WorldWideScience

Sample records for free-tropospheric ozone profiles

  1. Relationship between surface, free tropospheric and total column ozone in 2 contrasting areas in South-Africa

    CSIR Research Space (South Africa)

    Combrink, J

    1995-04-01

    Full Text Available Measurements of surface ozone in two contrasting areas of South Africa are compared with free tropospheric and Total Ozone Mapping Spectrometer (TOMS) total column ozone data. Cape Point is representative of a background monitoring station which...

  2. Observations of ozone transport from the free troposphere to the Los Angeles basin

    Science.gov (United States)

    Neuman, J. A.; Trainer, M.; Aikin, K. C.; Angevine, W. M.; Brioude, J.; Brown, S. S.; de Gouw, J. A.; Dube, W. P.; Flynn, J. H.; Graus, M.; Holloway, J. S.; Lefer, B. L.; Nedelec, P.; Nowak, J. B.; Parrish, D. D.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Smit, H.; Thouret, V.; Wagner, N. L.

    2012-03-01

    Analysis of in situ airborne measurements from the CalNex 2010 field experiment (Research at the Nexus of Air Quality and Climate Change) show that ozone in the boundary layer over Southern California was increased by downward mixing of air from the free troposphere (FT). The chemical composition, origin, and transport of air upwind and over Los Angeles, California, were studied using measurements of carbon monoxide (CO), ozone, reactive nitrogen species, and meteorological parameters from the National Oceanic and Atmospheric Administration WP-3D aircraft on 18 research flights in California in May and June 2010. On six flights, multiple vertical profiles from 0.2-3.5 km above ground level were conducted throughout the Los Angeles (LA) basin and over the Pacific Ocean. Gas phase compounds measured in 32 vertical profiles are used to characterize air masses in the FT over the LA basin, with the aim of determining the source of increased ozone observed above the planetary boundary layer (PBL). Four primary air mass influences were observed regularly in the FT between approximately 1 and 3.5 km altitude: upper tropospheric air, long-range transport of emissions, aged regional emissions, and marine air. The first three air mass types accounted for 89% of the FT observations. Ozone averaged 71 ppbv in air influenced by the upper troposphere, 69 ppbv in air containing emissions transported long distances, and 65 ppbv in air with aged regional emissions. Correlations between ozone and CO, and ozone and nitric acid, demonstrate entrainment of ozone from the FT into the LA PBL. Downward transport of ozone-rich air from the FT into the PBL contributes to the ozone burden at the surface in this region and makes compliance with air quality standards challenging.

  3. Ozone transport from the free troposphere to the Los Angeles Basin

    Science.gov (United States)

    Neuman, J.; Trainer, M.; Aikin, K.; Angevine, W. M.; Brioude, J.; Brown, S. S.; De Gouw, J. A.; Dube, B.; Graus, M.; Flynn, J. H.; Holloway, J. S.; Lefer, B. L.; Nedelec, P.; Nowak, J. B.; Parrish, D. D.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Smit, H. M.; Thouret, V.; Wagner, N.

    2011-12-01

    Downward transport of ozone-rich air from the free troposphere (FT) into the planetary boundary layer (PBL) contributes to the ozone burden at the surface in Southern California and makes compliance with air quality standards challenging. Gas phase compounds measured in 32 vertical profiles are used to characterize air masses in the FT over the Los Angeles, California (LA) basin, with the aim of determining the source of increased ozone observed above the PBL. The chemical composition, origin, and transport of air upwind and over LA are studied using in-situ airborne measurements from the CalNex 2010 field experiment (Research at the Nexus of Air Quality and Climate Change). Carbon monoxide (CO), ozone, reactive nitrogen species, and meteorological parameters were measured from the National Oceanic and Atmospheric Administration WP-3D aircraft on 18 research flights in California in May and June 2010. On six flights, multiple vertical profiles from 0.2-3.5 km above ground level were conducted throughout the LA basin and over the Pacific Ocean. Four primary air mass influences were regularly observed in the FT between approximately 1-3.5 km altitude: upper tropospheric air, emissions from long range transport, aged regional emissions, and marine air. Ozone in the FT was increased in three air mass types, averaging 71 ppbv in air influenced by the upper troposphere, 69 ppbv in air containing emissions transported long distances, and 65 ppbv in air with aged regional emissions. Correlations between ozone and CO, and ozone and nitric acid, demonstrate entrainment of ozone from the FT into the LA PBL.

  4. Impacts of anthropogenic and natural sources on free tropospheric ozone over the Middle East

    Science.gov (United States)

    Jiang, Zhe; Miyazaki, Kazuyuki; Worden, John R.; Liu, Jane J.; Jones, Dylan B. A.; Henze, Daven K.

    2016-05-01

    Significant progress has been made in identifying the influence of different processes and emissions on the summertime enhancements of free tropospheric ozone (O3) at northern midlatitude regions. However, the exact contribution of regional emissions, chemical and transport processes to these summertime enhancements is still not well quantified. Here we focus on quantifying the influence of regional emissions on the summertime O3 enhancements over the Middle East, using updated reactive nitrogen (NOx) emissions. We then use the adjoint of the GEOS-Chem model with these updated NOx emissions to show that the global total contribution of lightning NOx on middle free tropospheric O3 over the Middle East is about 2 times larger than that from global anthropogenic sources. The summertime middle free tropospheric O3 enhancement is primarily due to Asian NOx emissions, with approximately equivalent contributions from Asian anthropogenic activities and lightning. In the Middle Eastern lower free troposphere, lightning NOx from Europe and North America and anthropogenic NOx from Middle Eastern local emissions are the primary sources of O3. This work highlights the critical role of lightning NOx on northern midlatitude free tropospheric O3 and the important effect of the Asian summer monsoon on the export of Asian pollutants.

  5. Elevated ozone layers in the lower free troposphere during CalNex

    Science.gov (United States)

    Langford, A. O.; Senff, C. J.; Alvarez, R. J., II; Banta, R. M.; Brewer, A.; Hardesty, R.; Brioude, J.; Cooper, O. R.

    2010-12-01

    The NOAA ESRL/CSD nadir-viewing ozone and aerosol lidar (TOPAZ) was deployed aboard the NOAA AOC Twin Otter research aircraft during the 2010 CalNex campaign. Ozone measurements were made on a total of 46 research flights covering much of California between 23 May and 18 July 2010. Many of these flights found widespread layers of high ozone (i.e. >100 ppbv) at altitudes between 2 and 4 km above mean sea level in the free troposphere. Potential sources include stratospheric intrusions, orographic lifting, and transport from Asia. The lidar observations are compared to ground-based ozonesonde measurements, and the origins of these layers investigated using the FLEXPART trajectory and particle dispersion model.

  6. A model study of ozone in the eastern Mediterranean free troposphere during MINOS (August 2001)

    NARCIS (Netherlands)

    Roelofs, GJ; Scheeren, HA; Heland, J; Ziereis, H; Lelieveld, J

    2003-01-01

    A coupled tropospheric chemistry-climate model is used to analyze tropospheric ozone distributions observed during the MINOS campaign in the eastern Mediterranean region ( August, 2001). Modeled ozone profiles are generally in good agreement with the observations. Our analysis shows that the atmosph

  7. A model study of ozone in the eastern Mediterranean free troposphere during MINOS (August 2001)

    NARCIS (Netherlands)

    Roelofs, GJ; Scheeren, HA; Heland, J; Ziereis, H; Lelieveld, J

    2003-01-01

    A coupled tropospheric chemistry-climate model is used to analyze tropospheric ozone distributions observed during the MINOS campaign in the eastern Mediterranean region ( August, 2001). Modeled ozone profiles are generally in good agreement with the observations. Our analysis shows that the

  8. Free troposphere ozone and carbon monoxide over the North Atlantic for 2001–2011

    Directory of Open Access Journals (Sweden)

    A. Kumar

    2013-06-01

    Full Text Available In-situ measurements of carbon monoxide (CO and ozone (O3 at the Pico Mountain Observatory (PMO located in the Azores, Portugal are analyzed together with results from atmospheric chemical transport modeling (GEOS-Chem and satellite remote sensing (AIRS for CO and TES for O3 to examine the evolution of free-troposphere CO and O3 over the North Atlantic for 2001–2011. GEOS-Chem captured the seasonal cycles for CO and O3 well but significantly underestimated the mixing ratios of CO, particularly in spring. Statistically significant (using a significance level of 0.05 decreasing trends were found for both CO and O3 based on harmonic regression analysis of the measurement data. The best estimates of the trend for CO and O3 measurements are −0.31 ± 0.30 (2-σ ppbv yr−1 and −0.21 ± 0.11 (2-σ ppbv yr−1, respectively. Similar decreasing trends for both species were obtained with GEOS-Chem simulation results. The major factor contributing to the reported decrease in CO and O3 mixing ratios at PMO over the past decade is the decline in anthropogenic CO and O3-precursor emissions in regions such as North America and Europe. The increase in Asian emissions does not seem to outweigh the impact of these declines resulting in overall decreasing trends for both CO and O3. For O3, however, increase in atmospheric water vapor content associated with climate change also appears to be a contributing factor causing enhanced destruction of the O3 during transport from source regions. These hypotheses are supported by results from the GEOS-Chem tagged CO and tagged O3 simulations.

  9. Global free tropospheric NO2 abundances derived using a cloud slicing technique applied to satellite observations from the Aura Ozone Monitoring Instrument (OMI

    Directory of Open Access Journals (Sweden)

    S. Choi

    2014-01-01

    Full Text Available We derive free-tropospheric NO2 volume mixing ratios (VMRs and stratospheric column amounts of NO2 by applying a cloud slicing technique to data from the Ozone Monitoring Instrument (OMI on the Aura satellite. In the cloud-slicing approach, the slope of the above-cloud NO2 column vs. the cloud scene pressure is proportional to the NO2 VMR. In this work, we use a sample of nearby OMI pixel data from a single orbit for the linear fit. The OMI data include cloud scene pressures from the rotational-Raman algorithm and above-cloud NO2 vertical column density (VCD (defined as the NO2 column from the cloud scene pressure to the top-of-the-atmosphere from a differential optical absorption spectroscopy (DOAS algorithm. Estimates of stratospheric column NO2 are obtained by extrapolating the linear fits to the tropopause. We compare OMI-derived NO2 VMRs with in situ aircraft profiles measured during the NASA Intercontinental Chemical Transport Experiment Phase B (INTEX-B campaign in 2006. The agreement is generally within the estimated uncertainties when appropriate data screening is applied. We then derive a global seasonal climatology of free-tropospheric NO2 VMR in cloudy conditions. Enhanced NO2 in the free troposphere commonly appears near polluted urban locations where NO2 produced in the boundary layer may be transported vertically out of the boundary layer and then horizontally away from the source. Signatures of lightning NO2 are also shown throughout low and middle latitude regions in summer months. A profile analysis of our cloud slicing data indicates signatures of uplifted and transported anthropogenic NO2 in the middle troposphere as well as lightning-generated NO2 in the upper troposphere. Comparison of the climatology with simulations from the Global Modeling Initiative (GMI for cloudy conditions (cloud optical thicknesses > 10 shows similarities in the spatial patterns of continental pollution outflow. However, there are also some

  10. Global Free Tropospheric NO2 Abundances Derived Using a Cloud Slicing Technique Applied to Satellite Observations from the Aura Ozone Monitoring Instrument (OMI)

    Science.gov (United States)

    Choi, S.; Joiner, J.; Choi, Y.; Duncan, B. N.; Bucsela, E.

    2014-01-01

    We derive free-tropospheric NO2 volume mixing ratios (VMRs) and stratospheric column amounts of NO2 by applying a cloud slicing technique to data from the Ozone Monitoring Instrument (OMI) on the Aura satellite. In the cloud-slicing approach, the slope of the above-cloud NO2 column versus the cloud scene pressure is proportional to the NO2 VMR. In this work, we use a sample of nearby OMI pixel data from a single orbit for the linear fit. The OMI data include cloud scene pressures from the rotational-Raman algorithm and above-cloud NO2 vertical column density (VCD) (defined as the NO2 column from the cloud scene pressure to the top-of-the-atmosphere) from a differential optical absorption spectroscopy (DOAS) algorithm. Estimates of stratospheric column NO2 are obtained by extrapolating the linear fits to the tropopause. We compare OMI-derived NO2 VMRs with in situ aircraft profiles measured during the NASA Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign in 2006. The agreement is generally within the estimated uncertainties when appropriate data screening is applied. We then derive a global seasonal climatology of free-tropospheric NO2 VMR in cloudy conditions. Enhanced NO2 in the free troposphere commonly appears near polluted urban locations where NO2 produced in the boundary layer may be transported vertically out of the boundary layer and then horizontally away from the source. Signatures of lightning NO2 are also shown throughout low and middle latitude regions in summer months. A profile analysis of our cloud slicing data indicates signatures of uplifted and transported anthropogenic NO2 in the middle troposphere as well as lightning-generated NO2 in the upper troposphere. Comparison of the climatology with simulations from the Global Modeling Initiative (GMI) for cloudy conditions (cloud optical thicknesses > 10) shows similarities in the spatial patterns of continental pollution outflow. However, there are also some differences in

  11. A Lagrangian analysis of the impact of transport and transformation on the ozone stratification observed in the free troposphere during the ESCOMPTE campaign

    Directory of Open Access Journals (Sweden)

    A. Colette

    2006-01-01

    Full Text Available The ozone variability observed by tropospheric ozone lidars during the ESCOMPTE campaign is analyzed by means of a hybrid-Lagrangian modeling study. Transport processes responsible for the formation of ozone-rich layers are identified using a semi-Lagrangian analysis of mesoscale simulations to identify the planetary boundary layer (PBL footprint in the free troposphere. High ozone concentrations are related to polluted air masses exported from the Iberian PBL. The chemical composition of air masses coming from the PBL and transported in the free troposphere is evaluated using a Lagrangian chemistry model. The initial concentrations are provided by a model of chemistry and transport. Different scenarios are tested for the initial conditions and for the impact of mixing with background air in order to perform a quantitative comparison with the lidar observations. For this meteorological situation, the characteristic mixing time is of the order of 2 to 6 days depending on the initial conditions. Ozone is produced in the free troposphere within most air masses exported from the Iberian PBL at an average rate of 0.2 ppbv h−1, with a maximum ozone production of 0.4 ppbv h−1. Transport processes from the PBL are responsible for an increase of 13.3 ppbv of ozone concentrations in the free troposphere compared to background levels; about 45% of this increase is attributed to in situ production during the transport rather than direct export of ozone.

  12. Assessment of atmospheric processes driving ozone variations in the subtropical North Atlantic free troposphere

    Directory of Open Access Journals (Sweden)

    E. Cuevas

    2013-02-01

    Full Text Available An analysis of the 22-yr ozone (O3 series (1988–2009 at the subtropical high mountain Izaña~station (IZO; 2373 m a.s.l., representative of free troposphere (FT conditions, is presented. Diurnal and seasonal O3 variations as well as the O3 trend (0.19 ± 0.05 % yr−1 or 0.09 ppbv yr−1, are assessed. A climatology of O3 transport pathways using backward trajectories shows that higher O3 values are associated with air masses travelling above 4 km altitude from North America and North Atlantic Ocean, while low O3 is transported from the Saharan continental boundary layer (CBL. O3 data have been compared with PM10, 210Pb, 7Be, potential vorticity (PV and carbon monoxide (CO. A clear negative logarithmic relationship was observed between PM10 and surface O3 for all seasons. A similar relationship was found between O3 and 210Pb. The highest daily O3 values (90th percentile are observed in spring and in the first half of summer time. A positive correlation between O3 and PV, and between O3 and 7Be is found throughout the year, indicating that relatively high surface O3 values at IZO originate from the middle and upper troposphere. We find a good correlation between O3 and CO in winter, supporting the hypothesis of long-range transport of photochemically generated O3 from North America. Aged air masses, in combination with sporadic inputs from the upper troposphere, are observed in spring, summer and autumn. In summer time high O3 values seem to be the result of stratosphere-to-troposphere (STT exchange processes in regions neighbouring the Canary Islands. Since 1995–1996, the North Atlantic Oscillation has changed from a predominantly high positive phase to alternating between negative

  13. Quantification of mesoscale transport across the boundaries of the free troposphere: a new method and applications to ozone

    Directory of Open Access Journals (Sweden)

    F. Gheusi

    2004-12-01

    Full Text Available A new Lagrangian method is proposed to quantify the transport of ozone – or any other atmospheric constituent – by objectively-defined air-masses. In the framework of mesoscale modelling, this method is an alternative to classical Eulerian or trajectory-based methods, which suffer from many drawbacks at this scale. The elementary air-parcels are tagged with their initial location (what is made possible in the model by passive transport of three tracer fields initialized with the space coordinates. This enables to retrieve not only their back-trajectories but also their physical and chemical history. This information is in turn used to relevantly define transporting air-masses along objective criteria. For instance the ozone mass that has left the planetary boundary layer (PBL to intrude the free troposphere (FT in a given time interval, is carried by the ensemble of air-parcels that were initially in the PBL but are finally in the FT. Such an air-mass can be characterized by e.g., a criterion on the initial and final values of the turbulent kinetic energy of the air-parcels. The last step to obtain the sought ozone mass is a simple spatial integration of the ozone concentration over the so-defined air-mass. Two case-studies are presented as illustrations with increasing complexity: (i the downward transport of ozone accompanying a tropopause fold, across a mid-tropospheric altitude level; (ii a case of PBL-to-FT transport, as evoked above.

  14. Influence of corona discharge on the ozone budget in the tropical free troposphere: a case study of deep convection during GABRIEL

    Science.gov (United States)

    Bozem, H.; Fischer, H.; Gurk, C.; Schiller, C. L.; Parchatka, U.; Koenigstedt, R.; Stickler, A.; Martinez, M.; Harder, H.; Kubistin, D.; Williams, J.; Eerdekens, G.; Lelieveld, J.

    2014-09-01

    Convective redistribution of ozone and its precursors between the boundary layer (BL) and the free troposphere (FT) influences photochemistry, in particular in the middle and upper troposphere (UT). We present a case study of convective transport during the GABRIEL campaign over the tropical rain forest in Suriname in October 2005. During one measurement flight the inflow and outflow regions of a cumulonimbus cloud (Cb) have been characterized. We identified a distinct layer between 9 and 11 km altitude with enhanced mixing ratios of CO, O3, HOx, acetone and acetonitrile. The elevated O3 contradicts the expectation that convective transport brings low-ozone air from the boundary layer to the outflow region. Entrainment of ozone-rich air is estimated to account for 62% (range: 33-91%) of the observed O3. Ozone is enhanced by only 5-6% by photochemical production in the outflow due to enhanced NO from lightning, based on model calculations using observations including the first reported HOx measurements over the tropical rainforest. The "excess" ozone in the outflow is most probably due to direct production by corona discharge associated with lightning. We deduce a production rate of 5.12 × 1028 molecules O3 flash-1 (range: 9.89 × 1026-9.82 × 1028 molecules O3 flash-1), which is at the upper limit of the range reported previously.

  15. Free tropospheric peroxyacetyl nitrate (PAN and ozone at Mount Bachelor: potential causes of variability and timescale for trend detection

    Directory of Open Access Journals (Sweden)

    E. V. Fischer

    2011-06-01

    Full Text Available We report on the first multi-year springtime measurements of PAN in the free troposphere over the US Pacific Northwest. The measurements were made at the summit of Mount Bachelor (43.979° N, 121.687° W; 2.7 km a.s.l. by gas chromatography with electron capture detector during spring 2008, 2009 and 2010. This dataset provides an observational estimate of the month-to-month and springtime interannual variability of PAN mixing ratios in this region. Springtime seasonal mean (1 April–20 May PAN mixing ratios at Mount Bachelor varied from 100 pptv to 152 pptv. The standard deviation of the three seasonal means was 28 pptv, 21 % of the springtime mean. We summarize the interannual variability in three factors expected to drive PAN variability: biomass burning, transport efficiency over the central and eastern Pacific, and transport temperature.

    Zhang et al. (2008 used the GEOS-Chem global chemical transport model to show that rising Asian NOx emissions from 2000 to 2006 resulted in a relatively larger positive trend in PAN than O3 over western North America. However the model results only considered monotonic changes in Asian emissions, whereas other factors, such as biomass burning, isoprene emissions or climate change can induce greater variability in the atmospheric concentrations and thus extend the time needed for trend detection. We combined the observed variability in PAN and O3 at Mount Bachelor with a range of possible future trends in these species to determine the observational requirements to detect such trends. Though the relative increase in PAN is expected to be larger than that of O3, PAN is more variable. If PAN mixing ratios are currently increasing at a rate of 4 % per year due to rising Asian emissions, we would detect a trend with 13 years of measurements at a site like Mount Bachelor. If the corresponding trend in O3 is 1 % per year, the trends in O3

  16. Free tropospheric peroxyacetyl nitrate (PAN and ozone at Mount Bachelor: causes of variability and timescale for trend detection

    Directory of Open Access Journals (Sweden)

    E. V. Fischer

    2011-02-01

    Full Text Available We report on the first multi-year springtime measurements of PAN in the free troposphere over the US Pacific Northwest. The measurements were made at the summit of Mount Bachelor (43.979° N, 121.687° W; 2.7 km a.s.l. by gas chromatography with electron capture detector during spring 2008, 2009, and 2010. This dataset provides an observational estimate of the month-to-month and springtime interannual variability of PAN mixing ratios in this region. Springtime seasonal mean (1 April–20 May PAN mixing ratios at Mount Bachelor varied from 100 pptv to 152 pptv. The standard deviation of the three seasonal means was 28 pptv, 21% of the springtime mean.

    We focus on three factors that we expect to drive PAN variability: biomass burning, transport efficiency over the central and eastern Pacific, and transport temperature. There was an early and unusually strong fire source in southeastern Russia in spring 2008 due to early snow melt, and several fire plumes were observed at Mount Bachelor. Colder air mass transport from higher altitudes in April 2009 is consistent with the higher average PAN mixing ratios observed at MBO during this month. A trough located off the US Pacific Northwest coast in April 2010 caused reduced transport from the north in spring 2010 as compared to previous years. It also facilitated more frequent transport to Mount Bachelor during spring 2010 from the southwest and from lower elevations.

    Zhang et al. (2008 used the GEOS-Chem global chemical transport model to show that rising Asian NOx emissions from 2000 to 2006 resulted in a relatively larger positive trend in PAN than O3 over western North America. However the model results only considered monotonic changes in Asian emissions, whereas other factors, such as biomass burning, isoprene emissions or climate change can complicate the atmospheric concentrations. We combined the observed variability in PAN and O3 at Mount

  17. Convective Signatures in Ozone Profiles: Guidance for Cloud Models

    Science.gov (United States)

    Stone, J. B.; Thompson, A. M.; Miller, S. K.; Witte, J. C.; Pickering, K. E.; Tao, W. K.

    2006-05-01

    Ozone throughout the free troposphere is a tracer for convection, stratospheric exchange and pollution. Convective influences are typically manifested in two ways: (1) redistribution of ozone from the boundary-layer to free troposphere. In unpolluted regions, this usually means decreasing ozone in the upper troposphere (UT) or UT/LS (upper troposphere-lower stratosphere). Over polluted regions, the opposite may occur. (2) enhancing O3 precursors (NO, CO, hydrocarbons) in the free troposphere, through redistribution, or in the case of lightning, through direct production of NO, adds to photochemical ozone formation. Since about 1990 we have studied ozone dynamics and photochemistry with cloud-resolving (CRM) and larger-scale models. Aircraft profiles of O3, ozone precursors (NO, CO, hydrocarbons) and photochemically related constituents guide model input and are used to evaluate model output. Recently, we have used a semi-empirical approach ("lamina-layering," after Pierce and Grant [1998]) to identifying convective impacts on ozone profiles taken with soundings. The latter are measured by ozonesondes that are flown with radiosondes, to collect PTU data. The advantage of ozonesondes is consistent vertical sampling of ozone into the UT/LS with 5- 25 m resolution, and regular frequency at stations where they are launched. Examples of convective influence in ozone profiles - case studies and climatology at selected locations - will be shown for mid-latitudes and tropics. In mid-latitudes convective ozone budgets are compared to influences of stratospheric exchange and pollution. In the tropics, convective impacts reflect El Nino, the MJO and possible trends in a cooling UT/LS.

  18. A multi-model analysis of vertical ozone profiles

    Directory of Open Access Journals (Sweden)

    D. W. Tarasick

    2009-12-01

    Full Text Available A multi-model study of the long-range transport of ozone and its precursors from major anthropogenic source regions was coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP under the Convention on Long-range Transboundary Air Pollution (LRTAP. Vertical profiles of ozone at 12-h intervals in year 2001 are available from twelve of the models contributing to this study and are compared here with observed profiles from ozonesondes. The contributions from each major source region are analysed for selected sondes, and this analysis is supplemented by retroplume calculations using the FLEXPART Lagrangian particle dispersion model to provide insight into the origin of ozone transport events and the cause of differences between the models and observations.

    In the boundary layer ozone levels are in general strongly affected by regional sources and sinks. With a considerably longer lifetime in the free troposphere, ozone here is to a much larger extent affected by processes on a larger scale such as intercontinental transport and exchange with the stratosphere. Such individual events are difficult to trace over several days or weeks of transport. As a result statistical relationships between models and ozone sonde measurements are far less satisfactory than for surface measurements at all seasons. The lowest bias between model calculated ozone profiles and the ozone sonde measurements is seen in the winter and autumn months. Following the increase in photochemical activity in the spring and summer months the spread in model results increases and the agreement between ozone sonde measurements and the individual models deteriorates further.

    At selected sites calculated contributions to ozone levels in the free troposphere from intercontinental transport are presented. Intercontinental transport is identified based on differences in model calculations with unperturbed emissions and emissions reduced by 20% by

  19. A multi-model analysis of vertical ozone profiles

    Directory of Open Access Journals (Sweden)

    J. E. Jonson

    2010-06-01

    Full Text Available A multi-model study of the long-range transport of ozone and its precursors from major anthropogenic source regions was coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP under the Convention on Long-range Transboundary Air Pollution (LRTAP. Vertical profiles of ozone at 12-h intervals from 2001 are available from twelve of the models contributing to this study and are compared here with observed profiles from ozonesondes. The contributions from each major source region are analysed for selected sondes, and this analysis is supplemented by retroplume calculations using the FLEXPART Lagrangian particle dispersion model to provide insight into the origin of ozone transport events and the cause of differences between the models and observations.

    In the boundary layer ozone levels are in general strongly affected by regional sources and sinks. With a considerably longer lifetime in the free troposphere, ozone here is to a much larger extent affected by processes on a larger scale such as intercontinental transport and exchange with the stratosphere. Such individual events are difficult to trace over several days or weeks of transport. This may explain why statistical relationships between models and ozonesonde measurements are far less satisfactory than shown in previous studies for surface measurements at all seasons. The lowest bias between model-calculated ozone profiles and the ozonesonde measurements is seen in the winter and autumn months. Following the increase in photochemical activity in the spring and summer months, the spread in model results increases, and the agreement between ozonesonde measurements and the individual models deteriorates further.

    At selected sites calculated contributions to ozone levels in the free troposphere from intercontinental transport are shown. Intercontinental transport is identified based on differences in model calculations with unperturbed emissions and

  20. Global Free-tropospheric NO2 Abundances Derived Using a Cloud Slicing Technique from AURA OMI

    Science.gov (United States)

    Choi, S.; Joiner, J.; Choi, Y.; Duncan, B.N.; Vasilkov, A.; Krotkov, N.; Bucsela, E.J.

    2014-01-01

    We derive free-tropospheric NO2 volume mixing ratios (VMRs) by applying a cloud-slicing technique to data from the Ozone Monitoring Instrument (OMI) on the Aura satellite. In the cloud-slicing approach, the slope of the above-cloud NO2 column versus the cloud scene pressure is proportional to the NO2 VMR. In this work, we use a sample of nearby OMI pixel data from a single orbit for the linear fit. The OMI data include cloud scene pressures from the rotational-Raman algorithm and above-cloud NO2 vertical column density (VCD) (defined as the NO2 column from the cloud scene pressure to the top of the atmosphere) from a differential optical absorption spectroscopy (DOAS) algorithm. We compare OMI-derived NO2 VMRs with in situ aircraft profiles measured during the NASA Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign in 2006. The agreement is generally within the estimated uncertainties when appropriate data screening is applied. We then derive a global seasonal climatology of free-tropospheric NO2 VMR in cloudy conditions. Enhanced NO2 in the free troposphere commonly appears near polluted urban locations where NO2 produced in the boundary layer may be transported vertically out of the boundary layer and then horizontally away from the source. Signatures of lightning NO2 are also shown throughout low and middle latitude regions in summer months. A profile analysis of our cloud-slicing data indicates signatures of lightning-generated NO2 in the upper troposphere. Comparison of the climatology with simulations from the global modeling initiative (GMI) for cloudy conditions (cloud optical depth less than10) shows similarities in the spatial patterns of continental pollution outflow. However, there are also some differences in the seasonal variation of free-tropospheric NO2 VMRs near highly populated regions and in areas affected by lightning-generated NOx.

  1. Global 3-D modeling of atmospheric ozone in the free troposphere and the stratosphere with emphasis on midlatitude regions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brasseur, G.; Tie, X.; Walters, S.

    1999-03-01

    The authors have used several global chemical/transport models (1) to study the contribution of various physical, chemical, and dynamical processes to the budget of mid-latitude ozone in the stratosphere and troposphere; (2) to analyze the potential mechanisms which are responsible for the observed ozone perturbations at mid-latitudes of the lower stratosphere and in the upper troposphere; (3) to calculate potential changes in atmospheric ozone response to anthropogenic changes (e.g., emission of industrially manufactured CFCs, CO, and NO{sub x}) and to natural perturbations (e.g., volcanic eruptions and biomass burning); and (4) to estimate the impact of these changes on the radiative forcing to the climate system and on the level of UV-B radiation at the surface.

  2. A Case Study On the Relative Influence of Free Tropospheric Subsidence, Long Range Transport and Local Production in Modulating Ozone Concentrations over Qatar

    Science.gov (United States)

    Ayoub, Mohammed; Ackermann, Luis; Fountoukis, Christos; Gladich, Ivan

    2016-04-01

    The Qatar Environment and Energy Research Institute (QEERI) operates a network of air quality monitoring stations (AQMS) around the Doha metropolitan area and an ozonesonde station with regular weekly launches and occasional higher frequency launch experiments (HFLE). Six ozonesondes were launched at 0700 LT/0400 UTC and 1300 LT/1000 UTC over a three day period between 10-12 September, 2013. We present the analysis of the ozonesonde data coupled with regional chemical transport modeling over the same time period using WRF-Chem validated against both the ozonesonde and surface AQMS measurements. The HFLE and modeling show evidence of both subsidence and transboundary transport of ozone during the study period, coupled with a strong sea breeze circulation on the 11th of September resulting in elevated ozone concentrations throughout the boundary layer. The development of the sea breeze during the course of the day and influence of the early morning residual layer versus daytime production is quantified. The almost complete titration of ozone in the morning hours of 11 September, 2013 is attributed to local vehicular emissions of NOx and stable atmospheric conditions prevailing over the Doha area. The relative contribution of long range transport of ozone along the Arabian Gulf coast and local urban emissions are discussed.

  3. Cumulus cloud venting of mixed layer ozone

    Science.gov (United States)

    Ching, J. K. S.; Shipley, S. T.; Browell, E. V.; Brewer, D. A.

    1985-01-01

    Observations are presented which substantiate the hypothesis that significant vertical exchange of ozone and aerosols occurs between the mixed layer and the free troposphere during cumulus cloud convective activity. The experiments utilized the airborne Ultra-Violet Differential Absorption Lidar (UV-DIAL) system. This system provides simultaneous range resolved ozone concentration and aerosol backscatter profiles with high spatial resolution. Evening transects were obtained in the downwind area where the air mass had been advected. Space-height analyses for the evening flight show the cloud debris as patterns of ozone typically in excess of the ambient free tropospheric background. This ozone excess was approximately the value of the concentration difference between the mixed layer and free troposphere determined from independent vertical soundings made by another aircraft in the afternoon.

  4. Quantifying Ozone Production throughout the Boundary Layer from High Frequency Tethered Profile Measurements during a High Ozone Episode in the Uinta Basin, Utah

    Science.gov (United States)

    Sterling, C. W.; Johnson, B.; Schnell, R. C.; Oltmans, S. J.; Cullis, P.; Hall, E. G.; Jordan, A. F.; Windell, J.; McClure-Begley, A.; Helmig, D.; Petron, G.

    2015-12-01

    During the Uinta Basin Winter Ozone Study (UBWOS) in Jan - Feb 2013, 735 tethered ozonesonde profiles were obtained at 3 sites including during high wintertime photochemical ozone production events that regularly exceeded 125 ppb. High resolution profiles of ozone and temperature with altitude, measured during daylight hours, showed the development of approximately week long high ozone episodes building from background levels of ~40 ppb to >150 ppb. The topography of the basin combined with a strong temperature inversion trapped oil and gas production effluents in the basin and the snow covered surface amplified the sun's radiation driving the photochemical ozone production at rates up to 13 ppb/hour in a cold layer capped at 1600-1700 meters above sea level. Beginning in mid-morning, ozone mixing ratios throughout the cold layer increased until late afternoon. Ozone mixing ratios were generally constant with height indicating that ozone production was nearly uniform throughout the depth of the cold pool. Although there was strong diurnal variation, ozone mixing ratios increased during the day more than decreased during the night, resulting in elevated levels the next morning; an indication that nighttime loss processes did not compensate for daytime production. Even though the 3 tethersonde sites were at elevations differing by as much as 140 m, the top of the high ozone layer was nearly uniform in altitude at the 3 locations. Mobile van surface ozone measurements across the basin confirmed this capped structure of the ozone layer; the vehicle drove out of high ozone mixing ratios at an elevation of ~1900 meters above sea level, above which free tropospheric ozone mixing ratios of ~50 ppb were measured. Exhaust plumes from a coal-fired power plant in the eastern portion of the basin were intercepted by the tethersondes. The structure of the profiles clearly showed that effluents in the plumes were not mixed downward and thus did not contribute precursor nitrogen

  5. Active and Widespread Halogen Chemistry in the Tropical and Subtropical Free Troposphere

    Science.gov (United States)

    Wang, Siyuan; Schmidt, Johan A.; Baidar, Sunil; Coburn, Sean; Dix, Barbara; Koenig, Theodore K.; Apel, Eric; Bowdalo, Dene; Campos, Teresa; Eloranta, Ed; Evans, Mathew J.; Digangi, Joshua P.; Zondlo, Mark A.; Gao, Ru-shan; Haggerty, Julie A.; Hall, Samuel R.; Hornbrook, Rebecca S.; Jacob, Daniel; Morley, Bruce; Pierce, Bradley; Reeves, Mike; Romashkin, Pavel; Ter Schure, Arnout; Volkamer, Rainer

    2015-01-01

    Halogens in the troposphere are increasingly recognized as playing an important role for atmospheric chemistry, and possibly climate. Bromine and iodine react catalytically to destroy ozone (O3), oxidize mercury, and modify oxidative capacity that is relevant for the lifetime of greenhouse gases. Most of the tropospheric O3 and methane (CH4) loss occurs at tropical latitudes. Here we report simultaneous measurements of vertical profiles of bromine oxide (BrO) and iodine oxide (IO) in the tropical and subtropical free troposphere (10degN to 40degS), and show that these halogens are responsible for 34% of the column-integrated loss of tropospheric O3. The observed BrO concentrations increase strongly with altitude (approx.3.4 pptv at 13.5 km), and are 2-4 times higher than predicted in the tropical free troposphere. BrO resembles model predictions more closely in stratospheric air. The largest model low bias is observed in the lower tropical transition layer (TTL) over the tropical eastern Pacific Ocean, and may reflect a missing inorganic bromine source supplying an additional 2.5-6.4 pptv total inorganic bromine (Bry), or model overestimated Bry wet scavenging. Our results highlight the importance of heterogeneous chemistry on ice clouds, and imply an additional Bry source from the debromination of sea salt residue in the lower TTL. The observed levels of bromine oxidize mercury up to 3.5 times faster than models predict, possibly increasing mercury deposition to the ocean. The halogen-catalyzed loss of tropospheric O3 needs to be considered when estimating past and future ozone radiative effects.

  6. Mercury oxidation from bromine chemistry in the free troposphere over the southeastern US

    Directory of Open Access Journals (Sweden)

    S. Coburn

    2015-10-01

    Full Text Available The elevated deposition of atmospheric mercury over the Southeastern United States is currently not well understood. Here we measure partial columns and vertical profiles of bromine monoxide (BrO radicals, a key component of mercury oxidation chemistry, to better understand the processes and altitudes at which mercury is being oxidized in the atmosphere. We use the data from a ground-based MAX-DOAS instrument located at a coastal site ~ 1 km from the Gulf of Mexico in Gulf Breeze, FL, where we had previously detected tropospheric BrO (Coburn et al., 2011. Our profile retrieval assimilates information about stratospheric BrO from the WACCM chemical transport model, and uses only measurements at moderately low solar zenith angles (SZA to estimate the BrO slant column density contained in the reference spectrum (SCDRef. The approach has 2.6 degrees of freedom, and avoids spectroscopic complications that arise at high SZA; knowledge about SCDRef helps to maximize sensitivity in the free troposphere (FT. A cloud-free case study day with low aerosol load (9 April 2010 provided optimal conditions for distinguishing marine boundary layer (MBL: 0–1 km and free tropospheric (FT: 1–15 km BrO from the ground. The average daytime tropospheric BrO vertical column density (VCD of ~ 2.3 × 1013 molec cm−2 (SZA 5 molec cm−2 s−1 for bromine, while contributions from ozone (O3 and chlorine (Cl were 0.9 × 105 and 0.2 × 105 molec cm−2 s−1, respectively. The GOM formation rate is sensitive to recently proposed atmospheric scavenging reactions of the HgBr adduct by nitrogen dioxide (NO2, and to a lesser extent also HO2 radicals. Using a 3-D chemical transport model, we find that surface GOM variations are typical also of other days, and are mainly derived from the free troposphere. Bromine chemistry is active in the FT over Gulf Breeze, where it forms water-soluble GOM that is subsequently available for wet scavenging by thunderstorms or transport to

  7. New dynamic NNORSY ozone profile climatology

    Directory of Open Access Journals (Sweden)

    A. K. Kaifel

    2012-01-01

    Full Text Available Climatological ozone profile data are widely used as a-priori information for total ozone using DOAS type retrievals as well as for ozone profile retrieval using optimal estimation, for data assimilation or evaluation of 3-D chemistry-transport models and a lot of other applications in atmospheric sciences and remote sensing. For most applications it is important that the climatology represents not only long term mean values but also the links between ozone and dynamic input parameters. These dynamic input parameters should be easily accessible from auxiliary datasets or easily measureable, and obviously should have a high correlation with ozone. For ozone profile these parameters are mainly total ozone column and temperature profile data. This was the outcome of a user consultation carried out in the framework of developing a new, dynamic ozone profile climatology.

    The new ozone profile climatology is based on the Neural Network Ozone Retrieval System (NNORSY widely used for ozone profile retrieval from UV and IR satellite sounder data. NNORSY allows implicit modelling of any non-linear correspondence between input parameters (predictors and ozone profile target vector. This paper presents the approach, setup and validation of a new family of ozone profile climatologies with static as well as dynamic input parameters (total ozone and temperature profile. The neural network training relies on ozone profile measurement data of well known quality provided by ground based (ozonesondes and satellite based (SAGE II, HALOE, and POAM-III measurements over the years 1995–2007. In total, four different combinations (modes for input parameters (date, geolocation, total ozone column and temperature profile are available.

    The geophysical validation spans from pole to pole using independent ozonesonde, lidar and satellite data (ACE-FTS, AURA-MLS for individual and time series comparisons as well as for analysing the vertical and meridian

  8. Free Tropospheric Aerosols Over South Africa

    Science.gov (United States)

    Elina, Giannakaki; Pfüller, Anne; Korhonen, Kimmo; Mielonen, Tero; Laakso, Lauri; Vakkari, Ville; Baars, Holger; Engelmann, Ronny; Beukes, Johan P.; Van Zyl, Pieter G.; Josipovic, Miroslav; Tiitta, Petri; Chiloane, Kgaugelo; Piketh, Stuart; Lihavainen, Heikki; Lehtinen, Kari

    2016-06-01

    Raman lidar data of one year was been analyzed to obtain information relating aerosol layers in the free troposphere over South Africa, Elandsfontein. In total, 375 layers were observed above the boundary layer during the period 30th January 2010 - 31st January 2011. The seasonal behavior of aerosol layer geometrical characteristics as well as intensive and extensive optical properties were studied. In general, layers were observed at higher altitudes during spring (2520 ± 970 m) while the geometrical layer depth did not show any significant seasonal dependence. The variations of most of the intensive and extensive optical properties analyzed were high during all seasons. Layers were observed at mean altitude of 2100 m ± 1000 m with lidar ratio at 355 nm of 67 ± 25 and extinction-related Ångström exponent between 355 and 532 nm of 1.9 ± 0.8.

  9. Free Tropospheric Aerosols Over South Africa

    Directory of Open Access Journals (Sweden)

    Elina Giannakaki

    2016-01-01

    Full Text Available Raman lidar data of one year was been analyzed to obtain information relating aerosol layers in the free troposphere over South Africa, Elandsfontein. In total, 375 layers were observed above the boundary layer during the period 30th January 2010 – 31st January 2011. The seasonal behavior of aerosol layer geometrical characteristics as well as intensive and extensive optical properties were studied. In general, layers were observed at higher altitudes during spring (2520 ± 970 m while the geometrical layer depth did not show any significant seasonal dependence. The variations of most of the intensive and extensive optical properties analyzed were high during all seasons. Layers were observed at mean altitude of 2100 m ± 1000 m with lidar ratio at 355 nm of 67 ± 25 and extinction-related Ångström exponent between 355 and 532 nm of 1.9 ± 0.8.

  10. Detection of iodine oxide and glyoxal in the tropical free troposphere

    Science.gov (United States)

    Dix, B. K.; Bresch, J. F.; Baidar, S.; Volkamer, R.

    2011-12-01

    Iodine oxide (IO) and glyoxal (CHOCHO) have the potential to significantly affect atmospheric chemistry and climate. IO is formed by destroying ozone and both trace gases influence the oxidation capacity of the atmosphere. Potential for radiative impacts arise from the formation of iodine oxide particles and from the production of secondary organic aerosol by glyoxal. We present profile retrievals of IO, CHOCHO, formaldehyde and aerosol extinction form airborne differential absorption spectroscopy (DOAS) data. Measurements were conducted with the University of Colorado Airborne Multi-Axis-DOAS (CU AMAX-DOAS) instrument aboard the NSF/NCAR GV research aircraft (HIAPER) during a research flight over the remote tropical Pacific Ocean south of Hawaii. IO and CHOCHO were observed up to 9 and 6km altitude respectively. This is surprising, because both trace gases form near the ocean surface and are very short lived. Current models fail to explain these observations. The vertical distributions of our measured trace gases and aerosol extinction provide independent means to investigate further the source mechanism for reactive gases in the tropical remote boundary layer and free troposphere. We discuss this in the context of local dynamics based on air mass history analyses provided by the Weather Research and Forecast Model (WRF). Our observations are potentially relevant for missing sources of cloud condensation nuclei in the upper troposphere.

  11. Tropospheric ozone columns and ozone profiles for Kiev in 2007

    CERN Document Server

    Shavrina, A V; Sheminova, V A; Synyavski, I I; Romanyuk, Ya O; Eremenko, N A; Ivanov, Yu S; Monsar, O A; Kroon, M

    2010-01-01

    We report on ground-based FTIR observations being performed within the framework of the ESA-NIVR-KNMI project 2907 entitled "OMI validation by ground based remote sensing: ozone columns and atmospheric profiles" for the purpose of OMI data validation. FTIR observations were performed during the time frames August-October 2005, June-October 2006 and March-October 2007, mostly under cloud free and clear sky conditions and in some days from early morning to sunset covering the full range of solar zenith angles possible. Ozone column and ozone profile data were obtained for the year 2005 using spectral modeling of the ozone spectral band profile near 9.6 microns with the MODTRAN3 band model based on the HITRAN-96 molecular absorption database. The total ozone column values retrieved from FTIR observations are biased low with respect to OMI-DOAS data by 8-10 DU on average, where they have a relatively small standard error of about 2%. FTIR observations for the year 2006 were simulated by MODTRAN4 modeling. For the...

  12. Ozone profiles above Palmer Station, Antarctica

    Science.gov (United States)

    Torres, Arnold L.; Brothers, George

    1988-01-01

    NASA's Goddard Space Flight Center/Wallops Flight Facility conducted a series of 52 balloon-borne measurements of vertical ozone profiles over the National Science Foundation (NSF) research facility at Palmer Station, Antarctica (64 deg 46 S, 64 deg 3 W) between August 9 and October 24, 1987. High resolution measurements were made from ground level to an average of 10 mb. While much variation was seen in the profile amounts of ozone, it is clear that a progressive depletion of ozone occurred during the measurement period, with maximum depletion taking place in the 17 to 19 km altitude region. Ozone partial pressures dropped by about 95 percent in this region. Shown here are plotted time dependences of ozone amounts observed at 17 km and at arbitrarily selected altitudes below (13 km) and above (24 km) the region of maximum depletion. Ozone partial pressure at 17 km is about 150nb in early August, and has decreased to less than 10nb in the minimums in October. The loss rate is of the order of 1.5 percent/day. In summary, a progressive depletion in stratospheric ozone over Palmer Station was observed from August to October, 1987. Maximum depletion occurred in the 17 to 19 km range, and amounted to 95 percent. Total ozone overburden decreased by up to 50 percent during the same period.

  13. Ozone Profile Comparisons at High Latitudes

    Science.gov (United States)

    McPeters, R. D.; Bojkov, B. R.; Deland, M.

    2008-05-01

    Ozone profiles measured by both satellite and ground based instruments at a site at 67.4 N were compared. The measurements were made during the Sodankyla Total Column Ozone Intercomparison (SAUNA) which was held in Sodankyla, Finland in March-April 2006 in support of Aura validation. Measurements by the NOAA 16 SBUV/2 and the Aura MLS instrument were compared with lidar and sonde profiles measured in Sodankyla. Profiles from the satellite instruments generally agreed with profiles from the ground-based instruments to within about 10%. The total column ozone comparisons showed that SBUV/2 and the Aura OMI instrument agreed well with the double Brewer instruments provided the scenes were carefully matched.

  14. A New SBUV Ozone Profile Time Series

    Science.gov (United States)

    McPeters, Richard

    2011-01-01

    Under NASA's MEaSUREs program for creating long term multi-instrument data sets, our group at Goddard has re-processed ozone profile data from a series of SBUV instruments. We have processed data from the Nimbus 7 SBUV instrument (1979-1990) and data from SBUV/2 instruments on NOAA-9 (1985-1998), NOAA-11 (1989-1995), NOAA-16 (2001-2010), NOAA-17 (2002-2010), and NOAA-18 (2005-2010). This reprocessing uses the version 8 ozone profile algorithm but now uses the Brion, Daumont, and Malicet (BMD) ozone cross sections instead of the Bass and Paur cross sections. The new cross sections have much better resolution, and extended wavelength range, and a more consistent temperature dependence. The re-processing also uses an improved cloud height climatology based on the Raman cloud retrievals of OMI. Finally, the instrument-to-instrument calibration is set using matched scenes so that ozone diurnal variation in the upper stratosphere does not alias into the ozone trands. Where there is no instrument overlap, SAGE and MLS are used to estimate calibration offsets. Preliminary analysis shows a more coherent time series as a function of altitude. The net effect on profile total column ozone is on average an absolute reduction of about one percent. Comparisons with ground-based systems are significantly better at high latitudes.

  15. Merged ozone profiles from four MIPAS processors

    Science.gov (United States)

    Laeng, Alexandra; von Clarmann, Thomas; Stiller, Gabriele; Dinelli, Bianca Maria; Dudhia, Anu; Raspollini, Piera; Glatthor, Norbert; Grabowski, Udo; Sofieva, Viktoria; Froidevaux, Lucien; Walker, Kaley A.; Zehner, Claus

    2017-04-01

    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) was an infrared (IR) limb emission spectrometer on the Envisat platform. Currently, there are four MIPAS ozone data products, including the operational Level-2 ozone product processed at ESA, with the scientific prototype processor being operated at IFAC Florence, and three independent research products developed by the Istituto di Fisica Applicata Nello Carrara (ISAC-CNR)/University of Bologna, Oxford University, and the Karlsruhe Institute of Technology-Institute of Meteorology and Climate Research/Instituto de Astrofísica de Andalucía (KIT-IMK/IAA). Here we present a dataset of ozone vertical profiles obtained by merging ozone retrievals from four independent Level-2 MIPAS processors. We also discuss the advantages and the shortcomings of this merged product. As the four processors retrieve ozone in different parts of the spectra (microwindows), the source measurements can be considered as nearly independent with respect to measurement noise. Hence, the information content of the merged product is greater and the precision is better than those of any parent (source) dataset. The merging is performed on a profile per profile basis. Parent ozone profiles are weighted based on the corresponding error covariance matrices; the error correlations between different profile levels are taken into account. The intercorrelations between the processors' errors are evaluated statistically and are used in the merging. The height range of the merged product is 20-55 km, and error covariance matrices are provided as diagnostics. Validation of the merged dataset is performed by comparison with ozone profiles from ACE-FTS (Atmospheric Chemistry Experiment-Fourier Transform Spectrometer) and MLS (Microwave Limb Sounder). Even though the merging is not supposed to remove the biases of the parent datasets, around the ozone volume mixing ratio peak the merged product is found to have a smaller (up to 0.1 ppmv

  16. Long Term Three-dimensional Model Parameterization and Evaluation By The Use of Combined Continuous Ozone Lidar Profiles, Vertical Wind Profiles and Ground Based Monitors Obtained During The Escompte Campaign

    Science.gov (United States)

    Frejafon, E.; Robin, D.; Kalthoff, N.; Pesch, M.

    ESCOMPTE 2001 is a field experiment that took place in the southeast of France, in order to understand chemical transformation and transport and then to improve numer- ical models devoted to pollution study and forecasting. To achieve this goal, a stand alone ozone LIDAR was installed from June 11th to July 13th in Cadarache, 30 km northeast of the cities of Marseilles and Aix-en-Provence, downwind from the ozone precursors emissions zones in case of sea-breeze development conditions. This full automatic LIDAR provided vertical profiles of ozone concentration and also the mix- ing height dynamics, between 100 m and 2 500 m, with a spatial resolution of less than 100 m and a temporal resolution of 3 minutes. Data obtained with the LIDAR were connected to ground based ozone monitor installed on the same location by the air quality network, in order to evaluate the data quality and to obtain ozone verti- cal profiles from the ground level up to the free troposphere, which is an optimized support for tree-dimensional photochemical models parameterization and evaluation. The ozone diurnal cycles and the daily atmospheric stratification recorded during this month show the fast dynamics during pollution episodes, resulting from combined photochemical and transport effects in case of sea-breeze. They also specify the re- maining ozone vertical structure during non polluted episodes. Such long-term infor- mation is then a consistent support for model parameterization and evaluation, as it can specify the ozone concentration and the PBL dynamics from the beginning to the last end of a pollution episode. This one month vertical ozone profiles, which were compiled in a movie, will be presented and discussed more precisely. The obtained results, combined with continuous vertical wind profiles obtained with a SODAR and a ground based meteorological station installed on the same location, give access to the continuous ozone flux vertical profiles and the PBL dynamics.

  17. Tropospheric ozone columns and ozone profiles for Kiev in 2007

    OpenAIRE

    Shavrina, A. V.; Pavlenko, Ya. V.; Veles, A. A.; Sheminova, V. A.; Synyavski, I. I.; Sosonkin, M. G.; Romanyuk, Ya. O.; Eremenko, N. A.; Ivanov, Yu. S.; Monsar, O. A.; Kroon, M.

    2010-01-01

    We report on ground-based FTIR observations being performed within the framework of the ESA-NIVR-KNMI project 2907 entitled "OMI validation by ground based remote sensing: ozone columns and atmospheric profiles" for the purpose of OMI data validation. FTIR observations were performed during the time frames August-October 2005, June-October 2006 and March-October 2007, mostly under cloud free and clear sky conditions and in some days from early morning to sunset covering the full range of sola...

  18. An Ozone Profile Climatology based on Ozone-sondes and AURA MLS Data with Added Profiles for Ozone Hole Conditions and Wave One Parameterization for Tropical Tropospheric Ozone.

    Science.gov (United States)

    Labow, G. J.; Ziemke, J. R.; Stauffer, R. M.; McPeters, R. D.

    2016-12-01

    An updated ozone profile climatology has been created for use in satellite and/or ground based ozone retrievals. This climatology was formed by combining 12 years of data from the Microwave Limb Sounder (MLS) with data from balloon sondes. The MLS instrument on Aura has excellent latitude coverage and measures ozone daily from the upper troposphere to the lower mesosphere at 3.5 km resolution. This climatology consists of monthly average ozone profiles for ten degree latitude zones covering pressure altitudes (Z* pressure altitude coordinates) from 0 to 65 km. Ozone below 8 km (below 13 km at tropical latitudes) is based on ozonesondes, while ozone above 16 km (21 km at tropical latitudes) is based on MLS measurements. Sonde and MLS (V4.2) data are blended in the transition region. This climatology features two distinct profiles for the southern hemisphere (60-90S) from August to December. The profiles labeled "Hole" correspond to measurements taken inside the polar vortex while the profiles in the file labeled "No Hole" are averages taken from measurements outside the vortex. The filtering criteria for determining a profile inside/outside the vortex was done by analyzing the 50hPa ozone values. The 50hPa values are where the chemical depletion process is greatest and thus are a good indicator of the vortex boundary. We also include a representation of the observed zonal wave one tropospheric ozone feature in the tropics. Because ozonesonde stations are sparse in this region, we derive the tropospheric column ozone residual by subtracting the MLS stratospheric column from the Ozone Monitoring Instrument (OMI) total column. We then combine the result with ozonesonde data. A function is fitted to the data in several dimensions to better depict the climatology of both the tropospheric column and vertical distribution of tropospheric ozone in the tropics.

  19. Ozone height profiles using laser heterodyne radiometer

    Science.gov (United States)

    Jain, S. L.

    1994-01-01

    The monitoring of vertical profiles of ozone and related minor constituents in the atmosphere are of great significance to understanding the complex interaction between atmospheric dynamics, chemistry and radiation budget. An ultra high spectral resolution tunable CO2 laser heterodyne radiometer has been designed, developed and set up at the National Physical Laboratory, New Delhi to obtain vertical profiles of various minor constituents the characteristic absorption lines in 9 to 11 micron spectral range. Due to its high spectral resolution the lines can be resolved completely and data obtained are inverted to get vertical profiles using an inversion technique developed by the author. In the present communication the salient features of the laser heterodyne system and the results obtained are discussed in detail.

  20. Lidar Observation of Tropopause Ozone Profiles in the Equatorial Region

    Science.gov (United States)

    Shibata, Yasukuni; Nagasawa, Chikao; Abo, Makoto

    2016-06-01

    Tropospheric ozone in the tropics zone is significant in terms of the oxidizing efficiency and greenhouse effect. However, in the upper troposphere, the ozone budget in the tropics has not been fully understood yet because of the sparsity of the range-resolved observations of vertical ozone concentration profiles. A DIAL (differential absorption lidar) system for vertical ozone profiles have been installed in the equatorial tropopause region over Kototabang, Indonesia (100.3E, 0.2S). We have observed large ozone enhancement in the upper troposphere, altitude of 13 - 17 km, concurring with a zonal wind oscillation associated with the equatorial Kelvin wave around the tropopause at equatorial region.

  1. Optical remote measurement of ozone in cirrus clouds; Optische Fernmessung von Ozon in Zirruswolken

    Energy Technology Data Exchange (ETDEWEB)

    Reichardt, J. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Physikalische und Chemische Analytik

    1998-12-31

    The subject of this thesis is theoretical and experimental investigations into the simultaneous optical remote measurement of atmospheric ozone concentration and particle properties. A lidar system was developed that combines the Raman-lidar and the polarization-lidar with the Raman-DIAL technique. An error analysis is given for ozone measurements in clouds. It turns out that the wavelength dependencies of photon multiple scattering and of the particle extinction coefficient necessitate a correction of the measured ozone concentration. To quantify the cloud influence, model calculations based on particle size distributions of spheres are carried out. The most important experimental result of this thesis is the measured evidence of pronounced minima in the ozone distribution in a humid upper troposphere shortly before and during cirrus observation. Good correlation between ozone-depleted altitude ranges and ice clouds is found. This finding is in contrast to ozone profiles measured in a dry and cloud-free troposphere. (orig.) 151 refs.

  2. NO2 seasonal evolution in the North Subtropical free troposphere

    Directory of Open Access Journals (Sweden)

    M. Gil-Ojeda

    2015-05-01

    Full Text Available Three years of Multi-Axis Differential Optical Absorption Spectroscopy (MAXDOAS measurements (2011–2013 have been used for estimating the NO2 mixing ratio along a horizontal line of sight from the high mountain Subtropical observatory of Izaña, at 2370 m a.s.l. (NDACC station, 28.3° N, 16.5° W. The method is based on horizontal path calculation from the O2–O2 collisional complex at the 477 nm absorption band which is measured simultaneously to the NO2, and is applicable under low aerosols loading conditions. The MAXDOAS technique, applied in horizontal mode in the free troposphere, minimizes the impact of the NO2 contamination resulting from the arrival of MBL airmasses from thermally forced upwelling breeze during central hours of the day. Comparisons with in-situ observations show that during most of measuring period the MAXDOAS is insensitive or very little sensitive to the upwelling breeze. Exceptions are found during pollution events under southern wind conditions. On these occasions, evidence of fast efficient and irreversible transport from the surface to the free troposphere is found. Background NO2 vmr, representative of the remote free troposphere, are in the range of 20–45 pptv. The observed seasonal evolution shows an annual wave where the peak is in phase with the solar radiation. Model simulations with the chemistry-climate CAM-Chem model are in good agreement with the NO2 measurements, and are used to further investigate the possible drivers of the NO2 seasonality observed at Izaña.

  3. Intercomparison of stratospheric ozone and temperature profiles during the October 2005 Hohenpeissenberg Ozone Profiling Experiment (HOPE)

    Science.gov (United States)

    Steinbrecht, W.; McGee, T. J.; Twigg, L. W.; Claude, H.; Schönenborn, F.; Sumnicht, G. K.; Silbert, D.

    2009-01-01

    Thirteen clear nights in October 2005 allowed successful intercomparison of the stationary lidar operated since 1987 by the German Weather Service (DWD) at Hohenpeissenberg (47.8° N, 11.0° E) with the Network for the Detection of Atmospheric Composition Change (NDACC) travelling standard lidar operated by NASA's Goddard Space Flight Center. Both lidars provide ozone profiles in the stratosphere, and temperature profiles in the strato- and mesosphere. Additional ozone profiles came from on-site Brewer/Mast ozonesondes, additional temperature profiles from Vaisala RS92 radiosondes launched at Munich (65 km north-east), and from operational analyses by the US National Centers for Environmental Prediction (NCEP). The intercomparison confirmed a low bias for ozone from the DWD lidar in the 33 to 43 km region, by up to 10%. This bias is caused by the DWD ozone algorithm. It will be removed in a future version. Between 20 and 33 km, agreement between both lidars, and ozonesondes below 30 km, is good with ozone differences less than 3 to 5%. Results are consistent with previous comparisons of the DWD lidar with SAGE, GOMOS and other satellite instruments. The intercomparison did uncover a 290 m upward shift of the DWD lidar data. When this shift is removed, agreement with ozone from the NASA lidar improves below 20 km, with remaining differences usually less than 5%, and not statistically significant. Precision (repeatability) for the lidar ozone data is better than 5% between 20 and 40 km altitude, dropping to 10% near 45 km, and 50% near 50 km. Temperature from the DWD lidar has a 1 to 2 K cold bias from 30 to 65 km against the NASA lidar, and a 2 to 4 K cold bias against radiosondes and NCEP. This is consistent with previous intercomparisons against NCEP or radiosondes. The cold bias against the NASA lidar disappears when the DWD lidar data are corrected for the afore-mentioned 290 m range error, and more appropriate values for the Earth's gravity acceleration are

  4. Intercomparison of stratospheric ozone and temperature profiles during the October 2005 Hohenpeissenberg Ozone Profiling Experiment (HOPE

    Directory of Open Access Journals (Sweden)

    W. Steinbrecht

    2009-01-01

    Full Text Available Thirteen clear nights in October 2005 allowed successful intercomparison of the stationary lidar operated since 1987 by the German Weather Service (DWD at Hohenpeissenberg (47.8° N, 11.0° E with the Network for the Detection of Atmospheric Composition Change (NDACC travelling standard lidar operated by NASA's Goddard Space Flight Center. Both lidars provide ozone profiles in the stratosphere, and temperature profiles in the strato- and mesosphere. Additional ozone profiles came from on-site Brewer/Mast ozonesondes, additional temperature profiles from Vaisala RS92 radiosondes launched at Munich (65 km north-east, and from operational analyses by the US National Centers for Environmental Prediction (NCEP. The intercomparison confirmed a low bias for ozone from the DWD lidar in the 33 to 43 km region, by up to 10%. This bias is caused by the DWD ozone algorithm. It will be removed in a future version. Between 20 and 33 km, agreement between both lidars, and ozonesondes below 30 km, is good with ozone differences less than 3 to 5%. Results are consistent with previous comparisons of the DWD lidar with SAGE, GOMOS and other satellite instruments. The intercomparison did uncover a 290 m upward shift of the DWD lidar data. When this shift is removed, agreement with ozone from the NASA lidar improves below 20 km, with remaining differences usually less than 5%, and not statistically significant. Precision (repeatability for the lidar ozone data is better than 5% between 20 and 40 km altitude, dropping to 10% near 45 km, and 50% near 50 km. Temperature from the DWD lidar has a 1 to 2 K cold bias from 30 to 65 km against the NASA lidar, and a 2 to 4 K cold bias against radiosondes and NCEP. This is consistent with previous intercomparisons against NCEP or radiosondes. The cold bias against the NASA lidar disappears when the DWD lidar data are corrected for the afore-mentioned 290 m range error, and more appropriate values for the Earth's gravity

  5. Surface and free tropospheric sources of methanesulfonic acid over the tropical Pacific Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuzhong; Wang, Yuhang; Gray, Burton A.; Gu, Dasa; Mauldin, L.; Cantrell, Chris; Bandy, Alan R.

    2014-07-28

    The production of sulfate aerosols through marine sulfur chemistry is critical to the climate system. However, not all sulfur compounds have been studied in detail. One such compound is methanesulfonic acid (MSA). In this study, we use a one-dimensional chemical transport model to analyze observed vertical profiles of gas-phase MSA during the Pacific Atmospheric Sulfur Experiment (PASE). The observed sharp decrease in MSA from the surface to 600m implies a surface source of 4.0×107 molecules/cm2/s. Evidence suggests that this source is photolytically enhanced. We also find that the observed large increase of MSA from the boundary layer into the lower free troposphere (1000-2000m) results mainly from the degassing of MSA from dehydrated aerosols. We estimate a source of 1.2×107 molecules/cm2/s through this pathway. This source of soluble MSA potentially provides an important precursor for new particle formation in the free troposphere over tropics, affecting the climate system through aerosol-cloud interactions.

  6. Characteristics of tropospheric ozone variability over an urban site in Southeast Asia: A study based on MOZAIC and MOZART vertical profiles

    Science.gov (United States)

    Sahu, L. K.; Sheel, Varun; Kajino, M.; Gunthe, Sachin S.; Thouret, Valérie; Nedelec, P.; Smit, Herman G.

    2013-08-01

    Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) profiles of O3 and CO were analyzed to study their variation in the troposphere over Bangkok. Mixing ratios of O3 and CO were enhanced in planetary boundary layer (PBL) being highest in winter followed by summer and wet seasons. The daytime profiles of O3 show higher values compared to nighttime observations in PBL region, but little differences were observed in the free troposphere. The decreasing mixing ratios of O3 in the lower and upper troposphere were associated with shallow and deep convections, respectively. Back trajectory and fire count data indicate that the seasonal variations in trace gases were caused mainly by the regional shift in long-range transport and biomass-burning patterns. In wet season, flow of oceanic air and negligible presence of local biomass burning resulted in lowest O3 and CO, while their high levels in dry season were due to extensive biomass burning and transport of continental air masses. The Model for Ozone and Related Chemical Tracers (MOZART) underestimated both O3 and CO in the PBL region but overestimated these in the free troposphere. Simulations of O3 and CO also show the daytime/nighttime differences but do not capture several key features observed in the vertical distributions. The observed and simulated values of O3 and CO during September-November 2006 were significantly higher than the same period of 2005. The year-to-year differences were mainly due to El Niño-led extensive fires in Indonesia during 2006 but normal condition during 2005.

  7. 3-D evaluation of tropospheric ozone simulations by an ensemble of regional Chemistry Transport Model

    Directory of Open Access Journals (Sweden)

    D. Zyryanov

    2011-10-01

    Full Text Available A detailed 3-D evaluation of an ensemble of five regional CTM's and one global CTM with focus on free tropospheric ozone over Europe is presented. It is performed over a summer period (June to August 2008 in the context of the GEMS-RAQ project. A data set of about 400 vertical ozone profiles from balloon soundings and commercial aircraft at 11 different locations is used for model evaluation, in addition to satellite measurements with the infrared nadir IASI sounder showing largest sensitivity to free tropospheric ozone. In the free troposphere, models using the same top and boundary conditions from MOZART-IFS exhibit a systematic negative bias with respect to observed profiles of about −20%. RMSE values are constantly growing with altitude, from 22% to 32% to 53%, respectively for 0–2 km, 2–8 km and 8–10 km height ranges. Lowest correlation is found in the free troposphere, with minimum coefficients (R between 0.2 to 0.45 near 8 km, as compared to 0.7 near the surface and similar values around 10 km. Use of hourly instead of monthly chemical boundary conditions generally improves the model skill. Lower tropospheric 0–6 km partial ozone columns derived from IASI show a clear North-South gradient over Europe, which is qualitatively reproduced by the models. Also the temporal variability showing decreasing ozone concentrations in the lower troposphere (0–6 km columns during summer is well catched by models even if systematic bias remains (the value of the bias being also controlled by the type of BC used. A multi-day case study of a through with low tropopause was conducted and showed that both IASI and models were able to resolve strong horizontal gradients of middle and upper tropospheric ozone occurring in the vicinity of an upper tropospheric frontal zone.

  8. Impact of using different ozone cross sections on ozone profile retrievals from Global Ozone Monitoring Experiment (GOME ultraviolet measurements

    Directory of Open Access Journals (Sweden)

    X. Liu

    2007-07-01

    Full Text Available We investigate the effect of using three different cross section data sets on ozone profile retrievals from Global Ozone Monitoring Experiment (GOME ultraviolet measurements (289–307 nm, 326–337 nm. These include Bass-Paur, Brion, and GOME flight model cross sections (references below. Using different cross sections can significantly affect the retrievals, by up to 12 Dobson Units (DU, 1 DU=2.69×1016 molecules cm−2 in total column ozone, up to 10 DU in tropospheric column ozone, and up to 100% in retrieved ozone values for individual atmospheric layers. Compared to using the Bass-Paur and GOME flight model cross sections, using the Brion cross sections not only reduces fitting residuals by 15–60% in the Huggins bands, but also improves retrievals, especially in the troposphere, as seen from validation against ozonesonde measurements. Therefore, we recommend using the Brion cross section for ozone profile retrievals from ultraviolet measurements. The total column ozone retrieved using the GOME flight model cross sections is systematically lower, by 7–10 DU, than that retrieved using the Brion and Bass-Paur cross sections and is also systematically lower than Total Ozone Mapping Spectrometer (TOMS observations. This study demonstrates the need for improved ozone cross section measurements in the ultraviolet to improve profile retrievals of this key atmospheric constituent.

  9. Influence of the ozone profile above Madrid (Spain) on Brewer estimation of ozone air mass factor

    Energy Technology Data Exchange (ETDEWEB)

    Anton, M. [Univ. de Extremadura, Badajoz (Spain). Dept. de Fisica; Evora Univ. (PT). Goephysics Centre of Evora (CGE); Lopez, M.; Banon, M. [Agenica Estatal de Meteorologia (AEMET), Madrid (Spain); Costa, M.J.; Silva, A.M. [Evora Univ. (PT). Goephysics Centre of Evora (CGE); Evora Univ. (Portugal). Dept. of Physics; Serrano, A. [Univ. de Extremadura, Badajoz (Spain). Dept. de Fisica; Bortoli, D. [Evora Univ. (PT). Goephysics Centre of Evora (CGE); Vilaplana, J.M. [Instituto Nacional de Tecnica Aeroespacial (INTA), Huelva (Spain). Estacion de Sondeos Atmosferico ' ' El Arenosillo' '

    2009-07-01

    The methodology used by Brewer spectroradiometers to estimate the ozone column is based on differential absorption spectroscopy. This methodology employs the ozone air mass factor (AMF) to derive the total ozone column from the slant path ozone amount. For the calculating the ozone AMF, the Brewer algorithm assumes that the ozone layer is located at a fixed height of 22 km. However, for a real specific site the ozone presents a certain profile, which varies spatially and temporally depending on the latitude, altitude and dynamical conditions of the atmosphere above the site of measurements. In this sense, this work address the reliability of the mentioned assumption and analyses the influence of the ozone profiles measured above Madrid (Spain) in the ozone AMF calculations. The approximated ozone AMF used by the Brewer algorithm is compared with simulations obtained using the libRadtran radiative transfer model code. The results show an excellent agreement between the simulated and the approximated AMF values for solar zenith angle lower than 75 . In addition, the relative differences remain lower than 2% at 85 . These good results are mainly due to the fact that the altitude of the ozone layer assumed constant by the Brewer algorithm for all latitudes notably can be considered representative of the real profile of ozone above Madrid (average value of 21.7{+-}1.8 km). The operational ozone AMF calculations for Brewer instruments are limited, in general, to SZA below 80 . Extending the usable SZA range is especially relevant for Brewer instruments located at high mid-latitudes. (orig.)

  10. Influence of the ozone profile above Madrid (Spain) on Brewer estimation of ozone air mass factor

    Science.gov (United States)

    Antón, M.; López, M.; Costa, M. J.; Serrano, A.; Bortoli, D.; Bañón, M.; Vilaplana, J. M.; Silva, A. M.

    2009-08-01

    The methodology used by Brewer spectroradiometers to estimate the ozone column is based on differential absorption spectroscopy. This methodology employs the ozone air mass factor (AMF) to derive the total ozone column from the slant path ozone amount. For the calculating the ozone AMF, the Brewer algorithm assumes that the ozone layer is located at a fixed height of 22 km. However, for a real specific site the ozone presents a certain profile, which varies spatially and temporally depending on the latitude, altitude and dynamical conditions of the atmosphere above the site of measurements. In this sense, this work address the reliability of the mentioned assumption and analyses the influence of the ozone profiles measured above Madrid (Spain) in the ozone AMF calculations. The approximated ozone AMF used by the Brewer algorithm is compared with simulations obtained using the libRadtran radiative transfer model code. The results show an excellent agreement between the simulated and the approximated AMF values for solar zenith angle lower than 75°. In addition, the relative differences remain lower than 2% at 85°. These good results are mainly due to the fact that the altitude of the ozone layer assumed constant by the Brewer algorithm for all latitudes notably can be considered representative of the real profile of ozone above Madrid (average value of 21.7±1.8 km). The operational ozone AMF calculations for Brewer instruments are limited, in general, to SZA below 80°. Extending the usable SZA range is especially relevant for Brewer instruments located at high mid-latitudes.

  11. Aerosol chemical elemental mass concentration at lower free troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Carmo Freitas, Maria do [Reactor-ITN, Technological and Nuclear Institute, E.N. 10, 2686-953 Sacavem (Portugal)], E-mail: cfreitas@itn.pt; Dionisio, Isabel [Reactor-ITN, Technological and Nuclear Institute, E.N. 10, 2686-953 Sacavem (Portugal); Fialho, Paulo; Barata, Filipe [Chemistry and Physics of Atmosphere, Azores University, 9701-851 Terra Cha (Portugal)

    2007-08-21

    This paper shows the use of Instrumental neutron activation analysis (INAA) technique to determine elemental masses collected by a seven-wavelength Aethalometer instrument at the summit of Pico mountain in the Azorean archipelago, situated in the Central North Atlantic Ocean. Each sample corresponds to air particulate matter measured continuously for periods of approximately 24 h taken from 14th July 2001 through 14th July 2002. The statistical analysis of the coefficients of correlation between all the elements identified, permitted to establish six groups that could potentially be associated with the type of source responsible for the aerosol sampled in the lower free troposphere at the Azorean archipelago. Calculation of the synoptic back trajectories helped to corroborate the use of the iron/cesium relation as a tracer for the Saharan dust aerosol. It was demonstrated that INAA constituted an important tool to identify these events.

  12. A novel tropopause-related climatology of ozone profiles

    NARCIS (Netherlands)

    Sofieva, V.F.; Tamminen, J.; Kyrola, E.; Mielonen, T.; Veefkind, J.P.; Hassler, B.; Bodeker, G.E.

    2014-01-01

    A new ozone climatology, based on ozonesonde and satellite measurements, spanning the altitude region between the earth's surface and ~60 km is presented (TpO3 climatology). This climatology is novel in that the ozone profiles are categorized according to calendar month, latitude and local tropopaus

  13. Tropospheric Ozone Profile Information Derived From "Cloud Slicing"

    Science.gov (United States)

    Ziemke, Jerald R.; Chandra, S.; Bhartia, P. K.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    This study introduces a new approach to obtain ozone vertical profile information given coincident satellite measurements of both cloud-top pressure and above-cloud column ozone. This method is denoted "cloud slicing". In this study information of cloud-top pressure is derived from Geostationary Orbital Earth Satellite (GOES) infrared data, while above-cloud column ozone is obtained from the Earth Probe total ozone mapping spectrometer (TOMS) instrument. Several case examples are presented showing the feasibility of this technique as well as providing new geophysical results. Because the TOMS instrument measures backscattered UV radiation, it does detect ozone lying below dense water vapor clouds. This opaque property of TOMS can be used directly in conjunction with co-located cloud-top pressure data to derive ozone profile information in the troposphere. The cloud slicing method is an extension of the "Convective Cloud Differential" (CCD) method. In the CCD method, tropospheric column ozone (i.e., the total vertical column of ozone lying in the troposphere) is computed by taking total column ozone with low reflectivity (R less than 0.2) and subtracting from this a nearby measurement of above-cloud column ozone amount under conditions of high reflectivity (R greater than 0.9). (High reflectivity away from snow/ice conditions coincides with strong convection and tropopause-level clouds). The key element in determining tropospheric ozone profile information from the cloud slicing method is to have simultaneous and co-located measurements of both above-cloud column ozone and cloud-top pressure.

  14. Evaluation of ozone profile and tropospheric ozone retrievals from GEMS and OMI spectra

    Directory of Open Access Journals (Sweden)

    J. Bak

    2012-09-01

    Full Text Available Korea is planning to launch the GEMS (Geostationary Environment Monitoring Spectrometer instrument into a Geostationary (GEO platform in 2018 to monitor tropospheric air pollutants on an hourly basis over East Asia. GEMS will measure backscattered UV radiances covering the 300–500 nm wavelength range with a spectral resolution of 0.6 nm. The main objective of this study is to evaluate ozone profiles and stratospheric column ozone amounts retrieved from simulated GEMS measurements. Ozone Monitoring Instrument (OMI Level 1B radiances, which have the spectral range 270–500 nm at spectral resolution of 0.42–0.63 nm, are used to simulate the GEMS radiances. An optimal estimation-based ozone profile algorithm is used to retrieve ozone profiles from simulated GEMS radiances. Firstly, we compare the retrieval characteristics (including averaging kernels, degrees of freedom for signal, and retrieval error derived from the 270–330 nm (OMI and 300–330 nm (GEMS wavelength ranges. This comparison shows that the effect of not using measurements below 300 nm on tropospheric ozone retrievals is insignificant. However, the stratospheric ozone information decreases greatly from OMI to GEMS, by a factor of ∼2. The number of the independent pieces of information available from GEMS measurements is estimated to 3 on average in the stratosphere, with associated retrieval errors of ∼1% in stratospheric column ozone. The difference between OMI and GEMS retrieval characteristics is apparent for retrieving ozone layers above ∼20 km, with a reduction in the sensitivity and an increase in the retrieval errors for GEMS. We further investigate whether GEMS can resolve the stratospheric ozone variation observed from high vertical resolution EOS Microwave Limb Sounder (MLS. The differences in stratospheric ozone profiles between GEMS and MLS are comparable to those between OMI and MLS above ∼3 hPa (∼40 km except with slightly larger biases and larger

  15. Major Upgrades to the AIRS Version-6 Ozone Profile Methodology

    Science.gov (United States)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2015-01-01

    This research is a continuation of part of what was shown at the last AIRS Science Team Meeting in the talk Improved Water Vapor and Ozone Profiles in SRT AIRS Version-6.X and the AIRS February 11, 2015 NetMeeting Further improvements in water vapor and ozone profiles compared to Version-6.AIRS Version-6 was finalized in late 2012 and is now operational. Version-6 contained many significant improvements in retrieval methodology compared to Version-5. However, Version-6 retrieval methodology used for the water vapor profile q(p) and ozone profile O3(p) retrievals is basically unchanged from Version-5, or even from Version-4. Subsequent research has made significant improvements in both water vapor and O3 profiles compared to Version-6. This talk will concentrate on O3 profile retrievals. Improvements in water vapor profile retrievals are given in a separate presentation.

  16. Solar Backscatter UV (SBUV total ozone and profile algorithm

    Directory of Open Access Journals (Sweden)

    P. K. Bhartia

    2013-10-01

    Full Text Available We describe the algorithm that has been applied to develop a 42 yr record of total ozone and ozone profiles from eight Solar Backscatter UV (SBUV instruments launched on NASA and NOAA satellites since April 1970. The Version 8 (V8 algorithm was released more than a decade ago and has been in use since then at NOAA to produce their operational ozone products. The current algorithm (V8.6 is basically the same as V8, except for updates to instrument calibration, incorporation of new ozone absorption cross-sections, and new ozone and cloud height climatologies. Since the V8 algorithm has been optimized for deriving monthly zonal mean (MZM anomalies for ozone assessment and model comparisons, our emphasis in this paper is primarily on characterizing the sources of errors that are relevant for such studies. When data are analyzed this way the effect of some errors, such as vertical smoothing of short-term variability, and noise due to clouds and aerosols diminish in importance, while the importance of others, such as errors due to vertical smoothing of the quasi-biennial oscillation (QBO and other periodic and aperiodic variations, become more important. With V8.6 zonal mean data we now provide smoothing kernels that can be used to compare anomalies in SBUV profile and partial ozone columns with models. In this paper we show how to use these kernels to compare SBUV data with Microwave Limb Sounder (MLS ozone profiles. These kernels are particularly useful for comparisons in the lower stratosphere where SBUV profiles have poor vertical resolution but partial column ozone values have high accuracy. We also provide our best estimate of the smoothing errors associated with SBUV MZM profiles. Since smoothing errors are the largest source of uncertainty in these profiles, they can be treated as error bars in deriving interannual variability and trends using SBUV data and for comparing with other measurements. In the V8 and V8.6 algorithms we derive total

  17. Quantification of topographic venting of boundary layer air to the free troposphere

    Directory of Open Access Journals (Sweden)

    S. Henne

    2004-01-01

    Full Text Available Net vertical air mass export by thermally driven flows from the atmospheric boundary layer (ABL to the free troposphere (FT above deep Alpine valleys was investigated. The vertical export of pollutants above mountainous terrain is presently poorly represented in global chemistry transport models (GCTMs and needs to be quantified. Air mass budgets were calculated using aircraft observations obtained in deep Alpine valleys. The results show that on average 3 times the valley air mass is exported vertically per day under fair weather conditions. During daytime the type of valleys investigated in this study can act as an efficient 'air pump' that transports pollutants upward. The slope wind system within the valley plays an important role in redistributing pollutants. Nitrogen oxide emissions in mountainous regions are efficiently injected into the FT. This could enhance their ozone (O3 production efficiency and thus influences tropospheric pollution budgets. Once lifted to the FT above the Alps pollutants are transported horizontally by the synoptic flow and are subject to European pollution export. Forward trajectory studies show that under fair weather conditions two major pathways for air masses above the Alps dominate. Air masses moving north are mixed throughout the whole tropospheric column and further transported eastward towards Asia. Air masses moving south descend within the subtropical high pressure system above the Mediterranean.

  18. Quantification of topographic venting of boundary layer air to the free troposphere

    Directory of Open Access Journals (Sweden)

    S. Henne

    2003-10-01

    Full Text Available Net vertical air mass export by thermally driven f/lows from the atmospheric boundary layer (ABL to the free troposphere (FT above deep Alpine valleys was investigated. The vertical export of pollutants above mountainous terrain is presently poorly represented in global chemistry transport models (GCTMs and needs to be quantified. Air mass budgets were calculated using aircraft observations obtained in deep Alpine valleys. The results show that on average 3 times the valley air mass is exported vertically per day under fair weather conditions. During daytime the type of valleys investigated in this study can act as an efficient "air pump" that transports pollutants upward. The slope wind system within the valley plays an important role in redistributing pollutants. Nitrogen oxide emissions in mountainous regions are efficiently injected into the FT. This enhances their ozone production efficiency and thus influences tropospheric pollution budgets. Once lifted to the FT above the Alps pollutants are transported horizontally by the synoptic flow and are subject to European pollution export. Forward trajectory studies show that under fair weather conditions two major pathways for air masses above the Alps dominate. Air masses moving north are mixed throughout the whole tropospheric column and further transported eastward towards Asia. Air masses moving south descend within the subtropical high pressure system above the Mediterranean.

  19. Tropospheric ozonesonde profiles at long-term U.S. monitoring sites: 2. Links between Trinidad Head, CA, profile clusters and inland surface ozone measurements

    Science.gov (United States)

    Stauffer, Ryan M.; Thompson, Anne M.; Oltmans, Samuel J.; Johnson, Bryan J.

    2017-01-01

    Much attention has been focused on the transport of ozone (O3) to the western U.S., particularly given the latest revision of the National Ambient Air Quality Standard to 70 parts per billion by volume (ppbv) of O3. This makes quantifying the contributions of stratosphere-to-troposphere exchange, local pollution, and pollution transport to this region essential. To evaluate free-tropospheric and surface O3 in the western U.S., we use self-organizing maps to cluster 18 years of ozonesonde profiles from Trinidad Head, CA. Three of nine O3 mixing ratio profile clusters exhibit thin laminae of high O3 above Trinidad Head. The high O3 layers are located between 1 and 6 km above mean sea level and reside above an inversion associated with a northern location of the Pacific subtropical high. Ancillary data (reanalyses, trajectories, and remotely sensed carbon monoxide) help identify the high O3 sources in one cluster, but distinguishing mixed influences on the elevated O3 in other clusters is difficult. Correlations between the elevated tropospheric O3 and surface O3 at high-altitude monitors at Lassen Volcanic and Yosemite National Parks, and Truckee, CA, are marked and long lasting. The temporal correlations likely result from a combination of transport of baseline O3 and covarying meteorological parameters. Days corresponding to the high O3 clusters exhibit hourly surface O3 anomalies of +5-10 ppbv compared to a climatology; the positive anomalies can last up to 3 days after the ozonesonde profile. The profile and surface O3 links demonstrate the importance of regular ozonesonde profiling at Trinidad Head.

  20. Tropospheric Ozonesonde Profiles at Long-Term U.S. Monitoring Sites: 2. Links Between Trinidad Head, CA, Profile Clusters and Inland Surface Ozone Measurements

    Science.gov (United States)

    Stauffer, Ryan M.; Thompson, Anne M.; Oltmans, Samual J.; Johnson, Bryan J.

    2017-01-01

    Much attention has been focused on the transport of ozone (O3) to the western U.S., particularly given the latest revision of the National Ambient Air Quality Standard to 70 parts per billion by volume (ppbv) of O3. This makes quantifying the contributions of stratosphere-to-troposphere exchange, local pollution, and pollution transport to this region essential. To evaluate free-tropospheric and surface O3 in the western U.S., we use self-organizing maps to cluster 18 years of ozonesonde profiles from Trinidad Head, CA. Three of nine O3 mixing ratio profile clusters exhibit thin laminae of high O3 above Trinidad Head. The high O3 layers are located between 1 and 6 km above mean sea level and reside above an inversion associated with a northern location of the Pacific subtropical high. Ancillary data (reanalyses, trajectories, and remotely sensed carbon monoxide) help identify the high O3 sources in one cluster, but distinguishing mixed influences on the elevated O3 in other clusters is difficult. Correlations between the elevated tropospheric O3 and surface O3 at high-altitude monitors at Lassen Volcanic and Yosemite National Parks, and Truckee, CA, are marked and long lasting. The temporal correlations likely result from a combination of transport of baseline O3 and covarying meteorological parameters. Days corresponding to the high O3 clusters exhibit hourly surface O3 anomalies of +5-10 ppbv compared to a climatology; the positive anomalies can last up to 3 days after the ozonesonde profile. The profile and surface O3 links demonstrate the importance of regular ozonesonde profiling at Trinidad Head.

  1. Detection and Classification of Ozone Laminae Using Vertical Profiles of Ozone and Potential Temperature

    Science.gov (United States)

    Giljum, A. T., III; Minschwaner, K. R.; Manney, G. L.; Petropavlovskikh, I. V.

    2016-12-01

    We quantify ozone variability in the upper troposphere and lower stratosphere (UTLS) by analyzing lamination features in balloon measurements of ozone mixing ratio and potential temperature. Laminae are identified as sufficiently strong perturbations from basic state vertical profiles, which are derived on a case-by-case basis using smoothing methods applied within a vertical coordinate system relative to the WMO (temperature gradient) tropopause. The perturbations consistently show extensive lamination features in both ozone and potential temperature. We will describe methods that have been developed to minimize the contamination of lamina features by sharp changes in ozone and potential gradients near the tropopause. A laminae correlation technique is used to classify those particular features associated with gravity wave phenomena. We will present results of this analysis for the 25-year record of ozonesonde measurements from Boulder, Colorado, emphasizing the role of gravity waves on ozone variability in the UTLS region.

  2. Exchange of VSLS in the marine boundary layer with the free troposphere during SHIVA-SONNE

    Science.gov (United States)

    Fuhlbrügge, Steffen; Quack, Birgit; Tegtmeier, Susann; Atlas, Elliot; Sala, Stephan; Boenisch, Harald; Hepach, Helmke; Raimund, Stefan; Shi, Qiang; Krüger, Kirstin

    2013-04-01

    Significant contributions from short lived brominated and iodinated compounds to the stratospheric ozone budget are suspected especially from the tropical oceans particularly from coastal regions, where strong VSLS emissions are observed, caused by local biology (phytoplankton and macro algae). Due to the fast uplift of surface air by deep convection in the tropics, the ocean derived substances are expected to be transported to the stratosphere. Results from the SHIVA-SONNE ship campaign in the tropical West Pacific during 15 to 29 November 2011 revealed that the South China and Sulu seas comprise strong source regions of halocarbons for the atmosphere. Especially the bromoform fluxes were very high along the whole cruise and were in agreement with coastal fluxes from previous campaigns. Measurements of low air and high water concentrations of CH3I, CH2Br2, and CHBr3 support the derived air sea fluxes together with the high surface water temperatures and elevated wind speeds. The three airborne VSLS showed correlations and anti-correlations with some meteorological parameters (i.e. wind speed), while the mixing ratios of all compounds generally increased from the South China Sea towards the Sulu Sea region. A comparison of collocated VSLS measurements in the marine atmospheric boundary layer (MABL) between the research vessel SONNE and the aircraft FALCON revealed a good agreement. With a simple box-model we calculated the importance of the compounds sea-air flux related to their MABL-concentrations and lifetimes assuming a mean loss of 20% per day due to transport out of boundary layer into the free troposphere during the campaign. While the CH3I-flux approximately equaled its chemical loss, the fluxes of the brominated compounds were roughly ten times larger than needed to maintain the MABL mixing ratio, suggesting this region to be a very important oceanic source region for the atmosphere. Finally, we will compare the box-model loss from the MABL to the free

  3. Molecular Characterization of Free Tropospheric Aerosol Collected at the Pico Mountain Observatory

    Science.gov (United States)

    Dzepina, K.; Mazzoleni, C.; Fialho, P. J.; China, S.; Zhang, B.; Owen, R. C.; Helmig, D.; Jacques, H.; Kumar, S.; Perlinger, J. A.; Kramer, L. J.; Dziobak, M.; Ampadu, M.; Olsen, S. C.; Wuebbles, D. J.; Mazzoleni, L. R.

    2014-12-01

    the two samples was corroborated by the changes in ozone, ethane, propane, morphology of particles, as well as by the FLEXPART retroplumes. In this presentation we will report the first detailed molecular characterization of free tropospheric aged aerosol intercepted at the Pico Mountain Observatory.

  4. The contribution of oceanic halocarbons to marine and free tropospheric air over the tropical West Pacific

    Science.gov (United States)

    Fuhlbrügge, Steffen; Quack, Birgit; Tegtmeier, Susann; Atlas, Elliot; Hepach, Helmke; Shi, Qiang; Raimund, Stefan; Krüger, Kirstin

    2016-06-01

    Emissions of halogenated very-short-lived substances (VSLSs) from the oceans contribute to the atmospheric halogen budget and affect tropospheric and stratospheric ozone. Here, we investigate the contribution of natural oceanic VSLS emissions to the marine atmospheric boundary layer (MABL) and their transport into the free troposphere (FT) over the tropical West Pacific. The study concentrates on bromoform, dibromomethane and methyl iodide measured on ship and aircraft during the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) campaign in the South China and Sulu seas in November 2011. Elevated oceanic concentrations for bromoform, dibromomethane and methyl iodide of on average 19.9, 5.0 and 3.8 pmol L-1, in particular close to Singapore and to the coast of Borneo, with high corresponding oceanic emissions of 1486, 405 and 433 pmol m-2 h-1 respectively, characterise this tropical region as a strong source of these compounds. Atmospheric mixing ratios in the MABL were unexpectedly relatively low with 2.08, 1.17 and 0.39 ppt for bromoform, dibromomethane and methyl iodide. We use meteorological and chemical ship and aircraft observations, FLEXPART trajectory calculations and source-loss estimates to identify the oceanic VSLS contribution to the MABL and to the FT. Our results show that the well-ventilated MABL and intense convection led to the low atmospheric mixing ratios in the MABL despite the high oceanic emissions. Up to 45 % of the accumulated bromoform in the FT above the region originates from the local South China Sea area, while dibromomethane is largely advected from distant source regions and the local ocean only contributes 20 %. The accumulated methyl iodide in the FT is higher than can be explained with local contributions. Possible reasons, uncertainties and consequences of our observations and model estimates are discussed.

  5. Uplifting of carbon monoxide from biomass burning and anthropogenic sources to the free troposphere in East Asia

    Science.gov (United States)

    Ding, Ke; Liu, Jane; Ding, Aijun; Liu, Qiang; Zhao, Tianliang; Shi, Jiancheng; Han, Yong; Wang, Hengmao; Jiang, Fei

    2016-04-01

    East Asia has experienced rapid development with increasing carbon monoxide (CO) emission in the past decades. Therefore, uplifting CO from the boundary layer to the free troposphere in East Asia can have great implications on regional air quality around the world. It can also influence global climate due to the longer lifetime of CO at higher altitudes. In this study, three cases of high CO episodes in the East China Sea and the Sea of Japan from 2003 to 2005 are examined with spaceborne Measurements of Pollution in the Troposphere (MOPITT) data, in combination with aircraft measurements from the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) program. Through analyses of the simulations from a chemical transport model GEOS-Chem and a trajectory dispersion model FLEXPART, we found different CO signatures in the elevated CO and distinct transport pathways and mechanisms for these cases.

  6. Carbon monoxide observations from ground stations in France and Europe and long trends in the free troposphere

    Directory of Open Access Journals (Sweden)

    A. Chevalier

    2008-02-01

    Full Text Available Continuous CO measurements performed at 3 high-altitude stations in France are analyzed for the first time. Data are provided by the new PAES (Pollution Atmospherique à l'Echelle Synoptique network since 2002 for the Puy de Dôme and 2004 for the Pic du Midi and the Donon. CO measurements of 5 another European stations have been analysed to put the PAES stations in an European perspective. The January 2002–April 2005 CO mean levels of surface stations capture the stratification revealed by climatological CO profiles from the airborne observation system MOZAIC (Measurement of OZone and water vapour by Airbus In-service Aircraft. The deviation between the free tropospheric reference MOZAIC and surface data above 2000 m is less than 10% and this deviation can be explained in term of spatial variability, as evidenced by MOPITT CO retrievals at 700 hPa. This suggests that, averaged at a seasonal time scale (4 months, surface data at stations above 2000 m are representative of background CO concentration.

    This paper focuses then on trends since the 1980s–1990s. The comparison between old (1982–1983 and recent CO mixing ratio (2005 at the Pic du Midi leads to a 10% decrease, consistent with the continuous data series at Zugspitze (ZSP from 1991 to 2004. This decrease was found to be mainly due to a negative trend of January–April mean levels. The decrease in CO sources over France and Europe appears to be responsible for that trend. The stable values of June–September mean levels suggest that the summertime oxidizing capacity of the atmosphere related to OH radicals is important enough to counterbalance any CO inputs into the troposphere. Our study shows a recent change in CO evolution since 2000 over Western Europe, with a slowed down decrease in CO concentration. Studying specifically the interactions between CO, CH4 and OH turns out to be needed, however, to find definitive explanations to those observations.

  7. The impact from emitted NO{sub x} and VOC in an aircraft plume. Model results for the free troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Pleijel, K.

    1998-04-01

    The chemical fate of gaseous species in a specific aircraft plume is investigated using an expanding box model. The model treats the gas phase chemical reactions in detail, while other parameters are subject to a high degree of simplification. Model simulations were carried out in a plume up to an age of three days. The role of emitted VOC, NO{sub x} and CO as well as of background concentrations of VOC, NO{sub x} and ozone on aircraft plume chemistry was investigated. Background concentrations were varied in a span of measured values in the free troposphere. High background concentrations of VOC were found to double the average plume production of ozone and organic nitrates. In a high NO{sub x} environment the plume production of ozone and organic nitrates decreased by around 50%. The production of nitric acid was found to be less sensitive to background concentrations of VOC, and increased by up to 50% in a high NO{sub x} environment. Mainly, emitted NO{sub x} caused the plume production of ozone, nitric acid and organic nitrates. The ozone production during the first hours is determined by the relative amount of NO{sub 2} in the NO{sub x} emissions. The impact from emitted VOC was in relative values up to 20% of the ozone production and 65% of the production of organic nitrates. The strongest relative influence from VOC was found in an environment characterized by low VOC and high NO{sub x} background concentrations, where the absolute peak production was lower than in the other scenarios. The effect from emitting VOC and NO{sub x} at the same time added around 5% for ozone, 15% for nitric acid and 10% for organic nitrates to the plume production caused by NO{sub x} and VOC when emitted separately 47 refs, 15 figs, 4 tabs

  8. Observations and Model Analysis of Enhanced Oxidized Mercury in the Free Troposphere during NOMADSS

    Science.gov (United States)

    Gratz, L.; Shah, V.; Ambrose, J. L., II; Jaffe, D. A.; Jaegle, L.; Selin, N. E.; Song, S.; Festa, J.; Stutz, J.

    2014-12-01

    Mercury (Hg) is a hazardous neurotoxic pollutant with complex atmospheric speciation and chemistry. It exists in the atmosphere primarily as gaseous elemental Hg (GEM), with a lifetime on the order of months, while oxidized Hg is more water soluble and deposits readily. Thus, Hg is considered both a local and a global pollutant. There are significant limitations in our understanding of global Hg cycling, including the sources and chemical mechanisms producing enhanced oxidized Hg in the free troposphere. Ground-based and airborne studies have associated free tropospheric oxidized Hg with GEM oxidation and atmospheric subsidence. Chemical transport models suggest that free tropospheric GEM oxidation is largely attributable to bromine (Br) atoms. During the 2013 Nitrogen Oxidants Mercury and Aerosol Distributions Sources and Sinks (NOMADSS) campaign, we sought to quantify the distribution and chemical transformation of Hg species in the free troposphere over the southeastern US. Enhanced oxidized Hg over North Texas was associated with long-range transport and subsidence from the sub-tropical Pacific free troposphere, where GEOS-Chem predicts air enriched in oxidized Hg. Bromine oxide (BrO) concentrations were also elevated over North Texas, perhaps supporting halogen oxidation as a source of free tropospheric oxidized Hg. Over the Atlantic Ocean, oxidized Hg up to 680 pg m-3 was associated with GEM oxidation and subsidence within the Atlantic high pressure system. The standard GEOS-Chem model underestimates free tropospheric oxidized Hg in these locations by a factor of three to ten, possibly due to underestimation of Br concentrations and/or uncertainty in the Hg+Br rate constant. We investigate GEOS-Chem's improved ability to reproduce the observed concentrations by tripling free tropospheric Br in the tropics and implementing a faster Hg+Br oxidation mechanism. Results have important implications for our understanding of global-scale atmospheric Hg chemistry and

  9. Total ozone columns and vertical ozone profiles above Kiev in 2005-2008

    CERN Document Server

    Shavrina, A V; Sheminova, V A; Pavlenko, Ya V; Veles, A A; Synyavski, I I; Romanyuk, Ya O

    2010-01-01

    The study of total ozone columns above Kiev and variations of ozone concentrations in the troposphere at different altitudes above Kiev was carried out using ground-based Fourier Transform InfraRed (FTIR) spectrometric observations that are taken on a routine basis at the Main Astronomical Observatory of the National Academy of Sciences of Ukraine (MAO NASU). This study was performed within the framework of the international ESA-NIVR-KNMI OMI-AO project no.2907 entitled OMI validation by ground-based remote sensing: ozone columns and atmospheric profiles during the time frame 2005-2008. The infrared FTIR spectral observations of direct solar radiation in the wavelength range of 2-12 micron as transmitted through the Earth's atmosphere were performed during the months of April-October of each year. The aim of the project was the validation of total ozone columns and vertical ozone profiles as obtained by the Ozone Monitoring Instrument (OMI)) onboard of the NASA EOS-Aura scientific satellite platform. The mode...

  10. Langley Mobile Ozone Lidar: Ozone and Aerosol Atmospheric Profiling for Air Quality Research

    Science.gov (United States)

    De Young, Russell; Carrion, William; Ganoe, Rene; Pliutau, Denis; Gronoff, Guillaume; Berkoff, Timothy; Kuang, Shi

    2017-01-01

    The Langley mobile ozone lidar (LMOL) is a mobile ground-based ozone lidar system that consists of a pulsed UV laser producing two UV wavelengths of 286 and 291 nm with energy of approximately 0.2 mJ/pulse 0.2 mJ/pulse and repetition rate of 1 kHz. The 527 nm pump laser is also transmitted for aerosol measurements. The receiver consists of a 40 cm parabolic telescope, which is used for both backscattered analog and photon counting. The lidar is very compact and highly mobile. This demonstrates the utility of very small lidar systems eventually leading to space-based ozone lidars. The lidar has been validated by numerous ozonesonde launches and has provided ozone curtain profiles from ground to approximately 4 km in support of air quality field missions.

  11. Langley mobile ozone lidar: ozone and aerosol atmospheric profiling for air quality research.

    Science.gov (United States)

    De Young, Russell; Carrion, William; Ganoe, Rene; Pliutau, Denis; Gronoff, Guillaume; Berkoff, Timothy; Kuang, Shi

    2017-01-20

    The Langley mobile ozone lidar (LMOL) is a mobile ground-based ozone lidar system that consists of a pulsed UV laser producing two UV wavelengths of 286 and 291 nm with energy of approximately 0.2  mJ/pulse and repetition rate of 1 kHz. The 527 nm pump laser is also transmitted for aerosol measurements. The receiver consists of a 40 cm parabolic telescope, which is used for both backscattered analog and photon counting. The lidar is very compact and highly mobile. This demonstrates the utility of very small lidar systems eventually leading to space-based ozone lidars. The lidar has been validated by numerous ozonesonde launches and has provided ozone curtain profiles from ground to approximately 4 km in support of air quality field missions.

  12. Evaluation of ozone profile and tropospheric ozone retrievals from GEMS and OMI spectra

    Directory of Open Access Journals (Sweden)

    J. Bak

    2013-02-01

    Full Text Available South Korea is planning to launch the GEMS (Geostationary Environment Monitoring Spectrometer instrument into the GeoKOMPSAT (Geostationary Korea Multi-Purpose SATellite platform in 2018 to monitor tropospheric air pollutants on an hourly basis over East Asia. GEMS will measure backscattered UV radiances covering the 300–500 nm wavelength range with a spectral resolution of 0.6 nm. The main objective of this study is to evaluate ozone profiles and stratospheric column ozone amounts retrieved from simulated GEMS measurements. Ozone Monitoring Instrument (OMI Level 1B radiances, which have the spectral range 270–500 nm at spectral resolution of 0.42–0.63 nm, are used to simulate the GEMS radiances. An optimal estimation-based ozone profile algorithm is used to retrieve ozone profiles from simulated GEMS radiances. Firstly, we compare the retrieval characteristics (including averaging kernels, degrees of freedom for signal, and retrieval error derived from the 270–330 nm (OMI and 300–330 nm (GEMS wavelength ranges. This comparison shows that the effect of not using measurements below 300 nm on retrieval characteristics in the troposphere is insignificant. However, the stratospheric ozone information in terms of DFS decreases greatly from OMI to GEMS, by a factor of ∼2. The number of the independent pieces of information available from GEMS measurements is estimated to 3 on average in the stratosphere, with associated retrieval errors of ~1% in stratospheric column ozone. The difference between OMI and GEMS retrieval characteristics is apparent for retrieving ozone layers above ~20 km, with a reduction in the sensitivity and an increase in the retrieval errors for GEMS. We further investigate whether GEMS can resolve the stratospheric ozone variation observed from high vertical resolution Earth Observing System (EOS Microwave Limb Sounder (MLS. The differences in stratospheric ozone profiles between GEMS and MLS are comparable to those

  13. Ozone Profile Retrieval Algorithm (OPERA) for nadir-looking satellite instruments in the UV-VIS

    NARCIS (Netherlands)

    Van Peet, J.C.A.; Van der A, R.J.; Tuinder, O.N.E.; Wolfram, E.; Salvador, J.; Levelt, P.F.; Kelder, H.M.

    2014-01-01

    For the retrieval of the vertical distribution of ozone in the atmosphere the Ozone ProfilE Retrieval Algorithm (OPERA) has been further developed. The new version (1.26) of OPERA is capable of retrieving ozone profiles from UV–VIS observations of most nadir-looking satellite instruments like GOME,

  14. Retrieval of ozone profiles from GOMOS limb scattered measurements

    Directory of Open Access Journals (Sweden)

    S. Tukiainen

    2011-04-01

    Full Text Available The GOMOS (Global Ozone Monitoring by Occultation of Stars instrument on board the Envisat satellite measures the vertical composition of the atmosphere using the stellar occultation technique. While the night-time occultations of GOMOS have been proven to be of good quality, the daytime occultations are more challenging due to weaker signal-to-noise ratio. During daytime GOMOS measures limb scattered solar radiation in addition to stellar radiation. In this paper we introduce a retrieval method that determines ozone profiles between 20–60 km from GOMOS limb scattered solar radiances. GOMOS observations contain a considerable amount of stray light at high altitudes. We introduce a method for removing stray light and demonstrate its feasibility by comparing the corrected radiances against those measured by the OSIRIS (Optical Spectrograph & Infra Red Imaging System instrument. For the retrieval of ozone profiles, a standard onion peeling method is used. The first comparisons with other data sets suggest that the retrieved ozone profiles in 22–50 km are within 10% compared with the GOMOS night-time occultations and within 15% compared with OSIRIS. GOMOS has measured about 350 000 daytime profiles since 2002. The retrieval method presented here makes this large amount of data available for scientific use.

  15. Solid State Mobile Lidar for Ozone Atmospheric Profiling

    Science.gov (United States)

    De Young, Russell; Carrion, William; Pliutau, Denis; Ganoe, Rene

    2014-01-01

    A tunable Ce:LiCAF laser is pumped by a CLBO crystal pumped by a doubled Nd:YLF laser running at 1 kilohertz. The UV tunable Ce:LiCAF laser produces two UV pulses between 280 to 295 nanometers. These pulses are transmitted into the atmosphere to profile the concentration of ozone as a function of altitude.

  16. Retrieval of ozone profiles from GOMOS limb scattered measurements

    Directory of Open Access Journals (Sweden)

    S. Tukiainen

    2010-10-01

    Full Text Available The GOMOS (Global Ozone Monitoring by Occultation of Stars instrument on board the Envisat satellite measures the vertical composition of the atmosphere using the stellar occultation technique. While the night-time data of GOMOS are proved to be of good quality, the daytime observations are more challenging due to poorer signal-to-noise ratio. In this paper we present an alternative technique, which uses GOMOS limb scattered radiances instead of the stellar signal, to retrieve stratospheric ozone profiles. Like for many other limb-viewing instruments, GOMOS observations contain stray light at high altitudes. We introduce a method for removing the stray light and demonstrate its feasibility by comparing the corrected radiances against those from the OSIRIS (Optical Spectrograph & Infra Red Imaging System instrument. For the retrieval of ozone profiles, an onion peeling method is used. The first validation results suggest that the retrieval of stratospheric ozone is possible with a typical accuracy better than 10% at 22–50 km. GOMOS has measured about 350 000 daytime profiles since 2002. The new retrieval method presented here makes this large amount of data finally available for scientific use.

  17. Ozone profiles above Kiruna from two ground-based radiometers

    Science.gov (United States)

    Ryan, Niall J.; Walker, Kaley A.; Raffalski, Uwe; Kivi, Rigel; Gross, Jochen; Manney, Gloria L.

    2016-09-01

    This paper presents new atmospheric ozone concentration profiles retrieved from measurements made with two ground-based millimetre-wave radiometers in Kiruna, Sweden. The instruments are the Kiruna Microwave Radiometer (KIMRA) and the Millimeter wave Radiometer 2 (MIRA 2). The ozone concentration profiles are retrieved using an optimal estimation inversion technique, and they cover an altitude range of ˜ 16-54 km, with an altitude resolution of, at best, 8 km. The KIMRA and MIRA 2 measurements are compared to each other, to measurements from balloon-borne ozonesonde measurements at Sodankylä, Finland, and to measurements made by the Microwave Limb Sounder (MLS) aboard the Aura satellite. KIMRA has a correlation of 0.82, but shows a low bias, with respect to the ozonesonde data, and MIRA 2 shows a smaller magnitude low bias and a 0.98 correlation coefficient. Both radiometers are in general agreement with each other and with MLS data, showing high correlation coefficients, but there are differences between measurements that are not explained by random errors. An oscillatory bias with a peak of approximately ±1 ppmv is identified in the KIMRA ozone profiles over an altitude range of ˜ 18-35 km, and is believed to be due to baseline wave features that are present in the spectra. A time series analysis of KIMRA ozone for winters 2008-2013 shows the existence of a local wintertime minimum in the ozone profile above Kiruna. The measurements have been ongoing at Kiruna since 2002 and late 2012 for KIMRA and MIRA 2, respectively.

  18. Intercomparison of stratospheric ozone and temperature profiles during the October 2005 Hohenpeißenberg Ozone Profiling Experiment (HOPE

    Directory of Open Access Journals (Sweden)

    D. Silbert

    2009-04-01

    Full Text Available Thirteen clear nights in October 2005 allowed successful intercomparison of the lidar operated since 1987 by the German Weather Service (DWD at Hohenpeißenberg (47.8° N, 11.0° E with the Network for the Detection of Atmospheric Composition Change (NDACC travelling standard lidar operated by NASA's Goddard Space Flight Center. Both lidars provide ozone profiles in the stratosphere, and temperature profiles in the strato- and mesosphere. Additional ozone profiles came from on-site Brewer/Mast ozonesondes, additional temperature profiles from Vaisala RS92 radiosondes launched at Munich (65 km north-east, and from operational analyses by the US National Centers for Environmental Prediction (NCEP.

    The intercomparison confirmed a low bias for ozone from the DWD lidar in the 33 to 43 km region, by up to 10%. This bias is caused by the DWD ozone algorithm, and is consistent with previous comparisons of the DWD lidar with SAGE, GOMOS and other instruments. During HOPE, precision (repeatability for ozone data from both lidars was better than 5% between 20 and 40 km altitude, dropping to 10% near 45 km, and to 50% near 50 km. These results are consistent with previous NDACC intercomparisons, and confirm the reliability of the NASA NDACC travelling standard lidar.

    Temperature from the DWD lidar showed a 1 to 2 K cold bias from 30 to 65 km against the NASA lidar, and a 2 to 4 K cold bias against radiosondes and NCEP. This is also consistent with previous intercomparisons. Temperature precision (repeatability for the DWD lidar was better than 2 K from 30 to 50 km, decreasing to 10 K near 70 km. For the NASA lidar, precision is expected to be better than 1 K over the 30 to 70 km range. However, due to the much lower temperature precision of the DWD lidar, this could not be checked during HOPE. It was noted that the current DWD algorithm over-estimates temperature uncertainty, which should be reduced by a factor of 2.2 (e.g. from 22 K to 10

  19. Altitude troposphere ozone profiles over Kyiv-Goloseyev station by simultaneous Umkehr and FTIR observations

    Science.gov (United States)

    Milinevsky, Gennadi; Shavrina, Angelina; Udodov, Evgeny; Liptuga, Anatoly; Kyslyi, Volodymyr; Danylevsky, Vassyl; Kravchenko, Volodymyr; Ivanov, Yuri; Synyavski, Ivan; Romanyuk, Yaroslav; Pavlenko, Yakov; Veles, Oleksandr

    2016-04-01

    Total ozone column and ozone profile data have been obtained from both: (1) standard Dobson measurements and Umkehr method, and (2) using modeling of the ozone absorption spectral band profile near 9.6 microns with the MODTRAN4.3 Atmospheric Radiation Transfer Model based on the HITRAN molecular absorption database from Fourier transform infrared spectroscopy (FTIR) observations. The simultaneous ground-based Dobson/Umkehr and FTIR ozone observations have been performed in 2014-2015 at the mid-latitude Kyiv-Goloseyev KGV GAW station for joint altitude troposphere ozone profiles analysis. To retrieve ozone column estimates and ozone profiles from FTIR observations, we used the satellite Aqua-AIRS water vapor, temperature and ozone profiles, and the simultaneous with FTIR observations the Umkehr ozone profiles and surface ozone measurements as input a priori information for the MODTRAN4.3 model. The altitude ozone profiles retrieved from Umkehr method and satellite measurements are in good correspondence in stratosphere layer. However the troposphere part of ozone profiles is uncertain and reproduced with large errors. Therefore we use the MODTRAN4.3 model for interpretation of observed FTIR absorption spectrum to retrieve and improve the troposphere part of ozone altitude distribution. The synergy of Umkehr, satellite and FTIR simultaneous observations including surface ozone measurements allows rendering the ozone profile features in troposphere that indicate the stratosphere-troposphere exchange processes. Season ozone profile variations observed from Umkehr measurements are discussed as well. This work was partly supported by the Polar FORCeS project no. 4012 of the Australian Antarctic Science Program.

  20. Characteristics of ozone vertical profile observed in the boundary layer around Beijing in autumn.

    Science.gov (United States)

    Ma, Zhiqiang; Zhang, Xiaoling; Xu, Jing; Zhao, Xiujuan; Meng, Wei

    2011-01-01

    In the autumn of 2008, the vertical profiles of ozone and meteorological parameters in the low troposphere (0-1000 m) were observed at two sites around Beijing, specifically urban Nanjiao and rural Shangdianzi. At night and early morning, the lower troposphere divided into two stratified layers due to temperature inversion. Ozone in the lower layer showed a large gradient due to the titration of NO. Air flow from the southwest brought ozone-rich air to Beijing, and the ozone profiles were marked by a continuous increase in the residual layer at night. The accumulated ozone in the upper layer played an important role in the next day's surface peak ozone concentration, and caused a rapid increase in surface ozone in the morning. Wind direction shear and wind speed shear exhibited different influences on ozone profiles and resulted in different surface ozone concentrations in Beijing.

  1. Characteristics of ozone vertical profile observed in the boundary layer around Beijing in autumn

    Institute of Scientific and Technical Information of China (English)

    Zhiqiang Ma; Xiaoling Zhang; Jing Xu; Xiujuan Zhao; Wei Meng

    2011-01-01

    In the autumn of 2008,the vertical profiles of ozone and meteorological parameters in the low troposphere (0-1000 m) were observed at two sites around Beijing,specifically urban Nanjiao and rural Shangdianzi.At night and early morning,the lower troposphere divided into two stratified layers due to temperature inversion.Ozone in the lower layer showed a large gradient due to the titration of NO.Air flow from the southwest brought ozone-rich air to Beijing,and the ozone profiles were marked by a continuous increase in the residual layer at night.The accumulated ozone in the upper layer played an important role in the next day's surface peak ozone concentration,and caused a rapid increase in surface ozone in the morning.Wind direction shear and wind speed shear exhibited different influences on ozone profiles and resulted in different surface ozone concentrations in Beijing.

  2. Ozone profiles and structure of lamination in Ankara, Turkey

    Science.gov (United States)

    Kahya, C.; Demirhan, D.; Topcu, S.; Incecik, S.

    2003-04-01

    The existence of the laminar layers with depleted and enhanced ozone mixing ratios in the vertical profiles of ozone has been received scientific attention. Due to the influences of the dynamic processes on the ozone mixing ratio in the lower stratosphere, laminar features are used in relation to the filaments of air shed from the dynamic processes. Stratospheric ozone observations are based on ozonesonde flown from Ankara (40^oN; 33^oE) by Turkish State Meteorological Service. Measurements of the ozone profile using ECC balloon-borne ozonesonde have been made since January 1994 at Ankara, Turkey weekly or twice in month. In this study, about 151 soundings in the measured program (Jan.1994- Dec.2001) were used for the analysis. The total ozone characteristics of Ankara are similar to the stations of located in mid-latitudes of Eastern Europe. The average value of total column ozone amount by ozone sounding is found with a 320 DU ± 43 in the period of 1994-2001 in Ankara. The laminae features in Ankara reflect the similar characteristics obtained in European mid-latitude stations. The seasonal distributions of laminae at Ankara show a peak occurrence in Spring. The numbers of laminae are found as 45, 58, 17 and 18 for winter, spring, summer and fall seasons respectively. The most of the laminae are found below 13 km. Frequency distribution magnitudes of laminae indicates 21% in 26-30 nb class. The mean magnitude and depth of the laminae is found as 45 nb and 1.1km respectively. In order to understand the influence of tropopause heights on the laminae structure, the number of laminae has been grouped according to high and low tropopause heights. The frequency of laminae for both lower and higher tropopause groups for winter and spring seasons are close. However the laminae disappearances in both summer and fall seasons for only in case of the lower tropopause. The days with the maximum laminae which are mostly occurred in winter and spring seasons have been examined

  3. Aerosol-Cloud Interactions during Tropical Deep Convection: Evidence for the Importance of Free Tropospheric Aerosols

    Science.gov (United States)

    Ackerman, A.; Jensen, E.; Stevens, D.; Wang, D.; Heymsfield, A.; Miloshevich, L.; Twohy, C.; Poellot, M.; VanReken, T.; Fridland, Ann

    2003-01-01

    NASA's 2002 CRYSTAL-FACE field experiment focused on the formation and evolution of tropical cirrus cloud systems in southern Florida. Multiple aircraft extensively sampled cumulonimbus dynamical and microphysical properties, as well as characterizing ambient aerosol populations both inside and outside the full depth of the convective column. On July 18, unique measurements were taken when a powerful updraft was traversed directly by aircraft, providing a window into the primary source region of cumulonimbus anvil crystals. Observations of the updraft, entered at approximately l0 km altitude and -34 C, indicated more than 200 cloud particles per mL at vertical velocities exceeding 20 m/s and the presence of significant condensation nuclei and liquid water within the core. In this work, aerosol and cloud phase observations are integrated by simulating the updraft conditions using a large-eddy resolving model with 3 explicit multiphase microphysics, including treatment of size-resolved aerosol fields, aerosol activation and freezing, and evaporation of cloud particles back to the aerosol phase. Simulations were initialized with observed thermodynamic and aerosol size distributions profiles and convection was driven by surface fluxes assimilated from the ARPS forecast model. Model results are consistent with the conclusions that most crystals are homogeneously frozen droplets and that entrained free tropospheric aerosols may contribute a significant fraction of the crystals. Thus most anvil crystals appear to be formed aloft in updraft cores, well above cloud base. These conclusions are supported by observations of hydrometeor size distribution made while traversing the dore, as well as aerosol and cloud particle size distributions generally observed by aircraft below 4km and crystal properties generally observed by aircraft above 12km.

  4. Monitoring and future projections of the Antarctic Ozone Hole using the new Ozone Mapping and Profiler Suite (OMPS)

    Science.gov (United States)

    Kramarova, N. A.; Newman, P. A.; Nash, E. R.; Bhartia, P. K.; McPeters, R. D.; Rault, D. F.; Seftor, C. J.; Xu, P.

    2013-12-01

    Using the new Ozone Mapping and Profiler Suite (OMPS), launched October 2011 on board the Suomi National Polar-orbiting Partnership satellite, we have studied the structure and evolution of the 2012 and 2013 ozone holes. The 1st ozone hole observations by OMPS began in 2012. We quality check the OMPS measurements by comparing to other satellite instruments (Aura MLS, OMI and SBUV) and ozone sonde balloon measurements. The comparisons reveal that OMPS is producing excellent Antarctic ozone hole information, and, thus, OMPS data can be used to continue the historical record of Antarctic ozone observations. In 2012 the ozone hole developed quite normally in the August to-late September 2012 period, but disappeared much more rapidly during the late-September to November period than it would be expected in a normal year. This resulted in the second weakest ozone hole observed since 1988. Some have suggested that the rapid 2012 disappearance is evidence that the Montreal Protocol is working. However, the development of the ozone hole in August and September is largely driven by chlorine and bromine from human-produced compounds, and the normal development of the ozone hole in August-September 2012 suggests that chlorine and bromine levels were roughly the same as previous years. At the same time, observations from meteorological data show that there were stronger than average weather systems, faster warming during the September -November period, and stronger vertical motions, that led to a rapid decay of the 2012 ozone hole. Hence, the weak ozone hole of 2012 is not evidence that the Montreal Protocol has impacted the ozone hole. The characteristics of the 2013 ozone hole, as observed by OMPS, will also be shown in the presentation. Model predictions suggest that the ozone hole will begin showing signs of recovery in about 2018, and it will be fully recovered back to 1980 levels in about 2065. We will update projections of the ozone hole recovery using a parametric model

  5. TOLNet - A Tropospheric Ozone Lidar Profiling Network for Satellite Continuity and Process Studies

    Science.gov (United States)

    Newchurch, Michael J.; Kuang, Shi; Wang, Lihua; LeBlanc, Thierry; Alvarez II, Raul J.; Langford, Andrew O.; Senff, Christoph J.; Brown, Steve; Johnson, Bryan; Burris, John F.; hide

    2015-01-01

    NASA initiated an interagency ozone lidar observation network under the name TOLNet to promote cooperative multiple-station ozone-lidar observations to provide highly time-resolved (few minutes) tropospheric-ozone vertical profiles useful for air-quality studies, model evaluation, and satellite validation.

  6. TOLNET – A Tropospheric Ozone Lidar Profiling Network for Satellite Continuity and Process Studies

    Directory of Open Access Journals (Sweden)

    Newchurch Michael J.

    2016-01-01

    Full Text Available Ozone lidars measure continuous, high-resolution ozone profiles critical for process studies and for satellite validation in the lower troposphere. However, the effectiveness of lidar validation by using single-station data is limited. Recently, NASA initiated an interagency ozone lidar observation network under the name TOLNet to promote cooperative multiple-station ozone-lidar observations to provide highly timeresolved (few minutes tropospheric-ozone vertical profiles useful for air-quality studies, model evaluation, and satellite validation. This article briefly describes the concept, stations, major specifications of the TOLNet instruments, and data archiving.

  7. Investigating the long-term evolution of subtropical ozone profiles applying ground-based FTIR spectrometry

    OpenAIRE

    García, O.E.; Schneider, M; A. Redondas; Y. González; Hase, F.; Blumenstock, T.; Sepúlveda, E.

    2012-01-01

    This study investigates the long-term evolution of subtropical ozone profile time series (1999–2010) obtained from ground-based FTIR (Fourier Transform InfraRed) spectrometry at the Izaña Observatory ozone super-site. Different ozone retrieval strategies are examined, analysing the influence of an additional temperature retrieval and different constraints. The theoretical assessment reveals that the FTIR system is able to resolve four independent ozone layers with a precision of better than 6...

  8. Ozone ProfilE Retrieval Algorithm for nadir-looking satellite instruments in the UV-VIS

    Directory of Open Access Journals (Sweden)

    J. C. A. van Peet

    2013-10-01

    Full Text Available For the retrieval of the vertical distribution of ozone in the atmosphere the Ozone ProfilE Retrieval Algorithm (OPERA has been further developed. The new version (1.26 of OPERA is capable of retrieving ozone profiles from UV-VIS observations of most nadir looking satellite instruments like GOME, SCIAMACHY, OMI and GOME-2. The set-up of OPERA is described and results are presented for GOME and GOME-2 observations. The retrieved ozone profiles are globally compared to ozone sondes for the year 1997 and 2008. Relative differences between GOME/GOME-2 and ozone sondes are within the limits as specified by the user requirements from the Climate Change Initiative (CCI program of ESA. To demonstrate the performance of the algorithm under extreme circumstances the 2009 Antarctic ozone hole season was investigated in more detail using GOME-2 ozone profiles and lidar data, which showed an unusual persistence of the vortex over the Río Gallegos observing station (51° S, 69.3° W. By applying OPERA to multiple instruments a timeseries of ozone profiles from 1996 to 2013 from a single robust algorithm can be created.

  9. Modeling Trace Pollutants in the North Atlantic Free Troposphere and Comparisons with Observed Pollutant Concentrations at Pico

    Science.gov (United States)

    Sanyal, S.; Wuebbles, D. J.; Olsen, S. C.; Mazzoleni, L. R.; Mazzoleni, C.; Helmig, D.; Fialho, P. J.

    2016-12-01

    This study focuses on modeling free tropospheric aerosol and co-pollutants after trans-Atlantic transport of North American air pollution to the Pico Mountain Observatory (PMO) using the 3D global chemistry climate model CAM-Chem (version 4) and analyzing the model simulations relative to in-situ summertime measurements of carbon monoxide (CO), ozone (O3) and black carbon (BC) at the Pico Mountain Observatory (PMO) located in the Azores, Portugal from 2009 - 2011. The elevation of PMO ( 2225m above mean sea level) and steep slope of the surrounding mountain put the station above the regional marine boundary layer, enabling frequent sampling of free tropospheric air. Because of its unique location, air sampled at the station is rarely affected by local emissions or the ocean, and represents air masses transported over long distances to the site. The study used the Community Atmosphere Model CAM4, which is a part of the Community Earth System model version 1 (CESM1). HYSPLIT backward trajectories ran using the web-based portal READY was used to study airflow trajectory at PMO and showed that more than 50% of the air mass originated from North America. The model simulations were compared with observational data (from April - September) at PMO for the years 2009 through 2011. The fire data for the USA and Canada was compiled from the reports of National Interagency Coordination Center and Canadian Wildland Fire Information System, respectively. Time series analyses and orthogonal regression were used to compare model simulations with observations. The comparison shows simulations give a good representation of the observations, e.g., the mean concentration of CO in 2009 is 91.76 ppb and 95.05 ppb respectively from the simulation and the observations. Observed elevated pollutant concentrations also coincide with the maxima captured by the simulations. To assess the impact of North American outflow on pollution at PMO, scatter technique was used to calculate enhancement

  10. Uplifting of carbon monoxide from biomass burning and anthropogenic sources to the free troposphere in East Asia

    Directory of Open Access Journals (Sweden)

    K. Ding

    2014-11-01

    Full Text Available East Asia has experienced rapid development with increasing CO emission in the past decades. Therefore, uplifting CO from the boundary layer to the free troposphere in East Asia can have great implications on regional air quality. It can also influence global climate due to the longer lifetime of CO at higher altitudes. In this study, three cases of high CO episodes in East Asia from 2003 to 2005 are examined with spaceborne Measurements Of Pollution In The Troposphere (MOPITT data, in combination with aircraft measurements from the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC program. High CO abundances of 300–550 ppbv were observed in MOZAIC data in the free troposphere during these episodes. These are among the highest CO abundances documented at these altitudes. Correspondingly, elevated CO was shown in MOPITT daytime data in the middle to upper troposphere in the 2003 case, mostly in the lower to middle troposphere in the 2004 case, and in the upper troposphere in the 2005 case. Through analyses of the simulations from a chemical transport model GEOS-Chem and a trajectory dispersion model FLEXPART, we found different CO signatures in the elevated CO and distinct transport pathways and mechanisms for these cases. In the 2003 case, CO from large forest fires near Lake Baikal dominated the elevated CO, which had been rapidly transported upward by a~frontal system from the fire plumes. In the 2004 case, anthropogenic CO from the North China Plain experienced frontal lifting and mostly reached ~ 700 hPa near the East China Sea, while CO from biomass burning from Indochina experienced orographic lifting, leeside-trough induced convection, and frontal lifting through two separate transport pathways, leading to two distinct CO enhancements around 700 hPa and 300 hPa. In the 2005 case, high CO of ~ 300 ppbv, observed in the MOZAIC data around 350 hPa, originated from the anthropogenic source over the vicinity of the

  11. Oxidation of mercury by bromine in the subtropical Pacific free troposphere

    Science.gov (United States)

    Gratz, L. E.; Ambrose, J. L.; Jaffe, D. A.; Shah, V.; Jaeglé, L.; Stutz, J.; Festa, J.; Spolaor, M.; Tsai, C.; Selin, N. E.; Song, S.; Zhou, X.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Flocke, F. M.; Campos, T. L.; Apel, E.; Hornbrook, R.; Blake, N. J.; Hall, S.; Tyndall, G. S.; Reeves, M.; Stechman, D.; Stell, M.

    2015-12-01

    Mercury is a global toxin that can be introduced to ecosystems through atmospheric deposition. Mercury oxidation is thought to occur in the free troposphere by bromine radicals, but direct observational evidence for this process is currently unavailable. During the 2013 Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks campaign, we measured enhanced oxidized mercury and bromine monoxide in a free tropospheric air mass over Texas. We use trace gas measurements, air mass back trajectories, and a chemical box model to confirm the origin and chemical history of the sampled air mass. We find the presence of elevated oxidized mercury to be consistent with oxidation of elemental mercury by bromine atoms in this subsiding upper tropospheric air mass within the subtropical Pacific High, where dry atmospheric conditions are conducive to oxidized mercury accumulation. Our results support the role of bromine as the dominant oxidant of mercury in the upper troposphere.

  12. Uplifting of carbon monoxide from biomass burning and anthropogenic sources to the free troposphere in East Asia

    Science.gov (United States)

    Ding, K.; Liu, J.; Ding, A.; Liu, Q.; Zhao, T. L.; Shi, J.; Han, Y.; Wang, H.; Jiang, F.

    2015-03-01

    East Asia has experienced rapid development with increasing carbon monoxide (CO) emission in the past decades. Therefore, uplifting CO from the boundary layer to the free troposphere in East Asia can have great implications on regional air quality around the world. It can also influence global climate due to the longer lifetime of CO at higher altitudes. In this study, three cases of high CO episodes in the East China Sea and the Sea of Japan from 2003 to 2005 are examined with spaceborne Measurements of Pollution in the Troposphere (MOPITT) data, in combination with aircraft measurements from the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) program. High CO abundances of 300-550 ppbv are observed in MOZAIC data in the free troposphere during these episodes. These are among the highest CO abundances documented at these altitudes. On average, such episodes with CO over 400 ppbv (in the 2003 and 2004 cases) and between 200 and 300 ppbv (in the 2005 case) may occur 2-5 and 10-20% in time, respectively, in the respective altitudes over the region. Correspondingly, elevated CO is shown in MOPITT daytime data in the middle to upper troposphere in the 2003 case, in the lower to middle troposphere in the 2004 case, and in the upper troposphere in the 2005 case. Through analyses of the simulations from a chemical transport model GEOS-Chem and a trajectory dispersion model FLEXPART, we found different CO signatures in the elevated CO and distinct transport pathways and mechanisms for these cases. In the 2003 case, emissions from large forest fires near Lake Baikal dominated the elevated CO, which had been rapidly transported upward by a frontal system from the fire plumes. In the 2004 case, anthropogenic CO from the North China Plain experienced frontal lifting and mostly reached ~ 700 hPa near the East China Sea, while CO from biomass burning over Indochina experienced orographic lifting, lee-side-trough-induced convection, and frontal lifting

  13. Major contribution of neutral clusters to new particle formation in the free troposphere

    Directory of Open Access Journals (Sweden)

    C. Rose

    2014-07-01

    Full Text Available The formation of new aerosol particles in the atmosphere is a key process influencing the aerosol number concentration as well as the climate, in particular in the free troposphere (FT where the newly formed particles directly influence cloud formation. However, free tropospheric new particle formation (NPF is poorly documented due to logistic limitations and complex atmospheric dynamics around high altitude stations that make the observation of this day-time process challenging. Recent improvements in measurement techniques make now possible the detection of neutral clusters down to ~ 1 nm sizes, which opens new horizons in our understanding of the nucleation process. Indeed, only the charged fraction of clusters has been reported in the upper troposphere up to now. Here we report observations of charged and neutral clusters (1 to 2.5 nm mobility diameter during day-time free tropospheric conditions at the altitude site of Puy de Dôme (1465 m a.s.l., central France, between 10 and 29 February 2012. Our findings demonstrate that in the free troposphere, the formation of 1.5 nm neutral clusters is about 40 times higher than the one of ionic clusters during NPF events, indicating that they dominate in the nucleation process. We also observe that the total cluster concentration increases by a factor of 5.5 during NPF events compared to the other days, which was not clearly observed for the charged cluster population in the past. In the FT, the nucleation process does not seem to be sulphuric acid-limited, as previously suggested, and could be promoted by the transport of pollutants to the upper troposphere.

  14. Assessment of composition and origin of airborne bacteria in the free troposphere over Japan

    Science.gov (United States)

    Maki, Teruya; Kakikawa, Makiko; Kobayashi, Fumihisa; Yamada, Maromu; Matsuki, Atsushi; Hasegawa, Hiroshi; Iwasaka, Yasunobu

    2013-08-01

    Long-range transport of airborne microorganisms through the free troposphere significantly impacts biological ecosystems, human life, and atmospheric processes in downwind areas. However, microbial communities in the free troposphere have rarely been investigated because the direct collection of microbial cells at high altitudes requires sophisticated sampling techniques. In this study, tropospheric air sampling was performed using a balloon and an aircraft at 800 m and 3000 m, respectively, over the Noto Peninsula in Japan (37.5°N, 137.4°E) where free tropospheric winds carry aerosols from continental areas. The air samples were collected during four different sampling periods when air masses came from desert regions of Asian continent (west samples) and from Siberia of Russia North Asia (north samples). The west samples contained higher levels of aerosols, and bacteria from the west samples grew in culture media containing up to 15% NaCl. In contrast, bacteria from the north samples could not be cultured in the same media. All isolates obtained from the NaCl-amended cultures were similar to Bacillus subtilis and classified as Firmicutes. A 16S rDNA clone library prepared from the west samples was mainly composed of one phylotype of Firmicutes that corresponded to the cultured B. subtilis sequence. A clone library prepared from the north samples consisted primarily of two phyla, i.e., Actinobacteria and Proteobacteria, which are known to dominantly inhabit low-temperature environments of North Asia. Our results suggest that airborne bacterial communities at high altitudes include several species that vary by the direction and interaction of free tropospheric winds.

  15. Origin of oxidized mercury in the summertime free troposphere over the southeastern US

    Directory of Open Access Journals (Sweden)

    V. Shah

    2015-10-01

    Full Text Available We collected mercury observations as part of the Nitrogen, Oxidants, Mercury, and Aerosol Distributions, Sources, and Sinks (NOMADSS aircraft campaign over the southeastern US between 1 June and 15 July 2013. We use the GEOS-Chem chemical transport model to interpret these observations and place new constraints on bromine radical initiated mercury oxidation chemistry in the free troposphere. We find that the model reproduces the observed mean concentration of total atmospheric mercury (THg (observations: 1.49 ± 0.16 ng m−3, model: 1.51 ± 0.08 ng m−3, as well as the vertical profile of THg. The majority (65 % of observations of oxidized mercury (Hg(II are below the instrument's detection limit (detection limit per flight: 58–228 pg m−3, consistent with model-calculated Hg(II concentrations of 0–196 ng m−3. However, for observations above the detection limit we find that modeled Hg(II concentrations are a factor of 3 too low (observations: 212 ± 112 ng m−3, model: 67 ± 44 ng m−3. The highest Hg(II concentrations, 300–680 pg m−3, were observed in dry (RH < 35 % and clean air masses during two flights over Texas at 5–7 km altitude and off the North Carolina coast at 1–3 km. The GEOS-Chem model, back trajectories and observed chemical tracers for these air masses indicate subsidence and transport from the upper and middle troposphere of the subtropical anticyclones, where fast oxidation of elemental mercury (Hg(0 to Hg(II and lack of Hg(II removal lead to efficient accumulation of Hg(II. We hypothesize that the most likely explanation for the model bias is a systematic underestimate of the Hg(0+Br reaction rate. We find that sensitivity simulations with tripled bromine radical concentrations or a faster oxidation rate constant for Hg(0+Br, result in 1.5–2 times higher modeled Hg(II concentrations and improved agreement with the observations. The modeled tropospheric lifetime of Hg(0 against oxidation to Hg(II decreases

  16. Origin of oxidized mercury in the summertime free troposphere over the southeastern US

    Science.gov (United States)

    Shah, V.; Jaeglé, L.; Gratz, L. E.; Ambrose, J. L.; Jaffe, D. A.; Selin, N. E.; Song, S.; Campos, T. L.; Flocke, F. M.; Reeves, M.; Stechman, D.; Stell, M.; Festa, J.; Stutz, J.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Tyndall, G. S.; Apel, E. C.; Hornbrook, R. S.; Hills, A. J.; Riemer, D. D.; Blake, N. J.; Cantrell, C. A.; Mauldin, R. L., III

    2016-02-01

    We collected mercury observations as part of the Nitrogen, Oxidants, Mercury, and Aerosol Distributions, Sources, and Sinks (NOMADSS) aircraft campaign over the southeastern US between 1 June and 15 July 2013. We use the GEOS-Chem chemical transport model to interpret these observations and place new constraints on bromine radical initiated mercury oxidation chemistry in the free troposphere. We find that the model reproduces the observed mean concentration of total atmospheric mercury (THg) (observations: 1.49 ± 0.16 ng m-3, model: 1.51 ± 0.08 ng m-3), as well as the vertical profile of THg. The majority (65 %) of observations of oxidized mercury (Hg(II)) were below the instrument's detection limit (detection limit per flight: 58-228 pg m-3), consistent with model-calculated Hg(II) concentrations of 0-196 pg m-3. However, for observations above the detection limit we find that modeled Hg(II) concentrations are a factor of 3 too low (observations: 212 ± 112 pg m-3, model: 67 ± 44 pg m-3). The highest Hg(II) concentrations, 300-680 pg m-3, were observed in dry (RH mercury (Hg(0)) to Hg(II) and lack of Hg(II) removal lead to efficient accumulation of Hg(II). We hypothesize that the most likely explanation for the model bias is a systematic underestimate of the Hg(0) + Br reaction rate. We find that sensitivity simulations with tripled bromine radical concentrations or a faster oxidation rate constant for Hg(0) + Br, result in 1.5-2 times higher modeled Hg(II) concentrations and improved agreement with the observations. The modeled tropospheric lifetime of Hg(0) against oxidation to Hg(II) decreases from 5 months in the base simulation to 2.8-1.2 months in our sensitivity simulations. In order to maintain the modeled global burden of THg, we need to increase the in-cloud reduction of Hg(II), thus leading to faster chemical cycling between Hg(0) and Hg(II). Observations and model results for the NOMADSS campaign suggest that the subtropical anticyclones are

  17. Partitioning aerosol optical depth between the boundary layer and the free troposphere

    Science.gov (United States)

    Bourgeois, Quentin; Ekman, Annica; Krejci, Radovan; Devasthale, Abhay; Renard, Jean-Baptiste

    2017-04-01

    Aerosols are short-lived (about a week) compounds in the atmosphere due to the efficient removal by dry and wet deposition in the boundary layer (BL) where a majority of the emission sources are located. As a consequence, most of the aerosol mass should be found in the BL and the aerosol optical depth (AOD) integrated over the atmospheric column should be dominated by the BL contribution. As a consequence, BL aerosols would most likely have the largest climate effect. However, aerosols advected to the free troposphere (FT) have a much longer residence time (typically a few weeks) than those in the BL, potentially inducing a more long-term effect on climate. Light-absorbing aerosols may in addition have an enhanced absorption, and thereby climate warming effect, if they are located above low-level reflective clouds. Light-absorbing aerosols above clouds may also modify below cloud formation and transformation. In this study, the global AOD has been retrieved using satellite observations from CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) over a nine-year period (2007-2015) and partitioned between the BL and FT using BL heights obtained from the ERA-Interim re-analysis data. The results show that the vertical distribution of AOD does not follow the diurnal cycle of the BL but remains similar between day and night highlighting the role of a residual layer during night. The BL and FT contribute 71% and 29%, respectively, to the global AOD during daytime. The FT AOD contribution is larger in the tropics than at mid-latitudes which indicates that convective transport largely controls the vertical profile of aerosols, and the FT AOD contribution over oceans is governed by neighboring continents. According to the CALIOP aerosol classification, dust and smoke particles are the main aerosol types transported into the FT. Overall, the study shows that the fraction of AOD in the FT - and thus potentially located above low-level clouds - is substantial and should

  18. Reevaluation of long-term Umkehr data and ozone profiles at Japanese stations

    Science.gov (United States)

    Miyagawa, Koji; Sasaki, Toru; Nakane, Hideaki; Petropavlovskikh, Irina; Evans, Robert D.

    2009-04-01

    Umkehr observations have been routinely conducted at Japanese stations, Sapporo, Tsukuba, Kagoshima, and Naha, and the Antarctic station, Syowa, for more than 50 years. Umkehr data are a valuable source of information on long-term changes in the ozone vertical profile; however, the Umkehr record at Japanese stations has evident discontinuities. The majority of the discontinuities are related to the exchange of instruments for calibration (for total ozone measurements) and the replacement of instruments. These discontinuities may be related to the difference in instrument characteristics. In this article, reevaluation of the long-term Umkehr data in Japanese network is done by assessment of instrument-related changes in compared N values that exhibit solar zenith angle and total ozone dependence in addition to the step changes. The systematic errors are evaluated by simultaneous intercomparisons of each instrument with the reference instrument. Through this reevaluation, most discontinuities in a station's Umkehr time series are successfully corrected, and new sets of ozone vertical profiles are derived. The ozone profiles retrieved by two available Umkehr retrieval algorithms are compared with ozonesonde observations at every station and ozone lidar observations at Tsukuba. The results show that the revised Umkehr ozone profiles show improved consistency with both types of auxiliary ozone observations as compared to the old data sets, especially with regard to ozonesonde observations (difference of less than 5%). Trend analyses of the revised Umkehr ozone profile time series show a significant decrease in stratospheric ozone over Japan during the 1980s. It also varies between stations, with Naha showing the least significant trend among Japanese stations and Sapporo exhibiting as much as 6% of ozone decline per decade. In addition, a positive and statistically significant trend is detected in tropospheric ozone column at Naha (˜5.5% per decade) and Tsukuba (˜3

  19. 3-DoF MAX-DOAS: A new method for deriving free tropospheric columns of marine trace gases from ground

    Science.gov (United States)

    Coburn, S.; Baidar, S.; Ortega, I.; Sinreich, R.; Volkamer, R.

    2013-12-01

    Current retrievals of Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements from the surface focus on retrieving boundary layer vertical profiles and vertical column amounts of atmospheric trace gases in the lower atmosphere. We have expanded these retrievals, and combine a high signal-to-noise MAX-DOAS instrument with an in-depth treatment of radiative transfer modeling of the suns movement to show that we can decouple the partial vertical column of trace gases located in the free troposphere from that in the boundary layer. The approach is demonstrated using our long-term (9 months) of MAX-DOAS observations of iodine oxide (IO), bromine oxide (BrO), glyoxal (CHOCHO) and formaldehyde (HCHO) near Pensacola, FL. Boundary layer profiles are derived from measurements at shallow looking elevation angles. In a second inversion we utilize MAX-DOAS angles still containing information above the boundary layer in order to assess total tropospheric columns (up to ~13km). The free tropospheric column is then derived by difference of the total column minus the boundary layer partial column. We apply this technique to several trace gases measured in the coastal marine troposphere including IO, BrO, CHOCHO, and HCHO, and discuss implications of our findings in context with recent aircraft observations by the TORERO project.

  20. Validation of OMI total ozone retrievals from the SAO ozone profile algorithm and three operational algorithms with Brewer measurements

    Directory of Open Access Journals (Sweden)

    J. Bak

    2014-02-01

    Full Text Available The accuracy of total ozone computed from the Smithsonian Astrophysical Observatory (SAO optimal estimation (OE ozone profile algorithm (SOE applied to the Ozone Monitoring Instrument (OMI is assessed through comparisons with ground-based Brewer spectrometer measurements from 2005 to 2008. We also make comparisons with the three OMI operational ozone products, derived from the NASA Total Ozone Mapping Spectrometer (TOMS, KNMI Differential Optical Absorption Spectroscopy (DOAS, and KNMI OE (KOE algorithms. Excellent agreement is observed between SAO and Brewer, with a mean difference of less than ±1% at most individual stations. The KNMI OE algorithm systematically overestimates Brewer total ozone by 2% at low/mid latitudes and 5% at high latitudes while the TOMS and DOAS algorithms underestimate it by ~1.65% on average. Standard deviations of ~1.8% are found for both SOE and TOMS, but DOAS and KOE have scatters of 2.2% and 2.6%, respectively. The stability of the SOE algorithm is found to have insignificant dependence on viewing geometry, cloud parameters, total ozone column. In comparison, the KOE differences to Brewer values are significantly correlated with solar and viewing zenith angles, with a significant deviation depending on cloud parameters and total ozone amount. The TOMS algorithm exhibits similar stability to SOE with respect to viewing geometry and total column ozone, but stronger cloud parameter dependence. The dependence of DOAS on the algorithmic variables is marginal compared to KOE, but distinct compared to the SOE and TOMS algorithms. Comparisons of All four OMI products with Brewer show no apparent long-term drift but a seasonally affected feature, especially for KOE and TOMS. The substantial differences in the KOE vs. SOE algorithm performance cannot be sufficiently explained by the use of soft calibration (in SOE and the use of different a priori error covariance matrix, but other algorithm details cause larger fitting

  1. Error budget analysis of SCIAMACHY limb ozone profile retrievals using the SCIATRAN model

    Directory of Open Access Journals (Sweden)

    N. Rahpoe

    2013-10-01

    Full Text Available A comprehensive error characterization of SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY limb ozone profiles has been established based upon SCIATRAN transfer model simulations. The study was carried out in order to evaluate the possible impact of parameter uncertainties, e.g. in albedo, stratospheric aerosol optical extinction, temperature, pressure, pointing, and ozone absorption cross section on the limb ozone retrieval. Together with the a posteriori covariance matrix available from the retrieval, total random and systematic errors are defined for SCIAMACHY ozone profiles. Main error sources are the pointing errors, errors in the knowledge of stratospheric aerosol parameters, and cloud interference. Systematic errors are of the order of 7%, while the random error amounts to 10–15% for most of the stratosphere. These numbers can be used for the interpretation of instrument intercomparison and validation of the SCIAMACHY V 2.5 limb ozone profiles in a rigorous manner.

  2. One year of Raman lidar observations of free tropospheric aerosol layers over South Africa

    Directory of Open Access Journals (Sweden)

    E. Giannakaki

    2015-01-01

    Full Text Available Raman lidar data obtained over a one year period has been analyzed in relation to aerosol layers in the free troposphere over the Highveld in South Africa. In total, 375 layers were observed above the boundary layer during the period 30 January 2010–31 January 2011. The seasonal behavior of aerosol layer geometrical characteristics, as well as intensive and extensive optical properties were studied. The highest center heights of free tropospheric layers were observed during the South African spring (2520 ± 970 m a.g.l.. The geometrical layer depth was found to be maximum during spring, while it did not show any significant difference for the rest of the seasons. The variability of the analyzed intensive and extensive optical properties was high during all seasons. This was attributed to the mixing state of aerosols and the different transport paths of the aerosol layers. Layers were observed at a mean altitude of 2100 ± 1000 m a.g.l. with an average lidar ratio of 67 ± 25 sr (mean value with one standard deviation at 355 nm and a mean extinction-related Ångström exponent of 1.9 ± 0.8 between 355 and 532 \\unit{nm} during the period under study. During southern hemispheric spring, the biomass burning activity is clearly reflected in the optical properties of the observed free tropospheric layers. Specifically, lidar ratios at 355 nm were 57 ± 20 sr , 65 ± 23 sr, 59 ± 22 sr and 89 ± 21 sr during summer (December–February, winter (June–August, autumn (March–May and spring (September–November, respectively. The extinction-related Ångström exponents between 355 and 532 nm measured during summer, winter, autumn and spring were 2.4 ± 0.9, 1.8 ± 0.6, 1.8 ± 0.9 and 1.8 ± 0.6, respectively. The mean columnar aerosol optical depth (AOD obtained from lidar measurements was found to be 0.46 ± 0.35 at 355 nm and 0.25 ± 0.2 at 532 nm.The contribution of free tropospheric aerosols on the AOD had a wide range of values with a mean

  3. Synergetic ground-based methods for remote measurements of ozone vertical profiles

    Science.gov (United States)

    Timofeyev, Yuriy; Kostsov, Vladimir; Virolainen, Yana

    2013-05-01

    The technique of combining ground-based measurements in infrared and microwave spectral regions in order to achieve higher accuracy of ozone profile retrieval in extensive altitude ranges is described and analyzed. The information content, errors, altitude ranges and vertical resolution of ozone profile retrieval have been studied on the basis of numerical simulation of synergetic experiments. Optimal conditions of measurements are defined and requirements to additional information are formulated. The first results on ozone vertical profile retrieval using groundbased measurements of FTIR-spectrometer and microwave radiometer are given.

  4. Water vapour and ozone profiles in the midlatitude upper troposphere

    Directory of Open Access Journals (Sweden)

    G. Vaughan

    2004-12-01

    Full Text Available We present an investigation of upper tropospheric humidity profiles measured with a standard radiosonde, the Vaisala RS80-A, and a commercial frost-point hygrometer, the Snow White. Modifications to the Snow White, to enable the mirror reflectivity and Peltier cooling current to be monitored during flight, were found to be necessary to determine when the instrument was functioning correctly; a further modification to prevent hydrometeors entering the inlet was also implemented. From 23 combined flights of an ozonesonde, radiosonde and Snow White between September 2001 and July 2002, clear agreement was found between the two humidity sensors, with a mean difference of <2% in relative humidity from 2 to 10 km, and 2.2% between 10 and 13 km. This agreement required a correction to the radiosonde humidity, as described by Miloshevich et al. (2001. Using this result, the dataset of 324 ozonesonde/RS80-A profiles measured from Aberystwyth between 1991 and 2002 was examined to derive statistics for the distribution of water vapour and ozone. Supersaturation with respect to ice was frequently seen at the higher levels – 24% of the time in winter between 8 and 10 km. The fairly uniform distribution of relative humidity persisted to 120% in winter, but decreased rapidly above 100% in summer.

  5. Water vapour and ozone profiles in the midlatitude upper troposphere

    Directory of Open Access Journals (Sweden)

    G. Vaughan

    2005-01-01

    Full Text Available We present an investigation of upper tropospheric humidity profiles measured with a standard radiosonde, the Vaisala RS80-A, and a commercial frost-point hygrometer, the Snow White. Modifications to the Snow White, to enable the mirror reflectivity and Peltier cooling current to be monitored during flight, were found to be necessary to determine when the instrument was functioning correctly; a further modification to prevent hydrometeors entering the inlet was also implemented. From 23 combined flights of an ozonesonde, radiosonde and Snow White between September 2001 and July 2002, clear agreement was found between the two humidity sensors, with a mean difference of <2% in relative humidity from 2 to 10km, and 2.2% between 10 and 13km. This agreement required a correction to the radiosonde humidity, as described by Miloshevich et al. (2001. Using this result, the dataset of 324 ozonesonde/RS80-A profiles measured from Aberystwyth between 1991 and 2002 was examined to derive statistics for the distribution of water vapour and ozone. Supersaturation with respect to ice was frequently seen at the higher levels - 24% of the time in winter between 8 and 10km. The fairly uniform distribution of relative humidity persisted to 120% in winter, but decreased rapidly above 100% in summer.

  6. Lidar method of measurement of atmospheric extinction and ozone profiles

    Science.gov (United States)

    Cooney, J. A.

    1986-01-01

    A description of a method of measurement of atmospheric extinction and of ozone profiles by use of the backscatter signal from a monostatic lidar is given. The central feature of the procedure involves a measurement of the ratio of the Raman backscatter returns of both the oxygen and nitrogen atmospheric content. Because the ratio of the number density of both species is known to high accuracy, the measurement itself becomes a measure of the ratio of two transmissions to altitude along with a ratio of the two system constants. The calibration measurement for determining the value of the ratio of the two system constants or electro-optical conversion constants is accomplished by a lidar measurement of identical atmospheric targets while at the same time interchanging the two optical filters in the two optical channels of the receiver. More details of the procedure are discussed. Factoring this calibrated value into the measured O2/N2 profile ratio provides a measured value of the ratio of the two transmissions. Or equivalently, it provides a measurement of the difference of the two extinction coefficients at the O2 and N2 Raman wavelengths as a function of the height.

  7. Ozone Profile Retrieval from Satellite Observation Using High Spectral Resolution Infrared Sounding Instrument

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper presents a preliminary result on the retrieval of atmospheric ozone profiles using an im proved regression technique and utilizing the data from the Atmospheric InfraRed Sounder (AIRS), a hyper-spectral instrument expected to be flown on the EOS-AQUA platform in 2002. Simulated AIRS spectra were used to study the sensitivity of AIRS radiance on the tropospheric and stratospheric ozone changes, and to study the impact of various channel combinations on the ozone profile retrieval. Sensitivity study results indicate that the AIRS high resolution spectral channels between the wavenumber 650- 800 cm-1 provide very useful information to accurately retrieve tropospheric and stratospheric ozone pro files. Eigenvector decomposition of AIRS spectra indicate that no more than 100 eigenvectors are needed to retrieve very accurate ozone profiles. The accuracy of the retrieved atmospheric ozone profile from the pres ent technique and utilizing the AIRS data was compared with the accuracy obtained from current Advanced TIROS Operational Vertical Sounder (ATOVS) data aboard National Oceanic and Atmospheric Admini stration (NOAA) satellites. As expected, a comparison of retrieval results confirms that the ozone profile re trieved with the AIRS data is superior to that of ATOVS.

  8. The Radiative Role of Free Tropospheric Aerosols and Marine Clouds over the Central North Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Mazzoleni, Claudio [Michigan Technological University; Kumar, Sumit [Michigan Technological University; Wright, Kendra [Michigan Technological University; Kramer, Louisa [Michigan Technological University; Mazzoleni, Lynn [Michigan Technological University; Owen, Robert [Michigan Technological University; Helmig, Detlev [University of Colorado at Boulder

    2014-12-09

    The scientific scope of the project was to exploit the unique location of the Pico Mountain Observatory (PMO) located in the summit caldera of the Pico Volcano in Pico Island in the Azores, for atmospheric studies. The observatory, located at 2225m a.s.l., typically samples free tropospheric aerosols laying above the marine low-level clouds and long-range transported from North America. The broad purpose of this research was to provide the scientific community with a better understanding of fundamental physical processes governing the effects of aerosols on radiative forcing and climate; with the ultimate goal of improving our abilities to understand past climate and to predict future changes through numerical models. The project was 'exploratory' in nature, with the plan to demonstrate the feasibility of deploying for the first time, an extensive aerosol research package at PMO. One of the primary activities was to test the deployment of these instruments at the site, to collect data during the 2012 summer season, and to further develop the infrastructure and the knowledge for performing novel research at PMO in follow-up longer-term aerosol-cloud studies. In the future, PMO could provide an elevated research outpost to support the renewed DOE effort in the Azores that was intensified in 2013 with the opening of the new sea-level ARM-DOE Eastern North Atlantic permanent facility at Graciosa Island. During the project period, extensive new data sets were collected for the planned 2012 season. Thanks to other synergistic activities and opportunities, data collection was then successfully extended to 2013 and 2014. Highlights of the scientific findings during this project include: a) biomass burning contribute significantly to the aerosol loading in the North Atlantic free troposphere; however, long-range transported black carbon concentrations decreased substantially in the last decade. b) Single black carbon particles – analyzed off-line at the electron

  9. Improvements In The Ozone Profile Retrieval From Gome Uv/vis-nadirspectra

    Science.gov (United States)

    Tellmann, S.; Rozanov, V. V.; Weber, M.; Burrows, J. P.

    The analysis of sunnormalized spectra from the GOME (Global Ozone Monitoring Experiment) spectrometer launched in 1995 enables us to investigate longterm trends of height resolved ozone data. The ozone profile retrieval is based upon the FURM (FUll Retrieval Method) algo- rithm which uses the advanced optimal estimation approach including the optimal estimation scheme and the Kovlov informational matrix method. The spectral data require accurate radiometric calibration corrections with regard to the increasing degradation of the instrument with time. In a new approach a calibration and degradation correction will be presented which enables us to extend the used spectral range to shorter wavelengths enhancing the stratospheric information content of the retrieved ozone profiles. The inversion is strongly underconstrained and correlations between retrieval param- eters (ozone concentrations at 70 altitude levels and other auxiliary fitting parameters) tend to be high in most cases. A suitable adjustment of the number of ozone eigenvec- tors improves the retrieval. A comparison of the GOME O3-profiles with independent experimental data clearly reveals the advantage of the modified and optimized ozone profile retrieval algorithm.

  10. Harmonized dataset of ozone profiles from satellite limb and occultation measurements

    Directory of Open Access Journals (Sweden)

    V. F. Sofieva

    2013-06-01

    Full Text Available In this paper, we present a HARMonized dataset of OZone profiles (HARMOZ based on limb and occultation measurements from Envisat (GOMOS, MIPAS and SCIAMACHY, Odin (OSIRIS, SMR and SCISAT (ACE-FTS satellite instruments. These measurements provide high-vertical-resolution ozone profiles covering the altitude range from the upper troposphere up to the mesosphere in years 2001–2012. HARMOZ has been created in the framework of European Space Agency Climate Change Initiative project. The harmonized dataset consists of original retrieved ozone profiles from each instrument, which are screened for invalid data by the instrument teams. While the original ozone profiles are presented in different units and on different vertical grids, the harmonized dataset is given on a common pressure grid in netcdf format. The pressure grid corresponds to vertical sampling of ~ 1 km below 20 km and 2–3 km above 20 km. The vertical range of the ozone profiles is specific for each instrument, thus all information contained in the original data is preserved. Provided altitude and temperature profiles allow the representation of ozone profiles in number density or mixing ratio on a pressure or altitude vertical grids. Geolocation, uncertainty estimates and vertical resolution are provided for each profile. For each instrument, optional parameters, which might be related to the data quality, are also included. For convenience of users, tables of biases between each pair of instruments for each month, as well as bias uncertainties, are provided. These tables characterize the data consistency and can be used in various bias and drift analyses, which are needed, for instance, for combining several datasets to obtain a long-term climate dataset. This user-friendly dataset can be interesting and useful for various analyses and applications, such as data merging, data validation, assimilation and scientific research. Dataset is available at: http://www.esa-ozone

  11. Molecular characterization of free tropospheric aerosol collected at the Pico Mountain Observatory: a case study with a long-range transported biomass burning plume

    Science.gov (United States)

    Dzepina, K.; Mazzoleni, C.; Fialho, P.; China, S.; Zhang, B.; Owen, R. C.; Helmig, D.; Hueber, J.; Kumar, S.; Perlinger, J. A.; Kramer, L. J.; Dziobak, M. P.; Ampadu, M. T.; Olsen, S.; Wuebbles, D. J.; Mazzoleni, L. R.

    2015-05-01

    that the aerosol collected at the Pico Mountain Observatory had undergone cloud processing before reaching the site. Finally, the air masses of 9/25 were more aged and influenced by marine emissions, as indicated by the presence of organosulfates and other species characteristic of marine aerosol. The change in the air masses for the two samples was corroborated by the changes in ethane, propane, and ozone, morphology of particles, as well as by the FLEXPART retroplume simulations. This paper presents the first detailed molecular characterization of free tropospheric aged aerosol intercepted at a lower free troposphere remote location and provides evidence of low oxygenation after long-range transport. We hypothesize this is a result of the selective removal of highly aged and polar species during long-range transport, because the aerosol underwent a combination of atmospheric processes during transport facilitating aqueous-phase removal (e.g., clouds processing) and fragmentation (e.g., photolysis) of components.

  12. Molecular characterization of free tropospheric aerosol collected at the Pico Mountain Observatory: a case study with long range transported biomass burning plumes

    Directory of Open Access Journals (Sweden)

    K. Dzepina

    2014-09-01

    detected in WSOC species and with the morphology and mixing state of particles as determined by scanning electron microscopy. The presence of markers characteristic of aqueous-phase reactions of biomass burning phenolic species suggests that the aerosol collected at the Pico Mountain Observatory had undergone cloud processing before reaching the site. Finally, the air masses on 9/25 were more aged (∼15 days and influenced by marine emissions, as indicated by organosulfates and other species characteristic for marine aerosol such as fatty acids. The change in air masses for the two samples was corroborated by the changes in ozone and the non-methane hydrocarbons ethane and propane, morphology of particles, as well as by the FLEXPART retroplume simulations. This manuscript presents the first detailed molecular characterization of free tropospheric aged aerosol intercepted at a lower free troposphere remote location in the North Atlantic.

  13. Molecular characterization of free tropospheric aerosol collected at the Pico Mountain Observatory: a case study with long range transported biomass burning plumes

    Science.gov (United States)

    Dzepina, K.; Mazzoleni, C.; Fialho, P.; China, S.; Zhang, B.; Owen, R. C.; Helmig, D.; Hueber, J.; Kumar, S.; Perlinger, J. A.; Kramer, L.; Dziobak, M. P.; Ampadu, M. T.; Olsen, S.; Wuebbles, D. J.; Mazzoleni, L. R.

    2014-09-01

    WSOC species and with the morphology and mixing state of particles as determined by scanning electron microscopy. The presence of markers characteristic of aqueous-phase reactions of biomass burning phenolic species suggests that the aerosol collected at the Pico Mountain Observatory had undergone cloud processing before reaching the site. Finally, the air masses on 9/25 were more aged (∼15 days) and influenced by marine emissions, as indicated by organosulfates and other species characteristic for marine aerosol such as fatty acids. The change in air masses for the two samples was corroborated by the changes in ozone and the non-methane hydrocarbons ethane and propane, morphology of particles, as well as by the FLEXPART retroplume simulations. This manuscript presents the first detailed molecular characterization of free tropospheric aged aerosol intercepted at a lower free troposphere remote location in the North Atlantic.

  14. Single Particle Characterization of Free Tropospheric Aerosols at the Pico Mountain Observatory over the North Atlantic

    Science.gov (United States)

    Mazzoleni, C.; China, S.; Scarnato, B. V.; Moffet, R.; OBrien, R. E.; Gilles, M. K.; Fialho, P. J.; Ampadu, M.; Kumar, S.; Dzepina, K.; Wright, K.; Sharma, N.; Zhang, B.; Owen, R. C.; Perlinger, J. A.; Jacques, H.; Helmig, D.; Dziobak, M.; Kramer, L. J.; Mazzoleni, L. R.

    2014-12-01

    Free tropospheric aerosols are being studied at the Pico Mountain Observatory, located near the top of the Pico volcano in the Azores, Portugal (38.47°N, 28.40°W, 2225m asl). Typically above the marine boundary layer in the summer, this is an ideal site to study aerosol transported over long distances across the Atlantic Ocean. Aerosols reaching the Observatory often originate from North America and sometimes from Africa and Europe. Aerosols instrumentation deployed at the site include: a) an optical particle counter, b) a 7-wavelength aethalometer to measure black carbon equivalent mass concentration, c) a 3-wavelength nephelometer to measure total and backward light scattering, d) four high volume samplers for aerosol chemical characterization, and e) a sequential aerosol sampler and a 4-stage impactor to collect particles on different substrates for microscopy analysis. The origin and transport pathways of the air masses sampled at the site are determined using FLEXible PARTicle (FLEXPART) dispersion modeling retroplume analysis. Single particle morphology and mixing states were determined using electron microscopy, energy dispersive X-ray spectroscopy, and scanning transmission x-ray microscopy. This study provides an overview of different types of aerosol collected at Pico Mountain Observatory. We investigated morphology and mixing of various types of particles, including dust, soot, salt and organic particles transported to the Observatory. Soot particles were often mixed/coated with other material and exhibited very compact shape. Dust particles were often mixed with sulfur containing species. We also observed dust particles that were mixed with coated soot particles. During some events, we observed soot and sulfate aerosol trapped within organic matter. The results of this study have implications on how aerosol particles and their internal mixing can be represented in numerical models for remote regions of the free troposphere.

  15. Atmospheric Ozone Profiles During Vasylkiv Oil Burning Episode

    Science.gov (United States)

    Shavrina, A.; Veles, A.; Milinevsky, G.; Grytsai, A.; Liptuga, A.; Kyslyi, V.; Romanyuk, Ya.

    Ground-based Fourier Transform Infrared spectrometer (FTIR) observations have been used for study stratosphere/troposphere ozone vertical distribution during Vasylkiv (near Kyiv, Ukraine) incident of petroleum storage burning in June 8-14, 2015.

  16. Total ozone columns and vertical ozone profiles above Kiev in 2005-2008

    OpenAIRE

    Shavrina, A. V.; Kroon, M.; Sheminova, V. A.; Pavlenko, Ya. V.; Veles, A. A.; Synyavski, I. I.; Romanyuk, Ya. O.

    2010-01-01

    The study of total ozone columns above Kiev and variations of ozone concentrations in the troposphere at different altitudes above Kiev was carried out using ground-based Fourier Transform InfraRed (FTIR) spectrometric observations that are taken on a routine basis at the Main Astronomical Observatory of the National Academy of Sciences of Ukraine (MAO NASU). This study was performed within the framework of the international ESA-NIVR-KNMI OMI-AO project no.2907 entitled OMI validation by grou...

  17. Gas chromatography-mass spectrometry profile of urinary organic acids of Wistar rats orally treated with ozonized unsaturated triglycerides and ozonized sunflower oil.

    Science.gov (United States)

    Jardines, Daniel; Correa, Teresa; Ledea, Oscar; Zamora, Zullyt; Rosado, Aristides; Molerio, Jesús

    2003-01-15

    The main products in the ozonolysis of unsaturated triglycerides or vegetable oils are peroxides, aldehydes, Criegee ozonides and carboxylic acids. Some of these compounds are present in different concentrations in the biological fluids. The aim of this work is to study, using gas chromatography-mass spectrometry (GC-MS), the organic acid excretion in urine of rats orally treated with ozonized sunflower oil (OSO), ozonized triolein or ozonized trilinolein. Oral administration of OSO to Wistar rats has produced changes in the urinary content of dicarboxylic organic acids. Among others heptanedioic (pimelic acid) and nonanedioic acids (azelaic acid) were the major increased dicarboxylic acids found. The urinary dicarboxylic acid profiles of rats which received ozonized triolein only showed an increase in heptanedioic and nonanedioic acids. However, when ozonized trilinolein is applied, the profile is similar to that obtained when OSO is administered. A biochemical mechanism is proposed to explain the formation of dicarboxylic acids from ozonated unsaturated triglycerides.

  18. An update on ozone profile trends for the period 2000 to 2016

    Science.gov (United States)

    Steinbrecht, Wolfgang; Froidevaux, Lucien; Fuller, Ryan; Wang, Ray; Anderson, John; Roth, Chris; Bourassa, Adam; Degenstein, Doug; Damadeo, Robert; Zawodny, Joe; Frith, Stacey; McPeters, Richard; Bhartia, Pawan; Wild, Jeannette; Long, Craig; Davis, Sean; Rosenlof, Karen; Sofieva, Viktoria; Walker, Kaley; Rahpoe, Nabiz; Rozanov, Alexei; Weber, Mark; Laeng, Alexandra; von Clarmann, Thomas; Stiller, Gabriele; Kramarova, Natalya; Godin-Beekmann, Sophie; Leblanc, Thierry; Querel, Richard; Swart, Daan; Boyd, Ian; Hocke, Klemens; Kämpfer, Niklaus; Maillard Barras, Eliane; Moreira, Lorena; Nedoluha, Gerald; Vigouroux, Corinne; Blumenstock, Thomas; Schneider, Matthias; García, Omaira; Jones, Nicholas; Mahieu, Emmanuel; Smale, Dan; Kotkamp, Michael; Robinson, John; Petropavlovskikh, Irina; Harris, Neil; Hassler, Birgit; Hubert, Daan; Tummon, Fiona

    2017-09-01

    Ozone profile trends over the period 2000 to 2016 from several merged satellite ozone data sets and from ground-based data measured by four techniques at stations of the Network for the Detection of Atmospheric Composition Change indicate significant ozone increases in the upper stratosphere, between 35 and 48 km altitude (5 and 1 hPa). Near 2 hPa (42 km), ozone has been increasing by about 1.5 % per decade in the tropics (20° S to 20° N), and by 2 to 2.5 % per decade in the 35 to 60° latitude bands of both hemispheres. At levels below 35 km (5 hPa), 2000 to 2016 ozone trends are smaller and not statistically significant. The observed trend profiles are consistent with expectations from chemistry climate model simulations. This study confirms positive trends of upper stratospheric ozone already reported, e.g., in the WMO/UNEP Ozone Assessment 2014 or by Harris et al. (2015). Compared to those studies, three to four additional years of observations, updated and improved data sets with reduced drift, and the fact that nearly all individual data sets indicate ozone increase in the upper stratosphere, all give enhanced confidence. Uncertainties have been reduced, for example for the trend near 2 hPa in the 35 to 60° latitude bands from about ±5 % (2σ) in Harris et al. (2015) to less than ±2 % (2σ). Nevertheless, a thorough analysis of possible drifts and differences between various data sources is still required, as is a detailed attribution of the observed increases to declining ozone-depleting substances and to stratospheric cooling. Ongoing quality observations from multiple independent platforms are key for verifying that recovery of the ozone layer continues as expected.

  19. Impact of sampling frequency in the analysis of tropospheric ozone observations

    Directory of Open Access Journals (Sweden)

    M. Saunois

    2012-08-01

    Full Text Available Measurements of ozone vertical profiles are valuable for the evaluation of atmospheric chemistry models and contribute to the understanding of the processes controlling the distribution of tropospheric ozone. The longest record of ozone vertical profiles is provided by ozone sondes, which have a typical frequency of 4 to 12 profiles a month. Here we quantify the uncertainty introduced by low frequency sampling in the determination of means and trends. To do this, the high frequency MOZAIC (Measurements of OZone, water vapor, carbon monoxide and nitrogen oxides by in-service AIrbus airCraft profiles over airports, such as Frankfurt, have been subsampled at two typical ozone sonde frequencies of 4 and 12 profiles per month. We found the lowest sampling uncertainty on seasonal means at 700 hPa over Frankfurt, with around 5% for a frequency of 12 profiles per month and 10% for a 4 profile-a-month frequency. However the uncertainty can reach up to 15 and 29% at the lowest altitude levels. As a consequence, the sampling uncertainty at the lowest frequency could be higher than the typical 10% accuracy of the ozone sondes and should be carefully considered for observation comparison and model evaluation. We found that the 95% confidence limit on the seasonal mean derived from the subsample created is similar to the sampling uncertainty and suggest to use it as an estimate of the sampling uncertainty. Similar results are found at six other Northern Hemisphere sites. We show that the sampling substantially impacts on the inter-annual variability and the trend derived over the period 1998–2008 both in magnitude and in sign throughout the troposphere. Also, a tropical case is discussed using the MOZAIC profiles taken over Windhoek, Namibia between 2005 and 2008. For this site, we found that the sampling uncertainty in the free troposphere is around 8 and 12% at 12 and 4 profiles a month respectively.

  20. Measurement of aerosol sulfuric acid 2. Pronounced layering in the free troposphere during the second Aerosol Characterization Experiment (ACE 2)

    NARCIS (Netherlands)

    Curtius, J; Sierau, B; Arnold, F; de Reus, M; Strom, J; Scheeren, HA; Lelieveld, J

    2001-01-01

    Measurements of aerosol sulfuric acid in the free troposphere were performed in the vicinity of Tenerife, Canary Islands (28degreesN, 16degreesW), in July 1997. These measurements were carried out on board a Dutch Cessna Citation 11 research aircraft within the framework of the second Aerosol Charac

  1. Intercomparison of stratospheric ozone profiles for the assessment of the upgraded GROMOS radiometer at Bern

    Directory of Open Access Journals (Sweden)

    S. Studer

    2013-07-01

    Full Text Available Since November 1994, the GROund-based Millimeter-wave Ozone Spectrometer (GROMOS measures stratospheric and lower mesospheric ozone in Bern, Switzerland (47.95° N, 7.44° E. GROMOS is part of the Network for the Detection of Atmospheric Composition Change (NDACC. In July 2009, a Fast-Fourier-Transform spectrometer (FFTS has been added as backend to GROMOS. The new FFTS and the original filter bench (FB measured parallel for over two years. In October 2011, the FB has been turned off and the FFTS is now used to continue the ozone time series. For a consolidated ozone time series in the frame of NDACC, the quality of the stratospheric ozone profiles obtained with the FFTS has to be assessed. The FFTS results from July 2009 to December 2011 are compared to ozone profiles retrieved by the FB. FFTS and FB of the GROMOS microwave radiometer agree within 5% above 20 hPa. A later harmonization of both time series will be realized by taking the FFTS as benchmark for the FB. Ozone profiles from the FFTS are also compared to coinciding lidar measurements from the Observatoire Haute Provence (OHP, France. For the time period studied a maximum mean difference (lidar – GROMOS FFTS of +3.8% at 3.1 hPa and a minimum mean difference of +1.4% at 8 hPa is found. Further, intercomparisons with ozone profiles from other independent instruments are performed: satellite measurements include MIPAS onboard ENVISAT, SABER onboard TIMED, MLS onboard EOS Aura and ACE-FTS onboard SCISAT-1. Additionally, ozonesondes launched from Payerne, Switzerland, are used in the lower stratosphere. Mean relative differences of GROMOS FFTS and these independent instruments are less than 10% between 50 and 0.1 hPa.

  2. A compact mobile ozone lidar for atmospheric ozone and aerosol profiling

    Science.gov (United States)

    De Young, Russell; Carrion, William; Pliutau, Denis

    2014-10-01

    A compact mobile differential absorption lidar (DIAL) system has been developed at NASA Langley Research Center to provide ozone, aerosol and cloud atmospheric measurements in a mobile trailer for ground-based atmospheric ozone air quality campaigns. This lidar is integrated into the Tropospheric Ozone Lidar Network (TOLNet) currently made up of four other ozone lidars across the country. The lidar system consists of a UV and green laser transmitter, a telescope and an optical signal receiver with associated Licel photon counting and analog channels. The laser transmitter consists of a Q-switched Nd:YLF inter-cavity doubled laser pumping a Ce:LiCAF tunable UV laser with all the associated power and lidar control support units on a single system rack. The system has been configured to enable mobile operation from a trailer and was deployed to Denver, CO July 15-August 15, 2014 supporting the DISCOVER-AQ campaign. Ozone curtain plots and the resulting science are presented.

  3. Measurements and Mesoscale Modeling of Autumnal Vertical Ozone Profiles in Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Yen-Ping Peng

    2008-01-01

    Full Text Available Vertical measurements of ozone were made using a tethered balloon at the Linyuan site in Kaohsiung County, southern Taiwan. Ozone was monitored at altitudes of 0, 100, 300, 500, and 1000 m from November 23 to 25 in 2005. The potential temperature profiles revealed a stable atmosphere during the study period, largely because of the dominance of the high-pressure system and nocturnal radiation cooling close to the surface. The mixing height was low (50 - 300 m, particularly in the late night and early morning. The surface ozone concentrations that were predicted using TAPM (The Air Pollution Model were high (33.7 - 119 ppbv in the daytime (10:00 - 16:00 and were low (10 - 40 ppbv at other times; the predictions of which were consistent with the observations. The simulated surface ozone concentrations reveal that costal lands typically had higher ozone concentrations than those inland, because most industrial parks are located in or close to the boundaries of Kaohsiung City. Both measurements and simulations indicate that daytime ozone concentrations decreased quickly with increasing height at altitudes below 300 m; while nighttime ozone concentrations were lower at low altitudes (50 to 300 m than at higher altitudes, partly because of dry deposition and titration of surface ozone by the near-surface nitrogen oxides (NOx and partly because of the existence of the residual layer above the stable nocturnal boundary layer. The simulations show a good correlation between the maximum daytime surface ozone concentration and average nighttime ozone concentration above the nocturnal boundary layer.

  4. "Cloud Slicing" : A New Technique to Derive Tropospheric Ozone Profile Information from Satellite Measurements

    Science.gov (United States)

    Ziemke, J. R.; Chandra, S.; Bhartia, P. K.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A new technique denoted cloud slicing has been developed for estimating tropospheric ozone profile information. All previous methods using satellite data were only capable of estimating the total column of ozone in the troposphere. Cloud slicing takes advantage of the opaque property of water vapor clouds to ultraviolet wavelength radiation. Measurements of above-cloud column ozone from the Nimbus 7 total ozone mapping spectrometer (TOMS) instrument are combined together with Nimbus 7 temperature humidity and infrared radiometer (THIR) cloud-top pressure data to derive ozone column amounts in the upper troposphere. In this study tropical TOMS and THIR data for the period 1979-1984 are analyzed. By combining total tropospheric column ozone (denoted TCO) measurements from the convective cloud differential (CCD) method with 100-400 hPa upper tropospheric column ozone amounts from cloud slicing, it is possible to estimate 400-1000 hPa lower tropospheric column ozone and evaluate its spatial and temporal variability. Results for both the upper and lower tropical troposphere show a year-round zonal wavenumber 1 pattern in column ozone with largest amounts in the Atlantic region (up to approx. 15 DU in the 100-400 hPa pressure band and approx. 25-30 DU in the 400-1000 hPa pressure band). Upper tropospheric ozone derived from cloud slicing shows maximum column amounts in the Atlantic region in the June-August and September-November seasons which is similar to the seasonal variability of CCD derived TCO in the region. For the lower troposphere, largest column amounts occur in the September-November season over Brazil in South America and also southern Africa. Localized increases in the tropics in lower tropospheric ozone are found over the northern region of South America around August and off the west coast of equatorial Africa in the March-May season. Time series analysis for several regions in South America and Africa show an anomalous increase in ozone in the lower

  5. Impact of sampling frequency in the analysis of tropospheric ozone observations

    Directory of Open Access Journals (Sweden)

    M. Saunois

    2011-10-01

    Full Text Available The measurements of the ozone vertical profiles are valuable for the evaluation of atmospheric chemistry models and contribute to the understanding of the processes controlling the distribution of tropospheric ozone. The longest record of the ozone vertical profiles is provided by ozone sondes, which have a low time resolution with a typical frequency of 12 or 4 profiles a month. Here we discuss and quantify the uncertainty in the analysis of such data sets using high frequency MOZAIC (Measurements of OZone, water vapor, carbon monoxide and nitrogen oxides by in-service AIrbus airCraft profiles data sets, such as the one over Frankfurt. We subsampled the MOZAIC data set at the two typical ozone sonde frequencies. We find that the uncertainty introduced by the coarser sampling is around 8% for a 12 profiles a month frequency (14% for a 4 profiles a month frequency in the free troposphere over Frankfurt. As a consequence, this uncertainty at the lowest frequency is higher than the typical 10% accuracy of the ozone sondes and should be carefully considered for observation comparison and model evaluation. We found that the average intra-seasonal variability represented in the samples is similar to the sampling uncertainty and could also be used as an estimate of the sampling error in some Northern Hemisphere cases. The sampling impacts substantially the inter annual variability and the trend derived over the period 1995–2008 both in magnitude and in sign throughout the troposphere. Therefore, the sampling effect could be part of the observed discrepancies between European sites. Similar results regarding the sampling uncertainty are found at five other Northern Hemispheric sites. Also, a tropical case is discussed using the MOZAIC profiles taken over Windhoek, Namibia between 2005 and 2008.

  6. Impact of North America on the aerosol composition in the North Atlantic free troposphere

    Directory of Open Access Journals (Sweden)

    M. I. García

    2017-06-01

    Full Text Available In the AEROATLAN project we study the composition of aerosols collected over  ∼  5 years at Izaña Observatory (located at  ∼  2400 m a.s.l. in Tenerife, the Canary Islands under the prevailing westerly airflows typical of the North Atlantic free troposphere at subtropical latitudes and midlatitudes. Mass concentrations of sub-10 µm aerosols (PM10 carried by westerly winds to Izaña, after transatlantic transport, are typically within the range 1.2 and 4.2 µg m−3 (20th and 80th percentiles. The main contributors to background levels of aerosols (PM10 within the 1st–50th percentiles  =  0.15–2.54 µg m−3 are North American dust (53 %, non-sea-salt sulfate (14 % and organic matter (18 %. High PM10 events (75th–95th percentiles  ≈  4.0–9.0 µg m−3 are prompted by dust (56 %, organic matter (24 % and non-sea-salt sulfate (9 %. These aerosol components experience a seasonal evolution explained by (i their spatial distribution in North America and (ii the seasonal shift of the North American outflow, which migrates from low latitudes in winter (∼  32° N, January–March to high latitudes in summer (∼  52° N, August–September. The westerlies carry maximum loads of non-sea-salt sulfate, ammonium and organic matter in spring (March–May, of North American dust from midwinter to mid-spring (February–May and of elemental carbon in summer (August–September. Our results suggest that a significant fraction of organic aerosols may be linked to sources other than combustion (e.g. biogenic; further studies are necessary for this topic. The present study suggests that long-term evolution of the aerosol composition in the North Atlantic free troposphere will be influenced by air quality policies and the use of soils (potential dust emitter in North America.

  7. Validation of SCIAMACHY limb ozone profiles with lidar

    NARCIS (Netherlands)

    Lolkema DE; Meijer YJ; Swart DPJ; LVM

    2007-01-01

    The National Institute for Public Health and the Environment (RIVM) has examined the quality of SCIAMACHY measurements on the structure of the ozone layer of the entire atmosphere. SCIAMACHY is a measurement instrument onboard the environmental satellite ENVISAT. It gives information on the composit

  8. Validation of SCIAMACHY limb ozone profiles with lidar

    NARCIS (Netherlands)

    Lolkema DE; Meijer YJ; Swart DPJ; LVM

    2007-01-01

    The National Institute for Public Health and the Environment (RIVM) has examined the quality of SCIAMACHY measurements on the structure of the ozone layer of the entire atmosphere. SCIAMACHY is a measurement instrument onboard the environmental satellite ENVISAT. It gives information on the

  9. Ozone export from East Asia: The role of PAN

    Science.gov (United States)

    Jiang, Zhe; Worden, John R.; Payne, Vivienne H.; Zhu, Liye; Fischer, Emily; Walker, Thomas; Jones, Dylan B. A.

    2016-06-01

    Peroxyacetyl nitrate (PAN) is an important ozone (O3) precursor. The lifetime of PAN is approximately 1 month in the free troposphere, and this allows O3 production to occur in pollution plumes at intercontinental distances from its source. In this study we use the Goddard Earth Observing System (GEOS)-Chem global chemical transport model, new satellite measurements of PAN from the Aura Tropospheric Emission Spectrometer (TES), and data from the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaign over North America, to study the role of natural and anthropogenic Asian emissions on free tropospheric (900-400 hPa) PAN distributions and subsequent O3 production. Using the ARCTAS data with GEOS-Chem, we show that while GEOS-Chem is unbiased with respect to the aircraft data, TES version 7 PAN data are biased high for regions with surface temperatures colder than 285 K. However, GEOS-Chem and TES measurements provide a consistent representation (within 15% difference) of PAN abundance over East Asia. Because of the good agreement between model and observations, we use the GEOS-Chem model to evaluate the sources of PAN precursors and the effect of free tropospheric PAN on the export of O3 from Asia to North America. The GEOS-Chem model results show that the largest contributors to free tropospheric PAN over Asia and the northern Pacific are anthropogenic and soil NOx emissions. Biomass burning emissions have important contributions to free tropospheric PAN over northern Pacific (25% in April), while the contribution from lightning over northern Pacific is significant in July (40%). Strong springtime transport in April results in more export of free tropospheric PAN and O3 from East Asian emissions. This free tropospheric PAN contributes about 35% to the abundance of free tropospheric O3 over western North America in spring and 25% in summer.

  10. Investigating the long-term evolution of subtropical ozone profiles applying ground-based FTIR spectrometry

    Directory of Open Access Journals (Sweden)

    O. E. García

    2012-11-01

    Full Text Available This study investigates the long-term evolution of subtropical ozone profile time series (1999–2010 obtained from ground-based FTIR (Fourier Transform InfraRed spectrometry at the Izaña Observatory ozone super-site. Different ozone retrieval strategies are examined, analysing the influence of an additional temperature retrieval and different constraints. The theoretical assessment reveals that the FTIR system is able to resolve four independent ozone layers with a precision of better than 6% in the troposphere and of better than 3% in the lower, middle and upper stratosphere. This total error includes the smoothing error, which dominates the random error budget. Furthermore, we estimate that the measurement noise as well as uncertainties in the applied atmospheric temperature profiles and instrumental line shape are leading error sources. We show that a simultaneous temperature retrieval can significantly reduce the total random errors and that a regular determination of the instrumental line shape is important for producing a consistent long-term dataset. These theoretical precision estimates are empirically confirmed by daily intercomparisons with Electro Chemical Cell (ECC sonde profiles. In order to empirically document the long-term stability of the FTIR ozone profile data we compare the linear trends and seasonal cycles as obtained from the FTIR and ECC time series. Concerning seasonality, in winter both techniques observe stratospheric ozone profiles that are typical middle latitude profiles (low tropopause, low ozone maximum concentrations and in summer/autumn profiles that are typical tropical profiles (high tropopause, high maximum concentrations. The linear trends estimated from the FTIR and the ECC datasets agree within their error bars. For the FTIR time series, we observe a significant negative trend in the upper troposphere/lower stratosphere of about −0.2% yr−1 and a significant positive trend in the middle and

  11. Investigating the long-term evolution of subtropical ozone profiles applying ground-based FTIR spectrometry

    Science.gov (United States)

    García, O. E.; Schneider, M.; Redondas, A.; González, Y.; Hase, F.; Blumenstock, T.; Sepúlveda, E.

    2012-11-01

    This study investigates the long-term evolution of subtropical ozone profile time series (1999-2010) obtained from ground-based FTIR (Fourier Transform InfraRed) spectrometry at the Izaña Observatory ozone super-site. Different ozone retrieval strategies are examined, analysing the influence of an additional temperature retrieval and different constraints. The theoretical assessment reveals that the FTIR system is able to resolve four independent ozone layers with a precision of better than 6% in the troposphere and of better than 3% in the lower, middle and upper stratosphere. This total error includes the smoothing error, which dominates the random error budget. Furthermore, we estimate that the measurement noise as well as uncertainties in the applied atmospheric temperature profiles and instrumental line shape are leading error sources. We show that a simultaneous temperature retrieval can significantly reduce the total random errors and that a regular determination of the instrumental line shape is important for producing a consistent long-term dataset. These theoretical precision estimates are empirically confirmed by daily intercomparisons with Electro Chemical Cell (ECC) sonde profiles. In order to empirically document the long-term stability of the FTIR ozone profile data we compare the linear trends and seasonal cycles as obtained from the FTIR and ECC time series. Concerning seasonality, in winter both techniques observe stratospheric ozone profiles that are typical middle latitude profiles (low tropopause, low ozone maximum concentrations) and in summer/autumn profiles that are typical tropical profiles (high tropopause, high maximum concentrations). The linear trends estimated from the FTIR and the ECC datasets agree within their error bars. For the FTIR time series, we observe a significant negative trend in the upper troposphere/lower stratosphere of about -0.2% yr-1 and a significant positive trend in the middle and upper stratosphere of about +0

  12. Algorithm for vertical ozone profile determination for the Nimbus-4 BUV data set

    Science.gov (United States)

    Bhartia, P. K.; Klenk, K. F.; Kaveeshwar, V. G.; Ahmad, S.; Fleig, A. J.; Mcpeters, R. D.; Mateer, C. L.

    1981-01-01

    A description is provided of the algorithm used by the Ozone Processing Team at NASA to process seven years of Backscatter Ultraviolet (BUV) ozone profile data. The algorithm is a modification of the original retrieval algorithm developed by Mateer (1972) to process some of the early data from the BUV experiment. Principal changes made are in the first guess selection scheme, the use of all wavelengths in the inversion, and the weighting of the various wavelengths according to the errors in the radiance estimation. It is found that the described BUV ozone profile algorithm is an extremely efficient algorithm for retrieving large amounts of satellite data. The algorithm makes full use of all the available information from the measured radiances including the longer wavelength radiances which previously had not been used.

  13. Southern Hemisphere Additional Ozonesondes (SHADOZ) Ozone Climatology (2005-2009): Tropospheric and Tropical Tropopause Layer (TTL) Profiles with Comparisons to Omi-based Ozone Products

    Science.gov (United States)

    Thompson, Anne M.; Miller, Sonya K.; Tilmes, Simone; Kollonige, Debra W.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Johnson, Brian J.; Fujiwara, Masatomo; Schmidlin, F. J.; Coetzee, G. J. R.; Komala, Ninong; Maata, Matakite; bt Mohammad, Maznorizan; Nguyo, J.; Mutai, C.; Ogino, S-Y; Da Silva, F. Raimundo; Paes Leme, N. M.; Posny, Francoise; Scheele, Rinus; Selkirk, Henry B.; Shiotani, Masato; Stubi, Rene; Levrat, Gilbert; Calpini, Bertrand; Thouret, Valerie; Tsuruta, Haruo; Canossa, Jessica Valverde; Voemel, Holger; Yonemura, S.; Andres Diaz, Jorge; Tan Thanh, Nguyen T.; Thuy Ha, Hoang T.

    2012-01-01

    We present a regional and seasonal climatology of SHADOZ ozone profiles in the troposphere and tropical tropopause layer (TTL) based on measurements taken during the first five years of Aura, 2005-2009, when new stations joined the network at Hanoi, Vietnam; Hilo, Hawaii; Alajuela Heredia, Costa Rica; Cotonou, Benin. In all, 15 stations operated during that period. A west-to-east progression of decreasing convective influence and increasing pollution leads to distinct tropospheric ozone profiles in three regions: (1) western Pacific eastern Indian Ocean; (2) equatorial Americas (San Cristobal, Alajuela, Paramaribo); (3) Atlantic and Africa. Comparisons in total ozone column from soundings, the Ozone Monitoring Instrument (OMI, on Aura, 2004-) satellite and ground-based instrumentation are presented. Most stations show better agreement with OMI than they did for EPTOMS comparisons (1998-2004; Earth-ProbeTotal Ozone Mapping Spectrometer), partly due to a revised above-burst ozone climatology. Possible station biases in the stratospheric segment of the ozone measurement noted in the first 7 years of SHADOZ ozone profiles are re-examined. High stratospheric bias observed during the TOMS period appears to persist at one station. Comparisons of SHADOZ tropospheric ozone and the daily Trajectory-enhanced Tropospheric Ozone Residual (TTOR) product (based on OMIMLS) show that the satellite-derived column amount averages 25 low. Correlations between TTOR and the SHADOZ sondes are quite good (typical r2 0.5-0.8), however, which may account for why some published residual-based OMI products capture tropospheric interannual variability fairly realistically. On the other hand, no clear explanations emerge for why TTOR-sonde discrepancies vary over a wide range at most SHADOZ sites.

  14. Airborne Detection of Iodine Oxide and Glyoxal in the Free Troposphere over the Remote Tropical Pacific Ocean

    Science.gov (United States)

    Dix, B. K.; Volkamer, R.

    2010-12-01

    We present the first spectral proof for the presence of iodine oxide (IO) and glyoxal (CHOCHO) in the free troposphere. Measurements were conducted with the University of Colorado Airborne Multi-AXis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument aboard the NSF/NCAR GV research aircraft (HIAPER) over the remote tropical Pacific Ocean. As part of the HEFT-10 instrument test program a research flight was conducted on 29 January 2010 out of Hawaii to the equatorial Pacific Ocean south of Hawaii. IO and CHOCHO were observed in the marine boundary layer as well as in the free troposphere up to 14km altitude. Satellite data of the same area give inconsistent values and are inconclusive on the vertical distribution. Our measurements for the first time retrieve the vertical distribution of IO and CHOCHO over the remote tropical Pacific Ocean by means of experimentally well constrained inverse radiative transfer modeling.

  15. Human Ozone (O3) Exposure Alters Serum Profile of Lipid Metabolites

    Science.gov (United States)

    HUMAN OZONE (O3) EXPOSURE ALTERS SERUM PROFILE OF LIPID METABOLITES Miller, D B.1; Kodavanti, U P.2 Karoly, E D.3; Cascio W.E2, Ghio, A J. 21. UNC-Chapel Hill, Chapel Hill, N.C., United States. 2. NHEERL, U.S. EPA, RTP, N.C., United States. 3. METABOLON INC., Durham, N.C., United...

  16. Human Ozone (O3) Exposure Alters Serum Profile of Lipid Metabolites

    Science.gov (United States)

    HUMAN OZONE (O3) EXPOSURE ALTERS SERUM PROFILE OF LIPID METABOLITES Miller, D B.1; Kodavanti, U P.2 Karoly, E D.3; Cascio W.E2, Ghio, A J. 21. UNC-Chapel Hill, Chapel Hill, N.C., United States. 2. NHEERL, U.S. EPA, RTP, N.C., United States. 3. METABOLON INC., Durham, N.C., United...

  17. Ice cloud formation potential by free tropospheric particles from long-range transport over the Northern Atlantic Ocean

    Science.gov (United States)

    China, Swarup; Alpert, Peter A.; Zhang, Bo; Schum, Simeon; Dzepina, Katja; Wright, Kendra; Owen, R. Chris; Fialho, Paulo; Mazzoleni, Lynn R.; Mazzoleni, Claudio; Knopf, Daniel A.

    2017-03-01

    Long-range transported free tropospheric particles can play a significant role on heterogeneous ice nucleation. Using optical and electron microscopy we examine the physicochemical characteristics of ice nucleating particles (INPs). Particles were collected on substrates from the free troposphere at the remote Pico Mountain Observatory in the Azores Islands, after long-range transport and aging over the Atlantic Ocean. We investigate four specific events to study the ice formation potential by the collected particles with different ages and transport patterns. We use single-particle analysis, as well as bulk analysis to characterize particle populations. Both analyses show substantial differences in particle composition between samples from the four events; in addition, single-particle microscopy analysis indicates that most particles are coated by organic material. The identified INPs contained mixtures of dust, aged sea salt and soot, and organic material acquired either at the source or during transport. The temperature and relative humidity (RH) at which ice formed, varied only by 5% between samples, despite differences in particle composition, sources, and transport patterns. We hypothesize that this small variation in the onset RH may be due to the coating material on the particles. This study underscores and motivates the need to further investigate how long-range transported and atmospherically aged free tropospheric particles impact ice cloud formation.

  18. Isotopic Composition of Gaseous Elemental Mercury in the Free Troposphere of the Pic du Midi Observatory, France.

    Science.gov (United States)

    Fu, Xuewu; Marusczak, Nicolas; Wang, Xun; Gheusi, François; Sonke, Jeroen E

    2016-06-07

    Understanding the sources and transformations of mercury (Hg) in the free troposphere is a critical aspect of global Hg research. Here we present one year of observations of atmospheric Hg speciation and gaseous elemental Hg (GEM) isotopic composition at the high-altitude Pic du Midi Observatory (2860 m above sea level) in France. Biweekly integrated GEM from February 2012 to January 2013 revealed significant variations in δ(202)HgGEM (-0.04‰ to 0.52‰) but not in Δ(199)HgGEM (-0.17‰ to -0.27‰) or Δ(200)HgGEM (-0.10‰ to 0.05‰). δ(202)HgGEM was negatively correlated with CO and reflected air mass origins from Europe (high CO, low δ(202)HgGEM) and from the Atlantic Ocean (low CO, high δ(202)HgGEM). We suggest that the δ(202)HgGEM variations represent mixing of recent low δ(202)HgGEM European anthropogenic emissions with high δ(202)HgGEM northern hemispheric background GEM. In addition, Atlantic Ocean free troposphere air masses showed a positive correlation between δ(202)HgGEM and gaseous oxidized Hg (GOM) concentrations, indicative of mass-dependent Hg isotope fractionation during GEM oxidation. On the basis of atmospheric δ(202)HgGEM and speciated Hg observations, we suggest that the oceanic free troposphere is a reservoir within which GEM is readily oxidized to GOM.

  19. Tropospheric ozone variability over Singapore from August 1996 to December 1999

    Science.gov (United States)

    Yonemura, S.; Tsuruta, H.; Maeda, T.; Kawashima, S.; Sudo, S.; Hayashi, M.

    Vertical ozone profiles over Singapore (lat 1°20'N, long 103°53'E) have been monitored by ozonesondes twice a month since August 1996. We report the vertical ozone profiles over Singapore from August 1996 to the end of 1999. During this time, large ozone enhancements occurred during three periods: March-June 1997, September-November 1997, and February-May 1998. These ozone enhancements were larger over Singapore than over Malaysia. Backward trajectory analyses revealed that the enhancements during September-November 1997, and February-May 1998 were associated with biomass burning in Indonesia and Southeast Asia. Outside the three periods, ozone concentrations over Singapore differed from those over Malaysia by not more than 2.5% at altitudes of between 2.6 and 7.6 km and by not more than 12% at altitudes of between 1 and 13.5 km. The minimum ozone concentrations in the middle and the upper troposphere were about 20 ppbv and were observed when the wind was easterly from the Pacific Ocean. Ozone concentrations at the bottom of the troposphere were near zero when the wind was southerly to westerly (from the larger, more urbanized and industrialized part of Singapore and the Strait of Malacca), implying that ozone-destroying reactions were occurring with high concentrations of urban pollutants. We conclude that the ozone enhancements observed in the free troposphere resulted from the effects of extensive biomass burning combined with the modified circulation (suppressed convection of maritime air masses) that occurs during El Niño events.

  20. Tropospheric ozone climatology at two southern subtropical sites, (Reunion Island and Irene, South Africa from ozone sondes, LIDAR, aircraft and in situ measurements

    Directory of Open Access Journals (Sweden)

    G. Clain

    2008-06-01

    Full Text Available This paper presents a climatology and trends of tropospheric ozone in the southwestern part of Indian Ocean (Reunion Island and South Africa (Irene and Johannesburg. This study is based on a multi-instrumental dataset: PTU-O3 radiosoundings, DIAL LIDAR, MOZAIC airborne instrumentation and Dasibi UV ground based measurements.

    The seasonal profiles of tropospheric ozone at Reunion Island have been calculated from two different data sets: radiosondes and LIDAR. The two climatological profiles are similar, except in austral summer when smaller values for the LIDAR profiles in the free troposphere, and in the upper troposphere for all seasons occur. These results show that the LIDAR profiles are at times not representative of the true ozone climatological value as measurements can be taken only under clear sky conditions, and the upper limit reached depends on the signal.

    In the lower troposphere, climatological ozone values from radiosondes have been compared to a one year campaign of ground based measurements from a Dasibi instrument located at high altitude site (2150 m at Reunion Island. The seasonal cycle is comparable for the two datasets, with Dasibi UV values displaying slightly higher values. This suggests that if local dynamical and possibly physico-chemical effects may influence the ozone level, the seasonal cycle can be followed with ground level measurements. Average ground level concentrations measured on the summits of the island seem to be representative of the lower free troposphere ozone concentration at the same altitude (~2000 m whereas night time data would be representative of tropospheric concentration at a higher altitude (~3000 m due to the subsidence effect.

    Finally, linear trends have been calculated from radiosondes data at Reunion and Irene. Considering the whole tropospheric column, the trend is slightly positive for Reunion, and more clearly positive for Irene. Trend calculations

  1. Mars Ozone Absorption Line Shapes from Infrared Heterodyne Spectra Applied to GCM-Predicted Ozone Profiles and to MEX/SPICAM Column Retrievals

    Science.gov (United States)

    Fast, Kelly E.; Kostiuk, T.; Annen, J.; Hewagama, T.; Delgado, J.; Livengood, T. A.; Lefevre, F.

    2008-01-01

    We present the application of infrared heterodyne line shapes of ozone on Mars to those produced by radiative transfer modeling of ozone profiles predicted by general circulation models (GCM), and to contemporaneous column abundances measured by Mars Express SPICAM. Ozone is an important tracer of photochemistry Mars' atmosphere, serving as an observable with which to test predictions of photochemistry-coupled GCMs. Infrared heterodyne spectroscopy at 9.5 microns with spectral resolving power >1,000,000 is the only technique that can directly measure fully-resolved line shapes of Martian ozone features from the surface of the Earth. Measurements were made with Goddard Space Flight Center's Heterodyne instrument for Planetary Wind And Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii on February 21-24 2008 UT at Ls=35deg on or near the MEX orbital path. The HIPWAC observations were used to test GCM predictions. For example, a GCM-generated ozone profile for 60degN 112degW was scaled so that a radiative transfer calculation of its absorption line shape matched an observed HIPWAC absorption feature at the same areographic position, local time, and season. The RMS deviation of the model from the data was slightly smaller for the GCM-generated profile than for a line shape produced by a constant-with-height profile, even though the total column abundances were the same, showing potential for testing and constraining GCM ozone-profiles. The resulting ozone column abundance from matching the model to the HIPWAC line shape was 60% higher than that observed by SPICAM at the same areographic position one day earlier and 2.5 hours earlier in local time. This could be due to day-to-day, diurnal, or north polar region variability, or to measurement sensitivity to the ozone column and its distribution, and these possibilities will be explored. This work was supported by NASA's Planetary Astronomy Program.

  2. Mars Ozone Absorption Line Shapes from Infrared Heterodyne Spectra Applied to GCM-Predicted Ozone Profiles and to MEX/SPICAM Column Retrievals

    Science.gov (United States)

    Fast, Kelly E.; Kostiuk, T.; Annen, J.; Hewagama, T.; Delgado, J.; Livengood, T. A.; Lefevre, F.

    2008-01-01

    We present the application of infrared heterodyne line shapes of ozone on Mars to those produced by radiative transfer modeling of ozone profiles predicted by general circulation models (GCM), and to contemporaneous column abundances measured by Mars Express SPICAM. Ozone is an important tracer of photochemistry Mars' atmosphere, serving as an observable with which to test predictions of photochemistry-coupled GCMs. Infrared heterodyne spectroscopy at 9.5 microns with spectral resolving power >1,000,000 is the only technique that can directly measure fully-resolved line shapes of Martian ozone features from the surface of the Earth. Measurements were made with Goddard Space Flight Center's Heterodyne instrument for Planetary Wind And Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii on February 21-24 2008 UT at Ls=35deg on or near the MEX orbital path. The HIPWAC observations were used to test GCM predictions. For example, a GCM-generated ozone profile for 60degN 112degW was scaled so that a radiative transfer calculation of its absorption line shape matched an observed HIPWAC absorption feature at the same areographic position, local time, and season. The RMS deviation of the model from the data was slightly smaller for the GCM-generated profile than for a line shape produced by a constant-with-height profile, even though the total column abundances were the same, showing potential for testing and constraining GCM ozone-profiles. The resulting ozone column abundance from matching the model to the HIPWAC line shape was 60% higher than that observed by SPICAM at the same areographic position one day earlier and 2.5 hours earlier in local time. This could be due to day-to-day, diurnal, or north polar region variability, or to measurement sensitivity to the ozone column and its distribution, and these possibilities will be explored. This work was supported by NASA's Planetary Astronomy Program.

  3. Intercomparison of Ozone and Temperature Profiles During OZITOS+ 2014 Campaign in Río Gallegos, Argentina

    Science.gov (United States)

    Salvador, Jacobo; Wolfram, Elian; Orte, Facundo; D'Elia, Raúl; Quiroga, Jonathan; Quel, Eduardo; Zamorano, Felix; Pérez, Raúl; Villa, Israel; Oyama, Hirofumi; Mizuno, Akira

    2016-06-01

    In the framework of SAVER-Net project, the OZone profIle aT Río GallegOS (OZITOS+) campaign was held in the city of Río Gallegos, Argentina (51.5 S; 69.1 W). This experiment was conducted on October 14 -18, 2014 and its main goal was to compare the ozone and temperature profiles using three different measurement techniques such as Differential Absorption Lidar (DIAL), ozonesonde and Millimeter Wave Radiometer (MWR). Also other ground-based and satellite-based instruments were included in the experiment but in this work we only present preliminary results from ground-based instruments deployed in the site. The DIAL instrument is part of Network Data for Atmospheric Composition Change (NDACC) network, and the usual protocols of quality assurance imposed for the network involve regular validation/comparisons experiments. The lidar ozone profiles measured with the lidar are compared with ozone profiles obtained with independent techniques, usually with higher or same resolution as lidar. The experiment are made collocated spatial and temporally. For that reason the Chilean team joined to Japanese and Argentine team at Río Gallegos to develop the experiment. On October 2014, the Río Gallegos Observatory station was inside the polar vortex during first two weeks and after that polar vortex have moved far away from Río Gallegos during the 3rd week of October, when the intercomparison campaign was held. In this paper we are present a preliminary results of the campaign, computing the ozone and temperature profiles from DIAL with ozonesondes and MWR.

  4. Use of the maximum entropy method to retrieve the vertical atmospheric ozone profile and predict atmospheric ozone content

    Science.gov (United States)

    Turner, B. Curtis

    1992-01-01

    A method is developed for prediction of ozone levels in planetary atmospheres. This method is formulated in terms of error covariance matrices, and is associated with both direct measurements, a priori first guess profiles, and a weighting function matrix. This is described by the following linearized equation: y = A(matrix) x X + eta, where A is the weighting matrix and eta is noise. The problems to this approach are: (1) the A matrix is near singularity; (2) the number of unknowns in the profile exceeds the number of data points, therefore, the solution may not be unique; and (3) even if a unique solution exists, eta may cause the solution to be ill conditioned.

  5. Evidence for widespread tropospheric Cl chemistry in free tropospheric air masses from the South China Sea

    Science.gov (United States)

    Baker, Angela K.; Sauvage, Carina; Thorenz, Ute R.; Brenninkmeijer, Carl A. M.; Oram, David E.; van Velthoven, Peter; Zahn, Andreas; Williams, Jonathan

    2015-04-01

    While the primary global atmospheric oxidant is the hydroxyl radical (OH), under certain circumstances chlorine radicals (Cl) can compete with OH and perturb the oxidative cycles of the troposphere. During flights between Bangkok, Thailand and Kuala Lumpur, Malaysia conducted over two fall/winter seasons (November 2012 - March 2013 and November 2013 - January 2014) the IAGOS-CARIBIC (www.caribic-atmospheric.com) observatory consistently encountered free tropospheric air masses (9-11 km) originating over the South China Sea which had non-methane hydrocarbon (NMHC) signatures characteristic of processing by Cl. These signatures were observed in November and December of both years, but were not seen in other months, suggesting that oxidation by Cl is a persistent seasonal feature in this region. These Cl signatures were observed over a range of ~1500 km indicating a large-scale phenomenon. In this region, where transport patterns facilitate global redistribution of pollutants and persistent deep convection creates a fast-track for cross-tropopause transport, there exists the potential for regional chemistry to have impacts further afield. Here we use observed relationships between NMHCs to estimate the significance and magnitude of Cl oxidation in this region. From the relative depletions of NMHCs in these air masses we infer OH to Cl ratios of 83±28 to 139±40 [OH]/[Cl], which we believe represents an upper limit, based on the technique employed. At a predicted average [OH] of 1.5×106 OH cm-3 this corresponds to an average (minimum) [Cl] exposure of 1-2×104 Cl cm-3 during air mass transport. Lastly, in addition to estimating Cl abundances we have used IAGOS-CARIBIC observations to elucidate whether the origin of this Cl is predominantly natural or anthropogenic.

  6. Partitioning of reactive nitrogen (NOy and dependence on meteorological conditions in the lower free troposphere

    Directory of Open Access Journals (Sweden)

    M. Ammann

    2002-12-01

    Full Text Available Results of continuous nitrogen oxide (NO, nitrogen dioxide (NO2, peroxyacetyl nitrate (PAN and total reactive nitrogen (NOy measurements along with seasonal field campaigns of nitric acid (HNO3 and particulate nitrate (NO3- measurements are presented for a two-year period at the high-alpine research station Jungfraujoch (JFJ, 3580 m asl. The NOy mixing ratio and partitioning is shown to strongly depend on meteorological conditions. Knowledge of these meteorological transport processes allows discrimination between undisturbed (i.e. clean and disturbed (i.e. influenced by regional pollution sources free tropospheric (FT conditions at the JFJ. Median NOy concentrations during undisturbed FT periods ranged from 350 pptv (winter, December to February to 581 pptv (spring, March to April. PAN was found to be the dominant NOy species during spring and summer, whereas NO2 was most abundant during autumn and winter. Particulate nitrate was found to contribute significantly to total NOy during thermally induced vertical transport. Föhn events, synoptical lifting (e.g. fronts and thermally induced vertical transport resulted in mixing ratios up to 10 times higher at the JFJ compared to undisturbed FT conditions. Furthermore this meteorological variability of the NOy concentration and partitioning often dominated the seasonal variability. As a consequence the use of filters at the JFJ (and other mountainous sites is crucial for the interpretation of data from such measurement sites. This study presents a further development of meteorological filters for the high-alpine site Jungfraujoch, which could be adapted to other mountainous measurement sites.

  7. Partitioning of reactive nitrogen (NOy and dependence on meteorological conditions in the lower free troposphere

    Directory of Open Access Journals (Sweden)

    C. Zellweger

    2003-01-01

    Full Text Available Results of continuous nitrogen oxide (NO, nitrogen dioxide (NO2, peroxyacetyl nitrate (PAN and total reactive nitrogen (NOy measurements along with seasonal field campaigns of nitric acid (HNO3 and particulate nitrate (NO3- measurements are presented for a two-year period at the high-alpine research station Jungfraujoch (JFJ, 3580 m asl. The NOy mixing ratio and partitioning is shown to strongly depend on meteorological conditions. Knowledge of these meteorological transport processes allows discrimination between undisturbed (i.e. clean and disturbed (i.e. influenced by regional pollution sources free tropospheric (FT conditions at the JFJ. Median NOy concentrations during undisturbed FT periods ranged from 350 pptv (winter, December to February to 581 pptv (spring, March to May. PAN was found to be the dominant NOy species during spring and summer, whereas NO2 was most abundant during autumn and winter. Particulate nitrate was found to contribute significantly to total NOy during thermally induced vertical transport. Föhn events, synoptical lifting (e.g. fronts and thermally induced vertical transport resulted in mixing ratios up to 10 times higher at the JFJ compared to undisturbed FT conditions. Furthermore this meteorological variability of the NOy concentration and partitioning often dominated the seasonal variability. As a consequence the use of filters at the JFJ (and other mountainous sites is crucial for the interpretation of data from such measurement sites. This study presents a further development of meteorological filters for the high-alpine site Jungfraujoch, which also could be modified and adapted to other mountainous measurement sites.

  8. Measurement of western U.S. baseline ozone from the surface to the tropopause and assessment of downwind impact regions

    Science.gov (United States)

    Cooper, O. R.; Oltmans, S. J.; Johnson, B. J.; Brioude, J.; Angevine, W.; Trainer, M.; Parrish, D. D.; Ryerson, T. R.; Pollack, I.; Cullis, P. D.; Ives, M. A.; Tarasick, D. W.; Al-Saadi, J.; Stajner, I.

    2011-11-01

    Since 1997, baseline ozone monitoring from the surface to the tropopause along the U.S. west coast has been limited to the weekly ozonesondes from Trinidad Head, California. To explore baseline ozone at other latitudes, an ozonesonde network was implemented during spring 2010, including four launch sites along the California coast. Modeling indicated that North American pollution plumes impacted the California coast primarily below 3 km, but had no measurable impact on the average coastal ozone profiles. Vertical and latitudinal variation in free tropospheric baseline ozone appears to be partly explained by polluted and stratospheric air masses that descend isentropically along the west coast. Above 3 km, the dominant sources of ozone precursors were China and international shipping, while international shipping was the greatest source below 2 km. Approximately 8-10% of the baseline ozone that enters California in the 0-6 km range impacts the surface of the USA, but very little reaches the eastern USA. Within California, the major impact of baseline ozone above 2 km is on the high elevation terrain of eastern California. Baseline ozone below 2 km has its strongest impact on the low elevation sites throughout the state. To quantify ozone production within California we compared inland ozone measurements to baseline measurements. For average daytime conditions, we found no enhancements of lower tropospheric ozone in the northern Central Valley, but enhancements of 12-23% were found in the southern Central Valley. Enhancements above Joshua Tree were greater, 33-41%, while the greatest enhancements occurred over the LA Basin, 32-63%.

  9. Ground-based microwave measuring of middle atmosphere ozone and temperature profiles during sudden stratospheric warming

    Science.gov (United States)

    Feigin, A. M.; Shvetsov, A. A.; Krasilnikov, A. A.; Kulikov, M. Y.; Karashtin, D. A.; Mukhin, D.; Bolshakov, O. S.; Fedoseev, L. I.; Ryskin, V. G.; Belikovich, M. V.; Kukin, L. M.

    2012-12-01

    We carried out the experimental campaign aimed to study the response of middle atmosphere on a sudden stratospheric warming in winter 2011-2012 above Nizhny Novgorod, Russia (56N, 44E). We employed the ground-based microwave complex for remote sensing of middle atmosphere developed in the Institute of Applied Physics of the Russian Academy of Science. The complex combines two room-temperature radiometers, i.e. microwave ozonometer and the stratospheric thermometer. Ozonometer is a heterodyne spectroradiometer, operating in a range of frequencies that include the rotation transition of ozone molecules with resonance frequency 110.8 GHz. Operating frequency range of the stratospheric thermometer is 52.5-5.4 GHz and includes lower frequency edge of 5 mm molecular oxygen absorption bands and among them two relatively weak lines of O2 emission. Digital fast Fourier transform spectrometers developed by "Acqiris" are employed for signal spectral analysis. The spectrometers have frequency range 0.05-1 GHz and realizes the effective resolution about 61 KHz. For retrieval vertical profiles of ozone and temperature from radiometric data we applied novel method based on Bayesian approach to inverse problem solution, which assumed a construction of probability distribution of the characteristics of retrieved profiles with taking into account measurement noise and available a priori information about possible distributions of ozone and temperature in the middle atmosphere. Here we introduce the results of the campaign in comparison with Aura MLS data. Presented data includes one sudden stratospheric warming event which took place in January 13-14 and was accompanied by temperature increasing up to 310 K at 45 km height. During measurement period, ozone and temperature variations were (almost) anti-correlated, and total ozone abundance achieved a local maxima during the stratosphere cooling phase. In general, results of ground-based measurements are in good agreement with

  10. Vertical profiles of ozone between 0 and 400 meters in and above the African equatorial forest

    Science.gov (United States)

    Cros, B.; Fontan, J.; Minga, A.; Helas, G.; Nganga, D.; Delmas, R.; Chapuis, A.; Benech, B.; Druilhet, A.; Andreae, M. O.

    1992-08-01

    Results are presented of measurements of ozone concentrations in the northern Congo, near Impfondo, as part of the DECAFE experiment in February 1988, during the dry season. The measurements were carried out simultaneously at ground level in a large clearing, inside the forest between 0 and 30 m, and above the forest with a captive balloon flying up to 400 m. The results presented are compared with the data obtained in the Mayombe forest in southern Congo, near Dimonika, in June 1988, during the dry season. For both northern and southern forested areas the ozone concentrations measured at ground level in a large clearing exhibit daily variations with maxima in the afternoon ranging between 10 and 30 parts per billion by volume (ppbv) and minima at the end of the night between 4 and 15 ppbv. The characteristics of each surface ozone cycle are analyzed. Inside the forest, ozone concentrations are found very low near the ground, and rarely exceed 15 ppbv above the canopy. The relationships among the vertical profiles of ozone, temperature, and water vapor are discussed.

  11. Validation of Global Ozone Monitoring Experiment zone profiles and evaluation of stratospheric transport in a global chemistry transport model

    NARCIS (Netherlands)

    Laat, A.T.J.de; Landgraf, J.; Aben, I.; Hasekamp, O.; Bregman, B.

    2007-01-01

    This paper presents a validation of Global Ozone Monitoring Experiment (GOME) ozone (O3) profiles which are used to evaluate stratospheric transport in the chemistry transport model (CTM) Tracer Model version 5 (TM5) using a linearized stratospheric O3 chemistry scheme. A comparison of GOME O3 profi

  12. Extending the satellite data record of tropospheric ozone profiles from Aura-TES to MetOp-IASI

    Directory of Open Access Journals (Sweden)

    H. Oetjen

    2014-07-01

    Full Text Available We apply the Tropospheric Emission Spectrometer (TES ozone retrieval algorithm to Infrared Atmospheric Sounding Instrument (IASI radiances and characterise the uncertainties and information content of the retrieved ozone profiles. This study focuses on mid-latitudes for the year 2008. We validate our results by comparing the IASI ozone profiles to ozone sondes. In the sonde comparisons, we find a positive bias in the IASI ozone profiles in the UTLS region of up to 14% on average. For the described cases, the degrees of freedom for signal are on average 3.2, 0.3, 0.8, and 0.9 for the columns 0 km–top of atmosphere, (0–6 km, (0–11 km, and (8–16 km, respectively. We find that our biases with respect to sondes and our degrees of freedom for signal for ozone are comparable to previously published results from other IASI ozone algorithms. In addition to evaluating biases, we validate the retrieval errors by comparing predicted errors to the sample covariance matrix of the IASI observations themselves. For the predicted vs. empirical error comparison, we find that these errors are consistent and that the measurement noise and the interference of temperature and water vapour on the retrieval together mostly explain the empirically derived random errors. In general, the precision of the IASI ozone profiles is better than 20%.

  13. Combined Dial Sounding of Ozone, Water Vapour and Aerosol

    Science.gov (United States)

    Trickl, Thomas; Vogelmann, Hannes

    2016-06-01

    Routine high-quality lidar measurements of ozone, water vapour and aerosol at Garmisch-Partenkirchen since 2007 have made possible more comprehensive atmospheric studies and lead to a growing insight concerning the most frequently occurring long-range transport pathways. In this contribution we present as examples results on stratospheric layers travelling in the free troposphere for extended periods of time without eroding. In particular, we present a case of an intrusion layer that subsided over as many as fifteen days and survived the interference by strong Canadian fires. These results impose a challenge on atmospheric modelling that grossly overestimates free-tropospheric mixing.

  14. Combined Dial Sounding of Ozone, Water Vapour and Aerosol

    Directory of Open Access Journals (Sweden)

    Trickl Thomas

    2016-01-01

    Full Text Available Routine high-quality lidar measurements of ozone, water vapour and aerosol at Garmisch-Partenkirchen since 2007 have made possible more comprehensive atmospheric studies and lead to a growing insight concerning the most frequently occurring long-range transport pathways. In this contribution we present as examples results on stratospheric layers travelling in the free troposphere for extended periods of time without eroding. In particular, we present a case of an intrusion layer that subsided over as many as fifteen days and survived the interference by strong Canadian fires. These results impose a challenge on atmospheric modelling that grossly overestimates free-tropospheric mixing.

  15. Speciation of organic aerosols in the Saharan Air Layer and in the free troposphere westerlies

    Directory of Open Access Journals (Sweden)

    M. I. García

    2017-07-01

    Full Text Available We focused this research on the composition of the organic aerosols transported in the two main airflows of the subtropical North Atlantic free troposphere: (i the Saharan Air Layer – the warm, dry and dusty airstream that expands from North Africa to the Americas at subtropical and tropical latitudes – and (ii the westerlies, which flow from North America over the North Atlantic at mid- and subtropical latitudes. We determined the inorganic compounds (secondary inorganic species and elemental composition, elemental carbon and the organic fraction (bulk organic carbon and organic speciation present in the aerosol collected at Izaña Observatory,  ∼  2400 m a.s.l. on the island of Tenerife. The concentrations of all inorganic and almost all organic compounds were higher in the Saharan Air Layer than in the westerlies, with bulk organic matter concentrations within the range 0.02–4.0 µg m−3. In the Saharan Air Layer, the total aerosol population was by far dominated by dust (93 % of bulk mass, which was mixed with secondary inorganic pollutants ( <  5 % and organic matter ( ∼  1.5 %. The chemical speciation of the organic aerosols (levoglucosan, dicarboxylic acids, saccharides, n-alkanes, hopanes, polycyclic aromatic hydrocarbons and those formed after oxidation of α-pinene and isoprene, determined by gas chromatography coupled with mass spectrometry accounted for 15 % of the bulk organic matter (determined by the thermo-optical transmission technique; the most abundant organic compounds were saccharides (associated with surface soils, secondary organic aerosols linked to oxidation of biogenic isoprene (SOA ISO and dicarboxylic acids (linked to several primary sources and SOA. When the Saharan Air Layer shifted southward, Izaña was within the westerlies stream and organic matter accounted for  ∼  28 % of the bulk mass of aerosols. In the westerlies, the organic aerosol species determined

  16. A joint data record of tropospheric ozone from Aura-TES and MetOp-IASI

    Science.gov (United States)

    Oetjen, Hilke; Payne, Vivienne H.; Neu, Jessica L.; Kulawik, Susan S.; Edwards, David P.; Eldering, Annmarie; Worden, Helen M.; Worden, John R.

    2016-08-01

    The Tropospheric Emission Spectrometer (TES) on Aura and Infrared Atmospheric Sounding Interferometer (IASI) on MetOp-A together provide a time series of 10 years of free-tropospheric ozone with an overlap of 3 years. We characterise the differences between TES and IASI ozone measurements and find that IASI's coarser vertical sensitivity leads to a small (< 5 ppb) low bias relative to TES for the free troposphere. The TES-IASI differences are not dependent on season or any other factor and hence the measurements from the two instruments can be merged, after correcting for the offset, in order to study decadal-scale changes in tropospheric ozone. We calculate time series of regional monthly mean ozone in the free troposphere over eastern Asia, the western United States (US), and Europe, carefully accounting for differences in spatial sampling between the instruments. We show that free-tropospheric ozone over Europe and the western US has remained relatively constant over the past decade but that, contrary to expectations, ozone over Asia in recent years does not continue the rapid rate of increase observed from 2004 to 2010.

  17. NOAA Climate Data Record (CDR) of Zonal Mean Ozone Binary Database of Profiles (BDBP), version 1.0

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This NOAA Climate Data Record (CDR) of Zonal Mean Ozone Binary Database of Profiles (BDBP) dataset is a vertically resolved, global, gap-free and zonal mean dataset...

  18. Ozone profiles obtained by DIAL technique at Maïdo Observatory in La Réunion Island: comparisons with ECC ozone-sondes, ground-based FTIR spectrometer and microwave radiometer measurements

    OpenAIRE

    Portafaix T.; Godin-Beekmann S.; Payen G.; de Mazière M.; Langerock B.; Fernandez S; Posny F.; Cammas J.P.; Metzger J. M.; Bencherif H.; Vigouroux C.; Marquestaut N.

    2016-01-01

    International audience; A DIAL lidar system performing stratospheric ozone profile measurements from 15 to 45 km is installed at Reunion Island (southwest of Indian Ocean). The purpose of this communication is to present this DIAL system mounted now at the new Maïdo Observatory since February 2013, and the ozone profile retrieval. The first stratospheric ozone profiles obtained during 2013 and 2014 will be presented and discussed. Inter-comparison and differences observed with other high vert...

  19. Ozone application in water sources: effects of operational parameters and water quality variables on ozone residual profiles and decay rates

    Directory of Open Access Journals (Sweden)

    F. A. Lage Filho

    2010-12-01

    Full Text Available Systematic ozonation tests were conducted by means of a mobile pilot plant. Water source 1 was a low turbidity stream with very low solids content and very low turbidity, apparent color and alkalinity. Water source 2 was reservoir water with higher turbidity, solids content and alkalinity than source 1. The ozone plant was a counter-current contactor composed of four columns in series. Variations in contact time, in the feed gas concentration (in terms of percent by weight of ozone and in splitting of the total applied ozone dosage between columns 1 and 2 were tested. Concentration - time (CT products were calculated and decay coefficients K were estimated from experimental data. The relative importance of water quality and certain operational parameters with regard to CT products and ozone decay was assessed. Total CT values seemed to increase with: (a total applied ozone dosage, (b percent by weight of ozone in the feed gas to the bubble contactor, (c increasing contact time and (d higher water quality, with regard to turbidity, apparent color, total organic carbon and particle counts. As the total applied ozone dosage was increased, the more important the contact time and ozone dosage configuration became for the total CT value. The apparent first order ozone decay rate constant (K decreased with increasing total applied ozone dosage. The contact time appeared to exert a much stronger influence on total CT values than on K values, particularly so as the total applied ozone dosage was increased.

  20. Analysis of the ozone profile specifications in the WRF-ARW model and their impact on the simulation of direct solar radiation

    OpenAIRE

    A. Montornès; B. Codina; J. W. Zack

    2014-01-01

    Although ozone is an atmospheric gas with high spatial and temporal variability, mesoscale numerical weather prediction (NWP) models simplify the specification of ozone concentrations used in their shortwave schemes by using a few ozone profiles. In this paper, a two-part study is presented: (i) an assessment of the quality of the ozone profiles provided for use with the shortwave schemes in the Advanced Research version of the Weather Research and Forecasting (WRF-AR...

  1. The reservoir of ozone in the boundary layer of the eastern United States and its potential impact on the global tropospheric ozone budget

    Science.gov (United States)

    Vukovich, F. M.; Fishman, J.; Browell, E. V.

    1985-01-01

    An analysis of available ozone data in the eastern two-thirds of the United States indicates that a substantial reservoir of ozone is present in the summertime. Five-year mean concentrations range from 40 to 65 ppbv. The reservoir covered an area of several million square kilometers and extends vertically from the surface to 1 to 2 km. The vertical distribution of ozone in the reservoir during midday supports a transport of additional ozone from the boundary layer to the free troposphere. Data are presented demonstrating the potential effect of transport by convective clouds and by the sea breeze circulation - mechanisms by which ozone may be transported out of the boundary layer into the free troposphere. The potential impact of this reservoir on the tropospheric ozone budget is discussed. It is shown that if less than half of the ozone mass in this reservoir is transported to the free troposphere, then the amount of ozone transported out of the boundary layer approximates the amount of ozone transported downward during a tropopause fold event.

  2. Round-robin evaluation of nadir ozone profile retrievals: methodology and application to MetOp-A GOME-2

    Science.gov (United States)

    Keppens, A.; Lambert, J.-C.; Granville, J.; Miles, G.; Siddans, R.; van Peet, J. C. A.; van der A, R. J.; Hubert, D.; Verhoelst, T.; Delcloo, A.; Godin-Beekmann, S.; Kivi, R.; Stubi, R.; Zehner, C.

    2015-05-01

    A methodology for the round-robin evaluation and the geophysical validation of ozone profile data retrieved from nadir UV backscatter satellite measurements is detailed and discussed, consisting of data set content studies, information content studies, co-location studies, and comparisons with reference measurements. Within the European Space Agency's Climate Change Initiative on ozone (Ozone_cci project), the proposed round-robin procedure is applied to two nadir ozone profile data sets retrieved at the Royal Netherlands Meteorological Institute (KNMI) and the Rutherford Appleton Laboratory (RAL, United Kingdom), using their respective OPERA v1.26 and RAL v2.1 optimal estimation algorithms, from MetOp-A GOME-2 (i.e. the second generation Global Ozone Monitoring Experiment on the first Meteorological Operational Satellite) measurements taken in 2008. The ground-based comparisons use ozonesonde and lidar profiles as reference data, acquired by the Network for the Detection of Atmospheric Composition Change (NDACC), Southern Hemisphere Additional Ozonesonde programme (SHADOZ), and other stations of the World Meteorological Organisation's Global Atmosphere Watch (WMO GAW). This direct illustration highlights practical issues that inevitably emerge from discrepancies in e.g. profile representation and vertical smoothing, for which different recipes are investigated and discussed. Several approaches for information content quantification, vertical resolution estimation, and reference profile resampling are compared and applied as well. The paper concludes with compliance estimates of the two GOME-2 ozone profile data sets with user requirements from the Global Climate Observing System (GCOS) and from climate modellers.

  3. Dynamic Adjustment of Climatological Ozone Boundary Conditions for Air-Quality Forecasts

    Directory of Open Access Journals (Sweden)

    P. A. Makar

    2010-06-01

    Full Text Available Ten different approaches for applying lateral and top climatological boundary conditions for ozone have been evaluated using the off-line regional air-quality model AURAMS. All ten approaches employ the same climatological ozone profiles, but differ in the manner in which they are applied, via the inclusion or exclusion of (i a dynamic adjustment of the climatological ozone profile in response to the model-predicted tropopause height, (ii a sponge zone for ozone on the model top, (iii upward extrapolation of the climatological ozone profile, and (iv different mass consistency corrections. The model performance for each approach was evaluated against North American surface ozone and ozonesonde observations from the BAQS-Met field study period in the summer of 2007. The original daily one-hour maximum surface ozone biases of about +15 ppbv were greatly reduced (halved in some simulations using alternative methodologies. However, comparisons to ozonesonde observations showed that the reduction in surface ozone bias sometimes came at the cost of significant positive biases in ozone concentrations in the free troposphere and upper troposphere. The best overall performance throughout the troposphere was achieved using a methodology that included dynamic tropopause height adjustment, no sponge zone at the model top, extrapolation of ozone when required above the limit of the climatology, and no mass consistency corrections (global mass conservation was still enforced. The simulation using this model version had a one-hour daily maximum surface ozone bias of +8.6 ppbv, with small reductions in model correlation, and the best comparison to ozonesonde profiles. This recommended and original methodologies were compared for two further case studies: a high-resolution simulation of the BAQS-Met measurement intensive, and a study of the downwind region of the Canadian Rockies. Significant improvements were noted for the high resolution simulations during the

  4. Evaluation of tropospheric ozone columns derived from assimilated GOME ozone profile observations

    Directory of Open Access Journals (Sweden)

    A. T. J. de Laat

    2009-05-01

    Full Text Available Tropospheric O3 column estimates are produced and evaluated from spaceborne O3 observations by the subtraction of assimilated O3 profile observations from total column observations, the so-called Tropospheric O3 ReAnalysis or TORA method. Here we apply the TORA method to six years (1996–2001 of ERS-2 GOME/TOMS total O3 and ERS-2 GOME O3 profile observations using the TM5 global chemistry-transport model with a linearized O3 photochemistry parameterization scheme.

    Free running TM5 simulations show good agreement with O3 sonde observations in the upper-tropospheric and lower stratospheric (UTLS. Assimilation of GOME O3 profile observations improves the comparisons in the tropical UTLS region but slightly degrades the model-to-sonde comparisons in the extra-tropical UTLS for both short day-do-day variability as well as for monthly means. We suggest that this degradation is related to the large ground pixel size of the GOME O3 measurements (960×100 km in combination with retrieval and calibration errors. The assimilation of GOME O3 profile observations does counter the gradual multiyear mid-latitude stratospheric O3 accumulation caused by the overstrong stratospheric meridional circulation in TM5.

    The evaluation of daily and monthly tropospheric O3 columns obtained from total column observations and using the TORA methodology shows realistic residuals within the tropics but unrealistically large deviations outside of the tropics, although average biases remain small for the monthly means. The findings of this paper suggest that improvements can be expected by using O3 observations from present-day instruments like MetOp/GOME-2 and EOS-AURA/OMI.

  5. [Analysis of the Influence of Temperature on the Retrieval of Ozone Vertical Profiles Using the Thermal Infrared CrIS Sounder].

    Science.gov (United States)

    Ma, Peng-fei; Chen, Liang-fu; Zou, Ming-min; Zhang, Ying; Tao, Ming-hui; Wang, Zi-leng; Su, Lin

    2015-12-01

    Ozone is a particularly critical trace gas in the Earth's atmosphere, since this molecule plays a key role in the photochemical reactions and climate change. The TIR measurements can capture the variability of ozone and are weakly sensitive to the lowermost tropospheric ozone content but can provide accurate measurements of tropospheric ozone and higher vertical resolution ozone profiles, with the additional advantage that measurements are also possible during the night. Because of the influence of atmospheric temperature, the ozone profile retrieval accuracy is severely limited. This paper analyze and discuss the ozone absorption spectra and weighting function sensitivity of temperature and its influence on ozone profile retrieval in detail. First, we simulate the change of atmospheric transmittance and radiance by importing 1 K temperature uncertainty, using line-by-line radiative transfer mode under 6 different atmosphere modes. The results show that the transmittance change ratio for 1 K temperature variation was consistent with the transmittance change ratio for 5%-6% change of ozone density variation in all layers of the profile. Then, we calculate the change of weighting function by a temperature error of 1 K, using the Community Radiative Transfer Model (CRTM) for the Cross-track Infrared Sounder (CrIS) on the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite and calculate the corresponding change of retrieval result. The results demonstrate that CrIS is sensitive to Ozone in the middle to upper stratosphere, with the peak vertical sensitivity between 10-100 hPa and the change of weighting function for 1 K temperature variation was consistent with 6% change in the ozone profile. Finally, the paper retrieves ozone profiles from the CrIS radiances with a nonlinear Newton iteration method and use the eigenvector regression algorithm to construct the a priori state. In order to resolve the problem of temperature uncertainty and get high accuracy

  6. Intercomparison of polar ozone profiles by IASI/MetOp sounder with 2010 Concordiasi ozonesonde observations

    Directory of Open Access Journals (Sweden)

    J. Gazeaux

    2012-10-01

    Full Text Available Validation of ozone profiles measured from a nadir looking satellite instrument over Antarctica is a challenging task due to differences in their height sensitivity with ozonesonde measurements. In this paper we compare the ozone observations provided by the Infrared Atmospheric Sounding Interferometer (IASI instrument onboard the polar-orbiting satellite MetOp with ozone profiles collected between August and October 2010 at McMurdo Station, Antarctica, during the Concordiasi campaign. This campaign was aimed at satellite data validation and up to 20 zero-pressure sounding balloons carrying ozonesondes were launched during this period when the MetOp satellite was passing above McMurdo. This makes the dataset relevant for comparison, especially because those balloons covered the entire altitude range of IASI profiles. The validation methodology and the collocation criteria differ according to the availability of Global Positioning System auxiliary data with each Electro-Chemical Cell ozonesonde observation. We show that the relative mean difference depends on the altitude range investigated. The analysis shows a good agreement in the troposphere (below 10 km and middle stratosphere (25–40 km, where the differences are lower than 10%. However a significant positive bias of about 10–26% is estimated in the lower stratosphere at 10–25 km, depending on altitude. The positive bias in the 10–25 km range is consistent with previously reported studies comparing in-situ data with thermal infrared satellite measurements. This study allows a better characterization of the IASI products over the polar region when ozone depletion/recovery is occurring.

  7. Quantifying wintertime boundary layer ozone production from frequent profile measurements in the Uinta Basin, UT, oil and gas region

    Science.gov (United States)

    Schnell, Russell C.; Johnson, Bryan J.; Oltmans, Samuel J.; Cullis, Patrick; Sterling, Chance; Hall, Emrys; Jordan, Allen; Helmig, Detlev; Petron, Gabrielle; Ahmadov, Ravan; Wendell, James; Albee, Robert; Boylan, Patrick; Thompson, Chelsea R.; Evans, Jason; Hueber, Jacques; Curtis, Abigale J.; Park, Jeong-Hoo

    2016-09-01

    As part of the Uinta Basin Winter Ozone Study, January-February 2013, we conducted 937 tethered balloon-borne ozone vertical and temperature profiles from three sites in the Uinta Basin, Utah (UB). Emissions from oil and gas operations combined with snow cover were favorable for producing high ozone-mixing ratios in the surface layer during stagnant and cold-pool episodes. The highly resolved profiles documented the development of approximately week-long ozone production episodes building from regional backgrounds of 40 ppbv to >165 ppbv within a shallow cold pool up to 200 m in depth. Beginning in midmorning, ozone-mixing ratios increased uniformly through the cold pool layer at rates of 5-12 ppbv/h. During ozone events, there was a strong diurnal cycle with each succeeding day accumulating 4-8 ppbv greater than the previous day. The top of the elevated ozone production layer was nearly uniform in altitude across the UB independent of topography. Above the ozone production layer, mixing ratios decreased with height to 400 m above ground level where they approached regional background levels. Rapid clean-out of ozone-rich air occurred within a day when frontal systems brought in fresh air. Solar heating and basin topography led to a diurnal flow pattern in which daytime upslope winds distributed ozone precursors and ozone in the Basin. NOx-rich plumes from a coal-fired power plant in the eastern sector of the Basin did not appear to mix down into the cold pool during this field study.

  8. 3-D evaluation of tropospheric ozone simulations by an ensemble of regional Chemistry Transport Model

    Directory of Open Access Journals (Sweden)

    D. Zyryanov

    2012-04-01

    Full Text Available A detailed 3-D evaluation of an ensemble of five regional Chemistry Transport Models (RCTM and one global CTM with focus on free tropospheric ozone over Europe is presented. It is performed over a summer period (June to August 2008 in the context of the GEMS-RAQ project. A data set of about 400 vertical ozone profiles from balloon soundings and commercial aircraft at 11 different locations is used for model evaluation, in addition to satellite measurements with the infrared nadir sounder (IASI showing largest sensitivity to free tropospheric ozone. In the middle troposphere, the four regional models using the same top and boundary conditions from IFS-MOZART exhibit a systematic negative bias with respect to observed profiles of about −20%. Root Mean Square Error (RMSE values are constantly growing with altitude, from 22% to 32% to 53%, respectively for 0–2 km, 2–8 km and 8–10 km height ranges. Lowest correlation is found in the middle troposphere, with minimum coefficients (R between 0.2 to 0.45 near 8 km, as compared to 0.7 near the surface and similar values around 10 km. A sensitivity test made with the CHIMERE mode also shows that using hourly instead of monthly chemical boundary conditions generally improves the model skill (i.e. improve RMSE and correlation. Lower tropospheric 0–6 km partial ozone columns derived from IASI show a clear North-South gradient over Europe, which is qualitatively reproduced by the models. Also the temporal variability showing decreasing ozone concentrations in the lower troposphere (0–6 km columns during summer is well reproduced by models even if systematic bias remains (the value of the bias being also controlled by the type of used boundary conditions. A multi-day case study of a trough with low tropopause was conducted and showed that both IASI and models were able to resolve strong horizontal gradients of middle and upper tropospheric ozone occurring in the vicinity of an upper

  9. Analysis of laminated structure in ozone vertical profiles in central Europe

    Directory of Open Access Journals (Sweden)

    P. Mlch

    Full Text Available Using statistical techniques, we study the relationship between the long-term changes in the laminar structure of the ozone vertical profile at two central-European stations - Hohenpeissenberg and Lindenberg - and other quantities potentially affecting the state of the lower stratosphere, and total-ozone content. We consider only positive laminae greater than 30 nbar. Laminae contribute non-negligibly to total ozone, and this contribution varies strongly with season. The maximum laminae-occurrence frequency in late winter/early spring is five-times higher than the minimum in early autumn. The main result of the paper is the discovery of a strong negative trend in the frequency of laminae occurrence, about –15% per decade, and even a slightly stronger negative trend in ozone content in laminae. Strong negative trends in laminae occurrence imply negative changes in total ozone as well. No pronounced effect of the quasi-biennial oscillation and solar cycle on laminae was found, whereas the 100-hPa temperature had a clear effect, and there was an indication of substantial effects of volcanic eruptions and El Niño southern oscillation events. Long-term changes in individual time series of meteorological parameters measured over Hohenpeissenberg do not indicate their significant role in the observed trend in laminae occurrence. On the other hand, there is some increase in the occurrence of very zonal circulation patterns, as well as slight decrease in very meridional circulation patterns. Together with other indications this allows us to say that dynamical effects are expected to be a principal contributor. Thus changes in laminae occurrence will probably be able to serve as an indicator/tracer of long-term changes in lower-stratospheric dynamics.

  10. Retrieval of stratospheric ozone profiles from MIPAS/ENVISAT limb emission spectra: a sensitivity study

    Directory of Open Access Journals (Sweden)

    N. Glatthor

    2005-11-01

    Full Text Available We report on the dependance of ozone volume mixing ratio profiles, retrieved from spectra of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS, on different retrieval setups such as different a-priori profiles, regularization strengths and spectral regions used for analysis. MIPAS is a spaceborne limb-viewing Fourier transform infrared (FTIR emission spectrometer, by which vertical profiles of various trace gases can be measured simultaneously. Purpose of this investigation is to check and to optimize the current retrieval setup. The choice of different a-priori profiles, of a different approach to retrieve the continuum radiation, and of a weaker regularization than in the reference data version (V2_O3_2 causes only small to moderate deviations of up to ±0.2, −0.3 and ±0.5 ppmv, respectively, in the retrieved ozone volume mixing ratios below 60 km altitude. Use of different microwindow sets optimized for polar, mid-latitude and tropical conditions results in deviations of up to ±1.5 ppmv in the altitude region of the ozone maximum, exceeding the total estimated retrieval error of 0.65 ppmv (polar regions – 1.2 ppmv (tropics in this height region. Therefore, to avoid latitudinal artefacts, one fixed set of microwindows is considered more appropriate for retrieval of a whole orbit rather than a latitude-dependent microwindow selection. For this task the microwindow set optimized for the polar atmosphere was found to be better suitable than its midlatitude and tropical counterparts. The results from the different microwindow sets, which variably cover MIPAS spectral bands A (685–970 cm−1 and AB (1020–1170 cm−1, indicated a positive bias of up to 1ppmv between the ozone maxima retrieved from the ozone emission in MIPAS band AB only and from combined analysis of MIPAS bands A and AB. Further investigations showed that this discrepancy can be caused by a bias between the radiance calibration of

  11. Influence of altitude on ozone levels and variability in the lower troposphere: a ground-based study for western Europe over the period 2001─2004

    Directory of Open Access Journals (Sweden)

    J.-M. Cousin

    2007-08-01

    Full Text Available The PAES (French acronym for synoptic scale atmospheric pollution network focuses on the chemical composition (ozone, CO, NOx/y and aerosols of the lower troposphere (0–3000 m. Its high-altitude surface stations located in different mountainous areas in France complete the low-altitude rural MERA stations (the French contribution to the european program EMEP, European Monitoring and Evaluation Program. They are representative of pollution at the scale of the French territory because they are away from any major source of pollution. This study deals with ozone observations between 2001 and 2004 at 11 stations from PAES and MERA, in addition to 16 elevated stations located in mountainous areas of Switzerland, Germany, Austria, Italy and Spain. The set of stations covers a range of altitudes between 115 and 3550 m. The comparison between recent ozone mixing ratios to those of the last decade at Pic du Midi (2877 m, as well as trends calculated over 14-year data series at three high-altitude sites in the Alps (Jungfraujoch, Sonnblick and Zugspitze reveal that ozone is still increasing but at a slower rate than in the 1980s and 1990s. The 2001–2004 mean levels of ozone from surface stations capture the ozone stratification revealed by climatological profiles from the airborne observation system MOZAIC (Measurement of OZone and water vapour by Airbus In-service airCraft and from ozone soundings above Payerne (Switzerland. In particular all data evidence a clear transition at about 1000–1200 m a.s.l. between a sharp gradient below (of the order of +30 ppb/km and a gentler gradient (+3 ppb/km above. The same altitude (1200 m is also found to be a threshold regarding how well the ozone levels at the surface stations agree with the free-tropospheric reference (MOZAIC or soundings. Below the departure can be as large as 40%, but suddenly drops within 15% above. For stations above 2000 m, the departure is even less than 8%. Ozone variability also

  12. Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer: results and analysis.

    Science.gov (United States)

    Weidmann, Damien; Reburn, William J; Smith, Kevin M

    2007-10-10

    Following the recent development of a ground-based prototype quantum cascade laser heterodyne radiometer operating in the midinfrared, atmospheric ozone profile retrievals from a solar occultation measurement campaign performed at the Rutherford Appleton Laboratory on 21 September 2006 are presented. Retrieval is based on the optimal estimation method. High resolution (0.0073 cm(-1)) atmospheric spectra recorded by the laser heterodyne radiometer and covering a microwindow (1033.8-1034.5 cm(-1)) optimized for atmospheric ozone measurements were used as measurement vectors. As part of the evaluation of this novel instrument, a comprehensive analysis of the retrievals is presented, demonstrating the high potential of quantum cascade laser heterodyne radiometry for atmospheric sounding. Vertical resolutions of 2 km near the ground and about 3 km in the stratosphere were obtained. The information content of the retrieval was found to be up to 48 bits, which is much higher than any other passive ground-based instrument. Frequency mismatches of several absorption peaks between the forward model and experimental spectra have been observed and significantly contribute to the retrieval noise error in the upper-troposphere lower-stratosphere region. Retrieved ozone vertical profiles were compared to ozonesonde data recorded at similar latitudes. The agreement is generally excellent except for the 20 to 25 km peak in ozone concentration, where ozonesonde data were found to be 20% lower than the amount retrieved from the laser heterodyne radiometer spectra. Quantum cascade laser based heterodyne radiometry in the midinfrared has been demonstrated to provide high spectral resolution and unprecedented vertical resolution for a passive sounder in a highly compact and mechanically simple package.

  13. The Validation of Version 8 Ozone Profiles: Is SBUV Ready for Prime Time?

    Science.gov (United States)

    McPeters, R. D.; Wellemeyer, C. G.; Ahn, C.

    2004-01-01

    Ozone profile data are now available from a series of BUV instruments - SBUV on Nimbus 7 and SBW/2 instruments on NOAA 9, NOAA 11, and NOAA 16. The data have been processed through the new version 8 algorithm, which is designed to be more accurate and, more importantly, to reduce the influence of the a priori on ozone trends. As a part of the version 8 reprocessing we have attempted to apply a consistent calibration to the individual instruments so that their data records can be used together in a time series analysis. Validation consists of examining not only the mean difference from external datasets (i.e trends) but also consistency in the interannual variability of the data. Here we validate the v8 BUV data through comparison with ECC sondes, lidar and microwave measurements, and with SAGE II and HALOE satellite data records. We find that individual profiles generally agree with external data sets within +/-10% between 30 hPa and 1 hPa (approx. 24 - 50 km) and frequently agree within +/-5%. The interannual variability of the BUV ozone time series agrees well with that of SAGE II . On the average, different B W instruments usually agree within +/-5% with each other, though the relative error increases near the ends of the Nimbus 7 and NOAA 16 data records as a result of instrument problems. The combined v8 BUV data sets cover the 1979-2003 time period giving daily global coverage of the ozone vertical distribution to better accuracy than has ever been possible before.

  14. Validation of MIPAS IMK/IAA V5R_O3_224 ozone profiles

    Directory of Open Access Journals (Sweden)

    A. Laeng

    2014-11-01

    Full Text Available We present the results of an extensive validation program of the most recent version of ozone vertical profiles retrieved with the IMK/IAA (Institute for Meteorology and Climate Research/Instituto de Astrofísica de Andalucía MIPAS (Michelson Interferometer for Passive Atmospheric Sounding research level 2 processor from version 5 spectral level 1 data. The time period covered corresponds to the reduced spectral resolution period of the MIPAS instrument, i.e., January 2005–April 2012. The comparison with satellite instruments includes all post-2005 satellite limb and occultation sensors that have measured the vertical profiles of tropospheric and stratospheric ozone: ACE-FTS, GOMOS, HALOE, HIRDLS, MLS, OSIRIS, POAM, SAGE II, SCIAMACHY, SMILES, and SMR. In addition, balloon-borne MkIV solar occultation measurements and ground-based Umkehr measurements have been included, as well as two nadir sensors: IASI and SBUV. For each reference data set, bias determination and precision assessment are performed. Better agreement with reference instruments than for the previous data version, V5R_O3_220 (Laeng et al., 2014, is found: the known high bias around the ozone vmr (volume mixing ratio peak is significantly reduced and the vertical resolution at 35 km has been improved. The agreement with limb and solar occultation reference instruments that have a known small bias vs. ozonesondes is within 7% in the lower and middle stratosphere and 5% in the upper troposphere. Around the ozone vmr peak, the agreement with most of the satellite reference instruments is within 5%; this bias is as low as 3% for ACE-FTS, MLS, OSIRIS, POAM and SBUV.

  15. Trans-Pacific transport of reactive nitrogen and ozone to Canada during spring

    Directory of Open Access Journals (Sweden)

    T. W. Walker

    2010-09-01

    Full Text Available We interpret observations from the Intercontinental Chemical Transport Experiment, Phase B (INTEX-B in spring 2006 using a global chemical transport model (GEOS-Chem to evaluate sensitivities of the free troposphere above the North Pacific Ocean and North America to Asian anthropogenic emissions. We develop a method to use satellite observations of tropospheric NO2 columns to provide timely estimates of trends in NOx emissions. NOx emissions increased by 33% for China and 29% for East Asia from 2003 to 2006. We examine measurements from three aircraft platforms from the INTEX-B campaign, including a Canadian Cessna taking vertical profiles of ozone near Whistler Peak. The contribution to the mean simulated ozone profiles over Whistler below 5.5 km is at least 7.2 ppbv for Asian anthropogenic emissions and at least 3.5 ppbv for global lightning NOx emissions. Tropospheric ozone columns from OMI exhibit a broad Asian outflow plume across the Pacific, which is reproduced by simulation. Mean modelled sensitivities of Pacific (30° N–60° N tropospheric ozone columns are at least 4.6 DU for Asian anthropogenic emissions and at least 3.3 DU for lightning, as determined by simulations excluding either source. Enhancements of ozone over Canada from Asian anthropogenic emissions reflect a combination of trans-Pacific transport of ozone produced over Asia, and ozone produced in the eastern Pacific through decomposition of peroxyacetyl nitrates (PANs. A sensitivity study decoupling PANs globally from the model's chemical mechanism establishes that PANs increase ozone production by removing NOx from regions of low ozone production efficiency (OPE and injecting it into regions with higher OPE, resulting in a global increase in ozone production by 2% in spring 2006. PANs contribute up to 4 ppbv to surface springtime ozone concentrations in western Canada. Ozone production due to PAN transport is

  16. Round-robin evaluation of nadir ozone profile retrievals: methodology and application to MetOp-A GOME-2

    Directory of Open Access Journals (Sweden)

    A. Keppens

    2014-11-01

    Full Text Available A methodology for the round-robin evaluation and geophysical validation of ozone profile data retrieved from nadir UV backscatter satellite measurements is detailed and discussed, consisting of dataset content studies, information content studies, co-location studies, and comparisons with reference measurements. Within ESA's Climate Change Initiative on ozone (Ozone_cci project, the proposed round-robin procedure is applied to two nadir ozone profile datasets retrieved at KNMI and RAL, using their respective OPERA v1.26 and RAL v2.1 optimal estimation algorithms, from MetOp-A GOME-2 measurements taken in 2008. The ground-based comparisons use ozonesonde and lidar profiles as reference data, acquired by the Network for the Detection of Atmospheric Composition Change (NDACC, Southern Hemisphere Additional Ozonesonde programme (SHADOZ, and other stations of WMO's Global Atmosphere Watch. This direct illustration highlights practical issues that inevitably emerge from discrepancies in e.g. profile representation and vertical smoothing, for which different recipes are investigated and discussed. Several approaches for information content quantification, vertical resolution estimation, and reference profile resampling are compared and applied as well. The paper concludes with compliance estimates of the two GOME-2 ozone profile datasets with user requirements from GCOS and from climate modellers.

  17. Cloud sensitivity studies for stratospheric and lower mesospheric ozone profile retrievals from measurements of limb scattered solar radiation

    Directory of Open Access Journals (Sweden)

    T. Sonkaew

    2009-02-01

    Full Text Available Clouds in the atmosphere play an important role in reflection, absorption and transmission of solar radiation affecting trace gas retrievals. The main goal of this paper is to examine the sensitivity of stratospheric and lower mesospheric ozone retrievals from limb-scattered radiance measurements to clouds using the SCIATRAN radiative transfer model and retrieval package. Assuming an aerosol-free atmosphere and Mie phase functions for cloud particles, we compute the relative error of ozone profile retrievals in a cloudy atmosphere if clouds are neglected in the retrieval. To access altitudes from the lower stratosphere up to lower mesosphere, we combine the retrievals in the Chappuis and Hartley ozone absorption bands. We find significant cloud sensitivity of the limb ozone retrievals in the Chappuis bands at lower stratospheric altitudes. The relative error in the retrieved ozone concentrations gradually decreases with increasing altitude and becomes negligible above about 40 km. The parameters with the largest impact on the ozone retrievals are cloud optical thickness, ground albedo and solar zenith angle. Clouds with different geometrical thicknesses or different cloud altitudes have a similar impact on the ozone retrievals for a given cloud optical thickness value, if the clouds are outside the field of view of the instrument. The effective radius of water droplets has a small influence on the error, i.e., less than 0.5% at altitudes above the cloud top height. Furthermore, the impact of clouds on the ozone profile retrievals was found to have a rather small dependence on the solar azimuth angle (less than 1% for all possible azimuth angles. For the most frequent cloud types the total error is below 6% above 15 km altitude, if clouds are completely neglected in the retrieval. Neglecting clouds in the ozone profile retrievals generally leads to a low bias for a low ground albedo and to a high bias for a high ground albedo, assuming that the

  18. Spatial and temporal variability of tropospheric ozone over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Scheel, H.E.; Sladkovic, R. [Fraunhofer Inst. (IFU), Garmisch-Partenkirchen (Germany); Ancellet, G. [Universite Paris 6 (France). Service d`Aeronomie du CNRS; Areskoug, H. [Air Pollution Lab., Inst. of Applied Environmental Research, Stockholm Univ. (Sweden); Beck, J.; Waal, L. de [RIVM-LLO, Bilthoven (Netherlands); Boesenberg, J.; Grabbe, G. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Muer, D. de [Meteorological Inst. of Belgium (KMI), Brussels (Belgium); Dutot, A.L.; Etienne, A.; Perros, P.; Toupance, G. [Universite Paris XII-Creteil (France). Lab. de Physico-Chimie de l`Environment; Egelov, A.H.; Granby, K. [National Environmental Research Inst., Roskilde (Denmark); Esser, P.; Roemer, M. [IMW-TNO, Delft (Netherlands); Ferenczi, Z.; Haszpra, L. [Institute for Atmospheric Physics, Budapest (Hungary); Geiss, H.; Smit, H. [Forschungszentrum Juelich (Germany). Inst. fuer Chemie und Dynamik der Geosphaere (ICG-2); Gomiscek, B. [Ljubljana Univ. (Slovenia). Faculty of Chemistry and Chemical Technology; Kezele, N.; Klasinc, L. [Institut Rudjer Boskovic, Zagreb (Croatia); Laurila, T. [Finnish Meteorological Inst., Helsinki (Finland). Dept. of Air Quality; Lindskog, A.; Mowrer, J. [Swedish Environmental Research Inst. (IVL), Goeteborg (Sweden); Nielsen, T. [Risoe National Laboratory, Roskilde (Denmark); Schmitt, R. [Meteorologie Consult GmbH, Glashuetten (Germany); Simmonds, P. [International Science Consultants, Ringwood (United Kingdom); Solberg, S. [NILU, Kjeller (Norway); Varotsos, C. [Athens Univ. (Greece); TOR Task Group 1

    1997-12-31

    The first section is concerned with the characteristics of the TOR-measurement sites and the data used. It describes the methodologies employed for the selection of data in order to obtain representative ozone concentrations with minimum bias caused by the individual location. The question of representativeness of the O{sub 3} concentrations at the TOR sites was given special attention, since it is a crucial point for all conclusions drawn from the observations. Therefore several studies were focused on this issue. The further sections of the report deal with results on the spatial and seasonal variations of ozone concentrations over Europe. Results obtained from in-situ measurements in the boundary layer/lower free troposphere and from vertical soundings in the free troposphere are regarded separately. Finally, trend estimates are presented for ozone as well as for some of its precursors. (orig./KW)

  19. Investigating the long-term evolution of subtropical ozone profiles applying ground-based FTIR spectrometry [Discussion paper

    OpenAIRE

    García, O.E.; Schneider, M; A. Redondas; Y. González; Hase, F.; Blumenstock, T.; Sepúlveda, E.

    2012-01-01

    We investigate the long-term evolution of subtropical ozone profile time series (1999–2010) obtained from different ground-based FTIR (Fourier Transform InfraRed) retrieval setups. We examine the influence of an additional temperature retrieval and different constraints. The study is performed at the Izaña Observatory ozone super-site (Tenerife Island, Spain). The FTIR system is able to resolve four independent ozone layers with a theoretical precision of better than 7.5% in the troposphere, ...

  20. 13-month climatology of the aerosol hygroscopicity at the free tropospheric site Jungfraujoch (3580 m a.s.l.

    Directory of Open Access Journals (Sweden)

    L. Kammermann

    2010-11-01

    Full Text Available A hygroscopicity tandem differential mobility analyzer (HTDMA was operated at the high-alpine site Jungfraujoch in order to characterize the hygroscopic diameter growth factors of the free tropospheric Aitken and accumulation mode aerosol. More than ~5000 h of valid data were collected for the dry diameters D0 = 35, 50, 75, 110, 165, and 265 nm during the 13-month measurement period from 1 May 2008 through 31 May 2009. No distinct seasonal variability of the hygroscopic properties was observed. Annual mean hygroscopic diameter growth factors (D/D0 at 90% relative humidity were found to be 1.34, 1.43, and 1.46 for D0 = 50, 110, and 265 nm, respectively. This size dependence can largely be attributed to the Kelvin effect because corresponding values of the hygroscopicity parameter κ are nearly independent of size. The mean hygroscopicity of the Aitken and accumulation mode aerosol at the free tropospheric site Jungfraujoch was found to be κ≈0.24 with little variability throughout the year.

    The impact of Saharan dust events, a frequent phenomenon at the Jungfraujoch, on aerosol hygroscopicity was shown to be negligible for D0<265 nm. Thermally driven injections of planetary boundary layer (PBL air, particularly observed in the early afternoon of summer days with convective anticyclonic weather conditions, lead to a decrease of aerosol hygroscopicity. However, the effect of PBL influence is not seen in the annual mean hygroscopicity data because the effect is small and those conditions (weather class, season and time of day with PBL influence are relatively rare.

    Aerosol hygroscopicity was found to be virtually independent of synoptic wind direction during advective weather situations, i.e. when horizontal motion of the atmosphere dominates over thermally driven convection. This indicates that the hygroscopic behavior of the aerosol observed at the

  1. 13-month climatology of the aerosol hygroscopicity at the free tropospheric site Jungfraujoch (3580 m a.s.l.

    Directory of Open Access Journals (Sweden)

    L. Kammermann

    2010-05-01

    Full Text Available A hygroscopicity tandem differential mobility analyzer (HTDMA was operated at the high-alpine site Jungfraujoch in order to characterize the hygroscopic diameter growth factors of the free tropospheric Aitken and accumulation mode aerosol. More than ~5000 h of valid data were collected for the dry diameters D0=35, 50, 75, 110, 165, and 265 nm during the 13-month measurement period from 1 May 2008 through 31 May 2009. No distinct seasonal variability of the hygroscopic properties was observed. Annual mean hygroscopic diameter growth factors (D/D0 at 90% relative humidity were found to be 1.34, 1.43, and 1.46 for D0=50, 110, and 265 nm, respectively. This size dependence can largely be attributed to the Kelvin effect because corresponding κ~values are virtually independent of size. The mean hygroscopicity of the Aitken and accumulation mode aerosol at the free tropospheric site Jungfraujoch was found to be κ≈0.24 with little variability throughout the year.

    The impact of Saharan dust events, a frequent phenomenon at the Jungfraujoch, on aerosol hygroscopicity was shown to be negligible for D0<265 nm. Thermally driven injections of planetary boundary layer (PBL air, particularly observed in the early afternoon of summer days with convective anticyclonic weather conditions, lead to a decrease of aerosol hygroscopicity. However, the effect of PBL influence is not seen in the annual mean hygroscopicity data because the effect is small and those conditions (weather class, season and time of day with PBL influence are relatively rare.

    Aerosol hygroscopicity was found to be virtually independent of synoptic wind direction during advective weather situations, i.e. when horizontal motion of the atmosphere dominates over thermally driven convection. This indicates that the hygroscopic behavior of the aerosol observed at the Jungfraujoch can be considered to be

  2. Dust plume formation in the free troposphere and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    KAUST Repository

    Khan, Basit Ali

    2015-11-27

    Dust particles mixed in the free troposphere have longer lifetimes than airborne particles near the surface. Their cumulative radiative impact on earth’s meteorological processes and climate might be significant despite their relatively small contribution to total dust abundance. One example is the elevated dust-laden Saharan Air Layer (SAL) over the tropical and subtropical North Atlantic, which cools the sea surface. To understand the formation mechanisms of a dust layer in the free troposphere, this study combines model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM-I), which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution and the microphysical, optical, chemical, and radiative properties of Saharan mineral dust. The Weather Research Forecast model coupled with the Chemistry/Aerosol module (WRF-Chem) is employed to reproduce the meteorological environment and spatial and size distributions of dust. The model domain covers northwest Africa and adjacent water with 5 km horizontal grid spacing and 51 vertical layers. The experiments were run from 20 May to 9 June 2006, covering the period of the most intensive dust outbreaks. Comparisons of model results with available airborne and ground-based observations show that WRF-Chem reproduces observed meteorological fields as well as aerosol distribution across the entire region and along the airplane’s tracks. Several mechanisms that cause aerosol entrainment into the free troposphere are evaluated and it is found that orographic lifting, and interaction of sea breeze with the continental outflow are key mechanisms that form a surface-detached aerosol plume over the ocean. The model dust emission scheme is tuned to simultaneously fit the observed total optical depth and the ratio of aerosol optical depths generated by fine and coarse dust modes. Comparisons of simulated dust size distributions with

  3. Ozone profiles obtained by DIAL technique at Maïdo Observatory in La Reunion Island: comparisons with ECC ozone-sondes, ground-based FTIR spectrometer and microwave radiometer measurements

    Directory of Open Access Journals (Sweden)

    Portafaix T.

    2016-01-01

    Full Text Available A DIAL lidar system performing stratospheric ozone profile measurements from 15 to 45 km is installed at Reunion Island (southwest of Indian Ocean. The purpose of this communication is to present this DIAL system mounted now at the new Maïdo Observatory since February 2013, and the ozone profile retrieval. The first stratospheric ozone profiles obtained during 2013 and 2014 will be presented and discussed. Inter-comparison and differences observed with other high vertical resolution ozone profiles performed by ECC ozonesonde will be shown. Finally, comparisons with low vertical resolution ozone profiles retrieved from microwave and FTIR remote sensing measurements performed at Maïdo will be carried out, making appropriate use of the associated averaging kernels

  4. Ozone profiles obtained by DIAL technique at Maïdo Observatory in La Reunion Island: comparisons with ECC ozone-sondes, ground-based FTIR spectrometer and microwave radiometer measurements

    Science.gov (United States)

    Portafaix, T.; Godin-Beekmann, S.; Payen, G.; de Mazière, M.; Langerock, B.; Fernandez, S.; Posny, F.; Cammas, J. P.; Metzger, J. M.; Bencherif, H.; Vigouroux, C.; Marquestaut, N.

    2016-06-01

    A DIAL lidar system performing stratospheric ozone profile measurements from 15 to 45 km is installed at Reunion Island (southwest of Indian Ocean). The purpose of this communication is to present this DIAL system mounted now at the new Maïdo Observatory since February 2013, and the ozone profile retrieval. The first stratospheric ozone profiles obtained during 2013 and 2014 will be presented and discussed. Inter-comparison and differences observed with other high vertical resolution ozone profiles performed by ECC ozonesonde will be shown. Finally, comparisons with low vertical resolution ozone profiles retrieved from microwave and FTIR remote sensing measurements performed at Maïdo will be carried out, making appropriate use of the associated averaging kernels

  5. Injection of mineral dust into the free troposphere during fire events observed with polarization lidar at Limassol, Cyprus

    Directory of Open Access Journals (Sweden)

    A. Nisantzi

    2014-06-01

    Full Text Available Four-year observations (2010–2014 with EARLINET polarization lidar and AERONET sun/sky photometer at Limassol (34.7° N, 33° E, Cyprus, were used to study the soil dust content in lofted fire smoke plumes advected from Turkey. This first systematic attempt to characterize less than 3 days old smoke plumes in terms of particle depolarization contributes to the more general effort to properly describe the life cycle of free-tropospheric smoke–dust mixtures from the emission event to phases of long-range transport (>4 days after emission. We found significant differences in the particle depolarization ratio (PDR with values from 9–18% in lofted aerosol layers when Turkish fires contributed to the aerosol burden and of 3–13% when Turkish fires were absent. High Ångström exponents of 1.4–2.2 during all these events with lofted smoke layers, occuring between 1 and 3 km height, suggest the absence of a pronounced particle coarse mode. When plotted vs. the travel time (spatial distance between Limassol and last fire area, PDR decreased strongly from initial values around 16–18% (one day travel to 4–8% after 4 days of travel caused by deposition processes. This behavior was found to be in close agreement with the literature. Computation of particle extinction coefficient and mass concentrations, separately for fine-mode dust, coarse-mode dust, and non-dust aerosol components show extinction-related dust fractions of the order of 10% (for PDR = 4%, travel times >4 days and 50% (PDR = 15%, one day travel time and mass-related dust fractions of 25% (PDR = 4% to 80% (PDR = 15%. Biomass burning should be considered as another source of free tropospheric soil dust.

  6. Aerosol particle properties in the tropical free troposphere observed at Pico Espejo (4765 m a.s.l., Venezuela

    Directory of Open Access Journals (Sweden)

    T. Schmeißner

    2010-11-01

    Full Text Available The first long-term measurements of aerosol number and size distributions in South-American tropical free troposphere were performed from March 2007 until Mai 2009. The measurements took place at the high altitude Atmospheric Research Station Alexander von Humboldt. The station is located on top of the Sierra Nevada mountain ridge at 4765 m a.s.l. nearby the city of Mérida, Venezuela. Aerosol size distribution and number concentration data was obtained with a custom-built Differential Mobility Particle Sizer (DMPS system and a Condensational Particle Counter (CPC. The analysis of the annual and diurnal variability of the tropical free troposphere (FT aerosol focused mainly on possible links to the atmospheric general circulation in the tropics. Considerable annual and diurnal cycles of the particle number concentration were observed. Highest total particle number concentrations were measured during the dry season (519±613 cm−3, lowest during the wet season (318±194 cm−3. The more humid FT contained generally higher aerosol particle number concentrations (573±768 cm−3 during dry season, 320±195 cm−3 during wet season than the dry FT (454±332 cm−3 during dry season, 275±172 cm−3 during wet season, indicating the importance of convection for aerosol distributions in the tropical FT. The diurnal cycle in the variability of the particle number concentration was mainly driven by local orography.

  7. Black Carbon and Molecular Characterization of Free Tropospheric Aerosol in the North Atlantic at the Pico Mountain Observatory

    Science.gov (United States)

    Mazzoleni, L. R.; Mazzoleni, C.; Dzepina, K.; Kumar, S.; Fialho, P. J.; Zhang, B.; Owen, R. C.; China, S.; Ampadu, M.; Perlinger, J. A.; Schum, S. K.

    2014-12-01

    Free tropospheric aerosol in the North Atlantic was studied at the Pico Mountain Observatory located on the Pico volcano in the Azores, Portugal (2225 m asl; 38.47°N, 28.40°W). Overall the aerosol chemical, morphological and physical properties indicate a predominance of biomass burning emissions during polluted North American outflows. Black carbon (BC) equivalent mass concentrations have been measured at the station since 2001 with a 7-wavelength aethalometer and were analysed to study seasonal and diurnal variations. There was a large day-to-day variability in the BC values due to varied meteorological conditions that resulted in different diurnal patterns for different months. The daily mean BC at this location ranged between 0 and ~430 ngm-3, with the most frequent values occurring in the range 0-100 ngm-3. The BC values exhibited a consistent annual trend being lower in winter months and higher in summer months, barring year to year variations. Recently, additional aerosol properties were studied using a set of four high-volume samplers for the chemical analysis of aerosol, a 3-wavelength nephelometer to measure aerosol light scattering and backscattering fraction, a two channel optical particle counter and a sequential sampler to collect aerosol for electron microscopy analysis. Summertime daily concentrations of free tropospheric organic carbon, elemental carbon, water-soluble organic carbon (WSOC), anions and cations were measured from the high-volume filter samples. Selected WSOC samples from September 2012 were further analysed using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). In this analysis, an increase in aerosol loading was linked to biomass burning emissions using detailed molecular properties and markers associated with the aerosol despite the long-range transport from North America consistent with previous observations.

  8. Injection of mineral dust into the free troposphere during fire events observed with polarization lidar at Limassol, Cyprus

    Directory of Open Access Journals (Sweden)

    A. Nisantzi

    2014-11-01

    Full Text Available Four-year observations (2010–2014 with EARLINET polarization lidar and AERONET sun/sky photometer at Limassol (34.7° N, 33° E, Cyprus, were used to study the soil dust content in lofted fire smoke plumes advected from Turkey. This first systematic attempt to characterize less than 3-day-old smoke plumes in terms of particle linear depolarization ratio (PDR, measured with lidar, contributes to the more general effort to properly describe the life cycle of free-tropospheric smoke–dust mixtures from the emission event to phases of long-range transport (> 4 days after emission. We found significant PDR differences with values from 9 to 18% in lofted aerosol layers when Turkish fires contributed to the aerosol burden and of 3–13 % when Turkish fires were absent. High Ångström exponents of 1.4–2.2 during all these events with lofted smoke layers, occurring between 1 and 3 km height, suggest the absence of a pronounced particle coarse mode. When plotted vs. travel time (spatial distance between Limassol and last fire area, PDR decreased strongly from initial values around 16–18% (1 day travel to 4–8% after 4 days of travel caused by deposition processes. This behavior was found to be in close agreement with findings described in the literature. Computation of particle extinction coefficient and mass concentrations, derived from the lidar observations, separately for fine-mode dust, coarse-mode dust, and non-dust aerosol components show extinction-related dust fractions on the order of 10% (for PDR =4%, travel times > 4 days and 50% (PDR =15%, 1 day travel time and respective mass-related dust fractions of 25% (PDR =4% to 80% (PDR =15%. Biomass burning should therefore be considered as another source of free tropospheric soil dust.

  9. Techniques of Ozone Monitoring in a Mountain Forest Region: Passive and Continuous Sampling, Vertical and Canopy Profiles

    Directory of Open Access Journals (Sweden)

    Giacomo Gerosa

    2001-01-01

    Full Text Available Ozone is the most harmful air pollutant for plant ecosystems in the Mediterranean and Alpine areas due to its biological and economic damage to crops and forests. In order to evaluate the relation between ozone exposure and vegetation injury under on-field conditions, suitable ozone monitoring techniques were investi-gated. In the framework of a 5-year research project aimed at ozone risk assessment on forests, both continuous analysers and passive samplers were employed during the summer seasons (1994�1998 in different sites of a wide mountain region (80 x 40 km2 on the southern slope of the European Alps. Continuous analysers allowed the recording of ozone hourly concentration means necessary both to calculate specific exposure indexes (such as AOT, SUM, W126 and to record daily time-courses. Passive samplers, even though supplied only weekly mean concentration values, made it possible to estimate the altitude concentration gradient useful to correct the altitude dependence of ozone concentrations to be inserted into exposure indexes. In-canopy ozone profiles were also determined by placing passive samplers at different heights inside the forest canopy. Vertical ozone soundings by means of tethered balloons (kytoons allowed the measurement of the vertical concentration gradient above the forest canopy. They also revealed ozone reservoirs aloft and were useful to explain the ozone advection dynamic in mountain slopes where ground measurement proved to be inadequate. An intercomparison between passive (PASSAM, CH and continuous measurements highlighted the necessity to accurately standardize all the exposure operations, particularly the pre- and postexposure conservation at cold temperature to avoid dye (DPE activity. Advantages and disadvantages from each mentioned technique are discussed.

  10. Analysis of the latitudinal variability of tropospheric ozone in the Arctic using the large number of aircraft and ozonesonde observations in early summer 2008

    Science.gov (United States)

    Ancellet, Gerard; Daskalakis, Nikos; Raut, Jean Christophe; Tarasick, David; Hair, Jonathan; Quennehen, Boris; Ravetta, François; Schlager, Hans; Weinheimer, Andrew J.; Thompson, Anne M.; Johnson, Bryan; Thomas, Jennie L.; Law, Katharine S.

    2016-10-01

    During the 2008 International Polar Year, the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements, and Models of Climate Chemistry, Aerosols, and Transport) campaign, conducted in summer over Greenland and Canada, produced a large number of measurements from three aircraft and seven ozonesonde stations. Here we present an observation-integrated analysis based on three different types of O3 measurements: airborne lidar, airborne UV absorption or chemiluminescence measurement, and intensified electrochemical concentration cell (ECC) ozonesonde profiles. Discussion of the latitudinal and vertical variability of tropospheric ozone north of 55° N during this period is performed with the aid of a regional model (WFR-Chem). The model is able to reproduce the O3 latitudinal and vertical variability but with a negative O3 bias of 6-15 ppbv in the free troposphere above 4 km, especially over Canada. For Canada, large average CO concentrations in the free troposphere above 4 km ( > 130 ppbv) and the weak correlation (ozone at latitudes less than 70° N, due to the fact that local biomass burning (BB) emissions were significant during the 2008 summer period. Conversely, significant STE is found over Greenland according to the better O3 vs. PV correlation ( > 40 %) and the higher values of the 75th PV percentile. It is related to the persistence of cyclonic activity during the summer over Baffin Bay. Using differences between average concentration above Northern and Southern Canada, a weak negative latitudinal summer ozone gradient of -6 to -8 ppbv is found in the mid-troposphere between 4 and 8 km. This is attributed to an efficient O3 photochemical production from BB emissions at latitudes less than 65° N, while the STE contribution is more homogeneous in the latitude range 55-70° N. A positive ozone latitudinal gradient of 12 ppbv is observed in the same altitude range over Greenland not because of an increasing latitudinal influence of STE, but

  11. Ozone profiles retrieval from SCIAMACHY Chappuis-Wulf limb scattered spectra using MART

    Science.gov (United States)

    Wang, ZiJun; Chen, ShengBo; Jin, LiHua; Yang, ChunYan

    2011-02-01

    The Scanning Imaging Absorption spectroMeter for Atmospheric ChartographY (SCIAMACHY) instrument, launched on the Envisat satellite in March 2002, measures the earthshine radiance, simultaneously from the ultraviolet (UV) to the near infrared (NIR), in the three viewing geometries: nadir, limb, and occultation. These measurements are used to retrieve both the total amount and vertical profiles of a large number of atmospheric constituents. In this paper, stratospheric ozone profiles between 15 and 40 km altitude are retrieved on 3 km grids from SCIAMACHY limb scattered radiance in the Chappuis-Wulf band. The study employs a new multiplicative algebraic reconstruction technique (MART) coupled with the radiative transfer model SCIATRAN. This technique is outstanding in that more than one measurement vector element can be used to retrieve the ozone density at any altitude. Furthermore, it is straightforward to understand, easy to implement and likely to produce stable results. Radiance normalization and wavelength pairing is applied to radiance as an intermediate step, using the wavelengths 525 nm, 600 nm and 675 nm. The sensitivity of ozone retrieval by this method to tangent altitude pointing, surface albedo, aerosol and cloud parameters is studied, and the results show that the retrieval impact due to tangent altitude pointing bias is the biggest up to 75% with 1 km shift, and the impact of albedo is limited within 5%. The effect of boundary visibility and cloud parameters can be ignored since their impact is too small. The effectiveness of the retrieval is demonstrated using a set of coincident SCIAMACHY products at Hefei that shows a mean bias of less than 12% between 15 and 40 km, and with a better accuracy of 5% from 16 to 36 km.

  12. The vertical structure of ozone and water vapor profiles in Lhasa within Asia summer monsoon anticyclone during the stratospheric intrusion

    Science.gov (United States)

    Li, Dan; Vogel, Bärbel; Bian, Jianchun; Müller, Rolf; Günther, Gebhard; Bai, Zhixuan; Li, Qian; Fan, Qiujun; Zhang, Jinqiang

    2017-04-01

    A stratospheric intrusion process occurred over the southeastern side of the Asia summer monsoon (ASM) region is investigated using the balloon-borne measurements of ozone and water vapor during 18-20 August 2013. Data from Lhasa (29.66° N, 91.14° E, above sea level (asl.) 3,650 m) show that the positive relative change of the ozone mixing ratios in the tropopause layer attained to 90 % on 19 and 20 August. The backward trajectory calculation from CLaMS model and the satellite data from the ozone monitoring instrument (OMI) and the atmospheric infrared sounder (AIRS) indicate that the (stratospheric) air parcels intruded (originated) from the Northeast Asia to the southeastern edge of the ASM anticyclone. Meanwhile, typhoon Utor occurred over the sourtheastern edge of the ASM and lasted from 8 to 18 August 2013. The convection associated with Utor uplifted air with low ozone from the Western Pacific to the middle/upper troposphere. Air parcels with high ozone from the high latitude and with low ozone from the Western Pacific met at the sourtheastern side of the ASM and then transported westward to Lhasa over long-distances (˜2,000 km). In addition, the laminated identification method is used to identify the laminae structure of the ozone and water vapor profiles from the middle troposphere to the lower stratosphere in Lhasa, confirming the role of the dynamic disturbance (e.g., Rossby and gravity wave)

  13. a Compact Dial LIDAR for Ground-Based Ozone Atmospheric Profiling Measurements

    Science.gov (United States)

    De Young, R.; Carrion, W.; Pliutau, D.; Ganoe, R. E.

    2013-12-01

    ozone profiles from 100 to 200-m above ground. To obtain an ozone atmospheric measurement, the transmitter sends a laser pulse into the atmosphere at alternating on-line and off-line wavelengths (500Hz each line). The 527-nm green laser output is always transmitted giving a return from atmospheric aerosols. Examples of ozone profiles in the Hampton Roads region of Virginia will be presented. The system has been configured to enable mobile operation from a trailer which is environmentally controlled, and is towed with a truck to sites that are equipped with power. The objective is to make the system mobile such that it can be setup at remote sites to support major air quality field campaigns.

  14. Perturbation of the European free troposphere aerosol by North American forest fire plumes during the ICARTT-ITOP experiment in summer 2004

    Directory of Open Access Journals (Sweden)

    A. Petzold

    2007-10-01

    Full Text Available During the ICARTT-ITOP Experiment in summer 2004 plumes from large wildfires in North America were transported to Central Europe at 3–8 km altitude above sea level (a.s.l.. These plumes were studied with the DLR (Deutsches Zentrum fuer Luft- und Raumfahrt research aircraft Falcon which was equipped with an extensive set of in situ aerosol and trace gas instruments. Analyses by the Lagrangian dispersion model FLEXPART provided source regions, transport times and horizontal extent of the fire plumes. Results from the general circulation model ECHAM/MADE and data from previous aerosol studies over Central Europe provided reference vertical profiles of black carbon (BC mass concentrations for year 2000 conditions with forest fire activities below the long-term average. Smoke plume observations yielded a BC mass fraction of total aerosol mass with respect to PM 2.5 of 2–8%. The ratio of BC mass to excess CO was 3–7.5 mg BC (g CO−1. Even after up to 10 days of atmospheric transport, both characteristic properties were of the same order as for fresh emissions. This suggests an efficient lifting of BC from forest fires to higher altitudes with only minor scavenging removal of particulate matter. Maximum aerosol absorption coefficient values were 7–8 Mm−1 which is about two orders of magnitude above the average European free tropospheric background value. Forest fire aerosol size distributions were characterised by a strong internally mixed accumulation mode centred at modal diameters of 0.25–0.30 µm with an average distribution width of 1.30. Nucleation and small Aitken mode particles were almost completely depleted.

  15. Perturbation of the European free troposphere aerosol by North American forest fire plumes during the ICARTT-ITOP Experiment in summer 2004

    Directory of Open Access Journals (Sweden)

    A. Petzold

    2007-04-01

    Full Text Available During the ICARTT-ITOP Experiment in summer 2004 plumes from large wildfires in North America were transported to Central Europe at 3–8 km altitude above sea level (a.s.l.. These plumes were studied with the DLR (Deutsches Zentrum fuer Luft- und Raumfahrt research aircraft Falcon which was equipped with an extensive set of in situ aerosol and trace gas instruments. Analyses by the Lagrangian dispersion model FLEXPART provided source regions, transport times and horizontal extent of the fire plumes. Results from the general circulation model ECHAM/MADE and data from previous aerosol studies over Central Europe provided reference vertical profiles of black carbon (BC mass concentrations for year 2000 conditions with forest fire activities below the long-term average. Smoke plume observations yielded a BC mass fraction of total aerosol mass with respect to PM2.5 of 3–10%. The ratio of BC mass to excess CO was 3–7.5 mg BC (g CO−1. Even after up to 10 days of atmospheric transport, both characteristic properties were of the same order as for fresh emissions. This suggests an efficient lifting of BC from forest fires to higher altitudes with only minor scavenging removal of particulate matter. Maximum aerosol absorption coefficient values were 7–8×10–6m−1 which is about two orders of magnitude above the average European free tropospheric background value. Forest fire aerosol size distributions were characterised by a strong internally mixed accumulation mode centred at modal diameters of 0.25–0.30 μm with an average distribution width of 1.30. Nucleation and small Aitken mode particles were almost completely depleted. Even after more than one week of atmospheric transport, no steady state of the size distribution was observed.

  16. Ozone profiles retrieved from SCIMACHY Chappuis-Wulf limb scatter measurements using MART

    Science.gov (United States)

    Chen, S.

    2010-12-01

    The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument, launched on the Envisat satellite in March 2002, will measure the earthshine radiance, simultaneously from the ultraviolet (UV) to the near infrared (NIR), in the three viewing geometries nadir, limb, and occultation. These measurements will be used to retrieve both the total amount and vertical profiles of a large number of atmospheric constituents. In this paper, stratospheric ozone profiles between 15 and 40 km altitude are retrieved on 3 km grids from SCIMACHY limb scattered radiance in the Chappuis-Wulf band. It employs a new multiplicative algebraic reconstruction technique (MART) coupled with the radiative transfer model SCIATRAN. Radiance normalization and wavelength pairing is applied to radiance as an intermediate step, using the wavelengths 525 nm, 600 nm and 675 nm. The sensitivity of ozone retrieval by this method to tangent altitude pointing, surface albedo, aerosol and cloud parameters is studied, the results show that the retrieval impact due to tangent altitude pointing bias is the biggest can be up to 75% with 1 km shift, and the impact of albedo is limited within 5%. The effect of boundary visibility and cloud parameters can be ignored since these impact is too small. The effectiveness of the retrieval is demonstrated using a set of coincident SCIMACHY product at Hefei that shows a mean bias of less than 12% between 15 and 40 km, and with a better accuracy of 5% from 16 to 36 km.

  17. Ozone trends derived from the total column and vertical profiles at a northern mid-latitude station

    Directory of Open Access Journals (Sweden)

    P. J. Nair

    2013-10-01

    Full Text Available The trends and variability of ozone are assessed over a northern mid-latitude station, Haute-Provence Observatory (OHP: 43.93° N, 5.71° E, using total column ozone observations from the Dobson and Système d'Analyse par Observation Zénithale spectrometers, and stratospheric ozone profile measurements from light detection and ranging (lidar, ozonesondes, Stratospheric Aerosol and Gas Experiment (SAGE II, Halogen Occultation Experiment (HALOE and Aura Microwave Limb Sounder (MLS. A multivariate regression model with quasi-biennial oscillation (QBO, solar flux, aerosol optical thickness, heat flux, North Atlantic Oscillation (NAO and a piecewise linear trend (PWLT or equivalent effective stratospheric chlorine (EESC functions is applied to the ozone anomalies. The maximum variability of ozone in winter/spring is explained by QBO and heat flux in the ranges 15–45 km and 15–24 km, respectively. The NAO shows maximum influence in the lower stratosphere during winter, while the solar flux influence is largest in the lower and middle stratosphere in summer. The total column ozone trends estimated from the PWLT and EESC functions are of −1.47 ± 0.27 and −1.40 ± 0.25 DU yr−1, respectively, over the period 1984–1996 and about 0.55 ± 0.30 and 0.42 ± 0.08 DU yr−1, respectively, over the period 1997–2010. The ozone profiles yield similar and significant EESC-based and PWLT trends for 1984–1996, and are about −0.5 and −0.8% yr−1 in the lower and upper stratosphere, respectively. For 1997–2010, the EESC-based and PWLT estimates are of the order of 0.3 and 0.1% yr−1, respectively, in the 18–28 km range, and at 40–45 km, EESC provides significant ozone trends larger than the insignificant PWLT results. Furthermore, very similar vertical trends for the respective time periods are also deduced from another long-term satellite-based data set (GOZCARDS–Global OZone Chemistry And Related trace gas Data records for the

  18. On instrumental errors and related correction strategies of ozonesondes: possible effect on calculated ozone trends for the nearby sites Uccle and De Bilt

    Science.gov (United States)

    Van Malderen, Roeland; Allaart, Marc A. F.; De Backer, Hugo; Smit, Herman G. J.; De Muer, Dirk

    2016-08-01

    The ozonesonde stations at Uccle (Belgium) and De Bilt (the Netherlands) are separated by only 175 km but use different ozonesonde types (or different manufacturers for the same electrochemical concentration cell (ECC) type), operating procedures, and correction strategies. As such, these stations form a unique test bed for the Ozonesonde Data Quality Assessment (O3S-DQA) activity, which aims at providing a revised, homogeneous, consistent dataset with an altitude-dependent estimated uncertainty for each revised profile. For the ECC ozonesondes at Uccle mean relative uncertainties in the 4-6 % range are obtained. To study the impact of the corrections on the ozone profiles and trends, we compared the Uccle and De Bilt average ozone profiles and vertical ozone trends, calculated from the operational corrections at both stations and the O3S-DQA corrected profiles. In the common ECC 1997-2014 period, the O3S-DQA corrections effectively reduce the differences between the Uccle and De Bilt ozone partial pressure values with respect to the operational corrections only for the stratospheric layers below the ozone maximum. The upper-stratospheric ozone measurements at both sites are substantially different, regardless of the correction methodology used. The origin of this difference is not clear. The discrepancies in the tropospheric ozone concentrations between both sites can be ascribed to the problematic background measurement and correction at De Bilt, especially in the period before November 1998. The Uccle operational correction method, applicable to both ozonesonde types used, diminishes the relative stratospheric ozone differences of the Brewer-Mast sondes in the 1993-1996 period with De Bilt to less than 5 % and to less than 6 % in the free troposphere for the De Bilt operational corrections. Despite their large impact on the average ozone profiles, the different (sensible) correction strategies do not change the ozone trends significantly, usually only within

  19. Interpretation of ozone vertical profiles and their variations in the Northern hemisphere on the basis of GOME satellite data. Final report; Interpretation von Ozon-Vertikalprofilen und deren Variationen in der noerdlichen Hemisphaere unter Benutzung von GOME Satellitendaten. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Eichmann, K.U.; Bramstedt, K.; Weber, M.; Rozanov, V.; Debeek, R.; Hoogen, R.; Burrows, J.P.

    2000-07-04

    Semiglobal ozone vertical profiles based on GOME measurements were established and evaluated systematically. GOME (Global Ozone Monitoring Experiment), carried by the ERS-2 satellite, is the first European passive optical sensor for long-term monitoring of ozone, other trace elements, and aerosols. Especially the vertical distribution of ozone in the Arctic region was measured and interpreted with a view to enhanced ozone degradation in the Arctic winter and spring seasons. Apart from the regional variations, also the time variations of the profiles are to provide further information on the dynamics and chemical processes in the polar vortex. The retrieval algorithm used for assessing the ozone vertical profiles, FURM (FUll Retrieval Method), is based on the GOMETRAN radiation transport model developed at Bremen university especially for evaluation of the GOME data. The GOME ozone profiles were validated with ozone probes and other satellite experiments. [German] Ziel des Projektes war eine systematische Bestimmung und Auswertung von semiglobalen Ozonvertikalprofilen aus den Messdaten von GOME. Das auf dem Satelliten ERS-2 fliegende Spektrometer GOME (Global Ozone Monitoring Experiment) ist der erste europaeische, passive, optische Sensor, der fuer Langzeitmessungen von Ozon, anderen Spurenstoffen und Aerosolen konzipiert wurde. Im Projekt wurde insbesondere die vertikale Verteilung von Ozon in der Arktis bestimmt und interpretiert hinsichtlich des verstaerkten Ozonabbaus im arktischen Winter und Fruehjahr. Neben der raeumlichen Variation sollen auch die zeitlichen Ablaeufe und Veraenderungen der Profile weitere Erkenntnise hinsichtlich der Dynamik und der chemischen Prozesse im Polarwirbel liefern. Der Retrievalalgorithmus zur Bestimmung des Ozonhoehenprofils, FURM (Full Retrieval Method) genannt, basiert auf dem Strahlungstransportmodell GOMETRAN, das an der Universitaet Bremen speziell fuer die Auswertung der Daten des GOME Instrumentes entwickelt wurde

  20. On the variability of tropospheric ozone in the Tropical Eastern Pacific and its impact on the oxidizing capacity

    Science.gov (United States)

    Saiz-Lopez, A.; Gomez Martin, J.; Hay, T.; Mahajan, A.; Ordoñez, C.; Parrondo Sempere, M.; Gil, M. J.; Agama Reyes, M.; Paredes Mora, J.; Voemel, H.

    2012-12-01

    Observations of surface ozone, NOx and meteorological variables were made during two ground based field campaigns in the Eastern Pacific marine boundary layer (MBL). The first study was PIQUERO (Primera Investigación de la Química, Evolución y Reparto de Ozono), running from September 2000 to July 2001 in parallel to the Southern Hemisphere ADditional OZonesondes (SHADOZ) in the Galápagos Islands. The second study is the Climate and HAlogen Reactivity tropicaL EXperiment (CHARLEX), running from September 2010 to present. These long-term, high frequency, measurements enable a detailed description of the daily, monthly, seasonal and interannual variability of ozone and help to constrain the MBL and lower free troposphere (FT) ozone budget. In the Equatorial Eastern Pacific "cold season" (August - October), net ozone photochemical destruction of ~ 2 ppb day-1 occurs in the MBL (~30% due to halogens, and the rest to HOx). Ozone recovers by entrainment from aloft at night. The monthly baseline is set by the tropical instability waves (TIW), which also impact the ozone concentration in the lower FT. In the cold phase of the TIWs the MBL is stratified and, apart from higher surface ozone, it may also contain an upper drier layer with higher ozone between ~ 500 m and the main inversion at ~1 km. In the warm phase the buoyant MBL expands upwards (as much as 500 m) and poor ozone air reaches the FT. As the system shifts to the warm season (February- April), the TIWs stop and the sea becomes warmer, increasing evaporation and reducing ozone. The inversion is pushed upwards and finally disappears or becomes very weak. Surface ozone is so low that even at the low background NOx levels observed ozone production balances photochemical destruction, so the daily profile is flat (observed local effects in the populated areas of Galapagos are discussed). In February Galapagos is almost in the doldrums because the Inter-Tropical Convergence Zone (ITCZ) shifts south. In this

  1. Ozone trends derived from the total column and vertical profiles at a northern mid-latitude station

    Directory of Open Access Journals (Sweden)

    P. J. Nair

    2013-03-01

    Full Text Available The trends and variability of ozone are assessed over a northern mid-latitude station, Haute-Provence Observatory (OHP – 43.93° N, 5.71° E, using total column ozone observations from the Dobson and Système d'Analyse par Observation Zénithale spectrometers, and stratospheric ozone profile measurements from Light detection and ranging, ozonesondes, Stratospheric Aerosol and Gas Experiment II, Halogen Occultation Experiment and Aura Microwave Limb Sounder. A multi-variate regression model with quasi biennial oscillation (QBO, solar flux, aerosol optical thickness, heat flux, North Atlantic oscillation (NAO and piecewise linear trend (PWLT or Equivalent Effective Stratospheric Chlorine (EESC functions is applied to the ozone anomalies. The maximum variability of ozone in winter/spring is explained by QBO and heat flux in 15–45 km and in 15–24 km, respectively. The NAO shows maximum influence in the lower stratosphere during winter while the solar flux influence is largest in the lower and middle stratosphere in summer. The total column ozone trends estimated from the PWLT and EESC functions are of −1.39±0.26 and −1.40±0.25 DU yr−1, respectively over 1984–1996 and about 0.65±0.32 and 0.42±0.08 DU yr−1, respectively over 1997–2010. The ozone profiles yield similar and significant EESC-based and PWLT trends in 1984–1996 and are about −0.5 and −0.8 % yr−1 in the lower and upper stratosphere, respectively. In 1997–2010, the EESC-based and PWLT trends are significant and of order 0.3 and 0.1 % yr−1, respectively in the 18–28 km range, and at 40–45 km, EESC provides significant ozone trends larger than the insignificant PWLT results. Therefore, this analysis unveils ozone recovery signals from total column ozone and profile measurements at OHP, and hence in the mid-latitudes.

  2. Validation of 10-year SAO OMI Ozone Profile (PROFOZ product using ozonesonde observations

    Directory of Open Access Journals (Sweden)

    G. Huang

    2017-07-01

    Full Text Available We validate the Ozone Monitoring Instrument (OMI Ozone Profile (PROFOZ product from October 2004 through December 2014 retrieved by the Smithsonian Astrophysical Observatory (SAO algorithm against ozonesonde observations. We also evaluate the effects of OMI row anomaly (RA on the retrieval by dividing the dataset into before and after the occurrence of serious OMI RA, i.e., pre-RA (2004–2008 and post-RA (2009–2014. The retrieval shows good agreement with ozonesondes in the tropics and midlatitudes and for pressure  < ∼ 50 hPa in the high latitudes. It demonstrates clear improvement over the a priori down to the lower troposphere in the tropics and down to an average of ∼ 550 (300 hPa at middle (high latitudes. In the tropics and midlatitudes, the profile mean biases (MBs are less than 6 %, and the standard deviations (SDs range from 5 to 10 % for pressure  < ∼ 50 hPa to less than 18 % (27 % in the tropics (midlatitudes for pressure  > ∼ 50 hPa after applying OMI averaging kernels to ozonesonde data. The MBs of the stratospheric ozone column (SOC, the ozone column from the tropopause pressure to the ozonesonde burst pressure are within 2 % with SDs of  < 5 % and the MBs of the tropospheric ozone column (TOC are within 6 % with SDs of 15 %. In the high latitudes, the profile MBs are within 10 % with SDs of 5–15 % for pressure  < ∼ 50 hPa but increase to 30 % with SDs as great as 40 % for pressure  > ∼ 50 hPa. The SOC MBs increase up to 3 % with SDs as great as 6 % and the TOC SDs increase up to 30 %. The comparison generally degrades at larger solar zenith angles (SZA due to weaker signals and additional sources of error, leading to worse performance at high latitudes and during the midlatitude winter. Agreement also degrades with increasing cloudiness for pressure  > ∼ 100 hPa and varies with cross-track position, especially with large MBs

  3. Assimilation of wind profiler observations and its impact on three-dimensional transport of ozone over the Southeast Korean Peninsula

    Science.gov (United States)

    Park, Soon-Young; Lee, Soon-Hwan; Lee, Hwa Woon

    2014-12-01

    In order to investigate the impact of data assimilation on the assessment of ozone concentration in inland regions in the eastern area of the Korean Peninsula, several numerical experiments have been carried out using the Weather Research and Forecasting (WRF) model to estimate atmospheric circulations and the Community Multiscale Air Quality (CMAQ) model to assess air quality. Observations of wind that are assimilated into the modeling system are obtained from a wind profiler located at Changwon (CW), which is an urbanized coastal region in the Korean Peninsula. The simulated wind and temperature that is related to a well-developed sea breeze circulation are more consistent with observations in the experiment with dada assimilation than that without the assimilation. The ozone concentrations at both the coastal area of CW and the inland region of DG are well reproduced in the simulation with application of profiler data assimilation. Results from experiments without data assimilation are less realistic than that from the experiment with data assimilation. However, the improvement in simulation of meteorological variables and ozone concentration due to data assimilation is greater in the inland area than in the coastal area, where the wind profiler is located. The ozone concentration in CW changes only over a limited area and below the altitude of 1 km with a maximum change of 25 ppb. In contrast, the simulated ozone concentration in DG has been improved from the ground to upper levels of the planetary boundary layer (PBL), despite the fact that the observations are collected and assimilated into the model at the coastal region. Based on the results of process analysis, we find that the horizontal and vertical transportation of ozone related to the sea-breeze is more important than the local contribution of chemical production in determining the ozone concentration over the inland area. Therefore, observations of wind profiles in the coastal area and assimilation

  4. Climatology of new particle formation events in the subtropical North Atlantic free troposphere at Izaña GAW observatory

    Directory of Open Access Journals (Sweden)

    M. I. García

    2013-09-01

    Full Text Available A climatology of new particle formation (NPF events in the subtropical North Atlantic free troposphere is presented. A four year data set (June 2008–June 2012, which includes number size distributions (10–600 nm, reactive gases (SO2, NOx, and O3, several components of solar radiation and meteorological parameters, measured at Izaña Global Atmospheric Watch observatory (2400 m above sea level; Tenerife, Canary Islands was analysed. On average, NPF occurred during 30% of the days,the mean values of the formation and growth rates during the study period were 0.49 cm−3 s−1 and 0.42 nm h−1, correspondingly. There is a clearly marked NPF season (May to August, when these events account for 50 to 60% of the days/month. Monthly mean values of the formation and growth rates exhibit higher values during this season (0.50–0.95 cm−3 s−1 and 0.48–0.58 nm h−1, respectively than during other periods. The two steps (formation and growth of the NPF process mostly occur under the prevailing northern winds typical of this region. Sulphur dioxide and UV radiation show higher levels during NPF events than in other type of episodes. The presence of Saharan dust in the free troposphere is associated with a decrease in the formation rates of new particles. In the analysis of the year-to-year variability, mean sulphur dioxide concentration (within the range 60–300 ppt was the parameter that exhibited the highest correlation with the frequency of NPF episodes. The availability of this trace gas (i.e. their oxidation products seems also to have a influence on the duration of the events, number of formed nucleation particles, formation rates and growth rates. We identified a set of NPF events in which two nucleation modes (that may evolve at different rates occur simultaneously and for which further investigations are necessary.

  5. The effects of increasing atmospheric ozone on biogenic monoterpene profiles and the formation of secondary aerosols

    Science.gov (United States)

    Pinto, Delia M.; Tiiva, Päivi; Miettinen, Pasi; Joutsensaari, Jorma; Kokkola, Harri; Nerg, Anne-Marja; Laaksonen, Ari; Holopainen, Jarmo K.

    Monoterpenes are biogenic volatile organic compounds (BVOCs) which play an important role in plant adaptation to stresses, atmospheric chemistry, plant-plant and plant-insect interactions. In this study, we determined whether ozonolysis can influence the monoterpenes in the headspace of cabbage. The monoterpenes were mixed with an air-flow enriched with 100, 200 or 400 ppbv of ozone (O 3) in a Teflon chamber. The changes in the monoterpene and O 3 concentrations, and the formation of secondary organic aerosols (SOA) were determined during ozonolysis. Furthermore, the monoterpene reactions with O 3 and OH were modelled using reaction kinetics equations. The results showed that all of the monoterpenes were unequally affected: α-thujene, sabinene and D-limonene were affected to the greatest extend, whereas the 1,8-cineole concentration did not change. In addition, plant monoterpene emissions reduced the O 3 concentration by 12-24%. The SOA formation was dependent on O 3 concentration. At 100 ppbv of O 3, virtually no new particles were formed but clear SOA formation was observed at the higher ozone concentrations. The modelled results showed rather good agreements for α-pinene and 1,8-cineole, whereas the measured concentrations were clearly lower compared to modelled values for sabinene and limonene. In summary, O 3-quenching by monoterpenes occurs beyond the boundary layer of leaves and results in a decreased O 3 concentration, altered monoterpene profiles and SOA formation.

  6. Mean ozone and water vapour height profiles for Southern hemisphere region using radiosonde or ozonesonde and haloe satelite data

    CSIR Research Space (South Africa)

    Sivakumar, V

    2009-01-01

    Full Text Available The aim of this work is to construct a model (mean) profile for ozone and water vapor in Southern hemisphere latitude using 14 years (1993-2006) of Halogen Occultation Experiment (HALOE) satellite data and about 10 years (1998-2007) of the Southern...

  7. Validation of Ozone Profiles Retrieved from SAGE III Limb Scatter Measurements

    Science.gov (United States)

    Rault, Didier F.; Taha, Ghassan

    2007-01-01

    Ozone profiles retrieved from Stratospheric Aerosol and Gas Experiment (SAGE III) limb scatter measurements are compared with correlative measurements made by occultation instruments (SAGE II, SAGE III and HALOE [Halogen Occultation Experiment]), a limb scatter instrument (Optical Spectrograph and InfraRed Imager System [OSIRIS]) and a series of ozonesondes and lidars, in order to ascertain the accuracy and precision of the SAGE III instrument in limb scatter mode. The measurement relative accuracy is found to be 5-10% from the tropopause to about 45km whereas the relative precision is found to be less than 10% from 20 to 38km. The main source of error is height registration uncertainty, which is found to be Gaussian with a standard deviation of about 350m.

  8. Combined Dial Sounding of Ozone, Water Vapour and Aerosol

    OpenAIRE

    Trickl Thomas; Vogelmann Hannes

    2016-01-01

    Routine high-quality lidar measurements of ozone, water vapour and aerosol at Garmisch-Partenkirchen since 2007 have made possible more comprehensive atmospheric studies and lead to a growing insight concerning the most frequently occurring long-range transport pathways. In this contribution we present as examples results on stratospheric layers travelling in the free troposphere for extended periods of time without eroding. In particular, we present a case of an intrusion layer that subsided...

  9. Free troposphere as a major source of CCN for the equatorial pacific boundary layer: long-range transport and teleconnections

    Directory of Open Access Journals (Sweden)

    A. D. Clarke

    2013-08-01

    Full Text Available Airborne aerosol measurements in the central equatorial Pacific during PASE (Pacific Atmospheric Sulfur Experiment revealed that cloud condensation nuclei (CCN activated in marine boundary layer (MBL clouds were strongly influenced by entrainment from the free troposphere (FT. About 65% entered at sizes effective as CCN in MBL clouds, while ~25% entered the MBL too small to activate but subsequently grew via gas to particle conversion. The remaining ~10% were inferred to be sea salt aerosol. FT aerosols at low carbon monoxide (CO mixing ratios ( The observed FT transport over thousands of kilometers indicates teleconnections between MBL CCN and cloud-scavenged sources of both natural and/or residual combustion origin. Nonetheless, in spite of its importance, this source of CCN number is not well represented in most current models and is generally not detectable by satellite because of the low aerosol scattering in such layers as a result of cloud scavenging. In addition, our measurements confirm nucleation in the MBL was not evident during PASE and argue against a localized linear relation in the MBL between dimethyl sulfide (DMS and CCN suggested by the CLAW hypothesis. However, when the FT is not impacted by long-range transport, sulfate aerosol derived from DMS pumped aloft in the ITCZ (Inter-Tropical Convergence Zone can provide a source of CCN to the boundary layer via FT teleconnections involving more complex non-linear processes.

  10. Optical Properties of Aged Free Tropospheric Aerosol Over the Northern Atlantic: Analysis of 2012-2014 Data

    Science.gov (United States)

    Wright, K.; Mazzoleni, L. R.; Fialho, P. J.; Dzepina, K.; Helmig, D.; Jacques, H.; Dziobak, M.; Kumar, S.; China, S.; Sharma, N.; Mazzoleni, C.

    2014-12-01

    The Azores are a volcanic archipelago located 1500km west of Lisbon, Portugal in the North Atlantic Ocean. A 2351 meter dormant volcano lies on the 447 km2island of Pico with a population of around 15,000. Its location and orography are such that the summit typically lies above the well mixed marine boundary layer. A station was established in the caldera of the volcano at 2225 m by the late Dr. Richard Honrath in collaboration with the University of the Azores and began collecting data in 2001. A seven-wavelength aethalometer was employed to measure the black carbon equivalent mass concentration in the free troposphere since then. In 2012 a three wavelength nephelometer was added to measure total light scattering and back scattering due to aerosol. In 2013 an optical particle counter was added. Aerosol, including black carbon, play an important role in atmospheric processes for a number of reasons including different radiative forcing effects, acting as a cloud condensation and ice nuclei and changing surface albedo of snow. We present the wavelength-dependent aerosol optical properties measured during the 2012, 2013 and 2014 sampling seasons along with particle count data when available. Several events with high aerosol concentrations are investigated in detail.

  11. Large-scale enhancement in aerosol absorption in the lower free troposphere over continental India during spring

    Science.gov (United States)

    Nair, Vijayakumar S.; Babu, S. Suresh; Gogoi, Mukunda M.; Moorthy, K. Krishna

    2016-11-01

    Aerosol absorption in the lower troposphere over continental India was assessed using extensive measurements of the vertical distribution of absorption coefficients aboard an instrumented aircraft. Measurements were made from seven base stations during winter (November-December 2012) and spring (April-May 2013), supplemented by the data from the networks of surface observatories. A definite enhancement in aerosol absorption has been observed in the lower free troposphere over the Indo-Gangetic Plain (IGP) during spring, along with a reduction near the surface. The regional mean aerosol absorption optical depth (AAOD) over IGP, which was derived from aircraft observations (integrated from the ground to 3 km), increased from 0.020 ± 0.009 in winter to 0.048 ± 0.01 in spring. The columnar AAOD depicted weak and distinctly different seasonal variations than that of surface level black carbon mass concentrations. This contrasting difference in the seasonality indicates the presence of elevated layers of absorbing aerosols during spring in association with the long-range transport and vertical convective lofting of aerosols.

  12. Tropospheric ozone climatology at two Southern Hemisphere tropical/subtropical sites, (Reunion Island and Irene, South Africa from ozonesondes, LIDAR, and in situ aircraft measurements

    Directory of Open Access Journals (Sweden)

    G. Clain

    2009-03-01

    Full Text Available This paper presents a climatology and trends of tropospheric ozone in the Southwestern Indian Ocean (Reunion Island and South Africa (Irene and Johannesburg. This study is based on a multi-instrumental dataset: PTU-O3 ozonesondes, DIAL LIDAR and MOZAIC airborne instrumentation.

    The seasonal profiles of tropospheric ozone at Reunion Island have been calculated from two different data sets: ozonesondes and LIDAR. The two climatological profiles are similar, except in austral summer when the LIDAR profiles show greater values in the free troposphere, and in the upper troposphere when the LIDAR profiles show lower values during all seasons. These results show that the climatological value of LIDAR profiles must be discussed with care since LIDAR measurements can be performed only under clear sky conditions, and the upper limit of the profile depends on the signal strength.

    In addition, linear trends have been calculated from ozonesonde data at Reunion and Irene. Considering the whole tropospheric column, the trend is slightly positive for Reunion, and more clearly positive for Irene. Trend calculations have also been made separating the troposphere into three layers, and separating the dataset into seasons. Results show that the positive trend for Irene is governed by the lower layer that is affected by industrial pollution and biomass burning. On the contrary, for Reunion Island, the strongest trends are observed in the upper troposphere, and in winter when stratosphere-troposphere exchange is more frequently expected.

  13. High ozone at rural sites in India

    Science.gov (United States)

    Chand, D.; Lal, S.

    2004-06-01

    Past observations of O3 at urban, rural and lower free tropospheric sites in India have shown generally low values rarely exceeding 60 ppbv. We show that this can not be generated to all over India. Surface ozone (O3) concentrations are obtained from measurements in rural, urban and free tropospheric environments in January 2001 and 2002 as a part of Mobile Lab Experiments (MOLEX) conducted in western India. Elevated O3 from 70 to 110 ppbv (nmole/mole) are recorded during afternoon hours at rural sites in downwind of major industrial region of Gujarat adjoining the Arabian Sea. Repeated observations during both the years indicate that this is a regular process in this region. The average background ozone is found to be 42±6 ppbv. The elevated ozone in the downwind site is about 60% higher than that in the major urban center and its surroundings and by a factor of 2 higher than the background levels of O3 in this region. In comparison to the downwind observations; the ozone observed at the continental stations in rural (Gadanki), urban (Ahmedabad) and free tropospheric (Mt. Abu) sites in India are low and rarely exceeded 60 ppbv during the month of January. Forward trajectory analysis shows that the polluted plumes from this urban area can get transported more than 3000 km to the marine boundary layer over the Arabian Sea and the Indian Ocean within a week. Similar transport of pollutants from major urban sites like Delhi and other cities can enhance O3 in their downwind rural sites and can affect the human health as well as vegetation significantly.

  14. Vertical profiles of ozone, VOCs and meteorological parameters in within and outside of Mexico City during the MILAGRO field Campaign

    Science.gov (United States)

    Marquez, C.; Greenberg, J.; Bueno, E.; Bernabe, R.; Aguilar, J.; Blanco, S.; Wöhrnschimmel, H.; Guenther, A.; Cardenas, B.; Turnipseed, A.

    2007-05-01

    High ozone levels with maxima over 250 ppb have been an air quality problem in Mexico City for more than a decade. This ozone is produced in the daytime by photochemical reactions, initiated by its precursors, nitrogen oxides (NOx) and volatile organic compounds (VOCs) in the presence of solar ultraviolet radiation. The objective of this work is to contribute to the understanding of the evolution of these air pollutants at different heights of the boundary layer by means of vertical profile measurements. Ozone, VOCs and meteorological vertical profiles were determined in Northern Mexico City (T0 site) using a tethered balloon for 10 days during the MILAGRO field Campaign 2006, between 4 AM and 4 PM. Measurements were done up to 1000 meter above ground (ozone and meteorological parameters) and up to 200 m above ground for VOCs. VOCs samples were collected during 4 minutes in canisters and analyzed with GC-FID to identify 13 species (ethane, propane, propylene, butane, acetylene, pentane, hexane, heptane, benzene, octane, toluene, nonane and o-xylene). For 4 of the days, VOC integrated samples were also taken using personal pumps and absorbent cartridges at height between 200 and 1000 m. Sample cartridges were analyzed by GC-MS for volatile organic compounds (n-butane, i-pentane, n- pentane, benzene, toluene, ethyl-benzene, o-xylene, m&p-xylene, 1,2,4-tri-methyl-benzene and C3-benzenes). Ozone vertical profiles, frequently presented high concentrations above 400 m in the early morning. During the daytime, more homogeneous profiles indicate an increased vertical mixing. VOCs profiles show similar concentrations for all heights at dawn. In the morning, highest concentrations were determined at a height of about 100 meter, whereas at noon and in the afternoon concentrations decreased with height. Comparing VOC concentrations during the course of a day, highest values are measured in the morning. The highest VOC concentrations were propane, butane, and toluene. For some

  15. Observations of fluorescent aerosol-cloud interactions in the free troposphere at the Sphinx high Alpine research station, Jungfraujoch

    Science.gov (United States)

    Crawford, I.; Lloyd, G.; Bower, K. N.; Connolly, P. J.; Flynn, M. J.; Kaye, P. H.; Choularton, T. W.; Gallagher, M. W.

    2015-09-01

    The fluorescent nature of aerosol at a high Alpine site was studied using a wide-band integrated bioaerosol (WIBS-4) single particle multi-channel ultra violet-light induced fluorescence (UV-LIF) spectrometer. This was supported by comprehensive cloud microphysics and meteorological measurements with the aims of cataloguing concentrations of bio-fluorescent aerosols at this high altitude site and also investigating possible influences of UV-fluorescent particle types on cloud-aerosol processes. Analysis of background free tropospheric air masses, using a total aerosol inlet, showed there to be a minor but statistically insignificant increase in the fluorescent aerosol fraction during in-cloud cases compared to out of cloud cases. The size dependence of the fluorescent aerosol fraction showed the larger aerosol to be more likely to be fluorescent with 80 % of 10 μm particles being fluorescent. Whilst the fluorescent particles were in the minority (NFl/NAll = 0.27±0.19), a new hierarchical agglomerative cluster analysis approach, Crawford et al. (2015) revealed the majority of the fluorescent aerosol were likely to be representative of fluorescent mineral dust. A minor episodic contribution from a cluster likely to be representative of primary biological aerosol particles (PBAP) was also observed with a wintertime baseline concentration of 0.1±0.4 L-1. Given the low concentration of this cluster and the typically low ice active fraction of studied PBAP (e.g. pseudomonas syringae) we suggest that the contribution to the observed ice crystal concentration at this location is not significant during the wintertime.

  16. Characterization of particle cloud droplet activity and composition in the free troposphere and the boundary layer during INTEX-B

    Directory of Open Access Journals (Sweden)

    G. C. Roberts

    2010-02-01

    Full Text Available Measurements of cloud condensation nuclei (CCN, aerosol size distributions, and submicron aerosol composition were made as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B campaign during spring 2006. Measurements were conducted from an aircraft platform over the Northeastern Pacific and Western North America with a focus on how the transport and evolution of Asian pollution across the Pacific Ocean affected CCN properties. A broad range of air masses were sampled and here we focus on three distinct air mass types defined geographically: the Pacific free troposphere (FT, the marine boundary layer (MBL, and the polluted continental boundary layer in the California Central Valley (CCV. These observations add to the few observations of CCN in the FT. CCN concentrations showed a large range of concentrations between air masses, however CCN activity was similar for the MBL and CCV (κ~0.2–0.25. FT air masses showed evidence of long-range transport from Asia and CCN activity was consistently higher than for the boundary layer air masses. Bulk chemical measurements predicted CCN activity reasonably well for the CCV and FT air masses. Decreasing trends in κ with organic mass fraction were observed for the combination of the FT and CCV air masses and can be explained by the measured soluble inorganic chemical components. Changes in hygroscopicity associated with differences in the non-refractory organic composition were too small to be distinguished from the simultaneous changes in inorganic ion composition in the FT and MBL, although measurements for the large organic fractions (0.6–0.8 found in the CCV showed values of the organic fraction hygroscopicity consistent with other polluted regions (κorg~0.1–0.2. A comparison of CCN-derived κ (for particles at the critical diameter to TDMA-derived κ (for particles at 100 nm diameter showed similar trends, however the CCN-derived κ values were significantly

  17. Measurement of HO2NO2 in the free troposphere during the Intercontinental Chemical Transport Experiment-North America 2004

    Science.gov (United States)

    Kim, S.; Huey, L. G.; Stickel, R. E.; Tanner, D. J.; Crawford, J. H.; Olson, J. R.; Chen, G.; Brune, W. H.; Ren, X.; Lesher, R.; Wooldridge, P. J.; Bertram, T. H.; Perring, A.; Cohen, R. C.; Lefer, B. L.; Shetter, R. E.; Avery, M.; Diskin, G.; Sokolik, I.

    2007-06-01

    The first direct in situ measurements of HO2NO2 in the upper troposphere were performed from the NASA DC-8 during the Intercontinental Chemical Transport Experiment-North America 2004 with a chemical ionization mass spectrometer (CIMS). These measurements provide an independent diagnostic of HOx chemistry in the free troposphere and complement direct observations of HOx, because of the dual dependency of HO2NO2 on HOx and NOx. On average, the highest HO2NO2 mixing ratio of 76 pptv (median = 77 pptv, σ = 39 pptv) was observed at altitudes of 8-9 km. Simple steady state calculations of HO2NO2, constrained by measurements of HOx, NOx, and J values, are in good agreement (slope = 0.90, R2 = 0.60, and z = 5.5-7.5 km) with measurements in the midtroposphere where thermal decomposition is the major loss process. Above 8 km the calculated steady state HO2NO2 is in poor agreement with observed values (R2 = 0.20) and is typically larger by a factor of 2.4. Conversely, steady state calculations using model-derived HOx show reasonable agreement with the observed HO2NO2 in both the midtroposphere (slope = 0.96, intercept = 7.0, and R2 = 0.63) and upper troposphere (slope = 0.80, intercept = 32.2, and R2 = 0.58). These results indicate that observed HO2 and HO2NO2 are in poor agreement in the upper troposphere but that HO2NO2 levels are consistent with current photochemical theory.

  18. Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch

    Directory of Open Access Journals (Sweden)

    J. Cozic

    2008-01-01

    Full Text Available The chemical composition of submicron (fine mode and supermicron (coarse mode aerosol particles has been investigated at the Jungfraujoch high alpine research station (3580 m a.s.l., Switzerland as part of the GAW aerosol monitoring program since 1999. A clear seasonality was observed for all major components throughout the period with low concentrations in winter (predominantly free tropospheric aerosol and higher concentrations in summer (enhanced vertical transport of boundary layer pollutants. In addition, mass closure was attempted during intensive campaigns in March 2004, February–March 2005 and August 2005. Ionic, carbonaceous and non-refractory components of the aerosol were quantified as well as the PM1 and coarse mode total aerosol mass concentrations. A relatively low conversion factor of 1.8 for organic carbon (OC to particulate organic matter (OM was found in winter (February–March 2005. Organics, sulfate, ammonium, and nitrate were the major components of the fine aerosol fraction that were identified, while calcium and nitrate were the only two measured components contributing to the coarse mode. The aerosol mass concentrations for fine and coarse mode aerosol measured during the intensive campaigns were not typical of the long-term seasonality due largely to dynamical differences. Average fine and coarse mode concentrations during the intensive field campaigns were 1.7 μg m−3 and 2.4 μg m−3 in winter and 2.5 μg m−3 and 2.0 μg m−3 in summer, respectively. The mass balance of aerosols showed higher contributions of calcium and nitrate in the coarse mode during Saharan dust events (SDE than without SDE.

  19. Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch

    Directory of Open Access Journals (Sweden)

    J. Cozic

    2007-08-01

    Full Text Available The chemical composition of submicron (fine mode and supermicron (coarse mode aerosol particles has been investigated since 1999 within the GAW aerosol monitoring program at the high alpine research station Jungfraujoch (3580 m a.s.l., Switzerland. Clear seasonality was observed for all major components in the last 9 years with low concentrations in winter (predominantly free tropospheric aerosol and higher concentrations in summer (enhanced vertical transport of boundary layer pollutants. In addition, mass closure was attempted during intensive experiments in March 2004, February–March 2005 and August 2005. Ionic, carbonaceous and refractory components of the aerosol were quantified as well as the PM1 and coarse mode total aerosol mass concentrations. A relatively low conversion factor of 1.8 for organic carbon (OC to particulate organic matter (OM in winter (February–March 2005 was found. Organics, sulfate, ammonium, and nitrate were the major identified components of the fine aerosol fraction, while calcium and nitrate were the two major measured components in the coarse mode. The aerosol mass concentrations for fine and coarse mode aerosol during the intensive campaigns were not typical of the long term seasonality due largely to dynamical differences. Average fine and coarse mode concentrations during the intensive field campaigns were 1.7 μg m−3 and 2.4 μg m−3 in winter and 2.5 μg m−3 and 2.0 μg m−3 in summer, respectively. The mass balance of aerosols showed higher contributions of calcium and nitrate in the coarse mode during Saharan dust events (SDE than without SDE.

  20. A detailed pathway analysis of the chemical reaction system generating the Martian vertical ozone profile

    Science.gov (United States)

    Stock, Joachim W.; Blaszczak-Boxe, Christopher S.; Lehmann, Ralph; Grenfell, J. Lee; Patzer, A. Beate C.; Rauer, Heike; Yung, Yuk L.

    2017-07-01

    Atmospheric chemical composition is crucial in determining a planet's atmospheric structure, stability, and evolution. Attaining a quantitative understanding of the essential chemical mechanisms governing atmospheric composition is nontrivial due to complex interactions between chemical species. Trace species, for example, can participate in catalytic cycles - affecting the abundance of major and other trace gas species. Specifically, for Mars, such cycles dictate the abundance of its primary atmospheric constituent, carbon dioxide (CO2), but also for one of its trace gases, ozone (O3). The identification of chemical pathways/cycles by hand is extremely demanding; hence, the application of numerical methods, such as the Pathway Analysis Program (PAP), is crucial to analyze and quantitatively exemplify chemical reaction networks. Here, we carry out the first automated quantitative chemical pathway analysis of Mars' atmosphere with respect to O3. PAP was applied to JPL/Caltech's 1-D updated photochemical Mars model's output data. We determine all significant chemical pathways and their contribution to O3 production and consumption (up to 80 km) in order to investigate the mechanisms causing the characteristic shape of the O3 volume mixing ratio profile, i.e. a ground layer maximum and an ozone layer at ∼50 km. These pathways explain why an O3 layer is present, why it is located at that particular altitude and what the different processes forming the near-surface and middle atmosphere O3 maxima are. Furthermore, we show that the Martian atmosphere can be divided into two chemically distinct regions according to the O(3P):O3 ratio. In the lower region (below approximately 24 km altitude) O3 is the most abundant Ox (= O3 + O(3P)) species. In the upper region (above approximately 24 km altitude), where the O3 layer is located, O(3P) is the most abundant Ox species. Earlier results concerning the formation of O3 on Mars can now be explained with the help of chemical

  1. A new differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore-Washington DC region

    Science.gov (United States)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.

    2014-04-01

    Tropospheric ozone profiles have been retrieved from the new ground based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99° N, 76.84° W, 57 m a.s.l.) from 400 m to 12 km a.g.l. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the Differential Absorption Lidar (DIAL) technique, which currently detects two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm. The DIAL technique exploits this difference between the returned backscatter signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high pressure hydrogen and deuterium. Stimulated Raman Scattering (SRS) within the focus generates a significant fraction of the pump energy at the first Stokes shift. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range resolved number density can be derived. An interesting atmospheric case study involving the Stratospheric-Tropospheric Exchange (STE) of ozone is shown to emphasize the regional importance of this instrument as well as assessing the validation and calibration of data. The retrieval yields an uncertainty of 16-19% from 0-1.5 km, 10-18% from 1.5-3 km, and 11-25% from 3 km to 12 km. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore-Washington DC area.

  2. A New Differential Absorption Lidar to Measure Sub-Hourly Fluctuation of Tropospheric Ozone Profiles in the Baltimore - Washington D.C. Region

    Science.gov (United States)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.

    2014-01-01

    Tropospheric ozone profiles have been retrieved from the new ground based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99 N, 76.84 W, 57 meters ASL) from 400 m to 12 km AGL. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the Differential Absorption Lidar (DIAL) technique, which currently detects two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm. The DIAL technique exploits this difference between the returned backscatter signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high pressure hydrogen and deuterium. Stimulated Raman Scattering (SRS) within the focus generates a significant fraction of the pump energy at the first Stokes shift. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range resolved number density can be derived. An interesting atmospheric case study involving the Stratospheric-Tropospheric Exchange (STE) of ozone is shown to emphasize the regional importance of this instrument as well as assessing the validation and calibration of data. The retrieval yields an uncertainty of 16-19 percent from 0-1.5 km, 10-18 percent from 1.5-3 km, and 11-25 percent from 3 km to 12 km. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore

  3. Evaluating the potential of IASI ozone observations to constrain simulated surface ozone concentrations

    Directory of Open Access Journals (Sweden)

    M. Beekmann

    2009-11-01

    Full Text Available A tracer study has been performed for two summers in 2003 and 2004 with a regional chemistry-transport model in order to evaluate the potential constraint that tropospheric ozone observations from nadir viewing infrared sounders like IASI or TES exert on modelled near surface ozone. As these instruments show high sensitivity in the free troposphere, but low sensitivity at ground, it is important to know how much of the information gained in the free troposphere is transferred to ground through vertical transport processes. Within the European model domain, and within a time span of 4 days, only ozone like tracers initialised in vertical layers above 500 hPa are transported to the surface. For a tracer initialised between 800 and 700 hPa, seven percent reaches the surface within one to three days, on the average over the European model domain but more than double over the Mediterranean Sea. For this region, trajectory analysis shows that this is related to strong subsident transport. These results are confirmed by a second tracer study taking into account averaging kernels related to IASI retrievals, indicating the potential of these measurements to efficiently constrain surface ozone values.

  4. Global ozone–CO correlations from OMI and AIRS: constraints on tropospheric ozone sources

    Directory of Open Access Journals (Sweden)

    P. S. Kim

    2013-09-01

    Full Text Available We present a global data set of free tropospheric ozone–CO correlations with 2° × 2.5° spatial resolution from the Ozone Monitoring Instrument (OMI and Atmospheric Infrared Sounder (AIRS satellite instruments for each season of 2008. OMI and AIRS have near-daily global coverage of ozone and CO respectively and observe coincident scenes with similar vertical sensitivities. The resulting ozone–CO correlations are highly statistically significant (positive or negative in most regions of the world, and are less noisy than previous satellite-based studies that used sparser data. Comparison with ozone–CO correlations and regression slopes (dO3/dCO from MOZAIC (Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by in-service AIrbus airCraft aircraft profiles shows good general agreement. We interpret the observed ozone–CO correlations with the GEOS (Goddard Earth Observing System-Chem chemical transport model to infer constraints on ozone sources. Driving GEOS-Chem with different meteorological fields generally shows consistent ozone–CO correlation patterns, except in some tropical regions where the correlations are strongly sensitive to model transport error associated with deep convection. GEOS-Chem reproduces the general structure of the observed ozone–CO correlations and regression slopes, although there are some large regional discrepancies. We examine the model sensitivity of dO3/dCO to different ozone sources (combustion, biosphere, stratosphere, and lightning NOx by correlating the ozone change from that source to CO from the standard simulation. The model reproduces the observed positive dO3/dCO in the extratropical Northern Hemisphere in spring–summer, driven by combustion sources. Stratospheric influence there is also associated with a positive dO3/dCO because of the interweaving of stratospheric downwelling with continental outflow. The well-known ozone maximum over the tropical South Atlantic is

  5. Characterization of particle cloud droplet activity and composition in the free troposphere and the boundary layer during INTEX-B

    Directory of Open Access Journals (Sweden)

    G. C. Roberts

    2010-07-01

    Full Text Available Measurements of cloud condensation nuclei (CCN, aerosol size distributions, and submicron aerosol composition were made as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B campaign during spring 2006. Measurements were conducted from an aircraft platform over the northeastern Pacific and western North America with a focus on how the transport and evolution of Asian pollution across the Pacific Ocean affected CCN properties. A broad range of air masses were sampled and here we focus on three distinct air mass types defined geographically: the Pacific free troposphere (FT, the marine boundary layer (MBL, and the polluted continental boundary layer in the California Central Valley (CCV. These observations add to the few observations of CCN in the FT. CCN concentrations showed a large range of concentrations between air masses, however CCN activity was similar for the MBL and CCV (κ~0.2–0.25. FT air masses showed evidence of long-range transport from Asia and CCN activity was consistently higher than for the boundary layer air masses. Bulk chemical measurements predicted CCN activity reasonably well for the CCV and FT air masses. Decreasing trends in κ with organic mass fraction were observed for the combination of the FT and CCV air masses and can be explained by the measured soluble inorganic chemical components. Changes in hygroscopicity associated with differences in the non-refractory organic composition were too small to be distinguished from the simultaneous changes in inorganic ion composition in the FT and MBL, although measurements for the large organic fractions (0.6–0.8 found in the CCV showed values of the organic fraction hygroscopicity consistent with other polluted regions (κorg~0.1–0.2. A comparison of CCN-derived κ (for particles at the critical diameter to H-TDMA-derived κ (for particles at 100 nm diameter showed similar trends, however the CCN-derived κ values were significantly

  6. Free troposphere as the dominant source of CCN in the Equatorial Pacific boundary layer: long-range transport and teleconnections

    Directory of Open Access Journals (Sweden)

    A. D. Clarke

    2013-01-01

    Full Text Available Airborne aerosol measurements in the central equatorial Pacific during PASE (Pacific Atmospheric Sulfur Experiment revealed that cloud condensation nuclei (CCN activated in marine boundary layer (MBL clouds were dominated by entrainment from the free troposphere (FT. About 65% entered at sizes effective as CCN in MBL clouds, while 25% entered the MBL too small to activate but subsequently grew via gas to particle conversion. The remaining 10% were inferred to be sea-salt aerosol; there was no discernable nucleation in the MBL. FT aerosols at low carbon monoxide (CO mixing ratios (< 63 ppbv were small and relatively volatile with a number mode around 30–40 nm dry diameter and tended to be associated with cloud outflow from distant deep convection (3000 km or more. Higher CO concentrations were commonly associated with trajectories from South America and the Amazon region (ca. 10 000 km away and occurred in layers indicative of combustion sources partially scavenged by precipitation. These had number mode near 60–80 nm diameter with a large fraction already CCN.2 (those activated at 0.2% supersaturation and representative of MBL clouds before entrainment into the MBL. Flight averaged concentrations of CCN.2 were similar for measurements near the surface, below the inversion and above the inversion, confirming that subsidence of FT aerosol dominated MBL CCN.2. Concurrent flight-to-flight variations of CCN.2 at all altitudes below 3 km imply MBL CCN.2 concentrations were in quasi-equilibrium with the FT over a 2–3 day time scale. This extended FT transport over thousands of kilometers indicates teleconnections between MBL CCN and cloud-scavenged sources of both natural and/or residual combustion origin. The low aerosol scattering and mass in such layers results in poor detection by satellite and this source of CCN is not represented in most current models. The measurements confirm nucleation in the MBL was not evident during PASE and argue

  7. In situ physical and chemical characterisation of the Eyjafjallajökull aerosol plume in the free troposphere over Italy

    Science.gov (United States)

    Sandrini, S.; Giulianelli, L.; Decesari, S.; Fuzzi, S.; Cristofanelli, P.; Marinoni, A.; Bonasoni, P.; Chiari, M.; Calzolai, G.; Canepari, S.; Perrino, C.; Facchini, M. C.

    2014-01-01

    Continuous measurements of physical and chemical properties at the Mt. Cimone (Italy) GAW-WMO (Global Atmosphere Watch, World Meteorological Organization) Global Station (2165 m a.s.l.) have allowed the detection of the volcanic aerosol plume resulting from the Eyjafjallajökull (Iceland) eruption of spring 2010. The event affected the Mt. Cimone site after a transport over a distance of more than 3000 km. Two main transport episodes were detected during the eruption period, showing a volcanic fingerprint discernible against the free tropospheric background conditions typical of the site, the first from April 19 to 21 and the second from 18 to 20 May 2010. This paper reports the modification of aerosol characteristics observed during the two episodes, both characterised by an abrupt increase in fine and, especially, coarse mode particle number. Analysis of major, minor and trace elements by different analytical techniques (ionic chromatography, particle induced X-ray emission-particle induced gamma-ray emission (PIXE-PIGE) and inductively coupled plasma mass spectrometry (ICP-MS)) were performed on aerosols collected by ground-level discrete sampling. The resulting database allows the characterisation of aerosol chemical composition during the volcanic plume transport and in background conditions. During the passage of the volcanic plume, the fine fraction was dominated by sulphates, denoting the secondary origin of this mode, mainly resulting from in-plume oxidation of volcanic SO2. By contrast, the coarse fraction was characterised by increased concentration of numerous elements of crustal origin, such as Fe, Ti, Mn, Ca, Na, and Mg, which enter the composition of silicate minerals. Data analysis of selected elements (Ti, Al, Fe, Mn) allowed the estimation of the volcanic plume's contribution to total PM10, resulting in a local enhancement of up to 9.5 μg m-3, i.e. 40% of total PM10 on 18 May, which was the most intense of the two episodes. These results appear

  8. A new Dobson Umkehr ozone profile retrieval method optimising information content and resolution

    Directory of Open Access Journals (Sweden)

    K. Stone

    2014-08-01

    Full Text Available The standard Dobson Umkehr methodology to retrieve coarse resolution ozone profiles used by the National Oceanographic and Atmospheric Administration uses designated solar zenith angles (SZA. However, some information may be lost if measurements lie outside the designated SZA range (between 60 and 90°, or do not conform to the fitting technique. Also, while Umkehr measurements can be taken using multiple wavelength pairs (A, C, and D, past retrieval methods have focused on a single pair (C. Here we present an Umkehr inversion method that uses measurements at all SZAs and all wavelength pairs. (Although, we caution direct comparison to other algorithms. Information content for a Melbourne, Australia (38° S, 145° E Umkehr measurement case study from 28 January 1994, with SZA range similar to that designated in previous algorithms is shown. When comparing the typical single wavelength pair with designated SZAs to the raw measurements, the total degrees of freedom (independent pieces of information increases from 3.1 to 3.4, with the majority of the information gain originating from Umkehr layers 2 + 3 and 4 (10–20 km and 25–30 km respectively. In addition to this, using all available wavelength pairs increases the total degrees of freedom to 5.2, with the most significant increases in Umkehr layers 2 + 3 to 7 and 9+ (10–40 km and 45–80 km. Investigating a case from 13 April 1970 where the measurements extend beyond the 90° SZA range gives an even further amount of information gain, with total degrees of freedom extending to 6.5. Similar increases are seen in the information content. Comparing the retrieved Melbourne Umkehr time-series with ozonesondes shows excellent agreement in layers 2 + 3 and 4 (10–20 km and 25–30 km for both C and A + C + D-pairs. Retrievals in layers 5 and 6 (25–30 km and 30–35 km consistently show lower ozone partial column compared to ozonesondes. This is likely due to and stray light effects that are

  9. Smithsonian Astrophysical Observatory Ozone Mapping and Profiler Suite (SAO OMPS) formaldehyde retrieval

    Science.gov (United States)

    González Abad, Gonzalo; Vasilkov, Alexander; Seftor, Colin; Liu, Xiong; Chance, Kelly

    2016-07-01

    This paper presents our new formaldehyde (H2CO) retrievals, obtained from spectra recorded by the nadir instrument of the Ozone Mapping and Profiler Suite (OMPS) flown on board NASA's Suomi National Polar-orbiting Partnership (SUOMI-NPP) satellite. Our algorithm is similar to the one currently in place for the production of NASA's Ozone Monitoring Instrument (OMI) operational H2CO product. We are now able to produce a set of long-term data from two different instruments that share a similar concept and a similar retrieval approach. The ongoing overlap period between OMI and OMPS offers a perfect opportunity to study the consistency between both data sets. The different spatial and spectral resolution of the instruments is a source of discrepancy in the retrievals despite the similarity of the physic assumptions of the algorithm. We have concluded that the reduced spectral resolution of OMPS in comparison with OMI is not a significant obstacle in obtaining good-quality retrievals. Indeed, the improved signal-to-noise ratio of OMPS with respect to OMI helps to reduce the noise of the retrievals performed using OMPS spectra. However, the size of OMPS spatial pixels imposes a limitation in the capability to distinguish particular features of H2CO that are discernible with OMI. With root mean square (RMS) residuals ˜ 5 × 10-4 for individual pixels we estimate the detection limit to be about 7.5 × 1015 molecules cm-2. Total vertical column density (VCD) errors for individual pixels range between 40 % for pixels with high concentrations to 100 % or more for pixels with concentrations at or below the detection limit. We compare different OMI products (SAO OMI v3.0.2 and BIRA OMI v14) with our OMPS product using 1 year of data, between September 2012 and September 2013. The seasonality of the retrieved slant columns is captured similarly by all products but there are discrepancies in the values of the VCDs. The mean biases among the two OMI products and our OMPS product

  10. A mobile differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore-Washington, D.C. region

    Science.gov (United States)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.

    2014-10-01

    Tropospheric ozone profiles have been retrieved from the new ground-based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99° N, 76.84° W, 57 m a.s.l.), from 400 m to 12 km a.g.l. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the DIAL technique, which currently detects two wavelengths, 289 and 299 nm, with multiple receivers. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high-pressure hydrogen and deuterium, using helium as buffer gas. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range-resolved number density can be derived. An interesting atmospheric case study involving the stratospheric-tropospheric exchange (STE) of ozone is shown, to emphasize the regional importance of this instrument as well as to assess the validation and calibration of data. There was a low amount of aerosol aloft, and an iterative aerosol correction has been performed on the retrieved data, which resulted in less than a 3 ppb correction to the final ozone concentration. The retrieval yields an uncertainty of 16-19% from 0 to 1.5 km, 10-18% from 1.5 to 3 km, and 11-25% from 3 to 12 km according to the relevant aerosol concentration aloft. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore-Washington, D.C. area.

  11. Analysis of tropospheric ozone and carbon monoxide profiles over South America based on MOZAIC/IAGOS database and model simulations

    Directory of Open Access Journals (Sweden)

    Marcia A. Yamasoe

    2015-10-01

    Full Text Available We analysed ozone and carbon monoxide profiles measured by commercial aircrafts from the MOZAIC/IAGOS fleet, during ascending and descending flights over Caracas, in Venezuela, from August 1994 to December 2009, over Rio de Janeiro, from 1994 to 2004 and from July 2012 to June 2013, and over São Paulo, in Brazil, from August 1994 to 2005. For ozone, results showed a clean atmosphere over Caracas presenting the highest seasonal mean in March, April and May. Backward trajectory analyses with FLEXPART, of case studies for which the measured concentrations were high, showed that contributions from local, Central and North America, the Caribbean and Africa either from anthropogenic emissions, biomass burning or lightning were possible. Satellite products as fire counts from MODIS, lightning flash rates from LIS, and CO and O3 from Infrared Atmospheric Sounding Interferometer and wind maps at different levels helped corroborate previous findings. Sensitivity studies performed with the chemical transport model GEOS-Chem captured the effect of anthropogenic emissions but underestimated the influence of biomass burning, which could be due to an underestimation of GFEDv2 emission inventory. The model detected the contribution of lightning from Africa in JJA and SON and from South America in DJF, possibly from the northeast of Brazil. Over São Paulo and Rio de Janeiro, GEOS-Chem captured the seasonal variability of lightning produced in South America and attributed this source as the most important in this region, except in JJA, when anthropogenic emissions were addressed as the more impacting source of ozone precursors. However, comparison with the measurements indicated that the model overestimated ozone formation, which could be due to the convective parameterisation or the stratospheric influence. The highest ozone concentration was observed during September to November, but the model attributed only a small influence of biomass burning from South

  12. Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats☆

    Science.gov (United States)

    Miller, Desinia B.; Karoly, Edward D.; Jones, Jan C.; Ward, William O.; Vallanat, Beena D.; Andrews, Debora L.; Schladweiler, Mette C.; Snow, Samantha J.; Bass, Virginia L.; Richards, Judy E.; Ghio, Andrew J.; Cascio, Wayne E.; Ledbetter, Allen D.; Kodavanti, Urmila P.

    2016-01-01

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O3) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O3 exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O3 at 0.25, 0.50, or 1.0 ppm, 6 h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0 ppm O3, 6 h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18 h post-exposure. O3 increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18 h-post second exposure. O3 increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O3. In conclusion, short-term O3 exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress–response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. PMID:25838073

  13. Acute ozone-induced differential gene expression profiles in rat lung.

    Science.gov (United States)

    Nadadur, Srikanth S; Costa, Daniel L; Slade, Ralph; Silbjoris, Robert; Hatch, Gary E

    2005-12-01

    Ozone is an oxidant gas that can directly induce lung injury. Knowledge of the initial molecular events of the acute O3 response would be useful in developing biomarkers of exposure or response. Toward this goal, we exposed rats to toxic concentrations of O3 (2 and 5 ppm) for 2 hr and the molecular changes were assessed in lung tissue 2 hr postexposure using a rat cDNA expression array containing 588 characterized genes. Gene array analysis indicated differential expression in almost equal numbers of genes for the two exposure groups: 62 at 2 ppm and 57 at 5 ppm. Most of these genes were common to both exposure groups, suggesting common roles in the initial toxicity response. However, we also identified the induction of nine genes specific to 2-ppm (thyroid hormone-beta receptor c-erb-A-beta; and glutathione reductase) or 5-ppm exposure groups (c-jun, induced nitric oxide synthase, macrophage inflammatory protein-2, and heat shock protein 27). Injury markers in bronchoalveolar lavage fluid (BALF) were used to assess immediate toxicity and inflammation in rats similarly exposed. At 2 ppm, injury was marked by significant increases in BALF total protein, N-acetylglucosaminidase, and lavageable ciliated cells. Because infiltration of neutrophils was observed only at the higher 5 ppm concentration, the distinctive genes suggested a potential amplification role for inflammation in the gene profile. Although the specific gene interactions remain unclear, this is the first report indicating a dose-dependent direct and immediate induction of gene expression that may be separate from those genes involved in inflammation after acute O3 exposure.

  14. Evaluating a Priori Ozone Profile Information Used in TEMPO (Tropospheric Emissions: Monitoring of Pollution) Tropospheric Ozone Retrievals

    Science.gov (United States)

    Johnson, Matthew Stephen

    2017-01-01

    A primary objective for TOLNet is the evaluation and validation of space-based tropospheric O3 retrievals from future systems such as the Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite. This study is designed to evaluate the tropopause-based O3 climatology (TB-Clim) dataset which will be used as the a priori profile information in TEMPO O3 retrievals. This study also evaluates model simulated O3 profiles, which could potentially serve as a priori O3 profile information in TEMPO retrievals, from near-real-time (NRT) data assimilation model products (NASA Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS-5) Forward Processing (FP) and Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA2)) and full chemical transport model (CTM), GEOS-Chem, simulations. The TB-Clim dataset and model products are evaluated with surface (0-2 km) and tropospheric (0-10 km) TOLNet observations to demonstrate the accuracy of the suggested a priori dataset and information which could potentially be used in TEMPO O3 algorithms. This study also presents the impact of individual a priori profile sources on the accuracy of theoretical TEMPO O3 retrievals in the troposphere and at the surface. Preliminary results indicate that while the TB-Clim climatological dataset can replicate seasonally-averaged tropospheric O3 profiles observed by TOLNet, model-simulated profiles from a full CTM (GEOS-Chem is used as a proxy for CTM O3 predictions) resulted in more accurate tropospheric and surface-level O3 retrievals from TEMPO when compared to hourly (diurnal cycle evaluation) and daily-averaged (daily variability evaluation) TOLNet observations. Furthermore, it was determined that when large daily-averaged surface O3 mixing ratios are observed (65 ppb), which are important for air quality purposes, TEMPO retrieval values at the surface display higher correlations and less bias when applying CTM a priori profile information

  15. Analysis of Ozone Transportation in Tlaxcala-Puebla Mexico Air Basin

    Science.gov (United States)

    Barrera-Huertas, H.; Torres, R.; Ruiz-Suárez, L. G.; Garcia, J.; Gutierrez, W.; Torres, A.

    2014-12-01

    Preliminary results of an investigation conducted between March and April 2012 on the influence of air pollutants transport in the Puebla-Tlaxcala Valley airshed are presented. The campaign included ozone (O3), nitrogen dioxide (NO2) and meteorological variables monitoring at surface in Huaquechula, Chipilo and Amozoc rural sites, and measurements of O3 vertical profile O3 and meteorology in Chipilo. The synoptic conditions during the campaign showed dominance of "Norte" conditions favoring air masses circulation from Pacific Ocean crossing southern Mexican Plateau to the Gulf of Mexico that influences the establishment of evening southeasterly winds in the Puebla-Tlaxcala Valley. Wind roses and contaminants analysis in surface for O3 during entire campaign indicates that before noon the movement of air masses was dominated by runoff of Malinche toward the southeast and south of the valley; and in the afternoon a regional pattern of winds from southwest Valley prevails coming from Cuautla Valley and south of Morelos State. The analysis of three representative days of atmospheric circulation in the valley as well as anthropogenic diurnal activity, a rate of morning increase in O3 concentrations similar at all three sites was observed, even in the absence of precursors such as NO2 during some weekends. By analyzing and engage data from O3 vertical profile and surface meteorology data, we could infer that there are minimal ozone contributions from local sources, but important from regional origin, and even O3 entrainment in height brought to the surface when mixing layer is growing. The back trajectory analysis from Chipilo at noon indicates that could be additional contributions of O3 from both Cuautla Valley and other areas of pollutants emission such as Tula, (in the north of Mexico City), and that weekend effect with the occurrence of high O3 levels observed there extends to this region. Although interbasin exchange of pollutants between the Puebla-Tlaxcala Valley

  16. Bias determination and precision validation of ozone profiles from MIPAS-Envisat retrieved with the IMK-IAA processor

    Directory of Open Access Journals (Sweden)

    T. Steck

    2007-07-01

    Full Text Available This paper characterizes vertical ozone profiles retrieved with the IMK-IAA (Institute for Meteorology and Climate Research, Karlsruhe – Instituto de Astrofisica de Andalucia science-oriented processor from high spectral resolution data (until March 2004 measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS aboard the environmental satellite Envisat. Bias determination and precision validation is performed on the basis of correlative measurements by ground-based lidars, Fourier transform infrared spectrometers, and microwave radiometers as well as balloon-borne ozonesondes, the balloon-borne version of MIPAS, and two satellite instruments (Halogen Occultation Experiment and Polar Ozone and Aerosol Measurement III. Percentage mean differences between MIPAS and the comparison instruments for stratospheric ozone are generally within ±10%. The precision in this altitude region is estimated at values between 5 and 10% which gives an accuracy of 15 to 20%. Below 18 km, the spread of the percentage mean differences is larger and the precision degrades to values of more than 20% depending on altitude and latitude. The main reason for the degraded precision at low altitudes is attributed to undetected thin clouds which affect MIPAS retrievals, and to the influence of uncertainties in the water vapor concentration.

  17. Bias determination and precision validation of ozone profiles from MIPAS-Envisat retrieved with the IMK-IAA processor

    Directory of Open Access Journals (Sweden)

    T. Steck

    2007-03-01

    Full Text Available This paper characterizes vertical ozone profiles retrieved with the IMK-IAA (Institute for Meteorology and Climate Research, Karlsruhe – Instituto de Astrofisica de Andalucia science-oriented processor from spectra measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS aboard the environmental satellite Envisat. Bias determination and precision validation is performed on the basis of correlative measurements by ground-based lidars, Fourier transform infrared spectrometers, and microwave radiometers as well as balloon-borne ozonesondes, the balloon-borne version of MIPAS, and two satellite instruments (Halogen Occultation Experiment and Polar Ozone and Aerosol Measurement III. Percentage mean differences between MIPAS and the comparison instruments for stratospheric ozone are within ±10%. The precision in this altitude region is estimated at values between 5 and 10% which gives an accuracy of 15 to 20%. Below 18 km, the spread of the percentage mean differences is larger and the precision increases to values of more than 20% depending on altitude and latitude. The main reason for the degraded precision at low altitudes is attributed to undetected thin clouds which affect MIPAS retrievals, and to the influence of uncertainties in the water vapor concentration.

  18. Inhaled ozone (O{sub 3})-induces changes in serum metabolomic and liver transcriptomic profiles in rats

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Desinia B. [Curriculum in Toxicology, University of North Carolina-Chapel Hill, Chapel Hill, NC (United States); Karoly, Edward D.; Jones, Jan C. [Metabolon Incorporation, Durham, NC (United States); Ward, William O.; Vallanat, Beena D.; Andrews, Debora L. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Schladweiler, Mette C.; Snow, Samantha J. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Bass, Virginia L. [Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC (United States); Richards, Judy E.; Ghio, Andrew J.; Cascio, Wayne E.; Ledbetter, Allen D. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Kodavanti, Urmila P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    2015-07-15

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O{sub 3}) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O{sub 3} exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O{sub 3} at 0.25, 0.50, or 1.0 ppm, 6 h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0 ppm O{sub 3}, 6 h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18 h post-exposure. O{sub 3} increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18 h-post second exposure. O{sub 3} increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O{sub 3}. In conclusion, short-term O{sub 3} exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress–response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. - Highlights: • Ozone, an ubiquitous air pollutant induces acute systemic metabolic derangement. • Serum metabolomic approach provides novel insights in ozone-induced changes. • Ozone exposure induces leptinemia

  19. Improved Ozone and Carbon Monoxide Profile Retrievals Using Multispectral Measurements from NASA "A Train", NPP, and TROPOMI Satellites

    Science.gov (United States)

    Fu, D.; Bowman, K. W.; Kulawik, S. S.; Miyazaki, K.; Worden, J. R.; Worden, H. M.; Livesey, N. J.; Payne, V.; Luo, M.; Natraj, V.; Veefkind, P.; Aben, I.; Landgraf, J.; Flynn, L. E.; Han, Y.; Liu, X.; Strow, L. L.; Kuai, L.

    2015-12-01

    Tropospheric ozone is at the juncture of air quality and climate. Ozone directly impacts human and plant health, and directly forces the climate system through absorption of thermal radiation. Carbon monoxide is a chemical precursor of greenhouse gases CO2 and tropospheric O3, and is also an ideal tracer of transport processes due to its medium life time (weeks to months). The Aqua-AIRS and Aura-OMI instruments in the NASA "A-Train", CrIS and OMPS instruments on the NOAA Suomi-NPP, IASI and GOME-2 on METOP and TROPOMI aboard the Sentinel 5 precursor (S5p) have the potential to provide the synoptic chemical and dynamical context for ozone necessary to quantify long-range transport at global scales and to provide an anchor to the near-term constellation of geostationary sounders: NASA TEMPO, ESA Sentinel 4, and the Korean GEMS. We introduce the JPL MUlti-SpEctral, MUlti-SpEcies, MUlti-SatEllite (MUSES) retrieval algorithm, which ingests panspectral observations across multiple platforms in a non-linear optimal estimation framework. MUSES incorporates advances in remote sensing science developed during the EOS-Aura era including rigorous error analysis diagnostics and observation operators needed for trend analysis, climate model evaluation, and data assimilation. Its performance has been demonstrated through prototype studies for multi-satellite missions (AIRS, CrIS, TROPOMI, TES, OMI, and OMPS). We present joint tropospheric ozone retrievals from AIRS/OMI and CrIS/OMPS over global scales, and demonstrate the potential of joint carbon monoxide profiles from TROPOMI/CrIS. These results indicate that ozone can be retrieved with ~2 degrees of freedom for signal (dofs) in the troposphere, which is similar to TES. Joint CO profiles have dofs similar to the MOPITT multispectral retrieval but with higher spatial resolution and coverage. Consequently, multispectral retrievals show promise in providing continuity with NASA EOS observations and pave the way towards a new

  20. Retrieval of stratospheric ozone profiles from OMPS measurements in limb viewing geometry

    Science.gov (United States)

    Arosio, Carlo; Rozanov, Alexei; Eichmann, Kai-Uwe; Malinina, Elizaveta; Burrows, John P.; Jaross, Glenn; Bhartia, Pawan K.

    2017-04-01

    Due to its crucial role in the radiative budged of the stratosphere as well as its importance for the mankind as an absorber of biological-damaging UV radiation, a continuous monitoring of the vertical and spatial distribution of the stratospheric ozone has been a priority for the scientific community. At the beginning of 2012 the European ENVISAT satellite, carrying among others ozone-science relevant instruments as GOMOS, MIPAS and SCIAMACHY, ceased its operations: as a consequence, only a few older satellite missions, such as OSIRIS, MLS, ACE-FTS, and SMR have been still operating, contributing to the task of continuous monitoring stratospheric ozone distributions. At the end of 2011, just some months before the end of ENVISAT lifetime, SUOMI-NPP mission carrying OMPS instrument was launched. The OMPS suite enables the study of the vertical distribution of stratospheric ozone by analyzing the intensity of the scattered solar light at UV-VIS wavelengths in limb viewing geometry. The focus of our study is to adapt the algorithm developed at the University of Bremen for the retrieval of stratospheric ozone vertical distributions from SCIAMACHY limb measurements to OMPS limb observations, with the final aim to obtain a continuous data set from both instruments. The retrieval method is based on the optimal estimation technique in a 1D geometry; the settings account for the instrumental design by optimally exploiting different spectral ranges at UV wavelengths as well as in the visible region to retrieve ozone concentrations at different tangent heights. A cloud filter based on the Color Index Ratio is applied and surface albedo is retrieved simultaneously, accounting for stratospheric aerosol. The retrieval results over six months are compared in this poster with the NASA retrieval product and validated using MLS and ozonesondes collocated observations.

  1. Modeling the observed tropospheric BrO background: Importance of multiphase chemistry and implications for ozone, OH, and mercury

    Science.gov (United States)

    Schmidt, J. A.; Jacob, D. J.; Horowitz, H. M.; Hu, L.; Sherwen, T.; Evans, M. J.; Liang, Q.; Suleiman, R. M.; Oram, D. E.; Le Breton, M.; Percival, C. J.; Wang, S.; Dix, B.; Volkamer, R.

    2016-10-01

    Aircraft and satellite observations indicate the presence of ppt (ppt ≡ pmol/mol) levels of BrO in the free troposphere with important implications for the tropospheric budgets of ozone, OH, and mercury. We can reproduce these observations with the GEOS-Chem global tropospheric chemistry model by including a broader consideration of multiphase halogen (Br-Cl) chemistry than has been done in the past. Important reactions for regenerating BrO from its nonradical reservoirs include HOBr + Br-/Cl- in both aerosols and clouds, and oxidation of Br- by ClNO3 and ozone. Most tropospheric BrO in the model is in the free troposphere, consistent with observations and originates mainly from the photolysis and oxidation of ocean-emitted CHBr3. Stratospheric input is also important in the upper troposphere. Including production of gas phase inorganic bromine from debromination of acidified sea salt aerosol increases free tropospheric Bry by about 30%. We find HOBr to be the dominant gas-phase reservoir of inorganic bromine. Halogen (Br-Cl) radical chemistry as implemented here in GEOS-Chem drives 14% and 11% decreases in the global burdens of tropospheric ozone and OH, respectively, a 16% increase in the atmospheric lifetime of methane, and an atmospheric lifetime of 6 months for elemental mercury. The dominant mechanism for the Br-Cl driven tropospheric ozone decrease is oxidation of NOx by formation and hydrolysis of BrNO3 and ClNO3.

  2. Analysis of the ozone profile specifications in the WRF-ARW model and their impact on the simulation of direct solar radiation

    Directory of Open Access Journals (Sweden)

    A. Montornès

    2015-03-01

    Full Text Available Although ozone is an atmospheric gas with high spatial and temporal variability, mesoscale numerical weather prediction (NWP models simplify the specification of ozone concentrations used in their shortwave schemes by using a few ozone profiles. In this paper, a two-part study is presented: (i an evaluation of the quality of the ozone profiles provided for use with the shortwave schemes in the Advanced Research version of the Weather Research and Forecasting (WRF-ARW model and (ii an assessment of the impact of deficiencies in those profiles on the performance of model simulations of direct solar radiation. The first part compares simplified data sets used to specify the total ozone column in six schemes (i.e., Goddard, New Goddard, RRTMG, CAM, GFDL and Fu–Liou–Gu with the Multi-Sensor Reanalysis data set during the period 1979–2008 examining the latitudinal, longitudinal and seasonal limitations in the ozone profile specifications of each parameterization. The results indicate that the maximum deviations are over the poles and show prominent longitudinal patterns in the departures due to the lack of representation of the patterns associated with the Brewer–Dobson circulation and the quasi-stationary features forced by the land–sea distribution, respectively. In the second part, the bias in the simulated direct solar radiation due to these deviations from the simplified spatial and temporal representation of the ozone distribution is analyzed for the New Goddard and CAM schemes using the Beer–Lambert–Bouguer law and for the GFDL using empirical equations. For radiative applications those simplifications introduce spatial and temporal biases with near-zero departures over the tropics throughout the year and increasing poleward with a maximum in the high middle latitudes during the winter of each hemisphere.

  3. Inhaled Ozone (O3)-Induces Changes in Serum Metabolomic and Liver Transcriptomic Profiles in Rats

    Science.gov (United States)

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (03) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that 03 exposure will cause systemic changes in metab...

  4. Inhaled Ozone (O3)-Induces Changes in Serum Metabolomic and Liver Transcriptomic Profiles in Rats

    Science.gov (United States)

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (03) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that 03 exposure will cause systemic changes in metab...

  5. Seasonal profiles of leaf ascorbic acid content and redox state in ozone-sensitive wildflowers

    Energy Technology Data Exchange (ETDEWEB)

    Burkey, Kent O. [Plant Science Research Unit, USDA-ARS and North Carolina State University, 3127 Ligon Street, Raleigh, NC 27607 (United States)]. E-mail: koburkey@unity.ncsu.edu; Neufeld, Howard S. [Appalachian State University, Boone, NC (United States); Souza, Lara [Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN (United States); Chappelka, Arthur H. [Auburn University, Auburn, AL (United States); Davison, Alan W. [University of Newcastle, Newcastle, England (United Kingdom)

    2006-10-15

    Cutleaf coneflower (Rudbeckia laciniata L.), crown-beard (Verbesina occidentalis Walt.), and tall milkweed (Asclepias exaltata L.) are wildflower species native to Great Smoky Mountains National Park (U.S.A.). Natural populations of each species were analyzed for leaf ascorbic acid (AA) and dehydroascorbic acid (DHA) to assess the role of ascorbate in protecting the plants from ozone stress. Tall milkweed contained greater quantities of AA (7-10 {mu}mol g{sup -1} fresh weight) than crown-beard (2-4 {mu}mol g{sup -1} fresh weight) or cutleaf coneflower (0.5-2 {mu}mol g{sup -1} fresh weight). DHA was elevated in crown-beard and cutleaf coneflower relative to tall milkweed suggesting a diminished capacity for converting DHA into AA. Tall milkweed accumulated AA in the leaf apoplast (30-100 nmol g{sup -1} fresh weight) with individuals expressing ozone foliar injury symptoms late in the season having less apoplast AA. In contrast, AA was not present in the leaf apoplast of either crown-beard or cutleaf coneflower. Unidentified antioxidant compounds were present in the leaf apoplast of all three species. Overall, distinct differences in antioxidant metabolism were found in the wildflower species that corresponded with differences in ozone sensitivity. - Wildflower species exhibit differences in ascorbic acid content and redox status that affect ozone sensitivity.

  6. An exceptionally elevated PBL as well as free troposphere aerosol observations during August 2015 summer heat-wave over Racibórz, Poland

    Science.gov (United States)

    Szkop, Artur; Pietruczuk, Aleksander

    2016-10-01

    A Lufft's CHM 15k "Nimbus" ceilometer and a collocated Cimel Sunphotometer were used to observe planetary boundary layer (PBL) evolution and free tropospheric aerosol layers during a heat-wave that occurred over Central Europe in August 2015. Both instruments were operated in Racibórz, Poland by the Institute of Geophysics PAS since May 2015. The analysis of the data suggests that the PBL top has been elevated to approximately 3000m, a height rarely observed over Poland. Moreover, in the period between 4th and 16th August an unusually high number of aerosol layers were visible in the signals. An analysis based on a backward air mass trajectory (HySplit) and thermal hot-spot (MODVOLC) models combined with a specialized "MISR INteractive eXplorer" (MINX) software provide evidence that at least some of the aerosol was of biomass burning type originating from a strong episode of wildfires in Ukraine.

  7. Analysis of the ozone profile specifications in the WRF-ARW model and their impact on the simulation of direct solar radiation

    Directory of Open Access Journals (Sweden)

    A. Montornès

    2014-08-01

    Full Text Available Although ozone is an atmospheric gas with high spatial and temporal variability, mesoscale numerical weather prediction (NWP models simplify the specification of ozone concentrations used in their shortwave schemes by using a few ozone profiles. In this paper, a two-part study is presented: (i an assessment of the quality of the ozone profiles provided for use with the shortwave schemes in the Advanced Research version of the Weather Research and Forecasting (WRF-ARW model and (ii the impact of deficiencies in those profiles on the performance of model simulations of direct solar radiation. The first part compares simplified datasets used to specify the total ozone column in five schemes (i.e. Goddard, New Goddard, RRTMG, CAM and Fu–Liou–Gu with the Multi-Sensor Reanalysis dataset during the period 1979–2008 examining the latitudinal, longitudinal and seasonal limitations in the ozone modeling of each parameterization. The results indicate that the maximum deviations are over the poles due to the Brewer–Dobson circulation and there are prominent longitudinal patterns in the departures due to quasi-stationary features forced by the land–sea distribution. In the second part, the bias in the simulated direct solar radiation due to these deviations from the simplified spatial and temporal representation of the ozone distribution is analyzed for the New Goddard and CAM schemes using the Beer–Lambert–Bouger law. For radiative applications those simplifications introduce spatial and temporal biases with near-zero departures over the tropics during all the year and increasing poleward with a maximum in the high middle latitudes during the winter of each hemisphere.

  8. Importance of the Saharan heat low in controlling the North Atlantic free tropospheric humidity budget deduced from IASI δD observations

    Science.gov (United States)

    Lacour, Jean-Lionel; Flamant, Cyrille; Risi, Camille; Clerbaux, Cathy; Coheur, Pierre-François

    2017-08-01

    The isotopic composition of water vapour in the North Atlantic free troposphere is investigated with Infrared Atmospheric Sounding Interferometer (IASI) measurements of the D / H ratio (δD) above the ocean. We show that in the vicinity of West Africa, the seasonality of δD is particularly strong (130 ‰), which is related with the influence of the Saharan heat low (SHL) during summertime. The SHL indeed largely influences the dynamic in that region by producing deep turbulent mixing layers, yielding a specific water vapour isotopic footprint. The influence of the SHL on the isotopic budget is analysed on various time and space scales and is shown to be large, highlighting the importance of the SHL dynamics on the moistening and the HDO enrichment of the free troposphere over the North Atlantic. The potential influence of the SHL is also investigated on the inter-annual scale as we also report important variations in δD above the Canary archipelago region. We interpret the variability in the enrichment, using backward trajectory analyses, in terms of the ratio of air masses coming from the North Atlantic and air masses coming from the African continent. Finally, the interest of IASI high sampling capabilities is further illustrated by presenting spatial distributions of δD and humidity above the North Atlantic from which we show that the different sources and dehydration pathways controlling the humidity can be disentangled thanks to the added value of δD observations. More generally, our results demonstrate the utility of δD observations obtained from the IASI sounder to gain insight into the hydrological cycle processes in the West African region.

  9. Detecting moisture transport pathways to the subtropical North Atlantic free troposphere using paired H2O-δD in situ measurements

    Science.gov (United States)

    González, Yenny; Schneider, Matthias; Dyroff, Christoph; Rodríguez, Sergio; Christner, Emanuel; García, Omaira Elena; Cuevas, Emilio; Bustos, Juan Jose; Ramos, Ramon; Guirado-Fuentes, Carmen; Barthlott, Sabine; Wiegele, Andreas; Sepúlveda, Eliezer

    2016-04-01

    We present two years of in situ measurements of water vapour (H2O) and its isotopologue ratio (δD, the standardized ratio between H216O and HD16O), made at two remote mountain sites on Tenerife in the subtropical North Atlantic. We show that the data - if measured during night-time - are well representative for the lower/middle free troposphere. We use the measured H2O-δD pairs, together with dust measurements and back trajectory modelling for analysing the moisture pathways to this region. We can identify four principally different transport pathways. The air mass transport from high altitudes and high latitudes shows two different scenarios. The first scenario brings dry air masses to the stations, as the result of condensation events occurring at low temperatures. The second scenario brings humid air masses to the stations, due to cross-isentropic mixing with lower-level and more humid air during transport since last condensation (LC). The third pathway is transportation from lower latitudes and lower altitudes, whereby we can identify rain re-evaporation as an occasional source of moisture. The fourth pathway is linked to the African continent, where during summer, dry convection processes over the Sahara very effectively inject humidity from the boundary layer to higher altitudes. This so-called Saharan Air Layer (SAL) is then advected westward over the Atlantic and contributes to moisten the free troposphere. We demonstrate that the different pathways leave distinct fingerprints on the measured H2O-δD pairs.

  10. Differential Absorption Lidar to Measure Subhourly Variation of Tropospheric Ozone Profiles

    Science.gov (United States)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephania

    2011-01-01

    A tropospheric ozone Differential Absorption Lidar system, developed jointly by The University of Alabama in Huntsville and the National Aeronautics and Space Administration, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min 17 temporal integration.

  11. Differential Absorption Lidar to Measure Sub-Hourly Variation of Tropospheric Ozone Profiles

    Science.gov (United States)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephanie

    2009-01-01

    A tropospheric ozone Differential Absorption Lidar (DIAL) system, developed jointly by the University of Alabama at Huntsville and NASA, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min temporal integration

  12. Vertical ozone transport in the Alps (VOTALP): the valley experiment 1996

    Energy Technology Data Exchange (ETDEWEB)

    Furger, M.; Dommen, J.; Graber, W.K.; Prevot, A.; Poggio, L.; Andreani, S.; Keller, J.; Portmann, W.; Buerki, D.; Erne, R.; Richter, R.; Tinguely, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The EU project VOTALP started its valley campaign in the summer of 1996 in the Mesolcina valley. The influence of thermal circulations on ozone concentrations and on the exchange of ozone and its photochemical precursors between the valley atmosphere and the free troposphere above was the main focus of the study. PSI has participated with various measurement systems (conventional meteorological surface stations, radiosondes, scidar/DOAS systems, chemical analysers). An overview of PSI`s activities in the field campaign is given, and some preliminary results are presented. (author) 1 fig., 2 tabs., 2 refs.

  13. A Comparison of the Solar Cycle Signature in Vertical Ozone and Temperature Profiles Seen by SAGE II With Coupled Chemistry-Climate Model Results

    Science.gov (United States)

    Bodeker, G. E.; Austin, J.; Zawodny, J. M.

    2002-12-01

    Solar variability is known to affect the Earth's climate. However, the exact mechanisms whereby small changes in extra-terrestrial solar irradiance over the 11 year solar cycle affect the climate are poorly understood. One of the primary objectives of the SOLar Impacts on Climate and the Environment (SOLICE) project is to assess the impact of solar variability on stratospheric ozone, radiative forcing and surface UV using coupled chemistry-climate models. Comparisons of model results and observations are expected to advance understanding of the mechanisms of solar-climate links. Global vertical ozone profiles (version 6.1) from the Stratospheric Aerosol and Gas Experiment II (SAGE II), together with co-located NCEP/NCAR temperature profiles, have been examined for the solar cycle signature from October 1984 to June 2001 as a function of altitude/pressure and latitude. In addition to solar cycle forcing, ozone concentrations and temperatures may also be influenced by the Quasi-Biennial Oscillation (QBO), volcanic eruptions, the El Niño-Southern Oscillation (ENSO), tropopause height variations, and the solar zenith angle (time of day) at the measurement location [Bodeker et al., JGR, vol. 103, 28661-28681, 1998]. These confounding effects must be eliminated before the solar cycle signal can be quantitatively identified. Two different approaches have been used: 1) Outside of volcanically perturbed periods, the QBO is expected to be the largest source of variability. Ozone and temperature profiles are sorted according to the phase of the QBO before profile differences between solar maximum and minimum are calculated. 2) A regression model, incorporating all forcings as basis functions, is applied to the ozone and temperature profiles and the amplitude of the solar cycle basis function is extracted. These results are compared with output from the UMETRAC (Unified Model with Eulerian TRansport And Chemistry) coupled chemistry-climate model.

  14. Validation of MIPAS IMK/IAA temperature, water vapor, and ozone profiles with MOHAVE-2009 campaign measurements

    Directory of Open Access Journals (Sweden)

    G. P. Stiller

    2012-02-01

    Full Text Available MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT, Institute for Meteorology and Climate Research (IMK and CSIC, Instituto de Astrofísica de Andalucía (IAA and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infra-red (FTIR spectrometers. For MIPAS temperatures (version V4O_T_204, no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203 is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause, but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202 has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution

  15. Validation of MIPAS IMK-IAA Temperature, Water Vapor, and Ozone Profiles with MOHAVE-2009 Campaign Measurements

    Science.gov (United States)

    Stiller, Gabrielle; Kiefer, M.; Eckert, E.; von Clarmann, T.; Kellmann, S.; Garcia-Comas, M.; Funke, B.; Leblanc, T.; Fetzer, E.; Froidevaux, L.; hide

    2012-01-01

    MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK) and CSIC, Instituto de Astrofisica de Andalucia (IAA) and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infrared (FTIR) spectrometers. For MIPAS temperatures (version V4O_T_204), no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203) is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause), but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202) has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution. No further

  16. Atmospheric profiling via satellite to satellite occultations near water and ozone absorption lines for weather and climate

    Science.gov (United States)

    Kursinski, E. R.; Ward, D.; Otarola, A. C.; McGhee, J.; Stovern, M.; Sammler, K.; Reed, H.; Erickson, D.; McCormick, C.; Griggs, E.

    2016-05-01

    Significantly reducing weather and climate prediction uncertainty requires global observations with substantially higher information content than present observations provide. While GPS occultations have provided a major advance, GPS observations of the atmosphere are limited by wavelengths chosen specifically to minimize interaction with the atmosphere. Significantly more information can be obtained via satellite to satellite occultations made at wavelengths chosen specifically to characterize the atmosphere. Here we describe such a system that will probe cm- and mmwavelength water vapor absorption lines called the Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS). Profiling both the speed and absorption of light enables ATOMMS to profile temperature, pressure and humidity simultaneously, which GPS occultations cannot do, as well as profile clouds and turbulence. We summarize the ATOMMS concept and its theoretical performance. We describe field measurements made with a prototype ATOMMS instrument and several important capabilities demonstrated with those ground based measurements including retrieving temporal variations in path-averaged water vapor to 1%, in clear, cloudy and rainy conditions, up to optical depths of 17, remotely sensing turbulence and determining rain rates. We conclude with a vision of a future ATOMMS low Earth orbiting satellite constellation designed to take advantage of synergies between observational needs for weather and climate, ATOMMS unprecedented orbital remote sensing capabilities and recent cubesat technological innovations that enable a constellation of dozens of very small spacecraft to achieve many critical, but as yet unfulfilled, monitoring and forecasting needs.

  17. Ground-based assessment of the bias and long-term stability of 14 limb and occultation ozone profile data records

    Science.gov (United States)

    Hubert, Daan; Lambert, Jean-Christopher; Verhoelst, Tijl; Granville, José; Keppens, Arno; Baray, Jean-Luc; Bourassa, Adam E.; Cortesi, Ugo; Degenstein, Doug A.; Froidevaux, Lucien; Godin-Beekmann, Sophie; Hoppel, Karl W.; Johnson, Bryan J.; Kyrölä, Erkki; Leblanc, Thierry; Lichtenberg, Günter; Marchand, Marion; McElroy, C. Thomas; Murtagh, Donal; Nakane, Hideaki; Portafaix, Thierry; Querel, Richard; Russell, James M., III; Salvador, Jacobo; Smit, Herman G. J.; Stebel, Kerstin; Steinbrecht, Wolfgang; Strawbridge, Kevin B.; Stübi, René; Swart, Daan P. J.; Taha, Ghassan; Tarasick, David W.; Thompson, Anne M.; Urban, Joachim; van Gijsel, Joanna A. E.; Van Malderen, Roeland; von der Gathen, Peter; Walker, Kaley A.; Wolfram, Elian; Zawodny, Joseph M.

    2016-06-01

    profile records of a large number of limb and occultation satellite instruments are widely used to address several key questions in ozone research. Further progress in some domains depends on a more detailed understanding of these data sets, especially of their long-term stability and their mutual consistency. To this end, we made a systematic assessment of 14 limb and occultation sounders that, together, provide more than three decades of global ozone profile measurements. In particular, we considered the latest operational Level-2 records by SAGE II, SAGE III, HALOE, UARS MLS, Aura MLS, POAM II, POAM III, OSIRIS, SMR, GOMOS, MIPAS, SCIAMACHY, ACE-FTS and MAESTRO. Central to our work is a consistent and robust analysis of the comparisons against the ground-based ozonesonde and stratospheric ozone lidar networks. It allowed us to investigate, from the troposphere up to the stratopause, the following main aspects of satellite data quality: long-term stability, overall bias and short-term variability, together with their dependence on geophysical parameters and profile representation. In addition, it permitted us to quantify the overall consistency between the ozone profilers. Generally, we found that between 20 and 40 km the satellite ozone measurement biases are smaller than ±5 %, the short-term variabilities are less than 5-12 % and the drifts are at most ±5 % decade-1 (or even ±3 % decade-1 for a few records). The agreement with ground-based data degrades somewhat towards the stratopause and especially towards the tropopause where natural variability and low ozone abundances impede a more precise analysis. In part of the stratosphere a few records deviate from the preceding general conclusions; we identified biases of 10 % and more (POAM II and SCIAMACHY), markedly higher single-profile variability (SMR and SCIAMACHY) and significant long-term drifts (SCIAMACHY, OSIRIS, HALOE and possibly GOMOS and SMR as well). Furthermore, we reflected on the repercussions

  18. Large Enhancements of Nitrogen Oxides Over the Central North Atlantic Lower Free Troposphere Resulting From Boreal Wildfires: Observations at the PICO-NARE Station During Summer 2004

    Science.gov (United States)

    Val Martin, M.; Honrath, R. E.; Owen, R. C.; Kleissl, J.; Fialho, P.; Pfister, G.; Lapina, K.

    2005-12-01

    Extensive wildfires burned in Alaska and western Canada during the summer of 2004. Boreal wildfires are a large source of trace gases and aerosols in the atmosphere. However, little is known about the impact of their emissions on the nitrogen oxides and O3 levels over the Northern Hemisphere. During the summer of 2004, measurements of NO_x and NO_y were made at the PICO-NARE station (Azores Islands, Portugal, 2225 m asl), a location 5--15 days downwind from the fires. Measurements in 10 fire plumes between July and September were analyzed in combination with CO and aerosol black carbon observations, backward trajectories, satellite images, and MOZART simulations, in order to study the effect of boreal fire emissions on nitrogen oxides levels over the central North Atlantic lower free troposphere, and their further potential for O3 formation over this region. During the fire-impacted periods, NO_x, NO_y, and CO levels were extremely high for such a remote region, with enhancements up to 110 pptv, 1000 pptv, 150 ppbv above background, respectively. NO_y was significantly correlated to CO, with an average enhancement ratio of approximately 6 pptv/ppbv. The magnitude of the NO_y/CO enhancement ratio is a significant fraction (~20%) of the estimated NO_x/CO emission ratio from boreal forest fires and is only moderately smaller than previous measurements closer to fires, indicating limited NO_y removal during transport to the site. In addition to NO_y, NO_x was typically correlated to CO, with an average enhancement ratio of approximately 1 pptv/ppbv. Since the major component of NO_y in boreal fires plumes is believed to be PAN, this suggests that decomposition of PAN to NO_x is a significant source of NO_x in the fire plumes arriving to this region. These observations indicate that nitrogen oxides emissions from wildfires can be efficiently transported to the lower free troposphere over the central North Atlantic region. Furthermore, high levels of NO_x and NO_y in

  19. Variation of CO2 mole fraction in the lower free troposphere, in the boundary layer and at the surface

    Directory of Open Access Journals (Sweden)

    J. Tarniewicz

    2012-05-01

    Full Text Available Eight years of occasional flask air sampling and 3 yr of frequent in situ measurements of carbon dioxide (CO2 vertical profiles on board of a small aircraft, over a tall tower greenhouse gases monitoring site in Hungary are used for the analysis of the variations of vertical profile of CO2 mole fraction. Using the airborne vertical profiles and the measurements along the 115 m tall tower it is shown that the measurements at the top of the tower estimate the mean boundary layer CO2 mole fraction during the mid-afternoon fairly well, with an underestimation of 0.27–0.85 μmol mol−1 in summer, and an overestimation of 0.66–1.83 μmol mol−1 in winter. The seasonal cycle of CO2 mole fraction is damped with elevation. While the amplitude of the seasonal cycle is 28.5 μmol mol−1 at 10 m above the ground, it is only 10.7 μmol mol−1 in the layer of 2500–3000 m corresponding to the lower free atmosphere above the well-mixed boundary layer. The maximum mole fraction in the layer of 2500–3000 m can be observed around 25 March on average, two weeks ahead of that of the marine boundary layer reference (GLOBALVIEW. By contrast, close to the ground, the maximum CO2 mole fraction is observed late December, early January. The specific seasonal behavior is attributed to the climatology of vertical mixing of the atmosphere in the Carpathian Basin.

  20. Validation of MIPAS IMK/IAA temperature, water vapor, and ozone profiles with MOHAVE-2009 campaign measurements

    Directory of Open Access Journals (Sweden)

    G. P. Stiller

    2011-07-01

    Full Text Available MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT, Institute for Meteorology and Climate Research (IMK and CSIC, Instituto de Astrofisica de Andalucia (IAA and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radio sondes, frost point hygrometers, lidars, microwave radiometers and FTIR spectrometers. For MIPAS temperatures (version V4O_T_204, no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203 is well within 10 % of the data of all correlative instruments, while a high bias of up to 10 % is found in comparison to ground-based microwave instruments around 45 km. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40 % around 10 km (or 5 km below the tropopause, but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202 has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution. No further significant biases have been detected. Cross-comparison to co-located observations of other satellite instruments (Aura/MLS, ACE-FTS, AIRS is provided as well.

  1. PAN in the eastern Pacific free troposphere: A satellite view of the sources, seasonality, interannual variability, and timeline for trend detection

    Science.gov (United States)

    Zhu, Liye; Payne, Vivienne H.; Walker, Thomas W.; Worden, John R.; Jiang, Zhe; Kulawik, Susan S.; Fischer, Emily V.

    2017-03-01

    Peroxyacetyl nitrate (PAN) is an important trace gas that serves to transport nitrogen oxide radicals throughout the troposphere. We present an analysis of satellite observations of PAN from the Tropospheric Emission Spectrometer (TES) over the eastern Pacific Ocean for April and July 2006-2010 and the spring-to-summer seasonal transition for 2006. TES can provide quantitative estimates of free tropospheric PAN in clear-sky or thin cloud conditions where elevated PAN (>0.2 ppbv) is present. The percentage of successful PAN detections increases from April to July and then decreases in August and September. However, there are no significant differences in the tropospheric average PAN either interannually or between these months. Plumes containing elevated PAN are present almost every day in July. Elevated PAN observed in July has multiple sources, including fires in Siberia, anthropogenic sources in eastern China, and recirculated pollution from the continental U.S. We combined the observed variability in the TES PAN retrievals over the eastern Pacific Ocean with a range of possible trends in PAN to determine the observational requirements to detect such trends. Based on the variability observed in the PAN retrievals over this region, we predict that it would be faster to detect a trend of a given magnitude in PAN using satellite observations over the eastern Pacific Ocean region rather than in situ surface observations and that a trend of a given magnitude would be more quickly detected in summer than spring.

  2. Impact of climate change on tropospheric ozone and its global budgets

    Directory of Open Access Journals (Sweden)

    G. Zeng

    2008-01-01

    Full Text Available We present the chemistry-climate model UMCAM in which a relatively detailed tropospheric chemical module has been incorporated into the UK Met Office's Unified Model version 4.5. We obtain good agreements between the modelled ozone/nitrogen species and a range of observations including surface ozone measurements, ozone sonde data, and some aircraft campaigns.

    Four 2100 calculations assess model responses to projected changes of anthropogenic emissions (SRES A2, climate change (due to doubling CO2, and idealised climate change-associated changes in biogenic emissions (i.e. 50% increase of isoprene emission and doubling emissions of soil-NOx. The global tropospheric ozone burden increases significantly for all the 2100 A2 simulations, with the largest response caused by the increase of anthropogenic emissions. Climate change has diverse impacts on O3 and its budgets through changes in circulation and meteorological variables. Increased water vapour causes a substantial ozone reduction especially in the tropical lower troposphere (>10 ppbv reduction over the tropical ocean. On the other hand, an enhanced stratosphere-troposphere exchange of ozone, which increases by 80% due to doubling CO2, contributes to ozone increases in the extratropical free troposphere which subsequently propagate to the surface. Projected higher temperatures favour ozone chemical production and PAN decomposition which lead to high surface ozone levels in certain regions. Enhanced convection transports ozone precursors more rapidly out of the boundary layer resulting in an increase of ozone production in the free troposphere. Lightning-produced NOx increases by about 22% in the doubled CO2 climate and contributes to ozone production.

    The response to the increase of isoprene emissions shows that the change of ozone is largely determined by background NOx levels: high

  3. Impact of climate change on tropospheric ozone and its global budgets

    Directory of Open Access Journals (Sweden)

    G. Zeng

    2007-07-01

    Full Text Available We present the chemistry-climate model UM_CAM in which a relatively detailed tropospheric chemical module has been incorporated into the UK Met Office's Unified Model version 4.5. We obtain good agreements between the modelled ozone/nitrogen species and a range of observations including surface ozone measurements, ozone sonde data, and some aircraft campaigns.

    Four 2100 calculations assess model responses to projected changes of anthropogenic emissions (SRES A2, climate change (due to doubling CO2, and idealised climate change associated changes in biogenic emissions (i.e. 50% increase of isoprene emission and doubling emissions of soil-NOx. The global tropospheric ozone burden increases significantly for all the 2100 A2 simulations, with the largest response caused by the increase of anthropogenic emissions. Climate change has diverse impacts on O3 and its budgets through changes in circulation and meteorological variables. Increased water vapour causes a substantial ozone reduction especially in the tropical lower troposphere (>10 ppbv reduction over the tropical ocean. On the other hand, an enhanced stratosphere-troposphere exchange of ozone, which increases by 80% due to doubling CO2, contributes to ozone increases in the extratropical free troposphere which subsequently propagate to the surface. Projected higher temperatures favour ozone chemical production and PAN decomposition which lead to high surface ozone levels in certain regions. Enhanced convection transports ozone precursors more rapidly out of the boundary layer resulting in an increase of ozone production in the free troposphere. Lightning-produced NOx increases by about 22% in the doubled CO2 climate and contributes to ozone production.

    The response to the increase of isoprene emissions shows that the change of ozone is largely determined by background NOx levels: high NO

  4. Tropospheric ozone profiles by DIAL at Maïdo Observatory (Reunion Island): system description, instrumental performance and result comparison with ozone external data set

    Science.gov (United States)

    Duflot, Valentin; Baray, Jean-Luc; Payen, Guillaume; Marquestaut, Nicolas; Posny, Francoise; Metzger, Jean-Marc; Langerock, Bavo; Vigouroux, Corinne; Hadji-Lazaro, Juliette; Portafaix, Thierry; De Mazière, Martine; Coheur, Pierre-Francois; Clerbaux, Cathy; Cammas, Jean-Pierre

    2017-09-01

    In order to recognize the importance of ozone (O3) in the troposphere and lower stratosphere in the tropics, a DIAL (differential absorption lidar) tropospheric O3 lidar system (LIO3TUR) was developed and installed at the Université de la Réunion campus site (close to the sea) on Reunion Island (southern tropics) in 1998. From 1998 to 2010, it acquired 427 O3 profiles from the low to the upper troposphere and has been central to several studies. In 2012, the system was moved up to the new Maïdo Observatory facility (2160 m a.m.s.l. - metres above mean sea level) where it started operation in February 2013. The current system (LIO3T) configuration generates a 266 nm beam obtained with the fourth harmonic of a Nd:YAG laser sent into a Raman cell filled up with deuterium (using helium as buffer gas), generating the 289 and 316 nm beams to enable the use of the DIAL method for O3 profile measurements. The optimal range for the actual system is 6-19 km a.m.s.l., depending on the instrumental and atmospheric conditions. For a 1 h integration time, vertical resolution varies from 0.7 km at 6 km a.m.s.l. to 1.3 km at 19 km a.m.s.l., and mean uncertainty within the 6-19 km range is between 6 and 13 %. Comparisons with eight electrochemical concentration cell (ECC) sondes simultaneously launched from the Maïdo Observatory show good agreement between data sets with a 6.8 % mean absolute relative difference (D) between 6 and 17 km a.m.s.l. (LIO3T lower than ECC). Comparisons with 37 ECC sondes launched from the nearby Gillot site during the daytime in a ±24 h window around lidar shooting result in a 9.4 % D between 6 and 19 km a.m.s.l. (LIO3T lower than ECC). Comparisons with 11 ground-based Network for Detection of Atmospheric Composition Change (NDACC) Fourier transform infrared (FTIR) spectrometer measurements acquired during the daytime in a ±24 h window around lidar shooting show good agreement between data sets with a D of 11.8 % for the 8.5-16 km partial column

  5. Tropospheric ozone profiles by DIAL at Maïdo Observatory (Reunion Island: system description, instrumental performance and result comparison with ozone external data set

    Directory of Open Access Journals (Sweden)

    V. Duflot

    2017-09-01

    Full Text Available In order to recognize the importance of ozone (O3 in the troposphere and lower stratosphere in the tropics, a DIAL (differential absorption lidar tropospheric O3 lidar system (LIO3TUR was developed and installed at the Université de la Réunion campus site (close to the sea on Reunion Island (southern tropics in 1998. From 1998 to 2010, it acquired 427 O3 profiles from the low to the upper troposphere and has been central to several studies. In 2012, the system was moved up to the new Maïdo Observatory facility (2160 m a.m.s.l. – metres above mean sea level where it started operation in February 2013. The current system (LIO3T configuration generates a 266 nm beam obtained with the fourth harmonic of a Nd:YAG laser sent into a Raman cell filled up with deuterium (using helium as buffer gas, generating the 289 and 316 nm beams to enable the use of the DIAL method for O3 profile measurements. The optimal range for the actual system is 6–19 km a.m.s.l., depending on the instrumental and atmospheric conditions. For a 1 h integration time, vertical resolution varies from 0.7 km at 6 km a.m.s.l. to 1.3 km at 19 km a.m.s.l., and mean uncertainty within the 6–19 km range is between 6 and 13 %. Comparisons with eight electrochemical concentration cell (ECC sondes simultaneously launched from the Maïdo Observatory show good agreement between data sets with a 6.8 % mean absolute relative difference (D between 6 and 17 km a.m.s.l. (LIO3T lower than ECC. Comparisons with 37 ECC sondes launched from the nearby Gillot site during the daytime in a ±24 h window around lidar shooting result in a 9.4 % D between 6 and 19 km a.m.s.l. (LIO3T lower than ECC. Comparisons with 11 ground-based Network for Detection of Atmospheric Composition Change (NDACC Fourier transform infrared (FTIR spectrometer measurements acquired during the daytime in a ±24 h window around lidar shooting show good agreement between data

  6. Modelling horizontal and vertical concentration profiles of ozone and oxides of nitrogen within high-latitude urban area

    CERN Document Server

    Nicholson, J P; Fowler, D

    2000-01-01

    A Lagrangian column model has been developed to simulate the mean (monthly and annual) three-dimensional structure in ozone and nitrogen oxides concentrations in the boundary layer within and immediately around an urban area. Short time-scale photochemical processes of ozone, as well as emissions and deposition to the ground are simulated. The results show that the average surface ozone concentration in the urban area is lower than the surrounding rural areas by typically 50%. Model results are compared with observations.

  7. Aircraft observations of ultrafine particles and CCN from the boundary layer to the free troposphere in the Arctic summertime

    Science.gov (United States)

    Burkart, Julia; Willis, Megan; Bozem, Heiko; Hoor, Peter; Köllner, Franziska; Schneider, Johannes; Brauner, Ralf; Konrad, Christian; Herber, Andreas; Leaitch, Richard; Abbatt, Jon

    2016-04-01

    The Arctic is one of the regions most sensitive to climate change. The shrinking extent of sea ice during the Arctic summertime increases the area covered by open ocean, which likely impacts Arctic aerosol, cloud properties, and thus climate. In this context extensive aerosol measurements (aerosol composition, particle number and size, cloud condensation nuclei, and trace gases) have been made during the NETCARE 2014 summer campaign from the Polar 6 aircraft. The Polar 6 is an adopted DC-3 aircraft owned by the Alfred Wegener Institute in Bremerhaven, Germany. In July 2014 eleven flights were conducted out of Resolute Bay. Flights included vertical profiles from as low as 60 m up to 3 km, as well as several low-level flights covering diverse terrains such as open ocean, fast ice, melt ponds, and polynyas. Here we discuss the vertical distribution of ultrafine particles (UFP, dp: 5 - 20 nm), size distributions of larger particles (dp: 20 nm to 1 μm), and cloud condensation nuclei (CCN) in relation to different meteorological conditions and terrains. UFPs have been observed predominantly within the boundary layer, where concentrations reached several hundreds and occasionally even a few thousand particles per cubic centimeter. Highest concentrations were observed above open ocean and at the top of low-level clouds. During such events, the dominant mode of the size distribution was below 20 nm. However, in a few cases this ultrafine mode extended to sizes larger than 40 nm, suggesting that these UFP can grow into the CCN size range and thereby impact cloud properties and become climatically relevant.

  8. How Certain are We of the Uncertainties in Recent Ozone Profile Trend Assessments of Merged Limbo Ccultation Records? Challenges and Possible Ways Forward

    Science.gov (United States)

    Hubert, Daan; Lambert, Jean-Christopher; Verhoelst, Tijl; Granville, Jose; Keppens, Arno; Baray, Jean-Luc; Cortesi, Ugo; Degenstein, D. A.; Froidevaux, Lucien; Godin-Beekmann, Sophie; hide

    2015-01-01

    Most recent assessments of long-term changes in the vertical distribution of ozone (by e.g. WMO and SI2N) rely on data sets that integrate observations by multiple instruments. Several merged satellite ozone profile records have been developed over the past few years; each considers a particular set of instruments and adopts a particular merging strategy. Their intercomparison by Tummon et al. revealed that the current merging schemes are not sufficiently refined to correct for all major differences between the limb/occultation records. This shortcoming introduces uncertainties that need to be known to obtain a sound interpretation of the different satellite-based trend studies. In practice however, producing realistic uncertainty estimates is an intricate task which depends on a sufficiently detailed understanding of the characteristics of each contributing data record and on the subsequent interplay and propagation of these through the merging scheme. Our presentation discusses these challenges in the context of limb/occultation ozone profile records, but they are equally relevant for other instruments and atmospheric measurements. We start by showing how the NDACC and GAW-affiliated ground-based networks of ozonesonde and lidar instruments allowed us to characterize fourteen limb/occultation ozone profile records, together providing a global view over the last three decades. Our prime focus will be on techniques to estimate long-term drift since our results suggest this is the main driver of the major trend differences between the merged data sets. The single-instrument drift estimates are then used for a tentative estimate of the systematic uncertainty in the profile trends from merged data records. We conclude by reflecting on possible further steps needed to improve the merging algorithms and to obtain a better characterization of the uncertainties involved.

  9. Differential chemical profiling to identify ozonation by-products of estrone-sulfate and first characterization of estrogenicity in generated drinking water.

    Science.gov (United States)

    Bourgin, Marc; Gervais, Gaël; Bichon, Emmanuelle; Antignac, Jean-Philippe; Monteau, Fabrice; Leroy, Gaëla; Barritaud, Lauriane; Chachignon, Mathilde; Ingrand, Valérie; Roche, Pascal; Le Bizec, Bruno

    2013-07-01

    For a few years, the concern of water treatment companies is not only focused on the removal of target micropollutants but has been extended to the investigation of potential biologically active by-products generated during the treatment processes. Therefore, some methods dedicated to the detection and structural characterization of such by-products have emerged. However, most of these studies are usually carried out under simplified conditions (e.g. high concentration levels of micropollutants, drastic treatment conditions, use of deionized or ultrapure water) and somewhat unrealistic conditions compared to that implemented in water treatment plants. In the present study, a real field water sample was fortified at the part-per-billion level (50 μg L(-1)) with estrone-3-sulfate (E1-3S) before being ozonated (at 1 mg L(-1)) for 10 min. In a first step, targeted measurements evidenced a degradation of the parent compound (>80%) in 10 min. Secondly, a non-targeted chemical profiling approach derived from metabolomic profiling studies allowed to reveal 11 ozonation by-products, among which 4 were found predominant. The estrogenic activity of these water samples spiked with E1-3S before and after treatment was assessed by the ER-CALUX assay and was found to decrease significantly after 10 min of ozonation. Therefore, this innovative methodological strategy demonstrated its suitability and relevancy for revealing unknown compounds generated from water treatment, and permitted to generate new results regarding specifically the impact of ozonation on estrone-3-sulfate. These results confirm that ozonation is effective at removing E1-3S in drinking water and indicate that the by-products generated have significantly lower estrogenic activity.

  10. Sensitivity study of the inverse problem on retrieval of the altitude profile of ozone from emission intensities of the molecular oxygen in the MLT

    Science.gov (United States)

    Martyshenko, Kseniia; Yankovsky, Valentine

    2015-04-01

    Retrieval of the ozone density altitude profile is important problem for energetics of the upper atmosphere. For comparison of methods of retrieval of altitude profiles of ozone concentration from emissions of excited oxygen molecule and atom was used a modern model of electronic-vibrational kinetics of the products of O3 and O2 photolysis YM-2011 [1]. This study uses only a part of the complete model YM-2011 related to population of levels O2(b1Σ+g, v=0-2), O2(a1Δg, v=0-5) and metastable atom O(1D). Thereby, we obtained solutions of the inverse problem of [O3] retrieval from five proxies O2(a1Δg, v = 0), O2(b1Σ+g, v = 0, 1, 2) and O (1D). Theoretically, every proposed emission of excited component could be promising sources of information about [O3], because it depends on [O3] both in production and in quenching. Detailed analysis of the solutions of the inverse problem of [O3] retrieval were conducted by the sensitivity study of these levels for variations of all model parameters at altitudes of z=40-105 km. The maximum values of sensitivity coefficient to [O3] variations have the following components: O2(b1Σ+g, v = 1), O2(a1Δg, v = 0) and O(1D). The sensitivity of all excited component to variations of ozone decreases sharply above 105 km due to a drastic fall of ozone concentration. [O2(b1Σ+g, v=2)] does not depend on ozone completely at the proposed altitudes, and [O2(b1Σ+g, v=0)] has the lowest sensitivity to variations of [O3] among rest components. Based on the results of the sensitivity study authors investigated the ozone altitude profiles retrieval accuracy taking into account uncertainties of all input parameters (solar excitation and photodissociation rates, quantum yields of products and rate constants of aeronomical reactions). Uncertainties of retrieval of altitude profiles of [O3] from [O(1D)] don't exceed 10% in the interval 40-85 km were obtained. Profile of [O2(b1Σ+g, v=1] allows us to retrieval of [O3] with 21% uncertainty at z =40

  11. Using regression models to enhance signals in a dispersive radiative field: Reducing stray light corruption in the limb profiles of the Ozone Mapper Profiler Suite (OMPS)

    Science.gov (United States)

    Bergman, J. W.; Flynn, L. E.; Hornstein, J. S.; Lumpe, J. D.

    2006-12-01

    As the technology of remote sensing using radiometric observations advances and we are confronted with weaker and weaker signals, stray light corruption will become an increasingly important challenge. Stray light is particularly important for instruments that sample a large dynamic range such as the OMPS limb profiler. In that case, even a very small fraction of photons straying from the high-intensity region of spectral/viewing angle space can dominate measurements in the low intensity region. For the OMPS limb profiler, stray light represents a small linear perturbation to the overall observed energy, even though it dominates observations for some wavelengths and viewing angles. By exploiting those characteristics, we have found that both iterative techniques based on a Taylor expansion of the inverse stray light operator and linear regression models can effectively reduce stray light corruption from the OMPS measurements provided there is sufficient sampling of the measured radiant energy. Regression models are extremely efficient in operational application because their cost is incurred during offline training. However, they can perform no better than the data used to train them and only work well for systems whose dynamical operators are largely linear. Regression models can be problematic in an operational application if the instrument undergoes changes (e.g., pixel failure in the detector); with the instrument in orbit, retraining can be difficult. Thus, it is important to both characterize stray light with instrument tests before it is launched and to find stray light removal techniques that are flexible and can be altered to accommodate instrument changes. We examine three variations of an ozone retrieval algorithm that utilizes regression models to characterize photon dispersion and other instrument effects. These three methods are compared in terms of their sensitivity to model error, their sensitivity to errors in the assumed background atmospheric

  12. Sub-annual Ice-Core Record of Major Ion and Heavy Metal Variability and Sources in the North Pacific Free Troposphere, Mt. Logan, Yukon, Canada

    Science.gov (United States)

    Osterberg, E. C.; Kurbatov, A. V.; Mayewski, P. A.; Kreutz, K. J.; Fisher, D.

    2005-12-01

    The Mt. Logan, Yukon, Canada summit plateau (PR Col; 5300 m.a.s.l.) ice core has been continuously sampled at high resolution (2-3 cm/sample) by a novel ice core melting system with discrete sampling, and analyzed for 8 major ions and 35 trace elements. Co-registered, sub-annual timeseries covering the past 500 years reveal seasonal aerosol fluctuations dominated by dust, with sea-salt contributing less than 5% of sulfate and calcium concentrations. Dating of the top 500 years of the record is by annual layer counting. Concentration spikes of sulfate greater than three times the standard deviation (60 ppb) above the mean (75 ppb) correspond in time with historical explosive volcanic eruptions. Sulfate spikes corresponding in time with large (VEI>4) historical Alaskan eruptions, including Katmai (1912) and St. Augustine (1986), are commonly associated with concentration and crustal enrichment factor spikes in lead, cadmium, antimony, copper, zinc, bismuth and thallium an order of magnitude above background (non-volcanic event) values. Sulfate spikes corresponding in time to large eruptions from distant volcanoes, including Agung (1963), do not show a corresponding rise in heavy metal concentrations. Apart from the periodic spikes in concentration, heavy metal timeseries largely mirror those of the major dust species (Al, Fe), but maintain significantly elevated crustal enrichment factors, probably due primarily to quiescent degassing of volcanoes. Such datasets are necessary to understand the cycling of heavy metals in the free troposphere, including the relative source strength of explosive eruptions vs. quiescent volcanic degassing, and the relative strength of natural vs. anthropogenic sources.

  13. Ten-year chemical signatures associated with long-range transport observed in the free troposphere over the central North Atlantic

    Directory of Open Access Journals (Sweden)

    B. Zhang

    2017-03-01

    Full Text Available Ten-year observations of trace gases at Pico Mountain Observatory (PMO, a free troposphere site in the central North Atlantic, were classified by transport patterns using the Lagrangian particle dispersion model, FLEXPART. The classification enabled identifying trace gas mixing ratios associated with background air and long- range transport of continental emissions, which were defined as chemical signatures. Comparison between the chemical signatures revealed the impacts of natural and anthropogenic sources, as well as chemical and physical processes during long transport, on air composition in the remote North Atlantic. Transport of North American anthropogenic emissions (NA-Anthro and summertime wildfire plumes (Fire significantly enhanced CO and O3 at PMO. Summertime CO enhancements caused by NA-Anthro were found to have been decreasing by a rate of 0.67 ± 0.60 ppbv/year in the ten-year period, due possibly to reduction of emissions in North America. Downward mixing from the upper troposphere and stratosphere due to the persistent Azores-Bermuda anticyclone causes enhanced O3 and nitrogen oxides. The 'd' [O3]/'d' [CO] value was used to investigate O3 sources and chemistry in different transport patterns. The transport pattern affected by Fire had the lowest 'd' [O3]/'d' [CO], which was likely due to intense CO production and depressed O3 production in wildfire plumes. Slightly enhanced O3 and 'd' [O3]/'d' [CO] were found in the background air, suggesting that weak downward mixing from the upper troposphere is common at PMO. Enhancements of both butane isomers were found during upslope flow periods, indicating contributions from local sources. The consistent ratio of butane isomers associated with the background air and NA-anthro implies no clear difference in the oxidation rates of the butane isomers during long transport. Based on observed relationships between non-methane hydrocarbons, the averaged photochemical age of the air masses at

  14. In-situ physical and chemical characterization of the Eyjafjallajökull aerosol plume in the free troposphere over Italy

    Science.gov (United States)

    Sandrini, S.; Giulianelli, L.; Decesari, S.; Facchini, M. C.; Fuzzi, S.; Cristofanelli, P.; Marinoni, A.; Bonasoni, P.; Chiari, M.; Calzolai, G.; Canepari, S.; Perrino, C.

    2013-08-01

    Continuous measurements of physical and chemical properties at the Mt. Cimone GAW-WMO Global Station (2165 m a.s.l.) allowed the detection of the volcanic aerosol plume resulting from the Eyjafjallajökull eruption of spring 2010. The event affected the site after a transport over a distance of more than 3000 km. Two main transport episodes were detected during the eruption period, showing a volcanic fingerprint discernible against the free tropospheric background conditions typical of the site, the first from 19 to 21 April and the second from 18 to 20 May 2010. The paper reports the modification of aerosol characteristics observed during the two episodes, both characterized by an abrupt increase in fine and, especially, coarse mode particle number. Analysis of major, minor and trace elements by different analytical techniques (Ionic Chromatography, PIXE-PIGE and ICP-MS) were performed on aerosols collected by ground level discrete sampling. The resulting database allows the characterization of aerosol chemical composition during the volcanic plume transport and in background conditions. During the passage of the volcanic plume, the fine fraction was dominated by sulphates, denoting the secondary origin of this mode, mainly resulting from in-plume oxidation of volcanic SO2. By contrast, the coarse fraction was characterized by increased concentration of numerous elements of crustal origin, such as Fe, Ti, Mn, Ca, Na, and Mg, which enter the composition of silicate minerals. Data analysis of selected elements (Ti, Al, Fe, Mn) allowed the estimation of the volcanic plume's contribution to total PM10, resulting in a local enhancement of up to 9.5 μg m-3, i.e. 40% of total PM10, on 18 May, which was the most intense of the two episodes. These results appear significant, especially in the light of the huge distance of Mt. Cimone from the source, confirming the widespread diffusion of the Eyjafjallajokull ashes over Europe.

  15. In-situ physical and chemical characterization of the Eyjafjallajökull aerosol plume in the free troposphere over Italy

    Directory of Open Access Journals (Sweden)

    S. Sandrini

    2013-08-01

    Full Text Available Continuous measurements of physical and chemical properties at the Mt. Cimone GAW-WMO Global Station (2165 m a.s.l. allowed the detection of the volcanic aerosol plume resulting from the Eyjafjallajökull eruption of spring 2010. The event affected the site after a transport over a distance of more than 3000 km. Two main transport episodes were detected during the eruption period, showing a volcanic fingerprint discernible against the free tropospheric background conditions typical of the site, the first from 19 to 21 April and the second from 18 to 20 May 2010. The paper reports the modification of aerosol characteristics observed during the two episodes, both characterized by an abrupt increase in fine and, especially, coarse mode particle number. Analysis of major, minor and trace elements by different analytical techniques (Ionic Chromatography, PIXE-PIGE and ICP-MS were performed on aerosols collected by ground level discrete sampling. The resulting database allows the characterization of aerosol chemical composition during the volcanic plume transport and in background conditions. During the passage of the volcanic plume, the fine fraction was dominated by sulphates, denoting the secondary origin of this mode, mainly resulting from in-plume oxidation of volcanic SO2. By contrast, the coarse fraction was characterized by increased concentration of numerous elements of crustal origin, such as Fe, Ti, Mn, Ca, Na, and Mg, which enter the composition of silicate minerals. Data analysis of selected elements (Ti, Al, Fe, Mn allowed the estimation of the volcanic plume's contribution to total PM10, resulting in a local enhancement of up to 9.5 μg m-3, i.e. 40% of total PM10, on 18 May, which was the most intense of the two episodes. These results appear significant, especially in the light of the huge distance of Mt. Cimone from the source, confirming the widespread diffusion of the Eyjafjallajokull ashes over Europe.

  16. Combined assimilation of IASI and MLS observations to constrain tropospheric and stratospheric ozone in a global chemical transport model

    Directory of Open Access Journals (Sweden)

    E. Emili

    2013-08-01

    Full Text Available Accurate and temporally resolved fields of free-troposphere ozone are of major importance to quantify the intercontinental transport of pollution and the ozone radiative forcing. In this study we examine the impact of assimilating ozone observations from the Microwave Limb Sounder (MLS and the Infrared Atmospheric Sounding Interferometer (IASI in a global chemical transport model (MOdèle de Chimie Atmosphérique à Grande Échelle, MOCAGE. The assimilation of the two instruments is performed by means of a variational algorithm (4-D-VAR and allows to constrain stratospheric and tropospheric ozone simultaneously. The analysis is first computed for the months of August and November 2008 and validated against ozone-sondes measurements to verify the presence of observations and model biases. It is found that the IASI Tropospheric Ozone Column (TOC, 1000–225 hPa should be bias-corrected prior to assimilation and MLS lowermost level (215 hPa excluded from the analysis. Furthermore, a longer analysis of 6 months (July–August 2008 showed that the combined assimilation of MLS and IASI is able to globally reduce the uncertainty (Root Mean Square Error, RMSE of the modeled ozone columns from 30% to 15% in the Upper-Troposphere/Lower-Stratosphere (UTLS, 70–225 hPa and from 25% to 20% in the free troposphere. The positive effect of assimilating IASI tropospheric observations is very significant at low latitudes (30° S–30° N, whereas it is not demonstrated at higher latitudes. Results are confirmed by a comparison with additional ozone datasets like the Measurements of OZone and wAter vapour by aIrbus in-service airCraft (MOZAIC data, the Ozone Monitoring Instrument (OMI total ozone columns and several high-altitude surface measurements. Finally, the analysis is found to be little sensitive to the assimilation parameters and the model chemical scheme, due to the high frequency of satellite observations compared to the average life-time of free-troposphere

  17. Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations

    Directory of Open Access Journals (Sweden)

    J.-H. Koo

    2012-07-01

    Full Text Available Arctic ozone depletion events (ODEs are due to catalytic ozone loss driven by halogen chemistry. The presence of ODEs is affected not only by in situ chemistry but also by transport including advection of ozone-poor air mass and vertical mixing. To better characterize the ODEs, we analyze the combined set of surface, ozonesonde, and aircraft in situ measurements of ozone and bromine compounds during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS and the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC experiments (April 2008. Tropospheric BrO columns retrieved from satellite measurements and back trajectories calculations are used to investigate the characteristics of observed ODEs. The implications of the analysis results for the validation of the retrieval of tropospheric column BrO are also discussed. Time-lagged correlation analysis between in situ (surface and ozonesonde measurements of ozone and satellite derived tropospheric BrO indicates that the ODEs are due to either local halogen-driven ozone loss or short-range (~1 day transport from nearby regions with ozone depletion. The effect of in situ halogen-driven loss is also evident in the diurnal variation of surface ozone concentrations at Alert, Canada. High-BrO regions revealed by satellite measurements tend to be collocated with first-year sea ice, particularly over the Chukchi Sea. Aircraft observations indicate low-ozone air mass transported from these high-BrO regions. Correlation analyses of ozone with potential temperature and time-lagged tropospheric BrO column show that the vertical extent of local ozone loss is surprisingly deep (1–2 km at Resolute and Churchill, Canada. The unstable boundary layer during ODEs at Churchill could potentially provide a source of free tropospheric BrO through convective transport and explain the significant negative correlation between free tropospheric ozone and

  18. IONS-06 Ozone Profiles in the Rural-Urban Transition at Mexico City in March 2006: Mixture of Pollution and UT/LS Waves

    Science.gov (United States)

    Thompson, A. M.; Long, R. B.; Miller, S. K.; Yorks, J. E.; Madigan, M. J.; Witte, J. C.; Kucsera, T. L.; Lefer, B.; Morris, G. A.

    2006-12-01

    We have used ozone profile data from soundings for better interpretation of atmospheric chemistry and dynamics at the urban-non-urban interface. Notably soundings have been taken during regional field campaigns like INTEX-NA (Intercontinental Transport Experiment - North America, 2004) and the 2006 Milagro/MIRAGE-Mex (Megacity Impacts of Regional and Global Environments)/ INTEX-B. IONS (INTEX Ozonesonde Network Study) is a network for studying the vertical structure and long-range transport of ozone and tropospheric water vapor during the INTEX experiments. In IONS-04, the urban-non-urban transition, was targeted at Beltsville, Maryland, a wooded suburban Washington DC site, and Narragansett, a coastal region downwind of New York City. From 5 to 20 March 2006, during IONS-06, ozone soundings were made over the Milagro T1 site (Tecamac, 19N, 99W), at the urban-rural interface, about 80 km NE of Mexico City. Simultaneous soundings were made over Houston, TX, 30N, 95W, approximately 1000 km to the northeast. Day-to-day variations in tropospheric ozone at T1 are explained by regional meteorology and emissions. Pollution accumulation at T1 was most noticeable during a stagnation period early in March, with winds from Mexico City. Downwind of T1, Houston was affected on 10 March 2006. In addition to pollution impacts, ozone variations throughout the troposphere and lower stratosphere over T1 were associated with equatorial Gravity waves. IONS-06 images for Mexico City/Tecamac, Houston, and those for other March 2006 data are viewable at: http://croc.gsfc.nasa.gov/intexb/ions06.

  19. Photochemical processes and ozone production in Finnish conditions

    Energy Technology Data Exchange (ETDEWEB)

    Laurila, T.; Hakola, H. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Photochemical ozone production is observed in March-September. Highest ozone concentrations and production efficiencies are observed in spring in the northern parts and in summer in the southern parts of the country. VOC concentrations are relatively low compared to continental areas in general. During the growing season a substantial part of the total reactive mass of VOCs is of biogenic origin. Large forest areas absorb ozone substantially, decreasing the ambient ozone concentrations in central and northern parts of Finland where long-range transport of ozone is relatively important compared to local production. The aim of the work conducted at Finnish Meteorological Institute has been to characterise concentrations of photochemically active species in the boundary layer and their photochemical formation and deposition including the effects on vegetation. Also interactions between the boundary layer and free troposphere of ozone have been studied. In the future, fluxes of both biogenic species and air pollutants will be measured and the models will be further developed so that the photochemical and micrometeorological processes could be better understood

  20. Estimates of free-tropospheric NO2 and HCHO mixing ratios derived from high-altitude mountain MAX-DOAS observations in the mid-latitudes and tropics

    Science.gov (United States)

    Schreier, S. F.; Richter, A.; Wittrock, F.; Burrows, J. P.

    2015-11-01

    In this study, mixing ratios of NO2 (XNO2) and HCHO (XHCHO) in the free troposphere are derived from two Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) data sets collected at Zugspitze (2650 m a.s.l., Germany) and Pico Espejo (4765 m a.s.l., Venezuela). The estimation of NO2 and HCHO mixing ratios is based on the modified geometrical approach, which assumes a single-scattering geometry and a scattering point altitude close to the instrument. Firstly, the horizontal optical path length (hOPL) is obtained from O4 differential slant column densities (DSCDs) in the horizontal (0°) and vertical (90°) viewing directions. Secondly, XNO2 and XHCHO are estimated from the NO2 and HCHO DSCDs at the 0 and 90° viewing directions and averaged along the obtained hOPLs. As the MAX-DOAS instrument was performing measurements in the ultraviolet region, wavelength ranges of 346-372 and 338-357 nm are selected for the DOAS analysis to retrieve NO2 and HCHO DSCDs, respectively. In order to compare the measured O4 DSCDs and moreover to perform some sensitivity tests, the radiative transfer model SCIATRAN with adapted altitude settings for mountainous terrain is operated to simulate synthetic spectra, on which the DOAS analysis is also applied. The overall agreement between measured and synthetic O4 DSCDs is better for the higher Pico Espejo station than for Zugspitze. Further sensitivity analysis shows that a change in surface albedo (from 0.05 to 0.7) can influence the O4 DSCDs, with a larger absolute difference observed for the horizontal viewing direction. Consequently, the hOPL can vary by about 5 % throughout the season, for example when winter snow cover fully disappears in summer. Typical values of hOPLs during clear sky conditions are 19 km (14 km) at Zugspitze and 34 km (26.5 km) at Pico Espejo when using the 346-372 nm (338-357 nm) fitting window. The estimated monthly values of XNO2 (XHCHO), averaged over these hOPLs during clear sky conditions, are in

  1. Estimates of free-tropospheric NO2 and HCHO mixing ratios derived from high-altitude mountain MAX-DOAS observations at midlatitudes and in the tropics

    Science.gov (United States)

    Schreier, Stefan F.; Richter, Andreas; Wittrock, Folkard; Burrows, John P.

    2016-03-01

    In this study, mixing ratios of NO2 (XNO2) and HCHO (XHCHO) in the free troposphere are derived from two multi-axis differential optical absorption spectroscopy (MAX-DOAS) data sets collected at Zugspitze (2650 m a.s.l., Germany) and Pico Espejo (4765 m a.s.l., Venezuela). The estimation of NO2 and HCHO mixing ratios is based on the modified geometrical approach, which assumes a single-scattering geometry and a scattering point altitude close to the instrument altitude. Firstly, the horizontal optical path length (hOPL) is obtained from O4 differential slant column densities (DSCDs) in the horizontal (0°) and vertical (90°) viewing directions. Secondly, XNO2 and XHCHO are estimated from the NO2 and HCHO DSCDs at the 0° and 90° viewing directions and averaged along the obtained hOPLs. As the MAX-DOAS instrument was performing measurements in the ultraviolet region, wavelength ranges of 346-372 and 338-357 nm are selected for the DOAS analysis to retrieve NO2 and HCHO DSCDs, respectively. In order to compare the measured O4 DSCDs and moreover to perform some sensitivity tests, the radiative transfer model SCIATRAN with adapted altitude settings for mountainous terrain is operated to simulate synthetic spectra, on which the DOAS analysis is also applied. The overall agreement between measured and synthetic O4 DSCDs is better for the higher Pico Espejo station than for Zugspitze. Further sensitivity analysis shows that a change in surface albedo (from 0.05 to 0.7) can influence the O4 DSCDs, with a larger absolute difference observed for the horizontal viewing direction. Consequently, the hOPL can vary by about 5 % throughout the season, for example when winter snow cover fully disappears in summer. Typical values of hOPLs during clear-sky conditions are 19 km (14 km) at Zugspitze and 34 km (26.5 km) at Pico Espejo when using the 346-372 (338-357 nm) fitting window. The estimated monthly values of XNO2 (XHCHO), averaged over these hOPLs during clear-sky conditions

  2. Potential of the multispectral synergism for observing ozone pollution combining measurements of IASI-NG and UVNS onboard EPS-SG

    Science.gov (United States)

    Costantino, Lorenzo; Cuesta, Juan; Emili, Emanuele; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Chailleux, Yohann; Beekmann, Matthias; Flaud, Jean-Marie

    2016-04-01

    Current and future satellite observations offer a great potential for monitoring air quality on daily and global basis. However, measurements from currently in orbit sensors offer a limited capacity to probe surface concentrations of gaseous pollutants such as tropospheric ozone. Using single-band approaches based on IASI spaceborne thermal infrared measurements, only ozone down to the lower troposphere (3-4 km of altitude at lowest) may be observed (Eremenko et al., 2008). A recent multispectral method combining IASI and GOME-2 (both onboard MetOp satellites) spectra, respectively from the IR and UV, has shown enhanced sensitivity for probing ozone at the lowermost troposphere, but with maximum sensitivity around 2 km at lowest (Cuesta et al., 2013). Future spatial missions will be launched in the upcoming years, such as EPS-SG, carrying new generation sensors like IASI-NG and UVNS that will enhance the capacity to observe ozone pollution, and particularly when combining them through a multispectral synergism. This work presents an analysis of the potential of the multispectral synergism of IASI-NG and UVNS future spaceborne measurements for observing ozone pollution, performed in the framework of SURVEYOZON project (funded by the French Space Agency, CNES). For this, we develop a simulator of synthetic multispectral retrievals or pseudo-observations (referred as OSSE, Observing System Simulation Experiment) derived from IASI-NG+UVNS that will be compared to those from IASI+GOME2. In the first step of the OSSE, we create a pseudo-reality with simulations from the chemical-transport model MOCAGE (provided by CERFACS laboratory), where real O3 data from IASI and surface network stations have been assimilated for a realistic representation of ozone variability at the surface and the free troposphere. We focus on the high pollution event occurred in Europe on 10 July 2010. We use the coupled algorithms KOPRA+VLIDORT to simulate the spectra emitted, scattered and

  3. SMM mesospheric ozone measurements

    Science.gov (United States)

    Aikin, A. C.

    1990-01-01

    The main objective was to understand the secular and seasonal behavior of ozone in the lower mesosphere, 50 to 70 km. This altitude region is important in understanding the factors which determine ozone behavior. A secondary objective is the study of stratospheric ozone in the polar regions. Use is made of results from the SBUV satellite borne instrument. In the Arctic the interaction between chlorine compounds and low molecular weight hydrocarbons is studied. More than 30,000 profiles were obtained using the UVSP instrument on the SMM spacecraft. Several orbits of ozone data per day were obtained allowing study of the current rise in solar activity from the minimum until the present. Analysis of Nimbus 7 SBUV data in Antarctic spring indicates that ozone is depleted within the polar vortex relative to ozone outside the vortex. This depletion confirms the picture of ozone loss at altitudes where polar stratospheric clouds exist. In addition, there is ozone loss above the cloud level indicating that there is another mechanism in addition to ozone loss initiated by heterogeneous chlorine reactions on cloud particles.

  4. Validation of six years of TES tropospheric ozone retrievals with ozonesonde measurements: implications for spatial patterns and temporal stability in the bias

    Directory of Open Access Journals (Sweden)

    W. W. Verstraeten

    2013-05-01

    Full Text Available In this analysis, Tropospheric Emission Spectrometer (TES V004 nadir ozone (O3 profiles are validated with more than 4400 coinciding ozonesonde measurements taken across the world from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC during the period 2005–2010. The TES observation operator was applied to the sonde data to ensure a consistent comparison between TES and ozonesonde data, i.e. without the influence of the a priori O3 profile needed to regulate the retrieval. Generally, TES V004 O3 retrievals are biased high by 2–7 ppbv (7–15% in the troposphere, consistent with validation results from earlier studies. Because of two degrees of freedom for signal in the troposphere, we can distinguish between upper and lower troposphere mean biases, respectively ranging from −0.4 to +13.3 ppbv for the upper troposphere and +3.9 to +6.0 ppbv for the lower troposphere. Focusing on the 464 hPa retrieval level, broadly representative of the free tropospheric O3, we find differences in the TES biases for the tropics (+3 ppbv, +7%, sub-tropics (+5 ppbv, +11%, and northern (+7 ppbv, +13% and southern mid-latitudes (+4 ppbv, +10%. The relatively long-term record (6 yr of TES–ozonesonde comparisons allowed us to quantify temporal variations in TES biases at 464 hPa. We find that there are no discernable biases in each of these latitudinal bands; temporal variations in the bias are typically within the uncertainty of the difference between TES and ozonesondes. Establishing these bias patterns is important in order to make meaningful use of TES O3 data in applications such as model evaluation, trend analysis, or data assimilation.

  5. A statistical inference approach for the retrieval of the atmospheric ozone profile from simulated satellite measurements of solar backscattered ultraviolet radiation

    Science.gov (United States)

    Bonavito, N. L.; Gordon, C. L.; Inguva, R.; Serafino, G. N.; Barnes, R. A.

    1994-01-01

    NASA's Mission to Planet Earth (MTPE) will address important interdisciplinary and environmental issues such as global warming, ozone depletion, deforestation, acid rain, and the like with its long term satellite observations of the Earth and with its comprehensive Data and Information System. Extensive sets of satellite observations supporting MTPE will be provided by the Earth Observing System (EOS), while more specific process related observations will be provided by smaller Earth Probes. MTPE will use data from ground and airborne scientific investigations to supplement and validate the global observations obtained from satellite imagery, while the EOS satellites will support interdisciplinary research and model development. This is important for understanding the processes that control the global environment and for improving the prediction of events. In this paper we illustrate the potential for powerful artificial intelligence (AI) techniques when used in the analysis of the formidable problems that exist in the NASA Earth Science programs and of those to be encountered in the future MTPE and EOS programs. These techniques, based on the logical and probabilistic reasoning aspects of plausible inference, strongly emphasize the synergetic relation between data and information. As such, they are ideally suited for the analysis of the massive data streams to be provided by both MTPE and EOS. To demonstrate this, we address both the satellite imagery and model enhancement issues for the problem of ozone profile retrieval through a method based on plausible scientific inferencing. Since in the retrieval problem, the atmospheric ozone profile that is consistent with a given set of measured radiances may not be unique, an optimum statistical method is used to estimate a 'best' profile solution from the radiances and from additional a priori information.

  6. Suppression substractive hybridisation and NGS reveal differential transcriptome expression profiles in Wayfaring Tree (Viburnum lantana L. treated with ozone

    Directory of Open Access Journals (Sweden)

    Elena eGottardini

    2016-06-01

    Full Text Available Tropospheric ozone (O3 is a global air pollutant that causes high economical damages by decresing plant productivity. It entering leaves through the stomata, generating reactive oxygen species, which following decreases photosynthesis, plant growth, and biomass accumulation. In order to identify genes that are important for conferring O3 tolerance or sensitivity to plants, a suppression subtractive hybridization analysis was performed on the very sensitive woody shrub, Viburnum lantana, exposed to chronic O3 treatment (60 ppb, 5 h d-1 for 45 consecutive days. Transcript profiling and relative expression assessment were carried out in asymptomatic leaves, after 15 days of O3 exposure. At the end of the experiment symptoms were observed on all treated leaves and plants, with an injured leaf area per plant accounting for 4.2% of the total surface. Using 454-pyrosequencing, the transcriptome analysis of O3-responsive genes in leaves was performed, compiling a total of 38,800 and 12,495 high quality reads obtained in control and O3-treated libraries, respectively (average length of 319±156.7 and 255±107.4 bp. The Ensembl transcriptome yielded a total of 1241 unigenes with a total sequence length of 389,126 bp and an average length size of 389 bp (guanine-cytosine content = 49.9%. mRNA abundance was measured by reads per kilobase per million and 41 and 37 ensembl unigenes showed up- and down-regulation respectively. Photosynthetic performance of unigenes functionally associated to photosynthesis and carbon utilization was repressed, demonstrating the deleterious effect of O3 exposure. Unigenes functionally associated to heat-shock proteins and glutathione were concurrently induced, suggesting the role of thylakoid-localized proteins and antioxidant-detoxification pathways as an effective strategy for responding to O3. Gene Ontology analysis documented a differential expression of co-regulated transcripts for several functional categories, including

  7. Tropospheric profiles of nitrogen oxides, ozone, and other related trace species measured over the Atlantic near the west coast of Europe

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, F.; Bruening, D.; Grobler, E.S.; Koppmann, R.; Kraus, A.B.; Schrimpf, W.; Weber, M.; Ehhalt, D.H. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Atmosphaerische Chemie

    1997-12-31

    In June and December 1994, the concentrations of the nitrogen oxides NO, NO{sub 2} and NO{sub y} were measured together with ozone, photolysis frequency of NO{sub 2}, methane, CO, CO{sub 2}, PAN, and light hydrocarbons near the west coast of Europe above the Atlantic Ocean. Two vertical profiles for each season were obtained in the altitude range 1.5 to 12 km at four locations: near Prestwick (56 deg N, 9 deg W), Brest (49 deg N, 6 deg W), Faro (37 deg N, 12 deg W) and Tenerife (30 deg N, 18 deg W). The measured vertical profiles of NO are compared to the results of a low resolution 3-D chemical tracer model. (author)

  8. Evaluating the potential of IASI ozone observations to constrain simulated surface ozone concentrations

    Directory of Open Access Journals (Sweden)

    G. Foret

    2009-06-01

    Full Text Available A tracer study has been performed for two summers in 2003 and 2004 with a regional chemistry- transport model in order to evaluate the potential constraint that tropospheric ozone observations from nadir viewing infrared sounders like IASI or TES exert on modeled near surface ozone. As these instruments show high sensitivity in the free troposphere, but low sensitivity at ground, our study addresses which amount of this information is transferred to ground through vertical transport processes. Within the European model domain, and within a time span of 4 days, only ozone like tracers initialised in vertical layers above 500 hPa are transported to the surface. For a tracer initialised between 800 and 700 hPa, seven percent reaches the surface within one to three days, when averaging over the whole European model domain, but more than double of it over the Mediterranean sea. These results are confirmed by a second tracer study taking into account averaging kernels related to IASI retrievals.

  9. Towards the retrieval of tropospheric ozone with the ozone monitoring instrument (OMI)

    NARCIS (Netherlands)

    Mielonen, T.; De Haan, J...F.; Van Peet, J.C.A.; Eremenko, M.; Veefkind, J.P.

    2015-01-01

    We have assessed the sensitivity of the operational Ozone Monitoring Instrument (OMI) ozone profile retrieval algorithm to a number of a priori and radiative transfer assumptions. We studied the effect of stray light correction, surface albedo assumptions and a priori ozone profiles on the retrieved

  10. 华北平原夜间对流天气对地面 O3混合比抬升效应%Increased Mixing Ratio of Surface Ozone by Nighttime Convection Process over the North China Plain

    Institute of Scientific and Technical Information of China (English)

    贾诗卉; 徐晓斌; 林伟立; 王瑛; 何心河; 张华龙

    2015-01-01

    nighttime convection process is caused by air descending from the lower to mid free-troposphere.The phenomena with ozone enhancement is also observed at an urban station in Beji-ing.In most cases when Gucheng and Beijing urban are impacted by the same convective systems,and o-zone andθse at both sites show similar trends.All above implies that ozone mixing ratio maintains around 60 ×10 -9 -80×10 -9 in the mid and lower free-troposphere over the North China Plain in summer and early autumn,and ozone increase by convective downdrafts is able to impact a large area of the North China Plain.Compared with other places,convection process causes larger ozone increase,which may exert stronger impact on the atmospheric environment.%2013年6—9月在河北省固城站观测到多次夜间对流性天气伴随地面 O3混合比快速抬升的过程,并引起次日清晨到中午 O3混合比升高。大多数对流过程中,O3混合比在半小时内升高至60×10-9~80×10-9,同时 NOx 等反应性气体混合比下降,θse 值降低,说明下沉气流将高空气团带到地面,造成了 O3混合比的升高。通过再分析资料得到下沉气团基本来源于对流层中下层,这一结论与当地进行的一次飞机观测结果吻合。多数对流过程中固城站和北京城区地面 O3混合比和θse 值有相同的变化趋势和程度。根据观测结果,推测华北地区在夏季和初秋时,对流层中下层存在 O3高值区,混合比约为60×10-9~80×10-9。对流性天气对地面 O3抬升的影响区域与对流系统的影响范围有关,可达到中尺度范围。华北地区光化学污染严重,对流性天气引起的地面 O3混合比抬升程度比较强,对环境的影响值得关注。

  11. Unequivocal detection of ozone recovery in the Antarctic Ozone Hole through significant increases in atmospheric layers with minimum ozone

    Science.gov (United States)

    de Laat, Jos; van Weele, Michiel; van der A, Ronald

    2015-04-01

    An important new landmark in present day ozone research is presented through MLS satellite observations of significant ozone increases during the ozone hole season that are attributed unequivocally to declining ozone depleting substances. For many decades the Antarctic ozone hole has been the prime example of both the detrimental effects of human activities on our environment as well as how to construct effective and successful environmental policies. Nowadays atmospheric concentrations of ozone depleting substances are on the decline and first signs of recovery of stratospheric ozone and ozone in the Antarctic ozone hole have been observed. The claimed detection of significant recovery, however, is still subject of debate. In this talk we will discuss first current uncertainties in the assessment of ozone recovery in the Antarctic ozone hole by using multi-variate regression methods, and, secondly present an alternative approach to identify ozone hole recovery unequivocally. Even though multi-variate regression methods help to reduce uncertainties in estimates of ozone recovery, great care has to be taken in their application due to the existence of uncertainties and degrees of freedom in the choice of independent variables. We show that taking all uncertainties into account in the regressions the formal recovery of ozone in the Antarctic ozone hole cannot be established yet, though is likely before the end of the decade (before 2020). Rather than focusing on time and area averages of total ozone columns or ozone profiles, we argue that the time evolution of the probability distribution of vertically resolved ozone in the Antarctic ozone hole contains a better fingerprint for the detection of ozone recovery in the Antarctic ozone hole. The advantages of this method over more tradition methods of trend analyses based on spatio-temporal average ozone are discussed. The 10-year record of MLS satellite measurements of ozone in the Antarctic ozone hole shows a

  12. New-generation NASA Aura Ozone Monitoring Instrument (OMI) volcanic SO2 dataset: algorithm description, initial results, and continuation with the Suomi-NPP Ozone Mapping and Profiler Suite (OMPS)

    Science.gov (United States)

    Li, Can; Krotkov, Nickolay A.; Carn, Simon; Zhang, Yan; Spurr, Robert J. D.; Joiner, Joanna

    2017-02-01

    Since the fall of 2004, the Ozone Monitoring Instrument (OMI) has been providing global monitoring of volcanic SO2 emissions, helping to understand their climate impacts and to mitigate aviation hazards. Here we introduce a new-generation OMI volcanic SO2 dataset based on a principal component analysis (PCA) retrieval technique. To reduce retrieval noise and artifacts as seen in the current operational linear fit (LF) algorithm, the new algorithm, OMSO2VOLCANO, uses characteristic features extracted directly from OMI radiances in the spectral fitting, thereby helping to minimize interferences from various geophysical processes (e.g., O3 absorption) and measurement details (e.g., wavelength shift). To solve the problem of low bias for large SO2 total columns in the LF product, the OMSO2VOLCANO algorithm employs a table lookup approach to estimate SO2 Jacobians (i.e., the instrument sensitivity to a perturbation in the SO2 column amount) and iteratively adjusts the spectral fitting window to exclude shorter wavelengths where the SO2 absorption signals are saturated. To first order, the effects of clouds and aerosols are accounted for using a simple Lambertian equivalent reflectivity approach. As with the LF algorithm, OMSO2VOLCANO provides total column retrievals based on a set of predefined SO2 profiles from the lower troposphere to the lower stratosphere, including a new profile peaked at 13 km for plumes in the upper troposphere. Examples given in this study indicate that the new dataset shows significant improvement over the LF product, with at least 50 % reduction in retrieval noise over the remote Pacific. For large eruptions such as Kasatochi in 2008 (˜ 1700 kt total SO2) and Sierra Negra in 2005 (> 1100 DU maximum SO2), OMSO2VOLCANO generally agrees well with other algorithms that also utilize the full spectral content of satellite measurements, while the LF algorithm tends to underestimate SO2. We also demonstrate that, despite the coarser spatial and

  13. New-Generation NASA Aura Ozone Monitoring Instrument (OMI) Volcanic SO2 Dataset: Algorithm Description, Initial Results, and Continuation with the Suomi-NPP Ozone Mapping and Profiler Suite (OMPS)

    Science.gov (United States)

    Li, Can; Krotkov, Nickolay A.; Carn, Simon; Zhang, Yan; Spurr, Robert J. D.; Joiner, Joanna

    2017-01-01

    Since the fall of 2004, the Ozone Monitoring Instrument (OMI) has been providing global monitoring of volcanic SO2 emissions, helping to understand their climate impacts and to mitigate aviation hazards. Here we introduce a new-generation OMI volcanic SO2 dataset based on a principal component analysis (PCA) retrieval technique. To reduce retrieval noise and artifacts as seen in the current operational linear fit (LF) algorithm, the new algorithm, OMSO2VOLCANO, uses characteristic features extracted directly from OMI radiances in the spectral fitting, thereby helping to minimize interferences from various geophysical processes (e.g., O3 absorption) and measurement details (e.g., wavelength shift). To solve the problem of low bias for large SO2 total columns in the LF product, the OMSO2VOLCANO algorithm employs a table lookup approach to estimate SO2 Jacobians (i.e., the instrument sensitivity to a perturbation in the SO2 column amount) and iteratively adjusts the spectral fitting window to exclude shorter wavelengths where the SO2 absorption signals are saturated. To first order, the effects of clouds and aerosols are accounted for using a simple Lambertian equivalent reflectivity approach. As with the LF algorithm, OMSO2VOLCANO provides total column retrievals based on a set of predefined SO2 profiles from the lower troposphere to the lower stratosphere, including a new profile peaked at 13 km for plumes in the upper troposphere. Examples given in this study indicate that the new dataset shows significant improvement over the LF product, with at least 50% reduction in retrieval noise over the remote Pacific. For large eruptions such as Kasatochi in 2008 (approximately 1700 kt total SO2/ and Sierra Negra in 2005 (greater than 1100DU maximum SO2), OMSO2VOLCANO generally agrees well with other algorithms that also utilize the full spectral content of satellite measurements, while the LF algorithm tends to underestimate SO2. We also demonstrate that, despite the

  14. Modelling the impacts of climate change on tropospheric ozone over three centuries

    Directory of Open Access Journals (Sweden)

    G. B. Hedegaard

    2011-02-01

    Full Text Available The ozone chemistry over three centuries has been simulated based on climate prediction from a global climate model and constant anthropogenic emissions in order to separate out the effects on air pollution from climate change. Four decades in different centuries has been simulated using the chemistry version of the atmospheric long-range transport model; the Danish Eulerian Hemispheric Model (DEHM forced with meteorology predicted by the ECHAM5/MPI-OM coupled Atmosphere-Ocean General Circulation Model. The largest changes in both meteorology, ozone and its precursors is found in the 21st century, however, also significant changes are found in the 22nd century. At surface level the ozone concentration is predicted to increase due to climate change in the areas where substantial amounts of ozone precursors are emitted. Elsewhere a significant decrease is predicted at the surface. In the free troposphere a general increase is found in the entire Northern Hemisphere except in the tropics, where the ozone concentration is decreasing. In the Arctic the ozone concentration will increase in the entire air column, which most likely is due to changes in transport. The change in temperature, humidity and the naturally emitted Volatile Organic Compounds (VOCs are governing with respect to changes in ozone both in the past, present and future century.

  15. Trends and annual cycles in soundings of Arctic tropospheric ozone

    Science.gov (United States)

    Christiansen, Bo; Jepsen, Nis; Kivi, Rigel; Hansen, Georg; Larsen, Niels; Smith Korsholm, Ulrik

    2017-08-01

    Ozone soundings from nine Nordic stations have been homogenized and interpolated to standard pressure levels. The different stations have very different data coverage; the longest period with data is from the end of the 1980s to 2014. At each pressure level the homogenized ozone time series have been analysed with a model that includes both low-frequency variability in the form of a polynomial, an annual cycle with harmonics, the possibility for low-frequency variability in the annual amplitude and phasing, and either white noise or noise given by a first-order autoregressive process. The fitting of the parameters is performed with a Bayesian approach not only giving the mean values but also confidence intervals. The results show that all stations agree on a well-defined annual cycle in the free troposphere with a relatively confined maximum in the early summer. Regarding the low-frequency variability, it is found that Scoresbysund, Ny Ålesund, Sodankylä, Eureka, and Ørland show similar, significant signals with a maximum near 2005 followed by a decrease. This change is characteristic for all pressure levels in the free troposphere. A significant change in the annual cycle was found for Ny Ålesund, Scoresbysund, and Sodankylä. The changes at these stations are in agreement with the interpretation that the early summer maximum is appearing earlier in the year. The results are shown to be robust to the different settings of the model parameters such as the order of the polynomial, number of harmonics in the annual cycle, and the type of noise.

  16. Trends and annual cycles in soundings of Arctic tropospheric ozone

    Directory of Open Access Journals (Sweden)

    B. Christiansen

    2017-08-01

    Full Text Available Ozone soundings from nine Nordic stations have been homogenized and interpolated to standard pressure levels. The different stations have very different data coverage; the longest period with data is from the end of the 1980s to 2014. At each pressure level the homogenized ozone time series have been analysed with a model that includes both low-frequency variability in the form of a polynomial, an annual cycle with harmonics, the possibility for low-frequency variability in the annual amplitude and phasing, and either white noise or noise given by a first-order autoregressive process. The fitting of the parameters is performed with a Bayesian approach not only giving the mean values but also confidence intervals. The results show that all stations agree on a well-defined annual cycle in the free troposphere with a relatively confined maximum in the early summer. Regarding the low-frequency variability, it is found that Scoresbysund, Ny Ålesund, Sodankylä, Eureka, and Ørland show similar, significant signals with a maximum near 2005 followed by a decrease. This change is characteristic for all pressure levels in the free troposphere. A significant change in the annual cycle was found for Ny Ålesund, Scoresbysund, and Sodankylä. The changes at these stations are in agreement with the interpretation that the early summer maximum is appearing earlier in the year. The results are shown to be robust to the different settings of the model parameters such as the order of the polynomial, number of harmonics in the annual cycle, and the type of noise.

  17. Infrared heterodyne spectrometer measurements of vertical profile of tropospheric ammonia and ozone. [using dual carbon dioxide laser

    Science.gov (United States)

    Peyton, B. J.; Lange, R. A.; Savage, M. G.; Seals, R. K.; Allario, F.

    1977-01-01

    Remote sensing of the concentration and vertical distribution of atmospheric gases has been carried out using a dual CO2 laser multichannel infrared heterodyne spectrometer (IHS). The high specificity and nearly quantum-noise-limited sensitivity of the IHS provide the capability of scanning individual signature lines of selected atmospheric constituents in the 9 to 11 micron region. A comprehensive investigation of the spectral overlap between CO2 laser local oscillator transitions and selected atmospheric constituents was performed; measurements of the atmospheric absorption of solar radiation from the ground were carried out at selected laser transitions for ammonia and ozone.

  18. Transport effects on the vertical distribution of tropospheric ozone over western India

    Science.gov (United States)

    Lal, S.; Venkataramani, S.; Chandra, N.; Cooper, O. R.; Brioude, J.; Naja, M.

    2014-08-01

    In situ tropospheric ozone measurements by balloon-borne electrochemical concentration cell (ECC) sensors above Ahmedabad in western India from May 2003 to July 2007 are presented, along with an analysis of the transport processes responsible for the observed vertical ozone distribution. This analysis is supported by 12 day back trajectory calculations using the FLEXPART Lagrangian particle dispersion model. Lowest ozone (~20 ppbv) is observed near the surface during September at the end of the Asian summer monsoon season. Average midtropospheric (5-10 km above sea level) ozone is greatest (70-75 ppbv) during April-June and lowest (40-50 ppbv) during winter. Ozone variability is greatest in the upper troposphere with higher ozone during March-May. The FLEXPART retroplume results show that the free tropospheric vertical ozone distribution above this location is affected by long-range transport from the direction of North Africa and North America. Ozone levels are also affected by transport from the stratosphere particularly during March-April. The lower tropospheric (<3 km) ozone distribution during the Asian summer monsoon is affected by transport from the Indian Ocean via the east coast of Africa and the Arabian Sea. Influence from deep convection in the upper troposphere confined over central Asia has been simulated by FLEXPART. Lower ozone levels are observed during August-November than in any other season at 10-14 km above sea level. These in situ observations are in contrast to other studies based on satellite data which show that the lowest ozone values at these altitudes occur during the Asian summer monsoon.

  19. Multiple axis DOAS measurements for the retrieval of nitrogen dioxide and ozone vertical profiles in the presidential estate of Castel Porziano, Rome

    Science.gov (United States)

    Palazzi, Elisa; Petritoli, Andrea; Ravegnani, Fabrizio; Kostadinov, Ivan; Bortoli, Daniele; Masieri, Samuele; Premuda, Margherita; Giovanelli, Giorgio

    2007-10-01

    In this paper we present a methodology for the retrieval of the vertical profile of atmospheric gas pollutants in the boundary layer from ground based remote sensing measurements. Nitrogen dioxide (NO II) and ozone (O 3) slant column amounts have been obtained with the Differential Optical Absorption Spectroscopy (DOAS) technique used in the multiple axis configuration (the so called MAX-DOAS). The measurements have been carried out in the Presidential Estate at Castel Porziano (Rome) in the period from September to November 2006 in the frame of a programme started in 1994 for studying and monitoring the Estate's environment. The retrieval of information on the vertical profile of trace gases from their slant column amounts requires: (1) the simulation of the radiative transfer in the atmosphere for Air Mass Factor (AMF) calculation; (2) the application of inversion schemes. In this paper the vertical profiles of NO II and O 3 obtained from multiple axis DOAS measurements and their daily evolution are presented and discussed. The day under study is the 29th of October, 2006.

  20. First Ground-Based Infrared Solar Absorption Measurements of Free Tropospheric Methanol (CH3OH): Multidecade Infrared Time Series from Kitt Peak (31.9 deg N 111.6 deg W): Trend, Seasonal Cycle, and Comparison with Previous Measurements

    Science.gov (United States)

    Rinsland, Curtis P.; Mahieu, Emmanuel; Chiou, Linda; Herbin, Herve

    2009-01-01

    Atmospheric CH3OH (methanol) free tropospheric (2.09-14-km altitude) time series spanning 22 years has been analyzed on the basis of high-spectral resolution infrared solar absorption spectra of the strong vs band recorded from the U.S. National Solar Observatory on Kitt Peak (latitude 31.9degN, 111.6degW, 2.09-km altitude) with a 1-m Fourier transform spectrometer (FTS). The measurements span October 1981 to December 2003 and are the first long time series of CH3OH measurements obtained from the ground. The results were analyzed with SFIT2 version 3.93 and show a factor of three variations with season, a maximum at the beginning of July, a winter minimum, and no statistically significant long-term trend over the measurement time span.

  1. Tropospheric ozone variability during the East Asian summer monsoon as observed by satellite (IASI), aircraft (MOZAIC) and ground stations

    Science.gov (United States)

    Safieddine, Sarah; Boynard, Anne; Hao, Nan; Huang, Fuxiang; Wang, Lili; Ji, Dongsheng; Barret, Brice; Ghude, Sachin D.; Coheur, Pierre-François; Hurtmans, Daniel; Clerbaux, Cathy

    2016-08-01

    Satellite measurements from the thermal Infrared Atmospheric Sounding Interferometer (IASI), aircraft data from the MOZAIC/IAGOS project, as well as observations from ground-based stations, are used to assess the tropospheric ozone (O3) variability during the East Asian Summer Monsoon (EASM). Six years 2008-2013 of IASI data analysis reveals the ability of the instrument to detect the onset and the progression of the monsoon seen by a decrease in the tropospheric 0-6 km O3 column due to the EASM, and to reproduce this decrease from one year to the other. The year-to-year variability is found to be mainly dependent on meteorology. Focusing on the period of May-August 2011, taken as an example year, IASI data show clear inverse relationship between tropospheric 0-6 km O3 on one hand and meteorological parameters such as cloud cover, relative humidity and wind speed, on the other hand. Aircraft data from the MOZAIC/IAGOS project for the EASM of 2008-2013 are used to validate the IASI data and to assess the effect of the monsoon on the vertical distribution of the tropospheric O3 at different locations. Results show good agreement with a correlation coefficient of 0.73 (12 %) between the 0-6 km O3 column derived from IASI and aircraft data. IASI captures very well the inter-annual variation of tropospheric O3 observed by the aircraft data over the studied domain. Analysis of vertical profiles of the aircraft data shows a decrease in the tropospheric O3 that is more important in the free troposphere than in the boundary layer and at 10-20° N than elsewhere. Ground station data at different locations in India and China show a spatiotemporal dependence on meteorology during the monsoon, with a decrease up to 22 ppbv in Hyderabad, and up to 5 ppbv in the North China Plain.

  2. Airborne Vertical Profiling of Mercury Speciation near Tullahoma, TN, USA

    Directory of Open Access Journals (Sweden)

    Steve Brooks

    2014-08-01

    of a year. Even though there are current concerns that the KCl denuders used in this study may under-collect GOM, especially in the presence of elevated ozone, the collected data in this region shows the strong seasonality of oxidized mercury concentrations throughout the low to middle free troposphere.

  3. Information content of ozone retrieval algorithms

    Science.gov (United States)

    Rodgers, C.; Bhartia, P. K.; Chu, W. P.; Curran, R.; Deluisi, J.; Gille, J. C.; Hudson, R.; Mateer, C.; Rusch, D.; Thomas, R. J.

    1989-01-01

    The algorithms are characterized that were used for production processing by the major suppliers of ozone data to show quantitatively: how the retrieved profile is related to the actual profile (This characterizes the altitude range and vertical resolution of the data); the nature of systematic errors in the retrieved profiles, including their vertical structure and relation to uncertain instrumental parameters; how trends in the real ozone are reflected in trends in the retrieved ozone profile; and how trends in other quantities (both instrumental and atmospheric) might appear as trends in the ozone profile. No serious deficiencies were found in the algorithms used in generating the major available ozone data sets. As the measurements are all indirect in someway, and the retrieved profiles have different characteristics, data from different instruments are not directly comparable.

  4. Stratospheric ozone and nitrogen dioxide total column and vertical profiles in southern Portugal during 2004-2007

    Science.gov (United States)

    Bortoli, D.; Silva, A. M.; Roselli, D.; Giovanelli, G.

    2007-10-01

    The SPATRAM (Spectrometer for Atmospheric TRAcers Monitoring) instrument has been developed by the collaboration between CGE-UE, ISAC-CNR and ENEA. SPATRAM is a multi-purpose UV-Vis-NIR spectrometer (250-950 nm). It is installed at the Observatory of the CGE since April 2004 and actually it is utilized to carry-out measurements of the zenith scattered radiation, the so-called "Passive mode", in order to retrieve-by application of DOAS (Differential Optical Absorption Spectroscopy) methodology-the vertical content of some atmospheric tracers such as Ozone (O3) and Nitrogen Dioxide (NO2). For the continuous NO2 monitoring the 425-455 nm spectral region is investigated. For the Ozone retrieval the spectral interval 320-340 nm is chosen. In this study, after a brief description of the instrument, a short explanation of the DOAS methodology and of the inversion algorithms used for the determination of the vertical distribution of the some atmospheric compounds are provided. The obtained results in terms of diurnal and seasonal variation of O3 and NO2 total column are presented. The measurements are in good agreement with the photochemical theory of NO2 and O3, showing the maximum values during the summer season and the minimum during the winter. In addition the application, to the output of the DOAS program, of sophisticated inversion schemes, using the Air Mass Factor (AMF) matrix as the kernel of the inversion algorithm, allowed for the determination of vertical distribution of some atmospheric tracers. The results obtained for NO2 and O3 are presented and discussed.

  5. Effect of regional precursor emission controls on long-range ozone transport – Part 1: Short-term changes in ozone air quality

    Directory of Open Access Journals (Sweden)

    J. J. West

    2009-08-01

    Full Text Available Observations and models demonstrate that ozone and its precursors can be transported between continents and across oceans. We model the influences of 10% reductions in anthropogenic nitrogen oxide (NOx emissions from each of nine world regions on surface ozone air quality in that region and all other regions. In doing so, we quantify the relative importance of long-range transport between all source-receptor pairs, for direct short-term ozone changes. We find that for population-weighted concentrations during the three-month "ozone-season", the strongest inter-regional influences are from Europe to the Former Soviet Union, East Asia to Southeast Asia, and Europe to Africa. The largest influences per unit of NOx reduced, however, are seen for source regions in the tropics and Southern Hemisphere, which we attribute mainly to greater sensitivity to changes in NOx in the lower troposphere, and secondarily to increased vertical convection to the free troposphere in tropical regions, allowing pollutants to be transported further. Results show, for example, that NOx reductions in North America are ~20% as effective per unit NOx in reducing ozone in Europe during summer, as NOx reductions from Europe itself. Reducing anthropogenic emissions of non-methane volatile organic compounds (NMVOCs and carbon monoxide (CO by 10% in selected regions, can have as large an impact on long-range ozone transport as NOx reductions, depending on the source region. We find that for many source-receptor pairs, the season of greatest long-range influence does not coincide with the season when ozone is highest in the receptor region. Reducing NOx emissions in most source regions causes a larger decrease in export of ozone from the source region than in ozone production outside of the source region.

  6. Effect of regional precursor emission controls on long-range ozone transport – Part 1: short-term changes in ozone air quality

    Directory of Open Access Journals (Sweden)

    J. J. West

    2009-03-01

    Full Text Available Observations and models demonstrate that ozone and its precursors can be transported between continents and across oceans. We model the influences of 10% reductions in anthropogenic nitrogen oxide (NOx emissions from each of nine world regions on surface ozone air quality in that region and all other regions. In doing so, we quantify the relative importance of long-range transport between all source-receptor pairs, for direct short-term ozone changes. We find that for population-weighted concentrations during the three-month "ozone-season", the strongest inter-regional influences are from Europe to the Former Soviet Union, East Asia to Southeast Asia, and Europe to Africa. The largest influences per unit of NOx reduced, however, are seen for source regions in the tropics and Southern Hemisphere, which we attribute mainly to greater sensitivity to changes in NOx in the lower troposphere, and secondarily to increased vertical convection to the free troposphere in tropical regions, allowing pollutants to be transported further. Results show, for example, that NOx reductions in North America are ~20% as effective per unit NOx in reducing ozone in Europe during summer, as NOx reductions from Europe itself. Reducing anthropogenic emissions of non-methane volatile organic compounds (NMVOCs and carbon monoxide (CO by 10% in selected regions, can have as large an impact on long-range ozone transport as NOx reductions, depending on the source region. We find that for many source-receptor pairs, the season of greatest long-range influence does not coincide with the season when ozone is highest in the receptor region. Reducing NOx emissions in most source regions causes a larger decrease in export of ozone from the source region than in ozone production outside of the source region.

  7. Transport analysis of ozone enhancement in Southern Ontario during BAQS-Met

    Directory of Open Access Journals (Sweden)

    H. He

    2011-03-01

    Full Text Available Twice-daily ozonesondes were launched from Harrow, in southwestern Ontario, Canada, during the BAQS-Met (Border Air Quality and Meteorology Study field campaign in June and July of 2007. A co-located radar windprofiler measured tropopause height continuously. These data, in combination with continuous surface ozone measurements and geo-statistical interpolation of satellite ozone observations, present a consistent picture and indicate that a number of significant ozone enhancements in the troposphere were observed that were the result of stratospheric intrusion events. The combined observations have also been compared with results from two Environment Canada numerical models, the operational weather prediction model GEM (as input to FLEXPART, and a new version of the regional air quality model AURAMS, in order to examine the ability of these models to accurately represent sporadic cross-tropopause ozone transport events. The models appear to reproduce intrusion events with some skill, implying that GEM dynamics (which also drive AURAMS are able to represent such events well. There are important differences in the quantitative comparison, however; in particular, the poor vertical resolution of AURAMS around the tropopause causes it to bring down too much ozone in individual intrusions.

    These campaign results imply that stratospheric intrusions are important to the ozone budget of the mid-latitude troposphere, and appear to be responsible for much of the variability of ozone in the free troposphere. GEM-FLEXPART calculations indicate that stratospheric ozone intrusions contributed significantly to surface ozone on several occasions during the BAQS-Met campaign, and made a moderate but significant contribution to the overall tropospheric ozone budget.

  8. Comportamento de componentes bioquímicos do sangue em equinos submetidos à ozonioterapia Profile of blood biochemistry components in horses treated with ozone therapy

    Directory of Open Access Journals (Sweden)

    M.A. Haddad

    2009-06-01

    Full Text Available O comportamento de constituintes bioquímicos sanguíneos (glicose, fibrinogênio, creatina fosfoquinase e gama-glutamiltransferase foi monitorado, in vivo, em 12 equinos mestiços (seis machos e seis fêmeas, com idade entre 4 e 20 anos, submetidos à ozonioterapia. O tratamento foi realizado mediante administração de 500 ou 1000mL da mistura de oxigênio-ozônio (O2-O3 por via intravenosa, a cada três dias, durante 24 dias. Os equinos foram distribuídos em quatro grupos: MT500 constituído por três machos tratados com 500mL; MT1000 por três machos tratados com 1000mL; FT500, por três fêmeas tratadas com 500mL e FT1000, por três fêmeas tratadas com 1000mL. A ozonioterapia por via intravenosa não ocasionou alterações clínicas nos equinos. Os valores médios mínimos e máximos de glicose, fibrinogênio, creatina fosfoquinase e gama-glutamiltransferase mantiveram-se dentro dos limites de referência para a espécie equina. Houve diminuição nas concentrações da glicose e gama-glutamiltransferase ao longo dos períodos de aplicação e aumento nos valores do fibrinogênio. A creatina fosfoquinase não sofreu efeito do tratamento.The profile of blood biochemistry variables (glucose, fibrinogen, creatine phosphokinase, and gamma glutamyltransferase was in vivo monitored in 12 crossbred horses (six males and six females, aging from four to 20-years-old treated with ozone therapy. Treatments were carried out by applying 500 or 1000mL of the mixture oxygen-ozone (O2-O3 via intravenous route, every three days, during 24 days. Horses were assigned to four groups: MT500 (three males given 500mL, MT1000 (three males given 1000mL, FT500 (three females given 500mL and FT1000 (three females given 1000mL. Ozone therapy by intravenous route caused no clinical changes in the horses. Minimum and maximum mean values of glucose, fibrinogen, creatine phosphokinase, and gamma glutamyltransferase were within the range considered as normal reference

  9. Summertime tropospheric ozone enhancement associated with a cold front passage due to stratosphere-to-troposphere transport and biomass burning: Simultaneous ground-based lidar and airborne measurements

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J.; Johnson, Matthew S.; Wang, Lihua; Burris, John; Pierce, Robert B.; Eloranta, Edwin W.; Pollack, Ilana B.; Graus, Martin; de Gouw, Joost; Warneke, Carsten; Ryerson, Thomas B.; Markovic, Milos Z.; Holloway, John S.; Pour-Biazar, Arastoo; Huang, Guanyu; Liu, Xiong; Feng, Nan

    2017-01-01

    Stratosphere-to-troposphere transport (STT) and biomass burning (BB) are two important natural sources for tropospheric ozone that can result in elevated ozone and air-quality episode events. High-resolution observations of multiple related species are critical for complex ozone source attribution. In this article, we present an analysis of coinciding ground-based and airborne observations, including ozone lidar, ozonesonde, high spectral resolution lidar (HSRL), and multiple airborne in situ measurements, made on 28 and 29 June 2013 during the Southeast Nexus field campaign. The ozone lidar and HSRL reveal detailed ozone and aerosol structures as well as the temporal evolution associated with a cold front passage. The observations also captured two enhanced (+30 ppbv) ozone layers in the free troposphere (FT), which were determined from this study to be caused by a mixture of BB and stratospheric sources. The mechanism for this STT is tropopause folding associated with a cutoff upper level low-pressure system according to the analysis of its potential vorticity structure. The depth of the tropopause fold appears to be shallow for this case compared to events observed in other seasons; however, the impact on lower tropospheric ozone was clearly observed. This event suggests that strong STT may occur in the southeast United States during the summer and can potentially impact lower troposphere during these times. Statistical analysis of the airborne observations of trace gases suggests a coincident influence of BB transport in the FT impacting the vertical structure of ozone during this case study.

  10. Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations

    Directory of Open Access Journals (Sweden)

    J.-H. Koo

    2012-10-01

    with potential temperature and time-lagged tropospheric BrO column show that the vertical extent of local ozone loss is surprisingly deep (1–2 km at Resolute and Churchill, Canada. The unstable boundary layer during ODEs at Churchill could potentially provide a source of free-tropospheric BrO through convective transport and explain the significant negative correlation between free-tropospheric ozone and tropospheric BrO column at this site.

  11. Assimilation of MLS and OMI Ozone Data

    Science.gov (United States)

    Stajner, I.; Wargan, K.; Chang, L.-P.; Hayashi, H.; Pawson, S.; Froidevaux, L.; Livesey, N.

    2005-01-01

    Ozone data from Aura Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) were assimilated into the ozone model at NASA's Global Modeling and Assimilation Office (GMAO). This assimilation produces ozone fields that are superior to those from the operational GMAO assimilation of Solar Backscatter Ultraviolet (SBUV/2) instrument data. Assimilation of Aura data improves the representation of the "ozone hole" and the agreement with independent Stratospheric Aerosol and Gas Experiment (SAGE) III and ozone sonde data. Ozone in the lower stratosphere is captured better: mean state, vertical gradients, spatial and temporal variability are all improved. Inclusion of OMI and MLS data together, or separately, in the assimilation system provides a way of checking how consistent OMI and MLS data are with each other, and with the ozone model. We found that differences between OMI total ozone column data and model forecasts decrease after MLS data are assimilated. This indicates that MLS stratospheric ozone profiles are consistent with OMI total ozone columns. The evaluation of error characteristics of OMI and MLS ozone will continue as data from newer versions of retrievals becomes available. We report on the initial step in obtaining global assimilated ozone fields that combine measurements from different Aura instruments, the ozone model at the GMAO, and their respective error characteristics. We plan to use assimilated ozone fields in estimation of tropospheric ozone. We also plan to investigate impacts of assimilated ozone fields on numerical weather prediction through their use in radiative models and in the assimilation of infrared nadir radiance data from NASA's Advanced Infrared Sounder (AIRS).

  12. A Bayesian analysis of trends in ozone sounding data series from 9 Nordic stations

    Science.gov (United States)

    Christiansen, Bo; Jepsen, Nis; Larsen, Niels; Korsholm, Ulrik S.

    2016-04-01

    Ozone soundings from 9 Nordic stations have been homogenized and interpolated to standard pressure levels. The different stations have very different data coverage; the longest period with data is from the end of the 1980ies to 2013. We apply a model which includes both low-frequency variability in form of a polynomial, an annual cycle with harmonics, the possibility for low-frequency variability in the annual amplitude and phasing, and either white noise or AR1 noise. The fitting of the parameters is performed with a Bayesian approach not only giving the posterior mean values but also credible intervals. We find that all stations agree on an well-defined annual cycle in the free troposphere with a relatively confined maximum in the early summer. Regarding the low-frequency variability we find that Scoresbysund, Ny Aalesund, and Sodankyla show similar structures with a maximum near 2005 followed by a decrease. However, these results are only weakly significant. A significant change in the amplitude of the annual cycle was only found for Ny Aalesund. Here the peak-to-peak amplitude changes from 0.9 to 0.8 mhPa between 1995-2000 and 2007-2012. The results are shown to be robust to the different settings of the model parameters (order of the polynomial, number of harmonics in the annual cycle, type of noise, etc). The results are also shown to be characteristic for all pressure levels in the free troposphere.

  13. Summer atmospheric composition over the Mediterranean basin: Investigation on transport processes and pollutant export to the free troposphere by observations at the WMO/GAW Mt. Cimone global station (Italy, 2165 m a.s.l.)

    Science.gov (United States)

    Cristofanelli, P.; Landi, T. C.; Calzolari, F.; Duchi, R.; Marinoni, A.; Rinaldi, M.; Bonasoni, P.

    2016-09-01

    In this work, we analysed reactive gases (O3, CO, NOx) and aerosol properties (eqBC, σs and particle number concentration) collected at the WMO/GAW Mt. Cimone station (2165 m a.s.l., Italy) during the summer of 2012 in the framework of PEGASOS project. The major aim of this experiment is providing a characterization of the variability of summer atmospheric composition over the central Mediterranean basin, which is considered as a global "hot-spot" for atmospheric pollution and climate change. The atmospheric tracers have been analysed as a function of (i) meteorological parameters, (ii) synoptic-scale circulation and (iii) anthropogenic emission source proximity as estimated by O3/NOx ratio variability. In particular, we identified three O3/NOx regimes which tagged the distance of anthropogenic sources: near outflow (23% of hourly data), far-outflow (38% of data) and background (39% of data). The highest levels of anthropogenic pollutants (e.g. O3, CO, eqBC, accumulation particles) were concomitant with fresh emissions from northern Italy under near-outflow conditions: once injected to the free troposphere, these air-masses, rich in pollutants and climate-forcers (i.e. O3, eqBC) and soil dust, can be spread over a large region, thus significantly affecting regional climate. Moreover, based on the anthropogenic source proximity, atmospheric tracer variability and synoptic-scale atmospheric circulation, we categorized and characterised four types of atmospheric regimes associated with (1) air-mass transport from the free troposphere, (2) transport of fresh emitted pollutants from the PBL, (3) transport at regional/continental scale of aged anthropogenic (4) transport of air-mass rich in mineral dust from northern Africa (i.e. coming from more than 1000 km). Lastly, by analysing the probability density functions (PDFs) of trace gases and aerosol properties, "fingerprints" of the mentioned atmospheric regimes were pointed out. Such information is useful for the

  14. Summer atmospheric composition over the Mediterranean basin: investigation on transport processes and pollutant export to the free troposphere by observations at the WMO/GAW Mt. Cimone global station (Italy, 2165 m a.s.l.)

    Science.gov (United States)

    Cristofanelli, Paolo; Cristian Landi, Tony; Rinaldi, Matteo; Calzolari, Francesopiero; Duchi, Rocco; Marinoni, Angela; Roccato, Fabrizio; Bonasoni, Paolo

    2017-04-01

    In this work, we analysed reactive gases (O3, CO, NOx) and aerosol properties (eqBC, s and particle number concentration) collected at the WMO/GAW Mt. Cimone station (2165 m a.s.l., Italy) during the summer of 2012 in the framework of PEGASOS project. The major aim of this experiment is providing a characterization of the variability of summer atmospheric composition over the central Mediterranean basin, which is considered as a global "hot-spot" for atmospheric pollution and climate change. The atmospheric tracers have been analysed as a function of (i) meteorological parameters, (ii) synoptic-scale circulation and (iii) anthropogenic emission source proximity as estimated by O3/NOx ratio variability. In particular, we identified three O3/NOx regimes which tagged the distance of anthropogenic sources: near outflow (23% of hourly data), far-outflow (38% of data) and background (39% of data). The highest levels of anthropogenic pollutants (e.g. O3, CO, eqBC, accumulation particles) were concomitant with fresh emissions from northern Italy under near-outflow conditions: once injected to the free troposphere, these air-masses, rich in pollutants and climate-forcers (i.e. O3, eqBC) and soil dust, can be spread over a large region, thus significantly affecting regional climate. Moreover, based on the anthropogenic source proximity, atmospheric tracer variability and synoptic-scale atmospheric circulation, we categorized and characterised four types of atmospheric regimes associated with (1) air-mass transport from the free troposphere, (2) transport of fresh emitted pollutants from the PBL, (3) transport at regional/continental scale of aged anthropogenic (4) transport of air-mass rich in mineral dust from northern Africa (i.e. coming from more than 1000 km). Lastly, by analysing the probability density functions (PDFs) of trace gases and aerosol properties, "fingerprints" of the mentioned atmospheric regimes were pointed out. Such information is useful for the

  15. Bromine measurements in ozone depleted air over the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    J. A. Neuman

    2010-07-01

    Full Text Available In situ measurements of ozone, photochemically active bromine compounds, and other trace gases over the Arctic Ocean in April 2008 are used to examine the chemistry and geographical extent of ozone depletion in the arctic marine boundary layer (MBL. Data were obtained from the NOAA WP-3D aircraft during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC study and the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS study. Fast (1 s and sensitive (detection limits at the low pptv level measurements of BrCl and BrO were obtained from three different chemical ionization mass spectrometer (CIMS instruments, and soluble bromide was measured with a mist chamber. The CIMS instruments also detected Br2. Subsequent laboratory studies showed that HOBr rapidly converts to Br2 on the Teflon instrument inlets. This detected Br2 is identified as active bromine and represents a lower limit of the sum HOBr + Br2. The measured active bromine is shown to likely be HOBr during daytime flights in the arctic. In the MBL over the Arctic Ocean, soluble bromide and active bromine were consistently elevated and ozone was depleted. Ozone depletion and active bromine enhancement were confined to the MBL that was capped by a temperature inversion at 200–500 m altitude. In ozone-depleted air, BrO rarely exceeded 10 pptv and was always substantially lower than soluble bromide that was as high as 40 pptv. BrCl was rarely enhanced above the 2 pptv detection limit, either in the MBL, over Alaska, or in the arctic free troposphere.

  16. Is Ozone Going Up Now?

    Science.gov (United States)

    Steinbrecht, W.; Froidevaux, L.; Davis, S. M.; Degenstein, D. A.; Wild, J.; Roth, C.; Kaempfer, N.; Leblanc, T.; Godin-Beekmann, S.; Vigouroux, C.; Swart, D. P. J.; Querel, R.; Harris, N.; Nedoluha, G. E.

    2016-12-01

    The last WMO ozone assessment (WMO, 2014) concluded that observations show significant ozone increase, 3% per decade (±2% per decade, 2σ), in the upper stratosphere since 2000. At other levels, or for total ozone, increases were not found or not significant. Overall, this is consistent with expectations from model simulations, (e.g. CCMVal2, Eyring et al., 2010). These simulations indicate that declining chlorine levels and stratospheric cooling due to CO2 increase should contribute roughly equal parts to ozone increase in the upper stratosphere. Shortly after the assessment, results from the SI2N initiative (Harris et al., 2015) confirmed increasing ozone in the upper stratosphere. However, the SI2N results indicated smaller increases (+1.5% per decade) than the WMO assessment, and substantially larger uncertainties (±5% per decade, 2σ). Differences can be attributed to time period, 1998 to 2012, compared to 2000 to 2013/14 for the assessment, and to larger assumed instrumental drift uncertainties, 6% per decade, (only 1 to 2% per decade in WMO 2014, see also Hubert et al., 2016). Here, we explore how additional ground-based and satellite data since 2013, as well as new and improved records, affect ozone trends and uncertainties. The focus will be on ozone in the upper stratosphere, because this is the region where the earliest signs of beginning ozone recovery are expected. ReferencesEyring, V., et al.: Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models, Atmos. Chem. Phys., 10, 9451-9472, doi:10.5194/acp-10-9451-2010, 2010. Harris, N. R. P., et al.: Past changes in the vertical distribution of ozone - Part 3: Analysis and interpretation of trends, Atmos. Chem. Phys., 15, 9965-9982, doi:10.5194/acp-15-9965-2015, 2015. Hubert, D., et al.: Ground-based assessment of the bias and long-term stability of fourteen limb and occultation ozone profile data records, Atmos. Meas. Tech., 9, 2497-2534, doi:10.5194/amt-9

  17. Influence of altitude on ozone levels and variability in the lower troposphere: a ground-based study for western Europe over the period 2001–2004

    Directory of Open Access Journals (Sweden)

    J.-M. Cousin

    2007-01-01

    Full Text Available The PAES (French acronym for synoptic scale atmospheric pollution network focuses on the chemical composition (ozone, CO, NOx/y and aerosols of the lower troposphere (0–3000 m. Its high-altitude surface stations located in different mountainous areas in France complete the low-altitude rural MERA stations (the French contribution to the european program EMEP, European Monitoring and Evaluation Program. They are representative of pollution at the scale of the French territory because they are away from any major source of pollution. This study deals with ozone observations between 2001 and 2004 at 11 stations from PAES and MERA, in addition to 16 elevated stations located in mountainous areas of Switzerland, Germany, Austria, Italy and Spain. The set of stations covers a range of altitudes between 115 and 3550 m. The comparison between recent ozone mixing ratios with those of the last decade found in the literature for two high-elevation sites (Pic du Midi, 2877 m and Jungfraujoch, 3580 m leads to a trend that has slowed down compared to old trends but remains positive. This could be attribuable to the reduction of ozone precursors at European scale, that however do not compensate an ozone increase at the global scale. Averaged levels of ozone increase with elevation in good agreement with data provided by the airborne observation system MOZAIC (Measurement of OZone and water vapour by Airbus In-service airCraft, showing a highly stratified ozone field in the lower troposphere, with a transition at about 1000 m asl between a sharp gradient (30 ppb/km below but a gentler gradient (3 ppb/km above. Ozone variability also reveals a clear transition between boundary-layer and free-tropospheric regimes at the same altitude. Below, diurnal photochemistry accounts for about the third of the variability in summer, but less than 20% above – and at all levels in winter – where ozone variability is mostly due to day-to-day changes (linked to weather

  18. Study of tropospheric CO and O3 enhancement episode over Indonesia during Autumn 2006 using the Model for Ozone and Related chemical Tracers (MOZART-4)

    Science.gov (United States)

    Srivastava, Shuchita; Sheel, Varun

    2013-03-01

    An intense biomass burning event occurred over Indonesia in Autumn of 2006. We study the impact of this event on the free tropospheric abundances of carbon monoxide (CO) and ozone (O3) using MOPITT (Measurements of Pollution In The Troposphere) observations, ozonesonde measurements and 3D chemistry transport model MOZART (Model for Ozone and Related chemical Tracers). MOPITT observations showed an episode of enhanced CO in the free troposphere over the Indonesian region during October-November 2006. This feature is reproduced well by MOZART. The model mass diagnostics identifies the source of enhanced CO mixing ratio in the free troposphere (100-250 ppbv) as due to convective processes. The implication of the fire plume on the vertical distribution of O3 over Kuala Lumpur has been studied. The tropospheric O3 increased over this location by 10-25 ppbv during Autumn 2006 as compared to Autumn 2005 and 2007. The MOZART model simulation significantly underestimated this tropospheric O3 enhancement. The model is run both with and without Indonesian biomass burning emissions to estimate the contribution of fire emission in CO and O3 enhancement. Biomass burning emission is found to be responsible for an average increase in CO by 104 ± 56 ppbv and O3 by 5 ± 1 ppbv from surface to 100 hPa range. The model results also showed that biomass burning and El Niño related dynamical changes both contributed (˜4 ppbv-12 ppbv) to the observed increase in tropospheric O3 over the Indonesian region during Autumn 2006.

  19. Influence of the North American monsoon on Southern California tropospheric ozone levels during summer in 2013 and 2014

    Science.gov (United States)

    Granados-Muñoz, Maria Jose; Johnson, Matthew S.; Leblanc, Thierry

    2017-06-01

    The impact of the North American (NA) monsoon on tropospheric ozone variability in Southern California is investigated using lidar measurements at Jet Propulsion Laboratory-Table Mountain Facility, California, and the chemical-transport model GEOS-Chem. Routine lidar observations obtained in July-August 2013-2014 reveal a consistent ozone enhancement of 23 ppbv in the free troposphere (6-9 km), when ozone-rich air is transported along the western edge of the upper level anticyclone associated with the NA monsoon from regions where maximum lightning-induced NOx production occurs. When the high-pressure system shifts to the southeast, a zonal westerly flow of the air parcels reaching the Table Mountain Facility (TMF) occurs, prohibiting the lightning-induced ozone enhanced air to reach TMF. This modulation of tropospheric ozone by the position of the NA monsoon anticyclone could have implications on long-term ozone trends associated with our changing climate, due to the expected widening of the tropical belt affecting the strength and position of the anticyclone.

  20. Ozone decomposition

    Directory of Open Access Journals (Sweden)

    Batakliev Todor

    2014-06-01

    Full Text Available Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers. Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates

  1. ACE-FTS ozone, water vapour, nitrous oxide, nitric acid, and carbon monoxide profile comparisons with MIPAS and MLS

    Science.gov (United States)

    Sheese, Patrick E.; Walker, Kaley A.; Boone, Chris D.; Bernath, Peter F.; Froidevaux, Lucien; Funke, Bernd; Raspollini, Piera; von Clarmann, Thomas

    2017-01-01

    The atmospheric limb sounders, ACE-FTS on the SCISAT satellite, MIPAS on ESA's Envisat satellite, and MLS on NASA's Aura satellite, take measurements used to retrieve atmospheric profiles of O3, N2O, H2O, HNO3, and CO. Each was taking measurements between February 2004 and April 2012 (ACE-FTS and MLS are currently operational), providing hundreds of profile coincidences in the Northern and Southern hemispheres, and during local morning and evening. Focusing on determining diurnal and hemispheric biases in the ACE-FTS data, this study compares ACE-FTS version 3.5 profiles that are collocated with MIPAS and MLS, and analyzes the differences between instrument retrievals for Northern and Southern hemispheres and for local morning and evening data. For O3, ACE-FTS is typically within ±5% of mid-stratospheric MIPAS and MLS data and exhibits a positive bias of 10 to 20% in the upper stratosphere - lower mesosphere. For H2O, ACE-FTS exhibits an average bias of -5% between 20 and 60 km. For N2O, ACE-FTS agrees with MIPAS and MLS within -20 to +10% up to 45 km and 35 km, respectively. For HNO3, ACE-FTS typically agrees within ±10% below 30 km, and exhibits a positive bias of 10 to 20% above 30 km. With respect to MIPAS CO, ACE-FTS exhibits an average -11% bias between 28 and 50 km, and at higher altitudes a positive bias on the order of 10% (>100%) in the winter (summer). With respect to winter MLS CO, ACE-FTS is typically within ±10% between 25 and 40 km, and has an average bias of -11% above 40 km.

  2. The influence of boreal biomass burning emissions on the distribution of tropospheric ozone over North America and the North Atlantic during 2010

    Directory of Open Access Journals (Sweden)

    M. Parrington

    2012-02-01

    Full Text Available We have analysed the sensitivity of the tropospheric ozone distribution over North America and the North Atlantic to boreal biomass burning emissions during the summer of 2010 using the GEOS-Chem 3-D global tropospheric chemical transport model and observations from in situ and satellite instruments. We show that the model ozone distribution is consistent with observations from the Pico Mountain Observatory in the Azores, ozonesondes across Canada, and the Tropospheric Emission Spectrometer (TES and Infrared Atmospheric Sounding Instrument (IASI satellite instruments. Mean biases between the model and observed ozone mixing ratio in the free troposphere were less than 10 ppbv. We used the adjoint of GEOS-Chem to show the model ozone distribution in the free troposphere over Maritime Canada is largely sensitive to NOx emissions from biomass burning sources in Central Canada, lightning sources in the central US, and anthropogenic sources in the eastern US and south-eastern Canada. We also used the adjoint of GEOS-Chem to evaluate the Fire Locating And Monitoring of Burning Emissions (FLAMBE inventory through assimilation of CO observations from the Measurements Of Pollution In The Troposphere (MOPITT satellite instrument. The CO inversion showed that, on average, the FLAMBE emissions needed to be reduced to 89% of their original values, with scaling factors ranging from 12% to 102%, to fit the MOPITT observations in the boreal regions. Applying the CO scaling factors to all species emitted from boreal biomass burning sources led to a decrease of the model tropospheric distributions of CO, PAN, and NOx by as much as −20 ppbv, −50 pptv, and −20 pptv respectively. The modification of the biomass burning emission estimates reduced the model ozone distribution by approximately −3 ppbv (−8% and on average improved the agreement of the model ozone distribution compared to the observations throughout the free troposphere

  3. Halogens and their role in polar boundary-layer ozone depletion

    Directory of Open Access Journals (Sweden)

    W. R. Simpson

    2007-03-01

    Full Text Available During springtime in the polar regions, unique photochemistry converts inert halide salts ions (e.g. Br into reactive halogen species (e.g. Br atoms and BrO that deplete ozone in the boundary layer to near zero levels. Since their discovery in the late 1980s, research on ozone depletion events (ODEs has made great advances; however many key processes remain poorly understood. In this article we review the history, chemistry, dependence on environmental conditions, and impacts of ODEs. This research has shown the central role of bromine photochemistry, but how salts are transported from the ocean and are oxidized to become reactive halogen species in the air is still not fully understood. Halogens other than bromine (chlorine and iodine are also activated through incompletely understood mechanisms that are probably coupled to bromine chemistry. The main consequence of halogen activation is chemical destruction of ozone, which removes the primary precursor of atmospheric oxidation, and generation of reactive halogen atoms/oxides that become the primary oxidizing species. The different reactivity of halogens as compared to OH and ozone has broad impacts on atmospheric chemistry, including near complete removal and deposition of mercury, alteration of oxidation fates for organic gases, and export of bromine into the free troposphere. Recent changes in the climate of the Arctic and state of the Arctic sea ice cover are likely to have strong effects on halogen activation and ODEs; however, more research is needed to make meaningful predictions of these changes.

  4. Ozone and cardiovascular injury

    Directory of Open Access Journals (Sweden)

    Rainaldi Giuseppe

    2009-06-01

    and mortality 3. Most of the evidence comes from studies of ambient particles concentrations. However, in Europe and elsewhere, the air pollution profile has gradually changed toward a more pronounced photochemical component. Ozone is one of the most toxic components of the photochemical air pollution mixture. Indeed, the biological basis for these observations has not been elucidated. In the present review, the role of ozone as chemical molecule will be firstly considered. Secondly, pathogenetic mechanisms connecting the atmospheric ozone level and cardiovascular pathology will be examined. Thirdly, the literature relating hospitalization frequency, morbidity and mortality due to cardiovascular causes and ozone concentration will be studied. The correlation between ozone level and occurrence of acute myocardial infarction will be eventually discussed.

  5. Airborne Dial Remote Sensing of the Arctic Ozone Layer

    Science.gov (United States)

    Wirth, Martin; Renger, Wolfgang; Ehret, Gerhard

    1992-01-01

    A combined ozone and aerosol LIDAR was developed at the Institute of Physics of the Atmosphere at the DLR in Oberpfaffenhofen. It is an airborne version, that, based on the DIAL-principle, permits the recording of two-dimensional ozone profiles. This presentation will focus on the ozone-part; the aerosol subsection will be treated later.

  6. Simulation study for measurement of horizontal wind profiles in the polar stratosphere and mesosphere using ground-based observations of ozone and carbon monoxide lines in the 230-250 GHz region

    Science.gov (United States)

    Newnham, David A.; Ford, George P.; Moffat-Griffin, Tracy; Pumphrey, Hugh C.

    2016-07-01

    Meteorological and atmospheric models are being extended up to 80 km altitude but there are very few observing techniques that can measure stratospheric-mesospheric winds at altitudes between 20 and 80 km to verify model datasets. Here we demonstrate the feasibility of horizontal wind profile measurements using ground-based passive millimetre-wave spectroradiometric observations of ozone lines centred at 231.28, 249.79, and 249.96 GHz. Vertical profiles of horizontal winds are retrieved from forward and inverse modelling simulations of the line-of-sight Doppler-shifted atmospheric emission lines above Halley station (75°37' S, 26°14' W), Antarctica. For a radiometer with a system temperature of 1400 K and 30 kHz spectral resolution observing the ozone 231.28 GHz line we estimate that 12 h zonal and meridional wind profiles could be determined over the altitude range 25-74 km in winter, and 28-66 km in summer. Height-dependent measurement uncertainties are in the range 3-8 m s-1 and vertical resolution ˜ 8-16 km. Under optimum observing conditions at Halley a temporal resolution of 1.5 h for measuring either zonal or meridional winds is possible, reducing to 0.5 h for a radiometer with a 700 K system temperature. Combining observations of the 231.28 GHz ozone line and the 230.54 GHz carbon monoxide line gives additional altitude coverage at 85 ± 12 km. The effects of clear-sky seasonal mean winter/summer conditions, zenith angle of the received atmospheric emission, and spectrometer frequency resolution on the altitude coverage, measurement uncertainty, and height and time resolution of the retrieved wind profiles have been determined.

  7. The importance of using dynamical a-priori profiles for infrared O3 retrievals : the case of IASI.

    Science.gov (United States)

    Peiro, H.; Emili, E.; Le Flochmoen, E.; Barret, B.; Cariolle, D.

    2016-12-01

    MOCAGE+MLS PR than CLIM PR. We found biases of 6% instead of 33% in SH showing that the a priori plays an important role within O3 infrared-retrievals. Improvements of IASI retrievals have been obtained in the free troposphere and low stratosphere, inserting dynamical a priori profiles from a CTM in SOFRID. Possible advancements would be to insert dynamical COV in SOFRID.

  8. Tropospheric and Stratospheric Ozone From Assimilation of Aura Data

    Science.gov (United States)

    Stajner, I.; Wargan, K.; Chang, L.; Hayashi, H.; Pawson, S.; Froidevaux, L.; Livesey, N.; Bhartia, P. K.; Bowman, K.

    2006-05-01

    Ozone is an atmospheric trace gas with multiple impacts on the environment. Global ozone fields are needed for air quality predictions, estimation of the ultraviolet radiation reaching the surface, climate-radiation studies, and ozone may also have an impact on longer-term weather predictions. We estimate global ozone fields in the stratosphere and troposphere by combining the data from the EOS Aura satellite with an ozone model using data assimilation. Ozone exhibits a large temporal variability in the lower stratosphere. Our previous work showed that assimilation of satellite data from limb-sounding geometry helps constrain ozone profiles in that region. We assimilated ozone data from the Aura Microwave Limb Sounder (MLS) and the Ozone Monitoring Instrument (OMI) into the ozone system at NASA's Global Modeling and Assimilation Office (GMAO). Ozone is transported within a general circulation model (GCM) which includes parameterizations for stratospheric photochemistry, tropospheric chemistry, and a simple scheme for heterogeneous ozone loss. The focus of this study is on the representation of ozone in the lower stratosphere and tropospheric ozone columns. We plan to extend studies of tropospheric ozone distribution through assimilation of ozone data from the Tropospheric Emission Spectrometer (TES). Comparisons with ozone sondes and occultation data show that assimilation of Aura data provides a good representation of ozone gradients and variability in the lower stratosphere. We proceed by separating the contributions to temporal changes in the ozone field into those that are due to the model and those that are due to the assimilation of Aura data. We discuss the impacts of Aura data and their role in the representation of ozone variability in the lower stratosphere and troposphere.

  9. Constraints on Asian ozone using Aura TES, OMI and Terra MOPITT

    Directory of Open Access Journals (Sweden)

    Z. Jiang

    2014-07-01

    Full Text Available Rapid industrialization in Asia in the last two decades has resulted in a significant increase in Asian ozone (O3 pre-cursor emissions with likely a corresponding increase in the export of O3 and its pre-cursors. However, the relationship between this increasing O3, the chemical environment, O3 production efficiency, and the partitioning between anthropogenic and natural precursors is unclear. In this work, we use satellite measurements of O3, CO and NO2 from TES (Tropospheric Emission Spectrometer, MOPITT (Measurement of Pollution In The Troposphere and OMI (Ozone Monitoring Instrument to quantify O3 pre-cursor emissions for 2006 and their impact on free-tropospheric O3 over North-East Asia, where pollution is typically exported globally due to strong westerlies. Using the GEOS-Chem global chemical transport model, we show that the modeled seasonal variation of O3 based on these updated O3 pre-cursor emissions is consistent with the observed O3 variability and amount, after accounting for known biases in the TES O3 data. Using the adjoint of GEOS-Chem we then partition the relative contributions of natural and anthropogenic sources to free troposphere O3 in this region. We find that the influence of lightning NOx is important in summer. The contribution from anthropogenic NOx is dominant in other seasons. China is the major contributor of anthropogenic VOCs (Volatile Organic Compounds, whereas the influence of biogenic VOCs is mainly from Southeast Asia. Our result shows that the influence of India and Southeast Asia emissions on O3 pollution export is significant, comparable with Chinese emisisons in winter and about 50% of Chinese emissions in other seasons.

  10. Emergence of healing in the Antarctic ozone layer

    OpenAIRE

    Solomon, S.; Ivy, DJ; Kinnison, D.; Mills, MJ; Neely III, RR; Schmidt, A.

    2016-01-01

    Industrial chlorofluorocarbons that cause ozone depletion have been phased out under the Montreal Protocol. A chemically driven increase in polar ozone (or “healing”) is expected in response to this historic agreement. Observations and model calculations together indicate that healing of the Antarctic ozone layer has now begun to occur during the month of September. Fingerprints of September healing since 2000 include (i) increases in ozone column amounts, (ii) changes in the vertical profile...

  11. Comment on "Tropospheric temperature response to stratospheric ozone recovery in the 21st century" by Hu et al. (2011

    Directory of Open Access Journals (Sweden)

    C. McLandress

    2012-03-01

    Full Text Available In a recent paper Hu et al. (2011 suggest that the recovery of stratospheric ozone during the first half of this century will significantly enhance free tropospheric and surface warming caused by the anthropogenic increase of greenhouse gases, with the effects being most pronounced in Northern Hemisphere middle and high latitudes. These surprising results are based on a multi-model analysis of CMIP3 model simulations with and without prescribed stratospheric ozone recovery. Hu et al. suggest that in order to properly quantify the tropospheric and surface temperature response to stratospheric ozone recovery, it is necessary to run coupled atmosphere-ocean climate models with stratospheric ozone chemistry. The results of such an experiment are presented here, using a state-of-the-art chemistry-climate model coupled to a three-dimensional ocean model. In contrast to Hu et al., we find a much smaller Northern Hemisphere tropospheric temperature response to ozone recovery, which is of opposite sign. We suggest that their result is an artifact of the incomplete removal of the large effect of greenhouse gas warming between the two different sets of models.

  12. Measurements of vertical distributions of bromine oxide, iodine oxide, oxygenated hydrocarbons and ozone over the Eastern Tropical Pacific Ocean

    Science.gov (United States)

    Volkamer, R. M.; Baidar, S.; Dix, B. K.; Apel, E. C.; Hornbrook, R. S.; Pierce, B.; Gao, R.

    2012-12-01

    As part of the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) field experiment 17 research flights were conducted with the NSF/NCAR GV aircraft equipped with a combination of chemical in-situ sensors, and remote sensing instruments to characterize air-sea exchange of reactive halogen species, oxygenated hydrocarbons, and aerosols, and their transport into the free troposphere, over different ocean environments of the Humboldt current in the Eastern Tropical Pacific Ocean (42S to 14N Lat.; 70W to 105W Long.). This presentation presents measurements of the spatial distributions of halogen oxide radicals, oxygenated hydrocarbons, and discusses their impact on ozone destruction rates, and the oxidation of atmospheric mercury. Air mass history is assessed by means of the Real-time Air Quality Modeling System (RAQMS), a global meteorological, chemical and aerosol assimilation/forecasting system that assimilates real-time stratospheric ozone retrievals from the Microwave Limb Sounder (MLS), total column ozone from the Ozone Monitoring Instrument (OMI), and aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS). Reactive halogen species and organic carbon are important in the atmosphere, because they modify HOx radical abundances, influence the reactive chemistry and lifetime of climate active gases (e.g., ozone, methane, dimethyl sulfide), modify aerosol-cloud interactions; halogen radicals can further oxidize atmospheric mercury.

  13. The signs of Antarctic ozone hole recovery.

    Science.gov (United States)

    Kuttippurath, Jayanarayanan; Nair, Prijitha J

    2017-04-03

    Absorption of solar radiation by stratospheric ozone affects atmospheric dynamics and chemistry, and sustains life on Earth by preventing harmful radiation from reaching the surface. Significant ozone losses due to increases in the abundances of ozone depleting substances (ODSs) were first observed in Antarctica in the 1980s. Losses deepened in following years but became nearly flat by around 2000, reflecting changes in global ODS emissions. Here we show robust evidence that Antarctic ozone has started to recover in both spring and summer, with a recovery signal identified in springtime ozone profile and total column measurements at 99% confidence for the first time. Continuing recovery is expected to impact the future climate of that region. Our results demonstrate that the Montreal Protocol has indeed begun to save the Antarctic ozone layer.

  14. Stratospheric ozone

    Directory of Open Access Journals (Sweden)

    M. Gil

    2006-01-01

    Full Text Available Stratospheric ozone acquired a huge importance two decades ago because of the discovery of strong anomalies above the Antarctica due to gases of anthropogenic origin. From that date, stratosphere has become one of the research lines receiving more funding. A result, an important progress in the development of observational techniques, the understanding of the dynamics of the polar regions and, above all, in understanding of the chemical interactions among the species that influence the chemical-radiative balance of ozone. In this article a general revision is made of the distribution of the ozone in the stratosphere, the mechanisms that determine its equilibrium, the gases that contribute to its destruction, the present situation and the forecast of the health state of the layer.

  15. GOMOS bright limb ozone data set

    Directory of Open Access Journals (Sweden)

    S. Tukiainen

    2015-01-01

    Full Text Available We have created a daytime ozone profile data set from the measurements of the Global Ozone Monitoring by Occultation of Stars (GOMOS instrument on board the Envisat satellite. This so-called GOMOS bright limb (GBL data set contains ~ 358 000 stratospheric daytime ozone profiles measured by GOMOS in 2002–2012. The GBL data set complements the widely used GOMOS night-time data based on stellar occultation measurements. The GBL data set is based on the GOMOS daytime occultations but instead of the transmitted star light, we use limb scattered solar light. The ozone profiles retrieved from these radiance spectra cover 18–60 km tangent height range and have approximately 2–3 km vertical resolution. We show that these profiles are generally in better than 10% agreement with the NDACC (Network for the Detection of Atmospheric Composition Change ozone sounding profiles and with the GOMOS night-time, MLS (Microwave Limb Sounder, and OSIRIS (Optical Spectrograph, and InfraRed Imaging System satellite measurements. However, there is a 10–13% negative bias at 40 km tangent height and a 10–50% positive bias at 50 km when the solar zenith angle > 75°. These biases are most likely caused by stray light which is difficult to characterize and remove entirely from the measured spectra. Nevertheless, the GBL data set approximately doubles the amount of useful GOMOS ozone profiles and improves coverage of the summer pole.

  16. The Antarctic Ozone Hole

    Science.gov (United States)

    Jones, Anna E.

    2008-01-01

    Since the mid 1970s, the ozone layer over Antarctica has experienced massive destruction during every spring. In this article, we will consider the atmosphere, and what ozone and the ozone layer actually are. We explore the chemistry responsible for the ozone destruction, and learn about why conditions favour ozone destruction over Antarctica. For…

  17. How robust is a trend of ozone lamina characteristics?

    Science.gov (United States)

    Krizan, Peter; Kozubek, Michal

    2014-05-01

    This poster deals with the dependence of ozone lamina characteristics trend at the European ozonosonde stations to small changes in lamina definition. We change the depth of lamina( 3500,2500 and 1500 m), sharpness of laminae size of laminae (20,30,40nbar) and second minimum definition . We use data of vertical profile of ozone concentration from these European stations which have long series of ozone vertical profile observations: Hoheipeissenberg, Payerne, Uccle, Legionowo and Lindenberg.

  18. Evidence for midwinter chemical ozone destruction over Antartica

    Energy Technology Data Exchange (ETDEWEB)

    Voemel, H. [Univ. of Colorado, Boulder, CO (United States); Hoffmann, D.J.; Oltmans, S.J.; Harris, J.M. [NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, CO (United States)

    1995-09-01

    Two ozone profiles on June 15 and June 19, obtained over McMurdo, Antartica, showed a strong depletion in stratospheric ozone, and a simultaneous profile of water vapor on June 19 showed the first clear signs of dehydration. The observation of Polar Stratospheric Clouds (PSCs) beginning with the first sounding showing ozone depletion, the indication of rehydration layers, which could be a sign for recent dehydration, and trajectory calculations indicate that the observed low ozone was not the result of transport from lower latitudes. during this time the vortex was strongly distorted, transporting PSC processed air well into sunlit latitudes where photochemical ozone destruction may have occurred. The correlation of ozone depletion and dehydration indicates that water ice PSCs provided the dominant surface for chlorine activation. An analysis of the time when the observed air masses could have formed type II PSCs for the first time limits the time scale for the observed ozone destruction to about 4 days.

  19. How well do we know global long-term tropospheric ozone changes?

    Science.gov (United States)

    Tarasick, D. W.; Galbally, I.; Ancellet, G.; Wallington, T. J.; Ziemke, J. R.; Zanis, P.; Stähelin, J.; Vigouroux, C.; Hannigan, J. W.; García, O. E.; Steinbacher, M.; Foret, G.; Liu, X.; Petropavlovskikh, I. V.; Worden, H. M.; Osman, M.; Lin, M.; Dufour, G.; Cuesta, J.; Cooper, O. R.; Hassler, B.; Thouret, V.; Trickl, T.

    2016-12-01

    The Tropospheric Ozone Assessment Report (TOAR) has among its goals to provide the research community with an up-to-date global assessment of the distribution and trends of tropospheric ozone from the surface to the tropopause. This task requires that we evaluate the quality and consistency of modern and older records. From the earliest measurements in the 19th century, both measurement methods and the portion of the globe observed by them have evolved. These methods have different uncertainties and biases, and the data records differ with respect to coverage (space and time), information content, and representativeness. These are reviewed and compared. From validation and intercomparison experiments, considerable information exists to evaluate different measurement records. Here we attempt to consolidate and reconcile these results, from both surface monitoring --early methods, potassium iodide and UV photometric monitors -- and free tropospheric measurements -- lidar, ozonesonde, FTIR, aircraft and satellite instruments -- to produce a comprehensive description of the uncertainties in our measurement-derived knowledge of the global tropospheric ozone distribution and its changes with time.

  20. Earth's Endangered Ozone

    Science.gov (United States)

    Panofsky, Hans A.

    1978-01-01

    Included are (1) a discussion of ozone chemistry; (2) the effects of nitrogen fertilizers, fluorocarbons, and high level aircraft on the ozone layer; and (3) the possible results of a decreasing ozone layer. (MR)

  1. Seasonal persistence of ozone and zonal wind anomalies in the equatorial stratosphere

    OpenAIRE

    Tegtmeier, S.; V. E. Fioletov; Shepherd, T. G.

    2010-01-01

    Analysis of the variability of equatorial ozone profiles in the Satellite Aerosol and Gas Experiment-corrected Solar Backscatter Ultraviolet data set demonstrates a strong seasonal persistence of interannual ozone anomalies, revealing a seasonal dependence to equatorial ozone variability. In the lower stratosphere (40–25 hPa) and in the upper stratosphere (6–4 hPa), ozone anomalies persist from approximately November until June of the following year, while ozone anomalies in the layer between...

  2. Impacts of Asian emissions on ozone air quality over western U.S. in spring and summer

    Science.gov (United States)

    Lin, M.; Fiore, A. M.; Cooper, O. R.; Horowitz, L. W.; Naik, V.; Wyman, B.; Alvarez, R. J., II; Banta, R. M.; Bahreini, R.; Holloway, J. S.; Hardesty, R.; Johnson, B. J.; Langford, A. O.; Middlebrook, A. M.; Oltmans, S. J.; Pollack, I. B.; Ryerson, T. B.; Senff, C. J.; Wiedinmyer, C.; Ziemke, J. R.

    2010-12-01

    We use a synthesis of satellite, sonde, lidar, aircraft and surface observations during the NOAA CalNex campaign (May-July 2010) and a three-dimensional global chemistry-climate model (GFDL AM3 nudged to NCEP Global Forecast System winds) to estimate the influence of Asian emissions on ozone air quality over the western U.S. Prior studies clearly show Asian pollution in the free troposphere over the western U.S. The extent to which this pollution is entrained into the boundary layer is unclear yet has implications for attainment of air quality standards, particularly as lower thresholds are imposed to better protect public health. We implement three new emission inventories in the model: the 2006 INTEX-B Asian inventory scaled to 2010 based on energy usage growth from 2006-2010 for major economic sectors, the U.S. National Emission Inventory for 2005, and the daily resolved global Fire INventory from NCAR (FINN version 1). Our analysis of daily satellite observations of CO from AIRS indicates five major events of Asian trans-Pacific transport of pollution during CalNex. The NOAA WP-3D aircraft intercepted associated events on May 7-8, May 24 and June 16, and we find correlations between ozone and CO and between sulfate and organic aerosols suggestive of Asian pollution influence. The NOAA Twin Otter aircraft lidar also sampled a high ozone layer of suspected Asian origin above 4 km over the Northern Sacramento Valley on June 22, consistent with enhanced AIRS CO over the eastern Pacific for the same period. With an AM3 sensitivity simulation (relative to the base case) for which Asian anthropogenic emissions are set to zero, we estimate the Asian component of ozone during these events. We further analyze the model alongside daily ozone sondes and the daily OMI/MLS tropospheric column ozone during the CalNex campaign, to quantify the spatial variability and vertical distribution (from the free troposphere to the surface) of Asian ozone over the Western U.S. We will

  3. Model Calculations of Changes in Tropospheric Ozone Over Europe and the Role of Surface Sources and Aircraft Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Hov, Oe. [Bergen Univ. (Norway)

    1996-01-01

    This conference paper deals with a study of the impact of various sources of NO{sub x} on the ozone production in the free troposphere. A comprehensive two-dimensional zonally averaged chemistry/transport model and a three-dimensional meso-scale chemical transport (MCT) model are used in the study. Using the two-dimensional model, three surches of NO{sub x} in the upper troposphere were examined covering NO{sub x} produced by lightening, NO{sub x} (and NO{sub y}) brought to the upper troposphere from the planetary boundary layer by rapid vertical transport processes, and NO{sub x} emitted from aircraft. 4 refs.

  4. Antarctic springtime ozone depletion computed from temperature observations

    Science.gov (United States)

    Rosenfield, Joan E.; Schoeberl, Mark R.; Newman, Paul A.

    1988-01-01

    An observationally based, mechanistic dynamical model is used to simulate the decline of total ozone during September and October for the years 1979 through 1986. Vertical velocities derived from observed stratospheric temperature changes and computed radiative heating rates are used to advect an ozone mixing ratio profile during the Antarctic spring period. An early August 1982 Syowa balloonsonde ozone profile is used to initialize the computations. The model reasonably simulates the September and October changes in total ozone, considering the uncertainties in the observed data and the radiative heating. The simulated decline is found to be very sensitive to the choice of initial ozone profile and to small changes in the radiative heating. The results of this study suggest that the dynamical hypothesis of the Antarctic ozone depletion is both quantitatively credible and consistent with the observed temperature changes.

  5. Computational analysis of ozonation in bubble columns

    Energy Technology Data Exchange (ETDEWEB)

    Quinones-Bolanos, E. [Univ. of Guelph, School of Engineering, Guelph, Ontario (Canada)]|[Univ. de Cartagena, Facultad de Ciencias e Ingenieria, Cartagena de Indias (Colombia); Zhou, H.; Otten, L. [Univ. of Guelph, School of Engineering, Guelph, Ontario (Canada)]. E-mail: hzhou@uoguelph.ca

    2002-06-15

    This paper presents a new computational ozonation model based on the principle of computational fluid dynamics along with the kinetics of ozone decay and microbial inactivation to predict the performance of ozone disinfection in fine bubble columns. The model can be represented using a mixture two-phase flow model to simulate the hydrodynamics of the water flow and using two transport equations to track the concentration profiles of ozone and microorganisms along the height of the column, respectively. The applicability of this model was then demonstrated by comparing the simulated ozone concentrations with experimental measurements obtained from a pilot scale fine bubble column. One distinct advantage of this approach is that it does not require the prerequisite assumptions such as plug flow condition, perfect mixing, tanks-in-series, uniform radial or longitudinal dispersion in predicting the performance of disinfection contactors without carrying out expensive and tedious tracer studies. (author)

  6. Aircraft Measurements of BrO, IO, Glyoxal, NO2, H2O, O2-O2 and Aerosol Extinction Profiles in the Tropics: Comparison with Aircraft-/Ship-Based in Situ and Lidar Measurements

    Science.gov (United States)

    Volkamer, R.; Baidar, S.; Campos, T. L.; Coburn, S.; DiGangi, J. P.; Dix, B.; Eloranta, E. W.; Koenig, T. K.; Morley, B.; Ortega, I.; Pierce, B. R.; Reeves, M.; Sinreich, R.; Wang, S.; Zondlo, M. A.; Romashkin, P. A.

    2015-01-01

    Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO) and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O2-O2 collision complexes (O4/ were measured by the University of Colorado Airborne Multi-AXis Differential Optical Absorption Spectroscopy (CU AMAXDOAS) instrument, aerosol extinction by high spectral resolution lidar (HSRL), in situ aerosol size distributions by an ultra high sensitivity aerosol spectrometer (UHSAS) and in situ H2O by vertical-cavity surface-emitting laser (VCSEL) hygrometer. Data are presented from two research flights (RF12, RF17) aboard the National Science Foundation/ National Center for Atmospheric Research Gulfstream V aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project (January/February 2012). We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols. Our O4-inferred aerosol extinction profiles at 477 nm agree within 6% with HSRL in the boundary layer and closely resemble the renormalized profile shape of Mie calculations constrained by UHSAS at low (sub-Rayleigh) aerosol extinction in the free troposphere. CU AMAX-DOAS provides a flexible choice of geometry, which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise ratio) and to test the robustness of BrO, IO and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01) and provides independent validation data from ship-based in situ cavity

  7. Aircraft Measurements of BrO, IO, Glyoxal, NO2, H2O, O2-O2 and Aerosol Extinction Profiles in the Tropics: Comparison with Aircraft-/Ship-Based in Situ and Lidar Measurements

    Science.gov (United States)

    Volkamer, R.; Baidar, S.; Campos, T. L.; Coburn, S.; DiGangi, J. P.; Dix, B.; Eloranta, E. W.; Koenig, T. K.; Morley, B.; Ortega, I.; hide

    2015-01-01

    Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO) and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O2-O2 collision complexes (O4/ were measured by the University of Colorado Airborne Multi-AXis Differential Optical Absorption Spectroscopy (CU AMAXDOAS) instrument, aerosol extinction by high spectral resolution lidar (HSRL), in situ aerosol size distributions by an ultra high sensitivity aerosol spectrometer (UHSAS) and in situ H2O by vertical-cavity surface-emitting laser (VCSEL) hygrometer. Data are presented from two research flights (RF12, RF17) aboard the National Science Foundation/ National Center for Atmospheric Research Gulfstream V aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project (January/February 2012). We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols. Our O4-inferred aerosol extinction profiles at 477 nm agree within 6% with HSRL in the boundary layer and closely resemble the renormalized profile shape of Mie calculations constrained by UHSAS at low (sub-Rayleigh) aerosol extinction in the free troposphere. CU AMAX-DOAS provides a flexible choice of geometry, which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise ratio) and to test the robustness of BrO, IO and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01) and provides independent validation data from ship-based in situ cavity

  8. Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2-O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements

    Science.gov (United States)

    Volkamer, R.; Baidar, S.; Campos, T. L.; Coburn, S.; DiGangi, J. P.; Dix, B.; Eloranta, E. W.; Koenig, T. K.; Morley, B.; Ortega, I.; Pierce, B. R.; Reeves, M.; Sinreich, R.; Wang, S.; Zondlo, M. A.; Romashkin, P. A.

    2015-05-01

    Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO) and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O2-O2 collision complexes (O4) were measured by the University of Colorado Airborne Multi-AXis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument, aerosol extinction by high spectral resolution lidar (HSRL), in situ aerosol size distributions by an ultra high sensitivity aerosol spectrometer (UHSAS) and in situ H2O by vertical-cavity surface-emitting laser (VCSEL) hygrometer. Data are presented from two research flights (RF12, RF17) aboard the National Science Foundation/National Center for Atmospheric Research Gulfstream V aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project (January/February 2012). We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols. Our O4-inferred aerosol extinction profiles at 477 nm agree within 6% with HSRL in the boundary layer and closely resemble the renormalized profile shape of Mie calculations constrained by UHSAS at low (sub-Rayleigh) aerosol extinction in the free troposphere. CU AMAX-DOAS provides a flexible choice of geometry, which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise ratio) and to test the robustness of BrO, IO and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01) and provides independent validation data from ship-based in situ cavity

  9. Ozone zonal asymmetry and planetary wave characterization during Antarctic spring

    Directory of Open Access Journals (Sweden)

    I. Ialongo

    2012-03-01

    Full Text Available A large zonal asymmetry of ozone has been observed over Antarctica during winter-spring, when the ozone hole develops. It is caused by a planetary wave-driven displacement of the polar vortex. The total ozone data by OMI (Ozone Monitoring Instrument and the ozone profiles by MLS (Microwave Limb Sounder and GOMOS (Global Ozone Monitoring by Occultation of Stars were analysed to characterize the ozone zonal asymmetry and the wave activity during Antarctic spring. Both total ozone and profile data have shown a persistent zonal asymmetry over the last years, which is usually observed from September to mid-December. The largest amplitudes of planetary waves at 65° S (the perturbations can achieve up to 50% of zonal mean values is observed in October. The wave activity is dominated by the quasi-stationary wave 1 component, while the wave 2 is mainly an eastward travelling wave. Wave numbers 1 and 2 generally explain more than the 90% of the ozone longitudinal variations. Both GOMOS and MLS ozone profile data show that ozone zonal asymmetry covers the whole stratosphere and extends up to the altitudes of 60–65 km. The wave amplitudes in ozone mixing ratio decay with altitude, with maxima (up to 50% below 30 km.

    The characterization of the ozone zonal asymmetry has become important in the climate research. The inclusion of the polar zonal asymmetry in the climate models is essential for an accurate estimation of the future temperature trends. This information might also be important for retrieval algorithms that rely on ozone a priori information.

  10. Chemistry-transport modeling of the satellite observed distribution of tropical troposheric ozone

    Directory of Open Access Journals (Sweden)

    W. Peters

    2002-01-01

    Full Text Available We have compared the 14-year record of satellite derived tropical tropospheric ozone columns (TTOC from the NIMBUS--7 Total Ozone Mapping Spectrometer (TOMS to TTOC calculated by achemistry-transport model (CTM. An objective measure of error, based on the zonal distribution of TTOC in the tropics, is applied to perform this comparison systematically. In addition, the sensitivity of the model to several key processes in the tropics is quantified to select directions for future improvements. The comparisons indicate a widespread, systematic (20% discrepancy over the tropical Atlantic Ocean, which maximizes during austral Spring. Although independent evidence from ozonesondes shows that some of the disagreement is due to satellite overestimate of TTOC, the Atlantic mismatch is largely due to a misrepresentation of seasonally recurring processes in the model. Only minor differences between the model and observations over the Pacific occur, mostly due to interannual variability not captured by the model. Although chemical processes determine the TTOC extent, dynamical processes dominate the TTOC distribution, as the use of actual meteorology pertaining to the year of observations always leads to a better agreement with TTOC observations than using a random year or a climatology. The modeled TTOC is remarkably insensitive to many model parameters due to efficient feedbacks in the ozone budget. Nevertheless, the simulations would profit from an improved biomass burning calendar, as well as from an increase in NOx abundances in free tropospheric biomass burning plumes. The model showed the largest response to lightning NOx emissions, but systematic improvements could not be found. The use of multi-year satellite derived tropospheric data to systematically test and improve a CTM is a promising new addition to existing methods of model validation, and is a first step to integrating tropospheric satellite observations into global ozone modeling studies

  11. Statistical estimation of ozone exposure metrics

    Science.gov (United States)

    Blankenship, Erin E.; Stefanski, L. A.

    Data from recent experiments at North Carolina State University and other locations provide a unique opportunity to study the effect of ambient ozone on the growth of clover. The data consist of hourly ozone measurements over a 140 day growing season at eight sites in the US, coupled with clover growth response data measured every 28 days. The objective is to model an indicator of clover growth as a function of ozone exposure. A common strategy for dealing with the numerous hourly ozone measurements is to reduce these to a single summary measurement, a so-called exposure metric, for the growth period of interest. However, the mean ozone value is not necessarily the best summarization, as it is widely believed that low levels of ozone have a negligible effect on growth, whereas peak ozone values are deleterious to plant growth. There are also suspected interactions with available sunlight, temperature and humidity. A number of exposure metrics have been proposed that reflect these beliefs by assigning different weights to ozone values according to magnitude, time of day, temperature and humidity. These weighting schemes generally depend on parameters that have, to date, been subjectively determined. We propose a statistical approach based on profile likelihoods to estimate the parameters in these exposure metrics.

  12. Ozone columns obtained by ground-based remote sensing in Kiev for Aura Ozone Measuring Instrument validation

    Science.gov (United States)

    Shavrina, A. V.; Pavlenko, Y. V.; Veles, A.; Syniavskyi, I.; Kroon, M.

    2007-12-01

    Ground-based observations with a Fourier transform spectrometer in the infrared region (FTIR) were performed in Kiev (Ukraine) during the time frames August-October 2005 and June-October 2006 within the Ozone Monitoring Instrument (OMI) validation project 2907 entitled "OMI validation by ground based remote sensing: ozone columns and profiles" in the frame of the international European Space Agency/Netherlands Agency for Aerospace Programmes/Royal Dutch Meteorological Institute OMI Announcement of Opportunity effort. Ozone column data for 2005 were obtained by modeling the ozone spectral band at 9.6 μm with the radiative transfer code MODTRAN3.5. Our total ozone column values were found to be lower than OMI Differential Optical Absorption Spectroscopy (DOAS) total ozone column data by 8-10 Dobson units (DU, 1 DU = 0.001 atm cm) on average, while our observations have a relatively small standard error of about 2 DU. Improved modeling of the ozone spectral band, now based on HITRAN-2004 spectral data as calculated by us, moves our results toward better agreement with the OMI DOAS total ozone column data. The observations made during 2006 with a modernized FTIR spectrometer and higher signal-to-noise ratio were simulated by the MODTRAN4 model computations. For ozone column estimates the Aqua Atmospheric Infrared Sounder satellite water vapor and temperature profiles were combined with the Aura Microwave Limb Sounder stratospheric ozone profiles and Tropospheric Emission Monitoring Internet Service-Koninklijk Nederlands Meteorologisch Instituut climatological profiles to create a priori input files for spectral modeling. The MODTRAN4 estimates of ozone columns from the 2006 observations compare rather well with the OMI total ozone column data: standard errors are of 1.11 DU and 0.68 DU, standard deviation are of 8.77 DU and 5.37 DU for OMI DOAS and OMI Total Ozone Mapping Spectrometer, respectively.

  13. Emergence of healing in the Antarctic ozone layer.

    Science.gov (United States)

    Solomon, Susan; Ivy, Diane J; Kinnison, Doug; Mills, Michael J; Neely, Ryan R; Schmidt, Anja

    2016-07-15

    Industrial chlorofluorocarbons that cause ozone depletion have been phased out under the Montreal Protocol. A chemically driven increase in polar ozone (or "healing") is expected in response to this historic agreement. Observations and model calculations together indicate that healing of the Antarctic ozone layer has now begun to occur during the month of September. Fingerprints of September healing since 2000 include (i) increases in ozone column amounts, (ii) changes in the vertical profile of ozone concentration, and (iii) decreases in the areal extent of the ozone hole. Along with chemistry, dynamical and temperature changes have contributed to the healing but could represent feedbacks to chemistry. Volcanic eruptions have episodically interfered with healing, particularly during 2015, when a record October ozone hole occurred after the Calbuco eruption.

  14. Emergence of healing in the Antarctic ozone layer

    Science.gov (United States)

    Solomon, Susan; Ivy, Diane J.; Kinnison, Doug; Mills, Michael J.; Neely, Ryan R.; Schmidt, Anja

    2016-07-01

    Industrial chlorofluorocarbons that cause ozone depletion have been phased out under the Montreal Protocol. A chemically driven increase in polar ozone (or “healing”) is expected in response to this historic agreement. Observations and model calculations together indicate that healing of the Antarctic ozone layer has now begun to occur during the month of September. Fingerprints of September healing since 2000 include (i) increases in ozone column amounts, (ii) changes in the vertical profile of ozone concentration, and (iii) decreases in the areal extent of the ozone hole. Along with chemistry, dynamical and temperature changes have contributed to the healing but could represent feedbacks to chemistry. Volcanic eruptions have episodically interfered with healing, particularly during 2015, when a record October ozone hole occurred after the Calbuco eruption.

  15. The 1991 WMO ozone sonde intercomparison

    Science.gov (United States)

    Kerr, James B.; Mcelroy, C. Thomas; Fast, Hans; Oltmans, Sam J.; Lathrop, Jeff A.; Kyro, Esko; Paukkunen, Ari; Claude, Hans J.; Kohler, Ulf; Sreedharan, C. R.

    1994-01-01

    The WMO ozone sonde intercomparison was held at Vanscoy, Saskatchewan from May 13 to May 24, 1991. The purpose of the intercomparison is to evaluate the performance of various ozone sonde types used operationally in the Global Ozone Observing System and to ensure that the accuracy and precision of the measurements are sufficient to detect long-term trends in stratospheric ozone. The intercomparison was sponsored by WMO and hosted by the Atmospheric Environment Service (AES) of Canada. It was attended by scientists from six countries: Canada, Finland, Germany, India, Japan and USA. A total of 10 balloon payloads were launched each carrying 7 or 8 sondes for a total of 67 successful ozone sonde flights. The payloads were carried to altitudes between 35 and 40 km where the flights terminated by balloon burst. Results of the profile measurements made during the series of the profile measurements made during the series of flight are used to determine statistically meaningful evaluations of the different sonde types. A description of the payload and the different ozone sondes is given. Preliminary results of the profile measurements and an evaluation of the performance of the sonde types are presented.

  16. A Lagrangian view of ozone production tendency in North American outflow in summers 2009 and 2010

    Directory of Open Access Journals (Sweden)

    B. Zhang

    2013-06-01

    Full Text Available The Pico Mountain Observatory, located at 2225 m a.s.l. in the Azores Islands, was established in 2001 to observe long-range transport from North America to the central North Atlantic. In previous research conducted at the Observatory, ozone enhancement (>55 ppbv in North American outflows was observed, and efficient ozone production in these outflows was postulated. This study is focused on determining the causes for high d[O3]/d[CO] values (~1 ppbv ppbv−1 observed in summers of 2009 and 2010. The folded retroplume technique, developed by Owen and Honrath (2009, was applied to combine upwind FLEXPART transport pathways with GEOS-Chem chemical fields. This folded result provides a semi-Lagrangian view of polluted North American outflow in terms of physical properties and chemical processes, including production/loss rate of ozone and NOx produced by lightning and thermal decomposition of PAN. Two transport events from North America were identified for detailed analysis. High d[O3]/d[CO] was observed in both events, but due to differing transport mechanisms, ozone production tendency differed between the two. A layer of net ozone production was found at 2 km a.s.l. over the Azores in the first event plume, apparently driven by PAN decomposition during subsidence of air mass in the Azores-Bermuda High. In the second event, net ozone loss occurred during transport in the lower free troposphere, yet observed d[O3]/d[CO] was high. We estimate that in both events, CO loss through oxidation contributed significantly to d[O3]/d[CO] enhancement. Thus, CO is not appropriately used as a passive tracer of pollution in these events. In general, use of d[O3]/d[CO] as an indicator of net ozone production/loss may be invalid for any situation in which oxidants are elevated. Based on our analysis, use of d[O3]/d[CO] to diagnose ozone enhancement without verifying the assumption of negligible CO loss is not advisable.

  17. Global ozone–CO correlations from OMI and AIRS: constraints on tropospheric ozone sources

    Directory of Open Access Journals (Sweden)

    P. S. Kim

    2013-04-01

    Full Text Available We present a global data set of free tropospheric ozone–CO correlations with 2° × 2.5° spatial resolution from the Ozone Monitoring Instrument (OMI and Atmospheric Infrared Sounder (AIRS satellite instruments for each season of 2008. OMI and AIRS have near daily global coverage of ozone and CO respectively and observe coincident scenes with similar vertical sensitivities. The resulting ozone–CO correlations are highly statistically significant (positive or negative in most regions of the world, and are less noisy than previous satellite-based studies that used sparser data. We interpret the observed ozone–CO correlations with the GEOS-Chem chemical transport model to infer constraints on ozone sources. Driving GEOS-Chem with different meteorological fields generally shows consistent ozone–CO correlation patterns, except in some tropical regions where the correlations are strongly sensitive to model transport error associated with deep convection. GEOS-Chem reproduces the general structure of the observed ozone–CO correlations and regression slopes (dO3/dCO, although there are some large regional discrepancies. We examine the model sensitivity of dO3/dCO to different ozone sources (combustion, biosphere, stratosphere, and lightning NOx by correlating the ozone change from that source to CO from the standard simulation. The model reproduces the observed positive dO3/dCO in the extratropical Northern Hemisphere in spring–summer, driven by combustion sources. Stratospheric influence there is also associated with a positive dO3/dCO because of the interweaving of stratospheric downwelling with continental outflow. The well-known ozone maximum over the tropical South Atlantic is associated with negative dO3/dCO in the observations; this feature is reproduced in GEOS-Chem and supports a dominant contribution from lightning to the ozone maximum. A~major model discrepancy is found over the Northeast Pacific in summer-fall where dO3/dCO is

  18. An estimation of ozone flux in a stratosphere-troposphere exchange event

    Institute of Scientific and Technical Information of China (English)

    CUI Hong; ZHAO Chunsheng; QIN Yu; ZHENG Xiangdong; ZHENG Yongguang; CHAN Chuen Yu; CHAN Lo Yin

    2004-01-01

    A new method based on mass fluxes and observed ozone profiles was developed to estimate cross- tropopause ozone flux. Using this method, we estimated the cross-tropopause ozone flux in a stratospheric-tropospheric exchange event that occurred over East Asia in March 2001. The result revealed that the ozone flux across the tropopause in this event was an order of magnitude higher than the global and hemispheric average. Compared to the traditional method using a linear relationship between ozone mixing ratio and potential vorticity near the tropopause, the cross-tropopause ozone flux evaluated with ozonesonde data was somewhat higher, although the orders of the two values were the same.

  19. Vertical Profile of Aerosol Properties at Pico Mountain, Azores

    Science.gov (United States)

    Wright, K.; Mazzoleni, C.; Mazzoleni, L. R.; Dzepina, K.; Hueber, J.; China, S.; Sharma, N.

    2013-12-01

    Pico Mountain (2325m asl) is a dormant volcano in the archipelago of the Azores1500 km west of Lisbon, Portugal in the North Atlantic. It differs from typical mountain ranges such as the Alps or the Rockies, which are large and present a complex orography. Pico Mountain has a simple cone-like structure with only one main peak and is thousands of kilometers away from any other significant mountain range. In summer months, it is typical for air masses to move around the mountain rather than traveling up its face. This implies that often the peak of the mountain lies above the marine boundary layer in the free troposphere, while the lower part of the mountain is affected by marine clouds and marine air-masses. An atmospheric monitoring station, the Pico Mountain Observatory was established in 2001 in the summit caldera of the volcano at 2225m above sea level. The observatory is far from large populations or pollution sources, which makes the station ideal to study atmospheric gases and aerosols transported over long-ranges in the free troposphere. The station is reachable only by foot following a steep and strenuous hiking trail. In the summer of 2013 we began to collect vertical profiles of aerosol by carrying an instrumented backpack up to the summit of the mountain, with the goal of studying the vertical structure of atmospheric aerosols from the marine boundary layer to the free troposphere. The backpack was carried from the base of trail at 1200m asl. The backpack was equipped with the following instruments: 1. Nephelometer to measure light scattering from aerosol 2. 2-size optical particle counter (300-500 nm) 3. Portable micro-aethalometer to measure absorbing aerosols 4. SEM/TEM sampler to collect particles for off-line electron microscopy analysis 5. Battery powered data logger to measure relative humidity, temperature and pressure 6. GPS tracking device We provide a preliminary analysis of data collected in 2013 to gain insight on the vertical distribution

  20. Aircraft measurements of bromine monoxide, iodine monoxide, and glyoxal profiles in the tropics: comparison with ship-based and in situ measurements

    Science.gov (United States)

    Volkamer, R.; Baidar, S.; Campos, T. L.; Coburn, S.; DiGangi, J. P.; Dix, B.; Koenig, T. K.; Ortega, I.; Pierce, B. R.; Reeves, M.; Sinreich, R.; Wang, S.; Zondlo, M. A.; Romashkin, P. A.

    2015-01-01

    Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO), and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O2-O2 collision complexes (O4) were measured by the CU Airborne Multi AXis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument, in situ aerosol size distributions by an Ultra High Sensitivity Aerosol Spectrometer (UHSAS), and in situ H2O by Vertical-Cavity Surface-Emitting Laser hygrometer (VCSEL). Data are presented from two research flights (RF12, RF17) aboard the NSF/NCAR GV aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project. We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols, and find O4-inferred aerosol extinction profiles at 477 nm agree within 5% with Mie calculations of extinction profiles constrained by UHSAS. CU AMAX-DOAS provides a flexible choice of geometry which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise), and to test the robustness of BrO, IO, and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01), and provides independent validation data from ship-based in situ Cavity Enhanced- and MAX-DOAS. Inside the marine boundary layer (MBL) no BrO was detected (smaller than 0.5 pptv), and 0.2-0.55 pptv IO and 32-36 pptv glyoxal were observed. The near surface concentrations agree within 20% (IO) and 10% (glyoxal) between ship and aircraft. The BrO concentration strongly

  1. Aircraft measurements of bromine monoxide, iodine monoxide, and glyoxal profiles in the tropics: comparison with ship-based and in situ measurements

    Directory of Open Access Journals (Sweden)

    R. Volkamer

    2015-01-01

    Full Text Available Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO, iodine monoxide (IO, and small oxygenated hydrocarbons like glyoxal (CHOCHO in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2, water vapor (H2O and O2-O2 collision complexes (O4 were measured by the CU Airborne Multi AXis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS instrument, in situ aerosol size distributions by an Ultra High Sensitivity Aerosol Spectrometer (UHSAS, and in situ H2O by Vertical-Cavity Surface-Emitting Laser hygrometer (VCSEL. Data are presented from two research flights (RF12, RF17 aboard the NSF/NCAR GV aircraft over the tropical Eastern Pacific Ocean (tEPO as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO project. We assess the accuracy of O4 slant column density (SCD measurements in the presence and absence of aerosols, and find O4-inferred aerosol extinction profiles at 477 nm agree within 5% with Mie calculations of extinction profiles constrained by UHSAS. CU AMAX-DOAS provides a flexible choice of geometry which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise, and to test the robustness of BrO, IO, and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01, and provides independent validation data from ship-based in situ Cavity Enhanced- and MAX-DOAS. Inside the marine boundary layer (MBL no BrO was detected (smaller than 0.5 pptv, and 0.2–0.55 pptv IO and 32–36 pptv glyoxal were observed. The near surface concentrations agree within 20% (IO and 10% (glyoxal between ship and aircraft. The BrO concentration strongly

  2. Ozone monitoring with an infrared heterodyne radiometer

    Science.gov (United States)

    Menzies, R. T.; Seals, R. K., Jr.

    1977-01-01

    Measurements of the total burden and of the concentration-versus-altitude profiles of ozone have been made with a ground-based heterodyne radiometer at Pasadena, California. The measurements were made in the 9.5-micron wavelength region, where a strong ozone infrared absorption band exists. The radiometer measured solar absorption at selected wavelengths with a spectral resolution of 0.001 reciprocal centimeter, equivalent to the half-width of an ozone absorption line at the 10-millibar altitude level. A carbon dioxide laser served as the local oscillator. This technique can be used to gather important data on both tropospheric and stratospheric ozone, which are not readily accessible with other remote-sensing techniques.

  3. Basic Ozone Layer Science

    Science.gov (United States)

    Learn about the ozone layer and how human activities deplete it. This page provides information on the chemical processes that lead to ozone layer depletion, and scientists' efforts to understand them.

  4. Ozone Layer Protection

    Science.gov (United States)

    ... Search Search Ozone Layer Protection Share Facebook Twitter Google+ Pinterest Contact Us Ozone Layer Protection Welcome to ... Managing Refrigerant Emissions Stationary Refrigeration and Air Conditioning Car and Other Mobile Air Conditioning GreenChill Partnership Responsible ...

  5. Ozone measurements in Amazonia - Dry season versus wet season

    Science.gov (United States)

    Kirchhoff, V. W. J. H.; Da Silva, I. M. O.; Browell, Edward V.

    1990-01-01

    Recent ozone measurements taken in the Amazonian rain forest environment during the wet season (April-May 1987) are described, revealling new aspects of the regional atmospheric chemistry. The measurements were part of the Amazon Boundary Layer Experiment (ABLE 2B) mission and utilized UV absorption as a measurement technique to obtain surface ozone data; 20 ozonesondes were launched in order to obtain vertical ozone profiles used to describe the upper troposphere and stratosphere. The major differences in comparison to a previous dry season experiment, which found ozone concentrations to be lower in the whole troposphere by nearly a factor of 2, are stressed.

  6. Ozone Layer Observations

    Science.gov (United States)

    McPeters, Richard; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The US National Aeronautics and Space Administration (NASA) has been monitoring the ozone layer from space using optical remote sensing techniques since 1970. With concern over catalytic destruction of ozone (mid-1970s) and the development of the Antarctic ozone hole (mid-1980s), long term ozone monitoring has become the primary focus of NASA's series of ozone measuring instruments. A series of TOMS (Total Ozone Mapping Spectrometer) and SBUV (Solar Backscatter Ultraviolet) instruments has produced a nearly continuous record of global ozone from 1979 to the present. These instruments infer ozone by measuring sunlight backscattered from the atmosphere in the ultraviolet through differential absorption. These measurements have documented a 15 Dobson Unit drop in global average ozone since 1980, and the declines in ozone in the antarctic each October have been far more dramatic. Instruments that measure the ozone vertical distribution, the SBUV and SAGE (Stratospheric Aerosol and Gas Experiment) instruments for example, show that the largest changes are occurring in the lower stratosphere and upper troposphere. The goal of ozone measurement in the next decades will be to document the predicted recovery of the ozone layer as CFC (chlorofluorocarbon) levels decline. This will require a continuation of global measurements of total column ozone on a global basis, but using data from successor instruments to TOMS. Hyperspectral instruments capable of measuring in the UV will be needed for this purpose. Establishing the relative roles of chemistry and dynamics will require instruments to measure ozone in the troposphere and in the stratosphere with good vertical resolution. Instruments that can measure other chemicals important to ozone formation and destruction will also be needed.

  7. 温度对CrIS热红外卫星资料反演臭氧廓线的影响分析%Analysis of the Influence of Temperature on the Retrieval of Ozone Vertical Profiles Using the Thermal Infrared CrIS Sounder

    Institute of Scientific and Technical Information of China (English)

    马鹏飞; 陈良富; 邹铭敏; 张莹; 陶明辉; 王子峰; 苏林

    2015-01-01

    this molecule plays a key role in the photo-chemical reactions and climate change .The TIR measurements can capture the variability of ozone and are weakly sensitive to the lowermost tropospheric ozone content but can provide accurate measurements of tropospheric ozone and higher vertical resolution ozone profiles ,with the additional advantage that measurements are also possible during the night .Because of the influence of at-mospheric temperature ,the ozone profile retrieval accuracy is severely limited .This paper analyze and discuss the ozone absorp-tion spectra and weighting function sensitivity of temperature and its influence on ozone profile retrieval in detail .First ,we simu-late the change of atmospheric transmittance and radiance by importing 1 K temperature uncertainty ,using line-by-line radiative transfer mode under 6 different atmosphere modes .The results show that the transmittance change ratio for 1 K temperature variation was consistent with the transmittance change ratio for 5% ~6% change of ozone density variation in all layers of the profile .Then ,we calculate the change of weighting function by a temperature error of 1 K ,using the Community Radiative Transfer Model (CRTM ) for the Cross-track Infrared Sounder (CrIS) on the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite and calculate the corresponding change of retrieval result .The results demonstrate that CrIS is sensitive to Ozone in the middle to upper stratosphere ,with the peak vertical sensitivity between 10~100 hPa and the change of weighting function for 1 K temperature variation was consistent with 6% change in the ozone profile .Finally ,the paper retrieves ozone profiles from the CrIS radiances with a nonlinear Newton iteration method and use the eigenvector regression algorithm to construct the a priori state .In order to resolve the problem of temperature uncertainty and get high accuracy ozone profile ,atmospheric temper-ature profile and ozone profile are

  8. Investigating the quality of modeled aerosol profiles based on combined lidar and sunphotometer data

    Science.gov (United States)

    Siomos, Nikolaos; Balis, Dimitris S.; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyridon; Melas, Dimitris; Giannakaki, Eleni; Filioglou, Maria; Basart, Sara; Chaikovsky, Anatoli

    2017-06-01

    In this study we present an evaluation of the Comprehensive Air Quality Model with extensions (CAMx) for Thessaloniki using radiometric and lidar data. The aerosol mass concentration profiles of CAMx are compared against the PM2.5 and PM2. 5-10 concentration profiles retrieved by the Lidar-Radiometer Inversion Code (LIRIC). The CAMx model and the LIRIC algorithm results were compared in terms of mean mass concentration profiles, center of mass and integrated mass concentration in the boundary layer and the free troposphere. The mean mass concentration comparison resulted in profiles within the same order of magnitude and similar vertical structure for the PM2. 5 particles. The mean centers of mass values are also close, with a mean bias of 0.57 km. On the opposite side, there are larger differences for the PM2. 5-10 mode, both in the boundary layer and in the free troposphere. In order to grasp the reasons behind the discrepancies, we investigate the effect of aerosol sources that are not properly included in the model's emission inventory and in the boundary conditions such as the wildfires and the desert dust component. The identification of the cases that are affected by wildfires is performed using wind backward trajectories from the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model in conjunction with satellite fire pixel data from MODerate-resolution Imaging Spectroradiometer (MODIS) Terra and Aqua global monthly fire location product MCD14ML. By removing those cases the correlation coefficient improves from 0.69 to 0.87 for the PM2. 5 integrated mass in the boundary layer and from 0.72 to 0.89 in the free troposphere. The PM2.5 center of mass fractional bias also decreases to 0.38 km. Concerning the analysis of the desert dust component, the simulations from the Dust Regional Atmospheric Model (BSC-DREAM8b) were deployed. When only the Saharan dust cases are taken into account, BSC-DREAM8b generally outperforms CAMx when compared with

  9. Stratospheric ozone intrusion events and their impacts on tropospheric ozone in the Southern Hemisphere

    Directory of Open Access Journals (Sweden)

    J. W. Greenslade

    2017-09-01

    Full Text Available Stratosphere-to-troposphere transport (STT provides an important natural source of ozone to the upper troposphere, but the characteristics of STT events in the Southern Hemisphere extratropics and their contribution to the regional tropospheric ozone budget remain poorly constrained. Here, we develop a quantitative method to identify STT events from ozonesonde profiles. Using this method we estimate the seasonality of STT events and quantify the ozone transported across the tropopause over Davis (69° S, 2006–2013, Macquarie Island (54° S, 2004–2013, and Melbourne (38° S, 2004–2013. STT seasonality is determined by two distinct methods: a Fourier bandpass filter of the vertical ozone profile and an analysis of the Brunt–Väisälä frequency. Using a bandpass filter on 7–9 years of ozone profiles from each site provides clear detection of STT events, with maximum occurrences during summer and minimum during winter for all three sites. The majority of tropospheric ozone enhancements owing to STT events occur within 2.5 and 3 km of the tropopause at Davis and Macquarie Island respectively. Events are more spread out at Melbourne, occurring frequently up to 6 km from the tropopause. The mean fraction of total tropospheric ozone attributed to STT during STT events is  ∼ 1. 0–3. 5 % at each site; however, during individual events, over 10 % of tropospheric ozone may be directly transported from the stratosphere. The cause of STTs is determined to be largely due to synoptic low-pressure frontal systems, determined using coincident ERA-Interim reanalysis meteorological data. Ozone enhancements can also be caused by biomass burning plumes transported from Africa and South America, which are apparent during austral winter and spring and are determined using satellite measurements of CO. To provide regional context for the ozonesonde observations, we use the GEOS-Chem chemical transport model, which is too coarsely

  10. Impact of the Atmospheric Transport on the Seasonal Variations and Trends of the Surface Ozone Concentration at Caucasian and Central European Mountain Sites

    Science.gov (United States)

    Tarasova, O. A.; Staehelin, J.; Senik, I. A.; Sosonkin, M. G.; Cui, J.; Prevot, A. S.

    2008-12-01

    An analysis of the atmospheric transport influence on the seasonal variations and trends of the surface ozone for two mountain sites, namely Kislovodsk High Mountain Station (KHMS) in Caucasus, Russia (43.7°N, 42.7°E, 2070 m asl.) and Jungfraujoch (JFJ) in Switzerland (46.5°N, 7.9°E, 3580 m asl) will be presented. Transport patterns are analyzed using 3D LAGRANTO trajectories. Main transport directions are obtained with the help of k-means trajectories clustering for the period 1990-2006. For each selected cluster average seasonal cycle and trends at two mountain locations are analyzed. Due to non-monotonous behavior of the trend the entire period is divided into two subsets (1991-2001 and 1997- 2006) which are studied separately. For both sites (JFJ and KHMS) the highest spring maximum is observed in May in the cluster, originating in East Asia and traveling to both sites with the longest contact with the upper free troposphere. Moreover, for both locations the excess of the summer maximum above the spring one is observed in the cluster of the local/regional transport due to ozone photochemical production in the polluted continental PBL. Trend of the surface ozone concentration at JFJ in 1991-2001 is connected with increased ozone concentrations in the free troposphere of mid latitude over West Atlantic/USA influenced by stratospheric concentration increase (most positive spring trend in trans-Atlantic clusters). The response to the regional European emission decrease observed in the local/regional advection cluster is less important but it is contributing to the seasonality of the trend. In 1997-2006 the trends at JFJ are more connected with European emissions regulations (the strongest trend are in the cluster of local/regional advection). The strong negative trends of the surface ozone concentrations at KHMS during both considered periods (1991-2001 and 1996-2007) are likely to be associated with different regime of emission (both of the local and regional

  11. Characterizing the Vertical Processes of Ozone in Colorado's Front Range Using the GSFC Ozone DIAL

    Science.gov (United States)

    Sullivan, John T.; McGee, Thomas J.; Hoff, Raymond M.; Sumnicht, Grant; Twigg, Laurence

    2016-06-01

    Although characterizing the interactions of ozone throughout the entire troposphere are important for health and climate processes, there is a lack of routine measurements of vertical profiles within the United States. In order to monitor this lower ozone more effectively, the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) has been developed and validated within the Tropospheric Ozone Lidar Network (TOLNet). Two scientifically interesting ozone episodes are presented that were observed during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER AQ) campaign at Ft. Collins, Colorado. The first case study, occurring between 22-23 July 2014, indicates enhanced concentrations of ozone at Ft. Collins during nighttime hours, which was due to the complex recirculation of ozone within the foothills of the Rocky Mountain region. Although quantifying the ozone increase aloft during recirculation episodes has been historically difficult, results indicate that an increase of 20 - 30 ppbv of ozone at the Ft. Collins site has been attributed to this recirculation. The second case, occurring between Aug 4-8th 2014, characterizes a dynamical exchange of ozone between the stratosphere and the troposphere. This case, along with seasonal model parameters from previous years, is used to estimate the stratospheric contribution to the Rocky Mountain region. Results suggest that a large amount of stratospheric air is residing in the troposphere in the summertime near Ft. Collins, CO. The results also indicate that warmer tropopauses are correlated with an increase in stratospheric air below the tropopause in the Rocky Mountain Region.

  12. Calibration of the Shuttle Ozone Limb Sounding Experiment (SOLSE) and the Limb Ozone Retrieval Experiment (LORE)

    Science.gov (United States)

    Janz, S. J.; Hilsenrath, E.; McPeters, R.; Heath, D. F.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The calibration and characterization of two new instruments designed to retrieve ozone profiles into the lower stratosphere will be presented. These instruments will fly as a single payload on the Space Shuttle Columbia currently scheduled to lift off July 11, 2002. The purpose of SOLSE (Shuttle Ozone Limb Sounding Experiment) and LORE (Limb Ozone Retrieval Experiment) is to provide a thorough test of the limb ozone retrieval technique, which is being employed on several satellite instruments currently deployed or planned for deployment in the near future. OSIRIS (Optical Spectrograph and Infrared Imager System) and SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) are already in orbit, while OMPS (the Ozone Mapping and Profiler Suite) is planned as the primary US ozone monitoring instrument in the next decade.. SOLSE is a Czerny-Turner spectrograph utilizing a 1k x 1k cooled CCD at the focal plane and covering the spectral range of 310-380 nm in the ultraviolet and 535-865 nm in the visible to near infrared. LORE is a 5 channel filter radiometer with center band wavelengths of 322, 350, 603, 675, and 1000 nm. The focus of this paper will be on measurements of the SOLSE spectrograph performance in the limb-viewing configuration including stray light rejection, spatial and spectral resolution and absolute radiometric response.

  13. Ozone pollution and ozone biomonitoring in European cities. Part I: Ozone concentrations and cumulative exposure indices at urban and suburban sites

    DEFF Research Database (Denmark)

    Klumpp, A.; Ansel, W.; Klumpp, G.

    2006-01-01

    based on hourly mean values, and cumulative ozone exposure indices (Accumulated exposure Over a Threshold of 40 ppb (AOT40), AOT20) were calculated. The diurnal profiles showed a characteristic pattern in most city centres, with minimum values in the early morning hours, a strong rise during the morning......, by contrast, maximum values were lower and diurnal variation was much smaller. Based on ozone concentrations as well as on cumulative exposure indices, a clear north-south gradient in ozone pollution, with increasing levels from northern and northwestern sites to central and southern European sites......, was observed. Only the Spanish cities did not fit this pattern; there, ozone levels were again lower than in central European cities, probably due to the direct influence of strong car traffic emissions. In general, ozone concentrations and cumulative exposure were significantly higher at suburban sites than...

  14. Development and Evaluation of a High Sensitivity DIAL System for Profiling Atmospheric CO2

    Science.gov (United States)

    Ismail, Syed; Koch, Grady J.; Refaat, Tamer F.; Abedin, M. N.; Yu, Jirong; Singh, Upendra N.

    2008-01-01

    A ground-based 2-micron Differential Absorption Lidar (DIAL) CO2 profiling system for atmospheric boundary layer studies and validation of space-based CO2 sensors is being developed and tested at NASA Langley Research Center as part of the NASA Instrument Incubator Program. To capture the variability of CO2 in the lower troposphere a precision of 1-2 ppm of CO2 (less than 0.5%) with 0.5 to 1 km vertical resolution from near surface to free troposphere (4-5 km) is one of the goals of this program. In addition, a 1% (3 ppm) absolute accuracy with a 1 km resolution over 0.5 km to free troposphere (4-5 km) is also a goal of the program. This DIAL system leverages 2-micron laser technology developed under NASA's Laser Risk Reduction Program (LRRP) and other NASA programs to develop new solid-state laser technology that provides high pulse energy, tunable, wavelength-stabilized, and double-pulsed lasers that are operable over pre-selected temperature insensitive strong CO2 absorption lines suitable for profiling of lower tropospheric CO2. It also incorporates new high quantum efficiency, high gain, and relatively low noise phototransistors, and a new receiver/signal processor system to achieve high precision DIAL measurements. This presentation describes the capabilities of this system for atmospheric CO2 and aerosol profiling. Examples of atmospheric measurements in the lidar and DIAL mode will be presented.

  15. Assessing the relationship between spectral solar irradiance and stratospheric ozone using Bayesian inference

    CERN Document Server

    Ball, William T; Egerton, Jack S; Haigh, Joanna D

    2014-01-01

    We investigate the relationship between spectral solar irradiance (SSI) and ozone in the tropical upper stratosphere. We find that solar cycle (SC) changes in ozone can be well approximated by considering the ozone response to SSI changes in a small number individual wavelength bands between 176 and 310 nm, operating independently of each other. Additionally, we find that the ozone varies approximately linearly with changes in the SSI. Using these facts, we present a Bayesian formalism for inferring SC SSI changes and uncertainties from measured SC ozone profiles. Bayesian inference is a powerful, mathematically self-consistent method of considering both the uncertainties of the data and additional external information to provide the best estimate of parameters being estimated. Using this method, we show that, given measurement uncertainties in both ozone and SSI datasets, it is not currently possible to distinguish between observed or modelled SSI datasets using available estimates of ozone change profiles, ...

  16. Ozone Diurnal Variation in the PBL at the Boulder Atmospheric Observatory During Summer 2014

    Science.gov (United States)

    Newchurch, M.; Alvarez, R. J. _II, II; Brewer, A.; Brown, S. S.; Carrion, W.; Delgado, R.; De Young, R.; Huang, G.; Johnson, B.; Kuang, S.; Langford, A. O.; Lundquist, J. K.; McGee, T. J.; Pliutau, D.; Senff, C. J.; Sullivan, J. T.; Sumnicht, G. K.; Twigg, L.; Wang, L.

    2014-12-01

    We investigate the diurnal variation of PBL ozone at the Boulder Atmospheric Observatory (BAO) in July 2014 using multiple observations, including three ozone DIALs, several wind Doppler lidars, free-launched and tethered ozonesondes, and in-situ measurements on the BAO tower. Three mobile lidars from the Tropospheric Ozone Lidar NETwork (TOLNET) provide high spatial and temporal ozone profiles from near surface to the top of the troposphere. The combination of multiple observations will provide detailed structure of the diurnal variation of ozone. This ozone information will help the satellite and modeling communities to study the character of lower tropospheric ozone for the improvements of satellite retrieval and air-quality models. In addition, a Large-Eddy Simulation model will calculate ozone in the mixed layer to explain the processes responsible for the observations.

  17. Analysis of atmospheric ozone measurements over a pine forest

    Science.gov (United States)

    Lopez, A.; Fontan, J.; Minga, A.

    Vertical and horizontal profiles of ozone concentration have been measured within the atmospheric boundary layer over the pine forest located in the southwest of France (Landes Forest). Evidence for an ozone depletion in lower layers is obtained from the analysis of vertical profiles recorded at the end of the night. In terms of deposition at the upper canopy level, this corresponds to a disappearance rate ranging between 0.2 and 0.5 cm s -1. The horizontal profiles obtained at midday reveal that ozone vanishes at a rate of the order of 5 × 10 -5 ppb m -1 when air mass moving in the advection direction passes over the forested area. These results are consistent with those obtained by numeric simulation in the case of low emission rates of nitrogen oxides. On the basis of these measurements, the expression of the ozone budget within the atmospheric boundary layer is discussed and compared with the data obtained from the simulation study.

  18. Antarctic ozone hole as observed by IASI/MetOp for 2008–2010

    Directory of Open Access Journals (Sweden)

    C. Scannell

    2012-01-01

    Full Text Available In this paper we present a study of the ozone hole as observed by the Infrared Atmospheric Sounding Interferometer (IASI on-board the MetOp-A European satellite platform from the beginning of data dissemination, August 2008, to the end of December 2010. Here we demonstrate IASI's ability to capture the seasonal characteristics of the ozone hole, in particular during polar night. We compare IASI ozone total columns and vertical profiles with those of the Global Ozone Monitoring Experiment 2 (GOME-2, also on-board MetOp-A and electrochemical concentration cell (ECC ozone sonde measurements. Total ozone column from IASI and GOME-2 were found to be in excellent agreement for this region with a correlation coefficient of 0.97, for September, October and November 2009. On average IASI exhibits a positive bias of approximately 7% compared to the GOME-2 measurements over the entire ozone hole period. Comparisons between IASI and ozone sonde measurements were also found to be in good agreement with the difference between both ozone profile measurements being less than ±30% over the altitude range of 0–40 km. The vertical structure of the ozone profile inside the ozone hole is captured remarkably well by IASI.

  19. Ozone therapy in periodontics.

    Science.gov (United States)

    Gupta, G; Mansi, B

    2012-02-22

    Gingival and Periodontal diseases represent a major concern both in dentistry and medicine. The majority of the contributing factors and causes in the etiology of these diseases are reduced or treated with ozone in all its application forms (gas, water, oil). The beneficial biological effects of ozone, its anti-microbial activity, oxidation of bio-molecules precursors and microbial toxins implicated in periodontal diseases and its healing and tissue regeneration properties, make the use of ozone well indicated in all stages of gingival and periodontal diseases. The primary objective of this article is to provide a general review about the clinical applications of ozone in periodontics. The secondary objective is to summarize the available in vitro and in vivo studies in Periodontics in which ozone has been used. This objective would be of importance to future researchers in terms of what has been tried and what the potentials are for the clinical application of ozone in Periodontics.

  20. Spatio-temporal observations of tertiary ozone maximum

    Directory of Open Access Journals (Sweden)

    V. F. Sofieva

    2009-03-01

    Full Text Available We present spatio-temporal distributions of tertiary ozone maximum (TOM, based on GOMOS (Global Ozone Monitoring by Occultation of Stars ozone measurements in 2002–2006. The tertiary ozone maximum is typically observed in the high-latitude winter mesosphere at altitude ~72 km. Although the explanation for this phenomenon has been found recently – low concentrations of odd-hydrogen cause the subsequent decrease in odd-oxygen losses – models have had significant deviations from existing observations until recently. Good coverage of polar night regions by GOMOS data has allowed for the first time obtaining spatial and temporal observational distributions of night-time ozone mixing ratio in the mesosphere.

    The distributions obtained from GOMOS data have specific features, which are variable from year to year. In particular, due to a long lifetime of ozone in polar night conditions, the downward transport of polar air by the meridional circulation is clearly observed in the tertiary ozone maximum time series. Although the maximum tertiary ozone mixing ratio is achieved close to the polar night terminator (as predicted by the theory, TOM can be observed also at very high latitudes, not only in the beginning and at the end, but also in the middle of winter. We have compared the observational spatio-temporal distributions of tertiary ozone maximum with that obtained using WACCM (Whole Atmosphere Community Climate Model and found that the specific features are reproduced satisfactorily by the model.

    Since ozone in the mesosphere is very sensitive to HOx concentrations, energetic particle precipitation can significantly modify the shape of the ozone profiles. In particular, GOMOS observations have shown that the tertiary ozone maximum was temporarily destroyed during the January 2005 and December 2006 solar proton events as a result of the HOx enhancement from the increased ionization.

  1. Record low ozone at the south pole in the Spring of 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, D.J.; Oltmans, S.J.; Lathrop, J.A.; Harris, J.M.; Voemel, H. (NOAA Climate Monitoring and Diagnostics Lab., Boulder, CO (United States))

    1994-03-15

    On October 12, 1993, a balloon-borne ozone detector recorded a total ozone value of 91[+-]5 Dobson Units (DU) at the US Amundsen-Scott Station at the south pole. This is the lowest value of total ozone ever recorded anywhere, 13% below the previous low of 105 DU at the south pole in October of 1992. A region with a thickness of 5 km, from 14 to 19 km, was totally devoid of ozone as compared to only about half this thickness for the ozone void in 1992. Sub-100 DU total ozone values were observed on several soundings during 1993 whereas the 105 DU value was observed on only one occasion in 1992. The vertical profile of ozone indicates that the main reason for the record low ozone values in 1993 was an approximately 1 km upward extension of the ozone hole caused by unusual ozone loss in the 18-23 km region. Temperatures in this region were unusually low in September and October. Thus, the extension of the ozone hole may have been the result of the prolonged presence of polar stratospheric clouds at 18-23 km combined with the continued presence of sulfate aerosol from the Pinatubo eruption and, finally, increased chlorine levels. This scenario resulted in elevated ozone loss in a region where the ozone loss process is normally not saturated. 8 refs., 4 figs.

  2. Artificial ozone holes

    OpenAIRE

    Dolya, S. N.

    2014-01-01

    This article considers an opportunity of disinfecting a part of the Earth surface, occupying a large area of ten thousand square kilometers. The sunlight will cause dissociation of molecular bromine into atoms; each bromine atom kills thirty thousand molecules of ozone. Each bromine plate has a mass of forty milligrams grams and destroys ozone in the area of hundred square meters. Thus, to form the ozone hole over the area of ten thousand square kilometers, it is required to have the total ma...

  3. Sampling of an STT event over the Eastern Mediterranean region by lidar and electrochemical sonde

    Directory of Open Access Journals (Sweden)

    A. Papayannis

    2005-09-01

    Full Text Available A two-wavelength ultraviolet (289–316nm ozone Differential Absorption Lidar (DIAL system is used to perform ozone measurements in the free troposphere in the Eastern Mediterranean (Northern Greece. The ozone DIAL profiles obtained during a Stratosphere-to-Troposphere Transport (STT event are compared to that acquired by an electrochemical ozonesonde, in the altitude range between 2 and 10 km. The measurement accuracy of these two instruments is also discussed. The mean difference between the ozone profiles obtained by the two techniques is of the order of 1.11 ppbv (1.86%, while the corresponding standard deviation is 4.69 ppbv (8.16%. A case study of an STT event which occurred on 29 November 2000 is presented and analyzed, using ozone lidar, satellite and meteorological data, as well as air mass back-trajectory analysis. During this STT event ozone mixing ratios of 55–65 ppbv were observed between 5 and 7 km height above sea level (a.s.l.. Stratospheric air was mixed with tropospheric air masses, leading to potential vorticity (PV losses due to diabatic processes. The ozone DIAL system can be used for following STT events and small-scale mixing phenomena in the free troposphere, and for providing sequences of vertical ozone profiles in the free troposphere.

    Keywords. Atmospheric composition and structure (Evolution of the atmosphere; Instruments and techniques – Meteorology and atmospheric dynamics (Middle atmosphere dynamics; Turbulence

  4. Observations of ozone depletion associated with solar proton events

    Science.gov (United States)

    Mcpeters, R. D.; Jackman, C. H.; Stassinopoulos, E. G.

    1981-01-01

    Ozone profiles from the solar proton events (SPE) of January and September 1971 and August 1972 were obtained after the backscattered ultraviolet (BUV) measured radiances were corrected for the direct effects of protons on the instrument. The SPE of August 1972 produced an ozone depletion of 15% at 42 km that persisted for one month in both northern and southern polar regions. This long recovery time indicates that NO(x) was produced in a quantity sufficient to alter the ozone chemistry. The two SPE in 1971 were of moderate size, but produced ozone depletions of 10-30% at 50 km with a 36 hour recovery time. This rapid recovery is consistent with the assumption that HO(x) is responsible for altering the ozone chemistry (Weeks et al., 1972). The magnitude of the observed depletion, however, exceeds that predicted by the chemical models.

  5. Source Attribution of Observed Absorption Profiles During the Two Column Aerosol Project (TCAP) Using a Regional Model

    Science.gov (United States)

    Fast, J. D.; Berg, L. K.; Chand, D.; Ferrare, R. A.; Flynn, C. J.; Hostetler, C. A.; Redemann, J.; Sedlacek, A. J., III; Shilling, J.; Shinozuka, Y.; Tomlinson, J. M.; Zelenyuk, A.

    2015-12-01

    Relatively large uncertainties remain in climate model predictions of absorption resulting from black carbon (BC) and brown carbon (BrC). In this study, we focus on comparing simulated profiles of BC, biomass burning aerosols, absorption, and other aerosol optical properties obtained from the regional WRF-Chem model with in situ and remote sensing measurements made during the Department of Energy's Two-Column Aerosol Project (TCAP). TCAP was designed to investigate changes in aerosol mixing state, aerosol radiative forcing, CCN concentration, and cloud-aerosol interactions in two atmospheric columns: one over Cape Cod, Massachusetts and another located approximately 200 km to the east over the ocean. Measurements from the NASA second-generation airborne High Resolution Spectral Lidar reveal the presence distinct aerosol layers associated with the marine boundary layer, residual layer transported over the ocean and in the free troposphere. Analyses of SP2 and aerosol optical measurements indicate that particles in the free troposphere were more 'aged' and had a lower single scattering albebo than for aerosol layers at lower altitudes; however, BC concentrations aloft were lower in the free troposphere. Instead, particle classes derived from the miniSPLAT single particle measurements suggest that the increased absorption aloft may be due biomass burning aerosols. The model suggests that ambient winds likely transported smoke from large wildfires in central Canada as well as smoke from other fires into the sampling domain. The simulated percentage of biomass burning aerosols was consistent with the miniSPLAT data, but the model currently treats all organic matter as non-absorbing. Therefore, we perform sensitivity simulations to examine how the model's absorption and AOD responds to assumptions used for BrC associated with biomass burning and whether the predicted profiles agree with absorption data and wavelength dependent AOD data from 4STAR.

  6. Air Quality Campaign Results from the Langley Mobile Ozone Lidar

    Science.gov (United States)

    De Young, R.; Carrion, W.; Pliutau, D.; Gano, R.

    2014-12-01

    A compact differential absorption ozone lidar (DIAL) system has been developed called the Langley Mobile Ozone Lidar (L-MOL) which can provide ozone, aerosol and cloud atmospheric profiles from a mobile trailer for ground-based atmospheric air quality campaigns. This lidar is integrated into the Tropospheric Ozone Lidar Network (TOLNet) currently made up of four other ozone lidars, three of which are mobile, across the country. The laser transmitter consist of a Coherent Evolution 30 TEM00 1-kHz diode pumped Q-switched Nd:YLF inter-cavity doubled laser pumping a Ce:LiCAF tunable UV laser. The transmitter transmits ~60 mW at two wavelengths between 280 and 293-nm for ozone and 2.5-W at 527-nm for aerosol profiling. The lidar operates at 1-kHz with 500-Hz at each 0f two UV wavelength. A fiber coupled 40-cm diameter parabolic telescope collets the backscattered return and records analog and photon counting signals. A separate 30-cm diameter telescope collects very near field returns for ozone profiles close to the surface. The lidar is capable of recording ozone profiles from 100-500-m with the very near field telescope and from 800-m to approximately 6000-m with the far field channel depending on sky background conditions. The system has been configured to enable mobile operation from a trailer which is environmentally controlled, and is towed with a truck with the objective to make the system mobile such that it can be setup at remote sites to support air quality field campaigns such as the July-August 2014 Denver, CO DISCOVER_AQ campaign. Before the lidar was deployed in the DISCOVER-AQ campaign the lidar operated for 15 hours at NASA Langley in Hampton, VA to test the ability of the system to accurately record ozone profiles. The figure below shows the results of that test. Six ozonesondes were launched during this period and show reasonable agreement with the ozone (ppbv) curtain plot. Ozone of stratospheric origin at 4-14 UTC was noted as well as local ozone

  7. Intraseasonal oscillations of stratospheric ozone above Switzerland

    Science.gov (United States)

    Studer, Simone; Hocke, Klemens; Kämpfer, Niklaus

    2012-01-01

    GROMOS, the ground-based millimeter-wave ozone spectrometer, continuously measures the stratospheric ozone profile between the altitudes of 20 and 65 km above Bern (46°57‧N, 7°27‧E) since November 1994. Characteristics of intraseasonal oscillations of stratospheric ozone are derived from the long-term data set. Spectral analysis gives evidence for a dominant oscillation period of about 20 days in the lower and middle stratosphere during winter time. A strong 20-day wave is also found in collocated geopotential height measurements of the microwave limb sounder onboard the Aura satellite (Aura/MLS) confirming the ground-based observations of GROMOS and underlining the link between ozone and dynamics. Remarkably, the ozone series of GROMOS show an interannual variability of the strength of intraseasonal oscillations of stratospheric ozone. The interannual variability of ozone fluctuations is possibly due to influences of planetary wave forcing and the quasi-biennial oscillation (QBO) on the meridional Brewer-Dobson circulation of the middle atmosphere. In detail, time series of the mean amplitude of ozone fluctuations with periods ranging from 10 to 60 days are derived at fixed pressure levels. The mean amplitude series are regarded as a measure of the strength of intraseasonal oscillations of stratospheric ozone above Bern. After deseasonalizing the mean amplitude series, we find QBO-like amplitude modulations of the intraseasonal oscillations of ozone. The amplitudes of the intraseasonal oscillations are enhanced by a factor of 2 in 1997, 2001, 2003, and 2005. QBO-like variations of intraseasonal oscillations are also present in wind, temperature and other parameters above Bern as indicated by meteorological reanalyses of the European Centre for Medium-range Weather Forecasts (ECMWF). Further, intercomparisons of interannual variability of intraseasonal tropospheric and stratospheric oscillations are performed where the NAO index (North-Atlantic oscillation

  8. Determination of water vapor and ozone profiles in the middle atmosphere by microwave-spectroscopy. Bestimmung von Wasserdampf- und Ozonprofilen in der mittleren Atmosphaere durch Millimeterwellenspektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Puliafito, S.E.

    1989-10-17

    This work was performed at the Max-Planck-Institut fuer Aeronomie (F.R.G.) and treats the following points: 1. Satellite borne microwave radiometry. Principles for a real-time evaluation of the MAS-Limb-Sounding measurements. (MAS: Millimeter Wave Atmospheric Sounder from Space Shuttle as part of the NASA ATLAS Missions, 1991-1997). (a) Deconvolution of the 60 GHz-antenna. (b) Test of different inversion proceedings. A detailed study of the boundary conditions and 'error influence' as well as a discussion of the radiometer specifications. (c) Near real time inversion of microwave spectral lines of the Earth atmosphere. i. The possibility of a (near) real time evaluation (retrieval of the profiles of the atmospheric components) was proved for the first time with a space proof microprocessor. ii. Data reduction of about a factor > 10{sup 3} in comparison with other methods. 2. Airborne and ground based microwave radiometry. (a) Study of the possibilities of ground- and aircraft based measurements for validation and cross calibration of the satellite measurements. (b) Study of the possibilities of ground based radiometric measurements of water vapour in the Artic or Antartica. Precise boundary conditions were given for the first time in order to perform ground based millimeter radiometric measurements in these areas. (orig.).

  9. Tropospheric ozone from IASI: comparison of different inversion algorithms and validation with ozone sondes in the northern middle latitudes

    Directory of Open Access Journals (Sweden)

    C. Keim

    2009-05-01

    Full Text Available This paper presents a first statistical validation of tropospheric ozone products derived from measurements of the satellite instrument IASI. Since end of 2006, IASI (Infrared Atmospheric Sounding Interferometer aboard the polar orbiter Metop-A measures infrared spectra of the Earth's atmosphere in nadir geometry. This validation covers the northern mid-latitudes and the period from July 2007 to August 2008. The comparison of the ozone products with the vertical ozone concentration profiles from balloon sondes leads to estimates of the systematic and random errors in the IASI ozone products. The intercomparison of the retrieval results from four different sources (including the EUMETSAT ozone products shows systematic differences due to the used methods and algorithms. On average the tropospheric columns have a small bias of less than 2 Dobson Units (DU when compared to the sonde measured columns. The comparison of the still pre-operational EUMETSAT columns shows higher mean differences of about 5 DU.

  10. Coincident Observations of Surface Ozone and NMVOCs over Abu Dhabi

    Science.gov (United States)

    Abbasi, Naveed; Majeed, Tariq; Iqbal, Mazhar; Tarasick, David; Davies, Jonathan; Riemer, Daniel; Apel, Eric

    2016-07-01

    The vertical profiles of ozone are measured coincidently with non-methane volatile organic compounds (NMVOCs) at the meteorological site located at the Abu Dhabi international airport (latitude 24.45N; longitude 54.22E) during the years 2012 - 2014. Some of the profiles show elevated surface ozone >95 ppbv during the winter months (December, January and February). The ground-level NMVOCs obtained from the gas chromatography-flame ionization detection/mass spectrometry system also show elevated values of acetylene, ethane, propane, butane, pentane, benzene, and toluene. NMVOCs and ozone abundances in other seasons are much lower than the values in winter season. NMVOCs are emitted from an extensive number of sources in urban environments including fuel production, distribution, and consumption, and serve as precursor of ozone. Transport sources contribute a substantial portion of the NMVOC burden to the urban atmosphere in developed regions. Abu Dhabi is located at the edge of the Arabian Gulf and is highly affected by emissions from petrochemical industries in the neighboring Gulf region. The preliminary results indicate that wintertime enhancement in ozone is associated with large values of NMVOCs at Abu Dhabi. The domestic production of surface ozone is estimated from the combination of oxygen recombination and NMVOCs and compared with the data. It is estimated that about 40-50% of ozone in Abu Dhabi is transported from the neighbouring petrochemical industries. We will present ozone sounding and NMVOCs data and our model estimates of surface ozone, including a discussion on the high levels of the tropospheric ozone responsible for contaminating the air quality in the UAE. This work is supported by National Research Foundation, UAE.

  11. Long-term change in the source contribution to surface ozone over Japan

    Science.gov (United States)

    Nagashima, Tatsuya; Sudo, Kengo; Akimoto, Hajime; Kurokawa, Junichi; Ohara, Toshimasa

    2017-07-01

    The relative contributions of various source regions to the long-term (1980-2005) increasing trend in surface ozone (O3) over Japan were estimated by a series of tracer-tagging simulations using a global chemical transport model. The model simulated the observed increasing trend in surface O3, including its seasonal variation and geographical features, in Japan well and demonstrated the relative roles of different source regions in forming this trend. Most of the increasing trend in surface O3 over Japan ( ˜ 97 %) that was simulated was explained as the sum of trends in contributions of different regions to photochemical O3 production. The increasing trend in O3 produced in China accounted for 36 % of the total increasing trend and those in the other northeast Asian regions (the Korean Peninsula, coastal regions in East Asia, and Japan) each accounted for about 12-15 %. Furthermore, the contributions of O3 created in the entire free troposphere and in western, southern, and southeastern Asian regions also increased, and their increasing trends accounted for 16 and 7 % of the total trend, respectively. The impact of interannual variations in climate, in methane concentration, and in emission of O3 precursors from different source regions on the relative contributions of O3 created in each region estimated above was also investigated. The variation of climate and the increase in methane concentration together caused the increase of photochemical O3 production in several regions, and represented about 19 % of the total increasing trend in surface O3 over Japan. The increase in emission of O3 precursors in China caused an increase of photochemical O3 production not only in China itself but also in the other northeast Asian regions and accounted for about 46 % of the total increase in surface O3 over Japan. Similarly, the relative impact of O3 precursor emission changes in the Korean Peninsula and Japan were estimated as about 16 and 4 % of the total increasing trend

  12. Estonian total ozone climatology

    Directory of Open Access Journals (Sweden)

    K. Eerme

    Full Text Available The climatological characteristics of total ozone over Estonia based on the Total Ozone Mapping Spectrometer (TOMS data are discussed. The mean annual cycle during 1979–2000 for the site at 58.3° N and 26.5° E is compiled. The available ground-level data interpolated before TOMS, have been used for trend detection. During the last two decades, the quasi-biennial oscillation (QBO corrected systematic decrease of total ozone from February–April was 3 ± 2.6% per decade. Before 1980, a spring decrease was not detectable. No decreasing trend was found in either the late autumn ozone minimum or in the summer total ozone. The QBO related signal in the spring total ozone has an amplitude of ± 20 DU and phase lag of 20 months. Between 1987–1992, the lagged covariance between the Singapore wind and the studied total ozone was weak. The spring (April–May and summer (June–August total ozone have the best correlation (coefficient 0.7 in the yearly cycle. The correlation between the May and August total ozone is higher than the one between the other summer months. Seasonal power spectra of the total ozone variance show preferred periods with an over 95% significance level. Since 1986, during the winter/spring, the contribution period of 32 days prevails instead of the earlier dominating 26 days. The spectral densities of the periods from 4 days to 2 weeks exhibit high interannual variability.

    Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry; volcanic effects – Meteorology and atmospheric dynamics (climatology

  13. The Hole in the Ozone Layer.

    Science.gov (United States)

    Hamers, Jeanne S.; Jacob, Anthony T.

    This document contains information on the hole in the ozone layer. Topics discussed include properties of ozone, ozone in the atmosphere, chlorofluorocarbons, stratospheric ozone depletion, effects of ozone depletion on life, regulation of substances that deplete the ozone layer, alternatives to CFCs and Halons, and the future of the ozone layer.…

  14. Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations

    Directory of Open Access Journals (Sweden)

    C. Vigouroux

    2008-12-01

    Full Text Available Within the European project UFTIR (Time series of Upper Free Troposphere observations from an European ground-based FTIR network, six ground-based stations in Western Europe, from 79° N to 28° N, all equipped with Fourier Transform infrared (FTIR instruments and part of the Network for the Detection of Atmospheric Composition Change (NDACC, have joined their efforts to evaluate the trends of several direct and indirect greenhouse gases over the period 1995–2004. The retrievals of CO, CH4, C2H6, N2O, CHClF2, and O3 have been optimized. Using the optimal estimation method, some vertical information can be obtained in addition to total column amounts. A bootstrap resampling method has been implemented to determine annual partial and total column trends for the target gases. The present work focuses on the ozone results. The retrieved time series of partial and total ozone columns are validated with ground-based correlative data (Brewer, Dobson, UV-Vis, ozonesondes, and Lidar. The observed total column ozone trends are in agreement with previous studies: 1 no total column ozone trend is seen at the lowest latitude station Izaña (28° N; 2 slightly positive total column trends are seen at the two mid-latitude stations Zugspitze and Jungfraujoch (47° N, only one of them being significant; 3 the highest latitude stations Harestua (60° N, Kiruna (68° N and Ny-Ålesund (79° N show significant positive total column trends. Following the vertical information contained in the ozone FTIR retrievals, we provide partial columns trends for the layers: ground-10 km, 10–18 km, 18–27 km, and 27–42 km, which helps to distinguish the contributions from dynamical and chemical changes on the total column ozone trends. We obtain no statistically significant trends in the ground-10 km layer for five out of the six ground-based stations. We find significant positive trends for the lowermost

  15. Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations

    Directory of Open Access Journals (Sweden)

    C. Vigouroux

    2008-03-01

    Full Text Available Within the European project UFTIR (Time series of Upper Free Troposphere observations from an European ground-based FTIR network, six ground-based stations in Western Europe, from 79° N to 28° N, all equipped with Fourier Transform infrared (FTIR instruments and part of the Network for the Detection of Atmospheric Composition Change (NDACC, have joined their efforts to evaluate the trend of several direct and indirect greenhouse gases over the period 1995–2004. The retrievals of CO, CH4, C2H6, N2O, CHClF2, and O3 have been optimized. Using the optimal estimation method, some vertical information can be obtained in addition to total column amounts. A bootstrap resampling method has been implemented to determine annual partial and total column trends for the target gases. The present work focuses on the ozone results. The retrieved time series of partial and total ozone columns are validated with ground-based correlative data (Brewer, Dobson, UV-Vis, ozonesondes, and Lidar. The observed total column ozone trends are in agreement with previous studies: 1 no total column ozone trend is seen at the lowest latitude station Izaña (28° N; 2 slightly positive total column trends are seen at the two mid-latitude stations Zugspitze and Jungfraujoch (47° N, only one of them being significant; 3 the highest latitude stations Harestua (60° N, Kiruna (68° N and Ny-Ålesund (79° N show significant positive total column trends. Following the vertical information contained in the ozone FTIR retrievals, we provide partial columns trends for the layers: ground-10 km, 10–18 km, 18–27 km, and 27–42 km, which helps to distinguish the contributions from dynamical and chemical changes on the total column ozone trends. We obtain no statistically significant trends in the ground–10 km layer for five out of the six ground-based stations. We find significant positive trends for the lowermost

  16. What caused extreme ozone concentrations over Cotonou in December 2005?

    Directory of Open Access Journals (Sweden)

    A. Minga

    2009-10-01

    Full Text Available This paper reports the first record of extreme ozone measurement in Africa. As part of the AMMA program, the ozone vertical profile recorded on 20 December over Cotonou presents exceptionally high ozone concentrations with up to 295 ppbv at 1 km altitude. Retroplumes from the Flexpart model show that the air masses sampled at 1 km over Cotonou on this day come from the burning area situated north-east of Cotonou and pass over Lagos, Nigeria, which is highly impacted by urban pollution. We used the Master Mechanism box model to simulate the chemical composition of the plume during its transit.

    We find that neither the biomass burning emissions of ozone precursors nor additional urban emissions from Lagos are high enough to simulate more than 120–150 ppbv of ozone. The only way to reach almost 300 ppb of ozone within a few hours is to feed the air mass with large amounts of reactive VOCs as those recorded in the vicinity of petrochemical area. Sensitivity tests show that 250–600 ppbv of VOCs combined with 35–80 ppb of NOx allow the ozone concentrations to be higher than 250 ppb. Nigeria is the first African country with gas extraction and petrochemical industries, and petrochemical explosions frequently happen in the vicinity of Lagos. The hypothesis of a petrochemical explosion in this area is the most likely scenario which explains the 295 ppbv ozone maximum measured over Cotonou, downwind of Lagos.

  17. Secondary ozone peaks in the troposphere over the Himalayas

    Science.gov (United States)

    Ojha, Narendra; Pozzer, Andrea; Akritidis, Dimitris; Lelieveld, Jos

    2017-06-01

    Layers with strongly enhanced ozone concentrations in the middle-upper troposphere, referred to as secondary ozone peaks (SOPs), have been observed in different regions of the world. Here we use the global ECHAM5/MESSy atmospheric chemistry model (EMAC) to (i) investigate the processes causing SOPs, (ii) explore both their frequency of occurrence and seasonality, and (iii) assess their effects on the tropospheric ozone budget over the Himalayas. The vertical profiles of potential vorticity (PV) and a stratospheric ozone tracer (O3s) in EMAC simulations, in conjunction with the structure of SOPs, suggest that SOPs over the Himalayas are formed by stratosphere-to-troposphere transport (STT) of ozone. The spatial distribution of O3s further shows that such effects are in general most pronounced in the northern part of India. Model simulated ozone distributions and backward air trajectories show that ozone rich air masses, associated with STT, originate as far as northern Africa and the North Atlantic Ocean, the Middle East, as well as in nearby regions in Afghanistan and Pakistan, and are rapidly (within 2-3 days) transported to the Himalayas. Analysis of a 15-year (2000-2014) EMAC simulation shows that the frequency of SOPs is highest during the pre-monsoon season (e.g. 11 % of the time in May), while no intense SOP events are found during the July-October period. The SOPs are estimated to enhance the tropospheric column ozone (TCO) over the central Himalayas by up to 21 %.

  18. What caused extreme ozone concentrations over Cotonou in December 2005?

    Directory of Open Access Journals (Sweden)

    A. Minga

    2010-02-01

    Full Text Available This paper reports the first record of extreme ozone measurements in Africa. As part of the AMMA program, the ozone vertical profile recorded on 20 December over Cotonou presents exceptionally high ozone concentrations with up to 295 ppb at 1 km altitude. Retroplumes from the Flexpart model show that the air masses sampled at 1 km over Cotonou on this day came from the burning area situated north-east of Cotonou and passed over Lagos, Nigeria, which is highly impacted by urban pollution. We used the Master Mechanism box model to simulate the chemical composition of the plume during its transit.

    We find that neither the biomass burning emissions of ozone precursors nor additional urban emissions from Lagos are high enough to simulate more than 120–150 ppb of ozone. The only way to reach almost 300 ppb of ozone within a few hours is to feed the air mass with large amounts of reactive VOCs as those recorded in the vicinity of petrochemical area. Sensitivity tests show that 250–600 ppb of VOCs combined with 35–80 ppb of NOx allow the ozone concentrations to be higher than 250 ppb. Nigeria is the first African country with gas extraction and petrochemical industries, and petrochemical explosions frequently happen in the vicinity of Lagos. The hypothesis of a petrochemical explosion in this area is the most likely scenario which could explain the 295 ppb ozone maximum measured over Cotonou, downwind of Lagos.

  19. Ozone as an air pollutant

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    1996-01-01

    A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995.......A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995....

  20. Ozone as an air pollutant

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    1996-01-01

    A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995.......A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995....

  1. Tropospheric mercury vertical profiles between 500 and 10 000 m in central Europe

    Science.gov (United States)

    Weigelt, Andreas; Ebinghaus, Ralf; Pirrone, Nicola; Bieser, Johannes; Bödewadt, Jan; Esposito, Giulio; Slemr, Franz; van Velthoven, Peter F. J.; Zahn, Andreas; Ziereis, Helmut

    2016-03-01

    The knowledge of the vertical distribution of atmospheric mercury (Hg) plays an important role in determining the transport and cycling of mercury. However, measurements of the vertical distribution are rare, because airborne measurements are expensive and labour intensive. Consequently, only a few vertical Hg profile measurements have been reported since the 1970s. Besides the Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container (CARIBIC) observations, the latest vertical profile over Europe was measured in 1996. Within the Global Mercury Observation System (GMOS) project, four vertical profiles were taken on board research aircraft (CASA-212) in August 2013 in background air over different locations in Slovenia and Germany. Each vertical profile consists of at least seven 5 min horizontal flight sections from 500 m above ground to 3000 m a.s.l. Gaseous elemental mercury (GEM) and total gaseous mercury (TGM) were measured with Tekran 2537X and Tekran 2537B analysers. In addition to the mercury measurements, SO2, CO, O3, NO, and NO2, basic meteorological parameters (pressure, temperature, relative humidity) have been measured. Additional ground-based mercury measurements at the GMOS master site in Waldhof, Germany and measurements onboard the CARIBIC passenger aircraft were used to extend the profile to the ground and upper troposphere respectively. No vertical gradient was found inside the well-mixed boundary layer (variation of less than 0.1 ng m-3) at different sites, with GEM varying from location to location between 1.4 and 1.6 ng m-3 (standard temperature and pressure, STP: T = 273.15 K, p = 1013.25 hPa). At all locations GEM dropped to 1.3 ng m-3 (STP) when entering the free troposphere and remained constant at higher altitudes. The combination of the vertical profile, measured on 21 August 2013 over Leipzig, Germany, with the CARIBIC measurements during ascent and descent to Frankfurt Airport, Germany, taken at

  2. Ozone pollution affects flower numbers and timing in a simulated BAP priority calcareous grassland community.

    Science.gov (United States)

    Hayes, Felicity; Williamson, Jennifer; Mills, Gina

    2012-04-01

    Mesocosms representing the BAP Priority habitat 'Calcareous Grassland' were exposed to eight ozone profiles for twelve-weeks in two consecutive years. Half of the mesocosms received a reduced watering regime during the exposure periods. Numbers and timing of flowering in the second exposure period were related to ozone concentration and phytotoxic ozone dose (accumulated stomatal flux). For Lotus corniculatus, ozone accelerated the timing of the maximum number of flowers. An increase in mean ozone concentration from 30ppb to 70ppb corresponded with an advance in the timing of maximum flowering by six days. A significant reduction in flower numbers with increasing ozone was found for Campanula rotundifolia and Scabiosa columbaria and the relationship with ozone was stronger for those that were well-watered than for those with reduced watering. These changes in flowering timing and numbers could have large ecological impacts, affecting plant pollination and the food supply of nectar feeding insects.

  3. OZONE ABSORPTION IN RAW WATERS

    Directory of Open Access Journals (Sweden)

    LJILJANA TAKIĆ

    2008-03-01

    Full Text Available The ozone absorption in raw water entering the main ozonization step at the Belgrade drinking water supply plant was investigated in a continuous stirred tank reactor (CSTR. A slow chemical reaction rate of dissolved ozone and pollutants present in raw water have been experimentally determined. The modified Hatta number was defined and calculated as a criterion which determines whether and to which extent the reactions of ozone and pollutants influence the rate of the pure physical ozone absorption.

  4. Ozone - plant surface reactions an important ozone loss term?

    Science.gov (United States)

    Hansel, Armin; Jud, Werner; Fischer, Lukas; Canaval, Eva; Wohlfahrt, Georg; Tissier, Alain

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants responsible for global crop losses with associated economic costs of several billions dollar per year. Plant injuries have been related to the uptake of ozone through stomatal pores and oxidative effects damaging the internal leaf tissue. But a striking question remains: How much ozone enters the plant through open stomata and how much ozone is lost by chemical reactions at the plant surface? Until now surface losses are estimated from measured total ozone deposition fluxes and calculated stomatal conductance values. While stomatal conductance of CO2 and H2O is well understood and extensively used in describing plant atmosphere gas exchange, stomatal conductance of ozone is not well known. Here we use different Nicotiana tabacum varieties and find that surface reactions of ozone with diterpenoids synthesized by glandular trichomes reduce ozone flux through open stomata. Our measurements reveal that fast ozone loss at the plant surface is accompanied with prompt release of oxygenated volatile compounds. In the ozone fumigation experiments of different Nicotiana tabacum varieties the release of specific volatile oxy-VOCs allowed to identify the semi volatile precursor compounds at the plant surface. Ozone fumigation experiments with Norway spruce (Picea abies) and Scots Pine (Pinus sylvestris), two common species in the Northern Hemisphere, show also a significant ozone loss at the plant surface for Picea abies. Fluid dynamic calculations of ozone transport in the diffusive leaf boundary layer reveal a vertical but no horizontal ozone gradient thus reducing ozone fluxes through the pores in case of efficient ozone scavenging plant surfaces. We explain this efficient ozone protection mechanism by the porous surface architecture of plants in combination with unsaturated semi-volatile compounds deposited at the plant surface. These results show that unsaturated semi-volatile compounds at

  5. Low Ozone in the Marine Boundary Layer of the Tropical Pacific Ocean

    Science.gov (United States)

    Singh, Hanwant B.; Gregory, G. L.; Andesrson, B.; Browell, E.; Sachse, G. W.; Davis, D. D.; Crawford, J.; Bradshaw, J. D.; Talbot, R.; Blake, D. R.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Aircraft measurements of ozone, its key precursors, and a variety of chemical tracers were made in the troposphere of the western and central Pacific in October 1991. These data are presented and analyzed to examine the occurrence of low ozone concentrations in the remote marine boundary layer of the tropical and equatorial Pacific Ocean. The data from these flights out of Guam, covering an area extending from the equator to 20 N and from south of the Philippines to Hawaii, show average O3 concentrations as low as 8-9 ppb (ppb=10(exp-9)v/v) at altitudes of 0.3-0.5 km in the boundary layer. Individual measurements as low as 2-5 ppb were recorded. Low O3 concentrations do not always persist in space and time. High O3, generally associated with the transport of upper tropospheric air, was also encountered in the boundary layer. In practically all cases, O3 increased to values as large as 25-30 ppb within 2 km above the boundary layer top. Steady state model computations are used to suggest that these low O3 concentrations are a result of net photochemical O3 destruction in a low NO environment, sea-surface deposition, and extremely low net entrainment rates (1-2 mm per second) from the free troposphere. Day/night measurements of ethane, propane, gaseous and aerosol Cl suggest that daytime (morning) Cl atom concentrations in the vicinity of 10(exp 5) molecules per cubic centimeter may be present in the marine boundary layer. This Cl atom abundance can be rationalized only if sea salt aerosols can release free chlorine (Cl2) to the gas phase in the presence of sun light (and possibly O3). These Cl atom concentrations, however, are still insufficient and Cl (or Br) chemistry is not likely to be an important cause of the observed low O3.

  6. A Comparison of OMPS Total Column Ozone Data with Data from Ground Stations

    Science.gov (United States)

    Labow, G. J.; McPeters, R. D.; Yang, E. S.; Haffner, D. P.

    2015-12-01

    The total column ozone dataset from Suomi NPP Ozone Mapping Profiler Suite (OMPS) has been recently reprocessed with new instrument calibrations. An overview will be presented systematically comparing ozone values to an ensemble of Brewer and Dobson spectrophotometers. The comparisons were made as a function of latitude, solar zenith angle, reflectivity and total ozone. The nadir mapper overpass data are derived from the single best match measurement, almost always located within one degree of the ground station and usually made within an hour and half of local noon. The total column ozone measurements from the Nadir Profiler instrument have also been compared to the ground-based measurements and these results will also be shown. An additional level 3 gridded product, 1 degree by 1 degree has been produced with corrections implemented in order to minimize the cross-track biases. This corrected data set yields a less noisy product and a smoother gridded ozone map.

  7. Comparing and evaluating model estimates of background ozone in surface air over North America

    Science.gov (United States)

    Oberman, J.; Fiore, A. M.; Lin, M.; Zhang, L.; Jacob, D. J.; Naik, V.; Horowitz, L. W.

    2011-12-01

    maximum in PRB predicted by AM3 likely reflects stronger exchange between the surface and the free troposphere relative to GC, including a larger influence of stratospheric ozone. Higher summertime PRB in GC may be associated with differences in how the models treat the lightning NOx source (~10 times higher in GC over the Southwest U.S.). Biomass burning emissions (treated differently in the two models) contribute to episodic PRB enhancements in AM3 over the Midwest and East Coast. We conclude that further multi-model studies, including additional models, could provide the EPA with a more robust estimate of PRB, particularly if designed to isolate the relative roles of emissions, chemistry and transport, and evaluated with observation-based constraints wherever possible.

  8. Ozone, greenhouse effect. Ozone, effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Aviam, A.M.; Arthaut, R.

    1992-12-01

    This file is made of eight general papers on environment (climates under observation, research on photo-oxidizing pollution, scientific aspects of stratospheric ozone layer, urban engineering and environment, glory of public gardens, earths not very natural, darwinism and society, economical data on environment). (A.B.). refs., 3 tabs.

  9. Chemical composition and optical properties of aerosols in the lower mixed layer and the free troposphere. Final report of the AFS project; Chemische Zusammensetzung und optische Eigenschaften des Aerosols in der freien Troposphaere. Abschlussbericht zum AFS-Projekt

    Energy Technology Data Exchange (ETDEWEB)

    Asseng, H. [Freie Univ. Berlin (Germany). Inst. fuer Weltraumwissenschaften]|[Max-Planck-Institut fuer Chemie, Mainz (Germany). Abt. Biogeochemie; Fischer, J. [Freie Univ. Berlin (Germany). Inst. fuer Weltraumwissenschaften; Helas, G. [Max-Planck-Institut fuer Chemie, Mainz (Germany). Abt. Biogeochemie; Weller, M. [Deutscher Wetterdienst, Potsdam (Germany). Meteorologisches Observatorium

    2001-08-02

    Aerosol radiative forcing is the largest unknown in current climate models and, as a result, in predicting future climate. Accurate vertically-resolved measurements of aerosol optical properties are an important element of improved climate prediction (IPCC). The present project has contributed to this objective. Jets of directly and remotely determined radiation data have been provided suitable to cut down the uncertainty of column- or layer related optical aerosol parameters. In the present case mean values and profiles of spectral scattering - and absorption coefficients have been retrieved from ground based and airborne sky-radiance/solar irradiance measurements. Available analyses of size and chemical composition of sampled particles (adjoined projects) have been also taken into consideration. The retrieved parameters have served as an input for modelling the radiative transfer exactly for the real time of measurements. Closure procedures yielded finally realistic spectral scattering - and absorption coefficients typically for the lower troposphere in a mostly rural Central European region. (orig.) [German] Die ungenuegende Kenntnis strahlungswirksamer, optischer Aerosolparameter ist laut IPCC die groesste Unbekannte bei der Modellierung des Klimas und seiner Veraenderung. Wissenschaft und Technik bemuehen sich in sog. Schliessungsexperimenten aus der Ueberbestimmung direkt und indirekt gemessener Aerosolparameter genaue(re) Kenntnis (Mittelwert/Variation) ueber deren Klimawirksamkeit zu erlangen. Im vorliegenden Projekt wurden aus verschiedenen passiven, spektralen Messungen von Streulicht und Transmission der Atmosphaere in verschiedenen Hoehen sowie aus der Beruecksichtigung von Partikelanalysen Dritter, Streu- und Absorptionskoeffizienten des Aerosols der gesamten Luftsaeule und in vertikaler Aufloesung abgeleitet. Strahlungstransportmodellierungen mit den gewonnenen Aerosolparametern als input engten ueber den Vergleich mit den Messungen deren Grad an

  10. Artificial ozone holes

    CERN Document Server

    Dolya, S N

    2014-01-01

    This article considers an opportunity of disinfecting a part of the Earth surface, occupying a large area of ten thousand square kilometers. The sunlight will cause dissociation of molecular bromine into atoms; each bromine atom kills thirty thousand molecules of ozone. Each bromine plate has a mass of forty milligrams grams and destroys ozone in the area of hundred square meters. Thus, to form the ozone hole over the area of ten thousand square kilometers, it is required to have the total mass of bromine equal to the following four tons.

  11. Lidar Observations of the Vertical Structure of Ozone and Aerosol during Wintertime High-Ozone Episodes Associated with Oil and Gas Exploration in the Uintah Basin

    Science.gov (United States)

    Senff, C. J.; Langford, A. O.; Banta, R. M.; Alvarez, R. J.; Weickmann, A.; Sandberg, S.; Marchbanks, R. D.; Brewer, A.; Hardesty, R. M.

    2013-12-01

    The Uintah Basin in northeast Utah has been experiencing extended periods of poor air quality in the winter months including very high levels of surface ozone. To investigate the causes of these wintertime ozone pollution episodes, two comprehensive studies were undertaken in January/February of 2012 and 2013. As part of these Uintah Basin Ozone Studies (UBOS), NOAA deployed its ground-based, scanning Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar to document the vertical structure of ozone and aerosol backscatter from near the surface up to about 3 km above ground level (AGL). TOPAZ, along with a comprehensive set of chemistry and meteorological measurements, was situated in both years at the Horse Pool site at the northern edge of a large concentration of gas producing wells in the eastern part of the Uintah Basin. The 2012 study was characterized by unusually warm and snow-free condition and the TOPAZ lidar observed deep boundary layers (BL) and mostly well-mixed vertical ozone profiles at or slightly above tropospheric background levels. During UBOS 2013, winter weather conditions in the Uintah Basin were more typical with snow-covered ground and a persistent, shallow cold-pool layer. The TOPAZ lidar characterized with great temporal and spatial detail the evolution of multiple high-ozone episodes as well as cleanout events caused by the passage of synoptic-scale storm systems. Despite the snow cover, the TOPAZ observations show well-mixed afternoon ozone and aerosol profiles up to about 100 m AGL. After several days of pollutant buildup, BL ozone values reached 120-150 ppbv. Above the mixed layer, ozone values gradually decreased to tropospheric background values of around 50 ppbv throughout the several-hundred-meter-deep cold-pool layer and then stayed constant above that up to about 3 km AGL. During the ozone episodes, the lidar observations show no indication of either vertical or horizontal transport of high ozone levels to the surface, thus

  12. Vertical distribution of ozone at the terminator on Mars

    Science.gov (United States)

    Maattanen, Anni; Lefevre, Franck; Guilbon, Sabrina; Listowski, Constantino; Montmessin, Franck

    2016-10-01

    The SPICAM/Mars Express UV solar occultation dataset gives access to the ozone vertical distribution via the ozone absorption in the Hartley band (220-280 nm). We present the retrieved ozone profiles and compare them to the LMD Mars Global Climate Model (LMD-MGCM) results.Due to the photochemical reactivity of ozone, a classical comparison of local density profiles is not appropriate for solar occultations that are acquired at the terminator, and we present here a method often used in the Earth community. The principal comparison is made via the slant profiles (integrated ozone concentration on the line-of-sight), since the spherical symmetry hypothesis made in the onion-peeling vertical inversion method is not valid for photochemically active species (e.g., ozone) around terminator. For each occultation, we model the ozone vertical and horizontal distribution with high solar zenith angle (or local time) resolution around the terminator and then integrate the model results following the lines-of-sight of the occultation to construct the modeled slant profile. We will also discuss the difference of results between the above comparison method and a comparison using the local density profiles, i.e., the observed ones inverted by using the spherical symmetry hypothesis and the modeled ones extracted from the LMD-MGCM exactly at the terminator. The method and the results will be presented together with the full dataset.SPICAM is funded by the French Space Agency CNES and this work has received funding from the European Union's Horizon 2020 Programme (H2020-Compet-08-2014) under grant agreement UPWARDS-633127.

  13. Forecasts and assimilation experiments of the Antarctic ozone hole 2008

    Science.gov (United States)

    Flemming, J.; Inness, A.; Jones, L.; Eskes, H. J.; Huijnen, V.; Schultz, M. G.; Stein, O.; Cariolle, D.; Kinnison, D.; Brasseur, G.

    2011-03-01

    The 2008 Antarctic ozone hole was one of the largest and most long-lived in recent years. Predictions of the ozone hole were made in near-real time (NRT) and hindcast mode with the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). The forecasts were carried out both with and without assimilation of satellite observations from multiple instruments to provide more realistic initial conditions. Three different chemistry schemes were applied for the description of stratospheric ozone chemistry: (i) a linearization of the ozone chemistry, (ii) the stratospheric chemical mechanism of the Model of Ozone and Related Chemical Tracers, version 3, (MOZART-3) and (iii) the relaxation to climatology as implemented in the Transport Model, version 5, (TM5). The IFS uses the latter two schemes by means of a two-way coupled system. Without assimilation, the forecasts showed model-specific shortcomings in predicting start time, extent and duration of the ozone hole. The assimilation of satellite observations from the Microwave Limb Sounder (MLS), the Ozone Monitoring Instrument (OMI), the Solar Backscattering Ultraviolet radiometer (SBUV-2) and the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) led to a significant improvement of the forecasts when compared with total columns and vertical profiles from ozone sondes. The combined assimilation of observations from multiple instruments helped to overcome limitations of the ultraviolet (UV) sensors at low solar elevation over Antarctica. The assimilation of data from MLS was crucial to obtain a good agreement with the observed ozone profiles both in the polar stratosphere and troposphere. The ozone analyses by the three model configurations were very similar despite the different underlying chemistry schemes. Using ozone analyses as initial conditions had a very beneficial but variable effect on the predictability of the ozone hole over 15 days. The

  14. Effects of ion-exchange treatment on bromate formation and oxidation efficiency during ozonation

    OpenAIRE

    Echigo, S.; Itoh, S.; Niwa, A

    2012-01-01

    Ion-exchange treatment is a promising technique for removing hydrophilic compounds during drinking water treatment. In this study, we applied several different ion exchangers (i.e., anion exchange resins and a hydrotalcite compound) to bromide removal to minimize bromate formation during ozonation. It was found that ion-exchange treatment affected ozone and hydroxyl radical concentration profiles as well as bromate ion concentration after ozonation. Selecting an appropriate ion exchanger is i...

  15. Addressing Ozone Layer Depletion

    Science.gov (United States)

    Access information on EPA's efforts to address ozone layer depletion through regulations, collaborations with stakeholders, international treaties, partnerships with the private sector, and enforcement actions under Title VI of the Clean Air Act.

  16. 2001 Ozone Design Value

    Data.gov (United States)

    U.S. Environmental Protection Agency — Ozone is generated by a complex atmoshperic chemical process. Industrial and automobile pollutants in the form of oxides of nitrogen and hydrocarbons react in the...

  17. COMPRESSOR TYPE OZONATOR

    Directory of Open Access Journals (Sweden)

    Gulyaev P. V.

    2016-05-01

    Full Text Available The article is devoted to the development of a compressor type ozonator. It describes the design of a high-productivity compressor ozone generator, which can be used for industrial decontamination of mixed feeds, water, milk, and in the system of presowing treatment of seeds. This construction allows generating ozone with high concentration to 5 g/m3 at high feed air or oxygen from the compressor station (up to 2000 l/min. The article describes the design of the basic elements of tubular ozone generator, examines the factors influencing the productivity of the ozonator. The proposed mathematical model allows calculating the productivity of the ozonator when considering multiple influencing factors. These factors take into account: the parameters of supply voltage, such as the magnitude and frequency of the supply voltage; the configuration and geometrical parameters of electrodes such as, the area of the electrodes, the configuration of the surface of the electrodes and distance between electrodes; parameters dielectric barrier; and the transported gas parameters such as volume, temperature, pressure and composition. Special attention is paid to the design of the electrodes made of woven wire mesh with mesh sizes from 1.5×1.5 to 2.0×2.0 mm. It is noted, that such electrodes allow obtaining the maximum productivity of an ozonator, and they do not lead to overheating of the dielectric barrier, and do not output down the generator. In the same way, the article presents the results of the mathematical modeling of ozone generator productivity while changing various factors

  18. Highlights of TOMS Version 9 Total Ozone Algorithm

    Science.gov (United States)

    Bhartia, Pawan; Haffner, David

    2012-01-01

    The fundamental basis of TOMS total ozone algorithm was developed some 45 years ago by Dave and Mateer. It was designed to estimate total ozone from satellite measurements of the backscattered UV radiances at few discrete wavelengths in the Huggins ozone absorption band (310-340 nm). Over the years, as the need for higher accuracy in measu