WorldWideScience

Sample records for frataxin deficiency reveals

  1. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Sophie [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); ED515 UPMC, 4 place Jussieu 75005 Paris (France); Sliwa, Dominika [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Rustin, Pierre [Inserm, U676, Physiopathology and Therapy of Mitochondrial Disease Laboratory, 75019 Paris (France); Universite Paris-Diderot, Faculte de Medecine Denis Diderot, IFR02 Paris (France); Camadro, Jean-Michel [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Santos, Renata, E-mail: santos.renata@ijm.univ-paris-diderot.fr [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  2. Nitric oxide accumulation is required to protect against iron-mediated oxidative stress in frataxin-deficient Arabidopsis plants.

    Science.gov (United States)

    Martin, Mariana; Colman, María José Rodríguez; Gómez-Casati, Diego F; Lamattina, Lorenzo; Zabaleta, Eduardo Julián

    2009-02-04

    Frataxin is a mitochondrial protein that is conserved throughout evolution. In yeast and mammals, frataxin is essential for cellular iron (Fe) homeostasis and survival during oxidative stress. In plants, frataxin deficiency causes increased reactive oxygen species (ROS) production and high sensitivity to oxidative stress. In this work we show that a knock-down T-DNA frataxin-deficient mutant of Arabidopsis thaliana (atfh-1) contains increased total and organellar Fe levels. Frataxin deficiency leads also to nitric oxide (NO) accumulation in both, atfh-1 roots and frataxin null mutant yeast. Abnormally high NO production might be part of the defence mechanism against Fe-mediated oxidative stress.

  3. Frataxin Deficiency Promotes Excess Microglial DNA Damage and Inflammation that Is Rescued by PJ34.

    Directory of Open Access Journals (Sweden)

    Yan Shen

    Full Text Available An inherited deficiency in the frataxin protein causes neurodegeneration of the dorsal root ganglia and Friedreich's ataxia (FA. Frataxin deficiency leads to oxidative stress and inflammatory changes in cell and animal models; however, the cause of the inflammatory changes, and especially what causes brain microglial activation is unclear. Here we investigated: 1 the mechanism by which frataxin deficiency activates microglia, 2 whether a brain-localized inflammatory stimulus provokes a greater microglial response in FA animal models, and 3 whether an anti-inflammatory treatment improves their condition. Intracerebroventricular administration of LPS induced higher amounts of microglial activation in the FA mouse model vs controls. We also observed an increase in oxidative damage in the form of 8-oxoguanine (8-oxo-G and the DNA repair proteins MUTYH and PARP-1 in cerebellar microglia of FA mutant mice. We hypothesized that frataxin deficiency increases DNA damage and DNA repair genes specifically in microglia, activating them. siRNA-mediated frataxin knockdown in microglial BV2 cells clearly elevated DNA damage and the expression of DNA repair genes MUTYH and PARP-1. Frataxin knockdown also induced a higher level of PARP-1 in MEF cells, and this was suppressed in MUTYH-/- knockout cells. Administration of the PARP-1 inhibitor PJ34 attenuated the microglial activation induced by intracerebroventricular injection of LPS. The combined administration of LPS and angiotensin II provoke an even stronger activation of microglia and neurobehavioral impairment. PJ34 treatment attenuated the neurobehavioral impairments in FA mice. These results suggest that the DNA repair proteins MUTYH and PARP-1 may form a pathway regulating microglial activation initiated by DNA damage, and inhibition of microglial PARP-1 induction could be an important therapeutic target in Friedreich's ataxia.

  4. Frataxin Silencing Inactivates Mitochondrial Complex I in NSC34 Motoneuronal Cells and Alters Glutathione Homeostasis

    Directory of Open Access Journals (Sweden)

    Barbara Carletti

    2014-04-01

    Full Text Available Friedreich’s ataxia (FRDA is a hereditary neurodegenerative disease characterized by a reduced synthesis of the mitochondrial iron chaperon protein frataxin as a result of a large GAA triplet-repeat expansion within the first intron of the frataxin gene. Despite neurodegeneration being the prominent feature of this pathology involving both the central and the peripheral nervous system, information on the impact of frataxin deficiency in neurons is scant. Here, we describe a neuronal model displaying some major biochemical and morphological features of FRDA. By silencing the mouse NSC34 motor neurons for the frataxin gene with shRNA lentiviral vectors, we generated two cell lines with 40% and 70% residual amounts of frataxin, respectively. Frataxin-deficient cells showed a specific inhibition of mitochondrial Complex I (CI activity already at 70% residual frataxin levels, whereas the glutathione imbalance progressively increased after silencing. These biochemical defects were associated with the inhibition of cell proliferation and morphological changes at the axonal compartment, both depending on the frataxin amount. Interestingly, at 70% residual frataxin levels, the in vivo treatment with the reduced glutathione revealed a partial rescue of cell proliferation. Thus, NSC34 frataxin silenced cells could be a suitable model to study the effect of frataxin deficiency in neurons and highlight glutathione as a potential beneficial therapeutic target for FRDA.

  5. Mitochondrial dysfunction induced by frataxin deficiency is associated with cellular senescence and abnormal calcium metabolism

    Directory of Open Access Journals (Sweden)

    Arantxa eBolinches-Amorós

    2014-05-01

    Full Text Available Friedreich ataxia is considered a neurodegenerative disorder involving both the peripheral and central nervous systems. Dorsal root ganglia (DRG are the major target tissue structures. This neuropathy is caused by mutations in the FXN gene that encodes frataxin. Here, we investigated the mitochondrial and cell consequences of frataxin depletion in a cellular model based on frataxin silencing in SH-SY5Y human neuroblastoma cells, a cell line that has been used widely as in vitro models for studies on neurological diseases. We showed that the reduction of frataxin induced mitochondrial dysfunction due to a bioenergetic deficit and abnormal Ca2+ homeostasis in the mitochondria that were associated with oxidative and endoplasmic reticulum stresses. The depletion of frataxin did not cause cell death but increased autophagy, which may have a cytoprotective effect against cellular insults such as oxidative stress. Frataxin silencing provoked slow cell growth associated with cellular senescence, as demonstrated by increased SA-βgal activity and cell cycle arrest at the G1 phase. We postulate that cellular senescence might be related to a hypoplastic defect in the DRG during neurodevelopment, as suggested by necropsy studies.

  6. Reversible Axonal Dystrophy by Calcium Modulation in Frataxin-Deficient Sensory Neurons of YG8R Mice

    Directory of Open Access Journals (Sweden)

    Belén Mollá

    2017-08-01

    Full Text Available Friedreich’s ataxia (FRDA is a peripheral neuropathy involving a loss of proprioceptive sensory neurons. Studies of biopsies from patients suggest that axonal dysfunction precedes the death of proprioceptive neurons in a dying-back process. We observed that the deficiency of frataxin in sensory neurons of dorsal root ganglia (DRG of the YG8R mouse model causes the formation of axonal spheroids which retain dysfunctional mitochondria, shows alterations in the cytoskeleton and it produces impairment of axonal transport and autophagic flux. The homogenous distribution of axonal spheroids along the neurites supports the existence of continues focal damages. This lead us to propose for FRDA a model of distal axonopathy based on axonal focal damages. In addition, we observed the involvement of oxidative stress and dyshomeostasis of calcium in axonal spheroid formation generating axonal injury as a primary cause of pathophysiology. Axonal spheroids may be a consequence of calcium imbalance, thus we propose the quenching or removal extracellular Ca2+ to prevent spheroids formation. In our neuronal model, treatments with BAPTA and o-phenanthroline reverted the axonal dystrophy and the mitochondrial dysmorphic parameters. These results support the hypothesis that axonal pathology is reversible in FRDA by pharmacological manipulation of intracellular Ca2+ with Ca2+ chelators or metalloprotease inhibitors, preventing Ca2+-mediated axonal injury. Thus, the modulation of Ca2+ levels may be a relevant therapeutic target to develop early axonal protection and prevent dying-back neurodegeneration.

  7. Apn1 AP-endonuclease is essential for the repair of oxidatively damaged DNA bases in yeast frataxin-deficient cells.

    Science.gov (United States)

    Lefevre, Sophie; Brossas, Caroline; Auchère, Françoise; Boggetto, Nicole; Camadro, Jean-Michel; Santos, Renata

    2012-09-15

    Frataxin deficiency results in mitochondrial dysfunction and oxidative stress and it is the cause of the hereditary neurodegenerative disease Friedreich ataxia (FA). Here, we present evidence that one of the pleiotropic effects of oxidative stress in frataxin-deficient yeast cells (Δyfh1 mutant) is damage to nuclear DNA and that repair requires the Apn1 AP-endonuclease of the base excision repair pathway. Major phenotypes of Δyfh1 cells are respiratory deficit, disturbed iron homeostasis and sensitivity to oxidants. These phenotypes are weak or absent under anaerobiosis. We show here that exposure of anaerobically grown Δyfh1 cells to oxygen leads to down-regulation of antioxidant defenses, increase in reactive oxygen species, delay in G1- and S-phases of the cell cycle and damage to mitochondrial and nuclear DNA. Nuclear DNA lesions in Δyfh1 cells are primarily caused by oxidized bases and single-strand breaks that can be detected 15-30 min after oxygen exposition. The Apn1 enzyme is essential for the repair of the DNA lesions in Δyfh1 cells. Compared with Δyfh1, the double Δyfh1Δapn1 mutant shows growth impairment, increased mutagenesis and extreme sensitivity to H(2)O(2). On the contrary, overexpression of the APN1 gene in Δyfh1 cells decreases spontaneous and induced mutagenesis. Our results show that frataxin deficiency in yeast cells leads to increased DNA base oxidation and requirement of Apn1 for repair, suggesting that DNA damage and repair could be important features in FA disease progression.

  8. Development of frataxin gene expression measures for the evaluation of experimental treatments in Friedreich's ataxia.

    Directory of Open Access Journals (Sweden)

    Heather L Plasterer

    Full Text Available BACKGROUND: Friedreich ataxia is a progressive neurodegenerative disorder caused by GAA triplet repeat expansions or point mutations in the FXN gene and, ultimately, a deficiency in the levels of functional frataxin protein. Heterozygous carriers of the expansion express approximately 50% of normal frataxin levels yet manifest no clinical symptoms, suggesting that therapeutic approaches that increase frataxin may be effective even if frataxin is raised only to carrier levels. Small molecule HDAC inhibitor compounds increase frataxin mRNA and protein levels, and have beneficial effects in animal models of FRDA. METHODOLOGY/PRINCIPAL FINDINGS: To gather data supporting the use of frataxin as a therapeutic biomarker of drug response we characterized the intra-individual stability of frataxin over time, determined the contribution of frataxin from different components of blood, compared frataxin measures in different cell compartments, and demonstrated that frataxin increases are achieved in peripheral blood mononuclear cells. Frataxin mRNA and protein levels were stable with repeated sampling over four and 15 weeks. In the 15-week study, the average CV was 15.6% for protein and 18% for mRNA. Highest levels of frataxin in blood were in erythrocytes. As erythrocytes are not useful for frataxin assessment in many clinical trial situations, we confirmed that PBMCs and buccal swabs have frataxin levels equivalent to those of whole blood. In addition, a dose-dependent increase in frataxin was observed when PBMCs isolated from patient blood were treated with HDACi. Finally, higher frataxin levels predicted less severe neurological dysfunction and were associated with slower rates of neurological change. CONCLUSIONS/SIGNIFICANCE: Our data support the use of frataxin as a biomarker of drug effect. Frataxin levels are stable over time and as such a 1.5 to 2-fold change would be detectable over normal biological fluctuations. Additionally, our data support

  9. Structure-Function Analysis of Friedreich's Ataxia Mutants Reveals Determinants of Frataxin Binding and Activation of the Fe-S Assembly Complex

    Energy Technology Data Exchange (ETDEWEB)

    Bridwell-Rabb, Jennifer; Winn, Andrew M; Barondeau, David P [TAM

    2012-08-01

    Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease associated with the loss of function of the protein frataxin (FXN) that results from low FXN levels due to a GAA triplet repeat expansion or, occasionally, from missense mutations in the FXN gene. Here biochemical and structural properties of FXN variants, including three FRDA missense mutations (N146K, Q148R, and R165C) and three related mutants (N146A, Q148G, and Q153A), were determined in an effort to understand the structural basis for the loss of function. In vitro assays revealed that although the three FRDA missense mutations exhibited similar losses of cysteine desulfurase and Fe-S cluster assembly activities, the causes for these activation defects were distinct. The R165C variant exhibited a kcat/KM higher than that of native FXN but weak binding to the NFS1, ISD11, and ISCU2 (SDU) complex, whereas the Q148R variant exhibited the lowest kcat/KM of the six tested FXN variants and only a modest binding deficiency. The order of the FXN binding affinities for the SDU Fe-S assembly complex was as follows: FXN > Q148R > N146A > Q148G > N146K > Q153A > R165C. Four different classes of FXN variants were identified on the basis of their biochemical properties. Together, these structure-function studies reveal determinants for the binding and allosteric activation of the Fe-S assembly complex and provide insight into how FRDA missense mutations are functionally compromised.

  10. Frataxin and Mitochondrial FeS Cluster Biogenesis*

    Science.gov (United States)

    Stemmler, Timothy L.; Lesuisse, Emmanuel; Pain, Debkumar; Dancis, Andrew

    2010-01-01

    Friedreich ataxia is an inherited neurodegenerative disease caused by frataxin deficiency. Frataxin is a conserved mitochondrial protein that plays a role in FeS cluster assembly in mitochondria. FeS clusters are modular cofactors that perform essential functions throughout the cell. They are synthesized by a multistep and multisubunit mitochondrial machinery that includes the scaffold protein Isu for assembling a protein-bound FeS cluster intermediate. Frataxin interacts with Isu, iron, and the cysteine desulfurase Nfs1, which supplies sulfide, thus placing it at the center of mitochondrial FeS cluster biosynthesis. PMID:20522547

  11. Time-resolved functional analysis of acute impairment of frataxin expression in an inducible cell model of Friedreich ataxia

    Directory of Open Access Journals (Sweden)

    Dörte Poburski

    2016-05-01

    Full Text Available Friedreich ataxia is a neurodegenerative disease caused by a GAA triplet repeat expansion in the first intron of the frataxin gene, which results in reduced expression levels of the corresponding protein. Despite numerous animal and cellular models, therapeutic options that mechanistically address impaired frataxin expression are lacking. Here, we have developed a new mammalian cell model employing the Cre/loxP recombination system to induce a homozygous or heterozygous frataxin knockout in mouse embryonic fibroblasts. Induction of Cre-mediated disruption by tamoxifen was successfully tested on RNA and protein levels. After loss of frataxin protein, cell division, aconitase activity and oxygen consumption rates were found to be decreased, while ROS production was increased in the homozygous state. By contrast, in the heterozygous state no such changes were observed. A time-resolved analysis revealed the loss of aconitase activity as an initial event after induction of complete frataxin deficiency, followed by secondarily elevated ROS production and a late increase in iron content. Initial impairments of oxygen consumption and ATP production were found to be compensated in the late state and seemed to play a minor role in Friedreich ataxia pathophysiology. In conclusion and as predicted from its proposed role in iron sulfur cluster (ISC biosynthesis, disruption of frataxin primarily causes impaired function of ISC-containing enzymes, whereas other consequences, including elevated ROS production and iron accumulation, appear secondary. These parameters and the robustness of the newly established system may additionally be used for a time-resolved study of pharmacological candidates in a HTS manner.

  12. Deficiency in frataxin homologue YFH1 in the yeast Pichia guilliermondii leads to missregulation of iron acquisition and riboflavin biosynthesis and affects sulfate assimilation.

    Science.gov (United States)

    Pynyaha, Yuriy V; Boretsky, Yuriy R; Fedorovych, Daria V; Fayura, Lubov R; Levkiv, Andriy I; Ubiyvovk, Vira M; Protchenko, Olha V; Philpott, Caroline C; Sibirny, Andriy A

    2009-12-01

    Pichia guilliermondii is a representative of yeast species that overproduce riboflavin (vitamin B2) in response to iron deprivation. P. guilliermondii YFH1 gene coding for frataxin homologue, eukaryotic mitochondrial protein involved in iron trafficking and storage, was identified and deleted. Constructed P. guilliermondii Δyfh1 mutant grew very poorly in a sucrose-containing synthetic medium supplemented with sulfate or sulfite as a sole sulfur source. Addition of sodium sulfide, glutathione, cysteine, methionine, N-acetyl-L-cysteine partially restored growth rate of the mutant suggesting that it is impaired in sulfate assimilation. Cellular iron content in Δyfh1 mutant was ~3-3.5 times higher as compared to the parental strain. It produced 50-70 times more riboflavin in iron sufficient synthetic media relative to the parental wildtype strain. Biomass yield of the mutant in the synthetic glutathione containing medium supplemented with glycerol as a sole carbon source was 1.4- and 2.6-fold increased as compared to sucrose and succinate containing media, respectively. Oxygen uptake of the Δyfh1 mutant on sucrose, glycerol or succinate, when compared to the parental strain, was decreased 5.5-, 1.7- and 1.5-fold, respectively. Substitution of sucrose or glycerol in the synthetic iron sufficient medium with succinate completely abolished riboflavin overproduction by the mutants. Deletion of the YFH1 gene caused hypersensitivity to hydrogen peroxide and exogenously added riboflavin and led to alterations in superoxide dismutase activities. Thus, deletion of the gene coding for yeast frataxin homologue has pleiotropic effect on metabolism in P. guilliermondii.

  13. Mesenchymal stem cells restore frataxin expression and increase hydrogen peroxide scavenging enzymes in Friedreich ataxia fibroblasts.

    Directory of Open Access Journals (Sweden)

    Kevin Kemp

    Full Text Available Dramatic advances in recent decades in understanding the genetics of Friedreich ataxia (FRDA--a GAA triplet expansion causing greatly reduced expression of the mitochondrial protein frataxin--have thus far yielded no therapeutic dividend, since there remain no effective treatments that prevent or even slow the inevitable progressive disability in affected individuals. Clinical interventions that restore frataxin expression are attractive therapeutic approaches, as, in theory, it may be possible to re-establish normal function in frataxin deficient cells if frataxin levels are increased above a specific threshold. With this in mind several drugs and cytokines have been tested for their ability to increase frataxin levels. Cell transplantation strategies may provide an alternative approach to this therapeutic aim, and may also offer more widespread cellular protective roles in FRDA. Here we show a direct link between frataxin expression in fibroblasts derived from FRDA patients with both decreased expression of hydrogen peroxide scavenging enzymes and increased sensitivity to hydrogen peroxide-mediated toxicity. We demonstrate that normal human mesenchymal stem cells (MSCs induce both an increase in frataxin gene and protein expression in FRDA fibroblasts via secretion of soluble factors. Finally, we show that exposure to factors produced by human MSCs increases resistance to hydrogen peroxide-mediated toxicity in FRDA fibroblasts through, at least in part, restoring the expression of the hydrogen peroxide scavenging enzymes catalase and glutathione peroxidase 1. These findings suggest, for the first time, that stem cells may increase frataxin levels in FRDA and transplantation of MSCs may offer an effective treatment for these patients.

  14. Frataxin directly stimulates mitochondrial cysteine desulfurase by exposing substrate-binding sites, and a mutant Fe-S cluster scaffold protein with frataxin-bypassing ability acts similarly.

    Science.gov (United States)

    Pandey, Alok; Gordon, Donna M; Pain, Jayashree; Stemmler, Timothy L; Dancis, Andrew; Pain, Debkumar

    2013-12-27

    For iron-sulfur (Fe-S) cluster synthesis in mitochondria, the sulfur is derived from the amino acid cysteine by the cysteine desulfurase activity of Nfs1. The enzyme binds the substrate cysteine in the pyridoxal phosphate-containing site, and a persulfide is formed on the active site cysteine in a manner depending on the accessory protein Isd11. The persulfide is then transferred to the scaffold Isu, where it combines with iron to form the Fe-S cluster intermediate. Frataxin is implicated in the process, although it is unclear where and how, and deficiency causes Friedreich ataxia. Using purified proteins and isolated mitochondria, we show here that the yeast frataxin homolog (Yfh1) directly and specifically stimulates cysteine binding to Nfs1 by exposing substrate-binding sites. This novel function of frataxin does not require iron, Isu1, or Isd11. Once bound to Nfs1, the substrate cysteine is the source of the Nfs1 persulfide, but this step is independent of frataxin and strictly dependent on Isd11. Recently, a point mutation in Isu1 was found to bypass many frataxin functions. The data presented here show that the Isu1 suppressor mimics the frataxin effects on Nfs1, explaining the bypassing activity. We propose a regulatory mechanism for the Nfs1 persulfide-forming activity. Specifically, at least two separate conformational changes must occur in the enzyme for optimum activity as follows: one is mediated by frataxin interaction that exposes the "buried" substrate-binding sites, and the other is mediated by Isd11 interaction that brings the bound substrate cysteine and the active site cysteine in proximity for persulfide formation.

  15. Infections Revealing Complement Deficiency in Adults

    Science.gov (United States)

    Audemard-Verger, A.; Descloux, E.; Ponard, D.; Deroux, A.; Fantin, B.; Fieschi, C.; John, M.; Bouldouyre, A.; Karkowsi, L.; Moulis, G.; Auvinet, H.; Valla, F.; Lechiche, C.; Davido, B.; Martinot, M.; Biron, C.; Lucht, F.; Asseray, N.; Froissart, A.; Buzelé, R.; Perlat, A.; Boutboul, D.; Fremeaux-Bacchi, V.; Isnard, S.; Bienvenu, B.

    2016-01-01

    Abstract Complement system is a part of innate immunity, its main function is to protect human from bacterial infection. As genetic disorders, complement deficiencies are often diagnosed in pediatric population. However, complement deficiencies can also be revealed in adults but have been poorly investigated. Herein, we describe a case series of infections revealing complement deficiency in adults to study clinical spectrum and management of complement deficiencies. A nationwide retrospective study was conducted in French university and general hospitals in departments of internal medicine, infectious diseases enrolling patients older than 15 years old who had presented at least one infection leading to a complement deficiency diagnosis. Forty-one patients included between 2002 and 2015 in 19 different departments were enrolled in this study. The male-to-female ratio was 1.3 and the mean age at diagnosis was 28 ± 14 (15–67) years. The main clinical feature was Neisseria meningitidis meningitis 75% (n = 31/41) often involving rare serotype: Y (n = 9) and W 135 (n = 7). The main complement deficiency observed was the common final pathway deficiency 83% (n = 34/41). Half of the cohort displayed severe sepsis or septic shock at diagnosis (n = 22/41) but no patient died. No patient had family history of complement deficiency. The mean follow-up was 1.15 ± 1.95 (0.1–10) years. Half of the patients had already suffered from at least one infection before diagnosis of complement deficiency: meningitis (n = 13), pneumonia (n = 4), fulminans purpura (n = 1), or recurrent otitis (n = 1). Near one-third (n = 10/39) had received prophylactic antibiotics (cotrimoxazole or penicillin) after diagnosis of complement deficiency. The vaccination coverage rate, at the end of the follow-up, for N meningitidis, Streptococcus pneumonia, and Haemophilius influenzae were, respectively, 90% (n = 33/37), 47% (n = 17/36), and 35

  16. Structural characterization of metal binding to a cold-adapted frataxin.

    Science.gov (United States)

    Noguera, Martín E; Roman, Ernesto A; Rigal, Juan B; Cousido-Siah, Alexandra; Mitschler, André; Podjarny, Alberto; Santos, Javier

    2015-06-01

    Frataxin is an evolutionary conserved protein that participates in iron metabolism. Deficiency of this small protein in humans causes a severe neurodegenerative disease known as Friedreich's ataxia. A number of studies indicate that frataxin binds iron and regulates Fe-S cluster biosynthesis. Previous structural studies showed that metal binding occurs mainly in a region of high density of negative charge. However, a comprehensive characterization of the binding sites is required to gain further insights into the mechanistic details of frataxin function. In this work, we have solved the X-ray crystal structures of a cold-adapted frataxin from a psychrophilic bacterium in the presence of cobalt or europium ions. We have identified a number of metal-binding sites, mainly solvent exposed, several of which had not been observed in previous studies on mesophilic homologues. No major structural changes were detected upon metal binding, although the structures exhibit significant changes in crystallographic B-factors. The analysis of these B-factors, in combination with crystal packing and RMSD among structures, suggests the existence of localized changes in the internal motions. Based on these results, we propose that bacterial frataxins possess binding sites of moderate affinity for a quick capture and transfer of iron to other proteins and for the regulation of Fe-S cluster biosynthesis, modulating interactions with partner proteins.

  17. Frataxin Is Localized to Both the Chloroplast and Mitochondrion and Is Involved in Chloroplast Fe-S Protein Function in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Valeria R Turowski

    Full Text Available Frataxin plays a key role in eukaryotic cellular iron metabolism, particularly in mitochondrial heme and iron-sulfur (Fe-S cluster biosynthesis. However, its precise role has yet to be elucidated. In this work, we studied the subcellular localization of Arabidopsis frataxin, AtFH, using confocal microscopy, and found a novel dual localization for this protein. We demonstrate that plant frataxin is targeted to both the mitochondria and the chloroplast, where it may play a role in Fe-S cluster metabolism as suggested by functional studies on nitrite reductase (NIR and ferredoxin (Fd, two Fe-S containing chloroplast proteins, in AtFH deficient plants. Our results indicate that frataxin deficiency alters the normal functioning of chloroplasts by affecting the levels of Fe, chlorophyll, and the photosynthetic electron transport chain in this organelle.

  18. Neurodegeneration in Friedreich’s Ataxia: From Defective Frataxin to Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Cláudio M. Gomes

    2013-01-01

    Full Text Available Friedreich’s ataxia is the most common inherited autosomal recessive ataxia and is characterized by progressive degeneration of the peripheral and central nervous systems and cardiomyopathy. This disease is caused by the silencing of the FXN gene and reduced levels of the encoded protein, frataxin. Frataxin is a mitochondrial protein that functions primarily in iron-sulfur cluster synthesis. This small protein with an α/β sandwich fold undergoes complex processing and imports into the mitochondria, generating isoforms with distinct N-terminal lengths which may underlie different functionalities, also in respect to oligomerization. Missense mutations in the FXN coding region, which compromise protein folding, stability, and function, are found in 4% of FRDA heterozygous patients and are useful to understand how loss of functional frataxin impacts on FRDA physiopathology. In cells, frataxin deficiency leads to pleiotropic phenotypes, including deregulation of iron homeostasis and increased oxidative stress. Increasing amount of data suggest that oxidative stress contributes to neurodegeneration in Friedreich’s ataxia.

  19. Molecular Details of the Yeast Frataxin-Isu1 Interaction during Mitochondrial Fe-S Cluster Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.; Kondapalli, K; Rawat, S; Childs, W; Murugesan, Y; Dancis, A; Stemmler, T

    2010-01-01

    Frataxin, a conserved nuclear-encoded mitochondrial protein, plays a direct role in iron-sulfur cluster biosynthesis within the ISC assembly pathway. Humans with frataxin deficiency have Friedreich's ataxia, a neurodegenerative disorder characterized by mitochondrial iron overload and disruption in Fe-S cluster synthesis. Biochemical and genetic studies have shown frataxin interacts with the iron-sulfur cluster assembly scaffold protein (in yeast, there are two, Isu1 and Isu2), indicating frataxin plays a direct role in cluster assembly, possibly by serving as an iron chaperone in the assembly pathway. Here we provide molecular details of how yeast frataxin (Yfh1) interacts with Isu1 as a structural module to improve our understanding of the multiprotein complex assembly that completes Fe-S cluster assembly; this complex also includes the cysteine desulfurase (Nfs1 in yeast) and the accessory protein (Isd11), together in the mitochondria. Thermodynamic binding parameters for protein partner and iron binding were measured for the yeast orthologs using isothermal titration calorimetry. Nuclear magnetic resonance spectroscopy was used to provide the molecular details to understand how Yfh1 interacts with Isu1. X-ray absorption studies were used to electronically and structurally characterize how iron is transferred to Isu1 and then incorporated into an Fe-S cluster. These results were combined with previously published data to generate a structural model for how the Fe-S cluster protein assembly complex can come together to accomplish Fe-S cluster assembly.

  20. Novel frataxin isoforms may contribute to the pathological mechanism of Friedreich ataxia.

    Directory of Open Access Journals (Sweden)

    Haiyan Xia

    Full Text Available Friedreich ataxia (FRDA is an inherited neurodegenerative disease caused by frataxin (FXN deficiency. The nervous system and heart are the most severely affected tissues. However, highly mitochondria-dependent tissues, such as kidney and liver, are not obviously affected, although the abundance of FXN is normally high in these tissues. In this study we have revealed two novel FXN isoforms (II and III, which are specifically expressed in affected cerebellum and heart tissues, respectively, and are functional in vitro and in vivo. Increasing the abundance of the heart-specific isoform III significantly increased the mitochondrial aconitase activity, while over-expression of the cerebellum-specific isoform II protected against oxidative damage of Fe-S cluster-containing aconitase. Further, we observed that the protein level of isoform III decreased in FRDA patient heart, while the mRNA level of isoform II decreased more in FRDA patient cerebellum compared to total FXN mRNA. Our novel findings are highly relevant to understanding the mechanism of tissue-specific pathology in FRDA.

  1. A structural and functional homolog supports a general role for frataxin in cellular iron chemistry.

    Science.gov (United States)

    Qi, Wenbin; Cowan, J A

    2010-02-07

    Bacillus subtilis YdhG lacks sequence homology, but demonstrates structural and functional similarity to the frataxin family, supporting a general cellular role for frataxin-type proteins in cellular iron homeostasis.

  2. Lateral-flow Immunoassay for the Frataxin Protein in Friedreich’s Ataxia Patients and Carriers

    Science.gov (United States)

    Willis, John H.; Isaya, Grazia; Gakh, Oleksandr; Capaldi, Roderick A.; Marusich, Michael F.

    2008-01-01

    Friedreich’s Ataxia (FA) is an inherited neurodegenerative disease caused by reduction in levels of the mitochondrial protein frataxin. Currently there are no simple, reliable methods to accurately measure the concentrations of frataxin protein. We designed a lateral-flow immunoassay that quantifies frataxin protein levels in a variety of sample materials. Using recombinant frataxin we evaluated the accuracy and reproducibility of the assay. The assay measured recombinant human frataxin concentrations between 40 and 4000 pg/test or approximately 0.1 – 10 nM of sample. The intra and inter-assay error was carriers and controls. Mean frataxin concentrations in FA patients and carriers were significantly different from controls and from one another (p = 0.0001, p = 0.003, p = 0.005, respectively) with levels, on average, 29% (patients) and 64% (carriers) of the control group. As predicted, we observed an inverse relationship between GAA repeat number and frataxin protein concentrations within the FA patient cohort. The lateral flow immunoassay provides a simple, accurate and reproducible method to quantify frataxin protein in whole cell and tissue extracts, including primary samples obtained by non-invasive means, such as cheek swabs and whole blood. The assay is a novel tool for FA research that may facilitate improved diagnostic and prognostic evaluation of FA patients and could also be used to evaluate efficacy of therapies designed to cure FA by increasing frataxin protein levels. PMID:18485778

  3. Overexpression of human and fly frataxins in Drosophila provokes deleterious effects at biochemical, physiological and developmental levels.

    Directory of Open Access Journals (Sweden)

    Juan A Navarro

    Full Text Available BACKGROUND: Friedreich's ataxia (FA, the most frequent form of inherited ataxias in the Caucasian population, is caused by a reduced expression of frataxin, a highly conserved protein. Model organisms have contributed greatly in the efforts to decipher the function of frataxin; however, the precise function of this protein remains elusive. Overexpression studies are a useful approach to investigate the mechanistic actions of frataxin; however, the existing literature reports contradictory results. To further investigate the effect of frataxin overexpression, we analyzed the consequences of overexpressing human (FXN and fly (FH frataxins in Drosophila. METHODOLOGY/PRINCIPAL FINDINGS: We obtained transgenic flies that overexpressed human or fly frataxins in a general pattern and in different tissues using the UAS-GAL4 system. For both frataxins, we observed deleterious effects at the biochemical, histological and behavioral levels. Oxidative stress is a relevant factor in the frataxin overexpression phenotypes. Systemic frataxin overexpression reduces Drosophila viability and impairs the normal embryonic development of muscle and the peripheral nervous system. A reduction in the level of aconitase activity and a decrease in the level of NDUF3 were also observed in the transgenic flies that overexpressed frataxin. Frataxin overexpression in the nervous system reduces life span, impairs locomotor ability and causes brain degeneration. Frataxin aggregation and a misfolding of this protein have been shown not to be the mechanism that is responsible for the phenotypes that have been observed. Nevertheless, the expression of human frataxin rescues the aconitase activity in the fh knockdown mutant. CONCLUSION/SIGNIFICANCE: Our results provide in vivo evidence of a functional equivalence for human and fly frataxins and indicate that the control of frataxin expression is important for treatments that aim to increase frataxin levels.

  4. Overexpression of Human and Fly Frataxins in Drosophila Provokes Deleterious Effects at Biochemical, Physiological and Developmental Levels

    Science.gov (United States)

    Soriano, Sirena; Botella, José A.; Schneuwly, Stephan; Martínez-Sebastián, María J.; Moltó, María D.

    2011-01-01

    Background Friedreich's ataxia (FA), the most frequent form of inherited ataxias in the Caucasian population, is caused by a reduced expression of frataxin, a highly conserved protein. Model organisms have contributed greatly in the efforts to decipher the function of frataxin; however, the precise function of this protein remains elusive. Overexpression studies are a useful approach to investigate the mechanistic actions of frataxin; however, the existing literature reports contradictory results. To further investigate the effect of frataxin overexpression, we analyzed the consequences of overexpressing human (FXN) and fly (FH) frataxins in Drosophila. Methodology/Principal Findings We obtained transgenic flies that overexpressed human or fly frataxins in a general pattern and in different tissues using the UAS-GAL4 system. For both frataxins, we observed deleterious effects at the biochemical, histological and behavioral levels. Oxidative stress is a relevant factor in the frataxin overexpression phenotypes. Systemic frataxin overexpression reduces Drosophila viability and impairs the normal embryonic development of muscle and the peripheral nervous system. A reduction in the level of aconitase activity and a decrease in the level of NDUF3 were also observed in the transgenic flies that overexpressed frataxin. Frataxin overexpression in the nervous system reduces life span, impairs locomotor ability and causes brain degeneration. Frataxin aggregation and a misfolding of this protein have been shown not to be the mechanism that is responsible for the phenotypes that have been observed. Nevertheless, the expression of human frataxin rescues the aconitase activity in the fh knockdown mutant. Conclusion/Significance Our results provide in vivo evidence of a functional equivalence for human and fly frataxins and indicate that the control of frataxin expression is important for treatments that aim to increase frataxin levels. PMID:21779322

  5. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    Science.gov (United States)

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-07-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.

  6. A Potential New Therapeutic Approach for Friedreich Ataxia: Induction of Frataxin Expression With TALE Proteins.

    Science.gov (United States)

    Chapdelaine, Pierre; Coulombe, Zoé; Chikh, Amina; Gérard, Catherine; Tremblay, Jacques P

    2013-09-03

    TALEs targeting a promoter sequence and fused with a transcription activation domain (TAD) may be used to specifically induce the expression of a gene as a potential treatment for haploinsufficiency. This potential therapeutic approach was applied to increase the expression of frataxin in fibroblasts of Friedreich ataxia (FRDA) patients. FRDA fibroblast cells were nucleofected with a pCR3.1 expression vector coding for TALEFrat#8 fused with VP64. A twofold increase of the frataxin mRNA (detected by quantitative reverse transcription-PCR (qRT-PCR)) associated with a similar increase of the mature form of the frataxin protein was observed. The frataxin mRNA and protein were also increased by this TALE in the fibroblasts of the YG8R mouse model. The addition of 5-aza-2'-deoxycytidine (5-Aza-dC) or of valproic acid (VPA) to the TALE treatment did not produce significant improvement. Other TADs (i.e., p65, TFAP2α, SRF, SP1, and MyoD) fused with the TALEFrat#8 gene did not produce a significant increase in the frataxin protein. Thus the TALEFrat#8-VP64 recombinant protein targeting the frataxin promoter could eventually be used to increase the frataxin expression and alleviate the FRDA symptoms.Molecular Therapy-Nucleic Acids (2013) 2, e119; doi:10.1038/mtna.2013.41; published online 3 September 2013.

  7. Moessbauer studies of frataxin role in iron-sulfur cluster assembly and dysfunction-related disease

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Serres, Ricardo [Universite Joseph Fourier (France); Clemancey, Martin [CNRS, UMR5249 (France); Oddou, Jean-Louis [Universite Joseph Fourier (France); Pastore, Annalisa [Medical Research Council National Institute for Medical Research (United Kingdom); Lesuisse, Emmanuel [Laboratoire Mitochondries, Metaux et Stress oxydant, Institut Jacques Monod, CNRS-Universite Paris (France); Latour, Jean-Marc, E-mail: jean-marc.latour@cea.fr [CEA, iRTSV, LCBM (France)

    2012-03-15

    Friedreich ataxia is a disease that is associated with defects in the gene coding for a small protein frataxin. Several different roles have been proposed for the protein, including iron chaperoning and iron storage. Moessbauer spectroscopy was used to probe these hypotheses. Iron accumulation in mutant mitochondria unable to assemble iron sulfur clusters proved to be insensitive to overexpression of frataxin, ruling out its potential involvement as an iron storage protein similar to ferritin. Rather, it was found that frataxin negatively regulates iron sulfur cluster assembly.

  8. Identification of two frataxin isoforms in Zea mays: Structural and functional studies.

    Science.gov (United States)

    Buchensky, Celeste; Sánchez, Manuel; Carrillo, Martin; Palacios, Oscar; Capdevila, Mercè; Domínguez-Vera, Jose M; Busi, Maria V; Atrian, Sílvia; Pagani, Maria A; Gomez-Casati, Diego F

    2017-09-01

    Frataxin is a ubiquitous protein that plays a role in Fe-S cluster biosynthesis and iron and heme metabolism, although its molecular functions are not entirely clear. In non-photosynthetic eukaryotes, frataxin is encoded by a single gene, and the protein localizes to mitochondria. Here we report the presence of two functional frataxin isoforms in Zea mays, ZmFH-1 and ZmFH-2. We confirmed our previous findings regarding plant frataxins: both proteins have dual localization in mitochondria and chloroplasts. Physiological, biochemical and biophysical studies show some differences in the expression pattern, protection against oxidants and in the aggregation state of both isoforms, suggesting that the two frataxin homologs would play similar but not identical roles in plant cell metabolism. In addition, two specific features of plant frataxins were evidenced: their ability to form dimers and their tendency to undergo conformational change under oxygen exposure. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  9. Novel Point Mutations in Frataxin Gene in Iranian Patients with Friedreich’s Ataxia

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi HEIDARI*

    2014-01-01

    , Cossee M, Cavalcanti F, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996;271(5254:1423-7.Sambrook J, Russel DW. Chapter 13: Detection of Mutations by Single-strand Conformational Polymorphism and Heteroduplex Analysis. Molecular cloning: a laboratory manual. 3eded. New York: Cold Spring Harborn Laboratory Press; 2001. P.49-59.Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982;157(1:105-32.Harding AE, Hewer RL. The heart disease of Friedreich’s ataxia: a clinical and electrocardiographic study of 115 patients, with an analysis of serial electrocardiographic changes in 30 cases. Q J Med 1983;52(208:489-502.Cavalier L, Ouahchi K, Kayden HJ, Di Donato S, Reutenauer L, Mandel JL, et al. Ataxia with isolated vitamin E deficiency: heterogeneity of mutations and phenotypic variability in a large number of families. Am J Hum Genet 1998;62(2:301-10.Anheim M, Mariani LL, Calvas P, Cheuret E, Zagnoli F, Odent S, et al. Exonic deletions of FXN and early-onset Friedreich ataxia. Arch Neurol 2012;69(7:912-6.Li H, Gakh O, Smith DYt, Ranatunga WK, Isaya G. Missense mutations linked to friedreich ataxia have different but synergistic effects on mitochondrial frataxin isoforms. J Biol Chem 2013;288(6:4116-27.Evans-Galea MV, Corben LA, Hasell J, Galea CA, Fahey MC, du Sart D, et al. A novel deletion-insertion mutation identified in exon 3 of FXN in two siblings with a severe Friedreich ataxia phenotype. Neurogenetics 2011;12(4:307-13. 

  10. Molecular insights into frataxin-mediated iron supply for heme biosynthesis in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Andreas Mielcarek

    Full Text Available Iron is required as an element to sustain life in all eukaryotes and most bacteria. Although several bacterial iron acquisition strategies have been well explored, little is known about the intracellular trafficking pathways of iron and its entry into the systems for co-factor biogenesis. In this study, we investigated the iron-dependent process of heme maturation in Bacillus subtilis and present, for the first time, structural evidence for the physical interaction of a frataxin homologue (Fra, which is suggested to act as a regulatory component as well as an iron chaperone in different cellular pathways, and a ferrochelatase (HemH, which catalyses the final step of heme b biogenesis. Specific interaction between Fra and HemH was observed upon co-purification from crude cell lysates and, further, by using the recombinant proteins for analytical size-exclusion chromatography. Hydrogen-deuterium exchange experiments identified the landscape of the Fra/HemH interaction interface and revealed Fra as a specific ferrous iron donor for the ferrochelatase HemH. The functional utilisation of the in vitro-generated heme b co-factor upon Fra-mediated iron transfer was confirmed by using the B. subtilis nitric oxide synthase bsNos as a metabolic target enzyme. Complementary mutational analyses confirmed that Fra acts as an essential component for maturation and subsequent targeting of the heme b co-factor, hence representing a key player in the iron-dependent physiology of B. subtilis.

  11. Drosophila frataxin: an iron chaperone during cellular Fe-S cluster bioassembly.

    Science.gov (United States)

    Kondapalli, Kalyan C; Kok, Nicole M; Dancis, Andrew; Stemmler, Timothy L

    2008-07-01

    Frataxin, a mitochondrial protein that is directly involved in regulating cellular iron homeostasis, has been suggested to serve as an iron chaperone during cellular Fe-S cluster biosynthesis. In humans, decreased amounts or impaired function of frataxin causes the autosomal recessive neurodegenerative disorder Friedreich's ataxia. Cellular production of Fe-S clusters is accomplished by the Fe cofactor assembly platform enzymes Isu (eukaryotes) and IscU (prokaryotes). In this report, we have characterized the overall stability and iron binding properties of the Drosophila frataxin homologue (Dfh). Dfh is highly folded with secondary structural elements consistent with the structurally characterized frataxin orthologs. While the melting temperature ( T M approximately 59 degrees C) and chemical stability ([urea] 50% approximately 2.4 M) of Drosophila frataxin, measured using circular dichroism (CD) and fluorescence spectroscopy, closely match values determined for the human ortholog, pure Dfh is more stable against autodegradation than both the human and yeast proteins. The ferrous iron binding affinity ( K d approximately 6.0 microM) and optimal metal to protein stoichiometry (1:1) for Dfh have been measured using isothermal titration calorimetry (ITC). Under anaerobic conditions with salt present, holo-Dfh is a stable iron-loaded protein monomer. Frataxin prevents reactive oxygen species-induced oxidative damage to DNA when presented with both Fe(II) and H 2O 2. Ferrous iron bound to Dfh is high-spin and held in a partially symmetric Fe-(O/N) 6 coordination environment, as determined by X-ray absorption spectroscopy (XAS). Extended X-ray absorption fine structure (EXAFS) simulations indicate the average Fe-O/N bond length in Dfh is 2.13 A, consistent with a ligand geometry constructed by water and carboxylate oxygens most likely supplied in part by surface-exposed conserved acidic residues located on helix 1 and strand 1 in the structurally characterized frataxin

  12. Drosophila Frataxin: An Iron Chaperone During Cellular Fe-S Cluster Bioassembly

    Energy Technology Data Exchange (ETDEWEB)

    Kondapalli, K.C.; Kok, N.M.; Dancis, A.; Stemmler, T.L.

    2009-05-20

    Frataxin, a mitochondrial protein that is directly involved in regulating cellular iron homeostasis, has been suggested to serve as an iron chaperone during cellular Fe-S cluster biosynthesis. In humans, decreased amounts or impaired function of frataxin causes the autosomal recessive neurodegenerative disorder Friedreich's ataxia. Cellular production of Fe-S clusters is accomplished by the Fe cofactor assembly platform enzymes Isu (eukaryotes) and IscU (prokaryotes). In this report, we have characterized the overall stability and iron binding properties of the Drosophila frataxin homologue (Dfh). Dfh is highly folded with secondary structural elements consistent with the structurally characterized frataxin orthologs. While the melting temperature (T{sub M} {approx} 59 C) and chemical stability ([urea]{sub 50} {approx} 2.4 M) of Drosophila frataxin, measured using circular dichroism (CD) and fluorescence spectroscopy, closely match values determined for the human ortholog, pure Dfh is more stable against autodegradation than both the human and yeast proteins. The ferrous iron binding affinity (K{sub d} {approx} 6.0 {micro}M) and optimal metal to protein stoichiometry (1:1) for Dfh have been measured using isothermal titration calorimetry (ITC). Under anaerobic conditions with salt present, holo-Dfh is a stable iron-loaded protein monomer. Frataxin prevents reactive oxygen species-induced oxidative damage to DNA when presented with both Fe(II) and H{sub 2}O{sub 2}. Ferrous iron bound to Dfh is high-spin and held in a partially symmetric Fe-(O/N){sub 6} coordination environment, as determined by X-ray absorption spectroscopy (XAS). Extended X-ray absorption fine structure (EXAFS) simulations indicate the average Fe-O/N bond length in Dfh is 2.13 {angstrom}, consistent with a ligand geometry constructed by water and carboxylate oxygens most likely supplied in part by surface-exposed conserved acidic residues located on helix 1 and strand 1 in the structurally

  13. Redetermination of the perovskite-type compound YRh3B revealing a Rh deficiency

    Directory of Open Access Journals (Sweden)

    Humihiko Takei

    2008-10-01

    Full Text Available In contrast with previous structural studies of ytterbium trirhodium boride, YbRh3B, that suggest a boron deficiency, the current redetermination of the crystal structure of YbRh3B revealed instead a rhodium deficiency with a refined composition of YbRh2.67 (2B. In the ABX3 perovskite-type structure, Yb, B and Rh are located on the A, B and X positions, respectively, with site symmetries of moverline{3}m for the A and B sites, and 4/mm.m for the X site.

  14. Deficiencies

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of all deficiencies currently listed on Nursing Home Compare, including the nursing home that received the deficiency, the associated inspection date,...

  15. Legume adaptation to sulfur deficiency revealed by comparing nutrient allocation and seed traits in Medicago truncatula.

    Science.gov (United States)

    Zuber, Hélène; Poignavent, Germain; Le Signor, Christine; Aimé, Delphine; Vieren, Eric; Tadla, Charlène; Lugan, Raphaël; Belghazi, Maya; Labas, Valérie; Santoni, Anne-Lise; Wipf, Daniel; Buitink, Julia; Avice, Jean-Christophe; Salon, Christophe; Gallardo, Karine

    2013-12-01

    Reductions in sulfur dioxide emissions and the use of sulfur-free mineral fertilizers are decreasing soil sulfur levels and threaten the adequate fertilization of most crops. To provide knowledge regarding legume adaptation to sulfur restriction, we subjected Medicago truncatula, a model legume species, to sulfur deficiency at various developmental stages, and compared the yield, nutrient allocation and seed traits. This comparative analysis revealed that sulfur deficiency at the mid-vegetative stage decreased yield and altered the allocation of nitrogen and carbon to seeds, leading to reduced levels of major oligosaccharides in mature seeds, whose germination was dramatically affected. In contrast, during the reproductive period, sulfur deficiency had little influence on yield and nutrient allocation, but the seeds germinated slowly and were characterized by low levels of a biotinylated protein, a putative indicator of germination vigor that has not been previously related to sulfur nutrition. Significantly, plants deprived of sulfur at an intermediary stage (flowering) adapted well by remobilizing nutrients from source organs to seeds, ensuring adequate quantities of carbon and nitrogen in seeds. This efficient remobilization of photosynthates may be explained by vacuolar sulfate efflux to maintain leaf metabolism throughout reproductive growth, as suggested by transcript and metabolite profiling. The seeds from these plants, deprived of sulfur at the floral transition, contained normal levels of major oligosaccharides but their germination was delayed, consistent with low levels of sucrose and the glycolytic enzymes required to restart seed metabolism during imbibition. Overall, our findings provide an integrative view of the legume response to sulfur deficiency.

  16. Frataxin Accelerates [2Fe-2S] Cluster Formation on the Human Fe–S Assembly Complex

    Science.gov (United States)

    Fox, Nicholas G.; Das, Deepika; Chakrabarti, Mrinmoy; Lindahl, Paul A.; Barondeau, David P.

    2015-01-01

    Iron–sulfur (Fe–S) clusters function as protein cofactors for a wide variety of critical cellular reactions. In human mitochondria, a core Fe–S assembly complex [called SDUF and composed of NFS1, ISD11, ISCU2, and frataxin (FXN) proteins] synthesizes Fe–S clusters from iron, cysteine sulfur, and reducing equivalents and then transfers these intact clusters to target proteins. In vitro assays have relied on reducing the complexity of this complicated Fe–S assembly process by using surrogate electron donor molecules and monitoring simplified reactions. Recent studies have concluded that FXN promotes the synthesis of [4Fe-4S] clusters on the mammalian Fe–S assembly complex. Here the kinetics of Fe–S synthesis reactions were determined using different electron donation systems and by monitoring the products with circular dichroism and absorbance spectroscopies. We discovered that common surrogate electron donor molecules intercepted Fe–S cluster intermediates and formed high-molecular weight species (HMWS). The HMWS are associated with iron, sulfide, and thiol-containing proteins and have properties of a heterogeneous solubilized mineral with spectroscopic properties remarkably reminiscent of those of [4Fe-4S] clusters. In contrast, reactions using physiological reagents revealed that FXN accelerates the formation of [2Fe-2S] clusters rather than [4Fe-4S] clusters as previously reported. In the preceding paper [Fox, N. G., et al. (2015) Biochemistry 54, DOI: 10.1021/bi5014485], [2Fe-2S] intermediates on the SDUF complex were shown to readily transfer to uncomplexed ISCU2 or apo acceptor proteins, depending on the reaction conditions. Our results indicate that FXN accelerates a rate-limiting sulfur transfer step in the synthesis of [2Fe-2S] clusters on the human Fe–S assembly complex. PMID:26016518

  17. Human frataxin activates Fe-S cluster biosynthesis by facilitating sulfur transfer chemistry.

    Science.gov (United States)

    Bridwell-Rabb, Jennifer; Fox, Nicholas G; Tsai, Chi-Lin; Winn, Andrew M; Barondeau, David P

    2014-08-05

    Iron-sulfur clusters are ubiquitous protein cofactors with critical cellular functions. The mitochondrial Fe-S assembly complex, which consists of the cysteine desulfurase NFS1 and its accessory protein (ISD11), the Fe-S assembly protein (ISCU2), and frataxin (FXN), converts substrates l-cysteine, ferrous iron, and electrons into Fe-S clusters. The physiological function of FXN has received a tremendous amount of attention since the discovery that its loss is directly linked to the neurodegenerative disease Friedreich's ataxia. Previous in vitro results revealed a role for human FXN in activating the cysteine desulfurase and Fe-S cluster biosynthesis activities of the Fe-S assembly complex. Here we present radiolabeling experiments that indicate FXN accelerates the accumulation of sulfur on ISCU2 and that the resulting persulfide species is viable in the subsequent synthesis of Fe-S clusters. Additional mutagenesis, enzyme kinetic, UV-visible, and circular dichroism spectroscopic studies suggest conserved ISCU2 residue C104 is critical for FXN activation, whereas C35, C61, and C104 are all essential for Fe-S cluster formation on the assembly complex. These results cannot be fully explained by the hypothesis that FXN functions as an iron donor for Fe-S cluster biosynthesis, and further support an allosteric regulator role for FXN. Together, these results lead to an activation model in which FXN accelerates persulfide formation on NFS1 and favors a helix-to-coil interconversion on ISCU2 that facilitates the transfer of sulfur from NFS1 to ISCU2 as an initial step in Fe-S cluster biosynthesis.

  18. Mcph1-deficient mice reveal a role for MCPH1 in otitis media.

    Science.gov (United States)

    Chen, Jing; Ingham, Neil; Clare, Simon; Raisen, Claire; Vancollie, Valerie E; Ismail, Ozama; McIntyre, Rebecca E; Tsang, Stephen H; Mahajan, Vinit B; Dougan, Gordon; Adams, David J; White, Jacqueline K; Steel, Karen P

    2013-01-01

    Otitis media is a common reason for hearing loss, especially in children. Otitis media is a multifactorial disease and environmental factors, anatomic dysmorphology and genetic predisposition can all contribute to its pathogenesis. However, the reasons for the variable susceptibility to otitis media are elusive. MCPH1 mutations cause primary microcephaly in humans. So far, no hearing impairment has been reported either in the MCPH1 patients or mouse models with Mcph1 deficiency. In this study, Mcph1-deficient (Mcph1(tm1a) (/tm1a) ) mice were produced using embryonic stem cells with a targeted mutation by the Sanger Institute's Mouse Genetics Project. Auditory brainstem response measurements revealed that Mcph1(tm1a) (/tm1a) mice had mild to moderate hearing impairment with around 70% penetrance. We found otitis media with effusion in the hearing-impaired Mcph1(tm1a) (/tm1a) mice by anatomic and histological examinations. Expression of Mcph1 in the epithelial cells of middle ear cavities supported its involvement in the development of otitis media. Other defects of Mcph1(tm1a) (/tm1a) mice included small skull sizes, increased micronuclei in red blood cells, increased B cells and ocular abnormalities. These findings not only recapitulated the defects found in other Mcph1-deficient mice or MCPH1 patients, but also revealed an unexpected phenotype, otitis media with hearing impairment, which suggests Mcph1 is a new gene underlying genetic predisposition to otitis media.

  19. A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies.

    Directory of Open Access Journals (Sweden)

    Masakazu Kohda

    2016-01-01

    Full Text Available Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4 as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3 and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21 as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder.

  20. A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies

    Science.gov (United States)

    Nyuzuki, Hiromi; Moriyama, Yohsuke; Mizuno, Yosuke; Hirata, Tomoko; Yatsuka, Yukiko; Yamashita-Sugahara, Yzumi; Nakachi, Yutaka; Kato, Hidemasa; Okuda, Akihiko; Tamaru, Shunsuke; Borna, Nurun Nahar; Banshoya, Kengo; Aigaki, Toshiro; Sato-Miyata, Yukiko; Ohnuma, Kohei; Suzuki, Tsutomu; Nagao, Asuteka; Maehata, Hazuki; Matsuda, Fumihiko; Higasa, Koichiro; Nagasaki, Masao; Yasuda, Jun; Yamamoto, Masayuki; Fushimi, Takuya; Shimura, Masaru; Kaiho-Ichimoto, Keiko; Harashima, Hiroko; Yamazaki, Taro; Mori, Masato; Murayama, Kei; Ohtake, Akira; Okazaki, Yasushi

    2016-01-01

    Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4) as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3) and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21) as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder. PMID:26741492

  1. Quantitative Proteomic Analysis Reveals Populus cathayana Females Are More Sensitive and Respond More Sophisticatedly to Iron Deficiency than Males.

    Science.gov (United States)

    Zhang, Sheng; Zhang, Yunxiang; Cao, Yanchun; Lei, Yanbao; Jiang, Hao

    2016-03-04

    Previous studies have shown that there are significant sexual differences in the morphological and physiological responses of Populus cathayana Rehder to nitrogen and phosphorus deficiencies, but little is known about the sex-specific differences in responses to iron deficiency. In this study, the effects of iron deficiency on the morphology, physiology, and proteome of P. cathayana males and females were investigated. The results showed that iron deficiency (25 days) significantly decreased height growth, photosynthetic rate, chlorophyll content, and tissue iron concentration in both sexes. A comparison between the sexes indicated that iron-deficient males had less height inhibition and photosynthesis system II or chloroplast ultrastructural damage than iron-deficient females. iTRAQ-based quantitative proteomic analysis revealed that 144 and 68 proteins were decreased in abundance (e.g., proteins involved in photosynthesis, carbohydrate and energy metabolism, and gene expression regulation) and 78 and 39 proteins were increased in abundance (e.g., proteins involved in amino acid metabolism and stress response) according to the criterion of ratio ≥1.5 in females and males, respectively. A comparison between the sexes indicated that iron-deficient females exhibited a greater change in the proteins involved in photosynthesis, carbon and energy metabolism, the redox system, and stress responsive proteins. This study reveals females are more sensitive and have a more sophisticated response to iron deficiency compared with males and provides new insights into differential sexual responses to nutrient deficiency.

  2. Friedreich's Ataxia, Frataxin, PIP5K1B: Echo of a Distant Fracas

    Directory of Open Access Journals (Sweden)

    Aurélien Bayot

    2013-01-01

    Full Text Available “Frataxin fracas” were the words used when referring to the frataxin-encoding gene (FXN burst in as a motive to disqualify an alternative candidate gene, PIP5K1B, as an actor in Friedreich's ataxia (FRDA (Campuzano et al., 1996; Cossee et al., 1997; Carvajal et al., 1996. The instrumental role in the disease of large triplet expansions in the first intron of FXN has been thereafter fully confirmed, and this no longer suffers any dispute (Koeppen, 2011. On the other hand, a recent study suggests that the consequences of these large expansions in FXN are wider than previously thought and that the expression of surrounding genes, including PIP5K1B, could be concurrently modulated by these large expansions (Bayot et al., 2013. This recent observation raises a number of important and yet unanswered questions for scientists and clinicians working on FRDA; these questions are the substratum of this paper.

  3. Deficiencies in jasmonate-mediated plant defense reveal quantitative variation in Botrytis cinerea pathogenesis.

    Directory of Open Access Journals (Sweden)

    Heather C Rowe

    2010-04-01

    Full Text Available Despite the described central role of jasmonate signaling in plant defense against necrotrophic pathogens, the existence of intraspecific variation in pathogen capacity to activate or evade plant jasmonate-mediated defenses is rarely considered. Experimental infection of jasmonate-deficient and jasmonate-insensitive Arabidopsis thaliana with diverse isolates of the necrotrophic fungal pathogen Botrytis cinerea revealed pathogen variation for virulence inhibition by jasmonate-mediated plant defenses and induction of plant defense metabolites. Comparison of the transcriptional effects of infection by two distinct B. cinerea isolates showed only minor differences in transcriptional responses of wild-type plants, but notable isolate-specific transcript differences in jasmonate-insensitive plants. These transcriptional differences suggest B. cinerea activation of plant defenses that require plant jasmonate signaling for activity in response to only one of the two B. cinerea isolates tested. Thus, similar infection phenotypes observed in wild-type plants result from different signaling interactions with the plant that are likely integrated by jasmonate signaling.

  4. Proteomic analysis of mice fed methionine and choline deficient diet reveals marker proteins associated with steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Su Jin Lee

    Full Text Available The mechanisms underlying the progression of simple steatosis to steatohepatitis are yet to be elucidated. To identify the proteins involved in the development of liver tissue inflammation, we performed comparative proteomic analysis of non-alcoholic steatohepatitis (NASH. Mice fed a methionine and choline deficient diet (MCD developed hepatic steatosis characterized by increased free fatty acid (FFA and triglyceride levels as well as alpha-SMA. Two-dimensional proteomic analysis revealed that the change from the normal diet to the MCD diet affected the expressions of 50 proteins. The most-pronounced changes were observed in the expression of proteins involved in Met metabolism and oxidative stress, most of which were significantly downregulated in NASH model animals. Peroxiredoxin (Prx is the most interesting among the modulated proteins identified in this study. In particular, cross-regulated Prx1 and Prx6 are likely to participate in cellular defense against the development of hepatitis. Thus, these Prx isoforms may be a useful new marker for early stage steatohepatitis. Moreover, curcumin treatment results in alleviation of the severity of hepatic inflammation in steatohepatitis. Notably, curcumin administration in MCD-fed mice dramatically reduced CYP2E1 as well as Prx1 expression, while upregulating Prx6 expression. These findings suggest that curcumin may have a protective role against MCD fed-induced oxidative stress.

  5. Novel Point Mutations in Frataxin Gene in Iranian Patients with Friedreich’s Ataxia

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi HEIDARI*

    2013-12-01

    Full Text Available Abstract How to Cite This Article: Heidari MM , Khatami M, Pourakrami J. Novel Point Mutations in Frataxin Gene in Iranian Patients with Friedreich’s Ataxia. Iran J Child Neurol. 2014 Winter; 8(1:32-36. Objective Friedreich’s ataxia is the most common form of hereditary ataxia with autosomal recessive pattern. More than 96% of patients are homozygous for GAA repeat extension on both alleles in the first intron of FXN gene and the remaining patients have been shown to be heterozygous for a GAA extension in one allele and point mutation in other allele. Materials & Methods In this study, exons of 1, 2, 3, and 5 of frataxin gene were searched by single strand conformation polymorphism polymerase chain reaction (PCR-SSCP in 5 patients with GAA extension in one allele. For detection of exact mutation, samples with band shifts were sent for DNA sequencing. Results Three novel point mutations were found in patients heterozygous for the GAA repeat expansion, p.S81A, p.Y123D, and p.S192C. Conclusion Our results showed that these point mutations in one allele with GAA extension in another allele are associated with FRDA signs. Thus, these results emphasize the importance of performing molecular genetic analysis for point mutations in FRDA patients.

  6. Metabolomic analysis reveals extended metabolic consequences of marginal vitamin B-6 deficiency in healthy human subjects.

    Science.gov (United States)

    Gregory, Jesse F; Park, Youngja; Lamers, Yvonne; Bandyopadhyay, Nirmalya; Chi, Yueh-Yun; Lee, Kichen; Kim, Steven; da Silva, Vanessa; Hove, Nikolas; Ranka, Sanjay; Kahveci, Tamer; Muller, Keith E; Stevens, Robert D; Newgard, Christopher B; Stacpoole, Peter W; Jones, Dean P

    2013-01-01

    Marginal deficiency of vitamin B-6 is common among segments of the population worldwide. Because pyridoxal 5'-phosphate (PLP) serves as a coenzyme in the metabolism of amino acids, carbohydrates, organic acids, and neurotransmitters, as well as in aspects of one-carbon metabolism, vitamin B-6 deficiency could have many effects. Healthy men and women (age: 20-40 y; n = 23) were fed a 2-day controlled, nutritionally adequate diet followed by a 28-day low-vitamin B-6 diet (deficiency, as reflected by a decline of plasma PLP from 52.6±14.1 (mean ± SD) to 21.5±4.6 nmol/L (Pamino acids and 45 acylcarnitines. These findings demonstrate that marginal vitamin B-6 deficiency has widespread metabolic perturbations and illustrate the utility of metabolomics in evaluating complex effects of altered vitamin B-6 intake.

  7. Isolated ACTH deficiency in a patient with empty sella as revealed by severe hyponatremia.

    Science.gov (United States)

    Doroftei, Nicoleta Alina; de Rudder, Catherine; de Visscher, Nathalie; Hanon, Francois

    2016-12-01

    Hyponatremia due to isolated adrenocorticotropic hormone (ACTH) deficiency is difficult to diagnose as it is usually indistinguishable from non-endocrine syndrome of inappropriate antidiuretic hormone secretion (SIADH). We present a case secondary to empty sella. Most patients with empty sella remain asymptomatic throughout life and require no treatment; however, in cases involving the development of isolated ACTH deficiency, corticosteroid treatment should be enforced to avoid fatal consequences.

  8. Diagnosis of adenylosuccinate lyase deficiency by metabolomic profiling in plasma reveals a phenotypic spectrum

    Directory of Open Access Journals (Sweden)

    Taraka R. Donti

    2016-09-01

    Full Text Available Adenylosuccinate lyase (ADSL deficiency is a rare autosomal recessive neurometabolic disorder that presents with a broad-spectrum of neurological and physiological symptoms. The ADSL gene produces an enzyme with binary molecular roles in de novo purine synthesis and purine nucleotide recycling. The biochemical phenotype of ADSL deficiency, accumulation of SAICAr and succinyladenosine (S-Ado in biofluids of affected individuals, serves as the traditional target for diagnosis with targeted quantitative urine purine analysis employed as the predominate method of detection. In this study, we report the diagnosis of ADSL deficiency using an alternative method, untargeted metabolomic profiling, an analytical scheme capable of generating semi-quantitative z-score values for over 1000 unique compounds in a single analysis of a specimen. Using this method to analyze plasma, we diagnosed ADSL deficiency in four patients and confirmed these findings with targeted quantitative biochemical analysis and molecular genetic testing. ADSL deficiency is part of a large a group of neurometabolic disorders, with a wide range of severity and sharing a broad differential diagnosis. This phenotypic similarity among these many inborn errors of metabolism (IEMs has classically stood as a hurdle in their initial diagnosis and subsequent treatment. The findings presented here demonstrate the clinical utility of metabolomic profiling in the diagnosis of ADSL deficiency and highlights the potential of this technology in the diagnostic evaluation of individuals with neurologic phenotypes.

  9. An AAV9 coding for frataxin clearly improved the symptoms and prolonged the life of Friedreich ataxia mouse models

    Directory of Open Access Journals (Sweden)

    Catherine Gérard

    2014-01-01

    Full Text Available Friedreich ataxia (FRDA is a genetic disease due to increased repeats of the GAA trinucleotide in intron 1 of the frataxin gene. This mutation leads to a reduced expression of frataxin. We have produced an adeno-associated virus (AAV9 coding for human frataxin (AAV9-hFXN. This AAV was delivered by intraperitoneal (IP injection to young conditionally knockout mice in which the frataxin gene had been knocked-out in some tissues during embryogenesis by breeding them with mice expressing the Cre recombinase gene under the muscle creatine kinase (MCK or the neuron-specific enolase (NSE promoter. In the first part of the study, different doses of virus were tested from 6 × 1011 v.p. to 6 × 109 v.p. in NSE-cre mice and all leading to an increase in life spent of the mice. The higher and the lower dose were also tested in MCK-cre mice. A single administration of the AAV9-hFXN at 6 × 1011 v.p. more than doubled the life of these mice. In fact the MCK-cre mice treated with the AAV9-hFXN were sacrificed for further molecular investigations at the age of 29 weeks without apparent symptoms. Echography analysis of the heart function clearly indicated that the cardiac systolic function was better preserved in the mice that received 6 × 1011 v.p. of AAV9-hFXN. The human frataxin protein was detected by ELISA in the heart, brain, muscles, kidney, and liver with the higher dose of virus in both mouse models. Thus, gene therapy with an AAV9-hFXN is a potential treatment of FRDA.

  10. RNA sequencing of creatine transporter (SLC6A8) deficient fibroblasts reveals impairment of the extracellular matrix.

    Science.gov (United States)

    Nota, Benjamin; Ndika, Joseph D T; van de Kamp, Jiddeke M; Kanhai, Warsha A; van Dooren, Silvy J M; van de Wiel, Mark A; Pals, Gerard; Salomons, Gajja S

    2014-09-01

    Creatine transporter (SLC6A8) deficiency is the most common cause of cerebral creatine syndromes, and is characterized by depletion of creatine in the brain. Manifestations of this X-linked disorder include intellectual disability, speech/language impairment, behavior abnormalities, and seizures. At the moment, no effective treatment is available. In order to investigate the molecular pathophysiology of this disorder, we performed RNA sequencing on fibroblasts derived from patients. The transcriptomes of fibroblast cells from eight unrelated individuals with SLC6A8 deficiency and three wild-type controls were sequenced. SLC6A8 mutations with different effects on the protein product resulted in different gene expression profiles. Differential gene expression analysis followed by gene ontology term enrichment analysis revealed that especially the expression of genes encoding components of the extracellular matrix and cytoskeleton are altered in SLC6A8 deficiency, such as collagens, keratins, integrins, and cadherins. This suggests an important novel role for creatine in the structural development and maintenance of cells. It is likely that the (extracellular) structure of brain cells is also impaired in SLC6A8-deficient patients, and future studies are necessary to confirm this and to reveal the true functions of creatine in the brain. © 2014 WILEY PERIODICALS, INC.

  11. Lipidomic profiling of tryptophan hydroxylase 2 knockout mice reveals novel lipid biomarkers associated with serotonin deficiency.

    Science.gov (United States)

    Weng, Rui; Shen, Sensen; Burton, Casey; Yang, Li; Nie, Honggang; Tian, Yonglu; Bai, Yu; Liu, Huwei

    2016-04-01

    Serotonin is an important neurotransmitter that regulates a wide range of physiological, neuropsychological, and behavioral processes. Consequently, serotonin deficiency is involved in a wide variety of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, schizophrenia, and depression. The pathophysiological mechanisms underlying serotonin deficiency, particularly from a lipidomics perspective, remain poorly understood. This study therefore aimed to identify novel lipid biomarkers associated with serotonin deficiency by lipidomic profiling of tryptophan hydroxylase 2 knockout (Tph2-/-) mice. Using a high-throughput normal-/reversed-phase two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry (NP/RP 2D LC-QToF-MS) method, 59 lipid biomarkers encompassing glycerophospholipids (glycerophosphocholines, lysoglycerophosphocholines, glycerophosphoethanolamines, lysoglycerophosphoethanolamines glycerophosphoinositols, and lysoglycerophosphoinositols), sphingolipids (sphingomyelins, ceramides, galactosylceramides, glucosylceramides, and lactosylceramides) and free fatty acids were identified. Systemic oxidative stress in the Tph2-/- mice was significantly elevated, and a corresponding mechanism that relates the lipidomic findings has been proposed. In summary, this work provides preliminary findings that lipid metabolism is implicated in serotonin deficiency.

  12. Human genetic deficiencies reveal the roles of complement in the inflammatory network: lessons from nature

    DEFF Research Database (Denmark)

    Lappegård, Knut Tore; Christiansen, Dorte; Pharo, Anne;

    2009-01-01

    Complement component C5 is crucial for experimental animal inflammatory tissue damage; however, its involvement in human inflammation is incompletely understood. The responses to gram-negative bacteria were here studied taking advantage of human genetic complement-deficiencies--nature's own...... of complement and CD14. The present study provides important insight into the comprehensive role of complement in human inflammatory responses to gram-negative bacteria....

  13. Metabolomic analysis reveals extended metabolic consequences of marginal vitamin B-6 deficiency in healthy human subjects.

    Directory of Open Access Journals (Sweden)

    Jesse F Gregory

    Full Text Available Marginal deficiency of vitamin B-6 is common among segments of the population worldwide. Because pyridoxal 5'-phosphate (PLP serves as a coenzyme in the metabolism of amino acids, carbohydrates, organic acids, and neurotransmitters, as well as in aspects of one-carbon metabolism, vitamin B-6 deficiency could have many effects. Healthy men and women (age: 20-40 y; n = 23 were fed a 2-day controlled, nutritionally adequate diet followed by a 28-day low-vitamin B-6 diet (<0.5 mg/d to induce marginal deficiency, as reflected by a decline of plasma PLP from 52.6±14.1 (mean ± SD to 21.5±4.6 nmol/L (P<0.0001 and increased cystathionine from 131±65 to 199±56 nmol/L (P<0.001. Fasting plasma samples obtained before and after vitamin B6 restriction were analyzed by (1H-NMR with and without filtration and by targeted quantitative analysis by mass spectrometry (MS. Multilevel partial least squares-discriminant analysis and S-plots of NMR spectra showed that NMR is effective in classifying samples according to vitamin B-6 status and identified discriminating features. NMR spectral features of selected metabolites indicated that vitamin B-6 restriction significantly increased the ratios of glutamine/glutamate and 2-oxoglutarate/glutamate (P<0.001 and tended to increase concentrations of acetate, pyruvate, and trimethylamine-N-oxide (adjusted P<0.05. Tandem MS showed significantly greater plasma proline after vitamin B-6 restriction (adjusted P<0.05, but there were no effects on the profile of 14 other amino acids and 45 acylcarnitines. These findings demonstrate that marginal vitamin B-6 deficiency has widespread metabolic perturbations and illustrate the utility of metabolomics in evaluating complex effects of altered vitamin B-6 intake.

  14. Mice deficient in MCT8 reveal a mechanism regulating thyroid hormone secretion.

    Science.gov (United States)

    Di Cosmo, Caterina; Liao, Xiao-Hui; Dumitrescu, Alexandra M; Philp, Nancy J; Weiss, Roy E; Refetoff, Samuel

    2010-09-01

    The mechanism of thyroid hormone (TH) secretion from the thyroid gland into blood is unknown. Humans and mice deficient in monocarboxylate transporter 8 (MCT8) have low serum thyroxine (T4) levels that cannot be fully explained by increased deiodination. Here, we have shown that Mct8 is localized at the basolateral membrane of thyrocytes and that the serum TH concentration is reduced in Mct8-KO mice early after being taken off a treatment that almost completely depleted the thyroid gland of TH. Thyroid glands in Mct8-KO mice contained more non-thyroglobulin-associated T4 and triiodothyronine than did those in wild-type mice, independent of deiodination. In addition, depletion of thyroidal TH content was slower during iodine deficiency. After administration of 125I, the rate of both its secretion from the thyroid gland and its appearance in the serum as trichloroacetic acid-precipitable radioactivity was greatly reduced in Mct8-KO mice. Similarly, the secretion of T4 induced by injection of thyrotropin was reduced in Mct8-KO in which endogenous TSH and T4 were suppressed by administration of triiodothyronine. To our knowledge, this study is the first to demonstrate that Mct8 is involved in the secretion of TH from the thyroid gland and contributes, in part, to the low serum T4 level observed in MCT8-deficient patients.

  15. Quantitative lipidomics reveals age-dependent perturbations of whole-body lipid metabolism in ACBP deficient mice

    DEFF Research Database (Denmark)

    Gallego, Sandra F; Sprenger, Richard R; Neess, Ditte

    2017-01-01

    and delayed weaning, the physiological process where newborns transit from a fat-based milk diet to a carbohydrate-rich diet. To gain insights into how ACBP impinges on weaning and the concomitant remodeling of whole-body lipid metabolism we performed a comparative lipidomics analysis charting the absolute......The acyl-CoA binding protein (ACBP) plays a key role in chaperoning long-chain acyl-CoAs into lipid metabolic processes and acts as an important regulatory hub in mammalian physiology. This is highlighted by the recent finding that mice devoid of ACBP suffer from a compromised epidermal barrier...... abundance of 613 lipid molecules in liver, muscle and plasma from weaning and adult Acbp knockout and wild type mice. Our results reveal that ACBP deficiency affects primarily lipid metabolism of liver and plasma during weaning. Specifically, we show that ACBP deficient mice have elevated levels of hepatic...

  16. Quantitative lipidomics reveals age-dependent perturbations of whole-body lipid metabolism in ACBP deficient mice

    DEFF Research Database (Denmark)

    Gallego, Sandra Fernandez; Sprenger, Richard; Neess, Ditte;

    2016-01-01

    The acyl-CoA binding protein (ACBP) plays a key role in chaperoning long-chain acyl-CoAs into lipid metabolic processes and acts as an important regulatory hub in mammalian physiology. This is highlighted by the recent finding that mice devoid of ACBP suffer from a compromised epidermal barrier...... and delayed weaning, the physiological process where newborns transit from a fat-based milk diet to a carbohydrate-rich diet. To gain insights into how ACBP impinges on weaning and the concomitant remodeling of whole-body lipid metabolism we performed a comparative lipidomics analysis charting the absolute...... abundance of 613 lipid molecules in liver, muscle and plasma from weaning and adult Acbp knockout and wild type mice. Our results reveal that ACBP deficiency affects primarily lipid metabolism of liver and plasma during weaning. Specifically, we show that ACBP deficient mice have elevated levels of hepatic...

  17. The Structure of the Complex between Yeast Frataxin and Ferrochelatase: CHARACTERIZATION AND PRE-STEADY STATE REACTION OF FERROUS IRON DELIVERY AND HEME SYNTHESIS.

    Science.gov (United States)

    Söderberg, Christopher; Gillam, Mallory E; Ahlgren, Eva-Christina; Hunter, Gregory A; Gakh, Oleksandr; Isaya, Grazia; Ferreira, Gloria C; Al-Karadaghi, Salam

    2016-05-27

    Frataxin is a mitochondrial iron-binding protein involved in iron storage, detoxification, and delivery for iron sulfur-cluster assembly and heme biosynthesis. The ability of frataxin from different organisms to populate multiple oligomeric states in the presence of metal ions, e.g. Fe(2+) and Co(2+), led to the suggestion that different oligomers contribute to the functions of frataxin. Here we report on the complex between yeast frataxin and ferrochelatase, the terminal enzyme of heme biosynthesis. Protein-protein docking and cross-linking in combination with mass spectroscopic analysis and single-particle reconstruction from negatively stained electron microscopic images were used to verify the Yfh1-ferrochelatase interactions. The model of the complex indicates that at the 2:1 Fe(2+)-to-protein ratio, when Yfh1 populates a trimeric state, there are two interaction interfaces between frataxin and the ferrochelatase dimer. Each interaction site involves one ferrochelatase monomer and one frataxin trimer, with conserved polar and charged amino acids of the two proteins positioned at hydrogen-bonding distances from each other. One of the subunits of the Yfh1 trimer interacts extensively with one subunit of the ferrochelatase dimer, contributing to the stability of the complex, whereas another trimer subunit is positioned for Fe(2+) delivery. Single-turnover stopped-flow kinetics experiments demonstrate that increased rates of heme production result from monomers, dimers, and trimers, indicating that these forms are most efficient in delivering Fe(2+) to ferrochelatase and sustaining porphyrin metalation. Furthermore, they support the proposal that frataxin-mediated delivery of this potentially toxic substrate overcomes formation of reactive oxygen species.

  18. Overexpression of the yeast frataxin homolog (Yfh1): contrasting effects on iron-sulfur cluster assembly, heme synthesis and resistance to oxidative stress.

    Science.gov (United States)

    Seguin, Alexandra; Bayot, Aurélien; Dancis, Andrew; Rogowska-Wrzesinska, Adelina; Auchère, Françoise; Camadro, Jean-Michel; Bulteau, Anne-Laure; Lesuisse, Emmanuel

    2009-04-01

    Friedreich's ataxia is generally associated with defects in [Fe-S] cluster assembly/stability and heme synthesis and strong susceptibility to oxidative stress. We used the yeast (Saccharomyces cerevisiae) model of Friedreich's ataxia to study the physiological consequences of modulating the expression of the frataxin gene (YFH1). We show that the number of frataxin molecules per wild-type cell varies from less than 200 to 1500 according to the iron concentration in the medium. Cells overexpressing YFH1 on a plasmid (2muYFH1; about 3500 molecules Yfh1/cell) took up more iron than wild-type cells and displayed defective [Fe-S] cluster assembly/stability in vivo. By contrast, endogenous mitochondrial iron was more available to ferrochelatase in 2muYFH1 cells than in wild-type cells, resulting in higher levels of heme synthesis in vitro. Frataxin overproduction resulted in a shift from frataxin trimers to frataxin oligomers of higher molecular mass in the mitochondrial matrix. Much fewer carbonylated proteins were present in 2muYFH1 cells, and these cells were more resistant to oxidizing agents than wild-type cells, which probably resulted from the lower production of hydrogen peroxide by the mitochondria of 2muYFH1 cells compared to wild-type cells. To our knowledge, this work is the first description where major frataxin-related phenotypes ([Fe-S] cluster assembly and heme synthesis) can be split in vivo, suggesting that frataxin has independent roles in both processes, and that the optimal conditions for these independent roles are different.

  19. [Salmonella typhi vaccination response study reveals defective antibody production selective IgA deficiency patient].

    Science.gov (United States)

    Pleguezuelo, Daniel E; Gianelli, Carla

    2015-01-01

    Selective IgA deficiency (SIgAD) is the most prevalent immunodeficiency worldwide, progressing to common variable immunodeficiency only in few reported cases. We report the case of a Spanish female aged 22 and diagnosed of selective IgA deficiency, a long history of bronchitis, several episodes of pneumonia, bilateral bronchiectasis, normal IgG, IgM, IgG subclasses, and detectable pre-vaccination IgG antibodies against tetanus toxoid and Streptococcus pneumoniae. She was evaluated in our clinic in order to rule out common variable immunodeficiency. We observed good antibody response to tetanus toxoid, absence of circulating switched memory B cells, decreased response to pneumococcal polysaccharide antigens and a lack of response to Salmonella typhi vaccine. Most SIgAD patients presents with upper respiratory tract infections or mild diarrhea. Those with lower tract infections, pneumonia or untreatable diarrhea should follow B-cell subpopulations' study and antibody response to vaccines. Absence of response to Salmonella typhi vaccine allowed us to expose the defective antibody production.

  20. Phonological abilities in literacy-impaired children: Brain potentials reveal deficient phoneme discrimination, but intact prosodic processing

    Directory of Open Access Journals (Sweden)

    Claudia Männel

    2017-02-01

    Full Text Available Intact phonological processing is crucial for successful literacy acquisition. While individuals with difficulties in reading and spelling (i.e., developmental dyslexia are known to experience deficient phoneme discrimination (i.e., segmental phonology, findings concerning their prosodic processing (i.e., suprasegmental phonology are controversial. Because there are no behavior-independent studies on the underlying neural correlates of prosodic processing in dyslexia, these controversial findings might be explained by different task demands. To provide an objective behavior-independent picture of segmental and suprasegmental phonological processing in impaired literacy acquisition, we investigated event-related brain potentials during passive listening in typically and poor-spelling German school children. For segmental phonology, we analyzed the Mismatch Negativity (MMN during vowel length discrimination, capturing automatic auditory deviancy detection in repetitive contexts. For suprasegmental phonology, we analyzed the Closure Positive Shift (CPS that automatically occurs in response to prosodic boundaries. Our results revealed spelling group differences for the MMN, but not for the CPS, indicating deficient segmental, but intact suprasegmental phonological processing in poor spellers. The present findings point towards a differential role of segmental and suprasegmental phonology in literacy disorders and call for interventions that invigorate impaired literacy by utilizing intact prosody in addition to training deficient phonemic awareness.

  1. Phonological abilities in literacy-impaired children: Brain potentials reveal deficient phoneme discrimination, but intact prosodic processing.

    Science.gov (United States)

    Männel, Claudia; Schaadt, Gesa; Illner, Franziska K; van der Meer, Elke; Friederici, Angela D

    2017-02-01

    Intact phonological processing is crucial for successful literacy acquisition. While individuals with difficulties in reading and spelling (i.e., developmental dyslexia) are known to experience deficient phoneme discrimination (i.e., segmental phonology), findings concerning their prosodic processing (i.e., suprasegmental phonology) are controversial. Because there are no behavior-independent studies on the underlying neural correlates of prosodic processing in dyslexia, these controversial findings might be explained by different task demands. To provide an objective behavior-independent picture of segmental and suprasegmental phonological processing in impaired literacy acquisition, we investigated event-related brain potentials during passive listening in typically and poor-spelling German school children. For segmental phonology, we analyzed the Mismatch Negativity (MMN) during vowel length discrimination, capturing automatic auditory deviancy detection in repetitive contexts. For suprasegmental phonology, we analyzed the Closure Positive Shift (CPS) that automatically occurs in response to prosodic boundaries. Our results revealed spelling group differences for the MMN, but not for the CPS, indicating deficient segmental, but intact suprasegmental phonological processing in poor spellers. The present findings point towards a differential role of segmental and suprasegmental phonology in literacy disorders and call for interventions that invigorate impaired literacy by utilizing intact prosody in addition to training deficient phonemic awareness. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Temporal gene expression profiling reveals CEBPD as a candidate regulator of brain disease in prosaposin deficient mice

    Directory of Open Access Journals (Sweden)

    Ran Huimin

    2008-08-01

    Full Text Available Abstract Background Prosaposin encodes, in tandem, four small acidic activator proteins (saposins with specificities for glycosphingolipid (GSL hydrolases in lysosomes. Extensive GSL storage occurs in various central nervous system regions in mammalian prosaposin deficiencies. Results Our hypomorphic prosaposin deficient mouse, PS-NA, exhibited 45% WT levels of brain saposins and showed neuropathology that included neuronal GSL storage and Purkinje cell loss. Impairment of neuronal function was observed as early as 6 wks as demonstrated by the narrow bridges tests. Temporal transcriptome microarray analyses of brain tissues were conducted with mRNA from three prosaposin deficient mouse models: PS-NA, prosaposin null (PS-/- and a V394L/V394L glucocerebrosidase mutation combined with PS-NA (4L/PS-NA. Gene expression alterations in cerebrum and cerebellum were detectable at birth preceding the neuronal deficits. Differentially expressed genes encompassed a broad spectrum of cellular functions. The number of down-regulated genes was constant, but up-regulated gene numbers increased with age. CCAAT/enhancer-binding protein delta (CEBPD was the only up-regulated transcription factor in these two brain regions of all three models. Network analyses revealed that CEBPD has functional relationships with genes in transcription, pro-inflammation, cell death, binding, myelin and transport. Conclusion These results show that: 1 Regionally specific gene expression abnormalities precede the brain histological and neuronal function changes, 2 Temporal gene expression profiles provide insights into the molecular mechanism during the GSL storage disease course, and 3 CEBPD is a candidate regulator of brain disease in prosaposin deficiency to participate in modulating disease acceleration or progression.

  3. Ex vivo stretch reveals altered mechanical properties of isolated dystrophin-deficient hearts.

    Science.gov (United States)

    Barnabei, Matthew S; Metzger, Joseph M

    2012-01-01

    Duchenne muscular dystrophy (DMD) is a progressive and fatal disease of muscle wasting caused by loss of the cytoskeletal protein dystrophin. In the heart, DMD results in progressive cardiomyopathy and dilation of the left ventricle through mechanisms that are not fully understood. Previous reports have shown that loss of dystrophin causes sarcolemmal instability and reduced mechanical compliance of isolated cardiac myocytes. To expand upon these findings, here we have subjected the left ventricles of dystrophin-deficient mdx hearts to mechanical stretch. Unexpectedly, isolated mdx hearts showed increased left ventricular (LV) compliance compared to controls during stretch as LV volume was increased above normal end diastolic volume. During LV chamber distention, sarcomere lengths increased similarly in mdx and WT hearts despite greater excursions in volume of mdx hearts. This suggests that the mechanical properties of the intact heart cannot be modeled as a simple extrapolation of findings in single cardiac myocytes. To explain these findings, a model is proposed in which disruption of the dystrophin-glycoprotein complex perturbs cell-extracellular matrix contacts and promotes the apparent slippage of myocytes past each other during LV distension. In comparison, similar increases in LV compliance were obtained in isolated hearts from β-sarcoglycan-null and laminin-α(2) mutant mice, but not in dysferlin-null mice, suggesting that increased whole-organ compliance in mdx mice is a specific effect of disrupted cell-extracellular matrix contacts and not a general consequence of cardiomyopathy via membrane defect processes. Collectively, these findings suggest a novel and cell-death independent mechanism for the progressive pathological LV dilation that occurs in DMD.

  4. Ex vivo stretch reveals altered mechanical properties of isolated dystrophin-deficient hearts.

    Directory of Open Access Journals (Sweden)

    Matthew S Barnabei

    Full Text Available Duchenne muscular dystrophy (DMD is a progressive and fatal disease of muscle wasting caused by loss of the cytoskeletal protein dystrophin. In the heart, DMD results in progressive cardiomyopathy and dilation of the left ventricle through mechanisms that are not fully understood. Previous reports have shown that loss of dystrophin causes sarcolemmal instability and reduced mechanical compliance of isolated cardiac myocytes. To expand upon these findings, here we have subjected the left ventricles of dystrophin-deficient mdx hearts to mechanical stretch. Unexpectedly, isolated mdx hearts showed increased left ventricular (LV compliance compared to controls during stretch as LV volume was increased above normal end diastolic volume. During LV chamber distention, sarcomere lengths increased similarly in mdx and WT hearts despite greater excursions in volume of mdx hearts. This suggests that the mechanical properties of the intact heart cannot be modeled as a simple extrapolation of findings in single cardiac myocytes. To explain these findings, a model is proposed in which disruption of the dystrophin-glycoprotein complex perturbs cell-extracellular matrix contacts and promotes the apparent slippage of myocytes past each other during LV distension. In comparison, similar increases in LV compliance were obtained in isolated hearts from β-sarcoglycan-null and laminin-α(2 mutant mice, but not in dysferlin-null mice, suggesting that increased whole-organ compliance in mdx mice is a specific effect of disrupted cell-extracellular matrix contacts and not a general consequence of cardiomyopathy via membrane defect processes. Collectively, these findings suggest a novel and cell-death independent mechanism for the progressive pathological LV dilation that occurs in DMD.

  5. Deficient orthographic and phonological representations in children with dyslexia revealed by brain activation patterns

    Science.gov (United States)

    Cao, Fan; Bitan, Tali; Chou, Tai-Li; Burman, Douglas D.

    2008-01-01

    Background The current study examined the neuro-cognitive network of visual word rhyming judgment in 14 children with dyslexia and 14 age-matched control children (8- to 14-year-olds) using functional magnetic resonance imaging (fMRI). Methods In order to manipulate the difficulty of mapping orthography to phonology, we used conflicting and non-conflicting trials. The words in conflicting trials either had similar orthography but different phonology (e.g., pint-mint) or similar phonology but different orthography (e.g., jazz-has). The words in non-conflicting trials had similar orthography and phonology (e.g., gate-hate) or different orthography and phonology (e.g., press-list). Results There were no differences in brain activation between the controls and children with dyslexia in the easier non-conflicting trials. However, the children with dyslexia showed less activation than the controls in left inferior frontal gyrus (BA 45/44/47/9), left inferior parietal lobule (BA 40), left inferior temporal gyrus/fusiform gyrus (BA 20/37) and left middle temporal gyrus (BA 21) for the more difficult conflicting trials. For the direct comparison of conflicting minus non-conflicting trials, controls showed greater activation than children with dyslexia in left inferior frontal gyrus (BA 9/45/46) and medial frontal gyrus (BA 8). Children with dyslexia did not show greater activation than controls for any comparison. Conclusions Reduced activation in these regions suggests that children with dyslexia have deficient orthographic representations in ventral temporal cortex as well as deficits in mapping between orthographic and phonological representations in inferior parietal cortex. The greater activation for the controls in inferior frontal gyrus could reflect more effective top-down modulation of posterior representations. PMID:17073983

  6. Analysis of SM22alpha-deficient mice reveals unanticipated insights into smooth muscle cell differentiation and function.

    Science.gov (United States)

    Zhang, J C; Kim, S; Helmke, B P; Yu, W W; Du, K L; Lu, M M; Strobeck, M; Yu, Q; Parmacek, M S

    2001-02-01

    SM22alpha is a 22-kDa smooth muscle cell (SMC) lineage-restricted protein that physically associates with cytoskeletal actin filament bundles in contractile SMCs. To examine the function of SM22alpha, gene targeting was used to generate SM22alpha-deficient (SM22(-/-LacZ)) mice. The gene targeting strategy employed resulted in insertion of the bacterial lacZ reporter gene at the SM22alpha initiation codon, permitting precise analysis of the temporal and spatial pattern of SM22alpha transcriptional activation in the developing mouse. Northern and Western blot analyses confirmed that the gene targeting strategy resulted in a null mutation. Histological analysis of SM22(+/-LacZ) embryos revealed detectable beta-galactosidase activity in the unturned embryonic day 8.0 embryo in the layer of cells surrounding the paired dorsal aortae concomitant with its expression in the primitive heart tube, cephalic mesenchyme, and yolk sac vasculature. Subsequently, during postnatal development, beta-galactosidase activity was observed exclusively in arterial, venous, and visceral SMCs. SM22alpha-deficient mice are viable and fertile. Their blood pressure and heart rate do not differ significantly from their control SM22alpha(+/-) and SM22alpha(+/+) littermates. The vasculature and SMC-containing tissues of SM22alpha-deficient mice develop normally and appear to be histologically and ultrastructurally similar to those of their control littermates. Taken together, these data demonstrate that SM22alpha is not required for basal homeostatic functions mediated by vascular and visceral SMCs in the developing mouse. These data also suggest that signaling pathways that regulate SMC specification and differentiation from local mesenchyme are activated earlier in the angiogenic program than previously recognized.

  7. Quantitative lipidomics reveals age-dependent perturbations of whole-body lipid metabolism in ACBP deficient mice.

    Science.gov (United States)

    Gallego, Sandra F; Sprenger, Richard R; Neess, Ditte; Pauling, Josch K; Færgeman, Nils J; Ejsing, Christer S

    2017-02-01

    The acyl-CoA binding protein (ACBP) plays a key role in chaperoning long-chain acyl-CoAs into lipid metabolic processes and acts as an important regulatory hub in mammalian physiology. This is highlighted by the recent finding that mice devoid of ACBP suffer from a compromised epidermal barrier and delayed weaning, the physiological process where newborns transit from a fat-based milk diet to a carbohydrate-rich diet. To gain insights into how ACBP impinges on weaning and the concomitant remodeling of whole-body lipid metabolism we performed a comparative lipidomics analysis charting the absolute abundance of 613 lipid molecules in liver, muscle and plasma from weaning and adult Acbp knockout and wild type mice. Our results reveal that ACBP deficiency affects primarily lipid metabolism of liver and plasma during weaning. Specifically, we show that ACBP deficient mice have elevated levels of hepatic cholesteryl esters, and that lipids featuring an 18:1 fatty acid moiety are increased in Acbp depleted mice across all tissues investigated. Our results also show that the perturbation of systemic lipid metabolism in Acbp knockout mice is transient and becomes normalized and similar to that of wild type as mice grow older. These findings demonstrate that ACBP serves crucial functions in maintaining lipid metabolic homeostasis in mice during weaning.

  8. A targetable fluorescent sensor reveals that copper-deficient SCO1 and SCO2 patient cells prioritize mitochondrial copper homeostasis.

    Science.gov (United States)

    Dodani, Sheel C; Leary, Scot C; Cobine, Paul A; Winge, Dennis R; Chang, Christopher J

    2011-06-08

    We present the design, synthesis, spectroscopy, and biological applications of Mitochondrial Coppersensor-1 (Mito-CS1), a new type of targetable fluorescent sensor for imaging exchangeable mitochondrial copper pools in living cells. Mito-CS1 is a bifunctional reporter that combines a Cu(+)-responsive fluorescent platform with a mitochondrial-targeting triphenylphosphonium moiety for localizing the probe to this organelle. Molecular imaging with Mito-CS1 establishes that this new chemical tool can detect changes in labile mitochondrial Cu(+) in a model HEK 293T cell line as well as in human fibroblasts. Moreover, we utilized Mito-CS1 in a combined imaging and biochemical study in fibroblasts derived from patients with mutations in the two synthesis of cytochrome c oxidase 1 and 2 proteins (SCO1 and SCO2), each of which is required for assembly and metalation of functionally active cytochrome c oxidase (COX). Interestingly, we observe that although defects in these mitochondrial metallochaperones lead to a global copper deficiency at the whole cell level, total copper and exchangeable mitochondrial Cu(+) pools in SCO1 and SCO2 patient fibroblasts are largely unaltered relative to wild-type controls. Our findings reveal that the cell maintains copper homeostasis in mitochondria even in situations of copper deficiency and mitochondrial metallochaperone malfunction, illustrating the importance of regulating copper stores in this energy-producing organelle.

  9. Deficiency of cathepsin K prevents inflammation and bone erosion in rheumatoid arthritis and periodontitis and reveals its shared osteoimmune role.

    Science.gov (United States)

    Hao, Liang; Zhu, Guochun; Lu, Yun; Wang, Min; Jules, Joel; Zhou, Xuedong; Chen, Wei

    2015-05-22

    Using rheumatoid arthritis (RA) and periodontitis mouse models, we demonstrate that RA and periodontitis share many pathological features, such as deregulated cytokine production, increased immune-cell infiltration, increased expression of Toll-like receptors (TLRs), and enhanced osteoclast activity and bone erosion. We reveal that genetic deletion of cathepsin K (Ctsk) caused a radical reduction in inflammation and bone erosion within RA joint capsules and periodontal lesions, a drastic decrease in immune-cell infiltration, and a significant reduction in osteoclasts, macrophages, dendritic and T-cells. Deficiency of Ctsk greatly decreased the expression of TLR-4, 5, and 9 and their downstream cytokines in periodontal gingival epithelial lesions and synovial RA lesions. Hence, Ctsk may be targeted to treat RA and periodontitis simultaneously due to its shared osteoimmune role. Copyright © 2015. Published by Elsevier B.V.

  10. Transcriptomic and metabolic analyses reveal salvage pathways in creatine-deficient AGAT(-/-) mice.

    Science.gov (United States)

    Stockebrand, Malte; Nejad, Ali Sasani; Neu, Axel; Kharbanda, Kusum K; Sauter, Kathrin; Schillemeit, Stefan; Isbrandt, Dirk; Choe, Chi-Un

    2016-08-01

    Skeletal muscles require energy either at constant low (e.g., standing and posture) or immediate high rates (e.g., exercise). To fulfill these requirements, myocytes utilize the phosphocreatine (PCr)/creatine (Cr) system as a fast energy buffer and shuttle. We have generated mice lacking L-arginine:glycine amidino transferase (AGAT), the first enzyme of creatine biosynthesis. These AGAT(-/-) (d/d) mice are devoid of the PCr/Cr system and reveal severely altered oxidative phosphorylation. In addition, they exhibit complete resistance to diet-induced obesity, which is associated with a chronic activation of AMP-activated protein kinase in muscle and white adipose tissue. The underlying metabolic rearrangements have not yet been further analyzed. Here, we performed gene expression analysis in skeletal muscle and a serum amino acid profile of d/d mice revealing transcriptomic and metabolic alterations in pyruvate and glucose pathways. Differential pyruvate tolerance tests demonstrated preferential conversion of pyruvate to alanine, which was supported by increased protein levels of enzymes involved in pyruvate and alanine metabolism. Pyruvate tolerance tests suggested severely impaired hepatic gluconeogenesis despite increased availability of pyruvate and alanine. Furthermore, enzymes of serine production and one-carbon metabolism were significantly up-regulated in d/d mice, indicating increased de novo formation of one-carbon units from carbohydrate metabolism linked to NAD(P)H production. Besides the well-established function of the PCr/Cr system in energy metabolism, our transcriptomic and metabolic analyses suggest that it plays a pivotal role in systemic one-carbon metabolism, oxidation/reduction, and biosynthetic processes. Therefore, the PCr/Cr system is not only an energy buffer and shuttle, but also a crucial component involved in numerous systemic metabolic processes.

  11. In silico synchronization reveals regulators of nuclear ruptures in lamin A/C deficient model cells

    Science.gov (United States)

    Robijns, J.; Molenberghs, F.; Sieprath, T.; Corne, T. D. J.; Verschuuren, M.; de Vos, W. H.

    2016-07-01

    The nuclear lamina is a critical regulator of nuclear structure and function. Nuclei from laminopathy patient cells experience repetitive disruptions of the nuclear envelope, causing transient intermingling of nuclear and cytoplasmic components. The exact causes and consequences of these events are not fully understood, but their stochastic occurrence complicates in-depth analyses. To resolve this, we have established a method that enables quantitative investigation of spontaneous nuclear ruptures, based on co-expression of a firmly bound nuclear reference marker and a fluorescent protein that shuttles between the nucleus and cytoplasm during ruptures. Minimally invasive imaging of both reporters, combined with automated tracking and in silico synchronization of individual rupture events, allowed extracting information on rupture frequency and recovery kinetics. Using this approach, we found that rupture frequency correlates inversely with lamin A/C levels, and can be reduced in genome-edited LMNA knockout cells by blocking actomyosin contractility or inhibiting the acetyl-transferase protein NAT10. Nuclear signal recovery followed a kinetic that is co-determined by the severity of the rupture event, and could be prolonged by knockdown of the ESCRT-III complex component CHMP4B. In conclusion, our approach reveals regulators of nuclear rupture induction and repair, which may have critical roles in disease development.

  12. IL-15 deficient tax mice reveal a role for IL-1α in tumor immunity.

    Directory of Open Access Journals (Sweden)

    Daniel A Rauch

    Full Text Available IL-15 is recognized as a promising candidate for tumor immunotherapy and has been described as both a promoter of cancer and a promoter of anti-cancer immunity. IL-15 was discovered in cells transformed by HTLV-1, the etiologic agent of adult T cell leukemia/lymphoma (ATL and the human retrovirus that carries the Tax oncogene. We have developed the TAX-LUC mouse model of ATL in which Tax expression drives both malignant transformation and luciferase expression, enabling non-invasive imaging of tumorigenesis in real time. To identify the role of IL-15 in spontaneous development of lymphoma in vivo, an IL-15(-/- TAX-LUC strain was developed and examined. The absence of IL-15 resulted in aggressive tumor growth and accelerated mortality and demonstrated that IL-15 was not required for Tax-mediated lymphoma but was essential for anti-tumor immunity. Further analysis revealed a unique transcriptional profile in tumor cells that arise in the absence of IL-15 that included a significant increase in the expression of IL-1α and IL-1α-regulated cytokines. Moreover, anti-IL-1α antibodies and an IL-1 receptor antagonist (Anakinra were used to interrogate the potential of IL-1α targeted therapies in this model. Taken together, these findings identify IL-15 and IL-1α as therapeutic targets in lymphoma.

  13. IL-15 deficient tax mice reveal a role for IL-1α in tumor immunity.

    Science.gov (United States)

    Rauch, Daniel A; Harding, John C; Ratner, Lee

    2014-01-01

    IL-15 is recognized as a promising candidate for tumor immunotherapy and has been described as both a promoter of cancer and a promoter of anti-cancer immunity. IL-15 was discovered in cells transformed by HTLV-1, the etiologic agent of adult T cell leukemia/lymphoma (ATL) and the human retrovirus that carries the Tax oncogene. We have developed the TAX-LUC mouse model of ATL in which Tax expression drives both malignant transformation and luciferase expression, enabling non-invasive imaging of tumorigenesis in real time. To identify the role of IL-15 in spontaneous development of lymphoma in vivo, an IL-15(-/-) TAX-LUC strain was developed and examined. The absence of IL-15 resulted in aggressive tumor growth and accelerated mortality and demonstrated that IL-15 was not required for Tax-mediated lymphoma but was essential for anti-tumor immunity. Further analysis revealed a unique transcriptional profile in tumor cells that arise in the absence of IL-15 that included a significant increase in the expression of IL-1α and IL-1α-regulated cytokines. Moreover, anti-IL-1α antibodies and an IL-1 receptor antagonist (Anakinra) were used to interrogate the potential of IL-1α targeted therapies in this model. Taken together, these findings identify IL-15 and IL-1α as therapeutic targets in lymphoma.

  14. Long-term boron-deficiency-responsive genes revealed by cDNA-AFLP differ between Citrus sinensis roots and leaves

    Directory of Open Access Journals (Sweden)

    Yi-Bin eLu

    2015-07-01

    Full Text Available Seedlings of Citrus sinensis (L. Osbeck were supplied with boron (B-deficient (without H3BO3 or -sufficient (10 µM H3BO3 nutrient solution for 15 weeks. We identified 54 (38 and 38 (45 up (down-regulated cDNA-AFLP bands (transcript-derived fragments, TDFs from B-deficient leaves and roots, respectively. These TDFs were mainly involved in protein and amino acid metabolism, carbohydrate and energy metabolism, nucleic acid metabolism, cell transport, signal transduction, and stress response and defense. The majority of the differentially expressed TDFs were isolated only from B-deficient roots or leaves, only seven TDFs with the same GenBank ID were isolated from the both. In addition, ATP biosynthesis-related TDFs were induced in B-deficient roots, but unaffected in B-deficient leaves. Most of the differentially expressed TDFs associated with signal transduction and stress defense were down-regulated in roots, but up-regulated in leaves. TDFs related to protein ubiquitination and proteolysis were induced in B-deficient leaves except for one TDF, while only two down-regulated TDFs associated with ubiquitination were detected in B-deficient roots. Thus, many differences existed in long-term B-deficiency-responsive genes between roots and leaves. In conclusion, our findings provided a global picture of the differential responses occurring in B-deficient roots and leaves and revealed new insight into the different adaptive mechanisms of C. sinensis roots and leaves to B-deficiency at the transcriptional level.

  15. Comparison of Two Different PCR-based Methods for Detection of GAA Expansions in Frataxin Gene.

    Science.gov (United States)

    Entezam, Mona; Amirfiroozi, Akbar; Togha, Mansoureh; Keramatipour, Mohammad

    2017-02-01

    Expansion of GAA trinucleotide repeats is the molecular basis of Friedreich's ataxia (FRDA). Precise detection of the GAA expansion repeat in frataxin gene has always been a challenge. Different molecular methods have been suggested for detection of GAA expansion, including; short-PCR, long-PCR, Triplet repeat primed-PCR (TP-PCR) and southern blotting. The aim of study was to evaluate two PCR-based methods, TP-PCR and long-PCR, and to explore the use of TP-PCR accompanying with long-PCR for accurate genotyping of FRDA patients. Blood samples were collected from six Iranian patients suspected to FRDA, who referred to the Department of Medical Genetics at Tehran University of Medical Sciences during the year 2014. For one of these patients' four asymptomatic members of the family were also recruited for the analysis. DNA extraction was performed by two different methods. TP-PCR and long-PCR were carried out in all samples. The type of this study is assessment / investigation of methods. Using a combination of the above methods, the genotypes of all samples were confirmed as five homozygous mutants (expanded GAA repeats), two heterozygous and three homozygous normal (normal repeat size). The results obtained by TP-PCR are consistent with long-PCR results. The presence or absence of expanded alleles can be identified correctly by TP-PCR. Performing long-PCR and Fluorescent-long-PCR enables accurate genotyping in all samples. This approach is highly reliable. It could be successfully used for detection of GAA expansion repeats.

  16. Liver Growth Factor (LGF) Upregulates Frataxin Protein Expression and Reduces Oxidative Stress in Friedreich’s Ataxia Transgenic Mice

    Science.gov (United States)

    Calatrava-Ferreras, Lucía; Gonzalo-Gobernado, Rafael; Reimers, Diana; Herranz, Antonio S.; Casarejos, María J.; Jiménez-Escrig, Adriano; Regadera, Javier; Velasco-Martín, Juan; Vallejo-Muñoz, Manuela; Díaz-Gil, Juan José; Bazán, Eulalia

    2016-01-01

    Friedreich’s ataxia (FA) is a severe disorder with autosomal recessive inheritance that is caused by the abnormal expansion of GAA repeat in intron 1 of FRDA gen. This alteration leads to a partial silencing of frataxin transcription, causing a multisystem disorder disease that includes neurological and non-neurological damage. Recent studies have proven the effectiveness of neurotrophic factors in a number of neurodegenerative diseases. Therefore, we intend to determine if liver growth factor (LGF), which has a demonstrated antioxidant and neuroprotective capability, could be a useful therapy for FA. To investigate the potential therapeutic activity of LGF we used transgenic mice of the FXNtm1MknTg (FXN)YG8Pook strain. In these mice, intraperitoneal administration of LGF (1.6 μg/mouse) exerted a neuroprotective effect on neurons of the lumbar spinal cord and improved cardiac hypertrophy. Both events could be the consequence of the increment in frataxin expression induced by LGF in spinal cord (1.34-fold) and heart (1.2-fold). LGF also upregulated by 2.6-fold mitochondrial chain complex IV expression in spinal cord, while in skeletal muscle it reduced the relation oxidized glutathione/reduced glutathione. Since LGF partially restores motor coordination, we propose LGF as a novel factor that may be useful in the treatment of FA. PMID:27941692

  17. Liver Growth Factor (LGF Upregulates Frataxin Protein Expression and Reduces Oxidative Stress in Friedreich’s Ataxia Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Lucía Calatrava-Ferreras

    2016-12-01

    Full Text Available Friedreich’s ataxia (FA is a severe disorder with autosomal recessive inheritance that is caused by the abnormal expansion of GAA repeat in intron 1 of FRDA gen. This alteration leads to a partial silencing of frataxin transcription, causing a multisystem disorder disease that includes neurological and non-neurological damage. Recent studies have proven the effectiveness of neurotrophic factors in a number of neurodegenerative diseases. Therefore, we intend to determine if liver growth factor (LGF, which has a demonstrated antioxidant and neuroprotective capability, could be a useful therapy for FA. To investigate the potential therapeutic activity of LGF we used transgenic mice of the FXNtm1MknTg (FXNYG8Pook strain. In these mice, intraperitoneal administration of LGF (1.6 μg/mouse exerted a neuroprotective effect on neurons of the lumbar spinal cord and improved cardiac hypertrophy. Both events could be the consequence of the increment in frataxin expression induced by LGF in spinal cord (1.34-fold and heart (1.2-fold. LGF also upregulated by 2.6-fold mitochondrial chain complex IV expression in spinal cord, while in skeletal muscle it reduced the relation oxidized glutathione/reduced glutathione. Since LGF partially restores motor coordination, we propose LGF as a novel factor that may be useful in the treatment of FA.

  18. DNA Microarray technology reveals similar gene expression patterns in rats with vitamin A deficiency and chemically induced colitis

    NARCIS (Netherlands)

    Nur, T.; Peijnenburg, A.A.C.M.; Noteborn, H.P.J.M.; Baykus, H.; Reifen, R.

    2002-01-01

    Previous studies suggest that vitamin A deficiency may induce or intensify inflammatory changes in the rat gastrointestinal system. The present study was designed to compare the expression profiles of rat models of vitamin A deficiency and induced colitis. cDNA-microarray technology was used to dete

  19. Friedreich's Ataxia Variants I154F and W155R Diminish Frataxin-Based Activation of the Iron-Sulfur Cluster Assembly Complex

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Chi-Lin; Bridwell-Rabb, Jennifer; Barondeau, David P

    2011-11-07

    Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease that has been linked to defects in the protein frataxin (Fxn). Most FRDA patients have a GAA expansion in the first intron of their Fxn gene that decreases protein expression. Some FRDA patients have a GAA expansion on one allele and a missense mutation on the other allele. Few functional details are known for the ~15 different missense mutations identified in FRDA patients. Here in vitro evidence is presented that indicates the FRDA I154F and W155R variants bind more weakly to the complex of Nfs1, Isd11, and Isu2 and thereby are defective in forming the four-component SDUF complex that constitutes the core of the Fe-S cluster assembly machine. The binding affinities follow the trend Fxn ~ I154F > W155F > W155A ~ W155R. The Fxn variants also have diminished ability to function as part of the SDUF complex to stimulate the cysteine desulfurase reaction and facilitate Fe-S cluster assembly. Four crystal structures, including the first for a FRDA variant, reveal specific rearrangements associated with the loss of function and lead to a model for Fxn-based activation of the Fe-S cluster assembly complex. Importantly, the weaker binding and lower activity for FRDA variants correlate with the severity of disease progression. Together, these results suggest that Fxn facilitates sulfur transfer from Nfs1 to Isu2 and that these in vitro assays are sensitive and appropriate for deciphering functional defects and mechanistic details for human Fe-S cluster biosynthesis.

  20. Iron homeostasis in Arabidopsis thaliana: transcriptomic analyses reveal novel FIT-regulated genes, iron deficiency marker genes and functional gene networks.

    Science.gov (United States)

    Mai, Hans-Jörg; Pateyron, Stéphanie; Bauer, Petra

    2016-10-03

    FIT (FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) is the central regulator of iron uptake in Arabidopsis thaliana roots. We performed transcriptome analyses of six day-old seedlings and roots of six week-old plants using wild type, a fit knock-out mutant and a FIT over-expression line grown under iron-sufficient or iron-deficient conditions. We compared genes regulated in a FIT-dependent manner depending on the developmental stage of the plants. We assembled a high likelihood dataset which we used to perform co-expression and functional analysis of the most stably iron deficiency-induced genes. 448 genes were found FIT-regulated. Out of these, 34 genes were robustly FIT-regulated in root and seedling samples and included 13 novel FIT-dependent genes. Three hundred thirty-one genes showed differential regulation in response to the presence and absence of FIT only in the root samples, while this was the case for 83 genes in the seedling samples. We assembled a virtual dataset of iron-regulated genes based on a total of 14 transcriptomic analyses of iron-deficient and iron-sufficient wild-type plants to pinpoint the best marker genes for iron deficiency and analyzed this dataset in depth. Co-expression analysis of this dataset revealed 13 distinct regulons part of which predominantly contained functionally related genes. We could enlarge the list of FIT-dependent genes and discriminate between genes that are robustly FIT-regulated in roots and seedlings or only in one of those. FIT-regulated genes were mostly induced, few of them were repressed by FIT. With the analysis of a virtual dataset we could filter out and pinpoint new candidates among the most reliable marker genes for iron deficiency. Moreover, co-expression and functional analysis of this virtual dataset revealed iron deficiency-induced and functionally distinct regulons.

  1. [Unusual venous thrombosis revealing a human immunodeficiency virus infection and a protein S deficiency. Two cases and literature review].

    Science.gov (United States)

    Konin, C; Adoh, M; Adoubi, A; Anzouan-Kacou, J B; Azagoh, R; N'guetta, R; Kramoh, E; Séka, R

    2008-06-01

    The authors report two cases of unusual venous thrombosis associated with protein S deficiency in patients with the acquired immunodeficiency syndrome. The first case was a superior mesenteric vein thrombosis caused by HIV-1 infection associated with protein S deficiency in a 53-year-old patient. The second case was a cerebral venous thrombosis in a 34-year-old patient with HIV-1 and HIV-2 infections associated with protein S deficiency. None of the two patients were receiving antiretroviral therapy at the time of diagnosis. The evolution of thrombosis was favorable in both patients with heparin therapy and antivitamin K (AVK).

  2. Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency.

    Directory of Open Access Journals (Sweden)

    Rie Nishiyama

    Full Text Available Soil destruction by abiotic environmental conditions, such as high salinity, has resulted in dramatic losses of arable land, giving rise to the need of studying mechanisms of plant adaptation to salt stress aimed at creating salt-tolerant plants. Recently, it has been reported that cytokinins (CKs regulate plant environmental stress responses through two-component systems. A decrease in endogenous CK levels could enhance salt and drought stress tolerance. Here, we have investigated the global transcriptional change caused by a reduction in endogenous CK content under both normal and salt stress conditions. Ten-day-old Arabidopsis thaliana wild-type (WT and CK-deficient ipt1,3,5,7 plants were transferred to agar plates containing either 0 mM (control or 200 mM NaCl and maintained at normal growth conditions for 24 h. Our experimental design allowed us to compare transcriptome changes under four conditions: WT-200 mM vs. WT-0 mM, ipt1,3,5,7-0 mM vs. WT-0 mM, ipt1,3,5,7-200 mM vs. ipt1,3,5,7-0 mM and ipt1,3,5,7-200 mM vs. WT-200 mM NaCl. Our results indicated that the expression of more than 10% of all of the annotated Arabidopsis genes was altered by CK deficiency under either normal or salt stress conditions when compared to WT. We found that upregulated expression of many genes encoding either regulatory proteins, such as NAC, DREB and ZFHD transcription factors and the calcium sensor SOS3, or functional proteins, such as late embryogenesis-abundant proteins, xyloglucan endo-transglycosylases, glycosyltransferases, glycoside hydrolases, defensins and glyoxalase I family proteins, may contribute to improved salt tolerance of CK-deficient plants. We also demonstrated that the downregulation of photosynthesis-related genes and the upregulation of several NAC genes may cause the altered morphological phenotype of CK-deficient plants. This study highlights the impact of CK regulation on the well-known stress-responsive signaling pathways, which

  3. Sensory Neuronopathy Revealing Severe Vitamin B12 Deficiency in a Patient with Anorexia Nervosa: An Often-Forgotten Reversible Cause.

    Science.gov (United States)

    Franques, Jérôme; Chiche, Laurent; Mathis, Stéphane

    2017-03-15

    Vitamin B12 (B12) deficiency is known to be associated with various neurological manifestations. Although central manifestations such as dementia or subacute combined degeneration are the most classic, neurological manifestations also include sensory neuropathies. However, B12 deficiency is still rarely integrated as a potential cause of sensory neuronopathy. Moreover, as many medical conditions can falsely normalize serum B12 levels even in the context of a real B12 deficiency, some cases may easily remain underdiagnosed. We report the illustrating case of an anorexic patient with sensory neuronopathy and consistently normal serum B12 levels. After all classical causes of sensory neuronopathy were ruled out, her clinical and electrophysiological conditions first worsened after folate administration, but finally improved dramatically after B12 administration. B12 deficiency should be systematically part of the etiologic workup of sensory neuronopathy, especially in a high risk context such as anorexia nervosa.

  4. Sensory Neuronopathy Revealing Severe Vitamin B12 Deficiency in a Patient with Anorexia Nervosa: An Often-Forgotten Reversible Cause

    Directory of Open Access Journals (Sweden)

    Jérôme Franques

    2017-03-01

    Full Text Available Vitamin B12 (B12 deficiency is known to be associated with various neurological manifestations. Although central manifestations such as dementia or subacute combined degeneration are the most classic, neurological manifestations also include sensory neuropathies. However, B12 deficiency is still rarely integrated as a potential cause of sensory neuronopathy. Moreover, as many medical conditions can falsely normalize serum B12 levels even in the context of a real B12 deficiency, some cases may easily remain underdiagnosed. We report the illustrating case of an anorexic patient with sensory neuronopathy and consistently normal serum B12 levels. After all classical causes of sensory neuronopathy were ruled out, her clinical and electrophysiological conditions first worsened after folate administration, but finally improved dramatically after B12 administration. B12 deficiency should be systematically part of the etiologic workup of sensory neuronopathy, especially in a high risk context such as anorexia nervosa.

  5. Gene expression deregulation in postnatal skeletal muscle of TK2 deficient mice reveals a lower pool of proliferating myogenic progenitor cells.

    Directory of Open Access Journals (Sweden)

    João A Paredes

    Full Text Available Loss of thymidine kinase 2 (TK2 causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA depletion syndrome (MDS in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue.

  6. Metabolic profiling reveals altered pattern of central metabolism in navel orange plants as a result of boron deficiency.

    Science.gov (United States)

    Liu, Guidong; Dong, Xiaochang; Liu, Leichao; Wu, Lishu; Peng, Shu'ang; Jiang, Cuncang

    2015-04-01

    We focused on the changes of metabolite profiles in navel orange plants under long-term boron (B) deficiency using a gas chromatography-mass spectrometry (GC-MS) approach. Curling of the leaves and leaf chlorosis were observed only in the upper leaves (present before start of the treatment) of B-deficient plants, while the lower leaves (grown during treatment) did not show any visible symptoms. The metabolites with up-accumulation in B-deficient leaves were mainly proline, l-ornithine, lysine, glucoheptonic acid, fucose, fumarate, oxalate, quinate, myo-inositol and allo-inositol, while the metabolites with down-accumulation in B-deficient leaves were mainly serine, asparagine, saccharic acid, citrate, succinate, shikimate and phytol. The levels of glucose and fructose were increased only in the upper leaves by B deficiency, while starch content was increased in all the leaves and in roots. The increased levels of malate, ribitol, gluconic acid and glyceric acid occurred only in the lower leaves of B-deficient plants. The increased levels of phenols only in the upper leaves indicated that the effects of B on phenol metabolism in citrus plants may be a consequence of disruptions in leaf structure. Metabolites with opposite reactions in upper and lower leaves were mainly glutamine, glycine and pyrrole-2-carboxylic acid. To our knowledge, the phenomena of allo-inositol even higher than myo-inositol occurred characterized for the first time in this species. These results suggested that the altered pattern of central metabolism may be either specific or adaptive responses of navel orange plants to B deficiency. © 2014 Scandinavian Plant Physiology Society.

  7. Lethal factor VII deficiency due to novel mutations in the F7 promoter: functional analysis reveals disruption of HNF4 binding site.

    Science.gov (United States)

    Giansily-Blaizot, Muriel; Lopez, Estelle; Viart, Victoria; Chafa, Ouerdia; Tapon-Bretaudière, Jacqueline; Claustres, Mireille; Taulan, Magali

    2012-08-01

    Hereditary factor VII (FVII) deficiency is a rare autosomal recessive disorder. Deleterious mutations that prevent the synthesis of any amount of functional FVII have been associated with life-threatening haemorrhage in neonates. Here we report two infants, of Maghrebian origin, who suffered a fatal spontaneous cerebral haemorrhage. Investigation of the molecular basis for their severe FVII deficiency revealed novel mutations in a homozygous state within the F7 gene promoter: a single nucleotide substitution (c.-65G>C) and a 2bp deletion (c.-60_-59delTT). To determine whether these promoter variants were responsible for the FVII deficiency, computer-assisted sequence analyses were performed. The data predicted a disrupted binding of both HNF4 and COUP-TF transcription factors with each variant. Concordantly, experimental results revealed an altered HNF4-induced transactivation in the promoter mutated variants. The execution of functional tests is critical to ensuring a complete understanding of the effect of any promoter mutant on FVII deficiency. Only then can an accurate molecular diagnosis be made and further genetic counselling and prenatal diagnosis be offered.

  8. Metabolic analysis revealed altered amino acid profiles in Lupinus albus organs as a result of boron deficiency.

    Science.gov (United States)

    Alves, Marta; Chicau, Paula; Matias, Helena; Passarinho, José; Pinheiro, Carla; Ricardo, Cândido Pinto

    2011-07-01

    We analysed the changes in the metabolites of Lupinus albus organs (leaf-blades, petioles, apexes, hypocotyls and roots) as a consequence of B deficiency. The deficiency did not affect malate concentration and induced only minor changes in the sugar content, suggesting that the carbohydrate metabolism is little affected by the deficiency. Contrarily, marked changes in the content of free amino acids were observed, with some specific variations associated with the different organs. These changes indicate that various aspects of metabolism implicated in the amino acid accumulation were affected by B deficiency. Most of the detected changes appear to have implications with some stress responses or signalling processes. Asparagine and proline that increase in many stresses also accumulated in petioles, apexes and hypocotyls. Accumulation of γ-aminobutyric acid shunt amino acids, indicative of production of reactive oxygen species, occurs in the same three organs and also the roots. The increase in the branched-chain amino acids, observed in all organs, suggests the involvement of B with the cytoskeleton, whereas glycine decrease in leaf-blades and active growing organs (apexes and roots) could be associated with the proposed role of this amino acids in plant signalling in processes that might be associated with the decreased growth rates observed in B deficiency. Despite the admitted importance of free amino acids in plant metabolism, the available information on this matter is scarce. So our results bring new information concerning the effects of B deficiency in the metabolism of the several L. albus organs. Copyright © Physiologia Plantarum 2011.

  9. Co-expression analysis reveals a group of genes potentially involved in regulation of plant response to iron-deficiency.

    Science.gov (United States)

    Li, Hua; Wang, Lei; Yang, Zhi Min

    2015-01-01

    Iron (Fe) is an essential element for plant growth and development. Iron deficiency results in abnormal metabolisms from respiration to photosynthesis. Exploration of Fe-deficient responsive genes and their networks is critically important to understand molecular mechanisms leading to the plant adaptation to soil Fe-limitation. Co-expression genes are a cluster of genes that have a similar expression pattern to execute relatively biological functions at a stage of development or under a certain environmental condition. They may share a common regulatory mechanism. In this study, we investigated Fe-starved-related co-expression genes from Arabidopsis. From the biological process GO annotation of TAIR (The Arabidopsis Information Resource), 180 iron-deficient responsive genes were detected. Using ATTED-II database, we generated six gene co-expression networks. Among these, two modules of PYE and IRT1 were successfully constructed. There are 30 co-expression genes that are incorporated in the two modules (12 in PYE-module and 18 in IRT1-module). Sixteen of the co-expression genes were well characterized. The remaining genes (14) are poorly or not functionally identified with iron stress. Validation of the 14 genes using real-time PCR showed differential expression under iron-deficiency. Most of the co-expression genes (23/30) could be validated in pye and fit mutant plants with iron-deficiency. We further identified iron-responsive cis-elements upstream of the co-expression genes and found that 22 out of 30 genes contain the iron-responsive motif IDE1. Furthermore, some auxin and ethylene-responsive elements were detected in the promoters of the co-expression genes. These results suggest that some of the genes can be also involved in iron stress response through the phytohormone-responsive pathways.

  10. Partial correction of sensitivity to oxidant stress in Friedreich ataxia patient fibroblasts by frataxin-encoding adeno-associated virus and lentivirus vectors.

    Science.gov (United States)

    Fleming, Jane; Spinoulas, Afroditi; Zheng, Maolin; Cunningham, Sharon C; Ginn, Samantha L; McQuilty, Robert C; Rowe, Peter B; Alexander, Ian E

    2005-08-01

    Peripheral nervous system (PNS) sensory neurons are directly involved in the pathophysiology of a number of debilitating inherited and acquired neurological conditions. The lack of effective treatments for many such conditions provides a strong rationale for exploring novel therapeutic approaches, including gene therapy. Friedreich ataxia (FRDA), a sensory neuropathy, is a progressive neurodegenerative disease associated with a loss of large sensory neurons from the dorsal root ganglia. Because a mouse model for this well-characterized disease has been generated, we elected to use FRDA as a model disease. In previous studies we achieved efficient and sustained delivery of a reporter gene to PNS sensory neurons, using recombinant adeno-associated viral (AAV) and lentiviral (LV) vectors. In the current study, AAV and LV vectors encoding the human frataxin cDNA were constructed and assessed for frataxin expression and function in primary FRDA patient fibroblast cell lines. FRDA fibroblasts have been shown to exhibit subtle biochemical changes, including increased mitochondrial iron and sensitivity to oxidant stress. Despite the inherent difficulty in working with primary cells, transduction of patient fibroblasts with either vector resulted in the expression of appropriately localized frataxin and partial reversal of phenotype.

  11. The Replication of Frataxin Gene Is Assured by Activation of Dormant Origins in the Presence of a GAA-Repeat Expansion.

    Directory of Open Access Journals (Sweden)

    Martina Stevanoni

    2016-07-01

    Full Text Available It is well known that DNA replication affects the stability of several trinucleotide repeats, but whether replication profiles of human loci carrying an expanded repeat differ from those of normal alleles is poorly understood in the endogenous context. We investigated this issue using cell lines from Friedreich's ataxia patients, homozygous for a GAA-repeat expansion in intron 1 of the Frataxin gene. By interphase, FISH we found that in comparison to the normal Frataxin sequence the replication of expanded alleles is slowed or delayed. According to molecular combing, origins never fired within the normal Frataxin allele. In contrast, in mutant alleles dormant origins are recruited within the gene, causing a switch of the prevalent fork direction through the expanded repeat. Furthermore, a global modification of the replication profile, involving origin choice and a differential distribution of unidirectional forks, was observed in the surrounding 850 kb region. These data provide a wide-view of the interplay of events occurring during replication of genes carrying an expanded repeat.

  12. Phonological abilities in literacy-impaired children: Brain potentials reveal deficient phoneme discrimination, but intact prosodic processing

    OpenAIRE

    Claudia Männel; Gesa Schaadt; Franziska K. Illner; Elke van der Meer; Angela D. Friederici

    2017-01-01

    Intact phonological processing is crucial for successful literacy acquisition. While individuals with difficulties in reading and spelling (i.e., developmental dyslexia) are known to experience deficient phoneme discrimination (i.e., segmental phonology), findings concerning their prosodic processing (i.e., suprasegmental phonology) are controversial. Because there are no behavior-independent studies on the underlying neural correlates of prosodic processing in dyslexia, these controversial f...

  13. Transcriptional profiling revealed the anti-proliferative effect of MFN2 deficiency and identified risk factors in lung adenocarcinoma.

    Science.gov (United States)

    Lou, Yuqing; Zhang, Yanwei; Li, Rong; Gu, Ping; Xiong, Liwen; Zhong, Hua; Zhang, Wei; Han, Baohui

    2016-07-01

    Mitofusin-2 (MFN2) was initially identified as a hyperplasia suppressor in hyper-proliferative vascular smooth muscle cells (VSMCs) of hypertensive rat arteries, which has also been implicated in various cancers. There exists a controversy in whether it is an oncogene or exerting anti-proliferative effect on tumor cells. Our previous cell cycle analysis and MTT assay showed that cell proliferation was inhibited in MFN2 deficient A549 human lung adenocarcinoma cells, without investigating the changes in regulatory network or addressing the underlying mechanisms. Here, we performed expression profiling in MFN2 knockdown A549 cells and found that cancer-related pathways were among the most susceptible pathways to MFN2 deficiency. Through comparison with expression profiling of a cohort consisting of 61 pairs of tumor-normal matched samples from The Cancer Genome Atlas (TCGA), we teased out the specific pathways to address the impact that MFN2 ablation had on A549 cells, as well as identified a few genes whose expression level associated with clinicopathologic parameters. In addition, transcriptional factor target enrichment analysis identified E2F as a potential transcription factor that was deregulated in response to MFN2 deficiency. Although bioinformatics analysis usually entail further verification, our study provided considerable information for future scientific inquiries in related areas as well as a paradigm for characterizing perturbation in regulatory network.

  14. Short alleles revealed by PCR demonstrate no heterozygote deficiency at minisatellite loci D1S7, D7S21, and D12S11

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, S.; Castro, A.; Fernandez-Fernandez, I.; Pancorbo, M.M. de [Universidad del Pais Vasco, Vizcaya (Spain)

    1997-02-01

    Short VNTR alleles that go undetected after conventional Southern blot hybridization may constitute an alternative explanation for the heterozygosity deficiency observed at some minisatellite loci. To examine this hypothesis, we have employed a screening procedure based on PCR amplification of those individuals classified as homozygotes in our databases for the loci D1S7, D7S21, and D12S11. The results obtained indicate that the frequency of these short alleles is related to the heterozygosity deficiency observed. For the most polymorphic locus, D1S7, {approximately}60% of those individuals previously classified as homozygotes were in fact heterozygotes for a short allele. After the inclusion of these new alleles, the agreement between observed and expected heterozygosity, along with other statistical tests employed, provide additional evidence for lack of population substructuring. Comparisons of allele frequency distributions reveal greater differences between racial groups than between closely related populations. 45 refs., 3 figs., 6 tabs.

  15. Cellular model of neuronal atrophy induced by DYNC1I1 deficiency reveals protective roles of RAS-RAF-MEK signaling

    Directory of Open Access Journals (Sweden)

    Zhi-Dong Liu

    2016-08-01

    Full Text Available Abstract Neuronal atrophy is a common pathological feature occurred in aging and neurodegenerative diseases. A variety of abnormalities including motor protein malfunction and mitochondrial dysfunction contribute to the loss of neuronal architecture; however, less is known about the intracellular signaling pathways that can protect against or delay this pathogenic process. Here, we show that the DYNC1I1 deficiency, a neuron-specific dynein intermediate chain, causes neuronal atrophy in primary hippocampal neurons. With this cellular model, we are able to find that activation of RAS-RAF-MEK signaling protects against neuronal atrophy induced by DYNC1I1 deficiency, which relies on MEK-dependent autophagy in neuron. Moreover, we further reveal that BRAF also protects against neuronal atrophy induced by mitochondrial impairment. These findings demonstrate protective roles of the RAS-RAF-MEK axis against neuronal atrophy, and imply a new therapeutic target for clinical intervention.

  16. Intranasal siRNA administration reveals IGF2 deficiency contributes to impaired cognition in Fragile X syndrome mice

    Science.gov (United States)

    Pardo, Marta; Cheng, Yuyan; Velmeshev, Dmitry; Magistri, Marco; Martinez, Ana; Faghihi, Mohammad A.; Jope, Richard S.; Beurel, Eleonore

    2017-01-01

    Molecular mechanisms underlying learning and memory remain imprecisely understood, and restorative interventions are lacking. We report that intranasal administration of siRNAs can be used to identify targets important in cognitive processes and to improve genetically impaired learning and memory. In mice modeling the intellectual deficiency of Fragile X syndrome, intranasally administered siRNA targeting glycogen synthase kinase-3β (GSK3β), histone deacetylase-1 (HDAC1), HDAC2, or HDAC3 diminished cognitive impairments. In WT mice, intranasally administered brain-derived neurotrophic factor (BDNF) siRNA or HDAC4 siRNA impaired learning and memory, which was partially due to reduced insulin-like growth factor-2 (IGF2) levels because the BDNF siRNA– or HDAC4 siRNA–induced cognitive impairments were ameliorated by intranasal IGF2 administration. In Fmr1–/– mice, hippocampal IGF2 was deficient, and learning and memory impairments were ameliorated by IGF2 intranasal administration. Therefore intranasal siRNA administration is an effective means to identify mechanisms regulating cognition and to modulate therapeutic targets. PMID:28352664

  17. Carnitine Deficiency and Pregnancy

    OpenAIRE

    Anouk de Bruyn; Yves Jacquemyn; Kristof Kinget; François Eyskens

    2015-01-01

    We present two cases of carnitine deficiency in pregnancy. In our first case, systematic screening revealed L-carnitine deficiency in the first born of an asymptomatic mother. In the course of her second pregnancy, maternal carnitine levels showed a deficiency as well. In a second case, a mother known with carnitine deficiency under supplementation was followed throughout her pregnancy. Both pregnancies had an uneventful outcome. Because carnitine deficiency can have serious complications, su...

  18. Genetic Screening Identifies Cyanogenesis-Deficient Mutants of Lotus japonicus and Reveals Enzymatic Specificity in Hydroxynitrile Glucoside Metabolism

    DEFF Research Database (Denmark)

    Takos, A.; Lai, D.; Mikkelsen, L.;

    2010-01-01

    content. L. japonicus produces two cyanogenic glucosides: linamarin (derived from Val) and lotaustralin (derived from Ile). Their biosynthesis may involve the same set of enzymes for both amino acid precursors. However, in one class of mutants, accumulation of lotaustralin and linamarin was uncoupled....... We developed a high-throughput screening method and used it to identify cyanogenesis deficient (cyd) mutants in the model legume Lotus japonicus. Mutants in both biosynthesis and catabolism of cyanogenic glucosides were isolated and classified following metabolic profiling of cyanogenic glucoside....... Catabolic mutants could be placed in two complementation groups, one of which, cyd2, encoded the beta-glucosidase BGD2. Despite the identification of nine independent cyd2 alleles, no mutants involving the gene encoding a closely related beta-glucosidase, BGD4, were identified. This indicated that BGD4...

  19. A zebrafish model of congenital disorders of glycosylation with phosphomannose isomerase deficiency reveals an early opportunity for corrective mannose supplementation

    Directory of Open Access Journals (Sweden)

    Jaime Chu

    2013-01-01

    Individuals with congenital disorders of glycosylation (CDG have recessive mutations in genes required for protein N-glycosylation, resulting in multi-systemic disease. Despite the well-characterized biochemical consequences in these individuals, the underlying cellular defects that contribute to CDG are not well understood. Synthesis of the lipid-linked oligosaccharide (LLO, which serves as the sugar donor for the N-glycosylation of secretory proteins, requires conversion of fructose-6-phosphate to mannose-6-phosphate via the phosphomannose isomerase (MPI enzyme. Individuals who are deficient in MPI present with bleeding, diarrhea, edema, gastrointestinal bleeding and liver fibrosis. MPI-CDG patients can be treated with oral mannose supplements, which is converted to mannose-6-phosphate through a minor complementary metabolic pathway, restoring protein glycosylation and ameliorating most symptoms, although liver disease continues to progress. Because Mpi deletion in mice causes early embryonic lethality and thus is difficult to study, we used zebrafish to establish a model of MPI-CDG. We used a morpholino to block mpi mRNA translation and established a concentration that consistently yielded 13% residual Mpi enzyme activity at 4 days post-fertilization (dpf, which is within the range of MPI activity detected in fibroblasts from MPI-CDG patients. Fluorophore-assisted carbohydrate electrophoresis detected decreased LLO and N-glycans in mpi morphants. These deficiencies resulted in 50% embryonic lethality by 4 dpf. Multi-systemic abnormalities, including small eyes, dysmorphic jaws, pericardial edema, a small liver and curled tails, occurred in 82% of the surviving larvae. Importantly, these phenotypes could be rescued with mannose supplementation. Thus, parallel processes in fish and humans contribute to the phenotypes caused by Mpi depletion. Interestingly, mannose was only effective if provided prior to 24 hpf. These data provide insight into treatment efficacy

  20. Yeast frataxin is stabilized by low salt concentrations: cold denaturation disentangles ionic strength effects from specific interactions.

    Science.gov (United States)

    Sanfelice, Domenico; Puglisi, Rita; Martin, Stephen R; Di Bari, Lorenzo; Pastore, Annalisa; Temussi, Piero Andrea

    2014-01-01

    Frataxins are a family of metal binding proteins associated with the human Friedreich's ataxia disease. Here, we have addressed the effect of non-specifically binding salts on the stability of the yeast ortholog Yfh1. This protein is a sensitive model since its stability is strongly dependent on the environment, in particular on ionic strength. Yfh1 also offers the unique advantage that its cold denaturation can be observed above the freezing point of water, thus allowing the facile construction of the whole protein stability curve and hence the measurement of accurate thermodynamic parameters for unfolding. We systematically measured the effect of several cations and, as a control, of different anions. We show that, while strongly susceptible to ionic strength, as it would be in the cellular environment, Yfh1 stability is sensitive not only to divalent cations, which bind specifically, but also to monovalent cations. We pinpoint the structural bases of the stability and hypothesize that the destabilization induced by an unusual cluster of negatively charged residues favours the entrance of water molecules into the hydrophobic core, consistent with the generally accepted mechanism of cold denaturation.

  1. Imaging Mass Spectrometry Reveals Acyl-Chain- and Region-Specific Sphingolipid Metabolism in the Kidneys of Sphingomyelin Synthase 2-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Masayuki Sugimoto

    Full Text Available Obesity was reported to cause kidney injury by excessive accumulation of sphingolipids such as sphingomyelin and ceramide. Sphingomyelin synthase 2 (SMS2 is an important enzyme for hepatic sphingolipid homeostasis and its dysfunction is considered to result in fatty liver disease. The expression of SMS2 is also high in the kidneys. However, the contribution of SMS2 on renal sphingolipid metabolism remains unclear. Imaging mass spectrometry is a powerful tool to visualize the distribution and provide quantitative data on lipids in tissue sections. Thus, in this study, we analyzed the effects of SMS2 deficiency on the distribution and concentration of sphingomyelins in the liver and kidneys of mice fed with a normal-diet or a high-fat-diet using imaging mass spectrometry and liquid chromatography/electrospray ionization-tandem mass spectrometry. Our study revealed that high-fat-diet increased C18-C22 sphingomyelins, but decreased C24-sphingomyelins, in the liver and kidneys of wild-type mice. By contrast, SMS2 deficiency decreased C18-C24 sphingomyelins in the liver. Although a similar trend was observed in the whole-kidneys, the effects were minor. Interestingly, imaging mass spectrometry revealed that sphingomyelin localization was specific to each acyl-chain length in the kidneys. Further, SMS2 deficiency mainly decreased C22-sphingomyelin in the renal medulla and C24-sphingomyelins in the renal cortex. Thus, imaging mass spectrometry can provide visual assessment of the contribution of SMS2 on acyl-chain- and region-specific sphingomyelin metabolism in the kidneys.

  2. Imaging Mass Spectrometry Reveals Acyl-Chain- and Region-Specific Sphingolipid Metabolism in the Kidneys of Sphingomyelin Synthase 2-Deficient Mice

    Science.gov (United States)

    Sugimoto, Masayuki; Wakabayashi, Masato; Shimizu, Yoichi; Yoshioka, Takeshi; Higashino, Kenichi; Numata, Yoshito; Okuda, Tomohiko; Zhao, Songji; Sakai, Shota; Igarashi, Yasuyuki; Kuge, Yuji

    2016-01-01

    Obesity was reported to cause kidney injury by excessive accumulation of sphingolipids such as sphingomyelin and ceramide. Sphingomyelin synthase 2 (SMS2) is an important enzyme for hepatic sphingolipid homeostasis and its dysfunction is considered to result in fatty liver disease. The expression of SMS2 is also high in the kidneys. However, the contribution of SMS2 on renal sphingolipid metabolism remains unclear. Imaging mass spectrometry is a powerful tool to visualize the distribution and provide quantitative data on lipids in tissue sections. Thus, in this study, we analyzed the effects of SMS2 deficiency on the distribution and concentration of sphingomyelins in the liver and kidneys of mice fed with a normal-diet or a high-fat-diet using imaging mass spectrometry and liquid chromatography/electrospray ionization-tandem mass spectrometry. Our study revealed that high-fat-diet increased C18–C22 sphingomyelins, but decreased C24-sphingomyelins, in the liver and kidneys of wild-type mice. By contrast, SMS2 deficiency decreased C18–C24 sphingomyelins in the liver. Although a similar trend was observed in the whole-kidneys, the effects were minor. Interestingly, imaging mass spectrometry revealed that sphingomyelin localization was specific to each acyl-chain length in the kidneys. Further, SMS2 deficiency mainly decreased C22-sphingomyelin in the renal medulla and C24-sphingomyelins in the renal cortex. Thus, imaging mass spectrometry can provide visual assessment of the contribution of SMS2 on acyl-chain- and region-specific sphingomyelin metabolism in the kidneys. PMID:27010944

  3. Proteomic Profiling of the Dystrophin-Deficient MDX Heart Reveals Drastically Altered Levels of Key Metabolic and Contractile Proteins

    Directory of Open Access Journals (Sweden)

    Caroline Lewis

    2010-01-01

    Full Text Available Although Duchenne muscular dystrophy is primarily classified as a neuromuscular disease, cardiac complications play an important role in the course of this X-linked inherited disorder. The pathobiochemical steps causing a progressive decline in the dystrophic heart are not well understood. We therefore carried out a fluorescence difference in-gel electrophoretic analysis of 9-month-old dystrophin-deficient versus age-matched normal heart, using the established MDX mouse model of muscular dystrophy-related cardiomyopathy. Out of 2,509 detectable protein spots, 79 2D-spots showed a drastic differential expression pattern, with the concentration of 3 proteins being increased, including nucleoside diphosphate kinase and lamin-A/C, and of 26 protein species being decreased, including ATP synthase, fatty acid binding-protein, isocitrate dehydrogenase, NADH dehydrogenase, porin, peroxiredoxin, adenylate kinase, tropomyosin, actin, and myosin light chains. Hence, the lack of cardiac dystrophin appears to trigger a generally perturbed protein expression pattern in the MDX heart, affecting especially energy metabolism and contractile proteins.

  4. Small RNA profiling reveals phosphorus deficiency as a contributing factor in symptom expression for citrus huanglongbing disease.

    Science.gov (United States)

    Zhao, Hongwei; Sun, Ruobai; Albrecht, Ute; Padmanabhan, Chellappan; Wang, Airong; Coffey, Michael D; Girke, Thomas; Wang, Zonghua; Close, Timothy J; Roose, Mikeal; Yokomi, Raymond K; Folimonova, Svetlana; Vidalakis, Georgios; Rouse, Robert; Bowman, Kim D; Jin, Hailing

    2013-03-01

    Huanglongbing (HLB) is a devastating citrus disease that is associated with bacteria of the genus 'Candidatus Liberibacter' (Ca. L.). Powerful diagnostic tools and management strategies are desired to control HLB. Host small RNAs (sRNA) play a vital role in regulating host responses to pathogen infection and are used as early diagnostic markers for many human diseases, including cancers. To determine whether citrus sRNAs regulate host responses to HLB, sRNAs were profiled from Citrus sinensis 10 and 14 weeks post grafting with Ca. L. asiaticus (Las)-positive or healthy tissue. Ten new microRNAs (miRNAs), 76 conserved miRNAs, and many small interfering RNAs (siRNAs) were discovered. Several miRNAs and siRNAs were highly induced by Las infection, and can be potentially developed into early diagnosis markers of HLB. miR399, which is induced by phosphorus starvation in other plant species, was induced specifically by infection of Las but not Spiroplasma citri that causes citrus stubborn-a disease with symptoms similar to HLB. We found a 35% reduction of phosphorus in Las-positive citrus trees compared to healthy trees. Applying phosphorus oxyanion solutions to HLB-positive sweet orange trees reduced HLB symptom severity and significantly improved fruit production during a 3-year field trial in south-west Florida. Our molecular, physiological, and field data suggest that phosphorus deficiency is linked to HLB disease symptomology.

  5. Small RNA Profiling Reveals Phosphorus Deficiency as a Contributing Factor in Symptom Expression for Citrus Huanglongbing Disease

    Institute of Scientific and Technical Information of China (English)

    Hongwei Zhao; Ruobai Sun; Ute Albrecht; Chellappan Padmanabhan; Airong Wang; Michael D.Coffey; Thomas Girke

    2013-01-01

    Huanglongbing (HLB) is a devastating citrus disease that is associated with bacteria of the genus "Candidatus Liberibacter' (Ca.L.).Powerful diagnostic tools and management strategies are desired to control HLB.Host small RNAs (sRNA) play a vital role in regulating host responses to pathogen infection and are used as early diagnostic markers for many human diseases,including cancers.To determine whether citrus sRNAs regulate host responses to HLB,sRNAs were profiled from Citrus sinensis 10 and 14 weeks post grafting with Ca.L.asiaticus (Las)-positive or healthy tissue.Ten new microRNAs (miRNAs),76 conserved miRNAs,and many small interfering RNAs (siRNAs) were discovered.Several miRNAs and siRNAs were highly induced by Las infection,and can be potentially developed into early diagnosis markers of HLB.miR399,which is induced by phosphorus starvation in other plant species,was induced specifically by infection of Las but not Spiroplasma citri that causes citrus stubborn--a disease with symptoms similar to HLB.We found a 35% reduction of phosphorus in Las-positive citrus trees compared to healthy trees.Applying phosphorus oxyanion solutions to HLB-positive sweet orange trees reduced HLB symptom severity and significantly improved fruit production during a 3-year field trial in south-west Florida.Our molecular,physiological,and field data suggest that phosphorus deficiency is linked to HLB disease symptomology.

  6. Rad51c- and Trp53-double-mutant mouse model reveals common features of homologous recombination-deficient breast cancers.

    Science.gov (United States)

    Tumiati, M; Munne, P M; Edgren, H; Eldfors, S; Hemmes, A; Kuznetsov, S G

    2016-09-01

    Almost half of all hereditary breast cancers (BCs) are associated with germ-line mutations in homologous recombination (HR) genes. However, the tumor phenotypes associated with different HR genes vary, making it difficult to define the role of HR in BC predisposition. To distinguish between HR-dependent and -independent features of BCs, we generated a mouse model in which an essential HR gene, Rad51c, is knocked-out specifically in epidermal tissues. Rad51c is one of the key mediators of HR and a well-known BC predisposition gene. Here, we demonstrate that deletion of Rad51c invariably requires inactivation of the Trp53 tumor suppressor (TP53 in humans) to produce mammary carcinomas in 63% of female mice. Nonetheless, loss of Rad51c shortens the latency of Trp53-deficient mouse tumors from 11 to 6 months. Remarkably, the histopathological features of Rad51c-deficient mammary carcinomas, such as expression of hormone receptors and luminal epithelial markers, faithfully recapitulate the histopathology of human RAD51C-mutated BCs. Similar to other BC models, Rad51c/p53 double-mutant mouse mammary tumors also reveal a propensity for genomic instability, but lack the focal amplification of the Met locus or distinct mutational signatures reported for other HR genes. Using the human mammary epithelial cell line MCF10A, we show that deletion of TP53 can rescue RAD51C-deficient cells from radiation-induced cellular senescence, whereas it exacerbates their centrosome amplification and nuclear abnormalities. Altogether, our data indicate that a trend for genomic instability and inactivation of Trp53 are common features of HR-mediated BCs, whereas histopathology and somatic mutation patterns are specific for different HR genes.

  7. Crystal Structure of Bacillus subtilis Cysteine Desulfurase SufS and Its Dynamic Interaction with Frataxin and Scaffold Protein SufU.

    Directory of Open Access Journals (Sweden)

    Bastian Blauenburg

    Full Text Available The biosynthesis of iron sulfur (Fe-S clusters in Bacillus subtilis is mediated by a SUF-type gene cluster, consisting of the cysteine desulfurase SufS, the scaffold protein SufU, and the putative chaperone complex SufB/SufC/SufD. Here, we present the high-resolution crystal structure of the SufS homodimer in its product-bound state (i.e., in complex with pyrodoxal-5'-phosphate, alanine, Cys361-persulfide. By performing hydrogen/deuterium exchange (H/DX experiments, we characterized the interaction of SufS with SufU and demonstrate that SufU induces an opening of the active site pocket of SufS. Recent data indicate that frataxin could be involved in Fe-S cluster biosynthesis by facilitating iron incorporation. H/DX experiments show that frataxin indeed interacts with the SufS/SufU complex at the active site. Our findings deepen the current understanding of Fe-S cluster biosynthesis, a complex yet essential process, in the model organism B. subtilis.

  8. Analysis of uncoupling protein 2-deficient mice upon anaesthesia and sedation revealed a role for UCP2 in locomotion.

    Directory of Open Access Journals (Sweden)

    Marie-Clotilde Alves-Guerra

    Full Text Available General anaesthesia is associated with hypothermia, oxidative stress, and immune depression. Uncoupling Protein (UCP2 is a member of the mitochondrial carrier family present in many organs including the spleen, the lung and the brain. A role of UCP2 in the activation of the inflammatory/immune cells, in the secretion of hormones, and in the excitability of neurons by regulating the production of reactive oxygen species has been discussed. Because of the side effects of anaesthesia listed above, we aimed to question the expression and the function of UCP2 during anaesthesia. Induction of anaesthesia with ketamine (20 mg/kg or isoflurane (3.6% and induction of sedation with the α2 adrenergic receptor agonist medetomidine (0.2 mg/kg stimulated infiltration of immune cells in the lung and increased UCP2 protein content in the lung, in both immune and non-immune cells. UCP2 content in the lung inversely correlated with body temperature decrease induced by medetomidine treatment. Challenge of the Ucp2(-/- mice with isoflurane and medetomidine revealed an earlier behavioral recovery phenotype. Transponder analysis of body temperature and activity showed no difference between Ucp2(-/- and control mice in basal conditions. However, upon an acute decrease of body temperature induced by medetomidine, Ucp2(-/- mice exhibited increased locomotion activity. Together, these results show that UCP2 is rapidly mobilized during anaesthesia and sedation in immune cells, and suggest a role of UCP2 in locomotion.

  9. A novel mouse model reveals that polycystin-1 deficiency in ependyma and choroid plexus results in dysfunctional cilia and hydrocephalus.

    Directory of Open Access Journals (Sweden)

    Claas Wodarczyk

    Full Text Available Polycystin-1 (PC-1, the product of the PKD1 gene, mutated in the majority of cases of Autosomal Dominant Polycystic Kidney Disease (ADPKD, is a very large (approximately 520 kDa plasma membrane receptor localized in several subcellular compartments including cell-cell/matrix junctions as well as cilia. While heterologous over-expression systems have allowed identification of several of the potential biological roles of this receptor, its precise function remains largely elusive. Studying PC-1 in vivo has been a challenging task due to its complexity and low expression levels. To overcome these limitations and facilitate the study of endogenous PC-1, we have inserted HA- or Myc-tag sequences into the Pkd1 locus by homologous recombination. Here, we show that our approach was successful in generating a fully functional and easily detectable endogenous PC-1. Characterization of PC-1 distribution in vivo showed that it is expressed ubiquitously and is developmentally-regulated in most tissues. Furthermore, our novel tool allowed us to investigate the role of PC-1 in brain, where the protein is abundantly expressed. Subcellular localization of PC-1 revealed strong and specific staining in ciliated ependymal and choroid plexus cells. Consistent with this distribution, we observed hydrocephalus formation both in the ubiquitous knock-out embryos and in newborn mice with conditional inactivation of the Pkd1 gene in the brain. Both choroid plexus and ependymal cilia were morphologically normal in these mice, suggesting a role for PC-1 in ciliary function or signalling in this compartment, rather than in ciliogenesis. We propose that the role of PC-1 in the brain cilia might be to prevent hydrocephalus, a previously unrecognized role for this receptor and one that might have important implications for other genetic or sporadic diseases.

  10. Analysis of Uncoupling Protein 2-Deficient Mice upon Anaesthesia and Sedation Revealed a Role for UCP2 in Locomotion

    Science.gov (United States)

    Alves-Guerra, Marie-Clotilde; Aheng, Caroline; Pecqueur, Claire; Masscheleyn, Sandrine; Tharaux, Pierre Louis; Druilhe, Anne; Ricquier, Daniel; Challet, Etienne; Miroux, Bruno

    2012-01-01

    General anaesthesia is associated with hypothermia, oxidative stress, and immune depression. Uncoupling Protein (UCP2) is a member of the mitochondrial carrier family present in many organs including the spleen, the lung and the brain. A role of UCP2 in the activation of the inflammatory/immune cells, in the secretion of hormones, and in the excitability of neurons by regulating the production of reactive oxygen species has been discussed. Because of the side effects of anaesthesia listed above, we aimed to question the expression and the function of UCP2 during anaesthesia. Induction of anaesthesia with ketamine (20 mg/kg) or isoflurane (3.6%) and induction of sedation with the α2 adrenergic receptor agonist medetomidine (0.2 mg/kg) stimulated infiltration of immune cells in the lung and increased UCP2 protein content in the lung, in both immune and non-immune cells. UCP2 content in the lung inversely correlated with body temperature decrease induced by medetomidine treatment. Challenge of the Ucp2−/− mice with isoflurane and medetomidine revealed an earlier behavioral recovery phenotype. Transponder analysis of body temperature and activity showed no difference between Ucp2−/− and control mice in basal conditions. However, upon an acute decrease of body temperature induced by medetomidine, Ucp2−/− mice exhibited increased locomotion activity. Together, these results show that UCP2 is rapidly mobilized during anaesthesia and sedation in immune cells, and suggest a role of UCP2 in locomotion. PMID:22900002

  11. A Colletotrichum graminicola mutant deficient in the establishment of biotrophy reveals early transcriptional events in the maize anthracnose disease interaction.

    Science.gov (United States)

    Torres, Maria F; Ghaffari, Noushin; Buiate, Ester A S; Moore, Neil; Schwartz, Scott; Johnson, Charles D; Vaillancourt, Lisa J

    2016-03-08

    Colletotrichum graminicola is a hemibiotrophic fungal pathogen that causes maize anthracnose disease. It progresses through three recognizable phases of pathogenic development in planta: melanized appressoria on the host surface prior to penetration; biotrophy, characterized by intracellular colonization of living host cells; and necrotrophy, characterized by host cell death and symptom development. A "Mixed Effects" Generalized Linear Model (GLM) was developed and applied to an existing Illumina transcriptome dataset, substantially increasing the statistical power of the analysis of C. graminicola gene expression during infection and colonization. Additionally, the in planta transcriptome of the wild-type was compared with that of a mutant strain impaired in the establishment of biotrophy, allowing detailed dissection of events occurring specifically during penetration, and during early versus late biotrophy. More than 2000 fungal genes were differentially transcribed during appressorial maturation, penetration, and colonization. Secreted proteins, secondary metabolism genes, and membrane receptors were over-represented among the differentially expressed genes, suggesting that the fungus engages in an intimate and dynamic conversation with the host, beginning prior to penetration. This communication process probably involves reception of plant signals triggering subsequent developmental progress in the fungus, as well as production of signals that induce responses in the host. Later phases of biotrophy were more similar to necrotrophy, with increased production of secreted proteases, inducers of plant cell death, hydrolases, and membrane bound transporters for the uptake and egress of potential toxins, signals, and nutrients. This approach revealed, in unprecedented detail, fungal genes specifically expressed during critical phases of host penetration and biotrophic establishment. Many encoded secreted proteins, secondary metabolism enzymes, and receptors that may

  12. Carnitine Deficiency and Pregnancy

    Directory of Open Access Journals (Sweden)

    Anouk de Bruyn

    2015-01-01

    Full Text Available We present two cases of carnitine deficiency in pregnancy. In our first case, systematic screening revealed L-carnitine deficiency in the first born of an asymptomatic mother. In the course of her second pregnancy, maternal carnitine levels showed a deficiency as well. In a second case, a mother known with carnitine deficiency under supplementation was followed throughout her pregnancy. Both pregnancies had an uneventful outcome. Because carnitine deficiency can have serious complications, supplementation with carnitine is advised. This supplementation should be continued throughout pregnancy according to plasma concentrations.

  13. Breakpoint mapping by next generation sequencing reveals causative gene disruption in patients carrying apparently balanced chromosome rearrangements with intellectual deficiency and/or congenital malformations.

    Science.gov (United States)

    Schluth-Bolard, Caroline; Labalme, Audrey; Cordier, Marie-Pierre; Till, Marianne; Nadeau, Gwenaël; Tevissen, Hélène; Lesca, Gaétan; Boutry-Kryza, Nadia; Rossignol, Sylvie; Rocas, Delphine; Dubruc, Estelle; Edery, Patrick; Sanlaville, Damien

    2013-03-01

    Apparently balanced chromosomal rearrangements (ABCR) are associated with an abnormal phenotype in 6% of cases. This may be due to cryptic genomic imbalances or to the disruption of genes at the breakpoint. However, breakpoint cloning using conventional methods (ie, fluorescent in situ hybridisation (FISH), Southern blot) is often laborious and time consuming. In this work, we used next generation sequencing (NGS) to locate breakpoints at the molecular level in four patients with multiple congenital abnormalities and/or intellectual deficiency (MCA/ID) who were carrying ABCR (one translocation, one complex chromosomal rearrangement and two inversions), which corresponded to nine breakpoints. Genomic imbalance was previously excluded by array comparative genomic hybridisation (CGH) in all four patients. Whole genome paired-end protocol was used to identify breakpoints. The results were verified by FISH and by PCR with Sanger sequencing. We were able to map all nine breakpoints. NGS revealed an additional breakpoint due to a cryptic inversion at a breakpoint junction in one patient. Nine of 10 breakpoints occurred in repetitive elements and five genes were disrupted in their intronic sequence (TCF4, SHANK2, PPFIA1, RAB19, KCNQ1). NGS is a powerful tool allowing rapid breakpoint cloning of ABCR at the molecular level. We showed that in three out of four patients, gene disruption could account for the phenotype, allowing adapted genetic counselling and stopping unnecessary investigations. We propose that patients carrying ABCR with an abnormal phenotype should be explored systematically by NGS once a genomic imbalance has been excluded by array CGH.

  14. A comprehensive HADHA c.1528G>C frequency study reveals high prevalence of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency in Poland

    DEFF Research Database (Denmark)

    Piekutowska-Abramczuk, Dorota; Olsen, Rikke K J; Wierzba, Jolanta;

    2010-01-01

    Isolated long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) is associated with c.1528G>C substitution in the HADHA gene, since most patients have the prevalent mutation on at least one allele. As it is known that the disease is relatively frequent in Europe, especially around the Balt...... Sea, and that the majority of Polish LCHADD patients originate from the coastal Pomeranian province, partly inhabited by an ancient ethnic group, the Kashubians, we aimed to determine the carrier frequency of the prevalent HADHA mutation in various districts of Poland with special focus....... Our data reveal a geographically skewed distribution of the c.1528C allele in the Polish population; in the northern Pomeranian province the carrier frequency is 1:73, which is the highest frequency ever reported, whereas in the remaining regions it is 1:217. Hence, the incidence of LCHADD in Poland...... is predicted to be 1:118,336 versus 1:16,900 in the Pomeranian district. Despite the relative rarity of the disease, screening for LCHADD in neonates born in the northern part of Poland, especially those of Kashubian origin, is justified. Our data allow us to suggest a probable Kashubian origin...

  15. Effects of Fe and Mn deficiencies on the protein profiles of tomato (Solanum lycopersicum) xylem sap as revealed by shotgun analyses.

    Science.gov (United States)

    Ceballos-Laita, Laura; Gutierrez-Carbonell, Elain; Takahashi, Daisuke; Abadía, Anunciación; Uemura, Matsuo; Abadía, Javier; López-Millán, Ana Flor

    2017-08-25

    The aim of this work was to study the effects of Fe and Mn deficiencies on the xylem sap proteome of tomato using a shotgun proteomic approach, with the final goal of elucidating plant response mechanisms to these stresses. This approach yielded 643 proteins reliably identified and quantified with 70% of them predicted as secretory. Iron and Mn deficiencies caused statistically significant and biologically relevant abundance changes in 119 and 118 xylem sap proteins, respectively. In both deficiencies, metabolic pathways most affected were protein metabolism, stress/oxidoreductases and cell wall modifications. First, results suggest that Fe deficiency elicited more stress responses than Mn deficiency, based on the changes in oxidative and proteolytic enzymes. Second, both nutrient deficiencies affect the secondary cell wall metabolism, with changes in Fe deficiency occurring via peroxidase activity, and in Mn deficiency involving peroxidase, Cu-oxidase and fasciclin-like arabinogalactan proteins. Third, the primary cell wall metabolism was affected by both nutrient deficiencies, with changes following opposite directions as judged from the abundances of several glycoside-hydrolases with endo-glycolytic activities and pectin esterases. Fourth, signaling pathways via xylem involving CLE and/or lipids as well as changes in phosphorylation and N-glycosylation also play a role in the responses to these stresses. Biological significance In spite of being essential for the delivery of nutrients to the shoots, our knowledge of xylem responses to nutrient deficiencies is very limited. The present work applies a shotgun proteomic approach to unravel the effects of Fe and Mn deficiencies on the xylem sap proteome. Overall, Fe deficiency seems to elicit more stress in the xylem sap proteome than Mn deficiency, based on the changes measured in proteolytic and oxido-reductase proteins, whereas both nutrients exert modifications in the composition of the primary and secondary

  16. Cobalamin deficiency, hyperhomocysteinemia, and dementia

    National Research Council Canada - National Science Library

    Werder, Steven F

    2010-01-01

    ...) What is to be expected from treatment? (7) How is B12 deficiency treated? On January 31st, 2009, a Medline search was performed revealing 1,627 citations related to cobalamin deficiency, hyperhomocysteinemia, and dementia...

  17. RNA-seq transcriptome profiling reveals that Medicago truncatula nodules acclimate N2 fixation before emerging P deficiency reaches the nodules

    Science.gov (United States)

    Cabeza, Ricardo A.; Liese, Rebecca; Lingner, Annika; von Stieglitz, Ilsabe; Neumann, Janice; Salinas-Riester, Gabriela; Pommerenke, Claudia; Dittert, Klaus; Schulze, Joachim

    2014-01-01

    Legume nodules are plant tissues with an exceptionally high concentration of phosphorus (P), which, when there is scarcity of P, is preferentially maintained there rather than being allocated to other plant organs. The hypothesis of this study was that nodules are affected before the P concentration in the organ declines during whole-plant P depletion. Nitrogen (N2) fixation and P concentration in various organs were monitored during a whole-plant P-depletion process in Medicago truncatula. Nodule gene expression was profiled through RNA-seq at day 5 of P depletion. Until that point in time P concentration in leaves reached a lower threshold but was maintained in nodules. N2-fixation activity per plant diverged from that of fully nourished plants beginning at day 5 of the P-depletion process, primarily because fewer nodules were being formed, while the activity of the existing nodules was maintained for as long as two weeks into P depletion. RNA-seq revealed nodule acclimation on a molecular level with a total of 1140 differentially expressed genes. Numerous genes for P remobilization from organic structures were increasingly expressed. Various genes involved in nodule malate formation were upregulated, while genes involved in fermentation were downregulated. The fact that nodule formation was strongly repressed with the onset of P deficiency is reflected in the differential expression of various genes involved in nodulation. It is concluded that plants follow a strategy to maintain N2 fixation and viable leaf tissue as long as possible during whole-plant P depletion to maintain their ability to react to emerging new P sources (e.g. through active P acquisition by roots). PMID:25151618

  18. Conditional IL-4/IL-13-deficient mice reveal a critical role of innate immune cells for protective immunity against gastrointestinal helminths.

    Science.gov (United States)

    Oeser, K; Schwartz, C; Voehringer, D

    2015-05-01

    Approximately one-third of the world population is infected with gastrointestinal helminths. Studies in mouse models have demonstrated that the cytokines interleukin (IL)-4 and IL-13 are essential for worm expulsion, but the critical cellular source of these cytokines is poorly defined. Here, we compared the immune response to Nippostrongylus brasiliensis in wild-type, T cell-specific IL-4/IL-13-deficient and general IL-4/IL-13-deficient mice. We show that T cell-derived IL-4/IL-13 promoted T helper 2 (Th2) polarization in a paracrine manner, differentiation of alternatively activated macrophages, and tissue recruitment of innate effector cells. However, innate IL-4/IL-13 played the critical role for induction of goblet cell hyperplasia and secretion of effector molecules like Mucin5ac and RELMβ in the small intestine. Surprisingly, T cell-specific IL-4/IL-13-deficient and wild-type mice cleared the parasite with comparable efficiency, whereas IL-4/IL-13-deficient mice showed impaired expulsion. These findings demonstrate that IL-4/IL-13 produced by cells of the innate immune system is required and sufficient to initiate effective type 2 immune responses resulting in protective immunity against N. brasiliensis.

  19. Transcriptomic Analysis of Soil Grown T. aestivum cv. Root to Reveal the Changes in Expression of Genes in Response to Multiple Nutrients Deficiency

    Directory of Open Access Journals (Sweden)

    Saurabh Gupta

    2017-06-01

    Full Text Available Deficiency of necessary macronutrients, i.e., Potassium (K, Magnesium (Mg, Nitrogen (N, Phosphorus (P, and Sulfate (S in the soil leads to a reduction in plant growth and yield, which is a result of changes in expression level of various genes. This study was performed to identify the differentially expressed genes and its associated metabolic pathways occurred in soil grown wheat root samples excavated from the control and treated fields. To identify the difference in gene expression levels due to deficiency of the said nutrients, a transcriptomic, meta-analysis was performed on array expression profile data. A set of 435 statistically significant probes encoding 398 Nutrient Deficiency Response Genes (NRGs responding at-least one nutrients deficiency (ND were identified. Out of them 55 NRGs were found to response to minimum two ND. Singular Enrichment Analysis (SEA predicts ontological based classifications and functional analysis of NRGs in different cellular/molecular pathways involved in root development and growth. Functional annotation and reaction mechanism of differentially expressed genes, proteins/enzymes in the different metabolic pathway through MapMan analysis were explored. Further the meta-analysis was performed to revels the active involvement each NRGs in distinct tissues and their comparative potential expression analysis in different stress conditions. The study results in exploring the role of major acting candidate genes such as Non-specific serine/threonine protein kinase, Xyloglucan endotransglucosylase/hydrolase, Peroxides, Glycerophosphoryl diester phosphodiesterase, S-adenosylmethionine decarboxylase proenzyme, Dehydrin family proteins, Transcription factors, Membrane Proteins, Metal binding proteins, Photosystem proteins, Transporter and Transferase associated in different metabolic pathways. Finally, the differences of transcriptional responses in the soil-grown root of T. aestivum cv. and in-vitro grown model plants

  20. Iodine Deficiency

    Science.gov (United States)

    ... 2017 By ATA | Featured , Iodine Deficiency , News Releases , Potassium Iodide (KI) | No Comments IDD NEWSLETTER – February 2017 VOLUME ... 2016 By ATA | Featured , Iodine Deficiency , News Releases , Potassium Iodide (KI) | No Comments IDD NEWSLETTER – November 2015 (PDF ...

  1. Proteomic analysis of Arabidopsis thaliana leaves in response to acute boron deficiency and toxicity reveals effects on photosynthesis, carbohydrate metabolism, and protein synthesis.

    Science.gov (United States)

    Chen, Mei; Mishra, Sasmita; Heckathorn, Scott A; Frantz, Jonathan M; Krause, Charles

    2014-02-15

    Boron (B) stress (deficiency and toxicity) is common in plants, but as the functions of this essential micronutrient are incompletely understood, so too are the effects of B stress. To investigate mechanisms underlying B stress, we examined protein profiles in leaves of Arabidopsis thaliana plants grown under normal B (30 μM), compared to plants transferred for 60 and 84 h (i.e., before and after initial visible symptoms) in deficient (0 μM) or toxic (3 mM) levels of B. B-responsive polypeptides were sequenced by mass spectrometry, following 2D gel electrophoresis, and 1D gels and immunoblotting were used to confirm the B-responsiveness of some of these proteins. Fourteen B-responsive proteins were identified, including: 9 chloroplast proteins, 6 proteins of photosynthetic/carbohydrate metabolism (rubisco activase, OEC23, photosystem I reaction center subunit II-1, ATPase δ-subunit, glycolate oxidase, fructose bisphosphate aldolase), 6 stress proteins, and 3 proteins involved in protein synthesis (note that the 14 proteins may fall into multiple categories). Most (8) of the B-responsive proteins decreased under both B deficiency and toxicity; only 3 increased with B stress. Boron stress decreased, or had no effect on, 3 of 4 oxidative stress proteins examined, and did not affect total protein. Hence, our results indicate relatively early specific effects of B stress on chloroplasts and protein synthesis.

  2. Quantitative proteomic analysis reveals metabolic alterations, calcium dysregulation, and increased expression of extracellular matrix proteins in laminin α2 chain-deficient muscle.

    Science.gov (United States)

    de Oliveira, Bruno Menezes; Matsumura, Cintia Y; Fontes-Oliveira, Cibely C; Gawlik, Kinga I; Acosta, Helena; Wernhoff, Patrik; Durbeej, Madeleine

    2014-11-01

    Congenital muscular dystrophy with laminin α2 chain deficiency (MDC1A) is one of the most severe forms of muscular disease and is characterized by severe muscle weakness and delayed motor milestones. The genetic basis of MDC1A is well known, yet the secondary mechanisms ultimately leading to muscle degeneration and subsequent connective tissue infiltration are not fully understood. In order to obtain new insights into the molecular mechanisms underlying MDC1A, we performed a comparative proteomic analysis of affected muscles (diaphragm and gastrocnemius) from laminin α2 chain-deficient dy(3K)/dy(3K) mice, using multidimensional protein identification technology combined with tandem mass tags. Out of the approximately 700 identified proteins, 113 and 101 proteins, respectively, were differentially expressed in the diseased gastrocnemius and diaphragm muscles compared with normal muscles. A large portion of these proteins are involved in different metabolic processes, bind calcium, or are expressed in the extracellular matrix. Our findings suggest that metabolic alterations and calcium dysregulation could be novel mechanisms that underlie MDC1A and might be targets that should be explored for therapy. Also, detailed knowledge of the composition of fibrotic tissue, rich in extracellular matrix proteins, in laminin α2 chain-deficient muscle might help in the design of future anti-fibrotic treatments. All MS data have been deposited in the ProteomeXchange with identifier PXD000978 (http://proteomecentral.proteomexchange.org/dataset/PXD000978).

  3. Co-precipitation of phosphate and iron limits mitochondrial phosphate availability in Saccharomyces cerevisiae lacking the yeast frataxin homologue (YFH1).

    Science.gov (United States)

    Seguin, Alexandra; Santos, Renata; Pain, Debkumar; Dancis, Andrew; Camadro, Jean-Michel; Lesuisse, Emmanuel

    2011-02-25

    Saccharomyces cerevisiae cells lacking the yeast frataxin homologue (Δyfh1) accumulate iron in the mitochondria in the form of nanoparticles of ferric phosphate. The phosphate content of Δyfh1 mitochondria was higher than that of wild-type mitochondria, but the proportion of mitochondrial phosphate that was soluble was much lower in Δyfh1 cells. The rates of phosphate and iron uptake in vitro by isolated mitochondria were higher for Δyfh1 than wild-type mitochondria, and a significant proportion of the phosphate and iron rapidly became insoluble in the mitochondrial matrix, suggesting co-precipitation of these species after oxidation of iron by oxygen. Increasing the amount of phosphate in the medium decreased the amount of iron accumulated by Δyfh1 cells and improved their growth in an iron-dependent manner, and this effect was mostly transcriptional. Overexpressing the major mitochondrial phosphate carrier, MIR1, slightly increased the concentration of soluble mitochondrial phosphate and significantly improved various mitochondrial functions (cytochromes, [Fe-S] clusters, and respiration) in Δyfh1 cells. We conclude that in Δyfh1 cells, soluble phosphate is limiting, due to its co-precipitation with iron.

  4. Effects of deficiency and excess of zinc on morphophysiological traits and spatiotemporal regulation of zinc-responsive genes reveal incidence of cross talk between micro- and macronutrients.

    Science.gov (United States)

    Jain, Ajay; Sinilal, Bhaskaran; Dhandapani, Gurusamy; Meagher, Richard B; Sahi, Shivendra V

    2013-05-21

    Zinc (Zn) is an essential micronutrient which affects plant growth and development in deficiency and can be toxic when present in excess. In Arabidopsis thaliana , different families of cation transporters play pivotal roles in Zn homeostasis. In the present study, we evaluated the effects of Zn in its deficiency (0 μM; Zn-) and excess (75 μM; Zn++) on various morphophysiological and molecular traits. Primary root length was reduced in Zn- seedlings, whereas there were significant increases in the number and length of lateral roots under Zn- and Zn++ conditions, respectively. Concentration of various macro- and microelements showed variations under different Zn regimes and notable among them was the reduced level of iron (Fe) in Zn++ seedlings compared to Zn+. Certain members of the ZIP family (ZIP4, ZIP9, and ZIP12) showed significant induction in roots and shoots of the Zn- seedlings. Their suppression under Zn++ condition indicated their transcriptional regulation by Zn and their roles in the maintenance of its homeostasis. Zn-deficiency-mediated induction of HMA2 in roots and shoots suggested its role in effluxing Zn into xylem for long-distance transport. Attenuation in the expression of Fe-responsive FRO2 and IRT1 in Zn- roots and their induction in Zn++ roots provided empirical evidence toward the prevalence of a cross talk between Zn and Fe homeostasis. Variable effects of Zn- and Zn++ on the expression of subset of genes involved in the homeostasis of phosphate (Pi), potassium (K), and sulfur (S) further highlighted the prevalence of cross talk between the sensing and signaling cascades of Zn and macronutrients. Further, the inducibility of ZIP4 and ZIP12 in response to cadmium (cd) treatment could be harnessed by tailoring them in homologous or heterologous plant system for removing pollutant toxic heavy metals from the environment.

  5. Time-course microarrays reveal early activation of the immune transcriptome in a choline-deficient mouse model of liver injury.

    Science.gov (United States)

    Mitsumoto, Koji; Watanabe, Rina; Nakao, Katsuki; Yonenaka, Hisaki; Hashimoto, Takao; Kato, Norihisa; Kumrungsee, Thanutchaporn; Yanaka, Noriyuki

    2017-09-01

    Choline-deficient diet is extensively used as a model of nonalcoholic fatty liver disease (NAFLD). In this study, we explored genes in the liver for which the expression changed in response to the choline-deficient (CD) diet. Male CD-1 mice were divided into two groups and fed a CD diet with or without 0.2% choline bitartrate for one or three weeks. Hepatic levels of choline metabolites were analyzed by using liquid chromatography mass spectrometry and hepatic gene expression profiles were examined by DNA microarray analysis. The CD diet lowered liver choline metabolites after one week and exacerbated fatty liver between one and three weeks. We identified >300 genes whose expression was significantly altered in the livers of mice after consumption of this CD diet for one week and showed that liver gene expression profiles could be classified into six distinct groups. This study showed that STAT1 and interferon-regulated genes was up-regulated after the CD diet consumption and that the Stat1 mRNA level was negatively correlated with liver phosphatidylcholine level. Stat1 mRNA expression was actually up-regulated in isolated hepatocytes from the mouse liver with the CD diet. This study provides insight into the genomic effects of the CD diet through the Stat1 expression, which might be involved in NAFLD development. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Adaptive Immune Response to Model Antigens Is Impaired in Murine Leukocyte-Adhesion Deficiency-1 Revealing Elevated Activation Thresholds In Vivo

    Directory of Open Access Journals (Sweden)

    Thorsten Peters

    2012-01-01

    Full Text Available Absence of β2 integrins (CD11/CD18 leads to leukocyte-adhesion deficiency-1 (LAD1, a rare primary immunodeficiency syndrome. Although extensive in vitro work has established an essential function of β2 integrins in adhesive and signaling properties for cells of the innate and adaptive immune system, their respective participation in an altered adaptive immunity in LAD1 patients are complex and only partly understood in vivo. Therefore, we investigated adaptive immune responses towards different T-dependent antigens in a murine LAD1 model of β2 integrin-deficiency (CD18−/−. CD18−/− mice generated only weak IgG responses after immunization with tetanus toxoid (TT. In contrast, robust hapten- and protein-specific immune responses were observed after immunization with highly haptenated antigens such as (4-hydroxy-3-nitrophenyl21 acetyl chicken γ globulin (NP21-CG, even though regularly structured germinal centers with specificity for the defined antigens/haptens in CD18−/− mice remained absent. However, a decrease in the hapten/protein ratio lowered the efficacy of immune responses in CD18−/− mice, whereas a mere reduction of the antigen dose was less crucial. Importantly, haptenation of TT with NP (NP-TT efficiently restored a robust IgG response also to TT. Our findings may stimulate further studies on a modification of vaccination strategies using highly haptenated antigens in individuals suffering from LAD1.

  7. Disaccharidase deficiency.

    Science.gov (United States)

    Bayless, T M; Christopher, N L

    1969-02-01

    This review of the literature and current knowledge concerning a nutritional disorder of disaccharidase deficiency discusses the following topics: 1) a description of disorders of disaccharide digestion; 2) some historical perspective on the laboratory and bedside advances in the past 10 years that have helped define a group of these digestive disorders; 3) a classification of conditions causing disaccharide intolerance; and 4) a discussion of some of the specific clinical syndromes emphasizing nutritional consequences of these syndromes. The syndromes described include congenital lactase deficiency, acquired lactase deficiency in teenagers and adults, acquired generalized disaccharidase deficiency secondary to diffuse mucosal damage, acquired lactose intolerance secondary to alterations in the intestinal transit, sucrase-isomaltase deficiencies, and other disease associations connected with lactase deficiency such as colitis.

  8. Mn²⁺-deficiency reveals a key role for the Pleurotus ostreatus versatile peroxidase (VP4) in oxidation of aromatic compounds.

    Science.gov (United States)

    Knop, Doriv; Ben-Ari, Julius; Salame, Tomer M; Levinson, Dana; Yarden, Oded; Hadar, Yitzhak

    2014-08-01

    The manganese peroxidase gene family (mnps) is a part of the ligninolytic system of Pleurotus ostreatus. This gene family is comprised of nine members, mnp1-9, encoding short manganese peroxidases (short-MnPs) or versatile peroxidases (VPs). We show that unlike in Mn(2+)-amended glucose-peptone (GP) medium, where redundancy among mnps was reported, in Mn(2+)-deficient GP medium mnp4 [encoding versatile peroxidase isoenzyme 4 (VP4)] has a key and nonredundant function. The abundance of mnps transcripts at time points corresponding to the tropophase (active growth), early idiophase, and idiophase indicates that mnp4 is the predominantly expressed mnp gene and that its relative predominance is dependent on the age of the culture. In this medium, azo dye, Orange II (OII) decolorization occurs only during the idiophase and a Δmnp4 strain showed a drastic reduction in this decolorization. Three degradation metabolites were identified by liquid chromatography-mass spectroscopy (LC-MS), indicating both asymmetric and symmetric enzymatic cleavage of the azo-bond. In addition, the culture filtrate of Δmnp4 showed negligible values of oxidation capability of four typical VP substrates: Mn(2+), 2,6-dimethoxyphenol, phenol red, and Reactive Black 5 (RB5), compared to the wild-type strain PC9. We concluded that under Mn(2+)-deficient GP culture, VP4 (encoded by mnp4) is the main active ligninolytic enzyme able to oxidize Mn(2+) as well as high and low redox potential aromatic substrate, including dyes. Furthermore, other VPs/MnPs do not compensate for the lack of VP4 activity.

  9. Targeted next generation sequencing of the entire vitamin D receptor gene reveals polymorphisms correlated with vitamin D deficiency among older Filipino women with and without fragility fracture.

    Science.gov (United States)

    Zumaraga, Mark Pretzel; Medina, Paul Julius; Recto, Juan Miguel; Abrahan, Lauro; Azurin, Edelyn; Tanchoco, Celeste C; Jimeno, Cecilia A; Palmes-Saloma, Cynthia

    2017-03-01

    This study aimed to discover genetic variants in the entire 101 kB vitamin D receptor (VDR) gene for vitamin D deficiency in a group of postmenopausal Filipino women using targeted next generation sequencing (TNGS) approach in a case-control study design. A total of 50 women with and without osteoporotic fracture seen at the Philippine Orthopedic Center were included. Blood samples were collected for determination of serum vitamin D, calcium, phosphorus, glucose, blood urea nitrogen, creatinine, aspartate aminotransferase, alanine aminotransferase and as primary source for targeted VDR gene sequencing using the Ion Torrent Personal Genome Machine. The variant calling was based on the GATK best practice workflow and annotated using Annovar tool. A total of 1496 unique variants in the whole 101-kb VDR gene were identified. Novel sequence variations not registered in the dbSNP database were found among cases and controls at a rate of 23.1% and 16.6% of total discovered variants, respectively. One disease-associated enhancer showed statistically significant association to low serum 25-hydroxy vitamin D levels (Pearson chi-square P-value=0.009). The transcription factor binding site prediction program PROMO predicted the disruption of three transcription factor binding sites in this enhancer region. These findings show the power of TNGS in identifying sequence variations in a very large gene and the surprising results obtained in this study greatly expand the catalog of known VDR sequence variants that may represent an important clue in the emergence of vitamin D deficiency. Such information will also provide the additional guidance necessary toward a personalized nutritional advice to reach sufficient vitamin D status.

  10. RNAi knock-down of shrimp Litopenaeus vannamei Toll gene and immune deficiency gene reveals their difference in regulating antimicrobial peptides transcription.

    Science.gov (United States)

    Hou, Fujun; He, Shulin; Liu, Yongjie; Zhu, Xiaowen; Sun, Chengbo; Liu, Xiaolin

    2014-06-01

    NF-κB dependent antimicrobial peptides (AMPs) are of critical importance in protecting insects or mammals from microorganisms infection. However, we still do not make clear signaling pathways in regulating AMPs expression in shrimps. In this study, RNAi approach was used to study differences between Toll signaling pathway and immune deficiency signaling pathway in regulating the transcription of NF-κB dependent AMPs post bacteria challenge. Results showed that the transcription level of anti-lipopolysaccharide factor was highly suppressed in Litopenaeus vannamei immune deficiency (LvIMD) silenced shrimps by gene specific dsRNA compared to Litopenaeus vannamei Toll (LvToll) silenced shrimps with or without Vibrio anguillarum and Micrococcus lysodeikticus challenge. Conversely the transcription level of penaeidin3a was significantly suppressed in LvToll silenced shrimps compared to LvIMD silenced shrimps. However, no obvious difference was found in regulating the transcription of CrustinP. Meanwhile, we found that silencing LvToll both down regulated the transcription of Dorsal and Relish while silencing LvIMD only down regulated the transcription of Relish. At last, shrimp survival experiment showed that post V. anguillarum challenge high mortality was found both in LvToll and LvIMD silenced groups while post M. lysodeikticus challenge we saw high mortality only in LvToll silenced group. Hence, we conclude that shrimp L. vannamei Toll pathway and IMD pathway might be different in regulating the transcription of NF-κB dependent AMPs and responding to bacteria challenge but not independent of each other.

  11. Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls

    Directory of Open Access Journals (Sweden)

    Andreia Michelle Smith-Moritz

    2015-08-01

    Full Text Available The CELLULOSE SYNTHASE-LIKE F6 (CslF6 gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG, a cell wall polysaccharide that is hypothesized to be a tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to test the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of three day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell was of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion.

  12. Prolidase deficiency

    Directory of Open Access Journals (Sweden)

    Masood Qazi

    2007-01-01

    Full Text Available Prolidase deficiency is a rare inborn disorder of collagen metabolism characterized by chronic recurrent skin ulceration. A seven-year-old girl and her younger sibling with clinical features and laboratory criteria fulfilling the diagnosis of prolidase deficiency are presented in view of rarity of the condition.

  13. Iodine Deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.

    2009-01-01

    Iodine deficiency has multiple adverse effects in humans, termed iodine deficiency disorders, due to inadequate thyroid hormone production. Globally, it is estimated that 2 billion individuals have an insufficient iodine intake, and South Asia and sub-Saharan Africa are particularly affected. Howeve

  14. Iodine Deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.

    2009-01-01

    Iodine deficiency has multiple adverse effects in humans, termed iodine deficiency disorders, due to inadequate thyroid hormone production. Globally, it is estimated that 2 billion individuals have an insufficient iodine intake, and South Asia and sub-Saharan Africa are particularly affected. Howeve

  15. Synthesis and biological evaluation of new creatine fatty esters revealed dodecyl creatine ester as a promising drug candidate for the treatment of the creatine transporter deficiency.

    Science.gov (United States)

    Trotier-Faurion, Alexandra; Dézard, Sophie; Taran, Frédéric; Valayannopoulos, Vassili; de Lonlay, Pascale; Mabondzo, Aloïse

    2013-06-27

    The creatine transporter deficiency is a neurological disease caused by impairment of the creatine transporter SLC6A8, resulting in mental retardation associated with a complete absence of creatine within the brain and cellular energy perturbation of neuronal cells. One of the therapeutic hypotheses was to administer lipophilic creatine derivatives which are (1) thought to have better permeability through the cell membrane and (2) would not rely on the activity of SLC6A8 to penetrate the brain. Here, we synthesized creatine fatty esters through original organic chemistry process. A screening on an in vitro rat primary cell-based blood-brain barrier model and on a rat primary neuronal cells model demonstrated interesting properties of these prodrugs to incorporate into endothelial, astroglial, and neuronal cells according to a structure-activity relationship. Dodecyl creatine ester showed then a 20-fold increase in creatine content in pathological human fibroblasts compared with the endogenous creatine content, stating that it could be a promising drug candidate.

  16. Effects of Bleaching by Nitrogen Deficiency on the Quantum Yield of Photosystem II in Synechocystis sp. PCC 6803 Revealed by Chl Fluorescence Measurements.

    Science.gov (United States)

    Ogawa, Takako; Sonoike, Kintake

    2016-03-01

    Estimation of photosynthesis by Chl fluorescence measurement of cyanobacteria is always problematic due to the interference from respiratory electron transfer and from phycocyanin fluorescence. The interference from respiratory electron transfer could be avoided by the use of DCMU or background illumination by blue light, which oxidizes the plastoquinone pool that tends to be reduced by respiration. On the other hand, the precise estimation of photosynthesis in cells with a different phycobilisome content by Chl fluorescence measurement is difficult. By subtracting the basal fluorescence due to the phycobilisome and PSI, it becomes possible to estimate the precise maximum quantum yield of PSII in cyanobacteria. Estimated basal fluorescence accounted for 60% of the minimum fluorescence, resulting in a large difference between the 'apparent' yield and 'true' yield under high phycocyanin conditions. The calculated value of the 'true' maximum quantum yield of PSII was around 0.8, which was similar to the value observed in land plants. The results suggest that the cause of the apparent low yield reported in cyanobacteria is mainly ascribed to the interference from phycocyanin fluorescence. We also found that the 'true' maximum quantum yield of PSII decreased under nitrogen-deficient conditions, suggesting the impairment of the PSII reaction center, while the 'apparent' maximum quantum yield showed a marginal change under the same conditions. Due to the high contribution of phycocyanin fluorescence in cyanobacteria, it is essential to eliminate the influence of the change in phycocyanin content on Chl fluorescence measurement and to evaluate the 'true' photosynthetic condition.

  17. Skeletal muscle microRNA and messenger RNA profiling in cofilin-2 deficient mice reveals cell cycle dysregulation hindering muscle regeneration.

    Directory of Open Access Journals (Sweden)

    Sarah U Morton

    Full Text Available Congenital myopathies are rare skeletal muscle diseases presenting in early age with hypotonia and weakness often linked to a genetic defect. Mutations in the gene for cofilin-2 (CFL2 have been identified in several families as a cause of congenital myopathy with nemaline bodies and cores. Here we explore the global messenger and microRNA expression patterns in quadriceps muscle samples from cofillin-2-null mice and compare them with sibling-matched wild-type mice to determine the molecular pathways and mechanisms involved. Cell cycle processes are markedly dysregulated, with altered expression of genes involved in mitotic spindle formation, and evidence of loss of cell cycle checkpoint regulation. Importantly, alterations in cell cycle, apoptosis and proliferation pathways are present in both mRNA and miRNA expression patterns. Specifically, p21 transcript levels were increased, and the expression of p21 targets, such as cyclin D and cyclin E, was decreased. We therefore hypothesize that deficiency of cofilin-2 is associated with interruption of the cell cycle at several checkpoints, hindering muscle regeneration. Identification of these pathways is an important step towards developing appropriate therapies against various congenital myopathies.

  18. Analysis of meiosis in SUN1 deficient mice reveals a distinct role of SUN2 in mammalian meiotic LINC complex formation and function.

    Directory of Open Access Journals (Sweden)

    Jana Link

    2014-02-01

    Full Text Available LINC complexes are evolutionarily conserved nuclear envelope bridges, composed of SUN (Sad-1/UNC-84 and KASH (Klarsicht/ANC-1/Syne/homology domain proteins. They are crucial for nuclear positioning and nuclear shape determination, and also mediate nuclear envelope (NE attachment of meiotic telomeres, essential for driving homolog synapsis and recombination. In mice, SUN1 and SUN2 are the only SUN domain proteins expressed during meiosis, sharing their localization with meiosis-specific KASH5. Recent studies have shown that loss of SUN1 severely interferes with meiotic processes. Absence of SUN1 provokes defective telomere attachment and causes infertility. Here, we report that meiotic telomere attachment is not entirely lost in mice deficient for SUN1, but numerous telomeres are still attached to the NE through SUN2/KASH5-LINC complexes. In Sun1(-/- meiocytes attached telomeres retained the capacity to form bouquet-like clusters. Furthermore, we could detect significant numbers of late meiotic recombination events in Sun1(-/- mice. Together, this indicates that even in the absence of SUN1 telomere attachment and their movement within the nuclear envelope per se can be functional.

  19. Iodine Deficiency

    Science.gov (United States)

    ... 0 Iodine Daily Serving now recommended in Multivitamin/Mineral Supplements for Pregnant and Lactating Women By ATA | 2015 News Releases , Iodine Deficiency , News Releases , Thyroid Disease and Pregnancy | No Comments Falls Church, February 10, 2015 —The ...

  20. Iron deficiency.

    Science.gov (United States)

    Scrimshaw, N S

    1991-10-01

    The world's leading nutritional problem is iron deficiency. 66% of children and women aged 15-44 years in developing countries have it. Further, 10-20% of women of childbearing age in developed countries are anemic. Iron deficiency is identified with often irreversible impairment of a child's learning ability. It is also associated with low capacity for adults to work which reduces productivity. In addition, it impairs the immune system which reduces the body's ability to fight infection. Iron deficiency also lowers the metabolic rate and the body temperature when exposed to cold. Hemoglobin contains nearly 73% of the body's iron. This iron is always being recycled as more red blood cells are made. The rest of the needed iron does important tasks for the body, such as binds to molecules that are reservoirs of oxygen for muscle cells. This iron comes from our diet, especially meat. Even though some plants, such as spinach, are high in iron, the body can only absorb 1.4-7% of the iron in plants whereas it can absorb 20% of the iron in red meat. In many developing countries, the common vegetarian diets contribute to high rates of iron deficiency. Parasitic diseases and abnormal uterine bleeding also promote iron deficiency. Iron therapy in anemic children can often, but not always, improve behavior and cognitive performance. Iron deficiency during pregnancy often contributes to maternal and perinatal mortality. Yet treatment, if given to a child in time, can lead to normal growth and hinder infections. However, excess iron can be damaging. Too much supplemental iron in a malnourished child promotes fatal infections since the excess iron is available for the pathogens use. Many countries do not have an effective system for diagnosing, treating, and preventing iron deficiency. Therefore a concerted international effort is needed to eliminate iron deficiency in the world.

  1. Critical Role of CD2 Co-stimulation in Adaptive Natural Killer Cell Responses Revealed in NKG2C-Deficient Humans

    Directory of Open Access Journals (Sweden)

    Lisa L. Liu

    2016-05-01

    Full Text Available Infection by human cytomegalovirus (HCMV leads to NKG2C-driven expansion of adaptive natural killer (NK cells, contributing to host defense. However, approximately 4% of all humans carry a homozygous deletion of the gene that encodes NKG2C (NKG2C−/−. Assessment of NK cell repertoires in 60 NKG2C−/− donors revealed a broad range of NK cell populations displaying characteristic footprints of adaptive NK cells, including a terminally differentiated phenotype, functional reprogramming, and epigenetic remodeling of the interferon (IFN-γ promoter. We found that both NKG2C− and NKG2C+ adaptive NK cells expressed high levels of CD2, which synergistically enhanced ERK and S6RP phosphorylation following CD16 ligation. Notably, CD2 co-stimulation was critical for the ability of adaptive NK cells to respond to antibody-coated target cells. These results reveal an unexpected redundancy in the human NK cell response to HCMV and suggest that CD2 provides “signal 2” in antibody-driven adaptive NK cell responses.

  2. Quantitative mass spectrometry of histones H3.2 and H3.3 in Suz12-deficient mouse embryonic stem cells reveals distinct, dynamic post-translational modifications at Lys-27 and Lys-36

    DEFF Research Database (Denmark)

    Jung, Hye Ryung; Pasini, Diego; Helin, Kristian

    2010-01-01

    SUZ12 is a core component of the polycomb repressive complex 2 (PRC2) and is required for the differentiation of mouse embryonic stem cells (ESCs). PRC2 is associated with transcriptional repression via methylation of H3 Lys-27. We applied quantitative mass spectrometry to investigate the effects....... The combined use of ETD and CID MS/MS increased the total number of identified modified peptides. Comparative quantitative analysis of histones from wild type and Suz12-deficient ESCs using stable isotope labeling with amino acids in cell culture and LC-MS/MS revealed a dramatic reduction of H3K27me2 and H3K27...... analysis of the dynamics of coexisting post-translational modifications in proteins....

  3. Antepartum Ornithine Transcarbamylase Deficiency

    Directory of Open Access Journals (Sweden)

    Hitoshi Nakajima

    2014-11-01

    Full Text Available Ornithine transcarbamylase deficiency (OTCD is the most common type urea cycle enzyme deficiencies. This syndrome results from a deficiency of the mitochondrial enzyme ornithine transcarbamylase, which catalyzes the conversion of ornithine and carbamoyl phosphate to citrullin. Our case was a 28-year-old female diagnosed with OTCD following neurocognitive deficit during her first pregnancy. Although hyperammonemia was suspected as the cause of the patient's mental changes, there was no evidence of chronic liver disease. Plasma amino acid and urine organic acid analysis revealed OTCD. After combined modality treatment with arginine, sodium benzoate and hemodialysis, the patient's plasma ammonia level stabilized and her mental status returned to normal. At last she recovered without any damage left.

  4. Three-Dimensional Gait Analysis Following Achilles Tendon Rupture With Nonsurgical Treatment Reveals Long-Term Deficiencies in Muscle Strength and Function.

    Science.gov (United States)

    Tengman, Tine; Riad, Jacques

    2013-09-01

    Precise long-term assessment of movement and physical function following Achilles tendon rupture is required for the development and evaluation of treatment, including different regimens of physical therapy. To assess intermediate-term (physical function following Achilles tendon rupture treated nonsurgically and to compare these with self-reported measures of physical function. Cross-sectional study; Level of evidence, 3. Two to 5 years after Achilles tendon rupture, 9 women and 43 men (mean age, 49.2 years; range, 26-68 years) were assessed by physical examination, performance of 1-legged jumps, and 3-dimensional gait analysis (including calculation of muscle work). Self-reported scores for foot function (Achilles tendon rupture score) and level of physical activity were collected. Twenty age- and sex-matched controls were assessed in the same manner. Physical examination of patients with the knee extended revealed 11.1° of dorsiflexion on the injured side and 9.2° on the uninjured side (P = .020), indicating gastrocnemius muscle lengthening. The 1-legged jump distance was shorter on the injured side (89.5 vs 96.2 cm; P physical activity were lower in patients than in healthy controls (mean Achilles tendon rupture score, 78.6 and 99.8, respectively). Nonsurgically treated patients with Achilles tendon rupture showed signs of both anatomic and functional lengthening of the tendon. Attenuated muscle strength and function were present during walking as long as 2 to 5 years after rupture, as determined by 3-dimensional gait analysis. More extensive future studies involving patients having both surgical and nonsurgical treatment could provide additional valuable information.

  5. Metabolite profiles reveal energy failure and impaired beta-oxidation in liver of mice with complex III deficiency due to a BCS1L mutation.

    Directory of Open Access Journals (Sweden)

    Heike Kotarsky

    Full Text Available BACKGROUND & AIMS: Liver is a target organ in many mitochondrial disorders, especially if the complex III assembly factor BCS1L is mutated. To reveal disease mechanism due to such mutations, we have produced a transgenic mouse model with c.232A>G mutation in Bcs1l, the causative mutation for GRACILE syndrome. The homozygous mice develop mitochondrial hepatopathy with steatosis and fibrosis after weaning. Our aim was to assess cellular mechanisms for disease onset and progression using metabolomics. METHODS: With mass spectrometry we analyzed metabolite patterns in liver samples obtained from homozygotes and littermate controls of three ages. As oxidative stress might be a mechanism for mitochondrial hepatopathy, we also assessed H(2O(2 production and expression of antioxidants. RESULTS: Homozygotes had a similar metabolic profile at 14 days of age as controls, with the exception of slightly decreased AMP. At 24 days, when hepatocytes display first histopathological signs, increases in succinate, fumarate and AMP were found associated with impaired glucose turnover and beta-oxidation. At end stage disease after 30 days, these changes were pronounced with decreased carbohydrates, high levels of acylcarnitines and amino acids, and elevated biogenic amines, especially putrescine. Signs of oxidative stress were present in end-stage disease. CONCLUSIONS: The findings suggest an early Krebs cycle defect with increases of its intermediates, which might play a role in disease onset. During disease progression, carbohydrate and fatty acid metabolism deteriorate leading to a starvation-like condition. The mouse model is valuable for further investigations on mechanisms in mitochondrial hepatopathy and for interventions.

  6. Cobalamin deficiency.

    Science.gov (United States)

    Herrmann, Wolfgang; Obeid, Rima

    2012-01-01

    Cobalamin (Cbl, vitamin B12) consists of a corrinoid structure with cobalt in the centre of the molecule. Neither humans nor animals are able to synthesize this vitamin. Foods of animal source are the only natural source of cobalamin in human diet. There are only two enzymatic reactions in mammalian cells that require cobalamin as cofactor. Methylcobolamin is a cofactor for methionine synthase. The enzyme methylmalonyl-CoA-mutase requires adenosylcobalamin as a cofactor. Therefore, serum concentrations of homocysteine (tHcy) and methylmalonic acid (MMA) will increase in cobalamin deficiency. The cobalamin absorption from diet is a complex process that involves different proteins: haptocorrin, intrinsic factor and transcobalamin (TC). Cobalamin that is bound to TC is called holotranscobalamin (holoTC) which is the metabolically active vitamin B12 fraction. HoloTC consists 6 and 20% of total cobalamin whereas 80% of total serum cobalamin is bound to another binding protein, haptocorrin. Cobalamin deficiency is common worldwide. Cobalamin malabsorption is common in elderly subjects which might explain low vitamin status. Subjects who ingest low amount of cobalamin like vegetarians develop vitamin deficiency. No single parameter can be used to diagnose cobalamin deficiency. Total serum cobalamin is neither sensitive nor it is specific for cobalamin deficiency. This might explain why many deficient subjects would be overlooked by utilizing total cobalamin as status marker. Concentration of holotranscobalamin (holoTC) in serum is an earlier marker that becomes decreased before total serum cobalamin. Concentrations of MMA and tHcy increase in blood of cobalamin deficient subjects. Despite limitations of these markers in patients with renal dysfunction, concentrations of MMA and tHcy are useful functional markers of cobalamin status. The combined use of holoTC and MMA assays may better indicate cobalamin status than either of them. Because Cbl deficiency is a risk factor

  7. VLCAD deficiency

    DEFF Research Database (Denmark)

    Boneh, A; Andresen, B S; Gregersen, N

    2006-01-01

    We diagnosed six newborn babies with very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) through newborn screening in three years in Victoria (prevalence rate: 1:31,500). We identified seven known and two new mutations in our patients (2/6 homozygotes; 4/6 compound heterozygotes). Blood...

  8. Iron deficiency

    DEFF Research Database (Denmark)

    Schou, Morten; Bosselmann, Helle; Gaborit, Freja

    2015-01-01

    BACKGROUND: Both iron deficiency (ID) and cardiovascular biomarkers are associated with a poor outcome in heart failure (HF). The relationship between different cardiovascular biomarkers and ID is unknown, and the true prevalence of ID in an outpatient HF clinic is probably overlooked. OBJECTIVES.......043). CONCLUSION: ID is frequent in an outpatient HF clinic. ID is not associated with cardiovascular biomarkers after adjustment for traditional confounders. Inflammation, but not neurohormonal activation is associated with ID in systolic HF. Further studies are needed to understand iron metabolism in elderly HF...

  9. The impact of maternal iron deficiency and iron deficiency anemia on child’s health

    OpenAIRE

    Abu-Ouf, Noran M.; Mohammed M. Jan

    2015-01-01

    Iron deficiency anemia is extremely common, particularly in the developing world, reaching a state of global epidemic. Iron deficiency during pregnancy is one of the leading causes of anemia in infants and young children. Many women go through the entire pregnancy without attaining the minimum required intake of iron. This review aims to determine the impact of maternal iron deficiency and iron deficiency anemia on infants and young children. Extensive literature review revealed that iron def...

  10. The impact of maternal iron deficiency and iron deficiency anemia on child’s health

    OpenAIRE

    Abu-Ouf, Noran M.; Jan, Mohammed M.

    2015-01-01

    Iron deficiency anemia is extremely common, particularly in the developing world, reaching a state of global epidemic. Iron deficiency during pregnancy is one of the leading causes of anemia in infants and young children. Many women go through the entire pregnancy without attaining the minimum required intake of iron. This review aims to determine the impact of maternal iron deficiency and iron deficiency anemia on infants and young children. Extensive literature review revealed that iron def...

  11. Lipidomics and H218O labeling techniques reveal increased remodeling of DHA-containing membrane phospholipids associated with abnormal locomotor responses in α-tocopherol deficient zebrafish (danio rerio embryos

    Directory of Open Access Journals (Sweden)

    Melissa Q. McDougall

    2016-08-01

    Full Text Available We hypothesized that vitamin E (α-tocopherol is required by the developing embryonic brain to prevent depletion of highly polyunsaturated fatty acids, especially docosahexaenoic acid (DHA, 22:6, the loss of which we predicted would underlie abnormal morphological and behavioral outcomes. Therefore, we fed adult 5D zebrafish (Danio rerio defined diets without (E− or with added α-tocopherol (E+, 500 mg RRR-α-tocopheryl acetate/kg diet for a minimum of 80 days, and then spawned them to obtain E− and E+ embryos. The E− compared with E+ embryos were 82% less responsive (p<0.01 to a light/dark stimulus at 96 h post-fertilization (hpf, demonstrating impaired locomotor behavior, even in the absence of gross morphological defects. Evaluation of phospholipid (PL and lysophospholipid (lyso-PL composition using untargeted lipidomics in E− compared with E+ embryos at 24, 48, 72, and 120 hpf showed that four PLs and three lyso-PLs containing docosahexaenoic acid (DHA, including lysophosphatidylcholine (LPC 22:6, required for transport of DHA into the brain, p<0.001, were at lower concentrations in E− at all time-points. Additionally, H218O labeling experiments revealed enhanced turnover of LPC 22:6 (p<0.001 and three other DHA-containing PLs in the E− compared with the E+ embryos, suggesting that increased membrane remodeling is a result of PL depletion. Together, these data indicate that α-tocopherol deficiency in the zebrafish embryo causes the specific depletion and increased turnover of DHA-containing PL and lyso-PLs, which may compromise DHA delivery to the brain and thereby contribute to the functional impairments observed in E− embryos.

  12. [Niacin deficiency and cutaneous immunity].

    Science.gov (United States)

    Ikenouchi-Sugita, Atsuko; Sugita, Kazunari

    2015-01-01

    Niacin, also known as vitamin B3, is required for the synthesis of coenzymes, nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). Niacin binds with G protein-coupled receptor (GPR) 109A on cutaneous Langerhans cells and causes vasodilation with flushing in head and neck area. Niacin deficiency due to excessive alcohol consumption, certain drugs or inadequate uptake in diet causes pellagra, a photosensitivity dermatitis. Recently several studies have revealed the mechanism of photosensitivity in niacin deficiency, which may pave a way for new therapeutic approaches. The expression level of prostaglandin E synthase (PTGES) is up-regulated in the skin of both pellagra patients and niacin deficient pellagra mouse models. In addition, pellagra is mediated through prostaglandin E₂-EP4 (PGE₂-EP4) signaling via reactive oxygen species (ROS) production in keratinocytes. In this article, we have reviewed the role of niacin in immunity and the mechanism of niacin deficiency-induced photosensitivity.

  13. Vitamin Deficiency Anemia

    Science.gov (United States)

    ... are unique to specific vitamin deficiencies. Folate-deficiency anemia risk factors include: Undergoing hemodialysis for kidney failure. ... the metabolism of folate. Vitamin B-12 deficiency anemia risk factors include: Lack of intrinsic factor. Most ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... at highest risk for iron-deficiency anemia. Outlook Doctors usually can successfully treat iron-deficiency anemia. Treatment ... poor skin tone, dizziness, and depression. After her doctor diagnosed her with iron-deficiency anemia, Susan got ...

  15. Growth hormone deficiency due to sports-related head trauma is associated with impaired cognitive performance in amateur boxers and kickboxers as revealed by P300 auditory event-related potentials.

    Science.gov (United States)

    Tanriverdi, Fatih; Suer, Cem; Yapislar, Hande; Kocyigit, Ismail; Selcuklu, Ahmet; Unluhizarci, Kursad; Casanueva, Felipe F; Kelestimur, Fahrettin

    2013-05-01

    It has been recently reported that boxing and kickboxing may cause pituitary dysfunction, GH deficiency in particular. The strong link between poor cognitive performance and GH deficiency due to causes other than head trauma and the improvement of cognitive function after GH replacement therapy have been previously shown. P300 auditory event-related potential (ERP) measure is widely used to evaluate cognitive performance. In this study, we investigated the relation between the GH-IGF-I axis and cognitive performance in boxers and kickboxers. Forty-one actively competing or retired male boxers (n: 27) and kickboxers (n: 14) with a mean age of 29·04 ± 9·30 year and 14 age- and education-matched healthy male controls were included in the study. For neuropsychological tests, the mini-mental state examination (MMSE) and Quality of Life Assessment of GH Deficiency in Adults (QoL-AGHDA) questionnaires were administered. Moreover, cognitive performance was evaluated according to P300 ERPs. Nine of 41 (21·9%) athletes had GH deficiency. P300 amplitudes were lower at all electrode sites in the GH-deficient group than in controls, and the differences were statistically significant at Fz and Oz electrode sites (P kickboxers. © 2012 Blackwell Publishing Ltd.

  16. Generalised hyperpigmentation in vitamin B12 deficiency.

    Science.gov (United States)

    Santra, Gouranga; Paul, Rudrajit; Ghosh, Sumit Kr; Chakraborty, Debojyoti; Das, Shubhabrata; Pradhan, Sourav; Das, Abhishek

    2014-08-01

    In developing countries like India, nutritional deficiencies are prevalent and hyperpigmentation due to protein energy malnutrition, zinc deficiency and pellagra are common. Indian women, especially vegetarian are prone to vitamin B12 deficiency. Vitamin B12 deficiency can present as anaemia, neurological defect, gastrointestinal symptoms or dementia. Hyperpigmentation as the first presentation of Vitamin B12 deficiency is rare. Our patient, a 45 year-old Hindu vegetarian female presented to us with generalized hyperpigmentation. Examination revealed associated anaemia and peripheral neuropathy. Laboratory investigation confirmed vitamin B12 deficiency. Clinical features along with hyperpigmentation improved with vitamin B12 supplementation. We report this case to highlight this rare manifestation of vitamin B12 deficiency. A high index of clinical suspicion is warranted to diagnose the case. Since India is a country with a large number of potential vitamin B12 deficiency cases, the physicians need to be aware of all the varied manifestations of this vitamin deficiency. In case of hyperpigmentation, nutritional aspect must be ruled out as it is reversible. Early replacement therapy may also help to prevent morbidities like dementia and neuropathy.

  17. Familial lipoprotein lipase deficiency

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/000408.htm Familial lipoprotein lipase deficiency To use the sharing features on this page, please enable JavaScript. Familial lipoprotein lipase deficiency is a group of rare genetic ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... This Content: NEXT >> Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video— ... treatment. For more information about living with and managing iron-deficiency anemia, go to the Health Topics ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... or an inability to absorb enough iron from food. Overview Iron-deficiency anemia is a common type ... of the condition. Treatments may include dietary changes, medicines, and surgery. Severe iron-deficiency anemia may require ...

  20. Folate-deficiency anemia

    Science.gov (United States)

    ... medlineplus.gov/ency/article/000551.htm Folate-deficiency anemia To use the sharing features on this page, please enable JavaScript. Folate-deficiency anemia is a decrease in red blood cells (anemia) ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... severity of the condition. Treatments may include dietary changes, medicines, and surgery. Severe iron-deficiency anemia may require treatment in a hospital, blood ... With and Managing Iron-Deficiency Anemia 05/18/2011 This video— ...

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... or an inability to absorb enough iron from food. Overview Iron-deficiency anemia is a common type ... condition. Treatments may include dietary changes, medicines, and surgery. Severe iron-deficiency anemia may require treatment in ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Deficiency Anemia What Is... CAUSES WHO IS AT RISK SIGNS & SYMPTOMS DIAGNOSIS TREATMENTS PREVENTION LIVING WITH CLINICAL ... and women are the two groups at highest risk for iron-deficiency anemia. Outlook Doctors usually can ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Deficiency Anemia Explore Iron-Deficiency Anemia What Is... CAUSES WHO IS AT RISK SIGNS & SYMPTOMS DIAGNOSIS TREATMENTS ... Google+ SITE INDEX ACCESSIBILITY PRIVACY STATEMENT FOIA NO FEAR ACT OIG CONTACT US National Institutes of Health ...

  5. Iron-Deficiency Anemia

    Science.gov (United States)

    ... page from the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, ... Content: NEXT >> Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by ...

  6. Iron-Deficiency Anemia

    Science.gov (United States)

    ... the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, easily ... Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, easily ... Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, easily ... Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Deficiency Anemia? Español Iron-deficiency anemia is a common, easily treated condition that occurs if you don' ... from food. Overview Iron-deficiency anemia is a common type of anemia . The term "anemia" usually refers ...

  10. Proteomic analysis reveals differential accumulation of small heat shock proteins and late embryogenesis abundant proteins between ABA-deficient mutant vp5 seeds and wild-type Vp5 seeds in maize

    Directory of Open Access Journals (Sweden)

    Xiaolin eWu

    2015-01-01

    Full Text Available ABA is a major plant hormone that plays important roles during many phases of plant life cycle, including seed development, maturity and dormancy, and especially the acquisition of desiccation tolerance. Understanding of the molecular basis of ABA-mediated plant response to stress is of interest not only in basic research on plant adaptation but also in applied research on plant productivity. Maize mutant viviparous-5 (vp5, deficient in ABA biosynthesis in seeds, is a useful material for studying ABA-mediated response in maize. Due to carotenoid deficiency, vp5 endosperm is white, compared to yellow Vp5 endosperm. However, the background difference at proteome level between vp5 and Vp5 seeds is unclear. This study aimed to characterize proteome alterations of maize vp5 seeds and to identify ABA-dependent proteins during seed maturation. We compared the embryo and endosperm proteomes of vp5 and Vp5 seeds by gel-based proteomics. Up to 46 protein spots, most in embryos, were found to be differentially accumulated between vp5 and Vp5. The identified proteins included small heat shock proteins (sHSPs, late embryogenesis abundant (LEA proteins, stress proteins, storage proteins and enzymes among others. However, EMB564, the most abundant LEA protein in maize embryo, accumulated in comparable levels between vp5 and Vp5 embryos, which contrasted to previously characterized, greatly lowered expression of emb564 mRNA in vp5 embryos. Moreover, LEA proteins and sHSPs displayed differential accumulations in vp5 embryos: six out of eight identified LEA proteins decreased while nine sHSPs increased in abundance. Finally, we discussed the possible causes of global proteome alterations, especially the observed differential accumulation of identified LEA proteins and sHSPs in vp5 embryos. The data derived from this study provides new insight into ABA-dependent proteins and ABA-mediated response during maize seed maturation.

  11. Acquired color vision deficiency.

    Science.gov (United States)

    Simunovic, Matthew P

    2016-01-01

    Acquired color vision deficiency occurs as the result of ocular, neurologic, or systemic disease. A wide array of conditions may affect color vision, ranging from diseases of the ocular media through to pathology of the visual cortex. Traditionally, acquired color vision deficiency is considered a separate entity from congenital color vision deficiency, although emerging clinical and molecular genetic data would suggest a degree of overlap. We review the pathophysiology of acquired color vision deficiency, the data on its prevalence, theories for the preponderance of acquired S-mechanism (or tritan) deficiency, and discuss tests of color vision. We also briefly review the types of color vision deficiencies encountered in ocular disease, with an emphasis placed on larger or more detailed clinical investigations.

  12. A human iPSC model of Ligase IV deficiency reveals an important role for NHEJ-mediated-DSB repair in the survival and genomic stability of induced pluripotent stem cells and emerging haematopoietic progenitors.

    Science.gov (United States)

    Tilgner, K; Neganova, I; Moreno-Gimeno, I; Al-Aama, J Y; Burks, D; Yung, S; Singhapol, C; Saretzki, G; Evans, J; Gorbunova, V; Gennery, A; Przyborski, S; Stojkovic, M; Armstrong, L; Jeggo, P; Lako, M

    2013-08-01

    DNA double strand breaks (DSBs) are the most common form of DNA damage and are repaired by non-homologous-end-joining (NHEJ) or homologous recombination (HR). Several protein components function in NHEJ, and of these, DNA Ligase IV is essential for performing the final 'end-joining' step. Mutations in DNA Ligase IV result in LIG4 syndrome, which is characterised by growth defects, microcephaly, reduced number of blood cells, increased predisposition to leukaemia and variable degrees of immunodeficiency. In this manuscript, we report the creation of a human induced pluripotent stem cell (iPSC) model of LIG4 deficiency, which accurately replicates the DSB repair phenotype of LIG4 patients. Our findings demonstrate that impairment of NHEJ-mediated-DSB repair in human iPSC results in accumulation of DSBs and enhanced apoptosis, thus providing new insights into likely mechanisms used by pluripotent stem cells to maintain their genomic integrity. Defects in NHEJ-mediated-DSB repair also led to a significant decrease in reprogramming efficiency of human cells and accumulation of chromosomal abnormalities, suggesting a key role for NHEJ in somatic cell reprogramming and providing insights for future cell based therapies for applications of LIG4-iPSCs. Although haematopoietic specification of LIG4-iPSC is not affected per se, the emerging haematopoietic progenitors show a high accumulation of DSBs and enhanced apoptosis, resulting in reduced numbers of mature haematopoietic cells. Together our findings provide new insights into the role of NHEJ-mediated-DSB repair in the survival and differentiation of progenitor cells, which likely underlies the developmental abnormalities observed in many DNA damage disorders. In addition, our findings are important for understanding how genomic instability arises in pluripotent stem cells and for defining appropriate culture conditions that restrict DNA damage and result in ex vivo expansion of stem cells with intact genomes.

  13. Nutritional iron deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.; Hurrell, R.F.

    2007-01-01

    Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people. Nutritional iron deficiency arises when physiological requirements cannot be met by iron absorption from diet. Dietary iron bioavailability is low in populations consuming

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Blood Tests Blood Transfusion Restless Legs Syndrome Send a link to NHLBI to someone by E-MAIL | ... Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, easily treated condition that occurs if you ...

  15. Iron deficiency anemia

    Science.gov (United States)

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  16. Muscle phosphorylase kinase deficiency

    DEFF Research Database (Denmark)

    Preisler, N; Orngreen, M C; Echaniz-Laguna, A;

    2012-01-01

    To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD).......To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD)....

  17. Growth Hormone Deficiency

    Directory of Open Access Journals (Sweden)

    Ömer Tarım

    2010-05-01

    Full Text Available Growth hormone deficiency is the most promising entity in terms of response to therapy among the treatable causes of growth retardation. It may be due to genetic or acquired causes. It may be isolated or a part of multiple hormone deficiencies. Diagnostic criteria and therefore treatment indications are still disputed. (Journal of Current Pediatrics 2010; 8: 36-8

  18. Nutritional iron deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.; Hurrell, R.F.

    2007-01-01

    Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people. Nutritional iron deficiency arises when physiological requirements cannot be met by iron absorption from diet. Dietary iron bioavailability is low in populations consuming

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... periods. By following her treatment plan and making smart lifestyle choices, Susan continues to feel better and see the benefits of treatment. For more information about living with and managing iron-deficiency anemia, go to the Health Topics Iron-Deficiency Anemia article. Updated: March 26, ...

  20. Iron induced nickel deficiency

    Science.gov (United States)

    It is increasingly apparent that economic loss due to nickel (Ni) deficiency likely occurs in horticultural and agronomic crops. While most soils contain sufficient Ni to meet crop requirements, situations of Ni deficiency can arise due to antagonistic interactions with other metals. This study asse...

  1. Iron deficiency in childhood

    NARCIS (Netherlands)

    Uijterschout, L.

    2015-01-01

    Iron deficiency (ID) is the most common micronutrient deficiency in the world. Iron is involved in oxygen transport, energy metabolism, immune response, and plays an important role in brain development. In infancy, ID is associated with adverse effects on cognitive, motor, and behavioral development

  2. Deficiently Extremal Gorenstein Algebras

    Indian Academy of Sciences (India)

    Pavinder Singh

    2011-08-01

    The aim of this article is to study the homological properties of deficiently extremal Gorenstein algebras. We prove that if / is an odd deficiently extremal Gorenstein algebra with pure minimal free resolution, then the codimension of / must be odd. As an application, the structure of pure minimal free resolution of a nearly extremal Gorenstein algebra is obtained.

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Blood Tests Blood Transfusion Restless Legs Syndrome Send a link to NHLBI to someone by E-MAIL | ... Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, easily treated condition that occurs if you ...

  4. Iron deficiency in childhood

    NARCIS (Netherlands)

    Uijterschout, L.

    2015-01-01

    Iron deficiency (ID) is the most common micronutrient deficiency in the world. Iron is involved in oxygen transport, energy metabolism, immune response, and plays an important role in brain development. In infancy, ID is associated with adverse effects on cognitive, motor, and behavioral development

  5. Purine nucleoside phosphorylase deficiency in two unrelated Saudi patients

    OpenAIRE

    Alangari, Abdullah; Al-Harbi, Abdullah; Al-Ghonaium, Abdulaziz; Santisteban, Ines; Hershfield, Michael

    2009-01-01

    Purine nucleoside phosphorylase (PNP) deficiency is a rare autosomal recessive metabolic disorder that results in combined immunodeficiency, neurologic dysfunction and autoimmunity. PNP deficiency has never been reported from Saudi Arabia or in patients with an Arabic ethnic background. We report on two Saudi girls with PNP deficiency. Both showed severe lymphopenia and neurological involvement. Sequencing of the PNP gene of one girl revealed a novel missense mutation Pro146>Leu in exon 4 due...

  6. Alcoholic Myelopathy and Nutritional Deficiency

    Science.gov (United States)

    Koike, Haruki; Nakamura, Tomohiko; Ikeda, Shohei; Takahashi, Mie; Kawagashira, Yuichi; Iijima, Masahiro; Katsuno, Masahisa; Sobue, Gen

    2017-01-01

    A patient with chronic alcoholism presented with myelopathy and low serum folate and cobalamin levels. A 42-year-old alcoholic man had gait disturbance for 4 months. A neurological examination revealed marked spasticity with increased deep tendon reflexes and extensor plantar responses of the lower limbs. His cobalamin level was decreased and his serum folate level was particularly low. His plasma ammonia level was not increased. Abstinence and folic acid and cobalamin supplementation stopped the progression of his neurological deficits. This case indicates that nutritional deficiency should be monitored closely in patients with chronic alcoholism who present with myelopathy. PMID:28049986

  7. Muscle phosphoglycerate mutase deficiency revisited

    DEFF Research Database (Denmark)

    Naini, Ali; Toscano, Antonio; Musumeci, Olimpia;

    2009-01-01

    storage disease type X and novel mutations in the gene encoding the muscle subunit of PGAM (PGAM2). DESIGN: Clinical, pathological, biochemical, and molecular analyses. SETTING: Tertiary care university hospitals and academic institutions. Patients A 37-year-old Danish man of Pakistani origin who had...... PGAM deficiency, and molecular studies revealed 2 novel homozygous mutations, a nonsense mutation and a single nucleotide deletion. Pathological studies of muscle showed mild glycogen accumulation but prominent tubular aggregates in both patients. CONCLUSIONS: We found that glycogen storage disease...

  8. Cobalamin deficiency, hyperhomocysteinemia, and dementia

    Directory of Open Access Journals (Sweden)

    Steven F Werder

    2010-04-01

    Full Text Available Steven F Werder1,21Kansas University School of Medicine – Wichita, Wichita, KS, USA; 2Community Health Center of Southeast Kansas, Pittsburg, KS, USAIntroduction: Although consensus guidelines recommend checking serum B12 in patients with dementia, clinicians are often faced with various questions: (1 Which patients should be tested? (2 What test should be ordered? (3 How are inferences made from such testing? (4 In addition to serum B12, should other tests be ordered? (5 Is B12 deficiency compatible with dementia of the Alzheimer’s type? (6 What is to be expected from treatment? (7 How is B12 deficiency treated?Methods: On January 31st, 2009, a Medline search was performed revealing 1,627 citations related to cobalamin deficiency, hyperhomocysteinemia, and dementia. After limiting the search terms, all abstracts and/or articles and other references were categorized into six major groups (general, biochemistry, manifestations, associations and risks, evaluation, and treatment and then reviewed in answering the above questions.Results: The six major groups above are described in detail. Seventy-five key studies, series, and clinical trials were identified. Evidence-based suggestions for patient management were developed.Discussion: Evidence is convincing that hyperhomocysteinemia, with or without hypovitaminosis B12, is a risk factor for dementia. In the absence of hyperhomocysteinemia, evidence is less convincing that hypovitaminosis B12 is a risk factor for dementia. B12 deficiency manifestations are variable and include abnormal psychiatric, neurological, gastrointestinal, and hematological findings. Radiological images of individuals with hyperhomocysteinemia frequently demonstrate leukoaraiosis. Assessing serum B12 and treatment of B12 deficiency is crucial for those cases in which pernicious anemia is suspected and may be useful for mild cognitive impairment and mild to moderate dementia. The serum B12 level is the standard initial test

  9. Thyroid ultrasonography in congenital isolated thyroid stimulating hormone deficiency.

    OpenAIRE

    Wakamoto, H; Miyazaki, M.; Tatsumi, K; Amino, N

    1995-01-01

    The effects of thyroid stimulating hormone (TSH) deficiency on thyroid development was examined using ultrasonography in a child with congenital isolated TSH deficiency. Ultrasound revealed the thyroid gland was one sixth normal volume, suggesting that TSH plays an important part in thyroid growth, but not a critical role in differentiation.

  10. [Approaches to vitamin B12 deficiency].

    Science.gov (United States)

    Russcher, Henk; Heil, Sandra G; Slobbe, Lennert; Lindemans, Jan

    2012-01-01

    A 28-year-old female vegetarian was referred to a specialist in internal medicine with persistent iron deficiency. Laboratory analysis revealed microcytic anaemia with low ferritin levels but normal total vitamin B12 levels. The red blood cell distribution width, however, showed a very wide variation in red blood cell sizes, indicating a coexisting vitamin B12 deficiency, which was confirmed by the low concentration of active vitamin B12. Another patient, a 69-year-old woman with a history of previous gastric surgery and renal insufficiency as a complication of diabetes mellitus, was suspected to be deficient in vitamin B12, as she had low total vitamin B12 levels and an accumulation of methylmalonic acid and homocysteine in her blood. Testing the total concentration of vitamin B12 alone has insufficient diagnostic accuracy and no accepted gold standard is available for diagnosing vitamin B12 deficiency. With the development of newer tests, such as measuring holotranscobalamin II (concentration of active vitamin B12), atypical and subclinical deficiency states can be recognized. A new approach to diagnosing vitamin B12 deficiency is presented, based upon these 2 case descriptions.

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Events Spokespeople Email Alerts E-Newsletters About NHLBI Organization NHLBI Director Budget, Planning, & Legislative Advisory Committees Jobs ... severity of the condition. Treatments may include dietary changes, medicines, and surgery. Severe iron-deficiency anemia may ...

  12. Factor II deficiency

    Science.gov (United States)

    ... if one or more of these factors are missing or are not functioning like they should. Factor II is one such coagulation factor. Factor II deficiency runs in families (inherited) and is very rare. Both parents must ...

  13. Factor VII deficiency

    Science.gov (United States)

    ... if one or more of these factors are missing or are not functioning like they should. Factor VII is one such coagulation factor. Factor VII deficiency runs in families (inherited) and is very rare. Both parents must ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... of Intramural Research Research Resources Research Meeting Summaries Technology Transfer Clinical Trials What Are Clinical Trials? Children & ... of the condition. Treatments may include dietary changes, medicines, and surgery. Severe iron-deficiency anemia may require ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-rich protein that carries oxygen from the lungs to the rest of the body. Iron-deficiency ... 2011 This video—presented by the National Heart, Lung, and Blood Institute, part of the National Institutes ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... CAUSES WHO IS AT RISK SIGNS & SYMPTOMS DIAGNOSIS TREATMENTS PREVENTION LIVING WITH CLINICAL TRIALS LINKS Related Topics ... Doctors usually can successfully treat iron-deficiency anemia. Treatment will depend on the cause and severity of ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... deficiency anemia may require treatment in a hospital, blood transfusions , iron injections, or intravenous iron therapy. Rate This ... video—presented by the National Heart, Lung, and Blood Institute, part of the National ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... such as tiredness, poor skin tone, dizziness, and depression. After her doctor diagnosed her with iron-deficiency ... to stop her monthly periods. By following her treatment plan and making smart lifestyle choices, Susan continues ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Digg. Share this page from the NHLBI on Facebook. Add this link to the NHLBI to my ... Deficiency Anemia article. Updated: March 26, 2014 Twitter Facebook YouTube Google+ SITE INDEX ACCESSIBILITY PRIVACY STATEMENT FOIA ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... chest pain, and other symptoms. Severe iron-deficiency anemia can lead to heart problems, infections, problems with growth and development in children, and other complications. Infants and young children and ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Events Spokespeople Email Alerts E-Newsletters About NHLBI Organization NHLBI Director Budget, Planning, & Legislative Advisory Committees Jobs ... food. Overview Iron-deficiency anemia is a common type of anemia . The term "anemia" usually refers to ...

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Events Spokespeople Email Alerts E-Newsletters About NHLBI Organization NHLBI Director Budget, Planning, & Legislative Advisory Committees Jobs ... the body. Iron-deficiency anemia usually develops over time if your body doesn't have enough iron ...

  3. Sleep Deprivation and Deficiency

    Science.gov (United States)

    ... page from the NHLBI on Twitter. What Are Sleep Deprivation and Deficiency? Sleep deprivation (DEP-rih-VA- ... Rate This Content: NEXT >> Updated: June 7, 2017 Sleep Infographic Sleep Disorders & Insufficient Sleep: Improving Health through ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... chest pain, and other symptoms. Severe iron-deficiency anemia can lead to heart problems, infections, problems with growth and development in children, and other complications. Infants and young children and ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... CAUSES WHO IS AT RISK SIGNS & SYMPTOMS DIAGNOSIS TREATMENTS PREVENTION LIVING WITH CLINICAL TRIALS LINKS Related Topics ... Doctors usually can successfully treat iron-deficiency anemia. Treatment will depend on the cause and severity of ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... a waste product) from your body. Anemia also can occur if your red blood cells don't ... have less hemoglobin than normal. Iron-deficiency anemia can cause fatigue (tiredness), shortness of breath, chest pain, ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Intramural Research Research Resources Research Meeting Summaries Technology Transfer Clinical Trials What Are Clinical Trials? Children & Clinical ... iron-deficiency anemia may require treatment in a hospital, blood transfusions , iron injections, or intravenous iron therapy. ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... symptoms. Severe iron-deficiency anemia can lead to heart problems, infections, problems with growth and development in ... 18/2011 This video—presented by the National Heart, Lung, and Blood Institute, part of the National ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... of breath, chest pain, and other symptoms. Severe iron-deficiency anemia can lead to heart problems, infections, problems with growth and development in children, and other complications. Infants and young children and ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Digg. Share this page from the NHLBI on Facebook. Add this link to the NHLBI to my ... Deficiency Anemia article. Updated: March 26, 2014 Twitter Facebook YouTube Google+ SITE INDEX ACCESSIBILITY PRIVACY STATEMENT FOIA ...

  11. Iron deficiency anemia

    OpenAIRE

    Naigamwalla, Dinaz Z.; Webb, Jinelle A.; Giger, Urs

    2012-01-01

    Iron is essential to virtually all living organisms and is integral to multiple metabolic functions. The most important function is oxygen transport in hemoglobin. Iron deficiency anemia in dogs and cats is usually caused by chronic blood loss and can be discovered incidentally as animals may have adapted to the anemia. Severe iron deficiency is characterized by a microcytic, hypochromic, potentially severe anemia with a variable regenerative response. Iron metabolism and homeostasis will be ...

  12. Proximal Focal Femoral Deficiency

    OpenAIRE

    Vishal Kalia, Vibhuti

    2008-01-01

    Proximal focal femoral deficiency (PFFD) is a developmental disorder of the proximal segment of thefemur and of acetabulum resulting in shortening of the affected limb and impairment of the function. It isa spectrum of congenital osseous anomalies characterized by a deficiency in the structure of the proximalfemur. The diagnosis is often made by radiological evaluation which includes identification and descriptionof PFFD and evaluation of associated limb anomalies by plain radiographs. Contra...

  13. Glucose-6-phosphatase deficiency.

    OpenAIRE

    Labrune Philippe; Gajdos Vincent; Eberschweiler Pascale; Hubert-Buron Aurélie; Petit François; Vianey-Saban Christine; Boudjemline Alix; Piraud Monique; Froissart Roseline

    2011-01-01

    Abstract Glucose-6-phosphatase deficiency (G6P deficiency), or glycogen storage disease type I (GSDI), is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, betw...

  14. Vitamin B12 deficiency.

    Science.gov (United States)

    Oh, Robert; Brown, David L

    2003-03-01

    Vitamin B12 (cobalamin) deficiency is a common cause of macrocytic anemia and has been implicated in a spectrum of neuropsychiatric disorders. The role of B12 deficiency in hyperhomocysteinemia and the promotion of atherosclerosis is only now being explored. Diagnosis of vitamin B12 deficiency is typically based on measurement of serum vitamin B12 levels; however, about 50 percent of patients with subclinical disease have normal B12 levels. A more sensitive method of screening for vitamin B12 deficiency is measurement of serum methylmalonic acid and homocysteine levels, which are increased early in vitamin B12 deficiency. Use of the Schilling test for detection of pernicious anemia has been supplanted for the most part by serologic testing for parietal cell and intrinsic factor antibodies. Contrary to prevailing medical practice, studies show that supplementation with oral vitamin B12 is a safe and effective treatment for the B12 deficiency state. Even when intrinsic factor is not present to aid in the absorption of vitamin B12 (pernicious anemia) or in other diseases that affect the usual absorption sites in the terminal ileum, oral therapy remains effective.

  15. Iron deficiency anaemia.

    Science.gov (United States)

    Lopez, Anthony; Cacoub, Patrice; Macdougall, Iain C; Peyrin-Biroulet, Laurent

    2016-02-27

    Anaemia affects roughly a third of the world's population; half the cases are due to iron deficiency. It is a major and global public health problem that affects maternal and child mortality, physical performance, and referral to health-care professionals. Children aged 0-5 years, women of childbearing age, and pregnant women are particularly at risk. Several chronic diseases are frequently associated with iron deficiency anaemia--notably chronic kidney disease, chronic heart failure, cancer, and inflammatory bowel disease. Measurement of serum ferritin, transferrin saturation, serum soluble transferrin receptors, and the serum soluble transferrin receptors-ferritin index are more accurate than classic red cell indices in the diagnosis of iron deficiency anaemia. In addition to the search for and treatment of the cause of iron deficiency, treatment strategies encompass prevention, including food fortification and iron supplementation. Oral iron is usually recommended as first-line therapy, but the most recent intravenous iron formulations, which have been available for nearly a decade, seem to replenish iron stores safely and effectively. Hepcidin has a key role in iron homoeostasis and could be a future diagnostic and therapeutic target. In this Seminar, we discuss the clinical presentation, epidemiology, pathophysiology, diagnosis, and acute management of iron deficiency anaemia, and outstanding research questions for treatment.

  16. Apoptosis may underlie the pathology of zinc-deficient skin.

    Science.gov (United States)

    Wilson, Dallas; Varigos, George; Ackland, M Leigh

    2006-02-01

    The trace element zinc is essential for the survival and function of all cells. Zinc deficiency, whether nutritional or genetic, is fatal if left untreated. The effects of zinc deficiency are particularly obvious in the skin, seen as an erythematous rash, scaly plaques, and ulcers. Electron microscopy reveals degenerative changes within keratinocytes. Despite the well-documented association between zinc deficiency and skin pathology, it is not clear which cellular processes are most sensitive to zinc deficiency and could account for the typical pathological features. We used the cultured HaCaT keratinocyte line to obtain insight into the cellular effects of zinc deficiency, as these cells show many characteristics of normal skin keratinocytes. Zinc deficiency was induced by growing cells in the presence of the zinc chelator, TPEN, or by growth in zinc-deficient medium. Growth of cells in zinc-deficient medium resulted in a 44% reduction of intracellular zinc levels and a 75% reduction in the activity of the zinc-dependent enzyme, 5'-nucleotidase, relative to the control cells. Over a period of 7 days of exposure to zinc-deficient conditions, no changes in cell viability and growth, or in the cytoskeletal and cell adhesion systems, were found in HaCaT cells. At 7 days, however, induction of apoptosis was indicated by the presence of DNA fragmentation and expression of active caspase-3 in cells. These results demonstrate that apoptosis is the earliest detectable cellular change induced by zinc deficiency in HaCaT keratinocytes. Our observations account for many of the features of zinc deficiency, including the presence of degenerate nuclei, chromatin aggregates and abnormal organization of keratin, that may represent the later stages of apoptosis. In summary, a major causal role for apoptosis in the pathology of zinc deficiency in the skin is proposed. This role is consistent with the previously unexplained diverse range of degenerative cellular changes seen at the

  17. [Vitamin deficiencies and hypervitaminosis].

    Science.gov (United States)

    Mino, M

    1999-10-01

    There have recently been very few deficiencies with respect to fat soluble and water soluble vitamins in Japan All-trans-retinoic acid as induction or maintenance treatment improves disease free and overall survival against acute promyelocytic leukemia. In the isolated vitamin E deficiencies gene mutation has been cleared for alpha-tocopherol transferprotein. Recently, a relation of nutritional vitamin K intake and senile osteoporosis in women was epidemiologically demonstrated on a prospective study. Thiamin was yet noticed as development of deficiency in alcoholism, while the importance of supplemental folic acid during pregnancy has become especially clear in light of studies showing that folic acid supplements reduce the risk of neural tube defects in the fetus. With respect to hypervitaminosis, the Council for Responsible Nutrition (CRN), USA, has established safe intakes by identifying the NOAEL (No Observed Adverse Effect Level) and LOAEL (Lowest Observed Adverse Effect Level). Summaries of NOAEL and LOAEL for individual vitamins were shown.

  18. Mortality and GH deficiency

    DEFF Research Database (Denmark)

    Stochholm, Kirstine; Gravholt, Claus Højbjerg; Laursen, Torben;

    2007-01-01

    OBJECTIVE: To estimate the mortality in Denmark in patients suffering from GH deficiency (GHD). DESIGN: Mortality was analyzed in 1794 GHD patients and 8014 controls matched on age and gender. All records in GHD patients were studied and additional morbidity noted. Patients were divided into chil......OBJECTIVE: To estimate the mortality in Denmark in patients suffering from GH deficiency (GHD). DESIGN: Mortality was analyzed in 1794 GHD patients and 8014 controls matched on age and gender. All records in GHD patients were studied and additional morbidity noted. Patients were divided...

  19. Vitamin D deficiency and stroke

    Directory of Open Access Journals (Sweden)

    2012-12-01

    Full Text Available Vitamin D comprises a group of fat-soluble pro-hormones, obtained from sun exposure, food, and supplements, and it must undergo two hydroxylation reactions to be activated in the body. Several studies have shown the role of vitamin D in mineral metabolism regulation, especially calcium, phosphorus, and bone metabolism. Some factors such as inadequate vitamin intake and liver or kidney disorders can lead to vitamin D deficiency. Furthermore, vitamin D malnutrition may also be linked to susceptibility to chronic diseases such as heart failure, peripheral artery disease, high blood pressure, cognitive impairment including foggy brain and memory loss, and autoimmune diseases including diabetes type I. Recent research has revealed that low levels of vitamin D increase the risk of cardiovascular-related morbidity (Sato et al., 2004 and mortality (Pilz et al., 2008. Also, hypertension contributes to a reduction in bone mineral density and increase in the incidence of stroke and death. This article reviews the function and physiology of vitamin D and examines the effects of vitamin D deficiency on susceptibility to stroke, as a cardiovascular event, and its morbidity and subsequent mortality.

  20. Caspase 12 in calnexin-deficient cells.

    Science.gov (United States)

    Groenendyk, Jody; Zuppini, Anna; Shore, Gordon; Opas, Michal; Bleackley, R Chris; Michalak, Marek

    2006-11-07

    We investigated a role for calnexin, caspase 12, and Bap31 in endoplasmic reticulum stress-induced apoptosis in calnexin-deficient mouse embryonic fibroblasts and a calnexin-deficient human T cell line (NKR). We showed that calnexin-deficient mouse embryonic fibroblasts are relatively resistant to endoplasmic reticulum stress-induced apoptosis. Western blot analysis demonstrated that both wild-type and calnexin-deficient cells contained a caspase 12 protein. Caspase 12 expression was slightly inhibited in calnexin-deficient cells, and the protein carried out specific cleavage in the presence of thapsigargin. Immunoprecipitation experiments revealed that in the endoplasmic reticulum, caspase 12 forms complexes with Bap31 and calnexin. Treatment of wild-type cells with thapsigargin induced apoptosis and cleavage of Bap31. However, in the absence of calnexin, there was no significant cleavage of Bap31. There was also a negligible processing of caspase 8 in these cells. This work indicates that calnexin may play a role in modulating the sensitivity of a cell to apoptosis induced by endoplasmic reticulum stress, in conjunction with caspase 12 and Bap31.

  1. Iodine-deficiency disorders

    NARCIS (Netherlands)

    Zimmermann, M.B.; Jooste, P.L.; Pandav, C.S.

    2008-01-01

    billion individuals worldwide have insufficient iodine intake, with those in south Asia and sub-Saharan Africa particularly affected. Iodine deficiency has many adverse effects on growth and development. These effects are due to inadequate production of thyroid hormone and are termed iodine-deficien

  2. Factor V deficiency

    Science.gov (United States)

    ... When certain blood clotting factors are low or missing, your blood does not clot properly. Factor V deficiency is rare. It may be caused by: A defective Factor V gene passed down through families (inherited) An antibody that interferes with normal Factor ...

  3. Alpha1-antitrypsin deficiency

    DEFF Research Database (Denmark)

    Stolk, Jan; Seersholm, Niels; Kalsheker, Noor

    2006-01-01

    biennially to exchange views and research findings. The fourth biennial meeting was held in Copenhagen, Denmark, on 2-3 June 2005. This review covers the wide range of AAT deficiency-related topics that were addressed encompassing advances in genetic characterization, risk factor identification, clinical...... epidemiology, inflammatory and signalling processes, therapeutic advances, and lung imaging techniques....

  4. MCAD deficiency in Denmark

    DEFF Research Database (Denmark)

    Andresen, Brage Storstein; Lund, Allan Meldgaard; Hougaard, David Michael

    2012-01-01

    Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common defect of fatty acid oxidation. Many countries have introduced newborn screening for MCADD, because characteristic acylcarnitines can easily be identified in filter paper blood spot samples by tandem mass spectrometry (MS...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... blood transfusions , iron injections, or intravenous iron therapy. Rate This Content: NEXT >> Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the National Heart, Lung, and Blood Institute, part of the National ...

  6. Iodine-deficiency disorders

    NARCIS (Netherlands)

    Zimmermann, M.B.; Jooste, P.L.; Pandav, C.S.

    2008-01-01

    billion individuals worldwide have insufficient iodine intake, with those in south Asia and sub-Saharan Africa particularly affected. Iodine deficiency has many adverse effects on growth and development. These effects are due to inadequate production of thyroid hormone and are termed iodine-deficien

  7. Vitamin B12 deficiency

    Science.gov (United States)

    Vitamin B12 (B12; also known as cobalamin) is a B vitamin that has an important role in cellular metabolism, especially in DNA synthesis, methylation and mitochondrial metabolism. Clinical B12 deficiency with classic haematological and neurological manifestations is relatively uncommon. However, sub...

  8. Morbidity and GH deficiency

    DEFF Research Database (Denmark)

    Stochholm, Kirstine; Laursen, Torben; Green, Anders;

    2008-01-01

    OBJECTIVE: To estimate morbidity in Denmark in all patients with GH deficiency (GHD). DESIGN: Morbidity was analyzed in 1794 GHD patients and 8014 controls matched on age and gender. All records in the GHD patients were studied and additional morbidity noted. Diagnoses and dates of admissions were...

  9. Diagnosing oceanic nutrient deficiency

    Science.gov (United States)

    Moore, C. Mark

    2016-11-01

    The supply of a range of nutrient elements to surface waters is an important driver of oceanic production and the subsequent linked cycling of the nutrients and carbon. Relative deficiencies of different nutrients with respect to biological requirements, within both surface and internal water masses, can be both a key indicator and driver of the potential for these nutrients to become limiting for the production of new organic material in the upper ocean. The availability of high-quality, full-depth and global-scale datasets on the concentrations of a wide range of both macro- and micro-nutrients produced through the international GEOTRACES programme provides the potential for estimation of multi-element deficiencies at unprecedented scales. Resultant coherent large-scale patterns in diagnosed deficiency can be linked to the interacting physical-chemical-biological processes which drive upper ocean nutrient biogeochemistry. Calculations of ranked deficiencies across multiple elements further highlight important remaining uncertainties in the stoichiometric plasticity of nutrient ratios within oceanic microbial systems and caveats with regards to linkages to upper ocean nutrient limitation. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  10. Manganese deficiency in plants

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund; Jensen, Poul Erik; Husted, Søren

    2016-01-01

    Manganese (Mn) is an essential plant micronutrient with an indispensable function as a catalyst in the oxygen-evolving complex (OEC) of photosystem II (PSII). Even so, Mn deficiency frequently occurs without visual leaf symptoms, thereby masking the distribution and dimension of the problem...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... blood transfusions , iron injections, or intravenous iron therapy. Rate This Content: NEXT >> Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the National Heart, Lung, and Blood Institute, part of the National ...

  12. Genetics Home Reference: carbonic anhydrase VA deficiency

    Science.gov (United States)

    ... hyperammonemia due to carbonic anhydrase VA deficiency hyperammonemic encephalopathy due to carbonic anhydrase VA deficiency mitochondrial carbonic anhydrase va deficiency Related Information How are ...

  13. Glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... medlineplus.gov/ency/article/000528.htm Glucose-6-phosphate dehydrogenase deficiency To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a condition in which ...

  14. Lipoprotein lipase deficiency with visceral xanthomas

    Energy Technology Data Exchange (ETDEWEB)

    Servaes, Sabah; Bellah, Richard [Department of Radiology, Philadelphia, PA (United States); Verma, Ritu [Department of Gastroenterology, Philadelphia, PA (United States); Pawel, Bruce [Department of Pathology, Philadelphia, PA (United States)

    2010-08-15

    Lipoprotein lipase deficiency (LLD) is a rare metabolic disorder that typically presents with skin xanthomas and pancreatitis in childhood. We report a case of LLD in an infant who presented with jaundice caused by a pancreatic head mass. Abdominal imaging also incidentally revealed hyperechoic renal masses caused by renal xanthomas. This appearance of the multiple abdominal masses makes this a unique infantile presentation of LLD. (orig.)

  15. Growth Hormone Deficiency in Children

    Science.gov (United States)

    Fact Sheet Growth Defici H e o n r c m y one in Children What is growth hormone deficiency? Growth hormone deficiency (GHD) is a rare condition in which the body does not make enough growth hormone (GH). GH is made by the pituitary ...

  16. Iron deficiency and cognitive functions

    Directory of Open Access Journals (Sweden)

    Jáuregui-Lobera I

    2014-11-01

    Full Text Available Ignacio Jáuregui-Lobera Department of Nutrition and Bromatology, Pablo de Olavide University, Seville, Spain Abstract: Micronutrient deficiencies, especially those related to iodine and iron, are linked to different cognitive impairments, as well as to potential long-term behavioral changes. Among the cognitive impairments caused by iron deficiency, those referring to attention span, intelligence, and sensory perception functions are mainly cited, as well as those associated with emotions and behavior, often directly related to the presence of iron deficiency anemia. In addition, iron deficiency without anemia may cause cognitive disturbances. At present, the prevalence of iron deficiency and iron deficiency anemia is 2%–6% among European children. Given the importance of iron deficiency relative to proper cognitive development and the alterations that can persist through adulthood as a result of this deficiency, the objective of this study was to review the current state of knowledge about this health problem. The relevance of iron deficiency and iron deficiency anemia, the distinction between the cognitive consequences of iron deficiency and those affecting specifically cognitive development, and the debate about the utility of iron supplements are the most relevant and controversial topics. Despite there being methodological differences among studies, there is some evidence that iron supplementation improves cognitive functions. Nevertheless, this must be confirmed by means of adequate follow-up studies among different groups. Keywords: iron deficiency, anemia, cognitive functions, supplementation

  17. Cited1 deficiency suppresses intestinal tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Valérie Méniel

    Full Text Available Conditional deletion of Apc in the murine intestine alters crypt-villus architecture and function. This process is accompanied by multiple changes in gene expression, including upregulation of Cited1, whose role in colorectal carcinogenesis is unknown. Here we explore the relevance of Cited1 to intestinal tumorigenesis. We crossed Cited1 null mice with Apc(Min/+ and AhCre(+Apc(fl/fl mice and determined the impact of Cited1 deficiency on tumour growth/initiation including tumour multiplicity, cell proliferation, apoptosis and the transcriptome. We show that Cited1 is up-regulated in both human and murine tumours, and that constitutive deficiency of Cited1 increases survival in Apc(Min/+ mice from 230.5 to 515 days. However, paradoxically, Cited1 deficiency accentuated nearly all aspects of the immediate phenotype 4 days after conditional deletion of Apc, including an increase in cell death and enhanced perturbation of differentiation, including of the stem cell compartment. Transcriptome analysis revealed multiple pathway changes, including p53, PI3K and Wnt. The activation of Wnt through Cited1 deficiency correlated with increased transcription of β-catenin and increased levels of dephosphorylated β-catenin. Hence, immediately following deletion of Apc, Cited1 normally restrains the Wnt pathway at the level of β-catenin. Thus deficiency of Cited1 leads to hyper-activation of Wnt signaling and an exaggerated Wnt phenotype including elevated cell death. Cited1 deficiency decreases intestinal tumourigenesis in Apc(Min/+ mice and impacts upon a number of oncogenic signaling pathways, including Wnt. This restraint imposed by Cited1 is consistent with a requirement for Cited1 to constrain Wnt activity to a level commensurate with optimal adenoma formation and maintenance, and provides one mechanism for tumour repression in the absence of Cited1.

  18. [Selective immunoglobulin A deficiency].

    Science.gov (United States)

    Binek, Alicja; Jarosz-Chobot, Przemysława

    2012-01-01

    Immunoglobulin class A is the main protein of the mucosal immune system. Selective immunoglobulin A deficiency (sIgAD) is the most common primary immunodeficiency in Caucasians. sIGAD is strongly associated with the certain major histocompatibility complex region. Most individuals with sIgAD are asymptomatic and identified coincidentally. However, some patients may present with recurrent infections, allergic disorders and autoimmune manifestations. Several autoimmune diseases, such as systemic lupus erythematosus, diabetes mellitus type 1, Graves disease and celiac disease, are associated with an increased prevalence of sIgAD. Screening for sIgAD in coeliac disease is essential. Patients need treatment of associated diseases. It is also known that IgA deficiency may progress into a common variable immunodeficiency (CVID). Pathogenesis and molecular mechanism involved in sIgAD should be elucidated in the future.

  19. Isolated sulfite oxidase deficiency.

    Science.gov (United States)

    Relinque, B; Bardallo, L; Granero, M; Jiménez, P J; Luna, S

    2015-03-10

    Sulfite oxidase deficiency is an uncommon metabolic disease. Only few cases of its isolated form have been reported in the literature. We report a case of severe neonatal onset. A newborn baby of 41 weeks gestational age, weighted at birth of 3240 grams and had an Apgar score of 6-10-10. Fifty-three hours after being born, the baby started with seizures that were refractory to antiepileptic treatment. Brain function was monitored using a-EEG. Laboratory and imaging tests were performed. All of them were consistent with sulfite oxidase deficiency. The diagnosis was confirmed by genetic testing. We highlight the importance of this disease as part of the differential diagnosis of seizures during the neonatal period, as well as the importance of the therapeutic support based on dietary restrictions. It's also remarkable the possibility of prenatal diagnosis by quantifying enzyme activity and it's also possible carrying out DNA mutational analysis.

  20. Proximal Focal Femoral Deficiency

    Directory of Open Access Journals (Sweden)

    Vishal Kalia, Vibhuti

    2008-01-01

    Full Text Available Proximal focal femoral deficiency (PFFD is a developmental disorder of the proximal segment of thefemur and of acetabulum resulting in shortening of the affected limb and impairment of the function. It isa spectrum of congenital osseous anomalies characterized by a deficiency in the structure of the proximalfemur. The diagnosis is often made by radiological evaluation which includes identification and descriptionof PFFD and evaluation of associated limb anomalies by plain radiographs. Contrast arthrography orMagnetic Resonance Imaging is indicated when radiological features are questionable and to disclose thepresence and location of the femoral head and any cartilagenous anlage. The disorder is more commonlyunilateral and is apparent at birth. However, bilateral involvement is rarely seen. Therapy of the disorder isdirected towards satisfactory ambulation and specific treatment depending on the severity of dysplasia.

  1. Micronutrient deficiency in children.

    Science.gov (United States)

    Bhan, M K; Sommerfelt, H; Strand, T

    2001-05-01

    Malnutrition increases morbidity and mortality and affects physical growth and development, some of these effects resulting from specific micronutrient deficiencies. While public health efforts must be targeted to improve dietary intakes in children through breast feeding and appropriate complementary feeding, there is a need for additional measures to increase the intake of certain micronutrients. Food-based approaches are regarded as the long-term strategy for improving nutrition, but for certain micronutrients, supplementation, be it to the general population or to high risk groups or as an adjunct to treatment must also be considered. Our understanding of the prevalence and consequences of iron, vitamin A and iodine deficiency in children and pregnant women has advanced considerably while there is still a need to generate more knowledge pertaining to many other micronutrients, including zinc, selenium and many of the B-vitamins. For iron and vitamin A, the challenge is to improve the delivery to target populations. For disease prevention and growth promotion, the need to deliver safe but effective amounts of micronutrients such as zinc to children and women of fertile age can be determined only after data on deficiency prevalence becomes available and the studies on mortality reduction following supplementation are completed. Individual or multiple micronutrients must be used as an adjunct to treatment of common infectious diseases and malnutrition only if the gains are substantial and the safety window sufficiently wide. The available data for zinc are promising with regard to the prevention of diarrhea and pneumonia. It should be emphasized that there must be no displacement of important treatment such as ORS in acute diarrhea by adjunct therapy such as zinc. Credible policy making requires description of not only the clinical effects but also the underlying biological mechanisms. As findings of experimental studies are not always feasible to extrapolate to

  2. Orexin deficiency and narcolepsy

    OpenAIRE

    Sakurai, Takeshi

    2013-01-01

    Orexin deficiency results in the sleep disorder narcolepsy in many mammalian species, including mice, dogs, and humans, suggesting that the orexin system is particularly important for normal regulation of sleep/wakefulness states, and especially for maintenance of wakefulness. This review discusses animal models of narcolepsy; the contribution of each orexin receptor subtype to the narcoleptic phenotypes; and the etiology of orexin neuronal death. It also raises the possibility of novel thera...

  3. [Iron deficiency, thrombocytosis and thromboembolism].

    Science.gov (United States)

    Evstatiev, Rayko

    2016-10-01

    Iron deficiency, the most common nutritional deficiency worldwide, is often associated with reactive thrombocytosis. Although secondary thrombocytosis is commonly considered to be harmless, there is accumulating evidence that elevated platelet counts, especially in the setting of iron deficiency, can lead to an increased thromboembolic risk in both arterial and venous systems. Here we present the mechanisms of iron deficiency-induced thrombocytosis and summarize its clinical consequences especially in patients with inflammatory bowel diseases, chronic kidney disease or cancer. We hypothesize that iron deficiency is an underestimated thromboembolic risk factor, and that iron replacement therapy can become an effective preventive strategy in a variety of clinical settings.

  4. Iron-Deficiency Anemia (For Parents)

    Science.gov (United States)

    ... TV, Video Games, and the Internet Iron-Deficiency Anemia KidsHealth > For Parents > Iron-Deficiency Anemia Print A ... common nutritional deficiency in children. About Iron-Deficiency Anemia Every red blood cell in the body contains ...

  5. How Is Iron-Deficiency Anemia Treated?

    Science.gov (United States)

    ... the NHLBI on Twitter. How Is Iron-Deficiency Anemia Treated? Treatment for iron-deficiency anemia will depend ... may be advised. Treatments for Severe Iron-Deficiency Anemia Blood Transfusion If your iron-deficiency anemia is ...

  6. Iron-Deficiency Anemia (For Parents)

    Science.gov (United States)

    ... Your 1- to 2-Year-Old Iron-Deficiency Anemia KidsHealth > For Parents > Iron-Deficiency Anemia A A ... common nutritional deficiency in children. About Iron-Deficiency Anemia Every red blood cell in the body contains ...

  7. Phenylalanine hydroxylase deficiency.

    Science.gov (United States)

    Mitchell, John J; Trakadis, Yannis J; Scriver, Charles R

    2011-08-01

    Phenylalanine hydroxylase deficiency is an autosomal recessive disorder that results in intolerance to the dietary intake of the essential amino acid phenylalanine. It occurs in approximately 1:15,000 individuals. Deficiency of this enzyme produces a spectrum of disorders including classic phenylketonuria, mild phenylketonuria, and mild hyperphenylalaninemia. Classic phenylketonuria is caused by a complete or near-complete deficiency of phenylalanine hydroxylase activity and without dietary restriction of phenylalanine most children will develop profound and irreversible intellectual disability. Mild phenylketonuria and mild hyperphenylalaninemia are associated with lower risk of impaired cognitive development in the absence of treatment. Phenylalanine hydroxylase deficiency can be diagnosed by newborn screening based on detection of the presence of hyperphenylalaninemia using the Guthrie microbial inhibition assay or other assays on a blood spot obtained from a heel prick. Since the introduction of newborn screening, the major neurologic consequences of hyperphenylalaninemia have been largely eradicated. Affected individuals can lead normal lives. However, recent data suggest that homeostasis is not fully restored with current therapy. Treated individuals have a higher incidence of neuropsychological problems. The mainstay of treatment for hyperphenylalaninemia involves a low-protein diet and use of a phenylalanine-free medical formula. This treatment must commence as soon as possible after birth and should continue for life. Regular monitoring of plasma phenylalanine and tyrosine concentrations is necessary. Targets of plasma phenylalanine of 120-360 μmol/L (2-6 mg/dL) in the first decade of life are essential for optimal outcome. Phenylalanine targets in adolescence and adulthood are less clear. A significant proportion of patients with phenylketonuria may benefit from adjuvant therapy with 6R-tetrahydrobiopterin stereoisomer. Special consideration must be

  8. Vitamin B12 deficiency and gastric histopathology in older patients

    Institute of Scientific and Technical Information of China (English)

    KR Dholakia; TS Dharmarajan; D Yadav; S Oiseth; EP Norkus; CS Pitchumoni

    2005-01-01

    AIM: To compare upper gastric endoscopic and histopathologic findings in older adults in the presence and absence of B12 deficiency.METHODS: A prospective analysis of upper gastric endoscopic and gastric histopathologic findings from 30 newly identified B12-deficient patients (11 males,19 females) and 16 controls with normal B12 status (6males, 10 females) was performed. For all subjects, the indication for upper endoscopy and gastric biopsy were unrelated to B12 status. A single pathologist, blinded to B12 status, processed and interpreted the biopsy samples. Endoscopic and histopathologic findings were correlated with age, gender, hematocrit (Hct), MCV and B12 status.RESULTS: The B12-deficient group had significantly lower mean serum B12 levels compared to the controls (P<0.00005) while their mean Hct, MCV and serum albumin levels were similar. Iron deficiency (ferritinbased) was present in 21% of B12-deficient patients and intrinsic factor antibodies were present in29% (5/17) of B12-deficient patients. The endoscopic findings revealed significantly different rates of gastritis and atrophy between the B12-deficient and control groups (P= 0.017).B12-deficient patients had significantly less superficial gastritis (62% vs 94%) and significantly more atrophic gastritis (28% vs 0%) as compared to the controls (P= 0.039). Intestinal metaplasia was similar in both groups. Helicobacter pyloriinfection rates were similar in the B12-deficient patients and controls (40% vs31%).CONCLUSION: Significantly different endoscopic findings and types of gastritis could often be observed in the presence and absence of B12 deficiency. Atrophy,based on endoscopy, and atrophic gastritis, based on histopathology, suggest the presence of B12 deficiency.Gastric histopathology is not influenced by the age,gender, Hct or MCV of the patients.

  9. Ambiguity Revealed

    OpenAIRE

    Subir Bose; Matthew Polisson; Ludovic Renou

    2012-01-01

    We derive necessary and suffcient conditions for data sets composed of state-contingent prices and consumption to be consistent with two prominent models of decision making under ambiguity: variational preferences and smooth ambiguity. The revealed preference conditions for the maxmin expected utility and subjective expected utility models are characterized as special cases.

  10. Ambiguity revealed

    OpenAIRE

    Bayer, Ralph-C; Bose, Subir; Polisson, Matthew; Renou, Ludovic

    2013-01-01

    We derive necessary and sufficient conditions for data sets composed of state-contingent prices and consumption to be consistent with two prominent models of decision making under uncertainty: variational preferences and smooth ambiguity. The revealed preference conditions for subjective expected utility, maxmin expected utility, and multiplier preferences are characterised as special cases. We implement our tests on data from a portfolio choice experiment.

  11. Iron deficiency alters megakaryopoiesis and platelet phenotype independent of thrombopoietin.

    Science.gov (United States)

    Evstatiev, Rayko; Bukaty, Adam; Jimenez, Kristine; Kulnigg-Dabsch, Stefanie; Surman, Lidia; Schmid, Werner; Eferl, Robert; Lippert, Kathrin; Scheiber-Mojdehkar, Barbara; Kvasnicka, Hans Michael; Khare, Vineeta; Gasche, Christoph

    2014-05-01

    Iron deficiency is a common cause of reactive thrombocytosis, however, the exact pathways have not been revealed. Here we aimed to study the mechanisms behind iron deficiency-induced thrombocytosis. Within few weeks, iron-depleted diet caused iron deficiency in young Sprague-Dawley rats, as reflected by a drop in hemoglobin, mean corpuscular volume, hepatic iron content and hepcidin mRNA in the liver. Thrombocytosis established in parallel. Moreover, platelets produced in iron deficient animals displayed a higher mean platelet volume and increased aggregation. Bone marrow studies revealed subtle alterations that are suggestive of expansion of megakaryocyte progenitors, an increase in megakaryocyte ploidy and accelerated megakaryocyte differentiation. Iron deficiency did not alter the production of hematopoietic growth factors such as thrombopoietin, interleukin 6 or interleukin 11. Megakaryocytic cell lines grown in iron-depleted conditions exhibited reduced proliferation but increased ploidy and cell size. Our data suggest that iron deficiency increases megakaryopoietic differentiation and alters platelet phenotype without changes in megakaryocyte growth factors, specifically TPO. Iron deficiency-induced thrombocytosis may have evolved to maintain or increase the coagulation capacity in conditions with chronic bleeding.

  12. Iron-deficiency anemia caused by a proton pump inhibitor.

    Science.gov (United States)

    Hashimoto, Rintaro; Matsuda, Tomoki; Chonan, Akimichi

    2014-01-01

    A 59-year-old man was orally administered rabeprazole, a proton pump inhibitor (PPI), for gastroesophageal reflux disease, after which he gradually developed iron-deficiency anemia. The anemia did not improve following the administration of ferrous fumarate, and endoscopic screening of the entire gastrointestinal tract, including the small intestine, did not reveal any findings indicating the cause of the anemia. The patient was then switched from rabeprazole to famotidine and the anemia was cured within three months. There is much debate as to whether the long-term use of PPIs causes iron-deficiency. However, this case strongly suggests that PPIs can induce iron-deficiency anemia.

  13. Neuro-regression in vitamin B12 deficiency.

    Science.gov (United States)

    Agrawal, Sanwar; Nathani, Shweta

    2009-01-01

    Neuroregression in infants has varied aetiology and vitamin B12 deficiency is one of the uncommon causes. Infantile vitamin B12 deficiency is encountered in malnourished infants or in offspring of strict vegan mothers. We present two cases, both infants of 10 and 8 months of age, whose mothers had vitamin B12 deficiency. On admission, the patients were apathic, hypotonic and lethargic. Serum vitamin B12 levels were below normal limits. On cranial MRI, T2-weighted images revealed frontoparietal cortical atrophy. Both the infants responded to vitamin B12 treatment.

  14. Mutations and phenotype in isolated glycerol kinase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Walker, A.P.; Muscatelli, F.; Stafford, A.N.; Monaco, A.P. [Inst. of Molecular Medicine, Oxford (United Kingdom)] [and others

    1996-06-01

    We demonstrate that isolated glycerol kinase (GK) deficiency in three families results from mutation of the Xp21 GK gene. GK mutations were detected in four patients with widely differing phenotypes. Patient 1 had a splice-site mutation causing premature termination. His general health was good despite absent GK activity, indicating that isolated GK deficiency can be silent. Patient 2 had GK deficiency and a severe phenotype involving psychomotor retardation and growth delay, bone dysplasia, and seizures, similar to the severe phenotype of one of the first described cases of GK deficiency. His younger brother, patient 3, also had GK deficiency, but so far his development has been normal. GK exon 17 was deleted in both brothers, implicating additional factors in causation of the severe phenotype of patient 2. Patient 4 had both GK deficiency with mental retardation and a GK missense mutation (D440V). Possible explanations for the phenotypic variation of these four patients include ascertainment bias; metabolic or environmental stress as a precipitating factor in revealing GK-related changes, as has previously been described in juvenile GK deficiency; and interactions with functional polymorphisms in other genes that alter the effect of GK deficiency on normal development. 36 refs., 4 figs., 1 tab.

  15. Vitamin A deficiency in quail

    Science.gov (United States)

    Nestler, R.B.; Bailey, W.W.

    1943-01-01

    Two experiments were conducted to determine the symptoms of avitaminosis A in growing and adolescent bobwhites. Chicks from parents that have received a diet rich in vitamin A may have enough stored to carry them a week or ten days on a growing diet deficient in vitamin A before symptoms of deficiency occur. The first sign is ruffled feathering, with the wing primaries standing out from the body and drooping. Ophthalmia in one or both eyes occurs and may close the eyes completely, but this condition is not severe in all cases and may not even be noticeable. Birds show poor growth, loss of appetite, and weakness before death. Under the conditions of the experiments discussed herein, death may occur in the fourth or fifth week, and mortality is high......Postmortem examination may reveal visceral gout with thick deposits of urates on the kidneys, in the ureters, on the heart, in the proventriculus, and occasionally covering all the viscera. There may also be hemorrhage of the heart and other organs....Adolescent quail reared on a diet rich in vitamin A may be able to live through the winter on a maintenance diet low in this vitamin without showing symptoms of avitaminosis, but some individuals whose storage of vitamin A in the liver is not as great as that of others may succumb to visceral gout.....A growing mash for quail which contains sufficient vitamin A when fresh may, after a period of storage, lose enough of the vitamin to cause the characteristic symptoms of avitaminosis A to appear.

  16. Factor XI deficiency diagnosed following use of adalimumab

    Directory of Open Access Journals (Sweden)

    Guven Cetin

    2014-01-01

    Full Text Available Adalimumab is a drug used in the treatment of refractory psoriasis. We present a case of a 55-year-old male patient who developed petechiae and purpura after the ninth dose of adalimumab therapy. The results of laboratory investigations revealed factor XI (F.XI deficiency. It should be recognized that F XI deficiency may develop in patients using long-term adalimumab, leading to increased risk of bleeding.

  17. Mathematics revealed

    CERN Document Server

    Berman, Elizabeth

    1979-01-01

    Mathematics Revealed focuses on the principles, processes, operations, and exercises in mathematics.The book first offers information on whole numbers, fractions, and decimals and percents. Discussions focus on measuring length, percent, decimals, numbers as products, addition and subtraction of fractions, mixed numbers and ratios, division of fractions, addition, subtraction, multiplication, and division. The text then examines positive and negative numbers and powers and computation. Topics include division and averages, multiplication, ratios, and measurements, scientific notation and estim

  18. Iatrogenic nutritional deficiencies.

    Science.gov (United States)

    Young, R C; Blass, J P

    1982-01-01

    This article catalogs the nutritional deficiencies inadvertently introduced by certain treatment regimens. Specifically, the iatrogenic effects on nutrition of surgery, hemodialysis, irradiation, and drugs are reviewed. Nutritional problems are particularly frequent consequences of surgery on the gastrointestinal tract. Gastric surgery can lead to deficiencies of vitamin B12, folate, iron, and thiamine, as well as to metabolic bone disease. The benefits of small bowel bypass are limited by the potentially severe nutritional consequences of this procedure. Following bypass surgery, patients should be monitored for signs of possible nutritional probems such as weight loss, neuropathy, cardiac arrhythmias, loss of stamina, or changes in mental status. Minimal laboratory tests should include hematologic evaluation, B12, folate, iron, albumin, calcium, phosphorus, alkaline phosphatase, transaminases, sodium, potassium, chloride, and carbon dioxide levels. Roentgenologic examination of the bone should also be obtained. Loss of bone substance is a major consequence of many forms of treatment, and dietary supplementation with calcium is warranted. Patients undergoing hemodialysis have shown carnitine and choline deficiencies, potassium depletion, and hypovitaminosis, as well as osteomalacia. Chronic drug use may alter intake, synthesis, absorption, transport, storage, metabolism, or excretion of nutrients. Patients vary markedly in the metabolic effects of drugs, and recommendations for nutrition must be related to age, sex, reproductive status, and genetic endowment. Moreover, the illness being treated can itself alter nutritional requirements and the effect of the treatment on nutrient status. The changes in nutritional levels induced by use of estrogen-containing oral contraceptives (OCs) are obscure; however, the effects on folate matabolism appear to be of less clinical import than previously suggested. Reduction in pyridoxine and serum vitamin B12 levels has been

  19. Treatment of carnitine deficiency.

    Science.gov (United States)

    Winter, S C

    2003-01-01

    Carnitine deficiency is a secondary complication of many inborn errors of metabolism. Pharmacological treatment with carnitine not only corrects the deficiency, it facilitates removal of accumulating toxic acyl intermediates and the generation of mitochondrial free coenzyme A (CoA). The United States Food and Drug Administration (US FDA) approved the use of carnitine for the treatment of inborn errors of metabolism in 1992. This approval was based on retrospective chart analysis of 90 patients, with 18 in the untreated cohort and 72 in the treated cohort. Efficacy was evaluated on the basis of clinical and biochemical findings. Compelling data included increased excretion of disease-specific acylcarnitine derivatives in a dose-response relationship, decreased levels of metabolites in the blood, and improved clinical status with decreased hospitalization frequency, improved growth and significantly lower mortality rates as compared to historical controls. Complications of carnitine treatment were few, with gastrointestinal disturbances and odour being the most frequent. No laboratory or clinical safety issues were identified. Intravenous carnitine preparations were also approved for treatment of secondary carnitine deficiency. Since only 25% of enteral carnitine is absorbed and gastrointestinal tolerance of high doses is poor, parenteral carnitine treatment is an appealing alternative therapeutic approach. In 7 patients treated long term with high-dose weekly to daily venous boluses of parenteral carnitine through a subcutaneous venous port, benefits included decreased frequency of decompensations, improved growth, improved muscle strength and decreased reliance on medical foods with liberalization of protein intake. Port infections were the most troubling complication. Theoretical concerns continue to be voiced that carnitine might result in fatal arrhythmias in patients with long-chain fat metabolism defects. No published clinical studies substantiate these

  20. REVEALED ALTRUISM

    OpenAIRE

    Cox, James C; Friedman, Daniel; Sadiraj, Vjollca

    2009-01-01

    This pap er develops a theory of revealed preferences over oneís own and othersímonetary payo§s. We intro duce ìmore altruistic thanî(MAT), a partial ordering over preferences, and interpret it with known parametric mo dels. We also intro duce and illustrate ìmore generous thanî (MGT), a partial ordering over opp ortunity sets. Several recent discussions of altruism fo cus on two player extensive form games of complete information in which the Örst mover (FM) cho oses a more or less gen...

  1. Phosphorus Deficiency in Ducklins

    Institute of Scientific and Technical Information of China (English)

    CuiHengmin; LuoLingping

    1995-01-01

    20 one-day-old Tianfu ducklings were fed on a natural diet deficient in phosphorus(Ca 0.80%,P 0.366%)for three weeks and examined for signs and lesions.Signs began to appear at the age of one week,and became serous at two weeks.13 ducklings died during the experiment.Morbidity was 100% and mortality was 65%.The affected ducklings mainly showed leg weakness,severe lamencess,deprssion,lack of appetite and stunted growth,The serum alkaline phosphatase activities increased markedly.The serum phosphorus concentration,tibial ash,ash calcium and phosphorus content decreased obviously.At necropsy,maxillae and ribe were soft,and the latter was crooked.Long ones were soft and broke easily.The hypertrophic zone of the growth-plate in the epiphysis of long ones was lengthened and osteoid tissue increased in the metaphyseal spongiosa histopathologically.The above mentioned symptoms and lesions could be prevented by adding phosphorus to the natural deficient diet(up to 0.65%),The relationship between lesions and signs,pathomorphological characterisation and pathogensis were also discussed in this paper.

  2. Iron deficiency anemia and megaloblastic anemia in obese patients.

    Science.gov (United States)

    Arshad, Mahmoud; Jaberian, Sara; Pazouki, Abdolreza; Riazi, Sajedeh; Rangraz, Maryam Aghababa; Mokhber, Somayyeh

    2017-03-01

    The association between obesity and different types of anemia remained uncertain. The present study aimed to assess the relation between obesity parameters and the occurrence of iron deficiency anemia and also megaloblastic anemia among Iranian population. This cross-sectional study was performed on 1252 patients with morbid obesity that randomly selected from all patients referred to Clinic of obesity at Rasoul-e-Akram Hospital in 2014. The morbid obesity was defined according to the guideline as body mass index (BMI) equal to or higher than 40 kg/m2. Various laboratory parameters including serum levels of hemoglobin, iron, ferritin, folic acid, and vitamin B12 were assessed using the standard laboratory techniques. BMI was adversely associated with serum vitamin B12, but not associated with other hematologic parameters. The overall prevalence of iron deficiency anemia was 9.8%. The prevalence of iron deficiency anemia was independent to patients' age and also to body mass index. The prevalence of vitamin B12 deficiency was totally 20.9%. According to the multivariable logistic regression model, no association was revealed between BMI and the occurrence of iron deficiency anemia adjusting gender and age. A similar regression model showed that higher BMI could predict occurrence of vitamin B12 deficiency in morbid obese patients. Although iron deficiency is a common finding among obese patients, vitamin B12 deficiency is more frequent so about one-fifth of these patients suffer vitamin B12 deficiency. In fact, the exacerbation of obesity can result in exacerbation of vitamin B12 deficiency.

  3. Glucose-6-phosphatase deficiency

    Directory of Open Access Journals (Sweden)

    Labrune Philippe

    2011-05-01

    Full Text Available Abstract Glucose-6-phosphatase deficiency (G6P deficiency, or glycogen storage disease type I (GSDI, is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, between the ages of 3 to 4 months by symptoms of hypoglycemia (tremors, seizures, cyanosis, apnea. Patients have poor tolerance to fasting, marked hepatomegaly, growth retardation (small stature and delayed puberty, generally improved by an appropriate diet, osteopenia and sometimes osteoporosis, full-cheeked round face, enlarged kydneys and platelet dysfunctions leading to frequent epistaxis. In addition, in GSDIb, neutropenia and neutrophil dysfunction are responsible for tendency towards infections, relapsing aphtous gingivostomatitis, and inflammatory bowel disease. Late complications are hepatic (adenomas with rare but possible transformation into hepatocarcinoma and renal (glomerular hyperfiltration leading to proteinuria and sometimes to renal insufficiency. GSDI is caused by a dysfunction in the G6P system, a key step in the regulation of glycemia. The deficit concerns the catalytic subunit G6P-alpha (type Ia which is restricted to expression in the liver, kidney and intestine, or the ubiquitously expressed G6P transporter (type Ib. Mutations in the genes G6PC (17q21 and SLC37A4 (11q23 respectively cause GSDIa and Ib. Many mutations have been identified in both genes,. Transmission is autosomal recessive. Diagnosis is based on clinical presentation, on abnormal basal values and absence of hyperglycemic response to glucagon. It can be confirmed by demonstrating a deficient activity of a G6P system component in a liver biopsy. To date, the diagnosis is most

  4. Glucose-6-phosphatase deficiency.

    Science.gov (United States)

    Froissart, Roseline; Piraud, Monique; Boudjemline, Alix Mollet; Vianey-Saban, Christine; Petit, François; Hubert-Buron, Aurélie; Eberschweiler, Pascale Trioche; Gajdos, Vincent; Labrune, Philippe

    2011-05-20

    Glucose-6-phosphatase deficiency (G6P deficiency), or glycogen storage disease type I (GSDI), is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, between the ages of 3 to 4 months by symptoms of hypoglycemia (tremors, seizures, cyanosis, apnea). Patients have poor tolerance to fasting, marked hepatomegaly, growth retardation (small stature and delayed puberty), generally improved by an appropriate diet, osteopenia and sometimes osteoporosis, full-cheeked round face, enlarged kydneys and platelet dysfunctions leading to frequent epistaxis. In addition, in GSDIb, neutropenia and neutrophil dysfunction are responsible for tendency towards infections, relapsing aphtous gingivostomatitis, and inflammatory bowel disease. Late complications are hepatic (adenomas with rare but possible transformation into hepatocarcinoma) and renal (glomerular hyperfiltration leading to proteinuria and sometimes to renal insufficiency). GSDI is caused by a dysfunction in the G6P system, a key step in the regulation of glycemia. The deficit concerns the catalytic subunit G6P-alpha (type Ia) which is restricted to expression in the liver, kidney and intestine, or the ubiquitously expressed G6P transporter (type Ib). Mutations in the genes G6PC (17q21) and SLC37A4 (11q23) respectively cause GSDIa and Ib. Many mutations have been identified in both genes,. Transmission is autosomal recessive. Diagnosis is based on clinical presentation, on abnormal basal values and absence of hyperglycemic response to glucagon. It can be confirmed by demonstrating a deficient activity of a G6P system component in a liver biopsy. To date, the diagnosis is most commonly confirmed

  5. Ovarian intratumoral 21-hydroxylase deficiency in a postmenopausal hirsute woman.

    Science.gov (United States)

    Souto, Selma B; Baptista, Pedro V; Barreto, Filomena; Sousa, Pedro F; Braga, Daniel C; Carvalho, Davide

    2012-12-01

    Virilising ovarian tumours are a rare cause of hyperandrogenism in women, accounting for less than 5% of all ovarian neoplasms. It occurs most often in - and postmenopausal women. We report a case of a 64 year-old woman with signs of virilisation that had started 3 years before. Blood hormone analysis revealed increased levels of testosterone, and 17-hydroxyprogesterone. The tetracosactin test revealed 21-hydroxylase deficiency. Radiological imaging demonstrated a nodule in her left ovary. The patient was submitted to bilateral laparoscopic oophorectomy, and histopathological examination revealed a luteoma of the left ovary. Postoperative serum testosterone level and 17-hydroxyprogesterone returned to normal levels in one month. Virilism regressed within six months. Our patient also showed an elevation in 17-OHP serum levels. Normalization of 17-OHP after oophorectomy suggests a case of intratumoral 21-hydroxylase deficiency. To our knowledge, this is the first description of ovarian intratumoral 21-hydroxylase deficiency in a postmenopausal woman.

  6. Management of Iron Deficiency Anemia

    OpenAIRE

    Jimenez, Kristine; Kulnigg-Dabsch, Stefanie; Gasche, Christoph

    2015-01-01

    Anemia affects one-fourth of the world’s population, and iron deficiency is the predominant cause. Anemia is associated with chronic fatigue, impaired cognitive function, and diminished well-being. Patients with iron deficiency anemia of unknown etiology are frequently referred to a gastroenterologist because in the majority of cases the condition has a gastrointestinal origin. Proper management improves quality of life, alleviates the symptoms of iron deficiency, and reduces the need for blo...

  7. [Iron deficiency and digestive disorders].

    Science.gov (United States)

    Cozon, G J N

    2014-11-01

    Iron deficiency anemia still remains problematic worldwide. Iron deficiency without anemia is often undiagnosed. We reviewed, in this study, symptoms and syndromes associated with iron deficiency with or without anemia: fatigue, cognitive functions, restless legs syndrome, hair loss, and chronic heart failure. Iron is absorbed through the digestive tract. Hepcidin and ferroportin are the main proteins of iron regulation. Pathogenic micro-organisms or intestinal dysbiosis are suspected to influence iron absorption. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Nutritional deficiencies after bariatric surgery.

    Science.gov (United States)

    Bal, Bikram S; Finelli, Frederick C; Shope, Timothy R; Koch, Timothy R

    2012-09-01

    Lifestyle intervention programmes often produce insufficient weight loss and poor weight loss maintenance. As a result, an increasing number of patients with obesity and related comorbidities undergo bariatric surgery, which includes approaches such as the adjustable gastric band or the 'divided' Roux-en-Y gastric bypass (RYGB). This Review summarizes the current knowledge on nutrient deficiencies that can develop after bariatric surgery and highlights follow-up and treatment options for bariatric surgery patients who develop a micronutrient deficiency. The major macronutrient deficiency after bariatric surgery is protein malnutrition. Deficiencies in micronutrients, which include trace elements, essential minerals, and water-soluble and fat-soluble vitamins, are common before bariatric surgery and often persist postoperatively, despite universal recommendations on multivitamin and mineral supplements. Other disorders, including small intestinal bacterial overgrowth, can promote micronutrient deficiencies, especially in patients with diabetes mellitus. Recognition of the clinical presentations of micronutrient deficiencies is important, both to enable early intervention and to minimize long-term adverse effects. A major clinical concern is the relationship between vitamin D deficiency and the development of metabolic bone diseases, such as osteoporosis or osteomalacia; metabolic bone diseases may explain the increased risk of hip fracture in patients after RYGB. Further studies are required to determine the optimal levels of nutrient supplementation and whether postoperative laboratory monitoring effectively detects nutrient deficiencies. In the absence of such data, clinicians should inquire about and treat symptoms that suggest nutrient deficiencies.

  9. Iron deficiency and iron deficiency anemia in women.

    Science.gov (United States)

    Coad, Jane; Pedley, Kevin

    2014-01-01

    Iron deficiency is one of the most common nutritional problems in the world and disproportionately affects women and children. Stages of iron deficiency can be characterized as mild deficiency where iron stores become depleted, marginal deficiency where the production of many iron-dependent proteins is compromised but hemoglobin levels are normal and iron deficiency anemia where synthesis of hemoglobin is decreased and oxygen transport to the tissues is reduced. Iron deficiency anemia is usually assessed by measuring hemoglobin levels but this approach lacks both specificity and sensitivity. Failure to identify and treat earlier stages of iron deficiency is concerning given the neurocognitive implications of iron deficiency without anemia. Most of the daily iron requirement is derived from recycling of senescent erythrocytes by macrophages; only 5-10 % comes from the diet. Iron absorption is affected by inhibitors and enhancers of iron absorption and by the physiological state. Inflammatory conditions, including obesity, can result in iron being retained in the enterocytes and macrophages causing hypoferremia as a strategic defense mechanism to restrict iron availability to pathogens. Premenopausal women usually have low iron status because of iron loss in menstrual blood. Conditions which further increase iron loss, compromise absorption or increase demand, such as frequent blood donation, gastrointestinal lesions, athletic activity and pregnancy, can exceed the capacity of the gastrointestinal tract to upregulate iron absorption. Women of reproductive age are at particularly high risk of iron deficiency and its consequences however there is a controversial argument that evolutionary pressures have resulted in an iron deficient phenotype which protects against infection.

  10. Iodine deficiency in Europe.

    Science.gov (United States)

    Delange, F

    1995-01-18

    Iodine is a trace element present in the human body in minute amounts (15-20 mg in adults, i.e. 0.0285 x 10(-3)% of body weight). The only confirmed function of iodine is to constitute an essential substrate for the synthesis of thyroid hormones, tetraiodothyronine, thyroxine or T4 and triiodothyronine, T3 (1). In thyroxine, iodine is 60% by weight. Thyroid hormones, in turn, play a decisive role in the metabolism of all cells of the organism (2) and in the process of early growth and development of most organs, especially of the brain (3). Brain development in humans occurs from fetal life up to the third postnatal year (4). Consequently, a deficit in iodine and/or in thyroid hormones occurring during this critical period of life will result not only in the slowing down of the metabolic activities of all the cells of the organism but also in irreversible alterations in the development of the brain. The clinical consequence will be mental retardation (5). When the physiological requirements of iodine are not met in a given population, a series of functional and developmental abnormalities occur (Table 1), including thyroid function abnormalities and, when iodine deficiency is severe, endemic goiter and cretinism, endemic mental retardation, decreased fertility rate, increased perinatal death, and infant mortality. These complications, which constitute an hindrance to the development of the affected population, are grouped under the general heading of Iodine Deficiency Disorders, IDD (6). Broad geographic areas exist in which the population is affected by IDD.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Revealing Rembrandt

    Directory of Open Access Journals (Sweden)

    Andrew J Parker

    2014-04-01

    Full Text Available The power and significance of artwork in shaping human cognition is self-evident. The starting point for our empirical investigations is the view that the task of neuroscience is to integrate itself with other forms of knowledge, rather than to seek to supplant them. In our recent work, we examined a particular aspect of the appreciation of artwork using present-day functional magnetic resonance imaging (fMRI. Our results emphasised the continuity between viewing artwork and other human cognitive activities. We also showed that appreciation of a particular aspect of artwork, namely authenticity, depends upon the co-ordinated activity between the brain regions involved in multiple decision making and those responsible for processing visual information. The findings about brain function probably have no specific consequences for understanding how people respond to the art of Rembrandt in comparison with their response to other artworks. However, the use of images of Rembrandt’s portraits, his most intimate and personal works, clearly had a significant impact upon our viewers, even though they have been spatially confined to the interior of an MRI scanner at the time of viewing. Neuroscientific studies of humans viewing artwork have the capacity to reveal the diversity of human cognitive responses that may be induced by external advice or context as people view artwork in a variety of frameworks and settings.

  12. Iron deficiency anemia in children

    OpenAIRE

    Pochinok, T. V.

    2016-01-01

    In the article the role of iron in the human body is highlighted. The mechanism of development of iron deficiency states, their consequences and the basic principles of diagnosis and correction of children of different ages are shown.Key words: children, iron deficiency anemia, treatment.

  13. Iron deficiency and cardiovascular disease

    NARCIS (Netherlands)

    von Haehling, Stephan; Jankowska, Ewa A.; van Veldhuisen, Dirk J.; Ponikowski, Piotr; Anker, Stefan D.

    2015-01-01

    Iron deficiency affects up to one-third of the world's population, and is particularly common in elderly individuals and those with certain chronic diseases. Iron excess can be detrimental in cardiovascular illness, and research has now also brought anaemia and iron deficiency into the focus of card

  14. Newborn screening for MCAD deficiency

    DEFF Research Database (Denmark)

    Horvath, Gabriella A; Davidson, A G F; Stockler-Ipsiroglu, Sylvia G

    2008-01-01

    BACKGROUND: Medium Chain Acyl-CoA Dehydrogenase (MCAD) Deficiency is an autosomal recessive disorder of fatty acid oxidation, with potential fatal outcome. MCAD deficiency is diagnosed by acylcarnitine analysis on newborn screening blood spot cards by tandem mass spectrometry. Early diagnosis of ...

  15. Use of a portable motion analysis system for knee dynamic stability assessment in anterior cruciate ligament deficiency during single-legged hop landing

    Directory of Open Access Journals (Sweden)

    Man-Yi Yeung

    2016-07-01

    Conclusion: The altered knee kinematics in ACL-deficient patients can be revealed by a portable motion capture system, which may enable the clinical application of kinematic assessment in the evaluation of ACL deficiency.

  16. Iron deficiency anemia in children.

    Science.gov (United States)

    Subramaniam, Girish; Girish, Meenakshi

    2015-06-01

    Iron deficiency is not just anemia; it can be responsible for a long list of other manifestations. This topic is of great importance, especially in infancy and early childhood, for a variety of reasons. Firstly, iron need is maximum in this period. Secondly, diet in infancy is usually deficient in iron. Thirdly and most importantly, iron deficiency at this age can result in neurodevelopmental and cognitive deficits, which may not be reversible. Hypochromia and microcytosis in a complete blood count (CBC) makes iron deficiency anemia (IDA) most likely diagnosis. Absence of response to iron should make us look for other differential diagnosis like β thalassemia trait and anemia of chronic disease. Celiac disease is the most important cause of true IDA not responding to oral iron therapy. While oral ferrous sulphate is the cheapest and most effective therapy for IDA, simple nonpharmacological and pharmacological measures can go a long way in prevention of iron deficiency.

  17. Lactose intolerance and lactase deficiency in children.

    Science.gov (United States)

    Rings, E H; Grand, R J; Büller, H A

    1994-10-01

    The term lactase deficiency is widely used to indicate a low or absent level of lactase enzyme in the small intestine, leading to lactose intolerance. This term is correctly used when the intestinal mucosa is damaged and results in secondary lactase deficiency. In the case of the genetically determined decrease of lactase activity during childhood, however, low lactase levels suggest that the majority of the world's population is "abnormal," whereas individuals from caucasian extraction with high levels of lactase enzyme throughout life are then considered "normal." It would be better to ascribe racial and ethnic lactose malabsorption as the result of genetically determined reduction of lactase activity, rather then implying an "abnormality" by the term, "deficiency." Recent studies reveal that this genetic control is at the transcriptional level. The symptomatology of lactose intolerance varies widely, and the diagnostic method of choice is the lactose breath hydrogen test in combination with clinical findings, although small intestinal biopsies should be performed when mucosal diseases are suspected. Treatment of lactose intolerance depends on the age of the child. In young infants complete restriction of lactose containing foods is rarely necessary.

  18. Genetics Home Reference: protein C deficiency

    Science.gov (United States)

    ... Management Genetic Testing (1 link) Genetic Testing Registry: Thrombophilia, hereditary, due to protein C deficiency, autosomal dominant ... my area? Other Names for This Condition hereditary thrombophilia due to protein C deficiency PROC deficiency Related ...

  19. Genetics Home Reference: glutathione synthetase deficiency

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions glutathione synthetase deficiency glutathione synthetase deficiency Enable Javascript to view the expand/ ... boxes. Download PDF Open All Close All Description Glutathione synthetase deficiency is a disorder that prevents the ...

  20. Genetics Home Reference: GLUT1 deficiency syndrome

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions GLUT1 deficiency syndrome GLUT1 deficiency syndrome Enable Javascript to view the expand/ ... boxes. Download PDF Open All Close All Description GLUT1 deficiency syndrome is a disorder affecting the nervous ...

  1. Genetics Home Reference: familial HDL deficiency

    Science.gov (United States)

    ... Genetics Home Health Conditions familial HDL deficiency familial HDL deficiency Enable Javascript to view the expand/collapse ... Download PDF Open All Close All Description Familial HDL deficiency is a condition characterized by low levels ...

  2. Genetics Home Reference: isolated growth hormone deficiency

    Science.gov (United States)

    ... Genetic Testing (4 links) Genetic Testing Registry: Ateleiotic dwarfism Genetic Testing Registry: Autosomal dominant isolated somatotropin deficiency ... in my area? Other Names for This Condition dwarfism, growth hormone deficiency dwarfism, pituitary growth hormone deficiency ...

  3. Genetics Home Reference: lactate dehydrogenase deficiency

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions lactate dehydrogenase deficiency lactate dehydrogenase deficiency Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Lactate dehydrogenase deficiency is a condition that affects how the ...

  4. Vitamin A Deficiency Presenting with ‘Itchy Eyes'

    Directory of Open Access Journals (Sweden)

    Matthew Hao Lee

    2015-12-01

    Full Text Available We present the case of an 88-year-old female living in metropolitan Melbourne, Australia who developed vitamin A deficiency manifesting as ‘itchy eyes' due to a bizarre dietary habit. Slit lamp examination revealed Bitot's spots and a subsequent vitamin A serum level test revealed severe deficiency. An electroretinogram showed grossly reduced a- and b-wave amplitudes consistent with generalised rod and cone dysfunction - these parameters showed marked improvement 5 months post supplementation. This case highlights the presence of vitamin A deficiency in the developed world and that a careful dietary history should be taken when assessing a patient complaining of ‘itchy eyes'. Timely diagnosis and treatment may result in dramatic resolution of symptoms and signs as well as prevention of serious morbidity.

  5. Iron deficiency and thrombocytosis.

    Science.gov (United States)

    Holbro, A; Volken, T; Buser, A; Sigle, J P; Halter, J P; Passweg, J R; Tichelli, A; Infanti, L

    2017-01-01

    According to many textbooks, iron deficiency (ID) is associated with reactive thrombocytosis. In this study, we aimed to investigate the correlation between serum ferritin levels and platelet counts in a large cohort of healthy blood donors. We included all whole blood and apheresis donors aged 18 years or older with at least one ferritin measurement and one platelet count performed at the same visit between 1996 and 2014. A total of 130 345 blood counts and ferritin measurements obtained from 22 046 healthy donors were analysed. Overall, no correlation between serum ferritin and platelet count was observed (r = -0.03, ρ = 0.04 for males, and r = 0.01, ρ = -0.02 for females, respectively). Associations remained clinically negligible after adjusting for age, time since previous blood donation, number of donations and restricting the analysis to ferritin deciles. In this large, retrospective single-centre study, correlations between low ferritin and platelet count in a large and homogeneous cohort of healthy donors were negligible. Further studies in patients with more severe anaemia and patients with inflammation are warranted. © 2016 International Society of Blood Transfusion.

  6. Iron Deficiency Anemia in Pregnancy.

    Science.gov (United States)

    Breymann, Christian

    2015-10-01

    Anemia is a common problem in obstetrics and perinatal care. Any hemoglobin below 10.5 g/dL can be regarded as true anemia regardless of gestational age. Reasons for anemia in pregnancy are mainly nutritional deficiencies, parasitic and bacterial diseases, and inborn red blood cell disorders such as thalassemias. The main cause of anemia in obstetrics is iron deficiency, which has a worldwide prevalence between estimated 20%-80% and consists of a primarily female population. Stages of iron deficiency are depletion of iron stores, iron-deficient erythropoiesis without anemia, and iron deficiency anemia, the most pronounced form of iron deficiency. Pregnancy anemia can be aggravated by various conditions such as uterine or placental bleedings, gastrointestinal bleedings, and peripartum blood loss. In addition to the general consequences of anemia, there are specific risks during pregnancy for the mother and the fetus such as intrauterine growth retardation, prematurity, feto-placental miss ratio, and higher risk for peripartum blood transfusion. Besides the importance of prophylaxis of iron deficiency, the main therapy options for the treatment of pregnancy anemia are oral iron and intravenous iron preparations.

  7. Genetics Home Reference: hereditary antithrombin deficiency

    Science.gov (United States)

    ... Merck Manual Home Edition for Patients and Caregivers: Thrombophilia National Blood Clot Alliance: Antithrombin Deficiency Orphanet: Hereditary thrombophilia due to congenital antithrombin deficiency Patient Support and ...

  8. Digalactosyl-diacylglycerol-deficiency lowers the thermal stability of thylakoid membranes

    NARCIS (Netherlands)

    Krumova, S.K.B.; Laptenok, S.; Kovács, L.; Toth, T.; Hoek, van A.; Garab, G.; Amerongen, van H.

    2010-01-01

    We investigated the effects of digalactosyl-diacylglycerol (DGDG) on the organization and thermal stability of thylakoid membranes, using wild-type Arabidopsis thaliana and the DGDG-deficient mutant, dgd1. Circular-dichroism measurements reveal that DGDG-deficiency hampers the formation of the

  9. 21-Hydroxylase deficiency in Brazil

    Directory of Open Access Journals (Sweden)

    T.A.S.S. Bachega

    2000-10-01

    Full Text Available We determined the frequency of large rearrangements and point mutations in 130 Brazilian patients with 21-hydroxylase deficiency and correlated genotype with phenotype. The frequency of CYP21 deletions was lower (4.4% than in most of the previous series described, whereas the frequency of large gene conversions was similar to the frequency reported in the literature (6.6%. The most frequent point mutations were I2 splice (41.8% in salt wasting - SW, I172N (32.6% in simple virilizing - SV and V281L (40.2% in the late onset form - LO. The frequency of the nine most common point mutations was similar to that reported for other countries. The 93 fully genotyped patients were classified into 3 mutation groups based on the degree of enzymatic activity (A@ 2%, C>20%. In group A, 62% of cases presented the SW form; in group B, 96% the SV form, and in group C, 88% the LO form. We diagnosed 80% of the affected alleles after screening for large rearrangements and 15 point mutations. To diagnose these remaining alleles we sequenced the CYP21 gene of one patient with the SV form and identified a heterozygous G->A transition in codon 424. This mutation leads to a substitution of glycine by serine in a conserved region and was also found in a compound heterozygous state in 4 other patients. The mutation G424S presented a linkage disequilibrium with CYP21P and C4A gene deletions and HLA DR17, suggesting a probable founder effect. Search for the G424S mutation in other populations will reveal if it is restricted to the Brazilian patients or if it has a wider ethnic distribution.

  10. A Patient with G6PD Deficiency and Falciparum Malaria

    Directory of Open Access Journals (Sweden)

    Y Fagani

    2007-04-01

    Full Text Available A 20 year old male patient from Afghanistan with a history of G6PD deficiency and clinical manifestations of malaria referred to Bou-Ali Hospital in Tehran, capital of Iran. Giemsa stained thick blood films revealed an infection of Plasmodium falciparum with 33700 parasite/μL of blood. The patient was successfully treated according to malaria treatment guideline.

  11. An unusual ocular presentation of acquired immune deficiency syndrome

    Directory of Open Access Journals (Sweden)

    Arunachalam Cynthia

    2008-01-01

    Full Text Available A 50-year-old male who presented with bilateral keratomalacia and on subsequent evaluation was found to be human immunodeficiency virus (HIV positive is being reported. A MEDLINE search of the literature did not reveal any report of keratomalacia as the initial presenting feature of HIV/ acquired immune deficiency syndrome.

  12. Iron deficiency anemia in adolescents: a literature review

    Directory of Open Access Journals (Sweden)

    Romilda Castro de Andrade Cairo

    2014-06-01

    Full Text Available Introduction: Anemia is one of the most important nutritional deficiencies affecting various social and socioeconomic strata. It is more common in developing countries, with children and adolescents being at a significantly higher risk for the condition. Objective: To perform a literature review on iron deficiency anemia in adolescence as a public health issue and on the risk factors that may contribute towards nutritional deficiencies, stunted growth and development in this age group, emphasizing the physiopathology and causes of anemia, the different diagnostic approaches, and its clinical characteristics, prevention and treatment. Methodology: The LILACS-BIREME, SCIELO and PUBMED databases were consulted for the study. Scientific papers published in Spanish, Portuguese or English between 2000 and 2013 on the subject of iron deficiency anemia in adolescents were selected for inclusion. A total of 102 studies published between January 1st, 2000 and June 30th, 2013 were identified and evaluated. Forty-two articles meeting the inclusion criterion (adolescents with anemia were selected for this review. Finally, an analysis was conducted and the papers were evaluated in accordance with the study objectives. Results and Discussion: The studies reviewed revealed a prevalence of iron deficiency anemia of around 20% in adolescents and described the harmful effects of anemia in this age group. Conclusion: Preventive action is required with respect to iron deficiency anemia. Healthcare professionals should be aware of the need for early diagnosis, prophylaxis and treatment.

  13. Genetics Home Reference: transcobalamin deficiency

    Science.gov (United States)

    ... deficiency often develop a blood disorder called megaloblastic anemia . Megaloblastic anemia results in a shortage of red blood cells, ... and Prevention: Intellectual Disability (PDF) Children's Hospital Boston: Megaloblastic Pernicious Anemia Children's Hospital Boston: White Blood Cell Disorders CLIMB: ...

  14. Genetics Home Reference: prolidase deficiency

    Science.gov (United States)

    ... Cetta G, Forlino A. Human prolidase and prolidase deficiency: an overview on the characterization of the enzyme involved in proline recycling and on the effects of its mutations. Amino Acids. 2008 Nov;35(4):739-52. doi: 10. ...

  15. Genetics Home Reference: proopiomelanocortin deficiency

    Science.gov (United States)

    ... energy from food taken into the body and energy spent by the body. The correct balance is important to control eating and weight. POMC gene mutations that cause POMC deficiency result in production ...

  16. Helicobacterpy loriinfection and micronutrient deficiencies

    Institute of Scientific and Technical Information of China (English)

    Javed Yakoob; Wasim Jafri; Shahab Abid

    2003-01-01

    It is known that deficiencies of micronutrients due to infections increase morbidity and mortality. This phenomenon depicts itself conspicuously in developing countries.Deficiencies of iron, vitamins A, E, C, B12, etc are widely prevalent among populations living in the third world countries. Helicobacterpylori (Hpylori) infection has a high prevalence throughout the world. Deficiencies of several micronutrients due to Hpylori infection may be concomitantly present and vary from subtle sub-clinical states to severe clinical disorders. These essential trace elementsl micronutrients are involved in host defense mechanisms,maintaining epithelial cell integrity, glycoprotein synthesis,transport mechanisms, myocardial contractility, brain development, cholesterol and glucose metabolism. In this paper Hpyloriinfection in associaed with various micronutrients deficiencies is briefly reviewed.

  17. Vitamin D deficiency in adolescents

    OpenAIRE

    Ashraf T Soliman; Vincenzo De Sanctis; Rania Elalaily; Said Bedair; Islam Kassem

    2014-01-01

    The prevalence of severe vitamin D deficiency (VDD) in adolescents is variable but considerably high in many countries, especially in Middle-east and Southeast Asia. Different factors attribute to this deficiency including lack of sunlight exposure due to cultural dress codes and veiling or due to pigmented skin, and less time spent outdoors, because of hot weather, and lower vitamin D intake. A potent adaptation process significantly modifies the clinical presentation and therefore clinical ...

  18. Iron deficiency and cognitive functions

    OpenAIRE

    Jáuregui-Lobera I

    2014-01-01

    Ignacio Jáuregui-Lobera Department of Nutrition and Bromatology, Pablo de Olavide University, Seville, Spain Abstract: Micronutrient deficiencies, especially those related to iodine and iron, are linked to different cognitive impairments, as well as to potential long-term behavioral changes. Among the cognitive impairments caused by iron deficiency, those referring to attention span, intelligence, and sensory perception functions are mainly cited, as well as those associated with...

  19. Iron deficiency and cognitive functions

    OpenAIRE

    Jáuregui-Lobera I

    2014-01-01

    Ignacio Jáuregui-Lobera Department of Nutrition and Bromatology, Pablo de Olavide University, Seville, Spain Abstract: Micronutrient deficiencies, especially those related to iodine and iron, are linked to different cognitive impairments, as well as to potential long-term behavioral changes. Among the cognitive impairments caused by iron deficiency, those referring to attention span, intelligence, and sensory perception functions are mainly cited, as well as those associated with...

  20. Gender affects skin wound healing in plasminogen deficient mice.

    Directory of Open Access Journals (Sweden)

    Birgitte Rønø

    Full Text Available The fibrinolytic activity of plasmin plays a fundamental role in resolution of blood clots and clearance of extravascular deposited fibrin in damaged tissues. These vital functions of plasmin are exploited by malignant cells to accelerate tumor growth and facilitate metastases. Mice lacking functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds revealed larger amounts of fibrotic scars in the provisional matrix of plasmin deficient male mice compared to female mice. These fibrotic scars correlated to an obstruction of cell infiltration of the granulation tissue, which is a prerequisite for wound healing. In conclusion, the presented data show that the gender dependent effect of plasmin deficiency is tissue specific and may be secondary to already established differences between genders, such as skin

  1. Obesity and iron deficiency: a quantitative meta-analysis.

    Science.gov (United States)

    Zhao, L; Zhang, X; Shen, Y; Fang, X; Wang, Y; Wang, F

    2015-12-01

    Hypoferraemia (i.e. iron deficiency) was initially reported among obese individuals several decades ago; however, whether obesity and iron deficiency are correlated remains unclear. Here, we evaluated the putative association between obesity and iron deficiency by assessing the concentration of haematological iron markers and the risks associated with iron deficiency in both obese (including overweight) subjects and non-overweight participants. We performed a systematic search in the databases PubMed and Embase for relevant research articles published through December 2014. A total of 26 cross-sectional and case-control studies were analysed, comprising 13,393 overweight/obese individuals and 26,621 non-overweight participants. Weighted or standardized mean differences of blood iron markers and odds ratio (OR) of iron deficiency were compared between the overweight/obese participants and the non-overweight participants using a random-effects model. Compared with the non-overweight participants, the overweight/obese participants had lower serum iron concentrations (weighted mean difference [WMD]: -8.37 μg dL(-1) ; 95% confidence interval [CI]: -11.38 to -5.36 μg dL(-1) ) and lower transferrin saturation percentages (WMD: 2.34%, 95% CI: -3.29% to -1.40%). Consistent with this finding, the overweight/obese participants had a significantly increased risk of iron deficiency (OR: 1.31; 95% CI: 1.01-1.68). Moreover, subgroup analyses revealed that the method used to diagnose iron deficiency can have a critical effect on the results of the association test; specifically, we found a significant correlation between iron deficiency and obesity in studies without a ferritin-based diagnosis, but not in studies that used a ferritin-based diagnosis. Based upon these findings, we concluded that obesity is significantly associated with iron deficiency, and we recommend early monitoring and treatment of iron deficiency in overweight and obese individuals. Future

  2. Clinical manifestation of myeloperoxidase deficiency.

    Science.gov (United States)

    Lanza, F

    1998-09-01

    Myeloperoxidase (MPO), an iron-containing heme protein localized in the azurophilic granules of neutrophil granulocytes and in the lysosomes of monocytes, is involved in the killing of several micro-organisms and foreign cells, including bacteria, fungi, viruses, red cells, and malignant and nonmalignant nucleated cells. Despite the primary role of the oxygen-dependent MPO system in the destruction of certain phagocytosed microbes, subjects with total or partial MPO deficiency generally do not have an increased frequency of infections, probably because other MPO-independent mechanism(s) for microbicidal activity compensate for the lack of MPO. Infectious diseases, especially with species of Candida, have been observed predominantly in MPO-deficient patients who also have diabetes mellitus, but the frequency of such cases is very low, less than 5% of reported MPO-deficient subjects. Evidence from a number of investigators indicates that individuals with total MPO deficiency show a high incidence of malignant tumors. Since MPO-deficient PMNs exhibit in vitro a depressed lytic action against malignant human cells, it can be speculated that the neutrophil MPO system plays a central role in the tumor surveillance of the host. However, any definitive conclusion on the association between MPO deficiency and the occurrence of cancers needs to be confirmed in further clinical studies. Clinical manifestations of this disorder depend on the nature of the defect; an acquired abnormality associated with other hematological or nonhematological diseases has been occasionally described, but the primary deficiency is the form more commonly reported. Another area of interest pertinent to MPO expression is related to the use of anti-MPO monoclonal antibodies for the lineage assignment of acute leukemic cells, the definition of FAB MO acute myeloid leukemia, the identification of biphenotypic acute leukemias, and their distinction from acute leukemia with minimal phenotypic deviation

  3. Gender dependent evaluation of autism like behavior in mice exposed to prenatal zinc deficiency

    Directory of Open Access Journals (Sweden)

    Stefanie eGrabrucker

    2016-03-01

    Full Text Available Zinc deficiency has recently been linked to the etiology of autism spectrum disorders (ASD as environmental risk factor. With an estimated 17% of the world population being at risk of zinc deficiency, especially zinc deficiency during pregnancy might be a common occurrence, also in industrialized nations. On molecular level, zinc deficiency has been shown to affect a signaling pathway at glutamatergic synapses that has previously been identified through genetic mutations in ASD patients, the Neurexin-Neuroligin-Shank pathway, via altering zinc binding Shank family members. In particular, prenatal zinc deficient but not acute zinc deficient animals have been reported to display autism like behavior in some behavioral tests. However, a full behavioral analysis of a possible autism like behavior has been lacking so far. Here, we performed an extensive behavioral phenotyping of mice born from mothers with mild zinc deficiency during all trimesters of pregnancy. Prenatal zinc deficient animals were investigated as adults and gender differences were assessed. Our results show that prenatal zinc deficient mice display increased anxiety, deficits in nest building and various social interaction paradigm, as well as mild alterations in ultrasonic vocalizations. A gender specific analysis revealed only few sex specific differences. Taken together, given that similar behavioral abnormalities as reported here are frequently observed in ASD mouse models, we conclude that prenatal zinc deficient animals even without specific genetic susceptibility for ASD, already show some features of ASD like behavior.

  4. Gender Dependent Evaluation of Autism like Behavior in Mice Exposed to Prenatal Zinc Deficiency.

    Science.gov (United States)

    Grabrucker, Stefanie; Boeckers, Tobias M; Grabrucker, Andreas M

    2016-01-01

    Zinc deficiency has recently been linked to the etiology of autism spectrum disorders (ASD) as environmental risk factor. With an estimated 17% of the world population being at risk of zinc deficiency, especially zinc deficiency during pregnancy might be a common occurrence, also in industrialized nations. On molecular level, zinc deficiency has been shown to affect a signaling pathway at glutamatergic synapses that has previously been identified through genetic mutations in ASD patients, the Neurexin-Neuroligin-Shank pathway, via altering zinc binding Shank family members. In particular, prenatal zinc deficient but not acute zinc deficient animals have been reported to display autism like behavior in some behavioral tests. However, a full behavioral analysis of a possible autism like behavior has been lacking so far. Here, we performed an extensive behavioral phenotyping of mice born from mothers with mild zinc deficiency during all trimesters of pregnancy. Prenatal zinc deficient animals were investigated as adults and gender differences were assessed. Our results show that prenatal zinc deficient mice display increased anxiety, deficits in nest building and various social interaction paradigm, as well as mild alterations in ultrasonic vocalizations. A gender specific analysis revealed only few sex specific differences. Taken together, given that similar behavioral abnormalities as reported here are frequently observed in ASD mouse models, we conclude that prenatal zinc deficient animals even without specific genetic susceptibility for ASD, already show some features of ASD like behavior.

  5. [Iron deficiency and iron deficiency anemia are global health problems].

    Science.gov (United States)

    Dahlerup, Jens; Lindgren, Stefan; Moum, Björn

    2015-03-10

    Iron deficiency and iron deficiency anemia are global health problems leading to deterioration in patients' quality of life and more serious prognosis in patients with chronic diseases. The cause of iron deficiency and anemia is usually a combination of increased loss and decreased intestinal absorption and delivery from iron stores due to inflammation. Oral iron is first line treatment, but often hampered by intolerance. Intravenous iron is safe, and the preferred treatment in patients with chronic inflammation and bowel diseases. The goal of treatment is normalisation of hemoglobin concentration and recovery of iron stores. It is important to follow up treatment to ensure that these objectives are met and also long-term in patients with chronic iron loss and/or inflammation to avoid recurrence of anemia.

  6. Iron deficiency in blood donors

    Directory of Open Access Journals (Sweden)

    Armando Cortés

    2005-03-01

    Full Text Available Context: Blood donation results in a substantial loss of iron (200 to 250 mg at each bleeding procedure (425 to 475 ml and subsequent mobilization of iron from body stores. Recent reports have shown that body iron reserves generally are small and iron depletion is more frequent in blood donors than in non-donors. Objective: The aim of this study was to evaluate the frequency of iron deficiency in blood donors and to establish the frequency of iron deficiency in blood donors according to sex, whether they were first-time or multi-time donors. Design: From march 20 to April 5, 2004, three hundred potential blood donors from Hemocentro del Café y Tolima Grande were studied. Diagnostic tests: Using a combination of biochemical measurements of iron status: serum ferritin (RIA, ANNAR and the hemoglobin pre and post-donation (HEMOCUE Vital technology medical . Results: The frequency of iron deficiency in potential blood donors was 5%, and blood donors accepted was 5.1%; in blood donors rejected for low hemoglobin the frequency of iron deficiency was 3.7% and accepted blood donors was 1.7% in male and 12.6% in female. The frequency of iron deficiency was higher in multi-time blood donors than in first-time blood donors, but not stadistic significative. Increase nivel accepted hemoglobina in 1 g/dl no incidence in male; in female increase of 0.5 g/dl low in 25% blood donors accepted with iron deficiency, but increased rejected innecesary in 16.6% and increased is 1 g/dl low blood donors female accepted in 58% (7/12, but increased the rejected innecesary in 35.6%. Conclusions: We conclude that blood donation not is a important factor for iron deficiency in blood donors. The high frequency of blood donors with iron deficiency found in this study suggests a need for a more accurate laboratory trial, as hemoglobin or hematocrit measurement alone is not sufficient for detecting and excluding blood donors with iron deficiency without anemia, and ajustes hacia

  7. Iron deficiency and cardiovascular disease.

    Science.gov (United States)

    von Haehling, Stephan; Jankowska, Ewa A; van Veldhuisen, Dirk J; Ponikowski, Piotr; Anker, Stefan D

    2015-11-01

    Iron deficiency affects up to one-third of the world's population, and is particularly common in elderly individuals and those with certain chronic diseases. Iron excess can be detrimental in cardiovascular illness, and research has now also brought anaemia and iron deficiency into the focus of cardiovascular medicine. Data indicate that iron deficiency has detrimental effects in patients with coronary artery disease, heart failure (HF), and pulmonary hypertension, and possibly in patients undergoing cardiac surgery. Around one-third of all patients with HF, and more than one-half of patients with pulmonary hypertension, are affected by iron deficiency. Patients with HF and iron deficiency have shown symptomatic improvements from intravenous iron administration, and some evidence suggests that these improvements occur irrespective of the presence of anaemia. Improved exercise capacity has been demonstrated after iron administration in patients with pulmonary hypertension. However, to avoid iron overload and T-cell activation, it seems that recipients of cardiac transplantations should not be treated with intravenous iron preparations.

  8. Clinical data and characterization of the liver conditional mouse model exclude neoplasia as a non-neurological manifestation associated with Friedreich’s ataxia

    Directory of Open Access Journals (Sweden)

    Alain Martelli

    2012-11-01

    Friedreich’s ataxia (FRDA is the most common hereditary ataxia in the caucasian population and is characterized by a mixed spinocerebellar and sensory ataxia, hypertrophic cardiomyopathy and increased incidence of diabetes. FRDA is caused by impaired expression of the FXN gene coding for the mitochondrial protein frataxin. During the past ten years, the development of mouse models of FRDA has allowed better understanding of the pathophysiology of the disease. Among the mouse models of FRDA, the liver conditional mouse model pointed to a tumor suppressor activity of frataxin leading to the hypothesis that individuals with FRDA might be predisposed to cancer. In the present work, we investigated the presence and the incidence of neoplasia in the largest FRDA patient cohorts from the USA, Australia and Europe. As no predisposition to cancer could be observed in both cohorts, we revisited the phenotype of the liver conditional mouse model. Our results show that frataxin-deficient livers developed early mitochondriopathy, iron-sulfur cluster deficits and intramitochondrial dense deposits, classical hallmarks observed in frataxin-deficient tissues and cells. With age, a minority of mice developed structures similar to the ones previously associated with tumor formation. However, these peripheral structures contained dying, frataxin-deficient hepatocytes, whereas the inner liver structure was composed of a pool of frataxin-positive cells, due to inefficient Cre-mediated recombination of the Fxn gene, that contributed to regeneration of a functional liver. Together, our data demonstrate that frataxin deficiency and tumorigenesis are not associated.

  9. Transcriptional responses and regulations to deficient phosphorus in plants

    Institute of Scientific and Technical Information of China (English)

    Jinxiang BAO; Shuhua ZHANG; Wenjing LU; Chengjin GUO; Juntao GU; Kai XIAO

    2009-01-01

    Significant progress has been made over the past several years in the understanding of phosphorus (Pi)-starvation responses in plants and their regulation. The transcriptional changes that occur in response to Pi starvation are beginning to be revealed, although much is left to understand about their significance. In this paper, the recent progresses on the gene expression changes under deficient-Pi, cis-regulatory elements involved in response to deficient-Pi, the transcriptional control of Pi-starvation responses in eukaryotes, transcription factors involved in response to Pi-starvation, the role of MicroRNA on regulation of phosphate homeostasis, and phosphate sensing and signal transduction in plants have been summarized. The purpose of this review is to provide some basis for further elucidation of the transcriptional responses and regulations, and the networks of Pi sensing and signal transduction under deficient-Pi in plants in the future.

  10. Biglycan deficiency interferes with ovariectomy-induced bone loss

    DEFF Research Database (Denmark)

    Nielsen, Karina L; Allen, Matthew R; Bloomfield, Susan A

    2003-01-01

    Biglycan is a matrix proteoglycan with a possible role in bone turnover. In a 4-week study with sham-operated or OVX biglycan-deficient or wildtype mice, we show that biglycan-deficient mice are resistant to OVX-induced trabecular bone loss and that there is a gender difference in the response...... in female mice, showing a clear gender difference. However, when stressed by OVX, the female bgn knockout (KO) mice were resistant to the OVX-induced trabecular bone loss. The wt mice showed a decrease in trabecular bone mineral density by pQCT measurements, a decrease in trabecular bone volume (BV...... (OPG) and RANKL revealed increased levels of OPG and decreased levels of RANKL in the bgn KO mice compared with wt mice. In conclusion, the bgn deficiency protects against increased trabecular bone turnover and bone loss in response to estrogen depletion, supporting the concept that bgn has dual roles...

  11. Patient with Eating Disorder, Carnitine Deficiency and Dilated Cardiomyopathy.

    Science.gov (United States)

    Fotino, A Domnica; Sherma, A

    2015-01-01

    Dilated cardiomyopathy is characterized by a dilated and poorly functioning left ventricle and can result from several different etiologies including ischemic, infectious, metabolic, toxins, autoimmune processes or nutritional deficiencies. Carnitine deficiency-induced cardiomyopathy (CDIM) is an uncommon cause of dilated cardiomyopathy that can go untreated if not considered. Here, we describe a 30-year-old woman with an eating disorder and recent percutaneous endoscopic gastrotomy (PEG) tube placement for weight loss admitted to the hospital for possible PEG tube infection. Carnitine level was found to be low. Transthoracic echocardiogram (TTE) revealed ejection fraction 15%. Her hospital course was complicated by sepsis from a peripherally inserted central catheter (PICC). She was discharged on a beta-blocker and carnitine supplementation. One month later her cardiac function had normalized. Carnitine deficiency-induced myopathy is an unusual cause of cardiomyopathy and should be considered in adults with decreased oral intake or malabsorption who present with cardiomyopathy.

  12. Brain damage in infancy and dietary vitamin B12 deficiency.

    Science.gov (United States)

    Wighton, M C; Manson, J I; Speed, I; Robertson, E; Chapman, E

    1979-07-14

    A case of the exclusively breast-fed infant of a vegetarian mother is reported. Neurological deterioration commenced between three and six months of age, and progressed to a comatose premoribund state by the age of nine months. Investigations revealed a mild nutritional vitamin B12 deficiency in the mother, and a very severe nutritional B12 deficiency in the infant, with severe megaloblastic anaemia. Treatment of the infant with vitamin B12 resulted in a rapid clinical and haematological improvement, but neurological recovery was incomplete. Evidence is presented that dietary B12 deficiency was the sole cause of the infant's deterioration, and the literature relating to the condition is reviewed. It is recommended that all strict vegetarians (vegans), especially women in the child-bearing age group, take vitamin B12 supplements.

  13. Androgen deficiency in the aging male and chronic prostatitis: clinical and diagnostic comparative analysis

    Directory of Open Access Journals (Sweden)

    Spirin Р.V.

    2013-03-01

    Full Text Available The research goal is to study probability, period of development and characteristics of a clinical course of chronic prostatitis against the background of androgen deficiency in the aging male. Materials and methods: The Aging Male Symptoms (AMS rating scale has been applied for androgen deficiency evaluation and the International Prostate Symptom Score (IPSS — for chronic prostatitis evaluation. 57 men with chronic prostatitis in combination with androgen deficiency in the aging male have been examined. Results: It has been concluded that the development of chronic prostatitis against the background of androgen deficiency in the aging male occurs in a shorter time period and about 1.5 times more frequently compared to androgen deficiency in the aging male at the background of chronic prostatitis. The analysis of time periods between the onset of chronic prostatitis symptoms against the background of androgen deficiency in the aging male and androgen deficiency in the aging male symptoms against the background of chronic prostatitis showed that androgen deficiency in the aging male symptoms have been revealed 1-2 years earlier than the onset of chronic prostatitis. The development of androgen deficiency in the aging male against the background of chronic prostatitis has showed a backward tendency. Signs of chronic prostatitis have been more frequently occurred in a period of four-five years earlier the androgen deficiency in the aging male development. Conclusion: The risk of development of chronic prostatitis against the background of androgen deficiency in the aging male during the next two years is actually four times higher in comparison with the development of androgen deficiency in the aging male against the background of chronic prostatitis. According to the International Prostate Symptom Score (IPSS, patients with chronic prostatitis in combination with androgen deficiency in the aging male showed higher degree of severity than

  14. The transcriptional response of Arabidopsis leaves to Fe deficiency

    Directory of Open Access Journals (Sweden)

    Jorge eRodriguez-Celma

    2013-07-01

    Full Text Available Due to its ease to donate or accept electrons, iron (Fe plays a crucial role in respiration and metabolism, including tetrapyrrole synthesis, in virtually all organisms. In plants, Fe is a component of the photosystems and thus essential for photosynthesis. Fe deficiency compromises chlorophyll (Chl synthesis, leading to interveinal chlorosis in developing leaves and decreased photosynthetic activity. To gain insights into the responses of photosynthetically active cells to Fe deficiency, we conducted transcriptional profiling experiments on leaves from Fe-sufficient and Fe-deficient plants using the RNA-seq technology. As anticipated, genes associated with photosynthesis and tetrapyrrole metabolism were dramatically down-regulated by Fe deficiency. A sophisticated response comprising the down-regulation of HEMA1 and NYC1, which catalyze the first committed step in tetrapyrrole biosynthesis and the conversion of Chl b to Chl a at the commencement of Chl breakdown, respectively, and the up-regulation of CGLD27, which is conserved in plastid-containing organisms and putatively involved in xanthophyll biosynthesis, indicates a carefully orchestrated balance of potentially toxic tetrapyrrole intermediates and functional end products to avoid photo-oxidative damage. Comparing the responses to Fe deficiency in leaves to that in roots confirmed subgroup 1b bHLH transcription factors and POPEYE/BRUTUS as important regulators of Fe homeostasis in both leaf and root cells, and indicated six novel players with putative roles in Fe homeostasis that were highly expressed in leaves and roots and greatly induced by Fe deficiency. The data further revealed down-regulation of organ-specific subsets of genes encoding ribosomal proteins, which may be indicative of a change in ribosomal composition that could bias translation. It is concluded that Fe deficiency causes a massive reorganization of plastid activity, which is adjusting leaf function to the availability

  15. The transcriptional response of Arabidopsis leaves to Fe deficiency.

    Science.gov (United States)

    Rodríguez-Celma, Jorge; Pan, I Chun; Li, Wenfeng; Lan, Ping; Buckhout, Thomas J; Schmidt, Wolfgang

    2013-01-01

    Due to its ease to donate or accept electrons, iron (Fe) plays a crucial role in respiration and metabolism, including tetrapyrrole synthesis, in virtually all organisms. In plants, Fe is a component of the photosystems and thus essential for photosynthesis. Fe deficiency compromises chlorophyll (Chl) synthesis, leading to interveinal chlorosis in developing leaves and decreased photosynthetic activity. To gain insights into the responses of photosynthetically active cells to Fe deficiency, we conducted transcriptional profiling experiments on leaves from Fe-sufficient and Fe-deficient plants using the RNA-seq technology. As anticipated, genes associated with photosynthesis and tetrapyrrole metabolism were dramatically down-regulated by Fe deficiency. A sophisticated response comprising the down-regulation of HEMA1 and NYC1, which catalyze the first committed step in tetrapyrrole biosynthesis and the conversion of Chl b to Chl a at the commencement of Chl breakdown, respectively, and the up-regulation of CGLD27, which is conserved in plastid-containing organisms and putatively involved in xanthophyll biosynthesis, indicates a carefully orchestrated balance of potentially toxic tetrapyrrole intermediates and functional end products to avoid photo-oxidative damage. Comparing the responses to Fe deficiency in leaves to that in roots confirmed subgroup 1b bHLH transcription factors and POPEYE/BRUTUS as important regulators of Fe homeostasis in both leaf and root cells, and indicated six novel players with putative roles in Fe homeostasis that were highly expressed in leaves and roots and greatly induced by Fe deficiency. The data further revealed down-regulation of organ-specific subsets of genes encoding ribosomal proteins, which may be indicative of a change in ribosomal composition that could bias translation. It is concluded that Fe deficiency causes a massive reorganization of plastid activity, which is adjusting leaf function to the availability of Fe.

  16. [Vitamin A deficiency and xerophtalmia

    Science.gov (United States)

    Diniz, A da S; Santos, L M

    2000-11-01

    OBJECTIVE: To review cases of vitamin A deficiency and the effects of vitamin A supplementation on child morbidity and mortality. METHODS: Articles published in scientific journals, technical and scientific books, and also publications by international organizations were used as source of information. RESULTS: Clinical manifestations of xerophthalmia affect the retina (night blindness), the conjunctiva (conjunctival xerosis, with or without Bitot spots), and the cornea (corneal xerosis). Corneal xerosis may lead to corneal ulceration and liquefactive necrosis (keratomalacia). A priori, these signs and symptoms are the best indicators of vitamin A deficiency; they are, however, extremely rare. Laboratory indicators include Conjunctival Impression Cytology and serum retinol concentrations. The World Health Organization (WHO) recommends the use of two biological markers in order to characterize vitamin A deficiency in a given population. If only one biological marker is used, this marker has to be backed up by a set of at least four additional risk factors. Corneal xerophthalmia should be treated as a medical emergency; In the event of suspected vitamin A deficiency, a 200,000 IU vitamin A dose should be administered orally, repeating the dose after 24 hours (half the dose for infants younger than one year). Vitamin A supplementation in endemic areas may cause a 23 to 30% reduction in the mortality rate of children aged between 6 months and five years, and attenuate the severity of diarrhea. The methods for the control of vitamin A deficiency are available in the short (supplementation with megadoses), medium (food fortification), and long run (diet diversification). CONCLUSION: There is evidence of vitamin A deficiency among Brazilian children. Pediatricians must be aware of the signs and symptoms of this disease, however sporadic they might be. It is of paramount importance that vitamin A be included in public policy plans so that we can ensure the survival of

  17. Sirt1 deficiency attenuates spermatogenesis and germ cell function.

    Directory of Open Access Journals (Sweden)

    Matthew Coussens

    Full Text Available In mammals, Sirt1, a member of the sirtuin family of proteins, functions as a nicotinamide adenine dinucleotide-dependent protein deactylase, and has important physiological roles, including the regulation of glucose metabolism, cell survival, and mitochondrial respiration. The initial investigations of Sirt1 deficient mice have revealed a phenotype that includes a reduced lifespan, small size, and an increased frequency of abnormal sperm. We have now performed a detailed analysis of the molecular and functional effects of Sirt1 deficiency in the germ line of Sirt1 knock-out (-/- mice. We find that Sirt1 deficiency markedly attenuates spermatogenesis, but not oogenesis. Numbers of mature sperm and spermatogenic precursors, as early as d15.5 of development, are significantly reduced ( approximately 2-10-fold less; Pdeficiency did not effect the efficiency oocyte production following superovulation of female mice. Furthermore, the proportion of mature sperm with elevated DNA damage ( approximately 7.5% of total epididymal sperm; P = 0.02 was significantly increased in adult Sirt1-/- males. Analysis of global gene expression by microarray analysis in Sirt1 deficient testis revealed dysregulated expression of 85 genes, which were enriched (P<0.05 for genes involved in spermatogenesis and protein sumoylation. To assess the function of Sirt1 deficient germ cells, we compared the efficiency of generating embryos and viable offspring in in vitro fertilization (IVF experiments using gametes from Sirt1-/- and sibling Sirt1+/- mice. While viable animals were derived in both Sirt1-/- X wild type and Sirt1-/- X Sirt1-/- crosses, the efficiency of producing both 2-cell zygotes and viable offspring was diminished when IVF was performed with Sirt1-/- sperm and/or oocytes. Together, these data support an important role for Sirt1 in spermatogenesis, including spermatogenic stem cells, as well as germ cell

  18. [Phosphate metabolism and iron deficiency].

    Science.gov (United States)

    Yokoyama, Keitaro

    2016-02-01

    Autosomal dominant hypophosphatemic rickets(ADHR)is caused by gain-of-function mutations in FGF23 that prevent its proteolytic cleavage. Fibroblast growth factor 23(FGF23)is a hormone that inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D biosynthesis. Low iron status plays a role in the pathophysiology of ADHR. Iron deficiency is an environmental trigger that stimulates FGF23 expression and hypophosphatemia in ADHR. It was reported that FGF23 elevation in patients with CKD, who are often iron deficient. In patients with nondialysis-dependent CKD, treatment with ferric citrate hydrate resulted in significant reductions in serum phosphate and FGF23.

  19. Iron deficiency in the tropics.

    Science.gov (United States)

    Fleming, A F

    1982-06-01

    Iron in food is classified as belonging to the haem pool, the nonhaem pool, and extraneous sources. Haem iron is derived from vegetable and animal sources with varying bioavailability. Hookworm infestation of the intestinal tract affects 450 million people in the tropics. Schistosoma mansoni caused blood loss in 7 Egyptian patients of 7.5- 25.9 ml/day which is equivalent to a daily loss of iron of .6-7.3 mg daily urinary loss of iron in 9 Egyptian patients. Trichuris trichiura infestation by whipworm is widespread in children with blood loss of 5 ml/day/worm. The etiology of anemia in children besides iron deficiency includes malaria, bacterial or viral infections, folate deficiency and sickle-cell disease. Severe infections cause profound iron-deficiency anemia in children in central American and Malaysia. Plasmodium falciparum malaria-induced anaemia in tropical Africa lowers the mean haemoglobin concentration in the population by 2 g/dI, causing profound anaemia in some. The increased risk of premature delivery, low birthweight, fetal abnormalities, and fetal death is directly related to the degree of maternal anemia. Perinatal mortality was reduced from 38 to 4% in treated anemic mothers. Mental performance was significantly lower in anemic school children and improved after they received iron. Supplements of iron, soy-protein, calcium, and vitamins given to villagers with widespread malnutrition, iron deficiency, and hookworm infestation in Colombia reduced enteric infections in children. Severe iron-deficiency anemia was treated in adults in northern Nigeria by daily in Ferastral 10 ml, which is equivalent to 500 mg of iron per day. Choloroquine, folic acid, rephenium hydroxynaphthoate, and tetrachlorethylene treat adults with severe iron deficiency from hookworm infestation in rural tropical Africa. Blood transfusion is indicated if the patient is dying of anaemia or is pregnant with a haemoglobin concentration 6 gm/dl. In South East Asia, mg per day

  20. Differential diagnosis of iron deficiency

    OpenAIRE

    2010-01-01

    A deficiência de ferro é considerada a patologia hematológica mais prevalente no homem. Assim, é fundamental a adequada identificação de suas causas, bem como a diferenciação com outras patologias distintas para adequada abordagem da deficiência de ferro. Neste artigo são brevemente descritas outras condições que podem cursar com anemia microcítica, tais como: talassemias, anemia de doença crônica, anemia sideroblástica e envenenamento por chumbo, patologias estas que devem ser afastadas dura...

  1. Primary Carnitine (OCTN2) Deficiency Without Neonatal Carnitine Deficiency

    NARCIS (Netherlands)

    Boer, L. de; Kluijtmans, L.A.J.; Morava, E.

    2013-01-01

    Although the diagnosis of a primary carnitine deficiency is usually based on a very low level of free and total carnitine (free carnitine: 1-5 muM, normal 20-55 muM) (Longo et al. 2006), we detected a patient via newborn screening with a total carnitine level 67 % of the normal value. At the age of

  2. Deficiency of employability capacity

    Directory of Open Access Journals (Sweden)

    Pelse I.

    2012-10-01

    Full Text Available Young unemployed people have comprised one of the significantly largest groups of the unemployed people in Latvia in recent years. One of the reasons why young people have difficulty integrating into the labour market is the “expectation gap” that exists in the relations between employers and the new generation of workers. Employers focus on capacity-building for employability such individual factors as strength, patience, self-discipline, self-reliance, self-motivation, etc., which having a nature of habit and are developed in a long-term work socialization process, which begins even before the formal education and will continue throughout the life cycle. However, when the socialization is lost, these habits are depreciated faster than they can be restored. Currently a new generation is entering the labour market, which is missing the succession of work socialization. Factors, such as rising unemployment and poverty in the background over the past twenty years in Latvia have created a very unfavourable employability background of “personal circumstances” and “external factors”, which seriously have impaired formation of the skills and attitudes in a real work environment. The study reveals another paradox – the paradox of poverty. Common sense would want to argue that poverty can be overcome by the job. However, the real state of affairs shows that unfavourable coincidence of the individual, personal circumstances and external factors leads to deficit of employability capacity and possibility of marked social and employment deprivation.

  3. Hyperthyroidism caused by acquired immune deficiency syndrome.

    Science.gov (United States)

    Wang, J-J; Zhou, J-J; Yuan, X-L; Li, C-Y; Sheng, H; Su, B; Sheng, C-J; Qu, S; Li, H

    2014-01-01

    Acquired immune deficiency syndrome (AIDS) is an immune deficiency disease. The etiology of hyperthyroidism, which can also be immune-related, is usually divided into six classical categories, including hypophyseal, hypothalamic, thyroid, neoplastic, autoimmune and inflammatory hyperthyroidism. Hyperthyroidism is a rare complication of highly active antimicrobial therapy (HAART) for human immunodeficiency virus (HIV). Hyperthyroidism caused directly by AIDS has not been previously reported. A 29-year-old man who complained of dyspnea and asthenia for 1 month, recurrent fever for more than 20 days, and breathlessness for 1 week was admitted to our hospital. The thyroid function test showed that the level of free thyroxine (FT4) was higher than normal and that the level of thyroid-stimulating hormone (TSH) was below normal. He was diagnosed with hyperthyroidism. Additional investigations revealed a low serum albumin level and chest infection, along with diffuse lung fibrosis. Within 1 month, he experienced significant weight loss, no hand tremors, intolerance of heat, and perspiration proneness. We recommended an HIV examination; subsequently, AIDS was diagnosed based on the laboratory parameters. This is the first reported case of hyperthyroidism caused by AIDS. AIDS may cause hyperthyroidism by immunization regulation with complex, atypical, and easily ignored symptoms. Although hyperthyroidism is rare in patients with AIDS, clinicians should be aware of this potential interaction and should carefully monitor thyroid function in HIV-positive patients.

  4. Consequences of hazardous dietary calcium deficiency for fattening bulls

    Directory of Open Access Journals (Sweden)

    Näkki Päivi

    2006-12-01

    Full Text Available Abstract Background Deficient mineral supplementation on a feedlot farm resulted in severe clinical manifestations in fattening bulls. Animals mistakenly received only 60–70% of the recommended calcium intake, while simultaneously receiving twice the amount of phosphorus recommended. Thus, the dietary Ca/P ratio was severely distorted. After approximately six months on such a diet, four fattening bulls were euthanized because of severe lameness and 15% of other animals on the farm were having clinical leg problems. Veterinary consultation revealed the mistake in mineral supplementation. Methods Fattening bulls were divided into three groups depending on the time of their arrival to the farm. This enabled the effect of mineral imbalance at different growth phases to be examined. After slaughtering, the bones of both front and hind limbs were macroscopically evaluated. Results Over 80% of the animals with a calcium-deficient diet had at least one severe osteoarthritic lesion. The economic impact of the calcium deficiency was statistically significant. Conclusion Calcium deficiency with distorted Ca/P ratio yielded a severe outbreak of osteoarthritis in fattening bulls. Calcium deficiency caused a more serious lesions in age group 5–12 months than age group 12–18 months. Besides causing obvious economic losses osteoarthritis is also a welfare issue for feedlot animals.

  5. Widespread episodic thiamine deficiency in Northern Hemisphere wildlife

    Science.gov (United States)

    Balk, Lennart; Hägerroth, Per-Åke; Gustavsson, Hanna; Sigg, Lisa; Åkerman, Gun; Ruiz Muñoz, Yolanda; Honeyfield, Dale C.; Tjärnlund, Ulla; Oliveira, Kenneth; Ström, Karin; McCormick, Stephen D.; Karlsson, Simon; Ström, Marika; van Manen, Mathijs; Berg, Anna-Lena; Halldórsson, Halldór P.; Strömquist, Jennie; Collier, Tracy K.; Börjeson, Hans; Mörner, Torsten; Hansson, Tomas

    2016-12-01

    Many wildlife populations are declining at rates higher than can be explained by known threats to biodiversity. Recently, thiamine (vitamin B1) deficiency has emerged as a possible contributing cause. Here, thiamine status was systematically investigated in three animal classes: bivalves, ray-finned fishes, and birds. Thiamine diphosphate is required as a cofactor in at least five life-sustaining enzymes that are required for basic cellular metabolism. Analysis of different phosphorylated forms of thiamine, as well as of activities and amount of holoenzyme and apoenzyme forms of thiamine-dependent enzymes, revealed episodically occurring thiamine deficiency in all three animal classes. These biochemical effects were also linked to secondary effects on growth, condition, liver size, blood chemistry and composition, histopathology, swimming behaviour and endurance, parasite infestation, and reproduction. It is unlikely that the thiamine deficiency is caused by impaired phosphorylation within the cells. Rather, the results point towards insufficient amounts of thiamine in the food. By investigating a large geographic area, by extending the focus from lethal to sublethal thiamine deficiency, and by linking biochemical alterations to secondary effects, we demonstrate that the problem of thiamine deficiency is considerably more widespread and severe than previously reported.

  6. Latent manganese deficiency in barley can be diagnosed and remediated on the basis of chlorophyll a fluorescence measurements

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund; Pedas, Pai; Laursen, Kristian Holst;

    2013-01-01

    chlorophyll (Chl) a fluorescence as a tool for diagnosis of latent Mn deficiency. Methods: Barley plants grown under controlled greenhouse conditions or in the field were exposed to different intensities of Mn deficiency. The responses were characterised by analysis of Chl a fluorescence, photosystem II (PSII......) proteins and mineral elements. Results: Analysis of the Chl a fluorescence induction kinetics (FIK) revealed distinct changes long before any visual symptoms of Mn deficiency were apparent. The changes were specific for Mn and did not occur in Mg, S, Fe or Cu deficient plants. The changes in Mn deficient......Background and aims: Manganese (Mn) deficiency represents a major plant nutritional disorder in winter cereals. The deficiency frequently occurs latently and the lack of visual symptoms prevents timely remediation and cause significant yield reductions. These problems prompted us to investigate...

  7. Genetics Home Reference: CLPB deficiency

    Science.gov (United States)

    ... Med Genet. 2015 May;52(5):303-11. doi: 10.1136/jmedgenet-2014-102952. Citation on PubMed GeneReview: CLPB Deficiency Kanabus M, Shahni R, Saldanha JW, Murphy E, ... 2015 Mar;38(2):211-9. doi: 10.1007/s10545-015-9813-0. Citation on ...

  8. Educational paper: Primary antibody deficiencies

    NARCIS (Netherlands)

    G.J.A. Driessen (Gertjan); M. van der Burg (Mirjam)

    2011-01-01

    textabstractPrimary antibody deficiencies (PADs) are the most common primary immunodeficiencies and are characterized by a defect in the production of normal amounts of antigen-specific antibodies. PADs represent a heterogeneous spectrum of conditions, ranging from often asymptomatic selective IgA a

  9. Deficiencies in Indian Joint Operations

    Science.gov (United States)

    2016-05-26

    compartmentalization, and bureaucratic inefficiencies. Indian regional hegemony in South Asia faces significant risks without critically needed reforms to enable...illustrates India’s limited capability to conduct joint operations. Specifically, India demonstrated critical planning deficiencies in joint...society, and this has influenced its understanding of theory and concepts, and its application of those ideas in the development of its own joint

  10. Dopamine beta-hydroxylase deficiency

    Directory of Open Access Journals (Sweden)

    Senard Jean-Michel

    2006-03-01

    Full Text Available Abstract Dopamine beta-hydroxylase (DβH deficiency is a very rare form of primary autonomic failure characterized by a complete absence of noradrenaline and adrenaline in plasma together with increased dopamine plasma levels. The prevalence of DβH deficiency is unknown. Only a limited number of cases with this disease have been reported. DβH deficiency is mainly characterized by cardiovascular disorders and severe orthostatic hypotension. First symptoms often start during a complicated perinatal period with hypotension, muscle hypotonia, hypothermia and hypoglycemia. Children with DβH deficiency exhibit reduced ability to exercise because of blood pressure inadaptation with exertion and syncope. Symptoms usually worsen progressively during late adolescence and early adulthood with severe orthostatic hypotension, eyelid ptosis, nasal stuffiness and sexual disorders. Limitation in standing tolerance, limited ability to exercise and traumatic morbidity related to falls and syncope may represent later evolution. The syndrome is caused by heterogeneous molecular alterations of the DBH gene and is inherited in an autosomal recessive manner. Restoration of plasma noradrenaline to the normal range can be achieved by therapy with the synthetic precursor of noradrenaline, L-threo-dihydroxyphenylserine (DOPS. Oral administration of 100 to 500 mg DOPS, twice or three times daily, increases blood pressure and reverses the orthostatic intolerance.

  11. Deferasirox in pyruvate kinase deficiency

    OpenAIRE

    Deeren, Dries

    2008-01-01

    Deferasirox in pyruvate kinase deficiency phone: +32-51-237437 (Deeren, Dries) (Deeren, Dries) Department of Haematology, Heilig-Hartziekenhuis Roeselare-Menen vzw - Wilgenstraat 2 - B-8800 - Roeselare - BELGIUM (Deeren, Dries) BELGIUM Registration: 2008-09-10 Received: 2008-09-05 Accepted: 2008-09-10 ePublished: 2008-09-23

  12. Epigenetic Deficiencies and Replicative Stress

    DEFF Research Database (Denmark)

    Shoaib, Muhammad; Sørensen, Claus Storgaard

    2015-01-01

    Cancer cell-specific synthetic lethal interactions entail promising therapeutic possibilities. In this issue of Cancer Cell, Pfister et al. describe a synthetic lethal interaction where cancer cells deficient in H3K36me3 owing to SETD2 loss-of-function mutation are strongly sensitized to inhibiti...

  13. Management of Iron Deficiency Anemia

    Science.gov (United States)

    Jimenez, Kristine; Kulnigg-Dabsch, Stefanie

    2015-01-01

    Anemia affects one-fourth of the world’s population, and iron deficiency is the predominant cause. Anemia is associated with chronic fatigue, impaired cognitive function, and diminished well-being. Patients with iron deficiency anemia of unknown etiology are frequently referred to a gastroenterologist because in the majority of cases the condition has a gastrointestinal origin. Proper management improves quality of life, alleviates the symptoms of iron deficiency, and reduces the need for blood transfusions. Treatment options include oral and intravenous iron therapy; however, the efficacy of oral iron is limited in certain gastrointestinal conditions, such as inflammatory bowel disease, celiac disease, and autoimmune gastritis. This article provides a critical summary of the diagnosis and treatment of iron deficiency anemia. In addition, it includes a management algorithm that can help the clinician determine which patients are in need of further gastrointestinal evaluation. This facilitates the identification and treatment of the underlying condition and avoids the unnecessary use of invasive methods and their associated risks. PMID:27099596

  14. Congenital β-lipoprotein deficiency

    NARCIS (Netherlands)

    Buchem, F.S.P. van; Pol, G.; Gier, J. de; Böttcher, C.J.F.; Pries, C.

    1966-01-01

    There are several degrees of β-lipoprotein deficiency. If there is no β-lipoprotein present, or if there are only traces of it, the Bassen-Kornzweig syndrome develops. A constant feature of this syndrome is disturbed fat absorption with accumulation of fat in the epithelium of intestinal mucosa and

  15. Glucose-6-Phosphate Dehydrogenase Deficiency among Male Blood Donors in Sana’a City, Yemen

    Science.gov (United States)

    Al-Nood, Hafiz A.; Bazara, Fakiha A.; Al-Absi, Rashad; Habori, Molham AL

    2012-01-01

    Objectives To determine the prevalence of Glucose-6-phosphate dehydrogenase (G-6-PD) deficiency among Yemeni people from different regions of the country living in the capital city, Sana’a, giving an indication of its overall prevalence in Yemen. Methods A cross-sectional study was conducted among Yemeni male blood donors attending the Department of Blood Bank at the National Centre of the Public Health Laboratories in the capital city, Sana’a, Yemen. Fluorescent spot method was used for screening, spectrophotometeric estimation of G-6-PD activity and separation by electrophoresis was done to determine the G-6-PD phenotype. Results Of the total 508 male blood donors recruited into the study, 36 were G-6-PD deficient, giving a likely G-6-PD deficiency prevalence of 7.1%. None of these deficient donors had history of anemia or jaundice. Thirty-five of these deficient cases (97.2%) showed severe G-6-PD deficiency class II (<10% of normal activity), and their phenotyping presumptively revealed a G-6-PD-Mediterranean variant. Conclusion The results showed a significant presence of G-6-PD deficiency with predominance of a severe G-6-PD deficiency type in these blood donors in Sana’a City, which could represent an important health problem through occurrence of hemolytic anemia under oxidative stress. A larger sample size is needed to determine the overall prevalence of G-6-PD deficiency, and should be extended to include DNA analysis to identify its variants in Yemen. PMID:22359725

  16. Induction of Nickel Accumulation in Response to Zinc Deficiency in Arabidopsis thaliana.

    Science.gov (United States)

    Nishida, Sho; Kato, Aki; Tsuzuki, Chisato; Yoshida, Junko; Mizuno, Takafumi

    2015-04-27

    Excessive accumulation of nickel (Ni) can be toxic to plants. In Arabidopsis thaliana, the Fe²⁺ transporter, iron (Fe)-regulated transporter1 (IRT1), mediates Fe uptake and also implicates in Ni²⁺ uptake at roots; however, the underlying mechanism of Ni²⁺ uptake and accumulation remains unelucidated. In the present study, we found that zinc (Zn) deficient conditions resulted in increased accumulation of Ni in plants, particularly in roots, in A. thaliana. In order to elucidate the underlying mechanisms of Ni uptake correlating zinc condition, we traced 63Ni isotope in response to Zn and found that (i) Zn deficiency induces short-term Ni²⁺ absorption and (ii) Zn²⁺ inhibits Ni²⁺ uptake, suggesting competitive uptake between Ni and Zn. Furthermore, the Zrt/Irt-like protein 3 (ZIP3)-defective mutant with an elevated Zn-deficient response exhibited higher Ni accumulation than the wild type, further supporting that the response to Zn deficiency induces Ni accumulation. Previously, expression profile study demonstrated that IRT1 expression is not inducible by Zn deficiency. In the present study, we found increased Ni accumulation in IRT1-null mutant under Zn deficiency in agar culture. These suggest that Zn deficiency induces Ni accumulation in an IRT1-independen manner. The present study revealed that Ni accumulation is inducible in response to Zn deficiency, which may be attributable to a Zn uptake transporter induced by Zn deficiency.

  17. Structure of human Fe-S assembly subcomplex reveals unexpected cysteine desulfurase architecture and acyl-ACP-ISD11 interactions.

    Science.gov (United States)

    Cory, Seth A; Van Vranken, Jonathan G; Brignole, Edward J; Patra, Shachin; Winge, Dennis R; Drennan, Catherine L; Rutter, Jared; Barondeau, David P

    2017-07-03

    In eukaryotes, sulfur is mobilized for incorporation into multiple biosynthetic pathways by a cysteine desulfurase complex that consists of a catalytic subunit (NFS1), LYR protein (ISD11), and acyl carrier protein (ACP). This NFS1-ISD11-ACP (SDA) complex forms the core of the iron-sulfur (Fe-S) assembly complex and associates with assembly proteins ISCU2, frataxin (FXN), and ferredoxin to synthesize Fe-S clusters. Here we present crystallographic and electron microscopic structures of the SDA complex coupled to enzyme kinetic and cell-based studies to provide structure-function properties of a mitochondrial cysteine desulfurase. Unlike prokaryotic cysteine desulfurases, the SDA structure adopts an unexpected architecture in which a pair of ISD11 subunits form the dimeric core of the SDA complex, which clarifies the critical role of ISD11 in eukaryotic assemblies. The different quaternary structure results in an incompletely formed substrate channel and solvent-exposed pyridoxal 5'-phosphate cofactor and provides a rationale for the allosteric activator function of FXN in eukaryotic systems. The structure also reveals the 4'-phosphopantetheine-conjugated acyl-group of ACP occupies the hydrophobic core of ISD11, explaining the basis of ACP stabilization. The unexpected architecture for the SDA complex provides a framework for understanding interactions with acceptor proteins for sulfur-containing biosynthetic pathways, elucidating mechanistic details of eukaryotic Fe-S cluster biosynthesis, and clarifying how defects in Fe-S cluster assembly lead to diseases such as Friedreich's ataxia. Moreover, our results support a lock-and-key model in which LYR proteins associate with acyl-ACP as a mechanism for fatty acid biosynthesis to coordinate the expression, Fe-S cofactor maturation, and activity of the respiratory complexes.

  18. Genetics Home Reference: protein S deficiency

    Science.gov (United States)

    ... my area? Other Names for This Condition hereditary thrombophilia due to protein S deficiency Related Information How are ... Merck Manual Home Edition for Patients and Caregivers: Thrombophilia Orphanet: Hereditary thrombophilia due to congenital protein S deficiency ...

  19. Genetics Home Reference: congenital leptin deficiency

    Science.gov (United States)

    ... Obesity? National Institute of Diabetes and Digestive and Kidney Diseases: Active at Any Size! Educational Resources (6 links) Centers for Disease Control and Prevention: Obesity and Genetics MalaCards: congenital leptin deficiency Orphanet: Obesity due to congenital leptin deficiency ...

  20. Identifying Causes of Job Performance Deficiencies.

    Science.gov (United States)

    Herem, Maynard A.

    1979-01-01

    A model to guide the search for types of performance deficiencies is set forth within the general framework of systems theory. Five types of problems, singly or in combination, are discussed as causes of deficiencies. (Author)

  1. Iron deficiency--facts and fallacies.

    Science.gov (United States)

    Oski, F A

    1985-04-01

    Iron deficiency occurs in all strata of society, is primarily a result of postnatal feeding practices and not due to congenital deficiencies of iron, can be prevented by appropriate dietary guidance, and, when present, produces important nonhematologic manifestations.

  2. Genetics Home Reference: factor VII deficiency

    Science.gov (United States)

    ... VII deficiency , is caused by mutations in the F7 gene, which provides instructions for making a protein ... about the gene associated with factor VII deficiency F7 Related Information What is a gene? What is ...

  3. Facts about Vitamin K Deficiency Bleeding

    Science.gov (United States)

    ... this? Submit Button Information For… Media Policy Makers Facts about Vitamin K Deficiency Bleeding Recommend on Facebook ... deficiency and VKDB? Protect Your Baby from Bleeds Fact Sheet   Download and print this fact ...

  4. IRON DEFICIENCY IN RURAL GHANAIAN CHILDREN

    African Journals Online (AJOL)

    2001-05-05

    May 5, 2001 ... School of Medical Sciences, University of Science and Technology, ... as controls and newly diagnosed iron-deficient children entering as in-patients. ..... WalterT., Kovacisky J. and Stekel A. Effect of mild iron deficiency.

  5. Genetics Home Reference: primary carnitine deficiency

    Science.gov (United States)

    ... Filippo CA, Pasquali M, Berry SA, Longo N. Expanded newborn screening identifies maternal primary carnitine deficiency. Mol ... deficiency disorders in children. Ann N Y Acad Sci. 2004 Nov;1033:42-51. Review. Citation on ...

  6. Genetics Home Reference: corticosterone methyloxidase deficiency

    Science.gov (United States)

    ... levels of potassium in the blood (hyponatremia and hyperkalemia, respectively). Individuals with corticosterone methyloxidase deficiency can also ... acid in the blood (metabolic acidosis). The hyponatremia, hyperkalemia, and metabolic acidosis associated with corticosterone methyloxidase deficiency ...

  7. Cobalamin deficiency in children: A literature review

    OpenAIRE

    Moen, Synne Helland

    2013-01-01

    Objective: The aim of this review is to present cobalamin deficiency in children with a specific focus on infants. Background: Cobalamin deficiency is caused by inadequate intake, malabsorption or inborn errors of vitamin B12 metabolism. Cobalamin deficiency in infants is usually caused by deficiency in the mother. There is often a diagnostic delay among infants because the most frequent symptoms are unspecific, e.g., developmental delay, apathy, hypotonia, anorexia and failure to thrive. Chi...

  8. Cucumis sativus secretes 4'-ketoriboflavin under iron-deficient conditions.

    Science.gov (United States)

    Satoh, Junichi; Koshino, Hiroyuki; Sekino, Kouta; Ito, Shinsaku; Katsuta, Ryo; Takeda, Kouji; Yoshimura, Etsuro; Shinmachi, Fumie; Kawasaki, Shinji; Niimura, Youichi; Nukada, Tomoo

    2016-01-01

    A new compound in cucumber, Cucumis sativus, nutrient solution that appears under iron-deficient conditions, but not under ordinary culture conditions, has been revealed by HPLC analysis. The chemical structure of this compound was identified using LC-MS and NMR techniques as that of 4'-ketoriboflavin. This is the first report to show that 4'-ketoriboflavin can be found in metabolites from organisms.

  9. Vena porta thrombosis in patient with inherited factor VII deficiency

    DEFF Research Database (Denmark)

    Klovaite, Jolanta; Friis-Hansen, Lennart Jan; Larsen, Fin S;

    2010-01-01

    with inherited FVII deficiency and chronic vena porta thrombosis. She presented at 32 weeks of gestation with spontaneously increased international normalized ratio, severe thrombocytopenia and very few unspecific symptoms. The extensive examination of the patient revealed cavernous transformation of the portal...... vein with well expressed portosystemic collaterals, heterozygosity for three common polymorphisms in FVII gene, associated with reduction in plasma FVII levels, and no other factors predisposing to thrombosis....

  10. Iron Deficiency in Autism and Asperger Syndrome.

    Science.gov (United States)

    Latif, A.; Heinz, P.; Cook, R.

    2002-01-01

    Retrospective analysis of the full blood count and, when available, serum ferritin measurements of 96 children (52 with autism and 44 with Asperger syndrome) found six autistic children had iron deficiency and 12 of the 23 autistic children with serum ferritin measures were iron deficient. Far fewer Asperger children were iron deficient. Results…

  11. Iron-induced nickel deficiency in pecan

    Science.gov (United States)

    Economic loss due to nickel (Ni) deficiency can occur in horticultural and agronomic crops. This study assesses impact of excessive iron (Fe) on expression of Ni deficiency in pecan [Carya illinoinensis (Wangenh.) K. Koch]. Field and greenhouse experiments found Ni deficiency to be inducible by ei...

  12. Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    Science.gov (United States)

    Skjærven, Kaja H.; Jakt, Lars Martin; Dahl, John Arne; Espe, Marit; Aanes, Håvard; Hamre, Kristin; Fernandes, Jorge M. O.

    2016-10-01

    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F0 generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F1 embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring.

  13. Intraperitoneal Hemorrhage in a Pregnant Woman with Hyperemesis Gravidarum: Vitamin K Deficiency as a Possible Cause

    Directory of Open Access Journals (Sweden)

    Yosuke Baba

    2016-01-01

    Full Text Available Hyperemesis gravidarum can cause various vitamin deficiencies. Vitamin K deficiency can lead to coagulopathy or hemorrhagic diathesis. A nulliparous Japanese woman with hyperemesis gravidarum at 105/7 weeks was admitted with giant myoma, intestinal obstruction, and abdominal pain. Treatment for a degenerative myoma was instituted with intravenous antibiotics. The abdominal pain ameliorated, but intestinal obstruction persisted. At 166/7 weeks, we performed laparotomy for release of intestinal obstruction, when intraabdominal bleeding of 110 mL existed. Blood tests revealed coagulopathy secondary to vitamin K deficiency. The coagulopathy responded to intravenous vitamin K injection. Coagulopathy due to vitamin K deficiency can occur with hyperemesis gravidarum, and coexisting intestinal obstruction and broad-spectrum antibiotics can aggravate the deficiency.

  14. Intraperitoneal Hemorrhage in a Pregnant Woman with Hyperemesis Gravidarum: Vitamin K Deficiency as a Possible Cause

    Science.gov (United States)

    Baba, Yosuke; Morisawa, Hiroyuki; Saito, Koyomi; Rifu, Kazuma

    2016-01-01

    Hyperemesis gravidarum can cause various vitamin deficiencies. Vitamin K deficiency can lead to coagulopathy or hemorrhagic diathesis. A nulliparous Japanese woman with hyperemesis gravidarum at 105/7 weeks was admitted with giant myoma, intestinal obstruction, and abdominal pain. Treatment for a degenerative myoma was instituted with intravenous antibiotics. The abdominal pain ameliorated, but intestinal obstruction persisted. At 166/7 weeks, we performed laparotomy for release of intestinal obstruction, when intraabdominal bleeding of 110 mL existed. Blood tests revealed coagulopathy secondary to vitamin K deficiency. The coagulopathy responded to intravenous vitamin K injection. Coagulopathy due to vitamin K deficiency can occur with hyperemesis gravidarum, and coexisting intestinal obstruction and broad-spectrum antibiotics can aggravate the deficiency. PMID:27597910

  15. Vitamin D deficiency in Europe

    DEFF Research Database (Denmark)

    Cashman, Kevin D.; Dowling, Kirsten G; Škrabáková, Zuzana

    2016-01-01

    BACKGROUND: Vitamin D deficiency has been described as being pandemic, but serum 25-hydroxyvitamin D [25(OH)D] distribution data for the European Union are of very variable quality. The NIH-led international Vitamin D Standardization Program (VDSP) has developed protocols for standardizing existing...... 25(OH)D values from national health/nutrition surveys. OBJECTIVE: This study applied VDSP protocols to serum 25(OH)D data from representative childhood/teenage and adult/older adult European populations, representing a sizable geographical footprint, to better quantify the prevalence of vitamin D...... deficiency in Europe. DESIGN: The VDSP protocols were applied in 14 population studies [reanalysis of subsets of serum 25(OH)D in 11 studies and complete analysis of all samples from 3 studies that had not previously measured it] by using certified liquid chromatography-tandem mass spectrometry on biobanked...

  16. Iron deficiency anemia in pregnancy.

    Science.gov (United States)

    Di Renzo, Gian Carlo; Spano, Filippo; Giardina, Irene; Brillo, Eleonora; Clerici, Graziano; Roura, Luis Cabero

    2015-11-01

    Anemia is the most frequent derailment of physiology in the world throughout the life of a woman. It is a serious condition in countries that are industrialized and in countries with poor resources. The main purpose of this manuscript is to give the right concern of anemia in pregnancy. The most common causes of anemia are poor nutrition, iron deficiencies, micronutrients deficiencies including folic acid, vitamin A and vitamin B12, diseases like malaria, hookworm infestation and schistosomiasis, HIV infection and genetically inherited hemoglobinopathies such as thalassemia. Depending on the severity and duration of anemia and the stage of gestation, there could be different adverse effects including low birth weight and preterm delivery. Treatment of mild anemia prevents more severe forms of anemia, strictly associated with increased risk of fetal-maternal mortality and morbidity.

  17. DNA repair deficiency in neurodegeneration

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A; Stevnsner, Tinna V.

    2011-01-01

    : homologous recombination and non-homologous end-joining. Ataxia telangiectasia and related disorders with defects in these pathways illustrate that such defects can lead to early childhood neurodegeneration. Aging is a risk factor for neurodegeneration and accumulation of oxidative mitochondrial DNA damage......Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive...... neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative...

  18. Testicular apoptosis after dietary zinc deficiency: ultrastructural and TUNEL studies.

    Science.gov (United States)

    Kumari, Deepa; Nair, Neena; Bedwal, Ranveer Singh

    2011-10-01

    The present study was conducted in Wistar rats to determine whether prepubertal dietary zinc deficiency causes apoptotic changes in testes. Prepubertal male Wistar rats (40-50 gm) were divided into 3 groups: zinc control (ZC), pairfed (PF), and zinc deficient (ZD). Control and pairfed groups were given a 100 ppm zinc diet while the deficient groups received 1 ppm zinc diet for 2 and 4 weeks (w), respectively. Ultrastructural studies revealed several apoptotic features such as wavy basement membrane, displaced nuclei, chromatin condensation, plasma membrane blebbing, nuclear membrane dissolution, loss of inter-Sertoli cell junctional complexes, and intercellular bridges and deformed mitochondria. A variable spectrum of sperm defects had also been visualized e.g., acrosomal deformities such as decapitation and a ring of condensed chromatin around the nuclear periphery, deformed sperm heads with a condensed nucleus, tail-elements with superfluous cytoplasm, and damage to the mitochondrial sheath and aggregation of spermatozoa within the membrane. This was further supported by TUNEL studies. Apoptotic index, epididymal sperm concentration, motility, and fertility index also revealed a significant (P zinc deficient groups (2 and 4 w) when compared with their respective control and pairfed groups. All the above findings are indicative that changes observed in the testes after dietary zinc deficiency are due to the onset of apoptosis. Increased apoptotic degeneration in testes may cause irreversible changes in the germ cells associated with decreased epididymal sperm concentration, motility, and fertility index which contributes to the low efficiency of spermatogenesis thereby indicating a possible role of zinc in fertility.

  19. Congenital deficiency of factor VII.

    Science.gov (United States)

    Sikka, M; Gomber, S; Madan, N; Rusia, U; Sharma, S

    1996-01-01

    A case of congenital factor VII deficiency in a five-year-old child is reported. The patient, born of a non-consanguineous marriage, presented with repeated bouts of epistaxis since childhood. The prothrombin time (PT) was markedly prolonged with a normal bleeding time (BT), partial thromboplastin time with Kaolin (PTTK) and platelet count. The patient has been on follow up for the last four years and is doing apparently well.

  20. Molecular Genetics of Lactase Deficiencies

    OpenAIRE

    Kuokkanen, Mikko

    2006-01-01

    Congenital lactase deficiency (CLD) (MIM 223000) is a rare autosomal recessive gastrointestinal disorder characterized by watery diarrhea in infants fed with breast milk or other lactose-containing formulas. The CLD locus was previously assigned by linkage and linkage disequilibrium analyses on 2q21 in 19 Finnish families. In this study, the molecular background of this disorder is reported. The CLD locus was refined in 32 CLD patients in 24 families by using microsatellite and single nucleot...

  1. Carnitine deficiency disorders in children.

    Science.gov (United States)

    Stanley, Charles A

    2004-11-01

    Mitochondrial oxidation of long-chain fatty acids provides an important source of energy for the heart as well as for skeletal muscle during prolonged aerobic work and for hepatic ketogenesis during long-term fasting. The carnitine shuttle is responsible for transferring long-chain fatty acids across the barrier of the inner mitochondrial membrane to gain access to the enzymes of beta-oxidation. The shuttle consists of three enzymes (carnitine palmitoyltransferase 1, carnitine acylcarnitine translocase, carnitine palmitoyl-transferase 2) and a small, soluble molecule, carnitine, to transport fatty acids as their long-chain fatty acylcarnitine esters. Carnitine is provided in the diet (animal protein) and also synthesized at low rates from trimethyl-lysine residues generated during protein catabolism. Carnitine turnover rates (300-500 micromol/day) are deficiency have been described. There is speculation that carnitine supplements might be beneficial in other settings (such as genetic acyl-CoA oxidation defects--"secondary carnitine deficiency", chronic ischemia, hyperalimentation, nutritional carnitine deficiency), but efficacy has not been documented. The formation of abnormal acylcarnitines has been helpful in expanded newborn screening programs using tandem mass-spectrometry of blood spot acylcarnitine profiles to detect genetic fatty acid oxidation defects in neonates. Carnitine-deficient diets (vegetarian) do not have much effect on carnitine pools in adults. A modest 50% reduction in carnitine levels is associated with hyperalimentation in newborn infants, but is of doubtful significance. The above considerations indicate that carnitine does not become rate-limiting unless extremely low; testing the benefits of nutritional supplements may require invasive endurance studies of fasting ketogenesis or muscle and cardiovascular work.

  2. Iron refractory iron deficiency anemia

    OpenAIRE

    De Falco, Luigia; Sanchez, Mayka; Silvestri, Laura; Kannengiesser, Caroline; Muckenthaler, Martina U; Iolascon, Achille; Gouya, Laurent; Camaschella, Clara; Beaumont, Carole

    2013-01-01

    Iron refractory iron deficiency anemia is a hereditary recessive anemia due to a defect in the TMPRSS6 gene encoding Matriptase-2. This protein is a transmembrane serine protease that plays an essential role in down-regulating hepcidin, the key regulator of iron homeostasis. Hallmarks of this disease are microcytic hypochromic anemia, low transferrin saturation and normal/high serum hepcidin values. The anemia appears in the post-natal period, although in some cases it is only diagnosed in ad...

  3. Mitochondrial cytochrome c oxidase deficiency.

    Science.gov (United States)

    Rak, Malgorzata; Bénit, Paule; Chrétien, Dominique; Bouchereau, Juliette; Schiff, Manuel; El-Khoury, Riyad; Tzagoloff, Alexander; Rustin, Pierre

    2016-03-01

    As with other mitochondrial respiratory chain components, marked clinical and genetic heterogeneity is observed in patients with a cytochrome c oxidase deficiency. This constitutes a considerable diagnostic challenge and raises a number of puzzling questions. So far, pathological mutations have been reported in more than 30 genes, in both mitochondrial and nuclear DNA, affecting either structural subunits of the enzyme or proteins involved in its biogenesis. In this review, we discuss the possible causes of the discrepancy between the spectacular advances made in the identification of the molecular bases of cytochrome oxidase deficiency and the lack of any efficient treatment in diseases resulting from such deficiencies. This brings back many unsolved questions related to the frequent delay of clinical manifestation, variable course and severity, and tissue-involvement often associated with these diseases. In this context, we stress the importance of studying different models of these diseases, but also discuss the limitations encountered in most available disease models. In the future, with the possible exception of replacement therapy using genes, cells or organs, a better understanding of underlying mechanism(s) of these mitochondrial diseases is presumably required to develop efficient therapy.

  4. [Iodine deficiency in cardiovascular diseases].

    Science.gov (United States)

    Molnár, I; Magyari, M; Stief, L

    1998-08-30

    The thyroid hormone deficiency on cardiovascular function can be characterized with decreased myocardial contractility and increased peripheral vascular resistance as well as with the changes in lipid metabolism. 42 patients with cardiovascular disease (mean age 65 +/- 13 yr, 16 males) were investigated if iodine insufficiency can play a role as a risk factor for the cardiovascular diseases. The patients were divided in 5 subgroups on the ground of the presence of hypertension, congestive heart failure, cardiomyopathy, coronary disfunction and arrhythmia. Urine iodine concentration (5.29 +/- 4.52 micrograms/dl) was detected with Sandell-Kolthoff colorimetric reaction. The most decreased urine iodine concentration was detected in the subgroups with arrhythmia and congestive heart failure (4.7 +/- 4.94 micrograms/dl and 4.9 +/- 4.81 micrograms/dl, respectively). An elevated TSH level was found by 3 patients (5.3 +/- 1.4 mlU/l). An elevation in lipid metabolism (cholesterol, triglyceride) associated with all subgroups without arrhythmia. In conclusion, the occurrence of iodine deficiency in cardiovascular disease is frequent. Iodine supplementation might prevent the worsing effect of iodine deficiency on cardiovascular disease.

  5. Zinc Deficiency in Humans and its Amelioration

    OpenAIRE

    Yashbir Singh Shivay

    2015-01-01

    Zinc (Zn) deficiency in humans has recently received considerable attention. Global mortality in children under 5 years of age in 2004 due to Zn deficiency was estimated at 4,53,207 as against 6,66,771 for vitamin A deficiency; 20,854 for iron deficiency and 3,619 for iodine deficiency. In humans 2800-3000 proteins contain Zn prosthetic group and Zn is an integral component of zinc finger prints that regulate DNA transcription. Zinc is a Type-2 nutrient, which means that its concentration in ...

  6. Radiochemical studies of neutron deficient actinide isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.E.

    1978-04-01

    The production of neutron deficient actinide isotopes in heavy ion reactions was studied using alpha, gamma, x-ray, and spontaneous fission detection systems. A new isotope of berkelium, /sup 242/Bk, was produced with a cross-section of approximately 10 ..mu..b in reactions of boron on uranium and nitrogen on thorium. It decays by electron capture with a half-life of 7.0 +- 1.3 minutes. The alpha-branching ratio for this isotope is less than 1% and the spontaneous fission ratio is less than 0.03%. Studies of (Heavy Ion, pxn) and (Heavy Ion, ..cap alpha..xn) transfer reactions in comparison with (Heavy ion, xn) compound nucleus reactions revealed transfer reaction cross-sections equal to or greater than the compound nucleus yields. The data show that in some cases the yield of an isotope produced via a (H.I.,pxn) or (H.I.,..cap alpha..xn) reaction may be higher than its production via an xn compound nucleus reaction. These results have dire consequences for proponents of the ''Z/sub 1/ + Z/sub 2/ = Z/sub 1+2/'' philosophy. It is no longer acceptable to assume that (H.I.,pxn) and (H.I.,..cap alpha..xn) product yields are of no consequence when studying compound nucleus reactions. No evidence for spontaneous fission decay of /sup 228/Pu, /sup 230/Pu, /sup 232/Cm, or /sup 238/Cf was observed indicating that strictly empirical extrapolations of spontaneous fission half-life data is inadequate for predictions of half-lives for unknown neutron deficient actinide isotopes.

  7. The skeletal phenotype of chondroadherin deficient mice.

    Directory of Open Access Journals (Sweden)

    Lovisa Hessle

    Full Text Available Chondroadherin, a leucine rich repeat extracellular matrix protein with functions in cell to matrix interactions, binds cells via their α2β1 integrin as well as via cell surface proteoglycans, providing for different sets of signals to the cell. Additionally, the protein acts as an anchor to the matrix by binding tightly to collagens type I and II as well as type VI. We generated mice with inactivated chondroadherin gene to provide integrated studies of the role of the protein. The null mice presented distinct phenotypes with affected cartilage as well as bone. At 3-6 weeks of age the epiphyseal growth plate was widened most pronounced in the proliferative zone. The proteome of the femoral head articular cartilage at 4 months of age showed some distinct differences, with increased deposition of cartilage intermediate layer protein 1 and fibronectin in the chondroadherin deficient mice, more pronounced in the female. Other proteins show decreased levels in the deficient mice, particularly pronounced for matrilin-1, thrombospondin-1 and notably the members of the α1-antitrypsin family of proteinase inhibitors as well as for a member of the bone morphogenetic protein growth factor family. Thus, cartilage homeostasis is distinctly altered. The bone phenotype was expressed in several ways. The number of bone sialoprotein mRNA expressing cells in the proximal tibial metaphysic was decreased and the osteoid surface was increased possibly indicating a change in mineral metabolism. Micro-CT revealed lower cortical thickness and increased structure model index, i.e. the amount of plates and rods composing the bone trabeculas. The structural changes were paralleled by loss of function, where the null mice showed lower femoral neck failure load and tibial strength during mechanical testing at 4 months of age. The skeletal phenotype points at a role for chondroadherin in both bone and cartilage homeostasis, however, without leading to altered longitudinal

  8. No changes in heme synthesis in human Friedreich´s ataxia erythroid progenitor cells.

    Science.gov (United States)

    Steinkellner, Hannes; Singh, Himanshu Narayan; Muckenthaler, Martina U; Goldenberg, Hans; Moganty, Rajeswari R; Scheiber-Mojdehkar, Barbara; Sturm, Brigitte

    2017-07-20

    Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by reduced expression of the protein frataxin. Frataxin is thought to play a role in iron-sulfur cluster biogenesis and heme synthesis. In this study, we used erythroid progenitor stem cells obtained from FRDA patients and healthy donors to investigate the putative role, if any, of frataxin deficiency in heme synthesis. We used electrochemiluminescence and qRT-PCR for frataxin protein and mRNA quantification. We used atomic absorption spectrophotometry for iron levels and a photometric assay for hemoglobin levels. Protoporphyrin IX and Ferrochelatase were analyzed using auto-fluorescence. An "IronChip" microarray analysis followed by a protein-protein interaction analysis was performed. FRDA patient cells showed no significant changes in iron levels, hemoglobin synthesis, protoporphyrin IX levels, and ferrochelatase activity. Microarray analysis presented 11 genes that were significantly changed in all patients compared to controls. The genes are especially involved in oxidative stress, iron homeostasis and angiogenesis. The mystery about the involvement of frataxin on iron metabolism raises the question why frataxin deficiency in primary FRDA cells did not lead to changes in biochemical parameters of heme synthesis. It seems that alternative pathways can circumvent the impact of frataxin deficiency on heme synthesis. We show for the first time in primary FRDA patient cells that reduced frataxin levels are still sufficient for heme synthesis and possibly other mechanisms can overcome reduced frataxin levels in this process. Our data strongly support the fact that so far no anemia in FRDA patients was reported. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Deficiencies in the Management of Iron Deficiency Anemia During Childhood.

    Science.gov (United States)

    Powers, Jacquelyn M; Daniel, Catherine L; McCavit, Timothy L; Buchanan, George R

    2016-04-01

    Limited high-quality evidence supports the management of iron deficiency anemia (IDA). To assess our institutional performance in this area, we retrospectively reviewed IDA treatment practices in 195 consecutive children referred to our center from 2006 to mid-2010. The majority of children were ≤4 years old (64%) and had nutritional IDA (74%). In 11- to 18-year-old patients (31%), the primary etiology was menorrhagia (42%). Many were referred directly to the emergency department and/or prescribed iron doses outside the recommended range. Poor medication adherence and being lost-to-follow-up were common. Substantial improvements are required in the management of IDA.

  10. Primary Carnitine (OCTN2) Deficiency Without Neonatal Carnitine Deficiency

    OpenAIRE

    Boer, L.; Kluijtmans, L.A.J.; Morava, E.

    2012-01-01

    Although the diagnosis of a primary carnitine deficiency is usually based on a very low level of free and total carnitine (free carnitine: 1–5 μM, normal 20–55 μM) (Longo et al. 2006), we detected a patient via newborn screening with a total carnitine level 67 % of the normal value. At the age of 1 year, after interruption of carnitine supplementation for a 4-week period the carnitine profile was assessed and the free carnitine level had dropped to 10.4 μmol/l (normal: 20–55 μM) and total car...

  11. When bugs reveal biodiversity

    DEFF Research Database (Denmark)

    Bohmann, Kristine; Dresen, Ida Bærholm Schnell; Gilbert, M.T.P.

    2013-01-01

    monitoring tools, instant communication and online databases, one might be forgiven for thinking that such knowledge is easy to come by. However, of the approximately 5,400 terrestrial mammals on the IUCN Red List, no fewer than 789 (ca. 14%) are listed as 'Data Deficient' (IUCN 2012) - IUCN's term...

  12. B-cell deficiency and severe autoimmunity caused by deficiency of protein kinase C δ.

    Science.gov (United States)

    Salzer, Elisabeth; Santos-Valente, Elisangela; Klaver, Stefanie; Ban, Sol A; Emminger, Wolfgang; Prengemann, Nina Kathrin; Garncarz, Wojciech; Müllauer, Leonhard; Kain, Renate; Boztug, Heidrun; Heitger, Andreas; Arbeiter, Klaus; Eitelberger, Franz; Seidel, Markus G; Holter, Wolfgang; Pollak, Arnold; Pickl, Winfried F; Förster-Waldl, Elisabeth; Boztug, Kaan

    2013-04-18

    Primary B-cell disorders comprise a heterogeneous group of inherited immunodeficiencies, often associated with autoimmunity causing significant morbidity. The underlying genetic etiology remains elusive in the majority of patients. In this study, we investigated a patient from a consanguineous family suffering from recurrent infections and severe lupuslike autoimmunity. Immunophenotyping revealed progressive decrease of CD19(+) B cells, a defective class switch indicated by low numbers of IgM- and IgG-memory B cells, as well as increased numbers of CD21(low) B cells. Combined homozygosity mapping and exome sequencing identified a biallelic splice-site mutation in protein C kinase δ (PRKCD), causing the absence of the corresponding protein product. Consequently, phosphorylation of myristoylated alanine-rich C kinase substrate was decreased, and mRNA levels of nuclear factor interleukin (IL)-6 and IL-6 were increased. Our study uncovers human PRKCD deficiency as a novel cause of common variable immunodeficiency-like B-cell deficiency with severe autoimmunity.

  13. Skin wound healing in MMP2-deficient and MMP2 / plasminogen double-deficient mice

    DEFF Research Database (Denmark)

    Frøssing, Signe; Rønø, Birgitte; Hald, Andreas;

    2010-01-01

    -sensitive MMPs during wound healing. To address whether MMP2 is accountable for the galardin-induced healing deficiency in wildtype and Plg-deficient mice, incisional skin wounds were generated in MMP2 single-deficient mice and in MMP2/Plg double-deficient mice and followed until healed. Alternatively, tissue...... was isolated 7 days post wounding for histological and biochemical analyses. No difference was found in the time from wounding to overt gross restoration of the epidermal surface between MMP2-deficient and wildtype control littermate mice. MMP2/Plg double-deficient mice were viable and fertile, and displayed...... an unchallenged general phenotype resembling that of Plg-deficient mice, including development of rectal prolapses. MMP2/Plg double-deficient mice displayed a slight increase in the wound length throughout the healing period compared with Plg-deficient mice. However, the overall time to complete healing...

  14. Toward reassessing data-deficient species.

    Science.gov (United States)

    Bland, Lucie M; Bielby, Jon; Kearney, Stephen; Orme, C David L; Watson, James E M; Collen, Ben

    2017-06-01

    One in 6 species (13,465 species) on the International Union for Conservation of Nature (IUCN) Red List is classified as data deficient due to lack of information on their taxonomy, population status, or impact of threats. Despite the chance that many are at high risk of extinction, data-deficient species are typically excluded from global and local conservation priorities, as well as funding schemes. The number of data-deficient species will greatly increase as the IUCN Red List becomes more inclusive of poorly known and speciose groups. A strategic approach is urgently needed to enhance the conservation value of data-deficient assessments. To develop this, we reviewed 2879 data-deficient assessments in 6 animal groups and identified 8 main justifications for assigning data-deficient status (type series, few records, old records, uncertain provenance, uncertain population status or distribution, uncertain threats, taxonomic uncertainty, and new species). Assigning a consistent set of justification tags (i.e., consistent assignment to assessment justifications) to species classified as data deficient is a simple way to achieve more strategic assessments. Such tags would clarify the causes of data deficiency; facilitate the prediction of extinction risk; facilitate comparisons of data deficiency among taxonomic groups; and help prioritize species for reassessment. With renewed efforts, it could be straightforward to prevent thousands of data-deficient species slipping unnoticed toward extinction. © 2016 Society for Conservation Biology.

  15. White Centered Retinal Hemorrhages in Vitamin B12 Deficiency Anemia

    Directory of Open Access Journals (Sweden)

    Claus Zehetner

    2011-05-01

    Full Text Available Background: To report a case of severe vitamin B12 deficiency anemia presenting with white centered retinal hemorrhages. Methods: Interventional case report. Results: A 40-year-old man, general practitioner himself, presented with a 1-day history of diminished left visual acuity and a drop-shaped central scotoma. The corrected visual acuities were 20/20, OD and 20/100, OS. Ophthalmic examination revealed bilaterally pale tarsal conjunctiva, discretely icteric bulbar conjunctiva and disseminated white centered intraretinal hemorrhages with foveal involvement. OCT imaging through these lesions revealed a retinal thickening caused by a sub-ILM accumulation of hyperreflective and inhomogeneous deposits within the nerve fiber layer. Immediate laboratory work-up showed severe megaloblastic anemia caused by vitamin B12 deficiency requiring erythrocyte transfusions. Discussion: Most reports of white centered retinal hemorrhages have been described in patients with leukemic retinopathy and bacterial endocarditis. It is interesting that this case of vitamin B12 deficiency anemia retinopathy has a clinically indistinguishable fundus appearance. This is probably due to the common pathology of capillary disruption and subsequent hemostatic fibrin plug formation. In megaloblastic anemia, direct anoxia results in endothelial dysfunction. The loss of impermeability allows extrusion of whole blood and subsequent diffusion from the disrupted site throughout and above the nerve fiber layer. Therefore the biomicroscopic pattern of white centered hemorrhages observed in anemic retinopathy is most likely due to the clot formation as the reparative sequence after capillary rupture.

  16. Magnesium homeostasis in cardiac myocytes of Mg-deficient rats.

    Directory of Open Access Journals (Sweden)

    Michiko Tashiro

    Full Text Available To study possible modulation of Mg(2+ transport in low Mg(2+ conditions, we fed either a Mg-deficient diet or a Mg-containing diet (control to Wistar rats for 1-6 weeks. Total Mg concentrations in serum and cardiac ventricular tissues were measured by atomic absorption spectroscopy. Intracellular free Mg(2+ concentration ([Mg(2+]i of ventricular myocytes was measured with the fluorescent indicator furaptra. Mg(2+ transport rates, rates of Mg(2+ influx and Mg(2+ efflux, were estimated from the rates of change in [Mg(2+]i during Mg loading/depletion and recovery procedures. In Mg-deficient rats, the serum total Mg concentration (0.29±0.026 mM was significantly lower than in control rats (0.86±0.072 mM after 4-6 weeks of Mg deficiency. However, neither total Mg concentration in ventricular tissues nor [Mg(2+]i of ventricular myocytes was significantly different between Mg-deficient rats and control rats. The rates of Mg(2+ influx and efflux were not significantly different in both groups. In addition, quantitative RT-PCR revealed that Mg deficiency did not substantially change mRNA expression levels of known Mg(2+ channels/transporters (TRPM6, TRPM7, MagT1, SLC41A1 and ACDP2 in heart and kidney tissues. These results suggest that [Mg(2+]i as well as the total Mg content of cardiac myocytes, was well maintained even under chronic hypomagnesemia without persistent modulation in function and expression of major Mg(2+ channels/transporters in the heart.

  17. [Deficiency, disability, neurology and art].

    Science.gov (United States)

    Cano de la Cuerda, Roberto; Collado-Vazquez, Susana

    2010-07-16

    Disability is a complex phenomenon, and the ways it has been conceived, explained and treated have varied notably throughout history. As the years go by, human beings have evolved and, at the same time, so have medicine and art. And therein lies the extraordinary value, from the ontological point of view, of many works of art, which would never have been produced without the intervention of disease and the practice of the medical art. The aim of this work is to address the study of some deficiencies, disabilities and neurological pathologies that have been represented in paintings at different times in history. This article begins with the study of pictures that deal with dwarves and other misnamed freaks of nature that have been represented by painters from Velazquez to Titian or Rubens. The study looks at paintings of cripples, pictures containing the mentally disabled, with examples by Bruegel the Elder or Munch, as well as certain neurological disorders that have been portrayed in paintings, such as Escaping criticism by Pere Borrell or Sad inheritance by Sorolla. Likewise, we also reflect on the trite concept of disease and artistic creativity. The artistic representation of deficiency and disability has evolved in parallel to the feelings of men and women in each period of history and, at the same time, their social evolution. Nowadays, this concept continues to advance and some artists no longer represent the sick person, but instead the illness itself.

  18. Jasmonate signaling is activated in the very early stages of iron deficiency responses in rice roots.

    Science.gov (United States)

    Kobayashi, Takanori; Itai, Reiko Nakanishi; Senoura, Takeshi; Oikawa, Takaya; Ishimaru, Yasuhiro; Ueda, Minoru; Nakanishi, Hiromi; Nishizawa, Naoko K

    2016-07-01

    Under low iron availability, plants induce the expression of various genes involved in iron uptake and translocation at the transcriptional level. This iron deficiency response is affected by various plant hormones, but the roles of jasmonates in this response are not well-known. We investigated the involvement of jasmonates in rice iron deficiency responses. High rates of jasmonate-inducible genes were induced during the very early stages of iron deficiency treatment in rice roots. Many jasmonate-inducible genes were also negatively regulated by the ubiquitin ligases OsHRZ1 and OsHRZ2 and positively regulated by the transcription factor IDEF1. Ten out of 35 genes involved in jasmonate biosynthesis and signaling were rapidly induced at 3 h of iron deficiency treatment, and this induction preceded that of known iron deficiency-inducible genes involved in iron uptake and translocation. Twelve genes involved in jasmonate biosynthesis and signaling were also upregulated in HRZ-knockdown roots. Endogenous concentrations of jasmonic acid and jasmonoyl isoleucine tended to be rapidly increased in roots in response to iron deficiency treatment, whereas these concentrations were higher in HRZ-knockdown roots under iron-sufficient conditions. Analysis of the jasmonate-deficient cpm2 mutant revealed that jasmonates repress the expression of many iron deficiency-inducible genes involved in iron uptake and translocation under iron sufficiency, but this repression is partly canceled under an early stage of iron deficiency. These results indicate that jasmonate signaling is activated during the very early stages of iron deficiency, which is partly regulated by IDEF1 and OsHRZs.

  19. Effect of maternal iron deficiency anaemia on foetal outcome.

    Science.gov (United States)

    Rusia, U; Madan, N; Agarwal, N; Sikka, M; Sood, S K

    1995-07-01

    One hundred and two pregnant women and their neonates were examined to evaluate the effect of maternal haemoglobin concentration (Hb. conc) and iron deficiency anaemia on the placental weight and the foetal outcome. Haematological and serum ferritin values were determined. It was observed that 34.3% of the pregnant women were anaemic. Maternal Hb conc. and serum ferritin showed a highly significant correlation (r = 0.40, p < 0.001) indicating that iron deficiency was the most important cause of anaemia amongst them. The maternal Hb conc. showed a significant correlation with placental weight (p < 0.05), birth weight (p < 0.01), Apgar score (p < 0.001) and birth asphyxia. Maternal serum ferritin also correlated positively with cord ferritin (p < 0.001). The study did not reveal any association between high Hb and adverse foetal outcome.

  20. Improved parameters of the hydrogen-deficient binary star KSPer

    CERN Document Server

    Kipper, Tonu

    2008-01-01

    Using the high resolution spectral observations obtained with the Nasmyth Echelle Spectrograph NES of the 6m telescope we analysed the optical spectrum of the hydrogen-deficient binary star KSPer. The atmospheric parameters derived are: effective temperature Teff=9500+/-300 K, surface gravity log g=2.0+/-0.5, and microturbulent velocity Vt=9.5+/-0.5km/s. The hydrogen deficiency is H/He=3x10^{-5}, iron abundance is reduced by 0.8dex; nitrogen abundance is very high [N/Fe]=1.4, but carbon and oxygen abundances are low. The star luminosity is log L/Lo=3.3. A complex absorption and emission structure of the NaI D doublet was revealed. We suggest that the emission component forms in the circumbinary gaseous envelope.

  1. CRM+ severe Fletcher factor deficiency associated with Graves' disease.

    Science.gov (United States)

    Kyrle, P A; Niessner, H; Deutsch, E; Lechner, K; Korninger, C; Mannhalter, C

    1984-01-01

    A 59-year-old male patient with Graves' disease and severe hereditary Fletcher factor deficiency is described. PKK clotting activity as well as the activity by a chromogenic substrate method (Chromozym PK) was less then 0.01 U/ml. In contrast to functional tests, the immunological assay (Laurell method) showed a PKK antigen concentration of 0.25 U/ml, indicating the presence of an abnormal nonfunctional PKK molecule (CRM+ variant). An inhibitor was excluded since the patient plasma did not inactivate partially purified PKK. Investigation of 11 family members revealed a reduction of the PKK clotting activity in 9 relatives of the patient. Since Graves' disease is considered an autoimmune disease, our case represents an example of an association of a severe hereditary deficiency of a contact factor and an autoimmune disease.

  2. Brain morphological defects in prolidase deficient mice: first report.

    Science.gov (United States)

    Insolia, V; Piccolini, V M

    2014-09-17

    Prolidase gene (PEPD) encodes prolidase enzyme, which is responsible for hydrolysis of dipeptides containing proline or hydroxyproline at their C-terminal end. Mutations in PEPD gene cause, in human, prolidase deficiency (PD), a rare autosomal recessive disorder. PD patients show reduced or absent prolidase activity and a broad spectrum of phenotypic traits including various degrees of mental retardation. This is the first report correlating PD and brain damages using as a model system prolidase deficient mice, the so called dark-like (dal) mutant mice. We focused our attention on dal postnatal brain development, revealing a panel of different morphological defects in the cerebral and cerebellar cortices, such as undulations of the cerebral cortex, cell rarefaction, defects in cerebellar cortex lobulation, and blood vessels overgrowth. These anomalies might be ascribed to altered angiogenic process and loss of pial basement membrane integrity. Further studies will be directed to find a correlation between neuroarchitecture alterations and functional consequences.

  3. Brain morphological defects in prolidase deficient mice: first report

    Directory of Open Access Journals (Sweden)

    V. Insolia

    2014-09-01

    Full Text Available Prolidase gene (PEPD encodes prolidase enzyme, which is responsible for hydrolysis of dipeptides containing proline or hydroxyproline at their C-terminal end. Mutations in PEPD gene cause, in human, prolidase deficiency (PD, a rare autosomal recessive disorder. PD patients show reduced or absent prolidase activity and a broad spectrum of phenotypic traits including various degrees of mental retardation. This is the first report correlating PD and brain damages using as a model system prolidase deficient mice, the so called dark-like (dal mutant mice. We focused our attention on dal postnatal brain development, revealing a panel of different morphological defects in the cerebral and cerebellar cortices, such as undulations of the cerebral cortex, cell rarefaction, defects in cerebellar cortex lobulation, and blood vessels overgrowth. These anomalies might be ascribed to altered angiogenic process and loss of pial basement membrane integrity. Further studies will be directed to find a correlation between neuroarchitecture alterations and functional consequences.

  4. Lessons learned from mice deficient in lectin complement pathway molecules

    DEFF Research Database (Denmark)

    Genster, Ninette; Takahashi, Minoru; Sekine, Hideharu

    2014-01-01

    in complement activation, pathogen infection, coagulation, host tissue injury and developmental biology have been revealed by in vivo investigations. This review provides an overview of the mice deficient in lectin pathway molecules and highlights some of the most important findings that have resulted from......The lectin pathway of the complement system is initiated when the pattern-recognition molecules, mannose-binding lectin (MBL), ficolins or collectin-11, bind to invading pathogens or damaged host cells. This leads to activation of MBL/ficolin/collectin-11 associated serine proteases (MASPs), which...... in turn activate downstream complement components, ultimately leading to elimination of the pathogen. Mice deficient in the key molecules of lectin pathway of complement have been generated in order to build knowledge of the molecular mechanisms of the lectin pathway in health and disease. Despite...

  5. Glucose-6 phosphate dehydrogenase deficiency and psychotic illness

    Directory of Open Access Journals (Sweden)

    Vijender Singh

    2012-01-01

    Full Text Available Mr. T, a 28-year-old unmarried male, a diagnosed case of Glucose-6 Phosphate Dehydrogenase (G6PD deficiency since childhood, presented with 13 years of psychotic illness and disturbed biological functions. He showed poor response to antipsychotics and mood stabilizers and had three prior admissions to Psychiatry. There was a family history of psychotic illness. The General Physical Examination and Systemic Examination were unremarkable. Mental Status Examination revealed increased psychomotor activity, pressure of speech, euphoric affect, prolixity, delusion of persecution, delusion of grandiosity, delusion of control, thought withdrawal and thought insertion, and second and third person auditory hallucinations, with impaired judgment and insight. A diagnosis of schizophrenia paranoid type, with a differential diagnosis of schizoaffective disorder manic subtype, was made. This case is being reported for its rarity and atypicality of clinical presentation, as well as a course of psychotic illness in the G6PD Deficiency state,with its implications on management.

  6. New insights into iron deficiency and iron deficiency anemia.

    Science.gov (United States)

    Camaschella, Clara

    2017-02-13

    Recent advances in iron metabolism have stimulated new interest in iron deficiency (ID) and its anemia (IDA), common conditions worldwide. Absolute ID/IDA, i.e. the decrease of total body iron, is easily diagnosed based on decreased levels of serum ferritin and transferrin saturation. Relative lack of iron in specific organs/tissues, and IDA in the context of inflammatory disorders, are diagnosed based on arbitrary cut offs of ferritin and transferrin saturation and/or marker combination (as the soluble transferrin receptor/ferritin index) in an appropriate clinical context. Most ID patients are candidate to traditional treatment with oral iron salts, while high hepcidin levels block their absorption in inflammatory disorders. New iron preparations and new treatment modalities are available: high-dose intravenous iron compounds are becoming popular and indications to their use are increasing, although long-term side effects remain to be evaluated.

  7. Cryptosporidiosis in the acquired immune deficiency syndrome.

    Science.gov (United States)

    Cooper, D A; Wodak, A; Marriot, D J; Harkness, J L; Ralston, M; Hill, A; Penny, R

    1984-10-01

    Cryptosporidiosis was found in a patient with the acquired immune deficiency syndrome. The microbiological and morphological features of this newly recognized opportunistic infection are distinctive and diagnostic.

  8. Vitamin C deficiency in weanling guinea pigs

    DEFF Research Database (Denmark)

    Lykkesfeldt, Jens; Trueba, Gilberto Perez; Poulsen, Henrik E.

    2007-01-01

    Neonates are particularly susceptible to malnutrition due to their limited reserves of micronutrients and their rapid growth. In the present study, we examined the effect of vitamin C deficiency on markers of oxidative stress in plasma, liver and brain of weanling guinea pigs. Vitamin C deficiency...... increased, while protein oxidation decreased (P¼0003). The results show that the selective preservation of brain ascorbate and induction of DNA repair in vitamin C-deficient weanling guinea pigs is not sufficient to prevent oxidative damage. Vitamin C deficiency may therefore be particularly adverse during...

  9. Mannose Binding Lectin Deficiency and Clinical Features

    Directory of Open Access Journals (Sweden)

    Ertugrul Erken

    2013-08-01

    Full Text Available Innate immunity consists of macrophages, neutrophils, natural killer cells, mucosal immunuglobulins and the comlement system. Mannose binding lectin (MBL takes part in innate immunity through opsonisation and complement activation. MBL deficiency is associated with some infections and autoimmune disorders. However some studies indicate that MBL deficiency alone is not essential for immunity but it may intensify the clinic picture of an immune deficiency that already exists. This article refers to clincal studies related to MBL and brings up the clinical importance of MBL deficiency. [Archives Medical Review Journal 2013; 22(4.000: 565-574

  10. Genetics Home Reference: factor X deficiency

    Science.gov (United States)

    ... deficiency occurs in approximately 1 per million individuals worldwide. Related Information What information about a genetic condition can statistics provide? Why are some genetic conditions more common ...

  11. Iron deficiency anemia in heart failure.

    Science.gov (United States)

    Arora, Natasha P; Ghali, Jalal K

    2013-07-01

    Anemia and iron deficiency are quite prevalent in patients with heart failure (HF) and may overlap. Both anemia and iron deficiency are associated with worse symptoms and adverse clinical outcomes. In the past few years, there has been an enormous interest in the subject of iron deficiency and its management in patients with HF. In this review, the etiology and relevance of iron deficiency, iron metabolism in the setting of HF, studies on iron supplementation in patients with HF and potential cardiovascular effects of subclinical iron overload are discussed.

  12. Immunoglobulin class-switch recombination deficiencies.

    Science.gov (United States)

    Durandy, Anne; Kracker, Sven

    2012-07-30

    Immunoglobulin class-switch recombination deficiencies (Ig-CSR-Ds) are rare primary immunodeficiencies characterized by defective switched isotype (IgG/IgA/IgE) production. Depending on the molecular defect in question, the Ig-CSR-D may be combined with an impairment in somatic hypermutation (SHM). Some of the mechanisms underlying Ig-CSR and SHM have been described by studying natural mutants in humans. This approach has revealed that T cell-B cell interaction (resulting in CD40-mediated signaling), intrinsic B-cell mechanisms (activation-induced cytidine deaminase-induced DNA damage), and complex DNA repair machineries (including uracil-N-glycosylase and mismatch repair pathways) are all involved in class-switch recombination and SHM. However, several of the mechanisms required for full antibody maturation have yet to be defined. Elucidation of the molecular defects underlying the diverse set of Ig-CSR-Ds is essential for understanding Ig diversification and has prompted better definition of the clinical spectrum of diseases and the development of increasingly accurate diagnostic and therapeutic approaches.

  13. Hepcidin expression in the liver of rats fed a magnesium-deficient diet.

    Science.gov (United States)

    Ishizaki, Natsumi; Kotani, Megumi; Funaba, Masayuki; Matsui, Tohru

    2011-10-01

    Mg deficiency accelerates Fe accumulation in the liver, which may induce various metabolic disturbances. In the present study, we examined the gene expression of Hepcidin, a peptide hormone produced in the liver to regulate intestinal Fe absorption negatively, in Mg-deficient rats. Although liver Fe concentration was significantly higher in rats fed an Mg-deficient diet for 4 weeks than in rats fed a control diet, Hepcidin expression in the liver was comparable between the dietary groups. Previous studies revealed that Fe overload up-regulated Hepcidin expression through transcriptional activation by Fe-induced bone morphogenetic protein (Bmp) 6, a growth/differentiation factor belonging to the transforming growth factor-β family, in the liver. Mg deficiency up-regulated the expression of Bmp6 but did not affect the expression of inhibition of DNA binding 1, a sensitive Bmp-responsive gene. In addition, the expression of Bmp receptors such as activin receptor-like kinase 2 (Alk2), activin receptor type IIA (Actr2a), activin receptor type IIB (Actr2b) and Bmp type II receptor (Bmpr2) was lower in the liver of Mg-deficient rats than in that of control rats. The present study indicates that accumulation of hepatic Fe by Mg deficiency is a stimulant inducing Bmp6 expression but not Hepcidin expression by blunting Bmp signalling possibly resulting from down-regulation of the receptor expression. Unresponsive Hepcidin expression may have a role in Mg deficiency-induced changes related to increased liver Fe.

  14. Present status of understanding on the G6PD deficiency and natural selection

    Directory of Open Access Journals (Sweden)

    Tripathy V

    2007-01-01

    Full Text Available G6PD deficiency is a common hemolytic genetic disorder, particularly in the areas endemic to malaria. Individuals are generally asymptomatic and hemolytic anemia occurs when some anti-malarial drugs or other oxidizing chemicals are administered. It has been proposed that G6PD deficiency provides protection against malaria. Maintaining of G6PD deficient alleles at polymorphic proportions is complicated because of the X-linked nature of G6PD deficiency. A comprehensive review of the literature on the hypothesis of malarial protection and the nature of the selection is being presented. Most of the epidemiological, in vitro and in vivo studies report selection for G6PD deficiency. Analysis of the G6PD gene also reveals that G6PD-deficient alleles show some signatures of selection. However, the question of how this polymorphism is being maintained remains unresolved because the selection/fitness coefficients for the different genotypes in the two sexes have not been established. Prevalence of G6PD deficiency in Indian caste and tribal populations and the different variants reported has also been reviewed.

  15. A case report: Familial glucocorticoid deficiency associated with familial focal segmental glomerulosclerosis

    Directory of Open Access Journals (Sweden)

    Ram Nanik

    2012-12-01

    Full Text Available Abstract Background Familial glucocorticoid deficiency (FGD is a rare autosomal recessive disorder characterized by isolated glucocorticoid deficiency in the presence of normal plasma renin and aldosterone level. Focal segmental glomerulosclerosis (FSGS is a form of glomerular disease associated with proteinuria and nephritic syndrome. This is the first case of familial glucocorticoid deficiency associated with familial focal segmental glomerulosclerosis. Case presentation An eight month old boy presented with increased genital pigmentation. Initial investigation revealed that he was glucocorticoid deficient and was started on hydrocortisone and fludrocortisone with a diagnosis of primary adrenal insufficiency. Later fludrocortisone was withdrawn and he was diagnosed to have isolated glucocorticoid deficiency. He later developed focal segmental glomerulosclerosis for which he underwent renal transplantation at the age of five years. Now at the age of twelve years, this boy is doing well on hydrocortisone treatment. His two siblings and a first degree cousin also had isolated glucocorticoid deficiency. One of the above two siblings died due to renal failure secondary to focal segmental glomerulosclerosis. Conclusion Patients with familial glucocorticoid deficiency should be carefully followed for development of features of nephrotic syndrome.

  16. Characterization of MxFIT, an iron deficiency induced transcriptional factor in Malus xiaojinensis.

    Science.gov (United States)

    Yin, Lili; Wang, Yi; Yuan, Mudan; Zhang, Xinzhong; Xu, Xuefeng; Han, Zhenhai

    2014-02-01

    Iron deficiency often results in nutritional disorder in fruit trees. Transcription factors play an important role in the regulation of iron uptake. In this study, we isolated an iron deficiency response transcription factor gene, MxFIT, from an iron-efficient apple genotype of Malus xiaojinensis. MxFIT encoded a basic helix-loop-helix protein and contained a 966 bp open reading frame. MxFIT protein was targeted to the nucleus in onion epidermal cells and showed strong transcriptional activation in yeast cells. Spatiotemporal expression analysis revealed that MxFIT was up-regulated in roots under iron deficiency at both mRNA and protein levels, while almost no expression was detected in leaves irrespective of iron supply. Ectopic expression of MxFIT resulted in enhanced iron deficiency responses in Arabidopsis under iron deficiency and stronger resistance to iron deficiency. Thus, MxFIT might be involved in iron uptake and plays an important role in iron deficiency response.

  17. State of cognitive development in children 5-6 years of age with nutritional iron deficiency

    Directory of Open Access Journals (Sweden)

    Chechel V.V.

    2014-06-01

    Full Text Available Features of the development of cognitive functions in children 5-6 years of age with iron deficiency (ID were studied and the relationship of the revealed features of iron deficiency degree was established. After clinical and laboratory examination 205 children aged 5-6 years, pupils of pre-school institutions were included in the study. The core group consisted of 155 children, including 105 children with latent iron deficiency (LID and 50 children with iron deficiency anemia (IDA I degree. The control group consisted of 50 healthy children. To study cognitive function, "Approximate comprehensive program of study of children's readiness for school" was used. A significant decrease of average data of all mental functions (perception, memory, language, thinking, ima¬gination in children 5-6 years old with ID, most pronounced in children with IDA was revealed. Indicators of cognitive functions correspond predominantly to a mild and moderate level of development in children with IDA, the average - in children with LID, good and high - in healthy children. There was a significant direct correlation between the level of cognitive functioning and the level of hemoglobin, serum iron and ferritin. The effect of iron deficiency on the development of indicators of cognitive function toward their reduce in preschool children was established. The level of cognitive functioning depends on the degree of iron deficiency.

  18. Aromatic L-amino acid decarboxylase deficiency diagnosed by clinical metabolomic profiling of plasma.

    Science.gov (United States)

    Atwal, Paldeep S; Donti, Taraka R; Cardon, Aaron L; Bacino, C A; Sun, Qin; Emrick, L; Reid Sutton, V; Elsea, Sarah H

    2015-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is an inborn error of metabolism affecting the biosynthesis of serotonin, dopamine, and catecholamines. We report a case of AADC deficiency that was detected using the Global MAPS platform. This is a novel platform that allows for parallel clinical testing of hundreds of metabolites in a single plasma specimen. It uses a state-of-the-art mass spectrometry platform, and the resulting spectra are compared against a library of ~2500 metabolites. Our patient is now a 4 year old boy initially seen at 11 months of age for developmental delay and hypotonia. Multiple tests had not yielded a diagnosis until exome sequencing revealed compound heterozygous variants of uncertain significance (VUS), c.286G>A (p.G96R) and c.260C>T (p.P87L) in the DDC gene, causal for AADC deficiency. CSF neurotransmitter analysis confirmed the diagnosis with elevated 3-methoxytyrosine (3-O-methyldopa). Metabolomic profiling was performed on plasma and revealed marked elevation in 3-methoxytyrosine (Z-score +6.1) consistent with the diagnosis of AADC deficiency. These results demonstrate that the Global MAPS platform is able to diagnose AADC deficiency from plasma. In summary, we report a novel and less invasive approach to diagnose AADC deficiency using plasma metabolomic profiling.

  19. Photodissociation of neutron deficient nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sonnabend, K.; Babilon, M.; Hasper, J.; Mueller, S.; Zarza, M.; Zilges, A. [TU Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)

    2006-03-15

    The knowledge of the cross sections for photodissociation reactions like e.g. ({gamma}, n) of neutron deficient nuclei is of crucial interest for network calculations predicting the abundances of the so-called p nuclei. However, only single cross sections have been measured up to now, i.e., one has to rely nearly fully on theoretical predictions. While the cross sections of stable isotopes are accessible by experiments using real photons, the bulk of the involved reactions starts from unstable nuclei. Coulomb dissociation (CD) experiments in inverse kinematics might be a key to expand the experimental database for p-process network calculations. The approach to test the accuracy of the CD method is explained. (orig.)

  20. [Iron deficiency in the elderly].

    Science.gov (United States)

    Helsen, Tuur; Joosten, Etienne

    2016-06-01

    Anemia is a common diagnosis in the geriatric population, especially in institutionalized and hospitalized elderly. Most common etiologies for anemia in elderly people admitted to a geriatric ward are iron-deficiency anemia and anemia associated with chronic disease. Determination of serum ferritin is the most used assay in the differential diagnosis, despite low sensitivity and moderate specificity. New insights into iron homeostasis lead to new diagnostic assays such as serum hepcidin, serum transferrin receptor and reticulocyte hemoglobin equivalent.Importance of proper diagnosis and treatment for this population is large since there is a correlation between anemia and morbidity - mortality. Anemia is usually defined as hemoglobin less than 12 g/dl for women and less than 13 g/dl for men. There is no consensus for which hemoglobinvalue an investigation into underlying pathology is obligatory. This needs to be evaluated depending on functional condition of the patient.

  1. [delta-Aminolevulinate dehydratase deficiency].

    Science.gov (United States)

    Fujita, H; Ishida, N; Akagi, R

    1995-06-01

    delta-Aminolevulinate dehydratase (ALAD: E. C. 4.2.1.24), the second enzyme in the heme biosynthetic pathway, condenses two moles of delta-aminolevulinic acid to form porphobilinogen. ALAD deficiency is well known to develop signs and symptoms of typical hepatic porphyria, and classified into three categories as follows: (i) ALAD porphyria, a genetic defect of the enzyme, (ii) tyrosinemia type I, a genetic defect of fumarylacetoacetase in the tyrosine catabolic pathway, producing succinylacetone (a potent inhibitor of ALAD), and (iii) ALAD inhibition by environmental hazards, such as lead, trichloroethylene, and styrene. In the present article, we will describe molecular and biochemical mechanisms to cause the enzyme defect to discuss the significance of ALAD defect on human health.

  2. Carbohydrate deficient transferrin and alcoholism.

    Science.gov (United States)

    Solomons, Hilary Denis

    2012-06-01

    Alcohol abuse is an important public health problem, with major implications in patients with a pre-existing liver pathology of viral origin. Hepatitis C, for example, is one of the diseases in which alcohol consumption can lead to the transition from a fairly benign outline to a potentially life-threatening liver disease. Alcohol abuse is usually identified on the basis of clinical judgment, alcoholism related questionnaires, laboratory tests and, more recently, biomarkers. Also on this list of tests, carbohydrate deficient transferrin (CDT) is widely available and useful for determining recent alcohol consumption, particularly when corroborated with elevation of other liver-associated enzymes. Clinicians should be aware of the indications and limitations of this test in order to better evaluate alcohol consumption in their patients.

  3. Genetic causes for iron deficiency

    OpenAIRE

    Saad,Sara Teresinha O.

    2010-01-01

    As causas genéticas de deficiência de ferro, real ou funcional, ocorrem por defeitos em muitas proteínas envolvidas na absorção e metabolismo de ferro. Neste capítulo descreveremos sucintamente causas genéticas de carência de ferro para a síntese de hemoglobina, que cursa então com anemia microcítica e hipocrômica. Ressalto que estas são alterações raras, com poucas descrições na literatura. Em alguns casos, o ferro funcional não está disponível para os eritroblastos sintetizarem hemoglobina,...

  4. B12 Deficiency with Children

    Directory of Open Access Journals (Sweden)

    Selahattin Katar

    2007-01-01

    Full Text Available Aim of the study: to rewieved the clinical and laboratory properties of seven cases with megaloblastic anemia. Clinical and laboratory findings of seven cases with megaloblastic anemia are described. İt is determined that all of the patients received little or no animal products by nutritional history. Clinically apatite, malasia, headeche, otism, and parestheia in the lower extremities and foods were present in patients. On physical examination; four patients had glossit, four had hyporeflexia, one had ataxia. Folat level was normal and B12 vitamin level was low in all patients. The MCV (mean corpuscular volume was normal in three patients. Hypersegmentation of neutrophil was observed in all patients, leukopenia in two, and trombocytopenia was observed in one patient.Conclusion: it is suggested B12 vitamin deficiency in the patients that received little or no animal products by nutritional history. However, hypersegmentation of neutrophil in peripheral blood sample is an important finding for diagnosis of megaloblastic anemia.

  5. Properdin deficiency associated with recurrent otitis media and pneumonia, and identification of male carrier with Klinefelter syndrome.

    Science.gov (United States)

    Schejbel, Lone; Rosenfeldt, Vibeke; Marquart, Hanne; Valerius, Niels Henrik; Garred, Peter

    2009-06-01

    Properdin is an initiator and stabilizer of the alternative complement activation pathway (AP). Deficiency of properdin is a rare X-linked condition characterized by increased susceptibility to infection with Neisseria meningitidis associated with a high mortality rate. We report properdin deficiency in a large Pakistani family. The index cases were found by screening for immunodeficiency due to a history of recurrent infections. This revealed absent AP activity, but normal classical and lectin pathway activity. Sequencing of the properdin gene (PFC) revealed a novel frameshift mutation. When all available relatives (n=24) were screened for the mutation, four affected males, four female carriers and a male heterozygous carrier were identified. He was subsequently diagnosed with Klinefelter syndrome. A questionnaire revealed a striking association between properdin deficiency and recurrent otitis media (P=0.0012), as well as recurrent pneumonia (P=0.0017). This study is the first to show a significant association between properdin deficiency and recurrent infections.

  6. Vitamin D deficiency in adolescents.

    Science.gov (United States)

    Soliman, Ashraf T; De Sanctis, Vincenzo; Elalaily, Rania; Bedair, Said; Kassem, Islam

    2014-11-01

    The prevalence of severe vitamin D deficiency (VDD) in adolescents is variable but considerably high in many countries, especially in Middle-east and Southeast Asia. Different factors attribute to this deficiency including lack of sunlight exposure due to cultural dress codes and veiling or due to pigmented skin, and less time spent outdoors, because of hot weather, and lower vitamin D intake. A potent adaptation process significantly modifies the clinical presentation and therefore clinical presentations may be subtle and go unnoticed, thus making true prevalence studies difficult. Adolescents with severe VDD may present with vague manifestations including pain in weight-bearing joints, back, thighs and/or calves, difficulty in walking and/or climbing stairs, or running and muscle cramps. Adaptation includes increased parathormone (PTH) and deceased insulin-like growth factor-I (IGF-I) secretion. PTH enhances the tubular reabsorption of Ca and stimulates the kidneys to produce 1, 25-(OH) 2D3 that increases intestinal calcium absorption and dissolves the mineralized collagen matrix in bone, causing osteopenia and osteoporosis to provide enough Ca to prevent hypocalcaemia. Decreased insulin like growth factor-I (IGF-I) delays bone growth to economize calcium consumption. Radiological changes are not uncommon and include osteoporosis/osteopenia affecting long bones as well as vertebrae and ribs, bone cysts, decalcification of the metaphysis of the long bones and pseudo fractures. In severe cases pathological fractures and deformities may occur. Vitamin D treatment of adolescents with VDD differs considerably in different studies and proved to be effective in treating all clinical, biochemical, and radiological manifestations. Different treatment regiments for VDD have been discussed and presented in this mini-review for practical use. Adequate vitamin D replacement after treating VDD, improving calcium intake (milk and dairy products), encouraging adequate exposure

  7. The GH-IGF1 axis and longevity. The paradigm of IGF1 deficiency.

    Science.gov (United States)

    Laron, Zvi

    2008-01-01

    Primary or secondary IGF1 deficiency has been implicated in shortening of lifespan. This paper reviews available data on the influence of IGF1 deficiency on lifespan and longevity in animals and man. It has been shown that inactivation of the IGF1 gene or of the GH receptor in both invertebrates (C-elegans, flies-Drosphila) and rodents (mice and rats), leading to IGF1 deficiency, prolong life, particularly in females. In man, evaluation of the 2 largest cohorts of patients with Laron syndrome (inactive GH receptor resulting in IGF1 deficiency) in Israel and Ecuador revealed that despite their dwarfism and marked obesity, patients are alive at the ages of 75-78 years, with some having reached even more advanced ages. It is assumed that a major contributing factor is their protection from cancer, a major cause of death in the general population.

  8. Cobalamin deficiency resulting in a rare haematological disorder: a case report

    Directory of Open Access Journals (Sweden)

    Chapuis Thomas M

    2009-10-01

    Full Text Available Abstract Introduction We present the case of a patient with a cobalamin deficiency resulting in pancytopaenia, emphasizing the importance to define, diagnose and treat cobalamin deficiency. Case presentation A 52-year-old man from the Democratic Republic of Congo presented to the emergency department with shortness of breath and a sore tongue. Physical examination was unremarkable. His haemoglobin was low and the peripheral blood smear revealed pancytopaenia with a thrombotic microangiopathy. The findings were low cobalamin and folate levels, and high homocysteine and methylmalonate levels. Pernicious anaemia with chronic atrophic gastritis was confirmed by gastric biopsy and positive antiparietal cell and anti-intrinsic factor antibodies. Cobalamin with added folate was given. Six months later, the patient was asymptomatic. Conclusion Cobalamin deficiency should always be ruled out in a patient with pancytopaenia. Our case report highlights a life-threatening cobalamin deficiency completely reversible after treatment.

  9. Coexistence of megaloblastic anemia and iron deficiency anemia in a young woman with chronic lymphocytic thyroiditis.

    Science.gov (United States)

    Chen, Shih-Hsiang; Hung, Chia-Sui; Yang, Chao-Ping; Lo, Fu-Sung; Hsu, Hsun-Hui

    2006-10-01

    Pernicious anemia is a megaloblastic anemia caused by vitamin B12 deficiency, and is the end-stage of autoimmune gastritis that typically affects persons older than 60 years. It is the most common cause of vitamin B12 deficiency. Pernicious anemia can also be diagnosed concurrently with other autoimmune diseases. We report the occurrence of megaloblastic anemia in a 22-year-old woman with chronic autoimmune thyroiditis for 10.5 years. Recently, she presented with microcytic anemia, and iron deficiency anemia was diagnosed initially. After administration of ferrous sulfate, macrocytic anemia was revealed and vitamin B12 deficiency was detected. Pernicious anemia was highly suspected because of the endoscopic finding of atrophic gastritis, and high titer of antigastric parietal cell antibody, as well as elevated serum gastrin level. After intramuscular injections of hydroxycobalamine 100 microg daily for 10 days, and monthly later, her blood counts returned to normal.

  10. How common is vitamin B12 deficiency?

    Science.gov (United States)

    In considering the vitamin B-12 fortification of flour, it is important to know who is at risk of vitamin B-12 deficiency and whether those individuals would benefit from flour fortification.This article reviews current knowledge of the prevalence and causes of vitamin B-12 deficiency and considers ...

  11. Growth Hormone Deficiency, Brain Development, and Intelligence

    Science.gov (United States)

    Meyer-Bahlburg, Heino F. L.; And Others

    1978-01-01

    Available from: American Medical Association, 535 N. Dearborn Street, Chicago, Illinois 60610. In order to determine what effect, if any, growth hormone (GH) has on human brain development, 29 patients (mean age 11.7 years) with GH deficiency were selected according to the following criteria: no evidence of reversible GH deficiency, onset of…

  12. Duodenal Amyloidosis Masquerading as Iron Deficiency Anemia

    Science.gov (United States)

    Hurairah, Abu

    2016-01-01

    The present study is a unique illustration of duodenal amyloidosis initially manifesting with iron deficiency anemia. It underscores the importance of clinical suspicion of amyloidosis while performing upper gastrointestinal endoscopy with a biopsy to establish the definite diagnosis in patients with unexplained iron deficiency anemia. PMID:27625911

  13. Dietary recommendations in patients with deficiency anaemia

    Directory of Open Access Journals (Sweden)

    A. Santoyo-Sánchez

    2015-07-01

    Nutritionists should understand deficiency anaemia, and physicians, particularly general practitioners, should be aware of dietary requirements. In this article, therefore, both health care professionals have come together to briefly explain, with examples, the type of diet that should be recommended to patients with deficiency anaemia.

  14. An update on serine deficiency disorders

    NARCIS (Netherlands)

    van der Crabben, S. N.; Verhoeven-Duif, N. M.; Brilstra, E. H.; Van Maldergem, L.; Coskun, T.; Rubio-Gozalbo, E.; Berger, R.; de Koning, T. J.

    Serine deficiency disorders are caused by a defect in one of the three synthesising enzymes of the L-serine biosynthesis pathway. Serine deficiency disorders give rise to a neurological phenotype with psychomotor retardation, microcephaly and seizures in newborns and children or progressive

  15. Psychomotor development in children with iron deficiency and iron-deficiency anemia.

    Science.gov (United States)

    Pala, Emin; Erguven, Muferet; Guven, Sirin; Erdogan, Makbule; Balta, Tulin

    2010-09-01

    Iron deficiency and iron-deficiency anemia are the most common nutritional deficiencies in children, especially in developing countries. Iron-deficiency anemia in infancy is associated with impaired neurodevelopment. Studies have shown an association between iron deficiency without anemia and adverse effects on psychomotor development. To determine the effects of iron deficiency and iron-deficiency anemia on psychomotor development in childhood. . We evaluated psychomotor development in healthy children with iron deficiency and iron-deficiency anemia with the use of the Denver II Developmental Screening Test (DDST-II). If the child score was more than 90th percentile compared to children in the same age group, the test was scored as "delay" it was scored as a "caution" if the child score was between the 75th and 90th percentiles. The test result was interpreted as "normal," if there was no delay and only one "caution" for any item. If the child had one or more "delays" or more than two "cautions," the result was classified as "abnormal." DDST-II scores were abnormal in 67.3% of subjects with iron-deficiency anemia, 21.6% of those with iron deficiency, and 15.0% of control subjects. The difference from the control group in the percentage of abnormal scores was significant for subjects with iron-deficiency anemia (p iron deficiency (p = 0.203); p > .05. (p-value, post-hoc comparison of 2 groups.) Iron-deficiency anemia impaired psychomotor development during childhood. However, the evidence on the adverse effects of iron deficiency remains controversial. The Denver II Developmental Screening Test is a valuable test to detect early developmental delays, especially in infants with risk factors.

  16. The Arteriovenous Difference in Hemostatic Parameters in Critically Ill Patients with Different Types of Energy Deficiency

    Directory of Open Access Journals (Sweden)

    I. B Zabolotskikh

    2013-01-01

    Full Text Available Objective: to reveal the patterns of hemostatic disorder development in the venous and arterial bed in relation to the type of energy deficiency. Subjects and methods. One hundred and ninety-nine patients who had undergone extensive abdominal surgeries (gastrectomy, pancreatoduodenectomies, hemicolectomies, hepatectomies, etc. were examined. Among the patients, there were 5 groups: a control group without energy deficiency and 4 groups of patients who were recorded to have one of the types of energy deficiency: substrate, hypermetabolic, hypoxic, and enzymatic. Results and discussion. The nature and degree of existing metabolic disturbances and changes in the arteriovenous difference in hemostasiological parameters have a statistically proven relationship (on the basis of ROC analysis. Substrate energy deficiency was characterized by the insignificant changes in the hemostatic system as a whole, which affect only its coagulation component; the arteriovenous difference in hemostasiological parameters was similar to that in the patients without energy deficiency. In hypermetabolic energy deficiency, the venous bed demonstrated the most pronounced hemostatic changes (hypercoagulation, suppressed fibrinolysis, and enhanced platelet aggregation. The hemostatic changes that were more significant than those in the above group were responsible for the formation of a significant arteriovenous difference in the hemostasiological parameters; however, the direction of this difference did not differ from that in the patients without energy deficiency. In hypoxic energy deficiency, hemostatic disorders were heterodirectional in the arterial and venous bed (these were most marked in the arterial bed — hypercoagulation, activated fibrinolysis, and enhanced platelet aggregation therefore there was a significant arteriovenous difference in the hemostasiological parameters, which was opposite as compared to that in the patients without energy deficiency. In

  17. Prevalence of Color Vision Deficiency in Qazvin

    Directory of Open Access Journals (Sweden)

    Mohammad khalaj

    2014-01-01

    Full Text Available Background: Color vision deficiency (CVD is an X chromosome-linked recessive autosomal dominant. Determine the prevalence of color blindness in Qazvin population. Materials and Methods: In a cross sectional study color vision deficiency examined in 1853 individuals with age 10-25 years old who participated in private clinics and eye clinic of Bu-Ali hospital in Qazvin in 2010. The screening of color vision deficiency was performed using Ishihara test. Data were analyzed by SPSS-16 with χP2P test with p<0.05. Results: Mean age of participant was 17.86±4.48 years. 59.5% of them were female. 3.49% of the total population had color vision deficiency that 0.93% and 2.56% were female and male respectively. Conclusion: color vision deficiency must be noticed by decision makers in health field for screen planning.

  18. Molecular diagnosis of coenzyme Q10 deficiency.

    Science.gov (United States)

    Yubero, Delia; Montero, Raquel; Armstrong, Judith; Espinós, Carmen; Palau, Francesc; Santos-Ocaña, Carlos; Salviati, Leonardo; Navas, Placido; Artuch, Rafael

    2015-01-01

    Coenzyme Q10 (CoQ) deficiency syndromes comprise a growing number of neurological and extraneurological disorders. Primary-genetic but also secondary CoQ deficiencies have been reported. The biochemical determination of CoQ is a good tool for the rapid identification of CoQ deficiencies but does not allow the selection of candidate genes for molecular diagnosis. Moreover, the metabolic pathway for CoQ synthesis is an intricate and not well-understood process, where a large number of genes are implicated. Thus, only next-generation sequencing techniques (either genetic panels of whole-exome and -genome sequencing) are at present appropriate for a rapid and realistic molecular diagnosis of these syndromes. The potential treatability of CoQ deficiency strongly supports the necessity of a rapid molecular characterization of patients, since primary CoQ deficiencies may respond well to CoQ treatment.

  19. [Vitamin B12 deficiency in the elderly].

    Science.gov (United States)

    Leischker, A H; Kolb, G F

    2015-01-01

    The prevalence of vitamin B12 deficiency increases with age. Patients with dementia and spouses of patients with dementia are at special risk for the development of vitamin B12 deficiency. In a normal diet this vitamin is present only in animal source foods; therefore, vegans frequently develop vitamin B12 deficiency if not using supplements or foods fortified with cobalamin. Apart from dementia, most of these manifestations are completely reversible under correct therapy; therefore it is crucial to identify and to treat even atypical presentations of vitamin B12 deficiency as early as possible. This article deals with the physiology and pathophysiology of vitamin B12 metabolism. A practice-oriented algorithm which also considers health economic aspects for a rational laboratory diagnosis of vitamin B12 deficiency is presented. In cases with severe neurological symptoms, therapy should be parenteral, especially initially. For parenteral treatment, hydroxocobalamin is the drug of choice.

  20. [Trial of indirect screening of tetrahydrobiopterin deficiency].

    Science.gov (United States)

    Ferraris, S; Guardamagna, O; Bracco, G; Ponzone, A

    1987-01-01

    The possibility of an early diagnosis of tetrahydrobiopterin deficiency among hyperphenylalaninemic infants, when specific screening tests cannot be performed, was evaluated. Three tetrahydrobiopterin deficient patients, two with dihydropteridine reductase deficiency and one with dihydrobiopterin synthetase deficiency were examined together with their parents and compared with twelve phenylketonuric patients, their parents and sixteen normal subjects. The parameters considered in the hyperphenylalaninemic patients (degree of neonatal hyperphenylalaninemia, phenylalanine lowering speed in response to a restricted diet, dietary tolerance to phenylalanine, oral phenylalanine load) were found to be insufficiently or lately indicative. By contrast, heterozygosity tests (molar ratio (Phe)2/Tyr and sigma discriminant function) performed on the parents allowed a suspicion of tetrahydrobiopterin deficiency, the definite diagnosis being of course based upon specific investigations.

  1. Recurrent Isolated Neonatal Hemolytic Anemia: Think About Glutathione Synthetase Deficiency.

    Science.gov (United States)

    Signolet, Isabelle; Chenouard, Rachel; Oca, Florine; Barth, Magalie; Reynier, Pascal; Denis, Marie-Christine; Simard, Gilles

    2016-09-01

    Hemolytic anemia (HA) of the newborn should be considered in cases of rapidly developing, severe, or persistent hyperbilirubinemia. Several causes of corpuscular hemolysis have been described, among which red blood cell enzyme defects are of particular concern. We report a rare case of red blood cell enzyme defect in a male infant, who presented during his first months of life with recurrent and isolated neonatal hemolysis. All main causes were ruled out. At 6.5 months of age, the patient presented with gastroenteritis requiring hospitalization; fortuitously, urine organic acid chromatography revealed a large peak of 5-oxoproline. Before the association between HA and 5-oxoprolinuria was noted, glutathione synthetase deficiency was suspected and confirmed by a low glutathione synthetase concentration and a collapse of glutathione synthetase activity in erythrocytes. Moreover, molecular diagnosis revealed 2 mutations in the glutathione synthetase gene: a previously reported missense mutation (c.[656A>G]; p.[Asp219Gly]) and a mutation not yet described in the binding site of the enzyme (c.[902T>C]; p.[Leu301Pro]). However, 15 days later, a control sample revealed no signs of 5-oxoprolinuria and the clinical history discovered administration of acetaminophen in the 48 hours before hospitalization. Thus, in this patient, acetaminophen exposure allowed the diagnosis of a mild form of glutathione synthetase deficiency, characterized by isolated HA. Early diagnosis is important because treatment with bicarbonate, vitamins C and E, and elimination of trigger factors are recommended to improve long-term outcomes. Glutathione synthetase deficiency should be screened for in cases of unexplained newborn HA. Copyright © 2016 by the American Academy of Pediatrics.

  2. A Treatable Cause of Cardiomyopathy: Vitamin D Deficiency

    Directory of Open Access Journals (Sweden)

    Erdal Eren

    2015-08-01

    Full Text Available Dilated cardiomyopathy is an important cause of heart failure in children. Medical therapy rarely results in complete improvement of the disease, treatment of which usually requires transplantation. Herein, we present a patient with cardiomyopathy and rickets. Case report: A 3-month-old boy was referred to Pediatric Endocrinology Clinic due to low calcium level. On his physical examination, enlarged wrists and large anterior fontanel were remarkable. Results of laboratory analyses revealed a calcium level of 6.8 mg/dL, phosphorus level of 4.9 mg/dL, alkaline phosphatase level of 1637 U/L, parathyroid hormone level of 191.2 pg/ mL, and 25-hydroxyvitamin D level of 5.7 ng/mL. Hand-wrist radiograph revealed signs consistent with rickets. Echocardiogram revealed dilated left ventricle, hypokinetic myocardium, an ejection fraction of 42%, and fractional shortening by 20%. Oral calcium lactate was started and then vitamin D treatment was added. At the 3rd month of the therapy, laboratory tests completely returned to normal and signs of rickets disappeared. Echocardiogram findings returned to normal. Since cardiac functions began to improve after the therapy, dilated cardiomyopathy associated with vitamin D deficiency was considered. Vitamin D deficiency should be considered while evaluating dilated cardiomyopathy in the regions that are endemic for nutritional rickets and it should be kept in mind that the therapy may provide dramatic improvement

  3. Changing scenario of micronutrient deficiencies in India during four decades and its impact on crop responses and nutritional health of human and animals

    OpenAIRE

    M. V. Singh; Narwal, R P; G, Bhupal Raj; Patel, K P; Sadana, U S

    2009-01-01

    Changing scenario of micronutrient deficiencies phase wise during four decades (1968-2008) was studied in soils of India, their impact of crop production and changes in micronutrient concentration in seeds and fodders, thereby influences on animal and human health. Results of 269,000 soil sample analysis revealed that mean deficiency of zinc, iron, copper, manganese, boron, molybdenum was found in 49, 12, 3, 5, 33 and 13% samples, respectively. Throughout country, zinc deficiency is increasin...

  4. Calnexin deficiency and endoplasmic reticulum stress-induced apoptosis.

    Science.gov (United States)

    Zuppini, Anna; Groenendyk, Jody; Cormack, Lori A; Shore, Gordon; Opas, Michal; Bleackley, R Chris; Michalak, Marek

    2002-02-26

    In this study, we used calnexin-deficient cells to investigate the role of this protein in ER stress-induced apoptosis. We found that calnexin-deficient cells are relatively resistant to ER stress-induced apoptosis. However, caspase 3 and 8 cleavage and cytochrome c release were unchanged in these cells, indicating that ER to mitochondria "communication" during apoptotic stimulation is not affected in the absence of calnexin. The Bcl-2:Bax ratio was also not significantly changed in calnexin-deficient cells regardless of whether the ER stress was induced with thapsigargin or not. Ca(2+) homeostasis and ER morphology were unaffected by the lack of calnexin, but ER stress-induced Bap31 cleavage was significantly inhibited. Immunoprecipitation experiments revealed that Bap31 forms complexes with calnexin, which may play a role in apoptosis. The results suggest that calnexin may not play a role in the initiation of the ER stress but that the protein has an effect on later apoptotic events via its influence on Bap31 function.

  5. Negev nutritional studies: nutritional deficiencies in young and elderly populations.

    Science.gov (United States)

    Fraser, D; Shahar, D; Shai, I; Vardi, H; Bilenko, N

    2000-01-01

    The importance of nutrition to public health and preventive medicine is evident. Undernutrition is a main nutritional risk factor in the elderly and has been established as a cause of excess morbidity and mortality in different segments of the older population. In the infant population, inadequate nutrition is one of the causes of iron-deficiency anemia, which is associated with impaired physical and cognitive development and lowered immunity. The aim of this paper was to estimate the nutritional pattern and micronutrient deficiencies in elderly and young populations in the Negev. In southern Israel, 351 subjects over 64 years old reported mean dietary intake that was lower than that in younger persons and was independent of the presence of chronic diseases. Current data from southern Israel on healthy Jewish children revealed anemia prevalence of 15% in the second year of life. Data from recent prospective study on Bedouin children showed that anemia affected one quarter of children at age one year. Thus, infants in this area are at high risk for iron deficiency. The findings require the attention of public health authorities and food manufacturers, and should result in a range of activities including publicity and educational programs, fortification of foods, and supplementation programs in high risk-groups.

  6. Spinal myoclonus associated with vitamin B12 deficiency.

    Science.gov (United States)

    Dogan, Ebru Apaydin; Yuruten, Betigul

    2007-11-01

    We report a 85-year-old female patient with involuntary and regular movements restricted to abdominal muscles, resembling belly dance, with additional clinical features; ataxia, impaired cognition, neuropathy and glossitis. We initially excluded the possible cortical and spinal structural abnormalities with magnetic resonance imagings and performed routine blood analysis which revealed that serum vitamin B12 (vB12) level was under normal ranges. The relation of low serum vB12 level and myoclonus is speculative and very few studies have demonstrated such patients. In this case report, serum vB12 deficiency is discussed in the context of its probable role in the generation of spinal myoclonus.

  7. Osteomyelitis in leukocyte adhesion deficiency type 1 syndrome

    DEFF Research Database (Denmark)

    Jabbari Azad, Farahzad; Ardalan, Maryam; H.Rafati, Ali;

    2010-01-01

    Leukocyte adhesion deficiency type 1 (LAD-1) is a rare, inherited immunodeficiency that affects one per million people yearly and usually presents with recurrent, indolent bacterial infections of the skin, mouth, and respiratory tract and impaired pus formation and wound healing. A 13-year-old gi......(10.60%). A plain radiography of the left leg revealed osteomyelitis. It is highly suggested that patients diagnosed mild to moderate LAD-1 with recurrent skin infection and simultaneous weak response to conventional therapy undergo (BMT) marrow transplant to prohibit subsequent life...

  8. On the real structure of profiled anion-deficient corundum

    Science.gov (United States)

    Maksimov, V. I.; Sokolov, V. I.; Surdo, A. I.; Abashev, R. M.; Yushkova, E. N.

    2017-02-01

    Profiled Al2O3 single crystals grown by Stepanov’s method to obtain anion-deficient composition were characterized by neutron diffraction at T=300 K for the first time. Whereas the main structure motif of investigated crystals is checked to be of corundum-type, the scattering pictures of as-grown crystal demonstrate pronounced anomalies being probably indications on substructure forming. However, neutron scanning of synthesised crystal taken after annealing under restoring conditions reveals additional effects associated with displacement type superstructure.

  9. Osteomyelitis in leukocyte adhesion deficiency type 1 syndrome

    DEFF Research Database (Denmark)

    Jabbari Azad, Farahzad; Ardalan, Maryam; H.Rafati, Ali

    2010-01-01

    Leukocyte adhesion deficiency type 1 (LAD-1) is a rare, inherited immunodeficiency that affects one per million people yearly and usually presents with recurrent, indolent bacterial infections of the skin, mouth, and respiratory tract and impaired pus formation and wound healing. A 13-year-old girl......(10.60%). A plain radiography of the left leg revealed osteomyelitis. It is highly suggested that patients diagnosed mild to moderate LAD-1 with recurrent skin infection and simultaneous weak response to conventional therapy undergo (BMT) marrow transplant to prohibit subsequent life...

  10. PNPO deficiency: an under diagnosed inborn error of pyridoxine metabolism.

    Science.gov (United States)

    Khayat, Morad; Korman, Stanley H; Frankel, Pnina; Weintraub, Zalman; Hershckowitz, Sylvia; Sheffer, Vered Fleisher; Ben Elisha, Mordechai; Wevers, Ronald A; Falik-Zaccai, Tzipora C

    2008-08-01

    The rare autosomal recessive disorder pyridoxine 5'-phosphate oxidase (PNPO) deficiency is a recently described cause of neonatal and infantile seizures. Clinical evaluation, and biochemical and genetic testing, were performed on a neonate with intractable seizures who did not respond to anticonvulsant drugs and pyridoxine. Sequencing of the PNPO gene revealed a novel homozygous c.284G>A transition in exon 3, resulting in arginine to histidine substitution and reduced activity of the PNPO mutant to 18% relative to the wild type. This finding enabled molecular prenatal diagnosis in a subsequent pregnancy, accurate genetic counseling in the large inbred family, and population screening.

  11. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes

    DEFF Research Database (Denmark)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate...... synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle...

  12. Caspase-1 deficiency in mice reduces intestinal triglyceride absorption and hepatic triglyceride secretion.

    Science.gov (United States)

    van Diepen, Janna A; Stienstra, Rinke; Vroegrijk, Irene O C M; van den Berg, Sjoerd A A; Salvatori, Daniela; Hooiveld, Guido J; Kersten, Sander; Tack, Cees J; Netea, Mihai G; Smit, Johannes W A; Joosten, Leo A B; Havekes, Louis M; van Dijk, Ko Willems; Rensen, Patrick C N

    2013-02-01

    Caspase-1 is known to activate the proinflammatory cytokines IL-1β and IL-18. Additionally, it can cleave other substrates, including proteins involved in metabolism. Recently, we showed that caspase-1 deficiency in mice strongly reduces high-fat diet-induced weight gain, at least partly caused by an increased energy production. Increased feces secretion by caspase-1-deficient mice suggests that lipid malabsorption possibly further reduces adipose tissue mass. In this study we investigated whether caspase-1 plays a role in triglyceride-(TG)-rich lipoprotein metabolism using caspase-1-deficient and wild-type mice. Caspase-1 deficiency reduced the postprandial TG response to an oral lipid load, whereas TG-derived fatty acid (FA) uptake by peripheral tissues was not affected, demonstrated by unaltered kinetics of [(3)H]TG-labeled very low-density lipoprotein (VLDL)-like emulsion particles. An oral gavage of [(3)H]TG-containing olive oil revealed that caspase-1 deficiency reduced TG absorption and subsequent uptake of TG-derived FA in liver, muscle, and adipose tissue. Similarly, despite an elevated hepatic TG content, caspase-1 deficiency reduced hepatic VLDL-TG production. Intestinal and hepatic gene expression analysis revealed that caspase-1 deficiency did not affect FA oxidation or FA uptake but rather reduced intracellular FA transport, thereby limiting lipid availability for the assembly and secretion of TG-rich lipoproteins. The current study reveals a novel function for caspase-1, or caspase-1-cleaved substrates, in controlling intestinal TG absorption and hepatic TG secretion.

  13. Vitamin D deficiency in adolescents

    Directory of Open Access Journals (Sweden)

    Ashraf T Soliman

    2014-01-01

    Full Text Available The prevalence of severe vitamin D deficiency (VDD in adolescents is variable but considerably high in many countries, especially in Middle-east and Southeast Asia. Different factors attribute to this deficiency including lack of sunlight exposure due to cultural dress codes and veiling or due to pigmented skin, and less time spent outdoors, because of hot weather, and lower vitamin D intake. A potent adaptation process significantly modifies the clinical presentation and therefore clinical presentations may be subtle and go unnoticed, thus making true prevalence studies difficult. Adolescents with severe VDD may present with vague manifestations including pain in weight-bearing joints, back, thighs and/or calves, difficulty in walking and/or climbing stairs, or running and muscle cramps. Adaptation includes increased parathormone (PTH and deceased insulin-like growth factor-I (IGF-I secretion. PTH enhances the tubular reabsorption of Ca and stimulates the kidneys to produce 1, 25-(OH 2D3 that increases intestinal calcium absorption and dissolves the mineralized collagen matrix in bone, causing osteopenia and osteoporosis to provide enough Ca to prevent hypocalcaemia. Decreased insulin like growth factor-I (IGF-I delays bone growth to economize calcium consumption. Radiological changes are not uncommon and include osteoporosis/osteopenia affecting long bones as well as vertebrae and ribs, bone cysts, decalcification of the metaphysis of the long bones and pseudo fractures. In severe cases pathological fractures and deformities may occur. Vitamin D treatment of adolescents with VDD differs considerably in different studies and proved to be effective in treating all clinical, biochemical, and radiological manifestations. Different treatment regiments for VDD have been discussed and presented in this mini-review for practical use. Adequate vitamin D replacement after treating VDD, improving calcium intake (milk and dairy products, encouraging

  14. Genetics Home Reference: ataxia with vitamin E deficiency

    Science.gov (United States)

    ... Home Health Conditions ataxia with vitamin E deficiency ataxia with vitamin E deficiency Printable PDF Open All ... Javascript to view the expand/collapse boxes. Description Ataxia with vitamin E deficiency is a disorder that ...

  15. Genetics Home Reference: iron-refractory iron deficiency anemia

    Science.gov (United States)

    ... refractory iron deficiency anemia iron-refractory iron deficiency anemia Enable Javascript to view the expand/collapse boxes. ... All Close All Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  16. Genetics Home Reference: alpha-methylacyl-CoA racemase deficiency

    Science.gov (United States)

    ... Email Facebook Twitter Home Health Conditions AMACR deficiency alpha-methylacyl-CoA racemase deficiency Enable Javascript to view ... boxes. Download PDF Open All Close All Description Alpha-methylacyl-CoA racemase (AMACR) deficiency is a disorder ...

  17. Genetic, molecular and functional analyses of complement factor I deficiency

    DEFF Research Database (Denmark)

    Nilsson, S.C.; Trouw, L.A.; Renault, N.;

    2009-01-01

    Complete deficiency of complement inhibitor factor I (FI) results in secondary complement deficiency due to uncontrolled spontaneous alternative pathway activation leading to susceptibility to infections. Current genetic examination of two patients with near complete FI deficiency and three...

  18. Creatine transporter deficiency: Novel mutations and functional studies

    Directory of Open Access Journals (Sweden)

    O. Ardon

    2016-09-01

    Full Text Available X-linked cerebral creatine deficiency (MIM 300036 is caused by deficiency of the creatine transporter encoded by the SLC6A8 gene. Here we report three patients with this condition from Israel. These unrelated patients were evaluated for global developmental delays and language apraxia. Borderline microcephaly was noted in one of them. Diagnosis was prompted by brain magnetic resonance imaging and spectroscopy which revealed normal white matter distribution, but absence of the creatine peak in all three patients. Biochemical testing indicated normal plasma levels of creatine and guanidinoacetate, but an increased urine creatine/creatinine ratio. The diagnosis was confirmed by demonstrating absent [14]C-creatine transport in fibroblasts. Molecular studies indicated that the first patient is hemizygous for a single nucleotide change substituting a single amino acid (c.619 C>T, p.R207W. Expression studies in HeLa cells confirmed the causative role of the R207W substitution. The second patient had a three base pair deletion in the SLC6A8 gene (c.1222_1224delTTC, p.F408del as well as a single base change (c.1254+1G>A at a splicing site in the intron-exon junction of exon 8, the latter occurring de novo. The third patient, had a three base pair deletion (c.1006_1008delAAC, p.N336del previously reported in other patients with creatine transporter deficiency. These three patients are the first reported cases of creatine transporter deficiency in Israel.

  19. Seventeen Alpha-hydroxylase Deficiency

    Directory of Open Access Journals (Sweden)

    Siew-Lee Wong

    2006-01-01

    Full Text Available Seventeen a-hydroxylase deficiency (17OHD is a rare form of congenital adrenal hyperplasia in which defects in the biosynthesis of cortisol and sex steroid result in mineralocorticoid excess, hypokalemic hypertension and sexual abnormalities such as pseudohermaphroditism in males, and sexual infantilism in females. The disease is inherited in an autosomal recessive pattern, and is caused by mutations in the gene encoding cytochrome P450c17 (CYP17, which is the single polypeptide that mediates both 17α-hydroxylase and 17,20-lyase activities. We report the case of a 15-year-old patient with 17OHD who had a female phenotype but male karyotype (46,XY. The diagnosis was made based on classical clinical features, biochemical data and molecular genetic study. Two mutations were identified by polymerase chain reaction amplification and sequencing, including a S106P point mutation in exon 2 and a 9-bp (GACTCTTTC deletion from nucleotide position 1519 in exon 8 of CYP17. The first of these mutations was found in the father and the second in the mother, and both have been previously reported in Asia. The patient's hypertension and hypokalemia resolved after glucocorticoid replacement and treatment with potassium-sparing diuretics. Sex hormone replacement was prescribed for induction of sexual development and reduction of the final height. Prophylactic gonadectomy was scheduled. In summary, 17OHD should be suspected in patients with hypokalemic hypertension and lack of secondary sexual development so that appropriate therapy can be implemented.

  20. Deficient Approaches to Human Neuroimaging

    Directory of Open Access Journals (Sweden)

    Johannes eStelzer

    2014-07-01

    Full Text Available Functional magnetic resonance imaging (fMRI is the workhorse of imaging-based human cognitive neuroscience. The use of fMRI is ever-increasing; within the last 4 years more fMRI studies have been published than in the previous 17 years. This large body of research has mainly focused on the functional localization of condition- or stimulus-dependent changes in the blood-oxygenation-level dependent (BOLD signal.In recent years, however, many aspects of the commonly practiced analysis frameworks and methodologies have been critically reassessed. Here we summarize these critiques, providing an overview of the major conceptual and practical deficiencies in widely used brain-mapping approaches, and exemplify some of these issues by the use of imaging data and simulations. In particular, we discuss the inherent pitfalls and shortcomings of methodologies for statistical parametric mapping. Our critique emphasizes recent reports of excessively high numbers of both false positive and false negative findings in fMRI brain mapping. We outline our view regarding the broader scientific implications of these methodological considerations and briefly discuss possible solutions.

  1. Testosterone deficiency and cardiovascular mortality

    Institute of Scientific and Technical Information of China (English)

    Abraham Morgentaler

    2015-01-01

    New concerns have been raised regarding cardiovascular (CV) risks with testosterone (T) therapy (TTh). These concerns are based primarily on two widely reported retrospective studies. However, methodological flaws and data errors invalidate both studies as credible evidence of risk. One showed reduced adverse events by half in T‑treated men but reversed this result using an unproven statistical approach. The authors subsequently acknowledged serious data errors including nearly 10% contamination of the dataset by women. The second study mistakenly used the rate of T prescriptions written by healthcare providers to men with recent myocardial infarction (MI) as a proxy for the naturally occurring rate of MI. Numerous studies suggest T is beneficial, including decreased mortality in association with TTh, reduced MI rate with TTh in men with the greatest MI risk prognosis, and reduced CV and overall mortality with higher serum levels of endogenous T. Randomized controlled trials have demonstrated benefits of TTh in men with coronary artery disease and congestive heart failure. Improvement in CV risk factors such as fat mass and glycemic control have been repeatedly demonstrated in T‑deficient men treated with T. The current evidence does not support the belief that TTh is associated with increased CV risk or CV mortality. On the contrary, a wealth of evidence accumulated over several decades suggests that low serum T levels are associated with increased risk and that higher endogenous T, as well as TTh itself, appear to be beneficial for CV mortality and risk.

  2. Antibiotic prophylaxis in primary immune deficiency disorders.

    Science.gov (United States)

    Kuruvilla, Merin; de la Morena, Maria Teresa

    2013-01-01

    Long-term prophylactic antibiotics are being widely implemented as primary or adjunctive therapy in primary immune deficiencies. This practice has transformed clinical outcomes in the setting of chronic granulomatous disease, complement deficiencies, Mendelian susceptibility to mycobacterial disease, Wiskott-Aldrich syndrome, hyper-IgE syndrome, Toll signaling defects, and prevented Pneumocystis in patients with T-cell deficiencies. Yet, controlled trials are few in the context of primary antibody deficiency syndromes, and most of this practice has been extrapolated from data in patients who are immune competent and with recurrent acute otitis media, chronic rhinosinusitis, cystic fibrosis, and bronchiectasis. The paucity of guidelines on the subject is reflected in recent surveys among practicing immunologists that highlight differences of habit regarding this treatment. Such discrepancies reinforce the lack of standard protocols on the subject. This review will provide evidence for the use of antibiotic prophylaxis in various primary immune deficiency populations, especially highlighting the role antibiotic prophylaxis in primary antibody deficiency syndromes. We also discussed the relationship of long-term antibiotic use and the prevalence of resistant pathogens. Overall, examination of available data on the use of prophylactic antibiotics in antibody deficiency syndromes merit future investigation in well-designed multicenter prospective trials because this population has few other management options.

  3. Reticulocyte maturity indices in iron deficiency anemia

    Directory of Open Access Journals (Sweden)

    Muriel Wollmann

    2014-01-01

    Full Text Available Objective: The aim of this study was to analyze the reticulocyte maturity indices (low, medium, and high fluorescence ratios in iron deficient 1- to 6-year-old children, and identify the prevalence of iron deficiency anemia in this population. Methods: The present study included 39 subjects, divided into two groups: control subjects (n = 33, and subjects with iron deficiency anemia (n = 6. The results were analyzed by Student's t-test for comparison of means. Differences were considered significant when two-tailed p-value < 0.05. Results: Subjects with iron deficiency anemia presented increases in the proportion of mean (10.3 ± 4.7% vs. 6.0 ± 3.4%; p-value = 0.003, and high fluorescence reticulocytes (2.3 ± 0.87% vs. 0.9 ± 0.9%; p-value = 0.03 compared to the control group. The prevalence of anemia in this population was 15% (n = 6. Conclusion: The indices related to immaturity of reticulocytes are higher in the presence of iron deficiency, thus demonstrating a deficiency in the raw material to form hemoglobin and are, therefore, possible early markers of iron deficiency and anemia. We emphasize the need to standardize these indices for use in clinical practice and lab test results.

  4. Perinatal iron deficiency and neurocognitive development

    Directory of Open Access Journals (Sweden)

    Emily Clare Radlowski

    2013-09-01

    Full Text Available Iron deficiency is the most common form of nutrient deficiency worldwide. It is highly prevalent due to the limited availability of high quality food in developing countries, and poor dietary habits in industrialized countries. According to the World Health Organization, it affects nearly 2 billion people and up to 50% of women who are pregnant. Maternal anemia during pregnancy is especially burdensome to healthy neurodevelopment in the fetus because iron is needed for proper neurogenesis, development, and myelination. Maternal anemia also increases the risk of low birth weight, either due to premature birth or fetal growth restriction, which is associated with delayed neurocognitive development and even psychiatric illness. As rapid neurodevelopment continues after birth infants that received sufficient iron in utero, but that receive a low iron diet after 6 months of age, also show deficits in neurocognitive development, including impairments in learning and memory. Unfortunately, the neurocognitive complications of iron deficiency during critical pre- and postnatal periods of brain development are difficult to remedy, persisting into adulthood. Thus, preventing iron deficiency in the pre- and postnatal periods is critical as is devising new means to recapture cognitive function in individuals who experienced early iron deficiency. This review will discuss the prevalence of pre- and postnatal iron deficiency, the mechanism, and effects of iron deficiency on brain and cognitive development.

  5. Treatment of zinc deficiency without zinc fortification

    Institute of Scientific and Technical Information of China (English)

    Donald OBERLEAS; Barbara F. HARLAND

    2008-01-01

    Zinc (Zn) deficiency in animals became of interest until the 1950s. In this paper, progresses in researches on physi-ology of Zn deficiency in animals, phytate effect on bioavailability of Zn, and role of phytase in healing Zn deficiency of animals were reviewed. Several studies demonstrated that Zn is recycled via the pancreas; the problem of Zn deficiency was controlled by Zn homeostasis. The endogenous secretion of Zn is considered as an important factor influencing Zn deficiency, and the critical molar ratio is 10. Phytate (inositol hexaphosphate) constituted up to 90% of the organically bound phosphorus in seeds. Great improvement has been made in recent years on isolating and measuring phytate, and its structure is clear. Phytate is considered to reduce Zn bioavailability in animal. Phytase is the enzyme that hydrolyzes phytate and is present in yeast, rye bran, wheat bran, barley, triticale, and many bacteria and fungi. Zinc nutrition and bioavailability can be enhanced by addition of phytase to animal feeds. Therefore, using phytase as supplements, the most prevalent Zn deficiency in animals may be effectively corrected without the mining and smelting of several tons of zinc daily needed to correct this deficiency by fortification worldwide.

  6. Wound healing in Mac-1 deficient mice.

    Science.gov (United States)

    Chen, Lin; Nagaraja, Sridevi; Zhou, Jian; Zhao, Yan; Fine, David; Mitrophanov, Alexander Y; Reifman, Jaques; DiPietro, Luisa A

    2017-05-01

    Mac-1 (CD11b/CD18) is a macrophage receptor that plays several critical roles in macrophage recruitment and activation. Because macrophages are essential for proper wound healing, the impact of Mac-1 deficiency on wound healing is of significant interest. Prior studies have shown that Mac-1(-/-) mice exhibit deficits in healing, including delayed wound closure in scalp and ear wounds. This study examined whether Mac-1 deficiency influences wound healing in small excisional and incisional skin wounds. Three millimeter diameter full thickness excisional wounds and incisional wounds were prepared on the dorsal skin of Mac-1 deficient (Mac-1(-/-) ) and wild type (WT) mice, and wound healing outcomes were examined. Mac-1 deficient mice exhibited a normal rate of wound closure, generally normal levels of total collagen, and nearly normal synthesis and distribution of collagens I and III. In incisional wounds, wound breaking strength was similar for Mac-1(-/-) and WT mice. Wounds of Mac-1 deficient mice displayed normal total macrophage content, although macrophage phenotype markers were skewed as compared to WT. Interestingly, amounts of TGF-β1 and its downstream signaling molecules, SMAD2 and SMAD3, were significantly decreased in the wounds of Mac-1 deficient mice compared to WT. The results suggest that Mac-1 deficiency has little impact on the healing of small excisional and incisional wounds. Moreover, the findings demonstrate that the effect of single genetic deficiencies on wound healing may markedly differ among wound models. These conclusions have implications for the interpretation of the many prior studies that utilize a single model system to examine wound healing outcomes in genetically deficient mice. © 2017 by the Wound Healing Society.

  7. [Psychiatric manifestations of vitamin B12 deficiency: a case report].

    Science.gov (United States)

    Durand, C; Mary, S; Brazo, P; Dollfus, S

    2003-01-01

    Psychiatric manifestations are frequently associated with pernicious anemia including depression, mania, psychosis, dementia. We report a case of a patient with vitamin B12 deficiency, who has presented severe depression with delusion and Capgras' syndrome, delusion with lability of mood and hypomania successively, during a period of two Months. Case report - Mme V., a 64-Year-old woman, was admitted to the hospital because of confusion. She had no history of psychiatric problems. She had history of diabetes, hypertension and femoral prosthesis. The red blood count revealed a normocytosis with anemia (hemoglobin=11,4 g/dl). At admission she was uncooperative, disoriented in time and presented memory and attention impairment and sleep disorders. She seemed sad and older than her real age. Facial expression and spontaneous movements were reduced, her speech and movements were very slow. She had depressed mood, guilt complex, incurability and devaluation impressions. She had a Capgras' syndrome and delusion of persecution. Her neurologic examination, cerebral scanner and EEG were postponed because of uncooperation. Further investigations confirmed anemia (hemoglobin=11,4 g/dl) and revealed vitamin B12 deficiency (52 pmol/l) and normal folate level. Antibodies to parietal cells were positive in the serum and antibodies to intrinsic factor were negative. An iron deficiency was associated (serum iron=7 micromol/l; serum ferritin concentration=24 mg/l; serum transferrin concentration=3,16 g/l). This association explained normocytocis anemia. Thyroid function, hepatic and renal tests, glycemia, TP, TCA, VS, VDRL-TPHA were normal. Vitamin B12 replacement therapy was started with hydroxycobalamin 1 000 ng/day im for 10 days and iron replacement therapy. Her mental state improved dramatically within a few days. After one week of treatment the only remaining symptoms were lability of mood, delusion of persecution, Capgras' syndrome but disappeared totally 9 days after the

  8. Hypopituitarism: growth hormone and corticotropin deficiency.

    Science.gov (United States)

    Capatina, Cristina; Wass, John A H

    2015-03-01

    This article presents an overview of adult growth hormone deficiency (AGHD) and corticotropin deficiency (central adrenal failure, CAI). Both conditions can result from various ailments affecting the hypothalamus or pituitary gland (most frequently a tumor in the area or its treatment). Clinical manifestations are subtle in AGHD but potentially life-threatening in CAI. The diagnosis needs dynamic testing in most cases. Treatment of AGHD is recommended in patients with documented severe deficiency, and treatment of CAI is mandatory in all cases. Despite significant progress in replacement hormonal therapy, more physiologic treatments and more reliable indicators of treatment adequacy are still needed.

  9. Growth hormone deficiency and hyperthermia during exercise

    DEFF Research Database (Denmark)

    Juul, A; Hjortskov, N; Jepsen, Leif

    1995-01-01

    Sweat secretion is often disturbed in patients with GH secretory disorders. Hyperhidrosis is a classic feature of acromegaly, and it has recently been shown that GH-deficient patients exhibit decreased sweating capacity after pilocarpine stimulation of the skin. Thus, patients with GH-deficiency ......Sweat secretion is often disturbed in patients with GH secretory disorders. Hyperhidrosis is a classic feature of acromegaly, and it has recently been shown that GH-deficient patients exhibit decreased sweating capacity after pilocarpine stimulation of the skin. Thus, patients with GH...

  10. Molecular genetics of human lactase deficiencies.

    Science.gov (United States)

    Järvelä, Irma; Torniainen, Suvi; Kolho, Kaija-Leena

    2009-01-01

    Lactase non-persistence (adult-type hypolactasia) is present in more than half of the human population and is caused by the down-regulation of lactase enzyme activity during childhood. Congenital lactase deficiency (CLD) is a rare severe gastrointestinal disorder of new-borns enriched in the Finnish population. Both lactase deficiencies are autosomal recessive traits and characterized by diminished expression of lactase activity in the intestine. Genetic variants underlying both forms have been identified. Here we review the current understanding of the molecular defects of human lactase deficiencies and their phenotype-genotype correlation, the implications on clinical practice, and the understanding of their function and role in human evolution.

  11. Nutrition and hair: deficiencies and supplements.

    Science.gov (United States)

    Finner, Andreas M

    2013-01-01

    Hair follicle cells have a high turnover. A caloric deprivation or deficiency of several components, such as proteins, minerals, essential fatty acids, and vitamins, caused by inborn errors or reduced uptake, can lead to structural abnormalities, pigmentation changes, or hair loss, although exact data are often lacking. The diagnosis is established through a careful history, clinical examination of hair loss activity, and hair quality and confirmed through targeted laboratory tests. Examples of genetic hair disorders caused by reduced nutritional components are zinc deficiency in acrodermatitis enteropathica and copper deficiency in Menkes kinky hair syndrome.

  12. Severe Vitamin D Deficiency Causing Kyphoscoliosis.

    Science.gov (United States)

    Singhai, Abhishek; Banzal, Subodh

    2013-01-01

    Vitamin D deficiency is common among Indian population. Women are especially at risk for severe vitamin D deficiency. The risk is higher for those who are multiparous and postmenopausal. Poor exposure to sunlight, higher latitude, winter season, inadequate diet, older age, obesity and malabsorption are also important risk factors. Symptoms of hypovitaminosis D, including diffuse or migratory pain affecting several sites (especially the shoulder, pelvis, ribcage and lower back) have also been misdiagnosed as musculoskeletal disorders, including fibromyalgia, polymyalgia rheumatica and ankylosing spondylitis. Here, we report two cases presented with kyphoscoliosis, diagnosed to have severe vitamin D deficiency.

  13. Growth hormone deficiency and hyperthermia during exercise

    DEFF Research Database (Denmark)

    Juul, A; Hjortskov, N; Jepsen, Leif

    1995-01-01

    Sweat secretion is often disturbed in patients with GH secretory disorders. Hyperhidrosis is a classic feature of acromegaly, and it has recently been shown that GH-deficient patients exhibit decreased sweating capacity after pilocarpine stimulation of the skin. Thus, patients with GH-deficiency ......Sweat secretion is often disturbed in patients with GH secretory disorders. Hyperhidrosis is a classic feature of acromegaly, and it has recently been shown that GH-deficient patients exhibit decreased sweating capacity after pilocarpine stimulation of the skin. Thus, patients with GH...

  14. Responses of Legumes to Phosphorus Deficiency

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Phosphorus deficiency is a universal problem in most world soils. Furthermore, of all nutrients, shortage of phosphorus has the biggest impact on legumes, therefore, lots of studies were carried out for identifying responses of legumes to shortage of phosphorus. They concluded that to maintain improved growth under phosphorus deficiency conditions plants develop two major mechanisms: (i) Phosphorus acquisition (root morphology, root exudation and phosphorus uptake mechanisms), (ii) Phosphorus utilization (internal mechanisms associated with better use of absorbed phosphorus at cellular level). The aim of this brief review is to elucidate root morphological changes and rhizophere acidification to phosphorus deficiency.

  15. Lysosomal membrane permeabilization is involved in oxidative stress-induced apoptotic cell death in LAMP2-deficient iPSCs-derived cerebral cortical neurons

    Directory of Open Access Journals (Sweden)

    Cheuk-Yiu Law

    2016-03-01

    Our results from cellular fractionation and inhibitor blockade experiments further revealed that oxidative stress-induced apoptosis in the LAMP2-deficient cortical neurons was caused by increased abundance of cytosolic cathepsin L. These results suggest the involvement of lysosomal membrane permeabilization in the LAMP2 deficiency associated neural injury.

  16. Zinc deficiency (hypozincemia in local Iraqi cattle

    Directory of Open Access Journals (Sweden)

    Kamal M. Alsaad,

    2011-07-01

    Full Text Available Clinical, hematological, pathological and some biochemical parameters have been studied in local cattle and calves affected naturally with hypozincemia in Mosul, Iraq. The study was conducted on 78 local Iraqi cattle and calves, among these animals, 30 calves were less than six months of age and 38 animals were more than three years old. Ten clinical healthy cattle of different ages were used as control. Affected cattle showed signs of alopecia in different body regions (73.6%, abnormal skin (rough, thickened, wrinkled, cracked and with dandruff (73.6%, paleness of mucous membranes (47.3%, intermittent diarrhoea (39.4%, decreased milk production (31.5% and loss of appetite (26.3%, whereas affected calves showed alopecia in various body regions (90%, abnormal skin (83.3%, decreased growth rate (53.3%, swelling of joints and stiff gait (43.3% and pica (36.6%. No significant difference has been detected in body temperature, whereas respiratory and heart rates were significantly increased in affected animals in comparison with control. Statistical analysis showed significant decrease in the total erythrocytes (TRBCs, hemoglobin (HB and packed cell volume (PCV in diseased cattle and calves and macrocytic normochromic type of anemia was found. The results also indicated significant decrease in lymphocytes and platelets counts, however significant increase was encountered in platelets volume, platelets distribution width, prothrombine time and activated partial thromboplastine time in diseased animals. The biochemical results revealed significant decrease in serum zinc and fibrinogen and haptoglobin level was higher in diseased cattle and calves. Microscopic lesions of the skin of zinc deficient cattle and calves were in the form of epidermal hyperplasia, parakeratosis, hyperkeratosis, acanthosis and the formation of thickened adherent scale.

  17. Vitamin paradox in obesity: Deficiency or excess?

    Science.gov (United States)

    Zhou, Shi-Sheng; Li, Da; Chen, Na-Na; Zhou, Yiming

    2015-08-25

    Since synthetic vitamins were used to fortify food and as supplements in the late 1930s, vitamin intake has significantly increased. This has been accompanied by an increased prevalence of obesity, a condition associated with diabetes, hypertension, cardiovascular disease, asthma and cancer. Paradoxically, obesity is often associated with low levels of fasting serum vitamins, such as folate and vitamin D. Recent studies on folic acid fortification have revealed another paradoxical phenomenon: obesity exhibits low fasting serum but high erythrocyte folate concentrations, with high levels of serum folate oxidation products. High erythrocyte folate status is known to reflect long-term excess folic acid intake, while increased folate oxidation products suggest an increased folate degradation because obesity shows an increased activity of cytochrome P450 2E1, a monooxygenase enzyme that can use folic acid as a substrate. There is also evidence that obesity increases niacin degradation, manifested by increased activity/expression of niacin-degrading enzymes and high levels of niacin metabolites. Moreover, obesity most commonly occurs in those with a low excretory reserve capacity (e.g., due to low birth weight/preterm birth) and/or a low sweat gland activity (black race and physical inactivity). These lines of evidence raise the possibility that low fasting serum vitamin status in obesity may be a compensatory response to chronic excess vitamin intake, rather than vitamin deficiency, and that obesity could be one of the manifestations of chronic vitamin poisoning. In this article, we discuss vitamin paradox in obesity from the perspective of vitamin homeostasis.

  18. Properdin deficiency associated with recurrent otitis media and pneumonia, and identification of male carrier with Klinefelter syndrome

    DEFF Research Database (Denmark)

    Schejbel, Lone; Rosenfeldt, Vibeke; Marquart, Hanne

    2009-01-01

    deficiency in a large Pakistani family. The index cases were found by screening for immunodeficiency due to a history of recurrent infections. This revealed absent AP activity, but normal classical and lectin pathway activity. Sequencing of the properdin gene (PFC) revealed a novel frameshift mutation. When...... all available relatives (n=24) were screened for the mutation, four affected males, four female carriers and a male heterozygous carrier were identified. He was subsequently diagnosed with Klinefelter syndrome. A questionnaire revealed a striking association between properdin deficiency and recurrent...

  19. Pancytopenia due to iron deficiency worsened by iron infusion: a case report

    Directory of Open Access Journals (Sweden)

    Ganti Apar

    2007-12-01

    Full Text Available Abstract Introduction Iron deficiency anemia is commonly associated with thrombocytosis, although thrombocytopenia has been reported in occasional patients with iron-deficiency anemia. Much less common is the development of thrombocytopenia following replenishment of iron stores. Case Presentation We present the unusual case of a 39 year old African American female Jehovah's Witness who presented with a 10 month history of menorrhagia and pancytopenia. Laboratory investigations confirmed a severe iron deficiency. Since blood transfusion was unacceptable to her, she was started on intravenous iron replacement therapy. This precipitated a sudden drop in both her platelet and white blood cell counts. Histopathological examination of the bone marrow revealed a hypercellular marrow with orderly trilineage hematopoiesis, iron deficiency anemia, granulocytic hyperplasia, and mild megakaryocytic hypoplasia. Both her white blood cell and platelet counts recovered uneventfully with continuing iron supplementation. The possible mechanism for this phenomenon is discussed in this report. Conclusion This case illustrates two rather uncommon associations of a very common problem. Severe iron deficiency anemia may be associated with pancytopenia and iron replacement may cause a transient decline in megakaryopoiesis and leukopoiesis. Severe iron deficiency should be added to the list of conditions leading to thrombocytopenia.

  20. Meanings of eating deficiencies for people admitted to palliative home care.

    Science.gov (United States)

    Wallin, Viktoria; Carlander, Ida; Sandman, P-O; Håkanson, Cecilia

    2015-10-01

    Food and eating are embedded in people's everyday social lives: at home with family members and as part of social interactions. For people with progressive life-limiting conditions, however, eating is often obstructed. The objective of the present study was to explore the meanings of living with eating deficiencies at the end of life among people admitted to specialist palliative home care. This qualitative inductive study employed an interpretive descriptive approach. A dozen persons, with various diagnoses and eating deficiencies, admitted to two specialist palliative home care units, participated. Data were collected through individual repeated interviews. Data collection and analysis were guided by the interpretive description method. The results reveal that eating deficiencies among people with progressive life-limiting conditions are existentially loaded markers of impending death. Finding ways to overcome declined food intake and hampered eating enabled our participants to feel able to influence their own well-being and remain hopeful. The results also showed that the eating deficiencies influenced participants' relationships and social interactions in ways that hampered their possibilities of sharing valuable moments together with friends and family members during the final period of life. Efforts to minimize the distress that people experience in relation to the challenges they face with eating deficiencies are important for well-being at the end of life. Person-centered approaches to acknowledge and support individuals' own ways of experiencing and dealing with their eating deficiencies are recommended that include a multidimensional perspective on food and eating.

  1. The Association between Hantavirus Infection and Selenium Deficiency in Mainland China

    Directory of Open Access Journals (Sweden)

    Li-Qun Fang

    2015-01-01

    Full Text Available Hemorrhagic fever with renal syndrome (HFRS caused by hantaviruses and transmitted by rodents is a significant public health problem in China, and occurs more frequently in selenium-deficient regions. To study the role of selenium concentration in HFRS incidence we used a multidisciplinary approach combining ecological analysis with preliminary experimental data. The incidence of HFRS in humans was about six times higher in severe selenium-deficient and double in moderate deficient areas compared to non-deficient areas. This association became statistically stronger after correction for other significant environment-related factors (low elevation, few grasslands, or an abundance of forests and was independent of geographical scale by separate analyses for different climate regions. A case-control study of HFRS patients admitted to the hospital revealed increased activity and plasma levels of selenium binding proteins while selenium supplementation in vitro decreased viral replication in an endothelial cell model after infection with a low multiplicity of infection (MOI. Viral replication with a higher MOI was not affected by selenium supplementation. Our findings indicate that selenium deficiency may contribute to an increased prevalence of hantavirus infections in both humans and rodents. Future studies are needed to further examine the exact mechanism behind this observation before selenium supplementation in deficient areas could be implemented for HFRS prevention.

  2. Increased gastric IL-1β concentration and iron deficiency parameters in H. pylori infected children.

    Science.gov (United States)

    Queiroz, Dulciene Maria Magalhaes; Rocha, Andreia Maria Camargos; Melo, Fabricio Freire; Rocha, Gifone Aguiar; Teixeira, Kádima Nayara; Carvalho, Simone Diniz; Bittencourt, Paulo Fernando Souto; Castro, Lucia Porto Fonseca; Crabtree, Jean E

    2013-01-01

    Association between H. pylori infection, iron deficiency and iron deficiency anaemia has been described, but the mechanisms involved have not been established. We hypothesized that in H. pylori infected children increased gastric concentrations of IL-1β and/or TNF-α, both potent inhibitors of gastric acid secretion that is essential for iron absorption, are predictors for low blood concentrations of ferritin and haemoglobin, markers of early depletion of iron stores and anaemia, respectively. We evaluated 125 children undergoing endoscopy to clarify the origin of gastrointestinal symptoms. Gastric specimens were obtained for H. pylori status and cytokine evaluation and blood samples for determination of iron deficiency/iron deficiency anaemia parameters and IL1 cluster and TNFA polymorphisms that are associated with increased cytokine secretions. Higher IL-1β and TNF-α gastric concentrations were observed in H. pylori-positive (n = 47) than in -negative (n = 78) children. Multiple linear regression models revealed gastric IL-1β, but not TNF-α, as a significant predictor of low ferritin and haemoglobin concentrations; results were reproduced in young children in whom IL1RN polymorphic genotypes associated with higher gastric IL-1β expression and lower blood ferritin and haemoglobin concentrations. In conclusion, high gastric levels of IL-1β can be the link between H. pylori infection and iron deficiency/iron deficiency anaemia in childhood.

  3. Alterations of proteins in MDCK cells during acute potassium deficiency.

    Science.gov (United States)

    Peerapen, Paleerath; Ausakunpipat, Nardtaya; Chanchaem, Prangwalai; Thongboonkerd, Visith

    2016-06-01

    Chronic K(+) deficiency can cause hypokalemic nephropathy associated with metabolic alkalosis, polyuria, tubular dilatation, and tubulointerstitial injury. However, effects of acute K(+) deficiency on the kidney remained unclear. This study aimed to explore such effects by evaluating changes in levels of proteins in renal tubular cells during acute K(+) deficiency. MDCK cells were cultivated in normal K(+) (NK) (K(+)=5.3 mM), low K(+) (LK) (K(+)=2.5 mM), or K(+) depleted (KD) (K(+)=0 mM) medium for 24 h and then harvested. Cellular proteins were resolved by two-dimensional gel electrophoresis (2-DE) and visualized by SYPRO Ruby staining (5 gels per group). Spot matching and quantitative intensity analysis revealed a total 48 protein spots that had significantly differential levels among the three groups. Among these, 46 and 30 protein spots had differential levels in KD group compared to NK and LK groups, respectively. Comparison between LK and NK groups revealed only 10 protein spots that were differentially expressed. All of these differentially expressed proteins were successfully identified by Q-TOF MS and/or MS/MS analyses. The altered levels of heat shock protein 90 (HSP90), ezrin, lamin A/C, tubulin, chaperonin-containing TCP1 (CCT1), and calpain 1 were confirmed by Western blot analysis. Global protein network analysis showed three main functional networks, including 1) cell growth and proliferation, 2) cell morphology, cellular assembly and organization, and 3) protein folding in which the altered proteins were involved. Further investigations on these networks may lead to better understanding of pathogenic mechanisms of low K(+)-induced renal injury.

  4. An OTC deficiency 'phenocopy' in association with Klinefelter syndrome.

    Science.gov (United States)

    Swarts, L; Leisegang, F; Owen, E P; Henderson, H E

    2007-02-01

    Late-onset urea cycle disorder in a 20-month-old boy is unusually associated with Klinefelter syndrome with a 47XXY karyotype. We record the typical clinical and biochemical findings of ornithine transcarbamylase (OTC) deficiency in a young boy with a short history of recurrent vomiting, self mutilating behaviour, lethargy, ataxia and seizures. Laboratory studies showed hyperammonaemia and orotic aciduria, with normal citrulline and other urea cycle amino acids. Unfortunately, a liver biopsy for OTC activity measurement was refused by the parents. A rapid reversal of phenotype was seen on the introduction of a low-protein diet with accompanying benzoate and phenylbutyrate administration. Linkage studies suggested the inheritance of two X chromosomes, which was confirmed by karyotype analysis. Sequencing of all exons and immediate splice site regions revealed no sequence alterations in these sections of the OTC gene. A search for skewing of X-inactivation in the liver was not possible but we did show a random pattern of X-inactivation in leukocytes. The possibility of maternal X chromosome iso-disomy in our patient was discounted by microsatellite analysis, which revealed the inheritance of two independent X chromosomes. Mutation analysis in the OTC gene has shown that approximately 20% of patients with liver biopsy confirmed OTC deficiency do not have mutations in the coding or immediate splice-site sequences of this gene. Their classification as OTC phenocopies remains speculative, awaiting clarification of the underlying DNA alteration. We report on the novel association of OTC deficiency and Klinefelter syndrome with the additional interest of a probable unusual genetic defect underlying the OTC abnormality.

  5. A Patient with Complex I Deficiency Caused by a Novel ACAD9 Mutation Not Responding to Riboflavin Treatment

    DEFF Research Database (Denmark)

    Nouws, Jessica; Wibrand, Flemming; van den Brand, Mariël;

    2014-01-01

    deteriorated during intercurrent illnesses and she died at 6 months of age in cardiogenic shock. Analysis of respiratory chain activities in muscle and fibroblasts revealed an isolated complex I deficiency. A genome-wide screen for homozygosity revealed several homozygous regions. Four candidate genes were...

  6. PREVALENCE AND SEVERITY OF IODINE DEFICIENCY ...

    African Journals Online (AJOL)

    GB

    2012-11-03

    Nov 3, 2012 ... that severe iodine deficiency in Ethiopian women leads to 50,000 ... there will be hypothyroidism that causes low metabolic ... high in pregnant mothers and in school children as evidenced by research articles. Especially in.

  7. Vitamin D deficiency in pediatric critical illness

    Directory of Open Access Journals (Sweden)

    Kiran B. Hebbar, MD, FCCM

    2014-12-01

    Conclusions: Vitamin D deficiency is common in the pediatric critical care population. Significant seasonal differences were noted even in the critically ill. The role of vitamin D in certain diseases like asthma in critically ill children merit further study.

  8. Isoprenoid biosynthesis and mevalonate kinase deficiency

    NARCIS (Netherlands)

    Henneman, L.

    2011-01-01

    Mevalonaat Kinase Deficiëntie (MKD) is een aangeboren ziekte geassocieerd met heftige koortsaanvallen die drie tot vier dagen aanhouden en gepaard gaan met koude rillingen, gewrichtsklachten, huiduitslag, hoofdpijn, duizeligheid, buikpijn, braken en diarree. De koortsaanvallen treden gemiddeld eens

  9. PREVALENCE AND SEVERITY OF IODINE DEFICIENCY ...

    African Journals Online (AJOL)

    GB

    2012-11-03

    Nov 3, 2012 ... BACKGROUND: Iodine deficiency disorder is a major problem worldwide, .... method involves the titration of a solution of salt ..... blocks the thyroid peroxidase enzyme (29, 34). .... Modern Nutrition in Health and Disease, Lea.

  10. Genetics Home Reference: mitochondrial trifunctional protein deficiency

    Science.gov (United States)

    ... link) ACT Sheet: Elevated C16-OH +/- C18:1-OH and Other Long Chain Acylcarnitines (PDF) Genetic Testing (1 link) Genetic Testing Registry: Mitochondrial trifunctional protein deficiency Other Diagnosis and Management Resources (3 links) ...

  11. Genetics Home Reference: guanidinoacetate methyltransferase deficiency

    Science.gov (United States)

    ... Facebook Share on Twitter Your Guide to Understanding Genetic Conditions Search MENU Toggle navigation Home Page Search ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions guanidinoacetate methyltransferase deficiency guanidinoacetate methyltransferase ...

  12. Genetics Home Reference: GM3 synthase deficiency

    Science.gov (United States)

    ... Facebook Share on Twitter Your Guide to Understanding Genetic Conditions Search MENU Toggle navigation Home Page Search ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions GM3 synthase deficiency GM3 synthase ...

  13. Impulsivity: A deficiency of inhibitory control?

    NARCIS (Netherlands)

    Lansbergen, M.M.

    2007-01-01

    Impulsivity has been defined as acting without thinking. Impulsivity can be quantified by impulsivity questionnaires, but also by behavioral paradigms which tax inhibitory control. Previous research has repeatedly demonstrated deficient inhibitory control in psychopathological samples characterized

  14. Genetics Home Reference: familial lipoprotein lipase deficiency

    Science.gov (United States)

    ... Rare Disorders (NORD) RareConnect GeneReviews (1 link) Familial Lipoprotein Lipase Deficiency ClinicalTrials.gov (1 link) ClinicalTrials.gov Scientific Articles on PubMed (1 link) PubMed OMIM (1 link) ...

  15. Vitamin K deficiency bleeding of the newborn

    Science.gov (United States)

    Vitamin K deficiency bleeding of the newborn (VKDB) is a bleeding disorder in babies. It most often ... A lack of vitamin K may cause severe bleeding in newborn babies. Vitamin K plays an important role in blood clotting. Babies often ...

  16. Iron-Deficiency Anemia and Stroke

    OpenAIRE

    J Gordon Millichap

    2007-01-01

    The prevalence of iron-deficiency anemia (IDA) in young children at the time of stroke and in age-matched healthy controls was compared in a case-control study conducted at the Hospital for Sick Children, Toronto, Canada.

  17. Genetics Home Reference: glutamate formiminotransferase deficiency

    Science.gov (United States)

    ... glutamate formiminotransferase deficiency is also characterized by megaloblastic anemia. Megaloblastic anemia occurs when a person has a low number ... named? Additional Information & Resources MedlinePlus (4 ... Encyclopedia: Megaloblastic Anemia (image) Health Topic: Amino Acid Metabolism Disorders Health ...

  18. VITAMIN A DEFICIENCY IN NIGERIAN CHILDREN

    African Journals Online (AJOL)

    Dr Olaleye

    Keywords: Vitamin A deficiency, Nigeria, Children. INTRODUCTION. Vitamin A ... related illness when the diet is supplemented with. Vitamin A. This .... rates of 49.6% and 48.6% respectively. The prevalence .... Bangladesh. J. Trop. Paediatr.

  19. Genetics Home Reference: dihydropyrimidine dehydrogenase deficiency

    Science.gov (United States)

    ... of the skin on the palms and soles (hand-foot syndrome); shortness of breath; and hair loss may also ... dehydrogenase deficiency , with its early-onset neurological symptoms, is a rare disorder. Its prevalence is ...

  20. Genetics Home Reference: phosphoglycerate mutase deficiency

    Science.gov (United States)

    ... production in these cells. This defect underlies the muscle cramping and myoglobinuria that occur after strenuous exercise in ... phosphoglycerate mutase deficiency , including episodes of exercise-induced muscle cramping and myoglobinuria. Related Information What does it mean ...

  1. Iron Deficiency, Zinc, Magnesium, Vitamin Deficiencies in Crohn's Disease: Substitute or Not?

    Science.gov (United States)

    Kruis, Wolfgang; Phuong Nguyen, G

    2016-01-01

    Inflammatory bowel disease (IBD) is characterized by inflammatory reactions, complications, extraintestinal manifestations and a loss of intestinal functions, for example, failures of absorption and secretion. According to intestinal dysfunction, a wide array of pathogenetic pathways is existing leading to iron deficiency and numerous vitamins as well as trace element deficiencies. Complications, symptoms and signs of those deficiencies are common in IBD with varying degrees of clinical significance. This review focuses on selected micronutrients including iron, zinc, magnesium and some vitamins. Epidemiology with respect to IBD, pathophysiology, diagnosis and clinical aspects are addressed. Finally, some suggestions for treatment of deficient situations are discussed. In conclusion, some micronutrients have significant impact on complications and quality of life in IBD. Deficiencies may even influence the course of the disease. Those deficiencies should be thoroughly supplemented.

  2. Placental polyp: a rare cause of iron deficiency anemia

    Directory of Open Access Journals (Sweden)

    Fernando Peixoto Ferraz de Campos

    2011-12-01

    Full Text Available Placental polyps are defined as pedunculated or polypoid fragments of placentaor ovular membranes retained for an indefinite period of time into the uterus afterabortion or child birth. An important cause of retention is placental accretism, anabnormal adherence of the placenta into the uterine wall. Chronic cases are rarelyreported in the literature. In these cases, the placental retention in the immediatepostpartum is not followed by heavy bleeding what makes the diagnosischallenging. We report a rare case of iron-deficiency anemia in a multiparous29-year-old female patient two years after the last delivery. She sought medicalcare with clinical symptoms of anemia and recent menses alterations. Therewas no history of abortion. On gynecological examination, there was a twofoldenlarged uterus, and the pelvic ultrasound revealed an image compatible with anendometrial polyp. She underwent open hysterectomy because of uncontrollablebleeding followed by hypotension after curettage. The histolopathologicexamination revealed a partially hyalinized and necrotic placental polyp.

  3. Vitamin B12 deficiency presenting as acute ataxia.

    Science.gov (United States)

    Crawford, John Ross; Say, Daphne

    2013-03-26

    A previously healthy 7-year-old Caucasian boy was hospitalised for evaluation of acute ataxia and failure to thrive, initially suspicious for an intracranial mass. Weight and body mass index were below the third percentile and he demonstrated loss of joint position and vibratory sense on examination. Laboratory studies revealed megaloblastic anaemia while an initial MRI of the brain showed no evidence of mass lesions or other abnormalities. A dietary history revealed the child subscribed to a restrictive vegan diet with little to no intake of animal products or other fortified foods. The child was diagnosed with presumed vitamin B12 deficiency and was treated with intramuscular B12 injections. Neurological symptoms resolved promptly within several days after starting therapy. This case underlines the importance of assessing nutritional status in the evaluation of neurological dysfunction in the pediatric patient.

  4. Dietary restriction causing iodine-deficient goitre.

    Science.gov (United States)

    Cheetham, Tim; Plumb, Emma; Callaghan, James; Jackson, Michael; Michaelis, Louise

    2015-08-01

    Iodine-deficient goitre was common in some parts of the UK prior to the introduction of salt iodisation. Many contemporary salt preparations do not contain much iodine, and there are renewed concerns about the iodine status of the population. We present a boy with severe allergy who developed goitre and significant thyroid dysfunction in association with an iodine-deficient 'food-restricted' diet. The case highlights the importance of a comprehensive nutritional assessment in all children on multiple food restrictions.

  5. [Nutritive correction and iodine deficiency in children].

    Science.gov (United States)

    Shilina, N M; Pozdniakov, A L

    2007-01-01

    It is well known that deficiency of calcium and iodine--essential food components needed for children's valuable growth and development--is observed presently in children of different age. Considering this fact, the "Danone" company together with Institute of Nutrition (Russia) has developed a special formula, including calcium, iodine and vitamin D, for dairy products "Rastishka". The use of these products facilitates both reducing the risk of the above mentioned microelement deficiency and children's growth and development.

  6. Environmental controls on iodine deficiency disorders (IDD)

    OpenAIRE

    Johnson, C C; Fordyce, F.M.

    2003-01-01

    It is estimated that in excess of one billion people world-wide are at risk from iodine deficiency disorders (IDD), the most obvious manifestation of which is goitre (see Fordyce, 2000). Iodine deficiency is the world’s most common cause of mental retardation and brain damage, and the negative effects of impaired mental function have a significant impact on the social and economic development of communities. Although IDD can be caused by a number of factors, goitrogens fo...

  7. Severe Vitamin D Deficiency Causing Kyphoscoliosis

    OpenAIRE

    Singhai, Abhishek; Banzal, Subodh

    2013-01-01

    Vitamin D deficiency is common among Indian population. Women are especially at risk for severe vitamin D deficiency. The risk is higher for those who are multiparous and postmenopausal. Poor exposure to sunlight, higher latitude, winter season, inadequate diet, older age, obesity and malabsorption are also important risk factors. Symptoms of hypovitaminosis D, including diffuse or migratory pain affecting several sites (especially the shoulder, pelvis, ribcage and lower back) have also been ...

  8. Colour vision deficiency and physics teaching

    Science.gov (United States)

    Maule, Louise; Featonby, David

    2016-05-01

    1 in 12 males suffer from some form of colour vision deficiency (CVD) which in the present colour dominated world of education presentation can be a severe disadvantage. Although aware of ‘colourblindness’ most teachers make little or no adjustment for these pupils for whom tasks may be more difficult. This article examines colour vision deficiency and looks at ways in which we can help the many students who have this problem.

  9. Androgen deficiency and metabolic syndrome in men

    OpenAIRE

    Winter, Ashley G; Zhao, Fujun; Lee, Richard K.

    2014-01-01

    Metabolic syndrome (MetS) is a growing health concern worldwide. Initially a point of interest in cardiovascular events, the cluster of HTN, obesity, dyslipidemia, and insulin resistance known as MetS has become associated with a variety of other disease processes, including androgen deficiency and late-onset hypogonadism (LOH). Men with MetS are at a higher risk of developing androgen deficiency, and routine screening of testosterone (T) is advised in this population. The pathophysiology of ...

  10. Cushing, acromegaly, GH deficiency and tendons

    OpenAIRE

    2014-01-01

    Cushing’s syndrome, induced by an endogenous or exogenous cortisol excess, and acromegaly, the clinical syndrome caused by growth hormone (GH) excess in adulthood, as well as the disease induced by GH deficiency (GHD), represent perfect models for the evaluation of the effects induced by chronic exposure in vivo, respectively, to cortisol and GH/IGF-1 excess or deficiency on the complex structure of the tendons as well as on the related post-traumatic repair mechanism. Although the literature...

  11. Anemia and iron deficiency in heart failure.

    Science.gov (United States)

    Gil, Victor M; Ferreira, Jorge S

    2014-01-01

    Heart failure is a common problem and a major cause of mortality, morbidity and impaired quality of life. Anemia is a frequent comorbidity in heart failure and further worsens prognosis and disability. Regardless of anemia status, iron deficiency is a common and usually unidentified problem in patients with heart failure. This article reviews the mechanisms, impact on outcomes and treatment of anemia and iron deficiency in patients with heart failure.

  12. Targeting Iron Deficiency Anemia in Heart Failure.

    Science.gov (United States)

    Saraon, Tajinderpal; Katz, Stuart D

    2016-01-01

    Iron deficiency is common in heart failure (HF) patients, and is associated with increased risk of adverse clinical outcomes. Clinical trials of intravenous iron supplementation in iron-deficient HF patients have demonstrated short-term improvement in functional capacity and quality of life. In some trials, the benefits of iron supplementation were independent of the hemoglobin levels. Additional investigations of iron supplementation are needed to characterize the mechanisms contributing to clinical benefit and long-term safety in HF.

  13. Deficiently Extremal Cohen-Macaulay Algebras

    Indian Academy of Sciences (India)

    Chanchal Kumar; Pavinder Singh

    2010-04-01

    The aim of this paper is to study homological properties of deficiently extremal Cohen–Macaulay algebras. Eagon–Reiner showed that the Stanley–Reisner ring of a simplicial complex has a linear resolution if and only if the Alexander dual of the simplicial complex is Cohen–Macaulay. An extension of a special case of Eagon–Reiner theorem is obtained for deficiently extremal Cohen–Macaulay Stanley–Reisner rings.

  14. Iron deficiency or anemia of inflammation?

    OpenAIRE

    Nairz, Manfred; Theurl, Igor; Wolf, Dominik; Weiss, Günter

    2016-01-01

    Summary Iron deficiency and immune activation are the two most frequent causes of anemia, both of which are based on disturbances of iron homeostasis. Iron deficiency anemia results from a reduction of the body’s iron content due to blood loss, inadequate dietary iron intake, its malabsorption, or increased iron demand. Immune activation drives a diversion of iron fluxes from the erythropoietic bone marrow, where hemoglobinization takes place, to storage sites, particularly the mononuclear ph...

  15. Tau hyperphosphorylation in apolipoprotein E-deficient and control mice after closed head injury.

    Science.gov (United States)

    Genis, L; Chen, Y; Shohami, E; Michaelson, D M

    2000-05-15

    Apolipoprotein E (apoE)-deficient mice have learning and memory impairments that are associated with specific neurochemical changes and hyperphosphorylation of distinct epitopes of the cytoskeletal protein tau. Furthermore, such mice are highly susceptible to the sequelae of brain trauma and their ability to recover from head injury is impaired. In the present study we investigated the extent that the neuronal maintenance and repair impairments of apoE-deficient mice are related to aberrations at the tau phosphorylation level. This was pursued by subjecting control and apoE-deficient mice to closed head injury (CHI) and examination, utilizing immunoblot assays, of the resulting effects on tau phosphorylation. The results thus obtained revealed that tau of apoE-deficient mice is hyperphosphorylated before CHI and that this insult results in transient tau hyperphosphorylation, whose extent and time course in the two mouse groups varied markedly. Tau hyperphosphorylation in the injured controls was maximal by about 4 hr after injury and reverted to basal levels by 24 hr. In contrast, almost no head injury-induced tau hyperphosphorylation was observed in the apoE-deficient mice at 4 hr after injury. Some tau hyper-phosphorylation was detected in the head-injured apoE-deficient mice after longer time intervals, but its extent was markedly lower than the maximal values obtained in the head injured controls. These findings show that the chronic neuronal impairments brought about by apoE deficiency and the acute response to head injury are both associated with hyperphosphorylation of the same tau domain and that the ability of apoE-deficient mice to mount the acute tau hyperphosphorylation response to head injury is impaired.

  16. Adaptive gene regulation in the Striatum of RGS9-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kathy Busse

    Full Text Available BACKGROUND: RGS9-deficient mice show drug-induced dyskinesia but normal locomotor activity under unchallenged conditions. RESULTS: Genes related to Ca2+ signaling and their functions were regulated in RGS9-deficient mice. CONCLUSION: Changes in Ca2+ signaling that compensate for RGS9 loss-of-function can explain the normal locomotor activity in RGS9-deficient mice under unchallenged conditions. SIGNIFICANCE: Identified signaling components may represent novel targets in antidyskinetic therapy. The long splice variant of the regulator of G-protein signaling 9 (RGS9-2 is enriched in striatal medium spiny neurons and dampens dopamine D2 receptor signaling. Lack of RGS9-2 can promote while its overexpression prevents drug-induced dyskinesia. Other animal models of drug-induced dyskinesia rather pointed towards overactivity of dopamine receptor-mediated signaling. To evaluate changes in signaling pathways mRNA expression levels were determined and compared in wild-type and RGS9-deficient mice. Unexpectedly, expression levels of dopamine receptors were unchanged in RGS9-deficient mice, while several genes related to Ca2+ signaling and long-term depression were differentially expressed when compared to wild type animals. Detailed investigations at the protein level revealed hyperphosphorylation of DARPP32 at Thr34 and of ERK1/2 in striata of RGS9-deficient mice. Whole cell patch clamp recordings showed that spontaneous synaptic events are increased (frequency and size in RGS9-deficient mice while long-term depression is reduced in acute brain slices. These changes are compatible with a Ca2+-induced potentiation of dopamine receptor signaling which may contribute to the drug-induced dyskinesia in RGS9-deficient mice.

  17. The Prevalence of Vitamin D Deficiency among Cancer Survivors in a Nationwide Survey of the Korean Population.

    Directory of Open Access Journals (Sweden)

    Myueng Guen Oh

    Full Text Available Recent studies have shown that inadequate vitamin D levels are associated with a poor cancer prognosis, but data regarding actual vitamin D levels in cancer survivors are limited. This study investigated the vitamin D levels and prevalence of vitamin D deficiency among Korean cancer survivors compared with non-cancer controls, and identified the factors associated with vitamin D deficiency.Using the Korea National Health and Nutrition Examination Survey (KNHANES, 915 cancer survivors and 29,694 controls without a history of cancer were selected. Serum 25(OHD levels were measured; vitamin D deficiency was defined as 25(OHD levels less than 20 ng/mL. Chi-square tests and multiple logistic regression analyses were used to evaluate the prevalence of vitamin D deficiency and associated factors.Vitamin D deficiency was observed in 62.7% of cancer survivors and 67.1% of controls. Among cancer survivors, vitamin D deficiency was most prevalent among 19-44 year olds (76.2% and among managers, professionals, and related workers (79.3%. Multiple logistic regression analysis revealed that younger cancer survivors and those who work indoors were predisposed to vitamin D deficiency.Vitamin D deficiency was prevalent among both cancer survivors and controls in Korea. The regular evaluation and management of vitamin D levels is needed for both bone health and general health in cancer survivors.

  18. Tob deficiency superenhances osteoblastic activity after ovariectomy to block estrogen deficiency-induced osteoporosis

    OpenAIRE

    Usui, Michihiko; Yoshida, Yutaka; Tsuji, Kunikazu; OIKAWA, kaoru; Miyazono, Kohei; Ishikawa, Isao; YAMAMOTO, Tadashi; Nifuji, Akira; Noda, Masaki

    2004-01-01

    Tob (transducer of erbB2) is a member of antiproliferative family proteins and acts as a bone morphogenic protein inhibitor as well as a suppressor of proliferation in T cells, which have been implicated in postmenopausal bone loss. To determine the effect of Tob deficiency on estrogen deficiency-induced bone loss, we analyzed bone metabolism after ovariectomy or sham operation in Tob-deficient mice. Ovariectomy in WT mice decreased trabecular bone volume and bone mineral density (BMD) as exp...

  19. Recognition and management of vitamin D deficiency.

    Science.gov (United States)

    Bordelon, Paula; Ghetu, Maria V; Langan, Robert C

    2009-10-15

    Vitamin D deficiency affects persons of all ages. Common manifestations of vitamin D deficiency are symmetric low back pain, proximal muscle weakness, muscle aches, and throbbing bone pain elicited with pressure over the sternum or tibia. A 25-hydroxyvitamin D level should be obtained in patients with suspected vitamin D deficiency. Deficiency is defined as a serum 25-hydroxyvitamin D level of less than 20 ng per mL (50 nmol per L), and insufficiency is defined as a serum 25-hydroxyvitamin D level of 20 to 30 ng per mL (50 to 75 nmol per L). The goal of treatment is to normalize vitamin D levels to relieve symptoms and decrease the risk of fractures, falls, and other adverse health outcomes. To prevent vitamin D deficiency, the American Academy of Pediatrics recommends that infants and children receive at least 400 IU per day from diet and supplements. Evidence shows that vitamin D supplementation of at least 700 to 800 IU per day reduces fracture and fall rates in adults. In persons with vitamin D deficiency, treatment may include oral ergocalciferol (vitamin D2) at 50,000 IU per week for eight weeks. After vitamin D levels normalize, experts recommend maintenance dosages of cholecalciferol (vitamin D3) at 800 to 1,000 IU per day from dietary and supplemental sources.

  20. An Approach to Iron-Deficiency Anemia

    Directory of Open Access Journals (Sweden)

    Imran Rasul

    2001-01-01

    Full Text Available Iron-deficiency anemia is a common reason for referral to a gastroenterologist. In adult men and postmenopausal women, gastrointestinal tract pathology is often the cause of iron-deficiency anemia, so patients are frequently referred for endoscopic evaluation. Endoscopy may be costly and at times difficult for the patient. Therefore, physicians need to know what lesions can be identified reliably and, more importantly, the importance of ruling out life-threatening conditions such as occult malignancy. Over the past decade, a number of prospective studies have been completed that examined the yield of endoscopy in the investigation of iron-deficiency anemia. The present article provides a broad overview of iron-deficiency anemia, with particular emphasis on hematological diagnosis, etiology, the use of endoscopy in identifying lesions and iron-repletion therapy. Other clinical scenarios, including assessment of patients on anti-inflammatory or anticoagulation therapy and patients with bleeding of obscure origin, are also addressed. The present article provides a diagnostic algorithm to iron-deficiency anemia, which describes a more systematic manner in which to approach iron-deficiency anemia.