using binary and ternary experimental VLE data. On the basis of this model, the Henry's law constants of N 2 and O 2 in CO 2 are predicted by molecular simulation. An easy-to-use thermodynamic model, based on those Henry's law constants, is developed to reliably describe the VLE in the CO 2-rich region.

  8. Thermal Performance of Low Layer Density Multilayer Insu1ation Using Liquid Nitrogen

    Science.gov (United States)

    Johnson, Wesley L.; Fesmire, James E.

    2011-01-01

    In order to support long duration cryogenic propellant storage, the Cryogenic Fluid Management (CFM) Project of the Exploration Technology Development Program (ETDP) is investigating the long duration storage propertie$ of liquid methane on the lunar surface. The Methane Lunar Surface Thermal Control (MLSTC) testing is using a tank of the approximate dimensions of the Altair ascent tanks inside of a vacuum chamber to simulate the environment in low earth orbit and on the lunar surface. The thermal performance testing of multilayer insulation (MLI) coupons that are fabricated identically to the tank applied insulation is necessary to understand the performance of the blankets and to be able to predict the performance of the insulation prior to testing. This coupon testing was completed in Cryostat-100 at the Cryogenics Test Laboratory. The results showed the properties of the insulation as a function of layer density, number of layers, and warm boundary temperature. These results aid in the understanding of the performance parameters o fMLI and help to complete the body of literature on the topic.

  9. Development and test of an axial flux type PM synchronous motor with liquid nitrogen cooled HTS armature windings

    International Nuclear Information System (INIS)

    Sugimoto, H; Morishita, T; Tsuda, T; Takeda, T; Togawa, H; Oota, T; Ohmatsu, K; Yoshida, S

    2008-01-01

    We developed an axial gap permanent magnet type superconducting synchronous motor cooled by liquid nitrogen (LN 2 ). The motor includes 8 poles and 6 armature windings. The armature windings are made from BSCCO wire operated at the temperature level between 66K∼70K. The design of the rated output is 400kW at 250rpm. Because HTS wires produce AC loss, there are few motors developed with a superconducting armature winding. In a large capacity motor, HTS windings need to be connected in parallel way. However, the parallel connection causes different current flowing to each HTS winding. To solve this problem, we connected a current distributor to the motor. As a result, not only the current difference can be suppressed, but also the current of each winding can be adjusted freely. The low frequency and less flux penetrating HTS wire because of current distributor contribute to low AC loss. This motor is an axial gap rotating-field one, the cooling parts are fixed. This directly leads to simple cooling system. The motor is also brushless. This paper presents the structure, the analysis of the motor and the tests

  10. Integrity of chromatin and replicating DNA in nuclei released from fission yeast by semi-automated grinding in liquid nitrogen

    Science.gov (United States)

    2011-01-01

    Background Studies of nuclear function in many organisms, especially those with tough cell walls, are limited by lack of availability of simple, economical methods for large-scale preparation of clean, undamaged nuclei. Findings Here we present a useful method for nuclear isolation from the important model organism, the fission yeast, Schizosaccharomyces pombe. To preserve in vivo molecular configurations, we flash-froze the yeast cells in liquid nitrogen. Then we broke their tough cell walls, without damaging their nuclei, by grinding in a precision-controlled motorized mortar-and-pestle apparatus. The cryo-ground cells were resuspended and thawed in a buffer designed to preserve nuclear morphology, and the nuclei were enriched by differential centrifugation. The washed nuclei were free from contaminating nucleases and have proven well-suited as starting material for genome-wide chromatin analysis and for preparation of fragile DNA replication intermediates. Conclusions We have developed a simple, reproducible, economical procedure for large-scale preparation of endogenous-nuclease-free, morphologically intact nuclei from fission yeast. With appropriate modifications, this procedure may well prove useful for isolation of nuclei from other organisms with, or without, tough cell walls. PMID:22088094

  11. Efficacy of liquid nitrogen cryotherapy for Barrett's esophagus after endoscopic resection of intramucosal cancer: A multicenter study.

    Science.gov (United States)

    Trindade, Arvind J; Pleskow, Douglas K; Sengupta, Neil; Kothari, Shivangi; Inamdar, Sumant; Berkowitz, Joshua; Kaul, Vivek

    2018-02-01

    Liquid nitrogen cryotherapy (LNC) allows increased depth of ablation compared with radiofrequency ablation in Barrett's esophagus (BE). Expert centers may use LNC over radiofrequency ablation to ablate Barrett's esophagus after endoscopic resection of intramucosal cancer (IMCA). The aim of our study was to (1) evaluate the safety and efficacy of LNC ablation in patients with BE and IMCA and (2) to evaluate the progression to invasive disease despite therapy. This was a multicenter, retrospective study of consecutive patients with BE who received LNC following endoscopic mucosal resection (EMR) of IMCA. The outcomes evaluated were complete eradication of dysplasia and intestinal metaplasia and development of invasive cancer during follow up. The follow-up period was at least 1 year from initial LNC. Twenty-seven patients were identified. The median Prague score was C3M5 (range C0M1-C14M14). After EMR+LNC, the median Prague score was C0M1 (range C0M0-C9M10); 22/27 patients (82%) achieved complete eradication of dysplasia after cryotherapy, and 19/27 patients (70%) achieved complete eradication of intestinal metaplasia. One out of 27 patients (4%) developed invasive cancer (disease beyond IMCA) over the study period. Cryotherapy is an effective endoscopic tool for eradication of BE dysplasia after EMR for IMCA. Development of invasive cancer is low for this high-risk group. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  12. Integrity of chromatin and replicating DNA in nuclei released from fission yeast by semi-automated grinding in liquid nitrogen.

    Science.gov (United States)

    Givens, Robert M; Mesner, Larry D; Hamlin, Joyce L; Buck, Michael J; Huberman, Joel A

    2011-11-16

    Studies of nuclear function in many organisms, especially those with tough cell walls, are limited by lack of availability of simple, economical methods for large-scale preparation of clean, undamaged nuclei. Here we present a useful method for nuclear isolation from the important model organism, the fission yeast, Schizosaccharomyces pombe. To preserve in vivo molecular configurations, we flash-froze the yeast cells in liquid nitrogen. Then we broke their tough cell walls, without damaging their nuclei, by grinding in a precision-controlled motorized mortar-and-pestle apparatus. The cryo-ground cells were resuspended and thawed in a buffer designed to preserve nuclear morphology, and the nuclei were enriched by differential centrifugation. The washed nuclei were free from contaminating nucleases and have proven well-suited as starting material for genome-wide chromatin analysis and for preparation of fragile DNA replication intermediates. We have developed a simple, reproducible, economical procedure for large-scale preparation of endogenous-nuclease-free, morphologically intact nuclei from fission yeast. With appropriate modifications, this procedure may well prove useful for isolation of nuclei from other organisms with, or without, tough cell walls.

  13. Integrity of chromatin and replicating DNA in nuclei released from fission yeast by semi-automated grinding in liquid nitrogen

    Directory of Open Access Journals (Sweden)

    Givens Robert M

    2011-11-01

    Full Text Available Abstract Background Studies of nuclear function in many organisms, especially those with tough cell walls, are limited by lack of availability of simple, economical methods for large-scale preparation of clean, undamaged nuclei. Findings Here we present a useful method for nuclear isolation from the important model organism, the fission yeast, Schizosaccharomyces pombe. To preserve in vivo molecular configurations, we flash-froze the yeast cells in liquid nitrogen. Then we broke their tough cell walls, without damaging their nuclei, by grinding in a precision-controlled motorized mortar-and-pestle apparatus. The cryo-ground cells were resuspended and thawed in a buffer designed to preserve nuclear morphology, and the nuclei were enriched by differential centrifugation. The washed nuclei were free from contaminating nucleases and have proven well-suited as starting material for genome-wide chromatin analysis and for preparation of fragile DNA replication intermediates. Conclusions We have developed a simple, reproducible, economical procedure for large-scale preparation of endogenous-nuclease-free, morphologically intact nuclei from fission yeast. With appropriate modifications, this procedure may well prove useful for isolation of nuclei from other organisms with, or without, tough cell walls.

  14. Enhanced resolution of membranes in cultured cells by cryoimmobilization and freeze-substitution.

    Science.gov (United States)

    Wild, P; Schraner, E M; Adler, H; Humbel, B M

    2001-05-15

    Investigations of cellular processes demand immediate arresting of the process at any given time and excellent retention of cellular material and excellent visibility of membranes. To achieve this goal we used cryofixation to arrest cellular processes instantly and tested diverse freeze-substitution protocols. Madin-Darby kidney cells and Vero cells were grown on carbon-coated sapphire disks. For cryofixation the sapphire disks covered with a cell monolayer were injected with the aid of a guillotine into liquid propane or ethane or a mixture of both cooled by liquid nitrogen. Freezing of the cryogen was prevented by using a partially insulated cylinder and by vigorous stirring that results in a substantial decrement of the freezing point of the cryogen. Cell monolayers can be cryofixed successfully using the guillotine in a safety hood at ambient temperature and humidity or at 37 degrees C and 45% humidity. The freezing unit can also be placed in a laminar flow for working under biohazard conditions. For visualizing cell membranes at high contrast and high resolution, cells were substituted in the presence of various concentrations of glutaraldehyde and osmium tetroxide and the temperature was raised to diverse final temperatures. Substitution for 4 hours at -90 degrees C in anhydrous acetone containing 0.25% anhydrous glutaraldehyde and 0.5% osmium tetroxide followed by a temperature rise of 5 degrees C/hour to 0 degrees C and final incubation for 1 hour at 0 degrees C resulted in high contrast and excellent visibility of subcellular components at the level of the membrane bilayer. The high spatial and temporal resolution makes this methodology an excellent tool for studying cell membrane-bound processes, such as virus-cell interactions. Copyright 2001 Wiley-Liss, Inc.

  15. Effects of different cryoprotectants and freezing methods on post-thaw boar semen quality.

    Science.gov (United States)

    Yang, Chung-Hsun; Wu, Ting-Wen; Cheng, Feng-Pang; Wang, Jiann-Hsiung; Wu, Jui-Te

    2016-03-01

    The current study aimed to investigate the effects of different concentrations of glycerol (0%, 1%, 2%, 3%, and 5%) and dimethylacetamide (DMA: 0%, 1%, 3%, and 5%) on post-sperm quality characteristics following semen freezing in dry ice (D) or liquid nitrogen (N). Semen was collected from Duroc boars and was allocated to 32 treatment groups for cryopreservation. Analysis of post-thaw semen quality and fertility after artificial insemination (AI) was used to examine the combinatorial effects of different treatments. The best scores for post-thaw sperm motility, sperm viability, and sperm acrosomal integrity were observed in semen frozen in: (a) dry ice in the presence of 5% glycerol and no DMA (16D-treatment); (b) dry ice in the presence of 3% glycerol and no DMA (9D-treatment); and (c) liquid nitrogen in the presence of 3% glycerol and 1% DMA (10N-treatment), with no significant difference observed among these three treatments. The farrowing rates after AI with post-thawed semen after 9D- and 10N-treatments were 33% and 50%, respectively. To summarize, the results of the present study indicated that the freezing extender containing 3% glycerol in combination with the straw-freezing method using dry ice produced the best post-thaw quality parameters of boar semen. Combinations of glycerol and DMA did not enhance the cryosurvival of boar spermatozoa. Copyright © 2016 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  16. Normal freezing of ideal ternary systems of the pseudobinary type

    Science.gov (United States)

    Li, C. H.

    1972-01-01

    Perfect liquid mixing but no solid diffusion is assumed in normal freezing. In addition, the molar compositions of the freezing solid and remaining liquid, respectively, follow the solidus and liquidus curves of the constitutional diagram. For the linear case, in which both the liquidus and solidus are perfectly straight lines, the normal freezing equation giving the fraction solidified at each melt temperature and the solute concentration profile in the frozen solid was determined as early as 1902, and has since been repeatedly published. Corresponding equations for quadratic, cubic or higher-degree liquidus and solidus lines have also been obtained. The equation of normal freezing for ideal ternary liquid solutions solidified into ideal solid solutions of the pseudobinary type is given. Sample computations with the use of this new equation were made and are given for the Ga-Al-As system.

  17. Efficient operation of the liquid nitrogen supply station for the cryogenic equipment of the pilot plant for tritium and deuterium separation

    International Nuclear Information System (INIS)

    Gherghinescu, Sorin; Popescu, Gheorghe

    2009-01-01

    Full text: At liquid nitrogen temperature the materials lose their elastic properties and become brittle. Protecting the personnel working with liquid nitrogen becomes difficult and to avoid accidents special equipment is used as helmets, gloves, goggles, special footwear, etc. The liquid nitrogen can destroy insulation of electrical cables, and so short circuits and electrocution can occur. Objects made of carbon steel (like pipes, props, containers, pillars, metal roofs, etc) when cooled by a sufficient amount of cryogenic liquid can break down to minimal mechanical stresses. Exceedingly dangerous is liquid nitrogen entered and retained into carbon steel ducts carrying pressured gas (even et low pressure values), since their cooling at extremely low temperatures can provoke their explosion. Resulting pieces and fragments are dangerous for both personnel and equipment around. The gas components of atmosphere (oxygen, nitrogen, argon) have critical parameters which allow liquefaction only at high pressure. For this reason they are called 'permanent gases'. Consequently, transformed in cryogenic liquids in closed precincts these gases will get totally vaporised when the precincts are not properly thermally isolated. The resulting raised pressure can lead to precinct destruction. For instance such event happens when an amount of liquid nitrogen is isolated into an external pipe between two closed taps while a relief valve is not in place. In such conditions isolation of liquid nitrogen ducts is absolutely necessary. This report reviews various solutions for obtaining an efficient isolation. All thermal isolations aim at reducing the heat transfer. In cryogenics the heat transfer from environment to the fluid in liquid phase is an important factor affecting the efficiency and yield of the liquefaction system. Choosing the type of isolation depends essentially on the specific application. The factors which must be considered are the cooling power, weight, the

  18. Two-phase flow characteristics of liquid nitrogen in vertically upward 0.5 and 1.0 mm micro-tubes: Visualization studies

    Science.gov (United States)

    Zhang, P.; Fu, X.

    2009-10-01

    Application of liquid nitrogen to cooling is widely employed in many fields, such as cooling of the high temperature superconducting devices, cryosurgery and so on, in which liquid nitrogen is generally forced to flow inside very small passages to maintain good thermal performance and stability. In order to have a full understanding of the flow and heat transfer characteristics of liquid nitrogen in micro-tube, high-speed digital photography was employed to acquire the typical two-phase flow patterns of liquid nitrogen in vertically upward micro-tubes of 0.531 and 1.042 mm inner diameters. It was found from the experimental results that the flow patterns were mainly bubbly flow, slug flow, churn flow and annular flow. And the confined bubble flow, mist flow, bubble condensation and flow oscillation were also observed. These flow patterns were characterized in different types of flow regime maps. The surface tension force and the size of the diameter were revealed to be the major factors affecting the flow pattern transitions. It was found that the transition boundaries of the slug/churn flow and churn/annular flow of the present experiment shifted to lower superficial vapor velocity; while the transition boundary of the bubbly/slug flow shifted to higher superficial vapor velocity compared to the results of the room-temperature fluids in the tubes with the similar hydraulic diameters. The corresponding transition boundaries moved to lower superficial velocity when reducing the inner diameter of the micro-tubes. Time-averaged void fraction and heat transfer characteristics for individual flow patterns were presented and special attention was paid to the effect of the diameter on the variation of void fraction.

  19. Oxygen reduction reaction properties of nitrogen-incorporated nanographenes synthesized using in-liquid plasma from mixture of ethanol and iron phthalocyanine

    Science.gov (United States)

    Amano, Tomoki; Kondo, Hiroki; Takeda, Keigo; Ishikawa, Kenji; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru

    2018-04-01

    Nanographenes were synthesized using in-liquid plasma from a mixture of iron phthalocyanine and ethanol. In a previous study, micrometer-scale flakes with nitrogen incorporation were obtained. A nonprecious metal catalytic activity was observed with 3.13 electrons in an oxygen reduction reaction under an acidic solute condition. Large-surface-area, high-graphene-crystallinity, and iron-carbon-bonding sites were found owing to a high catalytic activity in Fe-N/nanographene.

  20. Degradation mechanisms of 4-chlorophenol in a novel gas-liquid hybrid discharge reactor by pulsed high voltage system with oxygen or nitrogen bubbling.

    Science.gov (United States)

    Zhang, Yi; Zhou, Minghua; Hao, Xiaolong; Lei, Lecheng

    2007-03-01

    The effect of gas bubbling on the removal efficiency of 4-chlorophenol (4-CP) in aqueous solution has been investigated using a novel pulsed high voltage gas-liquid hybrid discharge reactor, which generates gas-phase discharge above the water surface simultaneously with the spark discharge directly in the liquid. The time for 100% of 4-CP degradation in the case of oxygen bubbling (7 min) was much shorter than that in the case of nitrogen bubbling (25 min) as plenty of hydrogen peroxide and ozone formed in oxygen atmosphere enhanced the removal efficiency of 4-CP. Except for the main similar intermediates (4-chlorocatechol, hydroquinone and 1,4-benzoquinone) produced in the both cases of oxygen and nitrogen bubbling, special intermediates (5-chloro-3-nitropyrocatechol, 4-chloro-2-nitrophenol, nitrate and nitrite ions) were produced in nitrogen atmosphere. The reaction pathway of 4-CP in the case of oxygen bubbling was oxygen/ozone attack on the radical hydroxylated derivatives of 4-CP. However, in the case of nitrogen bubbling, hydroxylation was the main reaction pathway with effect of N atom on degradation of 4-CP.

  1. Oligomerization of ethylene catalysed by nickel complexes associated with nitrogen ligands in ionic liquids; Oligomerisation de l'ethylene catalysee par des complexes du nickel associes a des ligands azotes dans les liquides ioniques

    Energy Technology Data Exchange (ETDEWEB)

    Lecocq, V.

    2003-09-01

    We report here the use of a new class of catalytic systems based on a nickel active center associated with nitrogen ligands, such as di-imines, or imino-pyridines, for the oligomerization of ethylene in a biphasic medium using ionic liquids as the catalyst solvent. The nickel catalyst is immobilized in the ionic liquid phase in which the olefinic reaction products are poorly miscible. This biphasic system makes possible an easy separation and recycle of the catalyst. Numerous di-imine and imino-pyridine ligands with different steric and electronic properties have been synthesized and their corresponding nickel complexes isolated and characterized. Different ionic liquids, based on chloro-aluminates or non-chloro-aluminates anions, have also been prepared and characterized. The effect of the nature of the ligand, the ionic liquid, the nickel precursor and its mode of activation have been studied and correlated with the selectivity and activity of the transformation of ethylene. (author)

  2. Fabrication of Li{sub 2}TiO{sub 3} pebbles by a freeze drying process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Jin, E-mail: lee@mokpo.ac.kr [Department of Advanced Materials Science and Engineering, Mokpo National University, Muan 534-729 (Korea, Republic of); Park, Yi-Hyun [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Yu, Min-Woo [Department of Advanced Materials Science and Engineering, Mokpo National University, Muan 534-729 (Korea, Republic of)

    2013-11-15

    Li{sub 2}TiO{sub 3} pebbles were successfully fabricated by using a freeze drying process. The Li{sub 2}TiO{sub 3} slurry was prepared using a commercial powder of particle size 0.5–1.5 μm and the pebble pre-form was prepared by dropping the slurry into liquid nitrogen through a syringe needle. The droplets were rapidly frozen, changing their morphology to spherical pebbles. The frozen pebbles were dried at −10 °C in vacuum. To make crack-free pebbles, some glycerin was employed in the slurry, and long drying time and a low vacuum condition were applied in the freeze drying process. In the process, the solid content in the slurry influenced the spheroidicity of the pebble green body. The dried pebbles were sintered at 1200 °C in an air atmosphere. The sintered pebbles showed almost 40% shrinkage. The sintered pebbles revealed a porous microstructure with a uniform pore distribution and the sintered pebbles were crushed under an average load of 50 N in a compressive strength test. In the present study, a freeze drying process for fabrication of spherical Li{sub 2}TiO{sub 3} pebbles is introduced. The processing parameters, such as solid content in the slurry and the conditions of freeze drying and sintering, are also examined.

  3. Measurement of the energy spectrum with proportional counters with spherical cathodes between 20 keV and 2.5 MeV with the propagation of 14 MeV neutrons in liquid nitrogen and liquid air

    International Nuclear Information System (INIS)

    Schneider-Kuehnle, P.

    1974-01-01

    This work deals with the measurement of the energy spectrum of a 14 MeV neutron source in liquid nitrogen and liquid air in the energy region of 20 keV to 2.5 MeV as a function of the distance from the source. The measured results together with those of a scintispectrometer which measures the energies between 2.5 MeV and 14 MeV, are to serve as experimentally-supported input data for shielding calculations and are to enable the checking of transport theoretical calculations. (orig./LH) [de

  4. Quantification of nitrogen in the liquid fraction and in vitro assessment of lysine bioavailability in the solid fraction of soybean meal hydrolysates.

    Science.gov (United States)

    Luján-Rhenals, D; Morawicki, R; Shi, Z; Ricke, S C

    2018-01-02

    Soybean meal (SBM) is a product generated from the manufacture of soybean oil and has the potential for use as a source of fermentable sugars for ethanol production or as a protein source for animal feeds. Knowing the levels of nitrogen available from ammonium is a necessary element of the ethanolic fermentation process while identifying the levels of essential amino acids such as lysine is important in determining usage as a feed source. As such the purpose of this study was to quantify total nitrogen and ammonium in the liquid fraction of hydrolyzed SBM and to evaluate total and bioavailable lysine in the solid fraction of the hydrolyzed SBM. The effects of acid concentration, cellulase and β-glucosidase on total and ammonium nitrogen were studied with analysis indicating that higher acid concentrations increased nitrogen compounds with ammonium concentrations ranging from 0.20 to 1.24 g L -1 while enzymatic treatments did not significantly increase nitrogen levels. Total and bioavailable lysine was quantified by use of an auxotrophic gfpmut3 E.coli whole-cell bioassay organism incapable of lysine biosynthesis. Acid and enzymatic treatments were applied with lysine bioavailability increasing from a base of 82% for untreated SBM to up to 97%. Our results demonstrated that SBM has the potential to serve in ethanolic fermentation and as an optimal source essential amino acid lysine.

  5. Fundamental studies on the switching in liquid nitrogen environment using vacuum switches for application in future high-temperature superconducting medium-voltage power grids

    International Nuclear Information System (INIS)

    Golde, Karsten

    2016-01-01

    By means of superconducting equipment it is possible to reduce the transmission losses in distribution networks while increasing the transmission capacity. As a result even saving a superimposed voltage level would be possible, which can put higher investment costs compared to conventional equipment into perspective. For operation of superconducting systems it is necessary to integrate all equipment in the cooling circuit. This also includes switchgears. Due to cooling with liquid nitrogen, however, only vacuum switching technology comes into question. Thus, the suitability of vacuum switches is investigated in this work. For this purpose the mechanics of the interrupters is considered first. Material investigations and switching experiments at ambient temperature and in liquid nitrogen supply information on potential issues. For this purpose, a special pneumatic construction is designed, which allows tens of thousands of switching cycles. Furthermore, the electrical resistance of the interrupters is considered. Since the contact system consists almost exclusively of copper, a remaining residual resistance and appropriate thermal losses must be considered. Since they have to be cooled back, an appropriate evaluation is given taking environmental parameters into account. The dielectric strength of vacuum interrupters is considered both at ambient temperature as well as directly in liquid nitrogen. For this purpose different contact distances are set at different interrupter types. A distinction is made between internal and external dielectric strength. Conditioning and deconditioning effects are minimized by an appropriate choice of the test circuit. The current chopping and resulting overvoltages are considered to be one of the few drawbacks of vacuum switching technology. Using a practical test circuit the height of chopping current is determined and compared for different temperatures. Due to strong scattering the evaluation is done using statistical methods. At

  6. Fertilizer performance of liquid fraction of digestate as synthetic nitrogen substitute in silage maize cultivation for three consecutive years.

    Science.gov (United States)

    Sigurnjak, I; Vaneeckhaute, C; Michels, E; Ryckaert, B; Ghekiere, G; Tack, F M G; Meers, E

    2017-12-01

    Following changes over recent years in fertilizer legislative framework throughout Europe, phosphorus (P) is taking over the role of being the limiting factor in fertilizer application rate of animal manure. This results in less placement area for spreading animal manure. As a consequence, more expensive and energy demanding synthetic fertilizers are required to meet crop nutrient requirements despite existing manure surpluses. Anaerobic digestion followed by mechanical separation of raw digestate, results in liquid fraction (LF) of digestate, a product poor in P but rich in nitrogen (N) and potassium (K). A 3-year field experiment was conducted to evaluate the impact of using the LF of digestate as a (partial) substitute for synthetic N fertilizer. Two different fertilization strategies, the LF of digestate in combination with respectively animal manure and digestate, were compared to the conventional fertilization regime of raw animal manure with synthetic fertilizers. Results from the 3-year trial indicate that the LF of digestate may substitute synthetic N fertilizers without crop yield losses. Through fertilizer use efficiency assessment it was observed that under-fertilization of soils with a high P status could reduce P availability and consequently the potential for P leaching. Under conditions of lower K application, more sodium was taken up by the crop. In arid regions, this effect might reduce the potential risk of salt accumulation that is associated with organic fertilizer application. Finally, economic and ecological benefits were found to be higher when LF of digestate was used as a synthetic N substitute. Future perspectives indicate that nutrient variability in bio-based fertilizers will be one of the greatest challenges to address in the future utilization of these products. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. [Development of a liquid fermentation system and encystment for a nitrogen-fixing bacterium strain having biofertilizer potential].

    Science.gov (United States)

    Camelo-Rusinque, Mauricio; Moreno-Galván, Andrés; Romero-Perdomo, Felipe; Bonilla-Buitrago, Ruth

    The indiscriminate use of chemical fertilizers has contributed to the deterioration of the biological, physical and chemical properties of the soil, resulting in the loss of its productive capacity. For this reason, the use of biofertilizers has emerged as a technological alternative. The objective of this research was to develop a suitable liquid fermentation system and encystment for the multiplication of Azotobacter chroococcum AC1 strain, a bacterium employed in a biofertilizer formulation produced at present by CARPOICA, Colombia. Sequential statistical designs were used to determine the conditions in the fermentation system. The interaction between agitation, aeration and pH was evaluated on the viable biomass (CFU/ml) of AC1. In addition, the encystment ability of the strain was evaluated using two encystment agents and the potential plant growth-promoting rhizobacteria (PGPR) activity was assessed by different techniques, such as nitrogen fixation by ARA, phosphate solubilization by the phospho-molybdenum-blue reaction and indolic compound production by colorimetric reaction using the Salkowski reagent. Results showed significant effects (p<0.05) on the viable biomass in the three conditions (pH, aeration and agitation) tested individually, in one dual interaction and one tripartite interaction, were demonstrated to have a positive effect on the response variable aeration and agitation. The addition of the two encystment agents evaluated, AE01 and AE02, demonstrated the ability of AC1 to form cysts under stress conditions. Likewise, fermentation and encystment conditions did not affect the biological activities tested. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Control of crystal growth in water purification by directional freeze crystallization

    Science.gov (United States)

    Conlon, William M. (Inventor)

    1996-01-01

    A Directional Freeze Crystallization system employs an indirect contact heat exchanger to freeze a fraction of liquid to be purified. The unfrozen fraction is drained away and the purified frozen fraction is melted. The heat exchanger must be designed in accordance with a Growth Habit Index to achieve efficient separation of contaminants. If gases are dissolved in the liquid, the system must be pressurized.

  9. Effect of Freezing on Spermatozoa from Tigaie Rams Belonging to the Mountain Ecotype

    Directory of Open Access Journals (Sweden)

    Vasile Miclea

    2011-05-01

    Full Text Available Our aim was to study the influence of freezing on the viability and frequency of abnormalities in frozen ram spermatozoa. Sperm was collected form 20 rams belonging to the mountain ecotype of the Tigaie breed using the artificial vagina technique and volume and motility were assessed. Afterward it was diluted with Tryladil (1:4 supplemented with 20% egg yolk and heated at 37°C. Subsequently the temperature decreased at a rate of 0.2°C/minute until reaching 4°C and an equilibration time of 2 hours followed. During this time the diluted sperm was packaged in 0.25 ml straws. After sealing these were kept 6 cm above liquid nitrogen level for 13 minutes (- 120°C and then plunged into nitrogen. Volume, motility and concentration were assessed before freezing. After thawing sperm morphology was assessed using Hancock’s method and at the same time the endurance (at 10, 30 and 60 minutes and HOST tests were performed. The highest motility (0.40 was graded at 30 minutes. It could be correlated with the increased percentage of HOST positive spermatozoa, 27.78%. The percentage of abnormal spermatozoa was also high (47.89%, 38.44% of them having acrosome flaws. Cryopreservation has a negative effect on the characteristics of sperm cells from Tigaie rams belonging to the mountain ecotype.

  10. [Enhanced nitrogen and phosphorus removal of wastewater by using sludge anaerobic fermentation liquid as carbon source in a pilot-scale system].

    Science.gov (United States)

    Luo, Zhe; Zhou, Guang-Jie; Liu, Hong-Bo; Nie, Xin-Yu; Chen, Yu; Zhai, Li-Qin; Liu, He

    2015-03-01

    In order to explore the possibility of enhanced nitrogen and phosphorus removal in wastewater using sludge anaerobic fermentation liquid as external carbon source, the present study proposed an A2/O reactor system with a total effective volume of 4 660 L and real municipal wastewater for treatment. The results showed that under the conditions of the influent COD at 243.7 mg x L(-1), NH4(+) -N at 30. 9 mg x L(-1), TN at 42.9 mg'L- , TP at 2.8 mg x L(-1), the backflow ratio of nitrification liquid at 200% and recycle ratio of sludge at 100%, the addition of acetic acid into anoxic tank could enhance the removal efficiency of nitrogen and phosphorus, and the optimal influent quantity and SCOD incremental of carbon were 7 500 L x d(-1) and 50 mg L(-1), respectively. When the sludge fermentation liquid was used as external carbon source and the average effluent COD, NH4(+) -N, TN, TP removal efficiency were 81.60%, 88.91%, 64.86% and 87.61%, the effluent concentrations were 42.18, 2.77, 11.92 and 0.19 mg x L(-1), respectively, which met China's first Class (A) criteria specified in the Discharge Standard Urban Sewage Treatment Plant Pollutant (GB 18918-2002). The results of the present study demonstrated that the addition of sludge anaerobic fermented liquid as external carbon source was a feasible way to enhance the removal of nitrogen and phosphorous in municipal wastewater, providing a new feasible strategy for the reuse and recycle of sewage sludge in China.

  11. Polymerization with freezing

    International Nuclear Information System (INIS)

    Ben-Naim, E; Krapivsky, P L

    2005-01-01

    Irreversible aggregation processes involving reactive and frozen clusters are investigated using the rate equation approach. In aggregation events, two clusters join irreversibly to form a larger cluster; additionally, reactive clusters may spontaneously freeze. Frozen clusters do not participate in merger events. Generally, freezing controls the nature of the aggregation process, as demonstrated by the final distribution of frozen clusters. The cluster mass distribution has a power-law tail, F k ∼k -γ , when the freezing process is sufficiently slow. Different exponents, γ = 1 and 3, are found for the constant and the product aggregation rates, respectively. For the latter case, the standard polymerization model, either no gels, or a single gel, or even multiple gels, may be produced

  12. Catalytic upgrading nitrogen-riched wood syngas to liquid hydrocarbon mixture over Fe-Pd/ZSM-5 catalyst

    Science.gov (United States)

    Qiangu Yan; Fei Yu; Zhiyong Cai; Jilei Zhang

    2012-01-01

    Biomass like wood chips, switchgrass and other plant residues are first converted to syngas through gasification process using air, oxygen or steam. A downdraft gasifier is performed for syngas production in Mississippi State. The syngas from the gasifier contains up to 49% (vol) N2. High-level nitrogen-containing (nitrogen can be up to 60%)...

  13. Highly Selective Separation of Carbon Dioxide from Nitrogen and Methane by Nitrile/Glycol-Difunctionalized Ionic Liquids in Supported Ionic Liquid Membranes (SILMs)

    OpenAIRE

    Hojniak, Sandra D.; Silverwood, Ian P.; Laeeq Khan, Asim; Vankelecom, Ivo F.J.; Dehaen, Wim; Kazarian, Sergei G.; Binnemans, Koen

    2014-01-01

    Novel difunctionalized ionic liquids (ILs) containing a triethylene glycol monomethyl ether chain and a nitrile group on a pyrrolidinium or imidazolium cation have been synthesized and incorporated into supported ionic liquid membranes (SILMs). These ILs exhibit ca. 2.3 times higher CO2/N2 and CO2/CH4 gas separation selectivities than analogous ILs functionalized only with a glycol chain. Although the glycol moiety ensures room temperature liquidity of the pyrrolidinium and imidazolium ILs, t...

  14. Principle of a liquid nitrogen irradiation device and its realization for use in a swimming-pool type reactor; Principe d'un dispositif d'irradiation a azote liquide et sa realisation pour utilisation dans une pile piscine

    Energy Technology Data Exchange (ETDEWEB)

    Bochirol, L; Doulat, J; Weil, L [Commissariat a l' Energie Atomique, Grenoble (France).Centre d' Etudes Nucleaires

    1961-07-01

    The problem of pile irradiation of samples immersed in liquid nitrogen has been solved with total elimination of explosion hazards and high reliability (no moving parts). The principle of the device is that of a double bath: one of high purity nitrogen cools the samples at the level of the core; a second of commercial nitrogen is located above the first one, outside the high radiation field, and works as a continuous condenser for the pure nitrogen, the flow-back of which is provided simply by gravity. The apparatus described in detail here has been designed for a swimming-pool pile. It was so designed as to provide absolute protection against radiations and to allow the irradiated samples to be easily removed in the cold condition. This apparatus has been in operation for several months. In a fast flux greater than 10{sup 13} neutrons/cm{sup 2}.s and a {gamma}-flux of the order of 10{sup 8} roentgens/h, the consumption of liquid nitrogen is of the order of 100 liters a day. (author) [French] On a resolu le probleme de l'irradiation en pile d'echantillons immerges dans l'azote liquide en construisant un appareil d'un fonctionnement sur (aucune partie n'est mobile) qui elimine completement les dangers d'explosion. Le principe de l'appareil est celui d'un double bain: l'un, d'azote pur, refroidit les echantillons au niveau du coeur du reacteur; l'autre, d'azote commercial, est situe au-dessus du premier, hors du champ de rayonnement intense, et sert de condenseur continu pour l'azote pur. Ce dernier ainsi reliquefie regagne son bain par simple gravite. L'appareil decrit en detail ici, est concu pour une pile piscine. Il a ete etudie de facon a ne creer aucune fuite de rayonnement et a permettre la recuperation aisee des echantillons irradies sans rechauffage de ceux-ci. Cet appareil est en fonctionnement depuis plusieurs mois. Dans un flux rapide superieur a 10{sup 13} neutrons/cm{sup 2}.s et un flux {gamma} de l'ordre de 10{sup 8} roentgens/h, la consommation d

  15. Evaluation of the dependence of heat transfer coefficient on the particle diameter of a metal porous medium in a heat removal system using liquid nitrogen

    International Nuclear Information System (INIS)

    Sasaki, Shunsuke; Ito, Satoshi; Hashizume, Hidetoshi

    2015-01-01

    Cryogenic cooling system using a bronze-particle-sintered porous medium has been studied for a re mountable high-temperature superconducting magnet. This study evaluates boiling curve of subcooled liquid nitrogen as flowing in a bronze porous medium as a function of the particle diameter of the medium. We obtained Departure from Nuclear Boiling (Dnb) point from the boiling curve and discussed growth of nitrogen vapor bubble inferred from measured pressure drop. The pressure drop decreased significantly at wall superheat before reaching the DNB point whereas that slightly decreased after reaching the DNB point compared to the smallest wall superheat. This result could consider DNB rises with an increase in the particle diameter because larger particle makes vapor to move easily from the heated pore region. The influence of the particle diameter on the heat transfer performance is larger than that of coolant's degree of subcooling. (author)

  16. Nitrate and dissolved organic carbon mobilization in response to soil freezing variability

    Science.gov (United States)

    Colin B. Fuss; Charles T. Driscoll; Peter M. Groffman; John L. Campbell; Lynn M. Christenson; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer; Jorge Durán; Jennifer L. Morse

    2016-01-01

    Reduced snowpack and associated increases in soil freezing severity resulting from winter climate change have the potential to disrupt carbon (C) and nitrogen (N) cycling in soils. We used a natural winter climate gradient based on elevation and aspect in a northern hardwood forest to examine the effects of variability in soil freezing depth, duration, and frequency on...

  17. Storage of Pentatomid Eggs in Liquid Nitrogen and Dormancy of Trissolcus basalis (Wollaston) and Telenomus podisi Ashmead (Hymenoptera: Platygastridae) Adults as a Method of Mass Production.

    Science.gov (United States)

    Doetzer, A K; Foerster, L A

    2013-10-01

    The eggs of pentatomid species were evaluated to parasitism by Trissolcus basalis (Wollaston) and Telenomus podisi Ashmead after storage in liquid nitrogen. Adults which emerged from stored eggs were kept at 18°C for 120 and 180 days to investigate whether adult dormancy could be associated with host egg storage in liquid nitrogen as a method of mass production of these egg parasitoids. Eggs of Nezara viridula (L.) and Acrosternum pengue (Rolston) were successfully parasitized by T. basalis, as well as Piezodorus guildinii (Westwood) and Dichelops furcatus (F.) by T. podisi. The eggs of Edessa meditabunda (F.) were not parasitized by T. basalis. The emergence of T. podisi from eggs of Euschistus heros (F.) and Podisus nigrispinus (Dallas) stored for 6 months was lower than the control. Females of T. basalis and T. podisi that emerged from stored eggs were kept in dormancy at 18°C. Longevity of T. basalis was influenced by the storage time and sex, but not by the interaction of sex and storage time. For T. podisi, longevity was influenced by the storage time, sex, and by the interaction of sex and storage time. For T. basalis, storage in liquid nitrogen did not affect the fecundity of quiescent females, while the number of parasitized eggs by T. podisi decreased after storage. By the joint use of these techniques, it is possible to optimize mass production of T. basalis so that its life cycle can be monitored and synchronized with the life cycle and availability of hosts.

  18. Effect of freezing extender composition and male line on semen traits and reproductive performance in rabbits.

    Science.gov (United States)

    Viudes-de-Castro, M P; Lavara, R; Safaa, H M; Marco-Jiménez, F; Mehaisen, G M K; Vicente, J S

    2014-05-01

    This study was conducted to elucidate the effect of different freezing extenders on two lines selected for hyperprolificacy and longevity (H and LP, respectively). In extender A, dimethyl sulphoxide (Me2SO) and sucrose were used as cryoprotectants. In extenders B and C, the sucrose was replaced by 20% egg yolk, and in extender C the Me2SO was substituted by acetamide. Semen was packaged in 0.25 ml plastic straws and cooled at 5°C for 45 min, and then was frozen in liquid nitrogen vapour for 10 min before being plunged into the liquid nitrogen. Thawing was carried out by immersing the straws in a water bath at 50°C for 10 s. Frozen-thawed semen characteristics and reproductive parameters were affected by freezing. Extender C showed significantly lower post-thawing quality traits than any of the three extenders. Acrosome integrity was significantly improved when Me2SO was used as cryoprotectant. Sucrose replacement by 20% egg yolk had no effect on acrosome integrity but provided significantly lower sperm motility and viability. Freezing extender affected fertility rate, total born, number of implantation sites and gestational losses, obtaining better results when extender A was used. The acrosomal integrity after frozen-thawed process showed a significant correlation with fertility at 12th day and also at birth, indicating that an increase in acrosomal integrity leads to an increase in both fertilities (12th day and at birth). A positive correlation between motility of semen and implantation sites was found. The post-thawing quality traits of semen were not affected by the genetic line, although LP line showed higher total born and lower foetal and gestational losses. The findings of this study suggest that freezing extender composition has a significant effect on the success of rabbit sperm for preservation, and when Me2SO was used as permeable cryoprotectant sucrose provided better protection compared with egg yolk and improved reproductive traits, and, on the

  19. Nitrogen removal from sludge digester liquids by nitrification/denitrification or partial nitritation/anammox: environmental and economical considerations.

    Science.gov (United States)

    Fux, C; Siegrist, H

    2004-01-01

    In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic nitrification/heterotrophic denitrification and (ii) partial nitritation/autotrophic anaerobic ammonium oxidation (anammox). With both applications 85-90% nitrogen removal can be achieved, but there are considerable differences in terms of sustainability and costs. The final gaseous products for heterotrophic denitrification are generally not measured and are assumed to be nitrogen gas (N2). However, significant nitrous oxide (N2O) production can occur at elevated nitrite concentrations in the reactor. Denitrification via nitrite instead of nitrate has been promoted in recent years in order to reduce the oxygen and the organic carbon requirements. Obviously this "achievement" turns out to be rather disadvantageous from an overall environmental point of view. On the other hand no unfavorable intermediates are emitted during anaerobic ammonium oxidation. A cost estimate for both applications demonstrates that partial nitritation/anammox is also more economical than classical nitrification/denitrification. Therefore autotrophic nitrogen elimination should be used in future to treat ammonium-rich sludge liquors.

  20. Exploring symbiotic nitrogen fixation and assimilation in pea root nodules by in vivo 15N nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry

    DEFF Research Database (Denmark)

    Scharff, A.M.; Egsgaard, H.; Hansen, P.E.

    2003-01-01

    Nitrogen (N) fixation and assimilation in pea (Pisum sativum) root nodules were studied by in vivo N-15 nuclear magnetic resonance (NMR) by exposing detached nodules to N-15, via a perfusion medium, while recording a time course of spectra. In vivo P-31 NMR spectroscopy was used to monitor...... the physiological state of the metabolically active nodules. The nodules were extracted after the NMR studies and analyzed for total soluble amino acid pools and N-15 labeling of individual amino acids by liquid chromatography-mass spectrometry. A substantial pool of free ammonium was observed by N-15 NMR...... labeling of Asn was observed by liquid chromatography-mass spectrometry, which is consistent with the generally accepted role of Asn as the end product of primary N assimilation in pea nodules. However, the Asn N-15 amino signal was absent in in vivo N-15 NMR spectra, which could be because...

  1. Two-step freezing of hybridoma cells in 96-well microculture plates.

    Science.gov (United States)

    Pĕknicová, J; Kristofová, H

    1985-01-01

    Stabile hybridoma cells, colonies of hybridoma cells 14 days after fusion of immune spleen and myeloma cells, myeloma cells and fibroblasts cultured in 96-well microculture plates were frozen by the method of two-step freezing. The culture medium was aspirated, and 50 microliter of the medium containing a cryoprotectant (5% dimethyl sulphoxide) was added for 10 min at room temperature. The plates were put into microtene bags, placed at -25 degrees C in a freezer for 30 min and then stored at -100 degrees C in liquid nitrogen vapour. Plates with cells were thawed rapidly in a 50 degree C water bath. After thawing the hybrid cells were viable and continued to produce the specific antibody.

  2. Superconducting materials at temperature higher than liquid nitrogen of the YBaCuO type. Materiaux supraconducteurs jusqu'a des temperatures superieures a celles de l'azote liquide, appartenant au systeme Y-Ba-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R; Gegnier, P; Truchot, P

    1990-02-09

    The invention concerns new superconducting materials with the formula Zr{sub x} Hf{sub y} Ti{sub z} Y{sub 1-x-y-z} Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} where 0liquid nitrogen and can be used as wire, solid parts, thin or thick layers.

  3. Multiple Glass Transitions and Freezing Events of Aqueous Citric Acid

    Science.gov (United States)

    2014-01-01

    Calorimetric and optical cryo-microscope measurements of 10–64 wt % citric acid (CA) solutions subjected to moderate (3 K/min) and slow (0.5 and 0.1 K/min) cooling/warming rates and also to quenching/moderate warming between 320 and 133 K are presented. Depending on solution concentration and cooling rate, the obtained thermograms show one freezing event and from one to three liquid–glass transitions upon cooling and from one to six liquid–glass and reverse glass–liquid transitions, one or two freezing events, and one melting event upon warming of frozen/glassy CA/H2O. The multiple freezing events and glass transitions pertain to the mother CA/H2O solution itself and two freeze-concentrated solution regions, FCS1 and FCS2, of different concentrations. The FCS1 and FCS2 (or FCS22) are formed during the freezing of CA/H2O upon cooling and/or during the freezing upon warming of partly glassy or entirely glassy mother CA/H2O. The formation of two FCS1 and FCS22 regions during the freezing upon warming to our best knowledge has never been reported before. Using an optical cryo-microscope, we are able to observe the formation of a continuous ice framework (IF) and its morphology and reciprocal distribution of IF/(FCS1 + FCS2). Our results provide a new look at the freezing and glass transition behavior of aqueous solutions and can be used for the optimization of lyophilization and freezing of foods and biopharmaceutical formulations, among many other applications where freezing plays a crucial role. PMID:25482069

  4. A sensitive and efficient method for trace analysis of some phenolic compounds using simultaneous derivatization and air-assisted liquid-liquid microextraction from human urine and plasma samples followed by gas chromatography-nitrogen phosphorous detection.

    Science.gov (United States)

    Farajzadeh, Mir Ali; Afshar Mogaddam, Mohammad Reza; Alizadeh Nabil, Ali Akbar

    2015-12-01

    In present study, a simultaneous derivatization and air-assisted liquid-liquid microextraction method combined with gas chromatography-nitrogen phosphorous detection has been developed for the determination of some phenolic compounds in biological samples. The analytes are derivatized and extracted simultaneously by a fast reaction with 1-flouro-2,4-dinitrobenzene under mild conditions. Under optimal conditions low limits of detection in the range of 0.05-0.34 ng mL(-1) are achievable. The obtained extraction recoveries are between 84 and 97% and the relative standard deviations are less than 7.2% for intraday (n = 6) and interday (n = 4) precisions. The proposed method was demonstrated to be a simple and efficient method for the analysis of phenols in biological samples. Copyright © 2015 John Wiley & Sons, Ltd.

  5. THE LIQUID NITROGEN SYSTEM FOR CHAMBER A; A CHANGE FROM ORIGINAL FORCED FLOW DESIGN TO A NATURAL FLOW (THERMO SIPHON) SYSTEM

    International Nuclear Information System (INIS)

    Homan, J.; Montz, M.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Creel, J.; Arenius, D.; Garcia, S.

    2010-01-01

    NASA at the Johnson Space Center (JSC) in Houston is presently working toward modifying the original forced flow liquid nitrogen cooling system for the thermal shield in the space simulation chamber-A in Building 32 to work as a natural flow (thermo siphon) system. Chamber A is 19.8 m (65 ft) in diameter and 35.66 m (117 ft) high. The LN 2 shroud environment within the chamber is approximately 17.4 m (57 ft) in diameter and 28 m (92 ft) high. The new thermo siphon system will improve the reliability, stability of the system. Also it will reduce the operating temperature and the liquid nitrogen use to operate the system. This paper will present the requirements for the various operating modes. System level thermodynamic comparisons of the existing system to the various options studied and the final option selected will be outlined. A thermal and hydraulic analysis to validate the selected option for the conversion of the current forced flow to natural flow design will be discussed. The proposed modifications to existing system to convert to natural circulation (thermo siphon) system and the design features to help improve the operations, and maintenance of the system will be presented.

  6. Numerical study of the underexpanded nitrogen jets submerged into liquid sodium in the frame of Sodium-cooled Fast Reactor (SFRs)

    International Nuclear Information System (INIS)

    Chen, F.; Allou, A.; Parisse, J.D.

    2017-01-01

    The study of the consequences of a gas leakage in the secondary/ tertiary heat exchangers is one of the essential points in the safety analysis of Sodium-cooled Fast nuclear Reactors (SFRs). This work is in the frame of the technology of the Compact plates Sodium-Gas heat Exchangers (ECSG) which is an alternative to conventional steam Rankine cycles. The overpressure of the tertiary nitrogen loop causes the formation of underexpanded gas jets submerged in the liquid sodium. In order to establish a safety evaluation, it would be an asset to be able to estimate the leakage. The gas leak detection by the acoustic method based on the bubbles field has been proposed. It requires then a delicate knowledge of the bubble field. This work contributes to development a numerical tool and its validation to model the transport and the production of bubbles in the downstream of underexpanded gas jets. The code CANOP modeling bi-phasic compressible flow is investigated under the actual condition of the underexpanded nitrogen jets submerged in the liquid sodium in an ECSG channel. Expensive computational cost is limited by using an Adaptive Mesh Refinement. (author)

  7. Modernization of NASA's Johnson Space Center Chamber: A Liquid Nitrogen System to Support Cryogenic Vacuum Optical Testing of the James Webb Space Telescope (JWST)

    Science.gov (United States)

    Garcia, Sammy; Homan, Jonathan; Montz, Michael

    2016-01-01

    NASA is the mission lead for the James Webb Space Telescope (JWST), the next of the “Great Observatories”, scheduled for launch in 2018. It is directly responsible for the integration and test (I&T) program that will culminate in an end-to-end cryo vacuum optical test of the flight telescope and instrument module in Chamber A at NASA Johnson Space Center. Historic Chamber A is the largest thermal vacuum chamber at Johnson Space Center and one of the largest space simulation chambers in the world. Chamber A has undergone a major modernization effort to support the deep cryogenic, vacuum and cleanliness requirements for testing the JWST. This paper describes the steps performed in efforts to convert the existing the 60’s era Liquid Nitrogen System from a forced flow (pumped) process to a natural circulation (thermo-siphon) process. In addition, the paper will describe the dramatic conservation of liquid nitrogen to support the long duration thermal vacuum testing. Lastly, describe the simplistic and effective control system which results in zero to minimal human inputs during steady state conditions.

  8. The combinatorial effect of different Equex STM paste concentrations, cryoprotectants and the straw-freezing methods on the post-thaw boar semen quality.

    Science.gov (United States)

    Wu, T-W; Cheng, F-P; Chen, I-H; Yang, C-H; Tsai, M-Y; Chang, M-H; Wang, J-H; Wu, J-T

    2013-02-01

    This study was to evaluate the combinatorial effect (14 treatments, A-N) of different Equex STM paste concentrations, cryoprotectants and the straw-freezing method on the post-thaw boar semen quality. Two ejaculates were collected from each of nine boars (three boars from each of three breeds). Semen was diluted in extenders with different concentrations of Equex STM paste and different cryoprotectants [glycerol or dimethylacetamide (DMA)] before cryopreserving via liquid nitrogen or dry ice. Motility, viability, percentage of spermatozoa with intense acrosomal staining and with normal morphology of post-thaw sperm were evaluated. The qualities of thawed semen were best preserved in treatment H (extender with 0.5% Equex STM paste and 5% glycerol and freezing by dry ice) and were worst in treatment B (extender with 0% Equex STM paste and 5% DMA and freezing by dry ice). Significant difference (p 0.05). Moreover, statistical analysis suggests that no significant difference was present in semen quality among breed or individual donors (p > 0.05). These findings suggest that Equex STM paste improved the cryosurvival efficiency of boar sperm, and the favourable straw-freezing method changes between glycerol and DMA. © 2012 Blackwell Verlag GmbH.

  9. Preparation of a liquid nitrogen target for measurement of γ-ray in the 14N(n,γ)15N reaction as an intensity standard in energy region up to 11 MeV

    International Nuclear Information System (INIS)

    Hirano, M.; Obayashi, H.; Sakane, H.; Shibata, M.; Kawade, K.; Taniguchi, A.

    2001-01-01

    For determination of relative γ-ray intensities up to 11 MeV in the 14 N(n,γ) 15 N reaction, we have developed a liquid nitrogen (N 2 ) target which contain no hydrogen (H) to improve the accuracy of γ-ray intensities. The ratio of the relative uncertainties for the liquid nitrogen to that for the melamine (C 3 H 6 N 6 ) widely used was improved by a factor of 2 above 2.2 MeV and a factor of 3 - 6 below 2.2 MeV. It has been shown that the liquid nitrogen target is useful for reduction of the 2.2 MeV γ-ray from the 1 H(n,γ) 2 H reaction and improvement of statistics. (author)

  10. Effects of solid-liquid separation on recovering residual methane and nitrogen from digested dairy cow manure

    DEFF Research Database (Denmark)

    Kaparaju, Prasad Laxmi-Narasimha; Rintala, J.A.

    2008-01-01

    The feasibility of optimizing methane and nitrogen recovery of samples obtained from farm biogas digester (35 degrees C) and post-storage tank (where digested material is stored for 9-12 months) was studied by separating the materials into different fractions using 2, 1, 0.5 and 0.25 mm sieves...

  11. Wipe selection for the analysis of surface materials containing chemical warfare agent nitrogen mustard degradation products by ultra-high pressure liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Willison, Stuart A

    2012-12-28

    Degradation products arising from nitrogen mustard chemical warfare agent were deposited on common urban surfaces and determined via surface wiping, wipe extraction, and liquid chromatography–tandem mass spectrometry detection. Wipes investigated included cotton gauze, glass fiber filter, non-woven polyester fiber and filter paper, and surfaces included several porous (vinyl tile, painted drywall, wood) and mostly non-porous (laminate, galvanized steel, glass) surfaces. Wipe extracts were analyzed by ultra-high pressure liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) and compared with high performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) results. An evaluation of both techniques suggests UPLC–MS/MS provides a quick and sensitive analysis of targeted degradation products in addition to being nearly four times faster than a single HPLC run, allowing for greater throughput during a wide-spread release concerning large-scale contamination and subsequent remediation events. Based on the overall performance of all tested wipes, filter paper wipes were selected over other wipes because they did not contain interferences or native species (TEA and DEA) associated with the target analytes, resulting in high percent recoveries and low background levels during sample analysis. Other wipes, including cotton gauze, would require a pre-cleaning step due to the presence of large quantities of native species or interferences of the targeted analytes. Percent recoveries obtained from a laminate surface were 47–99% for all nitrogen mustard degradation products. The resulting detection limits achieved from wipes were 0.2 ng/cm(2) for triethanolamine (TEA), 0.03 ng/cm(2) for N-ethyldiethanolamine (EDEA), 0.1 ng/cm(2) for N-methyldiethanolamine (MDEA), and 0.1 ng/cm(2) for diethanolamine (DEA).

  12. First signal from a broadband cryogenic preamplifier cooled by circulating liquid nitrogen in a 7 T Fourier transform ion cyclotron resonance mass spectrometer.

    Science.gov (United States)

    Choi, Myoung Choul; Lee, Jeong Min; Lee, Se Gyu; Choi, Sang Hwan; Choi, Yeon Suk; Lee, Kyung Jae; Kim, SeungYong; Kim, Hyun Sik; Stahl, Stefan

    2012-12-18

    Despite the outstanding performance of Fourier transform ion cyclotron/mass spectrometry (FTICR/MS), the complexity of the cellular proteome or natural compounds presents considerable challenges. Sensitivity is a key performance parameter of a FTICR mass spectrometer. By improving this parameter, the dynamic range of the instrument can be increased to improve the detection signal of low-abundance compounds or fragment ion peaks. In order to improve sensitivity, a cryogenic detection system was developed by the KBSI (Korean Basic Science Institute) in collaboration with Stahl-Electronics (Mettenheim, Germany). A simple, efficient liquid circulation cooling system was designed and a cryogenic preamplifier implemented inside a FTICR mass spectrometer. This cooling system circulates a cryoliquid from a Dewar to the "liquid circulation unit" through a CF flange to cool a copper block and a cryopreamplifier; the cooling medium is subsequently exhausted into the air. The cryopreamplifier can be operated over a very wide temperature range, from room temperature to low temperature environments (4.2 K). First, ion signals detected by the cryopreamplifier using a circulating liquid nitrogen cooling system were observed and showed a signal-to-noise ratio (S/N) about 130% better than that obtained at room temperature.

  13. The value of a freeze

    International Nuclear Information System (INIS)

    Bethe, H.A.; Long, F.A.

    1988-01-01

    This paper reports on the rapid increase in public support for a nuclear-freeze agreement---that is, a mutual freeze on the testing, production and further deployment of nuclear weapons---which has been a remarkable political phenomenon. In less than a year, support has grown from a few volunteers collecting signatures on petitions to a congressional vote in which supporters of a freeze very nearly prevailed. This fall, eight states and the District of Columbia will vote on freeze referendums. Already Wisconsin voters have overwhelmingly voted yes in such a referendum. There are many reasons for this strong support for a freeze, including fear of nuclear war, resistance to high levels of military spending and opposition to particular military policies of the Reagan administration. But to most supporters, the chief purpose of a freeze is simple: it is to help stop an immense, continuing, dangerous and incredibly costly arms race between the two superpowers

  14. Status of GENIUS-TF-II and TF-III-The long-term stability of naked detectors in liquid nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Klapdor-Kleingrothaus, H.V. [Max-Planck-Institut fuer Kernphysik, P.O. Box 10 39 80, D-69029 Heidelberg (Germany)]. E-mail: H.Klapdor@mpi-hd.mpg.de; Krivosheina, I.V. [Max-Planck-Institut fuer Kernphysik, P.O. Box 10 39 80, D-69029 Heidelberg (Germany)

    2006-10-15

    GENIUS-TF-II is a setup of six naked high purity Ge detectors (15kg) in liquid nitrogen in Gran Sasso. It has been installed in October, 2004-after the first four naked Ge detectors had been installed on May 5, 2003 (GENIUS-TF-I). The GENIUS-Test-Facility (GENIUS-TF) is the first and up to now only setup ever testing the novel technique aiming at extreme background reduction in search for rare decays in particular underground. The goal of GENIUS-TF was to test some key operational parameters of the full GENIUS project proposal in 1997 [H.V. Klapdor-Kleingrothaus, Int. J. Mod. Phys. A 13 (1998) 3953; H.V. Klapdor-Kleingrothaus, J. Hellmig, M. Hirsch, GENIUS-Proposal, 20 November 1997; J. Hellmig and H.V. Klapdor-Kleingrothaus, Z. Phys. A 359 ( 1997) 351 and nucl-ex/9801004; H.V. Klapdor-Kleingrothaus, M. Hirsch, Z. Phys. A 359 (1997) 361; H.V. Klapdor-Kleingrothaus, J. Hellmig, M. Hirsch, J. Phys. G 24 (1998) 483; H.V. Klapdor-Kleingrothaus, CERN Courier, November 1997, pp. 16-18]. Simultaneous physical goal is to search for the annual modulation of the Dark Matter signal [H.V. Klapdor-Kleingrothaus, et al., Nucl. Instr. and Meth. A 481 (2002) 149; C. Tomei, A. Dietz, I. Krivosheina, H.V. Klapdor-Kleingrothaus, Nucl. Instr. and Meth. 508 (2003) 343]. After operation of GENIUS-TF over three years with finally six naked Ge detectors (15kg) in liquid nitrogen in Gran Sasso we realize serious problems for realization of a full-size GENIUS-like experiment: (1) Background from Rn222 diffusing into the setup, on a level far beyond the expectation. (2) Limited long-term stability of naked detectors in liquid nitrogen as result of increasing leakage current. None of the six detectors is running after three years with the nominal leakage current. Three of the six detectors do not work any more at all. The results of our three years of investigation of the long-term stability may cast doubt on the possibility to perform full GENIUS-like projects.

  15. Status of GENIUS-TF-II and TF-III-The long-term stability of naked detectors in liquid nitrogen

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.; Krivosheina, I.V.

    2006-01-01

    GENIUS-TF-II is a setup of six naked high purity Ge detectors (15kg) in liquid nitrogen in Gran Sasso. It has been installed in October, 2004-after the first four naked Ge detectors had been installed on May 5, 2003 (GENIUS-TF-I). The GENIUS-Test-Facility (GENIUS-TF) is the first and up to now only setup ever testing the novel technique aiming at extreme background reduction in search for rare decays in particular underground. The goal of GENIUS-TF was to test some key operational parameters of the full GENIUS project proposal in 1997 [H.V. Klapdor-Kleingrothaus, Int. J. Mod. Phys. A 13 (1998) 3953; H.V. Klapdor-Kleingrothaus, J. Hellmig, M. Hirsch, GENIUS-Proposal, 20 November 1997; J. Hellmig and H.V. Klapdor-Kleingrothaus, Z. Phys. A 359 ( 1997) 351 and nucl-ex/9801004; H.V. Klapdor-Kleingrothaus, M. Hirsch, Z. Phys. A 359 (1997) 361; H.V. Klapdor-Kleingrothaus, J. Hellmig, M. Hirsch, J. Phys. G 24 (1998) 483; H.V. Klapdor-Kleingrothaus, CERN Courier, November 1997, pp. 16-18]. Simultaneous physical goal is to search for the annual modulation of the Dark Matter signal [H.V. Klapdor-Kleingrothaus, et al., Nucl. Instr. and Meth. A 481 (2002) 149; C. Tomei, A. Dietz, I. Krivosheina, H.V. Klapdor-Kleingrothaus, Nucl. Instr. and Meth. 508 (2003) 343]. After operation of GENIUS-TF over three years with finally six naked Ge detectors (15kg) in liquid nitrogen in Gran Sasso we realize serious problems for realization of a full-size GENIUS-like experiment: (1) Background from Rn222 diffusing into the setup, on a level far beyond the expectation. (2) Limited long-term stability of naked detectors in liquid nitrogen as result of increasing leakage current. None of the six detectors is running after three years with the nominal leakage current. Three of the six detectors do not work any more at all. The results of our three years of investigation of the long-term stability may cast doubt on the possibility to perform full GENIUS-like projects

  16. Fabrication of 2-3 YBa2Cu3O7-x/polymer composite with Tc above liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Wilson, C.M.; Safari, A.

    1990-01-01

    This paper reports on high T c superconducting oxide woven networks fabricated and used to form YBa 2 Cu 3 O 7-x /polymer composites showing a superconducting resistive transition above liquid nitrogen temperature. The ceramic network was produced by soaking biaxially woven carbon fabric in a solution containing the stoichiometric proportions of Y, Ba, and Cu. Decomposition of the infiltrated carbon fabric and reaction of the remaining oxides resulted in a ceramic replica of the original fabric. The fired networks had a strand diameter ∼100 μm and were embedded in a polymer matrix to produce 2--3 superconducting/polymer composites with a superconducting transition of ∼89 K. Linear shrinkage of the networks was constrained during firing, although the radial shrinkage of the superconducting strands occurred freely. XRD of the networks indicated the presence of BaCO 3 , CuO, and BaCuO 2 as impurity phases

  17. Effect of martensitic phase transformation on the hardening behavior and texture evolution in a 304L stainless steel under compression at liquid nitrogen temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cakmak, Ercan [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Vogel, Sven C. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Choo, Hahn, E-mail: hchoo@utk.edu [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States)

    2014-01-01

    The martensitic phase transformation behavior and its relations with the macroscopic hardening rate and the evolutions in the crystallographic texture of the constituent phases were studied for a 304L stainless steel that exhibits the transformation induced plasticity (TRIP) phenomenon. Time-of-flight neutron diffraction was used to measure the evolutions of phase fractions and texture in terms of pole figures as a function of the applied compressive strain at the liquid nitrogen temperature (77 K). The phase transformation analyses show that the hcp-martensite phase fraction reaches a significant level of about 22 wt% at 15% applied strain and remains constant. The bcc-martensite phase fraction increases continuously with the deformation that correlates well with the macroscopic hardening behavior. Furthermore, the texture analyses show that transformation has dominant effect on the bcc-martensite texture evolution with little influence from subsequent plastic deformation at current testing conditions.

  18. Effect of martensitic phase transformation on the hardening behavior and texture evolution in a 304L stainless steel under compression at liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Cakmak, Ercan; Vogel, Sven C.; Choo, Hahn

    2014-01-01

    The martensitic phase transformation behavior and its relations with the macroscopic hardening rate and the evolutions in the crystallographic texture of the constituent phases were studied for a 304L stainless steel that exhibits the transformation induced plasticity (TRIP) phenomenon. Time-of-flight neutron diffraction was used to measure the evolutions of phase fractions and texture in terms of pole figures as a function of the applied compressive strain at the liquid nitrogen temperature (77 K). The phase transformation analyses show that the hcp-martensite phase fraction reaches a significant level of about 22 wt% at 15% applied strain and remains constant. The bcc-martensite phase fraction increases continuously with the deformation that correlates well with the macroscopic hardening behavior. Furthermore, the texture analyses show that transformation has dominant effect on the bcc-martensite texture evolution with little influence from subsequent plastic deformation at current testing conditions

  19. Spectroscopic studies of ozone in cryosolutions: FT-IR spectra of 16O3 in liquid nitrogen, oxygen, argon and krypton

    Science.gov (United States)

    Bulanin, Kirill M.; Bulanin, Michael O.; Rudakova, Aida V.; Kolomijtsova, Tatiana D.; Shchepkin, Dmitrij N.

    2018-03-01

    We have measured and interpreted the IR spectra of ozone dissolved in liquid nitrogen, oxygen, argon, and krypton in the 650-4700 cm-1 spectral region at 79-117 K. Frequency shifts, band intensities and bandshapes of 22 spectral features of soluted ozone were analyzed. The bands of the A1 symmetry have a complex contour and possess an excess intensity with respect to the value of the purely vibrational transition moment. It was found that this effect is related to the manifestation of the Coriolis interaction. The bandshape distortion manifests itself as an additional intensity from the side of the B1 symmetry band being an intensity source in the case of the Coriolis interaction.

  20. Dynamic Mechanical Properties and Fracture Surface Morphologies of Core-Shell Rubber (CSR) Toughened Epoxy at Liquid Nitrogen (Ln2) Temperatures

    Science.gov (United States)

    Wang, J.; Magee, D.; Schneider, J. A.

    2009-01-01

    The dynamic mechanical properties and fracture surface morphologies were evaluated for a commercial epoxy resin toughened with two types of core-shell rubber (CSR) toughening agents (Kane Ace(Registered TradeMark) MX130 and MX960). The impact resistance (R) was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The resulting fracture surface morphologies were examined using Scanning Electron Microscopy (SEM). Fractographic observations of the CSR toughened epoxy tested at ambient temperature, showed a fracture as characterized by slender dendrite textures with large voids. The increasing number of dendrites and decreasing size of scale-like texture with more CSR particles corresponded with increased R. As the temperature decreased to Liquid Nitrogen (LN 2), the fracture surfaces showed a fracture characterized by a rough, torn texture containing many river markings and deep furrows.

  1. In vitro evaluation of encapsulated primary rat hepatocytes pre- and post-cryopreservation at -80°C and in liquid nitrogen.

    Science.gov (United States)

    Durkut, Serap; Elçin, A Eser; Elçin, Y Murat

    2015-02-01

    Encapsulation techniques have the potential to protect hepatocytes from cryoinjury. In this study, we comparatively evaluated the viability and metabolic function of primary rat hepatocytes encapsulated in calcium alginate microbeads, in chitosan tripolyphosphate beads, and in three-layered alginate-chitosan-alginate (ACA) microcapsules, before and after cryopreservation at -80°C and in liquid nitrogen (LN2) for 1 and 3 months. Findings demonstrated that LN2 was atop of -80°C in regard to preservation of viability (> 90%) and hepatic functions. LN2-cryopreserved hepatocytes encapsulated in ACA microcapsules retained metabolic function post-thawing, with > 90% of the albumin, total protein and urea syntheses activities, and > 80% of oxidative function.

  2. Human cadaver multipotent stromal/stem cells isolated from arteries stored in liquid nitrogen for 5 years

    Science.gov (United States)

    2014-01-01

    Introduction Regenerative medicine challenges researchers to find noncontroversial, safe and abundant stem cell sources. In this context, harvesting from asystolic donors could represent an innovative and unlimited reservoir of different stem cells. In this study, cadaveric vascular tissues were established as an alternative source of human cadaver mesenchymal stromal/stem cells (hC-MSCs). We reported the successful cell isolation from postmortem arterial segments stored in a tissue-banking facility for at least 5 years. Methods After thawing, hC-MSCs were isolated with a high efficiency (12 × 106) and characterized with flow cytometry, immunofluorescence, molecular and ultrastructural approaches. Results In early passages, hC-MSCs were clonogenic, highly proliferative and expressed mesenchymal (CD44, CD73, CD90, CD105, HLA-G), stemness (Stro-1, Oct-4, Notch-1), pericyte (CD146, PDGFR-β, NG2) and neuronal (Nestin) markers; hematopoietic and vascular markers were negative. These cells had colony and spheroid-forming abilities, multipotency for their potential to differentiate in multiple mesengenic lineages and immunosuppressive activity to counteract proliferation of phytohemagglutinin-stimulated blood mononuclear cells. Conclusions The efficient procurement of stem cells from cadaveric sources, as postmortem vascular tissues, demonstrates that such cells can survive to prolonged ischemic insult, anoxia, freezing and dehydration injuries, thus paving the way for a scientific revolution where cadaver stromal/stem cells could effectively treat patients demanding cell therapies. PMID:24429026

  3. A biobased nitrogen-containing lubricant additive synthesized from expoxidized methyl oleate using an ionic liquid catalyst

    Science.gov (United States)

    Utilizing an epoxidation route, an aniline adduct was synthesized from methyl oleate. An ionic liquid, 1-methylimidazolium tetrafluoroborate, was found to be the key for this catalytic system. The reaction produces a product with the aniline incorporated into the fatty chain, at the 9(10) position, ...

  4. Resistive sensing of gaseous nitrogen dioxide using a dispersion of single-walled carbon nanotubes in an ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Prabhash [Solidstate Electronics Research Laboratory (SERL), Faculty of Engineering and Technology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025 (India); Department of Nanoengineering, Samara State Aerospace University, 443086 Samara (Russian Federation); Pavelyev, V.S. [Department of Nanoengineering, Samara State Aerospace University, 443086 Samara (Russian Federation); Patel, Rajan [Center for Interdisciplinary Research in Basic Sciences (CIRBSc), Jamia Millia Islamia, Jamia Nagar, New Delhi 110025 (India); Islam, S.S., E-mail: sislam@jmi.ac.in [Solidstate Electronics Research Laboratory (SERL), Faculty of Engineering and Technology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025 (India)

    2016-06-15

    Graphical abstract: Ionic liquid ([C6-mim]PF6) used as dispersant agent for SWCNTs: An investigations were carried out to find the structural quality and surface modification for sensor application. - Highlights: • An effective technique based on Ionic liquids (IL) and their use as a dispersant. • Electron microscopy and spectroscopy for structure characterization. • Covalent linkage of ILs with SWNTs and dispersion of SWCNTs. • The IL-wrapped sensing film, capable for detecting trace levels of gas. - Abstract: Single-walled carbon nanotubes (SWCNTs) were dispersed in an imidazolium-based ionic liquid (IL) and investigated in terms of structural quality, surface functionalization and inter-CNT force. Analysis by field emission electron microscopy and transmission electron microscopy shows the IL layer to coat the SWNTs, and FTIR and Raman spectroscopy confirm strong binding of the ILs to the SWNTs. Two kinds of resistive sensors were fabricated, one by drop casting of IL-wrapped SWCNTs, the other by conventional dispersion of SWCNTs. Good response and recovery to NO{sub 2} is achieved with the IL-wrapped SWCNTs material upon UV-light exposure, which is needed because decrease the desorption energy barrier to increase the gas molecule desorption. NO{sub 2} can be detected in the 1–20 ppm concentration range. The sensor is not interfered by humidity due to the hydrophobic tail of PF6 (ionic liquid) that makes our sensor highly resistant to moisture.

  5. Freezing-induced self-assembly of amphiphilic molecules

    Science.gov (United States)

    Albouy, P. A.; Deville, S.; Fulkar, A.; Hakouk, K.; Impéror-Clerc, M.; Klotz, M.; Liu, Q.; Marcellini, M.; Perez, J.

    The self-assembly of amphiphilic molecules usually takes place in a liquid phase, near room temperature. Here, using small angle X-ray scattering (SAXS) experiments performed in real time, we show that freezing of aqueous solutions of copolymer amphiphilic molecules can induce self-assembly below 0{\\deg}C.

  6. Capital stock management during a recession that freezes credit markets

    NARCIS (Netherlands)

    Caulkins, J.P.; Feichtinger, G.; Grass, D.; Hartl, R.F.; Kort, Peter; Seidl, A.

    This paper considers the problem of how to price a conspicuous product while maintaining liquidity during a recession which both reduces demand and freezes credit markets. Reducing price would help maintain cash flow, but low prices can erode brand image and, hence, long-term sales. The paper

  7. Novel ultra-cryo milling and co-grinding technique in liquid nitrogen to produce dissolution-enhanced nanoparticles for poorly water-soluble drugs.

    Science.gov (United States)

    Sugimoto, Shohei; Niwa, Toshiyuki; Nakanishi, Yasuo; Danjo, Kazumi

    2012-01-01

    A novel ultra-cryo milling micronization technique for pharmaceutical powders using liquid nitrogen (LN2 milling) was used to grind phenytoin, a poorly water-soluble drug, to improve its dissolution rate. LN2 milling produced particles that were much finer and more uniform in size and shape than particles produced by jet milling. However, the dissolution rate of LN2-milled phenytoin was the same as that of unground phenytoin due to agglomeration of the submicron particles. To overcome this, phenytoin was co-ground with polyvinylpyrrolidone (PVP). The dissolution rate of co-ground phenytoin was much higher than that of original phenytoin, single-ground phenytoin, a physical mixture of phenytoin and PVP, or jet-milled phenytoin. X-Ray diffraction showed that the crystalline state of mixtures co-ground by LN2 milling remained unchanged. The equivalent improvement in dissolution, whether phenytoin was co-ground or separately ground and then mixed with PVP, suggested that even when co-ground, the grinding of PVP and phenytoin occurs essentially independently. Mixing original PVP with ground phenytoin provided a slight improvement in dissolution, indicating that the particle size of PVP is important for improving dissolution. When mixed with ground phenytoin, PVP ground by LN2 milling aided the wettability and dispersion of phenytoin, enhancing utilization of the large surface area of ground phenytoin. Co-grinding phenytoin with other excipients such as Eudragit L100, hypromellose, hypromellose acetate-succinate, microcrystalline cellulose, hydroxypropylcellulose and carboxymethyl cellulose also improved the dissolution profile, indicating an ultra-cryo milling and co-grinding technique in liquid nitrogen has a broad applicability of the dissolution enhancement of phenytoin.

  8. Green synthesis of sulfur- and nitrogen-co-doped carbon dots using ionic liquid as a precursor and their application in Hg2+ detection

    International Nuclear Information System (INIS)

    Zhuo, Kelei; Sun, Dong; Xu, Panpan; Wang, Chunfeng; Cao, Yingying; Chen, Yujuan; Liu, Jianming

    2017-01-01

    A facile and environment-friendly method was developed to synthesize sulfur- and nitrogen-co-doped carbon dots (S/N-CDs) via one step hydrothermal treatment of 1-butyl-3-methylimidazolium 2-amino-3-mercaptopropionic acid salt ionic liquid and polyethylene glycol. It was found that the prepared S/N-CDs were nearly spherical nanoparticles. And then the size of the as-prepared S/N-CDs became smaller with the extension of reaction time, the amorphous carbon was gradually transformed into a crystal structure of carbon dots and a higher reaction temperature favors the formation of carbon dots with higher quantum yields. It was also found that sulfur atoms in the S/N-CDs change the surface structures of CDs to some extent. Higher quantum yield of the S/N-CDs should attribute to the synergistic effect of co-doped nitrogen and sulfur atoms. The S/N-CDs display stable and strong florescence, high water solubility, excitation-dependent emission behavior, particularly the up-conversion photoluminescence performance. Furthermore, the as-prepared S/N-CDs were used as a sensitive probe for Hg 2+ detection in aqueous solutions, with high selectivity and sensitivity. Particularly, the detection limit could reach as low as 0.6 nM (S/N=3).

  9. Double Soft-Template Synthesis of Nitrogen/Sulfur-Codoped Hierarchically Porous Carbon Materials Derived from Protic Ionic Liquid for Supercapacitor.

    Science.gov (United States)

    Sun, Li; Zhou, Hua; Li, Li; Yao, Ying; Qu, Haonan; Zhang, Chengli; Liu, Shanhu; Zhou, Yanmei

    2017-08-09

    Heteroatom-doped hierarchical porous carbon materials derived from the potential precursors and prepared by a facile, effective, and low-pollution strategy have recently been particularly concerned in different research fields. In this study, the interconnected nitrogen/sulfur-codoped hierarchically porous carbon materials have been successfully obtained via one-step carbonization of the self-assembly of [Phne][HSO 4 ] (a protic ionic liquid originated from dilute sulfuric acid and phenothiazine by a straightforward acid-base neutralization) and the double soft-template of OP-10 and F-127. During carbonization process, OP-10 as macroporous template and F-127 as mesoporous template were removed, while [Phne][HSO 4 ] not only could be used as carbon, nitrogen, and sulfur source, but also as a pore forming agent to create micropores. The acquired carbon materials for supercapacitor not only hold a large specific capacitance of 302 F g -1 even at 1.0 A g -1 , but also fine rate property with 169 F g -1 at 10 A g -1 and excellent capacitance retention of nearly 100% over 5000 circulations in 6 M KOH electrolyte. Furthermore, carbon materials also present eximious rate performance with 70% in 1 M Na 2 SO 4 electrolyte.

  10. Highly selective separation of carbon dioxide from nitrogen and methane by nitrile/glycol-difunctionalized ionic liquids in supported ionic liquid membranes (SILMs).

    Science.gov (United States)

    Hojniak, Sandra D; Silverwood, Ian P; Khan, Asim Laeeq; Vankelecom, Ivo F J; Dehaen, Wim; Kazarian, Sergei G; Binnemans, Koen

    2014-07-03

    Novel difunctionalized ionic liquids (ILs) containing a triethylene glycol monomethyl ether chain and a nitrile group on a pyrrolidinium or imidazolium cation have been synthesized and incorporated into supported ionic liquid membranes (SILMs). These ILs exhibit ca. 2.3 times higher CO2/N2 and CO2/CH4 gas separation selectivities than analogous ILs functionalized only with a glycol chain. Although the glycol moiety ensures room temperature liquidity of the pyrrolidinium and imidazolium ILs, the two classes of ILs benefit from the presence of a nitrile group in different ways. The difunctionalized pyrrolidinium ILs exhibit an increase in CO2 permeance, whereas the permeances of the contaminant gases rise negligibly, resulting in high gas separation selectivities. In the imidazolium ILs, the presence of a nitrile group does not always increase the CO2 permeance nor does it increase the CO2 solubility, as showed in situ by the ATR-FTIR spectroscopic method. High selectivity of these ILs is caused by the considerably reduced permeances of N2 and CH4, most likely due to the ability of the -CN group to reject the nonpolar contaminant gases. Apart from the CO2 solubility, IL-CO2 interactions and IL swelling were studied with the in situ ATR-FTIR spectroscopy. Different strengths of the IL-CO2 interactions were found to be the major difference between the two classes of ILs. The difunctionalized ILs interacted stronger with CO2 than the glycol-functionalized ILs, as manifested in the smaller bandwidths of the bending mode band of CO2 for the latter.

  11. Freeze Protection in Gas Holders

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Duursma, Gail

    In cold weather, the water seals of gasholders need protection from freez- ing to avoid compromising the seal. These holders have a large reservoir of “tank water” at the base which is below ground. At present freeze- protection is achieved by external heating of the seal water which...

  12. Low Temperature Selective Catalytic Reduction of Nitrogen Oxides in Production of Nitric Acid by the Use of Liquid

    Directory of Open Access Journals (Sweden)

    Kabljanac, Ž.

    2011-11-01

    Full Text Available This paper presents the application of low-temperature selective catalytic reduction of nitrous oxides in the tail gas of the dual-pressure process of nitric acid production. The process of selective catalytic reduction is carried out using the TiO2/WO3 heterogeneous catalyst applied on a ceramic honeycomb structure with a high geometric surface area per volume. The process design parameters for nitric acid production by the dual-pressure procedure in a capacity range from 75 to 100 % in comparison with designed capacity for one production line is shown in the Table 1. Shown is the effectiveness of selective catalytic reduction in the temperature range of the tail gas from 180 to 230 °C with direct application of liquid ammonia, without prior evaporation to gaseous state. The results of inlet and outlet concentrations of nitrous oxides in the tail gas of the nitric acid production process are shown in Figures 1 and 2. Figure 3 shows the temperature dependence of the selective catalytic reduction of nitrous oxides expressed as NO2in the tail gas of nitric acid production with the application of a constant mass flow of liquid ammonia of 13,0 kg h-1 and average inlet mass concentration of the nitrous oxides expressed as NO2of 800,0 mgm-3 during 100 % production capacity. The specially designed liquid-ammonia direct-dosing system along with the effective homogenization of the tail gas resulted in emission levels of nitrous oxides expressed as NO2 in tail gas ranging from 100,0 to 185,0 mg m-3. The applied low-temperature selective catalytic reduction of the nitrous oxides in the tail gases by direct use of liquid ammonia is shown in Figure 4. It is shown that low-temperature selective catalytic reduction with direct application of liquid ammonia opens a new opportunity in the reduction of nitrous oxide emissions during nitric acid production without the risk of dangerous ammonium nitrate occurring in the process of subsequent energy utilization of

  13. ASRDI oxygen technology survey. Volume 5: Density and liquid level measurement instrumentation for the cryogenic fluids oxygen, hydrogen, and nitrogen

    Science.gov (United States)

    Roder, H. M.

    1974-01-01

    Information is presented on instrumentation for density measurement, liquid level measurement, quantity gauging, and phase measurement. Coverage of existing information directly concerned with oxygen was given primary emphasis. A description of the physical principle of measurement for each instrumentation type is included. The basic materials of construction are listed if available from the source document for each instrument discussed. Cleaning requirements, procedures, and verification techniques are included.

  14. Method of reprocessing nuclear fuel using vacuum freeze-drying method

    International Nuclear Information System (INIS)

    Otsuka, Katsuyuki; Kondo, Isao.

    1989-01-01

    Solutions of plutonium nitrate and uranyl nitrate, spent solvents and liquid wastes separated by the treatment in the solvent extractant steps in the wet processing steps of re-processing plants or fuel fabrication plants are processed by means of freeze-drying under vacuum. Then, the solutions of plutonium nitrate and uranyl nitrate are separated into nitrates and liquid condensates and the spent solvents are freeze-dried. Thus, they are separated into tri-n-butyl phosphate, diester, monoester and n-dodecane and the liquid wastes are processed by means of freeze-drying and separated into liquids and residues. In this way, since sodium carbonate, etc. are not used, the amount of resultant liquid wastes is reduced and sodium is not contained in liquid wastes sent to an asphalt solidification step and a vitrification step, the processing steps can be simplified. (S.T.)

  15. Fertility disturbances of dimethylacetamide and glycerol in rooster sperm diluents: Discrimination among effects produced pre and post freezing-thawing process.

    Science.gov (United States)

    Abouelezz, F M K; Sayed, M A M; Santiago-Moreno, J

    2017-09-01

    With avian sperm cryopreservation protocols, the most widely used cryoprotectants (CPAs) are the glycerol (GLY; in gradual freezing: in-straw freezing method), and the dimethylacetamide (DMA; in pellets by plunging into liquid nitrogen: in-pellet rapid freezing method). Use of both methods results in a small portion of thawed live sperm with lesser fertilizing ability compared with the semen samples immediately after collection. This study was conducted to assess the pre-freezing damage occurring to the sperm due to the interaction with the cryoprotectants (CPAs) GLY (8%) and DMA (5%), as well as the post-freezing damage resulting from both freezing methods Data for each treatment, in fresh and frozen-thawed samples, were compared for sperm motility, fertilizing capacity and sperm-egg penetration holes/germinal disc (SP holes/GD). Hens (n=50) were artificially inseminated (10 hens/treatment) six times with 3day intervals between inseminations. The treatment of fresh sperm with DMA led to a reduction (P<0.05) in the count of SP holes/GD (21.4) and the fertility rate (66.7%). The addition and elimination of GLY in fresh samples resulted in a lesser (P<0.05) number of SP holes/GD (11.8) and the fertility rate (i.e., 50.0%). The number of SP-holes/GD was least in frozen-thawed samples using both DMA and GLY (14.2 and 9.2, respectively). The fertility rate when using semen frozen with DMA in- pellets was greater (P<0.05) than with use of semen that had been frozen using GLY in straws (46.4% compared with 31.3%). The reduction in fertility compared with the control when semen was cryopreserved using GLY was 64.1%; the GLY addition and elimination was responsible for two thirds of this reduction. The reduction in fertility when using semen cryopreserved with DMA was 46.7%; half of the reduction was attributed to the treatment with DMA. In conclusion, the mechanical damage attributed to the process for reducing GLY concentrations was more harmful to sperm fertilizing

  16. Production and correlation of reactive oxygen and nitrogen species in gas- and liquid-phase generated by helium plasma jets under different pulse widths

    Science.gov (United States)

    Liu, Zhijie; Zhou, Chunxi; Liu, Dingxin; Xu, Dehui; Xia, Wenjie; Cui, Qingjie; Wang, Bingchuan; Kong, Michael G.

    2018-01-01

    In this paper, we present the effects of the pulse width (PW) on the plasma jet's discharge characteristics, particularly focusing on the production and correlation of the reactive oxygen and nitrogen species (RONS) in gas- and liquid-phase. It is found that the length of plasma jet plume first increases before the PW of 10 μs, then gradually decreases and finally almost remains unchanged beyond 150 μs. The plasma bullet disappears after the falling edge of the voltage pulse at low PW, while it terminates far ahead of the falling edge of voltage pulse at high PW. This is mainly attributed to accumulation of space charges that lead to weakening of the reduced electric field with an increase of PW from low to high. More important, it is found that the excited reactive species, the positive and negative ions from plasma jet, and the concentrations of NO2- and NO3- in deionized water exposed to plasma jet also display the first increasing and then decreasing change trend with increase of PW, while the concentration of H2O2 in water almost displays the linearly increasing trend. This mainly results from the formation of the H3O+ and HO2-, as well as their ion water clusters that can produce more OH radicals to be converted into H2O2, while the NO2- and NO3- in gas phase can transport into water and exist most stably in water. The water cluster formation at gas-liquid interface is an important key process that can affect the chemical nature and dose of aqueous RONS in water; this is beneficial for understanding how the RONS are formed in liquid-phase.

  17. Cathepsin activities and membrane integrity of zebrafish (Danio rerio) oocytes after freezing to -196 degrees C using controlled slow cooling.

    Science.gov (United States)

    Zhang, T; Rawson, D M; Tosti, L; Carnevali, O

    2008-04-01

    This study investigated enzymatic activity of cathepsins and the membrane integrity of zebrafish (Danio rerio) oocytes after freezing to -196 degrees C using controlled slow cooling. Stage III oocytes (>0.5mm), obtained through dissection of anaesthetised female fish and desegregation of ovarian cumulus, were exposed to 2M methanol or 2M DMSO (both prepared in Hank's medium) for 30min at 22 degrees C before being loaded into 0.5ml plastic straws and placed into a programmable cooler. After controlled slow freezing, samples were plunged into liquid nitrogen (LN) and held for at least 10min, and thawed by immersing straws into a 27 degrees C water bath for 10s. Thawed oocytes were washed twice in Hank's medium. Cathepsin activity and membrane integrity of oocytes were assessed both after cryoprotectant treatment at 22 degrees C and after freezing in LN. Cathepsin B and L colorimetric analyses were performed using substrates Z-Arg-ArgNNap and Z-Phe-Arg-4MbetaNA-HCl, respectively, and 2-naphthylamine and 4-methoxy-2-naphthylamine were used as standards. Cathepsin D activity was performed by analysing the level of hydrolytic action on haemoglobin. Oocytes membrane integrity was assessed using 0.2% Trypan blue staining for 5min. Analysis of cathepsin activities showed that whilst the activity of cathepsin B and D was not affected by 2M DMSO treatment, their activity was lowered when treated with 2M methanol. Following freezing to -196 degrees C, the activity of all cathepsins (B, D and L) was significantly decreased in both 2M DMSO and 2M methanol. Trypan blue staining showed that 63.0+/-11.3% and 72.7+/-5.2% oocytes membrane stayed intact after DMSO and methanol treatment for 30min at 22 degrees C, respectively, whilst 14.9+/-2.6% and 1.4+/-0.8% stayed intact after freezing in DMSO and methanol to -196 degrees C. The results indicate that cryoprotectant treatment and freezing modified the activities of lysosomal enzymes involved in oocyte maturation and yolk

  18. A novel analytical method of 1-(3-trifluoromethylphenyl piperazine and 1-(3-chlorophenyl piperazine in fluids of drug addicts using liquid-liquid extraction-gas chromatographic/nitrogen-phosphorous detection

    Directory of Open Access Journals (Sweden)

    Jing Chang

    2017-01-01

    Full Text Available In accordance with the research specifications and guidelines in China, we developed a novel experimental method to detect new piperazine-type drugs, such as 1-(3-trifluoromethylphenyl piperazine and 1-(3-chlorophenyl piperazine. In this study, a new pretreatment method and gas chromatography (GC/nitrogen-phosphorus detector detection technique were used to characterize these two kinds of drugs in urine and blood samples. For the purpose of isolation of these trace drugs from the samples, liquid-liquid extraction/solid-phase extraction was modified and validated for this specific study. The pretreatment method presented in this paper has many advantages, such as high recovery rate, high extraction efficiency, high detection sensitivity, low limit of detection, and simple operation. The GC/NPD instrument is popular in most laboratories because it can meet the routine requirements of forensic science. All these aspects make this combination of sample pretreatment and GC/NPD technique the most suitable choice for drug detection in biological samples.

  19. Separation of Contaminants in The Freeze/Thaw Process

    Directory of Open Access Journals (Sweden)

    Szpaczyński Janusz A.

    2017-06-01

    Full Text Available These studies examined the concept of concentration and purification of several types of wastewater by freezing and thawing. The experiments demonstrated that freezing of contaminated liquid contributed to concentration of contaminants in solution as well as significant concentration and agglomeration of solid particles. A high degree of purification was achieved for many parameters. The results of comparative laboratory tests for single and multiple freezing are presented. It was found that there was a higher degree of concentration of pollutants in wastewater frozen as man-made snow than in bulk ice. Furthermore, the hypothesis that long storage time of liquid as snow and sufficient temperature gradient metamorphism allows for high efficiency of the concentration process was confirmed. It was reported that the first 30% of the melted liquid volume contained over 90% of all impurities. It gives great opportunities to use this method to concentrate pollutants. The results revealed that the application of this process in full scale is possible. Significant agglomeration of solid particles was also noted. Tests with clay slurry showed that repeated freezing and thawing processes significantly improve the characteristics of slurry for sedimentation and filtration.

  20. Momentum anisotropy at freeze out

    International Nuclear Information System (INIS)

    Feld, S.; Borghini, N.; Lang, C.

    2017-01-01

    The transition from a hydrodynamical modeling to a particle-based approach is a crucial element of the description of high-energy heavy-ion collisions. Assuming this “freeze out” happens instantaneously at each point of the expanding medium, we show that the local phase-space distribution of the emitted particles is asymmetric in momentum space. This suggests the use of anisotropic hydrodynamics for the last stages of the fluid evolution. We discuss how observables depend on the amount of momentum-space anisotropy at freeze out and how smaller or larger anisotropies allow for different values of the freeze-out temperature. (paper)

  1. Anhydrobiosis and Freezing-Tolerance

    DEFF Research Database (Denmark)

    McGill, Lorraine; Shannon, Adam; Pisani, Davide

    2015-01-01

    Anhydrobiotic animals can survive the loss of both free and bound water from their cells. While in this state they are also resistant to freezing. This physiology adapts anhydrobiotes to harsh environments and it aids their dispersal. Panagrolaimus davidi, a bacterial feeding anhydrobiotic nematode...... Panagrolaimus strains from tropical, temperate, continental and polar habitats and we analysed their phylogenetic relationships. We found that several other Panagrolaimus isolates can also survive freezing when fully hydrated and that tissue extracts from these freezing-tolerant nematodes can inhibit the growth...

  2. The Effect of Percentage of Nitrogen in Plasma Gas on Nitrogen ...

    African Journals Online (AJOL)

    Increase in nitrogen percent in the plasma gas results in increased content of dissociated nitrogen and molecular nitrogen possessing excess vibrational energy and therefore the increased solution of nitrogen in the liquid iron. It would appear that above 35% nitrogen in the plasma gas, frequency of collisions of species in ...

  3. Removal of carbon, nitrogen and phosphorus from the separated liquid phase of hog manure by the multi-zone BioCAST technology.

    Science.gov (United States)

    Yerushalmi, Laleh; Alimahmoodi, Mahmood; Afroze, Niema; Godbout, Stephane; Mulligan, Catherine N

    2013-06-15

    The removal of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) at concentrations of 960 ± 38 to 2400 ± 96 mg/L, 143 ± 9 to 235 ± 15 mg/L and 25 ± 2 to 57 ± 4 mg/L, respectively, from the separated liquid phase of hog manure by the multi-zone BioCAST technology is discussed. Despite the inhibitory effect of hog waste toward microbial activities, removal efficiencies up to 89.2% for COD, 69.2% for TN and 47.6% for TP were obtained during 185 d of continuous operation. The free ammonia inhibition was postulated to be responsible for the steady reduction of COD and TP removal with the increase of TN/TP ratio from 3.6 to 5.8. On the contrary, the increase of COD/TN ratio from 4.8 to 14.1 improved the removal of all contaminants. Nitrogen removal did not show any dependence on the COD/TP ratio, despite the steady increase of COD and TP removal with this ratio in the range of 19.3-50.6. The removal efficiencies of organic and inorganic contaminants increased progressively owing to the adaptation of microbial biomass, resulting from the presence of suspended biomass in the mixed liquor that circulated continuously between the three zones of aerobic, microaerophilic and anoxic, as well as the attached biomass immobilized inside the aerobic zone. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Transport of liquid state nitrogen through long length service lines during thermal/vacuum testing. [in a Nimbus 6 satellite

    Science.gov (United States)

    Florio, F. A.

    1975-01-01

    Physical and analytical aspects associated with the transport are presented. Included is a definition of the problems and difficulties imposed by the servicing of a typical solid cryogen system, as well as a discussion of the transport requirements and of the rationale which governed their solution. A successful detailed transport configuration is defined, and the application of established mathematics to the design approach is demonstrated. The significance of head pressure, pressure drop, line friction, heat leak, Reynolds number, and the fundamental equilibrium demands of pressure and temperature were examined as they relate to the achievement of liquid state flow. Performance predictions were made for the transport system, and several analytical quantities are tabulated. These data are analyzed and compared with measured and calculated results obtained while actually servicing a solid cryogen system during thermal/vacuum testing.

  5. Liquid nitrogen-assisted synthesis of fluorescent carbon dots from Blueberry and their performance in Fe3+ detection

    Science.gov (United States)

    Aslandaş, Ayşe Merve; Balcı, Neslihan; Arık, Mustafa; Şakiroğlu, Halis; Onganer, Yavuz; Meral, Kadem

    2015-11-01

    Fluorescent carbon dots (C-dots) were synthesized by a facile method containing liquid N2 treatment and centrifuge processes. The photophysical properties of the C-dots in an aqueous solution were examined at various conditions such as concentration, temperature, pH and excitation wavelength by using UV-vis absorption, fluorescence and time-resolved fluorescence spectroscopies. The C-dots emitted a broad fluorescence between approximately 350-550 nm and their fluorescence was tuned by changing excitation wavelength. The as-prepared C-dots were applied to Fe3+ detection from aqueous solution. Spectroscopic data revealed that the as-prepared C-dots were used to detect Fe3+ in the range of 12.5 μM to 100 μM as a fluorescence sensor.

  6. Developments in nitrogen generators

    International Nuclear Information System (INIS)

    Ayres, C.L.; Abrardo, J.M.; Himmelberger, L.M.

    1984-01-01

    Three process cycles for the production of nitrogen by the cryogenic separation of air are described in detail. These cycles are: (1) a waste expander cycle; (2) an air expander cycle; and (3) a cycle for producing large quantities of gaseous nitrogen. Each cycle has distinct advantages for various production ranges and delivery pressures. A dicussion of key parameters that must be considered when selecting a cycle to meet specific product requirements is presented. The importance of high plant reliability and a dependable liquid nitrogen back up system is also presented. Lastly, a discussion of plant safety dealing with the hazards of nitrogen, enriched oxygen, and hydrocarbons present in the air is reviewed

  7. Cryochemistry: freezing effect on peptide coupling in different organic solutions.

    Science.gov (United States)

    Vajda, T; Szókán, G; Hollósi, M

    1998-06-01

    The freezing effect on peptide coupling in organic solutions of different polarity has been investigated and compared with the results obtained in liquid phase. The model reaction of DCC-activated coupling of Boc-Ala-Phe-OH with H-Ala-OBu(t) has been carried out in dioxane, dimethylsulfoxide and formamide, as well as in mixtures (90%/10%, v/v) of dioxane with acetonitrile, dimethylformamide, dimethylsulfoxide and formamide. The reactions have been traced and evaluated by RP-HPLC analysis. Freezing the reaction mixture resulted in all cases in a significant suppression of the N-dipeptidylurea side-product formation together with a slight decrease of tripeptide epimerization. The coupling yields and the side effects depended on the solvent, with the dioxane and dioxane/acetonitrile mixture produced the best results. The role of freezing and solvent in the improved results is discussed.

  8. Positron probe to study the freezing of nanodroplets

    International Nuclear Information System (INIS)

    Pujari, P.K.

    2010-01-01

    Positron is an excellent in situ probe to study the phase behavior of fluid confined in nanodomains. The study of phase behavior (freezing/melting) of nano confined fluid or nanodroplet has great relevance in fundamental research as well as applications in nano-tribology, nanofabrication, membrane separation, interfacial adhesion and lubrication. It is seen that the properties of freezing/melting of nanodroplets are different from their bulk behavior due to the combined effects of finite size, surface force, surface anisotropy, pore disorder and reduced dimensionality. We have used positron annihilation spectroscopy (PAS) to study the freezing/melting behavior of different organic liquids like benzene, ethylene glycol and isopropanol confined in nanopores of ZSM5 zeolite and silica gel

  9. FREEZE DRYING PROCESS: A REVIEW

    OpenAIRE

    Soham Shukla

    2011-01-01

    Among the various methods of drying, this article has mentioned only one most important method, “Freeze drying”. This method is mainly used for the drying of thermo labile materials. This method works on the principle of sublimation. This method is divided into 3 steps for its better understanding; these are Freezing, Primary drying, and secondary drying. There are many advantages and disadvantages of this method, but still this is the most useful drying method nowadays.

  10. Accelerated redox reaction between chromate and phenolic pollutants during freezing

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Jinjung; Kim, Jaesung [Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252 (Korea, Republic of); Vetráková, Ľubica [Department of Chemistry and Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno (Czech Republic); Seo, Jiwon [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919 (Korea, Republic of); Heger, Dominik [Department of Chemistry and Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno (Czech Republic); Lee, Changha [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919 (Korea, Republic of); Yoon, Ho-Il [Korea Polar Research Institute (KOPRI), Incheon 21990 (Korea, Republic of); Kim, Kitae, E-mail: ktkim@kopri.re.kr [Korea Polar Research Institute (KOPRI), Incheon 21990 (Korea, Republic of); Kim, Jungwon, E-mail: jwk@hallym.ac.kr [Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252 (Korea, Republic of)

    2017-05-05

    Highlights: • Redox conversion of 4-CP/Cr(VI) was significantly accelerated during freezing. • Accelerated redox conversion in ice is ascribed to the freeze concentration effect. • 4-CP, Cr(VI), and protons are concentrated in the liquid brine by freezing. • Redox conversions of various phenolic pollutants/Cr(VI) were significant in ice. • Freezing-accelerated redox conversion was observed in real polluted water. - Abstract: The redox reaction between 4-chlorophenol (4-CP) and chromate (Cr(VI)) (i.e., the simultaneous oxidation of 4-CP by Cr(VI) and reduction of Cr(VI) by 4-CP) in ice (i.e., at −20 °C) was compared with the corresponding reaction in water (i.e., at 25 °C). The redox conversion of 4-CP/Cr(VI), which was negligible in water, was significantly accelerated in ice. This accelerated redox conversion of 4-CP/Cr(VI) in ice is ascribed to the freeze concentration effect occurring during freezing, which excludes solutes (i.e., 4-CP and Cr(VI)) and protons from the ice crystals and subsequently concentrates them in the liquid brine. The concentrations of Cr(VI) and protons in the liquid brine were confirmed by measuring the optical image and the UV–vis absorption spectra of cresol red (CR) as a pH indicator of frozen solution. The redox conversion of 4-CP/Cr(VI) was observed in water when the concentrations of 4-CP/protons or Cr(VI)/protons increased by 100/1000-fold. These results corroborate the freeze concentration effect as the reason for the accelerated redox conversion of 4-CP/Cr(VI) in ice. The redox conversion of various phenolic pollutants/Cr(VI) and 4-CP/Cr(VI) in real wastewater was successfully achieved in ice, which verifies the environmental relevance and importance of freezing-accelerated redox conversion of phenolic pollutants/Cr(VI) in cold regions.

  11. Accelerated redox reaction between chromate and phenolic pollutants during freezing

    International Nuclear Information System (INIS)

    Ju, Jinjung; Kim, Jaesung; Vetráková, Ľubica; Seo, Jiwon; Heger, Dominik; Lee, Changha; Yoon, Ho-Il; Kim, Kitae; Kim, Jungwon

    2017-01-01

    Highlights: • Redox conversion of 4-CP/Cr(VI) was significantly accelerated during freezing. • Accelerated redox conversion in ice is ascribed to the freeze concentration effect. • 4-CP, Cr(VI), and protons are concentrated in the liquid brine by freezing. • Redox conversions of various phenolic pollutants/Cr(VI) were significant in ice. • Freezing-accelerated redox conversion was observed in real polluted water. - Abstract: The redox reaction between 4-chlorophenol (4-CP) and chromate (Cr(VI)) (i.e., the simultaneous oxidation of 4-CP by Cr(VI) and reduction of Cr(VI) by 4-CP) in ice (i.e., at −20 °C) was compared with the corresponding reaction in water (i.e., at 25 °C). The redox conversion of 4-CP/Cr(VI), which was negligible in water, was significantly accelerated in ice. This accelerated redox conversion of 4-CP/Cr(VI) in ice is ascribed to the freeze concentration effect occurring during freezing, which excludes solutes (i.e., 4-CP and Cr(VI)) and protons from the ice crystals and subsequently concentrates them in the liquid brine. The concentrations of Cr(VI) and protons in the liquid brine were confirmed by measuring the optical image and the UV–vis absorption spectra of cresol red (CR) as a pH indicator of frozen solution. The redox conversion of 4-CP/Cr(VI) was observed in water when the concentrations of 4-CP/protons or Cr(VI)/protons increased by 100/1000-fold. These results corroborate the freeze concentration effect as the reason for the accelerated redox conversion of 4-CP/Cr(VI) in ice. The redox conversion of various phenolic pollutants/Cr(VI) and 4-CP/Cr(VI) in real wastewater was successfully achieved in ice, which verifies the environmental relevance and importance of freezing-accelerated redox conversion of phenolic pollutants/Cr(VI) in cold regions.

  12. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    International Nuclear Information System (INIS)

    Xu Fuqing; Shi Jian; Lv Wen; Yu Zhongtang; Li Yebo

    2013-01-01

    Highlights: ► Compared methane production of solid AD inoculated with different effluents. ► Food waste effluent (FWE) had the largest population of acetoclastic methanogens. ► Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. ► Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. ► Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS feed , while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS feed . The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO 3 /kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

  13. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Xu Fuqing; Shi Jian [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States); Lv Wen; Yu Zhongtang [Department of Animal Sciences, Ohio State University, Columbus, OH 43210 (United States); Li Yebo, E-mail: li.851@osu.edu [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

  14. Direct enantioseparation of nitrogen-heterocyclic pesticides on cellulose-based chiral column by high-performance liquid chromatography.

    Science.gov (United States)

    Chai, Tingting; Yang, Wenwen; Qiu, Jing; Hou, Shicong

    2015-01-01

    The enantiomeric separation of eight pesticides including bitertanol (), diclobutrazol (), fenbuconazole (), triticonazole (), imazalil (), triapenthenol (), ancymidol (), and carfentrazone-ethyl () was achieved, using normal-phase high-performance liquid chromatography on two cellulosed-based chiral columns. The effects of isopropanol composition from 2% to 30% in the mobile phase and column temperature from 5 to 40 °C were investigated. Satisfactory resolutions were obtained for bitertanol (), triticonazole (), imazalil () with the (+)-enantiomer eluted first and fenbuconazole () with the (-)-enantiomer eluted first on Lux Cellulose-2 and Lux Cellulose-3. (+)-Enantiomers of diclobutrazol () and triapenthenol () were first eluted on Lux Cellulose-2. (-)-Carfentrazone-ethyl () were eluted first on Lux Cellulose-2 and Lux Cellulose-3 with incomplete separation. Reversed elution orders were obtained for ancymidol (7). (+)-Ancymidol was first eluted on Lux Cellulose-2 while on Lux Cellulose-3 (-)-ancymidol was first eluted. The results of the elution order at different column temperatures suggested that column temperature did not affect the optical signals of the enantiomers. These results will be helpful to prepare and analyze individual enantiomers of chiral pesticides. © 2014 Wiley Periodicals, Inc.

  15. Comparison of the difference and delta 15nitrogen approaches for evaluating liquid urea ammonium nitrate utilization by maize

    International Nuclear Information System (INIS)

    Clay, D.E.

    1997-01-01

    Isotopic nitrogen (N) research techniques may be required in watershed studies to determine the impact of landscape position on fertilizer efficiency and the soil supplying power. However, traditional approaches using 15N labeled fertilizer may not be suitable when farmer equipment is used. The delta 15N natural abundance isotopic approach has been used to evaluate N cycling in watersheds. The objectives of this study were to measure the precision of the delta 15N measurement by the Europa 20-20 ratio mass spectrometer (Europa Scientific Ltd, UK), and to compare the difference and delta 15N approaches for measuring fertilizer use by maize (Zea mays). A replicated field study containing two different N rates (0 and 15.7 g N m-2) were used for the study. Maize samples were collected at the 8th-leaf, silking, and plant maturity in 1992 and 1993. Samples were dried (80 degrees C), ground (1-mm), weighed (stover 12 mg and grain 3 mg), and analyzed for total N and delta 15N. Fertilizer utilization at the three growth stages was determined using the natural abundance delta 15N and nonisotopic difference (fertilizer-control) techniques. During the study, the Europa 20-20 ratio mass spectrometer (Europa Scientific Ltd, UK) analyzed over 100 samples a day and had consumable costs of less than $2.00 per sample. The standard deviations of the mean were less than 0.11 and 0.21 per thousand in 51 and 77% of the stover samples, respectively. In 1992, grain yields were not influenced by N fertilizer additions, while in 1993 grain yields were increased by N fertilizer. The difference method estimated that in 1992, 16% of the N fertilizer was utilized by the crop, while the natural abundance delta 15N approach estimated that 36% of the fertilizer N was used by the crop. Differences between calculated values by the two techniques resulted from the difference method calculating net fertilizer use, while the delta 15N approach calculated fertilizer contained in the plant

  16. Zn2+ in-situ substitution behavior during the formation of BaTiO3 coatings from plasma-sprayed powders collected in liquid nitrogen

    Science.gov (United States)

    Liu, Zhe; Xing, Zhiguo; Wang, Haidou; Xue, Zifan; Chen, Shuying; Cui, Xiufang; Jin, Guo

    2018-04-01

    The dielectric performance of BaTiO3 ceramic coatings is enhanced significantly by the addition of ZnO. In this study, the maximum relative permittivity value (εr ≈ 923) was measured in BaTiO3 coatings with ZnO added at 6 wt%. The Curie temperature (Tc) was in the range of 111 °C-121 °C for all of the ZnO-modified BaTiO3 coatings. Tc shifted to low temperatures as the ZnO content increased. Detailed analyses were performed to determine the phase composition and optical band gaps of powders collected in liquid nitrogen, which showed that the Zn2+ ions were incorporated into the BaTiO3 lattice where they substituted into the Ti4+ sites, and the composite powders (BaTiO3 + 6 wt% ZnO) tolerated high temperatures in the plasma beam. In addition, some residual Zn accumulated in the grain boundary in the form of ZnO. X-ray diffraction and Raman spectroscopy showed that the substitution led to changes in the compositional and structural properties. The red shift in the optical band gap of BaTiO3 indicated that the ZnTi'' defects caused by the dopants acted as carriers in the doped BaTiO3 coatings.

  17. Nitrogen and sulfur co-doped porous graphene aerogel as an efficient electrode material for high performance supercapacitor in ionic liquid electrolyte

    Science.gov (United States)

    Chen, Yujuan; Liu, Zhaoen; Sun, Li; Lu, Zhiwei; Zhuo, Kelei

    2018-06-01

    Nitrogen and sulfur co-doped graphene aerogel (NS-GA) is prepared by one-pot process. The as-prepared materials are investigated as supercapacitors electrodes in an ionic liquid (1-ethyl-3-methylimidazolium tetrafluoroborate, EMIMBF4) electrolyte. The NS-GA is characterized using X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy scanning electron microscopy. The results show that the NS-GA has hierarchical porous structure. Electrochemical performance is investigated by cycle voltammetry and galvanostatic charge-discharge. Notably, the supercapacitor based on the NS-GA-5 possesses a maximum energy density of 100.7 Wh kg-1 at power density of 0.94 kW kg-1. The electrode materials also offer a large specific capacitance of 203.2 F g-1 at a current density of 1 A g-1 and the capacitance retention of NS-GA-5 is 90% after 3000 cycles at a scan rate of 2 A g-1. The NS-GA-5 with numerous advantages including low cost and remarkable electrochemical behaviors can be a promising electrode material for the application of supercapacitors.

  18. Development of gas chromatography-flame ionization detection system with a single column and liquid nitrogen-free for measuring atmospheric C2-C12 hydrocarbons.

    Science.gov (United States)

    Liu, Chengtang; Mu, Yujing; Zhang, Chenglong; Zhang, Zhibo; Zhang, Yuanyuan; Liu, Junfeng; Sheng, Jiujiang; Quan, Jiannong

    2016-01-04

    A liquid nitrogen-free GC-FID system equipped with a single column has been developed for measuring atmospheric C2-C12 hydrocarbons. The system is consisted of a cooling unit, a sampling unit and a separation unit. The cooling unit is used to meet the temperature needs of the sampling unit and the separation unit. The sampling unit includes a dehydration tube and an enrichment tube. No breakthrough of the hydrocarbons was detected when the temperature of the enrichment tube was kept at -90 °C and sampling volume was 400 mL. The separation unit is a small round oven attached on the cooling column. A single capillary column (OV-1, 30 m × 0.32 mm I.D.) was used to separate the hydrocarbons. An optimal program temperature (-60 ∼ 170 °C) of the oven was achieved to efficiently separate C2-C12 hydrocarbons. There were good linear correlations (R(2)=0.993-0.999) between the signals of the hydrocarbons and the enrichment amount of hydrocarbons, and the relative standard deviation (RSD) was less than 5%, and the method detection limits (MDLs) for the hydrocarbons were in the range of 0.02-0.10 ppbv for sampling volume of 400 mL. Field measurements were also conducted and more than 50 hydrocarbons from C2 to C12 were detected in Beijing city. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. How to store plant tissues in the absence of liquid nitrogen? Ethanol preserves the RNA integrity of Cannabis sativa stem tissues

    Directory of Open Access Journals (Sweden)

    Lauralie Mangeot-Peter

    2016-09-01

    Full Text Available The preservation of intact RNA is a limiting step when gene expression profiling is performed using field-collected plant material. The use of liquid nitrogen ensures the optimal preservation of RNA, however it is not always practical, especially if the plant material has to be sampled in remote locations. Ethanol is known to preserve DNA in plant tissues even after a long storage period and here its suitability to preserve the RNA of textile hemp cortical tissues was tested. Hemp (Cannabis sativa L. is an economically important fibre crop because it supplies cellulosic bast fibres used in different industrial sectors. In this study we demonstrate the suitability of ethanol for RNA preservation by analyzing tissues stored at 4 °C for 1, 2, 4 and 8 days. We show that in all the cases the extracted RNA is intact. We finally analyze hemp stem tissues stored in ethanol for 1 month and demonstrate the preservation of the tissue structure, particularly of bast fibres.

  20. Comparative study on the critical current performance of Bi-2223/Ag and YBCO wires in low magnetic fields at liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Feng, F.; Qu, T.-M.; Gu, C.; Xin, Y.; Gong, W.-Z.; Wu, W.; Han, Z.

    2011-01-01

    Highlights: → The I c values of Bi-2223/Ag and YBCO wires in low fields at 77 K were compared. → The performance of Bi-2223/Ag in low parallel fields was better than that of YBCO. → The phenomenon mentioned above can be verified by the published literature datum. → A new aspect was brought to understand the transport properties of HTS wires. - Abstract: A comparative study on the critical current performance of Bi-2223/Ag and YBCO coated conductor wires in low magnetic fields at liquid nitrogen temperature was carried out in this work. Five commercial high temperature superconductor wires from different manufacturers were collected. Their critical currents were measured in magnetic fields, ranging from 0 to 0.4 T. On contrary to the common conception, the Bi-2223/Ag samples had better performance than YBCO coated conductor samples in the magnetic fields parallel to the wide surface of superconducting wires within the experimental scope. We also found similar results by collecting the concerned datum from the published literatures to confirm our measurement results. At the present stage, this fact made that the Bi-2223/Ag wires might be the preferred choice for the applications with mainly low parallel fields involved, unless other considerations were prioritized.

  1. Synthesis and structural evaluation of freeze-cast porous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Douglas F., E-mail: souzadf@outlook.com [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Nunes, Eduardo H.M., E-mail: eduardohmn@gmail.com [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Pimenta, Daiana S.; Vasconcelos, Daniela C.L. [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Nascimento, Jailton F.; Grava, Wilson [Petrobras/CENPES, Avenida Horácio Macedo 950, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ CEP:21941-915 (Brazil); Houmard, Manuel [Department of Materials Engineering and Civil Construction, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 1, sala 3304 (Brazil); Vasconcelos, Wander L., E-mail: wlv@demet.ufmg.br [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil)

    2014-10-15

    In this work we fabricated alumina samples by the freeze-casting technique using tert-butanol as the solvent. The prepared materials were examined by scanning electron microscopy and X-ray microtomography. Next, they were coated with sol–gel silica films by dip-coating. Permeability tests were carried out in order to assess the permeation behavior of the materials processed in this study. We observed that the sintering time and alumina loading showed a remarkable effect on both the structural properties and flexural strength of the freeze-cast samples. Nitrogen adsorption tests revealed that the silica prepared in this study exhibited a microporous structure. It was observed that the presence of silica coatings on the alumina surface decreased the CO{sub 2} permeance by about one order of magnitude. Because of the similar kinetic diameters of nitrogen and carbon dioxide, the CO{sub 2}/N{sub 2} system showed a separation efficiency that was lower than that observed for the He/CO{sub 2} and He/N{sub 2} systems. We noticed that increasing the feed pressure improved the separation capacity of the obtained materials. - Highlights: • Porous alumina samples obtained by the freeze-casting technique • Microporous silica coating prepared by a simple sol–gel dip-coating methodology • Samples examined by SEM, μ-CT, and nitrogen sorption tests • Mechanical tests were carried out in the freeze-cast samples. • The presence of silica coatings on the alumina surface decreased the CO{sub 2} permeance.

  2. Development of a new microextraction method based on elevated temperature dispersive liquid-liquid microextraction for determination of triazole pesticides residues in honey by gas chromatography-nitrogen phosphorus detection.

    Science.gov (United States)

    Farajzadeh, Mir Ali; Mogaddam, Mohammad Reza Afshar; Ghorbanpour, Houshang

    2014-06-20

    In the present study, a rapid, highly efficient, and reliable sample preparation method named "elevated temperature dispersive liquid-liquid microextraction" followed by gas chromatography-nitrogen-phosphorus detection was developed for the extraction, preconcentration, and determination of five triazole pesticides (penconazole, hexaconazole, diniconazole, tebuconazole, and difenoconazole) in honey samples. In this method the temperature of high-volume aqueous phase was adjusted at an elevated temperature and then a disperser solvent containing an extraction solvent was rapidly injected into the aqueous phase. After cooling to room temperature, the phase separation was accelerated by centrifugation. Various parameters affecting the extraction efficiency such as type and volume of the extraction and disperser solvents, temperature, salt addition, and pH were evaluated. Under the optimum extraction conditions, the method resulted in low limits of detection and quantification within the range 0.05-0.21ngg(-1) in honey (15-70ngL(-1) in solution) and 0.15-1.1ngg(-1) in honey (45-210ngL(-1) in solution), respectively. Enrichment factors and extraction recoveries were in the ranges of 1943-1994 and 97-100%, respectively. The method precision was evaluated at 1.5ngg(-1) of each analyte, and the relative standard deviations were found to be less than 4% for intra-day (n=6) and less than 6% for inter-days. The method was successfully applied to the analysis of honey samples and difenoconazole was determined at ngg(-1) levels. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Experimental analysis and modeling of ultrasound assisted freezing of potato spheres.

    Science.gov (United States)

    Kiani, Hossein; Zhang, Zhihang; Sun, Da-Wen

    2015-09-01

    In recent years, innovative methods such as ultrasound assisted freezing have been developed in order to improve the freezing process. During freezing of foods, accurate prediction of the temperature distribution, phase ratios, and process time is very important. In the present study, ultrasound assisted immersion freezing process (in 1:1 ethylene glycol-water solution at 253.15K) of potato spheres (0.02 m diameter) was evaluated using experimental, numerical and analytical approaches. Ultrasound (25 kHz, 890 W m(-2)) was irradiated for different duty cycles (DCs=0-100%). A finite volume based enthalpy method was used in the numerical model, based on which temperature and liquid fraction profiles were simulated by a program developed using OpenFOAM® CFD software. An analytical technique was also employed to calculate freezing times. The results showed that ultrasound irradiation could decrease the characteristic freezing time of potatoes. Since ultrasound irradiation increased the heat transfer coefficient but simultaneously generated heat at the surface of the samples, an optimum DC was needed for the shortest freezing time which occurred in the range of 30-70% DC. DCs higher than 70% increased the freezing time. DCs lower than 30% did not provide significant effects on the freezing time compared to the control sample. The numerical model predicted the characteristic freezing time in accordance with the experimental results. In addition, analytical calculation of characteristic freezing time exhibited qualitative agreement with the experimental results. As the numerical simulations provided profiles of temperature and water fraction within potatoes frozen with or without ultrasound, the models can be used to study and control different operation situations, and to improve the understanding of the freezing process. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The freezing of water bonded in the wheat (Triticum aestivum L.) grain studied by means protons magnetic relaxation method

    International Nuclear Information System (INIS)

    Haranczyk, H.; Jasinski, G.; Strzalka, K.

    1994-01-01

    Some biological aspects of water freezing in the wheat grain have been studied using NMR methods. Measuring of the relaxation times for freezing and liquid water shown absence of T 2 ∼100 μs and T 2 ∼1 ms separated components what pointed for some different way of water bonding

  5. Novel Budesonide Particles for Dry Powder Inhalation Prepared Using a Microfluidic Reactor Coupled With Ultrasonic Spray Freeze Drying.

    Science.gov (United States)

    Saboti, Denis; Maver, Uroš; Chan, Hak-Kim; Planinšek, Odon

    2017-07-01

    Budesonide (BDS) is a potent active pharmaceutical ingredient, often administered using respiratory devices such as metered dose inhalers, nebulizers, and dry powder inhalers. Inhalable drug particles are conventionally produced by crystallization followed by milling. This approach tends to generate partially amorphous materials that require post-processing to improve the formulations' stability. Other methods involve homogenization or precipitation and often require the use of stabilizers, mostly surfactants. The purpose of this study was therefore to develop a novel method for preparation of fine BDS particles using a microfluidic reactor coupled with ultrasonic spray freeze drying, and hence avoiding the need of additional homogenization or stabilizer use. A T-junction microfluidic reactor was employed to produce particle suspension (using an ethanol-water, methanol-water, and an acetone-water system), which was directly fed into an ultrasonic atomization probe, followed by direct feeding to liquid nitrogen. Freeze drying was the final preparation step. The result was fine crystalline BDS powders which, when blended with lactose and dispersed in an Aerolizer at 100 L/min, generated fine particle fraction in the range 47.6% ± 2.8% to 54.9% ± 1.8%, thus exhibiting a good aerosol performance. Subsequent sample analysis confirmed the suitability of the developed method to produce inhalable drug particles without additional homogenization or stabilizers. The developed method provides a viable solution for particle isolation in microfluidics in general. Copyright © 2017 American Pharmacists Association®. All rights reserved.

  6. High homogeneity powder of Ti-Ba-Ca-Cu-O (2223) prepared by Freeze-Drying method

    International Nuclear Information System (INIS)

    Al-Shakarchi, Emad Kh.; Toma, Ziad A.

    1999-01-01

    Full text.Homogeneous high temerature superconductor ceramic powder of TI-Ba-Ca-Cu-O with transition temperature [Tc=123K] have been successfully prepared from the mixture of nitrate salts [TlNO 3 , Ba(NO 3 ) 2 , Ca(NO 3 ) 2 .4H 2 O and Cu(NO 3 ) 2 .3H 2 O] by using freeze-drying method. Freeze-dryer that was used in this work designed locally in our laboratory. This technique consider a better to get a fine powder of ceramic materials by depending on the procedure of frozen droplets with present of liquid nitrogen. SEM pictures showed the size of grains of about [0.8 μm]. We conclude that the high sintering temperature, for the prepared powders in this technique, for long time [120 hrs] will increase the inter diffusion between the grains ahich caused the decreasing in the density of the sample which may be given a better results than the obtained in a previous works

  7. Solar desalination by freezing and distillation

    Science.gov (United States)

    Kvajic, G.

    It is noted that among seawater desalination processes the absorption-freeze vapor compression processes based on the thermal heat pump, although untested commercially and still in the development stage, appears technically and economically an attractive application of low-grade (exergy) solar heat. The distillation processes proposed here may be conveniently powered by low-grade solar heat (from flat plate solar collectors). It is expected that the scaling problem will be insignificant in comparison with that encountered in the conventional multistage flash process. The novel feature here is the use of enlarged capacity for heat exchange between distillate and brine via latent heat of solid-liquid phase change of a suitable hydrophobic intermediate heat transfer material.

  8. Freeze-Thaw Cycles and Soil Biogeochemistry: Implications for Greenhouse Gas emission

    Science.gov (United States)

    Rezanezhad, F.; Milojevic, T.; Oh, D. H.; Parsons, C. T.; Smeaton, C. M.; Van Cappellen, P.

    2016-12-01

    Freeze-thaw cycles represent a major natural climate forcing acting on soils at middle and high latitudes. Repeated freezing and thawing of soils changes their physical properties, geochemistry, and microbial community structure, which together govern the biogeochemical cycling of carbon and nutrients. In this presentation, we focus on how freeze-thaw cycles regulate carbon and nitrogen cycling and how these transformations influence greenhouse gas (GHG) fluxes. We present a novel approach, which combines the acquisition of physical and chemical data in a newly developed experimental soil column system. This system simulates realistic soil temperature profiles during freeze-thaw cycles. A high-resolution, Multi-Fiber Optode (MuFO) microsensor technique was used to detect oxygen (O2) continuously in the column at multiple depths. Surface and subsurface changes to gas and aqueous phase chemistry were measured to delineate the pathways and quantify soil respiration rates during freeze-thaw cycles. The results indicate that the time-dependent release of GHG from the soil surface is influenced by a combination of two key factors. Firstly, fluctuations in temperature and O2 availability affect soil biogeochemical activity and GHG production. Secondly, the recurrent development of a physical ice barrier prevents exchange of gaseous compounds between the soil and atmosphere during freezing conditions; removal of this barrier during thaw conditions increases GHG fluxes. During freezing, O2 levels in the unsaturated zone decreased due to restricted gas exchange with the atmosphere. As the soil thawed, O2 penetrated deeper into the soil enhancing the aerobic mineralization of organic carbon and nitrogen. Additionally, with the onset of thawing a pulse of gas flux occurred, which is attributed to the build-up of respiratory gases in the pore space during freezing. The latter implies enhanced anaerobic respiration as O2 supply ceases when the upper soil layer freezes.

  9. Medical and social egg freezing

    DEFF Research Database (Denmark)

    Lallemant, Camille; Vassard, Ditte; Andersen, Anders Nyboe

    2016-01-01

    INTRODUCTION: Until recently, limited options for preserving fertility in order to delay childbearing were available. Although egg freezing and successful thawing is now possible, it remains unclear to what extent women are aware of the availability of this technique, their attitudes towards its...... use, or the circumstances under which this technique may be considered. MATERIAL AND METHODS: An online cross-sectional survey was designed to investigate knowledge and attitudes of women in Denmark and the UK on egg freezing and their potential intentions regarding the procedure. RESULTS: Data...... was collected from September 2012 to September 2013 and the responses of 973 women were analyzed. In total, 83% of women reported having heard of egg freezing, and nearly all considered it acceptable for medical indications, whilst 89% considered it acceptable for social reasons. Overall, 19% expressed active...

  10. Freeze-dried microarterial allografts

    International Nuclear Information System (INIS)

    Raman, J.; Hargrave, J.C.

    1990-01-01

    Rehydrated freeze-dried microarterial allografts were implanted to bridge arterial defects using New Zealand White rabbits as the experimental model. Segments of artery from the rabbit ear and thigh were harvested and preserved for a minimum of 2 weeks after freeze-drying. These allografts, approximately 1 mm in diameter and ranging from 1.5 to 2.5 cm in length, were rehydrated and then implanted in low-pressure and high-pressure arterial systems. Poor patency was noted in low-pressure systems in both allografts and autografts, tested in 12 rabbits. In the high-pressure arterial systems, allografts that were freeze-dried and reconstituted failed in a group of 10 rabbits with an 8-week patency rate of 30 percent. Gamma irradiation in an effort to reduce infection and antigenicity of grafts after freeze-drying was associated with a patency rate of 10 percent at 8 weeks in this system in another group of 10 rabbits. Postoperative cyclosporin A therapy was associated with a patency rate of 22.2 percent in the high-pressure arterial system in a 9-rabbit group. Control autografts in this system in a group of 10 rabbits showed a 100 percent patency at 8 weeks. Microarterial grafts depend on perfusion pressure of the vascular bed for long-term patency. Rehydrated freeze-dried microarterial allografts do not seem to function well in lengths of 1 to 2.5 cm when implanted in a high-pressure arterial system. Freeze-dried arterial allografts are probably not antigenic

  11. Freezing and melting line invariants of the Lennard-Jones system

    DEFF Research Database (Denmark)

    Costigliola, Lorenzo; Schrøder, Thomas; Dyre, Jeppe C.

    2016-01-01

    The invariance of several structural and dynamical properties of the Lennard-Jones (LJ) system along the freezing and melting lines is interpreted in terms of isomorph theory. First the freezing/melting lines of the LJ system are shown to be approximated by isomorphs. Then we show...... that the invariants observed along the freezing and melting isomorphs are also observed on other isomorphs in the liquid and crystalline phases. The structure is probed by the radial distribution function and the structure factor and dynamics are probed by the mean-square displacement, the intermediate scattering...... function, and the shear viscosity. Studying these properties with reference to isomorph theory explains why the known single-phase melting criteria hold, e.g., the Hansen–Verlet and the Lindemann criteria, and why the Andrade equation for the viscosity at freezing applies, e.g., for most liquid metals. Our...

  12. Stability and Application of Reactive Nitrogen and Oxygen Species-Induced Hemoglobin Modifications in Dry Blood Spots As Analyzed by Liquid Chromatography Tandem Mass Spectrometry.

    Science.gov (United States)

    Chen, Hauh-Jyun Candy; Fan, Chih-Huang; Yang, Ya-Fen

    2016-12-19

    Dried blood spot (DBS) is an emerging microsampling technique for the bioanalysis of small molecules, including fatty acids, metabolites, drugs, and toxicants. DBS offers many advantages as a sample format including easy sample collection and cheap sample shipment. Hemoglobin adducts have been recognized as a suitable biomarker for monitoring chemical exposure. We previously reported that certain modified peptides in hemoglobin derived from reactive chlorine, nitrogen, and oxygen species are associated with factors including smoking, diabetes mellitus, and aging. However, the stability of these oxidation-induced modifications of hemoglobin remains unknown and whether they can be formed artifactually during storage of DBS. To answer these questions, globin extracted from the DBS cards was analyzed, and the stability of the modifications was evaluated. After storage of the DBS cards at 4 °C or room temperature up to 7 weeks, we isolated globin from a quarter of the spot every week. The extents of 11 sites and types of post-translational modifications (PTMs), including nitration and nitrosylation of tyrosine and oxidation of cysteine and methionine residues, in human hemoglobin were measured in the trypsin digest by nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry (nanoLC-NSI/MS/MS) using selected reaction monitoring. The extents of all these PTMs are stable within 14 days when stored on DBS at room temperature and at 4 °C, while those from direct extraction of fresh blood are stable for at least 8 weeks when stored as an aqueous solution at -20 °C. Extraction of globin from a DBS card is of particular importance for hemolytic blood samples. To our knowledge, this is the first report on the stability of oxidative modifications of hemoglobin on DBSs, which are stable for 14 days under ambient conditions (room temperature, in air). Therefore, it is feasible and convenient to analyze these hemoglobin modifications from DBSs in studies

  13. Freezing tolerance of ectomycorrhizal fungi in pure culture.

    Science.gov (United States)

    Lehto, Tarja; Brosinsky, Arlena; Heinonen-Tanski, Helvi; Repo, Tapani

    2008-10-01

    The ability to survive freezing and thawing is a key factor for the existence of life forms in large parts of the world. However, little is known about the freezing tolerance of mycorrhizal fungi and their role in the freezing tolerance of mycorrhizas. Threshold temperatures for the survival of these fungi have not been assessed experimentally. We grew isolates of Suillus luteus, Suillus variegatus, Laccaria laccata, and Hebeloma sp. in liquid culture at room temperature. Subsequently, we exposed samples to a series of temperatures between +5 degrees C and -48 degrees C. Relative electrolyte leakage (REL) and re-growth measurements were used to assess the damage. The REL test indicated that the lethal temperature for 50% of samples (LT(50)) was between -8.3 degrees C and -13.5 degrees C. However, in the re-growth experiment, all isolates resumed growth after exposure to -8 degrees C and higher temperatures. As many as 64% of L. laccata samples but only 11% in S. variegatus survived -48 degrees C. There was no growth of Hebeloma and S. luteus after exposure to -48 degrees C, but part of their samples survived -30 degrees C. The fungi tolerated lower temperatures than was expected on the basis of earlier studies on fine roots of ectomycorrhizal trees. The most likely freezing tolerance mechanism here is tolerance to apoplastic freezing and the concomitant intracellular dehydration with consequent concentrating of cryoprotectant substances in cells. Studying the properties of fungi in isolation promotes the understanding of the role of the different partners of the mycorrhizal symbiosis in the freezing tolerance.

  14. Cryopreservation of collared peccary (Pecari tajacu) semen using different freezing curves, straw sizes, and thawing rates.

    Science.gov (United States)

    Silva, M A; Peixoto, G C X; Castelo, T S; Lima, G L; Silva, A M; Oliveira, M F; Silva, A R

    2013-08-01

    The objective of this study was to verify the effect of different freezing curves, straw sizes, and thawing rates on the cryopreservation of collared peccary semen. Twelve ejaculates were obtained from captive adult males by electroejaculation, and evaluated for sperm motility, kinetic rating, viability, morphology, and functional membrane integrity. The ejaculates were diluted in a coconut water extender (ACP-116c) with egg yolk and glycerol, packaged into 0.25 mL or 0.50 mL plastic straws and cryopreserved in liquid nitrogen following a slow (-10 °C/min) or a fast (-40 °C/min) freezing curve. After one week, samples were thawed at 37 °C/1 min or 70 °C/8s and evaluated as reported for fresh semen, and also for kinematic parameters (computerized analysis). A significant decrease in sperm motility and kinetic rating was observed after glycerol addition at 5 °C and also after thawing for all the treatments (Pstraw size and thawing rate were taken as reference (P>0.05). In general, values for sperm characteristics found after thawing at 37 °C were better preserved than at 70 °C (Pstraws, which were similar for semen packaging (P>0.05). The evaluation of the kinematic parameters of sperm motility confirmed these results at values varying from 20% to 30% motile sperm for the samples tha wed at 37 °C, and values fewer than 12% motile sperm for samples thawed at 70 °C (Pstraws, but the thawing should be conducted at 37 °C/1 min. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Freeze-thaw treatment effects on the dynamic mechanical properties of articular cartilage

    Directory of Open Access Journals (Sweden)

    Muldrew Ken

    2010-10-01

    Full Text Available Abstract Background As a relatively non-regenerative tissue, articular cartilage has been targeted for cryopreservation as a method of mitigating a lack of donor tissue availability for transplant surgeries. In addition, subzero storage of articular cartilage has long been used in biomedical studies using various storage temperatures. The current investigation studies the potential for freeze-thaw to affect the mechanical properties of articular cartilage through direct comparison of various subzero storage temperatures. Methods Both subzero storage temperature as well as freezing rate were compared using control samples (4°C and samples stored at either -20°C or -80°C as well as samples first snap frozen in liquid nitrogen (-196°C prior to storage at -80°C. All samples were thawed at 37.5°C to testing temperature (22°C. Complex stiffness and hysteresis characterized load resistance and damping properties using a non-destructive, low force magnitude, dynamic indentation protocol spanning a broad loading rate range to identify the dynamic viscoelastic properties of cartilage. Results Stiffness levels remained unchanged with exposure to the various subzero temperatures. Hysteresis increased in samples snap frozen at -196°C and stored at -80°C, though remained unchanged with exposure to the other storage temperatures. Conclusions Mechanical changes shown are likely due to ice lens creation, where frost heave effects may have caused collagen damage. That storage to -20°C and -80°C did not alter the mechanical properties of articular cartilage shows that when combined with a rapid thawing protocol to 37.5°C, the tissue may successfully be stored at subzero temperatures.

  16. Pre-cure freezing affects proteolysis in dry-cured hams.

    Science.gov (United States)

    Bañón, S; Cayuela, J M; Granados, M V; Garrido, M D

    1999-01-01

    Several parameters (sodium chloride, moisture, intramuscular fat, total nitrogen, non-protein nitrogen, white precipitates, free tyrosine, L* a* b* values and acceptability) related with proteolysis during the curing were compared in dry-cured hams manufactured from refrigerated and frozen/thawed raw material. Pre-cure freezing increased the proteolysis levels significantly (pcured meat, although it does not significantly affect the sensory quality of the dry-cured ham.

  17. Liquid Ventilation

    Directory of Open Access Journals (Sweden)

    Qutaiba A. Tawfic

    2011-01-01

    Full Text Available Mammals have lungs to breathe air and they have no gills to breath liquids. When the surface tension at the air-liquid interface of the lung increases, as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen, as the inert carrier of oxygen and carbon dioxide offers a number of theoretical advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. The potential for multiple clinical applications for liquid-assisted ventilation will be clarified and optimized in future. Keywords: Liquid ventilation; perfluorochemicals; perfluorocarbon; respiratory distress; surfactant.

  18. Effect of magnetic field on food freezing

    OpenAIRE

    村田, 圭治; 奥村, 太一; 荒賀, 浩一; 小堀, 康功

    2010-01-01

    [Abstract] This paper presents an experimental investigation on effects of magnetic field on food freezing process. Although purpose of food freezing is to suppress the deterioration of food, freezing breaks food tissue down, and some nutrient and delicious element flow out after thawing. Recently, a few of refrigeration equipments with electric and magnetic fields have attracted attention from food production companies and mass media. Water and tuna were freezed in magnetic field (100kH, 1.3...

  19. Freeze out in heavy ion reactions

    International Nuclear Information System (INIS)

    Csernai, Laszlo P.; Lazar, Zs.I.; Grassi, F.; Hama, Y.

    1998-01-01

    In fluid dynamical models the freeze out of particles across a three dimensional space-time hypersurface is discussed. The calculation of final momentum distribution of emitted particles is described for freeze out surfaces, with both space-like and time-like normals, taking into account conservation laws across the freeze out discontinuity. Generally the conservation laws lead to a change of temperature, baryon density and flow velocity at freeze out. (author)

  20. Quality changes and freezing time prediction during freezing and thawing of ginger

    OpenAIRE

    Singha, Poonam; Muthukumarappan, Kasiviswanathan

    2015-01-01

    Abstract Effects of different freezing rates and four different thawing methods on chemical composition, microstructure, and color of ginger were investigated. Computer simulation for predicting the freezing time of cylindrical ginger for two different freezing methods (slow and fast) was done using ANSYS ? Multiphysics. Different freezing rates (slow and fast) and thawing methods significantly (P?