WorldWideScience

Sample records for free-electron laser sources

  1. Inverse free electron laser accelerator for advanced light sources

    Directory of Open Access Journals (Sweden)

    J. P. Duris

    2012-06-01

    Full Text Available We discuss the inverse free electron laser (IFEL scheme as a compact high gradient accelerator solution for driving advanced light sources such as a soft x-ray free electron laser amplifier or an inverse Compton scattering based gamma-ray source. In particular, we present a series of new developments aimed at improving the design of future IFEL accelerators. These include a new procedure to optimize the choice of the undulator tapering, a new concept for prebunching which greatly improves the fraction of trapped particles and the final energy spread, and a self-consistent study of beam loading effects which leads to an energy-efficient high laser-to-beam power conversion.

  2. Crystallographic data processing for free-electron laser sources

    International Nuclear Information System (INIS)

    White, Thomas A.; Barty, Anton; Stellato, Francesco; Holton, James M.; Kirian, Richard A.; Zatsepin, Nadia A.; Chapman, Henry N.

    2013-01-01

    A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show that the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam

  3. Crystallographic data processing for free-electron laser sources

    Energy Technology Data Exchange (ETDEWEB)

    White, Thomas A., E-mail: taw@physics.org; Barty, Anton; Stellato, Francesco [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Holton, James M. [University of California, San Francisco, CA 94158 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kirian, Richard A. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Arizona State University, Tempe, AZ 85287 (United States); Zatsepin, Nadia A. [Arizona State University, Tempe, AZ 85287 (United States); Chapman, Henry N. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2013-07-01

    A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show that the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam.

  4. Free electron laser

    International Nuclear Information System (INIS)

    Ortega, J.M.; Billardon, M.

    1986-01-01

    Operation principle of a laser and an oscillator are recalled together with the klystron one. In the free electron laser, electrons go through an undulator or an optical klystron. Principles of the last one are given. The two distinct ways of producing coherent radiation with an undulator and an optical klystron are presented. The first one is the use of the free electron laser, the second is to make use of the spontaneous emission generation (harmonics generation). The different current types of free electron lasers are presented (Stanford, Los Alamos, Aco at Orsay). Prospects and applications are given in conclusion [fr

  5. Smith-Purcell free-electron laser

    International Nuclear Information System (INIS)

    Woods, K.J.; Walsh, J.E.

    1995-01-01

    The term Smith-Purcell free electron laser can be employed generally to describe any coherent radiation source in which a diffraction grating is used to couple an electron beam with the electromagnetic field. To date, most practical developments of this concept have focused on devices which operate in the millimeter spectral regime. In this paper construction of a Smith-Purcell free-electron laser operating in the far-infrared (FIR) region using a novel resonator cavity design and the electron beam from a low energy (0.5-5 MeV) radio-frequency accelerator will be discussed. A tunable source in this region would have many applications and since the beam energy is low, the small size and low overall cost of such a device would make it a laboratory instrument. Current projects which are progressing towards developing a FIR source are the programs at Stanford and CREOL. Both of these projects are using permanent magnet undulators to couple the electron beam with the electromagnetic field. An alternative approach is to use an electron beam passing over a diffraction grating as the radiating mechanism. This phenomenon is known as Smith-Purcell radiation and was first demonstrated for incoherent emission at visible wavelengths. The addition of feedback enhances the stimulated component of the emission which leads to the growth of coherence. Recent calculations for spontaneous emission have shown that the wiggler parameter and the grating efficiency are analogous. This result has important implications for the development of a Smith-Purcell FEL because a grating based free-electron laser would offer a greater range of tunability at a lower cost than its wiggler based counterpart

  6. Free Electron Laser in Poland

    CERN Document Server

    Romaniuk, Ryszard

    2009-01-01

    The idea of building a new IVth generation of light sources of high luminosity, which use accelerators, arose in the 80ties of XXth century. Now, in a numerable synchrotron and laser laboratories in Europe, there is carried out, since a couple of years, intense applied research on free electron lasers (FEL) [17,18]. Similarly, in this country, free electron laser in Poland – POLFEL [9] is, in a design, a coherent light source of the IVth generation, characterized by very short pulses in the range of 10-100fs, of big power 0,2GW and UV wavelength of 27nm, of average power 1W, with effective high power third harmonic of 9nm. The laser consists of a linear superconducting accelerator 100m in length, undulator and experimental lines. It generates a monochromatic and coherent radiation and can be tuned from THz range via IR, visible to UV, and potentially to X-rays. The linac works in quasi-CW or real-CW mode. It is planned by IPJ [9,10] and XFEL-Poland Consortium [16] as a part of the ESFRI [1] priority EuroFEL...

  7. Short-wavelength free-electron laser sources and science: a review

    Science.gov (United States)

    Seddon, E. A.; Clarke, J. A.; Dunning, D. J.; Masciovecchio, C.; Milne, C. J.; Parmigiani, F.; Rugg, D.; Spence, J. C. H.; Thompson, N. R.; Ueda, K.; Vinko, S. M.; Wark, J. S.; Wurth, W.

    2017-11-01

    This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime. The aim is to provide newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications. Initial consideration is given to FEL theory in order to provide the foundation for discussion of FEL output properties and the technical challenges of short-wavelength FELs. This is followed by an overview of existing x-ray FEL facilities, future facilities and FEL frontiers. To provide a context for information in the above sections, a detailed comparison of the photon pulse characteristics of FEL sources with those of other sources of high brightness x-rays is made. A brief summary of FEL beamline design and photon diagnostics then precedes an overview of FEL scientific applications. Recent highlights are covered in sections on structural biology, atomic and molecular physics, photochemistry, non-linear spectroscopy, shock physics, solid density plasmas. A short industrial perspective is also included to emphasise potential in this area. Dedicated to John M J Madey (1943-2016) and Rodolfo Bonifacio (1940-2016) whose perception, drive and perseverance paved the way for the realisation and development of short-wavelength free-electron lasers.

  8. Linac-driven XUV free-electron laser

    International Nuclear Information System (INIS)

    Newnam, B.E.; Goldstein, J.C.; Fraser, J.S.; Cooper, R.K.

    1983-01-01

    Use of an rf linear accelerator as the electron source for a free-electron laser operating in the extreme ultraviolet wavelength range from 100 nm to at least as low as 50 nm appears feasible. Peak and average power outputs of greater than 100 kW and 50W, respectively, are predicted

  9. Detailed characterization of electron sources yielding first demonstration of European X-ray Free-Electron Laser beam quality

    Directory of Open Access Journals (Sweden)

    F. Stephan

    2010-02-01

    Full Text Available The photoinjector test facility at DESY, Zeuthen site (PITZ, was built to develop and optimize photoelectron sources for superconducting linacs for high-brilliance, short-wavelength free-electron laser (FEL applications like the free-electron laser in Hamburg (FLASH and the European x-ray free-electron laser (XFEL. In this paper, the detailed characterization of two laser-driven rf guns with different operating conditions is described. One experimental optimization of the beam parameters was performed at an accelerating gradient of about 43  MV/m at the photocathode and the other at about 60  MV/m. In both cases, electron beams with very high phase-space density have been demonstrated at a bunch charge of 1 nC and are compared with corresponding simulations. The rf gun optimized for the lower gradient has surpassed all the FLASH requirements on beam quality and rf parameters (gradient, rf pulse length, repetition rate and serves as a spare gun for this facility. The rf gun studied with increased accelerating gradient at the cathode produced beams with even higher brightness, yielding the first demonstration of the beam quality required for driving the European XFEL: The geometric mean of the normalized projected rms emittance in the two transverse directions was measured to be 1.26±0.13  mm mrad for a 1-nC electron bunch. When a 10% charge cut is applied excluding electrons from those phase-space regions where the measured phase-space density is below a certain level and which are not expected to contribute to the lasing process, the normalized projected rms emittance is about 0.9 mm mrad.

  10. High frequency free-electron laser results

    International Nuclear Information System (INIS)

    Boyer, K.; Brau, C.A.; Newman, B.E.; Stein, W.E.; Warren, R.W.; Winston, J.G.; Young, L.M.

    1983-01-01

    By looking at the free-electron laser as a particle accelerator working backwards, Morton realized that the techniques used to accelerate particles could be used to improve the performance of free-electron lasers. In particular, he predicted the capture of electrons in ''stable-phase'' regions, or ''buckets'' in the electron phase space, and proposed that by decelerating the buckets, the trapped electrons could be decelerated to extract significant amounts of their energy as optical radiation. In fact, since electrons not trapped in the stable regions are forever excluded from them--at least in the adiabatic approximation--displacement techniques could also be used to accelerate or decelerate electrons in a free-electron laser. This paper explains the principle behind ''phase-displacement'' acceleration and details an experiment carried out with a 20-MeV electron beam to test these predictions. Results obtained with a tapered-wiggler free-electron laser demonstrate the concepts proposed by Morton for enhanced efficiency. They show deceleration of electrons by as much as 7% and extraction of more than 3% of the total electron-beam energy as laser energy when the laser is operated as an amplifier. The experiment is presently being reconfigured to examine its performance as a laser oscillator

  11. A free-electron laser fourth-generation X-ray source

    International Nuclear Information System (INIS)

    Moncton, D. E.

    1999-01-01

    The field of synchrotrons radiation research has grown rapidly over the last 25 years due to both the push of the accelerator and magnet technology that produces the x-ray beams and the pull of the extraordinary scientific research those beams make possible. Three successive generations of synchrotrons radiation facilities have resulted in beam brilliances 11 to 12 orders of magnitude greater than the standard laboratory x-ray tube. However, greater advances can be easily imagined given the fact that x-ray beams from present-day facilities do not exhibit the coherence or time structure so familiar with the.optical laser. Theoretical work over the last ten years or so has pointed to the possibility of generating hard x-ray beams with laser-like characteristics. The concept is based on self-amplified spontaneous emission in free electron lasers. The use of a superconducting linac could produce a major, cost-effective facility that spans wavelengths from the ultraviolet to the hard x-ray regime, simultaneously servicing large numbers experimenters from a wide range of disciplines. As with each past generation of synchrotron facilities, immense new scientific opportunities from fourth-generation sources

  12. Research on heightening quality of free electron laser using superconducting linear accelerator

    International Nuclear Information System (INIS)

    Minehara, Eisuke

    1996-01-01

    In this paper, the superconducting high frequency linear accelerator technology using low temperature superconductor is introduced, and its application to the heightening of quality of free electron laser is discussed. The high frequency application of superconductivity is a relatively new technology, and the first superconducting high frequency linear accelerator was made at the middle of 1960s. The invention of free electron laser and the development so far are described. In free electron laser, the variation of wavelength, high efficiency and high power output are possible as compared with conventional type lasers. The price and the size are two demerits of free electron laser that remain to the last. In Japan Atomic Energy Research Institute, the adjustment experiment is carried out for the prototype free electron laser. About this prototype, injection system, superconducting accelerator, helium refrigerator, whole solid element high frequency power source, control system, electron beam transport system, undulator system and optical resonator are described. The application of high mean power output free electron laser and its future are discussed. (K.I.)

  13. Free-electron laser driven by the LBNL laser-plasma accelerator

    International Nuclear Information System (INIS)

    Schroeder, C.B.; Fawley, W.M.; Gruner, F.; Bakeman, M.; Nakamura, K.; Robinson, K.E.; Toth, Cs.; Esarey, E.; Leemans, W.P.

    2008-01-01

    A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by ahigh-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source (∼10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (>10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10 13 photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

  14. Linac technology for free-electron lasers

    International Nuclear Information System (INIS)

    Cooper, R.K.; Morton, P.L.; Wilson, P.B.; Keefe, D.; Faltens, A.

    1983-01-01

    The purpose of this paper is to concentrate on the properties of high-energy electron linear accelerators for use in free-electron lasers operating principally in the Compton regime. To fix our focus somewhat, we shall consider electron energies in the 20- to 200-MeV range and consider requirements for high-power free-electron lasers operating in the 0.5- to 10-μm range. Preliminary remarks are made on high-power free-electron laser amplifiers and oscillators and some desirable characteristics of the linacs that deliver electron beams for these devices. Both the high peak-current requirements of the amplifier and the high pulse-repetition frequency requirements of the oscillator can be met by present-day linac technology, although not necessarily by the same machine. In this papers second and third section, the technology of two rather different types of linear accelerators, the rf linac and the induction linac, is reviewed. In conclusion, applications to the Free Electron Lasers are stated

  15. Rippled beam free electron laser amplifier

    Science.gov (United States)

    Carlsten, Bruce E.

    1999-01-01

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  16. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    International Nuclear Information System (INIS)

    Li, S.; Alverson, S.; Bohler, D.; Egger, A.; Fry, A.

    2017-01-01

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency. Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μm. In conclusion, our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.

  17. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    Science.gov (United States)

    Li, S.; Alverson, S.; Bohler, D.; Egger, A.; Fry, A.; Gilevich, S.; Huang, Z.; Miahnahri, A.; Ratner, D.; Robinson, J.; Zhou, F.

    2017-08-01

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency. Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μ m . Our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.

  18. Applications of Free Electron Lasers in Biology and Medicine

    International Nuclear Information System (INIS)

    Pelka, J.B.; Tybor, K.R.; Nietubyc, R.; Wrochna, G.

    2010-01-01

    The advent of free electron lasers opens up new opportunities to probe the dynamics of ultrafast processes and the structure of matter with unprecedented spatial and temporal resolution. New methods inaccessible with other known types of radiation sources can be developed, resulting in a breakthrough in deep understanding the fundamentals of life as well as in numerous medical and biological applications. In the present work the properties of free electron laser radiation that make the sources excellent for probing biological matter at an arbitrary wavelength, in a wide range of intensities and pulse durations are briefly discussed. A number of biophysical and biomedical applications of the new sources, currently considered among the most promising in the field, are presented. (author)

  19. Spontaneous emission and gain in a waveguide free-electron laser

    International Nuclear Information System (INIS)

    Golightly, W.J.; Ride, S.K.

    1991-01-01

    A free-electron laser enclosed in a waveguide of narrowly spaced parallel plates has been proposed as a compact, coherent source of far-infrared radiation. In this paper, the spontaneous emission and small-signal gain of such a device are analyzed. Maxwell's equations are solved for the fields of a relativistic electron beam passing through a linearly polarized undulator in the presence of a parallel-plane waveguide. The radiation intensity is resolved into its component waveguide modes for the fundamental frequency and for all harmonics. The intensity profile in a given harmonic mode is altered significantly when a parameter involving the undulator period, beam energy, and transverse dimension of the guide is such that the radiation group velocity is close to the electrons' axial velocity. The small-signal gain in the waveguide free-electron laser is calculated and related to the spontaneous emission. Near zero slip, the gain curve is significantly different from that of a free-space free-electron laser with the same parameters

  20. From Storage Rings to Free Electron Lasers for Hard X-Rays

    International Nuclear Information System (INIS)

    Nuhn, H

    2004-01-01

    The intensity of X-ray sources has increased at a rapid rate since the late 1960s by 10 orders of magnitude and more through the use of synchrotron radiation produced by bending magnets, wigglers and undulators. Three generations of radiation sources have been identified depending on amplitude and quality of the radiation provided. While user facilities of the third generation were being constructed a new concept of radiation generating devices was being developed that offers an even larger increase in peak and average brightness than had been achieved till then. The new concept of the X-ray Free Electron Laser based on the principle of Self-Amplified Spontaneous Emission will be the basis of fourth generation X-ray source user facilities of this century. The paper will start with a brief history of the development of x-ray sources, discuss some of the differences between storage ring and free electron laser based approaches, and close with an update of the present development of x-ray free electron laser user facilities

  1. From Storage Rings to Free Electron Lasers for Hard X-Rays

    Energy Technology Data Exchange (ETDEWEB)

    Nuhn, H

    2004-01-09

    The intensity of X-ray sources has increased at a rapid rate since the late 1960s by 10 orders of magnitude and more through the use of synchrotron radiation produced by bending magnets, wigglers and undulators. Three generations of radiation sources have been identified depending on amplitude and quality of the radiation provided. While user facilities of the third generation were being constructed a new concept of radiation generating devices was being developed that offers an even larger increase in peak and average brightness than had been achieved till then. The new concept of the X-ray Free Electron Laser based on the principle of Self-Amplified Spontaneous Emission will be the basis of fourth generation X-ray source user facilities of this century. The paper will start with a brief history of the development of x-ray sources, discuss some of the differences between storage ring and free electron laser based approaches, and close with an update of the present development of x-ray free electron laser user facilities.

  2. From storage rings to free electron lasers for hard x-rays

    International Nuclear Information System (INIS)

    Nuhn, Heinz-Dieter

    2004-01-01

    The intensity of x-ray sources has increased at a rapid rate since the late 1960s by ten orders of magnitude and more through the use of synchrotron radiation produced by bending magnets, wigglers and undulators. Three generations of radiation sources have been identified depending on amplitude and quality of the radiation provided. While user facilities of the third generation were being constructed, a new concept of radiation generating devices was being developed that offers an even larger increase in peak and average brightness than had been achieved till then. The new concept of the x-ray free electron laser based on the principle of self-amplified spontaneous emission will be the basis of fourth generation x-ray source user facilities of this century. The paper will start with a brief history of the development of x-ray sources, it will then discuss some of the differences between storage ring and free electron laser based approaches, and will close with an update of the present development of x-ray free electron laser user facilities

  3. Laser Assisted Free-Free Transition in Electron - Atom Collision

    Science.gov (United States)

    Sinha, C.; Bhatia, A. K.

    2011-01-01

    Free-free transition is studied for electron-Hydrogen atom system in ground state at very low incident energies in presence of an external homogeneous, monochromatic and linearly polarized laser field. The incident electron is considered to be dressed by the laser in a non perturbative manner by choosing the Volkov solutions in both the channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the effect of electron exchange, short range as well as of the long range interactions. Laser assisted differential as well as elastic total cross sections are calculated for single photon absorption/emission in the soft photon limit, the laser intensity being much less than the atomic field intensity. A strong suppression is noted in the laser assisted cross sections as compared to the field free situations. Significant difference is noted in the singlet and the triplet cross sections.

  4. Modified two beam accelerator driven by a D.C. pelletron free electron laser

    International Nuclear Information System (INIS)

    Larson, D.

    1985-01-01

    Assembling the next generation of linear particle accelerators requires progress in three areas. (1) Sources must be developed to provide the coherent electromagnetic radiation used to power the device. (2) Physical structures must be designed which efficiently transfer the power to the high energy beam. (3) Cooling techniques must be developed in order to enhance beam transport and to provide sufficient luminosity. This paper will describe a method of obtaining a highly efficient coherent radiation source by using a continuous wave Free Electron Laser (FEL). Several possibilities exist for an accelerating structure which could use this radiation as a power source. These include scaling down the size of traditional RF cavities, inverse free electron lasers, and surface grating schemes. Inverse free electron lasers have the possibility of intrinsic cooling of the high energy beam

  5. Free-electron lasers considered for CEBAF

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Spinoff development of industrial free-electron lasers is in prospect for an industry-universitylaboratory consortium centred at the Continuous Electron Beam Accelerator Facility in Newport News, Virginia, site of the CEBAF 4 GeV superconducting radiofrequency (SRF) accelerator, now being commissioned (see page 42). Together with several US corporations and universities, the Laboratory is now also addressing the potential of smaller SRF electron accelerators for ''driving'' free-electron lasers (FELs)

  6. Photonic Free-Electron Lasers

    NARCIS (Netherlands)

    van der Slot, Petrus J.M.; Denis, T.; Lee, J.H.H.; van Dijk, M.W.; Boller, Klaus J.

    2012-01-01

    A photonic free-electron laser (pFEL) produces coherent Cerenkov radiation from a set of parallel electron beams streaming through a photonic crystal. The function of the crystal is to slow down the phase velocity of a copropagating electromagnetic wave, such that also mildly relativistic electrons

  7. Design of a compact application-oriented free-electron laser

    International Nuclear Information System (INIS)

    Chan, K.C.D.; Meier, K.; Nguyen, D.; Sheffield, R.; Wang, T.S.; Warren, R.W.; Wilson, W.; Young, L.M.

    1992-01-01

    The goal of the Advanced Free-Electron Laser Project at the Los Alamos National Laboratory is to demonstrate that a free-electron laser (FEL) suitable for industrial, medical, and research applications can be built. This FEL system should be efficient, compact, robust, and user-friendly. To achieve this goal, we have incorporated advanced components presently available. Electrons produced by a photoelectron source are accelerated to 20 MeV by a high-brightness accelerator. They are transported by an emittance-preserving beamline with permanent-magnet quadrupoles and dipoles. The electron beam has excellent instantaneous beam quality better than: 2.5 π mm mrad in transverse emittance and 0.3% in energy spread at a Peak current up to 310 A. It is used to excite a FEL oscillator with a pulsed-current microwiggler. Including operation at higher harmonics, the laser wavelength extends from 3.7 μm to 0.4 μm

  8. Design of a compact application-oriented free-electron laser

    Science.gov (United States)

    Chan, K. C. D.; Meier, K.; Nguyen, D.; Sheffield, R.; Wang, T. S.; Warren, R. W.; Wilson, W.; Young, L. M.

    The goal of the Advanced Free-Electron Laser Project at the Los Alamos National Laboratory is to demonstrate that a free-electron laser (FEL) suitable for industrial, medical, and research applications can be built. This FEL system should be efficient, compact, robust, and user-friendly. To achieve this goal, we have incorporated advanced components presently available. Electrons produced by a photoelectron source are accelerated to 20 MeV by a high-brightness accelerator. They are transported by an emittance-preserving beamline with permanent-magnet quadrupoles and dipoles. The electron beam has excellent instantaneous beam quality better than: 2.5 (pi) mm mrad in transverse emittance and 0.3 percent in energy spread at a Peak current up to 310 A. It is used to excite a FEL oscillator with a pulsed-current microwiggler. Including operation at higher harmonics, the laser wavelength extends from 3.7 to 0.4 microns.

  9. Microwave free-electron laser applications for electron cyclotron heating of plasmas

    International Nuclear Information System (INIS)

    Thomassen, K.

    1990-01-01

    Millimeter wave power may be the ideal source of heat for the plasma, but advances in technology are needed to meet requirements of next generation fusion devices. Free electron lasers (FEL) are one candidate for such sources, and this paper reviews the progress, issues of physics and technology, and potential benefits for fusion from these devices

  10. High-efficiency free-electron laser results

    International Nuclear Information System (INIS)

    Boyer, K.; Baru, C.A.; Newnam, B.E.; Stein, W.E.; Warren, R.W.; Winston, J.G.; Young, L.M.

    1983-01-01

    Results obtained with a tapered-wiggler free-electron laser demonstrate the concepts proposed by Morton for enhanced efficiency and show deceleration of electrons by as much as 7%, and extraction of more than 3% of the total electron-beam energy as laser energy when the laser is operated as an amplifier. The experiment is presently being reconfigured to examine its performance as a laser oscillator

  11. Free-electron laser results

    International Nuclear Information System (INIS)

    Stein, W.E.; Brau, C.A.; Newnam, B.E.; Warren, R.W.; Winston, J.; Young, L.M.

    1981-01-01

    The Los Alamos free-electron laser (FEL) amplifier experiment was designed to demonstrate high efficiency for transfer of energy from an electron beam to a light beam in the magnetic field of a tapered wiggler. Initial results indicate an energy transfer consistent with theory. Distinct groups of decelerated electrons as well as accelerated electrons are clearly present in the energy spectrum of electrons emerging from the wiggler when the laser light is present. The observed energy decrease for the electrons captured in the decelerating bucket is approx. 6% and the average decrease of the entire energy distribution is approx. 2% for the conditions of these initial measurements

  12. An XUV/VUV free-electron laser oscillator

    Science.gov (United States)

    Goldstein, J. C.; Newnam, B. E.; Cooper, R. K.; Comly, J. C., Jr.

    Problems regarding the extension of free-electron laser technology from the visible and near infrared region, where such devices are currently operating, to the ultraviolet have recently been extensively discussed. It was found that significant technical problems must be overcome before free-electron lasers (FELs) can be operated in the VUV (100-200 nm) and the XUV (50-100). However, the present lack of other intense and tunable sources of coherent radiation at these wavelengths together with the intrinsic properties of FELs make the development of such devices potentially very rewarding. The properties of FELs include continuous tunability in wavelength and output in the form of a train of picosecond pulses. An investigation is conducted regarding the feasibility of an operation of a FEL in the XUV/VUV regions, taking into account a theoretical model. It is found that modest improvements in electron beam and optical mirror technologies will make the design of a FEL for operation in the 50-200-nm range of optical wavelength possible.

  13. Applications for Energy Recovering Free Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    George Neil

    2007-08-01

    The availability of high-power, high-brilliance sources of tunable photons from energy-recovered Free Electron Lasers is opening up whole new fields of application of accelerators in industry. This talk will review some of the ideas that are already being put into production, and some of the newer ideas that are still under development.

  14. Progress toward the Wisconsin Free Electron Laser

    International Nuclear Information System (INIS)

    Bisognano, Joseph; Bosch, R.A.; Eisert, D.; Fisher, M.V.; Green, M.A.; Jacobs, K.; Kleman, K.J.; Kulpin, J.; Rogers, G.C.; Lawler, J.E.; Yavuz, D.; Legg, R.

    2011-01-01

    The University of Wisconsin-Madison/Synchrotron Radiation Center is advancing its design for a seeded VUV/soft X-ray Free Electron Laser facility called WiFEL. To support this vision of an ultimate light source, we are pursuing a program of strategic R and D addressing several crucial elements. This includes development of a high repetition rate, VHF superconducting RF electron gun, R and D on photocathode materials by ARPES studies, and evaluation of FEL facility architectures (e.g., recirculation, compressor scenarios, CSR dechirping, undulator technologies) with the specific goal of cost containment. Studies of high harmonic generation for laser seeding are also planned.

  15. Undulators and free-electron lasers

    CERN Document Server

    Luchini, P

    1990-01-01

    This book is a reference text for all those working in free-electron laser research as well as being a learning aid for physicists and graduate students who wish an introduction to this field. Only a basic understanding of relativistic mechanics and electromagnetism is presupposed. After an overview of early developments and general principles of operation, the different models that can be used to describe free-electron lasers are presented, organized according to their range of applicability. The relevent conceptual and mathematical constructs are built up from first principles with attention to obtaining the practically important results in a simple but rigorous way. Interaction of the undulator with the driving electron accelerator and the laser cavity and design of undulator magnets are treated and an overview is given of some typical experiments.

  16. Microwave free-electron laser applications for electron cyclotron heating of plasmas

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1990-01-01

    Millimeter wave power may be the ideal source of heat for a plasma, but advances in technology are needed to meet requirements of next generation fusion devices. Free electron lasers (FEL) are one candidate for such sources, and this paper reviews the progress, issues of physics and technology, and potential benefits for fusion from these devices. 15 refs., 13 figs

  17. The Two-Beam Free Electron Laser Oscillator

    CERN Document Server

    Thompson, Neil R

    2004-01-01

    A one-dimensional model of a free-electron laser operating simultaneously with two electron beams of different energies [1] is extended to an oscillator configuration. The electron beam energies are chosen so that an harmonic of the lower energy beam is at the fundamental radiation wavelength of the higher energy beam. Potential benefits over a single-beam free-electron laser oscillator are discussed.

  18. Biological applications of ultraviolet free-electron lasers

    International Nuclear Information System (INIS)

    Sutherland, J.C.

    1997-10-01

    This review examines the possibilities for biological research using the three ultraviolet free-electron lasers that are nearing operational status in the US. The projected operating characteristics of major interest in biological research of the free-electron lasers at Brookhaven National Laboratory, the Thomas Jefferson National Accelerator Facility, and Duke University are presented. Experimental applications in the areas of far- and vacuum ultraviolet photophysics and photochemistry, structural biology, environmental photobiology, and medical research are discussed and the prospects for advances in these areas, based upon the characteristics of the new ultraviolet free-electron lasers, are evaluated

  19. Design of a free-electron laser driven by the LBNL laser-plasma-accelerator

    International Nuclear Information System (INIS)

    Schroeder, C.B.; Fawley, W.M.; Montgomery, A.L.; Robinson, K.E.; Gruner, F.; Bakeman, M.; Leemans, W.P.

    2007-01-01

    We discuss the design and current status of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, VUV pulses driven by a high-current, GeV electron beam from the existing Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few cm. The proposed ultra-fast source would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science with pulse lengths of tens of fs. Owing to the high current ( and 10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 1013 photons/pulse. Devices based both on SASE and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered

  20. FreeDam - A webtool for free-electron laser-induced damage in femtosecond X-ray crystallography

    Science.gov (United States)

    Jönsson, H. Olof; Östlin, Christofer; Scott, Howard A.; Chapman, Henry N.; Aplin, Steve J.; Tîmneanu, Nicuşor; Caleman, Carl

    2018-03-01

    Over the last decade X-ray free-electron laser (XFEL) sources have been made available to the scientific community. One of the most successful uses of these new machines has been protein crystallography. When samples are exposed to the intense short X-ray pulses provided by the XFELs, the sample quickly becomes highly ionized and the atomic structure is affected. Here we present a webtool dubbed FreeDam based on non-thermal plasma simulations, for estimation of radiation damage in free-electron laser experiments in terms of ionization, temperatures and atomic displacements. The aim is to make this tool easily accessible to scientists who are planning and performing experiments at XFELs.

  1. Aerosol Imaging with a Soft X-ray Free Electron Laser

    International Nuclear Information System (INIS)

    Bogan, Michael J.; Boutet, Sebastien; Chapman, Henry N.; Marchesini, Stefano; Barty, Anton; Benner, W. Henry; Rohner, Urs; Frank, Matthias; Hau-Riege, Stefan P.; Bajt, Sasa; Woods, Bruce; Seibert, M.M.; Iwan, Bianca; Timneanu, Nicusor; Hajdu, Janos; Schulz, Joachim

    2010-01-01

    Lasers have long played a critical role in the advancement of aerosol science. A new regime of ultrafast laser technology has recently be realized, the world's first soft xray free electron laser. The Free electron LASer in Hamburg, FLASH, user facility produces a steady source of 10 femtosecond pulses of 7-32 nm x-rays with 10 12 photons per pulse. The high brightness, short wavelength, and high repetition rate (>500 pulses per second) of this laser offers unique capabilities for aerosol characterization. Here we use FLASH to perform the highest resolution imaging of single PM2.5 aerosol particles in flight to date. We resolve to 35 nm the morphology of fibrous and aggregated spherical carbonaceous nanoparticles that existed for less than two milliseconds in vacuum. Our result opens the possibility for high spatialand time-resolved single particle aerosol dynamics studies, filling a critical technological need in aerosol science.

  2. Radially resolved simulation of a high-gain free electron laser amplifier

    International Nuclear Information System (INIS)

    Fawley, W.M.; Prosnitz, D.; Doss, S.; Gelinas, R.

    1983-01-01

    The results of a two-dimensional simulation of a high-gain free electron laser (FEL) amplifier is presented. The simulation solves the inhomogeneous paraxial wave equation. The source term is radially resolved and is obtained by tracking the interaction of the laser field with localized macroparticles

  3. Analysis of coherence properties of 3-rd generation synchrotron sources and free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Vartanyants, I.A.; Singer, A. [HASYLAB at Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)

    2009-07-15

    A general theoretical approach based on the results of statistical optics is used for the analysis of the transverse coherence properties of 3-rd generation synchrotron sources and X-ray free-electron lasers (XFEL). Correlation properties of the wave elds are calculated at different distances from an equivalent Gaussian Schell-model source. This model is used to describe coherence properties of the five meter undulator source at the synchrotron storage ring PETRA III. In the case of XFEL sources the decomposition of the statistical fields into a sum of independently propagating transverse modes is used for the analysis of the coherence properties of these new sources. A detailed calculation is performed for the parameters of the SASE1 undulator at the European XFEL. It is demonstrated that only a few modes contribute significantly to the total radiation field of that source. (orig.)

  4. Analysis of coherence properties of 3-rd generation synchrotron sources and free-electron lasers

    International Nuclear Information System (INIS)

    Vartanyants, I.A.; Singer, A.

    2009-07-01

    A general theoretical approach based on the results of statistical optics is used for the analysis of the transverse coherence properties of 3-rd generation synchrotron sources and X-ray free-electron lasers (XFEL). Correlation properties of the wave elds are calculated at different distances from an equivalent Gaussian Schell-model source. This model is used to describe coherence properties of the five meter undulator source at the synchrotron storage ring PETRA III. In the case of XFEL sources the decomposition of the statistical fields into a sum of independently propagating transverse modes is used for the analysis of the coherence properties of these new sources. A detailed calculation is performed for the parameters of the SASE1 undulator at the European XFEL. It is demonstrated that only a few modes contribute significantly to the total radiation field of that source. (orig.)

  5. Beam manipulation for compact laser wakefield accelerator based free-electron lasers

    International Nuclear Information System (INIS)

    Loulergue, A; Labat, M; Benabderrahmane, C; Couprie, M E; Evain, C; Malka, V

    2015-01-01

    Free-electron lasers (FELs) are a unique source of light, particularly in the x-ray domain. After the success of FELs based on conventional acceleration using radio-frequency cavities, an important challenge is the development of FELs based on electron bunching accelerated by a laser wakefield accelerator (LWFA). However, the present LWFA electron bunch properties do not permit use directly for a significant FEL amplification. It is known that longitudinal decompression of electron beams delivered by state-of-the-art LWFA eases the FEL process. We propose here a second order transverse beam manipulation turning the large inherent transverse chromatic emittances of LWFA beams into direct FEL gain advantage. Numerical simulations are presented showing that this beam manipulation can further enhance by orders of magnitude the peak power of the radiation. (paper)

  6. Ginzburg's invention of undulators and their role in modern synchrotron radiation sources and free electron lasers

    International Nuclear Information System (INIS)

    Kulipanov, Gennadii N

    2007-01-01

    Undulators - periodic magnetic structures that were originally introduced by Vitalii Ginzburg in 1947 for electromagnetic radiation generation using relativistic electrons - are among the key elements of modern synchrotron radiation sources and free electron lasers (FELs). In this talk, the history of three generations of storage ring-based synchrotron X-ray sources using wigglers and undulators is briefly traced. Prospects for two types of next-generation space-coherent X-ray sources are discussed, which use long undulators and energy recovery accelerators or, alternatively, employ linear accelerator-based FELs. The recently developed Novosibirsk terahertz FEL facility, currently the world' s most powerful terahertz source, is described. It was the generation of electromagnetic radiation in this range that Ginzburg discussed in his 1947 work. (oral issue of the journal 'uspekhi fizicheskikh nauk')

  7. Electron beam properties and impedance characterization for storage rings used for free electron lasers

    International Nuclear Information System (INIS)

    Dattoli, G.; Mezi, L.; Renieri, A.; Migliorati, M.; Walker, R.

    2000-01-01

    Good electron beam qualities and stability are the crucial features of Storage Rings dedicated to synchrotron radiation sources or to Free Electron Laser. Most of these characteristics depends on the coupling of the e-beam with the machine environment, which can be in turn modelled in terms of a characteristic impedance, whose absolute value and structure can be used to specify both the stability (longitudinal and transverse) of the beam and its qualities (energy spread, bunch length, peak current ...). In this paper are considered two specific examples of Storage Rings used for FEL operation and analyze their performances by means of semi analytical and numerical methods. The analysis is aimed at clarifying the dependence of beam energy spread and bunch length on beam current and at providing a set of parameters useful for the optimization of Free Electron Laser or synchrotron radiation sources [it

  8. Nonlinear theory of the free-electron laser

    International Nuclear Information System (INIS)

    Chian, A.C.-L.; Padua Brito Serbeto, A. de.

    1984-01-01

    A theory of Raman free-electron laser using a circularly polarized electromagnetic pump is investigated. Coupled wave equations that describe both linear and nonlinear evolution of stimulated Raman scattering are derived. The dispersion relation and the growth rate for the parametric instability are obtained. Nonlinear processes that may lead to saturation of the free-electron laser are discussed. (Author) [pt

  9. PROCEEDING OF THE SEEDED X-RAY FREE ELECTRON LASER WORKSHOP.

    Energy Technology Data Exchange (ETDEWEB)

    WANG,X.J.; MURPHY,J.B.; YU,L.H.; FAATZ,B.; HUANG,Z.; REICHE,S.; ZOLOTOREV,M.

    2002-12-13

    The underlying theory of a high gain free electron laser (FEL) has existed for two decades [1-2], but it is only in the last few years that these novel radiation sources have been realized experimentally. Several high gain FELs have successfully reached saturation in the infrared, visible and the VUV portion of the spectrum: the High Gain Harmonic Generation (HGHG) free electron lasers [3] at BNL and the Self Amplified Spontaneous Emission (SASE) FELs at LEUTL, VISA and TTF [4-6]. The outstanding challenges for future FELs are to extend high gain FELs to the X-ray regime, improve the longitudinal coherence of the radiation using seeded FEL schemes and generate ultrashort pulses (<100 fs). The National Synchrotron Light Source (NSLS) of the Brookhaven National Laboratory (BNL) sponsored a Seeded X-ray Free Electron Laser Workshop on December 13-14, 2002 to explore these challenging issues. Representatives from BNL, DESY, LBNL, SLAC and UCLA made presentations on the novel schemes under consideration at their laboratories. Workshop participants had a lively discussion on the feasibility, performance and R&D issues associated with the seeded XFEL schemes. An improvement of the electron beam quality will certainly be necessary to drive the XFEL. Self-seeding SASE, cascaded HGHG, and SASE pulse compression FELs show the most promise for producing short pulse X-rays. Of these, only the self-seeded and HGHG schemes generate longitudinally coherent radiation. While the pulse length in the self-seeded scheme is determined by the electron bunch length ({approx}100 fs), the pulse length in the HGHG scheme is determined by the short pulse seed laser, and so can be much shorter ({approx} 20 fs).

  10. The free electron laser: conceptual history

    International Nuclear Information System (INIS)

    Madey, John; Scully, Marlan O; Sprangle, Phillip

    2016-01-01

    The free electron laser (FEL) has lived up to its promise as given in (Madey 1971 J. Appl. Phys. 42 1906) to wit: ‘As shall be seen, finite gain is available …from the far-infrared through the visible region …with the further possibility of partially coherent radiation sources in the x-ray region’. In the present paper we review the history of the FEL drawing liberally (and where possible literally) from the original sources. Coauthors, Madey, Scully and Sprangle were involved in the early days of the subject and give a first hand account of the subject with an eye to the future. (invited comment)

  11. Attosecond time-energy structure of X-ray free-electron laser pulses

    Science.gov (United States)

    Hartmann, N.; Hartmann, G.; Heider, R.; Wagner, M. S.; Ilchen, M.; Buck, J.; Lindahl, A. O.; Benko, C.; Grünert, J.; Krzywinski, J.; Liu, J.; Lutman, A. A.; Marinelli, A.; Maxwell, T.; Miahnahri, A. A.; Moeller, S. P.; Planas, M.; Robinson, J.; Kazansky, A. K.; Kabachnik, N. M.; Viefhaus, J.; Feurer, T.; Kienberger, R.; Coffee, R. N.; Helml, W.

    2018-04-01

    The time-energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modulations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science.

  12. Development of superconducting acceleration cavity technology for free electron lasers

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10 9 at 2.5K, and 8x10 9 at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers

  13. Development of superconducting acceleration cavity technology for free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10{sup 9} at 2.5K, and 8x10{sup 9} at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers.

  14. The Livermore Free-Electron Laser Program Magnet Test Laboratory

    International Nuclear Information System (INIS)

    Burns, M.J.; Kulke, B.; Deis, G.A.; Frye, R.W.; Kallman, J.S.; Ollis, C.W.; Tyler, G.C.; Van Maren, R.D.; Weiss, W.C.

    1987-01-01

    The Lawrence Livermore National Laboratory (LLNL) Free-Electron Laser Program Magnet Test Laboratory supports the ongoing development of the Induction Linac Free Electron Laser (IFEL) and uses magnetic field measurement systems that are useful in the testing of long periodic magnetic structures, electron-beam transport magnets, and spectrometer magnets. The major systems described include two computer-controlled, three-axis Hall probe-and-search coil transports with computer-controlled data acquisition; a unique, automated-search coil system used to detect very small inaccuracies in wiggler fields; a nuclear magnetic resonance (NMR)-based Hall probe-calibration facility; and a high-current DC ion source using heavy ions of variable momentum to model the transport of high-energy electrons. Additionally, a high-precision electron-beam-position monitor for use within long wigglers that has a positional resolution of less than 100 μm is under development in the laboratory and will be discussed briefly. Data transfer to LLNL's central computing facility and on-line graphics enable us to analyze large data sets quickly. 3 refs

  15. A compact x-ray free electron laser

    International Nuclear Information System (INIS)

    Barletta, W.; Attac, M.; Cline, D.B.

    1988-01-01

    We present a design concept and simulation of the performance of a compact x-ray, free electron laser driven by ultra-high gradient rf-linacs. The accelerator design is based on recent advances in high gradient technology by a LLNL/SLAC/LBL collaboration and on the development of bright, high current electron sources by BNL and LANL. The GeV electron beams generated with such accelerators can be concerted to soft x-rays in the range from 2--10 nm by passage through short period, high fields strength wigglers as are being designed at Rocketdyne. Linear light sources of this type can produce trains of picosecond (or shorter) pulses of extremely high spectral brilliance suitable for flash holography of biological specimens in vivo and for studies of fast chemical reactions. 12 refs., 8 figs., 4 tabs

  16. Inter-dependence of the electron beam excitations with the free electron laser stability on the super-ACO storage ring

    CERN Document Server

    Couprie, Marie Emmanuelle; Nutarelli, D; Renault, E; Billardon, M

    1999-01-01

    Storage ring free electron lasers have a complex dynamics as compared to the LINAC driven FEL sources since both the laser and the recirculating electron beam behaviours are involved. Electron beam perturbations can strongly affect the FEL operation (start-up, stability) whereas the FEL can stabilize beam instabilities. Experimental analysis together with simulations are reported here. Improvements of the Super-ACO FEL for users is discussed, and consequences are given in terms of electron beam tolerances for a source development for users.

  17. Synchrotron radiation and free electron laser activities in Novosibirsk

    International Nuclear Information System (INIS)

    Korchuganov, V.N.; Kulipanov, G.N.; Mezentsev, N.A.; Oreshkov, A.D.; Panchenko, V.E.; Pindyurin, V.F.; Skrinskij, A.N.; Sheromov, M.A.; Vinokurov, N.A.; Zolotarev, K.V.

    1994-01-01

    The results of studies realized in the Siberian synchrotron radiation centre within the frameworks of wide program of synchrotron radiation and free electron laser research are summarized. The technical information on the VEPP-2M, VEPP-3 and VEPP-4M storage rings used as synchrotron radiation sources is given. 10 refs.; 8 figs.; 12 tabs

  18. Free-Electron Lasers Push Into New Frontiers

    International Nuclear Information System (INIS)

    Benson, Stephen V.

    2003-01-01

    From the early days of the development of free-electron lasers (FELs) the promise of high power and short wavelengths has tantalized physicists and other scientists. Recent developments in accelerator technologies and some new discoveries about the physics of FELs have allowed researchers to push the performance of FELs into new frontiers of high power, short wavelength, and ultra-short pulses. Spin-offs from the FELs have also opened up new radiation sources in the THz, X-ray and gamma ray wavelength ranges

  19. Ultrafast magnetodynamics with free-electron lasers

    Science.gov (United States)

    Malvestuto, Marco; Ciprian, Roberta; Caretta, Antonio; Casarin, Barbara; Parmigiani, Fulvio

    2018-02-01

    The study of ultrafast magnetodynamics has entered a new era thanks to the groundbreaking technological advances in free-electron laser (FEL) light sources. The advent of these light sources has made possible unprecedented experimental schemes for time-resolved x-ray magneto-optic spectroscopies, which are now paving the road for exploring the ultimate limits of out-of-equilibrium magnetic phenomena. In particular, these studies will provide insights into elementary mechanisms governing spin and orbital dynamics, therefore contributing to the development of ultrafast devices for relevant magnetic technologies. This topical review focuses on recent advancement in the study of non-equilibrium magnetic phenomena from the perspective of time-resolved extreme ultra violet (EUV) and soft x-ray spectroscopies at FELs with highlights of some important experimental results.

  20. Workshop on scientific and industrial applications of free electron lasers

    International Nuclear Information System (INIS)

    Difilippo, F.C.; Perez, R.B.

    1990-05-01

    A Workshop on Scientific and Industrial Applications of Free Electron Lasers was organized to address potential uses of a Free Electron Laser in the infrared wavelength region. A total of 13 speakers from national laboratories, universities, and the industry gave seminars to an average audience of 30 persons during June 12 and 13, 1989. The areas covered were: Free Electron Laser Technology, Chemistry and Surface Science, Atomic and Molecular Physics, Condensed Matter, and Biomedical Applications, Optical Damage, and Optoelectronics

  1. Free-electron laser theory

    International Nuclear Information System (INIS)

    Dattoli, G.; Torre, A.

    1989-01-01

    The essential features of the theory of the free electron laser (FEL) are given in some detail. Beginning with an explanation of the basic gain mechanism, the lectures continue with a discussion of the problems associated with single-passage and recirculated (storage-ring) operation. Pulse propagation effects and the so-called 'lethargic' behaviour are analysed more completely. Finally, elements of FEL quantum theory are reported, in order to clarify the laser process from the microscopic point of view. Appendices give a fuller treatment of optical cavities and undulator magnets. (orig.)

  2. X-ray Free-electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Feldhaus, J.; /DESY; Arthur, J.; Hastings, J.B.; /SLAC

    2007-02-23

    In a free-electron laser (FEL) the lasing medium is a high-energy beam of electrons flying with relativistic speed through a periodic magnetic field. The interaction between the synchrotron radiation that is produced and the electrons in the beam induces a periodic bunching of the electrons, greatly increasing the intensity of radiation produced at a particular wavelength. Depending only on a phase match between the electron energy and the magnetic period, the wavelength of the FEL radiation can be continuously tuned within a wide spectral range. The FEL concept can be adapted to produce radiation wavelengths from millimeters to Angstroms, and can in principle produce hard x-ray beams with unprecedented peak brightness, exceeding that of the brightest synchrotron source by ten orders of magnitude or more. This paper focuses on short-wavelength FELs. It reviews the physics and characteristic properties of single-pass FELs, as well as current technical developments aiming for fully coherent x-ray radiation pulses with pulse durations in the 100 fs to 100 as range. First experimental results at wavelengths around 100 nm and examples of scientific applications planned on the new, emerging x-ray FEL facilities are presented.

  3. Free-electron lasers 2

    International Nuclear Information System (INIS)

    Petroff, Y.

    1989-01-01

    This book presents papers on free-electron laser technology. The authors cover technological developments on existing FELs, new FEL research, and the use of FELs in experimental investigations. Among the studies reported are lasing in the visible and UV on the Novosibirsk VEPP-3 storage ring, description of Japanese FEL research, and Mark III FEL, and the Paladin results

  4. Improvement of the quality of laser-wakefield accelerators: towards a compact free-electron laser

    International Nuclear Information System (INIS)

    Lehe, R.

    2014-01-01

    When an intense and short laser pulse propagates through an underdense gas, it can accelerate a fraction of the electrons of the gas, and thereby generate an electron bunch with an energy of a few hundreds of MeV. This phenomenon, which is referred to as laser-wakefield acceleration, has many potential applications, including the design of ultra-bright X-ray sources known as free electron lasers (FEL). However, these applications require the electron bunch to have an excellent quality (low divergence, emittance and energy spread). In this thesis, different solutions to improve the quality of the electron bunch are developed, both analytically and through the use of Particle-In-Cell (PIC) simulations. It is first shown however that PIC simulations tend to erroneously overestimate the emittance of the bunch, due to the numerical Cherenkov effect. Thus, in order to correctly estimate the emittance, a modified PIC algorithm is proposed, which is not subject to this unphysical Cherenkov effect. Using this algorithm, we have observed and studied a new mechanism to generate the electron bunch: optical transverse injection. This mechanism can produce bunches with a high charge, a low emittance and a low energy spread. In addition, we also proposed an experimental setup - the laser-plasma lens - which can strongly reduce the final divergence of the bunch. Finally, these results are put into context by discussing the properties required for the design of a compact FEL. It is shown in particular that laser-wakefield accelerator could be advantageously combined with innovative laser-plasma undulators, in order to produce bright X-rays sources. (author)

  5. FELIX: A proposal for a free electron laser experiment at Daresbury

    International Nuclear Information System (INIS)

    Thompson, D.J.

    1980-01-01

    Although the Stanford Group has clearly demonstrated the feasibility of the free electron laser (of the type working in the low current density regime), and a great deal of theoretical work has been done before and since that time, there is still very little experimental data on such devices and very little practical experience. One of the reasons for this is the cost of suitable electron beam sources. At Daresbury the NINA injector linac is in store and could be recommissioned at much less than the cost of a new machine. It is believed that there is a scientific case for infra-red sources of the FEL type, because of their high power and tunability and that they would complement a synchrotron radiation source which provides intense VUV and X-ray beams. FELIX is a free electron laser experiment using the NINA linac with an output tunable over the range 57-150 μm, proposed as a project to produce experimental data on FEL characteristics and provide practical experience which could lead to a new generation of infra-red sources. The paper will describe a design study which has been carried out and is presently under consideration by the Science Research Council. (orig.)

  6. High-efficiency free-electron-laser experiments

    International Nuclear Information System (INIS)

    Boyer, K.; Brau, C.A.; Goldstein, J.C.; Hohla, K.L.; Newnam, B.E.; Stein, W.E.; Warren, R.W.; Winston, J.G.

    1983-01-01

    Experiments with a tapered-wiggler free-electron laser have demonstrated extraction of about 3% of the energy from the electron beam and measured the corresponding optical emission. These results are in excellent agreement with theory and represent an order-of-magnitude improvement over all previous results

  7. XUV/VUV free-electron laser oscillator

    International Nuclear Information System (INIS)

    Goldstein, J.C.; Newnam, B.E.; Cooper, R.K.; Comly, J.C. Jr.

    1984-04-01

    It is shown, from computations based on a detailed theoretical model, that modest improvements in electron beam and optical mirror technologies will enable a free-electron laser, driven by an rf linear accelerator, to operate in the 50 to 200-nm range of optical wavelengths. 10 references

  8. Electron Bunch Timing with Femtosecond Precision in a Superconducting Free-Electron Laser

    Science.gov (United States)

    Löhl, F.; Arsov, V.; Felber, M.; Hacker, K.; Jalmuzna, W.; Lorbeer, B.; Ludwig, F.; Matthiesen, K.-H.; Schlarb, H.; Schmidt, B.; Schmüser, P.; Schulz, S.; Szewinski, J.; Winter, A.; Zemella, J.

    2010-04-01

    High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter.

  9. Electron Bunch Timing with Femtosecond Precision in a Superconducting Free-Electron Laser

    International Nuclear Information System (INIS)

    Loehl, F.; Arsov, V.; Felber, M.; Hacker, K.; Lorbeer, B.; Ludwig, F.; Matthiesen, K.-H.; Schlarb, H.; Schmidt, B.; Winter, A.; Jalmuzna, W.; Schmueser, P.; Schulz, S.; Zemella, J.; Szewinski, J.

    2010-01-01

    High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter.

  10. Synchrotron light sources and free-electron lasers accelerator physics, instrumentation and science applications

    CERN Document Server

    Khan, Shaukat; Schneider, Jochen; Hastings, Jerome

    2016-01-01

    Hardly any other discovery of the nineteenth century did have such an impact on science and technology as Wilhelm Conrad Röntgen’s seminal find of the X-rays. X-ray tubes soon made their way as excellent instruments for numerous applications in medicine, biology, materials science and testing, chemistry and public security. Developing new radiation sources with higher brilliance and much extended spectral range resulted in stunning developments like the electron synchrotron and electron storage ring and the freeelectron laser. This handbook highlights these developments in fifty chapters. The reader is given not only an inside view of exciting science areas but also of design concepts for the most advanced light sources. The theory of synchrotron radiation and of the freeelectron laser, design examples and the technology basis are presented. The handbook presents advanced concepts like seeding and harmonic generation, the booming field of Terahertz radiation sources and upcoming brilliant light sources dri...

  11. A spectral unaveraged algorithm for free electron laser simulations

    International Nuclear Information System (INIS)

    Andriyash, I.A.; Lehe, R.; Malka, V.

    2015-01-01

    We propose and discuss a numerical method to model electromagnetic emission from the oscillating relativistic charged particles and its coherent amplification. The developed technique is well suited for free electron laser simulations, but it may also be useful for a wider range of physical problems involving resonant field–particles interactions. The algorithm integrates the unaveraged coupled equations for the particles and the electromagnetic fields in a discrete spectral domain. Using this algorithm, it is possible to perform full three-dimensional or axisymmetric simulations of short-wavelength amplification. In this paper we describe the method, its implementation, and we present examples of free electron laser simulations comparing the results with the ones provided by commonly known free electron laser codes

  12. Multi-dimensional free-electron laser simulation codes: a comparison study

    CERN Document Server

    Biedron, S G; Dejus, Roger J; Faatz, B; Freund, H P; Milton, S V; Nuhn, H D; Reiche, S

    2000-01-01

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.

  13. Multi-dimensional free-electron laser simulation codes: a comparison study

    International Nuclear Information System (INIS)

    Biedron, S. G.; Chae, Y. C.; Dejus, R. J.; Faatz, B.; Freund, H. P.; Milton, S. V.; Nuhn, H.-D.; Reiche, S.

    1999-01-01

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL

  14. Wave function of free electron in a strong laser plasma

    International Nuclear Information System (INIS)

    Zhu Shitong; Shen Wenda; Guo Qizhi

    1993-01-01

    The wave function of free electron in a strong laser plasma is obtained by solving exactly the Dirac equation in a curved space-time with optical metric for the laser plasma. When the laser field is diminished to zero, the wave function is naturally reduced to relativistic wave function of free electron. The possible application of the wave function is discussed

  15. Acceleration of electrons using an inverse free electron laser auto- accelerator

    International Nuclear Information System (INIS)

    Wernick, I.K.; Marshall, T.C.

    1992-07-01

    We present data from our study of a device known as the inverse free electron laser. First, numerical simulations were performed to optimize the design parameters for an experiment that accelerates electrons in the presence of an undulator by stimulated absorption of radiation. The Columbia free electron laser (FEL) was configured as an auto-accelerator (IFELA) system; high power (MW's) FEL radiation at ∼1.65 mm is developed along the first section of an undulator inside a quasi-optical resonator. The electron beam then traverses a second section of undulator where a fraction of the electrons is accelerated by stimulated absorption of the 1.65 mm wavelength power developed in the first undulator section. The second undulator section has very low gain and does not generate power on its own. We have found that as much as 60% of the power generated in the first section can be absorbed in the second section, providing that the initial electron energy is chosen correctly with respect to the parameters chosen for the first and second undulators. An electron momentum spectrometer is used to monitor the distribution of electron energies as the electrons exit the IFELA. We have found; using our experimental parameters, that roughly 10% of the electrons are accelerated to energies as high as 1100 keV, in accordance with predictions from the numerical model. The appearance of high energy electrons is correlated with the abrupt absorption of millimeter power. The autoaccelerator configuration is used because there is no intense source of coherent power at the 1.65 mm design wavelength other than the FEL

  16. Quantum aspects of the free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Gaiba, R.

    2007-03-15

    We study the role of Quantum Mechanics in the physics of Free Electron Lasers. While the Free Electron Laser (FEL) is usually treated as a classical device, we review the advantages of a quantum formulation of the FEL. We then show the existence of a regime of operation of the FEL that can only be described using Quantum Mechanics: if the dimensionless quantum parameter anti {rho} is smaller than 1, then in the 1-dimensional approximation the Hamiltonian that describes the FEL becomes equivalent to the Hamiltonian of a two-level system coupled to a radiation field. We give analytical and numerical solutions for the photon statistics of a Free Electron Laser operating in the quantum regime under various approximations. Since in the quantum regime the momentum of the electrons is discrete, we give a description of the electrons in phase space by introducing the Discrete Wigner Function. We then drop the assumption of a mono-energetic electron beam and describe the general case of a initial electron energy spread G({gamma}). Numerical analysis shows that the FEL quantum regime is observed only when the width of the initial momentum distribution is smaller than the momentum of the emitted photons. Both the analytical results in the linear approximation and the numerical simulations show that only the electrons close to a certain resonant energy start to emit photons. This generates the so-called Hole-burning effect in the electrons energy distribution, as it can be seen in the simulations we provide. Finally, we present a brief discussion about a fundamental uncertainty relation that ties the electron energy spread and the electron bunching. (orig.)

  17. Undulator commissioning by characterization of radiation in x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2012-11-01

    Full Text Available In x-ray free electron lasers (XFELs where a long undulator composed of many segments is installed, there exist a number of error sources to reduce the FEL gain such as the trajectory error, K value discrepancy, and phase mismatch, which are related to the segmented-undulator structure. Undulator commissioning, which refers to the tuning and alignment processes to eliminate the possible error sources, is thus an important step toward realization of lasing. In the SPring-8 angstrom compact free electron laser (SACLA facility, the undulator commissioning has been carried out by means of characterization of x-ray radiation, i.e., measurements of the spatial and spectral profiles of monochromatized spontaneous undulator radiation as well as by probing the FEL intensity. The achieved tuning and alignment accuracies estimated from the statistics of actual measurements in SACLA show the effectiveness of this commissioning scheme.

  18. XUV free-electron laser-based projection lithography systems

    Energy Technology Data Exchange (ETDEWEB)

    Newnam, B.E.

    1990-01-01

    Free-electron laser sources, driven by rf-linear accelerators, have the potential to operate in the extreme ultraviolet (XUV) spectral range with more than sufficient average power for high-volume projection lithography. For XUV wavelengths from 100 nm to 4 nm, such sources will enable the resolution limit of optical projection lithography to be extended from 0.25 {mu}m to 0.05{mu}m and with an adequate total depth of focus (1 to 2 {mu}m). Recent developments of a photoinjector of very bright electron beams, high-precision magnetic undulators, and ring-resonator cavities raise our confidence that FEL operation below 100 nm is ready for prototype demonstration. We address the motivation for an XUV FEL source for commercial microcircuit production and its integration into a lithographic system, include reflecting reduction masks, reflecting XUV projection optics and alignment systems, and surface-imaging photoresists. 52 refs., 7 figs.

  19. Free Electron Lasers in 2005

    CERN Document Server

    Colson, W B; Voughs, T

    2005-01-01

    Twenty-eight years after the first operation of the short wavelength free electron laser (FEL) at Stanford University, there continue to be many important experiments, proposed experiments, and user facilities around the world. Properties of FELs in the infrared, visible, UV, and x-ray wavelength regimes are listed and discussed.

  20. Free Electron Lasers in 2004

    CERN Document Server

    Colson, William B

    2004-01-01

    Twenty-seven years after the first operation of the short wavelength free electron laser (FEL) at Stanford University, there continue to be many important experiments, proposed experiments, and user facilities around the world. Properties of FELs operating in the infrared, visible, UV, and x-ray wavelength regimes are listed and discussed.

  1. Free-electron lasers in ultraviolet photobiology

    International Nuclear Information System (INIS)

    Coohill, T.P.; Sutherland, J.C.

    1989-01-01

    The potential uses for a free-electron laser (FEL), tunable in wavelength from 10 to 400 nm, for photobiological experiments is discussed. Inherent problems of cell and molecular absorption, especially in certain regions of the ultraviolet (UV), are addressed. Absorption values for living cells and viruses at selected wavelengths in the UV are tabulated, and a calculation of the flux needed to inactivate mammalian cells is included. A comparison is made of the UV output of a proposed rf-linac FEL with those of a monochromator, a tunable dye laser, and a synchrotron. The advantages of a UV FEL are apparent, especially in the wavelength regions where the cross section for absorption by biological molecules is low, i.e., 300 to 400 nm and 10 to 200 nm. It is apparent that a UV FEL would be an ideal source for a variety of biological studies that use both intact organisms and isolated cells and viruses

  2. Two-dimensional optimization of free-electron-laser designs

    Science.gov (United States)

    Prosnitz, D.; Haas, R.A.

    1982-05-04

    Off-axis, two-dimensional designs for free electron lasers are described that maintain correspondence of a light beam with a synchronous electron at an optimal transverse radius r > 0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.

  3. X-ray free electron laser and its application to 3-dimensional imaging of non-crystalline nano-structure

    International Nuclear Information System (INIS)

    Ishikawa, Tetsuya

    2007-01-01

    The Laser in the X-ray region has been anticipated to be realized as a light source to probe the nano-world. Free electron lasers using high energy electron accelerators have been promising the candidates. The finding of the principle of Self-Amplified Spontaneous Emission (SASE) resolved the technological difficulties accompanying the X-ray free electron laser, and the construction of large scale SASE facilities started in western countries. In Japan the construction of an SASE facility started in 2006 to be completed in 2010 at the site of the large synchrotron radiation facility, SPring-8 positioned as a 'critical technology of national importance' by the Japanese government. The principle of the X-ray free electron laser is explained and the outline of the Japanese facility construction plan is presented. Also the application of the X-ray laser to the imaging of non-crystalline nano-structure is introduced. (K.Yoshida)

  4. Development of a free-electron laser user facility for the extreme ultraviolet

    International Nuclear Information System (INIS)

    Newnam, B.E.

    1987-01-01

    A free-electron laser user facility for scientific experimentation in the extreme ultraviolet is being developed at Los Alamos. A series of laser oscillators and amplifiers, driven by a single, rf linear accelerator, will generate broadly tunable, picosecond-pulse, coherent radiation from 1 nm to 400 nm. The design and output parameters of this facility are described, comparison with synchrotron radiation sources is made, and recent progress in developing the three primary components (electron beam, undulator, and resonator mirrors) is reviewed, and various categories of scientific applications are indicated

  5. Free-Free Transitions in the Presence of Laser Fields at Very Low Incident Electron Energy

    Science.gov (United States)

    Bhatia, A. K.; Sinha, Chandana

    2010-01-01

    We study the free-free transition in electron-hydrogenic systems in ground state in presence of an external laser field at very loud incident energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen to be monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser in a nonperturbative manner by choosing a Volkov wave function for it. The scattering weave function for the electron is solved numerically by taking into account the effect of the electron exchange, short-range as well as of the long-range interactions to get the S and P wave phase shifts while for the higher angular momentum phase shifts the exchange approximation has only been considered. We calculate the laser assisted differential cross sections (LADCS) for the aforesaid free-free transition process for single photon absorption/emission. The laser intensity is chosen to be much less than the atomic field intensity. A strong suppression is noted in the LADCS as compared to the field free (FF) cross sections. Unlike the FF ones, the LADCS exhibit some oscillations having a distinct maximum at a low value of the scattering angle depending on the laser parameters as well as on the incident energies.

  6. Free-electron laser beam

    International Nuclear Information System (INIS)

    Minehara, Eisuke

    2003-01-01

    The principle and history of free-electron laser (FEL), first evidenced in 1977, the relationship between FEL wavelength and output power, the high-power FEL driven by the superconducting linac, the X-ray FEL by the linac, and the medical use are described. FEL is the vacuum oscillator tube and essentially composed from the high-energy linac, undulator and light-resonator. It utilizes free electrons in the vacuum to generate the beam with wavelength ranging from microwave to gamma ray. The first high-power FEL developed in Japanese Atomic Energy Research Institute (JAERI) is based on the development of superconducting linac for oscillating the highest power beam. In the medical field, applications to excise brain tumors (in US) and to reconstruct experimentally blood vessels in the pig heart (in Gunma University) by lasing and laser coagulator are in progress with examinations to remove intra-vascular cholesterol mass by irradiation of 5.7μm FEL beam. Cancer cells are considered diagnosed by FEL beam of far-infrared-THz range. The FEL beam CT is expected to have a wide variety of application without the radiation exposure and its resolution is equal or superior to that of usual imaging techniques. (N.I.)

  7. Free-electron lasers with magnetized ion-wiggler

    International Nuclear Information System (INIS)

    Mehdian, H.; Jafari, S.; Hasanbeigi, A.; Ebrahimi, F.

    2009-01-01

    Significant progress has been made using laser ionized channels to guide electron beams in the ion focus regime in a free-electron laser. Propagation of an electron beam in the ion focusing regime (IFR) allows the beam to propagate without expanding from space-charge repulsion. The ninth-degree polynomial dispersion relation for electromagnetic and space-charge waves is derived analytically by solving the electron momentum transfer and wave equations. The variation of resonant frequencies and peak growth rates with axial magnetic field strength has been demonstrated. Substantial enhancement in peak growth rate is obtained as the axial field frequency approaches the gyroresonance frequency.

  8. Los Alamos advanced free-electron laser

    Science.gov (United States)

    Chan, K. C. D.; Kraus, R. H.; Ledford, J.; Meier, K. L.; Meyer, R. E.; Nguyen, D.; Sheffield, R. L.; Sigler, F. L.; Young, L. M.; Wang, T. S.; Wilson, W. L.; Wood, R. L.

    1992-07-01

    Los Alamos researchers are building a free-electron laser (FEL) for industrial, medical, and research applications. This FEL, which will incorporate many of the new technologies developed over the last decade, will be compact, robust, and user-friendly. Electrons produced by a photocathode will be accelerated to 20 MeV by a high-brightness accelerator and transported by permanent-magnet quadrupoles and dipoles. The resulting electron beam will have an excellent instantaneous beam quality of 10πmm mrad in transverse emittance and 0.3% in energy spread at a peak current up to 300 A. Including operation at higher harmonics, the laser wavelength extends from 3.7 μm to 0.4 μm.

  9. Imaging ultrafast excited state pathways in transition metal complexes by X-ray transient absorption and scattering using X-ray free electron laser source

    DEFF Research Database (Denmark)

    Chen, Lin X; Shelby, Megan L; Lestrange, Patrick J

    2016-01-01

    This report will describe our recent studies of transition metal complex structural dynamics on the fs and ps time scales using an X-ray free electron laser source, Linac Coherent Light Source (LCLS). Ultrafast XANES spectra at the Ni K-edge of nickel(ii) tetramesitylporphyrin (NiTMP) were measured...... on the low-energy shoulder of the edge, which is aided by the computation of X-ray transitions for postulated excited electronic states. The observed and computed inner shell to valence orbital transition energies demonstrate and quantify the influence of the electronic configuration on specific metal...

  10. Conceptual design of a laser-plasma accelerator driven free-electron laser demonstration experiment

    Energy Technology Data Exchange (ETDEWEB)

    Seggebrock, Thorben

    2015-07-08

    Up to now, short-wavelength free-electron lasers (FEL) have been systems on the scale of hundreds of meters up to multiple kilometers. Due to the advancements in laser-plasma acceleration in the recent years, these accelerators have become a promising candidate for driving a fifth-generation synchrotron light source - a lab-scale free-electron laser. So far, demonstration experiments have been hindered by the broad energy spread typical for this type of accelerator. This thesis addresses the most important challenges of the conceptual design for a first lab-scale FEL demonstration experiment using analytical considerations as well as simulations. The broad energy spread reduces the FEL performance directly by weakening the microbunching and indirectly via chromatic emittance growth, caused by the focusing system. Both issues can be mitigated by decompressing the electron bunch in a magnetic chicane, resulting in a sorting by energies. This reduces the local energy spread as well as the local chromatic emittance growth and also lowers performance degradations caused by the short bunch length. Moreover, the energy dependent focus position leads to a focus motion within the bunch, which can be synchronized with the radiation pulse, maximizing the current density in the interaction region. This concept is termed chromatic focus matching. A comparison shows the advantages of the longitudinal decompression concept compared to the alternative approach of transverse dispersion. When using typical laser-plasma based electron bunches, coherent synchrotron radiation and space-charge contribute in equal measure to the emittance growth during decompression. It is shown that a chicane for this purpose must not be as weak and long as affordable to reduce coherent synchrotron radiation, but that an intermediate length is required. Furthermore, the interplay of the individual concepts and components is assessed in a start-to-end simulation, confirming the feasibility of the

  11. Conceptual design of a laser-plasma accelerator driven free-electron laser demonstration experiment

    International Nuclear Information System (INIS)

    Seggebrock, Thorben

    2015-01-01

    Up to now, short-wavelength free-electron lasers (FEL) have been systems on the scale of hundreds of meters up to multiple kilometers. Due to the advancements in laser-plasma acceleration in the recent years, these accelerators have become a promising candidate for driving a fifth-generation synchrotron light source - a lab-scale free-electron laser. So far, demonstration experiments have been hindered by the broad energy spread typical for this type of accelerator. This thesis addresses the most important challenges of the conceptual design for a first lab-scale FEL demonstration experiment using analytical considerations as well as simulations. The broad energy spread reduces the FEL performance directly by weakening the microbunching and indirectly via chromatic emittance growth, caused by the focusing system. Both issues can be mitigated by decompressing the electron bunch in a magnetic chicane, resulting in a sorting by energies. This reduces the local energy spread as well as the local chromatic emittance growth and also lowers performance degradations caused by the short bunch length. Moreover, the energy dependent focus position leads to a focus motion within the bunch, which can be synchronized with the radiation pulse, maximizing the current density in the interaction region. This concept is termed chromatic focus matching. A comparison shows the advantages of the longitudinal decompression concept compared to the alternative approach of transverse dispersion. When using typical laser-plasma based electron bunches, coherent synchrotron radiation and space-charge contribute in equal measure to the emittance growth during decompression. It is shown that a chicane for this purpose must not be as weak and long as affordable to reduce coherent synchrotron radiation, but that an intermediate length is required. Furthermore, the interplay of the individual concepts and components is assessed in a start-to-end simulation, confirming the feasibility of the

  12. Free electron laser and superconductivity

    CERN Document Server

    Iwata, A

    2003-01-01

    The lasing of the first free-electron laser (FEL) in the world was successfully carried out in 1977, so the history of FELs as a light source is not so long. But FELs are now utilized for research in many scientific and engineering fields owing to such characteristics as tunability of the wavelength, and short pulse and high peak power, which is difficult utilizing a common light source. Research for industrial applications has also been carried out in some fields, such as life sciences, semiconductors, nano-scale measurement, and others. The task for the industrial use of FEL is the realization of high energy efficiency and high optical power. As a means of promoting realization, the combining of an FEL and superconducting linac is now under development in order to overcome the thermal limitations of normal-conducting linacs. Further, since tuning the wavelength is carried out by changing the magnetic density of the undulator, which is now induced by moving part of the stack of permanent magnets, there is un...

  13. Design of the miniaturized free electron laser module as an efficient source of the THz waves

    International Nuclear Information System (INIS)

    Kim, Young Chul; Ahn, Seong Joon; Kim, Ho Seob; Kim, Dae-Wook; Ahn, Seungjoon

    2011-01-01

    Since the tremendous potential of the THz wave for the bio-technological applications has been found, there has been a lot of interest paid to development of the THz-wave sources. The miniaturized free electron laser (FEL) module based on the microcolumn can be a very convenient THz wave emitter because of its compactness. In this work, we tried to design the miniaturized FEL module to achieve the optimized electron beam (e-beam) trajectory in the module by using 3D simulation tool. We found that the accelerator bias, the length and radius of the limiting aperture were important parameters to obtain the strong and parallel e-beam. We have also proposed the ring-type grids to get more symmetrical behavior of the e-beam in the wiggler.

  14. Design of the miniaturized free electron laser module as an efficient source of the THz waves

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Chul [Department of Optometry, Eulji University, 212 Yangji-dong, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-713 (Korea, Republic of); Ahn, Seong Joon [Department of I and C Engineering, Sun Moon University, Tangjeong-myeon, Asan-si, Chungnam 336-708 (Korea, Republic of); Kim, Ho Seob; Kim, Dae-Wook [Department of Information Display, Sun Moon University, 100 Kalsan-ri, Tangjeong-myun, Asan-si, Chungnam 336-708 (Korea, Republic of); Ahn, Seungjoon, E-mail: sjan@sunmoon.ac.kr [Department of Information Display, Sun Moon University, 100 Kalsan-ri, Tangjeong-myun, Asan-si, Chungnam 336-708 (Korea, Republic of)

    2011-10-21

    Since the tremendous potential of the THz wave for the bio-technological applications has been found, there has been a lot of interest paid to development of the THz-wave sources. The miniaturized free electron laser (FEL) module based on the microcolumn can be a very convenient THz wave emitter because of its compactness. In this work, we tried to design the miniaturized FEL module to achieve the optimized electron beam (e-beam) trajectory in the module by using 3D simulation tool. We found that the accelerator bias, the length and radius of the limiting aperture were important parameters to obtain the strong and parallel e-beam. We have also proposed the ring-type grids to get more symmetrical behavior of the e-beam in the wiggler.

  15. Short wavelength optics for future free electron lasers

    International Nuclear Information System (INIS)

    Attwood, D.T.

    1984-04-01

    Although much free-electron laser work is directed toward achieving sufficient single-pass gain to be useful for research purposes, the availability of mirrors of high reflectance for the vacuum ultraviolet and soft x-ray regime would make resonant cavities a possibility. In addition, as in ordinary synchrotron radiation work, mirrors are required for the construction of realistic experiments and for beam manipulation purposes such as folding and extraction. The Working Group discussed a number of approaches to reflecting optics for free electron lasers, which are summarized here, and described in some detail. 16 references, 2 figures

  16. Control system for JAERI Free Electron Laser

    International Nuclear Information System (INIS)

    Sugimoto, Masayoshi

    1992-01-01

    A control system comprising of the personal computers network and the CAMAC stations for the JAERI Free Electron Laser is designed and is in the development stage. It controls the equipment and analyzes the electron and optical beam experiments. The concept and the prototype of the control system are described. (author)

  17. Proposed ultraviolet free-electron laser at Brookhaven National Laboratory: A source for time-resolved biochemical spectroscopy

    International Nuclear Information System (INIS)

    Johnson, E.D.; Sutherland, J.C.; Laws, W.R.

    1992-01-01

    Brookhaven National Laboratory is designing an ultraviolet free- electron laser (UV-FEL) user facility that will provide pico-second and sub-picosecond pulses of coherent ultraviolet radiation for wavelengths from 300 to 75 nm. Pulse width will be variable from abut 7 ps to ∼ 200 fs, with repetition rates as high as 10 4 Hz, single pulse energies > 1 mJ and hence peak pulse power >200 MW and average beam power > 10 W. The facility will be capable of ''pump-probe'' experiments utilizing the FEL radiation with: (1) synchronized auxiliary lasers, (2) a second, independently tunable FEL beam, or (3) broad-spectrum, high-intensity x-rays from the adjacent National Synchrotron Light Source. The UV-FEL consists of a high repetition rate recirculating superconducting linear accelerator which feeds pulses of electrons to two magnetic wigglers. Within these two devices, photons from tunable ''conventional'' laser would be frequency multiplied and amplified. By synchronously tuning the seed laser and modulating the energy of the electron beam, tuning of as much as 60% in wavelength is possible between alternating pulses supplied to different experimental stations, with Fourier transform limited resolution. Thus, up to four independent experiments may operate at one time, each with independent control of the wavelength and pulse duration. The UV-FEL will make possible new avenues of inquiry in time studies of diverse field including chemical, surface, and solid state physics, biology and materials science. The experimental area is scheduled to include a station dedicated to biological research. The complement of experimental and support facilities required by the biology station will be determined by the interests of the user community. 7 refs., 5 figs

  18. Introduction to free electron lasers (1/3)

    CERN Multimedia

    CERN. Geneva

    2002-01-01

    The Free-electron laser (FEL) is a source of coherent electromagnetic radiation based on a relativistic electron beam. First operated 25 years ago, the FEL has now reached a stage of maturity for operation in the infra-red region of the spectrum and several facilities provide intense FEL radiation beams for research covering a wide range of disciplines. Several projects both underway and proposed aim at pushing the minimum wavelength from its present limit around 100 nm progressively down to the 1 Angstrom region where the X-ray FEL would open up many new and exciting research possibilities. Other developments aim at increasing power levels to the 10's of kW level. In this series of lectures we give an introduction to the basic principles of FELs and their different modes of operation, and summarise their applications and current state of development.

  19. Introduction to free electron lasers (3/3)

    CERN Multimedia

    CERN. Geneva

    2002-01-01

    The Free-electron laser (FEL) is a source of coherent electromagnetic radiation based on a relativistic electron beam. First operated 25 years ago, the FEL has now reached a stage of maturity for operation in the infra-red region of the spectrum and several facilities provide intense FEL radiation beams for research covering a wide range of disciplines. Several projects both underway and proposed aim at pushing the minimum wavelength from its present limit around 100 nm progressively down to the 1 Angstrom region where the X-ray FEL would open up many new and exciting research possibilities. Other developments aim at increasing power levels to the 10's of kW level. In this series of lectures we give an introduction to the basic principles of FELs and their different modes of operation, and summarise their applications and current state of development.

  20. Introduction to free electron lasers (2/3)

    CERN Multimedia

    CERN. Geneva

    2002-01-01

    The Free-electron laser (FEL) is a source of coherent electromagnetic radiation based on a relativistic electron beam. First operated 25 years ago, the FEL has now reached a stage of maturity for operation in the infra-red region of the spectrum and several facilities provide intense FEL radiation beams for research covering a wide range of disciplines. Several projects both underway and proposed aim at pushing the minimum wavelength from its present limit around 100 nm progressively down to the 1 Angstrom region where the X-ray FEL would open up many new and exciting research possibilities. Other developments aim at increasing power levels to the 10's of kW level. In this series of lectures we give an introduction to the basic principles of FELs and their different modes of operation, and summarise their applications and current state of development.

  1. The electron accelerator for FELIX [Free Electron Laser for Infrared eXperiments

    International Nuclear Information System (INIS)

    Amersfoort, P.W. van; Geer, C.A.J. van der; Meer, A.F.G. van der; Bruinsma, P.J.T.; Hoekstra, R.; Kroes, F.B.; Luyckx, G.; Noomen, J.G.; Poole, M.W.; Saxon, G.

    1989-01-01

    The authors discuss the design of the electron accelerator for the Free Electron Laser for Infrared eXperiments (FELIX), which is meant to provide the Dutch science community with a rapidly tunable source of infrared radiation. The first stage of the project will (at least) cover the wavelength range between 8 and 80 μm. The accelerator consists of a triode with a grid modulated at 1 GHz, a 3.8-MeV buncher, and two travelling-wave S-band linac structures, with which 70-A, 3-ps bunches are accelerated to an energy between 15 and 4-5 MeV. The system has been designed to minimize the energy spread in the electron beam. 8 refs., 2 figs., 1 tab

  2. Free-electron laser and related quantum beams

    International Nuclear Information System (INIS)

    Minehara, Eisuke J.

    2003-01-01

    Past, present and future development programs of the JAERI super-conducting rf linac-based FELs and light sources with and without energy recovery have been discussed and introduced briefly. The JAERI FEL group has successfully discovered, and realized the brand-new FEL lasing mode of 255 fs ultra fast pulse, 6-9% high-efficiency, one GW high peak power, a few kW average power, and wide tunability of medium and far infrared wavelength regions at the same time. Using the new lasing, we could realize a powerful and efficient free-electron laser (FEL) for industrial uses near future. In order to realize such a tunable, ultra-short-pulse, high averaged-power FEL, we have needed the efficient and powerful CW FEL driver of the JAERI compact, stand-alone and zero-boil-off super-conducting rf linac with an energy-recovery geometry. The JAERI energy-recovery and/or super-conducting rf linac driver has been developed to use as an industrial electron irradiator, and millimeter-wave, far-infrared, mid-infrared, near-infrared and shorter wavelength quantum beam sources. (author)

  3. Free-electron laser and related quantum beams

    Energy Technology Data Exchange (ETDEWEB)

    Minehara, Eisuke J [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-07-01

    Past, present and future development programs of the JAERI super-conducting rf linac-based FELs and light sources with and without energy recovery have been discussed and introduced briefly. The JAERI FEL group has successfully discovered, and realized the brand-new FEL lasing mode of 255 fs ultra fast pulse, 6-9% high-efficiency, one GW high peak power, a few kW average power, and wide tunability of medium and far infrared wavelength regions at the same time. Using the new lasing, we could realize a powerful and efficient free-electron laser (FEL) for industrial uses near future. In order to realize such a tunable, ultra-short-pulse, high averaged-power FEL, we have needed the efficient and powerful CW FEL driver of the JAERI compact, stand-alone and zero-boil-off super-conducting rf linac with an energy-recovery geometry. The JAERI energy-recovery and/or super-conducting rf linac driver has been developed to use as an industrial electron irradiator, and millimeter-wave, far-infrared, mid-infrared, near-infrared and shorter wavelength quantum beam sources. (author)

  4. Circular dichroism measurements at an x-ray free-electron laser with polarization control

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, G.; Shevchuk, I.; Walter, P.; Viefhaus, J. [Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg (Germany); Lindahl, A. O. [PULSE at Stanford, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Knie, A. [Institut für Physik, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel (Germany); Hartmann, N.; Lutman, A. A.; MacArthur, J. P.; Glownia, J. M.; Helml, W.; Huang, Z.; Marinelli, A.; Nuhn, H.-D.; Moeller, S.; Coffee, R. N.; Ilchen, M., E-mail: markus.ilchen@xfel.eu [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Buck, J.; Galler, A.; Liu, J. [European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); and others

    2016-08-15

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O{sub 2} 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.

  5. Circular dichroism measurements at an x-ray free-electron laser with polarization control

    Science.gov (United States)

    Hartmann, G.; Lindahl, A. O.; Knie, A.; Hartmann, N.; Lutman, A. A.; MacArthur, J. P.; Shevchuk, I.; Buck, J.; Galler, A.; Glownia, J. M.; Helml, W.; Huang, Z.; Kabachnik, N. M.; Kazansky, A. K.; Liu, J.; Marinelli, A.; Mazza, T.; Nuhn, H.-D.; Walter, P.; Viefhaus, J.; Meyer, M.; Moeller, S.; Coffee, R. N.; Ilchen, M.

    2016-08-01

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O2 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.

  6. Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, G; Garzella, D; Labat, M; Carre, B; Bougeard, M; Salieres, P; Merdji, H; Gobert, O [CEA Saclay, DSM, DRECAM, Serv. Photons Atomes Mol., F-91191 Gif sur Yvette, (France); Lambert, G; Hara, T; Tanikawa, T; Kitamura, H; Shintake, T; Tanaka, Y; Tahara, K [RIKEN SPring Centre, Harima Inst., Hyogo 679-5148, (Japan); Lambert, G; Labat, M; Chubar, O; Couprie, M E [Groupe Magnetisme et Insertion, Synchrotron Soleil, F-91192 Gif sur Yvette, (France); Hara, T; Kitamura, H; Shintake, T; Inoue, S; Tanaka, Y [XFEL Project Head Office, RIKEN, Hyogo 679-5148, (Japan)

    2008-07-01

    Conventional synchrotron radiation sources enable the structure of matter to be studied at near-atomic spatial resolution and picosecond temporal resolution. Free-electron lasers promise to extend this down to femtosecond timescales. The process by which free-electron lasers amplify synchrotron light-known as self-amplified spontaneous emission - is only partially temporally coherent, but this can be improved by seeding it with an external laser. Here we explore the use of seed light produced by high-order harmonic generation in a gas, covering wavelengths from the ultraviolet to soft X-rays. Using the SPring-8 Compact SASE Source test accelerator, we demonstrate an increase of three orders of magnitude in the intensity of the fundamental radiation at 160 nm, halving of the free-electron laser saturation length, and the generation of nonlinear harmonics at 54 nm and 32 nm. The low seed level used in this demonstration suggests that nonlinear harmonic schemes should enable the generation of fully coherent soft X-rays at wavelengths down to the so-called 'water window', vital for the study of biological samples. (authors)

  7. Longitudinal space charge assisted echo seeding of a free-electron laser with laser-spoiler noise suppression

    Directory of Open Access Journals (Sweden)

    Kirsten Hacker

    2014-09-01

    Full Text Available Seed lasers are employed to improve the temporal coherence of free-electron laser (FEL light. However, when these seed pulses are short relative to the particle bunch, the noisy, temporally incoherent radiation from the unseeded electrons can overwhelm the coherent, seeded radiation. In this paper, a technique to seed a particle bunch with an external laser is presented in which a new mechanism to improve the contrast between coherent and incoherent free electron laser radiation is employed together with a novel, simplified echo-seeding method. The concept relies on a combination of longitudinal space charge wakes and an echo-seeding technique to make a short, coherent pulse of FEL light together with noise background suppression. Several different simulation codes are used to illustrate the concept with conditions at the soft x-ray free-electron laser in Hamburg, FLASH.

  8. Free-Free Transitions in the Presence of Laser Fields and Debye Potential at Very Low Incident Electron Energies

    Science.gov (United States)

    Bhatia, Anand

    2012-01-01

    We study the free-free transition in electron-helium ion in the ground state and embedded in a Debye potential in the presence of an external laser field at very low incident electron energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen as monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing Volkov wave function for it. The scattering wave function for the incident electron on the target embedded in a Debye potential is solved numerically by taking into account the effect of electron exchange. We calculate the laser-assisted differential and total cross sections for free-free transition for absorption/emission of a single photon or no photon exchange. The results will be presented at the conference.

  9. Electron beam requirements for soft x-ray/XUV free-electron lasers

    International Nuclear Information System (INIS)

    Goldstein, J.C.

    1987-01-01

    A discussion of the electron beam quality (peak current, energy spread, and transverse emittance) required to drive short wavelength free-electron lasers in the XUV (10-100 nm) and soft x-ray (<10 nm) optical wavelength ranges is presented

  10. Synchrotron radiation and free-electron lasers principles of coherent X-ray generation

    CERN Document Server

    Kim, Kwang-Je; Lindberg, Ryan

    2017-01-01

    Learn about the latest advances in high-brightness X-ray physics and technology with this authoritative text. Drawing upon the most recent theoretical developments, pre-eminent leaders in the field guide readers through the fundamental principles and techniques of high-brightness X-ray generation from both synchrotron and free-electron laser sources. A wide range of topics is covered, including high-brightness synchrotron radiation from undulators, self-amplified spontaneous emission, seeded high-gain amplifiers with harmonic generation, ultra-short pulses, tapering for higher power, free-electron laser oscillators, and X-ray oscillator and amplifier configuration. Novel mathematical approaches and numerous figures accompanied by intuitive explanations enable easy understanding of key concepts, whilst practical considerations of performance-improving techniques and discussion of recent experimental results provide the tools and knowledge needed to address current research problems in the field. This is a comp...

  11. Cold-target recoil-ion momentum spectroscopy for diagnostics of high harmonics of the extreme-ultraviolet free-electron laser light source at SPring-8

    International Nuclear Information System (INIS)

    Liu, X.-J.; Fukuzawa, H.; Pruemper, G.; Ueda, K.; Okunishi, M.; Shimada, K.; Motomura, K.; Saito, N.; Iwayama, H.; Nagaya, K.; Yao, M.; Rudenko, A.; Ullrich, J.; Foucar, L.; Czasch, A.; Schmidt-Boecking, H.; Doerner, R.; Nagasono, M.; Higashiya, A.; Yabashi, M.

    2009-01-01

    We have developed a cold-target recoil-ion momentum spectroscopy apparatus dedicated to the experiments using the extreme-ultraviolet light pulses at the free-electron laser facility, SPring-8 Compact SASE Source test accelerator, in Japan and used it to measure spatial distributions of fundamental, second, and third harmonics at the end station.

  12. Bunch decompression for laser-plasma driven free-electron laser demonstration schemes

    Directory of Open Access Journals (Sweden)

    T. Seggebrock

    2013-07-01

    Full Text Available X-ray free-electron lasers (FELs require a very high electron beam quality in terms of emittance and energy spread. Since 2004 high quality electrons produced by laser-wakefield accelerators have been demonstrated, but the electron quality up to now did not allow the operation of a compact x-ray FEL using these electrons. Maier et al. [Phys. Rev. X 2, 031019 (2012PRXHAE2160-330810.1103/PhysRevX.2.031019] suggested a concept for a proof-of-principle experiment allowing FEL operation in the vacuum ultraviolet range based on an optimized undulator and bunch decompression using electron bunches from a laser-plasma accelerator as currently available. In this paper we discuss in more detail how a chicane can be used as a bunch stretcher instead of a bunch compressor to allow the operation of a laser-wakefield accelerator driven FEL using currently available electrons. A scaling characterizing the impact of bunch decompression on the gain length is derived and the feasibility of the concept is tested numerically in a demanding scenario.

  13. Theory of free-electron-laser heating and current drive in magnetized plasmas

    International Nuclear Information System (INIS)

    Cohen, B.I.; Cohen, R.H.; Nevins, W.M.; Rognlien, T.D.

    1991-01-01

    The introduction of a powerful new microwave source, the free-electron laser, provides new opportunities for novel heating and current-drive schemes to be used in toroidal fusion devices. This high-power, pulsed source has a number of technical advantages for these applications, and its use is predicted to lead to improved current-drive efficiencies and opacities in reactor-grade fusion plasmas in specific cases. The Microwave Tokamak Experiment at the Lawrence Livermore National Laboratory will provide a test for some of these new heating and current-drive schemes. Although the motivation for much of this research has derived from the application of a free-electron laser to the heating of a tokamak plasma at a frequency near the electron cyclotron frequency, the underlying physics, i.e., the highly nonlinear interaction of an intense, pulsed, coherent electromagnetic wave with an electron in a magnetized plasma including relativistic effects, is of general interest. Other relevant applications include ionospheric modification by radio-frequency waves, high-energy electron accelerators, and the propagation of intense, pulsed electromagnetic waves in space and astrophysical plasmas. This review reports recent theoretical progress in the analysis and computer simulation of the absorption and current drive produced by intense pulses, and of the possible complications that may arise, e.g., parametric instabilities, nonlinear self-focusing, trapped-particle sideband instability, and instabilities of the heated plasma

  14. Beam conditioner for free electron lasers and synchrotrons

    International Nuclear Information System (INIS)

    Liu, H.; Neil, G.R.

    1998-01-01

    A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM 10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs

  15. Femtosecond and Subfemtosecond X-Ray Pulses from a SASE Based Free-Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Emma, P

    2004-03-10

    We propose a novel method to generate femtosecond and sub-femtosecond photon pulses in a free electron laser by selectively spoiling the transverse emittance of the electron beam. Its merits are simplicity and ease of implementation. When the system is applied to the Linac Coherent Light Source, it can provide x-ray pulses the order of 1 femtosecond in duration containing about 1010 transversely coherent photons.

  16. Studies of Interfacial Regions by Sum-Frequency Generation with a Free-Electron Laser

    NARCIS (Netherlands)

    Eliel, E. R.; van der Ham, E. W. M.; Vrehen, Q. H. F.; Thooft, G. W.; Barmentlo, M.; Auerhammer, J. M.; van der Meer, A. F. G.; van Amersfoort, P. W.

    1995-01-01

    The use of a Free-Electron Laser (FEL) allows the study of (non)linear optical properties of materials over unsurpassed large spectral intervals. As an example, we report on the use of a FEL as the infrared source in spectroscopic infrared-visible Sum-Frequency Generation (SFG). Employing the

  17. Bone Ablation at 2.94 mm Using the Free-Electron Laser and Er:YAG Laser

    Science.gov (United States)

    Ivanov, Borislav; Hakimian, Arman; Peavy, G. M.; Haglund, Richard

    2002-03-01

    Bone Ablation at 2.94 microns Using the Free-Electron Laser and Er:YAG Laser in Perfluorocarbon Compounds B. Ivanov^1, A. M. Hakimian^1, G. M. Peavy^2, R. F. Haglund, Jr.1 1Department of Physics and Astronomy, W. M. Keck Foundation Free-Electron Laser Center, Vanderbilt University, Nashville, TN 37235 2Beckman Laser Institute and Medical Clinic, College of Medicine, University of California, Irvine, CA 92612 We report studies on the efficiency of mid-IR laser ablation of cow cortical bone using the Vanderbilt free-electron laser (FEL), when irrigating the ablation zone with an inert and biocompatible perfluorocarbon compounds (PFC). At 2.94 microns, the bone matrix (mainly by water) absorbs the radiation while the PFCs transmit this wavelength, dissipate heat and acoustical stress, and prevent carbonization of the bone sample. The ablation rate, as a function of laser fluence, scanning speed and the type of PFC, was investigated. The laser fluence was estimated to be 5 J/cm^2 - 100 J/cm^2 with a laser focal spot diameter of 160 microns 500 microns and a scanning speed of 40 microns/s 2960 microns/s. The ablation rate was estimated from scanning electron microscopy to be 0.5 mm/s 2.4 mm/s. Comparisons of ablation rates with the FEL and a Er:YAG laser at 2.94 microns are being evaluated.

  18. Beamline for X-ray Free Electron Laser of SACLA

    International Nuclear Information System (INIS)

    Tono, K; Togashi, T; Ohashi, H; Kimura, H; Takahashi, S; Takeshita, K; Tomizawa, H; Goto, S; Inubushi, Y; Sato, T; Yabashi, M

    2013-01-01

    A beamline for X-ray free electron laser (XFEL) has been developed at SACLA, SPring-8 Angstrom Compact free electron LAser. The beamline delivers and diagnoses an XFEL beam without degrading the beam quality. The transport optics are applicable in the range of 4–30 keV with a double-crystal monochromator or 4–15 keV with either of two double-mirror systems. A photon diagnostic system of the beamline monitors intensity, photon energy, center-of-mass position, and spatial profile in shot-by-shot and non-destructive manners.

  19. Free Electron Laser Induced Forward Transfer Method of Biomaterial for Marking

    Science.gov (United States)

    Suzuki, Kaoru

    Biomaterial, such as chitosan, poly lactic acid, etc., containing fluorescence agent was deposited onto biology hard tissue, such as teeth, fingernail of dog or cat, or sapphire substrate by free electron laser induced forward transfer method for direct write marking. Spin-coated biomaterial with fluorescence agent of rhodamin-6G or zinc phthalochyamine target on sapphire plate was ablated by free electron laser (resonance absorption wavelength of biomaterial : 3380 nm). The influence of the spin-coating film-forming temperature on hardness and adhesion strength of biomaterial is particularly studied. Effect of resonance excitation of biomaterial target by turning free electron laser was discussed to damage of biomaterial, rhodamin-6G or zinc phtarochyamine for direct write marking

  20. Free electron laser as a fusion driver

    International Nuclear Information System (INIS)

    Prosnitz, D.; Schlitt, L.

    1981-01-01

    The Free Electron Laser (FEL) is shown to be a potentially attractive solution to the problem of finding a suitable short wavelength fusion driver. The design of a 3 MJ, 250 nm FEL fusion driver is discussed

  1. Two-stage free electron laser research

    Science.gov (United States)

    Segall, S. B.

    1984-10-01

    KMS Fusion, Inc. began studying the feasibility of two-stage free electron lasers for the Office of Naval Research in June, 1980. At that time, the two-stage FEL was only a concept that had been proposed by Luis Elias. The range of parameters over which such a laser could be successfully operated, attainable power output, and constraints on laser operation were not known. The primary reason for supporting this research at that time was that it had the potential for producing short-wavelength radiation using a relatively low voltage electron beam. One advantage of a low-voltage two-stage FEL would be that shielding requirements would be greatly reduced compared with single-stage short-wavelength FEL's. If the electron energy were kept below about 10 MeV, X-rays, generated by electrons striking the beam line wall, would not excite neutron resonance in atomic nuclei. These resonances cause the emission of neutrons with subsequent induced radioactivity. Therefore, above about 10 MeV, a meter or more of concrete shielding is required for the system, whereas below 10 MeV, a few millimeters of lead would be adequate.

  2. Direct longitudinal laser acceleration of electrons in free space

    Directory of Open Access Journals (Sweden)

    Sergio Carbajo

    2016-02-01

    Full Text Available Compact laser-driven accelerators are pursued heavily worldwide because they make novel methods and tools invented at national laboratories widely accessible in science, health, security, and technology [V. Malka et al., Principles and applications of compact laser-plasma accelerators, Nat. Phys. 4, 447 (2008]. Current leading laser-based accelerator technologies [S. P. D. Mangles et al., Monoenergetic beams of relativistic electrons from intense laser-plasma interactions, Nature (London 431, 535 (2004; T. Toncian et al., Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons, Science 312, 410 (2006; S. Tokita et al. Single-shot ultrafast electron diffraction with a laser-accelerated sub-MeV electron pulse, Appl. Phys. Lett. 95, 111911 (2009] rely on a medium to assist the light to particle energy transfer. The medium imposes material limitations or may introduce inhomogeneous fields [J. R. Dwyer et al., Femtosecond electron diffraction: “Making the molecular movie,”, Phil. Trans. R. Soc. A 364, 741 (2006]. The advent of few cycle ultraintense radially polarized lasers [S. Carbajo et al., Efficient generation of ultraintense few-cycle radially polarized laser pulses, Opt. Lett. 39, 2487 (2014] has ushered in a novel accelerator concept [L. J. Wong and F. X. Kärtner, Direct acceleration of an electron in infinite vacuum by a pulsed radially polarized laser beam, Opt. Express 18, 25035 (2010; F. Pierre-Louis et al. Direct-field electron acceleration with ultrafast radially polarized laser beams: Scaling laws and optimization, J. Phys. B 43, 025401 (2010; Y. I. Salamin, Electron acceleration from rest in vacuum by an axicon Gaussian laser beam, Phys. Rev. A 73, 043402 (2006; C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006; A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and

  3. Field-free molecular alignment probed by the free electron laser in Hamburg (FLASH)

    Energy Technology Data Exchange (ETDEWEB)

    Johnsson, P; Rouzee, A; Siu, W; Huismans, Y; Vrakking, M J J [FOM Institute for Atomic and Molecular Physics (AMOLF), Science Park 113, 1098 XG Amsterdam (Netherlands); Lepine, F [Universite Lyon 1, CNRS, LASIM, UMR 5579, 43 bvd. du 11 novembre 1918, F-69622 Villeurbanne (France); Marchenko, T [Laboratoire d' Optique Applique, ENSTA/Ecole Polytechnique, Chemin de la Huniere, 91761 Palaiseau (France); Duesterer, S; Tavella, F; Stojanovic, N; Azima, A; Treusch, R [Hamburger Synchrotronstrahlungslabor (HASYLAB) at Deutsches Elektronen-Synchrotron (DESY) Notkestrasse 85, D-22607 Hamburg (Germany); Kling, M F [Max-Planck Institut fuer Quantenoptik, Hans-Kopfermann Strasse 1, D-85748 Garching (Germany)], E-mail: per.johnsson@fysik.lth.se

    2009-07-14

    High flux extreme ultraviolet (XUV) sources like the free electron laser (FEL) in Hamburg (FLASH) offer the possibility of diffractive imaging of small objects. Irrespective of whether the diffraction is based on the detection of photons or photoelectrons, it is required that the measurement is done in the reference frame of the molecule meaning that, for a sample of several molecules, it is necessary to pre-align the molecules in the sample. As a step towards performing molecular frame diffraction experiments, we report experiments on field-free molecular alignment performed at FLASH. The impulsive alignment induced by a 100 fs near-infrared laser pulse in a rotationally cold CO{sub 2} sample is characterized by ionizing and dissociating the molecules with a time-delayed XUV-FEL pulse. The time-dependent angular distributions of ionic fragments measured by a velocity map imaging spectrometer exhibit rapid changes associated with the induced rotational dynamics. The experimental results show hints of a dissociation process that depends nonlinearly on the XUV intensity.

  4. Free electron laser and microwave instability interplay in a storage ring

    Directory of Open Access Journals (Sweden)

    G. L. Orlandi

    2004-06-01

    Full Text Available Collective effects, such as the microwave instability, influence the longitudinal dynamics of an electron beam in a storage ring. In a storage ring free electron laser (FEL they can compete with the induced beam heating and thus be treated as a further concomitant perturbing source of the beam dynamics. Bunch length and energy spread measurements, carried out at the Super-ACO storage ring, can be correctly interpreted according to a broad-band impedance model. Quantitative estimations of the relative role that is played by the microwave instability and the laser heating in shaping the beam longitudinal dynamics have been obtained by the analysis of the equilibrium laser power. It has been performed in terms of either a theoretical limit, implemented with the measured beam longitudinal characteristics, or the numerical results obtained by a macroparticle tracking code, which includes the laser pulse propagation. Such an analysis, carried out for different operating points of the Super-ACO storage ring FEL, indicates that the laser heating counteracts the microwave instability.

  5. Free electron lasers and short wavelengths: state of the art and prospects

    International Nuclear Information System (INIS)

    Couprie, M.E.

    2003-01-01

    Free electron lasers generate coherent and adjustable radiation that is based on the interaction of a light wave with a relativistic electron beam circulating in a periodic and permanent magnetic field produced by an ondulator. The light wave comes from either - synchrotron radiation emitted by the electron packet at each round in the case of SASE (self amplified spontaneous emission) operating more, or - synchrotron radiation stored in an optic cavity in the case of oscillator operating mode, or - an external laser wave in the case of harmonic generation operating mode. Under particular conditions the light wave is amplified to the detriment of the kinetic energy of the electrons which leads to the laser effect. 5 free electron lasers are operating in the world: Super-Aco in France, Elettra in Italy, NIJI-4 and Uvsor in Japan, and Duke in Usa. The state of the art of free electron lasers in the UV, VUV range is presented and the different configurations associated to storage rings, linac and ERL (energy recovery linacs) are described. (A.C.)

  6. Chaotic behaviour and controlling chaos in free electron lasers

    International Nuclear Information System (INIS)

    Wang Wenjie; Chen Shigang; Du Xiangwan; Wang Guangrui

    1995-01-01

    Chaos in free electron lasers (FEL) is reviewed. Special attention has been paid to the chaotic behaviour of the electrons and the laser field. The problem of controlling and utilizing chaotic motion of the electrons and the laser field has also been discussed. In order to find out the rules of instability and chaos in FEL, some typical methods of the chaotic theory are used. These methods include making the Poincare surface of section, drawing the phase space diagrams of the electron orbits, calculating the Liapunov exponents, and computing the power spectrum, etc. Finally, some problems in FEL research are discussed (103 refs., 54 figs.)

  7. Inverse free-electron laser accelerator development

    International Nuclear Information System (INIS)

    Fisher, A.; Gallardo, J.; Steenbergen, A. van; Sandweiss, J.; Fang, J.M.

    1994-06-01

    The study of the Inverse Free-Electron Laser, as a potential mode of electron acceleration, has been pursued at Brookhaven National Laboratory for a number of years. More recent studies focused on the development of a low energy (few GeV), high gradient, multistage linear accelerator. The authors are presently designing a short accelerator module which will make use of the 50 MeV linac beam and high power (2 x 10 11 W) CO 2 laser beam of the Accelerator Test Facility (ATF) at the Center for Accelerator Physics (CAP), Brookhaven National Laboratory. These elements will be used in conjunction with a fast excitation (300 μsec pulse duration) variable period wiggler, to carry out an accelerator demonstration stage experiment

  8. Second harmonic generation in Te crystal using free electron laser

    CERN Document Server

    Yamauchi, T; Minehara, E J

    2002-01-01

    The second harmonic generation signal converted from the fundamental wavelength of 22 mu m of a free electron laser was observed for the first time using a birefringent Te crystal. The experimental conversion efficiency of Te crystal for second harmonic generation is 0.53%, which is equivalent to the theoretical value within a factor of 2. The Te crystal has been incorporated into an autocorrelator system to measure the micro-pulse width of infrared free electron laser successfully. (author)

  9. Coherent Startup of an Infrared Free-Electron Laser

    NARCIS (Netherlands)

    Jaroszynski, D. A.; Bakker, R. J.; van der Meer, A. F. G.; Oepts, D.; van Amersfoort, P. W.

    1993-01-01

    Coherent enhancement of the spontaneous undulator radiation by several orders of magnitude has been observed in a free-electron laser at wavelengths from 40 to 100 mum. The coherent emission can be explained by details of the electron-beam micropulse structure. Furthermore, it has been found that

  10. Shack-Hartmann Electron Densitometer (SHED): An Optical System for Diagnosing Free Electron Density in Laser-Produced Plasmas

    Science.gov (United States)

    2016-11-01

    Free Electron Density in Laser-Produced Plasmas by Anthony R Valenzuela Approved for public release; distribution is...AND SUBTITLE Shack-Hartmann Electron Densitometer (SHED): An Optical System for Diagnosing Free Electron Density in Laser-Produced Plasmas 5a...SUPPLEMENTARY NOTES 14. ABSTRACT The Shack-Hartmann Electron Densitometer is a novel method to diagnose ultrashort pulse laser–produced plasmas

  11. Ultraviolet and soft X-ray free-electron lasers introduction to physical principles, experimental results, technological challenges

    CERN Document Server

    Schmüser, Peter; Rossbach, Jörg; Fujimori, A; Kühn, J; Müller, T; Steiner, F; Trümper, J; Varma, C; Wölfle, P

    2008-01-01

    In the introduction accelerator-based light sources are considered and a comparison is made between free-electron lasers and conventional quantum lasers. The motion and radiation of relativistic electrons in undulator magnets is discussed. The principle of a low-gain free-electron laser is explained and the pendulum equations are introduced that characterize the electron dynamics in the field of a light wave. The differential equations of the high-gain FEL are derived from the Maxwell equations of electrodynamics. Analytical and numerical solutions of the FEL equations are presented and important FEL parameters are defined, such as gain length, FEL bandwidth and saturation power. A detailed numerical study of the all-important microbunching process is presented. The mechanism of Self Amplified Spontaneous Emission is described theoretically and illustrated with numerous experimental results. Three-dimensional effects such as betatron oscillations and optical diffraction are addressed and their impact on the F...

  12. Compensating the electron beam energy spread by the natural transverse gradient of laser undulator in all-optical x-ray light sources.

    Science.gov (United States)

    Zhang, Tong; Feng, Chao; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang

    2014-06-02

    All-optical ideas provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this paper, the beam energy spread effect is proposed to be significantly compensated by the natural transverse gradient of a laser undulator when properly transverse-dispersing the electron beam. Theoretical analysis and numerical simulations on conventional laser-Compton scattering sources and high-gain all-optical x-ray free-electron lasers with the electron beams from laser-plasma accelerators are presented.

  13. Quantum theory for 1D X-ray free electron laser

    Science.gov (United States)

    Anisimov, Petr M.

    2018-06-01

    Classical 1D X-ray Free Electron Laser (X-ray FEL) theory has stood the test of time by guiding FEL design and development prior to any full-scale analysis. Future X-ray FELs and inverse-Compton sources, where photon recoil approaches an electron energy spread value, push the classical theory to its limits of applicability. After substantial efforts by the community to find what those limits are, there is no universally agreed upon quantum approach to design and development of future X-ray sources. We offer a new approach to formulate the quantum theory for 1D X-ray FELs that has an obvious connection to the classical theory, which allows for immediate transfer of knowledge between the two regimes. We exploit this connection in order to draw quantum mechanical conclusions about the quantum nature of electrons and generated radiation in terms of FEL variables.

  14. Basic design considerations for free-electron lasers driven by electron beams from RF accelerators

    Science.gov (United States)

    Gover, A.; Freund, H.; Granatstein, V. L.; McAdoo, J. H.; Tang, C.-M.

    A design procedure and design criteria are derived for free-electron lasers driven by electron beams from RF accelerators. The procedure and criteria permit an estimate of the oscillation-buildup time and the laser output power of various FEL schemes: with waveguide resonator or open resonator, with initial seed-radiation injection or with spontaneous-emission radiation source, with a linear wiggler or with a helical wiggler. Expressions are derived for computing the various FEL parameters, allowing for the design and optimization of the FEL operational characteristics under ideal conditions or with nonideal design parameters that may be limited by technological or practical constraints. The design procedure enables one to derive engineering curves and scaling laws for the FEL operating parameters. This can be done most conveniently with a computer program based on flowcharts given in the appendices.

  15. Free-electron laser system with Raman amplifier outcoupling

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J.

    1988-05-03

    A free-electron laser system is described comprising: a free-electron laser pump beam generator producing a high-power optical output beam in a vacuum environement; a Raman amplifier cell located in the path of the output beam from the pump beam generator; means for generating and introducing a Stokes seed beam into the Raman amplifier cell, a pair of gaseous windows through which the output beam enters and leaves the Raman amplifier cell, each window having a stream of gas moving continuously in a direction generally perpendicular to the beam; and a mirror positioned in the path of the output beam from the Raman amplifier, the mirror functioning to reflect and further direct the output beam, but not the unwanted spectral components.

  16. The quantum mechanical analysis of the free electron laser

    International Nuclear Information System (INIS)

    Dattoli, G.; Renieri, A.

    1985-01-01

    A quantum analysis of the Free Electron Laser is presented. The theory is developed both in single and longitudinal multimode regimes. Finally a self-consistent procedure to study the growth of the laser signal from the vacuum to the macroscopic level is presented

  17. The FERMI@Elettra free-electron-laser source for coherent X-ray physics: photon properties, beam transport system, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Allaria, Enrico; Callegari, Carlo; Cocco, Daniele; Fawley, William M.; Kiskinova, Maya; Masciovecchio, Claudio; Parmigiani, Fulvio

    2010-04-05

    FERMI@Elettra is comprised of two free electron lasers (FELs) that will generate short pulses (tau ~;; 25 to 200 fs) of highly coherent radiation in the XUV and soft X-ray region. The use of external laser seeding together with a harmonic upshift scheme to obtain short wavelengths will give FERMI@Elettra the capability to produce high quality, longitudinal coherent photon pulses. This capability together with the possibilities of temporal synchronization to external lasers and control of the output photon polarization will open new experimental opportunities not possible with currently available FELs. Here we report on the predicted radiation coherence properties and important configuration details of the photon beam transport system. We discuss the several experimental stations that will be available during initial operations in 2011, and we give a scientific perspective on possible experiments that can exploit the critical parameters of this new light source.

  18. Free electron laser on the ACO storage ring

    International Nuclear Information System (INIS)

    Elleaume, P.

    1984-06-01

    This dissertation presents the design and characteristics of a Free Electron Laser built on the electron storage ring ACO at Orsay. The weak optical gain available (approximately 0.1% per pass) necessitated the use of an optical klystron instead of an undulator and the use of mirror with extremely high reflectivity. The laser characteristics: spectra, micro and macro-temporal structures, transverse structure and power are presented. They are in very good agreement with a classical theory based on the Lorentz force and Maxwell equations [fr

  19. A Low-Energy-Spread Rf Accelerator for a Far-Infrared Free-Electron Laser

    NARCIS (Netherlands)

    van der Geer, C. A. J.; Bakker, R. J.; van der Meer, A. F. G.; van Amersfoort, P. W.; Gillespie, W. A.; Saxon, G.; Poole, M. W.

    1993-01-01

    A high electron current and a small energy spread are essential for the operation of a free electron laser (FEL). In this paper we discuss the design and performance of the accelerator for FELIX, the free electron laser for infrared experiments. The system consists of a thermionic gun, a prebuncher,

  20. Research on high performance mirrors for free electron lasers

    International Nuclear Information System (INIS)

    Kitatani, Fumito

    1996-01-01

    For the stable functioning of free electron laser, high performance optical elements are required because of its characteristics. In particular in short wavelength free electron laser, since its gain is low, the optical elements having very high reflectivity are required. Also in free electron laser, since high energy noise light exists, the optical elements must have high optical breaking strength. At present in Power Reactor and Nuclear Fuel Development Corporation, the research for heightening the performance of dielectric multi-layer film elements for short wavelength is carried out. For manufacturing such high performance elements, it is necessary to develop the new materials for vapor deposition, new vapor deposition process, and the techniques of accurate substrate polishing and inspection. As the material that satisfies the requirements, there is diamond-like carbon (DLC) film, of which the properties are explained. As for the manufacture of the DLC films for short wavelength optics, the test equipment for forming the DLC films, the test of forming the DLC films, the change of the film quality due to gas conditions, discharge conditions and substrate materials, and the measurement of the optical breaking strength are reported. (K.I.)

  1. A cold atom electron source

    NARCIS (Netherlands)

    Taban, G.

    2009-01-01

    Pulsed bright electron sources offer the possibility to study the structure of matter in great spatial and temporal detail. An example of an indirect method is to generate hard X-ray °ashes with high brilliance, a new Free Electron Laser facility is under construction. It requires an electron source

  2. Long range coherence in free electron lasers

    Science.gov (United States)

    Colson, W. B.

    1984-01-01

    The simple free electron laser (FEL) design uses a static, periodic, transverse magnetic field to undulate relativistic electrons traveling along its axis. This allows coupling to a co-propagating optical wave and results in bunching to produce coherent radiation. The advantages of the FEL are continuous tunability, operation at wavelengths ranging from centimeters to angstroms, and high efficiency resulting from the fact that the interaction region only contains light, relativistic electrons, and a magnetic field. Theoretical concepts and operational principles are discussed.

  3. An inverse free electron laser accelerator experiment

    International Nuclear Information System (INIS)

    Wernick, I.; Marshall, T.C.

    1992-01-01

    A free electron laser was configured as an autoaccelerator to test the principle of accelerating electrons by stimulated absorption of radiation (λ = 1.65mm) by an electron beam (750kV) traversing an undulator. Radiation is produced in the first section of a constant period undulator (1 w1 = 1.43cm) and then absorbed (∼ 40%) in a second undulator, having a tapered period (1 w2 = 1.8 - 2.25cm), which results in the acceleration of a subgroup (∼ 9%) of electrons to ∼ 1MeV

  4. The theoretical study of the optical klystron free electron laser

    International Nuclear Information System (INIS)

    Yang Zhenhua

    2001-01-01

    The work of the theoretical study and numerical simulation of optical klystron free electron laser is supported by National 863 Research Development Program and National Science Foundation of China. The object of studying UV band free electron laser (FEL) is to understand the physical law of optical klystron FEL and to gain experience for design. A three-dimensional code OPFEL are made and it is approved that the code is correct completely. The magnetic field of the optical klystron, the energy modulation of the electron beam, the density modulation of the electron beam, spontaneous emission of the electron beam in optical klystron, the harmonic super-radiation of the electron beam, and the effects of the undulator magnetic field error on modulation of the electron beam energy are simulated. These results are useful for the future experiments

  5. The waveguide Free-Electron Laser. 14

    International Nuclear Information System (INIS)

    Walsh, J.E.

    1990-01-01

    The general characteristics of free-electron lasers (FELs) which employ a waveguiding structure to confine electromagnetic fields and to couple them to the electron beam is discussed. The mode structure of the basic parallel plate waveguide and its adaptation via quasi-optical techniques to FEL resonator design are considered in detail. A summary of the theory of FEL systems which depend intrinsically on a guide structure (micro-undulator, Cerenkov and metal-grating FELs) and a review of progress on waveguide FEL experiments are also presented. (author). 44 refs.; 16 figs

  6. Radiation safety aspects of new X-ray free electron laser facility, SACLA

    International Nuclear Information System (INIS)

    Asano, Yoshihiro

    2013-01-01

    In the safety point of view, X-ray free electron laser facilities have some characteristics in comparison with 3 rd generation synchrotron radiation facilities. One is that the high energy electrons are always injected into the beam dump and the beamlines must be constructed in the direction of the movements of electrons, and another is that the total number of accelerated electrons of X-ray free electron laser facilities is much larger than that of synchrotron radiation facilities. In addition to the importance of safety interlock systems, therefore, it is important that high energy electrons never invade into X-ray free electron laser beamlines and the amount of accelerated electron beam losses must be reduced as much as possible. At SACLA, a safety permanent magnet was installed into the X-ray light beam axis, and a beam halo monitor and beam loss monitors were installed within and around the electron transport pipes, respectively. In comparison with the SPring-8 synchrotron radiation facility, shielding design of SACLA, outline of the radiation safety systems including the monitors will be presented

  7. Three-dimensional simulations of an XUV free-electron laser

    International Nuclear Information System (INIS)

    Goldstein, J.C.; McVey, B.D.; Newnam, B.E.

    1985-01-01

    Operation of free-electron lasers (FEL) at long optical wavelengths (greater than or equal to 600 nm) has now been successfully demonstrated at several laboratories. To operate an FEL at shorter wavelengths imposes constraints on the brightness of the electron beam which are difficult to achieve. Until recently, it was perceived that only an electron storage ring could satisfy these beam requirements. However, our previous 1-D theoretical calculations revealed that modest improvements in the emittance available from rf-linear accelerators would be sufficient to allow operation of an FEL in the XUV spectral range (greater than or equal to 50 nm). We shall present new theoretical results for the design of a linac-driven XUV FEL derived from an improved simulation model. The model is fully three-dimensional in its treatment of the undulator magnetic field, the optical radiation field, and the motion of electrons in a finite-emittance beam. Furthermore, the model computes self-consistently the motion of the electrons and the amplification, diffraction, and the refraction of the light within the undulator magnet. Propagation of the optical beam and reflection at the mirrors of the optical resonator are incorporated in the model so that a complete laser oscillator solution can be generated. The computed performance parameters of a particular XUV FEL oscillator design will be compared with the output of synchrotron radiation sources. 26 refs., 8 figs

  8. Inverse Free Electron Laser accelerator

    International Nuclear Information System (INIS)

    Fisher, A.; Gallardo, J.; van Steenbergen, A.; Sandweiss, J.

    1992-09-01

    The study of the INVERSE FREE ELECTRON LASER, as a potential mode of electron acceleration, is being pursued at Brookhaven National Laboratory. Recent studies have focussed on the development of a low energy, high gradient, multi stage linear accelerator. The elementary ingredients for the IFEL interaction are the 50 MeV Linac e - beam and the 10 11 Watt CO 2 laser beam of BNL's Accelerator Test Facility (ATF), Center for Accelerator Physics (CAP) and a wiggler. The latter element is designed as a fast excitation unit making use of alternating stacks of Vanadium Permendur (VaP) ferromagnetic laminations, periodically interspersed with conductive, nonmagnetic laminations, which act as eddy current induced field reflectors. Wiggler parameters and field distribution data will be presented for a prototype wiggler in a constant period and in a ∼ 1.5 %/cm tapered period configuration. The CO 2 laser beam will be transported through the IFEL interaction region by means of a low loss, dielectric coated, rectangular waveguide. Short waveguide test sections have been constructed and have been tested using a low power cw CO 2 laser. Preliminary results of guide attenuation and mode selectivity will be given, together with a discussion of the optical issues for the IFEL accelerator. The IFEL design is supported by the development and use of 1D and 3D simulation programs. The results of simulation computations, including also wiggler errors, for a single module accelerator and for a multi-module accelerator will be presented

  9. A new far infrared free-electron laser

    CERN Document Server

    Walsh, J E; Swartz, J C; Urata, J; Kimmitt, M F

    1999-01-01

    The operation of a new ultra compact diffraction grating coupled free-electron laser (FEL) has been demonstrated. The basic elements of the device which is termed a grating coupled oscillator (GCO) are the beam in a scanning electron microscope (SEM) and a diffraction grating which is mounted in the e-beam focal region of the SEM. The e-beam is controlled by the SEM's electron optical system and distributed feed back is provided by the grating itself. Recent experimental results are presented and techniques for extending the wavelength and power coverage are discussed.

  10. A new far infrared free-electron laser

    International Nuclear Information System (INIS)

    Walsh, J.E.; Brownell, J.H.; Swartz, J.C.; Urata, J.; Kimmitt, M.F.

    1999-01-01

    The operation of a new ultra compact diffraction grating coupled free-electron laser (FEL) has been demonstrated. The basic elements of the device which is termed a grating coupled oscillator (GCO) are the beam in a scanning electron microscope (SEM) and a diffraction grating which is mounted in the e-beam focal region of the SEM. The e-beam is controlled by the SEM's electron optical system and distributed feed back is provided by the grating itself. Recent experimental results are presented and techniques for extending the wavelength and power coverage are discussed

  11. A new far infrared free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, J.E.; Brownell, J.H.; Swartz, J.C.; Urata, J.; Kimmitt, M.F

    1999-06-01

    The operation of a new ultra compact diffraction grating coupled free-electron laser (FEL) has been demonstrated. The basic elements of the device which is termed a grating coupled oscillator (GCO) are the beam in a scanning electron microscope (SEM) and a diffraction grating which is mounted in the e-beam focal region of the SEM. The e-beam is controlled by the SEM's electron optical system and distributed feed back is provided by the grating itself. Recent experimental results are presented and techniques for extending the wavelength and power coverage are discussed.

  12. Pulse propagation in tapered wiggler free electron lasers

    International Nuclear Information System (INIS)

    Goldstein, J.C.; Colson, W.B.

    1981-01-01

    The one-dimensional theory of short pulse propagation in free electron lasers is extended to tapered wiggler devices and is used to study the behavior of an oscillator with parameter values close to those expected in forthcoming experiments. It is found that stable laser output is possible only over a small range of optical cavity lengths. Optical pulse characteristcs are presented and are found to change considerably over this range

  13. Comments on advanced, time-resolved imaging techniques for free-electron laser (FEL) experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1992-01-01

    An extensive set of time-resolved imaging experiments has been performed on rf-linac driven free-electron lasers (FELs) over the past few years. These experiments have addressed both micropulse and macropulse timescales on both the charged-particle beam and the wiggler/undulator outputs (spontaneous emission and lasing). A brief review of first measurements on photoinjecter micropulse elongation, submacropulse phase slew in drive lasers, submacropulse wavelength shifts in lasers, etc. is presented. This is followed by discussions of new measurements of 35-MeV electron beam micropulse bunch length (<10 ps) using optical transition radiation, some of the first single bend synchrotron radiation beam profile measurements at gamma <80, and comments on the low-jitter synchroscan streak camera tuner. These techniques will be further developed on the 200-650 MeV linac test stand at the Advanced Photon Source (APS) in the next few years. Such techniques should be adaptable to many of the present FEL designs and to some aspects of the next generation of light sources.

  14. Comments on advanced, time-resolved imaging techniques for free-electron laser (FEL) experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1992-11-01

    An extensive set of time-resolved imaging experiments has been performed on rf-linac driven free-electron lasers (FELs) over the past few years. These experiments have addressed both micropulse and macropulse timescales on both the charged-particle beam and the wiggler/undulator outputs (spontaneous emission and lasing). A brief review of first measurements on photoinjecter micropulse elongation, submacropulse phase slew in drive lasers, submacropulse wavelength shifts in lasers, etc. is presented. This is followed by discussions of new measurements of 35-MeV electron beam micropulse bunch length (<10 ps) using optical transition radiation, some of the first single bend synchrotron radiation beam profile measurements at gamma <80, and comments on the low-jitter synchroscan streak camera tuner. These techniques will be further developed on the 200-650 MeV linac test stand at the Advanced Photon Source (APS) in the next few years. Such techniques should be adaptable to many of the present FEL designs and to some aspects of the next generation of light sources.

  15. High-power free-electron lasers-technology and future applications

    Science.gov (United States)

    Socol, Yehoshua

    2013-03-01

    Free-electron laser (FEL) is an all-electric, high-power, high beam-quality source of coherent radiation, tunable - unlike other laser sources - at any wavelength within wide spectral region from hard X-rays to far-IR and beyond. After the initial push in the framework of the “Star Wars” program, the FEL technology benefited from decades of R&D and scientific applications. Currently, there are clear signs that the FEL technology reached maturity, enabling real-world applications. E.g., successful and unexpectedly smooth commissioning of the world-first X-ray FEL in 2010 increased in one blow by more than an order of magnitude (40×) wavelength region available by FEL technology and thus demonstrated that the theoretical predictions just keep true in real machines. Experience of ordering turn-key electron beamlines from commercial companies is a further demonstration of the FEL technology maturity. Moreover, successful commissioning of the world-first multi-turn energy-recovery linac demonstrated feasibility of reducing FEL size, cost and power consumption by probably an order of magnitude in respect to previous configurations, opening way to applications, previously considered as non-feasible. This review takes engineer-oriented approach to discuss the FEL technology issues, keeping in mind applications in the fields of military and aerospace, next generation semiconductor lithography, photo-chemistry and isotope separation.

  16. Free electron laser and coherent radiation. Working group summary

    International Nuclear Information System (INIS)

    Gover, A.; Csonka, P.; Deacon, D.

    1984-01-01

    The planned development of a new storage ring at SSRL gives hope for the exciting possibility that an x-ray laser may become available in a users facility. Such a device would certainly be a unique and revolutionary tool for scientific research and industrial applications, which may take advantage of the spatial and temporal coherence, high power and high brightness of this device in a wavelength regime where no alternative coherent radiation sources exist. The feasibility of implementing such a device in the new ring should be examined carefully by the ring designers. If conclusions are positive, the ring design should take into account the special requirements which are set by the x-ray laser design parameters. Our working group made the first step in this examination process. Most of the emphasis was put on the consideration of an X-Ray Free Electron Laser (XR FEL). FEL technology has developed in the last few years and was recently demonstrated to operate successfully in the visible wavelength regime in the ACO storage ring in Orsay

  17. The measurement of the optical cavity length for the infrared free electron laser

    International Nuclear Information System (INIS)

    Curtis, C.J.; Dahlberg, J.C.; Oren, W.A.; Tremblay, K.J.

    1999-01-01

    One of the final tasks involved in the alignment of the newly constructed Free Electron Laser at the Thomas Jefferson National Accelerator Facility was to accurately measure the length between two mirrors which make up the optical cavity. This presentation examines the survey techniques and equipment assembled in order to complete these measurements, together with the possible sources of error, and the accuracy achieved. (authors)

  18. Charged beam dynamics, particle accelerators and free electron lasers

    CERN Document Server

    Dattoli, Giuseppe; Sabia, Elio; Artioli, Marcello

    2017-01-01

    Charged Beam Dynamics, Particle Accelerators and Free Electron Lasers summarises different topics in the field of accelerators and of Free Electron Laser (FEL) devices. It is intended as a reference manual for the different aspects of FEL devices, explaining how to design both a FEL device and the accelerator providing the driving beam. It covers both theoretical and experimental aspects, allowing researchers to attempt a first design of a FEL device in different operating conditions. It provides an analysis of what is already available, what is needed, and what the challenges are to determine new progress in this field. All chapters contain complements and exercises that are designed in such a way that the reader will gradually acquire self-confidence with the matter treated in the book.

  19. Research on heightening of performance of optical system for free electron laser

    International Nuclear Information System (INIS)

    Kumagai, Hiroshi; Kawamura, Yoshiyuki; Toyada, Koichi

    1996-01-01

    Free electron laser will become in future the center of industrial laser technology as a high efficiency, high power output laser. For the development of free electron laser, the development of the elementary technologies such as accelerator, wiggler, optical system and so on must be carried out. For the stable functioning of free electron laser for long hours, the innovative technical development of the optical technology has been strongly desired. In this research, the development of the method of manufacturing a new high performance, multilayer film reflection mirror and the research on compound optical damage by new high energy photon generation process were advanced. The research on the formation of aluminum oxide thin films by using surface reaction, the development of the technology for forming high accuracy, multi-layer thin films and the evaluation of the optical performance of multi-layer films are reported. The constitution of compound optical damage evaluation system, the calculation of the luminance of high energy photons and the experiment on the generation of photons by a carbon dioxide gas laser are described regarding the compound optical damage research. (K.I.)

  20. Free-electron laser as a power source for a high-gradient accelerating structure

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1982-02-01

    A two beam colliding linac accelerator is proposed in which one beam is intense (approx. = 1KA), of low energy (approx. = MeV), and long (approx. = 100 ns) and provides power at 1 cm wavelength through a free-electron-laser-mechanism to the second beam of a few electrons (approx. = 10 11 ), which gain energy at the rate of 250 MeV/m in a high-gradient accelerating structure and hence reach 375 GeV in 1.5 km. The intense beam is given energy by induction units and gains, and losses by radiation, 250 keV/m thus supplying 25 J/m to the accelerating structure. The luminosity, L, of two such linacs would be, at a repetition rate of 1 kHz, L = 4. x 10 32 cm -2 s -1

  1. Ultraviolet Free Electron Laser Facility preliminary design report

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. (ed.)

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA).

  2. Ultraviolet Free Electron Laser Facility preliminary design report

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA)

  3. An Inverse Free-Electron-Laser accelerator

    International Nuclear Information System (INIS)

    Fisher, A.S.; Gallardo, J.C.; van Steenbergen, A.; Ulc, S.; Woodle, M.; Sandweiss, J.; Fang, Jyan-Min

    1993-01-01

    Recent work at BNL on electron acceleration using the Inverse Free-Electron Laser (IFEL) has considered a low-energy, high-gradient, multi-stage linear accelerator. Experiments are planned at BNL's Accelerator Test Facility using its 50-MeV linac and 100-GW CO 2 laser. We have built and tested a fast-excitation wiggler magnet with constant field, tapered period, and overall length of 47 cm. Vanadium-Permendur ferromagnetic laminations are stacked in alternation with copper, eddy-current-induced, field reflectors to achieve a 1.4-T peak field with a 4-mm gap and a typical period of 3 cm. The laser beam will pass through the wiggler in a low-loss, dielectric-coated stainless-steel, rectangular waveguide. The attenuation and transverse mode has been measured in waveguide sections of various lengths, with and without the dielectric. Results of 1-D and 3-D IFEL simulations, including wiggler errors, will be presented for several cases: the initial, single-module experiment with ΔE = 39 MeV, a four-module design giving ΔE = 100 MeV in a total length of 2 m, and an eight-module IFEL with ΔE = 210 MeV

  4. Compact two-beam push-pull free electron laser

    Science.gov (United States)

    Hutton, Andrew [Yorktown, VA

    2009-03-03

    An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.

  5. Inhomogeneous effects in the quantum free electron laser

    International Nuclear Information System (INIS)

    Piovella, N.; Bonifacio, R.

    2006-01-01

    We include inhomogeneous effects in the quantum model of a free electron laser taking into account the initial energy spread of the electron beam. From a linear analysis, we obtain a generalized dispersion relation, from which the exponential gain can be explicitly calculated. We determine the maximum allowed initial energy spread in the quantum exponential regime and we discuss the limit of large energy spread

  6. Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers

    Science.gov (United States)

    Harmand, M.; Coffee, R.; Bionta, M. R.; Chollet, M.; French, D.; Zhu, D.; Fritz, D. M.; Lemke, H. T.; Medvedev, N.; Ziaja, B.; Toleikis, S.; Cammarata, M.

    2013-03-01

    Recently, few-femtosecond pulses have become available at hard X-ray free-electron lasers. Coupled with the available sub-10 fs optical pulses, investigations into few-femtosecond dynamics are not far off. However, achieving sufficient synchronization between optical lasers and X-ray pulses continues to be challenging. We report a `measure-and-sort' approach, which achieves sub-10 fs root-mean-squared (r.m.s.) error measurement at hard X-ray FELs, far beyond the 100-200 fs r.m.s. jitter limitations. This timing diagnostic, now routinely available at the Linac Coherent Light Source (LCLS), is based on ultrafast free-carrier generation in optically transparent materials. Correlation between two independent measurements enables unambiguous demonstration of ~6 fs r.m.s. error in reporting the optical/X-ray delay, with single shot error suggesting the possibility of reaching few-femtosecond resolution.

  7. Millimeter wave free electron laser amplifiers: Experiments and designs

    International Nuclear Information System (INIS)

    Bidwell, S.W.; Zhang, Z.X.; Antonsen, T.M. Jr.; Bensen, D.M.; Destler, W.W.; Granatstein, V.L.; Lantham, P.E.; Levush, B.; Rodgers, J.

    1991-01-01

    Free electron laser amplifies are investigated as sources of high- average-power (1 MW) millimeter to submillimeter wave radiation (200 GHz - 600 GHz) for application to electron cyclotron resonance heating of magnetically confined fusion plasmas. As a stepping-stone to higher frequencies and cw operation a pulsed amplifier (τ pulse ≅ 80 ns) at 98 GHz is being developed. Status is reported on this experiment which investigates linear gain amplification with use of sheet electron beam (transverse cross section = 0.1 cm x 2.0 cm, V beam = 440 keV, I beam ≅ 10 A) and short-period wiggler (ell w = 0.96 cm) and with expected output of 140 W. Predictions of gain and efficiency from a 1-D universal formulation are presented. Beam propagation results, with wiggler focusing as a means of sheet beam confinement in both transverse dimensions, through the 54 cm (56 period) pulsed electromagnet wiggler are discussed. Peak wiggler fields of 5.1 kG on-axis have been achieved

  8. First experimental results of the BNL inverse free electron laser accelerator

    International Nuclear Information System (INIS)

    Steenbergen, A. van; Gallardo, J.; Babzien, M.; Skaritka, J.; Wang, X.J.; Sandweiss, J.; Fang, J.M.; Qiu, X.

    1996-10-01

    A 40 MeV electron beam, using the inverse3e free-electron laser interaction, has been accelerated by ΔE/E = 2.5% over a distance of 0.47 m. The electrons interact with a 1--2 GW CO 2 laser beam bounded by a 2.8 mm ID sapphire circular waveguide in the presence of a tapered wiggler with Bmax ∼ 1 T and a period 2.89 cm ≤ λ w ≤ 3.14 cm. The experimental results of ΔE/E as a function of electron energy E, peak magnetic field Bw and laser power W 1 compare well with analytical and 1-D numerical simulations and permit scaling to higher laser power and electron energy

  9. High-energy inverse free-electron laser accelerator

    International Nuclear Information System (INIS)

    Courant, E.D.; Pellegrini, C.; Zakowicz, W.

    1985-01-01

    We study the inverse free electron laser (IFEL) accelerator and show that it can accelerate electrons to the few hundred GeV region with average acceleration rates of the order of 200 meV/m. Several possible accelerating structures are analyzed, and the effect of synchrotron radiation losses is studied. The longitudinal phase stability of accelerated particles is also analyzed. A Hamiltonian description, which takes into account the dissipative features of the IFEL accelerator, is introduced to study perturbations from the resonant acceleration. Adiabatic invariants are obtained and used to estimate the change of the electron phase space density during the acceleration process

  10. Optical synchronization of a free-electron laser with femtosecond precision

    International Nuclear Information System (INIS)

    Loehl, F.

    2009-09-01

    High-gain free-electron lasers (FELs) are capable of generating sub-10 fs long light pulses. In order to take full advantage of these extremely short light pulses in time-resolved experiments, synchronization with a so far unprecedented timing accuracy is required. Within this thesis, an optical synchronization system providing sub-10 fs stability has been developed and was implemented at the ultra-violet and soft X-ray free-electron laser FLASH at DESY, Hamburg. The system uses a mode-locked laser as a timing reference. The laser pulses are distributed via length stabilized optical fiber-links to the remote locations. A key feature of the system is a bunch arrival-time monitor detecting the electron bunch arrival-time with an unrivaled resolution of 6 fs. A feedback system based on the arrival-time monitor was established, improving the arrival-time fluctuations from 200 fs in the unstabilized case to 25 fs with active feedback. In order to achieve the high peak current of several thousand amperes required for the FEL process, the electron bunches are longitudinally compressed in two magnetic chicanes. A second feedback system was developed stabilizing the bunch compression process based on measurements of diffraction radiation. The combination of both feedback systems improves the stability of the FEL radiation significantly. (orig.)

  11. Optical synchronization of a free-electron laser with femtosecond precision

    Energy Technology Data Exchange (ETDEWEB)

    Loehl, F.

    2009-09-15

    High-gain free-electron lasers (FELs) are capable of generating sub-10 fs long light pulses. In order to take full advantage of these extremely short light pulses in time-resolved experiments, synchronization with a so far unprecedented timing accuracy is required. Within this thesis, an optical synchronization system providing sub-10 fs stability has been developed and was implemented at the ultra-violet and soft X-ray free-electron laser FLASH at DESY, Hamburg. The system uses a mode-locked laser as a timing reference. The laser pulses are distributed via length stabilized optical fiber-links to the remote locations. A key feature of the system is a bunch arrival-time monitor detecting the electron bunch arrival-time with an unrivaled resolution of 6 fs. A feedback system based on the arrival-time monitor was established, improving the arrival-time fluctuations from 200 fs in the unstabilized case to 25 fs with active feedback. In order to achieve the high peak current of several thousand amperes required for the FEL process, the electron bunches are longitudinally compressed in two magnetic chicanes. A second feedback system was developed stabilizing the bunch compression process based on measurements of diffraction radiation. The combination of both feedback systems improves the stability of the FEL radiation significantly. (orig.)

  12. Time-resolved protein nano-crystallography using an X-ray free-electron laser

    International Nuclear Information System (INIS)

    Aquila, Andrew; Hunter, Mark S.; Fromme, Petra; Fromme, Raimund; Grotjohann, Ingo; Doak, R. Bruce; Kirian, Richard A.; Schmidt, Kevin E.; Wang, Xiaoyu; Weierstall, Uwe; Spence, John C.H.; White, Thomas A.; Caleman, Carl; DePonte, Daniel P.; Fleckenstein, Holger; Gumprecht, Lars; Liang, Mengning; Martin, Andrew V.; Schulz, Joachim; Stellato, Francesco; Stern, Stephan; Barty, Anton; Andreasson, Jakob; Davidsson, Jan; Hajdu, Janos; Maia, Filipe R.N.C.; Seibert, M. Marvin; Timneanu, Nicusor; Arnlund, David; Johansson, Linda; Malmerberg, Erik; Neutze, Richard; Bajt, Sasa; Barthelmess, Miriam; Graafsma, Heinz; Hirsemann, Helmut; Wunderer, Cornelia; Barends, Thomas R.M.; Foucar, Lutz; Krasniqi, Faton; Lomb, Lukas; Rolles, Daniel; Schlichting, Ilme; Schmidt, Carlo; Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond; Starodub, Dmitri; Bostedt, Christoph; Bozek, John D.; Messerschmidt, Marc; Williams, Garth J.; Bottin, Herve

    2012-01-01

    We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photo-activated states of large membrane protein complexes in the form of nano-crystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 μs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems. (authors)

  13. The chirped-pulse inverse free-electron laser: A high-gradient vacuum laser accelerator

    International Nuclear Information System (INIS)

    Hartemann, F.V.; Landahl, E.C.; Troha, A.L.; Van Meter, J.R.; Baldis, H.A.; Freeman, R.R.; Luhmann, N.C. Jr.; Song, L.; Kerman, A.K.; Yu, D.U.

    1999-01-01

    The inverse free-electron laser (IFEL) interaction is studied theoretically and computationally in the case where the drive laser intensity approaches the relativistic regime, and the pulse duration is only a few optical cycles long. The IFEL concept has been demonstrated as a viable vacuum laser acceleration process; it is shown here that by using an ultrashort, ultrahigh-intensity drive laser pulse, the IFEL interaction bandwidth and accelerating gradient are increased considerably, thus yielding large energy gains. Using a chirped pulse and negative dispersion focusing optics allows one to take further advantage of the laser optical bandwidth and produce a chromatic line focus maximizing the gradient. The combination of these novel ideas results in a compact vacuum laser accelerator capable of accelerating picosecond electron bunches with a high gradient (GeV/m) and very low energy spread. copyright 1999 American Institute of Physics

  14. Elsa: an infrared free electron laser

    International Nuclear Information System (INIS)

    Guimbal, P.; Chaix, P.

    1998-01-01

    Since the first experiments, twenty years ago, free-electron lasers (FEL) have known a strong development because of their promise: broadband tunability from X-rays to microwaves and high (peak or average) power, limited only by technological issues. ELSA has been designed as a research tool to investigate the physics of high-power FELs. After a brief introduction of the FEL field of research, we point out the unique characteristics of ELSA and why it is a valuable tool for the study of FEL interaction in the strong electron-photon coupling. The main experimental results are reviewed. We conclude on the concept of Two-Frequency-Wiggler. (author)

  15. Three-dimensional simulations of free-electron laser physics

    International Nuclear Information System (INIS)

    McVey, B.D.

    1985-09-01

    A computer code has been developed to simulate three-dimensional free-electron laser physics. A mathematical formulation of the FEL equations is presented, and the numerical solution of the problem is described. Sample results from the computer code are discussed. 23 refs., 6 figs., 2 tabs

  16. Free electron lasers for transmission of energy in space

    Science.gov (United States)

    Segall, S. B.; Hiddleston, H. R.; Catella, G. C.

    1981-01-01

    A one-dimensional resonant-particle model of a free electron laser (FEL) is used to calculate laser gain and conversion efficiency of electron energy to photon energy. The optical beam profile for a resonant optical cavity is included in the model as an axial variation of laser intensity. The electron beam profile is matched to the optical beam profile and modeled as an axial variation of current density. Effective energy spread due to beam emittance is included. Accelerators appropriate for a space-based FEL oscillator are reviewed. Constraints on the concentric optical resonator and on systems required for space operation are described. An example is given of a space-based FEL that would produce 1.7 MW of average output power at 0.5 micrometer wavelength with over 50% conversion efficiency of electrical energy to laser energy. It would utilize a 10 m-long amplifier centered in a 200 m-long optical cavity. A 3-amp, 65 meV electrostatic accelerator would provide the electron beam and recover the beam after it passes through the amplifier. Three to five shuttle flights would be needed to place the laser in orbit.

  17. Field Emitter Arrays for a Free Electron Laser Application

    CERN Document Server

    Shing-Bruce-Li, Kevin; Ganter, Romain; Gobrecht, Jens; Raguin, Jean Yves; Rivkin, Leonid; Wrulich, Albin F

    2004-01-01

    The development of a new electron gun with the lowest possible emittance would help reducing the total length and cost of a free electron laser. Field emitter arrays (FEAs) are an attractive technology for electron sources of ultra high brightness. Indeed, several thousands of microscopic tips can be deposited on a 1 mm diameter area. Electrons are then extracted by applying voltage to a first grid layer close to the tip apexes, the so called gate layer, and focused by a second grid layer one micrometer above the tips. The typical aperture diameter of the gate and the focusing layer is in the range of one micrometer. One challenge for such cathodes is to produce peak currents in the ampere range since the usual applications of FEAs require less than milliampere. Encouraging peak current performances have been obtained by applying voltage pulses at low frequency between gate and tips. In this paper we report on different tip materials available on the market: diamond FEAs from Extreme Devices Inc., ZrC single ...

  18. Laser-Electron-Gamma-Source. Progress report, July 1986

    International Nuclear Information System (INIS)

    Dowell, D.H.; Fineman, B.; Giordano, G.; Kistner, OC.; Matone, G.; Sandorfi, A.M.; Schaerf, C.; Thorn, C.E.; Ziegler, W.

    1986-07-01

    When completed, the Laser Electron Gamma Source (LEGS) is expected to provide intense beams of monochromatic and polarized (circular or linear) gamma rays with energies up to 500 MeV. The gamma-ray beams will be produced by Compton backscattering uv laser light from the electrons circulating in a storage ring. Progress with installation of the facility is described, particularly the Ar-ion laser and tagging spectrometer. Tests of the tagging spectrometer coponents is reported, and a second laser is described for higher energy operation. Estimates are given of expected beam parameters. Experimental equipment for the planned research projects to be carried out at the LEGS facility is discussed

  19. Hemostatic properties of the free-electron laser

    International Nuclear Information System (INIS)

    Cram, G.P. Jr.; Copeland, M.L.

    1998-01-01

    We have investigated the hemostatic properties of the free-electron laser (FEL) and compared these properties to the most commonly used commercial lasers in neurosurgery, CO 2 and Nd:YAG, using an acute canine model. Arterial and venous vessels, of varying diameters from 0.1 to 1.0 mm, were divided with all three lasers. Analysis of five wavelengths of the FEL (3.0, 4.5, 6.1, 6.45, and 7.7 microns) resulted in bleeding without evidence of significant coagulation, regardless of whether the vessel was an artery or vein. Hemorrhage from vessels less than 0.4 mm diameter was subsequently easily controlled with Gelfoam registered (topical hemostatic agent) alone, whereas larger vessels required bipolar electrocautery. No significant charring, or contraction of the surrounding parenchyma was noted with any of the wavelengths chosen from FEL source. The CO 2 laser, in continuous mode, easily coagulated vessels with diameters of 4 mm and less, while larger vessels displayed significant bleeding requiring bipolar electrocautery for control. Tissue charring was noted with application of the CO 2 laser. In super pulse mode, the CO 2 laser exhibited similar properties, including significant charring of the surrounding parenchyma. The Nd:YAG coagulated all vessels tested up to 1.4 mm, which was the largest diameter cortical artery found, however this laser displayed significant and extensive contraction and retraction of the surrounding parenchyma. In conclusion, the FEL appears to be a poor hemostatic agent. Our results did not show any benefit of the FEL over current conventional means of achieving hemostasis. However, control of hemorrhage was easily achieved with currently used methods of hemostasis, namely Gelfoam registered or bipolar electrocuatery. Although only cortical vessels in dogs were tested, we feel this data can be applied to all animals, including humans, and the peripheral, as well as central, vasculature, as our data on the CO 2 and Nd:YAG appear to closely

  20. A control system for a free electron laser experiment

    International Nuclear Information System (INIS)

    Giove, D.

    1992-01-01

    The general layout of a control and data acquisition system for a Free Electron Laser experiment will be discussed. Some general considerations about the requirements and the architecture of the whole system will be developed. (author)

  1. Engineering design of the interaction waveguide for high-power accelerator-driven microwave free-electron lasers

    International Nuclear Information System (INIS)

    Hopkins, D.B.; Clay, H.W.; Stallard, B.W.; Throop, A.L.; Listvinsky, G.; Makowski, M.A.

    1989-01-01

    Linear induction accelerators (LIAs) operating at beam energies of a few million electron volts and currents of a few thousand amperes are suitable drivers for free-electron lasers (FELs). Such lasers are capable of producing gigawatts of peak power and megawatts of average power at microwave frequencies. Such devices are being studied as possible power sources for future high-gradient accelerators and are being constructed for plasma heating applications. At high power levels, the engineering design of the interaction waveguide presents a challenge. This paper discusses several concerns, including electrical breakdown and metal fatigue limits, choice of material, and choice of operating propagation mode. 13 refs., 3 figs

  2. ETL linac facility and free-electron lasers

    International Nuclear Information System (INIS)

    Yamazaki, T.; Noguchi, T.; Mikado, T.; Sugiyama, S.; Yamada, K.; Chiwaki, M.; Ohgaki, H.; Suzuki, R.; Sei, N.

    1993-01-01

    An outline is presented of the recent development on the ETL (Electro-technical Laboratory) electron-linac facility and storage-ring FELs (free-electron lasers). Some modifications including the injection system have been made to the linac. Four storage rings are working very well. The TERAS FEL system has been shut down after the successful oscillation around 590 nm. The new NIJI-IV FEL system has been proven to work well, and the current tunable wavelength range is over 100 nm (488-595 nm). Preparatory experiments on the FEL at shorter wavelength are underway. (author)

  3. Free electron lasers on superconducting linac

    International Nuclear Information System (INIS)

    Lapierrre, Y.

    1986-01-01

    Analysing the results of several Free Electron Laser experiments, we show that the best accelerator should be a superconducting linear accelerator: it can provide a c.w. high quality beam (energy spread and emittance). The technology of RF superconductivity provide the opportunity to build such an accelerator. In this paper, we present the foreseen results one can expect from a FEL based on such a machine: - Average power > 1 Kw, - Total efficiency > 2.5%, - Tunability between 0.6 and 5 μm [fr

  4. Self-amplified spontaneous emission free electron laser devices and nonideal electron beam transport

    Directory of Open Access Journals (Sweden)

    L. L. Lazzarino

    2014-11-01

    Full Text Available We have developed, at the SPARC test facility, a procedure for a real time self-amplified spontaneous emission free electron laser (FEL device performance control. We describe an actual FEL, including electron and optical beam transport, through a set of analytical formulas, allowing a fast and reliable on-line “simulation” of the experiment. The system is designed in such a way that the characteristics of the transport elements and the laser intensity are measured and adjusted, via a real time computation, during the experimental run, to obtain an on-line feedback of the laser performances. The detail of the procedure and the relevant experimental results are discussed.

  5. High Harmonic Inverse Free-Electron-Laser Interaction at 800 NM

    CERN Document Server

    Sears, Chris M S; Colby, Eric R; Cowan, Benjamin; Plettner, Tomas; Siemann, Robert; Spencer, James

    2005-01-01

    The inverse Free Electron Laser (IFEL) interaction has recently been proposed and used as a short wavelength modulator forμbunching of beams for laser acceleration experiments*,**. These experiments utilized the fundamental of the interaction between the laser field and electron bunch. In the current experiment, we explore the higher order resonances of the IFEL interaction from a 3 period, 1.8 centimeter wavelength undulator with a picosecond, 0.25 mJ/pulse laser at 800 nm. The resonances are observed by adjusting the gap of the undulator while keeping the beam energy constant. We will also discuss diagnostics for obtaining beam overlap and statistical techniques used to account for machine drifts and analyze the data.

  6. The free electron laser: a system capable of determining the gold standard in laser vision correction

    International Nuclear Information System (INIS)

    Fowler, W. Craig; Rose, John G.; Chang, Daniel H.; Proia, Alan D.

    1999-01-01

    Introduction. In laser vision correction surgery, lasers are generally utilized based on their beam-tissue interactions and corneal absorption characteristics. Therefore, the free electron laser, with its ability to provide broad wavelength tunability, is a unique research tool for investigating wavelengths of possible corneal ablation. Methods. Mark III free electron laser wavelengths between 2.94 and 6.7 μm were delivered in serial 0.1 μm intervals to corneas of freshly enucleated porcine globes. Collateral damage, ablation depth, and ablation diameter were measured in histologic sections. Results. The least collateral damage (12-13 μm) was demonstrated at three wavelengths: 6.0, 6.1 (amide I), and 6.3 μm. Minimal collateral damage (15 μm) was noted at 2.94 μm (OH-stretch) and at 6.2 μm. Slightly greater collateral damage was noted at 6.45 μm (amide II), as well as at the 5.5-5.7 μm range, but this was still substantially less than the collateral damage noted at the other wavelengths tested. Conclusions. Our results suggest that select mid-infrared wavelengths have potential for keratorefractive surgery and warrant additional study. Further, the free electron laser's ability to allow parameter adjustment in the far-ultraviolet spectrum may provide unprecedented insights toward establishing the gold-standard parameters for laser vision correction surgery

  7. Single-Molecule Imaging with X-Ray Free-Electron Lasers: Dream or Reality?

    KAUST Repository

    Fratalocchi, Andrea

    2011-03-09

    X-ray free-electron lasers (XFEL) are revolutionary photon sources, whose ultrashort, brilliant pulses are expected to allow single-molecule diffraction experiments providing structural information on the atomic length scale of nonperiodic objects. This ultimate goal, however, is currently hampered by several challenging questions basically concerning sample damage, Coulomb explosion, and the role of nonlinearity. By employing an original ab initio approach, we address these issues showing that XFEL-based single-molecule imaging will be only possible with a few-hundred long attosecond pulses, due to significant radiation damage and the formation of preferred multisoliton clusters which reshape the overall electronic density of the molecular system at the femtosecond scale.

  8. Single-Molecule Imaging with X-Ray Free-Electron Lasers: Dream or Reality?

    KAUST Repository

    Fratalocchi, Andrea; Ruocco, G.

    2011-01-01

    X-ray free-electron lasers (XFEL) are revolutionary photon sources, whose ultrashort, brilliant pulses are expected to allow single-molecule diffraction experiments providing structural information on the atomic length scale of nonperiodic objects. This ultimate goal, however, is currently hampered by several challenging questions basically concerning sample damage, Coulomb explosion, and the role of nonlinearity. By employing an original ab initio approach, we address these issues showing that XFEL-based single-molecule imaging will be only possible with a few-hundred long attosecond pulses, due to significant radiation damage and the formation of preferred multisoliton clusters which reshape the overall electronic density of the molecular system at the femtosecond scale.

  9. Free electron laser amplifier driven by an induction linac

    International Nuclear Information System (INIS)

    Neil, V.K.

    1986-01-01

    This paper discusses the use of a free-electron laser amplifier as a means of converting the kinetic energy of an electron beam into coherent radiation. In particular, the use of an induction linear accelerator is discussed. The motion of the elections in the tapered and untapered wiggler magnets is discussed as well as the beam emittance, and the radiation fields involved

  10. Free electron laser facilities employing a 150-MeV linac injector for Saga synchrotron light source

    International Nuclear Information System (INIS)

    Tomimasu, T.; Yasumoto, M.; Ochiai, Y.; Ishibashi, M.; Murayama, T.

    1999-01-01

    Free electron laser (FEL) facilities as the FELI FEL Facility are proposed, for which a 150-MeV linac type injector for a Saga synchrotron light source (SLS) is employed in FEL mode. The linac has two operating modes; short macropulse mode a 1 μs at 150 MeV for injection to a 1 - 1.3-GeV third generation type storage ring and long macropulse mode of 12 μs at 100 MeV for four FEL Facilities. The macropulse beam consists of a train of several ps, 0.6 nC microbunches (peak current 100 A) repeating at 89.25 MHz. We are aiming to supply high power level photon beams covering an attractive wavelength range from 0.05 nm (25 keV) to 200 μm (0.006 eV) for scientific researches, bio-medical and industrial applications, using the Saga third generation type SLS with a superconducting wiggler and the proposed four FEL Facilities. (author)

  11. Theory and Simulation of an Inverse Free Electron Laser Experiment

    Science.gov (United States)

    Guo, S. K.; Bhattacharjee, A.; Fang, J. M.; Marshall, T. C.

    1996-11-01

    An experimental demonstration of the acceleration of electrons using a high power CO2 laser in an inverse free electron laser (IFEL) is underway at the Brookhaven National Laboratory. This experiment has generated data, which we are attempting to simulate. Included in our studies are such effects as: a low-loss metallic waveguide with a dielectric coating on the walls; multi-mode coupling due to self-consistent interaction between the electrons and the optical wave; space charge (which is significant at lower laser power); energy-spread of the electrons; arbitrary wiggler field profile; and slippage. Two types of wiggler profile have been considered: a linear taper of the period, and a step-taper of the period (the period is ~ 3cm, the field is ~ 1T, and the wiggler length is 47cm). The energy increment of the electrons ( ~ 1-2%) is analyzed in detail as a function of laser power, wiggler parameters, and the initial beam energy (40MeV). For laser power ~ 0.5GW, the predictions of the simulations are in good accord with experimental results. A matter currently under study is the discrepancy between theory and observations for the electron energy distribution observed at the end of the IFEL. This work is supported by the Department of Energy.

  12. High gain free electron laser at ETA

    International Nuclear Information System (INIS)

    Orzechowski, T.J.; Prosnitz, D.; Halbach, K.

    1983-01-01

    A single pass, tapered electron wiggler and associated beam transport has been constructed at the Experimental Test Accelerator (ETA) at Lawrence Livermore National Laboratory (LLNL). The system is designed to transport 1 kA of 4.5 MeV electrons with an emittance of 30 millirad-cm. The planar wiggler is provided by a pulsed electromagnet. The interaction region is an oversized rectangular waveguide. Quadrupole fields stabilize the beam in the plane parallel to the wiggler field. The 3 meter long wiggler has a 9.8 cm period. The Free Electron Laser (FEL) will serve as an amplifier for input frequencies of 35 GHz and 140 GHz. The facility is designed to produce better than 500 Megawatts peak power

  13. An extreme ultraviolet Michelson interferometer for experiments at free-electron lasers

    International Nuclear Information System (INIS)

    Hilbert, Vinzenz; Fuchs, Silvio; Paulus, Gerhard G.; Zastrau, Ulf; Blinne, Alexander; Feigl, Torsten; Kämpfer, Tino; Rödel, Christian; Uschmann, Ingo; Wünsche, Martin; Förster, Eckhart

    2013-01-01

    We present a Michelson interferometer for 13.5 nm soft x-ray radiation. It is characterized in a proof-of-principle experiment using synchrotron radiation, where the temporal coherence is measured to be 13 fs. The curvature of the thin-film beam splitter membrane is derived from the observed fringe pattern. The applicability of this Michelson interferometer at intense free-electron lasers is investigated, particularly with respect to radiation damage. This study highlights the potential role of such Michelson interferometers in solid density plasma investigations using, for instance, extreme soft x-ray free-electron lasers. A setup using the Michelson interferometer for pseudo-Nomarski-interferometry is proposed

  14. An extreme ultraviolet Michelson interferometer for experiments at free-electron lasers.

    Science.gov (United States)

    Hilbert, Vinzenz; Blinne, Alexander; Fuchs, Silvio; Feigl, Torsten; Kämpfer, Tino; Rödel, Christian; Uschmann, Ingo; Wünsche, Martin; Paulus, Gerhard G; Förster, Eckhart; Zastrau, Ulf

    2013-09-01

    We present a Michelson interferometer for 13.5 nm soft x-ray radiation. It is characterized in a proof-of-principle experiment using synchrotron radiation, where the temporal coherence is measured to be 13 fs. The curvature of the thin-film beam splitter membrane is derived from the observed fringe pattern. The applicability of this Michelson interferometer at intense free-electron lasers is investigated, particularly with respect to radiation damage. This study highlights the potential role of such Michelson interferometers in solid density plasma investigations using, for instance, extreme soft x-ray free-electron lasers. A setup using the Michelson interferometer for pseudo-Nomarski-interferometry is proposed.

  15. Optical modeling of induction-linac driven free-electron lasers

    International Nuclear Information System (INIS)

    Scharlemann, E.T.; Fawley, W.M.

    1986-01-01

    The free-electron laser (FEL) simulation code FRED, developed at Lawrence Livermore National Laboratory (LLNL) primarily to model single-pass FEL amplifiers driven by induction linear accelerators, is described. The main emphasis is on the modeling of optical propagation in the laser and on the differences between the requirements for modeling rf-linac-driven vs. induction-linac-driven FELs. Examples of optical guiding and mode cleanup are presented for a 50 μm FEL

  16. Variable Gap Undulator for 1.5-48 Kev Free Electron Laser at Linac Coherent Light Source

    International Nuclear Information System (INIS)

    2011-01-01

    We study the feasibility of generating femtosecond duration Free-Electron Laser with a variable photon energy from 1.5 to 48 keV, using an electron bunch with the same characteristics of the LINAC Coherent Light Source (LCLS) bunch, and a planar undulator with additional focusing. We assume that the electron bunch energy can be changed, and the undulator has a variable gap, allowing a variable undulator parameter. It is assumed to be operated in an ultra-low charge and ultra-short pulse regime. We study the feasibility of a tunable, short pulse, X-ray FEL with photon energy from 1.5 to 48 keV, using an electron beam like the one in the LCLS and a 2:5 cm period, variable gap, planar undulator. The beam energy changes from 4.6 to 13.8 GeV, the electorn charge is kept at 10 pC, and the undulator parameter varies from 1 to 3. The undulator length needed to saturate the 48 keV FEL is about 55 m, with a peak power around 5 GW. At longer wavelength the saturation length is as short as 15 m, and the peak power around 20 GW. The results from the analytical models and the GENESIS simulations show that the system is feasible. The large wavelength range, full tunability and short, few femtosecond pulses, together with the large peak power, would provide a powerful research tool.

  17. Multiple purpose research complex on the basis of electron accelerators and terahertz free electron laser

    International Nuclear Information System (INIS)

    Kulipanov, G.N.

    2009-01-01

    In this report the basic positioning parameters of multiple purpose research complex are presented, the list of potential experiments and technological uses on the example of results received in the multiuser center of G.I. Budker Institut of nuclear physics Siberian department of the Russian Academy of Sciences is discussed. This research complex is directed on work in the big universities and nano technology centers. Electron accelerators is intended for development of electron-beam technologies different material modification, for production of nano powder, nano materials and solution of ecological tasks. In this work the project of multiple purpose research complex on the basis of new generation electron accelerator Il-14 and workable terahertz free electron laser is suggested. Terahertz free electron laser will be used for researches in the sphere of physics and chemistry, biology and medicine, nanotechnology engineering and different methods of nanodiagnostics.

  18. Modeling paraxial wave propagation in free-electron laser oscillators

    NARCIS (Netherlands)

    Karssenberg, J.G.; van der Slot, Petrus J.M.; Volokhine, I.; Verschuur, Jeroen W.J.; Boller, Klaus J.

    2006-01-01

    Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the light propagation outside the undulator. We have developed a paraxial optical propagation code that can be combined with various existing models of gain media, for

  19. 3-D numerical analysis of a high-gain free-electron laser

    International Nuclear Information System (INIS)

    Gallardo, J.C.

    1988-01-01

    We present a novel approach to the 3-dimensional high-gain free- electron laser amplifier problem. The method allows us to write the laser field as an integral equation which can be efficiently and accurately evaluated on a small computer. The model is general enough to allow the inclusion of various initial electron beam distributions to study the gain reduction mechanism and its dependence on the physical parameters. 16 refs., 8 figs., 1 tab

  20. Hemostatic properties of the free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Cram, G.P. Jr.; Copeland, M.L. [Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN 37235 (United States)

    1998-09-02

    We have investigated the hemostatic properties of the free-electron laser (FEL) and compared these properties to the most commonly used commercial lasers in neurosurgery, CO{sub 2} and Nd:YAG, using an acute canine model. Arterial and venous vessels, of varying diameters from 0.1 to 1.0 mm, were divided with all three lasers. Analysis of five wavelengths of the FEL (3.0, 4.5, 6.1, 6.45, and 7.7 microns) resulted in bleeding without evidence of significant coagulation, regardless of whether the vessel was an artery or vein. Hemorrhage from vessels less than 0.4 mm diameter was subsequently easily controlled with Gelfoam registered (topical hemostatic agent) alone, whereas larger vessels required bipolar electrocautery. No significant charring, or contraction of the surrounding parenchyma was noted with any of the wavelengths chosen from FEL source. The CO{sub 2} laser, in continuous mode, easily coagulated vessels with diameters of 4 mm and less, while larger vessels displayed significant bleeding requiring bipolar electrocautery for control. Tissue charring was noted with application of the CO{sub 2} laser. In super pulse mode, the CO{sub 2} laser exhibited similar properties, including significant charring of the surrounding parenchyma. The Nd:YAG coagulated all vessels tested up to 1.4 mm, which was the largest diameter cortical artery found, however this laser displayed significant and extensive contraction and retraction of the surrounding parenchyma. In conclusion, the FEL appears to be a poor hemostatic agent. Our results did not show any benefit of the FEL over current conventional means of achieving hemostasis. However, control of hemorrhage was easily achieved with currently used methods of hemostasis, namely Gelfoam registered or bipolar electrocuatery. Although only cortical vessels in dogs were tested, we feel this data can be applied to all animals, including humans, and the peripheral, as well as central, vasculature, as our data on the CO{sub 2} and

  1. Free electron laser and fundamental physics

    Science.gov (United States)

    Dattoli, Giuseppe; Nguyen, Federico

    2018-03-01

    This review paper is devoted to the understanding of free-electron lasers (FEL) as devices for fundamental physics (FP) studies. After clarifying what FP stands for, we select some aspects of the FEL physics which can be viewed as fundamental. Furthermore, we discuss the perspective uses of the FEL in FP experiments. Regarding the FP aspects of the FEL, we analyze the quantum electrodynamics (QED) nature of the underlying laser mechanism. We look for the truly quantum signature in a process whose phenomenology is dominated by classical effects. As to the use of FEL as a tool for FP experiments we discuss the realization of a device dedicated to the study of non-linear effects in QED such as photon-photon scattering and shining-through-the-wall experiments planned to search for dark matter candidates like axions.

  2. The stability of free-electron lasers against filamentation

    International Nuclear Information System (INIS)

    Barnard, J.J.; Scharlemann, E.T.; Yu, S.S.

    1987-01-01

    In inertial confinement fusion (ICF) experiments, the high electromagnetic fields propagating through a relatively dense plasma can result in a transverse instability, causing the matter and light to form filaments oriented parallel to the light beam. We examine whether a similar instability exists in the electron beam of a free-electron laser, where such an instability could interfere with the transfer of beam kinetic energy into optical wave energy. We heuristically examine the instability in a relativistic beam through which an intense laser beam is propagating. We ignore the FEL effects. We estimate how the altered index of refraction in an FEL affects the dispersion relation. Finally, we estimate the effect that the instability could have on the phase coherence of a particle as it transits an FEL. 10 refs., 2 tabs

  3. A novel small-period wiggler for free-electron lasers

    International Nuclear Information System (INIS)

    Feng Bibo; Wang Mingchang; Wang Zhijiang

    1992-01-01

    A novel small-period wiggler configuration constructed by sheet of bifilar-helix with ferro-core for free-electron lasers is proposed. The performance characteristics of the wiggler prototype with 10 mm period are measured. The field as high as 500 G to 1 kG have been obtained. The amplifier designs for operation at 190 GHz using modest electron beam energies in the range of 400-500 keV are presented

  4. Conductors, semiconductors and insulators irradiated with short-wavelength free-electron laser

    Czech Academy of Sciences Publication Activity Database

    Krzywinski, J.; Sobierajski, R.; Jurek, M.; Nietubyc, R.; Pelka, J. B.; Juha, Libor; Bittner, Michal; Létal, V.; Vorlíček, Vladimír; Andrejczuk, A.; Feldhaus, J.; Keitel, B.; Saldin, E.; Schneidmiller, E.A.; Treusch, R.; Yurkov, M. V.

    2007-01-01

    Roč. 101, č. 4 (2007), 043107/1-043107/4 ISSN 0021-8979 R&D Projects: GA MŠk 1P04LA235; GA MŠk LC510; GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : free-electron laser * extreme ultraviolet * ablation * laser-matter interaction Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.171, year: 2007

  5. Characterization and control of femtosecond electron and X-ray beams at free-electron lasers

    International Nuclear Information System (INIS)

    Behrens, Christopher

    2012-11-01

    X-ray free-electron lasers (FELs) open up new frontiers in photon science, and in order to take full advantage of these unique accelerator-based light sources, the characterization and control of the femtosecond electron and X-ray beams is essential. Within this cumulative thesis, recent results achieved within the active research field of femtosecond electron and X-ray beams at FELs are reported.The basic principles of X-ray FELs are described, and concepts of longitudinal electron beam diagnostics with femtosecond accuracy are covered. Experimental results obtained with a transverse deflecting structure (TDS) and spectroscopy of coherent terahertz radiation are presented, and the suppression of coherent optical radiation effects, required for diagnostics utilizing a TDS, is demonstrated. Control of the longitudinal phase space by using multiple radio frequencies for longitudinal electron beam tailoring is presented, and a new technique of reversible electron beam heating with two TDSs is described. For the characterization of femtosecond X-ray pulses, a novel method based on dedicated longitudinal phase space diagnostics for electron beams is introduced, and recent measurements with a streaking technique using external terahertz fields are presented.

  6. Characterization and control of femtosecond electron and X-ray beams at free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher

    2012-11-15

    X-ray free-electron lasers (FELs) open up new frontiers in photon science, and in order to take full advantage of these unique accelerator-based light sources, the characterization and control of the femtosecond electron and X-ray beams is essential. Within this cumulative thesis, recent results achieved within the active research field of femtosecond electron and X-ray beams at FELs are reported.The basic principles of X-ray FELs are described, and concepts of longitudinal electron beam diagnostics with femtosecond accuracy are covered. Experimental results obtained with a transverse deflecting structure (TDS) and spectroscopy of coherent terahertz radiation are presented, and the suppression of coherent optical radiation effects, required for diagnostics utilizing a TDS, is demonstrated. Control of the longitudinal phase space by using multiple radio frequencies for longitudinal electron beam tailoring is presented, and a new technique of reversible electron beam heating with two TDSs is described. For the characterization of femtosecond X-ray pulses, a novel method based on dedicated longitudinal phase space diagnostics for electron beams is introduced, and recent measurements with a streaking technique using external terahertz fields are presented.

  7. Linear Gain and Gain Saturation in a Photonic Free-Electron Laser

    NARCIS (Netherlands)

    Denis, T.; Boller, Klaus J.; Lee, J.H.H.; van der Slot, P.J.M.; van Dijk, Marc

    2012-01-01

    Photonic crystals are used to manipulate the generation of light, for example, stimulated emission can be enhanced. A photonic free-electron laser (pFEL) applies this enhancement to generate widely tunable coherent Cerenkov radiation from low energy electrons (keV) streaming through the photonic

  8. Soft x-ray free-electron laser induced damage to inorganic scintillators

    Czech Academy of Sciences Publication Activity Database

    Burian, Tomáš; Hájková, Věra; Chalupský, Jaromír; Vyšín, Luděk; Boháček, Pavel; Přeček, Martin; Wild, J.; Özkan, C.; Coppola, N.; Farahani, S.D.; Schulz, J.; Sinn, H.; Tschentscher, T.; Gaudin, J.; Bajt, S.; Tiedtke, K.; Toleikis, S.; Chapman, H.N.; Loch, R.A.; Jurek, M.; Sobierajski, R.; Krzywinski, J.; Moeller, S.; Harmand, M.; Galasso, G.; Nagasono, M.; Saskl, K.; Sovák, P.; Juha, Libor

    2015-01-01

    Roč. 5, č. 2 (2015), 254-264 ISSN 2159-3930 R&D Projects: GA ČR(CZ) GAP108/11/1312; GA MŠk EE2.3.30.0057 Grant - others:OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : fluorescent and luminescent materials * laser damage * free-electron lasers * soft x-rays * laser materials processing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.657, year: 2015

  9. High gain harmonic generation free electron lasers enhanced by pseudoenergy bands

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2017-08-01

    Full Text Available We propose a new scheme for high gain harmonic generation free electron lasers (HGHG FELs, which is seeded by a pair of intersecting laser beams to interact with an electron beam in a modulator undulator located in a dispersive section. The interference of the laser beams gives rise to a two-dimensional modulation in the energy-time phase space because of a strong correlation between the electron energy and the position in the direction of dispersion. This eventually forms pseudoenergy bands in the electron beam, which result in efficient harmonic generation in HGHG FELs in a similar manner to the well-known scheme using the echo effects. The advantage of the proposed scheme is that the beam quality is less deteriorated than in other existing schemes.

  10. Kinetic theory of free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Hafizi, B. [Naval Research Lab., Washington, DC (United States); Roberson, C.W. [Office of Naval Research, Arlington, VA (United States)

    1995-12-31

    We have developed a relativistic kinetic theory of free electron lasers (FELs). The growth rate, efficiency, filling factor and radius of curvature of the radiation wave fronts are determined. We have used the theory to examine the effects of beam compression on growth rate. The theory has been extended to include self field effects on FEL operation. These effects are particularly important in compact, low voltage FELs. The surprising result is that the self field contribution to the beam quality is opposite to the emittance contribution. Hence self fields can improve beam quality, particularly in compact, low voltage FELs.

  11. Infrared spectroscopy of gas-phase clusters using a free-electron laser

    International Nuclear Information System (INIS)

    Heijnsbergen, D. van; Helden, G. von; Meijer, G.

    2002-01-01

    Most clusters produced in the gas phase, especially those containing metals, remain largely uncharaterized, among these are transition metal - carbide, -oxide and -nitride clusters. A method for recording IR spectra of strongly bound gas-phase clusters is presented. It is based on a free-electron laser called Felix, characterized by wide wavelength tuning range, covering almost the full 'molecular finger print' region, high power and fluence which make it suited to excite gas-phase species i.e. gas -phase clusters. Neutral clusters were generated by laser vaporization technique, ions that were created after the interaction with the free-electron laser were analyzed in a flight mass spectrometer. Experiments were run with titanium carbide clusters and their IR spectra given. It was shown that this method is suited to strongly bound clusters with low ionization energies, a condition met for many pure metal clusters and metal compound clusters. (nevyjel)

  12. CAS CERN Accelerator School. Synchrotron radiation and free electron lasers. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1998-01-01

    These proceedings present the lectures given at the tenth specialised course organised by the CERN Accelerator School (CAS), the topic this time being 'Synchrotron Radiation and Free-electron Lasers'. A similar course was already given at Chester, UK in 1989 and whose proceedings were published as CERN 90-03. However, recent progress in this field has been so rapid that it became urgent to present a revised version of the course. Starting with a review of the characteristics of synchrotron radiation there follows introductory lectures on electron dynamics in storage rings, beam insertion devices, and beam current and radiation brightness limits. These themes are then developed with more detailed lectures on lattices and emittance, wigglers and undulators, current limitations, beam lifetime and quality, diagnostics and beam stability. Finally lectures are presented on linac and storage ring free-electron lasers. (orig.)

  13. Katherine E. Weimer Award: X-ray light sources from laser-plasma and laser-electron interaction: development and applications

    Science.gov (United States)

    Albert, Felicie

    2017-10-01

    Bright sources of x-rays, such as synchrotrons and x-ray free electron lasers (XFEL) are transformational tools for many fields of science. They are used for biology, material science, medicine, or industry. Such sources rely on conventional particle accelerators, where electrons are accelerated to gigaelectronvolts (GeV) energies. The accelerated particles are wiggled in magnetic structures to emit x-ray radiation that is commonly used for molecular crystallography, fluorescence studies, chemical analysis, medical imaging, and many other applications. One of the drawbacks of these machines is their size and cost, because electric field gradients are limited to about 100 V/M in conventional accelerators. Particle acceleration in laser-driven plasmas is an alternative to generate x-rays via betatron emission, Compton scattering, or bremsstrahlung. A plasma can sustain electrical fields many orders of magnitude higher than that in conventional radiofrequency accelerator structures. When short, intense laser pulses are focused into a gas, it produces electron plasma waves in which electrons can be trapped and accelerated to GeV energies. X-ray sources, driven by electrons from laser-wakefield acceleration, have unique properties that are analogous to synchrotron radiation, with a 1000-fold shorter pulse. An important use of x-rays from laser plasma accelerators is in High Energy Density (HED) science, which requires laser and XFEL facilities to create in the laboratory extreme conditions of temperatures and pressures that are usually found in the interiors of stars and planets. To diagnose such extreme states of matter, the development of efficient, versatile and fast (sub-picosecond scale) x-ray probes has become essential. In these experiments, x-ray photons can pass through dense material, and absorption of the x-rays can be directly measured, via spectroscopy or imaging, to inform scientists about the temperature and density of the targets being studied. Performed

  14. Two electron response to an intense x-ray free electron laser pulse

    International Nuclear Information System (INIS)

    Moore, L R; Parker, J S; Meharg, K J; Armstrong, G S J; Taylor, K T

    2009-01-01

    New x-ray free electron lasers (FELs) promise an ultra-fast ultra-intense regime in which new physical phenomena, such as double core hole formation in at atom, should become directly observable. Ahead of x-ray FEL experiments, an initial key task is to theoretically explore such fundamental laser-atom interactions and processes. To study the response of a two-electron positive ion to an intense x-ray FEL pulse, our theoretical approach is a direct numerical integration, incorporating non-dipole Hamiltonian terms, of the full six-dimensional time-dependent Schroedinger equation. We present probabilities of double K-shell ionization in the two-electron positive ions Ne 8+ and Ar 16+ exposed to x-ray FEL pulses with frequencies in the range 50 au to 300 au and intensities in the range 10 17 to 10 22 W/cm 2 .

  15. Achromatic and isochronous electron beam transport for tunable free electron lasers

    International Nuclear Information System (INIS)

    Bengtsson, J.; Kim, K.J.

    1991-09-01

    We have continued the study of a suitable electron beam transport line, which is both isochronous and achromatic, for the free electron laser being designed at Lawrence Berkeley Laboratory. A refined version of the beam transport optics is discussed that accommodates two different modes of FEL wavelength tuning. For the fine tuning involving a small change of the electron beam energy, sextupoles are added to cancel the leading nonlinear dispersion. For the main tuning involving the change of the undulator gap, a practical solution of maintaining the beam matching condition is presented. Calculation of the higher order aberrations is facilitated by a newly developed code. 11 refs., 4 figs., 3 tabs

  16. Pulse propagation in free-electron lasers with a tapered undulator

    International Nuclear Information System (INIS)

    Goldstein, J.C.; Colson, W.B.

    1981-01-01

    The one-dimensional theory of short pulse propagation in free electron lasers is extended to tapered undulator devices and is used to study the behavior of an oscillator with parameter values close to those expected in forthcoming experiments. It is found that stable laser output is possible only over a small range of optical cavity lengths. Optical pulse characteristics are presented and are found to change considerably over this range

  17. Free-electron laser emission architecture impact on extreme ultraviolet lithography

    Science.gov (United States)

    Hosler, Erik R.; Wood, Obert R.; Barletta, William A.

    2017-10-01

    Laser-produced plasma (LPP) EUV sources have demonstrated ˜125 W at customer sites, establishing confidence in EUV lithography (EUVL) as a viable manufacturing technology. However, for extension to the 3-nm technology node and beyond, existing scanner/source technology must enable higher-NA imaging systems (requiring increased resist dose and providing half-field exposures) and/or EUV multipatterning (requiring increased wafer throughput proportional to the number of exposure passes). Both development paths will require a substantial increase in EUV source power to maintain the economic viability of the technology, creating an opportunity for free-electron laser (FEL) EUV sources. FEL-based EUV sources offer an economic, high-power/single-source alternative to LPP EUV sources. Should FELs become the preferred next-generation EUV source, the choice of FEL emission architecture will greatly affect its operational stability and overall capability. A near-term industrialized FEL is expected to utilize one of the following three existing emission architectures: (1) self-amplified spontaneous emission, (2) regenerative amplifier, or (3) self-seeding. Model accelerator parameters are put forward to evaluate the impact of emission architecture on FEL output. Then, variations in the parameter space are applied to assess the potential impact to lithography operations, thereby establishing component sensitivity. The operating range of various accelerator components is discussed based on current accelerator performance demonstrated at various scientific user facilities. Finally, comparison of the performance between the model accelerator parameters and the variation in parameter space provides a means to evaluate the potential emission architectures. A scorecard is presented to facilitate this evaluation and provides a framework for future FEL design and enablement for EUVL applications.

  18. Contrasting behavior of covalent and molecular carbon allotropes exposed to extreme ultraviolet and soft x-ray free-electron laser radiation

    Science.gov (United States)

    Toufarová, M.; Hájková, V.; Chalupský, J.; Burian, T.; Vacík, J.; Vorlíček, V.; Vyšín, L.; Gaudin, J.; Medvedev, N.; Ziaja, B.; Nagasono, M.; Yabashi, M.; Sobierajski, R.; Krzywinski, J.; Sinn, H.; Störmer, M.; Koláček, K.; Tiedtke, K.; Toleikis, S.; Juha, L.

    2017-12-01

    All carbon materials, e.g., amorphous carbon (a-C) coatings and C60 fullerene thin films, play an important role in short-wavelength free-electron laser (FEL) research motivated by FEL optics development and prospective nanotechnology applications. Responses of a-C and C60 layers to the extreme ultraviolet (SPring-8 Compact SASE Source in Japan) and soft x-ray (free-electron laser in Hamburg) free-electron laser radiation are investigated by Raman spectroscopy, differential interference contrast, and atomic force microscopy. A remarkable difference in the behavior of covalent (a-C) and molecular (C60) carbonaceous solids is demonstrated under these irradiation conditions. Low thresholds for ablation of a fullerene crystal (estimated to be around 0.15 eV/atom for C60 vs 0.9 eV/atom for a-C in terms of the absorbed dose) are caused by a low cohesive energy of fullerene crystals. An efficient mechanism of the removal of intact C60 molecules from the irradiated crystal due to Coulomb repulsion of fullerene-cage cation radicals formed by the ionizing radiation is revealed by a detailed modeling.

  19. Transient analysis of a bunched beam free electron laser

    International Nuclear Information System (INIS)

    Wang, J.M.; Yu, L.H.

    1985-01-01

    The problem of the bunched beam operation of a free electron laser was studied. Assuming the electron beam to be initially monoenergetic, the Maxwell-Vlasov equations describing the system reduce to a third order partial differential equation for the envelope of the emitted light. The Green's function corresponding to an arbitrary shape of the electron bunch, which describes the transient behavior of the system, is obtained. The Green's function was used to discuss the start up problem as well as the power output and the power specrum of a self-amplified spontaneous emission

  20. Experimental realization of millimeter-wave amplification by a sheet beam free electron laser

    International Nuclear Information System (INIS)

    Zhang, Z.; Destler, W.W.; Granatstein, V.L.; Antonsen, T.M. Jr.; Levush, B.; Rodgers, J.; Cheng, S.

    1994-01-01

    We report an observation of millimeter-wave (94 GHz) amplification in a sheet beam, short period, planar wiggler, free electron laser amplifier. The observed gain is about 5 dB for a 530 keV, 4 A beam through a 54 cm wiggler. Wave energy absorption was also observed when the beam energy is off-resonance. Experimental results are in good agreement with numerical simulation. This amplifier configuration has potential for producing equally high output power but at relatively low voltage compared with longer period free electron lasers

  1. Simulation Studies of the X-Ray Free-Electron Laser Oscillator

    International Nuclear Information System (INIS)

    Lindberg, R.R.; Shyd'ko, Y.; Kim, K.-J; Fawley, W.M.

    2009-01-01

    Simulations of the x-ray free-electron laser (FEL) oscillator are presented that include transverse effects and realistic Bragg crystal properties with the two-dimensional code GINGER. In the present cases considered the radiation divergence is much narrower than the crystal acceptance, and the numerical algorithm can be simplified by ignoring the finite angular bandwidth of the crystal. In this regime GINGER shows that the saturated x-ray pulses have 109 photons and are nearly Fourier-limited with peak powers in excess of 1 MW. Wealso include preliminary results for a four-mirror cavity that can be tuned in wavelength over a few percent, with future plans to incorporate the full transverse response of the Bragg crystals into GINGER to more accurately model this tunable source.

  2. Characterization of electron bunches from field emitter array cathodes for use in next-generation x-ray free electron lasers

    International Nuclear Information System (INIS)

    Leemann, S. C.

    2007-01-01

    PSI is interested in developing an x-ray free electron laser (X-FEL) as a companion radiation source to the existing Swiss Light Source. In order to achieve radiation wavelengths as low as 1 Α, the X-FEL requires excellent electron beam quality and high beam energy. The energy requirements and thus the size and cost of the project can be reduced considerably if an ultra-low emittance electron source is developed. Therefore PSI has started the Low Emittance Gun Project with the aim to design a novel type of electron source that will deliver an electron beam with unprecedented emittance at high peak currents to the linear accelerator of the proposed X-FEL. A source candidate for such a gun is field emission from cold cathodes. In order to gain first experience with field emission guns, investigate the dynamics of space charge dominated electron beams and to develop diagnostics capable of resolving ultra-low emittances, it was decided to build a 100 keV DC gun test stand. In the scope of this thesis, the test stand has been designed, assembled and commissioned. For the first time, transverse phase space measurements of bunches emitted by field emitter arrays in pulsed DC accelerating fields have been performed. (author)

  3. Short Rayleigh Length Free Electron Lasers

    CERN Document Server

    Crooker, P P; Armstead, R L; Blau, J

    2004-01-01

    Conventional free electron laser (FEL) oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. A new FEL interaction is described and analyzed with a Rayleigh length that is only one tenth the undulator length, or less. The effect of mirror vibration and positioning are more critical in the short Rayleigh length design, but we find that they are still within normal design tolerances.

  4. Two electron response to an intense x-ray free electron laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Moore, L R; Parker, J S; Meharg, K J; Armstrong, G S J; Taylor, K T, E-mail: l.moore@qub.ac.u [DAMTP, David Bates Building, Queen' s University Belfast, Belfast, BT7 1NN (United Kingdom)

    2009-11-01

    New x-ray free electron lasers (FELs) promise an ultra-fast ultra-intense regime in which new physical phenomena, such as double core hole formation in at atom, should become directly observable. Ahead of x-ray FEL experiments, an initial key task is to theoretically explore such fundamental laser-atom interactions and processes. To study the response of a two-electron positive ion to an intense x-ray FEL pulse, our theoretical approach is a direct numerical integration, incorporating non-dipole Hamiltonian terms, of the full six-dimensional time-dependent Schroedinger equation. We present probabilities of double K-shell ionization in the two-electron positive ions Ne{sup 8+} and Ar{sup 16+} exposed to x-ray FEL pulses with frequencies in the range 50 au to 300 au and intensities in the range 10{sup 17} to 10{sup 22} W/cm{sup 2}.

  5. Microbunching-instability-induced sidebands in a seeded free-electron laser

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2016-05-01

    Full Text Available Measurements of the multishot-averaged, soft x-ray, self-seeding spectrum at the LCLS free-electron laser often have a pedestal-like distribution around the seeded wavelength, which limits the spectral purity and can negatively affect some user applications not employing a post-undulator monochromator. In this paper, we study the origins of such pedestals, focusing on longitudinal phase space modulations produced by the microbunching instability upstream of the free-electron laser (FEL undulator. We show from theory and numerical simulation that both energy and density modulations can induce sidebands in a high-gain, seeded FEL whose fractional strength typically grows as the square of the undulator length. The results place a tight constraint on the longitudinal phase space uniformity of the electron beam for a seeded FEL, possibly requiring the amplitude of long-wavelength modulations to be much smaller than the typical incoherent energy spread if the output sideband power is to remain only a couple percent or less of the amplified seed power.

  6. An inverse free electron laser accelerator: Experiment and theoretical interpretation

    International Nuclear Information System (INIS)

    Fang, Jyan-Min.

    1997-01-01

    Experimental and numerical studies of the Inverse Free Electron Laser using a GW-level 10.6 μm CO 2 laser have been carried out at Brookhaven's Accelerator Test Facility. An energy gain of 2.5 % (ΔE/E) on a 40 MeV electron beam has been observed E which compares well with theory. The effects on IFEL acceleration with respect to the variation of the laser electric field, the input electron beam energy, and the wiggler magnetic field strength were studied, and show the importance of matching the resonance condition in the IFEL. The numerical simulations were performed under various conditions and the importance of the electron bunching in the IFEL is shown. The numerical interpretation of our IFEL experimental results was examined. Although good numerical agreement with the experimental results was obtained, there is a discrepancy between the level of the laser power measured in the experiment and used in the simulation, possibly due to the non-Gaussian profile of the input high power laser beam. The electron energy distribution was studied numerically and a smoothing of the energy spectrum by the space charge effect at the location of the spectrometer was found, compared with the spectrum at the exit of the wiggler. The electron bunching by the IFEL and the possibility of using the IFEL as an electron prebuncher for another laser-driven accelerator were studied numerically. We found that bunching of the electrons at 1 meter downstream from the wiggler can be achieved using the existing facility. The simulation shows that there is a fundamental difference between the operating conditions for using the IFEL as a high gradient accelerator, and as a prebuncher for another accelerator

  7. Harmonic lasing in x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    E. A. Schneidmiller

    2012-08-01

    Full Text Available Harmonic lasing in a free electron laser with a planar undulator (under the condition that the fundamental frequency is suppressed might be a cheap and efficient way of extension of wavelength ranges of existing and planned x-ray free electron laser (FEL facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental frequency. In this paper we perform a parametrization of the solution of the eigenvalue equation for lasing at odd harmonics, and present an explicit expression for FEL gain length, taking into account all essential effects. We propose and discuss methods for suppression of the fundamental harmonic. We also suggest a combined use of harmonic lasing and lasing at the retuned fundamental wavelength in order to reduce bandwidth and to increase brilliance of x-ray beam at saturation. Considering 3rd harmonic lasing as a practical example, we come to the conclusion that it is much more robust than usually thought, and can be widely used in the existing or planned x-ray FEL (XFEL facilities. In particular, Linac Coherent Light Source (LCLS after a minor modification can lase to saturation at the 3rd harmonic up to the photon energy of 25–30 keV providing multigigawatt power level and narrow bandwidth. As for the European XFEL, harmonic lasing would allow one to extend operating range (ultimately up to 100 keV, to reduce FEL bandwidth and to increase brilliance, to enable two-color operation for pump-probe experiments, and to provide more flexible operation at different electron energies. Similar improvements can be realized in other x-ray FEL facilities with gap-tunable undulators like FLASH II, SACLA, LCLS II, etc. Harmonic lasing can be an attractive option for compact x-ray FELs (driven by electron beams with a relatively low energy, allowing the use of the standard undulator technology instead of

  8. Mechanisms for the production of harmonics in free electron lasers

    NARCIS (Netherlands)

    Elgin, J.N.; Penman, C.

    1991-01-01

    Harmonics in the radiation of a free electron laser are useful for extending the range of tuning, may originate in spontaneous or parametric processes, and can take part in stimulated emission or amplification. These mechanisms exhibit interesting analogies with those of nonlinear optics. Apart from

  9. The chirped-pulse free-electron laser: Final technical report, September 1987--October 1988

    International Nuclear Information System (INIS)

    Moore, G.T.

    1989-01-01

    This is the final report of a theoretical and numerical investigation into the operation of pulsed free-electron lasers in which the electron energy depends on the time of injection into the wiggler. Such energy ''chirping'' over each of a train of electron micropulses injected into an FEL oscillator is expected to give rise to a laser pulse inside the optical resonator with a chirped carrier frequency ω/sub s/(/tau/). 8 refs., 7 figs

  10. Measurement and Instrumentation Challenges at X-ray Free Electron Lasers

    Science.gov (United States)

    Feng, Yiping

    2015-03-01

    X-ray Free Electron Laser sources based on the Self Amplified Spontaneous Emission process are intrinsically chaotic, giving rise to pulse-to-pulse fluctuations in all physical properties, including intensity, position and pointing, spatial and temporal profiles, spectral content, timing, and coherence. These fluctuations represents special challenges to users whose experiments are designed to reveal small changes in the underlying physical quantities, which would otherwise be completely washed out without using the proper diagnostics tools. Due to the X-ray FEL's unique characteristics such as the unprecedented peak power and nearly full spatial coherence, there are many technical challenges in conceiving and implementing these devices that are highly transmissive, provide sufficient signal-to-noise ratio, and most importantly work in the single-shot mode. Portions of this research were carried out at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford Univ.

  11. Optical laser systems at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; Milathianaki, Despina; Polzin, Wayne; Ratner, Daniel; Tavella, Franz; Vetter, Sharon; Welch, Marc; White, William E.; Fry, Alan R., E-mail: alanfry@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-22

    This manuscript serves as a reference to describe the optical laser sources and capabilities at the Linac Coherent Light Source. Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  12. Free electron laser variable bridge coupler

    International Nuclear Information System (INIS)

    Spalek, G.; Billen, J.H.; Garcia, J.A.; McMurry, D.E.; Harnsborough, L.D.; Giles, P.M.; Stevens, S.B.

    1985-01-01

    The Los Alamos free-electron laser (FEL) is being modified to test a scheme for recovering most of the power in the residual 20-MeV electron beam by decelerating the microbunches in a linear standing-wave accelerator and using the recovered energy to accelerate new beam. A variable-coupler low-power model that resonantly couples the accelerator and decelerator structures has been built and tested. By mixing the TE 101 and TE 102 modes, this device permits continuous variation of the decelerator fields relative to the accelerator fields through a range of 1:1 to 1:2.5. Phase differences between the two structures are kept below 1 0 and are independent of power-flow direction. The rf power is also fed to the two structures through this coupling device. Measurements were also made on a three-post-loaded variable coupler that is a promising candidate for the same task

  13. Free electron laser for the 2 x 1 TeV photon collider

    International Nuclear Information System (INIS)

    Sarantsev, V.P.; Yurkov, M.V.; Saldin, E.L.; Shnejdmiller, E.A.

    1993-01-01

    The two-cascade scheme of a free electron laser (FEL) of the 2 x 1 TeV photon collider is suggested. The FEL-generator having peak power of ∼ 10 MW which is amplified up to 5 x 10 11 W in the FEL-amplifier with variable parameters is used as a driving laser. Requirements for parameters of electron beam and the FEL-amplifier magnetic system are formulated on the base of calculations. 19 refs., 2 tabs., 4 figs

  14. Short Rayleigh length free electron lasers

    Directory of Open Access Journals (Sweden)

    W. B. Colson

    2006-03-01

    Full Text Available Conventional free electron laser (FEL oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third to one half of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. We model this interaction using a coordinate system that expands with the rapidly diffracting optical mode from the ends of the undulator to the mirrors. Simulations show that the interaction of the strongly focused optical mode with a narrow electron beam inside the undulator distorts the optical wave front so it is no longer in the fundamental Gaussian mode. The simulations are used to study how mode distortion affects the single-pass gain in weak fields, and the steady-state extraction in strong fields.

  15. Generation of high harmonic free electron laser with phase-merging effect

    Energy Technology Data Exchange (ETDEWEB)

    Li, Heting, E-mail: liheting@ustc.edu.cn; Jia, Qika; Zhao, Zhouyu

    2017-03-01

    An easy-to-implement scheme is proposed to produce the longitudinal electron bunch density modulation with phase-merging phenomenon. In this scheme an electron bunch is firstly transversely dispersed in a modified dogleg to generate the exact dependence of electron energy on the transverse position, then it is modulated in a normal modulator. After travelling through a modified chicane with specially designed transfer matrix elements, the density modulation with phase-merging effect is generated which contains high harmonic components of the seed laser. We present theoretical analysis and numerical simulations for seeded soft x-ray free-electron laser. The results demonstrate that this technique can significantly enhance the frequency up-conversion efficiency and allow a seeded FEL operating at very high harmonics.

  16. Brilliant radiation sources by laser-plasma accelerators and optical undulators

    Energy Technology Data Exchange (ETDEWEB)

    Debus, Alexander

    2012-09-06

    This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical

  17. Brilliant radiation sources by laser-plasma accelerators and optical undulators

    International Nuclear Information System (INIS)

    Debus, Alexander

    2012-01-01

    This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical

  18. Compact free-electron laser at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Chan, K.C.D.; Meier, K.L.; Nguyen, D.; Sheffield, R.L.; Wang, Tai-Sen F.; Warren, R.W.; Wilson, W.L.; Young, L.M.

    1991-01-01

    The design and construction of second-generation free-electron laser (FEL) system at Los Alamos will be described. comprising state-of-the art components, this FEL system will be sufficiently compact, robust and user-friendly for application in industry, medicine, and research. 11 refs., 11 figs., 2 tabs

  19. Proceedings of the workshop prospects for a 1 angstrom free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J.C. (ed.)

    1990-01-01

    This report contains papers on the following topics free-electron laser theory, scaling relations and simulations; micro-wigglers; photocathode and switched power gun; applications; and summary of working groups.

  20. Proceedings of the workshop prospects for a 1 angstrom free-electron laser

    International Nuclear Information System (INIS)

    Gallardo, J.C.

    1990-01-01

    This report contains papers on the following topics free-electron laser theory, scaling relations and simulations; micro-wigglers; photocathode and switched power gun; applications; and summary of working groups

  1. One-dimensional free-electron laser equations without the slowly varying envelope approximation

    Directory of Open Access Journals (Sweden)

    C. Maroli

    2011-07-01

    Full Text Available A set of one-dimensional equations has been deduced in the time domain from the Maxwell-Lorentz system with the aim of describing the free-electron laser radiation without using the slowly varying envelope approximation (SVEA. These equations are valid even in the case of arbitrarily short electron bunches and of current distributions with ripples on the scale of or shorter than the wavelength. Numerical examples are presented, showing that for long homogeneous bunches the new set of equations gives results in agreement with the SVEA free-electron laser theory and that the use of short or prebunched electron beams leads to a decrease of the emission lethargy. Furthermore, we demonstrate that in all cases in which the backward low frequency wave has negligible effects, these equations can be reduced to a form similar to the usual 1D SVEA equations but with a different definition of the bunching term.

  2. Experimental investigations on the influence of the photocathode laser pulse parameters on the electron bunch quality in an RF-photoelectron source

    Energy Technology Data Exchange (ETDEWEB)

    Haenel, Marc

    2010-07-15

    Free Electron Lasers based on the SASE principle like the European XFEL require electron bunches having peak currents of several kiloamperes as well as very low transverse emittance. While high peak currents can be generated using longitudinal bunch compression techniques, the transverse emittance must have values as low as 1mmmrad already at the source. The development of electron sources fulfilling these demanding specifications is the goal of the Photo Injector Test Facility (PITZ) in DESY, Zeuthen site. The key component of a photoinjector is the electron gun cavity where the electrons bunches are generated and immediately accelerated. The extraction of the electrons is based on the photoelectric effect of the cathode which requires a laser system having special capabilities. In the first part of the thesis, measurements are presented which were performed to investigate whether the laser and the laser transport system fulfill these requirements. The second part of the thesis is dedicated to simulations as well as experimental studies on the impact of the temporal and spatial parameters of the laser pulses on the electron bunch quality. This influence is possible because the response time of the Cs{sub 2}Te photocathode is short compared to the laser pulse duration. Based on these investigations, suggestions for improvements are given and tolerances for the laser pulse properties are defined. (orig.)

  3. Experimental investigations on the influence of the photocathode laser pulse parameters on the electron bunch quality in an RF-photoelectron source

    International Nuclear Information System (INIS)

    Haenel, Marc

    2010-06-01

    Free Electron Lasers based on the SASE principle like the European XFEL require electron bunches having peak currents of several kiloamperes as well as very low transverse emittance. While high peak currents can be generated using longitudinal bunch compression techniques, the transverse emittance must have values as low as 1mmmrad already at the source. The development of electron sources fulfilling these demanding specifications is the goal of the Photo Injector Test Facility (PITZ) in DESY, Zeuthen site. The key component of a photoinjector is the electron gun cavity where the electrons bunches are generated and immediately accelerated. The extraction of the electrons is based on the photoelectric effect of the cathode which requires a laser system having special capabilities. In the first part of the thesis, measurements are presented which were performed to investigate whether the laser and the laser transport system fulfill these requirements. The second part of the thesis is dedicated to simulations as well as experimental studies on the impact of the temporal and spatial parameters of the laser pulses on the electron bunch quality. This influence is possible because the response time of the Cs 2 Te photocathode is short compared to the laser pulse duration. Based on these investigations, suggestions for improvements are given and tolerances for the laser pulse properties are defined. (orig.)

  4. Development of a high power free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Byung Chul; Kim, Sun Kook; Jung, Yung Wook; Cho, Sung Oh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-01-01

    A millimeter-wave free electron laser (FEL) driven by a recirculating electrostatic accelerator has been developed. The wavelength of the FEL is tunable in the range of 3 - 12 mm by tuning the energy of the electron beam. The output power is estimated to be 1 kW. The electrostatic accelerator is composed of high-current electron gun, acceleration tube, high-voltage generator, high-voltage terminal, deceleration tube, electron collator, and vacuum pumps. Two types of LaB{sub 6}-based thermionic electron guns (triode gun and diode gun) and their power supplies have been developed. The voltage of the guns is 30 kV and the output current is - 2 A. A beam-focusing planar undulator and a permanent-magnet helical undulator have been developed and 3D trajectories of electron beam in the undulators have been calculated to find optimal input condition of electron beam. 135 figs, 15 pix, 17 tabs, 98 refs. (Author).

  5. Development of a high power free-electron laser

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Byung Chul; Kim, Sun Kook; Jung, Yung Wook; Cho, Sung Oh

    1995-01-01

    A millimeter-wave free electron laser (FEL) driven by a recirculating electrostatic accelerator has been developed. The wavelength of the FEL is tunable in the range of 3 - 12 mm by tuning the energy of the electron beam. The output power is estimated to be 1 kW. The electrostatic accelerator is composed of high-current electron gun, acceleration tube, high-voltage generator, high-voltage terminal, deceleration tube, electron collator, and vacuum pumps. Two types of LaB 6 -based thermionic electron guns (triode gun and diode gun) and their power supplies have been developed. The voltage of the guns is 30 kV and the output current is - 2 A. A beam-focusing planar undulator and a permanent-magnet helical undulator have been developed and 3D trajectories of electron beam in the undulators have been calculated to find optimal input condition of electron beam. 135 figs, 15 pix, 17 tabs, 98 refs. (Author)

  6. Direction-division multiplexed holographic free-electron-driven light sources

    Science.gov (United States)

    Clarke, Brendan P.; MacDonald, Kevin F.; Zheludev, Nikolay I.

    2018-01-01

    We report on a free-electron-driven light source with a controllable direction of emission. The source comprises a microscopic array of plasmonic surface-relief holographic domains, each tailored to direct electron-induced light emission at a selected wavelength into a collimated beam in a prescribed direction. The direction-division multiplexed source is tested by driving it with the 30 kV electron beam of a scanning electron microscope: light emission, at a wavelength of 800 nm in the present case, is switched among different output angles by micron-scale repositioning of the electron injection point among domains. Such sources, with directional switching/tuning possible at picosecond timescales, may be applied to field-emission and surface-conduction electron-emission display technologies, optical multiplexing, and charged-particle-beam position metrology.

  7. Electron energy and electron trajectories in an inverse free-electron laser accelerator based on a novel electrostatic wiggler

    Science.gov (United States)

    Nikrah, M.; Jafari, S.

    2016-06-01

    We expand here a theory of a high-gradient laser-excited electron accelerator based on an inverse free-electron laser (inverse-FEL), but with innovations in the structure and design. The electrostatic wiggler used in our scheme, namely termed the Paul wiggler, is generated by segmented cylindrical electrodes with applied oscillatory voltages {{V}\\text{osc}}(t) over {{90}\\circ} segments. The inverse-FEL interaction can be described by the equations that govern the electron motion in the combined fields of both the laser pulse and Paul wiggler field. A numerical study of electron energy and electron trajectories has been made using the fourth-order Runge-Kutta method. The results indicate that the electron attains a considerable energy at short distances in this device. It is found that if the electron has got sufficient suitable wiggler amplitude intensities, it can not only gain higher energy in longer distances, but also can retain it even after the passing of the laser pulse. In addition, the results reveal that the electron energy gains different peaks for different initial axial velocities, so that a suitable small initial axial velocity of e-beam produces substantially high energy gain. With regard to the transverse confinement of the electron beam in a Paul wiggler, there is no applied axial guide magnetic field in this device.

  8. Free-Free Transitions of e-H System Inside a Dense Plasma Irradiated by a Laser Field at Very Low Incident Electron Energies

    Science.gov (United States)

    Bhatia, A. K.; Sinha, C.

    2012-01-01

    The free-free transition is studied for an electron-hydrogen in the ground state at low incident energies in the presence of an external homogenous, monochromatic, and linearly polarized laser-field inside a hot dense plasma.The effect of plasma screening is considered in the Debye-Huckel approximation. The calculations are performed in the soft photon limit, assuming that the plasma frequency is much higher than the laser frequency. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon absorption /emission and no photon exchange in the soft photon limit, the laser intensity being much less than the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more in the triplet states.

  9. Single-shot beam-position monitor for x-ray free electron laser

    Science.gov (United States)

    Tono, Kensuke; Kudo, Togo; Yabashi, Makina; Tachibana, Takeshi; Feng, Yiping; Fritz, David; Hastings, Jerome; Ishikawa, Tetsuya

    2011-02-01

    We have developed an x-ray beam-position monitor for detecting the radiation properties of an x-ray free electron laser (FEL). It is composed of four PIN photodiodes that detect backscattered x-rays from a semitransparent diamond film placed in the beam path. The signal intensities from the photodiodes are used to compute the beam intensity and position. A proof-of-principle experiment at a synchrotron light source revealed that the error in the beam position is reduced to below 7 μm by using a nanocrystal diamond film prepared by plasma-enhanced chemical vapor deposition. Owing to high dose tolerance and transparency of the diamond film, the monitor is suitable for routine diagnostics of extremely intense x-ray pulses from the FEL.

  10. WavePropaGator: interactive framework for X-ray free-electron laser optics design and simulations1

    OpenAIRE

    Samoylova, Liubov; Buzmakov, Alexey; Chubar, Oleg; Sinn, Harald

    2016-01-01

    This article describes the WavePropaGator (WPG) package, a new interactive software framework for coherent and partially coherent X-ray wavefront propagation simulations. The package has been developed at European XFEL for users at the existing and emerging free-electron laser (FEL) facilities, as well as at the third-generation synchrotron sources and future diffraction-limited storage rings. The WPG addresses the needs of beamline scientists and user groups to facilitate the design, optimiz...

  11. Effects of Energy Chirp on Echo-Enabled Harmonic Generation Free-Electron Lasers

    International Nuclear Information System (INIS)

    Huang, Z.

    2009-01-01

    We study effects of energy chirp on echo-enabled harmonic generation (EEHG). Analytical expressions are compared with numerical simulations for both harmonic and bunching factors. We also discuss the EEHG free-electron laser bandwidth increase due to an energy-modulated beam and its pulse length dependence on the electron energy chirp

  12. Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C.; Rokni, Sayed H.; /SLAC; Vylet, Vaclav; /Jefferson Lab

    2009-12-11

    The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power ({approx} 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

  13. Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities

    International Nuclear Information System (INIS)

    Liu, James C.; Rokni, Sayed H.; Vylet, Vaclav

    2009-01-01

    The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power (∼ 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

  14. Theory and simulation of an inverse free-electron laser experiment

    Science.gov (United States)

    Gou, S. K.; Bhattacharjee, A.; Fang, J.-M.; Marshall, T. C.

    1997-03-01

    An experimental demonstration of the acceleration of electrons using a high-power CO2 laser interacting with a relativistic electron beam moving along a wiggler has been carried out at the Accelerator Test Facility of the Brookhaven National Laboratory [Phys. Rev. Lett. 77, 2690 (1996)]. The data generated by this inverse free-electron-laser (IFEL) experiment are studied by means of theory and simulation. Included in the simulations are such effects as: a low-loss metallic waveguide with a dielectric coating on the walls; multi-mode coupling due to self-consistent interaction between the electrons and the optical wave; space charge; energy spread of the electrons; and arbitrary wiggler-field profile. Two types of wiggler profile are considered: a linear taper of the period, and a step-taper of the period. (The period of the wiggler is ˜3 cm, its magnetic field is ˜1 T, and the wiggler length is 0.47 m.) The energy increment of the electrons (˜1-2%) is analyzed in detail as a function of laser power, wiggler parameters, and the initial beam energy (˜40 MeV). At a laser power level ˜0.5 Gw, the simulation results on energy gain are in reasonable agreement with the experimental results. Preliminary results on the electron energy distribution at the end of the IFEL are presented. Whereas the experiment produces a near-monotone distribution of electron energies with the peak shifted to higher energy, the simulation shows a more structured and non-monotonic distribution at the end of the wiggler. Effects that may help reconcile these differences are considered.

  15. Studies of harmonic generation in free electron lasers

    International Nuclear Information System (INIS)

    Goldammer, K.

    2007-01-01

    Nonlinear harmonic generation is one of the most interesting aspects of Free Electron Lasers under study today. It provides for coherent, high intensity radiation at higher harmonics of the FEL resonant frequency. The sources, numerical simulation and applications of harmonic radiation in cascaded High Gain Harmonic Generation FELs were the subject of this thesis. Harmonic emission in FELs originates from harmonic microbunching of the particles and the particular electron trajectory during FEL interaction. Numerical FEL simulation codes model these analytical equations and predict the performance of Free Electron Lasers with good accuracy. This thesis has relied heavily upon the FEL simulation code Genesis 1.3 which has been upgraded in the framework of this thesis to compute harmonic generation in a self-consistent manner. Tests against analytical predictions suggest that the harmonic power levels as well as harmonic gain lengths are simulated correctly. A benchmark with the FEL simulation code GINGER yields excellent agreement of the harmonic saturation length and saturation power. The new version of the simulation code Genesis was also tested against measurements from the VUV-FEL FLASH at DESY. The spectral power distributions of fundamental and third harmonic radiation were recorded at 25.9 nm and 8.6 nm, respectively. The relative bandwidths (FWHM) were in the range of 2 % for both the fundamental as well as the third harmonic, which was accurately reproduced by time-dependent simulations with Genesis. The new code was also used to propose and evaluate a new design for the BESSY Soft X-Ray FEL, a cascaded High Gain Harmonic Generation FEL proposed by BESSY in Berlin. The original design for the BESSY High Energy FEL line requires four HGHG stages to convert the initial seed laser wavelength of 297.5 nm down to 1.24 nm. A new scheme is proposed that makes use of fifth harmonic radiation from the first stage and reduces the number of HGHG stages to three. It

  16. Studies of harmonic generation in free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Goldammer, K.

    2007-11-12

    Nonlinear harmonic generation is one of the most interesting aspects of Free Electron Lasers under study today. It provides for coherent, high intensity radiation at higher harmonics of the FEL resonant frequency. The sources, numerical simulation and applications of harmonic radiation in cascaded High Gain Harmonic Generation FELs were the subject of this thesis. Harmonic emission in FELs originates from harmonic microbunching of the particles and the particular electron trajectory during FEL interaction. Numerical FEL simulation codes model these analytical equations and predict the performance of Free Electron Lasers with good accuracy. This thesis has relied heavily upon the FEL simulation code Genesis 1.3 which has been upgraded in the framework of this thesis to compute harmonic generation in a self-consistent manner. Tests against analytical predictions suggest that the harmonic power levels as well as harmonic gain lengths are simulated correctly. A benchmark with the FEL simulation code GINGER yields excellent agreement of the harmonic saturation length and saturation power. The new version of the simulation code Genesis was also tested against measurements from the VUV-FEL FLASH at DESY. The spectral power distributions of fundamental and third harmonic radiation were recorded at 25.9 nm and 8.6 nm, respectively. The relative bandwidths (FWHM) were in the range of 2 % for both the fundamental as well as the third harmonic, which was accurately reproduced by time-dependent simulations with Genesis. The new code was also used to propose and evaluate a new design for the BESSY Soft X-Ray FEL, a cascaded High Gain Harmonic Generation FEL proposed by BESSY in Berlin. The original design for the BESSY High Energy FEL line requires four HGHG stages to convert the initial seed laser wavelength of 297.5 nm down to 1.24 nm. A new scheme is proposed that makes use of fifth harmonic radiation from the first stage and reduces the number of HGHG stages to three. It

  17. Analysis and comparison between electric and magnetic power couplers for accelerators in Free Electron Lasers (FEL)

    Science.gov (United States)

    Serpico, C.; Grudiev, A.; Vescovo, R.

    2016-10-01

    Free-electron lasers represent a new and exciting class of coherent optical sources possessing broad wavelength tunability and excellent optical-beam quality. The FERMI seeded free-electron laser (FEL), located at the Elettra laboratory in Trieste, is driven by a 200 m long, S-band linac: the high energy part of the linac is equipped with 6 m long backward traveling wave (BTW) structures. The structures have small iris radius and a nose cone geometry which allows for high gradient operation. Development of new high-gradient, S-band accelerating structures for the replacement of the existing BTWs is under consideration. This paper investigates two possible solutions for the RF power couplers suitable for a linac driven FEL which require reduced wakefields effects, high operating gradient and very high reliability. The first part of the manuscript focuses on the reduction of residual field asymmetries, while in the second analyzes RF performances, the peak surface fields and the expected breakdown rate. In the conclusion, two solutions are compared and pros and cons are highlighted.

  18. Analysis and comparison between electric and magnetic power couplers for accelerators in Free Electron Lasers (FEL)

    Energy Technology Data Exchange (ETDEWEB)

    Serpico, C., E-mail: claudio.serpico@elettra.eu [Elettra - Sincrotrone Trieste, Trieste (Italy); Grudiev, A. [CERN, Geneva (Switzerland); Vescovo, R. [University of Trieste, Trieste (Italy)

    2016-10-11

    Free-electron lasers represent a new and exciting class of coherent optical sources possessing broad wavelength tunability and excellent optical-beam quality. The FERMI seeded free-electron laser (FEL), located at the Elettra laboratory in Trieste, is driven by a 200 m long, S-band linac: the high energy part of the linac is equipped with 6 m long backward traveling wave (BTW) structures. The structures have small iris radius and a nose cone geometry which allows for high gradient operation. Development of new high-gradient, S-band accelerating structures for the replacement of the existing BTWs is under consideration. This paper investigates two possible solutions for the RF power couplers suitable for a linac driven FEL which require reduced wakefields effects, high operating gradient and very high reliability. The first part of the manuscript focuses on the reduction of residual field asymmetries, while in the second analyzes RF performances, the peak surface fields and the expected breakdown rate. In the conclusion, two solutions are compared and pros and cons are highlighted.

  19. Pickup design for high bandwidth bunch arrival-time monitors in free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Angelovski, Aleksandar; Penirschke, Andreas; Jakoby, Rolf [TU Darmstadt (Germany). Institut fuer Mikrowellentechnik und Photonik; Kuhl, Alexander; Schnepp, Sascha [TU Darmstadt (Germany). Graduate School of Computational Engineering; Bock, Marie Kristin; Bousonville, Michael; Schlarb, Holger [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Weiland, Thomas [TU Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder

    2012-07-01

    The increased demands for low bunch charge operation mode in the free-electron lasers (FELs) require an upgrade of the existing synchronization equipment. As a part of the laser-based synchronization system, the bunch arrival-time monitors (BAMs) should have a sub-10 femtosecond precision for high and low bunch charge operation. In order to fulfill the resolution demands for both modes of operation, the bandwidth of such a BAM should be increased up to a cutoff frequency of 40 GHz. In this talk, we present the design and the realization of high bandwidth cone-shaped pickup electrodes as a part of the BAM for the FEL in Hamburg (FLASH) and the European X-ray free-electron laser (European XFEL). The proposed pickup was simulated with CST STUDIO SUITE, and a non-hermetic model was built up for radio frequency (rf) measurements.

  20. Electronic damage in S atoms in a native protein crystal induced by an intense X-ray free-electron laser pulse

    Directory of Open Access Journals (Sweden)

    L. Galli

    2015-07-01

    Full Text Available Current hard X-ray free-electron laser (XFEL sources can deliver doses to biological macromolecules well exceeding 1 GGy, in timescales of a few tens of femtoseconds. During the pulse, photoionization can reach the point of saturation in which certain atomic species in the sample lose most of their electrons. This electronic radiation damage causes the atomic scattering factors to change, affecting, in particular, the heavy atoms, due to their higher photoabsorption cross sections. Here, it is shown that experimental serial femtosecond crystallography data collected with an extremely bright XFEL source exhibit a reduction of the effective scattering power of the sulfur atoms in a native protein. Quantitative methods are developed to retrieve information on the effective ionization of the damaged atomic species from experimental data, and the implications of utilizing new phasing methods which can take advantage of this localized radiation damage are discussed.

  1. The effects of field errors on low-gain free-electron lasers

    International Nuclear Information System (INIS)

    Esarey, E.; Tang, C.M.; Marable, W.P.

    1991-01-01

    This paper reports on the effects of random wiggler magnetic field errors on low-gain free-electron lasers that are examined analytically and numerically through the use of ensemble averaging techniques. Wiggler field errors perturb the electron beam as it propagates and lead to a random walk of the beam centroid δx, variations in the axial beam energy δ γz and deviations in the relative phase of the electrons in the ponderomotive wave δψ. In principle, the random walk may be kept as small as desired through the use of transverse focusing and beam steering. Transverse focusing of the electron beam is shown to be ineffective in reducing the phase deviation. Furthermore, it is shown that beam steering at the wiggler entrance reduces the average phase deviation at the end of the wiggler by 1/3. The effect of the field errors (via the phase deviation) on the gain in the low-gain regime is calculated. To avoid significant reduction in gain it is necessary for the phase deviation to be small compared to 2π. The detrimental effects of wiggler errors on low-gain free-electron lasers may be reduced by arranging the magnet poles in an optimal ordering such that the magnitude of the phase deviation is minimized

  2. Electron beam halo monitor for a compact x-ray free-electron laser

    Directory of Open Access Journals (Sweden)

    Hideki Aoyagi

    2013-03-01

    Full Text Available An electron beam halo monitor using diamond-based detectors, which are operated in the ionization mode, has been developed for the SPring-8 Angstrom compact free-electron laser (SACLA to protect its undulator magnets from radiation damage. Diamond-based detectors are inserted in a beam duct to measure the intensity of the beam halo directly. To suppress the degradation of the electron beam due to the installation of the beam halo monitor, rf fingers with aluminum windows are newly employed. We evaluated the effect of radiation from the Al windows on the output signal both experimentally and by simulation. The operational results of the beam halo monitor employed in SACLA are presented.

  3. Table-top laser-driven ultrashort electron and X-ray source: the CIBER-X source project

    Science.gov (United States)

    Girardeau-Montaut, Jean-Pierre; Kiraly, Bélà; Girardeau-Montaut, Claire; Leboutet, Hubert

    2000-09-01

    We report on the development of a new laser-driven table-top ultrashort electron and X-ray source, also called the CIBER-X source . X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulses at 213 nm. The e-gun is a standard Pierce diode electrode type, in which electrons are accelerated by a cw electric field of ˜11 MV/m up to a hole made in the anode. The photoinjector produces a train of 70-80 keV electron pulses of ˜0.5 nC and 20 A peak current at a repetition rate of 10 Hz. The electrons are then transported outside the diode along a path of 20 cm length, and are focused onto a target of thullium by magnetic fields produced by two electromagnetic coils. X-rays are then produced by the impact of electrons on the target. Simulations of geometrical, electromagnetic fields and energetic characteristics of the complete source were performed previously with the assistance of the code PIXEL1 also developed at the laboratory. Finally, experimental electron and X-ray performances of the CIBER-X source as well as its application to very low dose imagery are presented and discussed. source Compacte d' Impulsions Brèves d' Electrons et de Rayons X

  4. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; Kick, Leonhard M.; Gati, Cornelius; Nelson, Garrett; Deupi, Xavier; Standfuss, Jörg; Schertler, Gebhard; Panneels, Valérie, E-mail: valerie.panneels@psi.ch [Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI (Switzerland)

    2015-06-27

    A new batch preparation method is presented for high-density micrometre-sized crystals of the G protein-coupled receptor rhodopsin for use in time-resolved serial femtosecond crystallography at an X-ray free-electron laser using a liquid jet. Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.

  5. Laser-driven soft-X-ray undulator source

    International Nuclear Information System (INIS)

    Fuchs, Matthias

    2010-01-01

    The experimental results described in this thesis demonstrate the successful synergy between the research fields described above: the development of an undulator source driven by laser-plasma accelerated electron beams. First efforts in this new field have led to the production of radiation in the visible to infrared part of the electromagnetic spectrum [Schlenvoigt et al., 2008]. In contrast to these early achievements, the experiment described here shows the successful production of laser-driven undulator radiation in the soft-X-ray range with a remarkable reproducibility. The source produced tunable, collimated beams with a wavelength of ∝17 nm from a compact setup. Undulator spectra were detected in ∝70% of consecutive driver-laser shots, which is a remarkable reproducibility for a first proof-of-concept demonstration using ultra-high intensity laser systems. This can be attributed to a stable electron acceleration scheme as well as to the first application of miniature magnetic quadrupole lenses with laseraccelerated beams. The lenses significantly reduce the electron beam divergence and its angular shot-to-shot fluctuations The setup of this experiment is the foundation of potential university-laboratory-sized, highly-brilliant hard X-ray sources. By increasing the electron energy to about 1 GeV, X-ray pulses with an expected duration of ∝10 fs and a photon energy of 1 keV could be produced in an almost identical arrangement. It can also be used as a testbed for the development of a free-electron laser of significantly smaller dimension than facilities based on conventional accelerators [Gruener et al., 2007]. Such compact sources have the potential for application in many fields of science. In addition, these developments could lead to ideal sources for ultrafast pump-probe experiments due to the perfect synchronization of the X-ray beam to the driver laser. (orig.)

  6. Laser-driven soft-X-ray undulator source

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Matthias

    2010-08-04

    The experimental results described in this thesis demonstrate the successful synergy between the research fields described above: the development of an undulator source driven by laser-plasma accelerated electron beams. First efforts in this new field have led to the production of radiation in the visible to infrared part of the electromagnetic spectrum [Schlenvoigt et al., 2008]. In contrast to these early achievements, the experiment described here shows the successful production of laser-driven undulator radiation in the soft-X-ray range with a remarkable reproducibility. The source produced tunable, collimated beams with a wavelength of {proportional_to}17 nm from a compact setup. Undulator spectra were detected in {proportional_to}70% of consecutive driver-laser shots, which is a remarkable reproducibility for a first proof-of-concept demonstration using ultra-high intensity laser systems. This can be attributed to a stable electron acceleration scheme as well as to the first application of miniature magnetic quadrupole lenses with laseraccelerated beams. The lenses significantly reduce the electron beam divergence and its angular shot-to-shot fluctuations The setup of this experiment is the foundation of potential university-laboratory-sized, highly-brilliant hard X-ray sources. By increasing the electron energy to about 1 GeV, X-ray pulses with an expected duration of {proportional_to}10 fs and a photon energy of 1 keV could be produced in an almost identical arrangement. It can also be used as a testbed for the development of a free-electron laser of significantly smaller dimension than facilities based on conventional accelerators [Gruener et al., 2007]. Such compact sources have the potential for application in many fields of science. In addition, these developments could lead to ideal sources for ultrafast pump-probe experiments due to the perfect synchronization of the X-ray beam to the driver laser. (orig.)

  7. Operation of the high-brightness linac for the advanced free-electron laser initiative at Los Alamos

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Austin, R.H.; Chan, K.C.D.; Gierman, S.M.; Kinross-Wright, J.M.; Kong, S.H.; Nguyen, D.C.; Russell, S.J.; Timmer, C.A.

    1993-01-01

    Free-electron lasers and high-energy physics accelerators have increased the demand for very high-brightness beam sources. This paper describes the design of an accelerator which has produced beams of 2.1 π mm-mrad at 1 nC and emittances of 3.7 and 6.5 π mm-mrad for 2 and 3 nC, respectively. The accelerator has been operated between 10 and 18 MeV. The beam emittance growth in the accelerator is minimized by using a photoinjector electron source integrated into the design of the linac, a focusing solenoid to correct the emittance growth caused by space charge, and a special design of the coupling slots between accelerator cavities to minimize quadrupole effects. The FEL has recently operated at 5 microns

  8. Operation of the high brightness linac for the advanced free-electron laser initiative at Los Alamos

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Austin, R.H.; Chan, K.C.D.; Gierman, S.M.; Kinross-Wright, J.M.; Kong, S.H.; Nguyen, D.C.; Russell, S.J.; Timmer, C.A.

    1993-01-01

    Free-electron lasers and high energy physics accelerators have increased the demand for very high-brightness beam sources. This paper describes the design of an accelerator which has produce beams of less than 2.1 π mm-mrad at 1 nC and emittances of 3.7 and 6.5 π mm-mrad for 2 and 3 nC, respectively. The accelerator has been operated between 10 and 18 MeV.The beam emittance growth in the accelerator is minimized by using a photoinjector electron source integrated into the design of the linac, a focusing solenoid to correct the emittance growth caused by space charge, and a special design of the coupling slots between accelerator cavities to minimize quadrupole effects

  9. Nonlinear effects and conversion efficiency of free electron laser in compton regime

    International Nuclear Information System (INIS)

    Taguchi, Toshihiro; Mima, Kunioki; Mochizuki, Takayasu

    1980-01-01

    Nonlinear evolutions of free electron laser are analyzed by using quasi-linear theory. By the analysis, the energy conversion rates and the spectral width of the emitted radiations are calculated self-consistently. Moreover, it is found that the energy conversion rate is remarkably improved, when a RF field is applied to reaccelerate electron beam. (author)

  10. Controlling the optical field chaos in storage ring free-electron lasers

    International Nuclear Information System (INIS)

    Wang Wenjie

    1995-01-01

    The controlling of optical field chaos in a storage ring free-electron laser oscillator is discussed by using a phenomenal model. A novel method (which is called the 'beating method') of controlling chaos in a nonlinear dynamical system described by non-autonomous ordinary differential equations was developed. The result of theoretical analysis and numerical simulation shows that the optical field chaos in a storage ring free-electron laser oscillator can be suppressed and a periodic laser intensity can be obtained when a weak periodic control field is added to the optical cavity. The validity of this method of eliminating chaos is confirmed by the fact that the leading Lyapunov characteristic exponent of the system changes from a positive real number to a negative one. A further research is carried out, and it is found that only when the period of the control field equals to an integral multiple of that of the gain modulation in the optical cavity can the optical field chaos be suppressed. This means that the 'beating method' of controlling chaos is a kind of resonant method. A way to determine the 'best beating position' in the phase trajectory has also been obtained

  11. Vibrational analysis of a shipboard free electron laser beam path

    OpenAIRE

    Gallant, Bryan M.

    2011-01-01

    This thesis explores the deployment of a free electron laser (FEL) weapon system in a shipboard vibration environment. A concept solid model of a shipboard FEL is developed and used as a basis for a finite element model which is subjected to vibration simulation in MATLAB. Vibration input is obtained from ship shock trials data and wave excited motion data from ship motion simulation software. Emphasis is placed on the motion of electron beam path components of the FEL and the feasibility of ...

  12. The LLNL/UCLA high gradient inverse free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J. T.; Musumeci, P.; Anderson, G.; Anderson, S.; Betts, S.; Fisher, S.; Gibson, D.; Tremaine, A.; Wu, S. [Department of Physics and Astronomy, UCLA, Los Angeles California, 90095 (United States); Lawrence Livermore National Laboratory (United States)

    2012-12-21

    We describe the Inverse Free Electron Accelerator currently under construction at Lawrence Livermore National Lab. Upon completion of this accelerator, high brightness electrons generated in the photoinjector blowout regime and accelerated to 50 MeV by S-band accelerating sections will interact with > 4 TW peak power Ti:Sapphire laser in a highly tapered 50 cm undulator and experience an acceleration gradient of > 200 MeV/m. We present the final design of the accelerator as well as the results of start-to-end simulations investigating preservation of beam quality and tolerances involved with this accelerator.

  13. Brightness and coherence of synchrotron radiation and high-gain free electron lasers

    International Nuclear Information System (INIS)

    Kim, K.J.

    1986-10-01

    The characteristics of synchrotron radiation are reviewed with particular attention to its phase-space properties and coherence. The transition of the simple undulator radiation to more intense, more coherent high-gain free electron lasers, is discussed

  14. A multi-frequency approach to free electron lasers driven by short electron bunches

    International Nuclear Information System (INIS)

    Piovella, Nicola

    1997-01-01

    A multi-frequency model for free electron lasers (FELs), based on the Fourier decomposition of the radiation field coupled with the beam electrons, is discussed. We show that the multi-frequency approach allows for an accurate description of the evolution of the radiation spectrum, also when the FEL is driven by short electron bunches, of arbitrary longitudinal profile. We derive from the multi-frequency model, by averaging over one radiation period, the usual FEL equations modelling the slippage between radiation and particles and describing the super-radiant regime in high-gain FELs. As an example of application of the multi-frequency model, we discuss the coherent spontaneous emission (CSE) from short electron bunches

  15. High-brightness electron guns for linac-based light sources

    International Nuclear Information System (INIS)

    Lewellen, J.W.

    2004-01-01

    Most proposed linac-based light sources, such as single-pass free-electron lasers and energy-recovery-linacs, require very high-brightness electron beams in order to achieve their design performance. These beam requirements must be achieved not on an occasional basis, but rather must be met by every bunch produced by the source over extended periods of time. It is widely assumed that the beam source will be a photocathode electron gun; the selection of accelerator technique (e.g., dc or rf) for the gun is more dependent on the application.The current state of the art of electron beam production is adequate but not ideal for the first generation of linac-based light sources, such as the Linac Coherent Light Source (LCLS) x-ray free-electron laser (X-FEL). For the next generation of linac-based light sources, an order of magnitude reduction in the transverse electron beam emittance is required to significantly reduce the cost of the facility. This is beyond the present state of the art, given the other beam properties that must be maintained. The requirements for current and future linac-based light source beam sources are presented here, along with a review of the present state of the art. A discussion of potential paths towards meeting future needs is presented at the conclusion.

  16. Free-Free Transitions of the e-H System Inside a Dense Plasma Irradiated by a Laser Field at Very Low Incident-Electron Energies

    Science.gov (United States)

    Bhatia, A. K.; Sinha, C.

    2012-01-01

    The free-free transition is studied for an electron-hydrogen atom in ground state when a low-energy electron (external) is injected into hydrogenic plasma in the presence of an external homogenous, monochromatic, and linearly polarized laser field. The effect of plasma screening is considered in the Debye-Huckel approximation. The calculations are performed in the soft photon limit. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon absorption or emission and no-photon exchange in the soft photon limit, the laser intensity being much less than the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more in the triplet states.

  17. Electron dynamics in RF sources with a laser controlled emission

    CERN Document Server

    Khodak, I V; Metrochenko, V V

    2001-01-01

    Photoemission radiofrequency (RF) electron sources are sources of electron beams with extremely high brightness. Beam bunching processes in such devices are well studied in case when laser pulse duration is much lower of rf oscillation period.At the same time photoemission RF guns have some merits when operating in 'long-pulse' mode. In this case the laser pulse duration is much higher of rf oscillation period but much lower of rise time of oscillations in a gun cavity. Beam parameters at the gun output are compared for photoemission and thermoemission cathode applications. The paper presents results of a beam dynamics simulation in such guns with different resonance structures. Questions connected with defining of the current pulse peak value that can be obtained in such guns are discussed.

  18. Diffusion, convection, and solidification in cw-mode free electron laser nitrided titanium

    International Nuclear Information System (INIS)

    Hoeche, Daniel; Mueller, Sven; Shinn, Michelle; Schaaf, Peter

    2009-01-01

    Titanium sheets were irradiated by free electron laser radiation in cw mode in pure nitrogen. Due to the interaction, nitrogen diffusion occurs and titanium nitride was synthesized in the tracks. Overlapping tracks have been utilized to create coatings in order to improve the tribological properties of the sheets. Caused by the local heating and the spatial dimension of the melt pool, convection effects were observed and related to the track properties. Stress, hardness, and nitrogen content were investigated with x-ray diffraction, nanoindention, and resonant nuclear reaction analysis. The measured results were correlated with the scan parameters, especially to the lateral track shift. Cross section micrographs were prepared and investigated by means of scanning electron microscopy. They show the solidification behavior, phase formation, and the nitrogen distribution. The experiments give an insight into the possibilities of materials processing using such a unique heat source.

  19. Diffusion, convection, and solidification in cw-mode free electron laser nitrided titanium

    Science.gov (United States)

    Höche, Daniel; Shinn, Michelle; Müller, Sven; Schaaf, Peter

    2009-04-01

    Titanium sheets were irradiated by free electron laser radiation in cw mode in pure nitrogen. Due to the interaction, nitrogen diffusion occurs and titanium nitride was synthesized in the tracks. Overlapping tracks have been utilized to create coatings in order to improve the tribological properties of the sheets. Caused by the local heating and the spatial dimension of the melt pool, convection effects were observed and related to the track properties. Stress, hardness, and nitrogen content were investigated with x-ray diffraction, nanoindention, and resonant nuclear reaction analysis. The measured results were correlated with the scan parameters, especially to the lateral track shift. Cross section micrographs were prepared and investigated by means of scanning electron microscopy. They show the solidification behavior, phase formation, and the nitrogen distribution. The experiments give an insight into the possibilities of materials processing using such a unique heat source.

  20. Commissioning of Japanese x-ray free electron laser, SACLA and achieved laser performance

    International Nuclear Information System (INIS)

    Tanaka, Hitoshi; Amselem, Arnaud; Aoyagi, Hideki

    2012-01-01

    After 8 months of beam commissioning of SPring-8 Angstrom Compact free electron LAser, SACLA reached the primary target performance, i.e., a shortest laser wavelength of ∼0.6 Angstrom and a laser pulse energy value of sub-mJ at a wavelength of 1.2 Angstrom. This success was due to the following four factors; (1) performance estimation of each component of SACLA required for the target laser performance and its achievement, (2) elaboration of beam diagnostics and control systems enabling precise accelerator and undulator tuning, (3) a rational and strategic commissioning plan, (4) most adequate response to various accidental events during the beam commissioning period. This article, in order to light up the above four factors leading us to the success, starts with the features of SACLA and critical tolerance for the sub-system components, and then, explains our approach to achieve the target laser performance and how the beam commissioning of SACLA proceeded. At last, the article summarizes the present laser and operational status. (author)

  1. Applications of free electron lasers and synchrotrons in industry and research

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, William A. [Dept. of Physics, Massachusetts Institute of Technology Cambridge MA (United States)

    2013-04-19

    Synchrotron radiation sources have had a profound effect on both science and technology from their beginnings decades ago as parasitic operations on accelerators for high energy physics. Now the general area of photon science has opened up new experimental techniques which have become the mainstay tools of materials science, surface physics, protein crystallography, and nanotechnology. With the promise of ultra-bright beams from the latest generation of storage rings and free electron lasers with full coherence, the tools of photon science promise to open a new area of mesoscale science and technology as well as prove to be a disruptive wildcard in the search for sustainable energy technologies. This review will survey a range of applications and explore in greater depth the potential applications to EUV lithography and to technologies for solar energy.

  2. Femtosecond X-ray magnetic circular dichroism absorption spectroscopy at an X-ray free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Higley, Daniel J., E-mail: dhigley@stanford.edu; Yuan, Edwin [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Hirsch, Konstantin; Dakovski, Georgi L.; Jal, Emmanuelle; Lutman, Alberto A.; Coslovich, Giacomo; Hart, Philip; Hoffmann, Matthias C.; Mitra, Ankush; Moeller, Stefan; Ohldag, Hendrik; Seaberg, Matthew; Stöhr, Joachim; Nuhn, Heinz-Dieter; Reid, Alex H.; Dürr, Hermann A.; Schlotter, William F. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Liu, Tianmin; MacArthur, James P. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, Stanford, California 94305 (United States); and others

    2016-03-15

    X-ray magnetic circular dichroism spectroscopy using an X-ray free electron laser is demonstrated with spectra over the Fe L{sub 3,2}-edges. The high brightness of the X-ray free electron laser combined with high accuracy detection of incident and transmitted X-rays enables ultrafast X-ray magnetic circular dichroism studies of unprecedented sensitivity. This new capability is applied to a study of all-optical magnetic switching dynamics of Fe and Gd magnetic sublattices in a GdFeCo thin film above its magnetization compensation temperature.

  3. Direct measurement of the pulse duration and frequency chirp of seeded XUV free electron laser pulses

    Science.gov (United States)

    Azima, Armin; Bödewadt, Jörn; Becker, Oliver; Düsterer, Stefan; Ekanayake, Nagitha; Ivanov, Rosen; Kazemi, Mehdi M.; Lamberto Lazzarino, Leslie; Lechner, Christoph; Maltezopoulos, Theophilos; Manschwetus, Bastian; Miltchev, Velizar; Müller, Jost; Plath, Tim; Przystawik, Andreas; Wieland, Marek; Assmann, Ralph; Hartl, Ingmar; Laarmann, Tim; Rossbach, Jörg; Wurth, Wilfried; Drescher, Markus

    2018-01-01

    We report on a direct time-domain measurement of the temporal properties of a seeded free-electron laser pulse in the extreme ultraviolet spectral range. Utilizing the oscillating electromagnetic field of terahertz radiation, a single-shot THz streak-camera was applied for measuring the duration as well as spectral phase of the generated intense XUV pulses. The experiment was conducted at FLASH, the free electron laser user facility at DESY in Hamburg, Germany. In contrast to indirect methods, this approach directly resolves and visualizes the frequency chirp of a seeded free-electron laser (FEL) pulse. The reported diagnostic capability is a prerequisite to tailor amplitude, phase and frequency distributions of FEL beams on demand. In particular, it opens up a new window of opportunities for advanced coherent spectroscopic studies making use of the high degree of temporal coherence expected from a seeded FEL pulse.

  4. Gain of a Smith-Purcell free-electron laser

    Directory of Open Access Journals (Sweden)

    H. L. Andrews

    2004-07-01

    Full Text Available A formula is derived for the small-signal gain of a Smith-Purcell free-electron laser. The theory describes the electron beam as a moving plasma dielectric, and assumes that the electron beam interacts with an evanescent mode traveling along the surface of a periodic waveguide with a rectangular profile. The phase velocity of the evanescent wave is synchronous with the electron velocity, but the group velocity is actually negative. The electron beam amplifies the evanescent wave, which does not itself radiate. According to this picture, the radiation observed emanating from the grating is Smith-Purcell radiation enhanced by the bunching of the electrons due to the interaction with the evanescent mode. There will also be radiation from the part of the evanescent mode that is outcoupled from the ends of the grating. This radiation appears at a lower frequency than the Smith-Purcell radiation. The new results explain both the gain and the radiation observed in the experiments of Urata and Walsh, and the cube-root current dependence of the gain inferred by Bakhtyari, Walsh, and Brownell.

  5. Storage ring free electron laser, pulse propagation effects and microwave type instabilities

    International Nuclear Information System (INIS)

    Dattoli, G.; Mezi, L.; Renieri, A.; Migliorati, M.

    2000-01-01

    It has been developed a dynamical model accounting for the storage Ring Free Electron Laser evolution including pulse propagation effects and e-beam instabilities of microwave type. It has been analyzed the general conditions under which the on set of the laser may switch off the instability and focus everybody attention on the interplay between cavity mismatch, laser pulsed behavior and e-beam instability dynamics. Particular attention is also devoted to the laser operation in near threshold conditions, namely at an intracavity level just enough to counteract the instability, that show in this region new and interesting effects arises [it

  6. High efficiency, multiterawatt x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    C. Emma

    2016-02-01

    Full Text Available In this paper we present undulator magnet tapering methods for obtaining high efficiency and multiterawatt peak powers in x-ray free electron lasers (XFELs, a key requirement for enabling 3D atomic resolution single molecule imaging and nonlinear x-ray science. The peak power and efficiency of tapered XFELs is sensitive to time dependent effects, like synchrotron sideband growth. To analyze this dependence in detail we perform a comparative numerical optimization for the undulator magnetic field tapering profile including and intentionally disabling these effects. We show that the solution for the magnetic field taper profile obtained from time independent optimization does not yield the highest extraction efficiency when time dependent effects are included. Our comparative optimization is performed for a novel undulator designed specifically to obtain TW power x-ray pulses in the shortest distance: superconducting, helical, with short period and built-in strong focusing. This design reduces the length of the breaks between modules, decreasing diffraction effects, and allows using a stronger transverse electron focusing. Both effects reduce the gain length and the overall undulator length. We determine that after a fully time dependent optimization of a 100 m long Linac coherent light source-like XFEL we can obtain a maximum efficiency of 7%, corresponding to 3.7 TW peak radiation power. Possible methods to suppress the synchrotron sidebands, and further enhance the FEL peak power, up to about 6 TW by increasing the seed power and reducing the electron beam energy spread, are also discussed.

  7. Optical beam transport to a remote location for low jitter pump-probe experiments with a free electron laser

    Directory of Open Access Journals (Sweden)

    P. Cinquegrana

    2014-04-01

    Full Text Available In this paper we propose a scheme that allows a strong reduction of the timing jitter between the pulses of a free electron laser (FEL and external laser pulses delivered simultaneously at the FEL experimental stations for pump-probe–type experiments. The technique, applicable to all seeding-based FEL schemes, relies on the free-space optical transport of a portion of the seed laser pulse from its optical table to the experimental stations. The results presented here demonstrate that a carefully designed laser beam transport, incorporating also a transverse beam position stabilization, allows one to keep the timing fluctuations, added by as much as 150 m of free space propagation and a number of beam folding mirrors, to less than 4 femtoseconds rms. By its nature our scheme removes the major common timing jitter sources, so the overall jitter in pump-probe measurements done in this way will be below 10 fs (with a margin to be lowered to below 5 fs, much better than the best results reported previously in the literature amounting to 33 fs rms.

  8. Free electron lasers for 13nm EUV lithography: RF design strategies to minimise investment and operational costs

    Science.gov (United States)

    Keens, Simon; Rossa, Bernhard; Frei, Marcel

    2016-03-01

    As the semiconductor industry proceeds to develop ever better sources of extreme ultraviolet (EUV) light for photolithography applications, two distinct technologies have come to prominence: Tin-plasma and free electron laser (FEL) sources. Tin plasma sources have been in development within the industry for many years, and have been widely reported. Meanwhile, FELs represent the most promising alternative to create high power EUV frequencies and, while tin-plasma source development has been ongoing, such lasers have been continuously developed by academic institutions for use in fundamental research programmes in conjunction with universities and national scientific institutions. This paper follows developments in the field of academic FELs, and presents information regarding novel technologies, specifically in the area of RF design strategy, that may be incorporated into future industrial FEL systems for EUV lithography in order to minimize the necessary investment and operational costs. It goes on to try to assess the cost-benefit of an alternate RF design strategy, based upon previous studies.

  9. Present status of storage ring free electron laser experiment at ETL

    International Nuclear Information System (INIS)

    Yamazaki, T.; Nakamura, T.; Tomimasu, T.; Sugiyama, S.; Noguchi, T.

    1988-01-01

    Outline is described of the present status of the ETL storage-ring free electron laser project. The structure and the performance of the ETL-type transverse optical klystron are given. A modification of the dispersive section has decreased the degradation of the shape of the spontaneous-emission spectrum due to energy spread of the electron beam. Relevant parameters of the stored beam are presented. Measurement of the optical-cavity loss is under way. (author)

  10. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    Science.gov (United States)

    NAKAJIMA, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  11. Development of novel low-voltage free-electron lasers in the 5-500GHz region

    International Nuclear Information System (INIS)

    Zhong, Xiehe

    2002-01-01

    The electromagnetic spectrum from 5GHz to 500GHz is important for many industrial, commercial, and scientific applications. In particular for the 100 - 500GHz region, free electron lasers (FELs) are usually the only viable radiation sources with sizeable output power and as such are an attractive enabling technology for many applications. One major issue for widespread application of free electron lasers is to reduce their cost and size. This is particularly challenging because of the expensive electron accelerator system they employ. To make it significantly more attractive economically for many important applications, the electron energy has to be reduced to below 300keV. In this thesis two novel electron-energy-reduction techniques are investigated for FEL systems operated in the spectrum from 5GHz to 500GHz with the development of a suite of suitable FEL codes. In the microwave to millimetre-wave region, a novel energy reduction technique based on second harmonic waveguide FELs is studied. It is shown that the required electron voltage is approximately half of what is normally required for comparable conventional waveguide FELs. Effect of electron energy spread is studied for second harmonic waveguide FELs both in microwave and millimetre-wave regions. It is shown that strong wiggler field enhances electron hunching thereby increasing the small-signal gain as well as the insusceptibility to electron voltage spread. Saturation behaviour of second harmonic waveguide FELs is also studied because it is important for evaluation of output power. For FEL generation above 300GHz, it is found that second harmonic waveguide FELs need to increase electron energy above 300keV. To this end, a second energy reduction technique is considered based on a novel quasiperiodic wiggler. It is established that by changing the initial phase angle between the two component wigglers, strong radiation can be generated near 1THz with electron energy below 300keV. (author)

  12. Storage ring free electron lasers and saw-tooth instability

    CERN Document Server

    Dattoli, Giuseppe; Migliorati, M; Palumbo, L; Renieri, A

    1999-01-01

    We show that Free Electron Lasers (FEL) operating with storage rings may counteract beam instabilities of the Saw Tooth (STI) type. We use a model based on a set of equations that couple those describing the FEL evolution to those accounting for the STI dynamics. The analysis provides a clear picture of the FEL-STI mutual feedback and clarifies the mechanisms of the instability inhibition. The reliability of the results is supported by a comparison with fully numerical codes.

  13. Investigation of metal coatings for the free electron laser

    International Nuclear Information System (INIS)

    Scott, M.L.; Arendt, P.N.; Springer, R.W.; Cordi, R.C.; McCreary, W.J.

    1985-01-01

    We are investigating the deposition and characteristics of metal coatings for use in environments such as the Free Electron Laser where the radiation resistance of metal coatings could prove to be of great benefit. We have concentrated our initial efforts on silver laminate coatings due to the high reflectance of silver at 1 micron wavelength. Our initial laminate coatings have utilized thin layers of titanium oxide to break up the columnar structure of the silver during electron-beam deposition on fused silica substrates. Our initial results on equal coating thickness samples indicate an improvement in damage threshold that ranges from 1.07 to 1.71 at 351 nm

  14. Table-top laser-driven ultrashort electron and X-ray source: the CIBER-X source project

    Energy Technology Data Exchange (ETDEWEB)

    Girardeau-Montaut, J.-P. E-mail: jean-pierre.girardeau@univ-lyonl.fr; Kiraly, Bela; Girardeau-Montaut, Claire; Leboutet, Hubert

    2000-09-21

    We report on the development of a new laser-driven table-top ultrashort electron and X-ray source, also called the CIBER-X source . X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulses at 213 nm. The e-gun is a standard Pierce diode electrode type, in which electrons are accelerated by a cw electric field of {approx}11 MV/m up to a hole made in the anode. The photoinjector produces a train of 70-80 keV electron pulses of {approx}0.5 nC and 20 A peak current at a repetition rate of 10 Hz. The electrons are then transported outside the diode along a path of 20 cm length, and are focused onto a target of thulium by magnetic fields produced by two electromagnetic coils. X-rays are then produced by the impact of electrons on the target. Simulations of geometrical, electromagnetic fields and energetic characteristics of the complete source were performed previously with the assistance of the code PIXEL1 also developed at the laboratory. Finally, experimental electron and X-ray performances of the CIBER-X source as well as its application to very low dose imagery are presented and discussed.

  15. Harmonic operation of high gain harmonic generation free electron laser

    International Nuclear Information System (INIS)

    Deng Haixiao; Chinese Academy of Sciences, Beijing; Dai Zhimin

    2008-01-01

    In high gain harmonic generation (HGHG) free electron laser (FEL), with the right choice of parameters of the modulator undulator, the dispersive section and the seed laser, one may make the spatial bunching of the electron beam density distribution correspond to one of the harmonic frequencies of the radiator radiation, instead of the fundamental frequency of the radiator radiation in conventional HGHG, thus the radiator undulator is in harmonic operation (HO) mode. In this paper, we investigate HO of HGHG FEL. Theoretical analyses with universal method are derived and numerical simulations in ultraviolet and deep ultraviolet spectral regions are given. It shows that the power of the 3rd harmonic radiation in the HO of HGHG may be as high as 18.5% of the fundamental power level. Thus HO of HGHG FEL may obtain short wavelength by using lower beam energy. (authors)

  16. Requirements and design of a high stable infrared free electron laser at LBL

    International Nuclear Information System (INIS)

    Kim, K.J.; Berz, M.; Chattopadhyay, S.; Gough, R.; Kim, C.; Kung, A.H.; Xie, M.; Edighoffer, J.; Stein, W.

    1990-06-01

    An infrared free electron laser (IRFEL) is being designed for the Chemical Dynamics Research Laboratory (CDRL) at LBL. The FEL is based on a 50 MeV RF linac operating in synchronization to the Advanced Light Source (ALS), and will produce intense (100 μJ per micropulse), narrow bandwidth (narrower than 0.1%) radiation between 3 μ and 50 μ. In the design, we pay particular attention to the FEL stability issues and require that the fluctuations in electron beam energy and in timing be less than 0.05% and 0.1 ps, respectively. The FEL spectrum can then be stabilized to about 10 -3 , or if grating is used, to 10 -4 . We discuss various sources of fluctuations in the gun, the bunchers and the accelerator sections, as well as the feedback and feedforward schemes to reduce these fluctuations. The accelerator structure is chosen to be of the side coupled, standing wave type for easier control. The beam transport is made isochronous to avoid the coupling between the energy and the timing fluctuations. 9 refs., 2 figs

  17. Synchronization and sequencing of data acquisition and control electronics at the European X-ray free electron laser

    International Nuclear Information System (INIS)

    Gessler, Patrick

    2015-11-01

    The 3.5 km long European X-Ray Free Electron Laser, currently under construction in northern Germany, will deliver bursts of up to 2700 short X-ray pulses every 100 ms, providing wavelengths between 0.05 and 6 nm, and a repetition rate of 4.5 MHz to several experiment stations. It allows in-depth research in various scientific fields. In order to set-up the beam, position samples and capture the measured variables, information from the accelerator, diagnostic devices and detectors have to be digitized, converted, processed, transferred, concentrated, distributed, reorganized, controlled and saved. All these steps have to be accurately synchronized and sequenced relative to the actual electron bunch or photon pulse in order to guarantee correct data acquisition timings and unique identification of each bunch passing the beamlines. This document provides a complete description of the planning, design, realization and evaluation of the European XFEL Timing System, which implements the synchronization and sequencing of the data acquisition and control electronics for the European X-Ray Free-Electron Laser Facility.

  18. Saturation mechanism and improvement of conversion efficiency of free electron laser

    International Nuclear Information System (INIS)

    Taguchi, T.; Mima, K.; Mochizuki, T.

    1980-01-01

    Saturation mechanisms of free electron laser are investigated in the Compton regime. It is found that the saturation occurs due to quasi-linear energy spreading of electron beam in the case of many mode excitation. The energy conversion efficiency remains low even if many modes are taken into account. For improvement of the conversion efficiency, effects of reacceleration by a traveling wave are investigated and turn out to increase the efficiency up to more than 50%. (author)

  19. Generating femtosecond X-ray pulses using an emittance-spoiling foil in free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y., E-mail: ding@slac.stanford.edu; Coffee, R.; Decker, F.-J.; Emma, P.; Field, C.; Huang, Z.; Krejcik, P.; Krzywinski, J.; Loos, H.; Lutman, A.; Marinelli, A.; Maxwell, T. J.; Turner, J. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Behrens, C. [Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg (Germany); Helml, W. [Technische Universität München, James-Franck-Straße 1, 85748 Garching (Germany)

    2015-11-09

    Generation of femtosecond to sub-femtosecond pulses is attracting much attention in X-ray free-electron laser user community. One method is to use a slotted, emittance-spoiling foil which was proposed before (P. Emma et al., Phys. Rev. Lett. 92, 074801 (2004)) and has been widely used at the Linac Coherent Light Source. Direct experimental characterization of the slotted-foil performance was previously unfeasible due to a lack of appropriate diagnostics. With a recently installed X-band radio-frequency transverse deflector, we are able to characterize the electron bunch spoiling effect and X-ray pulse when using the slotted foil. We show that few-femtosecond X-ray pulses are generated with flexible control of the single-pulse duration or double-pulse separation with comparison to the theoretical model.

  20. Inverse free electron laser beat-wave accelerator research

    International Nuclear Information System (INIS)

    Marshall, T.C.; Bhattacharjee, A.

    1993-09-01

    A calculation on the stabilization of the sideband instability in the free electron laser (FEL) and inverse FEL (IFEL) was completed. The issue arises in connection with the use of a tapered (''variable-parameter'') undulator of extended length, such as might be used in an ''enhanced efficiency'' traveling-wave FEL or an IFEL accelerator. In addition, the FEL facility at Columbia was configured as a traveling wave amplifier for a 10-kW signal from a 24-GHz magnetron. The space charge field in the bunches of the FEL was measured. Completed work has been published

  1. Properties of the transfer matrices of deflecting magnet systems for free electron laser

    International Nuclear Information System (INIS)

    Takao, Masaru

    1993-01-01

    The oscillation of the free electron laser (FEL) requires the high current and low emittance electron beam. The beam transport system should be achromatic and isochronous to preserve the brightness and the emittance of the electron beam. In this paper we clarify the algebraic properties of the transfer matrices of the magnetic deflection system, which is a key component in the beam transport line. (author)

  2. Data processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA

    International Nuclear Information System (INIS)

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi

    2014-01-01

    The software suite SITENNO is developed for processing diffraction data collected in coherent X-ray diffraction imaging experiments of non-crystalline particles using an X-ray free-electron laser. Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the ‘diffraction before destruction’ scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles

  3. X-ray comb generation from nuclear-resonance-stabilized x-ray free-electron laser oscillator for fundamental physics and precision metrology

    Directory of Open Access Journals (Sweden)

    B. W. Adams

    2015-03-01

    Full Text Available An x-ray free-electron laser oscillator (XFELO is a next-generation x-ray source, similar to free-electron laser oscillators at VUV and longer wavelengths but using crystals as high-reflectivity x-ray mirrors. Each output pulse from an XFELO is fully coherent with high spectral purity. The temporal coherence length can further be increased drastically, from picoseconds to microseconds or even longer, by phase-locking successive XFELO output pulses, using the narrow nuclear resonance lines of nuclei such as ^{57}Fe as a reference. We show that the phase fluctuation due to the seismic activities is controllable and that due to spontaneous emission is small. The fluctuation of electron-bunch spacing contributes mainly to the envelope fluctuation but not to the phase fluctuation. By counting the number of standing-wave maxima formed by the output of the nuclear-resonance-stabilized (NRS XFELO over an optically known length, the wavelength of the nuclear resonance can be accurately measured, possibly leading to a new length or frequency standard at x-ray wavelengths. A NRS-XFELO will be an ideal source for experimental x-ray quantum optics as well as other fundamental physics. The technique can be refined for other, narrower resonances such as ^{181}Ta or ^{45}Sc.

  4. Help system for control of JAERI FEL (Free Electron laser)

    International Nuclear Information System (INIS)

    Sugimoto, Masayoshi

    1993-01-01

    The control system of JAERI FEL (Free Electron Laser) has a help system to provide the information necessary to operate the machine and to develop the new user interface. As the control software is constructed on the MS-Windows 3.x, the hyper-text feature of the Windows help system can be accessed. It consists of three major parts: (1) on-line help, (2) full document, and (3) tutorial system. (author)

  5. Multipurpose modular experimental station for the DiProI beamline of Fermi-Elettra free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Pedersoli, Emanuele; Capotondi, Flavio; Cocco, Daniele; Kaulich, Burkhard; Menk, Ralf H; Locatelli, Andrea; Mentes, Tevfik O; Spezzani, Carlo; Sandrin, Gilio; Bacescu, Daniel M; Kiskinova, Maya [Fermi, Elettra Sincrotrone Trieste, SS 14 - km 163.5, 34149 Basovizza, Trieste (Italy); Zangrando, Marco [Fermi, Elettra Sincrotrone Trieste, SS 14 - km 163.5, 34149 Basovizza, Trieste (Italy); IOM CNR, Laboratorio TASC, SS 14 - km 163.5, 34149 Basovizza, Trieste (Italy); Bajt, Sasa; Barthelmess, Miriam [Photon Science, DESY, Notkestrasse 85, 22607 Hamburg (Germany); Barty, Anton; Schulz, Joachim; Gumprecht, Lars [Centre for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg (Germany); Chapman, Henry N [Centre for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg (Germany); University of Hamburg, Notkestrasse 85, 22607 Hamburg (Germany); Nelson, A J; Frank, Matthias [Physical and Life Sciences, LLNL, 7000 East Avenue, Livermore, California 94550 (United States); others, and

    2011-04-15

    We present a compact modular apparatus with a flexible design that will be operated at the DiProI beamline of the Fermi-Elettra free electron laser (FEL) for performing static and time-resolved coherent diffraction imaging experiments, taking advantage of the full coherence and variable polarization of the short seeded FEL pulses. The apparatus has been assembled and the potential of the experimental setup is demonstrated by commissioning tests with coherent synchrotron radiation. This multipurpose experimental station will be open to general users after installation at the Fermi-Elettra free electron laser in 2011.

  6. Multipurpose modular experimental station for the DiProI beamline of Fermi-Elettra free electron laser

    International Nuclear Information System (INIS)

    Pedersoli, Emanuele; Capotondi, Flavio; Cocco, Daniele; Kaulich, Burkhard; Menk, Ralf H.; Locatelli, Andrea; Mentes, Tevfik O.; Spezzani, Carlo; Sandrin, Gilio; Bacescu, Daniel M.; Kiskinova, Maya; Zangrando, Marco; Bajt, Sasa; Barthelmess, Miriam; Barty, Anton; Schulz, Joachim; Gumprecht, Lars; Chapman, Henry N.; Nelson, A. J.; Frank, Matthias

    2011-01-01

    We present a compact modular apparatus with a flexible design that will be operated at the DiProI beamline of the Fermi-Elettra free electron laser (FEL) for performing static and time-resolved coherent diffraction imaging experiments, taking advantage of the full coherence and variable polarization of the short seeded FEL pulses. The apparatus has been assembled and the potential of the experimental setup is demonstrated by commissioning tests with coherent synchrotron radiation. This multipurpose experimental station will be open to general users after installation at the Fermi-Elettra free electron laser in 2011.

  7. Gain physics of rf-linac-driven xuv free-electron lasers

    International Nuclear Information System (INIS)

    Goldstein, J.C.; McVey, B.D.; Newnam, B.E.

    1986-01-01

    In an rf-linac-driven xuv free-electron laser oscillator, the gain depends on the details of the shape of the electron beam's phase-space distribution, particularly the distribution of electrons in the transverse (to the direction of propagation) position and velocity coordinates. This strong dependence occurs because the gain in this device is inhomogeneously broadened. Our previous theoretical studies have assumed that the transverse phase space distribution is a product of uncorrelated Gaussian functions. In the present work, we shall present the results of a theoretical study of the gain for non-Gaussian phase-space distributions. Such distributions arise either from a better representation of the electron beam from an rf-linac or from an emittance filter applied to the beam after the linac

  8. Self-field effects on small-signal gain in two-stage free-electron lasers

    Indian Academy of Sciences (India)

    Self-field effects, induced by charge and current densities of the electron beam, on gain in two-stage free-electron laser with nonuniform guide magnetic field is presented. The gain equation for small-signal has been derived analytically. The results of numerical calculations show a gain decrement for group I orbits and a ...

  9. Velocimetry of fast microscopic liquid jets by nanosecond dual-pulse laser illumination for megahertz X-ray free-electron lasers.

    Science.gov (United States)

    Grünbein, Marie Luise; Shoeman, Robert L; Doak, R Bruce

    2018-03-19

    To conduct X-ray Free-Electron Laser (XFEL) measurements at megahertz (MHz) repetition rates, sample solution must be delivered in a micron-sized liquid free-jet moving at up to 100 m/s. This exceeds by over a factor of two the jet speeds measurable with current high-speed camera techniques. Accordingly we have developed and describe herein an alternative jet velocimetry based on dual-pulse nanosecond laser illumination. Three separate implementations are described, including a small laser-diode system that is inexpensive and highly portable. We have also developed and describe analysis techniques to automatically and rapidly extract jet speed from dual-pulse images.

  10. Dispersion relation and growth rate in a Cherenkov free electron laser: Finite axial magnetic field

    International Nuclear Information System (INIS)

    Kheiri, Golshad; Esmaeilzadeh, Mahdi

    2013-01-01

    A theoretical analysis is presented for dispersion relation and growth rate in a Cherenkov free electron laser with finite axial magnetic field. It is shown that the growth rate and the resonance frequency of Cherenkov free electron laser increase with increasing axial magnetic field for low axial magnetic fields, while for high axial magnetic fields, they go to a saturation value. The growth rate and resonance frequency saturation values are exactly the same as those for infinite axial magnetic field approximation. The effects of electron beam self-fields on growth rate are investigated, and it is shown that the growth rate decreases in the presence of self-fields. It is found that there is an optimum value for electron beam density and Lorentz relativistic factor at which the maximum growth rate can take place. Also, the effects of velocity spread of electron beam are studied and it is found that the growth rate decreases due to the electron velocity spread

  11. Ronchi test for characterization of nanofocusing optics at a hard x-ray free-electron laser.

    Science.gov (United States)

    Nilsson, Daniel; Uhlén, Fredrik; Holmberg, Anders; Hertz, Hans M; Schropp, Andreas; Patommel, Jens; Hoppe, Robert; Seiboth, Frank; Meier, Vivienne; Schroer, Christian G; Galtier, Eric; Nagler, Bob; Lee, Hae Ja; Vogt, Ulrich

    2012-12-15

    We demonstrate the use of the classical Ronchi test to characterize aberrations in focusing optics at a hard x-ray free-electron laser. A grating is placed close to the focus and the interference between the different orders after the grating is observed in the far field. Any aberrations in the beam or the optics will distort the interference fringes. The method is simple to implement and can provide single-shot information about the focusing quality. We used the Ronchi test to measure the aberrations in a nanofocusing Fresnel zone plate at the Linac Coherent Light Source at 8.194 keV.

  12. Free-electron laser experiments in the microwave tokamak experiment

    International Nuclear Information System (INIS)

    Allen, S.L.; Brown, M.D.; Byers, J.A.; Casper, T.A.; Cohen, B.I.; Cohen, R.H.; Cummings, J.C.; Fenstermacher, M.E.; Foote, J.H.; Hooper, E.B.; Jong, R.A.; Langdon, A.B.; Lasinski, B.F.; Lasnier, C.J.; Matsuda, Y.; Meyer, W.H.; Moller, J.M.; Nexsen, W.E.; Rice, B.W.; Rognlien, T.D.; Smith, G.R.; Stallard, B.W.; Thomassen, K.I.; Throop, A.L.; Turner, W.C.; Wood, R.D.; Cook, D.R.; Makowski, M.A.; Oasa, K.; Ogawa, T.

    1990-08-01

    Microwave pulses have been injected from a free electron-laser (FEL) into the Microwave Tokamak Experiment (MTX) at up to 0.2 GW at 140 GHz in short pulses (10-ns duration) with O-mode polarization. The power transmitted through the plasma was measured in a first experimental study of high power pulse propagation in the plasma; no nonlinear effects were found at this power level. Calculations indicate that nonlinear effects may be found at the higher power densities expected in future experiments. 9 refs., 2 figs

  13. Development of a high power millimeter wave free-electron laser amplifier

    International Nuclear Information System (INIS)

    Bidwell, S.W.; Zhang, Z.X.; Antonsen, T.M. Jr.; Destler, W.W.; Granatstein, V.L.; Levush, B.; Rodgers, J.; Freund, H.P.

    1992-01-01

    Progress on the development of a high-average-power millimeter wave free-electron laser amplifier is reported. Successful sheet electron beam propagation has been observed through a 54 cm long wiggler magnet. One hundred percent transport efficiency is reported with a 15 A, 0.1 cm x 2.0 cm, sheet electron beam through B w = 5.1 kG, λ w = 0.96 cm, planar electromagnet wiggler. Preliminary success with a novel, yet simple, method of side focusing using offset poles is reported. Status of development on a 94 GHz, 180 kW, pulsed amplifier is discussed with results from numerical simulation

  14. Multiobjective genetic algorithm optimization of the beam dynamics in linac drivers for free electron lasers

    Directory of Open Access Journals (Sweden)

    R. Bartolini

    2012-03-01

    Full Text Available Linac driven free electron lasers (FELs operating in the x-ray region require a high brightness electron beam in order to reach saturation within a reasonable distance in the undulator train or to enable sophisticated seeding schemes using external lasers. The beam dynamics optimization is usually a time consuming process in which many parameters of the accelerator and the compression system have to be controlled simultaneously. The requirements on the electron beam quality may also vary significantly with the particular application. For example, the beam dynamics optimization strategy for self-amplified spontaneous emission operation and seeded operation are rather different: seeded operation requires a more careful control of the beam uniformity over a relatively large portion of the longitudinal current distribution of the electron bunch and is therefore more challenging from an accelerator physics point of view. Multiobjective genetic algorithms are particularly well suited when the optimization of many parameters is targeting several objectives simultaneously, often with conflicting requirements. In this paper we propose a novel optimization strategy based on a combination of multiobjective optimization with a fast computation of the FEL performance. The application to the proposed UK’s New Light Source is reported and the benefits of this method are highlighted.

  15. Physics Of, and Science With, the X-Ray Free-Electron Laser: 19th Advanced ICFA Beam Dynamics Workshop

    International Nuclear Information System (INIS)

    Sutton, M.

    2003-01-01

    The workshop brought together scientists working on the development of x-ray free-electron lasers, and its applications. X-ray free-electron lasers produce high intensity, subpicosecond long, coherent, X-ray pulses, and will open a new frontier to study the structure of matter at the molecular and atomic levels. Some fields of interest are structural changes in chemical reactions, single biological molecule, warm plasmas, nanosystems. Summary of discussions and conclusions of Group 1: Physics and Technology of the XFEL - The main issues that were discussed by the 50 participants in this group were the photo-injector, the production of ultra-short pulses, the effects of wake-fields induced by the electron bunch, the operation at lower charge and emittance, the possibility of harmonic generation and the diagnostics in the undulator. The following is a short summary of the discussions and their conclusions. Summary of discussions and conclusions of Group 2: Science with the XFEL - About 25 people attended sessions to discuss the possible scientific applications of a x-ray FEL. Because of the recent focus on the first experiments with the proposed Linac Coherent Light Source at Stanford, the discussions were mainly focussed on these proposals. The extension of the characteristics beyond the initial stage and the further developments of the source were also part of the program. Six scientific areas were discussed: Atomic Physics, Warm Dense Matter, Femtosecond Chemistry, Imaging/Holography, Bio-molecular Structures and X-Ray Fluctuations Spectroscopy.

  16. Laser control of electron matter waves

    NARCIS (Netherlands)

    Jones, E.; Becker, M.; Luiten, O.J.; Batelaan, H.

    2016-01-01

    In recent years laser light has been used to control the motion of electron waves. Electrons can now be diffracted by standing waves of light. Laser light in the vicinity of nanostructures is used to affect free electrons, for example, femto-second and atto-second laser-induced electrons are emitted

  17. Introduction to the theory of free electron lasers

    International Nuclear Information System (INIS)

    Krinsky, S.

    1985-01-01

    We present an introduction to some fundamental aspects of the theory of free electron lasers. Spontaneous radiation emitted by electrons traversing a wiggler magnet is briefly reviewed, and stimulated emission in the low-gain regime is discussed using Colson's pendulum equations and Madey's theorems. The high-gain regime is treated by an extention of the work of Bonifacio, Pellegrini, and Narducci. We introduce dynamical variables to describe the radiation field, and a Hamiltonian formulation of Maxwell's equations is employed. A canonical transformation to the interaction representation factors out the fast time variation of the radiation field, and the slow time dependence is determined by linearized equations for the appropriate collective variables. As an application of this technique we consider self-amplified spontaneous radiation, and we comment upon the relationship between our approach and the use of coupled Vlasov-Maxwell equations

  18. Studies on free electron lasers using a compact electro-static accelerator. 2. Basic specifications and estimation of the gain

    International Nuclear Information System (INIS)

    Kawamura, Yoshiyuki; Tanabe, Toshiya; Li, Dian-Jun; Toyoda, Koichi

    1994-01-01

    An experimental facility for the studies on sub-millimeter wavelength free electron lasers has been constructed using a micro-wiggler and the relativistic electron beam source described in a previous report. The pitch length, the number of periods, and the peak wiggler magnetic field strength for a gap length of 8 mm, are 12 mm, 50, and 2 kG respectively. The small signal gain as the amplifier has been estimated, and found to be high enough to overcome the loss due to coupling holes of a cavity resonator. (author)

  19. Design study of a traveling-wave Thomson-scattering experiment for the realization of optical free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Steiniger, Klaus; Loeser, Markus; Pausch, Richard; Schramm, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf (Germany); Technische Universitaet Dresden (Germany); Albach, Daniel; Debus, Alexander; Roeser, Fabian; Siebold, Matthias; Bussmann, Michael [Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2016-07-01

    We present an experimental setup strategy for the realization of an optical free-electron laser (OFEL) in the Traveling-Wave Thomson-Scattering geometry (TWTS). In TWTS, the electric field of petawatt class, pulse-front tilted laser pulses is used to provide an optical undulator field. This is passed by a relativistic electron bunch so that electron direction of motion and laser propagation direction enclose an interaction angle. The combination of side scattering and pulse-front tilt provides continuous overlap of electrons and laser pulse over meter scale distances which are achieved with centimeter wide laser pulses. An experimental challenge lies in shaping of these wide laser pulses in terms of laser dispersion compensation along the electron trajectory and focusing. In the talk we show how diffraction gratings in combination with mirrors are used to introduce and control dispersion of the laser in order to provide a plane wave laser field along the electron trajectory. Furthermore we give tolerance limits on alignment errors to operate the OFEL. Example setups illustrate functioning and demonstrate feasibility of the scheme.

  20. Alignment of Duke free electron laser storage ring and optical beam delivery system

    International Nuclear Information System (INIS)

    Emamian, M.; Hower, N.

    1999-01-01

    Duke Free Electron Laser Laboratory (DFELL) hosts a 1.1 GeV electron beam storage ring facility which is capable of generating beams in the range of nearly monochromatic gamma rays to high peak power infra red (IR) laser. In this report specifications and procedures for alignment of OK-4 /Duke storage ring FEL wiggler and optical cavity mirrors will be discussed. The OK-4 FEL lasing has demonstrated a series of world record in the last few years. In August of this year the OK-4 FEL successfully commissioned to laser at 193.7 nm. Also in this article, alignment of the γ-ray and UV optical beam delivery system that is currently in progress will be described. (authors)

  1. Kinetic description of a wiggler pumped ion-channel free electron laser

    International Nuclear Information System (INIS)

    Mehdian, H; Raghavi, A

    2006-01-01

    The wiggler pumped ion-channel free electron laser (WPIC-FEL) is treated and the classes of possible single-particle electron trajectories in this configuration are discussed in the paper. A new region of orbital stability is seen in the negative mass regime. A kinetic description of WPIC-FEL is given. Vlasov-Maxwell equations are solved to get the linear gain in a tenuous-beam limit, where the beam plasma frequency is much less than the radiation frequency and the self-field effects can be ignored

  2. Seeded free-electron and inverse free-electron laser techniques for radiation amplification and electron microbunching in the terahertz range

    Directory of Open Access Journals (Sweden)

    C. Sung

    2006-12-01

    Full Text Available A comprehensive analysis is presented that describes amplification of a seed THz pulse in a single-pass free-electron laser (FEL driven by a photoinjector. The dynamics of the radiation pulse and the modulated electron beam are modeled using the time-dependent FEL code, GENESIS 1.3. A 10-ps (FWHM electron beam with a peak current of 50–100 A allows amplification of a ∼1  kW seed pulse in the frequency range 0.5–3 THz up to 10–100 MW power in a relatively compact 2-m long planar undulator. The electron beam driving the FEL is strongly modulated, with some inhomogeneity due to the slippage effect. It is shown that THz microbunching of the electron beam is homogeneous over the entire electron pulse when saturated FEL amplification is utilized at the very entrance of an undulator. This requires seeding of a 30-cm long undulator buncher with a 1–3 MW of pump power with radiation at the resonant frequency. A narrow-band seed pulse in the THz range needed for these experiments can be generated by frequency mixing of CO_{2} laser lines in a GaAs nonlinear crystal. Two schemes for producing MW power pulses in seeded FELs are considered in some detail for the beam parameters achievable at the Neptune Laboratory at UCLA: the first uses a waveguide to transport radiation in the 0.5–3 THz range through a 2-m long FEL amplifier and the second employs high-gain third harmonic generation using the FEL process at 3–9 THz.

  3. Compact 13.5-nm free-electron laser for extreme ultraviolet lithography

    Directory of Open Access Journals (Sweden)

    Y. Socol

    2011-04-01

    Full Text Available Optical lithography has been actively used over the past decades to produce more and more dense integrated circuits. To keep with the pace of the miniaturization, light of shorter and shorter wavelength was used with time. The capabilities of the present 193-nm UV photolithography were expanded time after time, but it is now believed that further progress will require deployment of extreme ultraviolet (EUV lithography based on the use of 13.5-nm radiation. However, presently no light source exists with sufficient average power to enable high-volume manufacturing. We report here the results of a study that shows the feasibility of a free-electron laser EUV source driven by a multiturn superconducting energy-recovery linac (ERL. The proposed 40×20  m^{2} facility, using MW-scale consumption from the power grid, is estimated to provide about 5 kW of average EUV power. We elaborate the self-amplified spontaneous emission (SASE option, which is presently technically feasible. A regenerative-amplifier option is also discussed. The proposed design is based on a short-period (2–3 cm undulator. The corresponding electron beam energy is about 0.5–1.0 GeV. The proposed accelerator consists of a photoinjector, a booster, and a multiturn ERL.

  4. Free-electron laser multiplex driven by a superconducting linear accelerator.

    Science.gov (United States)

    Plath, Tim; Amstutz, Philipp; Bödewadt, Jörn; Brenner, Günter; Ekanayake, Nagitha; Faatz, Bart; Hacker, Kirsten; Honkavaara, Katja; Lazzarino, Leslie Lamberto; Lechner, Christoph; Maltezopoulos, Theophilos; Scholz, Matthias; Schreiber, Siegfried; Vogt, Mathias; Zemella, Johann; Laarmann, Tim

    2016-09-01

    Free-electron lasers (FELs) generate femtosecond XUV and X-ray pulses at peak powers in the gigawatt range. The FEL user facility FLASH at DESY (Hamburg, Germany) is driven by a superconducting linear accelerator with up to 8000 pulses per second. Since 2014, two parallel undulator beamlines, FLASH1 and FLASH2, have been in operation. In addition to the main undulator, the FLASH1 beamline is equipped with an undulator section, sFLASH, dedicated to research and development of fully coherent extreme ultraviolet photon pulses using external seed lasers. In this contribution, the first simultaneous lasing of the three FELs at 13.4 nm, 20 nm and 38.8 nm is presented.

  5. High power millimeter-wave free electron laser based on recirculating electrostatic accelerator

    International Nuclear Information System (INIS)

    Lee, Byung-Cheol; Kim, Sun-Kook; Jeong, Young-Uk; Cho, Sung-Oh; Lee, Jongmin

    1995-01-01

    Progress in the development of a high power, millimeter-wave free electron laser driven by a recirculating electrostatic accelerator is reported. The energy and the current of electron beam are 430 keV and 2 A, respectively. The expected average output power is above 10 kW at the wavelength of 3-10 mm. Minimizing of the beam loss is a key issue for CW operation of the FEL with high efficiency. (author)

  6. Reflection of femtosecond pulses from soft X-ray free-electron laser by periodical multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, D.; Grigorian, S.; Pietsch, U. [Faculty of Physics, University of Siegen (Germany); Hendel, S.; Bienert, F.; Sacher, M.D.; Heinzmann, U. [Faculty of Physics, University of Bielefeld (Germany)

    2009-08-15

    Recent experiments on a soft X-ray free-electron laser (FEL) source (FLASH in Hamburg) have shown that multilayers (MLs) can be used as optical elements for highly intense X-ray irradiation. An effort to find most appropriate MLs has to consider the femtosecond time structure and the particular photon energy of the FEL. In this paper we have analysed the time response of 'low absorbing' MLs (e.g. such as La/B{sub 4}C) as a function of the number of periods. Interaction of a pulse train of Gaussian shaped sub-pulses using a realistic ML grown by electron-beam evaporation technique has been analysed in the soft-X-ray range. The structural parameters of the MLs were obtained by reflectivity measurements at BESSY II and subsequent profile fittings. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  7. Deep saturated Free Electron Laser oscillators and frozen spikes

    Energy Technology Data Exchange (ETDEWEB)

    Ottaviani, P.L. [ENEA - Centro Ricerche Bologna, via Martiri di Monte Sole, 4, IT 40129, Bologna (Italy); Pagnutti, S., E-mail: simonetta.pagnutti@enea.it [ENEA - Centro Ricerche Bologna, via Martiri di Monte Sole, 4, IT 40129, Bologna (Italy); Dattoli, G., E-mail: giuseppe.dattoli@enea.it [ENEA - Centro Ricerche Frascati, via E. Fermi, 45, IT 00044, Frascati, Roma (Italy); Sabia, E., E-mail: elio.sabia@enea.it [ENEA - Centro Ricerche Frascati, via E. Fermi, 45, IT 00044, Frascati, Roma (Italy); Petrillo, V., E-mail: vittoria.petrillo@mi.infn.it [Universita' degli Studi di Milano, via Celoria 16, IT 20133, Milano (Italy); INFN - Mi, via Celoria 16, IT 20133, Milano (Italy); Slot, P.J.M. van der, E-mail: p.j.m.vanderslot@utwente.nl [Mesa+ Institute for Nanotechnology, University of Twente, P.O.Box 217, 7500 AE, Enschede (Netherlands); Biedron, S., E-mail: sandra.biedron@colostate.edu [Department of Electrical and Computer Engineering Colorado State University (United States); Milton, S., E-mail: milton@engr.colostate.edu [Department of Electrical and Computer Engineering Colorado State University (United States)

    2016-10-21

    We analyze the behavior of Free Electron Laser (FEL) oscillators operating in the deep saturated regime and point out the formation of sub-peaks of the optical pulse. These are very stable configurations and the sub-peaks are found to have a duration corresponding to the coherence length. We speculate on the physical mechanisms underlying their growth and attempt an identification with natural mode-locked structures in FEL oscillators. Their impact on the intra-cavity nonlinear harmonic generation is also discussed along with the possibility of exploiting them as cavity out-coupler.

  8. Microlens Array Laser Transverse Shaping Technique for Photoemission Electron Source

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Northern Illinois Univ., DeKalb, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ha, G. [Argonne National Lab. (ANL), Argonne, IL (United States); Pohang Univ. of Science and Technology (POSTECH) (Korea, Republic of); Qiang, G. [Argonne National Lab. (ANL), Argonne, IL (United States); Tsinghua Univ., Beijing (China); Gai, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Power, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Piot, P. [Northern Illinois Univ., DeKalb, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wisniewski, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Edstrom, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ruan, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Santucci, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-09-06

    A common issue encountered in photoemission electron sources used in electron accelerators is distortion of the laser spot due to non ideal conditions at all stages of the amplification. Such a laser spot at the cathode may produce asymmetric charged beams that will result in degradation of the beam quality due to space charge at early stages of acceleration and fail to optimally utilize the cathode surface. In this note we study the possibility of using microlens arrays to dramatically improve the transverse uniformity of the drive laser pulse on UV photocathodes at both Fermilab Accelerator Science \\& Technology (FAST) facility and Argonne Wakefield Accelerator (AWA). In particular, we discuss the experimental characterization of the homogeneity and periodic patterned formation at the photocathode. Finally, we compare the experimental results with the paraxial analysis, ray tracing and wavefront propagation software.

  9. A conceptual design of the set-up for solid state spectroscopy with free electron laser and insertion device radiation

    CERN Document Server

    Makhov, V N

    2001-01-01

    The set-up for complex solid state spectroscopy with the use of enhanced properties of radiation from insertion devices and free electron lasers is proposed. Very high flux and pulsed properties of radiation from insertion devices and free electron lasers offer the possibility for the use of such powerful techniques as electron paramagnetic resonance (EPR) and optically detected magnetic resonance (ODMR) for the studies of excited states of electronic excitations or defects in solids. The power density of radiation can become high enough for one more method of exited-state spectroscopy: transient optical absorption spectroscopy. The set-up is supposed to combine the EPR/ODMR spectrometer, i.e. cryostat supplied with superconducting magnet and microwave system, and the optical channels for excitation (by radiation from insertion devices or free electron laser) and detection of luminescence (i.e. primary and secondary monochromators). The set-up can be used both for 'conventional' spectroscopy of solids (reflec...

  10. Exact and variational calculations of eigenmodes for three-dimensional free electron laser interaction with a warm electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Xie, M. [Lawrence Berkeley Lab., CA (United States)

    1995-12-31

    I present an exact calculation of free-electron-laser (FEL) eigenmodes (fundamental as well as higher order modes) in the exponential-gain regime. These eigenmodes specify transverse profiles and exponential growth rates of the laser field, and they are self-consistent solutions of the coupled Maxwell-Vlasov equations describing the FEL interaction taking into account the effects due to energy spread, emittance and betatron oscillations of the electron beam, and diffraction and guiding of the laser field. The unperturbed electron distribution is assumed to be of Gaussian shape in four dimensional transverse phase space and in the energy variable, but uniform in longitudinal coordinate. The focusing of the electron beam is assumed to be matched to the natural wiggler focusing in both transverse planes. With these assumptions the eigenvalue problem can be reduced to a numerically manageable integral equation and solved exactly with a kernel iteration method. An approximate, but more efficient solution of the integral equation is also obtained for the fundamental mode by a variational technique, which is shown to agree well with the exact results. Furthermore, I present a handy formula, obtained from interpolating the numerical results, for a quick calculation of FEL exponential growth rate. Comparisons with simulation code TDA will also be presented. Application of these solutions to the design and multi-dimensional parameter space optimization for an X-ray free electron laser driven by SLAC linac will be demonstrated. In addition, a rigorous analysis of transverse mode degeneracy and hence the transverse coherence of the X-ray FEL will be presented based on the exact solutions of the higher order guided modes.

  11. Intense source of spin-polarized electrons using laser-induced optical pumping

    International Nuclear Information System (INIS)

    Gray, L.G.; Giberson, K.W.; Cheng, C.; Keiffer, R.S.; Dunning, F.B.; Walters, G.K.

    1983-01-01

    A source of spin-polarized electrons based on a laser-pumped flowing helium afterglow is described. He(2 3 S) atoms contained in the afterglow are optically pumped using circularly polarized 1.08-μm (2 3 S→2 3 P) radiation provided by a NaF (F 2+ )( color-center laser. Spin angular momentum conservation in subsequent chemi-ionization reactions with CO 2 produces polarized electrons that are extracted from the afterglow. At low currents, < or approx. =1 μA, polarizations of approx.70%--80% are achieved. At higher currents the polarization decreases, falling to approx.40% at 50 μA. The spin polarization can be simply reversed (P→-P) and the source is suitable for use in the majority of low-energy spin-dependent scattering experiments proposed to date

  12. Conceptual design of industrial free electron laser using superconducting accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N. [Automatic Systems Corporation, Samara (Russian Federation)] [and others

    1995-12-31

    Paper presents conceptual design of free electron laser (FEL) complex for industrial applications. The FEL complex consists of three. FEL oscillators with the optical output spanning the infrared (IR) and ultraviolet (UV) wave-lengths ({lambda} = 0.3...20 {mu}m) and with the average output power 10 - 20 kW. The driving beam for the FELs is produced by a superconducting accelerator. The electron beam is transported to the FELs via three beam lines (125 MeV and 2 x 250 MeV). Peculiar feature of the proposed complex is a high efficiency of the. FEL oscillators, up to 20 %. This becomes possible due to the use of quasi-continuous electron beam and the use of the time-dependent undulator tapering.

  13. Few-Photon Multiple Ionization of Ne and Ar by Strong Free-Electron-Laser Pulses

    International Nuclear Information System (INIS)

    Moshammer, R.; Jiang, Y. H.; Rudenko, A.; Ergler, Th.; Schroeter, C. D.; Luedemann, S.; Zrost, K.; Dorn, A.; Ferger, T.; Kuehnel, K. U.; Ullrich, J.; Foucar, L.; Titze, J.; Jahnke, T.; Schoeffler, M.; Doerner, R.; Fischer, D.; Weber, T.; Zouros, T. J. M.; Duesterer, S.

    2007-01-01

    Few-photon multiple ionization of Ne and Ar atoms by strong vacuum ultraviolet laser pulses from the free-electron laser at Hamburg was investigated differentially with the Heidelberg reaction microscope. The light-intensity dependence of Ne 2+ production reveals the dominance of nonsequential two-photon double ionization at intensities of I 12 W/cm 2 and significant contributions of three-photon ionization as I increases. Ne 2+ recoil-ion-momentum distributions suggest that two electrons absorbing ''instantaneously'' two photons are ejected most likely into opposite hemispheres with similar energies

  14. Status of the Northrop Grumman Compact Infrared Free-Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Lehrman, I.S.; Krishnaswamy, J.; Hartley, R.A. [Northrop Grumman Advanced Technology & Development Center, Princeton, NJ (United States)] [and others

    1995-12-31

    The Compact Infrared Free Electron Laser (CIRFEL) was built as part of a joint collaboration between the Northrop Grumman Corporation and Princeton University to develop FEL`s for use by researchers in the materials, medical and physical sciences. The CIRFEL was designed to lase in the Mid-IR and Far-IR regimes with picosecond pulses, megawatt level peak powers and an average power of a few watts. The micropulse separation is 7 nsec which allows a number of relaxation phenomenon to be observed. The CIRFEL utilizes an RF photocathode gun to produce high-brightness time synchronized electron bunches. The operational status and experimental results of the CERFEL will be presented.

  15. Status of the Northrop Grumman Compact Infrared Free-Electron Laser

    International Nuclear Information System (INIS)

    Lehrman, I.S.; Krishnaswamy, J.; Hartley, R.A.

    1995-01-01

    The Compact Infrared Free Electron Laser (CIRFEL) was built as part of a joint collaboration between the Northrop Grumman Corporation and Princeton University to develop FEL's for use by researchers in the materials, medical and physical sciences. The CIRFEL was designed to lase in the Mid-IR and Far-IR regimes with picosecond pulses, megawatt level peak powers and an average power of a few watts. The micropulse separation is 7 nsec which allows a number of relaxation phenomenon to be observed. The CIRFEL utilizes an RF photocathode gun to produce high-brightness time synchronized electron bunches. The operational status and experimental results of the CERFEL will be presented

  16. Phase and amplitude feedback control system for the Los Alamos free-electron laser

    International Nuclear Information System (INIS)

    Lynch, M.T.; Tallerico, P.J.; Higgins, E.F.

    1985-01-01

    Phase and amplitude feedback control systems for the Los Alamos free-electron laser (FEL) are described. Beam-driven voltages are very high in the buncher cavity because the electron gun is pulsed at the fifth subharmonic of the buncher resonant frequency. The high beam loading necessitated a novel feedback and drive configuration for the buncher. A compensation cirucit has been added to the gun/driver system to reduce observed drift. Extremely small variations in the accelerator gradients had dramatic effects on the laser output power. These problems and how they were solved are described and plans for improvements in the feedback control system are discussed. 5 refs., 7 figs

  17. Experimental investigation of the generation of harmonic photons from the interaction of free electrons with intense laser radiation

    International Nuclear Information System (INIS)

    Englert, T.J.

    1983-01-01

    An experimental investigation of the generation of second harmonic photons through the interaction of free electrons with an intense laser beam has been performed. Second harmonic photons with a wavelength of 530nm generated from the interaction of free electrons with 1060nm photons from a neodymium-glass laser are implied by observing Doppler shifted photons with wavelengths of 490nm and 507nm. The observed photon wavelengths results from a Doppler shift of the laser photon wavelengths as viewed in the rest frame of the electrons combined with a Doppler shift of the second harmonic photons emitted from 1600eV and 500eV electrons. Comparison of experimental results with those predicted by cross sections, derived using classical and quantum electrodynamics, shows reasonable agreement with both theories. Although second harmonic photons are created, the dynamics of second harmonic photon generation (accelerated electron motion due to the electromagnetic field or actual two-photon interaction with the electron) cannot be resolved without further experiment

  18. Coherence Properties of Individual Femtosecond Pulses of an X-ray Free-Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Vartanyants, I.A.; /DESY /Moscow Phys. Eng. Inst.; Singer, A.; Mancuso, A.P.; Yefanov, O.M.; /DESY; Sakdinawat, A.; Liu, Y.; Bang, E.; /UC, Berkeley; Williams, G.J.; /SLAC; Cadenazzi, G.; Abbey, B.; /Melbourne U.; Sinn, H.; /European XFEL, Hamburg; Attwood, D.; /UC, Berkeley; Nugent, K.A.; /Melbourne U.; Weckert, E.; /DESY; Wang, T.; Zhu, D.; Wu, B.; Graves, C.; Scherz, A.; Turner, J.J.; Schlotter, W.F.; /SLAC /LERMA, Ivry /Zurich, ETH /LBL, Berkeley /ANL, APS /Argonne /SLAC /LLNL, Livermore /Latrobe U. /SLAC /SLAC /European XFEL, Hamburg /SLAC /Hamburg U.

    2012-06-06

    Measurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-ray free-electron laser, the Linac Coherent Light Source, are presented. Single-shot measurements were performed at 780 eV x-ray photon energy using apertures containing double pinholes in 'diffract-and-destroy' mode. We determined a coherence length of 17 {micro}m in the vertical direction, which is approximately the size of the focused Linac Coherent Light Source beam in the same direction. The analysis of the diffraction patterns produced by the pinholes with the largest separation yields an estimate of the temporal coherence time of 0.55 fs. We find that the total degree of transverse coherence is 56% and that the x-ray pulses are adequately described by two transverse coherent modes in each direction. This leads us to the conclusion that 78% of the total power is contained in the dominant mode.

  19. Studies on a laser driven photoemissive high-brightness electron source and novel photocathodes

    International Nuclear Information System (INIS)

    Geng Rongli; Song Jinhu; Yu Jin

    1997-01-01

    A laser driven photoemissive high-brightness electron source at Beijing University is reported. Through a DC accelerating gap of 100 kV voltage, the device is capable of delivering high-brightness electron beam of 35-100 ps pulse duration when irradiated with a mode-locked YAG laser. The geometry of the gun is optimized with the aid of simulation codes EGUN and POISSON. The results of experimental studies on ion implanted photocathode and cesium telluride photocathode are given. The proposed laser driven superconducting RF gun is also discussed

  20. User issues at the Stanford picosecond free electron laser center

    International Nuclear Information System (INIS)

    Smith, T.I.

    1995-01-01

    Assembling a productive user facility around a Free Electron Laser (FEL) is a complex task. Reliable operation of the FEL is a necessary, but by no means sufficient, condition to ensure that the center will be able to attract and keep the interest of first rate researchers. Some other issues which are important include: center wavelength stability and ease of tuning, bandwidth control, amplitude and position stability, ability to select arbitrary sequences of micropulses, and real time availability of information of the FEL's important parameters (spectral width, center wavelength, micropulse length and energy, etc.). In addition, at the Stanford Center we have found that providing additional systems (conventional picosecond lasers synchronized to the FEL, an FTIR spectrometer, a confocal microscopy, ...) has been important. (author)

  1. Obtaining attosecond x-ray pulses using a self-amplified spontaneous emission free electron laser

    Directory of Open Access Journals (Sweden)

    A. A. Zholents

    2005-05-01

    Full Text Available We describe a technique for the generation of a solitary attosecond x-ray pulse in a free-electron laser (FEL, via a process of self-amplified spontaneous emission. In this method, electrons experience an energy modulation upon interacting with laser pulses having a duration of a few cycles within single-period wiggler magnets. Two consecutive modulation sections, followed by compression in a dispersive section, are used to obtain a single, subfemtosecond spike in the electron peak current. This region of the electron beam experiences an enhanced growth rate for FEL amplification. After propagation through a long undulator, this current spike emits a ∼250   attosecond x-ray pulse whose intensity dominates the x-ray emission from the rest of the electron bunch.

  2. X-ray Production by Cascading Stages of a High-Gain Harmonic Generation Free-Electron Laser II: Special Topics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J

    2004-09-01

    In this paper, we study the tolerance of a new approach to produce coherent x-ray by cascading several stages of a High-Gain Harmonic Generation (HGHG) Free-Electron Laser (FEL). Being a harmonic generation process, a small noise in the initial fundamental signal will lead to a significant noise-to-signal (NTS) ratio in the final harmonic, so the noise issue is studied in this paper. We study two sources of noise: the incoherent undulator radiation, which is a noise with respect to the seed laser; and the noise of the seed laser itself. In reality, the electron beam longitudinal current profile is not uniform. Since the electron beam is the amplification medium for the FEL, this non- uniformity will induce phase error in the FEL. Therefore, this effect is studied. Phase error due to the wakefield and electron beam self-field is also studied. Synchrotronization of the electron beam and the seed laser is an important issue determining the success of the HGHG. We study the timing jitter induced frequency jitter in this paper. We also show that an HGHG FEL poses a less stringent requirement on the emittance than a SASE FEL does, due to a Natural Emittance Effect Reduction (NEER) mechanism. This NEER mechanism suggests a new operation mode, i.e., the HGHG FEL could adopt a high current, though unavoidable, a high emittance electron beam. Study in this paper shows that, production of hard x-rays with good longitudinal coherence by cascading stages of a HGHG FEL is promising. However, technical improvement is demanded.

  3. Standing-wave free-electron laser two-beam accelerator

    International Nuclear Information System (INIS)

    Sessler, A.M.; Whittum, D.H.; Wurtele, J.S.

    1991-01-01

    A free-electron laser (FEL) two-beam accelerator (TBA) is proposed, in which the FEL interaction takes place in a series of drive cavities, rather than in a waveguide. Each drive cavity is 'beat-coupled' to a section of the accelerating structure. This standing-wave TBA is investigated theoretically and numerically, with analyses included of microwave extraction, growth of the FEL signal through saturation, equilibrium longitudinal beam dynamics following saturation, and sensitivity of the microwave amplitude and phase to errors in current and energy. It is found that phase errors due to current jitter are substantially reduced from previous versions of the TBA. Analytic scalings and numerical simulations are used to obtain an illustrative TBA parameter set. (orig.)

  4. Laser scanner data processing and 3D modeling using a free and open source software

    International Nuclear Information System (INIS)

    Gabriele, Fatuzzo; Michele, Mangiameli; Giuseppe, Mussumeci; Salvatore, Zito

    2015-01-01

    The laser scanning is a technology that allows in a short time to run the relief geometric objects with a high level of detail and completeness, based on the signal emitted by the laser and the corresponding return signal. When the incident laser radiation hits the object to detect, then the radiation is reflected. The purpose is to build a three-dimensional digital model that allows to reconstruct the reality of the object and to conduct studies regarding the design, restoration and/or conservation. When the laser scanner is equipped with a digital camera, the result of the measurement process is a set of points in XYZ coordinates showing a high density and accuracy with radiometric and RGB tones. In this case, the set of measured points is called “point cloud” and allows the reconstruction of the Digital Surface Model. Even the post-processing is usually performed by closed source software, which is characterized by Copyright restricting the free use, free and open source software can increase the performance by far. Indeed, this latter can be freely used providing the possibility to display and even custom the source code. The experience started at the Faculty of Engineering in Catania is aimed at finding a valuable free and open source tool, MeshLab (Italian Software for data processing), to be compared with a reference closed source software for data processing, i.e. RapidForm. In this work, we compare the results obtained with MeshLab and Rapidform through the planning of the survey and the acquisition of the point cloud of a morphologically complex statue

  5. Laser scanner data processing and 3D modeling using a free and open source software

    Energy Technology Data Exchange (ETDEWEB)

    Gabriele, Fatuzzo [Dept. of Industrial and Mechanical Engineering, University of Catania (Italy); Michele, Mangiameli, E-mail: amichele.mangiameli@dica.unict.it; Giuseppe, Mussumeci; Salvatore, Zito [Dept. of Civil Engineering and Architecture, University of Catania (Italy)

    2015-03-10

    The laser scanning is a technology that allows in a short time to run the relief geometric objects with a high level of detail and completeness, based on the signal emitted by the laser and the corresponding return signal. When the incident laser radiation hits the object to detect, then the radiation is reflected. The purpose is to build a three-dimensional digital model that allows to reconstruct the reality of the object and to conduct studies regarding the design, restoration and/or conservation. When the laser scanner is equipped with a digital camera, the result of the measurement process is a set of points in XYZ coordinates showing a high density and accuracy with radiometric and RGB tones. In this case, the set of measured points is called “point cloud” and allows the reconstruction of the Digital Surface Model. Even the post-processing is usually performed by closed source software, which is characterized by Copyright restricting the free use, free and open source software can increase the performance by far. Indeed, this latter can be freely used providing the possibility to display and even custom the source code. The experience started at the Faculty of Engineering in Catania is aimed at finding a valuable free and open source tool, MeshLab (Italian Software for data processing), to be compared with a reference closed source software for data processing, i.e. RapidForm. In this work, we compare the results obtained with MeshLab and Rapidform through the planning of the survey and the acquisition of the point cloud of a morphologically complex statue.

  6. Developing laser ablation in an electron cyclotron resonance ion source for actinide detection with AMS

    Energy Technology Data Exchange (ETDEWEB)

    Bauder, W. [Argonne National Laboratory, Physics Division, 9600 S. Cass Ave, Lemont, IL 60439 (United States); University of Notre Dame, Nuclear Science Laboratory, 124 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Pardo, R.C.; Kondev, F.G.; Kondrashev, S.; Nair, C.; Nusair, O. [Argonne National Laboratory, Physics Division, 9600 S. Cass Ave, Lemont, IL 60439 (United States); Palchan, T. [Hebrew University, Racah Institute of Physics, Jerusalem 91904 (Israel); Scott, R.; Seweryniak, D.; Vondrasek, R. [Argonne National Laboratory, Physics Division, 9600 S. Cass Ave, Lemont, IL 60439 (United States); Collon, P. [University of Notre Dame, Nuclear Science Laboratory, 124 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Paul, M. [Hebrew University, Racah Institute of Physics, Jerusalem 91904 (Israel)

    2015-10-15

    A laser ablation material injection system has been developed at the ATLAS electron cyclotron resonance (ECR) ion source for use in accelerator mass spectrometry experiments. Beam production with laser ablation initially suffered from instabilities due to fluctuations in laser energy and cratering on the sample surface by the laser. However, these instabilities were rectified by applying feedback correction for the laser energy and rastering the laser across the sample surface. An initial experiment successfully produced and accelerated low intensity actinide beams with up to 1000 counts per second. With continued development, laser ablation shows promise as an alternative material injection scheme for ECR ion sources and may help substantially reduce cross talk in the source.

  7. Characterizing transverse coherence of an ultra-intense focused X-ray free-electron laser by an extended Young's experiment

    Directory of Open Access Journals (Sweden)

    Ichiro Inoue

    2015-11-01

    Full Text Available Characterization of transverse coherence is one of the most critical themes for advanced X-ray sources and their applications in many fields of science. However, for hard X-ray free-electron laser (XFEL sources there is very little knowledge available on their transverse coherence characteristics, despite their extreme importance. This is because the unique characteristics of the sources, such as the ultra-intense nature of XFEL radiation and the shot-by-shot fluctuations in the intensity distribution, make it difficult to apply conventional techniques. Here, an extended Young's interference experiment using a stream of bimodal gold particles is shown to achieve a direct measurement of the modulus of the complex degree of coherence of XFEL pulses. The use of interference patterns from two differently sized particles enables analysis of the transverse coherence on a single-shot basis without a priori knowledge of the instantaneous intensity ratio at the particles. For a focused X-ray spot as small as 1.8 µm (horizontal × 1.3 µm (vertical with an ultrahigh intensity that exceeds 1018 W cm−2 from the SPring-8 Ångstrom Compact free-electron LAser (SACLA, the coherence lengths were estimated to be 1.7 ± 0.2 µm (horizontal and 1.3 ± 0.1 µm (vertical. The ratios between the coherence lengths and the focused beam sizes are almost the same in the horizontal and vertical directions, indicating that the transverse coherence properties of unfocused XFEL pulses are isotropic. The experiment presented here enables measurements free from radiation damage and will be readily applicable to the analysis of the transverse coherence of ultra-intense nanometre-sized focused XFEL beams.

  8. Free-electron laser with a plasma wave wiggler propagating through a magnetized plasma channel

    International Nuclear Information System (INIS)

    Jafari, S; Jafarinia, F; Mehdian, H

    2013-01-01

    A plasma eigenmode has been employed as a wiggler in a magnetized plasma channel for the generation of laser radiation in a free-electron laser. The short wavelength of the plasma wave allows a higher radiation frequency to be obtained than from conventional wiggler free-electron lasers. The plasma can significantly slow down the radiation mode, thereby relaxing the beam energy requirement considerably. In addition, it allows a beam current in excess of the vacuum current limit via charge neutralization. This configuration has a higher tunability by controlling the plasma density in addition to the γ-tunability of the standard FEL. The laser gain has been calculated and numerical computations of the electron trajectories and gain are presented. Four groups (I–IV) of electron orbits have been found. It has been shown that by increasing the cyclotron frequency, the gain for orbits of group I and group III increases, while a decrease in gain has been obtained for orbits of group II and group IV. Similarly, the effect of plasma density on gain has been exhibited. The results indicate that with increasing plasma density, the orbits of all groups shift to higher cyclotron frequencies. The effects of beam self-fields on gain have also been demonstrated. It has been found that in the presence of beam self-fields the sensitivity of the gain increases substantially in the vicinity of gyroresonance. Here, the gain enhancement and reduction are due to the paramagnetic and diamagnetic effects of the self-magnetic field, respectively. (paper)

  9. Experimental characteristics of a high-gain free-electron laser amplifier operating at 8-mm and 2-mm wavelengths

    International Nuclear Information System (INIS)

    Throop, A.L.; Orzechowski, T.J.; Anderson, B.R.

    1987-01-01

    The Electron Laser Facility (ELF) at the Lawrence Livermore National Laboratory (LLNL) uses a high-current induction linac (3.5 MeV, 1000 A), in conjunction with a pulsed electromagnetic wiggler (4.0 M, 4000 G), to operate a free electron laser (FEL) that produces intense radiation in the microwave regime (2 to 8 mm). ELF is a high-gain, single-pass amplifier, using a commercial microwave source as an oscillator input (200 W-50 kW). Previous experiments at 35 GHz produced exponential gains of 40 dB/m, peak powers exceeding 1 GW, and beam-to-rf conversion efficiencies of 34%. Recent experiments at 140 GHz have demonstrated exponential gains of 22 dB/m, peak powers exceeding 50 MW, and total gains of 65 dB. In this paper, we describe the experimental results at these two frequencies and compare then with the predictions of simulation codes

  10. A numerical study of the integral equations for the laser fields in free-electron lasers

    International Nuclear Information System (INIS)

    Yoo, J. G.; Park, S. H.; Jeong, Y. U.; Lee, B. C.; Rhee, Y. J.; Cho, S. O.

    2004-01-01

    The dynamics of the radiation fields in free-electron lasers is investigated on the basis of the integro-differential equations in the one-dimensional formulation. For simple cases we solved the integro-differential equations analytically and numerically to test our numerical procedures developed on the basis of the Filon method. The numerical results showed good agreement with the analytical solutions. To confirm the legitimacy of the numerical package, we carried out numerical studies on the inhomogeneous broadening effects, where no analytic solutions are available, due to the energy spread and the emittance of the electron beam.

  11. The EIS beamline at the seeded free-electron laser FERMI

    Science.gov (United States)

    Simoncig, A.; Mincigrucci, R.; Principi, E.; Bencivenga, F.; Calvi, A.; Foglia, L.; Kurdi, G.; Raimondi, L.; Manfredda, M.; Mahne, N.; Gobessi, R.; Gerusina, S.; Fava, C.; Zangrando, M.; Matruglio, A.; Dal Zilio, S.; Masciotti, V.; Masciovecchio, C.

    2017-05-01

    Among the fourth-generation light sources, the Italian free-electron laser (FEL) FERMI is the only one operating in the high-gain harmonic generation (HGHG) seeding mode. FERMI delivers pulses characterized by a quasi transform limited temporal structure, photon energies lying in the extreme ultra-violet (EUV) region, supreme transversal and longitudinal coherences, high peak brilliance, and full control of the polarization. Such state of the art performances recently opened the doors to a new class of time-resolved spectroscopies, difficult or even impossible to be performed using self-amplified spontaneous sources (SASE) light sources. FERMI is currently equipped with three operating beamlines opened to external users (DiProI, LDM and EIS), while two more are under commissioning (MagneDYN and TeraFERMI). Here, we present the recent highlights of the EIS (Elastic and Inelastic Scattering) beamline, which has been purposely designed to take full advantage from the coherence, the intensity, the harmonics content, and the temporal duration of the pulses. EIS is a flexible experimental facility for time-resolved EUV scattering experiments on condensed matter systems, consisting of two independent end-stations. The first one (EIS-TIMEX) aims to study materials in metastable and warm dense matter (WDM) conditions, while the second end-station (EIS-TIMER) is fully oriented to the extension of four-wave mixing (FWM) spectroscopies towards the EUV spectral regions, trying to reveal the behavior of matter in portions of the mesoscopic regime of exchanged momentum impossible to be probed using conventional light sources.

  12. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source.

    Science.gov (United States)

    Kondo, K; Yamamoto, T; Sekine, M; Okamura, M

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  13. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source

    International Nuclear Information System (INIS)

    Kondo, K.; Okamura, M.; Yamamoto, T.; Sekine, M.

    2012-01-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  14. Material Processing Opportunites Utilizing a Free Electron Laser

    Science.gov (United States)

    Todd, Alan

    1996-11-01

    Many properties of photocathode-driven Free Electron Lasers (FEL) are extremely attractive for material processing applications. These include: 1) broad-band tunability across the IR and UV spectra which permits wavelength optimization, depth deposition control and utilization of resonance phenomena; 2) picosecond pulse structure with continuous nanosecond spacing for optimum deposition efficiency and minimal collateral damage; 3) high peak and average radiated power for economic processing in quantity; and 4) high brightness for spatially defined energy deposition and intense energy density in small spots. We discuss five areas: polymer, metal and electronic material processing, micromachining and defense applications; where IR or UV material processing will find application if the economics is favorable. Specific examples in the IR and UV, such as surface texturing of polymers for improved look and feel, and anti-microbial food packaging films, which have been demonstrated using UV excimer lamps and lasers, will be given. Unfortunately, although the process utility is readily proven, the power levels and costs of lamps and lasers do not scale to production margins. However, from these examples, application specific cost targets ranging from 0.1=A2/kJ to 10=A2/kJ of delivered radiation at power levels from 10 kW to 500 kW, have been developed and are used to define strawman FEL processing systems. Since =46EL radiation energy extraction from the generating electron beam is typically a few percent, at these high average power levels, economic considerations dictate the use of a superconducting RF accelerator with energy recovery to minimize cavity and beam dump power loss. Such a 1 kW IR FEL, funded by the US Navy, is presently under construction at the Thomas Jefferson National Accelerator Facility. This dual-use device, scheduled to generate first light in late 1997, will test both the viability of high-power FELs for shipboard self-defense against cruise

  15. New light for science: European X-ray Free Electron Laser

    International Nuclear Information System (INIS)

    Sobierajski, R.; Lawniczak-Jablonska, K.

    2006-01-01

    The execution of the X-Ray Free Electron Laser (XFEL) project begins January 2007. The unique combination of the radiation wavelength, pulse duration and peak brightness provided by XFEL will enable to study processes which occur in both atomic scales - time and space. It will create new scientific opportunities in physics, chemistry, biology and material sciences. In the paper the principles of the XFEL radiation generation, technical design and main radiation parameters are described. They are followed by short description of the project organization. (author) [pl

  16. Megawatt-class free electron laser concept for shipboard self-defense

    International Nuclear Information System (INIS)

    Todd, Alan M.M.; Colson, William B.; Neil, George

    1997-01-01

    An efficient MW-class free electron laser (FEL) directed energy weapon (DEW) system holds promise for satisfying shipboard self-defense (SSD) requirements on future generations of Navy vessels because of the potential for high-power operation and the accessibility to all IR wavelengths. In order to meet shipboard packaging and prime power constraints, the power efficiency and high real-estate gradient achievable in an FEL driven by a superconducting RF accelerator is attractive. Configuration options and the key development issues for such a system are described

  17. R&D for a Soft X-Ray Free Electron Laser Facility

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, John; Attwood, David; Byrd, John; Denes, Peter; Falcone, Roger; Heimann, Phil; Leemans, Wim; Padmore, Howard; Prestemon, Soren; Sannibale, Fernando; Schlueter, Ross; Schroeder, Carl; Staples, John; Venturini, Marco; Warwick, Tony; Wells, Russell; Wilcox, Russell; Zholent, Alexander; Adolphsen, Chris; Arthur, John; Bergmann, Uwe; Cai, Yunhai; Colby, Eric; Dowell, David; Emma, Paul; Fox, John; Frisch, Josef; Galayda, John; Hettel, Robert; Huang, Zhirong; Phinney, Nan; Rabedeau, Tom; Raubenheimer, Tor; Reis, David; Schmerge, John; Stohr, Joachim; Stupakov, Gennady; White, Bill; Xiang, Dao

    2009-06-08

    Several recent reports have identified the scientific requirements for a future soft x-ray light source, and a high-repetition-rate free-electron laser (FEL) facility that is responsive to these requirements is now on the horizon. R&D in some critical areas is needed, however, to demonstrate technical performance, thus reducing technical risks and construction costs. Such a facility most likely will be based on a CW superconducting linear accelerator with beam supplied by a high-brightness, high-repetition-rate photocathode electron gun operating in CW mode, and on an array of FELs to which the accelerated beam is distributed, each operating at high repetition rate and with even pulse spacing. Dependent on experimental requirements, the individual FELs can be configured for either self-amplified spontaneous emission (SASE), seeded, or oscillator mode of operation, including the use of high-gain harmonic generation (HGHG), echo-enhanced harmonic generation (EEHG), harmonic cascade, or other configurations. In this White Paper we identify the overall accelerator R&D needs, and highlight the most important pre-construction R&D tasks required to value-engineer the design configuration and deliverables for such a facility. In Section 1.4 we identify the comprehensive R&D ultimately needed. We identify below the highest-priority requirements for understanding machine performance and reduce risk and costs at this pre-conceptual design stage. Details of implementing the required tasks will be the subject of future evaluation. Our highest-priority R&D program is the injector, which must be capable of delivering a beam with bunches up to a nanocoulomb at MHz repetition rate and with normalized emittance {le} 1 mm {center_dot} mrad. This will require integrated accelerating structure, cathode, and laser systems development. Cathode materials will impact the choice of laser technology in wavelength and energy per pulse, as well as vacuum requirements in the accelerating

  18. An infrared free-electron laser for the Chemical Dynamics Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, D. (comp.)

    1992-04-01

    This document describes a free-electron laser (FEL) proposed as part of the Chemical Dynamics Research Laboratory (CDRL), a user facility that also incorporates several advanced lasers of conventional design and two beamlines for the ALS. The FEL itself addresses the needs of the chemical sciences community for a high-brightness, tunable source covering a broad region of the infrared spectrum -- from 3 to 50 {mu}m. All of these sources, together with a variety of sophisticated experimental stations, will be housed in a new building to be located adjacent to the ALS. The radiation sources can be synchronized to permit powerful two-color, pump-probe experiments that will further our fundamental understanding of chemical dynamics at the molecular level, especially those aspects relevant to practical issues in combustion chemistry. The technical approach adopted in this design makes use of superconducting radiofrequency (SCRF) accelerating structures. The primary motivation for adopting this approach was to meet the user requirement for wavelength stability equal to one part in 10{sup 4}. Previous studies concluded that a wavelength stability of only one part in 10{sup 3} could be achieved with currently available room-temperature technology. In addition, the superconducting design operates in a continuous-wave (cw) mode and hence offers considerably higher average optical output power. It also allows for various pulse-gating configurations that will permit simultaneous multiuser operations. A summary of the comparative performance attainable with room-temperature and superconducting designs is given. The FEL described in this report provides a continuous train of 30-ps micropulses, with 100{mu}J of optical energy per micropulse, at a repetition rate of 6.1 MHz. The device can also deliver pulses at a cw repetition rate of 12.2 MHz, with a peak power of 50 {mu}J per micropulse. 70 ref.

  19. Beam dynamics and rf evolution in a multistage klystron-like free- electron laser

    International Nuclear Information System (INIS)

    Ohnuma, S.

    1991-01-01

    Current understandings of beam dynamics and RF evolution in a klystron-like free-electron laser are present. Phase sensitiveness to injection jitters estimated by existing two theories is discussed. BBU suppression due to linear detuning is proposed as an alternative of ever proposed techniques. 13 refs., 2 figs., 1 tab

  20. A 1-kW power demonstration from the advanced free electron laser

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Conner, C.A.; Fortgang, C.M.

    1997-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The main objective of this project was to engineer and procure an electron beamline compatible with the operation of a 1-kW free-electron laser (FEL). Another major task is the physics design of the electron beam line from the end of the wiggler to the electron beam dump. This task is especially difficult because electron beam is expected to have 20 kW of average power and to simultaneously have a 25% energy spread. The project goals were accomplished. The high-power electron design was completed. All of the hardware necessary for high-power operation was designed and procured

  1. First lasing of a high-gain harmonic generation free-electron laser experiment.

    Energy Technology Data Exchange (ETDEWEB)

    Babzien, M.; Ben-Zvi, I.; Biedron, S. G.; DiMauro, L. F.; Douryan, A.; Galayda, J. N.; Gluskin, E.; Graves, W.; Jagger, J.; Johnson, E.; Krinsky, S.; Malone, R.; Pogorelsky, I.; Rakowsky, G.; Sajaev, V.; Skaritka, J.; Solomon, L.; Vasserman, I.; Wang, X. L.; Woodle, M.; Yakimenko, V.; Yu, L.-H.

    1999-09-11

    We report on the first lasing of a high-gain harmonic generation (HGHG) free-electron laser (FEL). The experiment was conducted at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). This is a BNL experiment in collaboration with the Advanced Photon Source (APS) at Argonne National Laboratory. A preliminary measurement gives a high-gain harmonic generation (HGHG) pulse energy that is 2 x 10{sup 7} times larger than the spontaneous radiation, In a purely self-amplified spontaneous emission (SASE) mode of operation, the signal was measured as 10 times larger than the spontaneous radiation in the same distance ({approximately}2 m) through the same wiggler. This means the HGHG signal is 2 x 10{sup 6} times larger than the SASE signal. To obtain the same saturated output power by the SASE process, the radiator would have to be 3 times longer (6 m).

  2. High peak current operation of x-ray free-electron laser multiple beam lines by suppressing coherent synchrotron radiation effects

    Science.gov (United States)

    Hara, Toru; Kondo, Chikara; Inagaki, Takahiro; Togawa, Kazuaki; Fukami, Kenji; Nakazawa, Shingo; Hasegawa, Taichi; Morimoto, Osamu; Yoshioka, Masamichi; Maesaka, Hirokazu; Otake, Yuji; Tanaka, Hitoshi

    2018-04-01

    The parallel operation of multiple beam lines is an important means to expand the opportunity of user experiments at x-ray free-electron laser (XFEL) facilities. At SPring-8 Angstrom free-electron laser (SACLA), the multi-beam-line operation had been tested using two beam lines, but transverse coherent synchrotron radiation (CSR) effects at a dogleg beam transport severely limited the laser performance. To suppress the CSR effects, a new beam optics based on two double bend achromat (DBA) structures was introduced for the dogleg. After the replacement of the beam optics, high peak current bunches of more than 10 kA are now stably transported through the dogleg and the laser pulse output is increased by a factor of 2-3. In the multi-beam-line operation of SACLA, the electron beam parameters, such as the beam energy and peak current, can be adjusted independently for each beam line. Thus the laser output can be optimized and wide spectral tunability is ensured for all beam lines.

  3. Optical klystron and harmonic generation free electron laser

    Directory of Open Access Journals (Sweden)

    Qika Jia

    2005-06-01

    Full Text Available The optical field evolution of an optical klystron free electron laser is analytically described for both low gain and high gain cases. The harmonic optical klystron (HOK in which the second undulator is resonant on the higher harmonic of the first undulator is analyzed as a harmonic amplifier. The optical field evolution equation of the HOK is derived analytically for both the CHG mode (coherent harmonic generation, the quadratic gain regime and the HGHG mode (high gain harmonic generation, the exponential gain regime, the effects of energy spread, energy modulation, and dispersion in the whole process are taken into account. The linear theory is given and discussed for the HGHG mode. The analytical formula is given for the CHG mode.

  4. A conduction-cooled, 680-mm-long warm bore, 3-T Nb3Sn solenoid for a Cerenkov free electron laser

    NARCIS (Netherlands)

    Wessel, Wilhelm A.J.; den Ouden, A.; Krooshoop, Hendrikus J.G.; ten Kate, Herman H.J.; Wieland, J.; van der Slot, Petrus J.M.

    1999-01-01

    A compact, cryocooler cooled Nb3Sn superconducting magnet system for a Cerenkov free electron laser has been designed, fabricated and tested. The magnet is positioned directly behind the electron gun of the laser system. The solenoidal field compresses and guides a tube-shaped 100 A, 500 kV electron

  5. X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Thomas; Kern, Jan; Kubin, Markus; Ratner, Daniel; Gul, Sheraz; Fuller, Franklin D.; Löchel, Heike; Krzywinski, Jacek; Lutman, Alberto; Ding, Yuantao; Dakovski, Georgi L.; Moeller, Stefan; Turner, Joshua J.; Alonso-Mori, Roberto; Nordlund, Dennis L.; Rehanek, Jens; Weniger, Christian; Firsov, Alexander; Brzhezinskaya, Maria; Chatterjee, Ruchira; Lassalle-Kaiser, Benedikt; Sierra, Raymond G.; Laksmono, Hartawan; Hill, Ethan; Borovik, Andrew; Erko, Alexei; Föhlisch, Alexander; Mitzner, Rolf; Yachandra, Vittal K.; Yano, Junko; Wernet, Philippe; Bergmann, Uwe

    2016-01-01

    © 2016 Optical Society of America. X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. However, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. Here we compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based on self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. We show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements.

  6. Investigating the interaction of x-ray free electron laser radiation with grating structure

    NARCIS (Netherlands)

    Gaudin, J.; Ozkan, C.; Chalupsky, J.; Bajt, S.; Burian, T.; Vysin, L.; Coppola, N.; Farahani, S. D.; Chapman, H. N.; Galasso, G.; Hajkova, V.; Harmand, M.; Juha, L.; Jurek, M.; Loch, R. A.; Möller, S.; Nagasono, M.; Stormer, M.; Sinn, H.; Saksl, K.; Sobierajski, R.; Schulz, J.; Sovak, P.; Toleikis, S.; Tiedtke, K.; Tschentscher, T.; Krzywinski, J.

    2012-01-01

    The interaction of free electron laser pulses with grating structure is investigated using 4.6 +/- 0.1 nm radiation at the FLASH facility in Hamburg. For fluences above 63.7 +/- 8.7 mJ/cm(2), the interaction triggers a damage process starting at the edge of the grating structure as evidenced by

  7. Numerical Simulations of X-Ray Free Electron Lasers (XFEL)

    KAUST Repository

    Antonelli, Paolo

    2014-11-04

    We study a nonlinear Schrödinger equation which arises as an effective single particle model in X-ray free electron lasers (XFEL). This equation appears as a first principles model for the beam-matter interactions that would take place in an XFEL molecular imaging experiment in [A. Fratalocchi and G. Ruocco, Phys. Rev. Lett., 106 (2011), 105504]. Since XFEL are more powerful by several orders of magnitude than more conventional lasers, the systematic investigation of many of the standard assumptions and approximations has attracted increased attention. In this model the electrons move under a rapidly oscillating electromagnetic field, and the convergence of the problem to an effective time-averaged one is examined. We use an operator splitting pseudospectral method to investigate numerically the behavior of the model versus that of its time-averaged version in complex situations, namely the energy subcritical/mass supercritical case and in the presence of a periodic lattice. We find the time-averaged model to be an effective approximation, even close to blowup, for fast enough oscillations of the external field. This work extends previous analytical results for simpler cases [P. Antonelli, A. Athanassoulis, H. Hajaiej, and P. Markowich, Arch. Ration. Mech. Anal., 211 (2014), pp. 711--732].

  8. Novel phenomena in clusters irradiated by short-wavelength free-electron lasers

    International Nuclear Information System (INIS)

    Fukuzawa, Hironobu; Ueda, Kiyoshi

    2017-01-01

    By electron spectroscopy, we investigated various phenomena that are caused by the irradiation of extreme ultraviolet (EUV) and X-ray free-electron laser (FEL) pulses on rare-gas clusters. The results for the Ne clusters, which were irradiated by EUVFEL pulses at a photon energy of 20.3 eV below the ionization threshold, illustrate that novel interatomic processes yield low-energy electrons. The results for the Xe clusters, irradiated by EUVFEL pulses at a photon energy of 24.3 eV above the threshold, illustrate that nanoplasma is formed as a result of trapping the photoelectrons and consequently emits low-energy thermal electrons. The results for the Ar clusters irradiated by 5 keV XFEL pulses illustrate that nanoplasma is formed by trapping low-energy Auger electrons and secondary electrons in the tens of fs range, and continuous thermal emission from the plasma occurs in the ps range. (author)

  9. Dissociative multiple ionization of diatomic molecules by extreme-ultraviolet free-electron-laser pulses

    DEFF Research Database (Denmark)

    Madsen, Lars Bojer; Leth, Henriette Astrup

    2011-01-01

    Nuclear dynamics in dissociative multiple ionization processes of diatomic molecules exposed to extreme-ultraviolet free-electron-laser pulses is studied theoretically using the Monte Carlo wave packet approach. By simulated detection of the emitted electrons, the model reduces a full propagation...... of the system to propagations of the nuclear wave packet in one specific electronic charge state at a time. Suggested ionization channels can be examined, and kinetic energy release spectra for the nuclei can be calculated and compared with experiments. Double ionization of O2 is studied as an example, and good...

  10. Induction-linac based free-electron laser amplifiers for plasma heating

    International Nuclear Information System (INIS)

    Jong, R.A.

    1988-01-01

    We describe an induction-linac based free-electron laser amplifier that is presently under construction at the Lawrence Livermore National Laboratory. It is designed to produce up to 2 MW of average power at a frequency of 250 GHz for plasma heating experiments in the Microwave Tokamak Experiment. In addition, we shall describe a FEL amplifier design for plasma heating of advanced tokamak fusion devices. This system is designed to produce average power levels of about 10 MW at frequencies ranging form 280 to 560 GHz. 7 refs., 1 tab

  11. Single-Shot Spectrometry for X-Ray Free-Electron Lasers

    International Nuclear Information System (INIS)

    Yabashi, Makina; Ishikawa, Tetsuya; Hastings, Jerome B.; Zolotorev, Max S.; Mimura, Hidekazu; Yumoto, Hirokatsu; Matsuyama, Satoshi; Yamauchi, Kazuto

    2006-01-01

    An experimental scheme to realize single-shot spectrometry for the diagnostics of x-ray free-electron lasers (XFELs) is presented. The combination of an ultraprecisely figured mirror and a perfect crystal form a simple, high-precision spectrometer that can cover an energy range from a few eV to a hundred eV with high resolution. The application of the spectrometer to determine XFEL pulse widths was investigated theoretically and experimentally. It has been shown that the present system can determine pulse widths from sub-fs to ps in a single shot even for spontaneous radiation. The system can be easily extended to even shorter pulses

  12. Emittance Measurements from a Laser Driven Electron Injector

    CERN Document Server

    Reis, D

    2003-01-01

    The Gun Test Facility (GTF) at the Stanford Linear Accelerator Center was constructed to develop an appropriate electron beam suitable for driving a short wavelength free electron laser (FEL) such as the proposed Linac Coherent Light Source (LCLS). For operation at a wavelength of 1.5 (angstrom), the LCLS requires an electron injector that can produce an electron beam with approximately 1 pi mm-mrad normalized rms emittance with at least 1 nC of charge in a 10 ps or shorter bunch. The GTF consists of a photocathode rf gun, emittance-compensation solenoid, 3 m linear accelerator (linac), drive laser, and diagnostics to measure the beam. The rf gun is a symmetrized 1.6 cell, s-band high gradient, room temperature, photocathode structure. Simulations show that this gun when driven by a temporally and spatially shaped drive laser, appropriately focused with the solenoid, and further accelerated in linac can produce a beam that meets the LCLS requirements. This thesis describes the initial characterization of the ...

  13. Effects of bunch density gradient in high-gain free-electron lasers

    International Nuclear Information System (INIS)

    Huang, Z.; Kim, K.-J.

    1999-01-01

    The authors investigate effects of the bunch density gradient in self-amplified spontaneous emission (SASE), including the role of coherent spontaneous emission (CSE) in the evolution of the free-electron laser (FEL) process. In the exponential gain regime, the authors solve the coupled Maxwell-Vlasov equations and extend the linear theory to a bunched beam with energy spread. A time-dependent, nonlinear simulation algorithm is used to study the CSE effect and the nonlinear evolution of the radiation pulse

  14. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    Science.gov (United States)

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.

  15. Temporal and Spatial Shaping of X-Ray Free-Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Guo, G [SLAC National Accelerator Lab., Menlo Park, CA (United States); Marinelli, AGOSTINO

    2018-04-01

    The x-ray free-elec­tron laser is the bright­est source of x-rays, with a peak bright­ness ten or­ders of mag­ni­tude higher than con­ven­tional syn­chro­tron ra­di­a­tion sources. Much like con­ven­tional lasers, XFELs are ex­tremely flex­i­ble ma­chines and the prop­er­ties of the x-rays can be con­trolled by ac­cu­rately ma­nip­u­lat­ing the las­ing medium, i.e. the elec­tron beam. In my talk I will dis­cuss past and pre­sent re­search on shap­ing the tem­po­ral prop­er­ties of the x-rays at the Linac Co­her­ent Light Source (LCLS). I will dis­cuss the two-color FEL modes and their ap­pli­ca­tions in user ex­per­i­ments. Fi­nally I will pre­sent our re­sults on laser-shap­ing of x-ray pulses and our plans for at­tosec­ond op­er­a­tion in the soft x-ray regime.

  16. Dichroism in the photoionisation of atoms at XUV free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Mazza, T., E-mail: tommaso.mazza@xfel.eu [European XFEL GmbH, Albert-Einstein-Ring 19, D-22761 Hamburg (Germany); Gryzlova, E.V.; Grum-Grzhimailo, A.N. [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Kazansky, A.K. [Departamento de Fisica de Materiales, UPV/EHU, E-20018 San Sebastian/Donostia (Spain); IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao (Spain); Donostia International Physics Center (DIPC), E-20018 San Sebastian/Donostia (Spain); Kabachnik, N.M. [European XFEL GmbH, Albert-Einstein-Ring 19, D-22761 Hamburg (Germany); Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Donostia International Physics Center (DIPC), E-20018 San Sebastian/Donostia (Spain); Meyer, M., E-mail: michael.meyer@xfel.eu [European XFEL GmbH, Albert-Einstein-Ring 19, D-22761 Hamburg (Germany)

    2015-10-15

    Highlights: • We studied 2-color photoionization of He by angle-resolved electron spectroscopy. • Beta-parameters contain information about the symmetry of outgoing electron waves. • Experiments are compared to strong field approximation and perturbation theory. • 2-Photon measurements can be used to characterize FEL radiation properties. • Non-dipole contributions are predicted to produce new features in the dichroism. - Abstract: Two-color photoionization of atomic He has been investigated by angle-integrated and angle-resolved electron spectroscopy. The combined action of intense radiation pulses from the XUV free-electron laser (FEL), FERMI or FLASH, and a synchronized optical laser on the target atom gives rise to a rich sideband structure in the photoemission spectrum. Measurements of the angular distribution parameters and the determination of the circular and linear dichroism for the two-color photoionization enable a detailed analysis of the symmetry of the outgoing electron waves and of the dynamics underlying the multi-photon processes. The experimental results are in excellent agreement with theoretical results obtained using perturbation theory (low intensity regime) and the strong field approximation. For the particular case of two-photon ionization the measurements represent an ideal tool for characterizing certain FEL parameters, here for example the degree and the sign of circular polarization. Finally, new features of the dichroism are theoretically predicted originating from the non-dipole contribution into the photoionization amplitudes.

  17. Development of high current electron source using photoemission from metals with ultrashort laser pulses

    International Nuclear Information System (INIS)

    Tsang, T.; Srinivasan-Rao, T.; Fischer, J.

    1990-10-01

    We summarize the studies of photoemission from metal photocathodes using picosecond pulses in the UV (4.66 eV) wavelength and femtosecond laser pulses in the visible (2 eV) wavelengths. To achieve high current density yield from metal photocathodes, multiphoton photoemission using femtosecond laser pulses are suggested. Electron yield improvement incorporating surface photoemission and surface plasmon resonance in metals and metal films are demonstrated. We examine the possibility of the nonlinear photoemission process overtaking the linear process, and identity some possible complexity. To extract the large amount of electrons free of space charge, a pulsed high voltage is designed; the results of the preliminary test are presented. Finally, for the first time, the width of the electron temporal profiles are measured, utilizing the nonlinear photoelectric effect, to below 100 fsec time regime. The results indicated that the electron pulse duration follows the laser pulses and are not limited by the material. 8 refs., 15 figs

  18. Laser sources and techniques for spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kung, A.H. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This program focuses on the development of novel laser and spectroscopic techniques in the IR, UV, and VUV regions for studying combustion related molecular dynamics at the microscopic level. Laser spectroscopic techniques have proven to be extremely powerful in the investigation of molecular processes which require very high sensitivity and selectivity. The authors approach is to use quantum electronic and non-linear optical techniques to extend the spectral coverage and to enhance the optical power of ultrahigh resolution laser sources so as to obtain and analyze photoionization, fluorescence, and photoelectron spectra of jet-cooled free radicals and of reaction products resulting from unimolecular and bimolecular dissociations. New spectroscopic techniques are developed with these sources for the detection of optically thin and often short-lived species. Recent activities center on regenerative amplification of high resolution solid-state lasers, development of tunable high power mid-IR lasers and short-pulse UV/VUV tunable lasers, and development of a multipurpose high-order suppressor crossed molecular beam apparatus for use with synchrotron radiation sources. This program also provides scientific and technical support within the Chemical Sciences Division to the development of LBL`s Combustion Dynamics Initiative.

  19. Structural enzymology using X-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    Christopher Kupitz

    2017-07-01

    Full Text Available Mix-and-inject serial crystallography (MISC is a technique designed to image enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just prior to being probed by an X-ray pulse. This approach offers several advantages over flow cell studies. It provides (i room temperature structures at near atomic resolution, (ii time resolution ranging from microseconds to seconds, and (iii convenient reaction initiation. It outruns radiation damage by using femtosecond X-ray pulses allowing damage and chemistry to be separated. Here, we demonstrate that MISC is feasible at an X-ray free electron laser by studying the reaction of M. tuberculosis ß-lactamase microcrystals with ceftriaxone antibiotic solution. Electron density maps of the apo-ß-lactamase and of the ceftriaxone bound form were obtained at 2.8 Å and 2.4 Å resolution, respectively. These results pave the way to study cyclic and non-cyclic reactions and represent a new field of time-resolved structural dynamics for numerous substrate-triggered biological reactions.

  20. Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser

    Czech Academy of Sciences Publication Activity Database

    Vinko, S.M.; Ciricosta, O.; Cho, B.I.; Engelhorn, K.; Chung, H.-K.; Brown, C.R.D.; Burian, Tomáš; Chalupský, Jaromír; Falcone, R.W.; Graves, C.; Hájková, Věra; Higginbotham, A.; Juha, Libor; Krzywinski, J.; Lee, H.J.; Messerschmidt, M.; Murphy, C. D.; Ping, Y.; Scherz, A.; Schlotter, W.; Toleikis, S.; Turner, J.J.; Vyšín, Luděk; Wang, T.; Wu, B.; Zastrau, U.; Zhu, D.; Lee, R. W.; Heimann, P.A.; Nagler, B.; Wark, J. S.

    2012-01-01

    Roč. 482, č. 7383 (2012), s. 59-63 ISSN 0028-0836 R&D Projects: GA AV ČR KAN300100702; GA MŠk LC510; GA ČR(CZ) GAP108/11/1312; GA MŠk LA08024; GA AV ČR IAAX00100903; GA MŠk(CZ) ME10046 Institutional research plan: CEZ:AV0Z10100523 Keywords : x-ray laser * free-electron laser * hot dense plasma s * astrophysics * inertial fusion Subject RIV: BH - Optics, Masers, Lasers Impact factor: 38.597, year: 2012

  1. Extreme UV harmonic production by free-electron generators of coherent radiation

    International Nuclear Information System (INIS)

    Ortega, J.M.

    1986-01-01

    The bunching phenomenon is the basic process occurring in a free-electron generator of coherent generation such as the Klystron in the mm-wave-length range or the free-electron laser (FEL) in the optical region. During interaction with the incident electromagnetic wave the electrons are progressively gathered into small packets separated by a length equal to its wavelength λ/sub L/. Once the electrons are bunched there is a given phase relationship between them and the field of any wave which wavelength is an harmonic of λ/sub L/. This is the source of the gain (electrons decelerated by the field) or of the absorption (electrons accelerated by the laser) mechanisms. In the FEL case the electrons are passing through an undulator (spatially varying periodic magnetic field). Since one uses high-energy electrons (E≅100-1000 MeV) they emit synchrotron radiation called in this case undulator radiation or spontaneous emission. This radiation coexists with the stimulated emission giving rise to the gain mechanism and to the FEL oscillation. When the electrons are bunched the spontaneous emission becomes coherent at the wavelength harmonic of λ/sub L/, and there is an increase in the emission intensity which ideally would be N/sub e/. (Number of electrons is typically ≅10/sup 10/.) Thus bursts of photons are emitted at frequencies harmonic of an incident wave which may be an external laser or the FEL itself. This is likely to extend the spectral range of the free-electron generation of coherent radiation toward the extreme UV λ<1000A). The advantages and limitations of the various solutions (linear or circular accelerator, FEL, or external laser) are discussed. The authors summarize the various experimental results obtained to date and the prospects for the synchrotron radiation dedicated ring super-ACO presently under construction at LURE at Orsay

  2. Self-field effects on small-signal gain in two-stage free-electron lasers

    Indian Academy of Sciences (India)

    electron lasers. S JAFARI. ∗. , H MEHDIAN and A HASANBEIGI. Department of Physics and ... put power. This is particularly important for applications in which the radiation source is required to operate at high efficiency. For example, the tunability ...

  3. Optical guiding and beam bending in free-electron lasers

    International Nuclear Information System (INIS)

    Scharlemann, E.T.

    1987-01-01

    The electron beam in a free-electron laser (FEL) can act as an optical fiber, guiding or bending the optical beam. The refractive and gain effects of the bunched electron beam can compensate for diffraction, making possible wigglers that are many Rayleigh ranges (i.e., characteristic diffraction lengths) long. The origin of optical guiding can be understood by examining gain and refractive guiding in a fiber with a complex index of refraction, providing a mathematical description applicable also to the FEL, with some extensions. In the exponential gain regime of the FEL, the electron equations of motion must be included, but a self-consistent description of exponential gain with diffraction fully included becomes possible. The origin of the effective index of refraction of an FEL is illustrated with a simple example of bunched, radiating dipoles. Some of the properties of the index of refraction are described. The limited experimental evidence for optical beam bending is summarized. The evidence does not yet provide conclusive proof of the existence of optical guiding, but supports the idea. Finally, the importance of refractive guiding for the performance of a high-gain tapered-wiggler FEL amplifier is illustrated with numerical simulations

  4. Medical Application of Free Electron Laser Trasmittance using Hollow Optical Fiber

    CERN Document Server

    Suzuki, Sachiko; Ishii, Katsonuri

    2004-01-01

    Mid-infrared Free Electron Laser (FEL) is expected as new application for biomedical surgery. However, delivery of MIR-FEL into the body is difficult because the common glass optical fibers have strong absorption at MIR region. A good operational and flexible line for FEL is required at medical field. A Hollow optical fiber is developed for IR laser and high-power laser delivery. We evaluated the fiber for FEL transmission line. This fiber is coated with cyclic olefin polymer (COP) and silver thin film on the inside of glass capillary tube. It is 700 μm-bore and 1m in lengths. The fiber transmission loss of the measured wavelength region of 5.5 μm to 12 μm is less than 1dB/m when the fiber is straight and 1.2 dB/m when bent to radius of 20 cm. Additionally, the output beam profile and the pulse structure is not so different form incidence beam. In conclusion, the fiber is suitable for delivery of the FEL energy for applications in medical and laser surgery.

  5. Plasma emission spectroscopy of solids irradiated by intense XUV pulses from a free electron laser

    Czech Academy of Sciences Publication Activity Database

    Dzelzainis, T.W.J.; Chalupský, Jaromír; Fajardo, M.; Fäustlin, R.; Heimann, P.A.; Hájková, Věra; Juha, Libor; Jurek, Karel; Khattak, F.Y.; Kozlová, Michaela; Krzywinski, J.; Lee, R. W.; Nagler, B.; Nelson, A.J.; Rosmej, F.B.; Soberierski, R.; Toleikis, S.; Tschentscher, T.; Vinko, S.M.; Wark, J. S.; Whitcher, T.; Riley, D.

    2010-01-01

    Roč. 6, č. 1 (2010), 109-112 ISSN 1574-1818 R&D Projects: GA MŠk LC510; GA MŠk(CZ) LC528; GA MŠk LA08024; GA AV ČR IAAX00100903 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z10100521 Keywords : XUV emission spectroscopy * free-electron laser * warm dense matter Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.206, year: 2010

  6. A photodiode amplifier system for pulse-by-pulse intensity measurement of an x-ray free electron laser.

    Science.gov (United States)

    Kudo, Togo; Tono, Kensuke; Yabashi, Makina; Togashi, Tadashi; Sato, Takahiro; Inubushi, Yuichi; Omodani, Motohiko; Kirihara, Yoichi; Matsushita, Tomohiro; Kobayashi, Kazuo; Yamaga, Mitsuhiro; Uchiyama, Sadayuki; Hatsui, Takaki

    2012-04-01

    We have developed a single-shot intensity-measurement system using a silicon positive-intrinsic-negative (PIN) photodiode for x-ray pulses from an x-ray free electron laser. A wide dynamic range (10(3)-10(11) photons/pulse) and long distance signal transmission (>100 m) were required for this measurement system. For this purpose, we developed charge-sensitive and shaping amplifiers, which can process charge pulses with a wide dynamic range and variable durations (ns-μs) and charge levels (pC-μC). Output signals from the amplifiers were transmitted to a data acquisition system through a long cable in the form of a differential signal. The x-ray pulse intensities were calculated from the peak values of the signals by a waveform fitting procedure. This system can measure 10(3)-10(9) photons/pulse of ~10 keV x-rays by direct irradiation of a silicon PIN photodiode, and from 10(7)-10(11) photons/pulse by detecting the x-rays scattered by a diamond film using the silicon PIN photodiode. This system gives a relative accuracy of ~10(-3) with a proper gain setting of the amplifiers for each measurement. Using this system, we succeeded in detecting weak light at the developmental phase of the light source, as well as intense light during lasing of the x-ray free electron laser. © 2012 American Institute of Physics

  7. Beam Transport Devices for the 10 kW IR Free Electron Laser

    International Nuclear Information System (INIS)

    Lawrence Dillon-Townes; Michael Bevins; David Kashy; Stephanie Slachtouski; Ronald Lassiter; George Neil; Michelle Shinn; Joseph Gubeli; Christopher Behre; David Douglas; David W. Waldman; George Biallas; Lawrence Munk; Christopher Gould

    2005-01-01

    Beam transport components for the 10kW IR Free Electron Laser (FEL) at Thomas Jefferson National Accelerator Facility (Jefferson Lab) were designed to manage (1) electron beam transport and (2) photon beam transport. An overview of the components will be presented in this paper. The electron beam transport components were designed to address RF heating, maintain an accelerator transport vacuum of 1 x 10 -8 torr, deliver photons to the optical cavity, and provide 50 kW of beam absorption during the energy recovery process. The components presented include a novel shielded bellows, a novel zero length beam clipper, a one decade differential pumping station with a 7.62 cm (3.0 inch) aperture, and a 50 kW beam dump. The photon beam transport components were designed to address the management of photons delivered by the accelerator transport. The optical cavity manages the photons and optical transport delivers the 10 kW of laser power to experimental labs. The optical cavity component presented is a unique high reflector vessel and the optical transport component presented is a turning mirror cassette

  8. Ultrafast Coherent Diffraction Imaging with X-ray Free-Electron Lasers

    International Nuclear Information System (INIS)

    Chapman, H N; Bajt, S; Barty, A; Benner, W; Bogan, M; Frank, M; Hau-Riege, S; London, R; Marchesini, S; Spiller, E; Szoke, A; Woods, B; Boutet, S; Hodgson, K; Hajdu, J; Bergh, M; Burmeister, F; Caleman, C; Huldt, G; Maia, F; Seibert, M M; der Spoel, D v

    2006-01-01

    The ultrafast pulses from X-ray free-electron lasers will enable imaging of non-periodic objects at near-atomic resolution [1, Neutze]. These objects could include single molecules, protein complexes, or virus particles. The specimen would be completely destroyed by the pulse in a Coulomb explosion, but that destruction will only happen after the pulse. The scattering from the sample will give structural information about the undamaged object. There are many technical challenges that must be addressed before carrying out such experiments at an XFEL, which we are doing so with experiments at FLASH, the soft-X-ray FEL at DESY

  9. First operation of a wiggler-focused, sheet beam free electron laser amplifier

    International Nuclear Information System (INIS)

    Destler, W.W.; Cheng, S.; Zhang, Z.X.; Antonsen, T.M. Jr.; Granatstein, V.L.; Levush, B.; Rodgers, J.

    1994-01-01

    A wiggler-focused, sheet beam free electron laser (FEL) amplifier utilizing a short-period wiggler magnet has been proposed as a millimeter-wave source for current profile modification and/or electron cyclotron resonance heating of tokamak plasmas. As proposed, such an amplifier would operate at a frequency of approximately 100--200 GHz with an output power of 1--10 MW CW. Electron beam energy would be in the range 500--1000 keV. To test important aspects of this concept, an initial sheet beam FEL amplifier experiment has been performed using a 1 mmx2 cm sheet beam produced by a pulse line accelerator with a pulse duration of 100 ns. The 500--570 keV, 4--18 A sheet beam is propagated through a 56 period uniform wiggler (λ w =9.6 mm) with a peak wiggler amplitude of 2--5 kG. Linear amplification of a 5--10 W, 94 GHz signal injected in the TE 01 rectangular mode is observed. All features of the amplified signal, including pulse shape and duration, are in accordance with the predictions of numerical simulation. Amplified signal gain has been measured as a function of injected beam energy, current, and wiggler field amplitude and is also in good agreement with simulation results. Continuation of this experiment will involve studying nonlinear amplifier operation and adding a section of tapered wiggler

  10. Using pipe with corrugated walls for a subterahertz free electron laser

    Directory of Open Access Journals (Sweden)

    Gennady Stupakov

    2015-03-01

    Full Text Available A metallic pipe with corrugated walls supports propagation of a high-frequency mode that is in resonance with a relativistic beam propagating along the axis of the pipe. This mode can be excited by a beam whose length is a fraction of the wavelength. In this paper, we study another option of excitation of the resonant mode—via the mechanism of the free electron laser instability. This mechanism works if the bunch length is much longer than the wavelength of the radiation and, hence, does not require bunch compression. It provides an alternative to excitation by short bunches that can be realized with relatively low energy and low peak-current electron beams.

  11. Program to Research Laser-Driven Thermionic Electron Sources for Free Electron Lasers.

    Science.gov (United States)

    1988-01-01

    by sinal I lengths of coaxial cable. With the ’. corresponding charge to the diode also reduced, a series of temporall y sho rter -Ioctron pulse-s was...e combination of approximately 1.6 eV. With the Nd:glass laser beam pulse heating the cathode " and the charge supplied by 0.5/ F capacitor, a series ...available charge stored in the h-arg ing ’apar i tor. A series of experiments was performed wilh lowetr capacitances of sevoral tens of picofarads furnished

  12. Multicascade X-Ray Free-Electron Laser with Harmonic Multiplier and Two-Frequency Undulator

    Science.gov (United States)

    Zhukovsky, K. V.

    2018-06-01

    The feasibility of generation of powerful x-ray radiation by a cascade free-electron laser (FEL) with amplification of higher harmonics using a two-frequency undulator is studied. To analyze the FEL operation, a complex phenomenological single-pass FEL model is developed and used. It describes linear and nonlinear generation of harmonics in the FEL with seed laser that takes into account initial electron beam noise and describes all main losses of each harmonic in each FEL cascade. The model is also calibrated against and approved by the experimental FEL data and available results of three-dimensional numerical simulation. The electron beam in the undulator is assumed to be matched and focused, and the dynamics of power in the singlepass FEL with cascade harmonic multipliers is investigated to obtain x-ray laser radiation in the FEL having the shortest length, beam energy, and frequency of the seed laser as low as possible. In this context, the advantages of the two-frequency undulator used for generation of harmonics are demonstrated. The evolution of harmonics in a multicascade FEL with multiplication of harmonics is investigated. The operation of the cascade FEL at the wavelength λ = 1.14 nm, generating 30 MW already on 38 m with the seed laser operating at a wavelength of 11.43 nm corresponding to the maximal reflectivity of the multilayered mirror MoRu/Be coating is investigated. In addition, the operation of the multicascade FEL with accessible seed UVlaser operating at a wavelength of 157 nm (F2 excimer UV-laser) and electron beam with energy of 0.5 GeV is investigated. X-ray radiation simulated in it at the wavelength λ 3.9 nm reaches power of 50 MW already at 27 m, which is by two orders of magnitude shorter than 3.4 km of the x-ray FEL recently put into operation in Europe.

  13. Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser

    DEFF Research Database (Denmark)

    Arnlund, David; Johansson, Linda C.; Wickstrand, Cecilia

    2014-01-01

    We describe a method to measure ultrafast protein structural changes using time-resolved wide-angle X-ray scattering at an X-ray free-electron laser. We demonstrated this approach using multiphoton excitation of the Blastochloris viridis photosynthetic reaction center, observing an ultrafast glob...

  14. Brightness and coherence of radiation from undulators and high-gain free electron lasers

    International Nuclear Information System (INIS)

    Kim, Kwang-Je.

    1987-03-01

    The purpose of this paper is to review the radiation characteristics of undulators and high-gain free electron lasers (FELs). The topics covered are: a phase-space method in wave optics and synchrotron radiation, coherence from the phase-space point of view, discussions of undulator performances in next-generation synchrotron radiation facility and the characteristics of the high-gain FELs and their performances

  15. An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy

    International Nuclear Information System (INIS)

    Dunsby, C; Lanigan, P M P; McGinty, J; Elson, D S; Requejo-Isidro, J; Munro, I; Galletly, N; McCann, F; Treanor, B; Oenfelt, B; Davis, D M; Neil, M A A; French, P M W

    2004-01-01

    Fluorescence imaging is used widely in microscopy and macroscopic imaging applications for fields ranging from biomedicine to materials science. A critical component for any fluorescence imaging system is the excitation source. Traditionally, wide-field systems use filtered thermal or arc-generated white light sources, while point scanning confocal microscope systems require spatially coherent (point-like) laser sources. Unfortunately, the limited range of visible wavelengths available from conventional laser sources constrains the design and usefulness of fluorescent probes in confocal microscopy. A 'hands-off' laser-like source, electronically tunable across the visible spectrum, would be invaluable for fluorescence imaging and provide new opportunities, e.g. automated excitation fingerprinting and in situ measurement of excitation cross-sections. Yet more information can be obtained using fluorescence lifetime imaging (FLIM), which requires that the light source be pulsed or rapidly modulated. We show how a white light continuum, generated by injecting femtosecond optical radiation into a micro-structured optical fibre, coupled with a simple prism-based tunable filter arrangement, can fulfil all these roles as a continuously electronically tunable (435-1150 nm) visible ultrafast light source in confocal, wide-field and FLIM systems

  16. R and D for a Soft X-Ray Free Electron Laser Facility

    International Nuclear Information System (INIS)

    Corlett, John; Attwood, David; Byrd, John; Denes, Peter; Falcone, Roger; Heimann, Phil; Leemans, Wim; Padmore, Howard; Prestemon, Soren; Sannibale, Fernando; Schlueter, Ross; Schroeder, Carl; Staples, John; Venturini, Marco; Warwick, Tony; Wells, Russell; Wilcox, Russell; Zholent, Alexander; Adolphsen, Chris; Arthur, John; Bergmann, Uwe; Cai, Yunhai; Colby, Eric; Dowell, David; Emma, Paul; Fox, John; Frisch, Josef; Galayda, John; Hettel, Robert; Huang, Zhirong; Phinney, Nan; Rabedeau, Tom; Raubenheimer, Tor; Reis, David; Schmerge, John; Stoehr, Joachim; Stupakov, Gennady; White, Bill; Xiang, Dao

    2009-01-01

    Several recent reports have identified the scientific requirements for a future soft x-ray light source, and a high-repetition-rate free-electron laser (FEL) facility that is responsive to these requirements is now on the horizon. R and D in some critical areas is needed, however, to demonstrate technical performance, thus reducing technical risks and construction costs. Such a facility most likely will be based on a CW superconducting linear accelerator with beam supplied by a high-brightness, high-repetition-rate photocathode electron gun operating in CW mode, and on an array of FELs to which the accelerated beam is distributed, each operating at high repetition rate and with even pulse spacing. Dependent on experimental requirements, the individual FELs can be configured for either self-amplified spontaneous emission (SASE), seeded, or oscillator mode of operation, including the use of high-gain harmonic generation (HGHG), echo-enhanced harmonic generation (EEHG), harmonic cascade, or other configurations. In this White Paper we identify the overall accelerator R and D needs, and highlight the most important pre-construction R and D tasks required to value-engineer the design configuration and deliverables for such a facility. In Section 1.4 we identify the comprehensive R and D ultimately needed. We identify below the highest-priority requirements for understanding machine performance and reduce risk and costs at this pre-conceptual design stage. Details of implementing the required tasks will be the subject of future evaluation. Our highest-priority R and D program is the injector, which must be capable of delivering a beam with bunches up to a nanocoulomb at MHz repetition rate and with normalized emittance (le) 1 mm · mrad. This will require integrated accelerating structure, cathode, and laser systems development. Cathode materials will impact the choice of laser technology in wavelength and energy per pulse, as well as vacuum requirements in the

  17. On the release of cppxfel for processing X-ray free-electron laser images.

    Science.gov (United States)

    Ginn, Helen Mary; Evans, Gwyndaf; Sauter, Nicholas K; Stuart, David Ian

    2016-06-01

    As serial femtosecond crystallography expands towards a variety of delivery methods, including chip-based methods, and smaller collected data sets, the requirement to optimize the data analysis to produce maximum structure quality is becoming increasingly pressing. Here cppxfel , a software package primarily written in C++, which showcases several data analysis techniques, is released. This software package presently indexes images using DIALS (diffraction integration for advanced light sources) and performs an initial orientation matrix refinement, followed by post-refinement of individual images against a reference data set. Cppxfel is released with the hope that the unique and useful elements of this package can be repurposed for existing software packages. However, as released, it produces high-quality crystal structures and is therefore likely to be also useful to experienced users of X-ray free-electron laser (XFEL) software who wish to maximize the information extracted from a limited number of XFEL images.

  18. Study of the Betatron and Compton X-ray sources produced in laser wakefield acceleration of electrons

    International Nuclear Information System (INIS)

    Ferri, Julien

    2016-01-01

    An ultra-short and ultra-intense laser pulse propagating in a low-density gas can accelerate in its wake a part of the electrons ionized from the gas to relativistic energies of a few hundreds of MeV over distances of a few millimeters only. During their acceleration, as a consequence of their transverse motion, these electrons emit strongly collimated X-rays in the forward direction, which are called betatron radiations. The characteristics of this source turn it into an interesting tool for high-resolution imagery.In this thesis, we explore three different axis to work on this source using simulations on the Particles-In-Cells codes CALDER and CALDER-Circ. We first study the creation of a betatron X-ray source with kilo-joule and pico-second laser pulses, for which duration and energy are then much higher than usual in this domain. In spite of the unusual laser parameters, we show that X-ray sources can still be generated, furthermore in two different regimes.In a second study, the generally observed discrepancies between experiments and simulations are investigated. We show that the use of realistic laser profiles instead of Gaussian ones in the simulations strongly degrades the performances of the laser-plasma accelerator and of the betatron source. Additionally, this leads to a better qualitative and quantitative agreement with the experiment. Finally, with the aim of improving the X-ray emission, we explore several techniques based on the manipulation of the plasma density profile used for acceleration. We find that both the use of a transverse gradient and of a density step increases the amplitude of the electrons transverse motions, and then increases the radiated energy. Alternatively, we show that this goal can also be achieved through the transition from a laser wakefield regime to a plasma wakefield regime induced by an increase of the density. The laser wakefield optimizes the electron acceleration whereas the plasma wakefield favours the X

  19. Present status of the NIJI-IV storage-ring free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, T.; Yamada, K.; Sei, N. [Electrotechnical Lab., Ibaraki (Japan)] [and others

    1995-12-31

    The tunable region of the free-electron-laser (FEL) wavelength with the NIJI-IV system is now 348{approximately}595 nm. After the lasing at 352 nm in 1994, the quality of the electron beam stored in the ring has been improved further, and the highest peak intensity of the laser obtained so far is more than 300 times as high as that of the resonated spontaneous emission. The macro-temporal structure of the lasing has been greatly improved. Recently, a single-bunch injection system was completed, and the system has been installed in the injector linac, which is expected to increase the peak stored-beam current. The commissioning and the test of the new system is under way. The beam transporting system from the linac to the ring is also being modified by increasing the number of quadrupole magnets. The experiments related to the FEL in the ultraviolet wavelength region will be begun in this coming May. The results and the status of the FEL experiments will be presented at the Conference.

  20. Beam energy distribution influences on density modulation efficiency in seeded free-electron lasers

    Directory of Open Access Journals (Sweden)

    Guanglei Wang

    2015-06-01

    Full Text Available The beam energy spread at the entrance of an undulator system is of paramount importance for efficient density modulation in high-gain seeded free-electron lasers (FELs. In this paper, the dependences of high harmonic bunching efficiency in high-gain harmonic generation (HGHG, echo-enabled harmonic generation (EEHG and phase-merging enhanced harmonic generation (PEHG schemes on the electron beam energy spread distribution are studied. Theoretical investigations and multidimensional numerical simulations are applied to the cases of uniform and saddle beam energy distributions and compared to a traditional Gaussian distribution. It shows that the uniform and saddle electron energy distributions significantly enhance the bunching performance of HGHG FELs, while they almost have no influence on EEHG and PEHG schemes. A further start-to-end simulation example demonstrated that, with the saddle distribution of sliced beam energy spread controlled by a laser heater, the 30th harmonic can be directly generated by a single-stage HGHG scheme for a soft x-ray FEL facility.

  1. Ultrashort electromagnetic clusters formation by two-stream superheterodyne free electron lasers

    DEFF Research Database (Denmark)

    Kulish, Viktor V.; Lysenko, Alexander V.; Volk, Iurii I.

    2016-01-01

    A cubic nonlinear self-consistent theory of multiharmonic two-stream superheterodyne free electron lasers (TSFEL) of a klystron type, intended to form powerful ultrashort clusters of an electromagnetic field is constructed. Plural three-wave parametric resonant interactions of wave harmonics have...... been taken into account. An amplitude, phase and spectral analyses of the processes occurring in such devices have been carried out. The conditions necessary for the forming of the ultrashort clusters of an electromagnetic field have been found out. The possibility of the ultrashort electromagnetic...

  2. Permanent-magnet helical undulator for a millimeter-wave free electron laser

    International Nuclear Information System (INIS)

    Lee, Jongmin; Jeong, Young-Uk; Lee, Byung-Cheol; Kim, Sun-Kook; Cho, Sung-Oh

    1995-01-01

    Permanent-magnet helical undulator for a millimeter-wave free-electron laser was designed and constructed. The configuration of the undulator is based on bifilar-type permanent-magnet helical undulator and Halbach-type planar undulator. This new configuration shows enhanced magnetic field and low field error. Period, total length and peak magnetic-field amplitude of the undulator is 36 mm, 900 mm and 1.44 kG, respectively. Adiabatic tapering of the magnetic field in end sides of the undulator was achieved using stepped soft-iron tubes. (author)

  3. CAS - CERN Accelerator School: Free Electron Lasers and Energy Recovery Linacs

    CERN Document Server

    2018-01-01

    These proceedings collate lectures given at the course on Free Electron Lasers and Energy Recovery Linacs (FELsand ERLs), organised by the CERN Accelerator School (CAS). The course was held at the Hotel Scandic HamburgEmporio, Hamburg, Germany from 31 May to 10 June 2016, in collaboration with DESY. Following introductorylectures on radiation issues, the basic requirements on linear accelerators and ERLs are discussed. Undulators andthe process of seeding and lasing are then treated in some detail, followed by lectures on various beam dynamicsand controls issues.

  4. Marangoni Convection during Free Electron Laser Nitriding of Titanium

    Science.gov (United States)

    Höche, Daniel; Müller, Sven; Rapin, Gerd; Shinn, Michelle; Remdt, Elvira; Gubisch, Maik; Schaaf, Peter

    2009-08-01

    Pure titanium was treated by free electron laser (FEL) radiation in a nitrogen atmosphere. As a result, nitrogen diffusion occurs and a TiN coating was synthesized. Local gradients of interfacial tension due to the local heating lead to a Marangoni convection, which determines the track properties. Because of the experimental inaccessibility of time-dependent occurrences, finite element calculations were performed, to determine the physical processes such as heat transfer, melt flow, and mass transport. In order to calculate the surface deformation of the gas-liquid interface, the level set approach was used. The equations were modified and coupled with heat-transfer and diffusion equations. The process was characterized by dimensionless numbers such as the Reynolds, Peclet, and capillary numbers, to obtain more information about the acting forces and the coating development. Moreover, the nitrogen distribution was calculated using the corresponding transport equation. The simulations were compared with cross-sectional micrographs of the treated titanium sheets and checked for their validity. Finally, the process presented is discussed and compared with similar laser treatments.

  5. Cartilage ablation studies using mid-IR free electron laser

    Science.gov (United States)

    Youn, Jong-In; Peavy, George M.; Venugopalan, Vasan

    2005-04-01

    The ablation rate of articular cartilage and fibrocartilage (meniscus), were quantified to examine wavelength and tissue-composition dependence of ablation efficiency for selected mid-infrared wavelengths. The wavelengths tested were 2.9 um (water dominant absorption), 6.1 (protein and water absorption) and 6.45 um (protein dominant absorption) generated by the Free Electron Laser (FEL) at Vanderbilt University. The measurement of tissue mass removal using a microbalance during laser ablation was conducted to determine the ablation rates of cartilage. The technique can be accurate over methods such as profilometer and histology sectioning where tissue surface and the crater morphology may be affected by tissue processing. The ablation efficiency was found to be dependent upon the wavelength. Both articular cartilage and meniscus (fibrocartilage) ablations at 6.1 um were more efficient than those at the other wavelengths evaluated. We observed the lowest ablation efficiency of both types of cartilage with the 6.45 um wavelength, possibly due to the reduction in water absorption at this wavelength in comparison to the other wavelengths that were evaluated.

  6. Tests of a grazing-incidence ring resonator free-electron laser

    International Nuclear Information System (INIS)

    Dowell, D.H.; Laucks, M.L.; Lowrey, A.R.; Adamski, J.L.; Pistoresi, D.J.; Shoffstall, D.R.; Bentz, M.P.; Burns, R.H.; Guha, J.; Sun, K.; Tomita, W.

    1991-01-01

    This paper reports on the Boeing free-electron laser (FEL) optical cavity that has been changed from a simple concentric cavity using two spherical mirrors to a larger grazing-incidence ring resonator. The new resonator consists of two mirror telescopes located at each end of the wiggler with a round-trip path length of approximately 133 m. Each telescope is a grazing-incidence hyperboloid followed by a normal-incidence paraboloid. Initial tests showed that poorly positioned ring focus and unreliable pointing alignment resulted in reduced and structured FEL output. (First lasing operation occurred on March 23 and 24, 1990.) Later efforts concentrated on improving the resonator alignment techniques and lowering the single-pass losses. FEL performance and reliability have significantly improved due to better ring alignment. The alignment procedure and recent lasing results are described. The effect the electron beam has on lasing is also discussed. Measurements are presented showing how FEL temporal output and wavelength are sensitive to electron beam energy variations

  7. New sources of high-power coherent radiation

    International Nuclear Information System (INIS)

    Sprehngl, F.

    1985-01-01

    New sources of high-power coherent radiation in the wavelength range from millimeter to ultraviolet are reviewed. Physical mechanisms underlying concepts of free electrons laser, cyclotron resonance laser and other new radiation sources are described. Free electron lasers and cyclotron resonance lasers are shown to suggest excellent possibilities for solving problems of spectroscopy, plasma heating radar and accelerator technology. Results of experiments with free electron laser in the Compton mode using linear accelerators microtrons and storage rings are given. Trends in further investigations are shown

  8. Storage ring free electron laser, pulse propagation effects and microwave type instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, G.; Mezi, L.; Renieri, A. [ENEA, Divisione Fisica Applicata, Centro Ricerche Frascati, Frascati, RM (Italy); Migliorati, M. [Rome Univ. La Sapienza, Rome (Italy). Dipt. di Energetica

    2000-07-01

    It has been developed a dynamical model accounting for the storage Ring Free Electron Laser evolution including pulse propagation effects and e-beam instabilities of microwave type. It has been analyzed the general conditions under which the on set of the laser may switch off the instability and focus everybody attention on the interplay between cavity mismatch, laser pulsed behavior and e-beam instability dynamics. Particular attention is also devoted to the laser operation in near threshold conditions, namely at an intracavity level just enough to counteract the instability, that show in this region new and interesting effects arises. [Italian] Si sviluppa un modello dinamico per la descrizione dell'evoluzione di un laser ad elettroni liberi in anello di accumulazione con l'inclusione di effetti di propagazione d'impulso e di instabilita' a microonda. Si analizzano le condizioni per le quali l'instaurarsi dell'operazione laser puo' spegnere l'instabilita' e si focalizza l'attenzione sulla connessione fra desincronismo della cavita', comportamento pulsato del laser e comportamento instabile del fascio di elettroni: si analizza in particolare l'operazione laser quando il guadagno e' prossimo alle perdite della cavita' e si osservano effetti particolarmente interessanti.

  9. X-band rf driven free electron laser driver with optics linearization

    Directory of Open Access Journals (Sweden)

    Yipeng Sun (孙一鹏

    2014-11-01

    Full Text Available In this paper, a compact hard X-ray free electron lasers (FEL design is proposed with all X-band rf acceleration and two stage bunch compression. It eliminates the need of a harmonic rf linearization section by employing optics linearization in its first stage bunch compression. Quadrupoles and sextupoles are employed in a bunch compressor one (BC1 design, in such a way that second order longitudinal dispersion of BC1 cancels the second order energy correlation in the electron beam. Start-to-end 6-D simulations are performed with all the collective effects included. Emittance growth in the horizontal plane due to coherent synchrotron radiation is investigated and minimized, to be on a similar level with the successfully operating Linac coherent light source (LCLS. At a FEL radiation wavelength of 0.15 nm, a saturation length of 40 meters can be achieved by employing an undulator with a period of 1.5 cm. Without tapering, a FEL radiation power above 10 GW is achieved with a photon pulse length of 50 fs, which is LCLS-like performance. The overall length of the accelerator plus undulator is around 250 meters which is much shorter than the LCLS length of 1230 meters. That makes it possible to build hard X-ray FEL in a laboratory with limited size.

  10. Generation of coherent soft x-rays using a single-pass free-electron laser amplifier

    International Nuclear Information System (INIS)

    Wang, T.F.; Goldstein, J.C.; Newnam, B.E.; McVey, B.D.

    1988-01-01

    We consider a single-pass free-electron laser (FEL) amplifier, driven by an rf-linac followed by a damping ring for reduced emittance, for use in generating coherent light in the soft x-ray region. The dependence of the optical gain on electron-beam quality, studied with the three-dimensional FEL simulation code FELEX, is given and related to the expected power of self-amplified spontaneous emission. We discuss issues for the damping ring designed to achieve the required electron beam quality. The idea of a multipass regenerative amplifier is also presented

  11. A long electromagnetic wiggler for the paladin free-electron laser experiments

    International Nuclear Information System (INIS)

    Deis, G.A.; Harvey, A.R.; Parkison, C.D.; Prosnitz, D.; Rego, J.; Scharlemann, E.T.; Halbach, K.

    1987-01-01

    We have designed, built, and tested a 25.6-m-long wiggler for a free-electron-laser (FEL) experiment. It is a DC iron-core electromagnetic wiggler that incorporates a number of important and unique features. Permanent magnets are used to suppress saturation in the iron and extend the linear operating range. Steering-free excitation allows real-time adjustment of the field taper without causing beam steering. Wiggle-plane focusing is produced by curved pole tips. The magnitude of random pole-to-pole field errors is minimized by a mechanical design concept that reduces tolerance stackup in critical locations. To date, we have tested 15 m of this wiggler, and our measurements have shown exceptionally low levels of random errors. 8 refs

  12. Results and analysis of free-electron-laser oscillation in a high-energy storage ring

    International Nuclear Information System (INIS)

    Couprie, M.E.; Velghe, M.; Prazeres, R.; Jaroszynski, D.; Billardon, M.

    1991-01-01

    A storage-ring free-electron laser at Orsay has been operating since 1989 in the visible wavelength range. In contrast with previous experiments, it operates with positrons and at higher energies (600--800 MeV), with the storage ring Super-ACO (ACO denotes Anneau de Collisions d'Orsay). The optical gain, the laser power, the transverse profile, and the macrotemporal structure of the laser are analyzed. In particular, we show that the gain matrix possesses many off-diagonal elements, which results in lasing on a combination of noncylindrical Gaussian modes. The eigenmode of the laser oscillation is a combination of one or two main Gaussian modes and several higher-order modes, which results in most of the power being extracted in these modes

  13. Sideband instability analysis based on a one-dimensional high-gain free electron laser model

    Science.gov (United States)

    Tsai, Cheng-Ying; Wu, Juhao; Yang, Chuan; Yoon, Moohyun; Zhou, Guanqun

    2017-12-01

    When an untapered high-gain free electron laser (FEL) reaches saturation, the exponential growth ceases and the radiation power starts to oscillate about an equilibrium. The FEL radiation power or efficiency can be increased by undulator tapering. For a high-gain tapered FEL, although the power is enhanced after the first saturation, it is known that there is a so-called second saturation where the FEL power growth stops even with a tapered undulator system. The sideband instability is one of the primary reasons leading to this second saturation. In this paper, we provide a quantitative analysis on how the gradient of undulator tapering can mitigate the sideband growth. The study is carried out semianalytically and compared with one-dimensional numerical simulations. The physical parameters are taken from Linac Coherent Light Source-like electron bunch and undulator systems. The sideband field gain and the evolution of the radiation spectra for different gradients of undulator tapering are examined. It is found that a strong undulator tapering (˜10 %) provides effective suppression of the sideband instability in the postsaturation regime.

  14. A bremsstrahlung gamma-ray source based on stable ionization injection of electrons into a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Döpp, A., E-mail: andreas.doepp@polytechnique.edu [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Centro de Laseres Pulsados, Parque Cientfico, 37185 Villamayor, Salamanca (Spain); Guillaume, E.; Thaury, C.; Lifschitz, A. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Sylla, F. [SourceLAB SAS, 86 rue de Paris, 91400 Orsay (France); Goddet, J-P.; Tafzi, A.; Iaquanello, G.; Lefrou, T.; Rousseau, P. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Conejero, E.; Ruiz, C. [Departamento de Física Aplicada, Universidad de Salamanca, Plaza de laMerced s/n, 37008 Salamanca (Spain); Ta Phuoc, K.; Malka, V. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France)

    2016-09-11

    Laser wakefield acceleration permits the generation of ultra-short, high-brightness relativistic electron beams on a millimeter scale. While those features are of interest for many applications, the source remains constraint by the poor stability of the electron injection process. Here we present results on injection and acceleration of electrons in pure nitrogen and argon. We observe stable, continuous ionization-induced injection of electrons into the wakefield for laser powers exceeding a threshold of 7 TW. The beam charge scales approximately with the laser energy and is limited by beam loading. For 40 TW laser pulses we measure a maximum charge of almost 1 nC per shot, originating mostly from electrons of less than 10 MeV energy. The relatively low energy, the high charge and its stability make this source well-suited for applications such as non-destructive testing. Hence, we demonstrate the production of energetic radiation via bremsstrahlung conversion at 1 Hz repetition rate. In accordance with GEANT4 Monte-Carlo simulations, we measure a γ-ray source size of less than 100 μm for a 0.5 mm tantalum converter placed at 2 mm from the accelerator exit. Furthermore we present radiographs of image quality indicators.

  15. Structure modifications in silikon irradiated by ultra-short pulses of XUV free electron laser

    Czech Academy of Sciences Publication Activity Database

    Pelka, J. B.; Andrejczuk, A.; Reniewicz, H.; Schell, N.; Krzywinski, J.; Sobierajski, R.; Wawro, A.; Zytkiewicz, Z. R.; Klinger, D.; Juha, Libor

    2004-01-01

    Roč. 382, - (2004), s. 264-270 ISSN 0925-8388 R&D Projects: GA MŠk 1P04LA235; GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z1010914 Keywords : XUV ablation * free electron laser Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.562, year: 2004

  16. Characterization and optimization of laser-driven electron and photon sources in keV and MeV energy ranges

    International Nuclear Information System (INIS)

    Bonnet, Thomas

    2013-01-01

    This work takes place in the framework of the characterization and the optimization of laser-driven electron and photon sources. With the goal of using these sources for nuclear physics experiments, we focused on 2 energy ranges: one around a few MeV and the other around a few tens of keV. The first part of this work is thus dedicated to the study of detectors routinely used for the characterization of laser-driven particle sources: Imaging Plates. A model has been developed and is fitted to experimental data. Response functions to electrons, photons, protons and alpha particles are established for SR, MS and TR Fuji Imaging Plates for energies ranging from a few keV to several MeV. The second part of this work present a study of ultrashort and intense electron and photon sources produced in the interaction of a laser with a solid or liquid target. An experiment was conducted at the ELFIE facility at LULI where beams of electrons and photons were accelerated up to several MeV. Energy and angular distributions of the electron and photons beams were characterized. The sources were optimized by varying the spatial extension of the plasma at both the front and the back end of the initial target position. In the optimal configuration of the laser-plasma coupling, more than 1011 electrons were accelerated. In the case of liquid target, a photon source was produced at a high repetition rate on an energy range of tens of keV by the interaction of the AURORE Laser at CELIA (10 16 W.cm -2 ) and a melted gallium target. It was shown that both the mean energy and the photon number can be increased by creating gallium jets at the surface of the liquid target with a pre-pulse. A physical interpretation supported by numerical simulations is proposed. (author)

  17. Development of a submillimeter free electron laser using a compact electro-static accelerator

    International Nuclear Information System (INIS)

    Kawamura, Y.; Shu, S.H.; Tanabe, T.; Li, D.J.; Toyoda, K.

    1995-01-01

    An experimental facilities for the studies on submillimeter wavelength free electron laser (FEL) are now under construction in our group. In this paper the possibilities for the two kinds of operation modes, which are expected to be obtained, such as the self mode-locked operations in a small net-gain region and the evolution of CW radiation in a large net-gain region, are analized. (author)

  18. The Effects of Slippage and Diffraction in Long-Wavelength Operation of a Free-Electron Laser

    NARCIS (Netherlands)

    Zhulin, V. I.; Haselhoff, E. H.; van Amersfoort, P. W.

    1995-01-01

    The Free-Electron Laser user facility FELIX produces picosecond optical pulses in the wavelength range of 5-110 mu m. The proposed installation of a new undulator with a larger magnetic period would allow extension towards considerably longer wavelengths. This would result in the production of

  19. Efficiency enhancement of a harmonic lasing free-electron laser

    International Nuclear Information System (INIS)

    Salehi, E.; Maraghechi, B.; Mirian, N. S.

    2015-01-01

    The harmonic lasing free-electron laser amplifier, in which two wigglers is employed in order for the fundamental resonance of the second wiggler to coincide with the third harmonic of the first wiggler to generate ultraviolet radiation, is studied. A set of coupled nonlinear first-order differential equations describing the nonlinear evolution of the system, for a long electron bunch, is solved numerically by CYRUS code. Solutions for the non-averaged and averaged equations are compared. Remarkable agreement is found between the averaged and non-averaged simulations for the evolution of the third harmonic. Thermal effects in the form of longitudinal velocity spread are also investigated. For efficiency enhancement, the second wiggler field is set to decrease linearly and nonlinearly at the point where the radiation of the third harmonic saturates. The optimum starting point and the slope of the tapering of the amplitude of the wiggler are found by a successive run of the code. It is found that tapering can increase the saturated power of the third harmonic considerably. In order to reduce the length of the wiggler, the prebunched electron beam is considered

  20. Efficiency enhancement of a harmonic lasing free-electron laser

    Science.gov (United States)

    Salehi, E.; Maraghechi, B.; Mirian, N. S.

    2015-03-01

    The harmonic lasing free-electron laser amplifier, in which two wigglers is employed in order for the fundamental resonance of the second wiggler to coincide with the third harmonic of the first wiggler to generate ultraviolet radiation, is studied. A set of coupled nonlinear first-order differential equations describing the nonlinear evolution of the system, for a long electron bunch, is solved numerically by CYRUS code. Solutions for the non-averaged and averaged equations are compared. Remarkable agreement is found between the averaged and non-averaged simulations for the evolution of the third harmonic. Thermal effects in the form of longitudinal velocity spread are also investigated. For efficiency enhancement, the second wiggler field is set to decrease linearly and nonlinearly at the point where the radiation of the third harmonic saturates. The optimum starting point and the slope of the tapering of the amplitude of the wiggler are found by a successive run of the code. It is found that tapering can increase the saturated power of the third harmonic considerably. In order to reduce the length of the wiggler, the prebunched electron beam is considered.

  1. Efficiency enhancement of a harmonic lasing free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Salehi, E.; Maraghechi, B., E-mail: behrouz@aut.ac.ir [Department of Physics, Amirkabir University of Technology, 15875-4413 Tehran (Iran, Islamic Republic of); Mirian, N. S. [School of Particle and Accelerator Physics, Institute for Research in Fundamental Sciences (IPM), 19395-5531 Tehran (Iran, Islamic Republic of)

    2015-03-15

    The harmonic lasing free-electron laser amplifier, in which two wigglers is employed in order for the fundamental resonance of the second wiggler to coincide with the third harmonic of the first wiggler to generate ultraviolet radiation, is studied. A set of coupled nonlinear first-order differential equations describing the nonlinear evolution of the system, for a long electron bunch, is solved numerically by CYRUS code. Solutions for the non-averaged and averaged equations are compared. Remarkable agreement is found between the averaged and non-averaged simulations for the evolution of the third harmonic. Thermal effects in the form of longitudinal velocity spread are also investigated. For efficiency enhancement, the second wiggler field is set to decrease linearly and nonlinearly at the point where the radiation of the third harmonic saturates. The optimum starting point and the slope of the tapering of the amplitude of the wiggler are found by a successive run of the code. It is found that tapering can increase the saturated power of the third harmonic considerably. In order to reduce the length of the wiggler, the prebunched electron beam is considered.

  2. Quantum-mechanical analysis of low-gain free-electron laser oscillators

    Science.gov (United States)

    Fares, H.; Yamada, M.; Chiadroni, E.; Ferrario, M.

    2018-05-01

    In the previous classical theory of the low-gain free-electron laser (FEL) oscillators, the electron is described as a point-like particle, a delta function in the spatial space. On the other hand, in the previous quantum treatments, the electron is described as a plane wave with a single momentum state, a delta function in the momentum space. In reality, an electron must have statistical uncertainties in the position and momentum domains. Then, the electron is neither a point-like charge nor a plane wave of a single momentum. In this paper, we rephrase the theory of the low-gain FEL where the interacting electron is represented quantum mechanically by a plane wave with a finite spreading length (i.e., a wave packet). Using the concepts of the transformation of reference frames and the statistical quantum mechanics, an expression for the single-pass radiation gain is derived. The spectral broadening of the radiation is expressed in terms of the spreading length of an electron, the relaxation time characterizing the energy spread of electrons, and the interaction time. We introduce a comparison between our results and those obtained in the already known classical analyses where a good agreement between both results is shown. While the correspondence between our results and the classical results are shown, novel insights into the electron dynamics and the interaction mechanism are presented.

  3. Controlled molecules for X-ray diffraction experiments at free-electron lasers

    International Nuclear Information System (INIS)

    Stern, Stephan

    2013-12-01

    X-ray diffractive imaging is at the very heart of materials science and has been utilized for decades to solve unknown molecular structures. Nowadays, it serves as the key method of structural biology to solve molecular structures of large biological molecules comprising several thousand or even millions of atoms. However, X-ray diffraction from isolated molecules is very weak. Therefore, the regular and periodic arrangement of a huge number of identical copies of a certain molecule of interest within a crystal lattice has been a necessary condition in order to exploit Bragg diffraction of X-rays. This results in a huge increase in scattered signal and a strongly improved signal-to-noise ratio compared to diffraction from non-crystalline samples. The major bottleneck of structural biology is that many of biologically interesting molecules refuse to form crystals of sufficient size to be used at synchrotron X-ray lightsources. However, novel X-ray free-electron lasers (XFELs), which became operational very recently, promise to address this issue. X-ray pulses provided by XFELs are many orders of magnitude more intense than X-ray pulses from a synchrotron source and at the same time as short as only several tens of femtoseconds. Combined with wavelengths in the nm-pm range, XFELs are well-suited to study ultrafast atomic and molecular dynamics. Additionally, the ultrashort pulses can be utilized to circumvent the damage threshold which set a limit to the incident intensity in X-ray diffraction experiments before. At XFELs, though eventually destroying the investigated sample, no significant sample deterioration happens on the ultrashort timescale of the XFEL pulse and the measured diffraction pattern is due to an (almost) unharmed sample. In the framework of this thesis, the approach of utilizing the highly intense XFEL pulses for X-ray diffraction of weakly-scattering non-crystalline samples was taken to the limit of small isolated molecules. X-ray diffraction was

  4. Controlled molecules for X-ray diffraction experiments at free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Stephan

    2013-12-15

    X-ray diffractive imaging is at the very heart of materials science and has been utilized for decades to solve unknown molecular structures. Nowadays, it serves as the key method of structural biology to solve molecular structures of large biological molecules comprising several thousand or even millions of atoms. However, X-ray diffraction from isolated molecules is very weak. Therefore, the regular and periodic arrangement of a huge number of identical copies of a certain molecule of interest within a crystal lattice has been a necessary condition in order to exploit Bragg diffraction of X-rays. This results in a huge increase in scattered signal and a strongly improved signal-to-noise ratio compared to diffraction from non-crystalline samples. The major bottleneck of structural biology is that many of biologically interesting molecules refuse to form crystals of sufficient size to be used at synchrotron X-ray lightsources. However, novel X-ray free-electron lasers (XFELs), which became operational very recently, promise to address this issue. X-ray pulses provided by XFELs are many orders of magnitude more intense than X-ray pulses from a synchrotron source and at the same time as short as only several tens of femtoseconds. Combined with wavelengths in the nm-pm range, XFELs are well-suited to study ultrafast atomic and molecular dynamics. Additionally, the ultrashort pulses can be utilized to circumvent the damage threshold which set a limit to the incident intensity in X-ray diffraction experiments before. At XFELs, though eventually destroying the investigated sample, no significant sample deterioration happens on the ultrashort timescale of the XFEL pulse and the measured diffraction pattern is due to an (almost) unharmed sample. In the framework of this thesis, the approach of utilizing the highly intense XFEL pulses for X-ray diffraction of weakly-scattering non-crystalline samples was taken to the limit of small isolated molecules. X-ray diffraction was

  5. Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-05-10

    We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomic states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).

  6. LINAC DESIGN FOR AN ARRAY OF SOFT X-RAY FREE ELECTRON LASERS

    International Nuclear Information System (INIS)

    Zholents, Alexander A.; Kur, E.; Penn, G.; Qiang, Ji; Venturini, M.; Wells, R. P.

    2008-01-01

    The design of the linac delivering electron bunches into ten independent soft x-ray free electron lasers (FELs) producing light at 1 nm and longer wavelengths is presented. The bunch repetition rate in the linac is 1 MHz and 100 kHz in each of ten FEL beam lines. Various issues regarding machine layout and lattice, bunch compression, collimation, and the beam switch yard are discussed. Particular attention is given to collective effects. A demanding goal is to preserve both a low beam slice emittance and low slice energy spread during acceleration, bunch compression and distribution of the electron bunches into the array of FEL beamlines. Detailed studies of the effect of the electron beam microbunching caused by longitudinal space-charge forces and coherent synchrotron radiation (CSR) have been carried out and their results are presented

  7. Beam extraction dynamics at the space-charge-limit of the high brightness E-XFEL electron source at DESY-PITZ

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ye; Gjonaj, Erion; Weiland, Thomas [TEMF, Technische Universitaet Darmstadt, Schlossgartenstrasse 8, 64289 Darmstadt (Germany)

    2015-07-01

    The physics of the photoemission, as one of the key issues for successful operation of linac based free-electron lasers like the European X-ray Free Electron Laser (E-XFEL) and the Free-electron Laser in Hamburg (FLASH), is playing an increasingly important role in the high brightness DESY-PITZ electron source. We study photoemission physics and discuss full three-dimensional numerical modeling of the electron bunch emission. The beam extraction dynamics at the photocathode has been investigated through the 3D fully electromagnetic (EM) Particle-in-Cell (PIC) solver of CST Particle Studio under the assumption of the photoemission source operating at or close to its space charge limit. PIC simulation results have shown good agreements with measurements on total emitted bunch charge for distinct experimental parameters. Further comparisons showed a general failure for the conventional Poisson solver based tracking algorithm to correctly predict the beam dynamics at the space charge limit. It is furthermore found, that fully EM PIC simulations are also consistent with a simple emission model based on the multidimensional Child-Langmuir law.

  8. Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free Electron Laser

    DEFF Research Database (Denmark)

    Lemke, Henrik T.; Bressler, Christian; Chen, Lin X.

    2013-01-01

    X-ray free electron lasers (XFELs) deliver short (current (SASE based) XFELs, they can be used for measuring high......-quality X-ray absorption data and we report femtosecond time-resolved X-ray absorption near-edge spectroscopy (XANES) measurements of a spin-crossover system, iron(II) tris(2,2'-bipyridine) in water. The data indicate that the low-spin to high-spin transition can be modeled by single-exponential kinetics...

  9. Transverse and temporal characteristics of a high-gain free-electron laser in the saturation regime

    CERN Document Server

    Huang Zhi Rong

    2002-01-01

    The transverse and the temporal characteristics of a high-gain free-electron laser are governed by refractive guiding and sideband instability, respectively. Using the self-consistent Vlasov-Maxwell equations, we explicitly determine the effective index of refraction and the guided radiation mode for an electron beam with arbitrary transverse size. Electrons trapped by the guided radiation execute synchrotron oscillation and hence are susceptible to the sideband instability. We explain the spectral evolution and determine the sideband growth rate. These theoretical predictions agree well with GINGER simulation results.

  10. Monitoring the electron beam position at the TESLA test facility free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Kamps, T

    2000-06-14

    The operation of a free electron laser working in the Self Amplified Spontaneous Emission mode (SASE FEL) requires the electron trajectory to be aligned with very high precision in overlap with the photon beam. In order to ensure this overlap, one module of the SASE FEL undulator at the TESLA Test Facility (TTF) is equipped with a new type of waveguide beam position monitor (BPM). Four waveguides are arranged symmetrically around the beam pipe, each channel couples through a small slot to the electromagnetic beam field. The induced signal depends on the beam intensity and on the transverse beam position in terms of beam-to-slot distance. With four slot--waveguide combinations a linear position sensitive signal can be achieved, which is independent of the beam intensity. The signals transduced by the slots are transferred by ridged waveguides through an impedance matching stage into a narrowband receiver tuned to 12 GHz. The present thesis describes design, tests, and implementation of this new type of BPM. (orig.)

  11. Laser-driven electron accelerators

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1981-01-01

    The following possibilities are discussed: inverse free electron laser (wiggler accelerator); inverse Cerenkov effect; plasma accelerator; dielectric tube; and grating linac. Of these, the grating acceleraton is considered the most attractive alternative

  12. A polarized look at nucleons: Laser electron gamma source

    International Nuclear Information System (INIS)

    1991-01-01

    As the title suggests we are going to look at reactions induced on nucleons by polarized photons. The results I am going to show today are from the Laser Electron Gamma Source, or ''LEGS'' facility, at Brookhaven National Laboratory. At LEGS, gamma ray beams are produced by backscattering laser light from relativistic electrons. I will only summarize the main characteristics of this facility, and leave an in depth description to Dr. Schaerf who will discuss LEGS and other similar backscattering facilities on Wednesday. Reactions with polarized photons inevitably reflect interference terms that for the most part remain hidden in spin-averaged unpolarized measurements. This provides a tool for probing interactions that depend upon spin. In particular, we are going to look today at two cases where the polarization is used to probe the tensor interaction. First, we will examine the tensor force between a proton-neutron pair in deuterium. Secondly, we will examine the tensor force between quarks in a proton that produces a small E2 component that is mixed with the predominantly M1 excitation of the delta resonance.The magnitude of this E2 components provides a sensitive probe of the structure of the Nucleon

  13. Microscopic study on lasing characteristics of the UVSOR storage ring free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Hama, H. [Institute for Molecular Science, Okazaki (Japan)]|[Graduate Univ. for Advanced Stuides, Okazaki (Japan); Yamazaki, J.; Kinoshita, T. [Institute for Molecular Science, Okazaki (Japan)] [and others

    1995-12-31

    Characteristics of storage ring free electron laser (SRFEL) at a short wavelength region (UV and visible) has been studied at the UVSOR facility, Institute for Molecular Science. We have measured the laser power evolution by using a biplanar photodiode, and the micro-macro temporal structure of both the laser and the electron bunch with a dualsweep streak camera. The saturated energy of the laser micropulse in the gain-switching (Q-switching) mode has been measured as a function of the ring current. We have not observed a limitation of the output power yet within the beam current can be stored. We have analyzed the saturated micropulse energy based on a model of gain reduction due to the bunch-heating. The bunch-heating process seems to be very complicate. We derived time dependent gain variations from the shape of macropulse and the bunch length. Those two gain variations are almost consistent with each other but slightly different in detail. The gain may be not only simply reduced by the energy spread but also affected by the phase space rotation due to synchrotron oscillation of the electron bunch. As reported in previous issue, the lasing macropulse consists of a couple of micropulses that are simultaneously evolved. From high resolution two-dimensional spectra taken by the dual-sweep streak camera, we noticed considerable internal substructures of the laser micropulse in both the time distribution and the spectral shape. There are a couple of peaks separated with almost same distance in a optical bunch. Such substructure does not seem to result from statistical fluctuations of laser seeds. Although the origin of the substructure of macropulse is not dear at the present, we are going to discuss about SRFEL properties.

  14. Pixel array detector for X-ray free electron laser experiments

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, Hugh T., E-mail: htp2@cornell.edu [Department of Physics, Laboratory of Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Hromalik, Marianne [Electrical and Computer Engineering, SUNY Oswego, Oswego, NY 13126 (United States); Tate, Mark; Koerner, Lucas [Department of Physics, Laboratory of Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M. [Department of Physics, Laboratory of Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Wilson Laboratory, Cornell University, CHESS, Ithaca, NY 14853 (United States)

    2011-09-01

    X-ray free electron lasers (XFELs) promise to revolutionize X-ray science with extremely high peak brilliances and femtosecond X-ray pulses. This will require novel detectors to fully realize the potential of these new sources. There are many current detector development projects aimed at the many challenges of meeting the XFEL requirements . This paper describes a pixel array detector (PAD) that has been developed for the Coherent X-ray Imaging experiment at the Linac Coherent Light Source (LCLS) at the SLAC National Laboratory . The detector features 14-bit in-pixel digitization; a 2-level in-pixel gain setting that can be used to make an arbitrary 2-D gain pattern that is adaptable to a particular experiment; the ability to handle instantaneous X-ray flux rates of 10{sup 17} photons per second; and continuous frames rates in excess of 120 Hz. The detector uses direct detection of X-rays in a silicon diode. The charge produced by the diode is integrated in a pixilated application specific integrated circuit (ASIC) which digitizes collected holes with single X-ray photon capability. Each ASIC is 194x185 pixels, each pixel is 110{mu}mx110{mu}m on a side. Each pixel can detect up to 2500 X-rays per frame in low-gain mode, yet easily detects single photons at high-gain. Cooled, single-chip detectors have been built and meet all the required specifications. SLAC National Laboratory is engaged in constructing a tiled, multi-chip 1516x1516 pixel detector.

  15. Theory of nonlinear harmonic generation in free-electron lasers with helical wigglers

    International Nuclear Information System (INIS)

    Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2007-05-01

    CoherentHarmonicGeneration (CHG), and in particularNonlinearHarmonicGeneration (NHG), is of importance for both short wavelength Free-Electron Lasers (FELs), in relation with the achievement of shorter wavelengths with a fixed electron-beam energy, and high-average power FEL resonators, in relation with destructive effects of higher harmonics radiation on mirrors. In this paper we present a treatment of NHG from helical wigglers with particular emphasis on the second harmonic. Our study is based on an exact analytical solution of Maxwell's equations, derived with the help of a Green's function method. In particular, we demonstrate that nonlinear harmonic generation (NHG) fromhelicalwigglers vanishes on axis. Our conclusion is in open contrast with results in literature, that include a kinematical mistake in the description of the electron motion. (orig.)

  16. Fireworks in noble gas clusters a first experiment with the new "free-electron laser"

    CERN Document Server

    2002-01-01

    An international group of scientists has published first experiments carried out using the new soft X-ray free-electron laser (FEL) at the research center DESY in Hamburg, Germany. Using small clusters of noble gas atoms, for the first time, researchers studied the interaction of matter with intense X-ray radiation from an FEL on extremely short time scales (1 page).

  17. A tunable electron beam source using trapping of electrons in a density down-ramp in laser wakefield acceleration.

    Science.gov (United States)

    Ekerfelt, Henrik; Hansson, Martin; Gallardo González, Isabel; Davoine, Xavier; Lundh, Olle

    2017-09-25

    One challenge in the development of laser wakefield accelerators is to demonstrate sufficient control and reproducibility of the parameters of the generated bunches of accelerated electrons. Here we report on a numerical study, where we demonstrate that trapping using density down-ramps allows for tuning of several electron bunch parameters by varying the properties of the density down-ramp. We show that the electron bunch length is determined by the difference in density before and after the ramp. Furthermore, the transverse emittance of the bunch is controlled by the steepness of the ramp. Finally, the amount of trapped charge depends both on the density difference and on the steepness of the ramp. We emphasize that both parameters of the density ramp are feasible to vary experimentally. We therefore conclude that this tunable electron accelerator makes it suitable for a wide range of applications, from those requiring short pulse length and low emittance, such as the free-electron lasers, to those requiring high-charge, large-emittance bunches to maximize betatron X-ray generation.

  18. Assessing the quantum physics impacts on future x-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Mark J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anisimov, Petr Mikhaylovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-06

    A new quantum mechanical theory of x-ray free electron lasers (XFELs) has been successfully developed that has placed LANL at the forefront of the understanding of quantum effects in XFELs. Our quantum theory describes the interaction of relativistic electrons with x-ray radiation in the periodic magnetic field of an undulator using the same mathematical formalism as classical XFEL theory. This places classical and quantum treatments on the same footing and allows for a continuous transition from one regime to the other eliminating the disparate analytical approaches previously used. Moreover, Dr. Anisimov, the architect of this new theory, is now considered a resource in the international FEL community for assessing quantum effects in XFELs.

  19. An infrared free-electron laser for the Chemical Dynamics Research Laboratory. Design report

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, D. [comp.

    1992-04-01

    This document describes a free-electron laser (FEL) proposed as part of the Chemical Dynamics Research Laboratory (CDRL), a user facility that also incorporates several advanced lasers of conventional design and two beamlines for the ALS. The FEL itself addresses the needs of the chemical sciences community for a high-brightness, tunable source covering a broad region of the infrared spectrum -- from 3 to 50 {mu}m. All of these sources, together with a variety of sophisticated experimental stations, will be housed in a new building to be located adjacent to the ALS. The radiation sources can be synchronized to permit powerful two-color, pump-probe experiments that will further our fundamental understanding of chemical dynamics at the molecular level, especially those aspects relevant to practical issues in combustion chemistry. The technical approach adopted in this design makes use of superconducting radiofrequency (SCRF) accelerating structures. The primary motivation for adopting this approach was to meet the user requirement for wavelength stability equal to one part in 10{sup 4}. Previous studies concluded that a wavelength stability of only one part in 10{sup 3} could be achieved with currently available room-temperature technology. In addition, the superconducting design operates in a continuous-wave (cw) mode and hence offers considerably higher average optical output power. It also allows for various pulse-gating configurations that will permit simultaneous multiuser operations. A summary of the comparative performance attainable with room-temperature and superconducting designs is given. The FEL described in this report provides a continuous train of 30-ps micropulses, with 100{mu}J of optical energy per micropulse, at a repetition rate of 6.1 MHz. The device can also deliver pulses at a cw repetition rate of 12.2 MHz, with a peak power of 50 {mu}J per micropulse. 70 ref.

  20. Control system for magnet power supplies for Novosibirsk free electron laser

    International Nuclear Information System (INIS)

    Velikanov, Y.M.; Veremeenko, V.F.; Vinokurov, N.A.; Galt, A.A.; Dovzhenko, B.A.; Kozak, V.R.; Kuper, E.A.; Medvedev, L.E.; Medvedko, A.S.; Serednyakov, S.S.

    2012-01-01

    A high-power free electron laser (FEL) based on the accelerator-recuperator principle is being built in Budker Institute (Russia). The magnetic system of the FEL is an important part of the installation. It consists of many magnetic elements of different types: bending magnets, quadrupole lenses and correctors. The windings of all these elements are fed from DC current power supplies. The power supply control system based on embedded intelligent controllers with the CAN-BUS interface is considered in detail. The control software structure and capabilities are described. Besides, the software tools for power supply diagnostics are described

  1. A high-power rf linear accelerator for FELS [free-electron lasers

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Watson, J.M.

    1987-01-01

    This paper describes the design of a high average current rf linear accelerator suitable for driving short-wavelength free-electron lasers (FEL). It is concluded that the design of a room-temperature rf linear acelerator that can meet the stringent requirements of a high-power short-wavelength FEL appears possible. The accelerator requires the use of an advanced photoelectric injector that is under development; the accelerator components, however, do not require appreciable development. At these large beam currents, low-frequency, large-bore room-temperature cavities can be highly efficient and give all specified performance with minimal risk. 20 refs

  2. Electron-beam-excited gas laser research

    International Nuclear Information System (INIS)

    Johnson, A.W.; Gerardo, J.B.; Patterson, E.L.; Gerber, R.A.; Rice, J.K.; Bingham, F.W.

    1975-01-01

    Net energy gain in laser fusion places requirements on the laser that are not realized by any existing laser. Utilization of relativistic electron beams (REB's), a relatively new source for the excitation of gas laser media, may lead to new lasers that could satisfy these requirements. Already REB's have been utilized to excite gas laser media and produce gas lasers that have not been produced as successfully any other way. Electron-beam-excitation has produced electronic-transition dimer lasers that have not yet been produced by any other excitation scheme (for example, Xe 2 / sup *(1)/, Kr:O(2 1 S)/sup 2/, KrF/sup *(3)/). In addition, REB's have initiated chemical reactions to produce HF laser radiation with unique and promising results. Relativistic-electron-beam gas-laser research is continuing to lead to new lasers with unique properties. Results of work carried out at Sandia Laboratories in this pioneering effort of electron-beam-excited-gas lasers are reviewed. (U.S.)

  3. Influence of an imperfect energy profile on a seeded free electron laser performance

    Directory of Open Access Journals (Sweden)

    Botao Jia

    2010-06-01

    Full Text Available A single-pass high-gain x-ray free electron laser (FEL calls for a high quality electron bunch. In particular, for a seeded FEL amplifier and for a harmonic generation FEL, the electron bunch initial energy profile uniformity is crucial for generating an FEL with a narrow bandwidth. After the acceleration, compression, and transportation, the electron bunch energy profile entering the undulator can acquire temporal nonuniformity. We study the influence of the electron bunch initial energy profile nonuniformity on the FEL performance. Intrinsically, for a harmonic generation FEL, the harmonic generation FEL in the final radiator starts with an electron bunch having energy modulation acquired in the previous stages, due to the FEL interaction at those FEL wavelengths and their harmonics. The influence of this electron bunch energy nonuniformity on the harmonic generation FEL in the final radiator is then studied.

  4. Investigation of betatron instability in a wiggler pumped ion-channel free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Raghavi, A [Physics Department, Payame Noor University, 19395-4697 (Iran, Islamic Republic of); Mehdian, H, E-mail: Raghavi@tmu.ac.ir, E-mail: Mehdian@tmu.ac.ir [Department of Physics, Teacher Training University, Tehran (Iran, Islamic Republic of)

    2011-10-15

    Betatron emission from an ion-channel free electron laser in the presence of a helical wiggler pump and in the high gain regime is studied. The dispersion relation and the frequency of betatron emission are derived. Growth rate is illustrated and maximum growth rate as a function of ion-channel density is considered. Finally, the relation between beam energy, the density of ion channel and the region of betatron emission is discussed.

  5. Observation of theoretical power saturation by the KHI free electron laser device

    International Nuclear Information System (INIS)

    Oda, Fumihiko; Yokoyama, Minoru; Kawai, Masayuki; Miura, Hidenori; Koike, Hidehito; Sobajima, Masaaki; Nomaru, Keiji; Kuroda, Haruo

    2002-01-01

    The saturation of free electron laser (FEL) output power by the KHI-FEL device was achieved on 3rd, October 2000 at the wavelength of 9.3 μm. The FEL device has operated thereafter successfully in the wavelength region between 4.0 and 16.0 μm. The macropulse average FEL power of 37.5 kW, which is the theoretical saturation level, has been obtained at the wavelength of 7.9 μm. The net FEL gain was estimated to be 16%. (author)

  6. Review of scientific cases and beamline technology for x-ray free-electron laser

    International Nuclear Information System (INIS)

    Yabashi, Makina

    2012-01-01

    We summarize the scientific cases and beamline technology for utilizing X-ray Free-Electron Lasers (XFELs). The scientific targets are classified into two categories: observation with ultrahigh spatio-temporal resolution and the creation of extreme states. As a representative of the former, the coherent diffraction imaging (CDI) method reveals the structure of non-crystalline samples with a single-shot exposure of the XFEL pulse. For the latter, nonlinear interactions between matter and short-wavelength radiation have been investigated. Combining optical lasers and XFEL with a pump and probe technique is a powerful tool for studying the ultrafast dynamics of materials. The state-of-the-art beamline technologies developed as SACLA are also introduced. (author)

  7. Wave mode instabilities in a two-stream free-electron laser with a background plasma

    International Nuclear Information System (INIS)

    Nadrifard, Shabnam; Maraghechi, B; Mohsenpour, T

    2013-01-01

    A theory is presented for a two-stream free-electron laser (FEL) with a background plasma. A dispersion relation (DR) for the unstable couplings of wave modes is derived using fluid formulation. This DR is solved numerically to find the unstable modes and their growth rate. The effect of the velocity difference of the two electron beams as well as the background plasma on the FEL resonance and the two-stream instability is studied. It is shown that their separate as well as combined effects can increase the growth rates. (paper)

  8. Tracking the ultrafast XUV optical properties of x-ray free-electron-laser heated matter with high-order harmonics

    Science.gov (United States)

    Williams, Gareth O.; Künzel, S.; Daboussi, S.; Iwan, B.; Gonzalez, A. I.; Boutu, W.; Hilbert, V.; Zastrau, U.; Lee, H. J.; Nagler, B.; Granados, E.; Galtier, E.; Heimann, P.; Barbrel, B.; Dovillaire, G.; Lee, R. W.; Dunn, J.; Recoules, V.; Blancard, C.; Renaudin, P.; de la Varga, A. G.; Velarde, P.; Audebert, P.; Merdji, H.; Zeitoun, Ph.; Fajardo, M.

    2018-02-01

    We present measurements of photon absorption by free electrons as a solid is transformed to plasma. A femtosecond x-ray free-electron laser is used to heat a solid, which separates the electron and ion heating time scales. The changes in absorption are measured with an independent probe pulse created through high-order-harmonic generation. We find an increase in electron temperature to have a relatively small impact on absorption, contrary to several predictions, whereas ion heating increases absorption. We compare the data to current theoretical and numerical approaches and find that a smoother electronic structure yields a better fit to the data, suggestive of a temperature-dependent electronic structure in warm dense matter.

  9. Formation of low time-bandwidth product, single-sided exponential optical pulses in free-electron laser oscillators

    NARCIS (Netherlands)

    MacLeod, A. M.; Yan, X.; Gillespie, W. A.; Knippels, G.M.H.; Oepts, D.; van der Meer, A. F. G.; Rella, C. W.; Smith, T. J.; Schwettman, H. A.

    2000-01-01

    The detailed shape of picosecond optical pulses from a free-electron laser (FEL) oscillator has been studied for various cavity detunings. For large values of the cavity detuning the optical pulse develops an exponential leading edge, with a time constant proportional to the applied cavity detuning

  10. High resolution beam profiling of X-ray free electron laser radiation by polymer imprint development.

    Science.gov (United States)

    Rösner, Benedikt; Döring, Florian; Ribič, Primož R; Gauthier, David; Principi, Emiliano; Masciovecchio, Claudio; Zangrando, Marco; Vila-Comamala, Joan; De Ninno, Giovanni; David, Christian

    2017-11-27

    High resolution metrology of beam profiles is presently a major challenge at X-ray free electron lasers. We demonstrate a characterization method based on beam imprints in poly (methyl methacrylate). By immersing the imprints formed at 47.8 eV into organic solvents, the regions exposed to the beam are removed similar to resist development in grayscale lithography. This allows for extending the sensitivity of the method by more than an order of magnitude compared to the established analysis of imprints created solely by ablation. Applying the Beer-Lambert law for absorption, the intensity distribution in a micron-sized focus can be reconstructed from one single shot with a high dynamic range, exceeding 10 3 . The procedure described here allows for beam characterization at free electron lasers revealing even faint beam tails, which are not accessible when using ablation imprint methods. We demonstrate the greatly extended dynamic range on developed imprints taken in focus of conventional Fresnel zone plates and spiral zone plates producing beams with a topological charge.

  11. Amorphous to crystalline phase transition in carbon induced by intense femtosecond x-ray free-electron laser pulses

    Czech Academy of Sciences Publication Activity Database

    Gaudin, J.; Peyrusse, O.; Chalupský, Jaromír; Toufarová, Martina; Vyšín, Luděk; Hájková, Věra; Sobierajski, R.; Burian, Tomáš; Dastjani-Farahani, S.; Graf, A.; Amati, M.; Gregoratti, L.; Hau-Riege, S.P.; Hoffmann, G.; Juha, Libor; Krzywinski, J.; London, R.A.; Moeller, S.; Sinn, H.; Schorb, S.; Störmer, M.; Tschentscher, T.; Vorlíček, Vladimír; Vu, H.; Bozek, J.; Bostedt, C.

    2012-01-01

    Roč. 86, č. 2 (2012), "024103-1"-"024103-7" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP108/11/1312; GA ČR GAP205/11/0571; GA ČR GAP208/10/2302; GA AV ČR IAAX00100903; GA MŠk EE.2.3.20.0087 Grant - others:OP VK 2 LaserGen(XE) CZ.1.07/2.3.00/20.0087 Institutional research plan: CEZ:AV0Z10100523 Keywords : amorphous carbon * phase transition * graphitization * x-ray laser * free-electron laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.767, year: 2012

  12. Saturable absorption of an X-ray free-electron-laser heated solid-density aluminum plasma

    Czech Academy of Sciences Publication Activity Database

    Rackstraw, D.S.; Ciricosta, O.; Vinko, S.M.; Barbrel, B.; Burian, Tomáš; Chalupský, Jaromír; Cho, B.I.; Chung, H.-K.; Dakovski, G.L.; Engelhorn, K.; Hájková, Věra; Heimann, P.; Holmes, M.; Juha, Libor; Krzywinski, J.; Lee, R. W.; Toleikis, S.; Turner, J.J.; Zastrau, U.; Wark, J. S.

    2015-01-01

    Roč. 114, č. 1 (2015), "015003-1"-"015003-5" ISSN 0031-9007 R&D Projects: GA ČR(CZ) GA14-29772S; GA MŠk(CZ) LG13029 Grant - others:AVČR(CZ) M100101221 Institutional support: RVO:68378271 Keywords : free electron laser * x-ray * ionization of plasmas Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 7.645, year: 2015

  13. Half-period optical pulse generation using a free-electron laser

    International Nuclear Information System (INIS)

    Jaroszynski, D.A.; Chaix, P.; Piovella, N.

    1995-01-01

    Recently there has been growth, in interest in non-equilibrium interaction of half-period long optical pulses with matter. To date the optical pulses have been produced by chopping out a half-period long segment from a longer pulse using a semiconductor switch driven by a femtosecond laser. In this paper we present new methods for producing tunable ultra-short optical pulses as short as half an optical period using a free-electron laser driven by electron bunches with a duration a fraction of an optical period. Two different methods relying on the production of coherent spontaneous emission will be described. In the first method we show that when a train of ultra-short optical pulses as short as one half period. We present calculations which show that the small signal gain is unimportant in the early stages of radiation build up in the cavity when the startup process is dominated by coherent spontaneous emission. To support our proposed method we present encouraging experimental results from the FELIX experiment in the Netherlands which show that interference effects between the coherent spontaneous optical pulses at start-up are very important. The second proposed method relies on the fact that coherent spontaneous emission mimics the undulations of electrons as they pass through the undulator. We show that ultra-short optical pulses are produced by coherent spontaneous emission when ultra-short electron bunches pass through an ultra-short undulator. We discuss the interesting case of such undulator radiation in the presence of an optical cavity and show that the optical pulse can be open-quotes tayloredclose quotes by simply adjusting the optical cavity desynchronism. The proposed methods may be realisable using existing rf driven FELs in the far-infrared

  14. Longitudinal phase space manipulation in energy recovering linac-driven free-electron lasers

    Directory of Open Access Journals (Sweden)

    P. Piot

    2003-03-01

    Full Text Available Energy recovering an electron beam after it has participated in a free-electron laser (FEL interaction can be quite challenging because of the substantial FEL-induced energy spread and the energy antidamping that occurs during deceleration. In the Jefferson Lab infrared FEL driver accelerator, such an energy recovery scheme was implemented by properly matching the longitudinal phase space throughout the recirculation transport by employing the so-called energy compression scheme. In the present paper, after presenting a single-particle dynamics approach of the method used to energy recover the electron beam, we report on experimental validation of the method obtained by measurements of the so-called “compression efficiency” and “momentum compaction” lattice transfer maps at different locations in the recirculation transport line. We also compare these measurements with numerical tracking simulations.

  15. Calculations of the self-amplified spontaneous emission performance of a free-electron laser

    International Nuclear Information System (INIS)

    Dejus, R. J.

    1999-01-01

    The linear integral equation based computer code (RON: Roger Oleg Nikolai), which was recently developed at Argonne National Laboratory, was used to calculate the self-amplified spontaneous emission (SASE) performance of the free-electron laser (FEL) being built at Argonne. Signal growth calculations under different conditions are used for estimating tolerances of actual design parameters. The radiation characteristics are discussed, and calculations using an ideal undulator magnetic field and a real measured magnetic field will be compared and discussed

  16. Optimization of power output and study of electron beam energy spread in a Free Electron Laser oscillator

    CERN Document Server

    Abramovich, A; Efimov, S; Gover, A; Pinhasi, Y; Yahalom, A

    2001-01-01

    Design of a multi-stage depressed collector for efficient operation of a Free Electron Laser (FEL) oscillator requires knowledge of the electron beam energy distribution. This knowledge is necessary to determine the voltages of the depressed collector electrodes that optimize the collection efficiency and overall energy conversion efficiency of the FEL. The energy spread in the electron beam is due to interaction in the wiggler region, as electrons enter the interaction region at different phases relative to the EM wave. This interaction can be simulated well by a three-dimensional simulation code such as FEL3D. The main adjustable parameters that determine the electron beam energy spread after interaction are the e-beam current, the initial beam energy, and the quality factor of the resonator out-coupling coefficient. Using FEL3D, we study the influence of these parameters on the available radiation power and on the electron beam energy distribution at the undulator exit. Simulations performed for I=1.5 A, E...

  17. Subharmonic buncher for the Los Alamos free-electron laser oscillator experiment

    International Nuclear Information System (INIS)

    Fraser, J.S.

    1983-01-01

    A high efficiency free-electron laser oscillator experiment is being constructed at Los Alamos National Laboratory. A buncher system has been designed to deliver 30-ps, 5-nC electron bunches to a 20-MeV standing-wave linac at the 60th subharmonic of the 1300-MHz accelerator frequency. The first 108.3-MHz buncher cavity accepts a 5-ns, 5-A peak current pulse from a triode gun. Following a 120-cm drift space, a second 108.3-MHz cavity is used, primarily to enhance the bunching of the trailing half of the bunch. A 1300-MHz cavity with 20-cm drift spaces at the each end completes the beamline components. The bunching process continues into the linac's first three accelerating cells. Two thin iron-shielded lenses and several large-diameter solenoids provide axial magnetic fields for radial focusing

  18. Self-field effects on electron dynamics in free-electron lasers with axial magnetic field

    International Nuclear Information System (INIS)

    Mirzanejhad, S.; Maraghechi, B.; Mohsenpour, T.

    2004-01-01

    A self-consistent method for the analysis of self-magnetic field for a free-electron laser with a one-dimensional helical wiggler and an axial guide magnetic field is presented. The equilibrium orbits and their stability, under the influence of self-electric and self-magnetic fields, are analyzed. New unstable orbits, in the first part of the Group I orbits and in the resonance region of the Group II orbits, are found. It is shown that an increase in the defocusing effect of self-fields will widen the unstable orbits. An anomalous self-field regime is found where an increase in the defocusing effect of self-fields can have stabilizing effect on the resonance region

  19. Operation of a free-electron laser from the extreme ultraviolet to the water window

    Science.gov (United States)

    Ackermann, W.; Asova, G.; Ayvazyan, V.; Azima, A.; Baboi, N.; Bähr, J.; Balandin, V.; Beutner, B.; Brandt, A.; Bolzmann, A.; Brinkmann, R.; Brovko, O. I.; Castellano, M.; Castro, P.; Catani, L.; Chiadroni, E.; Choroba, S.; Cianchi, A.; Costello, J. T.; Cubaynes, D.; Dardis, J.; Decking, W.; Delsim-Hashemi, H.; Delserieys, A.; di Pirro, G.; Dohlus, M.; Düsterer, S.; Eckhardt, A.; Edwards, H. T.; Faatz, B.; Feldhaus, J.; Flöttmann, K.; Frisch, J.; Fröhlich, L.; Garvey, T.; Gensch, U.; Gerth, Ch.; Görler, M.; Golubeva, N.; Grabosch, H.-J.; Grecki, M.; Grimm, O.; Hacker, K.; Hahn, U.; Han, J. H.; Honkavaara, K.; Hott, T.; Hüning, M.; Ivanisenko, Y.; Jaeschke, E.; Jalmuzna, W.; Jezynski, T.; Kammering, R.; Katalev, V.; Kavanagh, K.; Kennedy, E. T.; Khodyachykh, S.; Klose, K.; Kocharyan, V.; Körfer, M.; Kollewe, M.; Koprek, W.; Korepanov, S.; Kostin, D.; Krassilnikov, M.; Kube, G.; Kuhlmann, M.; Lewis, C. L. S.; Lilje, L.; Limberg, T.; Lipka, D.; Löhl, F.; Luna, H.; Luong, M.; Martins, M.; Meyer, M.; Michelato, P.; Miltchev, V.; Möller, W. D.; Monaco, L.; Müller, W. F. O.; Napieralski, O.; Napoly, O.; Nicolosi, P.; Nölle, D.; Nuñez, T.; Oppelt, A.; Pagani, C.; Paparella, R.; Pchalek, N.; Pedregosa-Gutierrez, J.; Petersen, B.; Petrosyan, B.; Petrosyan, G.; Petrosyan, L.; Pflüger, J.; Plönjes, E.; Poletto, L.; Pozniak, K.; Prat, E.; Proch, D.; Pucyk, P.; Radcliffe, P.; Redlin, H.; Rehlich, K.; Richter, M.; Roehrs, M.; Roensch, J.; Romaniuk, R.; Ross, M.; Rossbach, J.; Rybnikov, V.; Sachwitz, M.; Saldin, E. L.; Sandner, W.; Schlarb, H.; Schmidt, B.; Schmitz, M.; Schmüser, P.; Schneider, J. R.; Schneidmiller, E. A.; Schnepp, S.; Schreiber, S.; Seidel, M.; Sertore, D.; Shabunov, A. V.; Simon, C.; Simrock, S.; Sombrowski, E.; Sorokin, A. A.; Spanknebel, P.; Spesyvtsev, R.; Staykov, L.; Steffen, B.; Stephan, F.; Stulle, F.; Thom, H.; Tiedtke, K.; Tischer, M.; Toleikis, S.; Treusch, R.; Trines, D.; Tsakov, I.; Vogel, E.; Weiland, T.; Weise, H.; Wellhöfer, M.; Wendt, M.; Will, I.; Winter, A.; Wittenburg, K.; Wurth, W.; Yeates, P.; Yurkov, M. V.; Zagorodnov, I.; Zapfe, K.

    2007-06-01

    We report results on the performance of a free-electron laser operating at a wavelength of 13.7 nm where unprecedented peak and average powers for a coherent extreme-ultraviolet radiation source have been measured. In the saturation regime, the peak energy approached 170 µJ for individual pulses, and the average energy per pulse reached 70 µJ. The pulse duration was in the region of 10 fs, and peak powers of 10 GW were achieved. At a pulse repetition frequency of 700 pulses per second, the average extreme-ultraviolet power reached 20 mW. The output beam also contained a significant contribution from odd harmonics of approximately 0.6% and 0.03% for the 3rd (4.6 nm) and the 5th (2.75 nm) harmonics, respectively. At 2.75 nm the 5th harmonic of the radiation reaches deep into the water window, a wavelength range that is crucially important for the investigation of biological samples.

  20. Design Features of a Planar Hybrid/Permanent Magnet Strong Focusing Undulator for Free Electron Laser (FEL) And Synchrotron Radiation (SR) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tatchyn, Roman; /SLAC

    2011-09-09

    Insertion devices for Angstrom-wavelength Free Electron Laser (FEL) amplifiers driven by multi-GeV electron beams generally require distributed focusing substantially stronger than their own natural focusing fields. Over the last several years a wide variety of focusing schemes and configurations have been proposed for undulators of this class, ranging from conventional current-driven quadrupoles external to the undulator magnets to permanent magnet (PM) lattices inserted into the insertion device gap. In this paper we present design studies of a flexible high-field hybrid/PM undulator with strong superimposed planar PM focusing proposed for a 1.5 Angstrom Linac Coherent Light Source (LCLS) driven by an electron beam with a 1 mm-mr normalized emittance. Attainable field parameters, tuning modes, and potential applications of the proposed structure are discussed.

  1. Characteristics of focused soft X-ray free-electron laser beam determined by ablation of organic molecular solids

    Czech Academy of Sciences Publication Activity Database

    Chalupský, Jaromír; Juha, Libor; Kuba, J.; Cihelka, Jaroslav; Hájková, Věra; Koptyaev, Sergey; Krása, Josef; Velyhan, Andriy; Bergh, M.; Caleman, C.; Hajdu, J.; Bionta, R.M.; Chapman, H.; Hau-Riege, S.P.; London, R.A.; Jurek, M.; Krzywinski, J.; Nietubyc, R.; Pelka, J. B.; Sobierajski, R.; Meyer-ter-Vehn, J.; Tronnier, A.; Sokolowski-Tinten, K.; Stojanovic, N.; Tiedtke, K.; Toleikis, S.; Tschentscher, T.; Wabnitz, H.; Zastrau, U.

    2007-01-01

    Roč. 15, č. 10 (2007), s. 6036-6042 ISSN 1094-4087 R&D Projects: GA MŠk 1P04LA235; GA MŠk LC510; GA MŠk(CZ) LC528; GA AV ČR KAN300100702 Grant - others:GA MŠk(CZ) 1K05026 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z40400503 Keywords : free-electron laser * soft X-rays * focusing * beam profile * ablation threshold * laser-matter interaction Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.709, year: 2007

  2. New possibilities for using laser polarimetry technology to study electron paramagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, E V; Zapasskii, V S

    1982-01-01

    Optical methods of recording electron paramagnetic resonance which arose in the early 50's as applied to the problem of recording the magnetic resonance of excited atoms is at the present time widely used in studying the electron paramagnetic resonance of the ground and excited states of free atoms and paramagnetic centers in condensed media. At the present time attention is devoted to the additional possibilities of optical methods of electron paramagnetic resonance which are realized using laser sources.

  3. Statistical properties of single-mode emission in free-electron lasers

    International Nuclear Information System (INIS)

    Bertolotti, M.; Luks, A.; Perina, J.; Perinova, V.; Sibilia, C.

    1984-01-01

    The authors of this paper discuss the statistical properties of radiation produced in the free electron laser, in the case of singlemode emission when the system is used as an amplifier, with very small gain. The coherent states technique and the q-c number correspondence is employed, starting from the master-equation and obtaining the generalized Fokker-Planck equation for the anti-normal quasidistribution function. Solutions of Fokker-Planck equation provide the photocounting distribution and its factorial moments. No losses are included. It is shown that, in the short-time approximation, the radiation field exhibits antibunching, and that the photocounting distributions, when some suitable conditions on the field intensities are fulfilled, in the stationary regime shows a two-peak behavior, evidencing the existence of bistable states

  4. A conduction-cooled, 680-mm-long warm bore, 3-T Nb3Sn solenoid for a Cerenkov free electron laser

    OpenAIRE

    Wessel, Wilhelm A.J.; den Ouden, A.; Krooshoop, Hendrikus J.G.; ten Kate, Herman H.J.; Wieland, J.; van der Slot, Petrus J.M.

    1999-01-01

    A compact, cryocooler cooled Nb3Sn superconducting magnet system for a Cerenkov free electron laser has been designed, fabricated and tested. The magnet is positioned directly behind the electron gun of the laser system. The solenoidal field compresses and guides a tube-shaped 100 A, 500 kV electron beam. A two-stage GM cryocooler, equipped with a first generation ErNi5 regenerator, cools the epoxy impregnated solenoid down to the operating temperature of about 7.5 K. This leaves a conservati...

  5. Competition of electron-cyclotron maser and free-electron laser modes with combined solenoidal and longitudinal wiggler fields

    International Nuclear Information System (INIS)

    Lin, A.T.; Lin, C.

    1986-01-01

    A relativistic electron beam with a finite transverse dc momentum (β/sub perpendicular/ = 1/γ 0 ) passing through a region of combined uniform solenoidal and longitudinal wiggler magnetic fields is observed to convert 25% of its kinetic energy into coherent radiation at frequency ω = γ 2 0 (k/sub w/V 0 +Ω/sub c//γ 0 ) if the phase velocity of the generated wave is slightly above the speed of light. In this situation, the bunchings of the slow electron-cyclotron mode and free-electron laser modes with combined solenoidal and longitudinal wiggler fields (lowbitron) are observed to compensate each other, which gives rise to a finite threshold for lowbitron operation. In order to attain high efficiency, the wiggler strength of a lowbitron must substantially exceed the threshold

  6. Multi-dimensional optimization of a terawatt seeded tapered Free Electron Laser with a Multi-Objective Genetic Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Juhao, E-mail: jhwu@SLAC.Stanford.EDU [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Hu, Newman [Valley Christian High School, 100 Skyway Drive, San Jose, CA 95111 (United States); Setiawan, Hananiel [The Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Huang, Xiaobiao; Raubenheimer, Tor O. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Jiao, Yi [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Yu, George [Columbia University, New York, NY 10027 (United States); Mandlekar, Ajay [California Institute of Technology, Pasadena, CA 91125 (United States); Spampinati, Simone [Sincrotrone Trieste S.C.p.A. di interesse nazionale, Strada Statale 14-km 163,5 in AREA Science Park, 34149 Basovizza, Trieste (Italy); Fang, Kun [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Chu, Chungming [The Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Qiang, Ji [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2017-02-21

    There is a great interest in generating high-power hard X-ray Free Electron Laser (FEL) in the terawatt (TW) level that can enable coherent diffraction imaging of complex molecules like proteins and probe fundamental high-field physics. A feasibility study of producing such X-ray pulses was carried out employing a configuration beginning with a Self-Amplified Spontaneous Emission FEL, followed by a “self-seeding” crystal monochromator generating a fully coherent seed, and finishing with a long tapered undulator where the coherent seed recombines with the electron bunch and is amplified to high power. The undulator tapering profile, the phase advance in the undulator break sections, the quadrupole focusing strength, etc. are parameters to be optimized. A Genetic Algorithm (GA) is adopted for this multi-dimensional optimization. Concrete examples are given for LINAC Coherent Light Source (LCLS) and LCLS-II-type systems. Analytical estimate is also developed to cross check the simulation and optimization results as a quick and complimentary tool.

  7. Near-Infrared Free-Radical and Free-Radical-Promoted Cationic Photopolymerizations by In-Source Lighting Using Upconverting Glass.

    Science.gov (United States)

    Kocaarslan, Azra; Tabanli, Sevcan; Eryurek, Gonul; Yagci, Yusuf

    2017-11-13

    A method is presented for the initiation of free-radical and free-radical-promoted cationic photopolymerizations by in-source lighting in the near-infrared (NIR) region using upconverting glass (UCG). This approach utilizes laser irradiation of UCG at 975 nm in the presence of fluorescein (FL) and pentamethyldiethylene triamine (PMDETA). FL excited by light emitted from the UCG undergoes electron-transfer reactions with PMDETA to form free radicals capable of initiating polymerization of methyl methacrylate. To execute the corresponding free-radical-promoted cationic polymerization of cyclohexene oxide, isobutyl vinyl ether, and N-vinyl carbazole, it was necessary to use FL, dimethyl aniline (DMA), and diphenyliodonium hexafluorophosphate as sensitizer, coinitiator, and oxidant, respectively. Iodonium ions promptly oxidize DMA radicals formed to the corresponding cations. Thus, cationic polymerization with efficiency comparable to the conventional irradiation source was achieved. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Intense pulsed sources of ions and electrons produced by lasers; Sources pulsees intenses d'ions et d'electrons produites par laser

    Energy Technology Data Exchange (ETDEWEB)

    Bourrabier, G [Centre de Recherche de la C.S.F., Corbeville (France); Consoli, T; Slama, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-11-01

    We describe a device for the acceleration of the plasma burst produced by focusing a laser beam into a metal target. We extract the electrons and the ions from the plasma. The maximum current is around 2000 amperes during few microseconds. The study of the effect of the kind of the target on the characteristics of the current shows the great importance of the initial conditions that is the ionisation potential of the target and the energy laser. (authors) [French] On decrit un dispositif destine a accelerer la bouffee de plasma produite par focalisation d'un faisceau laser sur une cible solide. On extrait du plasma les electrons et les ions. Le courant maximum atteint pres de 2000 amperes pendant quelques microsecondes. L'etude de l'effet de la nature de la cible sur les caracteristiques du courant collecte, met en evidence l'importance des conditions initiales (potentiel d'ionisation de la cible, energie du laser). (auteurs)

  9. Simultaneous operation of a free-electron laser on two harmonically related wavelengths

    International Nuclear Information System (INIS)

    Burke, A.T.; Ride, S.K.

    1992-01-01

    The interaction of light waves at the fundamental and the third harmonic frequencies in a free-electron laser (FEL) oscillator is explored using the 1-D finite pulse mode-code BFELP. The code, which assumes that only the TEM 00 transverse mode is present at both harmonic frequencies, tracks the temporally-finite pulse electric field amplitudes of the fundamental and the third harmonic which interact with an rf-linac-generated electron micropulse inside a wiggler. The evolution of the pulse profiles, with possibly different mirror reflectivities at each frequency, after many passes through the wiggler and the optical resonator, has been generated for various initial conditions. Results include pulse-dependent third-harmonic coherent-spontaneous emission (CSE) with, and without, multiple-pass interference effects; the effects of sidebands at the fundamental on third-harmonic CSE; and, lasing competition between the fundamental and third harmonic in overlapping spatial regions of the electron micropulse

  10. Emittance Measurements from a Laser Driven Electron Injector

    Energy Technology Data Exchange (ETDEWEB)

    Reis, David A

    2003-07-28

    The Gun Test Facility (GTF) at the Stanford Linear Accelerator Center was constructed to develop an appropriate electron beam suitable for driving a short wavelength free electron laser (FEL) such as the proposed Linac Coherent Light Source (LCLS). For operation at a wavelength of 1.5 {angstrom}, the LCLS requires an electron injector that can produce an electron beam with approximately 1 {pi} mm-mrad normalized rms emittance with at least 1 nC of charge in a 10 ps or shorter bunch. The GTF consists of a photocathode rf gun, emittance-compensation solenoid, 3 m linear accelerator (linac), drive laser, and diagnostics to measure the beam. The rf gun is a symmetrized 1.6 cell, s-band high gradient, room temperature, photocathode structure. Simulations show that this gun when driven by a temporally and spatially shaped drive laser, appropriately focused with the solenoid, and further accelerated in linac can produce a beam that meets the LCLS requirements. This thesis describes the initial characterization of the laser and electron beam at the GTF. A convolved measurement of the relative timing between the laser and the rf phase in the gun shows that the jitter is less than 2.5 ps rms. Emittance measurements of the electron beam at 35 MeV are reported as a function of the (Gaussian) pulse length and transverse profile of the laser as well as the charge of the electron beam at constant phase and gradient in both the gun and linac. At 1 nC the emittance was found to be {approx} 13 {pi} mm-mrad for 5 ps and 8 ps long laser pulses. At 0.5 nC the measured emittance decreased approximately 20% in the 5 ps case and 40% in the 8 ps case. These measurements are between 40-80% higher than simulations for similar experimental conditions. In addition, the thermal emittance of the electron beam was measured to be 0.5 {pi} mm-mrad.

  11. Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam

    Science.gov (United States)

    Shen, Baifei; Bu, Zhigang; Xu, Jiancai; Xu, Tongjun; Ji, Liangliang; Li, Ruxin; Xu, Zhizhan

    2018-04-01

    Exploring vacuum birefringence with the station of extreme light at Shanghai Coherent Light Facility is considered. Laser pulses of intensity beyond 1023 W cm-2 are capable of polarizing the vacuum due to the ultra-strong electro-magnetic fields. The subtle difference of the vacuum refractive indexes along electric and magnetic fields leads to a birefringence effect for lights propagating through. The vacuum birefringence effect can now be captured by colliding a hard x-ray free electron laser (XFEL) beam with a high-power laser. The initial XFEL beam of pure linear polarization is predicated to gain a very small ellipticity after passing through the laser stimulated vacuum. Various interaction geometries are considered, showing that the estimated ellipticity lies between 1.8 × 10-10 and 10-9 for a 100 PW laser interacting with a 12.9 keV XFEL beam, approaching the threshold for todays’ polarity detection technique. The detailed experimental set-up is designed, including the polarimeter, the focusing compound refractive lens and the optical path. When taking into account the efficiencies of the x-ray instruments, it is found that about 10 polarization-flipped x-ray photons can be detected for a single shot for our design. Considering the background noise level, accumulating runs are necessary to obtain high confident measurement.

  12. Physically transparent formulation of a free-electron laser in the linear gain regime

    International Nuclear Information System (INIS)

    Barletta, W.A.; Sessler, A.M.; Yu, L.H.

    1992-08-01

    The recent 2-dimensional analytic theories of a free-electron laser (FEL) in the linear regime are reformulated in terms of three dimensionless ratios that describe the degree to which the characteristics of the electron beam deviate from the cold beam limit of a beam with no emittance or energy spread. In terms of these ratios, algebraic model equations of a fit that combines features of both of the 2-dimensional analyses are given as a convenient computational tool. Graphs of the FEL gain eigenvalue computed with the combined 2-D formulation illustrate that the gain and the output power at saturation are reduced from the 1-D value, when any of the ratios is larger than unity

  13. Los Alamos free-electron laser (FEL) rf system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Lynch, M.T.

    1985-01-01

    The FEL rf system was designed for 3.6-MW rf pulses from two klystrons to drive two linacs and one deflection cavity at 1300 MHz. Two 108.33-MHz subharmonic buncher cavities and one fundamental buncher were also built, each powered by a 5-kW amplifier. A single phase-coherent source drives the various amplifiers as well as the grid of the electron gun, which is pulsed at 21.67 MHz. The initial buncher system did not work as well as expected, and the first linac tank required more rf power than anticipated. The light output was extremely sensitive to amplitude and phase errors. More powerful klystrons were developed and installed, and a method was discovered for operating a single subharmonic buncher and allowing the first linac to complete the bunching process. This paper shows the actual configuration used to operate the laser and discusses future improvements

  14. Extreme-Ultraviolet Vortices from a Free-Electron Laser

    Directory of Open Access Journals (Sweden)

    Primož Rebernik Ribič

    2017-08-01

    Full Text Available Extreme-ultraviolet vortices may be exploited to steer the magnetic properties of nanoparticles, increase the resolution in microscopy, and gain insight into local symmetry and chirality of a material; they might even be used to increase the bandwidth in long-distance space communications. However, in contrast to the generation of vortex beams in the infrared and visible spectral regions, production of intense, extreme-ultraviolet and x-ray optical vortices still remains a challenge. Here, we present an in-situ and an ex-situ technique for generating intense, femtosecond, coherent optical vortices at a free-electron laser in the extreme ultraviolet. The first method takes advantage of nonlinear harmonic generation in a helical undulator, producing vortex beams at the second harmonic without the need for additional optical elements, while the latter one relies on the use of a spiral zone plate to generate a focused, micron-size optical vortex with a peak intensity approaching 10^{14}  W/cm^{2}, paving the way to nonlinear optical experiments with vortex beams at short wavelengths.

  15. Bremsstrahlung γ-ray generation by electrons from gas jets irradiated by laser pulses for radiographic testing

    International Nuclear Information System (INIS)

    Oishi, Yuji; Nayuki, Takuya; Zhidkov, Alexei; Fujii, Takashi; Nemoto, Koshichi

    2012-01-01

    Electron generation from a gas jet irradiated by low energy femtosecond laser pulses is studied experimentally as a promising source of radiation for radioisotope-free γ-ray imaging systems. The calculated yield of γ-rays in the 0.5-2 MeV range, produced by low-average-power lasers and gas targets, exceeds the yields from solid tape targets up to 60 times. In addition, an effect of quasi-mono energetic electrons on γ-ray imaging is also discussed.

  16. Statistical and coherence properties of radiation from X-ray free electron lasers

    International Nuclear Information System (INIS)

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2009-12-01

    We describe statistical and coherence properties of the radiation from X-ray free electron lasers (XFEL). It is shown that the X-ray FEL radiation before saturation is described with gaussian statistics. Particularly important is the case of the optimized X-ray FEL, studied in detail. Applying similarity techniques to the results of numerical simulations allowed us to find universal scaling relations for the main characteristics of an X-ray FEL operating in the saturation regime: efficiency, coherence time and degree of transverse coherence. We find that with an appropriate normalization of these quantities, they are functions of only the ratio of the geometrical emittance of the electron beam to the radiation wavelength. Statistical and coherence properties of the higher harmonics of the radiation are highlighted as well. (orig.)

  17. Statistical and coherence properties of radiation from X-ray free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E L; Schneidmiller, E A; Yurkov, M V

    2009-12-15

    We describe statistical and coherence properties of the radiation from X-ray free electron lasers (XFEL). It is shown that the X-ray FEL radiation before saturation is described with gaussian statistics. Particularly important is the case of the optimized X-ray FEL, studied in detail. Applying similarity techniques to the results of numerical simulations allowed us to find universal scaling relations for the main characteristics of an X-ray FEL operating in the saturation regime: efficiency, coherence time and degree of transverse coherence. We find that with an appropriate normalization of these quantities, they are functions of only the ratio of the geometrical emittance of the electron beam to the radiation wavelength. Statistical and coherence properties of the higher harmonics of the radiation are highlighted as well. (orig.)

  18. Bremsstrahlung hard x-ray source driven by an electron beam from a self-modulated laser wakefield accelerator

    Science.gov (United States)

    Lemos, N.; Albert, F.; Shaw, J. L.; Papp, D.; Polanek, R.; King, P.; Milder, A. L.; Marsh, K. A.; Pak, A.; Pollock, B. B.; Hegelich, B. M.; Moody, J. D.; Park, J.; Tommasini, R.; Williams, G. J.; Chen, Hui; Joshi, C.

    2018-05-01

    An x-ray source generated by an electron beam produced using a Self-Modulated Laser Wakefield Accelerator (SM-LWFA) is explored for use in high energy density science facilities. By colliding the electron beam, with a maximum energy of 380 MeV, total charge of >10 nC and a divergence of 64 × 100 mrad, from a SM-LWFA driven by a 1 ps 120 J laser, into a high-Z foil, an x/gamma-ray source was generated. A broadband bremsstrahlung energy spectrum with temperatures ranging from 0.8 to 2 MeV was measured with an almost 2 orders of magnitude flux increase when compared with other schemes using LWFA. GEANT4 simulations were done to calculate the source size and divergence.

  19. The SLAC polarized electron source

    International Nuclear Information System (INIS)

    Tang, H.; Alley, R.; Frisch, J.

    1995-06-01

    The SLAC polarized electron source employs a photocathode DC high voltage gun with a loadlock and a YAG pumped Ti:sapphire laser system for colliding beam experiments or a flash lamp pumped Ti:sapphire laser for fixed target experiments. It uses a thin, strained GaAs(100) photocathode, and is capable of producing a pulsed beam with a polarization of ≥80% and a peak current exceeding 10 A. Its operating efficiency has reached 99%. The physics and technology of producing high polarization electron beams from a GaAs photocathode will be reviewed. The prospects of realizing a polarized electron source for future linear colliders will also be discussed

  20. Recirculating accelerator driver for a high-power free-electron laser: A design overview

    International Nuclear Information System (INIS)

    Bohn, C.L.

    1997-01-01

    Jefferson Lab is building a free-electron laser (FEL) to produce continuous-wave (cw), kW-level light at 3-6 μm wavelength. A superconducting linac will drive the laser, generating a 5 mA average current, 42 MeV energy electron beam. A transport lattice will recirculate the beam back to the linac for deceleration and conversion of about 75% of its power into rf power. Bunch charge will range up to 135 pC, and bunch lengths will range down to 1 ps in parts of the transport lattice. Accordingly, space charge in the injector and coherent synchrotron radiation in magnetic bends come into play. The machine will thus enable studying these phenomena as a precursor to designing compact accelerators of high-brightness beams. The FEL is scheduled to be installed in its own facility by 1 October 1997. Given the short schedule, the machine design is conservative, based on modifications of the CEBAF cryomodule and MIT-Bates transport lattice. This paper surveys the machine design

  1. Recirculating accelerator driver for a high-power free-electron laser: A design overview

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, C.L. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    1997-06-01

    Jefferson Lab is building a free-electron laser (FEL) to produce continuous-wave (cw), kW-level light at 3-6 {mu}m wavelength. A superconducting linac will drive the laser, generating a 5 mA average current, 42 MeV energy electron beam. A transport lattice will recirculate the beam back to the linac for deceleration and conversion of about 75% of its power into rf power. Bunch charge will range up to 135 pC, and bunch lengths will range down to 1 ps in parts of the transport lattice. Accordingly, space charge in the injector and coherent synchrotron radiation in magnetic bends come into play. The machine will thus enable studying these phenomena as a precursor to designing compact accelerators of high-brightness beams. The FEL is scheduled to be installed in its own facility by 1 October 1997. Given the short schedule, the machine design is conservative, based on modifications of the CEBAF cryomodule and MIT-Bates transport lattice. This paper surveys the machine design.

  2. Nonlinear optics with coherent free electron lasers

    Science.gov (United States)

    Bencivenga, F.; Capotondi, F.; Mincigrucci, R.; Cucini, R.; Manfredda, M.; Pedersoli, E.; Principi, E.; Simoncig, A.; Masciovecchio, C.

    2016-12-01

    We interpreted the recent construction of free electron laser (FELs) facilities worldwide as an unprecedented opportunity to bring concepts and methods from the scientific community working with optical lasers into the domain of x-ray science. This motivated our efforts towards the realization of FEL-based wave-mixing applications. In this article we present new extreme ultraviolet transient grating (X-TG) data from vitreous SiO2, collected using two crossed FEL pulses (photon frequency 38 eV) to generate the X-TG and a phase matched optical probing pulse (photon frequency 3.1 eV). This experiment extends our previous investigation, which was carried out on a nominally identical sample using a different FEL photon frequency (45 eV) to excite the X-TG. The present data are featured by a peak intensity of the X-TG signal substantially larger than that previously reported and by slower modulations of the X-TG signal at positive delays. These differences could be ascribed to the different FEL photon energy used in the two experiments or to differences in the sample properties. A systematic X-TG study on the same sample as a function of the FEL wavelength is needed to draw a consistent conclusion. We also discuss how the advances in the performance of the FELs, in terms of generation of fully coherent photon pulses and multi-color FEL emission, may push the development of original experimental strategies to study matter at the femtosecond-nanometer time-length scales, with the unique option of element and chemical state specificity. This would allow the development of advanced experimental tools based on wave-mixing processes, which may have a tremendous impact in the study of a large array of phenomena, ranging from nano-dynamics in complex materials to charge and energy transfer processes.

  3. Higher-order harmonics coupling in different free-electron laser codes

    Science.gov (United States)

    Giannessi, L.; Freund, H. P.; Musumeci, P.; Reiche, S.

    2008-08-01

    The capability for simulation of the dynamics of a free-electron laser including the higher-order harmonics in linear undulators exists in several existing codes as MEDUSA [H.P. Freund, S.G. Biedron, and S.V. Milton, IEEE J. Quantum Electron. 27 (2000) 243; H.P. Freund, Phys. Rev. ST-AB 8 (2005) 110701] and PERSEO [L. Giannessi, Overview of Perseo, a system for simulating FEL dynamics in Mathcad, , in: Proceedings of FEL 2006 Conference, BESSY, Berlin, Germany, 2006, p. 91], and has been recently implemented in GENESIS 1.3 [See ]. MEDUSA and GENESIS also include the dynamics of even harmonics induced by the coupling through the betatron motion. In addition MEDUSA, which is based on a non-wiggler averaged model, is capable of simulating the generation of even harmonics in the transversally cold beam regime, i.e. when the even harmonic coupling arises from non-linear effects associated with longitudinal particle dynamics and not to a finite beam emittance. In this paper a comparison between the predictions of the codes in different conditions is given.

  4. High-resolution in-source laser spectroscopy in perpendicular geometry

    Energy Technology Data Exchange (ETDEWEB)

    Heinke, R., E-mail: reinhard.heinke@uni-mainz.de; Kron, T. [Universität Mainz, Institut für Physik (Germany); Raeder, S. [Helmholtz-Institut Mainz (Germany); Reich, T.; Schönberg, P. [Universität Mainz, Institut für Kernchemie (Germany); Trümper, M.; Weichhold, C.; Wendt, K. [Universität Mainz, Institut für Physik (Germany)

    2017-11-15

    Operation of the novel laser ion source unit LIST (Laser Ion Source and Trap), operating at the on-line radioactive ion beam facility ISOLDE at CERN allowed for the production of ultra-pure beams of exotic isotopes far-off stability as well as direct isobar-free laser spectroscopy, giving access to the study of atomic and nuclear properties of so far inaccessible nuclides. We present a specific upgrade and adaption of the LIST targeted for high resolution spectroscopy with a Doppler-reduced perpendicular atom - laser beam geometry. With this PI-LIST (Perpendicularly Illuminated Laser Ion Source and Trap) setup, experimental linewidths below 100 MHz could be demonstrated in optical laser spectroscopy off-line, applying a pulsed injection-locked high repetition rate Ti:sapphire laser. A dual repeller configuration ensured highest suppression of isobaric interferences and almost background-free measurements on small samples in the order of 10{sup 11} atoms.

  5. WavePropaGator: interactive framework for X-ray free-electron laser optics design and simulations.

    Science.gov (United States)

    Samoylova, Liubov; Buzmakov, Alexey; Chubar, Oleg; Sinn, Harald

    2016-08-01

    This article describes the WavePropaGator ( WPG ) package, a new interactive software framework for coherent and partially coherent X-ray wavefront propagation simulations. The package has been developed at European XFEL for users at the existing and emerging free-electron laser (FEL) facilities, as well as at the third-generation synchrotron sources and future diffraction-limited storage rings. The WPG addresses the needs of beamline scientists and user groups to facilitate the design, optimization and improvement of X-ray optics to meet their experimental requirements. The package uses the Synchrotron Radiation Workshop ( SRW ) C/C++ library and its Python binding for numerical wavefront propagation simulations. The framework runs reliably under Linux, Microsoft Windows 7 and Apple Mac OS X and is distributed under an open-source license. The available tools allow for varying source parameters and optics layouts and visualizing the results interactively. The wavefront history structure can be used for tracking changes in every particular wavefront during propagation. The batch propagation mode enables processing of multiple wavefronts in workflow mode. The paper presents a general description of the package and gives some recent application examples, including modeling of full X-ray FEL beamlines and start-to-end simulation of experiments.

  6. Feasibility analysis for attosecond X-ray pulses at FERMI@ELETTRA free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, Alexander

    2004-09-01

    We present preliminary analysis for the feasibility of the attosecond x-ray pulses at a proposed FERMI@ELETTRA free electron laser (FEL) [1]. In part 1 we restrict ourselves to minimal modifications to the proposed FEL and consider a scheme for attosecond x-ray production which can be qualified as a small add-on to a primary facility. We demonstrate that at 5-nm wavelength our scheme is capable for production of pulses with an approximate duration of 100 attoseconds at approximately 2 MW peak power and with an absolute temporal synchronization to a pump laser pulse. In part 2 we propose to use an FEL amplifier seeded by a VUV signal and to follow it by the scheme for attosecond x-ray production described in part 1.

  7. Traveling waves in a free-electron laser with an electromagnetic wiggler

    International Nuclear Information System (INIS)

    Olumi, Mohsen; Maraghechi, B; Rouhani, M H

    2011-01-01

    The propagation of electromagnetic traveling wave in a free-electron laser (FEL) with an electromagnetic wiggler is investigated using the relativistic fluid-Maxwell formulation. By adapting the traveling-wave ansatz, three coupled, nonlinear ordinary differential equations are obtained describing the nonlinear propagation of the coupled wave. These equations may be used to study saturation in FELs. By linearizing the nonlinear equations dispersion relations for the traveling wave are obtained. Numerical solution of the small-signal traveling dispersion relation reveals the coupling of radiation to both slow and fast space-charge waves. It is shown that the traveling wave, which is not a normal mode in a laboratory frame, becomes a normal mode in terms of a transformed variable.

  8. Commissioning of the JAERI free electron laser

    International Nuclear Information System (INIS)

    Minehara, E.J.; Nagai, R.; Sawamura, M.

    1993-01-01

    We have developed, and constructed a prototype for a quasi-cw, and high-average power free electron laser driven by a 15MeV superconducting rf linac at Tokai, JAERI. In designing a high power FEL, there are many available design options to generate the required power output. By applying the superconducting rf linac driver, some of the options relating to the FEL itself may be relaxed by transferring design difficulties to the driver. Because wall losses become minimal in the superconducting accelerator cavity, very long pulse or quasi-cw, and resultant high average power may be readily attained at the JAERI superconducting rf linac FEL. In 1992 Japanese fiscal year, we have successfully demonstrated better cryogenic (stand-by loss<3.5W at 4.5K) and accelerating fields' performances (Eacc=7-9.4MV/m and Q=1-2x10+9) of four JAERI superconducting accelerator modules, and installed them in the FEL accelerator vault. In 1993, Optical resonators and beam transport systems, which have been already assembled, are now under commissioning. A description and the latest results of the JAERI super-conducting rf linac FEL will be discussed in comparison with a normal-conducting one, and reported in the symposium. (author)

  9. Criterion of transverse coherence of self-amplified spontaneous emission in high gain free electron laser amplifiers

    International Nuclear Information System (INIS)

    Xie, M.; Kim, K.J.

    1995-01-01

    In a high gain free electron laser amplifier based on Self-Amplified Spontaneous Emission (SASE) the spontaneous radiation generated by an electron beam near the undulator entrance is amplified many orders of magnitude along the undulator. The transverse coherence properties of the amplified radiation depends on both the amplification process and the coherence of the seed radiation (the undulator radiation generated in the first gain length or so). The evolution of the transverse coherence in the amplification process is studied based on the solution of the coupled Maxwell-Vlasov equations including higher order transverse modes. The coherence of the seed radiation is determined by the number of coherent modes in the phase space area of the undulator radiation. We discuss the criterion of transverse coherence and identify governing parameters over a broad range of parameters. In particular we re-examine the well known emittance criterion for the undulator radiation, which states that full transverse coherence is guaranteed if the rms emittance is smaller than the wavelength divided by 4π. It is found that this criterion is modified for SASE because of the different optimization conditions required for the electron beam. Our analysis is a generalization of the previous study by Yu and Krinsky for the case of vanishing emittance with parallel electron beam. Understanding the transverse coherence of SASE is important for the X-ray free electron laser projects now under consideration at SLAC and DESY

  10. The Study of Advanced Accelerator Physics Research at UCLA Using the ATF at BNL: Vacuum Acceleration by Laser of Free Electrons

    International Nuclear Information System (INIS)

    Cline, David B.

    2016-01-01

    An experiment was designed and data were taken to demonstrate that a tightly focused laser on vacuum can accelerate an electron beam in free space. The experiment was proof-of-principle and showed a clear effect for the laser beam off and on. The size of the effect was about 20% and was consistent over 30 laser and beam shots.

  11. Tenth international free electron laser conference, kibbutz Ramat Rachel, Jerusalem, Israel, August 29 - September 2, 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The volume contains over a hundred abstracts of lectures covering a wide variety of subjects in the field of free electron lasers. Many features of lasing were observed over a range of problems, and experiments which resulted in finding ideal or near-ideal techniques for gaining better and more efficient optical power have been carried out

  12. Modeling and multidimensional optimization of a tapered free electron laser

    Directory of Open Access Journals (Sweden)

    Y. Jiao

    2012-05-01

    Full Text Available Energy extraction efficiency of a free electron laser (FEL can be greatly increased using a tapered undulator and self-seeding. However, the extraction rate is limited by various effects that eventually lead to saturation of the peak intensity and power. To better understand these effects, we develop a model extending the Kroll-Morton-Rosenbluth, one-dimensional theory to include the physics of diffraction, optical guiding, and radially resolved particle trapping. The predictions of the model agree well with that of the GENESIS single-frequency numerical simulations. In particular, we discuss the evolution of the electron-radiation interaction along the tapered undulator and show that the decreasing of refractive guiding is the major cause of the efficiency reduction, particle detrapping, and then saturation of the radiation power. With this understanding, we develop a multidimensional optimization scheme based on GENESIS simulations to increase the energy extraction efficiency via an improved taper profile and variation in electron beam radius. We present optimization results for hard x-ray tapered FELs, and the dependence of the maximum extractable radiation power on various parameters of the initial electron beam, radiation field, and the undulator system. We also study the effect of the sideband growth in a tapered FEL. Such growth induces increased particle detrapping and thus decreased refractive guiding that together strongly limit the overall energy extraction efficiency.

  13. Polarized electron sources

    International Nuclear Information System (INIS)

    Clendenin, J.E.

    1995-05-01

    Polarized electron sources for high energy accelerators took a significant step forward with the introduction of a new laser-driven photocathode source for the SLC in 1992. With an electron beam polarization of >80% and with ∼99% uptime during continuous operation, this source is a key factor in the success of the current SLC high-energy physics program. The SLC source performance is used to illustrate both the capabilities and the limitations of solid-state sources. The beam requirements for future colliders are similar to that of the SLC with the addition in most cases of multiple-bunch operation. A design for the next generation accelerator source that can improve the operational characteristics and at least minimize some of the inherent limitations of present sources is presented. Finally, the possibilities for producing highly polarized electron beams for high-duty-factor accelerators are discussed

  14. The relationship between optical guiding and the relative phase in free-electron lasers

    International Nuclear Information System (INIS)

    Freund, H.P.; Antonsen, T.M. Jr.

    1991-01-01

    In this paper the relationship between the relative phase and optical guiding in the free-electron laser is studied. The relative phase in this case is defined as the shift in the wavenumber from the vacuum value integrated over the interaction length. In terms of the optical guiding of the signal in free-electron lasers, the relative phase must be positive in order for refractive guiding of the signal to occur. The relative phase is studied from the standpoint of the linear stability analysis in both the high- and low-gain regimes, and the qualitative implications in each of these regimes of the relative phase on the refractive guiding of the signal are identical. Specifically, the relative phase is found to be negative at the low-frequency over this band until it turns positive at a frequency approximately 10% below the frequency of peak gain. Thus optical guiding is indicated over a large portion, but not all, of the gain band. A quantitative measure of the optical guiding of the signal is obtained by an analytic formulation of the guiding of the signal. This formulation is based upon a separable beam approximation in which the evolution of the signal is determined by a Green's function analysis. The specific example of interest involves the low-gain regime prior to saturation. In this case, it is shown that the analytic result is in substantial agreement with the calculation of the relative phase

  15. High-brightness electron source driven by laser

    International Nuclear Information System (INIS)

    Zhao Kui; Geng Rongli; Wang Lifang

    1996-01-01

    A DC high-brightness laser driven by photo emissive electron gun is being developed at Beijing University, in order to produce 50∼100 ps electron bunches of high quality. The gun consists of a photocathode preparation chamber and a DC acceleration cavity. Different ways of fabricating photocathode, such as chemical vapor deposition, ion beam implantation and ion beam enhanced deposition, can be adopted. The acceleration gap is designed with the aid of simulation codes EGUN and POISSON. 100 kV DC high voltage is fed to the anode through a careful designed ceramic insulator. The laser system is a mode locked Nd-YAG oscillator proceeded by an amplifier at 10 Hz repetition rate, which can deliver three different wavelength (1064/532/266 nm). The combination of a superconducting cavity with the photocathode preparation chamber is discussed

  16. Thomson scattering from near-solid density plasmas using soft x-ray free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Holl, A; Bornath, T; Cao, L; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gregori, G; Laarmann, T; Meiwes-Broer, K H; Przystawik, A; Radcliffe, P; Redmer, R; Reinholz, H; Ropke, G; Thiele, R; Tiggesbaumker, J; Toleikis, S; Truong, N X; Tschentscher, T; Uschmann, I; Zastrau, U

    2006-11-21

    We propose a collective Thomson scattering experiment at the VUV free electron laser facility at DESY (FLASH) which aims to diagnose warm dense matter at near-solid density. The plasma region of interest marks the transition from an ideal plasma to a correlated and degenerate many-particle system and is of current interest, e.g. in ICF experiments or laboratory astrophysics. Plasma diagnostic of such plasmas is a longstanding issue. The collective electron plasma mode (plasmon) is revealed in a pump-probe scattering experiment using the high-brilliant radiation to probe the plasma. The distinctive scattering features allow to infer basic plasma properties. For plasmas in thermal equilibrium the electron density and temperature is determined from scattering off the plasmon mode.

  17. Generation of strong electromagnetic power at 35 GHz from the interaction of a resonant cavity with a relativistic electron beam generated by a free electron laser

    International Nuclear Information System (INIS)

    Lefevre, Thibaut

    2000-01-01

    The next generation of electron-positron linear colliders must reach the TeV energy range. For this, one requires an adequate RF power source to feed the accelerating cavities of the collider. One way to generate this source is to use the Two Beam Accelerator concept in which the RF power is produced in resonant cavities driven by an intense bunched beam. In this thesis, I present the experimental results obtained at the CEA/CESTA using an electron beam generated by an induction linac. First, some studies were performed with the LELIA induction linac (2.2 MeV, 1 kA, 80 ns) using a Free Electron Laser (FEL) as a buncher at 35 GHz. A second part relates the experiment made with the PIVAIR induction linac (7 MeV, 1 kA, 80 ns) in order to measure the RF power extracted from a resonant cavity at 35 GHz, which is driven by the bunches produced in the FEL. One can also find a simple theoretical modeling of the beam-cavity interaction, and the numerical results dealing with the design of the cavity we tested. (author) [fr

  18. Optical transition radiation measurements for the Los Alamos and Boeing Free-Electron Laser experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Feldman, R.B.; Feldman, D.W.; Apgar, S.A.; Calsten, B.E.; Fiorito, R.B.; Rule, D.W.

    1988-01-01

    Optical transition radiation (OTR) measurements of the electron-beam emittance have been performed at a location just before the wiggler in the Los Alamos Free-Electron Laser (FEL) experiment. Beam profiles and beam divergence patterns from a single macropulse were recorded simultaneously using two intensified charge-injection device (CID) television cameras and an optical beamsplitter. Both single-foil OTR and two-foil OTR interference experiments were performed. Preliminary results are compared to a reference variable quadrupole, single screen technique. New aspects of using OTR properties for pointing the e-beam on the FEL oscillator axis, as well as measuring e-beam emittance are addressed. 7 refs., 9 figs.

  19. A ferroelectric electron gun in a free-electron maser experiment

    International Nuclear Information System (INIS)

    Einat, M.; Jerby, E.; Rosenman, G.

    2002-01-01

    An electron-gun based on a ferroelectric cathode is studied in a free-electron maser (FEM) experiment. In this gun, the electrons are separated from the cathode surface plasma, and are accelerated in two stages. The electron energy-spread is reduced sufficiently for an FEM operation in the microwave regime. A 14 keV, 1-2 A e-beam is obtained in a 0.1-2.1 μs pulse width. The pulse repetition frequency attains 3.1 MHz in ∼50% duty-cycle. This gun is implemented in an FEM oscillator experiment operating around 3 GHz. The paper presents experimental results and discusses the applicability of ferroelectric guns in free-electron laser devices

  20. A ferroelectric electron gun in a free-electron maser experiment

    CERN Document Server

    Einat, M; Rosenman, G

    2002-01-01

    An electron-gun based on a ferroelectric cathode is studied in a free-electron maser (FEM) experiment. In this gun, the electrons are separated from the cathode surface plasma, and are accelerated in two stages. The electron energy-spread is reduced sufficiently for an FEM operation in the microwave regime. A 14 keV, 1-2 A e-beam is obtained in a 0.1-2.1 mu s pulse width. The pulse repetition frequency attains 3.1 MHz in approx 50% duty-cycle. This gun is implemented in an FEM oscillator experiment operating around 3 GHz. The paper presents experimental results and discusses the applicability of ferroelectric guns in free-electron laser devices.